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Abstract We discuss convergence results for a class of finite difference schemes
approximatingMean Field Games systems either on the torus or a network. We also
propose a quasi-Newton method for the computation of discrete solutions, based
on a least squares formulation of the problem. Several numerical experiments are
carried out including the case with two or more competing populations.
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1 Introduction

In this paper we describe a class of finite difference methods for the approximation
of the stationary Mean Field Games (MFG in short) system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ν�u + H(x,Du) + λ = V [m] x ∈ T ,

ν�m + div
(
m ∂H

∂p
(x,Du)

)
= 0 x ∈ T ,

∫

T u(x)dx = 0,
∫

T m(x)dx = 1, m ≥ 0 ,

(1.1)

where T can be either the unit torus Td = [0, 1]d or a network �. The system
consists in a couple of PDEs, respectively a Hamilton-Jacobi-Bellman equation
and a Fokker-Planck equation plus normalization conditions on both u and m. The
unknowns are the value function u, the density m and the ergodic constant λ and
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the system also involves the scalar Hamiltonian H(x, p) and the potential V (for
a general presentation of the theory of Mean Field Games we refer [12, 15]). The
results are based on the papers in [1, 3, 4, 6, 7] and include existence, uniqueness
and regularity of the approximate solution, convergence of the scheme and efficient
resolution of the discrete problem.

After the introduction of the MFG theory, an important research activity has
been pursued for the approximation of the different types of MFG models and
several papers have been devoted to this topic. Besides the finite difference method
we describe in this chapter, we mention among the others: the semi-Lagrangian
scheme proposed in [9]; the optimization algorithm connected with the optimal
control interpretation of the MFG system in [14]; the monotone scheme in [13]
which exploits the equivalence between the MFG system and a linear system in the
case of a quadratic Hamiltonian; the gradient-flow method based on the variational
characterization of certain MFG systems in [5].

A numerical method for MFG systems has to face several difficulties: the system
is strongly coupled in both the equations, i.e. via the potential term V in the
Hamilton-Jacobi-Bellman equation and via the drift term ∂H

∂p
(x,Du) in the Fokker-

Planck equation; in the stationary case the system is formally overdetermined,
involving three unknowns (u,m, λ) and two equations, while in the evolutive
case it has forward-backward structure with respect to the time variable; the
approximation of the Hamilton-Jacobi-Bellman equation presents the typical curse
of dimensionality issue complicated furthermore by the coupled structure; the
constraint m ≥ 0 may be difficult to impose for algorithms based on Gradient and
Newton methods; moreover, in order to obtain convergence and error estimates,
a numerical method for MFG systems should reproduce at a discrete level some
main properties of the continuous problem: for example, it is well-known that the
Fokker-Planck equation in MFG systems is the adjoint equation associated to the
linearization of the Hamilton-Jacobi-Bellman equation and, indeed, this relation is
usually employed to get several properties of the solution to the problem.

The numerical method introduced in [1] and described in Sect. 2 is designed to
reproduce at the discrete level the same adjoint structure of the continuous system.
Discretizing the Hamilton-Jacobi-Bellman equation via standard finite differences,
then the approximation of the Fokker-Planck equation is obtained by means of the
weak formulation of the linearization of the first equation. The adjoint structure
of the discrete problem allows one to obtain, as in the continuous case, several
properties of the discrete solution, such as existence, uniqueness and regularity.
Moreover, since the continuous and the approximate problems have the same
adjoint structure, convergence of the scheme and error estimates are obtained by
substituting the continuous solution in the discrete problem and estimating the
truncation error (see [2, 4]).

In the recent times, there has been an increasing interest in the study of
differential models on networks, and in [8] we extend the MFG theory to this
framework. In [7], we consider the numerical approximation of the network problem
and, following the approach in [1], we find an approximation of the transition
conditions at the vertices which preserves, at the discrete level, the adjoint structure
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of the continuous problem. Also in this case, employing the similarity between the
continuous and the approximate problems, we are able to prove the convergence of
the scheme. The scheme for the network problem is described in Sect. 3.

SinceMFG theory introduces an effective and efficient methodology for handling
a wide variety of applications in different fields, it is particularly relevant to design
efficient solvers for the discrete problem. Section 4 is devoted to a new method
proposed in [6] which allows to compute solutions of (1.1) avoiding costly large-
time and ergodic approximations usually employed in this framework. Indeed,
once an effective discretizion of (1.1) is introduced, the discrete problem is solved
directly, by interpreting the ergodic constant λ as an unknown of the problem and
computing the solution of the overdeterminated system by a Newton-likemethod for
inconsistent nonlinear systems. A large collection of numerical tests in dimensions
one and two shows the performance of the proposed method, both in terms of
accuracy and computational time.

2 A Finite Difference Scheme for Mean Field Games
on the Torus

In this section we consider system (1.1) on the torus Td , i.e. with periodic boundary
conditions. The Hamiltonian H(x, p) is assumed to be convex w.r.t. p and regular
w.r.t. x and p. The potential term V may be either a local operator, i.e. V [m(·)](x) =
F(m(x)) for some regular function F ; or a non local operator which continuously
maps the set of probability measures on T

d to a bounded subset of the Lipschitz
functions on Td .

To simplify the notations, we assume that the dimension of the state space is
d = 2, but the scheme can be easily generalized to any dimension. Hence, let T2

h be
a uniform grid on the two-dimensional torus with step h (assuming that Nh = 1/h

is an integer) and denote by xi,j a typical grid node in T
2
h. The values of u and m

at xi,j are approximated, respectively by Ui,j and Mi,j . For a grid function U , we
consider the finite difference operators

(D+
1 U)i,j = Ui+1,j − Ui,j

h
, (D+

2 U)i,j = Ui,j+1 − Ui,j

h
,

and define

[DhU ]i,j = ((D+
1 U)i,j , (D

+
1 U)i−1,j , (D

+
2 U)i,j , (D

+
2 U)i,j−1

)T
,

(�hU)i,j = −4Ui,j − Ui+1,j − Ui−1,j − Ui,j+1 − Ui,j−1

h2
,
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where T denotes the transposition operator. We approximate H(·,∇u)(xi,j ) by
g(xi,j , [DhU ]i,j ), where the numerical Hamiltonian is a function g : T2×R

4 → R,
(x, q1, q2, q3, q4) → g (x, q1, q2, q3, q4) satisfying

(G1) monotonicity: g is non increasing w.r.t. q1, q3 and nondecreasing w.r.t. to
q2, q4.

(G2) consistency: g (x, q1, q1, q2, q2) = H(x, q) ∀x ∈ T
2,∀q = (q1, q2) ∈ R

2.

(G3) differentiability: g is of class C1.
(G4) convexity: for all x ∈ T

2, (q1, q2, q3, q4) → g (x, q1, q2, q3, q4) is convex.

Numerical Hamiltonians fulfilling these requirements are provided by Lax-
Friedrichs or Godunov type schemes, see [16].

The operator V [m](xi,j ) is approximated by Vh[M]i,j . We assume that Vh[M]
can be computed in practice. For example, if V [m] is defined as the solution w of
the equation �2w + w = m in T2, (�2 being the bi-laplacian), then one can define
Vh[M] as the solution W of the discrete problem �2

hW + W = M in T
2
h. If V is a

local operator, i.e. V [m](x) = F(m(x)), then Vh[M]i,j = F(Mi,j ).
For a generic pair of grid functionsU , V we define the scalar product (U, V )2 =

h2
∑

0≤i,j<Nh
Ui,jVi,j and we consider the compact and convex set

Kh = {M = (Mi,j )0≤i,j<Nh : (M, 1)2 = 1; Mi,j ≥ 0} ,

where 1 denotes the N2
h -tuple with all components equal to 1. Note that Kh can be

viewed as the set of the discrete probability measures on T2
h.

We make the following assumptions on the potential term, V being local or not:

(V1) Vh is continuous.
(V2) Vh is monotone, i.e.

(
Vh[M] − Vh[M̃],M − M̃

)

2
≤ 0 ⇒ Vh[M] = Vh[M̃].

If V [m](x) = F(m(x)), the function F being continuous from R
+ to R, then Vh

is continuous on the set of nonnegative grid functions.
If V is a nonlocal operator, we assume that the discrete operator Vh satisfies the
following additional properties:

(V3) There exists a constantC independent of h such that, for every grid function
M ∈ Kh, it holds

‖Vh[M]‖∞ ≤ C,
∣
∣(Vh[M])i,j − (Vh[M])k,�

∣
∣ ≤ Cd(xi,j , xk,�)

where d(x, y) is the distance between the two points x and y in the torus T2.
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(V4) There exists a continuous, bounded function ω : R+ → R+ such that
ω(0) = 0 and such that, for all m ∈ K := {m ∈ L1(T2) : ∫

T2 mdx = 1, m ≥ 0}
and for all M ∈ Kh,

‖ V [m] − Vh[M] ‖L∞(T2
h) ≤ ω

(‖m − IhM‖L1(T2)

)
, (2.1)

where IhM is the piecewise constant function taking the value Mi,j in the square{|x − xi,j |∞ ≤ h/2
}
.

Remark 2.1 If m ∈ K and Phm is the grid function whose value at xi,j is

∫

|x−xi,j |∞≤h/2
m(x)dx,

then Phm ∈ Kh and (2.1) implies the convergence of the approximation to V [m],
i.e.

lim
h→0

sup
m∈K

‖V [m] − Vh[Phm] ‖L∞(T2
h) = 0.

To approximate the Hamilton-Jacobi-Bellman equation in (1.1), we consider the
scheme

− ν(�hU)i,j + g(xi,j , [DhU ]i,j ) + 	 = (Vh[M])i,j , (2.2)

with 	 ∈ R and subject to the normalization condition (U, 1)2 = 0.
In order to approximate the Fokker-Planck equation in (1.1), we consider the

linearization of the Hamilton-Jacobi-Bellman equation at u in the direction w

−ν�w + ∂H

∂p
(x,Du) Dw = 0.

Note that the weak formulation of previous equation involves the term

−
∫

T2
div

(

m
∂H

∂p
(x,∇u)

)

w dx.

which, by periodicity, yields

∫

T2
m

∂H

∂p
(x,∇u) · ∇w dx

for any test function w, and it can be approximated by

h2
∑

i,j

Mi,j∇qg(xi,j , [DhU ]i,j ) · [DhW ]i,j . (2.3)
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By discrete integration by parts on T2
h, the sum in (2.3) is readily rewritten as

h2
∑

i,j

Ti,j (U,M)Wi,j ,

where the operator T is defined as follows:

Ti,j (U,M) =1

h

[Mi,j
∂g
∂q1

(xi,j , [DhU ]i,j ) − Mi−1,j
∂g
∂q1

(xi−1,j , [DhU ]i−1,j )

+Mi+1,j
∂g
∂q2

(xi+1,j , [DhU ]i+1,j ) − Mi,j
∂g
∂q2

(xi,j , [DhU ]i,j )
]
+

1

h

[Mi,j
∂g
∂q3

(xi,j , [DhU ]i,j ) − Mi,j−1
∂g
∂q3

(xi,j−1, [DhU ]i,j−1)

+Mi,j+1
∂g
∂q4

(xi,j+1, [DhU ]i,j+1) − Mi,j
∂g
∂q4

(xi,j , [DhU ]i,j )
]
.

In conclusion the second equation in (1.1) is approximated by

ν(�hM)i,j + Ti,j (U,M) = 0, (2.4)

subject to the normalization conditions (M, 1)2 = 1 ,M ≥ 0. As for the continuous
problem, the operator M �→ ( − ν(�hM)i,j − Ti,j (U,M)

)

i,j
is the adjoint of the

linearized version of the operator u �→ (− ν(�hU)i,j + g(xi,j , [DhU ]i,j )
)

i,j
. This

is a crucial property in view of the uniqueness and the convergence of the scheme.
Summarizing the finite difference scheme for the system (1.1) is: for all 0 ≤

i, j < Nh

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ν(�hU)i,j + g(xi,j , [DhU ]i,j ) = (Vh[M])i,j ),
ν(�hM)i,j + Ti,j (U,M) = 0,

(U, 1)2 = 0, (M, 1)2 = 1, M ≥ 0.

(2.5)

The following theorem is proved in [1].

Theorem 2.1 If the numerical Hamiltonian g satisfies (G1)–(G3) and the potential
V satisfies (V1), then (2.5) has a solution (U,M,	). Moreover if g also satisfies
(G4) and Vh also satisfies (V2), then the solution is unique.

In the previous result ν can also vanish, hence the deterministic case is included.
The proof of existence of a solution to (2.5) is based on a fixed point argument and
careful estimates of the Lipschitz norm of the solution of (2.2), while uniqueness is
provedwith a duality argument similar to the one in [15] for the continuous problem.
The next proposition gives a regularity result for the solution (2.5) with an estimate
of the norm uniform in h.
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Proposition 2.1 Under the same assumptions of Theorem 2.1, assume moreover
that ν > 0 and

∣
∣
∣
∣
∂g

∂x
(x, (q1, q2, q3, q4))

∣
∣
∣
∣ ≤ C(1 + |q1| + |q2| + |q3| + |q4|). (2.6)

Then there exists a constant C independent of h such that

‖U‖∞ + ‖DhU‖∞ ≤ C. (2.7)

We now focus on the convergence of the scheme (2.5). In the rest of this section we
make the following additional assumptions

• ν > 0;
• the Hamiltonian is of the form

H(x, p) = H(x) + |p|β (2.8)

with the functionH ∈ C1(T2) and β > 1;
• the system (1.1) admits a unique classical solution (u,m, λ).

To approximate the Hamiltonian in (2.8) we consider a numerical Hamiltonian of
the form

g(x, q) = H(x) + G(q−
1 , q+

2 , q−
3 , q+

4 ), (2.9)

where, for a real number r , r+ = max(r, 0), r− = max(−r, 0) and G : R4 → R+
is given by

G(p) = |p|β = (p2
1 + p2

2 + p2
3 + p2

4)
β
2 .

Assumptions (G1)–(G4) are satisfied by the numerical Hamiltonian in (2.9), hence
Theorem 2.1 guarantees existence and uniqueness of the solution. In the following
we denote by uh (resp. mh) the piecewise bilinear function in C(T2) obtained by
interpolating the valuesUh

i,j (resp Mh
i,j ) of the solution (Uh,Mh,	h) to (2.5) at the

nodes of the space grid. For the convergence analysis we distinguish the cases of a
nonlocal potential and the case of a local one.

2.1 Convergence for V Nonlocal Operator

We assume that V is monotone, nonlocal and smooth. In this case it is known that
there exists a unique classical solution (u,m, λ) of (1.1) such that m > 0 [15]. Note
that since g in (2.9) verifies condition (2.6), the regularity estimate (2.7) holds and
U is uniformly Lipschitz continuous.
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Theorem 2.2 Consider the numerical Hamiltonian given by (2.9) and a discrete
potential Vh such that (V1)–(V4) hold.

The case β ≥ 2: As h goes to 0, the functions uh converge to u in W 1,β(T2), the
functions mh converge to m in H 1(T2), and 	h tends to λ.

The case β ∈ (1, 2): As h goes to 0, the functions uh converge to u in W 1,2(T2),
the functions mh converge to m in L2(T2), and 	h tends to λ.

2.2 Convergence for V Local Operator

If V is a local operator, i.e. V [m](x) = F(m(x)), existence of a classical solution
to (1.1) for any β > 1 holds, for example, if F is non decreasing and satisfies

mF(m) ≥ δ|F(m)|γ − C1, ∀m ≥ 0 (2.10)

for some constant C1 > 0 and γ > 2 (being 2 the dimension of the space). In the
local case, there are no a priori Lipschitz estimates on U such as (2.7). Since these
estimates are used several times in the proof of Theorem 2.2, in this case additional
difficulties arise and further assumptions are need.

Theorem 2.3 Consider the numerical Hamiltonian given by (2.9) and a local
operator V defined by a continuous function F : R+ → R satisfying (2.10) and

F ′(m) ≥ δ min(mη1,m−η2)

for δ > 0, η1 > 0 and 0 < η2 < 1. As h goes to 0, the functions uh converge to u in
W 1,β(T2), the functions mh converges to m in L2−η2(T2), and 	h tends to λ.

The proofs of Theorems 2.2 and 2.3 are rather technical and require several accurate
estimates, hence we skip the details here. We only point out that a key ingredient in
the proofs is the fundamental identity given in the next lemma (see [4]).

Lemma 2.1 Let A,B be two grid functions, (U,M,	) a solution of (2.5) and
(Ũ , M̃, 	̃) a solution of the perturbed system

⎧
⎪⎪⎨

⎪⎪⎩

−ν(�hŨ)i,j + g(xi,j , [DhŨ]i,j ) + 	̃ = (Vh[M̃])i,j + Ai,j ,

ν(�hM̃)i,j + Ti,j (Ũ , M̃) = Bi,j ,

(Ũ , 1)2 = 0, (M̃, 1)2 = 1, M̃ ≥ 0.

(2.11)

Then the following identity holds

G(M,U, Ũ) + G(M̃, Ũ , U) + (Vh[M] − Vh[M̃],M − M̃)2

=(A,M − M̃)2 + (B,U − Ũ )2,
(2.12)
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where G is the nonlinear functional acting on grid functions defined by

G(M,U, Ũ) =
∑

i,j

Mi,j

[
g(xi,j , [DŨ ]i,j ) − g(xi,j , [DU ]i,j )

− gq(xi,j , [DU ]i,j ) · ([DŨ ]i,j − [DU ]i,j )
]
.

The identity (2.12) holds for a general numerical Hamiltonian g and it employs the
crucial property that the second equation in (2.5) is the adjoint of the linearized
version of the first equation of the system, as already observed. Moreover, if (G4)
and (V2) hold, then the first line of (2.12) is made of three nonnegative terms, hence
uniqueness for (2.5) is a straightforward consequence of this identity.

While Theorems 2.2 and 2.3 rely on the existence of a classical solution to (1.1),
the convergence analysis has been extended in [2], where the existence of a weak
solution of the MFG system is proved via a compactness argument on solutions of
the discrete problem.

3 Mean Field Games on Networks

In this section we consider stationary Mean Field Games defined on a network. We
first describe a formal derivation of the MFG system in terms of Pareto equilibria
for dynamic games defined on a network with a large number of (indistinguishable)
players. In this way we deduce the correct transition conditions at the vertices of the
network which allow to prove existence and uniqueness of the classical solution to
the problem. Hence we propose a finite difference scheme for the MFG system
based on the approach of Sect. 2 and a correct approximation of the transition
conditions at the vertices.

3.1 Networks and Functional Spaces

We start by describing the constitutive elements of the problem and the main
assumptions. A network � = (V, E) is a finite collection of points V := {vi}i∈I in
R

d connected by continuous, non self-intersecting edges E := {ej }j∈J , respectively
indexed by two finite sets I and J . Each edge ej ∈ E is parametrized by a smooth
function πj : [0, lj ] → R

d, lj > 0. Given vi ∈ V , we denote by Inci := {j ∈ J :
vi ∈ ej } the set of edges branching out from vi and by dvi := |Inci | the degree of
vi . A vertex vi is said a boundary vertex if dvi = 1, otherwise it is said a transition
vertex. For simplicity, we assume that the set of boundary vertices is empty. For a
function u : � → R we denote by uj : [0, lj ] → R the restriction of u to ej , i.e.
u(x) = uj (y) for x ∈ ej , y = π−1

j (x), and by ∂ju(vi) the oriented derivative of u
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at vi along the arc ej defined by

∂ju(vi) =
{
limh→0+(uj (h) − uj (0))/h, if vi = πj (0);
limh→0+(uj (lj − h) − uj (lj ))/h, if vi = πj (lj ).

The integral of a function u on � is defined by

∫

�

u(x)dx :=
∑

j∈J

∫ lj

0
uj (r)dr.

The space Ck(�), k ∈ N, consists of all the continuous functions u : � → R such
that uj ∈ Ck([0, lj ]) for j ∈ J and ‖u‖Ck = maxβ≤k ‖∂βu‖L∞ < ∞. Observe that
no continuity condition at the vertices is prescribed for the derivatives of a function
u ∈ Ck(�).

3.2 A Formal Derivation of the MFG System on a Network

We first show that the transition conditions at the vertices can be deduced in a natural
way by the formulation of the differential game associated to the MFG system on
the network. Consider a population of agents, distributed at time t = 0 according to
a probabilitymeasurem0 on �; each agent moves on the network� and its dynamics
inside the edge ej is governed by the stochastic differential equation

dXs = −γs ds +√2νj dWs,

where Xs is the state variable, γ is the control, νj > 0 is a diffusion coefficient and
Wt is a 1-dimensional Brownian motion. When the agent reaches a vertex vi ∈ V , it
almost surely spends zero time at vi and enters in one of the incident edges, say ej

with j ∈ Inci , with probability βij where

βij > 0,
∑

j∈Inci

βij = 1.

(see [11] for a rigorous definition of stochastic processes on networks). The cost
criterion is given by

lim infT →∞Ex

[
1

T

∫ T

0
{L(Xt , γt ) + V [m(Xt)]}dt

]

where m represents the distribution of the overall population of players, L is
the Lagrangian and V is an the potential. A formal application of the dynamic
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programming principle implies that the value function u of the previous control
problem satisfies

⎧
⎪⎪⎨

⎪⎪⎩

−νj ∂
2uj + Hj(x, ∂uj ) + λ = Vj [m], x ∈ ej , j ∈ J

∑
j∈Inci

αij νj ∂uj (vi) = 0 vi ∈ V,

uj (vi) = uk(vi), j, k ∈ Inci , vi ∈ V,

(3.1)

where αij := βij ν
−1
j , λ is the ergodic cost and the Hamiltonian is given on the edge

ej by the Fenchel transformation

Hj(x, p) = sup
γ

[− γ · p − Lj (x, γ )
]
.

Note that the differential equation inside ej is defined in terms of the coordinate
parametrizing the edge. The second equation in (3.1) is known as the Kirchhoff
transition condition and it is consequence of the assumption on the behavior of Xt

at the vertices (see [11]). Finally, the third line equation in (3.1) is a constraint
prescribing the continuity of u at transition vertices.

In order to derive the equation satisfied by the distribution m of the agents, we
follow a standard duality argument. Consider the linearization of Hamilton-Jacobi-
Bellman equation at u in the direction w

⎧
⎪⎪⎨

⎪⎪⎩

−νj ∂
2wj + ∂pHj (x, ∂uj )∂wj = 0, x ∈ ej , j ∈ J

∑
j∈Inci

νjαij ∂wj (vi) = 0 vi ∈ V
wj(vi) = wk(vi), j, k ∈ Inci , vi ∈ V .

(3.2)

Writing the weak formulation of (3.2) for a test function m, integrating by parts
along each edge and regrouping the boundary terms corresponding to the same
vertex vi , we get

0 =
∑

j∈J

∫

ej

(− νj ∂
2wj + ∂pHj (x, ∂uj )∂wj

)
mj dx

=
∑

j∈J

∫

ej

[− νj ∂
2mj − ∂(mj ∂pHj (x, ∂uj ))

]
wj dx

−
∑

vi∈V

⎡

⎣
∑

j∈Inci

νjmj (vi)∂wj (vi) − (νj ∂mj (vi) + ∂pH(vi, ∂uj )mj (vi)
)
wj(vi)

⎤

⎦ .
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By the previous identity we obtain that m satisfies inside each edge ej the adjoint
equation

νj ∂
2mj + ∂(mj ∂pHj (x, ∂uj )) = 0.

Moreover, recalling the Kirchhoff transition condition for w, the first one of the
terms computed at the transition vertices vanishes if

mj(vi)

αij
= mk(vi)

αik
, j, k ∈ Inci , vi ∈ V . (3.3)

The vanishing of the other term for each vi ∈ V , namely

∑

j∈Inci

νj ∂mj (vi) + ∂pHj (vi, ∂uj )mj (vi) = 0, (3.4)

gives the transition condition for m at the vertices vi ∈ V . Note that (3.4)
corresponds to the conservation of the total flux of the density m at vi .

We restrict for simplicity to the case in which all the coefficients in the transition
condition for u are equal, i.e. αij = αik ∀i ∈ I, j, k ∈ Inci and therefore (3.3)
reduces to the continuity of m at the vertices. Summarizing we get the following
MFG system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−νj ∂
2uj + Hj(x, ∂uj ) + λ = Vj [m], x ∈ ej , j ∈ J

νj ∂
2mj + ∂(mj ∂pHj (x, ∂uj )) = 0 x ∈ ej , j ∈ J

∑

j∈Inci

νj ∂uj (vi) = 0 vi ∈ V

∑

j∈Inci

[νj ∂mj (vi) + ∂pHj (vi , ∂uj )mj (vi)] = 0 vi ∈ V

uj (vi) = uk(vi), mj (vi) = mk(vi) j, k ∈ Inci, vi ∈ V
∫

�

u(x)dx = 0,
∫

�

m(x)dx = 1, m ≥ 0

(3.5)

where the ergodic constant λ ∈ R is also an unknown of the problem. The transition
conditions for u and m (continuity and either Kirchhoff condition or conservation
of total flux, respectively) give dvi linear conditions for each function at a vertex
vi ∈ V , hence they uniquely determine the values uj (vi) and mj(vi), j ∈ Inci .

For the stationary system (3.5) we have the following existence and uniqueness
result [8] in the case of a local coupling V [m](x) = V (m(x)), x ∈ �.
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Theorem 3.1 Assume that H = {Hj }j∈J , Hj : [0, lj ] × R → R, ν = {νj }j∈J ,
νj ∈ R, and V = {Vj }j∈J , Vj : R → R, satisfy

Hj ∈ C2([0, lj ] × R);
Hj(x, ·) is convex in p for each x ∈ [0, lj ];
δ|p|2 − C ≤ Hj(x, p) ≤ C|p|2 + C for (x, p) ∈ [0, lj ] × R and some δ, C > 0,

ν0 := inf
j∈J

νj > 0,

Vj [m](x) = Vj (m(x)) with Vj ∈ C1([0,+∞)) and bounded.

Then, there exists a solution (u,m, λ) ∈ C2(�) × C2(�) × R to (3.5). Moreover if

∫

�

(V (m1) − V (m2))(m1 − m2)dx ≤ 0 ⇒ m1 = m2,

then the solution is unique.

3.3 A Finite Difference Scheme for Mean Field Games
on Networks

The differential equations in (3.5) are defined in terms of derivatives with respect
to the coordinate y = π−1

j (x) ∈ [0, lj ] parametrizing the arc ej . Hence the
approximation scheme for the MFG system is obtained by discretizing this local
coordinate.

Given a discretization step h = {hj }j∈J , we consider an uniform partition yj,k =
khj , k = 0, . . . , Nh

j , of the interval [0, lj ] parametrizing the edge ej (we assume

that Nh
j = lj /hj is an integer). We obtain a spatial grid on � by setting

Gh = {xj,k = πj (yj,k), j ∈ J, k = 0, . . . , Nh
j }.

In the notation xj,k , the index j refers to the arc ej , whereas the index k refers to
the grid point on ej . We set

|h| = max
j∈J

{hj }, Nh = #(I) +
∑

j∈J

(Nh
j − 1),

i.e. Nh is the total number of the points of Gh having identified, for each i ∈ I , the
#(Inci ) grid points corresponding to the same vertex vi . We make a partition of Inci
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Fig. 1 Incident edges to the
vertex vi : Inc

+
i = {j},

Inc−
i = {k, l}

into the subsets

Inc+i = {j ∈ Inci : vi = πj (0)}, Inc−i = {j ∈ Inci : vi = πj (N
h
j hj )},

as shown in Fig. 1.
For a grid function U : Gh → R we denote by Uj,k its value at the grid point

xj,k . We say that a grid function U : Gh → R is said to be continuous at vi if

Uj,� = Uk,m := Ui if vi = πj (�hj ) = πk(mhk), j, k ∈ Inci , � ∈ {0,Nh
j }, and m ∈ {0,Nh

k },

i.e., the value of U at the vertex vi is independent of the incident edge ej , j ∈ Inci .
A grid function is continuous if it is continuous at vi , for each i ∈ I .

Given a generic pair of grid functions U,W : Gh → R, we define the scalar
product

(U,W)2 =
∑

j∈J

Nh
j −1
∑

k=1

hjUj,kWj,k +
∑

i∈I

⎛

⎜
⎝
∑

j∈Inc+
i

hj

2
Uj,0Wj,0 +

∑

j∈Inc−
i

hj

2
Uj,Nh

j
Wj,Nh

j

⎞

⎟
⎠ .

and we introduce the compact and convex set

Kh = {(Mj,k)j∈J, 0≤k≤Nh
j

: M is continuous, Mj,k ≥ 0, (M, 1)2 = 1}.

We finally define the following finite difference operators

(D+U)j,k = Uj,k+1 − Uj,k

hj

,

[DhU ]j,k = ((D+U)j,k, (D
+U)j,k−1

)T
,

(D2
hU)j,k = Uj,k−1 − 2Uj,k + Uj,k+1

h2j
.
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In order to approximate the Hamiltonian, H = {Hj }j∈J , Hj : [0, lj ] × R → R,
j ∈ J , we consider a numerical Hamiltonian g = {gj }j∈J , gj : [0, lj ] × R

2 → R,
(x, q1, q2) → gj (x, q1, q2) satisfying

(G1) monotonicity: gj is non increasing w.r.t. q1 and nondecreasing w.r.t. q2;
(G2) consistency: gj (x, q, q) = Hj(x, q) ∀x ∈ [0, lj ], ∀q ∈ R;
(G3) differentiability: gj is of class C1;
(G4) convexity: for all x ∈ ej , (q1, q2) �→ gj (x, q1, q2) is convex.

The operator V [m](xj,k) is approximated by Vh[M]j,k = V [Ihm](xj,k) where Ihm

is the piecewise constant function taking the value Mj,k in the interval {|y − yj,k| ≤
hj/2}, k = 1, . . . , Nh

j − 1, j ∈ J (at the vertices only the half interval contained in
[0, lj ] is considered). In particular, if V is a local operator, i.e. V [m](x) = F(m(x)),
then we set Vh[M]j,k = F(Mj,k). We assume that

(V1) Vh is continuous and maps Kh on a bounded set of grid functions.
(V2) Vh is monotone, i.e. (Vh[M] − Vh[M̄],M − M̄)2 ≤ 0 ⇒ M = M̄.

For the discretization of the differential equations in (3.5) inside the edge, we follow
the same approach in [1] and we refer to Sect. 2 for motivations and explanations.
We just recall that the approximation of the transport operator in the Fokker-Planck
equation comes from the discretization of the quantity

∫

ej

m
∂Hj

∂p
(x, ∂u)∂w dx

for a test function w, which is related to the weak formulation of the equation on
the network. At the internal grid points we consider the finite difference system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−νj (D
2
hU)j,k + gj (xj,k, [DhU ]j,k) + 	 = Vh[M]j,k , k = 1, . . . , Nh

j − 1, j ∈ J

νj (D
2
hM)j,k + Bh(U,M)j,k = 0, k = 1, . . . , Nh

j − 1, j ∈ J

M ∈ Kh, (U, 1)2 = 0,
(3.6)

where U , M are grid functions and 	 ∈ R. The transport operator Bh is defined for
j ∈ J and k = 1 by

Bh(U,M)j,k =
1
hj

[
Mj,k

∂gj

∂q1
(xj,k, [DhU ]j,k)+

Mj,k+1
∂gj

∂q2
(xj,k+1, [DhU ]j,k+1) − Mj,k

∂gj

∂q2
(xj,k, [DhU ]j,k)

]
;

for k = 2, . . . , Nh
j − 2 by

Bh(U,M)j,k =
1
hj

[
Mj,k

∂gj

∂q1
(xj,k, [DhU ]j,k) − Mj,k−1

∂gj

∂q1
(xj,k−1, [DhU ]j,k−1)

+ Mj,k+1
∂gj

∂q2
(xj,k+1, [DhU ]j,k+1) − Mj,k

∂gj

∂q2
(xj,k, [DhU ]j,k)

]
;
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for k = Nh
j − 1 by

Bh(U,M)j,k =
1
hj

[
Mj,k

∂gj

∂q1
(xj,k, [DhU ]j,k) − Mj,k−1

∂gj

∂q1
(xj,k−1, [DhU ]j,k−1)−

Mj,k
∂gj

∂q2
(xj,k, [DhU ]j,k)

]
.

For the approximation of the transition conditions in (3.5), we use a standard
first order discretization of the normal derivative of u and m. In particular, we
employ forward or backward finite differences depending on whether the vertex is,
respectively, the initial or terminal point in the parametrization of the edge. The flux
term in the Kirchhoff condition for m is approximated in a upwind fashion taking
always into account the orientation of the edge. Moreover we impose the continuity
at the vertices of U and M at the vertices so that the full set of discrete transition
conditions is given by

⎧
⎪⎨

⎪⎩

Sh(U, Vh[M] − 	)i = 0, i ∈ I,

T h(M,U)i = 0 i ∈ I,

U,M continuous at vi, i ∈ I,

(3.7)

where,for every triple of grid functions U ,V , M , the operators Sh : V → R and
T h : V → R are defined by

Sh(U, V )i =
∑

j∈Inc+i

[
νj (D

+U)j,0+hj

2
Vj,0

]−
∑

j∈Inc−i

[
νj (D

+U)j,Nh
j −1−

hj

2
Vj,Nh

j

]
,

T h(M, U)i =
∑

j∈Inc+i

[
νj (D

+M)j,0 + Mj,1
∂g

∂q2
(xj,1, [DhU ]j,1)

]

−
∑

j∈Inc−i

[
νj (D

+M)j,Nh
j −1 + Mj,Nh

j −1
∂g

∂q1
(xj,Nh

j −1, [DhU ]j,Nh
j −1)

] = 0.

We observe that in the approximation of the Kirchhoff condition appears an
additional term

hj

2 ((Vh[M]) − 	
)
, vanishing for h → 0. This term is necessary to

obtain a fundamental identity analogous to (2.12), suitable for the network problem.
Summarizing, the approximation scheme for the stationary problem (3.5) is given
by (3.6)–(3.7).
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3.4 Existence, Uniqueness and Convergence of the Numerical
Scheme

Concerning existence and uniqueness of a solution to (3.6)–(3.7) we have the
following result.

Theorem 3.2 Assume that g satisfies (G1)–(G3),V satisfies (V1). Then the problem
(3.6)–(3.7) has at least a solution (U,M,	). If moreover g satisfies (G4) and V

satisfies (V2), then the solution is unique.

Existence is proved as in the continuous case by a fixed point argument. For the
uniquenesswe rely on a fundamental identity similar to (2.12) which is also a crucial
tool to prove the convergence of the scheme.

We describe a convergence result for the scheme (3.6)–(3.7) in the reference case

H(x, p) = |p|β + f (x), (3.8)

where β ≥ 2 and f : � → R is a continuous function. We consider a numerical
Hamiltonian of the form

g(x, p) = G(p−
1 , p+

2 ) + f (x) (3.9)

where G(p1, p2) = (p2
1 + p2

2)
β/2 and p± denote the positive and negative part of

p ∈ R. We observe that g satisfies assumptions (G1)–(G4).

Theorem 3.3 Assume (3.8), V is a local C1 potential and g of the form (3.9). Let
(u,m, λ) be the unique solution of (3.5) and let uh (resp. mh) be the piecewise
linear function on � obtained by interpolating the values Uh

j,k (resp Mh
j,k) of the

solution (Uh,Mh,	h) to (3.6) and (3.7) at the nodes of the network grid. Then

lim|h|→0
‖uh − u‖∞ + ‖mh − m‖∞ + |	h − λ| = 0.

4 A Quasi-Newton Method for Stationary Mean Field Games

This section is devoted to the actual implementation and test of a numerical solver
for stationary MFG systems, both in the Euclidean and Network cases introduced
in (1.1) and (3.5) respectively. The main issue from an implementation point of
view is that these systems are strongly coupled and, more important, they involve
the ergodic constant λ as an additional unknown. A standard way in the literature
to overcome this issue is a regularization technique, which is an effective tool both
for theoretical and numerical results. The ergodic constant λ is replaced by the zero
order term δuδ (where δ > 0 is a small parameter) or by the time derivative ∂u

∂t

(associated to an initial datum), yielding to well posed problems. Indeed, it can
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be proved that both −δuδ and −u(·,t )
t

converge uniformly to λ as δ → 0 and
t → ∞ respectively, whereas uδ and u(·, t) − λt converge to a solution of the
original stationary equation. Unfortunately, this procedure introduces an additional
approximation in the computation, affecting the accuracy of the corresponding
numerical solutions and the computational time to reach convergence.

Here we review a new method that we introduced in [7] for stationary MFG
systems on networks and extended in [6] to very general homogenization problems
for Hamilton-Jacobi equations. The main novelty is that the discrete stationaryMFG
system is solved directly without any further (small δ or long time t) approximation,
treating the ergodic constant λ as it is, an additional unknown.

To avoid cumbersome notations and focus only on the main idea, we keep the
discussion at an abstract level. In particular, we no further distinguish between
the Euclidean case (1.1) and the Network case (3.5), we only assume that, after
the discretization, we end up with a generic lattice of N nodes. We collect all the
unknowns in a single vector X = (U,M,	), whose length turns out to be 2N + 1.
On the other hand, we recast the 2N equations in the system (including the transition
conditions in the network case) plus the 2 normalization conditions as functions of
X with zero right hand sides, obtaining a nonlinear map F : R2N+1 → R

2N+2. The
problem is then reduced to

Find X ∈ R
2N+1 such that F(X) = 0 ∈ R

2N+2 . (4.1)

Note that a zero of F exists and it is unique under the assumptions discussed in
the previous sections, but the problem (4.1) is formally overdetermined, adopting,
with a slight abuse, a terminology usually devoted to linear systems. Hence, the
solution to (4.1) should be meant in a least-squares sense, namely as a solution of
the following optimization problem (where we denote by ‖ · ‖2 the Euclidean norm
in R2N+2):

min
X∈R2N+1

1

2
‖F(X)‖22 .

Assuming smoothness of F and definingF(X) := 1
2‖F(X)‖22, the classical Newton

method for finding critical points of F is given by

HF (Xk)(Xk+1 − Xk) = −∇F(Xk) k ≥ 0 .

Computing the gradient ∇F and the HessianHF of F we have

∇F(X) = JF (X)T F (X) ,

HF (X) = JF (X)T JF (X) +
2N+2∑

i=1

∂2Fi

∂X2 (X)Fi(X) ,
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where the second order term is given by
(

∂2Fi

∂2X
(X)

)

k,�

= ∂2Fi

∂Xk∂X�

(X) .

Since a solution to the MFG system corresponds to a zero minimum of F(X), we
expect F(Xk) to be small for Xk close enough to a solution. Hence we approximate
HF (Xk) 
 JF (Xk)T JF (Xk) and obtain the so called Gauss-Newton method,
which requires only Fréchet differentiability of F :

JF (Xk)T JF (Xk)
(
Xk+1 − Xk

)
= −JF (Xk)T F (Xk) k ≥ 0 .

From a computational point of view, the presence of the transposed Jacobian restores
the square size of the system, but it also squares its condition number, a crucial point
for the approximation as N increases.

We proceed in an alternative way, by simply observing that, for δ := Xk+1 −Xk ,
the Gauss-Newton step above is just the optimality condition for the following linear
least-squares problem:

min
δ∈R2N+1

1

2
‖JF (Xk)δ + F(Xk)‖22 , (4.2)

which is in turn easily and efficiently solved by means of the QR factorization
of JF . Indeed, let n = 2N + 1 and suppose that JF (Xk) = QR, where Q is a
(n + 1) × (n + 1) orthogonal matrix (i.e. Q−1 = QT ) and R is a (n + 1) × n

matrix of the form R =
(

R1

0

)

, with R1 of size n × n and upper triangular. Writing

Q = (Q1 Q2) with Q1 of size (n + 1) × n and Q2 of size (n + 1) × 1, we get

‖JF (Xk)δ + F(Xk)‖22 = ‖QT
(
JF (Xk)δ + F(Xk)

)
‖22 = ‖QT QRδ + QT F(Xk)‖22 =

=
∥
∥
∥
∥

(
R1δ

0

)

+
(

QT
1 F(Xk)

QT
2 F(Xk)

)∥
∥
∥
∥

2

2

= ‖R1δ + QT
1 F(Xk)‖22 + ‖QT

2 F(Xk)‖22

which is finally minimized by getting rid of the first of the two latter terms, i.e.
solving the square triangular n × n linear system R1δ = −QT

1 F(Xk) via back
substitution.

Summarizing, we propose the following algorithm:

GIVEN AN INITIAL GUESS X AND A TOLERANCE ε > 0,
REPEAT

1. ASSEMBLE F(X) AND JF (X)

2. SOLVE THE LINEAR SYSTEM JF (X)δ = −F(X) IN THE LEAST-SQUARES

SENSE, USING THE QR FACTORIZATION OF JF (X)
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3. UPDATE X ← X + δ

UNTIL ‖δ‖22 < ε AND/OR ‖F(X)‖22 < ε

We refer the interested reader to [6] and [7] for implementation details, perfor-
mance tests of the proposed algorithm and a comparison with existing methods. In
the remaining sections we present some simulations in different settings, showing
the versatility of the new method to catch interesting features of the corresponding
problems.

4.1 MFG in Euclidean Spaces

We consider a MFG system in dimension two, with an eikonal Hamiltonian, a cost
function f and a local potential V , namely

⎧
⎪⎪⎨

⎪⎪⎩

−ν�u + |Du|2 + f (x) + λ = V (m) x ∈ T
2

ν�m + 2 div(m Du) = 0 x ∈ T
2

∫

T2 u(x)dx = 0,
∫

T2 m(x)dx = 1 ,

with f (x) = sin(2πx1) + cos(4πx1) + sin(2πx2) and V (m(x)) = m2(x). We
discretize the torus T2 with N = 2500 uniformly distributed nodes, so that the size
of the system is 5002×5001, corresponding to 2500 degrees of freedom forU , 2500
for M and 1 for 	. We choose U ≡ 0, M ≡ 1 and 	 = 0 as initial guess for the
Newton’s method and we set to ε = 10−6 the tolerance for the stopping criterion of
the algorithm.

In the first test we set the diffusion coefficient ν = 1. In Fig. 2, we show the
surfaces and the level sets of the computed pair of solutions (U,M).

The convergence is fast, just five iterations in 8.06 s and we get 	 = 0.9784.
Moreover, we observe the typical “dual” behavior of the solutions, namely the fact
that the local maxima of the mass distribution M correspond to the local minima of
the value function U and vice versa. Note that, due to the high diffusion, the mass
density is well distributed on the whole domain.

On the contrary, we can push the diffusion close to the deterministic limit,
repeating the test with ν = 0.01 to enhance concentration. We reach convergence in
10.72 s with 21 iterations and we get 	 = 1.1878. In Fig. 3, we show the surfaces
and the level sets of the computed pair of solutions (U,M).

We clearly see how the supports of U and M are almost disjoint and that the
mass distribution tries to occupy all the region corresponding to the minimum of the
value function.
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(b)

(a)

Fig. 2 Surfaces and level sets of the solutions U (a) and M (b)

4.2 Multi-Population MFG in Euclidean Spaces

This is a generalization of (1.1) to the case of P competing populations, each
one described by a MFG-system, coupled via a potential term (see [15]). Here we
consider the setting recently studied in [10] for problems with Neumann boundary
conditions, and we present the case in dimension one and two of an eikonal
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(a)

(b)

Fig. 3 Surfaces and level sets of the solutions U (a) and M (b)

Hamiltonian with a linear local potential, namely the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν�ui + |Dui |2 + λi = Vi(m) in � , i = 1, . . . , P

ν�mi + 2div(mi Dui) = 0 in � , i = 1, . . . , P

∂nui = 0 , ∂nmi = 0 on ∂� , i = 1, . . . , P
∫

� ui(x)dx = 0 ,
∫

� mi(x)dx = 1 , i = 1, . . . , P ,
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where � = [0, 1] or � = [0, 1]2, the value function u(x) = (u1(x), . . . , uP (x))

and the mass distributionm(x) = (m1(x), . . . ,mP (x)) are vector functions and λ =
(λ1, . . . , λP ) ∈ R

P is a P -tuple of ergodic constants. Moreover, for i = 1, . . . , P ,
the linear local potential Vi takes the form

Vi(m(x)) =
P∑

j=1

θijmj (x) ,

for some given weights θij ∈ R, or in matrix notation

V = (V1, . . . , VP ) , � = (θij )i,j=1,...,P , V (m) = �m . (4.3)

Existence and uniqueness of a solution (u,m, λ) can be proved under suitable
monotonicity assumptions on V (see [10] for details).

Note that this problem is even more overdetermined than the previous one.
Indeed, discretizing � with a uniform grid of N nodes, we end up with P(2N + 2)
equations in the P(2N + 1) unknowns (U,M,	).

In the special case (4.3) uniqueness is guaranteed assuming that � is positive
semi-definite and the solution is explicitly given, for i = 1, . . . , P , by ui ≡ 0,
mi ≡ 1 and λi = ∑P

j=1 θij . By dropping this condition, the trivial solution is still
found, but we expect to observe other more interesting solutions.

We start with some experiments in dimension one, in the case of P = 2
populations. We choose the coupling matrix (not positive semi-definite)

� =
(
0 1
1 0

)

so that the potential for each population only depends on the other population.
Moreover, we discretize the interval� = [0, 1]with N = 100 uniformly distributed
nodes, we set to ν = 0.05 the diffusion coefficient and to ε = 10−6 the tolerance
for the stopping criterion of the algorithm. To avoid the trivial solution, we choose
non constant initial guesses, such as piecewise constant pairs with zero mean for U

and piecewise constant pairs with mass one for M . Figure 4 shows four computed
solutions. In the top panels we show the mass distribution M = (M1,M2), while
in the bottom panels the corresponding value function U = (U1, U2). Segregation
of the two populations is expected (see [10]) and clearly visible. This phenomenon
can be enhanced by reducing the diffusion coefficient, as shown in Fig. 5, where
ν = 10−4, close to the deterministic limit.

We finally consider the more complex and suggestive two dimensional case.
We discretize the square � = [0, 1]2 with 25 × 25 uniformly distributed nodes
and we push the diffusion ν up to 10−6, in order to observe segregation among
the populations. Moreover, we choose the interaction matrix as before, with all the
entries equal to 1 except for the diagonal, which is set to 0.
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Fig. 4 Two-population MFG solutions (ν = 0.05): mass distribution M = (M1,M2) (top panels)
and corresponding value function U = (U1, U2) (bottom panels)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 5 Two-population MFG solutions (ν = 10−4): mass distribution M = (M1,M2) (top panels)
and corresponding value function U = (U1, U2) (bottom panels)

Figure 6 shows a rich collection of solutions, corresponding to P = 2 (top
panels), P = 3 (middle panels) and P = 4 (bottom panels) populations for different
initial guesses of the Newton’s method.We clearly see how the populations compete
to share out all the domain.

4.3 MFG on Networks

Here we show the ability of the proposed method to handle problems on quite
complex structures. To this end, we consider a MFG system on a network without
boundary, in the special case of an eikonal Hamiltonian, a cost function f and a
local potential V , i.e.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ν∂2u + |∂u|2 + f + λ = V [m] in �

ν∂2m + 2∂(m ∂u) = 0 in �

∑

j∈Inci

νj ∂uj (vi) = 0 vi ∈ V

∑

j∈Inci

[νj ∂mj(vi) + 2∂uj (vi)mj (vi)] = 0 vi ∈ V

uj (vi) = uk(vi), mj (vi) = mk(vi) j, k ∈ Inci , vi ∈ V
∫

�

u(x)dx = 0,
∫

�

m(x)dx = 1 ,

where V [m] = m2, ν = 0.1, the network � is shown in Fig. 7a and the cost f is the
restriction to � of the function min{|x − (3.5, 2.5)|, 1} for x ∈ R

2, shown in Fig. 7b.
The network consists in 26 vertices and 44 edges, each one uniformly discretized

with 50 nodes, yielding a system with 4365 degrees of freedom.We set to ε = 10−6

the tolerance for the stopping criterion of the algorithm. Note that the cost f is
maximal (≡ 1) outside of the ball centered in the point (3.5, 2.5) with radius 1
where, as in the Euclidean case, we expect the value function u to attain its minimum
and the mass m to be well distributed. This is what is observed in Fig. 8, showing
the pair of computed solutions. The algorithm reaches convergence in 14 s after 15
iterations.

0

1

)b()a(

Fig. 7 The network � (a) and the cost function f (b)
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0
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Fig. 8 The value function u (a) and the mass distribution m (b)
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