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Abstract Development of microbial cell factories via application of synthetic biol-
ogy, protein engineering for metabolic engineering has revolutionized the maxi-
mum use of microbial consortium for biosynthesis and structural alteration of 
valuable flavonoids. From a single enzyme expression to complex metabolic path-
way, it has been possible to manipulate strains of Escherichia coli, Saccharomyces 
cerevisiae, Streptomyces, and Bacillus for target-based modification of compounds 
to industrial level in laboratory. Biotransformation, a biotechnological approach, 
can be applied to structurally modify and generate library of natural products such 
as flavonoid derivatives.
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This chapter highlights the significance of engineered new molecules and bio-
transformation approaches used to generate flavonoids by the use of microbial plat-
forms. Basically, E. coli has been engineered by expressing secondary metabolites 
post modifying enzymes, glycosyltransferases, O-methyl transferases, and prenyl-
transferases, in particular to generate the natural and nonnatural flavonol derivatives. 
Indigenously present cytoplasmic cofactors, coenzymes, and donor substrates are uti-
lized by such enzymes for target-based chemical modifications. Engineering the cen-
tral carbon flux pathway to enhance the flow of carbon toward target donor substrates 
and cofactors such as nucleotide diphosphate (NDP)-sugars, S-adenosyl methionine, 
dimethylallyl pyrophosphate, and other cofactors which enhanced the cytoplasmic 
pool while maximizing the biotransformation efficiency for level up production are 
discussed. Moreover, heterologous expression of different pathway genes from differ-
ent organisms and engineering of glycosyltransferases and O-methyl transferases into 
bacterial host does help to generate nonnatural flavonol glycosides.

5.1  Introduction

Flavonols are a group of phytochemicals that are widely available in plant-based 
foods and vegetables such as onions, broccoli, kale, apples, and tea. Structurally 
they are 3-phenolic ringed compounds of a flavonoid class having 3-hydroxyflavone 
backbone in C6-C3-C6 carbon framework. Quercetin, kaempferol, myricetin, fisetin, 
and morin are the most ubiquitous flavonols studied for various biological activities 
(Fig. 5.1a). They are derived from the phenylpropanoid pathway through a common 
unit of naringenin chalcone converted into naringenin and further modified to flavo-
nol backbones by the action of flavanone 3-hydroxylase (Fig. 5.1b) (Zhang and Liu 
2015). Arabidopsis thaliana is a model plant for flavonoid biosynthesis where 35 
molecules of flavonols are found among 54 flavonoid molecules (Saito et al. 2013). 
The structural diversity to the flavonoid core occurs after post biosynthesis modifi-
cations such as glycosylation, hydrogenation, hydroxylation, methylation, prenyl-
ation, etc. during biosynthesis which also alters their biological significances. 
Recent biotechnological techniques and tools have harnessed these natural modifi-
cation steps of plant secondary metabolites into microbial platforms generating 
various natural and nonnatural scaffolds (Pandey et al. 2016a). 

5.2  Significance of Flavonol and Their Microbial Modified 
Derivatives

Astragalin (kaempferol 3-O-glucoside), afzelin (kaempferol 3-O-rhamnoside), 
kaempferol 7-O-rhamnoside, kaempferitrin (kaempferol 3, 7-O-dirhamnoside), 
and kaempferide (kaempferol 4′-O-methoxide) are the commonly known kaemp-
ferol derivatives synthesized expressing various regiospecific glycosyltransferases 
and O-methyltransferases in microbial hosts (Simkhada et  al. 2010; Pei et  al. 
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Fig. 5.1 (a) Figure showing the basic flavonoid backbone and flavonol representation including 
structures of major flavonols. (b) Biosynthesis pathway of flavonols via phenylpropanoid route 
involves series of enzyme with respective functions

2016). Various biological significances have been reported of each compound. 
Astragalin possesses cardioprotective (Qu et al. 2016), antiproliferative (Li et al. 
2017), and anti-inflammatory (Ma et al. 2015; Zhang et al. 2017) effects. Afzelin 
has antibacterial effect against Pseudomonas aeruginosa (Lee et al. 2014) and has 
DNA-protective, anti-inflammatory, and UV-absorbing antioxidant activity (Shin 
et al. 2013). Kaempferitrin prevents bone loss (Ma et al. 2015) while exhibiting 
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antidepressant (Cassani et al. 2014) and antidiabetic effects (Da Silva et al. 2014; 
Jorge et al. 2004). Kaempferide is also a naturally occurring flavonol derivative 
which also has anticancer potential (Nath et  al. 2015; Marnon et  al. 2015). 
Myricetin is a flavonol having various therapeutic values (Phillips et al. 2011; Xue 
et al. 2015; Mondal et al. 2016; Buchter et al. 2015) including anti-HIV (Pasetto 
et al. 2014), mitochondrial activating agent (Jung et al. 2017), and attenuates gas-
tric acid secretion, thereby inhibiting H+, K+-ATPase that functions as a proton 
pump in gastric parental cells (Miyazaki et al. 2018).

Quercetin (3, 3′, 4′, 5, 7-pentahydroxyflavone) has been extensively studied for 
its various biological significances. Due to the fact of bioavailability, poor aqueous 
solubility, and the rapid body clearance, several derivatives of quercetin have been 
proposed and used to intense research for potentially improved properties in clinical 
applications. Recently, some of the flavonols and their derivatives caught the 
research attentions due to highly promising biological activities. Quercetin 3-O-β- 
D-glucoside was studied against Ebola viral infection (Qiu et al. 2016); isoquerci-
trin was reported as a strong antiviral agent against African historical and Asian 
epidemic strains of Zika virus tested over human hepatoma, epithelial, and neuro-
blastoma cell lines (Gaudry et  al. 2018). Polyhydroxy flavonols (quercetin and 
myricetin) were used as promising inhibitor of CatB (cathepsin B, a cysteine prote-
ase involved in tumor progression that represents a potential therapeutic target in 
cancer) (Ramalho et al. 2015), other flavonols are studied to have antiparasitic activ-
ity against Trypanosoma brucei (Borsari et al. 2016), while tamarixetin was studied 
as strong antioxidant (Lemmens et  al. 2014; Moalin et  al. 2012) and tamarixe-
tin 3-O-β-D-glucoside as a potential anti-ulcer (Yadav et al. 2017) molecule. Other 
post-modified flavonols such as rhamnetin (7-O-methyl quercetin) and isorhamne-
tin (3′-O-methyl quercetin) are known to have better bioavailability and anti- 
inflammatory effect than its aglycon (Lee et al. 2011; Jnawali et al. 2014). Hyperoside 
(quercetin 3-O-galactoside) inhibits the proliferation and stimulation of osteogenic 
differentiation of human osteosarcoma cells (Zhang et al. 2014). It protects against 
hypoxia/reoxygenation during cardiomyocytes injury (Xiao et  al. 2017). 
Isorhamnetin 3-O-galactoside was found to have greater anticoagulant and profibri-
nolytic effect compared to hyperoside (Ku et  al. 2013). Quercetin (quercetin 
3-O-rhamnoside) and guajavarin (quercetin 3-O-arabinoside) have shown better 
cytotoxic and antiviral activity compared to ribavirin (dos Santos et  al. 2014). 
Quercetin 7-O-rhamnoside has shown considerable antiviral activity during early 
stage of porcine epidemic diarrhea virus (Choi et  al. 2009; Song et  al. 2011). 
Quercetin 3-O-α-L-rhamnoside was found to protect against snake venom isolated 
from a plant Euphorbia hirta (Gopi et  al. 2016). Quercetin 3-O-xyloside was 
recently presented as a new immunostimulator agent (Lee et al. 2016). Rhamnazin 
(3′, 7-O-dimethyl quercetin) has been introduced as a novel angiogenesis inhibitor 
with potential antitumor efficacy (Yu et  al. 2015; Philchenkov and Zavelevych 
2015). Beside anticancer and antioxidant activities, a glycoside derivative isorham-
netin 3-O-glucuronide has been extensively studied which is suggested as a valuable 
therapeutic agent for inflammation-related pathological illnesses (Park et al. 2016). 
Morin was found to be a novel inhibitor of glycogen synthase kinase 3β (GSK3β) 
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by reducing tau pathology in Alzheimer’s disease condition (Gong et  al. 2011). 
Fisetin is another flavonol (5-deoxy quercetin) with potential biological activities 
including memory enhancer (Maher et  al. 2006), neuroprotective effect (Ahmad 
et al. 2017), and anti-Alzheimer’s (Currais et al. 2014; Kim et al. 2016). Fisetin and 
myricetin were studied for antimalarial activities and were found to have dual inhi-
bition function against falcipain-2 and plasmepsin II, thereby proving chance to 
development as antimalarial drug (Jin et  al. 2014). The significance of flavonol 
derivatives discussed here is tabulated in Table 5.1. Although numerous derivatives 
of myricetin have been reported, microbial post-modified derivatives, myricetin 
3-O-glucoside (Parajuli et al. 2015) and myricetin 3-O-rhamnoside (Thuan et al. 
2013; Parajuli et al. 2015), are limited. So far microbial modified flavonol deriva-
tives are presented in Figs. 5.2 and 5.3.

5.3  Current Approaches for Microbial Flavonol 
Modifications

Biotransformation is an alternative and cost-effective strategy to produce various 
natural and nonnatural flavonoid derivatives based on the simple enzymatic modifi-
cation. The most promising biotechnological technique applied nowadays is in vivo 
whole-cell biotransformation. The major microbial post modification platforms for 
glycosylation, methylation, hydroxylation, and prenylation are generated in micro-
bial hosts (Escherichia coli, Saccharomyces cerevisiae, Streptomyces strains, fungal 
mycelia) by overexpressing various secondary metabolites post-modifying enzymes 
including glycosyltransferases, O-methyl transferases, cytochrome P450s, and pre-
nyltransferases. Application of these enzymes to modify the structures of natural 
flavonoids to improve their physicochemical and biological properties has been of a 
great scientific and industrial interest due to their large availability, low cost, and 
wide substrate spectra. Besides the single genetic manipulations and one step reac-
tion, total biosynthetic pathways of flavonoids are copied and heterologously 
expressed into desired host bacteria for the biosynthesis and modification from 
simple and low-cost precursor using various biotechnological tools (Kaneko et al. 
2003; Malla et al. 2012; Stahlhut et al. 2015).

Biotransformation is considered to be the most explored techniques in flavonol 
modifications used by current scientists to achieve target products even in industrial 
scale. Since the microbial indigenous primary metabolites such as cofactors (ATP, 
S-adenosyl L-methionine, NDP-sugars), amino acid and coenzyme (pyridoxal-5′-
phosphate), nucleotide diphosphate sugars as sugar donor substrate are utilized  
by post-modifying enzymes like methyltransferase and glycosyltransferases for 
chemical modifications in exogenously supplied flavonols as acceptor substrates 
(Fig. 5.3).
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Table 5.1 Lists of flavonol derivatives studied for their specific significance are tabulated with 
references

Flavonol derivatives Significance of flavonols References

Quercetin 
3-O-β-D-glucoside

Ebola viral infection Qiu et al. (2016)

Isoquercitrin Zika virus infection Gaudry et al. (2018)
Quercetin Anticancer/inhibitor of cathepsin B 

(CatB)
Ramalho et al. (2015)

Tamarixetin Antioxidant Lemmens et al. (2014) and Moalin 
et al. (2012)

Tamarixetin 
3-O-β-D-glucoside

Anti-ulcer Yadav et al. (2017)

Rhamnetin Anti-inflammatory Lee et al. (2011) and Jnawali et al. 
(2014)

Isorhamnetin Anti-inflammatory Lee et al. (2011) and Jnawali et al. 
(2014)

Hyperoside Against hypoxia/reoxygenation Xiao et al. (2017)
Isorhamnetin 
3-O-galactoside

Anticoagulant and profibrinolytic 
effect

Ku et al. (2013)

Quercetin and 
guajavarin

Better cytotoxic and antiviral 
activity

dos Santos et al. (2014)

Quercetin 
7-O-rhamnoside

Antiviral for porcine epidemic 
diarrhea virus

Choi et al. (2009) and Song et al. 
(2011)

Quercetin 
3-O-α-L-rhamnoside

Antivenom Gopi et al. (2016)

Quercetin 
3-O-xyloside

Immunostimulator agent Lee et al. (2016)

Rhamnazin Angiogenesis inhibitor Yu et al. (2015) and Philchenkov 
and Zavelevych (2015)

Isorhamnetin 
3-O-glucuronide

Therapeutic agent for pathological 
illness

Park et al. (2016)

Astragalin Cardioprotective, antiproliferative; 
anti-inflammatory

Qu et al. (2016), Li et al. (2017), 
Ma et al. (2015), and Zhang et al. 
(2017)

Afzelin Antibacterial, DNA-protective, 
anti-inflammatory and 
UV-absorbing antioxidant

Lee et al. (2014) and Shin et al. 
(2013)

Kaempferitrin Prevents bone loss, antidepressant, 
antidiabetic effects

Ma et al. (2015), Cassani et al. 
(2014), Da Silva et al. (2014), and 
Jorge et al. (2004)

Kaempferide Anticancer Nath et al. (2015)
Myricetin Anticancer/inhibitor of cathepsin B 

(CatB), antimalarial; anti-HIV-1, 
mitochondrial activating agent

Ramalho et al. (2015), Jin et al. 
(2014), Pasetto et al. (2014), Jose 
et al. (2016), and Jung et al. (2017)

Fisetin Memory enhancer, neuroprotective 
effect, anti-Alzheimer’s; 
antimalarial

Maher et al. (2006), Ahmad et al. 
(2017), Currais et al. (2014), Kim 
et al. (2016), and Jin et al. (2014)

Morin Inhibitor of glycogen synthase 
kinase 3β

Gong et al. (2011)
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5.3.1  Glycosylation

Glycosylation is a common post-modification step involved at the later stage during 
biosynthesis of natural products in plants. Glycosyltransferase mediates the bio-
chemical reaction to  form glycoside bonds via transfer of an activated nucleotide 
diphosphate sugar to an acceptor molecule. Flavonoids are usually present in their 

Fig. 5.2 Flavonol glycoside structures synthesized from microbial modification using various 
glycosyltransferases
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O- or C-glycosides in plants. Various biological activities are associated with the 
types of sugar moieties attached to flavonoids including their physical nature like 
solubility and stability (Plaza et al. 2014). Most common glycosylation modification 
in flavonols takes place in 3-hydroxyl and 7-hydroxy position. Either simply overex-
pression of glycosyltransferases or nucleotide diphosphate sugar (NDP- sugar) bio-
synthetic pathways (Fig.  5.4) including glycosyltransferases are engineered in E. 
coli for regiospecific biotransformation of flavonols. Novel quercetin glycoside 
quercetin 3-O-(6-deoxytalose) including quercetin 3-O-glucoside and quercetin 
3-O-rhamnoside was reported by engineering E. coli glycolysis pathway and expres-
sion of tll (encoding dTDP-6-deoxy-L-lyxo-hexulose reductase, i.e., dTDP-talose 
synthase) and AtUGT78D1 from Arabidopsis thaliana (Yoon et  al. 2012). UDP-
xylose pathway enzymes phosphoglucomutase (nfa44530) from Nocardia farcinica, 
glucose-1-phosphate uridylyltransferase (galU) from E. coli K-12, and UDP-glucose 
dehydrogenase (calS8) and UDP-glucuronic acid decarboxylase (calS9) from 
Micromonospora echinospora spp. calichensis were overexpressed in multiple vec-
tor along with Arabidopsis thaliana glycosyltransferase (ArGt-3) to biotransform 
quercetin into quercetin 3-O-xyloside in E. coli host (Pandey et  al. 2013). In the 
same year, improved production of myricetin 3-O-rhamnoside was reported in E. 
coli mutant expressing ArGt-3 (Thuan et al. 2013). The E. coli mutant strain was 
generated disrupting glucose-6-phosphate utilizing pathway genes: glucose phos-
phate isomerase (pgi), glucose-6-phosphate 1-dehydrogenase (zwf), and UDP-α-D-
glucose hydrolase (ushA) (Pandey et al. 2013). An improved production of quercetin 
3-O-xyloside was reported by Han et  al. (2014) by overexpressing UDP-xylose  
synthase (uxs), UDP-glucose 6- dehydrogenase (ugd), and AtUGT78D3 from  
A. thaliana in a UDP-4-amino-4-deoxy- L-arabinose (L-Ara4N) formyltransferase/

Fig. 5.3 Flavonol O-methoxide structures synthesized from microbial modification using various 
O-methyltransferases
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UDP-glucuronic acid C-4″-decarboxylase (arnA) deleted E. coli mutant. 
Similarly,  ArGt-3 was also  used along with TDP-glucose synthase (Tgs) from 
Thermus caldophilus GK24, TDP-glucose 4,6-dehydratase (DH) from Salmonella 
typhimurium LT2, TDP-4-keto-6-deoxyglucose 3,5-epimrase (epi), and TDP-
glucose 4-ketoreductase (Kr) from Streptomyces antibioticiusTu99 to synthesize 
quercetin 3-O-rhamnoside and kaempferol 3-O-rhamnoside whereas enzymes Tgs 
and DH along with TDP-hexose 3-epimerase (GerF) and TDP-4-keto-6-deoxyglucose 
reductase (GerK) from Streptomyces sp. KCTC 0041BP to synthesize quercetin 
3-O-alloside (Simkhada et al. 2010).

In our recent report, different flavonols were modified into their natural and non-
natural glycosides (Parajuli et al. 2015; Pandey et al. 2015). We constructed sugar 
cassettes assembling UDP-glucose and TDP-rhamnose pathway-specific enzymes 
and inserted into E. coli strain to biotransform different flavonols (fisetin, quercetin, 
kaempferol, and myricetin) into respective glycosides efficiently (Parajuli et  al. 
2015). In the same year, an expanded in vivo glycosylation platform was generated 
in E. coli W for efficient galactosylation catalyzed by galactosyltransferase (F3GT) 
from Petunia hybrid and rhamnosylation catalyzed by rhamnosyltransferase 
(RhaGT) from A. thaliana using a cheap source of sugar as sucrose to increase the 

Fig. 5.4 Representation of a simple microbial biotransformation of flavonols to modified bioac-
tive molecules in engineered E. coli. The modified products are glycosides and O-methoxides in 
common
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pool of UDP-galactose and UDP-rhamnose for biosynthesis of 3-O-galactoside and 
3-O-rhamnoside of various flavonols: quercetin, kaempferol, fisetin, morin, and 
myricetin (De Bruyn et al. 2015).

Similarly, E. coli BL21 (DE3)/ΔpgiΔzwfΔgalU mutant was engineered express-
ing enzymes (tgs, dh, epi, and kr) to distract the flow of carbon flux toward thymi-
dine diphosphate 4-keto-4,6-dideoxy-D-glucose (dTKDG) along with sugar 
amino-transferases: 4-aminotransferase (gerB) from Streptomyces sp. GERI-155 to 
generate dTDP-D-viosamine pool, 4-aminotransferase (wecE) from E. coli K-12 to 
generate pool of dTDP-4-amino 4,6-dideoxy-D-galactose, and two genes for dTDP- 
3- amino 3,6-dideoxy-D-galactose (fdtA and fdtB) from Aneurinibacillus ther-
moaerophilus L420–91 (DSM 10154). Here also an Arabidopsis glycosyltransferase, 
ArGt-3, catalyzed to transfer these unnatural sugars to generate nonnatural querce-
tin and kaempferol derivatives through microbial biotransformation. In the mean-
time, novel fisetin glycosides were also produced in engineered E. coli host 
conjugating various amino sugars at 3-hydroxyl position of fisetin (Pandey et al. 
2016b). Microbial modifications of quercetin into other glycosides as quercetin 
3-O-4-deoxy-4-formamido-L-arabnose, quercetin 3-O-N-acetylglucosamine,  
quercetin 3-O-arabinoside, quercetin 3-O-6-deoxytaloside, and quercetin 
3-O-glucuronide are covered in recent review in detail (Pandey et al. 2016a). We 
recently testified the microbial synthesis of tamarixetin glucoside at significant 
yield in E. coli for the first time (Parajuli et al. 2018). In previous years, without 
engineering sugar pathways and microbes, glycosyltransferases were simply over-
expressed to modify flavonols into glycosides. Quercetin 3-O-glucoside, quercetin 
7-O-glucoside, quercetin 3′-O-glucoside, quercetin 4′-O-glucoside, kaempferol 
3-O-glucoside, and isorhamnetin 3-O-glucoside have been reported (Lim et  al. 
2004; Kim et al. 2006a, 2010).

5.3.2  Methylation

Methylation is another common post-modification after the biosynthesis of second-
ary metabolites. Hydroxyl, carbon, or nitrogen atoms present in terminal positions 
are decorated by methyl groups to signify the chemical structures of secondary 
metabolites. Especially S-adenosyl-L-methionine (SAM)-dependent 
O-methyltransferases catalyze methylation to plant flavonols. Very few of the SAM- 
dependent microbial origin O-methyltransferases are characterized to methylate 
plant flavonols. Microbial C-methyl derivatives of flavonols have not yet been 
reported. However, plant-originated O-methyltransferase has been functionally 
expressed in microbial hosts for the modification of different flavonols in respective 
hydroxyl positons. SOMT-2 originated from Glycine max overexpressed in E. coli 
biotransformed quercetin into 4′-O-methoxy quercetin (Kim et  al. 2005a). The 
same group considered co-expression of two regiospecific O-methyltransferases 
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ROMT-9 and SOMT-2 from rice in E. coli and produced 3′-O-methylated and the 
3′,4′-O-dimethylated quercetin derivatives (Kim et  al. 2005b). In the following 
year, 7-O-methylated derivatives of quercetin, kaempferol, and isorhamnetin were 
produced using Poplar-originated O-methyltransferase: POMT-7 (Kim et al. 2006b). 
Similar co-expression method was applied to biotransform quercetin into quercetin 
3′-O-methylquercetin, 3′,4′-O-dimethylquercetin, 7,3′-O-dimethyl quercetin, and 
7,3′,4′-O-trimethylquercetin, respectively, using ROMT-9 and POMT-7 by Kim 
et al. (2008). A putative O-methyltransferase, SIOMT3, from tomato was isolated 
and overexpressed into E. coli and the transgenic E. coli efficiently modified quer-
cetin, myricetin, and laricitrin into methoxide derivatives (Lee et al. 2017). Fusion 
of two regiospecific3′-O-methyltransferases (SIOMT3) from tomato and 
7-O-methyltransferase (OsNOMT) from rice was reported recently to biotransform 
quercetin into rhamnazin efficiently (Lee et al. 2017).

Plant O-methyltransferases are regiospecific. However, there are few reports of 
using Streptomyces-derived O-methyl transferases for biotransformation of selec-
tive flavonols. SaOMT-2 from S. avermitilis MA-4680 and SpOMT2284 from S. 
peucetius ATCC27952 were explored for flavonoids methylation where SaOMT-2 
biotransformed kaempferol, quercetin, and isorhamnetin into their methoxides 
regiospecifically and SpOMT2284 catalyzed O-methylation over quercetin and 
rutin non-regiospecifically (Kim et al. 2006c; Koirala et al. 2014). We have recently 
characterized O-methyltransferase (GerMIII) from Streptomyces sp. KCTC 0041BP 
to regioselectively produce 4′-O-methoxides of quercetin, myricetin, fisetin, and 
quercetin 3-O-glucoside, respectively (Darsandhari et  al. 2018). Microbial and 
plant source O-methyltransferases are tabulated in Table 5.2.

5.3.3  Hydroxylation

Hydroxylation is an important post modification for the diversification of plant sec-
ondary metabolites. They are biosynthesized through phenylpropanoid metabolic 
pathway where flavonols, in particular quercetin, myricetin, morin, and fisetin, are 
different hydroxylated skeleton of kaempferol. However, very limited studies have 
been reported producing hydroxylated derivatives of flavonols expressing hydroxy-
lases (CYP P450 mono-oxygenase) in microbial platform. But through microbial 
transformation of flavonols, hydroxylated derivatives were detected and character-
ized from the culture media in preparative scale. Hosny et al. (2001) reported the 
hydroxylation of fisetin and quercetin through the biotransformation via S. griseus. 
Those hydroxylated products were subsequently O-methylated into geraldol and 3, 
7, 3′-trihydroxy-4′-methoxyflavone in case of fisetin and isorhamnetin and dillene-
tin, 3, 5, 7-trihydroxy-3′-4′-dimethoxyflavone, in case of quercetin.
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5.3.4  Prenylation

Prenylated flavonoids are uncommon, and they are characterized by the presence of 
lipophilic prenyl (5-carbon) chain, dimethylallyl or geranyl chain (10-carbon), or 
farnesyl (15-carbon). No reports have been found to generate prenylated flavonols 
through microbial transformation in particular although few prenylated derivatives 
of flavonoids reported have been reviewed in Pandey et al. 2016b (Fig. 5.5).

5.4  Conclusion

Apart from multifaceted therapeutic applications, flavonol and its derivatives have 
long been explored for potential nutritional values since they are particularly abun-
dant in daily consumable vegetables, fruits, nuts, red wine, green tea, etc. Microbial 
modification of flavonols has been profoundly reliant on the biotransformation of 

Table 5.2 O-methyltransferases from microbial and plant sources used for post-modification of 
flavonols

S. No.
O-Methyltransferase 
(organism source)

Products catalyzed by 
O-methyltransferases References

Microbial O-methyltransferase
1 SpOMT2884 

(Streptomyces peucetius)
O-Methylation on quercetin, rutin, Koirala et al. 

(2014) and Chiang 
et al. (2015)

2 SaOMT5 (Streptomyces 
avermitilis)

O-Methylation of quercetin Yoon et al. (2010)

3 ScOMT1 (Streptomyces 
coelicolor A3(2))

O-Methylated products were 
isorhamnetin, tamarixetin, fisetin 
methoxide, gossypetin

Yoon et al. (2005)

4 SaOMT-2 Streptomyces 
avermitilis

O-Methylation of kaempferol and 
quercetin

Kim et al. (2006c)

5 SpnK (Saccharopolyspora 
spinosa)

4′-O-Methoxy quercetin 
3-O-glucoside

Parajuli et al. 
(2018)

Plant O-methyltransferase
1 SOMT-2 Glycine max O-Methylated quercetin Kim et al. (2005a)
2 ROMT-9 and SOMT-2 

Rice and Glycine max
O-Methylated quercetin Kim et al. (2005b)

3 POMT-7 Poplar, Populus 
deltoides

O-Methylated kaempferol, quercetin Kim et al. (2006b)

4 SIOMT3 Tomato O-Methylated quercetin, rhamnetin Lee et al. (2017)
5 OsNOMT Rice O-Methylated kaempferol, quercetin, 

isorhamnetin
Lee et al. (2017)

6 CdFOMT5 Citrus 
depressa

O-Methylated quercetin Itoh et al. (2016)

Second column shows products catalyzed by particular O-methyltransferase from first column
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aglycon into their analogous glycosides or O-methoxides using post-modifying 
enzymes. Utilizing primary metabolites of E. coli including cofactors, donor sub-
strates, or coenzymes for modification of flavonols has been cheap and simple, since 
they are indigenously present in bacterial cell. These natural commodities have been 
valued by engineering strategy to enhance the production of target compounds.  
A range of molecular biology tools, including metabolic engineering and  
synthetic biology, has been used to achieve significant bioconversion in host cells. 

Fig. 5.5 Engineering natural and nonnatural NDP-sugar biosynthetic pathway in E. coli for regio-
specific modification of flavonols catalyzed by specific uridine diphosphate glycosyltransferase. 
Red cross indicates the blocked pathway. Single black arrow is one step reaction while double 
black arrow indicates two steps reaction. glk: hexokinase, pgm phosphoglucomutase, galU UDP- 
glucose synthase, ugd dehydrogenase, uxs decarboxylase, RHM1 UDP-rhamnose synthase, tgs 
TDP-D-glucose synthase
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Engineering E. coli either by deletion or extra copy overexpression of glycolysis 
pathway genes enabled the carbon flux toward target NDP-sugar/s accumulation, 
where glycosyltransferase expression facilitates regiospecific modification of flavo-
nols to their natural and nonnatural glycoside analogues (Simkhada et  al. 2010; 
Yoon et al. 2012; Parajuli et al. 2015; Pandey et al. 2016b). However, for flavonol 
O-methoxides, few engineering approaches have been reported to increase produc-
tion from microbial cell factories beside protein fusion for double modification and 
the simple expression of O-methyltransferases. Thus, expression of glycosyltrans-
ferases and O-methyltransferases from plant and microbial sources and rewiring 
native pathway via diversion of carbon flux toward primary precursor were more 
efficient to modify and synthesize target-based flavonol derivatives rather than 
anonymous microbial whole-cell biotransformation. Even through the biotransfor-
mation, modern microbial engineering approaches have helped to program and con-
trol bacterial robustness in production.
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