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Abstract We consider the equation
u; = div (a[u]Vu — uValul), —Aa =u.

This model has attracted some attention in the recent years and several results are
available in the literature. We review recent results on existence and smoothness of
solutions and explain the open problems.
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1 Introduction

1.1 The Isotropic Landau Equation

In this manuscript we review recent results on the isotropic Landau equation

u; = div (a[u]Vu — uValu)), —Aa=u inR3 >0,

u(-,0) = uop. M
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This problem has been extensively studied in the recent years. Due to its
similarity to the semilinear heat equation, to the Keller-Segel model but mostly to
the homogeneous Landau equation

u; = div (A[u]Vu — uValu),

Aluli= g fi by (10 =2 )uw = dy,  alul = TrAlu)),

@

the analysis of existence, uniqueness and regularity of solutions to (1) is a very
interesting problem. A modification of (1) was first introduced in [14, 16]; there
the authors studied existence and regularity of bounded radially symmetric and
monotone decreasing solutions to

ur = alulAu + au®, o€ (0 74)
' "75)°

Existence of global bounded solutions for (1) has been proven in [11] when initial
data are radially symmetric and monotone decreasing. Section 2 explains these
results more in details. Existence of weak solutions for even initial data has been
shown in [13]. See Sect. 3 for more details.

For general initial data the problem of global existence of regular solutions is still
open. The main obstacles for the analysis are hidden in the quadratic non-linearity:
expanding the divergence term one can formally rewrite (1) as

u; = alu]Au + u’.

This problem is reminiscent to the semilinear heat equation, which solutions become
unbounded after a finite time [9].

Let us mention that the main interest in studying (1) is to gain insights on
model (2). It is well known that existence of global smooth solutions for (2), both
in the homogeneous and inhomogeneous settings, is still an open problem. For an
overview about the problem we refer to [1, 6, 19, 20]. In the very recent years
much has been done regarding integrability and regularization for solution to the
Landau equation. In that direction we acknowledge the works [2, 10-12, 15, 18]
which reflect a renewed increasing interest in this problem by several mathematical
communities.

1.2 Conserved Quantities and Entropy Structure

In this section we collect some properties of (1). The isotropic Landau equation
shares some of the conservation properties of the classical Landau and Boltzmann
equation. We first note that the potential a[u] can be expressed as

, 1
a[u](x,t)=/ U@ 1) dy, xeR3, t>0,
R3 4m|x — y|
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and therefore (1) can also be written as

“ =div/ u(Y)Vu(x) —u(x)Vu(y)
R3

dy. 3
Arlx — y| y 3)

With this in mind let us define the Maxwell-Boltzmann entropy:

H[u]z/ ulogudx. “4)
R3

The function t € (0, o0) — H[u(t)] € R is nonincreasing in time: using (1) we can
write the entropy production as

—an ) = // V) u()Vul) —u@vu®) o
dt R3

xR3 U(x) lx =yl
_ // u(x)u(y) Vu(x) (VM(X) Vu(y)) d
= . - xdy
R3xR3 X — Yy u(x) u(x) u(y)
1 // u(x)u(y) | Vu(x) _
2 JJrixrs |x =yl | u(x) u(y)

Clearly [ps u(x,)dx = [p3uo(x)dx,t > 0. We can say something about the first
and second order moments of u. From (1) it follows

4 d / xu(x,t)dx = — // u(y)Vulx) - M(x)vu(y)dxdy =0
dr Jgs R3xR3 lx — vl

2
dxdy > 0.

for obvious symmetry reasons. So the first moment is conserved. As for the second
moment

2 —
dsr d / x| w(x dx = _// . u(y)Vu(x) M(X)Vu()’)dxdy
dt Jrs 2 R3 xR3 lx —

_ // u(y)Vu(x) —u(x)Vu(y)
= y - dxdy
R3xR? lx —

// (u(y)Vu(x) —u(x)Vu(y))dxdy.
R3xR3 Ix

Since

- - 2

divy © Y = —div, " 7Y = (div, ° - ,
¥ z

|x — ¥ lx — yl |z] lx — yl

-

integration by parts yields

2
d / &l u(x,)dx = f/ u(x’t)u(y’t)dxdy = 2/ u(x, Hax, t)dx > 0.
dt Jgr3 27 J JR3xR3 [x — y] R3
)]
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This is one of the main differences to the classical Landau equation. The second
moment increases with time and a bound is not given a-priori. We will see in Sect. 3
how to find this bound when the initial data are even.

2 Radially Symmetric Solutions

Problem (1) is well understood when initial data are radially symmetric and
monotonically decreasing. In [11] the authors prove the following theorem:

Theorem 1 Let ug be a nonnegative function that has finite mass, energy and
entropy. Moreover let ug be radially symmetric, monotonically decreasing and such
that ug € Limk for some p > 6. Then there exists a function u(x,t) smooth,
positive and bounded for all time which solves

ue = alulAu+u®,  u(x,0) = ug.

We briefly highlight the ideas behind the proof of Theorem 1. The non-local
dependence on the coefficients prevents the equation to satisfy comparison
principle: in fact given two functions u; and up such that u; < wup for
t < to and u;y = wuy at (xp,fp) we definitely have that Auj(xp,t) <
Auy(xg, t9) and aluq](xo, t0) < alua](xo, o). However it is not necessarily
true alui](xo, to) Aui(xo, t0) < aluz](xo, to) Auz(xg, t9). To overcome this

shortcoming, the main observation in [11] is that if one proves the existence of
a function g(x) € L? for some p > 3/2 such that ug < g and

alulAg +ug <0,

then comparison principle for the linearized problem implies u < g for all >
0. Once higher integrability L? of u is proved, standard techniques for parabolic
equation such as Stampacchia’s theorem yield L° bound for u(x, ¢) and consequent
regularity.

3 Even Initial Data

Existence of weak solutions for (1) with general initial data is still an open problem.
As already mentioned at the end of Sect. 1.2, the first obstacle that one encounters
in the analysis of (1) is the missing bound for the second moment. This bound is
essential when one seeks a-priori estimates for the gradient. In [13] the authors
overcame this problem when solutions are even. In this section we highlight the
basic estimates of [13] that will lead to construction of weak even solutions. For
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weak solutions we mean functions u(x, ) such that

d
JueL? (o, T: H! (R3, 1 +x| I)) u,ulogu € L0, T: L' (R%)),
X

3/2

aeL®0,T; L} (RY),  VaelL™0,T;L/ RY),

that satisfy the following weak formulation

T T
/ (Oru , ¢)dt +/ /3(“V” —uVa) - V¢ dxdt=0, V¢ € L0, T; WC.I’W(R%).
0 0 R

All the computations here are formal, meaning we assume that ¥ and all related
quantities have enough regularity for the mathematical manipulations to make sense.
We refer to [13] for the detailed calculations. Let

. ,_/||2 __\/E(t)
(t) := u(x,)dx,  R(t):=2 ,
R3 |

luoll 1

and define Bp( x € R® : |x|] < R®}. We point out that, since
2E(t)

Jen\ By WO DX < 30 1) = 5 ol 1, it follows

1
[ wendx =ty = [ utndx = . ©)
BRr( R3\Bg() 2
A Lower Bound for a[u] From the definition of a[u] it follows

dmalul(x, t) :/

u(y,t)d >/ u(y,t)d - 1 lluoll 1
R3 X — ¥l Bra)

d
= RO + 11 Ly, O 2R + )
and therefore

3/2
1 ol

0 Z 16 p2 4 ol

(N

A Gradient Estimate for Even Solutions We assume here that the solution u of (1)
is even w.r.t. each component of x, for r > 0.
Clearly |[x — y| < |x|+ | <A+ |x]DA + |y]) forx, y € RR3. Therefore
Vu(x, 1) Vu(y.)|*

PR p—— // u(x, u(y, 1)
dt 2 ) Jrixme (L4 IxDA +1yD | uCx,0)  uly,1)

(/ dx )(/ IVu(x, > dx ) V Vulx. 1) ‘
= u(x,t) dx| .
R3 L+ |x] R u(x) L+ |x]| R3 1+ |x]|

dxdy
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For the assumption on u it follows that

/ _Z(/ du  dx )2_0
M1+M| B ®3Oxi 1+ |x|)

i=1
As a consequence

d (/ dx )(/ |Vu(x,t)|®> dx
—4r © Hlu] > u(x,r)
dt R3 1+ x| Ry ulx) 14 |x|

We now wish to show a positive lower bound for ng u(x,t) lf“x‘ forO0 <t <T.

Let R(t) = 2,/E(1)/lluol| 1. It holds

d 1
/ u(x,t) _/ u(x,t) * > u(x, t)dx.
1+|| Brey L Ix] = 1+ R0) Sy,

From (6) it follows

1 de 1 luoly?
u(x,t) > 120 t > 0.
T JR3 L+ x| = 8w E(n)1/2 + lueoll

Since E(¢) is increasing, we conclude

1 . dx
inf u(x,t) >« (T),
7 t€[0,T] JR3 14 |x]|

with

3/2
0! ol
K =
87 B2 + fluoll

Moreover,

dH{u] / |Vu(x, 1)]?
t dx <0 t > 0.
ar TOL iy ® ~

Upper Bound for a[u] It holds

a[u](x,t):/l u(y’t)dy~|—/| “O D L+ b,

x—y|<l1 lx — yl x—y|>1 |x — v

®)

€))

(10)

(1)
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The integral I can be estimated immediately:
I < luollz1-

For I we first use Holder: since I; is L7 (R?) for ¢ < 3, we get

| loc

1 142¢
1 3/2+¢ _ 342 3+2¢
I = / uly )dy < (/ u(y,t)3/2+£dy> (/ lx — y| lizsdy>
—yl<1 X =yl Ix—yl<l lx—yl<l

1
1+ 2¢ 3 3/2+e (1 +2&)m
<4 J1)3*eg = Pk .
<an' T (f‘y|<1+|x‘"(y) y RO -

The interpolation inequality implies (for 0 < ¢ < 3/2):

314+ 2¢
1-6 0 —
VO ) = V0Ol IVEO 0,0 0= 55, 5
Then, the Sobolev embedding H' <> L% implies
1-0)/2
IVl 1, < COxDIuoll 2 IVu @11 5, (12)

Notice that the constant C in (12) depends on | By x| and therefore on |x|. However,
it is easy to show that such constant (assuming w.l.o.g. that it is optimal) is
nonincreasing with respect to |x|, thus (12) leads to

1-6)/2
V@l svs,, < Clluolly "2 IVu®OG 5, (13)

From (13) we obtain
Il < 871C||\/M(l‘)”%_191(31+‘x‘) = 871C(1 + ”V\/u(t)”iz(BHIXI))e

2 0
sslc(1+(2+|x|>/ V/uty. 0l dy)
g 1+l

v D2\
<e'cd + |x))f <1+/ IV /u(y, 1) dy) .
r: 1+ [yl

The estimates of I7, I imply

IV«/M(y,t)Izdy)‘

Hle -loq (1 /
alul(x, 1)’’’ <e¢ a+xD + - 1+ 1yl
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The entropy estimate obtained earlier

H v 2
dHul —l—K(t)/ IVut. ) dx <0, t>0,
dt R3

1+ x| -
leads to
B 1 dH[u®)] 1 2B +2e)
1/6 1 _ _
alul(x, 1)’ <e " C(+]|x|) <1 () dr ) 0= 3(142) <e< )

We can restate the above estimate in a more handy way by defining p = 1/6 € [1, 2)
and noticing that ™! < C(2 — p)~1:

1<p<2 (14)

=, © (1= O,

k(1) dt

with «(¢) given by (8).

Lower Bound for H[u] A lower bound for H[u(t)] is here showed. Being the
spatial domain the whole space R3, this lower bound is not straightforward. To prove
a lower bound for H[u], we write

Hlu] = /R ) og(u(x)) <) dx + fR () Tog (o) s 1 d.

and apply Holder’s inequality to get

1 1
—H{u] 5/ u(x) log dx =/ u(x) 1782 (x)1+9)/2 1og dx
(u<1} u(x) (u<1) u(x)

12 2 1/2
(/ 1—e¢ ) / 14+¢ ( 1 )
< u(x) ~“dx u(x) log dx .
fu<t} {u<1} u(x)

Since the function s € (0, 1) > s/2 log(1/s) € R is bounded, we can estimate the

term
1 2
/ u(x)'te (10g )dx
(u<1) u(x)

with a constant that only depends on & and the L' norm of the initial data. Therefore

1/2 172
—H[ul < C, (/ u(x)l—fdx> < C, (/ u(x)l—fdx> ) (15)
{u<l1} R3
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Let us now consider the integral

/ u(x)' fdx =/(1+|x|2)1_8u(x)1_8(1~|—|x|2)_(1_£)dx
R3

1—¢ &
5(/ (1+|x|2)u(x)dx) (/ (1+|x|2)(1€)/6dx) )
R3 R3

For ¢ < 2/5 we obtain

1—¢
/u(x)”dxgcg <[ (1+|x|2)u(x)dx> )
R3 R3

From the above estimate and (15) we conclude
— Hlu()] < Co(1 + E(1))1=9/2, 0<e<2/5 t>0. (16)

Estimate for E(t) We recall that E(f) = [ ‘xz‘zu(x, t)dx,t > 0. From (5), (14)
it follows (p’ = p/(p — 1)):

dE(t) <9

, 1/p ,
/a(x,ou(x,z)“ﬁu(m)“l’dxsz f ax, HPulx, dx ) uollF
dt R3 R3 L

1 dH[um]\"? 1/p
<Cp <1 - o) di ) </R3(1 + |xDu(x, z)dx)

1 dH[u@®)]\"? 3 |xf? l/p
Cr <1_K<z> i ) </R <2+ 2 )”“”“’“)

1 dH[u()]
=G <1 k() dt

IA

1/p
> A+ E@)Y/r.

The definition (8) of k () implies that k()“'<CU+VE@®) < CJ1+E(1),s0

dE() dH[u®\ P 3
» scp(l— b ) (1 + E@).

Choosing p € (3/2,2), dividing the above inequality times (1 + E (1))%*F and
integrating it in the time interval [0, ¢] leads to (Ep = fR3 ‘xz‘z ug(x)dx)

dH[u])”" r

t
(1+ E@)' 7 — (1 + Eg)' /% < cp/ (1 -
0

P 1/p
< Cpt' =P </ (1 - dljzt[u]> d/) = Cpt'V'7(t + Hluol — Hlu(®))'/7.
0
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By inserting (16) into the above inequality we get
A+ E@)' 7 — (1 4+ E)' P < Cp et ™7 + Hluol + (1 + E@) ' =2)1VP

3 2
< Cpe(l+0 + E@) 179720, ,<p<2 0<e<,, 1>0

Let now 9/5 < p < 2. We want to choose ¢ € (0,2/5) such that 1 —3/2p >
(1 — &)/2p. This is equivalent to ¢ > 4 — 2p. Since p > 9/5, it follows that
4 —2p < 2/5, so this choice of ¢ is admissible. Therefore Young inequality allows
us to estimate the right-hand side of the above inequality as follows

1 2p—3
(1 4+ E@O)320 — (1 4+ Eg)' 320 < Cp (140 + A+ E@)' 2, g=_T77
2 2p—4+¢

and so we conclude

9 2
E(t) < Cpe(1 +2P/CP=4F0y 45, s<P< 2, 4-2p<e< 5
a7
For example, if p = (9/5+4+2)/2=19/10and e = (4 —2p +2/5)/2 = 3/10, then
2p/2p —4+¢) =38.

Bound (17) means that E € Llo(fc (0, 00). A few consequences of this fact are, for
example, that for any 7 > 0:

1. the quantity « (¢) defined in (8) and appearing e.g. in (14) is uniformly positive
fort € [0, T];

2. the entropy H[u(¢)] has a uniform lower bound for ¢ € [0, T'];

3. in Eq. (10) and the mass conservation yield the following estimate:

IVull 20751 Ry ya) < CTo @ =0+ xD7h (18)

4. the lower bound (7) for a is uniformin ¢ € [0, T].

4 Conditional Smoothness

4.1 Conditional Regularity Estimates

This section concerns results of conditional regularity of solutions to (1). These
results are based upon a so-called e-Poincaré inequality. We say that u satisfies the
e-Poincaré inequality if given ¢ > 0 as small as one wishes, there exists a constant
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C; such that the following inequality holds true

Jpa ud? dx < & [pa alul|VP|* dx + Cq [pa $* dx, (19)

1

loc

forany ¢ € L (R3) that makes the right-hand side of (19) convergent.

Theorem 2 (Conditional Regularity) Let u be a solution to (1). Assume u is such
that (19) holds true. Then for any s1 > 1, so > é T > 0, R > O there exist
constants C1 = C{(T, ug, s1, R), Co = Co(T, uo, s2) such that

1 S1
lullLooBrx(e.1)) < C(T, uo, s1, R) (t + 1) , te(0,T),
1 $2
”a[u]”LOQ(R»%X([’T)) S C(Ta uo, 52) (l + 1> ) te (07 T)a

where Bg C R3 is any ball of radius R.

Weighted Sobolev and Poincare’s inequalities have been used to obtain infor-
mations about eigenvalues for Schrodinger and degenerate elliptic operators [3—
5,7, 8, 17]. Inspired by the similarity of (1) with the degenerate operator L =
—div(a[u]V)—u,in [12] the new inequality (19) has been proposed. We refer to [12]
for discussions about (19). While (19) is always true provided u solves the Landau
equation for soft-potentials [12], the validity of (19) for Coulomb interactions
is still an open question, undoubtedly a very interesting and fundamental one.
Consequently the results in Theorem 2 should be viewed as conditional.

Very interesting is the rate of decay in the estimate for [[u|| o (Bgx(:,7))- In fact
one would expect a decay with a rate similar to the heat kernel 1/73/2. However
thanks to a combination of (19) and a non-local Poincare’s inequality proven in [14]
we obtain a decay that can be made arbitrary close to 1/7.

The proof of Theorem 2 is divided into several lemmas and propositions. We will
make use of the following

Lemma 1 (Weighted Sobolev Inequality) Let u be a solution to (1). Any smooth
function ¢ satisfies

2/q
(//d)qa[u] dxdt) <C (//a[u]|v¢|2 dxdt~|—sup/¢2 dx),
1 1 1
with
2
q € (1,2<1+3>>.

Proof We refer to [12] for a detailed proof. O

We define uy := (u — k)4 for a generic constant k > 0.
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Proposition 1 The following inequality holds:
4(p—1) p(p—r [uf”
8,/n2u,f dx + » /a|V(nu,f/2)|2 dx+ / ];3 IVuk|4n2dx

2
(20)
2 p Val*Py
<M+ dAD+Ct [ n7uy dx +C(p)t 1+ o n-dx,
where
4(p —2 4
) := (pp )/u]f/z(aV(nu,f/z),Vn) dx + pfu,f(avn, V) dx,

b= /”’f(va’ V@n*) dx +(p =1 / un’uf dx + pk/unzu,i”l dx.

Proof Consider
v=pntul”

as test function for (1). A direct computation yields,

p/ nzu,f_latuk dx
= —p/(aVu, V(nzu]ffl)) dx + p/(uVa, V(nzuffl)) dx
= (D + (.
Expanding the first integral, we have the expression:
/(aVu, Vtul ™) dx = /(p — DnPul "2 (aVug, Vug) + 2ul " '@V, Vi) dx.

Let us rewrite this expression in a more convenient form. Note the elementary
identity

2
2 2 P -2 —1
@Vul’*), vty = 4 U @V, V) + pnug” @Vug, V) + uf @V, V),
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and use it to write,

-2 —1

(p — Dn*ul ™ (aVuk, Vup) + 2ul ™ n(@Vuy, Vi)
4( 1) 2 2

= ”p2 @Vl Vquf’))

Qp—4) 4(p— 1)
- pp " @ V) =0 @, V.

Further, another elementary identity says

p—1 2 / 2 p
up n(aVuk,Vn)=p (aV(nul ), V) — puk(aVn,Vn)-

Combining the above, it follows that

(p — DrPul " (aVug, Vug) + 2ul ™ n(@Vug, Vi)
4( iy 2 2
= ”p2 @V "), Vquf’)

_4(p-2 4
(p— i ) p/2( V(nup/z) V) — 2u,f(aV77, V).
p P

In particular,

@M =- 4(” Y / @V ul’), Vul')) dx

4
+ )/ p/z(aV(nup/z) Vn) dx + p/u,f(aVn, Vn) dx.

Thus,

d - D \V/

dt/nzuk /( Vnul"), Vuf’?)) dx
4(p—-2 4 Vn,V
(pp )/uf/z(av(nu;f/z),vn) dX+p/”1[<7(“ n. Vi) dx

p/(uVa, V(nzuffl)) dx.

We now analyze (II). Since

(Va, uV@ul ™)) = uul = (Va, Vi) + (p — Duu! 70 (Va, Vuy)

= uul! " (Va, V) + (p — D! ™" + kul 7 n?(Va, Vuy)

127
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= W +ku?"")(Va, V(n?)
+ 7*(Va, V(p; 1u,’j + k™1,
it follows that
an = p/(u,’j +kul ™" (Va, V(n?)) dx
— p/ (p; 1u,f + ku,’;_l> div(n’Va) dx.
From the above inequality and the Poisson equation it follows
m=p f Wl + kul " (Va, V(r?)) dx — / ((p — Duf + pkul ™" (Va, V(n?)) dx
+/un2((p — Dul + pkul ™) dx
- /u,f(w, V(n?)) dx +/un2 (0 = Duf + pruf ™" ax.

This finishes the proof of the lemma. O

Lemma 2 Let p > 1, then we have the inequality

d —1

dt/nzu,f dx + (Pp )/a|V(nu,f/2)|2 dx

<(p-— 1)/n2uu£ dx + pk/ nzuuffl dx
—l—C(p)/u,f(aVn, Vn) dx — /ufnTr (aDzn)) dx,

where C(p) denotes a constant that is bounded when p > 1.

Proof We proceed to bound from above the first term (I) and the first term of (II)
resulting from Proposition 1. The aim is to estimate these terms as

4(p—2
(pp )/uf/z(aV(nuf/z,Vn) dx—l—/uf(Va,V(nz)) dx

<ci /(aV(nu,f/z), V(nuf/z)) dx + lower order terms,
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where ¢ < 4(”p_1). For the first term we use Cauchy-Schwarz inequality

4(p—-2) 2 2
@V ul’?), ul"*vny)

- 2(p—1)

2(p —2)2
@V, Vo' + 2 2

ul (aVn, Vn).
pp—1*

For the first term in (IT) we use the identity
div(auf V(n*) = adivug V(n*)) + uf (Va, V(%))

and conclude that

/u,’j(w, V(%) dx = —/adiv(u,fV(nz)) dx

= —/aqu(nz) dx — /(aVu,f, Vﬂz) dx.

Since
2 2 2
nVul’? = vuf’?) - ul*vn,
Young’s inequality yields
— /(aVu,f, Vnz) dx = —4/u£/2(anVu,f/2, Vn)

= —4/u£/2(aV(77u,f/2), Vn) dx ~|—4/u£(aV77, Vn) dx

2
< 28/(aV(77u,f/2), V(nullz/z)) dx + (8 ~|—4> / u,f(aVn, Vn) dx.

Thus

129

21

/uf(w, V(n?) dx < —/ufTr(aDz(nz)) dx +28/((1V(nuf/2), Vnul’?)) dx

2
+< +4>/u,€(aVn,Vr/) dx.
€

(22)
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Substituting (22) and (21) into (20) we get by choosing ¢ < ’Z)l

d (p—1
dt /nzu,’; dx + p » /(aV(nu,f/z), V(nu,f/z)) dx
<C(p) / ulf(aVn, Vn)dx +(p—1) f nzuuf dx

+pk/n2uu£71 dx —/u,fTr(aDz(nz)) dx.

This concludes the proof. O

Lemma 3 We have
T T ) T
(p— 1)/ /nzuuf dxds < e(p — l)/ / alV(nuf/ )|2 dxds + C(R, e, p)/ / nzuf dxds,
t t ORr t Or

T T T
pk/ /nzuulffl dxds < p&:/ /a|V(nu1]:/2)|2 dxds + C(R, ¢, p)/ /nzulf dxds
t ' '

T
+ 2pk2/ /nzuffl dxds.
0

Proof We use here the e-Poincare’s inequality (19) with
2
¢ = nuf/
and get
[ n*uuf dx < 8fa|V(nu,f/2)|2 dx + C(R,¢) [ n*uf dx.

For the second inequality we get
T 1 r l
Pk/ /nzuu,':f dxds :Pk/ /,]Z[M)({ukzk} +”X{uksk}]ul"57 dxds
! t

T T
-1 -1
:pk/ /nzux{ukzk;u,‘f dxds—|—pk/ /nz UXue<ky Ui dxds
t t ~ -~

u<2k

T T
< p/ /nzuu,f dxds + 2pk2/0 /nzu,f_l dxds
t

T T
< pa/ /alV(nu,f/z)\2 dxds + C(R, ¢, p)/ /nzu,f dxds
1 '

T
+ 2pk2/ /nzu,‘ffl dxds
0

using (19) once more. |
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Corollary 1 Fixtimes0 < T) < Tp < T3 < T, p > 1 and a cut-off function n(v).
Then, we have the following inequality

sup [/‘(Wf/z)2 dx} (p - l) falV(r)up/2 Y% dxdt

TI,<t<T3
1
T + C(p,&, R) nuk dxdt

T3

+2pk2/ /nzuf_l dxdt
T
T3 T3

+C(p)/ /u,f(aVr),Vn) dxdt-i—f fau,fnlArﬂ dxdt.
T T

Proof We start with the bound found in Lemma 2
d -1
A1 /nzu,’; dx + (pp )/a|V(nu,f/2)|2 dx
<(p- 1)/772Mu,{7 dx + pk/ nzuu,iFI dx
+ C(p) / uy (aVn, V) dx — /au,ann dx.

Integrating this inequality from #; to #, shows that the term

2 p 2 (p—1 (= p/2
n7uy () dx — | n7uy (1) dx + » a|V(nuk )| dxdt
n

is bounded by

123 n
(p— 1)/ /nzuuf dxdt ~|—pk/ /nzuuffl dxdt
1 n
%) n
+C(p)/ /u,f(aVn, Vn) dxdt—/ /au,ann dxdt.
1 141
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For afixed 1, € (T3, T3), we take the average with respectto #; € (T, T2) in both
sides of the inequality. This yields

T i T /;ITZ/ uy () dxdt; + (P T2 - ]; / / Y uP)[2 dxded,
< ! / N / n?ul (1) dxdry
-1 Jr
1 L rn s
+ - I)Tz—Tl /;1 /; /n uuy, dxdrdty
Pk g, fT f / nuuf " dxdedr

1 I b
+C(p) / / /u,f(avn, Vn) dxdtdt
L=TJn Jy

YL
— auy, nAn dxdtdty,
Lh—-TJn Jy k

which implies

/n uf(t)dx+ )/ /alV(nup/2)| dxdt
)

AR
< nu(t)dxdt
T2_T1 T k

n
+(p— 1)/ /n uuk dxdt +pk/ /nzuullz—l dxdt
T
153 2
+ C(p)/ /uf(aVn, Vn) dxdt ~|—/ /aufnlAnl dxdt.
T T

Since this holds for every r, € (T», T3), this implies the inequality

sup [/nzu,‘:(t) dx} (p_ b /alV(nuk/ ) dxdt

T <t<T3
< / /n u,f(t) dxdt
T2 -1 Jr

3
+((p-1 /n uuk dxdl—i—pk/ /n uuk U dxdt
T

T3 T3
+C(p)/ /u,f(aVr),Vn) dxdt-i—f fau,fnlArﬂ dxdt.
T T
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As the last step we use Lemma 3 with ¢ < Z;zl and get

_ T
sup {fnzu,f(t) dx}+ w-D 3fa|V(nu,'j/2)|2 dxdt

Th<t<T3 4p T

1 B,
< nuy (1) dxdt
-1 Jn

T3 T3
+C(p, e, R)/ fnzu,f dxdt—|—2pk2/ fnzu,f“ dxdt
T T

T3 T3
+C(p)/ /u,f(aVr),Vn) dxdt-i—f fau,fnlArﬂ dxdt.
T T

O

Corollary 2 We have

-1 I3

sup {/up(t) dx} =D /a|V(u1’/2)|2 dxdt
Th<t<T3 417 T
1 Lo
=< + C( ,s))/ /u (t) dxdt.
(Tz -1 b T

Proof It is a consequence of Corollary 1 if n = 1 and k = 0. O

Lemma 4 (Gain in Integrability) For each p > 1 and integer n > 0 we have

1 n+1 T
sup {/ uP (1) dx} < C(p,n) ( + 1> / /up(t) dxdt.
T/4<t<T T 0

Proof The proof is based on iterating Corollary 2 with a non-local weighted
Poincare’s inequality proven in [14]: for each p > 0 any smooth function # > 0
satisfies

2
/Rd uP+! dx < (p;H) /Rda[uHV(u”/z)lz dx. (23)

Consider a sequence of times
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We start with Corollary 2 which states that for each p > 1

a3 fanmory
sup uf(t) dx ¢ + alul|V(u?’#)|* dxdt
Tr<t<T 4p T

1 T
< ( + C(p, 8)) / /up(t) dxdt.
T 0
Inequality (23) implies

P(P_l) T p+1 (1 >/T/ »
A(p +1)2 /T2 /u dxdt < T +C(p,¢) A u?f(t) dxdt.

We now apply the energy inequality to u?*!:

T
o {furoa e Ly [ oo i
1 T
< (T3 _n +C(p, s)) /TZ /ul’“(z) dxdt
54(p+1)2( ! +C(p,8))(1 +C(p,8))/T/u"’(t)dxdt
pip—-D\B-T T, o
<26 ;’(’:_1)12) (; +C(p,a)>2/0T/uP(z) dxdt.

Iterating the process we get

n+2 1 n+l T
sup Uul’+"(t) dx} <2} kC(p)”( + 1) f /u”(t) dxdt.
Tyyo<t<T r 0

Since T, < T /4 for any n > 0 we conclude

1 n+1 T
sup {/ﬂ“(;) dx} < 2"("+1)C(p)”< + 1) f /up(t) dxdt,
T/4<t<T T 0

and the lemma is proven. O

4.2 Global LP LP Estimates

Lemma 5 There exists a constant that only depends on T and the initial data ug
such that

||””L1(O,T;L3(R3,y3dx)) f C(T, I/lo).
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Proof We start with the classical Sobolev inequality in three dimensions:

1
3
(/ gﬁdx> sc/ Vgl dx,
R3 R3

and apply itto g = Since

Ju
(A+[xp1/2”

|Vl
;7 < s

Sobolev inequality yields

([0 ) =ef, e
dx <C +udx
r3 (14 [x])3 r3 (I +[x])

Integrating both sides in the time interval (0, T') we get

T I/l3 ; T |V«/I/l|2 T
3 dx) dt<C dxdt + u dxdt
0 r3 (1 + |x]) o Jrs (1+1x]) 0o JRr3

< C(T, up), (24)

using mass conservation and estimate (18). |

Lemma 6 There exists a constant that only depends on T and the initial data u
such that

Nl z530,7: 153 ®3)) < C(T, uo).

Proof Interpolation yields

/3 WP dx — / uP?uP1=0 (1 4 x| (1 + [x) ™" dix
R R

1 1
< </ MI’P19(1+ |x|)Prm dx) & </ MP(1—9)P2(1_|_|X|)—mP2 dx) "2 ,
R3 R3

with pll + [}2 =land® < 1.Form=1,p; =3/2,pp=3,p=>5/3and0 =2/5
we get

1

3
/updxf(/ u(1~|—|x|)3/2dx)5</ u3(1~|—|x|)_3dx>3
R3 R3 R3
3 1
5(/ u(1+|x|)2dx)5 (/ w1+ |x)3 dx)3
R3 R3
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Integrating in the time interval (0, T') we get

T T : ;
/ / updxdt§/ (/ u(1~|—|x|)2dx> </ u3(1+|x|)—3dx> dt
0 R3 0 R3 R3

T 1
< C(T, Mo)/ (/ W+ x) dx)3 dt < C(T, uo),
0 R3

using conservation of mass and bound of the second momentum for the second
inequality and (24) in the last inequality. O

4.3 Gain in Integrability

The aim of this section is to show that f has enough integrability for a[u] to be
uniformly bounded in space and time. A consequence of interpolation and Holder’s
inequality is that a[u](x, t), defined as

1
alul(x, 1) = /R} |x”(_y)y| dy,

is uniformly bounded in space and time if u belongs to L>°(L?(R?)) with p > ;
This is what we will show next, combining inequality from Lemma 4 with the
L>/3L3/3 estimate from Lemma 6.

Lemma7 For any 0 < t < T and any integer n there exists a constant

C(p, T, ug, n) such that fora = ((3"”112)) R

1 o
lalulllpooqr,7,r3) = C(T, uo, n) (t * 1) .

Proof Letr > 0; for p > 3/2 we have

u(y) u(y)
dralu](x,t :/ d +/ d
(1) By (x) X — I Y Be(x) 1X — Yl Y

1 _
= Ml + 47t flul| Lo Loyr® P,

applying Holder inequality. The minimum of the function F(r) = ! + cr? 3P s

reached at the point
ol p/G(p=1)
=\ e-3/me ’
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and this implies

2p-3 P
3(p—1) 3(p—1)
alul(x, 1) < Hlull ;2 el 2 -

From Lemma 4 we know that

1 n+1 T
sup {/ﬂ*’%;) dx} < 2"("+1>C(p)"< + 1) f /up(t) dxdt,
T/4<t<T T 0

and taking p = 5/3 and using Lemma 6 we get

n+1

1 5/3+4n
”u||L°C(T/4,T,L5/3+"(]R3)) < C(f’l, T, l/l()) <T + 1) . (25)

Going back to a[u] this last estimate implies

5/3+n

243
Sup a[u](xs t) SC(M())”M”L;("T/“ T.L5/3+n)
1e(T/4,T),xeR3 o

n+1

1 3n+2
=Cn, T, uo) rt 1 . (26)

4.4 De-Giorgi Iteration and L*>°-Regularization

Proposition 2 Let p = g and q as in Lemma 1. We have

sup U(nn P2y dx} )f /awwn P2 gds
n+l<t<T n+l
<Co / f a(u_1u??)? dxd,
T

with

rlq—2)
h =1

n—1 1 1
Co:=C" 'C(R, p) (T + 1) (M)
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Proof Consider the sequence of times and radii
1 1 1 1
Tn:4 2—2n T, Rn:2 1+2n R,

and, for every n > 1, let B, denote the ball B, := Bg, (0).
Let n, be a C* function supported in B, with 0 < 5, < 1 everywhere, n, = 1
in Buit, |Villoo < Cnp2™ 1 and | D?(p)]lo < €222, Corollary 1 says that

fork, := M (1 - 21,1), h=T, Lh=Tw+,3=T,Thy1 - T, = znT+1 and

1
Up = (u—M(l— n))
2 +
we have

2. p (P - 1) T P/2y 2
sup Mpun (1) dx ¢ + 4 alV(nuun' )| dxdt
Tyy1 <t<T 4 Toy1

2n+2 T
< ( T + Cle, p))/ /n,zluf dxdt

T T
+C(p) / / uh @V, Vi) dxdt + 2pk; / / n2ul ™" dxdi
1;1 1;1
T
+/ /auft)nnlAnnldth < U,,
1;1

with
2n+2 T
U, ;=( ; +CE p))/ fn,%u,',’ dxdt
Tn

T T
+(C(p) + 1)22"+2/ / antul] dxdt+2pk§/ /n,%uffl dxdt.
n n Tn

We start by estimating the last term of U,: since n,—1 = 1 on B, and x{u,>0} =

we have
X{Mnle% }

T T
2pkﬁ/ /n%u,’,’fl dxdt < 2pM2/ / u,lfl dxdt
Tn n n
2 T 1
_ p—
- / /n”” K= 31y 4341

T
2 -1
<2pM / / qulx{nﬁ/f’lunqz%} dxdt.
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Holder inequality yields

S Y 2 7 6 P
2pkn/ /nnun dxdt <2pM / / u,’ , dx
T;l n n
pqg—2(p—1)

ax) "
’ ‘/l;n X{n,zl/,plunflz%} * L.
Using Chebyshev’s inequality

on\ Pa/2 2/ )
fB X2 2y 4% = (M) /(ﬂn,"lunq)p‘f/ dx

we get
T aN PP 2p-1)
_ 2 2 rq Pq
Zpk,%/T /ngu,[,7 Y dxdt < 2pM2 (M) / (/ M,f,l dx)
pq=2(p=1)
rq
x < [ g dx) i
, on pq*22(p71> T ] qu 2(1;;1>
= 2pM (M) f ([ My 14—t dx)

rq—2(p—1)

< f (1?3 dx) Yo
on P‘I—ZZ(P—I) T
= 2pM?> (M) / /(nn,lufjg)q dxdt
Ty

perm? (2 Ry
p M

IA

T
/a(nn_lufizl)q dxdt.
T

We now estimate the first two terms of U,;:

2n+2 T ) S T )
< . +C(8,p))/T /nnu{; dxdt + (C(p) + 1)2*"+ /T /Bannu{; dxdt

1 T
< 22"“( +C(p. R))/ / anyuy dxdt
T Tn BVl
1 T
< 92n+2 (T + C(p, R)) ﬁ é au5,1X{u,zZO} dxdt

1 T
< Q22 (T + C(p, R)) /T /anﬁflusilx{unilz%} dxdt.
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Similarly as before, we apply Holder’s and Chebyshev’s inequalities and obtain

5 » pq/2 2/q q=2)/q
/“”nflun—lx{u/,flz%dx = (/“”n 1= dx) (/“X{n/, (SESN dx)
2/q on pq/2 q-2)/q
2 2
< (fomngr )™ () fant- e )

on rlq=2)/2 2
= (M) [a(ﬂn—lu,/:il)q dx,

which implies

2n+2 T S
< . +C(e, p))/T /nnun dxdt + (C(p) + 1)2*"+ / /annun dxdt
1 2n+1 p(q=2)/2 T
< 22”+2<T + C(p, R))( Y ) f fa(nn,lufjﬁ)q dx.
Tn

Summarizing we obtain:

pq—2(p—1) r(q—2)
2 2

Up < | 2pC(R)M? 2 +22+2 1~|—C(1D,R) 4
= M T M

T
x/ /a(n,,_luﬁg)q dxdt
1
< 4" 1C(R, p) (T + 1)( ) f /a(nn %) dxdr.

This completes the proof. O

1((1 )71

Proposition 3 Let T > 0 and R > 0. Given any s > 1 there exists a constant that
only depends on s, R, the mass and second moment of u (hence on T ) such that

1 S
sup ulx,t) <co(s,R, T) ( + 1) .
(T/4.T)x B2 T

Proof Lemma 1 for ¢ = n,u’’? implies

2/q
( / / a(naul’* dxdt) < sup { / (ul’*)? dx} 27)
Tu+1 Tht1<t<T

(p_l)/ /alV(nn PIN2 gxdt.
n+l
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Then Proposition 2 says that

—1
sup {/(nn P2y } (” )/ /aIV(nn PR dds
n+1<t<T n+l

2
U, =< Cn,p,T,M/ /a(nn—lugil)q dxdt
T,

fcn,[JsT,M( sup {/(Un 1” )2 dx}
T,<t<T
-1
(p )/ /a|V(17,, w12 dxdt)

q
2
< Cn,p,T,M Unfls

with

r(q—2)
h =1

el 1 1
Cnprm =4 C(p,R) T +1 M

-~
=Cp.RT.M

This leads to a recurrence relation
n—1 g
Uy <4 CprrmU,_,
A standard induction argument shows that the above recurrence relation yields

lim U, =0, 28)

n—+o00

provided the initial step

i 1 r 2.p 2.p _
Uy = T + C(e, p) nou?” +angu? dxdt, To=T/4,
To

is small enough. For completeness we sketch this last argument: assume for a certain
n>0

n g_l 1
4'Uy = L (29)

Cp.r1,M(8) 3
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we show that the same is true for n 4 1: using (29) we get

q—l q
q q 2 q q 2
+1pp2—1 +1 -1 -1
AU, =4 (4"Cp,R,T,MUn2) <4C, rrm (C"U;f

q
2

7-1 1
<4C, r1.m |

Cp.RT,M(8) 37!
_1 4 1
=C,r1.M g = S
(8) 4-1 Cp.R,T,M(8) 27!
Therefore if (29) holds for Uy, i.e.

-1 1

U()2 S 1 k] (30)
Cp.r1,M(8) 3
then
fim U2 < tim =0
n»lrfoo += n;lllw gn =7
and (28) is proven.

We are left to prove that for M big enough the condition (30) is satisfied. Let
p = 5/3 + n with n any positive integer. Inequalities (25) and (26) imply

1 T
Uy < c(n) (T + 1) / /u5/3+” + au’*" dxdt
T/4

1 T
= C(l’l) (T + 1) (||a||L°C((T/4,T)><R3) + 1)/ /u5/3+n dxdt
T/4
1 14+ 10 +ntl LR
<c(n,uo, T) < + 1> >

1
= s aT 1
T c(n, ug )< +

T

We chose M big enough so that

1 1(323“)(3*1) 1 . 1\ e 1
o) G ) .

or equivalently

IA

1 a(n)
M > c(n) (T + 1) )
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with

(T +n) (4 -1)

= spemE -1

Note that ¢(n) > 0 foreachn > 0 and w(n) — 0 as n — +oo. Therefore given any
s > 1 there exists an integer n such that «(n) < s and this concludes the proof. O
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