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Abstract We consider the equation

ut = div (a[u]∇u − u∇a[u]), −�a = u.

This model has attracted some attention in the recent years and several results are
available in the literature. We review recent results on existence and smoothness of
solutions and explain the open problems.
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1 Introduction

1.1 The Isotropic Landau Equation

In this manuscript we review recent results on the isotropic Landau equation

ut = div (a[u]∇u − u∇a[u]), −�a = u in R
3, t > 0,

u(·, 0) = u0.
(1)
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This problem has been extensively studied in the recent years. Due to its
similarity to the semilinear heat equation, to the Keller-Segel model but mostly to
the homogeneous Landau equation

ut = div (A[u]∇u − u∇a[u]),
A[u] := 1

8π

∫
R3

1
|y|

(
Id − y⊗y

|y|2
)

u(x − y) dy, a[u] = T r(A[u]), (2)

the analysis of existence, uniqueness and regularity of solutions to (1) is a very
interesting problem. A modification of (1) was first introduced in [14, 16]; there
the authors studied existence and regularity of bounded radially symmetric and
monotone decreasing solutions to

ut = a[u]�u + αu2, α ∈
(

0,
74

75

)

.

Existence of global bounded solutions for (1) has been proven in [11] when initial
data are radially symmetric and monotone decreasing. Section 2 explains these
results more in details. Existence of weak solutions for even initial data has been
shown in [13]. See Sect. 3 for more details.

For general initial data the problem of global existence of regular solutions is still
open. The main obstacles for the analysis are hidden in the quadratic non-linearity:
expanding the divergence term one can formally rewrite (1) as

ut = a[u]�u + u2.

This problem is reminiscent to the semilinear heat equation, which solutions become
unbounded after a finite time [9].

Let us mention that the main interest in studying (1) is to gain insights on
model (2). It is well known that existence of global smooth solutions for (2), both
in the homogeneous and inhomogeneous settings, is still an open problem. For an
overview about the problem we refer to [1, 6, 19, 20]. In the very recent years
much has been done regarding integrability and regularization for solution to the
Landau equation. In that direction we acknowledge the works [2, 10–12, 15, 18]
which reflect a renewed increasing interest in this problem by several mathematical
communities.

1.2 Conserved Quantities and Entropy Structure

In this section we collect some properties of (1). The isotropic Landau equation
shares some of the conservation properties of the classical Landau and Boltzmann
equation. We first note that the potential a[u] can be expressed as

a[u](x, t) =
∫

R3

u(y, t)

4π |x − y|dy, x ∈ R
3, t > 0,
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and therefore (1) can also be written as

ut = div
∫

R3

u(y)∇u(x) − u(x)∇u(y)

4π |x − y| dy. (3)

With this in mind let us define the Maxwell-Boltzmann entropy:

H [u] ≡
∫

R3
u log u dx. (4)

The function t ∈ (0,∞) �→ H [u(t)] ∈ R is nonincreasing in time: using (1) we can
write the entropy production as

−4π
d

dt
H [u] =

∫∫

R3×R3

∇u(x)

u(x)
· u(y)∇u(x) − u(x)∇u(y)

|x − y| dxdy

=
∫∫

R3×R3

u(x)u(y)

|x − y|
∇u(x)

u(x)
·
(∇u(x)

u(x)
− ∇u(y)

u(y)

)

dxdy

= 1

2

∫∫

R3×R3

u(x)u(y)

|x − y|
∣
∣
∣
∣
∇u(x)

u(x)
− ∇u(y)

u(y)

∣
∣
∣
∣

2

dxdy ≥ 0.

Clearly
∫
R3 u(x, t)dx = ∫

R3 u0(x)dx, t > 0. We can say something about the first
and second order moments of u. From (1) it follows

4π
d

dt

∫

R3
xu(x, t)dx = −

∫∫

R3×R3

u(y)∇u(x) − u(x)∇u(y)

|x − y| dxdy = 0

for obvious symmetry reasons. So the first moment is conserved. As for the second
moment

4π
d

dt

∫

R3

|x|2
2

u(x, t)dx = −
∫∫

R3×R3
x · u(y)∇u(x) − u(x)∇u(y)

|x − y| dxdy

=
∫∫

R3×R3
y · u(y)∇u(x) − u(x)∇u(y)

|x − y| dxdy

= −1

2

∫∫

R3×R3

x − y

|x − y|(u(y)∇u(x) − u(x)∇u(y))dxdy.

Since

div x
x − y

|x − y| = −div y
x − y

|x − y| =
(

div z
z

|z|
)

∣
∣
z=x−y

= 2

|x − y| ,

integration by parts yields

d

dt

∫

R3

|x|2
2

u(x, t)dx = 1

2π

∫∫

R3×R3

u(x, t)u(y, t)

|x − y| dxdy = 2
∫

R3
u(x, t)a(x, t)dx > 0.

(5)
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This is one of the main differences to the classical Landau equation. The second
moment increases with time and a bound is not given a-priori. We will see in Sect. 3
how to find this bound when the initial data are even.

2 Radially Symmetric Solutions

Problem (1) is well understood when initial data are radially symmetric and
monotonically decreasing. In [11] the authors prove the following theorem:

Theorem 1 Let u0 be a nonnegative function that has finite mass, energy and
entropy. Moreover let u0 be radially symmetric, monotonically decreasing and such
that u0 ∈ L

p
weak for some p > 6. Then there exists a function u(x, t) smooth,

positive and bounded for all time which solves

ut = a[u]�u + u2, u(x, 0) = u0.

We briefly highlight the ideas behind the proof of Theorem 1. The non-local
dependence on the coefficients prevents the equation to satisfy comparison
principle: in fact given two functions u1 and u2 such that u1 < u2 for
t < t0 and u1 = u2 at (x0, t0) we definitely have that �u1(x0, t0) ≤
�u2(x0, t0) and a[u1](x0, t0) ≤ a[u2](x0, t0). However it is not necessarily
true a[u1](x0, t0)�u1(x0, t0) ≤ a[u2](x0, t0)�u2(x0, t0). To overcome this
shortcoming, the main observation in [11] is that if one proves the existence of
a function g(x) ∈ Lp for some p > 3/2 such that u0 < g and

a[u]�g + ug < 0,

then comparison principle for the linearized problem implies u ≤ g for all t >

0. Once higher integrability Lp of u is proved, standard techniques for parabolic
equation such as Stampacchia’s theorem yield L∞ bound for u(x, t) and consequent
regularity.

3 Even Initial Data

Existence of weak solutions for (1) with general initial data is still an open problem.
As already mentioned at the end of Sect. 1.2, the first obstacle that one encounters
in the analysis of (1) is the missing bound for the second moment. This bound is
essential when one seeks a-priori estimates for the gradient. In [13] the authors
overcame this problem when solutions are even. In this section we highlight the
basic estimates of [13] that will lead to construction of weak even solutions. For
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weak solutions we mean functions u(x, t) such that

√
u ∈ L2

(

0, T ; H 1
(

R
3,

dx

1 + |x|
))

, u, u log u ∈ L∞(0, T ; L1(R3)),

a ∈ L∞(0, T ; L3
loc(R

3)), ∇a ∈ L∞(0, T ; L
3/2
loc (R3)),

that satisfy the following weak formulation

∫ T

0
〈∂t u , φ 〉dt +

∫ T

0

∫

R3
(a∇u − u∇a) · ∇φ dxdt= 0, ∀φ ∈ L∞(0, T ; W

1,∞
c (R3)).

All the computations here are formal, meaning we assume that u and all related
quantities have enough regularity for the mathematical manipulations to make sense.
We refer to [13] for the detailed calculations. Let

E(t) :=
∫

R3

|x|2
2

u(x, t)dx, R(t) := 2

√
E(t)

‖u0‖L1
,

and define BR(t) ≡ {x ∈ R
3 : |x| < R(t)}. We point out that, since∫

R3\BR(t)
u(x, t)dx ≤ 2E(t)

R(t)2 = 1
2‖u0‖L1 , it follows

∫

BR(t)

u(x, t)dx = ‖u0‖L1 −
∫

R3\BR(t)

u(x, t)dx ≥ 1

2
‖u0‖L1 . (6)

A Lower Bound for a[u] From the definition of a[u] it follows

4πa[u](x, t) =
∫

R3

u(y, t)

|x − y|dy ≥
∫

BR(t)

u(y, t)

|x − y|dy ≥ 1

R(t) + |x|
∫

BR(t)

u(y, t)dy ≥ ‖u0‖L1

2(R(t) + |x|)

and therefore

a[u](x, t) ≥ 1

16π

‖u0‖3/2
L1

E(t)1/2 + |x|‖u0‖1/2
L1

. (7)

AGradient Estimate for Even Solutions We assume here that the solution u of (1)
is even w.r.t. each component of x, for t ≥ 0.

Clearly |x − y| ≤ |x| + |y| ≤ (1 + |x|)(1 + |y|) for x, y ∈ R
3. Therefore

−4π
d

dt
H [u] ≥ 1

2

∫∫

R3×R3

u(x, t)u(y, t)

(1 + |x|)(1 + |y|)
∣
∣
∣
∣
∇u(x, t)

u(x, t)
− ∇u(y, t)

u(y, t)

∣
∣
∣
∣

2
dxdy

=
(∫

R3
u(x, t)

dx

1 + |x|
)(∫

R3

|∇u(x, t)|2
u(x)

dx

1 + |x|

)

−
∣
∣
∣
∣

∫

R3

∇u(x, t)

1 + |x| dx

∣
∣
∣
∣

2
.
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For the assumption on u it follows that

∣
∣
∣
∣

∫

R3

∇u

1 + |x|dx

∣
∣
∣
∣

2

=
3∑

i=1

(∫

R3

∂u

∂xi

dx

1 + |x|
)2

= 0.

As a consequence

−4π
d

dt
H [u] ≥

(∫

R3
u(x, t)

dx

1 + |x|
) (∫

R3

|∇u(x, t)|2
u(x)

dx

1 + |x|
)

.

We now wish to show a positive lower bound for
∫
R3 u(x, t) dx

1+|x| for 0 ≤ t ≤ T .

Let R(t) = 2
√

E(t)/‖u0‖L1 . It holds

∫

R3
u(x, t)

dx

1 + |x| ≥
∫

BR(t)

u(x, t)
dx

1 + |x| ≥ 1

1 + R(t)

∫

BR(t)

u(x, t)dx.

From (6) it follows

1

π

∫

R3
u(x, t)

dx

1 + |x| ≥ 1

8π

‖u0‖3/2
L1

E(t)1/2 + ‖u0‖1/2
L1

, t > 0. (8)

Since E(t) is increasing, we conclude

1

π
inf

t∈[0,T ]

∫

R3
u(x, t)

dx

1 + |x| ≥ κ(T ), (9)

with

κ(t) := 1

8π

‖u0‖3/2
L1

E(t)1/2 + ‖u0‖1/2
L1

.

Moreover,

dH [u]
dt

+ κ(t)

∫

R3

|∇√
u(x, t)|2

1 + |x| dx ≤ 0, t > 0. (10)

Upper Bound for a[u] It holds

a[u](x, t) =
∫

|x−y|<1

u(y, t)

|x − y|dy +
∫

|x−y|≥1

u(y, t)

|x − y|dy ≡ I1 + I2. (11)
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The integral I2 can be estimated immediately:

I2 ≤ ‖u0‖L1 .

For I1 we first use Hölder: since 1
|x| is L

q
loc(R

3) for q < 3, we get

I1 =
∫

|x−y|<1

u(y, t)

|x − y|dy ≤
(∫

|x−y|<1
u(y, t)3/2+εdy

) 1
3/2+ε

(∫

|x−y|<1
|x − y|− 3+2ε

1+2ε dy

) 1+2ε
3+2ε

≤ 4π
1 + 2ε

4ε

(∫

|y|<1+|x|
u(y, t)3/2+εdy

) 1
3/2+ε = (1 + 2ε)π

ε
‖√

u(t)‖2
L3+2ε(B1+|x|).

The interpolation inequality implies (for 0 < ε ≤ 3/2):

‖√u(t)‖L3+2ε(B1+|x|) ≤ ‖√u(t)‖1−θ

L2(B1+|x|)‖
√

u(t)‖θ
L6(B1+|x|), θ = 3

2

1 + 2ε

3 + 2ε
.

Then, the Sobolev embedding H 1 ↪→ L6 implies

‖√u(t)‖L3+2ε(B1+|x|) ≤ C(|x|)‖u0‖(1−θ)/2
L1 ‖√u(t)‖θ

H 1(B1+|x|). (12)

Notice that the constant C in (12) depends on |B1+|x|| and therefore on |x|. However,
it is easy to show that such constant (assuming w.l.o.g. that it is optimal) is
nonincreasing with respect to |x|, thus (12) leads to

‖√u(t)‖L3+2ε(B1+|x|) ≤ C‖u0‖(1−θ)/2
L1 ‖√u(t)‖θ

H 1(B1+|x|). (13)

From (13) we obtain

I1 ≤ ε−1C‖√u(t)‖2θ
H 1(B1+|x|) ≤ ε−1C(1 + ‖∇√

u(t)‖2
L2(B1+|x|))

θ

≤ ε−1C

(

1 + (2 + |x|)
∫

R3

|∇√
u(y, t)|2

1 + |y| dy

)θ

≤ ε−1C(1 + |x|)θ
(

1 +
∫

R3

|∇√
u(y, t)|2

1 + |y| dy

)θ

.

The estimates of I1, I2 imply

a[u](x, t)1/θ ≤ ε−1C(1 + |x|)
(

1 +
∫

R3

|∇√
u(y, t)|2

1 + |y| dy

)

.
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The entropy estimate obtained earlier

dH [u]
dt

+ κ(t)

∫

R3

|∇√
u(x, t)|2

1 + |x| dx ≤ 0, t > 0,

leads to

a[u](x, t)1/θ ≤ ε−1C(1+|x|)
(

1 − 1

κ(t)

dH [u(t)]
dt

)

,
1

θ
= 2(3 + 2ε)

3(1 + 2ε)
, 0 < ε ≤ 3

2
.

We can restate the above estimate in a more handy way by defining p = 1/θ ∈ [1, 2)

and noticing that ε−1 ≤ C(2 − p)−1:

a[u](x, t)p ≤ C

2 − p
(1 + |x|)

(

1 − 1

κ(t)

dH [u(t)]
dt

)

, 1 ≤ p < 2, (14)

with κ(t) given by (8).

Lower Bound for H [u] A lower bound for H [u(t)] is here showed. Being the
spatial domain the whole spaceR3, this lower bound is not straightforward. To prove
a lower bound for H [u], we write

H [u] =
∫

R3
u(x) log(u(x))χ{u<1} dx +

∫

R3
u(x) log(u(x))χ{u>1} dx,

and apply Hölder’s inequality to get

−H [u] ≤
∫

{u<1}
u(x) log

1

u(x)
dx =

∫

{u<1}
u(x)(1−ε)/2u(x)(1+ε)/2 log

1

u(x)
dx

≤
(∫

{u<1}
u(x)1−εdx

)1/2
(∫

{u<1}
u(x)1+ε

(

log
1

u(x)

)2

dx

)1/2

.

Since the function s ∈ (0, 1) �→ sε/2 log(1/s) ∈ R is bounded, we can estimate the
term

∫

{u<1}
u(x)1+ε

(

log
1

u(x)

)2

dx

with a constant that only depends on ε and the L1 norm of the initial data. Therefore

−H [u] ≤ Cε

(∫

{u<1}
u(x)1−εdx

)1/2

≤ Cε

(∫

R3
u(x)1−εdx

)1/2

. (15)
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Let us now consider the integral

∫

R3
u(x)1−εdx =

∫
(1 + |x|2)1−εu(x)1−ε(1 + |x|2)−(1−ε)dx

≤
(∫

R3
(1 + |x|2)u(x)dx

)1−ε (∫

R3
(1 + |x|2)−(1−ε)/εdx

)ε

.

For ε < 2/5 we obtain

∫

R3
u(x)1−εdx ≤ Cε

(∫

R3
(1 + |x|2)u(x)dx

)1−ε

.

From the above estimate and (15) we conclude

− H [u(t)] ≤ Cε(1 + E(t))(1−ε)/2, 0 < ε < 2/5, t > 0. (16)

Estimate for E(t) We recall that E(t) = ∫
R3

|x|2
2 u(x, t)dx, t > 0. From (5), (14)

it follows (p′ ≡ p/(p − 1)):

dE(t)

dt
≤ 2

∫

R3
a(x, t)u(x, t)1/pu(x, t)1/p′

dx ≤ 2

(∫

R3
a(x, t)pu(x, t)dx

)1/p

‖u0‖1/p′
L1

≤ Cp

(

1 − 1

κ(t)

dH [u(t)]
dt

)1/p (∫

R3
(1 + |x|)u(x, t)dx

)1/p

≤ Cp

(

1 − 1

κ(t)

dH [u(t)]
dt

)1/p (∫

R3

(
3

2
+ |x|2

2

)

u(x, t)dx

)1/p

≤ Cp

(

1 − 1

κ(t)

dH [u(t)]
dt

)1/p

(1 + E(t))1/p.

The definition (8) of κ(t) implies that κ(t)−1 ≤ C(1 + √
E(t)) ≤ C

√
1 + E(t), so

dE(t)

dt
≤ Cp

(

1 − dH [u(t)]
dt

)1/p

(1 + E(t))
3

2p .

Choosing p ∈ (3/2, 2), dividing the above inequality times (1 + E(t))3/2p and

integrating it in the time interval [0, t] leads to (E0 ≡ ∫
R3

|x|2
2 u0(x)dx)

(1 + E(t))1−3/2p − (1 + E0)
1−3/2p ≤ Cp

∫ t

0

(

1 − dH [u]
dt

)1/p

dt ′

≤ Cpt1−1/p

(∫ t

0

(

1 − dH [u]
dt

)

dt ′
)1/p

= Cpt1−1/p(t + H [u0] − H [u(t)])1/p.



124 M. Gualdani and N. Zamponi

By inserting (16) into the above inequality we get

(1 + E(t))1−3/2p − (1 + E0)
1−3/2p ≤ Cp,εt

1−1/p(t + H [u0] + (1 + E(t))(1−ε)/2)1/p

≤ Cp,ε(1 + t)(1 + E(t))(1−ε)/2p,
3

2
< p < 2, 0 < ε <

2

5
, t > 0.

Let now 9/5 < p < 2. We want to choose ε ∈ (0, 2/5) such that 1 − 3/2p >

(1 − ε)/2p. This is equivalent to ε > 4 − 2p. Since p > 9/5, it follows that
4 − 2p < 2/5, so this choice of ε is admissible. Therefore Young inequality allows
us to estimate the right-hand side of the above inequality as follows

(1 + E(t))1−3/2p − (1 + E0)
1−3/2p ≤ Cp,ε(1 + t)ξ + 1

2
(1 + E(t))1−3/2p, ξ = 2p − 3

2p − 4 + ε
,

and so we conclude

E(t) ≤ Cp,ε(1 + t2p/(2p−4+ε)) t > 0,
9

5
< p < 2, 4 − 2p < ε <

2

5
.

(17)

For example, if p = (9/5 + 2)/2 = 19/10 and ε = (4 − 2p + 2/5)/2 = 3/10, then
2p/(2p − 4 + ε) = 38.

Bound (17) means that E ∈ L∞
loc(0,∞). A few consequences of this fact are, for

example, that for any T > 0:

1. the quantity κ(t) defined in (8) and appearing e.g. in (14) is uniformly positive
for t ∈ [0, T ];

2. the entropy H [u(t)] has a uniform lower bound for t ∈ [0, T ];
3. in Eq. (10) and the mass conservation yield the following estimate:

‖√u‖L2(0,T ;H 1(R3,γ (x)dx) ≤ CT , γ (x) ≡ (1 + |x|)−1; (18)

4. the lower bound (7) for a is uniform in t ∈ [0, T ].

4 Conditional Smoothness

4.1 Conditional Regularity Estimates

This section concerns results of conditional regularity of solutions to (1). These
results are based upon a so-called ε-Poincaré inequality. We say that u satisfies the
ε-Poincaré inequality if given ε > 0 as small as one wishes, there exists a constant
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Cε such that the following inequality holds true

∫
Rd uφ2 dx ≤ ε

∫
Rd a[u]|∇φ|2 dx + Cε

∫
Rd φ2 dx, (19)

for any φ ∈ L1
loc(R

3) that makes the right-hand side of (19) convergent.

Theorem 2 (Conditional Regularity) Let u be a solution to (1). Assume u is such
that (19) holds true. Then for any s1 > 1, s2 > 1

3 , T > 0, R > 0 there exist
constants C1 = C1(T , u0, s1, R), C2 = C2(T , u0, s2) such that

‖u‖L∞(BR×(t,T )) ≤ C(T , u0, s1, R)

(
1

t
+ 1

)s1

, t ∈ (0, T ),

‖a[u]‖L∞(R3×(t,T )) ≤ C(T , u0, s2)

(
1

t
+ 1

)s2

, t ∈ (0, T ),

where BR ⊂ R
3 is any ball of radius R.

Weighted Sobolev and Poincare’s inequalities have been used to obtain infor-
mations about eigenvalues for Schrödinger and degenerate elliptic operators [3–
5, 7, 8, 17]. Inspired by the similarity of (1) with the degenerate operator L =
−div(a[u]∇)−u, in [12] the new inequality (19) has been proposed. We refer to [12]
for discussions about (19). While (19) is always true provided u solves the Landau
equation for soft-potentials [12], the validity of (19) for Coulomb interactions
is still an open question, undoubtedly a very interesting and fundamental one.
Consequently the results in Theorem 2 should be viewed as conditional.

Very interesting is the rate of decay in the estimate for ‖u‖L∞(BR×(t,T )). In fact
one would expect a decay with a rate similar to the heat kernel 1/t3/2. However
thanks to a combination of (19) and a non-local Poincare’s inequality proven in [14]
we obtain a decay that can be made arbitrary close to 1/t .

The proof of Theorem 2 is divided into several lemmas and propositions. We will
make use of the following

Lemma 1 (Weighted Sobolev Inequality) Let u be a solution to (1). Any smooth
function φ satisfies

(∫

I

∫
φqa[u] dxdt

)2/q

≤ C

(∫

I

∫
a[u]|∇φ|2 dxdt + sup

I

∫
φ2 dx

)

,

with

q ∈
(

1, 2

(

1 + 2

3

))

.

Proof We refer to [12] for a detailed proof. ��
We define uk := (u − k)+ for a generic constant k > 0.
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Proposition 1 The following inequality holds:

∂t

∫
η2u

p

k dx + 4(p − 1)

p

∫
a|∇(ηu

p/2
k )|2 dx+p(p − 1)τ

2

∫
u

p−2
k

u3 |∇uk|4η2dx

(20)

≤ (I) + (II)+Cτ

∫
η2u

p
k dx + C(p)τ

∫ (

1 + |∇η|4p

η4p

)

η2dx,

where

(I) := 4(p − 2)

p

∫
u

p/2
k (a∇(ηu

p/2
k ),∇η) dx + 4

p

∫
u

p
k (a∇η,∇η) dx,

(II) :=
∫

u
p
k (∇a,∇(η2)) dx + (p − 1)

∫
uη2u

p
k dx + pk

∫
uη2u

p−1
k dx.

Proof Consider

ψ = p η2 u
p−1
k

as test function for (1). A direct computation yields,

p

∫
η2u

p−1
k ∂tuk dx

= −p

∫
(a∇u,∇(η2u

p−1
k )) dx + p

∫
(u∇a,∇(η2u

p−1
k )) dx

= (̃I) + (II).

Expanding the first integral, we have the expression:

∫
(a∇u,∇(η2u

p−1
k )) dx =

∫
(p − 1)η2u

p−2
k (a∇uk,∇uk) + 2u

p−1
k η(a∇uk,∇η) dx.

Let us rewrite this expression in a more convenient form. Note the elementary
identity

(a∇(ηu
p/2
k ),∇(ηu

p/2
k )) = p2

4
u

p−2
k η2(a∇uk,∇uk) + pηu

p−1
k (a∇uk,∇η) + u

p

k (a∇η,∇η),
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and use it to write,

(p − 1)η2u
p−2
k (a∇uk,∇uk) + 2u

p−1
k η(a∇uk,∇η)

= 4(p − 1)

p2 (a∇(ηu
p/2
k ),∇(ηu

p/2
k ))

− (2p − 4)

p
u

p−1
k η(a∇uk,∇η) − 4(p − 1)

p2 u
p
k (a∇η,∇η).

Further, another elementary identity says

u
p−1
k η(a∇uk,∇η) = 2

p
u

p/2
k (a∇(ηu

p/2
k ),∇η) − 2

p
u

p
k (a∇η,∇η).

Combining the above, it follows that

(p − 1)η2u
p−2
k (a∇uk,∇uk) + 2u

p−1
k η(a∇uk,∇η)

= 4(p − 1)

p2 (a∇(ηu
p/2
k ),∇(ηu

p/2
k ))

− 4(p − 2)

p2 u
p/2
k (a∇(ηu

p/2
k ),∇η) − 4

p2 u
p

k (a∇η,∇η).

In particular,

(̃I) = − 4(p − 1)

p

∫
(a∇(ηu

p/2
k ),∇(ηu

p/2
k )) dx

+ 4(p − 2)

p

∫
u

p/2
k (a∇(ηu

p/2
k ),∇η) dx + 4

p

∫
u

p

k (a∇η,∇η) dx.

Thus,

d

dt

∫
η2u

p
k dx + 4(p − 1)

p

∫
(a∇(ηu

p/2
k ),∇(ηu

p/2
k )) dx

= 4(p − 2)

p

∫
u

p/2
k (a∇(ηu

p/2
k ),∇η) dx + 4

p

∫
u

p

k (a∇η,∇η) dx

+ p

∫
(u∇a,∇(η2u

p−1
k )) dx.

We now analyze (II). Since

(∇a, u∇(η2u
p−1
k )) = uu

p−1
k (∇a,∇(η2)) + (p − 1)uu

p−2
k η2(∇a,∇uk)

= uu
p−1
k (∇a,∇(η2)) + (p − 1)(u

p−1
k + ku

p−2
k )η2(∇a,∇uk)
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= (u
p

k + ku
p−1
k )(∇a,∇(η2))

+ η2(∇a,∇(
p − 1

p
u

p
k + ku

p−1
k )),

it follows that

(II) = p

∫
(u

p
k + ku

p−1
k )(∇a,∇(η2)) dx

− p

∫ (
p − 1

p
u

p
k + ku

p−1
k

)

div(η2∇a) dx.

From the above inequality and the Poisson equation it follows

(II) = p

∫
(u

p
k + ku

p−1
k )(∇a,∇(η2)) dx −

∫
((p − 1)u

p
k + pku

p−1
k )(∇a,∇(η2)) dx

+
∫

uη2((p − 1)u
p

k + pku
p−1
k ) dx

=
∫

u
p

k (∇a,∇(η2)) dx +
∫

uη2
(
(p − 1)u

p

k + pku
p−1
k

)
dx.

This finishes the proof of the lemma. ��
Lemma 2 Let p > 1, then we have the inequality

d

dt

∫
η2u

p
k dx + (p − 1)

p

∫
a|∇(ηu

p/2
k )|2 dx

≤ (p − 1)

∫
η2uu

p
k dx + pk

∫
η2uu

p−1
k dx

+ C(p)

∫
u

p
k (a∇η,∇η) dx −

∫
u

p
k ηTr (aD2η)) dx,

where C(p) denotes a constant that is bounded when p > 1.

Proof We proceed to bound from above the first term (I) and the first term of (II)
resulting from Proposition 1. The aim is to estimate these terms as

4(p − 2)

p

∫
u

p/2
k (a∇(ηu

p/2
k ,∇η) dx +

∫
u

p
k (∇a,∇(η2)) dx

≤c1

∫
(a∇(ηu

p/2
k ),∇(ηu

p/2
k )) dx + lower order terms,



A Review for an Isotropic Landau Model 129

where c1 <
4(p−1)

p
. For the first term we use Cauchy-Schwarz inequality

∣
∣
∣
∣
4(p − 2)

p
(a∇(ηu

p/2
k ), u

p/2
k ∇η)

∣
∣
∣
∣

≤ 2(p − 1)

p
(a∇(ηu

p/2
k ),∇(ηu

p/2
k )) + 2(p − 2)2

p(p − 1)
u

p

k (a∇η,∇η). (21)

For the first term in (II) we use the identity

div(au
p
k ∇(η2)) = adiv(u

p
k ∇(η2)) + u

p
k (∇a,∇(η2)),

and conclude that

∫
u

p

k (∇a,∇(η2)) dx = −
∫

adiv(u
p

k ∇(η2)) dx

= −
∫

au
p
k �(η2) dx −

∫
(a∇u

p
k ,∇η2) dx.

Since

η∇u
p/2
k = ∇(ηu

p/2
k ) − u

p/2
k ∇η,

Young’s inequality yields

−
∫

(a∇u
p
k ,∇η2) dx = −4

∫
u

p/2
k (aη∇u

p/2
k ,∇η)

= −4
∫

u
p/2
k (a∇(ηu

p/2
k ),∇η) dx + 4

∫
u

p

k (a∇η,∇η) dx

≤ 2ε

∫
(a∇(ηu

p/2
k ),∇(ηu

p/2
k )) dx +

(
2

ε
+ 4

)∫
u

p

k (a∇η,∇η) dx.

Thus

∫
u

p
k (∇a,∇(η2)) dx ≤ −

∫
u

p
k Tr(aD2(η2)) dx + 2ε

∫
(a∇(ηu

p/2
k ),∇(ηu

p/2
k )) dx

+
(

2

ε
+ 4

)∫
u

p

k (a∇η,∇η) dx. (22)
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Substituting (22) and (21) into (20) we get by choosing ε <
p−1
2p

d

dt

∫
η2u

p
k dx + (p − 1)

p

∫
(a∇(ηu

p/2
k ),∇(ηu

p/2
k )) dx

≤C(p)

∫
u

p
k (a∇η,∇η) dx + (p − 1)

∫
η2uu

p
k dx

+ pk

∫
η2uu

p−1
k dx −

∫
u

p

k Tr(aD2(η2)) dx.

This concludes the proof. ��
Lemma 3 We have

(p − 1)

∫ T

t

∫
η2uu

p

k dxds ≤ ε(p − 1)

∫ T

t

∫

QR

a|∇(ηu
p/2
k )|2 dxds + C(R, ε, p)

∫ T

t

∫

QR

η2u
p

k dxds,

pk

∫ T

t

∫
η2uu

p−1
k dxds ≤ pε

∫ T

t

∫
a|∇(ηu

p/2
k )|2 dxds + C(R, ε, p)

∫ T

t

∫
η2u

p

k dxds

+ 2pk2
∫ T

0

∫
η2u

p−1
k dxds.

Proof We use here the ε-Poincare’s inequality (19) with

φ = ηu
p/2
k

and get

∫
η2uu

p

k dx ≤ ε
∫

a|∇(ηu
p/2
k )|2 dx + C(R, ε)

∫
η2u

p

k dx.

For the second inequality we get

pk

∫ T

t

∫
η2uu

p−1
k dxds = pk

∫ T

t

∫
η2[uχ{uk≥k} + uχ{uk≤k}]up−1

k dxds

= pk

∫ T

t

∫
η2uχ{uk≥k}up−1

k dxds+pk

∫ T

t

∫
η2 uχ{uk≤k}

︸ ︷︷ ︸
u≤2k

u
p−1
k dxds

≤ p

∫ T

t

∫
η2uu

p

k dxds + 2pk2
∫ T

0

∫
η2u

p−1
k dxds

≤ pε

∫ T

t

∫
a|∇(ηu

p/2
k )|2 dxds + C(R, ε, p)

∫ T

t

∫
η2u

p
k dxds

+ 2pk2
∫ T

0

∫
η2u

p−1
k dxds

using (19) once more. ��
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Corollary 1 Fix times 0 < T1 < T2 < T3 < T , p > 1 and a cut-off function η(v).
Then, we have the following inequality

sup
T2≤t≤T3

{∫
(ηu

p/2
k )2 dx

}

+ (p − 1)

4p

∫ T3

T2

∫
a|∇(ηu

p/2
k )|2 dxdt

≤
(

1

T2 − T1
+ C(p, ε,R)

) ∫ T3

T1

∫
η2u

p
k dxdt

+ 2pk2
∫ T3

T1

∫
η2u

p−1
k dxdt

+ C(p)

∫ T3

T1

∫
u

p
k (a∇η,∇η) dxdt +

∫ T3

T1

∫
au

p
k η|�η| dxdt.

Proof We start with the bound found in Lemma 2

d

dt

∫
η2u

p
k dx + (p − 1)

p

∫
a|∇(ηu

p/2
k )|2 dx

≤ (p − 1)

∫
η2uu

p
k dx + pk

∫
η2uu

p−1
k dx

+ C(p)

∫
u

p

k (a∇η,∇η) dx −
∫

au
p

k η�η dx.

Integrating this inequality from t1 to t2 shows that the term

∫
η2u

p

k (t2) dx −
∫

η2u
p

k (t1) dx + (p − 1)

p

∫ t2

t1

∫
a|∇(ηu

p/2
k )|2 dxdt

is bounded by

(p − 1)

∫ t2

t1

∫
η2uu

p
k dxdt + pk

∫ t2

t1

∫
η2uu

p−1
k dxdt

+C(p)

∫ t2

t1

∫
u

p
k (a∇η,∇η) dxdt −

∫ t2

t1

∫
au

p
k η�η dxdt.
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For a fixed t2 ∈ (T2, T3), we take the average with respect to t1 ∈ (T1, T2) in both
sides of the inequality. This yields

1

T2 − T1

∫ T2

T1

∫
η2u

p

k (t2) dxdt1 + (p − 1)

p

1

T2 − T1

∫ T2

T1

∫ t2

t1

∫
a|∇(ηu

p/2
k )|2 dxdtdt1

≤ 1

T2 − T1

∫ T2

T1

∫
η2u

p

k (t1) dxdt1

+ (p − 1)
1

T2 − T1

∫ T2

T1

∫ t2

t1

∫
η2uu

p
k dxdtdt1

+ pk
1

T2 − T1

∫ T2

T1

∫ t2

t1

∫
η2uu

p−1
k dxdtdt1

+ C(p)
1

T2 − T1

∫ T2

T1

∫ t2

t1

∫
u

p

k (a∇η,∇η) dxdtdt1

− 1

T2 − T1

∫ T2

T1

∫ t2

t1

∫
au

p

k η�η dxdtdt1,

which implies

∫
η2u

p
k (t2) dx + (p − 1)

p

∫ t2

T2

∫
a|∇(ηu

p/2
k )|2 dxdt

≤ 1

T2 − T1

∫ T2

T1

∫
η2u

p
k (t) dxdt

+ (p − 1)

∫ t2

T1

∫
η2uu

p
k dxdt + pk

∫ t2

T1

∫
η2uu

p−1
k dxdt

+ C(p)

∫ t2

T1

∫
u

p
k (a∇η,∇η) dxdt +

∫ t2

T1

∫
au

p
k η|�η| dxdt.

Since this holds for every t2 ∈ (T2, T3), this implies the inequality

sup
T2≤t≤T3

{∫
η2u

p

k (t) dx

}

+ (p − 1)

p

∫ T3

T2

∫
a|∇(ηu

p/2
k )|2 dxdt

≤ 1

T2 − T1

∫ T3

T1

∫
η2u

p
k (t) dxdt

+ (p − 1)

∫ T3

T1

∫
η2uu

p
k dxdt + pk

∫ T3

T1

∫
η2uu

p−1
k dxdt

+ C(p)

∫ T3

T1

∫
u

p

k (a∇η,∇η) dxdt +
∫ T3

T1

∫
au

p

k η|�η| dxdt.
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As the last step we use Lemma 3 with ε <
p−1
4p2 and get

sup
T2≤t≤T3

{∫
η2u

p
k (t) dx

}

+ (p − 1)

4p

∫ T3

T2

∫
a|∇(ηu

p/2
k )|2 dxdt

≤ 1

T2 − T1

∫ T3

T1

∫
η2u

p
k (t) dxdt

+ C(p, ε,R)

∫ T3

T1

∫
η2u

p
k dxdt + 2pk2

∫ T3

T1

∫
η2u

p−1
k dxdt

+ C(p)

∫ T3

T1

∫
u

p
k (a∇η,∇η) dxdt +

∫ T3

T1

∫
au

p
k η|�η| dxdt.

��
Corollary 2 We have

sup
T2≤t≤T3

{∫
up(t) dx

}

+ (p − 1)

4p

∫ T3

T2

∫
a|∇(up/2)|2 dxdt

≤
(

1

T2 − T1
+ C(p, ε)

) ∫ T3

T1

∫
up(t) dxdt.

Proof It is a consequence of Corollary 1 if η = 1 and k = 0. ��
Lemma 4 (Gain in Integrability) For each p > 1 and integer n ≥ 0 we have

sup
T/4≤t≤T

{∫
up+n(t) dx

}

≤ C(p, n)

(
1

T
+ 1

)n+1 ∫ T

0

∫
up(t) dxdt.

Proof The proof is based on iterating Corollary 2 with a non-local weighted
Poincare’s inequality proven in [14]: for each p > 0 any smooth function u ≥ 0
satisfies

∫

Rd

up+1 dx ≤
(

p + 1

p

)2 ∫

Rd

a[u]|∇(up/2)|2 dx. (23)

Consider a sequence of times

Tn = T

4

(

1 − 1

2n−1

)

.
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We start with Corollary 2 which states that for each p > 1

sup
T2≤t≤T

{∫
up(t) dx

}

+ (p − 1)

4p

∫ T

T2

∫
a[u]|∇(up/2)|2 dxdt

≤
(

1

T2
+ C(p, ε)

) ∫ T

0

∫
up(t) dxdt.

Inequality (23) implies

p(p − 1)

4(p + 1)2

∫ T

T2

∫
up+1 dxdt ≤

(
1

T2
+ C(p, ε)

) ∫ T

0

∫
up(t) dxdt.

We now apply the energy inequality to up+1:

sup
T3≤t≤T

{∫
up+1(t) dx

}

+ p

4(p + 1)

∫ T

T3

∫
a[u]|∇(u(p+1)/2)|2 dxdt

≤
(

1

T3 − T2
+ C(p, ε)

) ∫ T

T2

∫
up+1(t) dxdt

≤ 4(p + 1)2

p(p − 1)

(
1

T3 − T2
+ C(p, ε)

) (
1

T2
+ C(p, ε)

) ∫ T

0

∫
up(t) dxdt

≤ 26 (p + 1)2

p(p − 1)

(
1

T
+ C(p, ε)

)2 ∫ T

0

∫
up(t) dxdt.

Iterating the process we get

sup
Tn+2≤t≤T

{∫
up+n(t) dx

}

≤ 2
∑n+2

1 kC(p)n
(

1

T
+ 1

)n+1 ∫ T

0

∫
up(t) dxdt.

Since Tn ≤ T/4 for any n ≥ 0 we conclude

sup
T/4≤t≤T

{∫
up+n(t) dx

}

≤ 2n(n+1)C(p)n
(

1

T
+ 1

)n+1 ∫ T

0

∫
up(t) dxdt,

and the lemma is proven. ��

4.2 Global LpLp Estimates

Lemma 5 There exists a constant that only depends on T and the initial data u0
such that

‖u‖L1(0,T ;L3(R3,γ 3dx)) ≤ C(T , u0).
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Proof We start with the classical Sobolev inequality in three dimensions:

(∫

R3
g6 dx

) 1
3 ≤ C

∫

R3
|∇g|2 dx,

and apply it to g =
√

u

(1+|x|)1/2 . Since

|∇g| ≤ |∇√
u|

(1 + |x|)1/2 + √
u,

Sobolev inequality yields

(∫

R3

u3

(1 + |x|)3 dx

) 1
3

≤ C

∫

R3

|∇√
u|2

(1 + |x|) + u dx.

Integrating both sides in the time interval (0, T ) we get

∫ T

0

(∫

R3

u3

(1 + |x|)3 dx

) 1
3

dt ≤ C

∫ T

0

∫

R3

|∇√
u|2

(1 + |x|) dxdt +
∫ T

0

∫

R3
u dxdt

≤ C(T , u0), (24)

using mass conservation and estimate (18). ��
Lemma 6 There exists a constant that only depends on T and the initial data u0
such that

‖u‖L5/3(0,T ;L5/3(R3)) ≤ C(T , u0).

Proof Interpolation yields

∫

R3
up dx =

∫

R3
upθup(1−θ)(1 + |x|)m(1 + |x|)−m dx

≤
(∫

R3
upp1θ (1+|x|)p1m dx

) 1
p1

(∫

R3
up(1−θ)p2(1+|x|)−mp2 dx

) 1
p2

,

with 1
p1

+ 1
p2

= 1 and θ < 1. For m = 1, p1 = 3/2, p2 = 3, p = 5/3 and θ = 2/5
we get

∫

R3
up dx ≤

(∫

R3
u(1 + |x|)3/2 dx

) 3
5
(∫

R3
u3(1 + |x|)−3 dx

) 1
3

≤
(∫

R3
u(1 + |x|)2 dx

) 3
5
(∫

R3
u3(1 + |x|)−3 dx

) 1
3

.
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Integrating in the time interval (0, T ) we get

∫ T

0

∫

R3
up dxdt ≤

∫ T

0

(∫

R3
u(1 + |x|)2 dx

) 3
5
(∫

R3
u3(1 + |x|)−3 dx

) 1
3

dt

≤ C(T , u0)

∫ T

0

(∫

R3
u3(1 + |x|)−3 dx

) 1
3

dt ≤ C(T , u0),

using conservation of mass and bound of the second momentum for the second
inequality and (24) in the last inequality. ��

4.3 Gain in Integrability

The aim of this section is to show that f has enough integrability for a[u] to be
uniformly bounded in space and time. A consequence of interpolation and Hölder’s
inequality is that a[u](x, t), defined as

a[u](x, t) := 1

4π

∫

R3

u(y)

|x − y| dy,

is uniformly bounded in space and time if u belongs to L∞(Lp(R3)) with p > 3
2 .

This is what we will show next, combining inequality from Lemma 4 with the
L5/3L5/3 estimate from Lemma 6.

Lemma 7 For any 0 < t < T and any integer n there exists a constant
C(p, T , u0, n) such that for α = (n+1)

(3n+2)
:

‖a[u]‖L∞(t,T ,R3) ≤ C(T , u0, n)

(
1

t
+ 1

)α

.

Proof Let r > 0; for p > 3/2 we have

4πa[u](x, t) =
∫

Br(x)

u(y)

|x − y| dy +
∫

Bc
r (x)

u(y)

|x − y| dy

≤ 1

r
‖u‖L∞(L1) + 4π‖u‖L∞(Lp)r

2−3/p,

applying Hölder inequality. The minimum of the function F(r) = c1
r

+ c2r
2−3/p is

reached at the point

rmin =
(

c1

(2 − 3/p) c2

)p/(3(p−1))

,
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and this implies

a[u](x, t) ≤ 4‖u‖
2p−3

3(p−1)

L∞(L1)
‖u‖

p
3(p−1)

L∞(Lp).

From Lemma 4 we know that

sup
T/4≤t≤T

{∫
up+n(t) dx

}

≤ 2n(n+1)C(p)n
(

1

T
+ 1

)n+1 ∫ T

0

∫
up(t) dxdt,

and taking p = 5/3 and using Lemma 6 we get

‖u‖L∞(T /4,T ,L5/3+n(R3)) ≤ C(n, T , u0)

(
1

T
+ 1

) n+1
5/3+n

. (25)

Going back to a[u] this last estimate implies

sup
t∈(T /4,T ),x∈R3

a[u](x, t) ≤c(u0)‖u‖
5/3+n
2+3n

L∞(T /4,T ;L5/3+n)

≤C(n, T , u0)

(
1

T
+ 1

) n+1
3n+2

. (26)

��

4.4 De-Giorgi Iteration and L∞-Regularization

Proposition 2 Let p = 5
3 and q as in Lemma 1. We have

sup
Tn+1≤t≤T

{∫
(ηnu

p/2
n )2 dx

}

+ (p − 1)

4p

∫ T

Tn+1

∫
a|∇(ηnu

p/2
n )|2 dxdt

≤C0

∫ T

Tn

∫
a(ηn−1u

p/2
n−1)

q dxdt,

with

C0 := Cn−1C(R,p)

(
1

T
+ 1

)(
1

M

) p(q−2)
2 −1

.
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Proof Consider the sequence of times and radii

Tn = 1

4

(

2 − 1

2n

)

T , Rn = 1

2

(

1 + 1

2n

)

R,

and, for every n ≥ 1, let Bn denote the ball Bn := BRn(0).
Let ηn be a C∞ function supported in Bn, with 0 ≤ ηn ≤ 1 everywhere, ηn = 1

in Bn+1, ‖∇ηn‖∞ ≤ Cηn2n+1 and ‖D2(ηn)‖∞ ≤ C22n+2. Corollary 1 says that

for kn := M
(

1 − 1
2n

)
, T1 = Tn, T2 = Tn+1, T3 = T , Tn+1 − Tn = T

2n+1 and

un :=
(

u − M

(

1 − 1

2n

))

+

we have

sup
Tn+1≤t≤T

{∫
η2

nu
p
n (t) dx

}

+ (p − 1)

4p

∫ T

Tn+1

∫
a|∇(ηnu

p/2
n )|2 dxdt

≤
(

2n+2

T
+ C(ε, p)

) ∫ T

Tn

∫
η2

nu
p
n dxdt

+ C(p)

∫ T

Tn

∫
u

p
n (a∇ηn,∇ηn) dxdt + 2pk2

n

∫ T

Tn

∫
η2

nu
p−1
n dxdt

+
∫ T

Tn

∫
au

p
nηn|�ηn| dxdt ≤ Un,

with

Un :=
(

2n+2

T
+ C(ε, p)

) ∫ T

Tn

∫
η2

nu
p
n dxdt

+ (C(p) + 1)22n+2
∫ T

Tn

∫

Bn

aη2
nu

p
n dxdt + 2pk2

n

∫ T

Tn

∫
η2

nu
p−1
n dxdt.

We start by estimating the last term of Un: since ηn−1 = 1 on Bn and χ{un≥0} =
χ{un−1≥ M

2n } we have

2pk2
n

∫ T

Tn

∫
η2

nu
p−1
n dxdt ≤ 2pM2

∫ T

Tn

∫

Bn

u
p−1
n dxdt

= 2pM2
∫ T

Tn

∫

Bn

u
p−1
n χ{un−1≥ M

2n } dxdt

≤ 2pM2
∫ T

Tn

∫

Bn

u
p−1
n−1χ{η2/p

n−1un−1≥ M
2n } dxdt.
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Hölder inequality yields

2pk2
n

∫ T

Tn

∫
η2

nu
p−1
n dxdt ≤ 2pM2

∫ T

Tn

(∫

Bn

u
pq
2

n−1 dx

) 2(p−1)
pq ·

·
(∫

Bn

χ{η2/p
n−1un−1≥ M

2n } dx

)pq−2(p−1)
pq

dt.

Using Chebyshev’s inequality

∫

Bn

χ{η2/p

n−1un−1≥ M
2n } dx ≤

(
2n

M

)pq/2 ∫
(η

2/p

n−1un−1)
pq/2 dx

we get

2pk2
n

∫ T

Tn

∫
η2

nu
p−1
n dxdt ≤ 2pM2

(
2n

M

) pq−2(p−1)
2

∫ T

Tn

(∫

Bn

u
pq
2

n−1 dx

) 2(p−1)
pq

×
(∫

(ηn−1u
p/2
n−1)

q dx

) pq−2(p−1)
pq

dt

= 2pM2
(

2n

M

) pq−2(p−1)
2

∫ T

Tn

(∫

Bn

η
q

n−1u
pq
2

n−1 dx

) 2(p−1)
pq ·

·
(∫

(ηn−1u
p/2
n−1)

q dx

) pq−2(p−1)
pq

dt

= 2pM2
(

2n

M

) pq−2(p−1)
2

∫ T

Tn

∫
(ηn−1u

p/2
n−1)

q dxdt

≤ 2pC(R)M2
(

2n

M

) pq−2(p−1)
2

∫ T

Tn

∫
a(ηn−1u

p/2
n−1)

q dxdt.

We now estimate the first two terms of Un:

(
2n+2

T
+ C(ε, p)

) ∫ T

Tn

∫
η2

nu
p
n dxdt + (C(p) + 1)22n+2

∫ T

Tn

∫

Bn

aη2
nu

p
n dxdt

≤ 22n+2
(

1

T
+ C(p,R)

) ∫ T

Tn

∫

Bn

aη2
nu

p
n dxdt

≤ 22n+2
(

1

T
+ C(p,R)

) ∫ T

Tn

∫

Bn

au
p

n−1χ{un≥0} dxdt

≤ 22n+2
(

1

T
+ C(p,R)

) ∫ T

Tn

∫
aη2

n−1u
p

n−1χ{un−1≥ M
2n } dxdt.
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Similarly as before, we apply Hölder’s and Chebyshev’s inequalities and obtain

∫
aη2

n−1u
p
n−1χ{un−1≥ M

2n } dx ≤
(∫

aη
q
n−1u

pq/2
n−1 dx

)2/q (∫
aχ{η2/p

n−1un−1≥ M

2n+1 } dx

)(q−2)/q

≤
(∫

a(ηn−1u
p/2
n−1)

q dx

)2/q
((

2n

M

)pq/2 ∫
aη

q
n−1u

pq/2
n−1 dx

)(q−2)/q

=
(

2n

M

)p(q−2)/2 ∫
a(ηn−1u

p/2
n−1)

q dx,

which implies

(
2n+2

T
+ C(ε, p)

) ∫ T

Tn

∫
η2

nu
p
n dxdt + (C(p) + 1)22n+2

∫ T

Tn

∫
aη2

nu
p
n dxdt

≤ 22n+2
(

1

T
+ C(p,R)

) (
2n+1

M

)p(q−2)/2 ∫ T

Tn

∫
a(ηn−1u

p/2
n−1)

q dx.

Summarizing we obtain:

Un ≤
⎛

⎝2pC(R)M2
(

2n+1

M

) pq−2(p−1)
2

+ 22n+2
(

1

T
+ C(p,R)

) (
2n

M

) p(q−2)
2

⎞

⎠

×
∫ T

Tn

∫
a(ηn−1u

p/2
n−1)

q dxdt

≤ 4n−1C(R,p)

(
1

T
+ 1

)(
1

M

) p(q−2)
2 −1 ∫ T

Tn

∫
a(ηn−1u

p/2
n−1)

q dxdt.

This completes the proof. ��
Proposition 3 Let T > 0 and R > 0. Given any s > 1 there exists a constant that
only depends on s, R, the mass and second moment of u (hence on T ) such that

sup
(T /4,T )×BR/2

u(x, t) ≤ c0(s, R, T )

(
1

T
+ 1

)s

.

Proof Lemma 1 for φ = ηnu
p/2
n implies

(∫ T

Tn+1

∫
a(ηnu

p/2
n )q dxdt

)2/q

≤ sup
Tn+1≤t≤T

{∫
(ηnu

p/2
n )2 dx

}

(27)

+ (p − 1)

4p

∫ T

Tn+1

∫
a|∇(ηnu

p/2
n )|2 dxdt.
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Then Proposition 2 says that

sup
Tn+1≤t≤T

{∫
(ηnu

p/2
n )2 dx

}

+ (p − 1)

4p

∫ T

Tn+1

∫
a|∇(ηnu

p/2
n )|2 dxdt

≤ Un ≤ Cn,p,T ,M

∫ T

Tn

∫
a(ηn−1u

p/2
n−1)

q dxdt

≤Cn,p,T ,M

(

sup
Tn≤t≤T

{∫
(ηn−1u

p/2
n−1)

2 dx

}

+ (p − 1)

4p

∫ T

Tn

∫
a|∇(ηn−1u

p/2
n−1)|2 dxdt

) q
2

≤ Cn,p,T ,M U
q
2
n−1,

with

Cn,p,T ,M := 4n−1 C(p,R)

(
1

T
+ 1

) (
1

M

) p(q−2)
2 −1

︸ ︷︷ ︸
:=Cp,R,T ,M

.

This leads to a recurrence relation

Un ≤ 4n−1Cp,R,T ,MU
q
2
n−1.

A standard induction argument shows that the above recurrence relation yields

lim
n→+∞ Un = 0, (28)

provided the initial step

U0 :=
(

1

T
+ C(ε, p)

) ∫ T

T0

∫
η2

0u
p + aη2

0u
p dxdt, T0 = T/4,

is small enough. For completeness we sketch this last argument: assume for a certain
n ≥ 0

4nU
q
2 −1
n ≤ 1

Cp,R,T ,M(8)

1
q
2 −1

, (29)
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we show that the same is true for n + 1: using (29) we get

4n+1U
q
2 −1

n+1 ≤ 4n+1
(

4nCp,R,T ,MU
q
2
n

) q
2 −1

≤ 4C
q
2 −1
p,R,T ,M

(

CnU
q
2 −1
n

) q
2

≤ 4C
q
2 −1
p,R,T ,M

⎛

⎜
⎝

1

Cp,R,T ,M(8)

1
q
2 −1

⎞

⎟
⎠

q
2

≤ C−1
p,R,T ,M

4

(8)

q
2

q
2 −1

≤ 1

Cp,R,T ,M(8)

1
q
2 −1

.

Therefore if (29) holds for U0, i.e.

U
q
2 −1

0 ≤ 1

Cp,R,T ,M(8)

1
q
2 −1

, (30)

then

lim
n→+∞ U

q
2 −1
n+1 ≤ lim

n→+∞
c

4n
= 0,

and (28) is proven.
We are left to prove that for M big enough the condition (30) is satisfied. Let

p = 5/3 + n with n any positive integer. Inequalities (25) and (26) imply

U0 ≤ c(n)

(
1

T
+ 1

)∫ T

T/4

∫
u5/3+n + au5/3+n dxdt

≤ c(n)

(
1

T
+ 1

)
(‖a‖L∞((T /4,T )×R3) + 1

) ∫ T

T/4

∫
u5/3+n dxdt

≤ c(n, u0, T )

(
1

T
+ 1

)1+ n+1
3n+2 +n+1

= c(n, u0, T )

(
1

T
+ 1

) 7n+5
3n+2 +n

.

We chose M big enough so that

c(n)

(
1

T
+ 1

)
(

7n+5
3n+2 +n

)
( q

2 −1) (
1

T
+ 1

) (
1

M

) (5/3+n)(q−2)
2 −1

≤ 1

8
1

q
2 −1

,

or equivalently

M > c(n)

(
1

T
+ 1

)α(n)

,
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with

α(n) =
(

7n+5
3n+2 + n

) ( q
2 − 1

)

(5/3 + n)(
q
2 − 1) − 1

.

Note that α(n) ≥ 0 for each n ≥ 0 and α(n) → 0 as n → +∞. Therefore given any
s > 1 there exists an integer n such that α(n) < s and this concludes the proof. ��
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