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Abstract. Laboratory model tests were conducted for the ultimate bearing
capacity of shallow rough circular surface foundation resting over a sand layer
of limited thickness subjected to an eccentrically inclined load. Based on the
laboratory model test results, a neural network model is developed to estimate
the reduction factor (RF). The reduction factor can be used to estimate the
ultimate eccentrically inclined load per unit area of the foundation supported by
a sand layer of limited thickness from the ultimate bearing capacity of a foun-
dation on a sand layer extending to a great depth under an eccentrically inclined
load. A thorough sensitivity analysis was carried out to determine the important
parameters affecting the reduction factor. Importance was given on the con-
struction of neural interpretation diagram. Based on this neural interpretation
diagram, the direct or inverse relationships that exists between the input and
output parameters were determined. Results from the artificial neural network
(ANN) were compared with the laboratory model test results and these results
are well matched.
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1 Introduction

During the last three decades, a number of laboratory model test results and few field
test results have been published that are related to the ultimate bearing capacity of
shallow foundation resting over homogeneous sand bed and clay extending to a great
depth. The presence of a hard layer within a certain depth below the foundation base
can significantly influence the ultimate bearing capacity supported by the soil. In many
practical problems, the thin soil layer may be underlain by rigid rock base. In these
situations, the ultimate bearing capacity of shallow foundation resting on soil layer of
limited thickness is influenced by the lower rigid boundary. Most of the experimental
studies were related to centric vertical loading. However, none of the published studies
address the effect of load eccentricity, load inclination, and the effect of rigid base
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located at a limited depth on the ultimate bearing capacity of circular foundation on
limited thickness of sand layer using ANN. The purpose of this study is to develop a
neural network model from the results of laboratory model tests to estimate the
reduction factor. Artificial neural network (ANN) is an artificial intelligence system
inspired by the behavior of human brain and nervous system. In the present study a
feed forward back propagation neural network model has been used to predict the
reduction factor of eccentrically inclined loaded circular foundation. Backpropagation
neural network is most suitable for prediction problems and Levenberg-Marquadrt
algorithm is adopted as it is efficient in comparison to gradient descent backpropagation
algorithm (Goh et al. 2005; Hornik et al. 1989). By drawing a neural interpretation
diagram relationship between input and output are found out. A prediction model is
developed based on the weights of the ANN model. The developed reduction factor is
compared with the experimental reduction factor.

2 Analysis and Data

All the laboratory model tests were conducted using a poorly graded sand with effective
grain size D10 = 0.325 mm, uniformity coefficient, Cu = 1.45, and coefficient of gra-
dation, Cc = 1.15. Relative density Dr of sand is 69% and angle of internal friction,
/ = 40.9°. Model foundations used for the tests had dimensions of 100 mm diameter.
Mild steel plate 30-mm thick was used to make the model foundations. The bottom of
the foundation was made rough by applying glue and rolling the steel plate over sand.

One hundred laboratory model tests were conducted. Three parameters H/B, a//
and e/B are used as inputs in the ANN model, and the output is the reduction factor RF
given by

RF ¼ quðH=B; a=/; e=BÞ
quða=/; e=BÞ

ð1Þ

where quðH=B; a=/; e=BÞ is the ultimate eccentrically inclined load per unit area of a
circular foundation on the surface of a sand layer of limited thickness (Table 1) and
quða=/; e=BÞ is the ultimate eccentrically inclined load per unit area on a sand layer
extending to a great depth (Table 2).

Out of 100 tests, 75 tests are considered for training and the remaining 25 are
considered for testing. All the inputs and output are normalized in the range of [−1, 1]
before training. A feed-forward back-propagation neural network is used with hyper-
bolic tangent sigmoid function and linear function as the transfer function. The network
is trained with Levenberg-Marquardt (LM) algorithm as it is efficient in comparison to
gradient descent back-propagation algorithm. The ANN has been implemented using
MATLAB V 7.11.0(R2015b).
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Table 1. Database used for ANN model and compared with experimental results

Data
type

Expt.
No.

H/B a// e/B quðH=B; a=/; e=BÞ
kN/m2

RFexpt. RFANN Deviation
(%)

Training 1 0.3 0.000 0 880 7.59 7.91 −4.21
2 0.3 0.000 0.05 810 7.79 7.84 −0.62
3 0.3 0.000 0.1 690 7.84 7.77 0.94
4 0.3 0.122 0 810 7.79 7.44 4.45
5 0.3 0.122 0.05 745 7.76 7.37 4.97
6 0.3 0.122 0.15 510 7.29 7.24 0.62
7 0.3 0.244 0 680 7.08 6.99 1.30
8 0.3 0.244 0.1 515 6.78 6.86 −1.24
9 0.3 0.244 0.15 420 6.67 6.80 −1.93
10 0.3 0.367 0.05 508 6.51 6.48 0.55
11 0.3 0.367 0.1 427 6.47 6.41 0.95
12 0.3 0.367 0.15 350 6.60 6.34 4.06
13 0.3 0.489 0 420 5.92 5.96 −0.77
14 0.3 0.489 0.05 372 5.90 5.86 0.82
15 0.3 0.489 0.1 300 5.66 5.75 −1.65
16 0.5 0.000 0 425 3.66 3.72 −1.52
17 0.5 0.000 0.05 390 3.75 3.68 1.75
18 0.5 0.000 0.15 270 3.51 3.62 −3.11
19 0.5 0.122 0 385 3.70 3.49 5.69
20 0.5 0.122 0.1 295 3.51 3.43 2.41
21 0.5 0.122 0.15 245 3.50 3.40 2.96
22 0.5 0.244 0.05 290 3.30 3.25 1.32
23 0.5 0.244 0.1 240 3.16 3.22 −2.03
24 0.5 0.244 0.15 200 3.17 3.19 −0.55
25 0.5 0.367 0 247 2.98 3.05 −2.45
26 0.5 0.367 0.05 220 2.82 3.00 −6.42
27 0.5 0.367 0.1 190 2.88 2.95 −2.38
28 0.5 0.489 0 186 2.62 2.59 1.00
29 0.5 0.489 0.05 160 2.54 2.55 −0.28
30 0.5 0.489 0.15 108 2.54 2.47 2.68
31 1 0.000 0 194 1.67 1.57 5.84
32 1 0.000 0.1 144 1.64 1.57 3.93
33 1 0.000 0.15 110 1.43 1.57 −9.95
34 1 0.122 0.05 156 1.63 1.56 3.94
35 1 0.122 0.1 132 1.57 1.56 0.89
36 1 0.122 0.15 103 1.47 1.55 −5.50
37 1 0.244 0 140 1.46 1.47 −1.05
38 1 0.244 0.05 130 1.48 1.44 2.63
39 1 0.244 0.1 112 1.47 1.40 5.24

(continued)
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Table 1. (continued)

Data
type

Expt.
No.

H/B a// e/B quðH=B; a=/; e=BÞ
kN/m2

RFexpt. RFANN Deviation
(%)

40 1 0.367 0 112 1.35 1.19 11.95

41 1 0.367 0.05 101 1.29 1.18 9.23
42 1 0.367 0.15 70.5 1.33 1.16 12.75
43 1 0.489 0 90 1.27 1.15 9.35
44 1 0.489 0.1 62 1.17 1.15 1.95
45 1 0.489 0.15 54 1.27 1.15 9.80
46 2 0.000 0.05 120 1.15 1.23 −6.55
47 2 0.000 0.1 104 1.18 1.19 −1.08
48 2 0.000 0.15 92 1.19 1.17 2.29
49 2 0.122 0 120 1.15 1.11 3.46
50 2 0.122 0.05 110 1.15 1.11 3.01
51 2 0.122 0.1 95 1.13 1.11 1.89
52 2 0.244 0 112 1.17 1.11 5.13
53 2 0.244 0.05 99 1.13 1.11 1.63
54 2 0.244 0.15 74 1.17 1.11 5.79
55 2 0.367 0 94 1.13 1.11 2.29
56 2 0.367 0.1 72 1.09 1.11 −1.44
57 2 0.367 0.15 62 1.17 1.11 5.40
58 2 0.489 0.05 66 1.05 1.11 −5.63
59 2 0.489 0.1 54 1.02 1.11 −8.61
60 2 0.489 0.15 44 1.04 1.11 −6.89
61 3 0.000 0 119 1.03 1.11 −7.87
62 3 0.000 0.05 111 1.07 1.11 −3.68
63 3 0.000 0.1 94 1.07 1.11 −3.60
64 3 0.122 0 110 1.06 1.11 −4.62
65 3 0.122 0.05 102 1.06 1.11 −4.15
66 3 0.122 0.15 74 1.06 1.11 −4.68
67 3 0.244 0 102 1.06 1.11 −4.15
68 3 0.244 0.1 82 1.08 1.11 −2.56
69 3 0.244 0.15 67 1.06 1.11 −4.05
70 3 0.367 0.05 83 1.06 1.11 −3.99
71 3 0.367 0.1 70 1.06 1.11 −4.34
72 3 0.367 0.15 57 1.08 1.11 −2.89
73 3 0.489 0 74 1.04 1.11 −6.17
74 3 0.489 0.05 65 1.03 1.11 −7.26
75 3 0.489 0.1 54 1.02 1.11 −8.61

Testing 76 0.3 0.000 0.15 565 7.34 7.70 −4.92
77 0.3 0.122 0.1 645 7.68 7.31 4.83
78 0.3 0.244 0.05 610 6.93 6.93 0.09

(continued)
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3 Results and Discussion

Three inputs and one output parameters were considered in the ANN model. The
schematic diagram of the ANN architecture is shown in Fig. 1, which was computed
from the database. The number of neurons in hidden layer is varied and the optimum
number was taken based on mean square error (mse) value which was maintained at
0.001. In this ANN model there were two neurons evaluated in hidden layer as shown
in Fig. 2. Therefore the final ANN architecture as 3-2-1[i.e. 3 (input) – 2 (hidden layer
neuron) – 1 (output)].

Mean square error (MSE) is defined as

MSE ¼
Pn
i¼1

RFi � RFp
� �2

n
ð2Þ

Coefficient of efficiency, R2 is defined as

Table 1. (continued)

Data
type

Expt.
No.

H/B a// e/B quðH=B; a=/; e=BÞ
kN/m2

RFexpt. RFANN Deviation
(%)

79 0.3 0.367 0 550 6.63 6.54 1.24

80 0.3 0.489 0.15 245 5.76 5.66 1.86
81 0.5 0.000 0.1 330 3.75 3.65 2.67
82 0.5 0.122 0.05 360 3.75 3.46 7.76
83 0.5 0.244 0 323 3.36 3.28 2.46
84 0.5 0.367 0.15 150 2.83 2.89 −1.96
85 0.5 0.489 0.1 135 2.55 2.51 1.57
86 1 0.000 0.05 170 1.63 1.57 3.74
87 1 0.122 0 168 1.62 1.56 3.20
88 1 0.244 0.15 83 1.32 1.35 −2.54
89 1 0.367 0.1 82 1.24 1.17 6.10
90 1 0.489 0.05 81 1.29 1.15 10.72
91 2 0.000 0 128 1.10 1.27 −15.17
92 2 0.122 0.15 84 1.20 1.11 7.62
93 2 0.244 0.1 86 1.13 1.11 2.20
94 2 0.367 0.05 83 1.06 1.11 −3.99
95 2 0.489 0 75 1.06 1.11 −4.76
96 3 0.000 0.15 83 1.08 1.11 −2.66
97 3 0.122 0.1 89 1.06 1.11 −4.44
98 3 0.244 0.05 95 1.08 1.11 −2.51
99 3 0.367 0 88 1.06 1.11 −4.37
100 3 0.489 0.15 43 1.01 1.11 −9.37
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Table 2. Database used for ANN model

a// e/B qu ða=u; e=BÞ
(kN/m2)

0 0 116
0 0.05 104
0 0.10 88
0 0.15 77
0.122 0 104
0.122 0.05 96
0.122 0.10 84
0.122 0.15 70
0.244 0 96
0.244 0.05 88
0.244 0.10 76
0.244 0.15 63
0.367 0 83
0.367 0.05 78
0.367 0.10 66
0.367 0.15 53
0.489 0 71
0.489 0.05 63
0.489 0.10 53
0.489 0.15 42.5

Fig. 1. ANN architecture
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R2 ¼ E1 � E2

E1
ð3Þ

where,

E1 ¼
Xn
i¼1

RFi � RF
� �2 ð4Þ

and

E2 ¼
Xn
i¼1

RFp � RFi
� �2 ð5Þ

where, RFi;RF and RFp are the experimental, average experimental, predicted RF
values respectively; and n = number of training data.

The coefficient of efficiency (R2) is found to be 0.997 for training and 0.996 for
testing as shown in Figs. 3, and 4. The weights and biases of the network are presented
in Table 3. These weights and biases can be utilized for interpretation of relationship in
between the inputs and output, sensitivity analysis and framing an ANN model in the
form of an equation. The residual analysis was carried out by calculating the residuals
in between experimental reduction factor and predicted reduction factor for training
data. Residuals can be defined as the difference between the experimental and predicted
RF value and is given by

er ¼ RFi � RFp ð6Þ
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Fig. 2. Variation of hidden layer neuron with mean square error (mse)
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The residuals are plotted with the experiment number as shown in Fig. 5. It is
observed that the residuals are evenly distributed along the horizontal axis of the plot.
Therefore it can be said that the network is well trained and can be used for prediction
with reasonable accuracy.
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Fig. 3. Correlation between predicted reduction factors with experimental reduction factor for
training data
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Fig. 4. Correlation between predicted reduction factors with experimental reduction factor for
testing data
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4 Sensitivity Analysis

Sensitivity analysis was carried out for selection of important input variables. Different
approaches have been suggested to select the important input variables. The Pearson
correlation coefficient is one of them in selecting proper inputs for the ANN model. It
was approached by Guyon and Elisseeff (2003) and Wilby et al. (2003). Goh (1994),
Shahin et al. (2002), Behera et al. (2013), Sahu et al. (2017, 2018), Sethy et al. (2017)
have used Garson’s algorithm (Garson 1991) in which the input-hidden and hidden-
output weights of trained ANN model are partitioned. In Garson’s algorithm the
absolute values of weights are taken to select the important input variables. It does not
provide information on the effect of input variables in terms of direct or inverse relation
to the output. Olden et al. (2004) proposed a connection weights approach based on the
neural interpretation diagram (NID), in which the actual values of input-hidden and
hidden-output weights are taken. Table 4 shows the cross-correlation of the three input
parameters with the reduction factor (RF) value. From the Table 4 it can be seen
that RF is highly correlated to H/B with a values of −0.71 followed by a// = −0.11 and

Table 3. Values of connection weights and biases

Neuron Weight

wik wk Bias
(H/B)n (a//)n (e/B)n RF bhk b0

Hidden neuron 1(k = 1) −4.8926 −0.1266 −0.014 2.233 −5.1941 1.317
Hidden neuron 2(k = 2) −6.0138 −3.6338 −0.3389 0.0586 −2.5935
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Fig. 5. Residual distribution of training data
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e/B = −0.01. The relative importance, quantified through the parameter Si of three
input parameters as per Garson’s algorithm is presented in Table 5. The H/B is found to
be the most important input parameters with relative importance value being 78.71%
followed by 19.45% for a// and 1.84% for e/B. As per the connection weight approach
(Olden et al. 2004) the relative importance of the present input variables is also
presented in Table 5. H/B is also the most important input parameter (Si = −11.28)
followed by a// (Si = −0.5) and e/B (Si = −0.05). The Si values being negative imply
that H/B, a//, and e/B are indirectly related to RF. In other words increase in H/B, a//,
and e/B leads to decrease in RF and leads to decrease in ultimate bearing capacity.

5 Neural Interpretation Diagram (NID)

Ozesmi and Ozesmi (1999) proposed neural interpretation diagram for visual inter-
pretation of the connection weight among the neurons. For the present study with the
weights as obtained and shown in Table 1, an NID is presented in Fig. 6. The lines
joining the input-hidden and hidden output neurons represent the weights. The positive
weights are represented by solid lines and negative weights by dashed lines and the
thickness of the line is proportional to its magnitude.

It is seen from Table 5 that Si values for parameters H/B, a//, and e/B are negative
indicating that the parameters are indirectly related to RF values, whereas Si values for.
This is shown in Fig. 6. Therefore, the developed ANN model is not a black box and
could explain the physical effect of input parameters on the output.

Table 4. Cross-correlation matrix of input and output for reduction factor

Cross-correlation Matrix
(H/B) (a//) (e/B) RFexpt

(H/B) 1 0 0 −0.71
(a//) 1 0 −0.11
(e/B) 1 −0.01
RFexpt 1

Table 5. Relative importance of different inputs as per Garson’s algorithm and connection
weight approach

Parameters Garson’s algorithm Connection weight approach
Relative
importance

Ranking of input
as per relative
importance

Si values as per
connection weight
approach

Ranking of input
as per relative
importance

H/B 78.71 1 −11.28 1
a// 19.45 2 −0.5 2
e/B 1.84 3 −0.05 3
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6 ANN Model Equation for Reduction Factor Based
on Trained Neural Network

A model equation is developed using the weights obtained from trained neural network
model (Goh et al. 2005). The mathematical equation relating input parameters (H/B, a/
/, and e/B) to output given by

RFn ¼ fn b0 þ
Xh
k¼ 1

wkfn bhk þ
Xm
i ¼ 1

wikXi

 !" #( )
ð7Þ

where RFn is the normalized value of RF in the range [−1, 1], fn is the transfer function,
h is the number of neurons in the hidden layer, Xi is the normalized value of inputs in
the range [−1, 1], m is the number of input variables, wik is the connection weight
between the ith layer of input and kth neuron of hidden layer, wk is the connection
weight between the kth neuron of hidden layer and single output neuron, bhk is the bias
at the kth neuron of hidden layer and b0 is the bias at the output layer.

The model equation of RF of shallow circular foundations on sand layer of limited
thickness subjected to eccentrically inclined load was formulated using the values of
the weights and biases shown in Table 3 as per the following steps.
Step 1
The input parameters were normalized in the range [−1, 1] by the following
expressions

Xn ¼ 2
Xn � Xmin

Xmax � Xmin

� �
ð8Þ

Fig. 6. Neural interpretation diagram (NID) showing lines representing connection weights and
effects of inputs on reduction factor (RF)
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Step 2
Calculate the normalized value of reduction factor (RFn) using the following
expressions

A1 ¼ �4:89
H
B

� �
n
�0:13

a
/

� �
n
�0:01

Df

B

� �
n
�5:19 ð9Þ

A2 ¼ �6:01
B
L

� �
n
�3:63

e
B

� �
n
�0:34

Df

B

� �
n
�2:59 ð10Þ

B1 ¼ 2:23
eA 1 � e�A 1

eA 1 þ e�A 1

� �
ð11Þ

B2 ¼ 0:06
eA 1 � e�A 1

eA 1 þ e�A 1

� �
ð12Þ

C1 ¼ B1 þB2 þ 1:32 ð13Þ

RFn ¼ C1 ð14Þ

Denormalize the RFn value obtained from Eq. 14 to actual RF as

RF ¼ 0:5ðRFn þ 1Þ RFmax � RFminð ÞþRFmin ð15Þ

RF ¼ 0:5ðRFn þ 1Þ 7:84� 1:01ð Þþ 1:01 ð16Þ

Figure 7 Shows the comparison of reduction factor (RF) obtained from Eqs. 16
and 1. It can be seen that the results predicted by using artificial neural network
(ANN) are closer to the results obtained from model tests. The deviation between the
RF obtained from model tests and those predicted RF is within ±10% except two
values as shown in Table 1. The proposed ANN model can be used as an effective tool
in predicting the reduction factor (RF) and hence, the ultimate bearing capacity shallow
circular foundation on sand layer of limited thickness underlain by rigid rough base
subjected to an eccentrically inclined load.
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7 Conclusion

Based on developed neural network model, the following conclusions may be drawn.

1. The errors are distributed evenly along the centerline as per residual analysis. It can
be concluded that the network was well trained and can predict the reduction factor
(RF).

2. Based on Pearson correlation coefficient and Garson’s algorithm, it was observed
that H/B is the most important input parameter followed by a// and e/B.

3. The developed ANN model could explain the physical effect of inputs on the
output, as described in NID. It has been observed that H/B, a//, and e/B is inversely
related to RF.

4. A model equation is developed based on the trained weights of ANN to calculate
the ultimate bearing capacity of circular foundation on sand layer of limited
thickness.

5. The deviation between the RF obtained from model tests and those predicted from
ANN model is within ±10%
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