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Preface

With data being recorded at never seen before scales within an increasingly complex
world, computing systems routinely need to deal with a large variety of data types
from a plurality of data sources. More often than not, the same entity may manifest
across different data sources differently. To be able to arrive at a well-rounded
view across all data sources to fuel data-driven applications, such different entity
representations may need to be linked, and such linked information be mined
while being mindful of the differences between the different views. The goal of
this volume is to offer a snapshot of the advances in this emerging area of data
science and big data systems. The intended audience includes researchers and
practitioners who work on applications and methodologies related to linking and
mining heterogeneous and multi-view data.

The book covers a number of chapters on methods and algorithms—including
both novel methods and surveys—and some that are more application-oriented
and targeted towards specific domains. To keep the narrative interesting and to
avoid monotony for the reader, chapters on methods and applications have been
interleaved.

The first four chapters provide reviews of some of the foundational streams of
research in the area. The first chapter is an overview of state-of-the-art methods
for multi-view data completion, a task of much importance since each entity may
not be represented fully across all different views. The second chapter surveys the
field of multi-view data clustering, the most explored area of unsupervised learning
within the realm of multi-view data. We then turn our attention to linking, with
the third chapter taking stock of unsupervised and semi-supervised methods to
linking data records from across data sources. Record linkage is a computationally
expensive task, and blocking methods often come in handy to rein in the search
space. Unsupervised and semi-supervised blocking techniques form the focus of the
fourth chapter.

The fifth chapter is the first of application articles in the volume, and it surveys a
rich field of application of multi-view data analytics, that of transportation systems
that encompass a wide variety of sensors capturing different kinds of transportation
data. Social media discussions often manifest with intricate structure along with the
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vi Preface

textual content, and identifying discourse acts within such data forms the topic of
the sixth chapter. The seventh chapter looks at imbalanced datasets with an eye on
improving per-class classification accuracy. They propose novel methods that model
the co-operation between different data views in order to improve classification
accuracy. The eighth chapter is focused on an enterprise information retrieval
scenario, where a fast and simple model for linking entities from domain-specific
knowledge graphs to IR-style queries is proposed.

Chapter 9 takes us back to multi-view clustering and focuses on surveying
methods that build upon non-negative matrix factorization and manifold learning for
the task. The tenth chapter considers how heterogeneous data sources are leveraged
in data science methods for fake news detection, an emerging area of high interest
from a societal perspective. Chapter 11 is an expanded version of a conference
paper that appeared in AISTATS 2018 and addresses the task of multi-view metric
learning. Social media analytics, in addition to leveraging conventional types of
data, is characterized by abundant usage of structure. Community detection is
among the fundamental tasks within social media analytics; the last chapter in this
volume considers evaluation of community detection methods for social media.

We hope that this volume, focused on both linking heterogeneous data sources
and methods for analytics over linked data sources, will demonstrate the significant
progress that has occurred in this field in recent years. We also hope that the
developments reported in this volume will motivate further research in this exciting
field.

Belfast, UK Deepak P
Belfast, UK Anna Jurek-Loughrey
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Chapter 1
Multi-View Data Completion

Sahely Bhadra

Abstract Multi-view learning has been explored in various applications such as
bioinformatics, natural language processing and multimedia analysis. Often multi-
view learning methods commonly assume that full feature matrices or kernel
matrices for all views are available. However, in partial data analytics, it is common
that information from some sources is not available or missing for some data-points.
Such lack of information can be categorized into two types. (1) Incomplete view:
information of a data-point is partially missing in some views. (2) Missing view:
information of a data-point is entirely missing in some views, but information for
that data-point is fully available in other views (no partially missing data-point in a
view).

Although multi-view learning in the presence of missing data has drawn a great
amount of attention in the recent past and there are quite a lot of research papers on
multi-view data completion, but there is no comprehensive introduction and review
of current approaches on multi-view data completion. We address this gap in this
chapter through describing the multi-view data completion methods.

In this chapter, we will mainly discuss existing methods to deal with missing view
problem. We describe a simple taxonomy of the current approaches. And for each
category, representative as well as newly proposed models are presented. We also
attempt to identify promising avenues and point out some specific challenges which
can hopefully promote further research in this rapidly developing field.

1.1 Introduction

Multi-View Data Multi-view learning is an emerging field to deal with data
collected from multiple sources or “views” to utilize the complementary information
in them. In case of multi-view learning, the scientific data are collected from diverse
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2 S. Bhadra

domains or obtained from various feature extraction techniques. For example, in
current biomedical research, a large amount of data is collected from a single
patient, such as clinical records (e.g., age, sex, histories, pathology and therapeutics)
and high-throughput omics data (e.g., genomics, transcriptomics, proteomics and
metabolomics measurements) [22]. Similarly in computer vision, multimedia data-
set can simultaneously contain recorded audio as well as video that can come from
different sources or cameras placed in different positions [24, 25, 38]. Also in case
of natural language processing, data can be collected as content of the documents,
meta information of the documents (e.g., title, author and journal) and possibly the
co-citation network graph for scientific document management [11, 33].

The feature variables collected from multiple sources for each data-point there-
fore exhibit heterogeneous properties and hence can be naturally partitioned into
groups. Each group is referred as a particular view. Each view contains one
type of information which is possibly arriving from a single source and is more
homogeneous. Figure 1.1 shows a pictorial presentation of multi-view data captured
through multiple sources.

Multi-View Learning Existing algorithms for multi-view learning can be classi-
fied into three groups based on their main principle: (1) co-training, (2) subspace
learning and (3) multiple kernel learning. Co-training [7, 21] is one of the earliest
schemes for multi-view learning. The main aim of co-training is to maximize the
mutual agreement between two distinct views of the data. The success of co-
training lies in the assumption of data sufficiency in each view and information
consistency among all views [39]. Whereas subspace learning-based approaches
such as canonical correlation analysis (CCA) [15, 19] and factor analysis (FA) [8]
aim to obtain a latent subspace shared by multiple views. Here the assumption is
that, data in different views are generated from a global latent subspace along with
some view-specific local factors. The task of learning the common latent subspace
is based on observed data in all views. Thus, these methods need complete data
availability in each view. For non-linear modeling of multi-view data the most
popular method is the multiple kernel learning (MKL) [36], which was originally
developed to control the search space capacity of possible kernel matrices to achieve
good generalization [17]. Currently, MKL has been widely applied to problems
involving multi-view data [10, 21, 37]. MKL defines multiple kernels corresponding
to different views and combines them either linearly or non-linearly. However, for
defining a kernel it needs complete data availability in each view.

Although existing multi-view learning algorithms are effective and have shown
promising performance in different applications, they share a serious limitation. The
success of most of the existing multi-view learning algorithms mainly relies on the
assumption of completeness of data-sets, i.e., any multi-view example must always
be fully observed in all views.

Missing Values Due to various failures or faults in collecting and pre-processing
the data in different views, existing models are more likely to be challenged with
missing information. Missing data-points, whether be partially or fully missing in
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Fig. 1.1 Multi-view data when data about one data-point is captured by M different cameras from
different positions resorting to different views

a view, exists in a wide range of fields such as social sciences, computer vision,
biological systems and remote sensing (as in Fig. 1.2).

Missing View Often, information for a data-point corresponding to a view can
be fully missing. As shown in Fig. 1.2 (top), for each data-point, the full picture
from a view is totally missing for data-points while other pictures corresponding
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to other views of that data-point are fully available. This kind of missing data-
points will be denoted henceforth as data-point with missing view. For example,
in remote sensing, some sensors can go off for some time, leaving gaps in the data.
A second example is that when integrating legacy data-sets, some views may not
be available for some data-points, because integration needs were not considered
when collection and storage happened. Again, gene expression value may have been
measured for some of the biological data-points, but not for others. On the other
hand, some measurements may be too expensive to repeat for all data-points; for
example, patient’s genotype may be measured only if a particular condition holds.
All these examples introduce data-point with missing view, i.e., all features of a view
for a data-point can be missing simultaneously.

Incomplete View On the other hand, it can happen that, we have partial information
in a view. As shown in Fig. 1.2 (bottom), for each data-point the pictures from all
views are available but some of them are corrupted or partially missing. This kind
of data-points with missing features will be denoted henceforth as data-point with
incomplete view. For example, some unwanted object might have come in the frame
while capturing image in a camera. Then the information corresponding to the main
object becomes missing for the position of the unwanted object. A second example
can be a feedback data containing various codes indicating lack of information like
Don’t know, No comments, etc. [26]. All these examples introduce data-point with
incomplete view, i.e., some features of a view for a data-point can be missing.

Neglecting views with missing entries definitely restricts models to exploit useful
information collected from that view through the data-points for which feature
values corresponding to that view are known. Similarly, neglecting data-points
with missing entries reduce the number of training data-points for models. Hence,
accurate imputation of missing values is required for better learning.

Although multi-view learning in the presence of missing data has drawn a great
amount of attention in the recent past and there are quite a lot research papers on
multi-view data completion, but there is no comprehensive introduction and review
of possible current research approaches on multi-view data completion. Figure 1.3
describes a simple taxonomy of the current approaches. In the worst case, missing
view and incomplete view can occur simultaneously. In this chapter we will mainly
discuss existing methods which exclusively solve the missing values problem in
multi-view data-set. These methods were proposed mostly to deal with missing
views, i.e., row-wise or/and column-wise missing values (top part of Fig. 1.2) in
the data matrices and can also be applied for incomplete view case.

Multi-View Data and Kernel Completion In order to apply most of the multi-
view learning approaches to data-sets with missing views, one needs to pre-process
the data-set first for filling in the missing information. Usually, different views
contain semantically related content for a given data-point. Often different views
share common characteristics and they can also have view-specific characteristics.
This property can be useful to impute the missing views in multi-view data-sets.

The conventional matrix completion algorithms [9, 20] solve the problem of
recovery of a low-rank matrix in the situation when most of its entries are missing.



Fig. 1.2 This figure gives a pictorial presentation of two kinds of missing data in multi-view data-
sets. The top figure shows view-wise missing data where a data-point is missing in a view and
hence the corresponding complete feature row is also missing in data-set. The bottom figure shows
that data-points are partially missing in a view and hence create an incomplete view situation in
data matrix. But both type of missing values create a missing row and a missing column in the
corresponding kernel matrix
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Fig. 1.3 Taxonomy of works
in the field of multi-view
completion

Missing features in individual views can be imputed using these techniques in
case of multi-view data-set with incomplete view. But such techniques are meant
for imputing missing features for a single-view data-set and unable to exploit the
information present in complementary views to complete the missing data in case
of multi-view data-set. Hence these methods are out of scope of this chapter.

There are two major approaches to handle missing data problems specifically in
multi-view data-set: (1) imputing feature values or data matrices, and (2) imputing
kernel matrices. Multi-view data completion methods often complete the data
matrices by using within-view relationships and between-view relationship among
data-points.

Ashraphijuo et al. [4] and Lian et al. [23] present a method to impute missing
data in feature matrices using matrix factorization-based technique. They learn a
factor matrix common for all views and view-specific factor matrix for each view
along with factor’s weight loadings. This is applicable for multi-view data-set with
both incomplete view and missing view.

Multiple kernel learning (MKL) framework [17] is another efficient approach to
accumulate information from multiple sources where no explicit feature information
is required but multi-view data is accessed through multiple kernels defined on them.
In MKL, the kernel matrices built on features from individual views are combined
for better learning. MKL needs to know full kernel matrices for each view. Hence it
is enough to impute missing values in kernel matrices instead of imputing missing
values in feature space. For both kind of missing information, i.e., incomplete views
and missing views, the missing values for a data-point in a view result into a missing
row and a missing column in the kernel matrix of that view.

Existing methods for kernel completion use various assumptions, for example,
the presence of a complete kernel matrix in at least one view [30, 31], or all
kernel matrices are allowed to be incomplete [6, 23], kernels have homogeneous
[27, 30, 31] or heterogeneous eigen structures [6, 23], linear [23] or non-linear
approximation [6]. Based on different assumptions, various methods have been
developed for kernel completion. In this chapter we will discuss the following
methods: (1) matrix factorization-based methods [6], (2) expectation maximization-
based methods [27] and (3) generative model-based methods [23]. Moreover, Lian
et al. [23] complete the missing values in data and kernel simultaneously.

Similar to multi-view data completion methods, the multi-view kernel comple-
tion methods also complete the missing rows and columns in kernel matrices by
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learning some within-view and between-view relationships among kernels. Bhadra
et al. [6] proposed to learn a relationship among kernel values directly while [31]
proposed to learn relationship among eigen structures, and Lian et al. [23] and
Bhadra et al. [6] proposed to learn relationship through global component factor
matrices for all views. In addition to between-view relationship, Lian et al. [23] and
Bhadra et al. [6] learn low rank approximation of view-specific kernel matrices for
better generalization which can be considered as learning within-view relationships.

In this chapter we will discuss both imputation of missing values in data matrices
and kernel matrices. There are methods for multi-view learning with incomplete
views which learn from partially observed data without data completion. One
such example is Williams and Carin [34] which does not complete the individual
incomplete kernel matrices but complete only the aggregated kernel matrices when
all kernels are Gaussian. Those kind of work is out of scope of this chapter.

The remainder of the chapter is organized as follows. In Sect. 1.2, we formulate
the problems for missing view and incomplete view setup for both feature matrices
and kernel matrices. We also discuss the challenges in missing view problems
in the multi-view learning. Section 1.3 presents the state-of-the-art methods for
completing missing data in multi-view learning and Sect. 1.4 presents the state-of-
the-art multi-view kernel completion methods.

1.2 Incomplete Views vs Missing Views

We assume N data-points X = {x1, . . . , xN } from a multi-view input space X =
X (1) × · · · ×X (M), where X (m) is the input space generating the mth view. We
denote by

X(m) = {x(m)
1 , . . . , x(m)

N }, ∀ m = 1, . . . ,M,

the set of data-points for the mth view, where x(m)
i ∈X (m) is the ith observation in

the mth view and X (m) is the input space.

Incomplete Views In incomplete view setup some feature values are missing at
random in a view. For the t th data-point x(m)

t of the mth view, there can be a group
of features, indexed by J , are missing, i.e., x(m)

t,J are missing. Figure 1.4a shows a
pictorial presentation of missing features in incomplete view setup in data matrices
of M views, where the J feature set in t th row in X(1) is missing.

Missing Views In missing view setup, a data-point is completely present or
completely missing in a view. Hence in this case only a subset of data-points
is completely observed in each view, and correspondingly, a subset of views is
observed for each data-point. Let IN = [1, . . . , N] be the set of indices of all
data-points and I (m) be the set of indices of all available data-points in the mth
view. Hence for each view, only a data sub-matrix (X(m)

I (m)) corresponding to the rows

indexed by I (m) is observed and other rows are missing, i.e., X(m)

IN/I (m) are missing.
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Fig. 1.4 We assume N data-points with M views. (a) For incomplete view setup few feature
values of some data-points are missing from each individual view and (b) for missing view setup
few data-points are completely missing in some views and consequently corresponding rows are
missing (denoted by ‘?’) in data matrices (X(m))

Fig. 1.5 We assume N data-points with M views, with a few data-points missing from each
individual view, and consequently corresponding rows and columns are missing (denoted by ‘?’)
in kernel matrices (K(m))

Figure 1.4b shows a pictorial presentation of missing data-points in missing view
setup in data matrix of M views, where the t th row in X(1) is missing.

Missing Rows and Columns in Kernel In this situation a kernel matrix has a
complete missing row and a complete missing corresponding column.



1 Multi-View Data Completion 9

Considering an implicit mapping of the observations of the mth view to an inner
product space F (m) via a mapping φ(m) : X (m) → F (m), and following the
usual recipe for kernel methods [5], we specify the kernel as the inner product
in F (m). The kernel value between the ith and the j th data-points is defined as
k
(m)
ij = 〈φ(m)

i , φ
(m)
j 〉, where φ

(m)
i = φ(m)(x(m)

i ) and k
(m)
ij is an element of K(m), the

kernel Gram matrix for the set X(m).
To define an element k

(m)
ij in general, one needs complete feature vectors x(m)

i and

x(m)
j and hence k

(m)
ij has to be considered as missing kernel values if any of the data-

point x(m)
i or x(m)

j is partially or completely missing. If the ith data-point has any
missing values in the mth view (in both incomplete view and missing view cases),
the ith row and the ith column of the kernel matrix K(m) cannot be calculated and
will be missing. Hence while dealing with multi-view kernel completion all existing
methods consider missing view setup and hence assume that a subset of data-points
is observed in each view, and correspondingly, a subset of views is observed for
each data-point. Let IN = [1, . . . , N ] be the set of indices of all data-points and
I (m) be the set of indices of all available data-points in the mth view. Hence for each
view, only a kernel sub-matrix (K(m)

I (m)I (m)) corresponding to the rows and columns

indexed by I (m) is observed. Hence K(m) has one observed block and 3 unobserved
block as follows:

K(m) =
⎡
⎣ K(m)

I (m),I (m) K(m)

I (m),IN /I (m) = ?

K(m)T

I (m),IN /I (m) = ? K(m)

IN/I (m),IN /I (m) = ?

⎤
⎦ .

Figure 1.5 shows a pictorial presentation of kernel matrices of M views, where the
t th row and column of K(1) is missing.

1.3 Multi-View Data Completion

In this section we will review some recent methods for imputing missing data in
missing-view setting. By imputing data we will restrict ourselves to imputing feature
vectors. We will discuss methods for kernel completion in the next section. Recall
that in case of missing view data-sets, only a data sub-matrix (X(m)

I (m)) corresponding

to the rows indexed by I (m) is observed and other rows (X(m)

IN/I (m) ) are completely
missing (Fig. 1.4b).

There are three major approaches in missing-view setting:

– CCA-based robust multi-view data completion (CCAbased) by Subramanya et al.
[28, 29]

– Multi-view learning with features and similarities (MLFS) by Lian et al. [23]
– Rank constrained multi-view data completion (LowRank) by Ashraphijuo et al.

[4]
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Fig. 1.6 We assume N data-points with M views, with a few data-points missing from each
individual view, and consequently corresponding rows and columns are missing (denoted by ‘?’)
in data matrices (X(m)). Existing methods predict the missing rows/columns (e.g., the t th column
in views 1) with the help of other data-points of the same view (within-view factorization, blue
arrows) and the corresponding data-point in other views (relationship among latent factors, green
arrows)

Note that, although the above-mentioned feature completion methods have been
originally proposed for imputing data in case of missing views, they can be applied
to impute partially missing data-points for a view too. All the state-of-the-art multi-
view data completion methods predict missing feature vectors x̂(m)

t by assuming
the features for each data-point across different views are generated from a total
or partially shared latent factors along with some view-specific factor weights.
LowRank [4] assumes that the number of shared and non-shared latent factors for
various views is known a priori. On the other hand, CCAbased and MLFS [23, 29]
do not make such assumption and learn the number of latent factors. MLFS was
originally proposed for completing data when number of views is greater than two.
On the other hand, both CCAbased and LowRank are mainly applicable for two-
view data-set but can be extended easily for more than two views.

All three models, while predicting unknown x̂(m)
t , learn the within-view factor-

ization and the relationships among the latent factors across views (Fig. 1.6).

1.3.1 Within-View Factorization

A multi-view data consisting of N data-points and M views can be denoted by an
N×Dm matrix as X(m) ∈ R

N×Dm . Let the latent factors be denoted by a matrix V =
{V(m) ∈ R

N×Dm}Mm=1 (where rm denotes the number of latent factors of data in the
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mth view) with view-specific factor loading matrices W = {W(m) ∈ Rrm×Dm}Mm=1.

Hence the predicted data matrix X̂(m) can be factorized as:

X̂(m) = V(m)W(m). (1.1)

All the existing methods add an additional constraint on X̂(m) so that the
reconstructed feature values closely approximate the known or observed parts of
the data. To this end, a loss function measuring the within-view approximation error
for each view is defined as:

Loss(m)
data = ‖X̂(m)

I (m) − X(m)

I (m)‖2
2 = ‖V(m)

I (m)W
(m) − X(m)

I (m)‖2
2, (1.2)

where V(m)

I (m) denotes the rows of V(m) indexed by I (m).

1.3.2 Between-View Relation on Latent Factors

When data for a data-point is missing in a view, there is not enough information
within that view to impute the features for that data-point. One needs to use other
information sources, i.e., the other views where the corresponding features are
known. All the existing methods use some kinds of inter-view or between-view
relationships on latent factors in order to achieve this. We discuss the different types
of relationships below.

Totally Shared Latent Factors According to the most simple setting, CCAbased
[28, 29] assumes that latent factors for all the views are exactly same, i.e., there is a
common latent factor V such that

V(m) = V.

On top of it, CCAbased does not predict a new feature vector but only selects the
nearest neighbour of it from the set of available feature vectors in a view.

Totally Shared and View-Specific Latent Factors Realize that different views
may also capture different view-specific aspects of a data-point along with capturing
the common aspects that are present in all views. Therefore Ashraphijuo et al. [4]
assume that each V(m) contains some view-specific factors along with some global
common factors V and solves the following problem:

arg min
V,V(m),W(m)

M∑
m=1

‖[VV(m)]I (m)W(m) − X(m)

I (m)‖2
2. (1.3)
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They also assume that the number of common factors and also the number of view-
specific factors present in each view is known or given.

Partially Shared Latent Factors MLFS [23] considers that along with the totally
shared factors, a subset of views may have a set of additional shared factors.
According to Fig. 1.7, the factor V (13) is shared by the first and the third views.
To impose this structure on the learned latent factor matrices, MLFS learns a global
latent factor matrix V ∈ R

N×r and the associated sparse factor loading matrices
W = {W(m) ∈ Rr×Dm}Mm=1. In addition to that, a structured-sparsity constraint
is imposed in the factor loading matrices {W(m)}Mm=1 of all views, such that some
of the rows in these matrices share the same support for non-zero entries, whereas
some rows are non-zero only for a subset of these matrices. Figure 1.7 summarizes
their basic framework. As a result, it solves the following optimization problem:

Fig. 1.7 Various kind of sharing of latent factors in existing models are depicted in this figure.
CCAbased [29] assumes all latent factors to be shared by all views, LowRank [4] assumes that
along with shared factor each view also has some view-specific factors (V (1) factor is only for the
first view) and MLFS [23] in addition to that assumes some factors are also partially shared by
only a subset of views (V (13) factor is shared by the first and the third views but not by the second
view)
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arg min
V,W(m)

M∑
m=1

‖VI (m)W(m) − X(m)

I (m)‖2
2

with row sparsity constraints on W(m), ∀m = 1, . . . ,M. (1.4)

MLFS uses generative model to learn the latent factors and also to predict the
missing features. It uses group-wise automatic relevance determination [32] as the
sparsity inducing prior on {W(m)}Mm=1, which also helps in inferring r by shrinking
the unnecessary rows in W to near zero.

1.4 Multi-View Kernel Completion

Multi-view kernel completion techniques predict a complete positive semi-definite
(PSD) kernel matrix (K̂(m) ∈ R

N×N ) corresponding to each view where some
rows and columns of the given kernel (K(m) ∈ R

N×N ) are fully missing (Fig. 1.5).
The crucial task is to predict the missing (t th) rows and columns of K̂(m), for all
t ∈ I

(m)
h = {IN/I (m)}. Existing methods for kernel completion have addressed

completion of multi-view kernel matrices with various assumptions. In this section,
we will discuss details of the following state-of-the-art methods for multi-view
kernel completion.

– Multi-view learning with features and similarities (MLFS) by Lian et al. [23]
– Multi-view kernel completion (MKCsdp, MKCapp, MKCembd(ht), MKCembd(hm))

by Bhadra et al. [6]
– The expectation maximization-based method (EMbased) by Tsuda et al. [31] and

Shao et al. [27]

These methods have various assumptions, i.e., any auxiliary full kernel matrix is
available or not; all kernel functions are linear or non-linear; kernel functions in
different views are homogeneous or heterogeneous in nature, etc. The applica-
tion/assumption of these methods is described in Table 1.1.

Almost all existing state-of-the-art approaches for predicting K̂(m) are based on
learning both between-view and within-view relationships among the kernel values
(Fig. 1.8). The sub-matrix K̂(m)

I (m)I (m) should be approximately equal to the observed

matrix K(m)

I (m)I (m) . However, in some approaches such as [6, 23, 31], approximation
quality of the two parts of the kernel matrices is traded.

1.4.1 Within-View Kernel Relationships

For being a valid kernel the predicted K̂(m) needs to be a positive semi-definite
matrix for each m. The expectation maximization-based method (abbreviated
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Table 1.1 Table shows the assumption made by the state-of-the-art multi-view kernel completion
methods and the algorithm used by them

Methods

MKCsdp
[6]

MKCapp
[6]

EMbased
[27, 31]

MKCembd(hm)
[6]

MLFS
[23]

MKCembd(ht)
[6]

Properties of missing values

Some rows and columns of a kernel
matrix are missing entirely

Yes Yes Yes Yes Yes Yes

Views are homogeneous Yes Yes Yes Yes Yes Yes

No need of at least one complete
kernel

Yes Yes x Yes Yes Yes

Kernels are spectral variant of each
other

x x Yes Yes Yes Yes

Views are heterogeneous x x x x Yes Yes

Highly non-linear kernel Yes x x x x Yes

Algorithm

Semi-definite programming Yes x x x x x

Non-convex optimization x Yes x Yes x Yes

Generative model x x x x Yes x

Expectation maximization x x Yes x x x

Fig. 1.8 We assume N data-points with M views, where a few data-points missing from each
individual view, and consequently corresponding rows and columns are missing (denoted by ‘?’)
in kernel matrices (K(m)). The proposed methods predict the missing kernel rows/columns (e.g.,
the t th column in views 1 and m) with the help of other data-points of the same view (within-
view relationship, blue arrows) and the corresponding data-point in other views (between-view
relationship, green arrows)

henceforth as EMbased) [31] does not assume any other relationship among data-
points but only guarantees the PSD property of individual kernel matrix. In
optimization problem, it requires explicit positive semi-definiteness constraints:

K̂(m) � 0, (1.5)
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Fig. 1.9 Within-view and between-view relationships in kernel values assumed in different
models

to guarantee the PSD property of individual kernel matrix. MKC [6] has also
considered no other but only explicit PSD constraint in one of its formulation
denoted as MKCsdp.

But with missing rows and columns these constraints leave the model too
flexible. Hence some methods also predict missing rows/columns by learning some
other relationship k̂ = g(K) among data-points in the same view. Relationship
among data-points of same view is known as within-view relationship. For within-
view relationship learning, some methods rely on the concept of low rank kernel
approximation [23], while others use the concept of local linear embedding [6].
Figure 1.9 pictorially presents the within-view relationship considered in various
proposed methods.

Multi-view learning with features and similarities [23] assume kernels are linear
in nature and hence can have low rank approximation, i.e.,

K̂(m) = g(K(m)) = U(m)T U(m) = AT W(m)T W(m)A, (1.6)
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where U(m) ∈ RN×r with r << N . A and W(m) are denoted, respectively, as
global latent factor matrices and the associated factor loading matrices for the mth
view. A by-product of this approximation is that in optimization, PSD property
is automatically guaranteed without inserting explicit positive semi-definiteness
constraints.

Recently proposed multi-view kernel completion [6] considered retaining the
non-linear property of a kernel by assuming local embedding in feature space
instead of kernel space. It assumes that in each view there exists a sparse embedding
in F , given by a small set of data-points B(m) ⊂ I (m), called a basis set, that is able
to represent all possible feature representations in that particular view. Hence MKC
reconstructs the feature map of t th data-point φ

(m)
t by a sparse linear combination

of a subset of observed data-points

φ̂
(m)
t =

∑

i∈B(m)

a
(m)
it φ

(m)
i , (1.7)

where ait ∈ R is the reconstruction weight of the ith feature representation for the
t th data-point. Hence, approximated kernel values can be expressed as

k̂
(m)

tt ′ = 〈φ̂(m)
t , φ̂

(m)

t ′ 〉 =
∑

i,j∈I (m)

a
(m)
it a

(M)

jt ′ 〈φ(m)
i , φ

(m)
j 〉. (1.8)

The above formulation retains the non-linearity of the feature map φ and the
corresponding kernel. A = (

aij

)N
i,j=1 is the matrix of re-constructing weights.

Further, A(m)

B(m) is the sub-matrix of A containing the rows indexed by B(m), the
set of basis vectors in kernel feature space in view. Thus the reconstructed kernel
matrix K̂ can be written as

K̂(m) = g(K(m)) = A(m)T

B(m) KB(m)A(m)

B(m) . (1.9)

Note that K̂ is positive semi-definite when KB(m) is positive semi-definite. Thus, a
by-product of this approximation is that in optimization PSD property is automati-
cally guaranteed without inserting explicit positive semi-definiteness constraints.

Intuitively, the reconstruction weights are used to extend the known part of the
kernel to the unknown part, in other words, the unknown part is assumed to reside
within the span of the known part.

To select a sparse set of reconstruction weights, Bhadra et al. [6] regularizes the
reconstruction weights by the �2,1 norm [3] of the reconstruction weight matrix,

‖A(m)‖2,1 =
∑

i

√∑
j

(aij )2. (1.10)
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Finally, for the observed part of the kernel, all existing methods add the additional
constraint on K̂(m) that the reconstructed kernel values closely approximate the
known or observed values. To this end, a loss function measuring the within-view
approximation error for each view is defined as

Loss(m)
within = ‖g(K(m))I (m)I (m) −K(m)

I (m)I (m)‖2
2. (1.11)

Hence, for individual views the observed part of a kernel is approximated by
g(K(m))I (m)I (m) by optimizing the parameters (A, W) (Eqs. (1.10) and (1.11)) in

arg min
A,W

‖g(K(m))I (m)I (m) −KI (m)I (m)‖2
2 + λ‖A(m)‖2,1, (1.12)

where λ is a user-defined hyper-parameter which indicates the weight of regulariza-
tion.

Without the �2,1 regularization, the above approximation loss could be trivially
optimized by choosing A(m) as the identity matrix. The �2,1 regularization will have
the effect of zeroing out some of the diagonal values and introducing non-zeroes to
the sub-matrix A(m)

B , corresponding to the rows indexed by B, where B = {i|aii �=
0}.

MKC [6] also claimed that Eq. (1.12) corresponds to a generalized form of the
Nyström method [35] which is a sparse kernel approximation method that has been
successfully applied to efficient kernel learning. Nyström method finds a small
set of vectors (not necessarily linearly independent) spanning the kernel, whereas
MKC method searches for linearly independent basis vectors and optimizes the
reconstruction weights for the data-points.

1.4.2 Between-View Kernel Relationships

For a completely missing row or column of a kernel matrix, there is not enough
information available for completing it within the same view, and hence the
completion needs to be based on other information sources, i.e., the other views
where the corresponding kernel parts are known. All existing methods learn some
kind of inter-view or between-view relationships f (·) to predict missing values in a
view with help of information present in other views, i.e., K̂(m) ≈ f (K̂[1,...,M]/m).

Various existing methods learn different kind of inter-view or between-view
relationships among kernels to predict missing values depending upon various
assumptions regarding the available information. This gives us between-view loss
as:

Loss(m)
between(K̂, f (K̂[1,...,M]/m)) = ‖K̂(m) − f (K̂[1,...,M]/m)‖2

2. (1.13)
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The MKCapp [6] learns linear relationships among values of each element of ker-
nel matrices (kij ) based on learning a convex combination of the kernels, extending
the multiple kernel learning [2, 12] techniques to kernel completion. The second
technique discussed in EMbased [27, 31] learns relationship among eigen structure
of kernels of various views. In case kernels of different views are heterogeneous
and do not share the similar eigen-spectra, the third technique discussed in MLFS
[23] and MKC [6] learns the linear relationship among the latent low-dimensional
embedding of different views based on learning reconstruction weights so that
they share information among all views [23] or selected set of similar views [6].
Figure 1.9 presents summary of the between-view relationship considered in various
proposed method.

Between-View Learning of Kernel Values In multi-view kernel completion
perhaps the simplest situation arises when the kernels of the different views are
similar. In that case to learn between-view relationships MKCsdp and MKCapp
[6] express the individual kernel matrix corresponding to each view as a convex
combination of kernel matrices of the other views. Hence the proposed model learns
kernel weights S = (sml)

M
m,l=1 between all possible pairs of kernels (m, l) such that

K̂(m) ≈ f (·) =
M∑

l=1,l �=m

smlK̂(l), (1.14)

where the kernel weights are confined to a convex combination as:

S =
⎧⎨
⎩S|sml ≥ 0,

M∑
l=1,l �=m

sml = 1

⎫⎬
⎭ . (1.15)

The kernel weights then can flexibly pick up a subset of relevant views to the current
view m.

Between-View Learning Assuming Rotated Eigen Structure of a Known Kernel
In practical applications, the kernels arising in a multi-view setup might be very
heterogeneous in their distribution. In such cases, it might not be realistic to find a
convex combination of other kernels that are closely similar to the kernel of a given
view. In particular, when the K̂m is assumed to be approximated by the parametric
model which is derived from the spectral variants of K(O), which is an N ×N fully
observed auxiliary kernel matrix [27, 31] the missing values in K̂m is completed by
expressing the kernel matrix as the spectral variants of K(O), i.e.,

K̂(m) ≈ f (·) =
N∑

i=1

s
(m)
i Mi, where Mi = viv

T
i , (1.16)
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where s
(m)
i ≥ 0 and the eigen decomposition of K(O) is denoted as K(O) =∑N

i=1 λiviv
T
i with λi’s and vi’s as eigen values and eigen vectors, respectively. Here

all incomplete kernels considered to have eigen vectors same as that of K(O), but
their own set of eigen values (s(m)

i ’s).

Between-View Learning of Reconstruction Weights When the eigen vectors of
a kernel matrix are rotated from the eigen vectors of kernels of other views, Bhadra
et al. [6] propose an alternative approach MKCembd(hm), where instead of the
kernel values or eigen vectors, they assume that the basis sets and the reconstruction
weights (Eq. (1.9)) have between-view dependencies as follows:

A(1) = . . . = A(M). (1.17)

The reconstructed kernel is thus given by

K̂(m) ≈ f (·) = AT K(m)

B(m)A. (1.18)

However, assuming that kernel functions in all the views have similar eigen-
vectors is also unrealistic for many real-world data-sets with heterogeneous sources
and kernels applied to them. On the contrary, it is quite possible that only for
a subset of views the eigen-vectors of approximated kernel are linearly related.
MKCembd(ht) [6] thus allow the views to have different reconstruction weights, but
a parametrized relationship among them, i.e., the reconstruction weights in a view
can be approximated by a convex combination of the reconstruction weights of other
views:

A(m) ≈
M∑

l=1,l �=m

smlA(l), (1.19)

where the coefficients sml are defined as in Eq. (1.14).
The reconstructed kernel is thus given by

K̂(m) ≈ f (·) =
⎛
⎝

M∑
l=1,l �=m

smlA
(l)T

B(m)

⎞
⎠K(m)

B(m)

⎛
⎝

M∑
l=1,l �=m

smlA
(l)

B(m)

⎞
⎠ . (1.20)

This also allows the model to find an appropriate set of related kernels from the
set of available incomplete kernels, for each missing entry.
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1.4.3 Optimization Methods

Almost all state-of-the-art multi-view kernel completion methods optimize their
parameters by minimizing both within-view and between-view loss, i.e., using
Eqs. (1.11) and (1.13)

arg min
A,W

Loss(m)
between(K̂, f (K̂[1,...,M]/m))+ λ2

M∑
m=1

Loss(m)
within (1.21)

Like their assumptions and formulation various methods also use various opti-
mization techniques to solve their optimization formulation.

– In multi-view setting, MLFS [23] proposed a generative model-based method
which approximates the similarity matrix for each view as a linear kernel in some
low-dimensional space.

– MKC [6] solves their non-convex problem with the help of solving sequence of
convex problems using proximal gradient method.

– On the other hand, EMbased [27, 31] have proposed an expectation maximization-
based method to complete an incomplete kernel matrix for a view, with the help
of a complete kernel matrix from another view.

1.5 Discussion

This section discusses the applicability of various methods depending upon char-
acteristic of data-set. The applicability of methods on data or kernel completion
depends upon the number and type of missing features and also the degree
of heterogeneity in information of different views. Degree of heterogeneity of
information can be captured in eigen-spectrum of the kernel matrix [6].

Multi-View Data Completion The imputation in feature matrix is more appro-
priate if there are less number of missing features for each data-point (incomplete
view) or less number of features per view (missing view).

The very first multi-view matrix completion method, CCAbased uses a heuristics-
based method for predicting missing data-points. Assumption of having only
common latent factors is also not true for real-world data. This technique is
applicable if views are homogeneous. When eigen-spectra of kernel matrices (in
this case linear kernel) for all views are similar (the left most plot of Fig. 1.10) then
views are considered to be homogeneous and hence can be explained with shared
factors alone. In real data, each view mostly has some view-specific complementary
information. Hence each view cannot be explained only by shared factors, otherwise
prediction accuracy of CCAbased is not expected to be good enough in real-world
data.
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Fig. 1.10 This figure shows eigen-spectra of three data-sets with five views. In each plot x-axis
and y- axis denote the k and the kth eigen value, respectively. From left to right the heterogeneity
of views increases

On the other hand, when views contain complementary information then the
eigen-spectra of views are totally different from each other (like right most plot
of Fig. 1.10). In this case learning of any between-view relationship does not help.

Partially shared factors can explain heterogeneous views better, and hence should
work well in case of heterogeneous views. Here the eigen-spectra of a subset of
views or a part of eigen-spectra of all views are overlapping (like middle plot
of Fig. 1.10). Lian et al. [23] have shown that MLFS is capable of predicting
missing data with high accuracy when views are heterogeneous in nature, but did
not compare their performance with CCAbased. Ashraphijuo et al. [4] have given a
thorough theoretical analysis on their model but did not show empirical performance
of LowRank on real-world data.

Multi-View Kernel Completion When the final learning model is based on kernel,
one can directly impute kernel matrices. The imputation in kernel matrix is
more efficient if there are large number of missing features for each data-point
(incomplete view) or number of features per view (missing view) is more than the
number of data-points.

An extended comparative study among the state-of-the-art methods on a variety
of data-sets, with different types of kernel functions in different views, along with
different amounts of missing data-points has been reported in [6]. They claim that
EMbased performs well if at least complete auxiliary kernel is available but fails to
perform well if none of the given kernel is complete. Moreover, it performs well
when eigen-spectra of incomplete kernels and auxiliary kernels are same.

MKCembd(hm) and MLFS also use shared weight matrix A, hence perform well
when the underlying sub-spaces, i.e., the eigen-spectra of kernel matrices of all
views are same (left most plot of Fig. 1.10). Again, MKCapp and MKCembd(ht)
learn sparse relationships among views considering a subset of views are related
to each other. Hence for heterogeneous views, where the eigen-spectra of a subset
of view are same, these methods perform well. However, with the increase of non-
linearity in kernel values performance of MKCapp and MLFS deteriorates. For
non-linear kernels, MKCembd(ht) and MKCsdp are more appropriate. MKCembd(ht)
outperforms all other variants of MKC in almost all data-sets, while MKCsdp
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outperforms all other approximated methods when kernel functions are highly non-
linear.

1.5.1 Case Study: Reuters RCV1/RCV2 Multilingual Data

Reuters RCV1/RCV2 multilingual data-set [1] contains aligned documents for five
languages (English, French, Germany, Italian and Spanish). In case some documents
are missing in some languages, then this is an example of data-points with missing
views. Number of data-points for this data-set is more than a million (precisely
111,740), and hence kernel size is large. Also we see that the eigen-spectra of
kernel matrices using the latent semantic kernel [13] for all languages/views show
homogeneity among views (Fig. 1.11). Hence MKCembd(hm) or MKCapp will be
appropriate for this data-set. Again CCAbased method can also be applied after a
reduction in number of features in views by some feature selection techniques.

1.5.2 Case Study: Dream Challenge 7 Data-Set (DREAM)

Dream challenge 7 data-set (DREAM) [14, 18] contains genomic characterizations
of multiple types on 53 breast cancer cell lines. They consist of DNA copy number
variation, transcript expression values, whole exome sequencing, RNA sequencing
data, DNA methylation data and RPPA protein quantification measurements. In
addition, some of the views are missing for some cell lines.

The number of features in all views is large compared to the number of data-
points (25). Hence kernel matrix completion methods need to impute less number
of missing values and will be more appropriate. Figure 1.11 shows the eigen-spectra
of the kernel matrices (Gaussian kernels on all six views after normalizing the data-

Fig. 1.11 This figure shows eigen-spectra of the Dream challenge 7 and the RCV1/RCV2 data-set.
In each plot, x-axis and y-axis denote the k and the kth eigen value, respectively. The heterogeneity
of views is more in the Dream challenge 7 data
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sets and Jaccard’s kernel function over binarized exome data and RNA sequencing
data) of all views.

Figure 1.11 shows that the eigen-spectra of the kernel matrices are quite different
for different views. Hence we need a method which can deal with heterogeneity
like MKCapp, MKCembd(ht) or MLFS. Also we can see one group of spectra
relatively heavy tailed, which is corresponding to highly non-linear kernel matrices.
Therefore, it is more appropriate to try MKCapp or MKCembd(ht).

1.6 Conclusion and Possible Future Direction

In this chapter we present a comprehensive understanding of similarities and
dissimilarities of representative as well as newly proposed models for completion of
missing information in multi-view data-sets. We focus more on the methods which
can deal with missingness where entire feature vector corresponding to some data-
points is missing in some views and presents in other views. These methods are
also applicable for incomplete view problems too. Existing methods for completing
features or kernel values have a common framework of learning using within-view
relationships and between-view relationships among data-points. In general their
approaches for modeling within-view relationships are similar but they differ in
modeling between-view relationships.

All the existing multi-view data or kernel completion methods can predict
missing values with high accuracy only if relationship among views are linear in
nature. It would be good to explore the possibilities where views are non-linearly
related. Recently, a deep factorization-based single view matrix completion method
[16] considers non-linear function among data-points in the same view. As a future
work in this line of research, it would be interesting to explore the possibility of
extending it to multi-view setup. All the existing methods do offline learning and
hence the streaming extension of them can show the feasibility of their framework
in online learning and active learning.
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Chapter 2
Multi-View Clustering

Deepak P and Anna Jurek-Loughrey

Abstract With a plethora of data capturing modalities becoming available, the
same data object often leaves different kinds of digital footprints. This naturally
leads to datasets comprising the same set of data objects represented in different
forms, called multi-view data. Among the most fundamental tasks in unsupervised
learning is that of clustering, the task of grouping data objects into groups of related
objects. Multi-view clustering (MVC) is a flourishing field in unsupervised learning;
the MVC task considers leveraging multiple views of data objects in order to arrive
at a more effective and accurate grouping than what can be achieved by just using
one view of data. Multi-view clustering methods differ in the kind of modelling they
use in order to fuse multiple views, by managing the synergies, complimentarities,
and conflicts across data views, and arriving at a single clustering output across
the multiple views in the dataset. This chapter provides a survey of a sample of
multi-view clustering methods, with an emphasis on bringing out the wide diversity
in solution formulations that have been considered. We pay specific attention to
enable the reader understand the intuition behind each method ahead of describing
the technical details of the method, to ensure that the survey is accessible to readers
who may not be machine learning specialists. We also outline some popular datasets
that have been used to empirically evaluate MVC methods.

2.1 Introduction

Exploratory data analysis is becoming increasingly important, with massive
amounts of data being created every moment, vastly outpacing any chance of
processing them manually. Modern data scenarios routinely embrace complex
objects, whose representations encompass multiple forms—often called views—
possibly containing even different types of data, such as text, images, sets, and
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sequences. As a simple example, our social media streams are often occupied
by a mix of text (which itself appears in multiple forms), images, and videos.
Archeological artifacts are often represented electronically using their geo-location,
their 3D view, and the properties of their ingredients. The extravagance of data
is best pronounced in fields that involve constant monitoring such as astronomy
where time series data of incoming radiation is incessantly captured along with
other sensoring modalities. The emergence of persuasive health technologies such
as activity trackers that hold a variety of sensors has seen massive amounts of
multi-sensor data captured at the individual level.

A dataset is said to be multi-view if it comprises multiple data representations—
called views—and is said to be parallel if objects in the dataset are represented
across the multiple views. It may be noted that some objects may not have a
representation in certain views. Social media posts comprising [userid, text, image,
geolocation] tuples are thus a parallel 4-view dataset, since each social media
post would be associated with a userid, some text, (optionally) an image, and
a geo-location (if enabled). Multi-view parallel data is increasingly becoming
ubiquitous with information being captured using a variety of different modalities,
and their prevalence cannot be overemphasized. To outline two exemplary domains,
observe that healthcare systems often capture the same disease condition using
different medical sensors (e.g., EEG, fMRI, and PET are different ways of capturing
neurological information), and criminal records often represent the same crime
using modalities such as textual narratives, CCTV footages, audio tapes, and
photographs. Since our focus in this paper is multi-view parallel data, we will simply
refer to it as multi-view data in the remainder of the chapter.

With the increasing availability of multi-view data across a variety of scenarios,
and manual labelling being expensive and impractical in many big data scenarios,
multi-view unsupervised learning, the discipline that addresses classical unsuper-
vised learning tasks—viz., clustering [22], dimensionality reduction (e.g., [37]), and
outlier detection [18]—over multi-view data, has witnessed massive attention from
the scholarly community. In this paper, we provide an overview of the major lines
of research in clustering for multi-view data, often referred to simply as multi-view
clustering (MVC).

Clustering Clustering is a fundamental task in machine learning, and focuses on
grouping objects in a dataset into multiple groups, called clusters. The typical
criterion for grouping is that objects that are put into the same group should be
more similar to each other than objects that are put into different groups. A classical
algorithm for clustering [33], the framework of which still forms the backbone of
many modern clustering algorithms, dates back to the 1960s. With the decision
about the cluster membership of each data object being dependent on the clustering
assignments for the other objects in the dataset, the task of clustering often boils
down to optimizing for a dataset-wide objective function. A core building block
leveraged by clustering algorithms is the choice of the measure of similarity between
objects in the dataset being subject to clustering. With different domains and data
types from them often requiring similarity measures that are tailored to their needs,
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a variety of clustering algorithms have emerged over the last many decades, many
of which have become the most highly cited papers in their respective realms; these
include clustering algorithms for gene data [15] and time series [29]. The similarity
between objects is typically computed as an aggregate of the pairwise similarities of
their attributes. In the case of multi-view data, with each data object having multiple
views, and each view having a different set of features, there is another level of
hierarchy that multi-view clustering techniques need to be cognizant of, to exploit.

Overview of the Paper This paper presents an overview of the state-of-the-art in
multi-view clustering, with a focus on covering the different families of methods that
have been proposed for the task. Our intent, in slight contrast to a regular survey, is
to provide a high-level picture of multi-view clustering methods which is accessible
to a generalist who may not be necessarily familiar with the various families of
mathematical building blocks that are employed within each method. In addition,
we pay particular attention to providing information to enable the reader appreciate
the unique characteristics of each family or method, which may make it the preferred
method for a particular niche scenario in multi-view clustering. With the focus being
on formulations, we omit details about empirical evaluation of the methods, details
of which may be obtained from the individual papers. In addition to researchers, we
expect our paper to be useful to practitioners who may be looking to decide on a
particular multi-view clustering method for usage within their data setting.

Outline We start with outlining the task of multi-view clustering and introducing
necessary notation that would be used in the subsequent narrative. Next, we provide
a broad outline of the different families of methods that we will cover in our survey,
followed by a section each for each family of methods. This will be followed by a
section describing a few relaxations to the multi-view clustering problem that have
been explored in the literature. We then list a set of datasets that have been explored
for evaluating MVC methods and then conclude the chapter.

2.2 Multi-View Clustering: The Task

The input to the clustering task is a multi-view dataset, which we will represent
as X = {. . . , x, . . .}. We use V = {. . . , v, . . .} to represent the set of views in
the dataset. Each of these views may comprise multiple attributes, and each multi-
view object x takes a value for each attribute within each view, with xv.a denoting
the value it takes for attribute a within view v. In many clustering formulations,
the number of desired output clusters is also an input parameter, which we will
refer to as k. As alluded to earlier, clustering algorithms typically make use of
a quantification of similarity between values for each attribute, which may be
rolled up to the object–pair level, both of which are denoted by s(., .), what is
denoted being easily identifiable from the context. Some clustering formulations
use a distance function instead of a similarity function, in which case the distance
function is referred to as d(., .).



30 Deepak P and A. Jurek-Loughrey

Table 2.1 Notations X A multi-view dataset

x A multi-view object within X

n Number of objects in X

V A set of views represented in a multi-view
dataset

v A view within V

m Number of views in V

Xv The subset of X corresponding to view v

xv The view v representation of object x

Av The attributes or features within view v

a An attribute within a view

xv.a The value taken for attribute a within view v

by object x

d(., .) A pre-specified distance function that quanti-
fies the distance

between its two input values; we overload this
notation to

denote both the distance between two values,
and its

aggregation to the object level

s(., .) A pre-specified similarity function analogous
to d(., .)

C The set of clusters in the generated clustering

k The number of clusters in C
C A cluster within C
x.C The cluster assigned to the object x

C.p The centroid or prototype object for cluster C

Most formulations of MVC output a crisp grouping of all objects to clusters;
typical clustering outputs are a partition of the dataset, in the sense each object x is
necessarily assigned to a unique cluster, denoted by x.C. We use C = {. . . , C, . . .} to
denote the clustering output by the MVC method. These notations are summarized
in Table 2.1.

Thus, at a task level, the MVC task may be seen as accomplishing the following
task of using a dataset to arrive at a clustering:

X → C (2.1)

This may alternatively be written as:

{. . . , x, . . .} → {. . . , x.C, . . .} (2.2)

While most MVC methods agree to this general framework and may be described
using the above notation which are also tabulated in Table 2.1, there are clustering
algorithms that require more terminology to describe. We will introduce such
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specific terminology as and when we describe those methods. Additionally, it may
be noted that some single-view clustering formulations that may leave out some
dataset objects from the clustering output (e.g., [1]) have not been explored for
devising MVC methods.

2.3 Overview of Multi-View Clustering Methods

We now group MVC methods into groups based on the technical character of the
algorithms. These groupings, while being broadly based on the framework they use,
are not fully objective. Some families may legitimately be seen as overlapping;
however, we believe that our groupings will help provide a framework towards better
understanding the variety and diversity of methods used for MVC. Our groups are
listed below, with each group being described in detail in a separate subsequent
section.

– K-Means-Based Approaches: K-Means, a classical algorithm for cluster-
ing [33] single-view data, still holds much sway in the clustering community
after half-a-century [21]. Thus, the largest set of MVC methods build upon the
K-Means framework.

– Matrix Factorization: The dataset corresponding to each view may easily be
represented as a matrix with data objects corresponding to rows, and attributes
corresponding to columns. This representation easily yields to matrix factoriza-
tion approaches, particularly those from nonnegative matrix factorization [28].
There have been various flavors of the MVC task that have been addressed using
matrix factorization methods.

– Topic Modelling-based Approaches: Topic models [3] seek to model docu-
ments as a mixture of topics, with each word being drawn from a topic that has
representation in the document. There have been several methods that draw upon
the idea of topic modelling, of which probabilistic latent semantic analysis [19]
has seen much uptake towards crafting methods for MVC.

– Spectral Methods: In a broad sense, spectral methods make usage of the
spectrum, i.e., the set of eigenvalues, and of the similarity matrix of the data
to perform clustering of the dataset. These, at a fundamental level, relate to
graph representations that model the similarities between data points. Spectral
clustering methods, such as [38], have seen much interest in the image processing
community, and have been adapted to the general MVC task as well.

– Techniques using Exemplars: Exemplars are typically used to refer to a proxy
object, whether it be for a cluster or an individual data object. These lend well to
belief and affinity propagation models (e.g., [17]), which have also inspired the
design of some MVC methods.

– Miscellaneous: In this family, we cover MVC methods that do not necessarily
fit well within any of the above classifications. These include techniques that are
inspired by canonical correlation analysis [40] and co-clustering [12].
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The expert would rightly observe that there is a nontrivial overlap between
families; for example, K-Means clustering may be seen as an instance of matrix
factorization, and so could be topic modelling. Thus, our categorization is intended
to give an organization that a researcher would easily relate to, and does not imply
that the separate families are disjoint or unrelated.

2.4 K-Means Variants for MVC

We first start with a description of the K-Means clustering method [33], a popular
clustering algorithm for single-view data. K-Means targets to produce a pre-
specified number of clusters, denoted as k, in the output. Each cluster is represented
by a prototype, a virtual data object that is modelled as the mean of all the data
objects assigned to the cluster. Simplistically, K-Means creates a cluster assignment
towards optimizing the following objective function:

∑
x∈X

d(x, x.C.p) (2.3)

Thus, the clustering allocation is made in a way that the sum of distances of
each object x to the prototype of cluster to which it is assigned, denoted by x.C.p,
is minimized. The distance function is typically modelled as the L2 norm1 of the
vector of distances between the objects over the set of attributes under consideration.

d(x, y) =
∑
a∈A

(x.a − y.a)2 (2.4)

In the single-view formulation, there is only one set of attributes, A, given that we
only have a single-view representation for each object. The K-Means formulation
may be thought of as an instance of the Expectation Maximization algorithm [11],
where two sets of parameters, the cluster assignments {. . . , x.C, . . .}, and the
cluster centroids {. . . , C.p, . . .} are optimized in an alternating fashion iteratively
until convergence. As may be obvious for a reader familiar with EM, the cluster
assignment corresponds to the E-step and the centroid learning corresponds to the
M-step. Since K-Means could converge at local minima, the initialization of clusters
in order to kick-start the iterative learning process is often regarded to be critical.

1http://mathworld.wolfram.com/L2-Norm.html.

http://mathworld.wolfram.com/L2-Norm.html
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2.4.1 Alternating K-Means for Two-View Data

In probably what could be among the earliest works in MVC [2], extensions to the
K-Means method for multi-view data were proposed. This was specifically tailored
to two-view data, with a focus on document and webpage clustering. In what could
be regarded as a simplistic extension to K-Means, they propose to interleave the EM
steps corresponding to each view. Starting from an initialized cluster membership, a
sequence of M and E steps are performed by using just the data from one view (to re-
emphasize, the data from the other view is not used) to arrive at a cluster allocation
for the data objects. The cluster allocation is taken to then perform the M and E
steps using just the data from the other view. In summary, each iteration involving
the sequence of M and E steps uses one particular view, with the immediate next
iteration shifting the focus to the other view. Thus, the clustering information across
views flows across iterations through the clustering allocations. At the end of a
sequence of such view-alternating iterations, two sets of clustering allocations are
produced, each one corresponding to the latest allocation from each view. These
clustering allocations are then merged in a post-processing step in order to arrive at
a single clustering for the data objects.

At the task level, it is notable that the method is proposed with two-view data in
mind; however, a simple extension that executes iterations in round-robin fashion
by cycling through three or more views may be envisaged for multi-view data
incorporating three or more views (the empirical performance would need to be
investigated). Another notable feature of this method is that there is no provision
for weighting the two views differently with regard to their influence in the final
clustering output. Such differential weighting, we will see, has been the focus of
many later K-Means variants.

2.4.2 Max/Min Fusion Within K-Means

A very trivial extension to the K-Means objective function can be arrived at by just
summing up the distances across views, and optimizing for the sum of distances:

∑
x∈X

∑
v∈V

d(xv, (x.C.p)v) (2.5)

where (x.C.p)v denotes the view v representation of the cluster centroid to which x

belongs. The view-specific distance function being simply the L2 distance over the
attributes in that view.

d(xv, yv) =
∑
a∈Av

(xv.a − yv.a)2 (2.6)
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It may be noted that the sum of distances is clearly equivalent to the average
of distances across views, with the number of views being the same across
all data objects. Motivated by scenarios from community question answering
systems, where the multi-view dataset comprises two-view objects with question
(Q) and answer (A) text forming separate views, Deepak [9] proposes replacing the
average/sum aggregation of distances across views by the min function. Thus, the
membership of an object in a cluster is determined by computing the distance of the
object to each cluster prototype aggregated across views, the aggregation performed
by using the min function. Thus, the objective function changes to:

∑
x∈X

min{d(xv, (x.C.p)v)|v ∈ V } (2.7)

In summary, if x is very proximal to a cluster prototype in one of the views, it
will be assigned to that cluster regardless of the distance of x to the same cluster’s
prototype in other views. This is motivated by scenarios where the similarity
information is localized in certain views; for example, this formulation places QA
pairs that are highly similar on either the Q or A views, within the same cluster.

With the min function being non-differentiable, Deepak [9] proposes usage
of a differentiable approximation involving exponentiation. The approximation
additionally is applicable to using max aggregation instead of min, though the focus
of their work is min aggregation. The paper observes that this formulation, much
like the previous one, is trivially extensible to more than two views. In another point
of similarity with the earlier work, there is no intrinsic method to pre-specify that
one of the views should influence the clustering decisions more. However, the paper
notes that scaling d(xv, yv) by a view-specific weight would allow the user to make
such tuning; in such a case, a lower weight would lead to the view being able to
influence the clustering more, the aggregation function being min.

2.4.3 View-Weighted K-Means with L2,1 Norm

Let us now look at the relation between K-Means and matrix factorization. Single-
view (relaxed [13]) K-Means clustering may be written as a nonnegative matrix
factorization problem with the objective:

min
G,F

||X −GF ||F2 (2.8)

s.t Gij ∈ {0, 1},
k∑

j=1

Gij = 1
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where X is the input single-view data matrix (given that single-view is a specializa-
tion of multi-view with the number of views being unity, we use the same variable
X) with n rows and as many columns as there are attributes in the view, G being
a clustering indicator matrix of n × k, and F being a cluster centroid matrix with
one row per cluster. It may be noted that the constraints placed on G enforce that
each object is assigned to only one of the k clusters, with k being a user-specified
parameter. The solutions, G (clustering assignment) and F (cluster centroids) are
arrived at by minimizing the square of the Frobenius norm2 of the difference matrix
(indicated by ||M||2F ), which is essentially the sum of the squares of all elements in
the difference between X and GF matrices.

In extending this to multi-view data, we would need to account for m matrices
of data, one corresponding to each data view, as well as m cluster centroid matrices
(again, one for each view). However, given the MVC task, there needs to be a single
cluster indicator matrix across all views. This would yield

min
G,{...,Fv,...}

∑
v∈V

||Xv −GFv||F2 (2.9)

with the usual constraints on the G matrix being applied. In contrast to such an
extension, Cai et al. [7] allow for view weights and use the L2,1 norm instead of the
Frobenius norm, leading to the following:

min
G,{...,Fv,...}

∑
v∈V

(wv)
λ||Xv −GFv||2,1 (2.10)

For a matrix M , the L2,1 norm sums up, across all column vectors of M , the sum
of squares of their components. In the above case, it comes down to the L1 norm in
the data-points direction, and the L2 norm in the features direction. The L2,1 norm
is popular in scenarios where robustness is desired (e.g., [36]), a feature that the
authors of [7] argue as being important in MVC. The wv are view weights that are
learnt within the optimization process, with λ being a parameter that would control
the weights distribution. The modified objective leads to different update rules that
are detailed in [7]. Unlike the earlier two papers, this method quantifies the influence
each view could have in the clustering process; however, the views are learnt in the
process of optimization (not pre-specified by the user).

2.4.4 View and Attribute Weighting Within K-Means

After work on view-specific weighting, almost as a natural next step, algorithms for
MVC were proposed that use attribute-weighting within views. Jiang et al. [24]

2http://mathworld.wolfram.com/FrobeniusNorm.html.

http://mathworld.wolfram.com/FrobeniusNorm.html
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propose extending the basic K-Means model along that direction, leading to an
objective function:

∑
x∈X

∑
v∈V

(wv)
α
∑
a∈Av

(za)
β
(
xv.a − (x.C.p)v.a

)2 (2.11)

∑
v∈V

wv = 1

∀ v ∈ V,
∑
a∈Av

za = 1

Thus, the distance between the data point and the cluster prototype along each
attribute within each view is scaled twice, first by the view-specific weight for
the view, and second by the attribute-specific weight. Additionally, the weight
distributions are controlled by respective exponents α and β. Further, as indicated
above, it is enforced that the view weights across views sum to unity, as well as that
the attribute weights across attributes within each view sum to unity. The learning
process sequentially learns: (1) cluster centroids, (2) attribute weights, (3) view
weights, and (4) cluster assignments, in four different steps within each iteration.

Along a similar direction, Chen et al. [8] propose the usage of additional terms
quantifying the negative entropies of the view and feature weights, so most views
and features are called into play, unless there is a compelling reason to focus on just
a few. Their objective function assumes the following form:

∑
x∈X

∑
v∈V

wv

∑
a∈Av

(za)
(
xv.a − (x.C.p)v.a

)2 + η
∑

a∈
(
∪v∈V Av

) za log(za)

+λ
∑
v∈V

wv log(wv) (2.12)

along with the sum-to-unity constraints on z and w as earlier. Including the negative
entropies in minimization is motivated by the previous work on similar lines [25].
Similar to what is done in [24], the four sets of parameters are sequentially
optimized for within each iteration.

In yet another variation, Xu et al. [47] propose the usage of a regularizer to
control the sparsity over the feature weights, leading to the following objective:

∑
x∈X

∑
v∈V

(wv)
α
∑
a∈Av

(za)
(
xv.a − (x.C.p)v.a

)2 + β
∑
v∈V

||{za|a ∈ Av}||2 (2.13)

along with the sum-to-unity constraints as earlier. The regularizer avoids attaining
a configuration where only a few features are selected, which would lead to a small
meaningless (sic) objective value despite being small.
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All the methods covered in this subsection, as in the previous, learn view and
attribute weights within the learning process. This leads them to quantifying the
influence of attributes and views; however, being part of the learning process, they
are not pre-specifications from the user side on their respective influences.

2.5 Matrix Factorization Approaches to MVC

Much like in the previous section, we start with outlining the basic framework of
nonnegative matrix factorization (NMF), the matrix factorization family that has
been explored widely in clustering. When X, the data matrix (each row being a
data object), is nonnegative, NMF seeks to arrive at a decomposition of it into two
matrices using, in most cases, the following objective function:

min
G,F

||X −GF ||2F (2.14)

where G is an n × l matrix, and F is an l × |A| matrix, and each of their elements
are constrained to be nonnegative. We observed earlier that when l = k and one-
of-k coding constraints are imposed on G, it comes closer to a K-Means clustering
formulation. In a sense, for general l, one could consider the F matrix as modelling
l object prototypes, with each object in X being constructed as a linear combination
of the prototypes in F using the weights from G. Under this model, F may be called
as the basis matrix and G is the coefficient matrix. The coefficient matrix may be
considered as providing a representation for each object in X within a latent (low-
rank) space. Further, a simple clustering may be achieved by associating each data
object in X with one of l clusters, specifically, the cluster with which it has the
highest coefficient. We will consider three MVC methods that build upon NMF, in
this section.

2.5.1 Joint NMF for MVC

In what is probably the first method using NMF directly for MVC, Liu et al. [30]
propose factorizing the different data matrices, i.e., Xvs, for MVC. However,
since a single clustering solution across the views is what is desired, the separate
factorizations need to be done jointly in order to achieve similar coefficient matrices
from the different factorizations. Further, the optimization function also involves
learning of a cross-view coefficient matrix that will eventually be used in order to
generate the clustering. The proposed objective function is thus the following:

min
Gv,Fv,G∗

∑
v∈V

||Xv −GvFv||2F +
∑
v∈V

wv||Gv −G◦||2F (2.15)
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Note that instead of doing pairwise comparisons of view-specific coefficient
matrices, the above form has a term for a cross-view consensus matrix G◦ from
which the deviations are quantified in the second term. In order to ensure that the
different coefficient matrices are comparable, they additionally impose that the basis
vectors (i.e., within F ) have components summing up to unity. Notationally, the
constraint is the following:

∀1 ≤ i ≤ k,

( l∑
j=1

Fij = 1

)

Do note that this is in addition to the nonnegativity constraints on all factorized
matrices. The optimization is performed in an iterative framework, where, within
every iteration, the Fv and Gv for all views are optimized for, in addition to
optimizing for G◦. At the end of the learning process, G◦ is achieved, which may
be used as a new representation for objects in X to be subjected to single-view K-
Means to arrive at a clustering. Alternatively, for each object, the cluster with which
it has the highest coefficient (only if l = k) may be assigned as the cluster to which
the object belongs, resulting in an MVC output.

Unlike the methods seen so far, the set of view weights, wvs, are pre-specified
weights that are not altered/learnt in the course of the optimization framework.

2.5.2 Manifold Regularized NMF for MVC

The joint NMF was closely followed by another extension of NMF for MVC that
is based on manifold regularization [51]. They draw inspiration from previous
work [6] that remedies a “deficiency” in classical NMF, one that relates to preserving
space geometry. Informally, they argue that two data objects in a dataset being
close enough in the intrinsic geometry of the distribution should entail that their
representations (i.e., the coefficient representations from G) be close to each other.
In particular, when a graph representation of data objects is available, objects that
are connected to each other need to be proximal in their NMF representations as
well. Consider a graph representation of objects in X where an edge is induced
between pairs of objects if one of them appears in the other’s k nearest neighbors,
and let L be the n × n Laplacian matrix3 of such a graph. Cai et al. [6] propose
that preservation of intrinsic geometry across objects in X is better achieved if the
following regularizer be added to the usual NMF objective:

· · · + tr(GT LG) (2.16)

3https://en.wikipedia.org/wiki/Laplacian_matrix.

https://en.wikipedia.org/wiki/Laplacian_matrix
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where tr(X) denotes the trace4 of the matrix X. With multiple views entailing
multiple Laplacian matrices (each view-specific matrix represented as Lv), Zong
et al. [51] model the task using the following objective:

min
Gv,Fv,L◦,G◦

∑
v∈V

D(Xv||GvFv)+D(Gv||G◦)+D(Lv||L◦)+ λ tr((G◦)T L◦G◦)

(2.17)
where D(X||Y ) denotes the cost function to quantify the difference between X and
Y . While the first and second terms are familiar from having encountered in [30]
above, the third term forces the learning of a cross-view consensus graph structure
and the fourth term incentivizes preservation of local geometry in the consensus
space. The paper proposes different variations of multimanifold regularized NMF
based on the above framework, each of which vary on some aspects of the objective
function construction (some variants also provision for view weights) and the
computation involved in the optimization process.

2.5.3 Deep Matrix Factorization for MVC

Semi-NMF An attractive feature of NMF is the interpretability with each data point
being represented as a linear combination of the different bases (from the basis
matrix) with nonnegative coefficients. Semi-NMF [14] is a modification of NMF
that relaxes the nonnegativity constraints on the data and the basis matrix, while
retaining interpretability by enforcing that the coefficient matrix is nonnegative.
Informally, it makes NMF applicable for mixed-sign data (i.e., some entries of the
X matrix may be negative) and drops the nonnegativity constraint on the entries in
the F matrix.

Extending Semi-NMF for MVC Zhao et al. [50] build upon Semi-NMF to
formulate a sequence of transformations via many basis matrices. For single-view
data, this assumes the form:

min
G,∀i,Fi

||X −GFrFr−1 . . . F1||2F (2.18)

where there are r basis matrices to be estimated, their dimensionality controlled
appropriate to the complexity of the model desired. For multi-view data, they
enforce that the representation is common across all views (i.e., G is shared) and add
the manifold regularization term in order to ensure that the common representation
preserves the local geometry within each view. This leads to the following objective
function construction:

4https://en.wikipedia.org/wiki/Trace_(linear_algebra).

https://en.wikipedia.org/wiki/Trace_(linear_algebra)
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min
G,∀v,wv,∀i,v,F v

i

∑
v∈V

(wv)
α
(||Xv −GFv

r F v
r−1 . . . F v

1 ||2F + βtr(GT LvG)
)

(2.19)

with Lv , as earlier, being the graph Laplacian for view v constructed using k nearest
neighbor-induced edges. The usual sum-to-unity constraints are applied on the view
weights, wv . The learnt representation G is then clustered to arrive at an MVC
result. The length of the sequence of transformations, it may be noted, much like
the number of layers in a neural network, may be controlled to learn representations
at the level of data features at different levels of abstraction; r may thus be set
appropriately. It is also noteworthy here that unlike the earlier NMF approaches,
this one can handle mixed-sign data.

2.6 Topic Modelling-Based Approaches

Topic-modelling, a technology from the text processing community, considers
learning a layer in between documents and their component words, called a set of
topics. Each topic is usually represented as a probability distribution over words in
the vocabulary, with each topic having a higher probability associated with words
that typify the topic. Using the observed documents and the words they comprise,
a set of topics, their number controlled by a pre-specified parameter, is learnt. We
provide a brief overview of probabilistic latest semantic analysis [19], a popular
model for learning topics.

A topic is modelled, as outlined earlier, as a probability distribution over the
vocabulary of words, and a document has a probability distribution over the topics.
Let these be represented as P(w|t) and P(t |d), respectively. Then, the likelihood of
occurrence of a word w in document d may be written out as:

P(w, d) =
∑
t∈T

P (w|t)P (t |d) (2.20)

where T is the set of topics. Now, given a corpus of documents, topics may be learnt
by maximizing the likelihood:

max
∀w,t,P (w|t),∀t,d,P (t |d)

∏
d∈D

∏
w∈W

(∑
t∈T

P (w|t)P (t |d)
)n(d,w) (2.21)

with n(d,w) indicating the number of times word w has appeared in document d.
The log-likelihood assumes the following form:

L = max
∀w,t,P (w|t),∀t,d,P (t |d)

∑
d∈D

∑
w∈W

n(d,w)× log
(∑

t∈T

P (w|t)P (t |d)
)

(2.22)
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The document–topic probabilities and topic–word probabilities are typically
learnt alternatively in the E and M steps of an Expectation Maximization framework.
Though the above framework is designed for document datasets, it may be trivially
seen that it applies to any dataset if words are considered as attributes and n(d,w)

is interpreted as the weight associated with the feature w in data object d.

2.6.1 Collaborative PLSA for Clustering Two-View Data

Upon estimation of the topics, one could view the topics as clusters. Similar to the
NMF case, a trivial clustering is achieved with each document (i.e., data object)
assigned to the topic with which it has the highest affinity. Alternatively, the P(.|d)

vectors may be treated as unit L1 length representations, which could be subject to
a clustering method such as K-Means.

In [23], an extension of PLSA to two-view data is provided, with applications
to clustering. The idea is that the P(.|d) vectors derived from considering each of
the dataset views separately could be different, but a middleground could be found
by adding a soft constraint in order to bring the vectors together. This results in the
following objective function:

max
∀w,t,viPvi

(w|t),∀t,d,viPvi
(t |d)

wv1Lv1 + wv2Lv2 − β
∑
d

∑
t

(Pv1(t |d)− Pv2(t |d))2

(2.23)
Here, Pvi

(.|.) denotes the estimates arrived at for view vi . Thus, the objective
function is simply the weighted sum of the log-likelihoods for the two views
separately (denoted by Lvi

) discounted by the square of the L2 distance between
the P(.|d) vectors from either view, summed up over all documents. The view
weights wv are pre-specified and are expected to be part of the user input. The last
term forces the optimization to learn two separate document representations from
separate views, but forces that the representations are close together. The cluster
assignment for each document is arrived at using the max aggregation.

d.C = arg max
t

{Pv1(t |d), Pv2(t |d)} (2.24)

The method, thought built upon topic modelling, has also been evaluated over
image datasets; refer [23] for details.

2.6.2 Voting-Based MVC

In another method [26] that builds upon PLSA topic modelling, a two-phase
approach is proposed. In the first phase, the separate-view datasets are subjected
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to separate PLSA topic modelling to arrive at separate view-specific topics; the
number of topics are kept the same across the views. This is followed by a second
phase, where documents that share similar Pv(.|d) vectors are pre-assigned to some
groups, these groups eventually feeding into the final clustering. The documents that
cannot be assigned to the groups are represented using a concatenated representation
derived by simply collating the view-specific representations. All the documents
(grouped as well as ungrouped) are then subjected to another round of topic
modelling, this time a cross-view one. Within the iterations, it is enforced that the
pre-assigned documents do not switch groups, whereas the other documents are
free to switch groups. This leads to a final cross-view P(.|d) vector, which is then
translated to a clustering.

2.7 Spectral Methods

Spectral Clustering (e.g., [35]) operates on a graph formed by the data objects
as nodes and the (usually weighted) edges representing similarities between data
points. As we saw earlier in the section on matrix factorization, a graph can be
induced from a dataset X by forming edges between objects if one of them figures
in the other’s k nearest neighbors; there could be other intuitive ways of translating
a relational dataset into a graph. Spectral clustering algorithms are favored in cases
where the desired clustering output involves irregular shapes. A simple spectral
clustering algorithm over a graph represented as a similarity matrix S may be
outlined as below:

– Graph Laplacian: Form the Laplacian matrix of the graph from the n × n

similarity matrix in the input, which we will denote as L. This would be an n×n

matrix.
– Eigen Decomposition: Perform eigen decomposition over L and choose the top-

k eigenvectors. Let the eigen vectors be stacked column-wise to form an n × k

matrix U .
– Normalization: The rows of the matrix U are normalized to form a normalized

matrix Û . Each row may now be treated as a representation of the corresponding
data point.

– Clustering: The normalized vectors can now be subjected to a conventional
clustering algorithm such as K-Means to arrive at a clustering.

In a fully connected graph, spectral clustering methods may be thought of as
solving a version of the min-cut problem, i.e., identifying a set of k connected
components by discarding a few edges. It is also notable here that the k eigen vectors
of the Laplacian matrix may be thought of as signatures of the k clusters in the
output. We will now consider MVC methods that build upon ideas from spectral
clustering.



2 Multi-View Clustering 43

2.7.1 Co-training Spectral Clustering Over Two-View Data

Co-training (e.g., [4]) proposes searching in two different hypothesis spaces (e.g.,
two different clusterings in two different data views, in the case of MVC) while
gradually swaying them towards each other, so that the eventual choices of
hypotheses agree reasonably well with each other.

Kumar and Daumé [27] blend co-training with spectral clustering in order to
devise an MVC solution for two-view data. The spectral clustering is solved in the
individual views separately, in order to arrive at two top-k eigen vector column-
stacked matrices U1 and U2. This is followed by modifying the similarity matrix
S1 using information from U2 (i.e., the clustering exposited by the eigen vectors
in the second view) and modifying the similarity matrix S2 using information
from U1. The modification is performed by projecting the columns of S1 (S2) on
the eigen vectors from U2 (U1) and re-projecting them back to the n-dimensional
space. The projection operation using S1 implicitly discards some information that
is not in line with the clustering information from U2, and vice versa. The modified
S1 (S2) is then used in the next iteration for deriving U1 (U2). Each projection–
re-projection operation nudges the similarity matrix from one view towards the
clustering structure from the other view. Over the course of many iterations, the
clusterings from either view converge, leading to an MVC solution.

While extensive empirical results are presented for two-view data, the authors
also outline that the framework may be extended for data with more than two views
by performing the projection–re-projection operation using the aggregated eigen
vectors from all views (but for the one whose similarity matrix is being modified).

2.7.2 Pareto-Optimal Spectral MVC

The co-training approach that we just saw makes an implicit assumption that the two
views are compatible and agree on a single clustering of the data. However, there
may be cases where there are disagreements between data views. A relaxation of the
agreement assumption is used in order to devise another spectral MVC method [42].
Consider two data views v1 and v2 as earlier. Now, given the graphs induced by the
respective view-specific similarity matrices, each cut c of the graph (note that the
graph nodes are common across views, being the data points in parallel data) that
produces k connected components, may be costed for each view; the cost, as may be
intuitive, quantifies how much the view dislikes the cut. Let C(v, c) denote the cost
of the cut c over the view v. Now, a space of 2-d vectors may be defined as follows:

S = {(C(v1, c), C(v2, c)|c ∈ Θ} (2.25)

where Θ is the set of all nontrivial cuts over graphs across the two views. The
optimal cut for the first view, i.e., arg minc∈Θ C(v1, c), may differ from the optimal
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cut for the second view when there are disagreements across the data views.
Thus, Wang et al. [42] propose searching for the set of pareto-optimal cuts, which
is defined as the skyline [5] of S . Towards defining the skyline, it is useful to
understand the domination operator. A vector (x, y) is said to dominate another
(x′, y′) if and only if the following conditions are satisfied:

x ≤ x′ ∧ y ≤ y′ ∧ (x �= x′ ∨ y �= y′) (2.26)

Thus, (x′, y′) is dominated as long as it is at least as far as (x, y) from the origin
on both axes, as long as both the vectors are not equal. The skyline of S are the set
of vectors that remain when all dominated vectors are filtered out. When vectors in
the cost-space S are considered, it amounts to finding vectors corresponding to a set
of cuts such that it is impossible to find another cut that has lower cost on both the
data views.

The set of pareto-optimal cuts could be very large, especially if the disagreements
between the data views are high. Each pareto-optimal cut yields a clustering of the
multi-view dataset. However, if one were interested in aggregating the set of pareto-
optimal cuts to form a single MVC result, the cluster indicator vectors corresponding
to each pareto-optimal cut could be subject to a further round of clustering.

The proposed method easily generalizes to more than two data views, with V

view datasets entailing a skyline search over V length vectors. It may, however, be
noted that the size of the pareto-optimal set usually increases quite fast with the
number of dimensions of the vectors involved.

2.8 Exemplar-Based Approaches

Exemplar-based approaches have been popular for clustering (e.g., [17]), with the
clustering process operationalized through message passing. Exemplars are a small
set of data points chosen from the dataset, each of which stand for a cluster in
the output. Each data point is associated with one of the data points in the set of
exemplars, and that association determines the cluster membership as well. The
clustering process is itself initialized by setting each data point as its own exemplar,
and gradually shrinking the set of exemplars through associating each data point
with a different exemplar typically based on both: (1) how similar the data point is,
to the exemplar, and (2) how much other data points also prefer being associated
with the exemplar. The latter factor ensures that the set of exemplars are shrunk
progressively in order to achieve a small set of clusters in the eventual output.
Prior information about suitabilities of particular data points to be exemplars is
easily incorporated by weighting the second criterion highly for such data points.
Exemplar-based clustering is attractive in that there is an automatic choice of
prototypical data object for each cluster, one that could act as a summary in
scenarios where human perusal of clusters is necessary. We describe two approaches
that generalize from exemplar-based clustering for MVC.
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2.8.1 Simple Similarity Matrix Aggregation

Scientific journal papers may be treated as multi-view data comprising the text view,
and the citation profile. An exemplar-clustering approach designed for clustering
such scientific datasets, proposed in [34], simply takes the n × n similarity matrix
from the separate views and forms an aggregated similarity matrix using a weighted-
sum form:

S = αST + (1− α)SC (2.27)

where ST and SC are the similarity matrices from the text and citation views, respec-
tively, and α controls the relative weighting between the two views. The aggregated
similarity matrix S is then subject to exemplar-based affinity propagation to arrive
at an MVC result.

2.8.2 Affinity Propagation with Cross-View Agreement

A more recent work [44] introduces a more sophisticated approach towards
exemplar-based clustering through incorporating an explicit criterion to enforce an
agreement between the clusterings from across views. We describe the objective
function they optimize for, leaving the interested reader to refer to the paper for
finer details of the message passing framework. Within a single view dataset, X, the
objective function for an exemplar approach may be written down as:

J =
∑
x∈X

S(x, cx)+
∑
x∈X

{
−∞ x �= cx ∧ (∃x′ ∈ X, x = cx′)

0 otherwise
(2.28)

where cx denotes the exemplar of the data object x. The second term effectively
forces a data point that is an exemplar for a different data point, to be an exemplar
for itself as well, an intuitively motivated condition. The first term quantifies the
similarity between an object and its exemplar. Estimating the {. . . , cx, . . .} by
maximizing J would intuitively lead to a single-view clustering solution for X.

The MVC work [44] extends this framework for exemplar-based clustering by
adding all the view-specific J s along with a pairwise cross-view agreement term as
follows:

α
∑
v∈V

Jv + (1− α)
∑
v∈V

∑
v′∈V

I (v �= v′)
∑
x

|N v
k (xv

c ) ∩N v′
k (xv′

c )|
|N v

k (xv
c ) ∪N v′

k (xv′
c )| (2.29)

where N v
k (xv

c ) denotes the set of k nearest neighbors to the exemplar of the data
point x within view v (note that each data point has a different exemplar within
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each view), when neighbors are computed based on the similarity matrix from
the view v. Thus, the last term is a Jaccard similarity term between the pairs of
neighborhoods across two different views, for view-specific exemplars associated
with the same data object. Estimating the view-specific exemplars for each data
object by maximizing this objective leads to a different clustering solution for each
view; however, they are expected to be in reasonable agreement, due to having
considered the cross-view neighborhood agreement in the optimization. The view-
specific clusterings may then be aggregated to arrive at a single MVC result.

2.9 Other Approaches to MVC

Having considered the major families of techniques for MVC, we now turn our
attention to some methods that cannot be easily categorized into any of the
previously discussed categories. We attempt to provide an illustrative sample of the
variety of approaches to MVC, over and above those covered earlier.

2.9.1 Multi-View Ensemble Clustering

Ensemble Clustering encompasses the family of clustering methods (e.g., [16])
that can fuse multiple clusterings into a single consensus clustering. There has
been recent work on spectral ensemble clustering [31] that suggests that multiple
clusterings of the same set of data X may be leveraged to form a co-association
matrix as follows:

Sxx′ = |{C|C ∈ C ∧ x.C = x′.C}|
|{C|C ∈ C}| (2.30)

Informally, Sxx′ captures the fraction of clusterings in C that puts x and
x′ in the same cluster. Now, by minimizing the objective that uses the graph
Laplacian LS of S:

min
H

tr(HT LSH) (2.31)

with the constraint HT H = I leads to an estimate of H that can be used to identify
a partitioning of data points in X such that the similarities in S are respected.

The multi-view extension [39] of this ensemble clustering method seeks to learn
a low-rank cross-view representation of the data objects as Z and an associated
H representing a cross-view clustering result. Towards ensuring that the low-rank
representation Z is in agreement with the various view-specific similarity matrices
Sv , a view-specific constraint is imposed, leading to an iterative optimization
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formulation. We refer the interested reader to the paper for details of the full
objective function.

2.9.2 Co-clustering for Multi-View Datasets

Co-clustering (e.g., [12]) is a paradigm for clustering words and documents
simultaneously in document datasets. Adopting a variant of co-clustering, Hussain
and Bashir [20] consider learning document–document (i.e., pairwise) similarities
interleaved with learning of word–word similarities within a single-view document
dataset. This leads to an iterative algorithm that, when initialized with simple
similarities based on word and document co-occurrences, produces a refined
estimate of document–document similarities at the end, one that could be used to
form a clustering. Given a clustering, the ratio of intra-cluster document similarities
to document similarities across the corpus leads to an intrinsic (i.e., unsupervised)
goodness measure for the similarity matrix.

Further, Hussain and Bashir [20] propose to extend the single-view method to
multi-view datasets by using cross-view learning within each iteration to arrive at
an MVC method. In one variant, the better document–document similarity estimates
from across views (when evaluated using the intrinsic goodness measure against a
clustering) are chosen to feed into the next learning iteration. They provide two
additional variants that differ on how the information is fused across views within
the iteration.

2.9.3 Multi-View Clustering via Canonical Correlation
Analysis

Canonical Correlation Analysis (CCA [40]), which bears relations with principal
component analysis for single-view data, is a classical method for identifying
directions along which the separate views of a two-view dataset are correlated.
In an extension based on CCA, Livescu et al. [32] propose to identify the top-k
CCA directions and then project the separate datasets, i.e., Xvs, to those directions.
This is then followed by a conventional clustering on the transformed view-specific
datasets. Their work is built upon an independent assumption, whereby parallel
samples from the same cluster (i.e., two data samples belonging to the same object,
but from the separate views) can be regarded as independent given the cluster label.
This is intuitive for cases such as multimodal data, e.g., text and video, whereby
the dependence between the text and video from the same person may be largely
attributed to the identity of the person.
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2.10 Variations of the MVC Task

Having considered a variety of methods that address the MVC task, we now look at
a few variants of the MVC task that have been explored in the literature.

2.10.1 Multi-View Clustering with Unmapped Data

The conventional setting of MVC, the setting that has occupied all our attention
until now, has been the case where the multi-view data is parallel. Thus, the ith
row of Xv relates to the same object as the ith row of Xv′ . However, as observed
in [49], such comprehensively parallel data is not always available. As an example,
in certain cases, the cross-view linking information could be very sparse in that, only
information of presence or absence of linkages between a few pairs of data objects
may be available. Zhang et al. [49] consider the case where different views could
potentially consist of different sets of objects (and even varying number of objects
across views), and there are two sets of linkage information available, as follows:

ML = {(iv, jv′)|1 ≤ v, v′ ≤ |V |} (2.32)

CL = {(iv, jv′)|1 ≤ v, v′ ≤ |V |} (2.33)

Informally, ML and CL are sets of pairs of objects, which could be from across
views, which are deemed to must-link (i.e., should be part of the same cluster)
or cannot-link (analogously, should be in different clusters), respectively. If prior
information is available that two objects from across views—specifically, the ith
object from view v and the j th object from view v′—are indeed associated with the
same underlying entity, the pair corresponding to them—i.e., (iv, jv′)—may be then
added to the set ML. Analogously, two objects for whom information is available
that they are dissimilar, and possibly do not even belong to the same cluster, they
may then be added to the CL set.

The work [49] proposes modifying the NMF to account for these constraints as
follows:

∑
v∈V

||Xv −GvFv||2F +
∑

(iv,jv′ )∈ML

k∑
x=1

(Gv[i][x] −Gv′ [j ][x])2

+2×
∑

(iv,jv′ )∈CL

k∑
x=1

Gv[i][x] ×Gv′ [j ][x] (2.34)

The first term is the usual NMF loss aggregated across views, whereas the second
and third terms relate to the ML and CL constraints, Gv[i][x] indicating the xth
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element in the vector corresponding to the ith element from the coefficient matrix
(which, as we saw earlier, is the clustering indicator matrix for clustering scenarios).
The second term quantifies the dissimilarity between the objects involved in ML
constraints (that needs to be minimized), and the third term quantifies the similarity
between objects in CL constraints (that needs to be minimized as well). Each data
point is then associated with the cluster with which it has the highest coefficient in
the respective Gv matrix, leading to a clustering output.

2.10.2 Multi-Task Multi-View Clustering

Multi-task clustering is the setting where multiple-related tasks are to be addressed
together in order to achieve a better effectiveness. For example, clustering web
images from Chinese and English websites may be considered as two related
tasks. The images trivially come from the same space, that of images; however,
the text surrounding the images, which may hold valuable cues to arrive at a
clustering solution, come from different spaces, that of Chinese and English words,
respectively. Within each task, the relationship between the component views is
to be ensured in that the clustering they exposit needs to be consistent. On the
other hand, within each view that is shared across tasks, the separate tasks should
use the same notion of similarity. Multi-task Multi-view Clustering [48] considers
accomplishing the two tasks of multi-task and multi-view learning for the clustering
setting, within the same framework. This utilizes the shared data objects across
views, and the shared views across tasks, in order to mutually enhance the accuracies
of the task-specific results. They compartmentalize the overall problem into three
separate considerations as follows:

– Within-view-task Clustering: For a combination of a chosen view and chosen
task, the solution to the clustering problem may be achieved by a co-clustering
method that simultaneously partitions both the data objects and the attributes
under consideration. Their co-clustering method arrives at two sets of eigen
vectors, one that indicates a partitioning over the attributes, and a second that
indicates a partitioning over the data objects.

– Multi-view Relationship Learning: Consider a specific task; now, across the
different views associated with the task, we expect to see a consistency across
the partitioning of data objects. This may be achieved by incentivizing for the
similarity matrices (with each entry indicating pairwise object similarities) to be
the same across the separate data partitioning models (i.e., eigenvectors) learnt
from across the tasks.

– Multi-task Relationship Learning: Analogous to the previous consideration,
this considers learning a shared subspace across related tasks, which is confor-
mant to the data partitioning structure that entails from the eigenvectors learnt
for the view-task combinations.
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Each of the above considerations are modelled in an objective function, leading to
an overall objective function for multi-view multi-task clustering. As in the previous
cases, these separate considerations are optimized for an iterative framework, finally
arriving at an multi-task MVC result.

2.11 Datasets for Multi-View Clustering

We now consider a few datasets for MVC that have been used in putting forward the
empirical case for the various MVC methods that have appeared in the literature.
Table 2.2 lists 27 datasets that have been used in order to evaluate MVC methods.

Table 2.2 Listing of a few datasets used for MVC

Dataset |V | Remarks References

Reuters ML 6 Same text document in multiple natural languages [30]

UCI Digits 2 Handwritten digits: views are Fourier coefficients [27]

Profile Correlations

IMDB 2 Movies represented across actors and keywords [20]

CiteSeer 2 Scholarly articles with text and citation views [20]

Cora 2 Scholarly articles with text and citation views [20]

Cornell 2 Webpages with document and link views [20]

Coral5k 2 Images with RGB histogram and SIFT views [23]

Caltech101-7 6 Images with different types of image features [46]

MSRC 6 Images with different types of image features [46]

Handwritten 6 Images with different types of image features [46]

WebKB 3 Web pages with text, inward anchor text, and title views [48]

NUS-WIDE 7 Images with tags and six views of low-level features [41]

VidTIMIT 2 Audio and video of a person speaking a sentence [32]

Wikipedia 2 Text and inward/outward links [32]

3-Sources 3 News Stories from BBC, Reuters, and The Guardian [30]

ALOI 4 Four sets of image features [24]

Pascal VOC 2 Images with color and bow features as views [43]

SensIT 2 Transportation data with acoustic and seismic views [7]

CQADupStack 2 Text data with question and answer views [9]

Animal 6 Six sets of image features [7]

SUN 397 7 Seven sets of image features [7]

Water Treatment 4 Four sets of features of water treatment plants [8]

Yeast Cell Cycle 5 Five sets of features from microarray data [8]

Internet Ads 6 Image and text features associated with internet images [8]

Yale 3 Three sets of image features [50]

Notting-Hill 3 Three sets of image features from video face images [50]

Oxford Flowers 4 Four sets of image features [45]

SemEval2016-Task3 2 Text data with questions and comments as views [10]
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Many of the datasets have been used across multiple papers; however, for brevity,
we just list one reference against each dataset. As may be seen from the table, the
datasets comprise a wide variety of data types; text, links (e.g., weblinks, anchor
texts, and citations), and image datasets. It is particularly worthy to note that many
datasets have only two views, whereas a few datasets have as many as 6–7 views.
However, even the six and seven views have been arrived at by partitioning features
into sets of related features, rather than those views being intrinsic in the data
representation itself. One may infer from the list that multi-view learning would
benefit from the availability of more diverse datasets, such as those that come from
varying domains, and those that organically have many views.

2.12 Conclusions

In this chapter, we have considered various families of approaches that have been
explored for addressing the multi-view clustering problem. Starting with a formal
definition of the problem, we considered the different formulations that have been
employed in multi-view clustering, considering them in clusters of approaches based
on similarities in their methodology. We then looked at some variations of the MVC
setting that have been considered in the literature. We wish to re-emphasize here
that our focus has not been to comprehensively cover techniques developed for
multi-view clustering for there are too many of them; instead, we have chosen
a few illustrative approaches from each school of methods in order to provide a
diversified birds-eye view of methods for the task. Finally, we also listed a set
of popular datasets that have been used for benchmarking and evaluating MVC
algorithms. Our impetus has been to provide information in an accessible form,
so that readers who may not be familiar with the mathematical details of specific
machine learning building blocks would also be able to comprehend and utilize this
chapter for scenarios such as choosing a particular MVC method for addressing a
task at hand.
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Chapter 3
Semi-supervised and Unsupervised
Approaches to Record Pairs
Classification in Multi-Source Data
Linkage

Anna Jurek-Loughrey and Deepak P

Abstract Data integration has become one of the main challenges in the era of Big
Data analytics. Often to enable decision-making, data from different sources have to
be integrated and linked together. For example, multi-source data integration is vital
to police, counter terrorism and national security to allow efficient and accurate
verification of people. One of the key challenges in the data integration process
is matching records that represent the same real-world entity (e.g. person). This
process is referred to as record linkage. In many cases, data sets do not share
a unique identifier (e.g. National Insurance Number), hence records need to be
matched by comparing their corresponding attributes. Most of the existing record
linkage methods require assistance from a domain expert for handcrafting domain-
specific linking rules. More automatic approaches, based on using machine learning,
were also proposed. However, those approaches relay on having a substantial set of
manually labelled records, which makes them inapplicable in real-world scenarios.
Given the importance of the problem, record linkage has witnessed a strong interest
in the past decade. As a result, significant progress has been made in this area. In
particular, the problem of reducing the manual effort and the amount of labelled data
required for constructing record linkage models has been addressed in many studies.
In this chapter, we review the most recently proposed approaches to semi-supervised
and unsupervised record linkage.
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3.1 Introduction

Society worldwide is generating more and more data giving rise to the “data deluge”
problem. Making sense of such data is necessary for making strategically important
decisions by government bodies, security, healthcare and financial entities, to
name a few. In the world of big data, data integration technology is crucial for
maximising the capability of data-driven decision-making. Integrating data from
multiple sources drastically expands the power of information and allows us to
address questions that are impossible to answer using a single data source. For
example, analysis of the health data coming from sources, such as electronic health
records, drug and toxicology databases, genomics and social media environments,
is a key driver toward advancing precision medicine. As a part of the data
integration process, records (from two or more data sources) that refer to the same
real-world entity (e.g. person) need to be linked. This process is referred to as
record linkage (RL), data/record matching and entity resolution. In many realistic
scenarios, different data sources do not share a unique identifier (e.g. National
Insurance Number), thus the process of linking records needs to be performed
by matching their corresponding attributes. This becomes challenging due to the
heterogeneous character of the data. Records in different data sources are often
represented by different number and different type of attributes. The same data
can also be represented in different ways in different data sources due to factors
such as different conventions (e.g., International Conference on Management of
Data versus SIGMOD Conference). Furthermore, data quality is often affected by
typographical errors, and missing and out-of-date values. As a consequence, it is
not always the case that records referring to the same entity have the same values
on the corresponding attributes. Furthermore, the data may be unstructured (e.g.
text reports, and social media content) or have different formats (e.g. text, image
and video). Therefore, more sophisticated techniques are required for effective
RL. Commonly applied RL methods require assistance from a domain expert to
carefully handcraft bespoke domain-specific linking rules that aid in determining
the linkage likelihood of a candidate record pair. This requires deep topical expertise
in the domain and continuous maintenance to cope with any changes in the
character of the data, which is a costly proposition in many realistic scenarios.
Probabilistic RL methods [10] compute weights for different attributes based on
their estimated ability to correctly identify matching and non-matching records. The
weights are then applied to calculate the probability that two given records represent
the same real-world entity. Probabilistic methods relay on estimated probabilities
and thresholds, which requires some domain knowledge. More automatic RL
techniques have been proposed; however, they require a large amount of labelled
data to train machine learning models. They also rely on the selection of similarity
measures and attributes (matching schemes) applied for comparing pairs of records.
This makes RL very expensive and labour intensive, hence it is not affordable
for many organisations. Given its pivotal importance and challenges, there has
been strong interest in semi-supervised and unsupervised approaches to RL in
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the last decade within the computer science domain. RL methods, which address
issues such as data labelling, user effort or heterogeneity of the data, have been
explored.

Overview of the Paper This chapter gives an overview of the most recent advances
in the area of semi-supervised and unsupervised RL. It focuses on the task of
comparing and classifying pairs of records from different sources. It considers
different families of techniques that have been explored in the last few years to
address the problem of generating RL models with limited training data. The chapter
will be useful for readers who are trying to decide on the most appropriate RL model
for their data, which requires minimum manual effort from the user.

3.1.1 Overview of the Record Linkage Task

Given two sets of records S and T , RL is defined as a task of identifying pairs of
records (s, t) ∈ S × T that refer to the same entity (e.g. a person) [31]. Given
two data sources, each pair of records (s, t) can be classified into one of the two
classes: match and non-match. Table 3.1 shows a simple example of an RL task.
The table contains records from two bibliographic data sources (DBLP, and ACM
digital library). The aim is to identify those pairs of records that refer to the same
publications, which in this case are (ACM1, DB1) and (ACM2, DB2). Any other
pairs of records should be identified as non-match. RL has been widely applied in
data management, data warehousing, business intelligence, historical data collection
and medical research [7]. Figure 3.1 illustrates an overview of an RL process, which
is composed of four main steps.

Table 3.1 An example of RL

ID Title Authors Venue

ACM1 A compact B-tree Peter Bumbulis, Ivan T.
Bowman

International conference on man-
agement of data

ACM2 A theory of redo recov-
ery

David Lomet, Mark Tut-
tle

International conference on man-
agement of data

DB1 A compact B-tree Ivan T. Bowman, Peter
Bumbulis

SIGMOD conference

DB2 A theory of redo recov-
ery

Mark R. Tuttle, David B.
Lomet

SIGMOD conference

DB3 Enhanced abstract data
types in object-relational
databases

Praveen Seshadri VLDB J.

DB4 Parametric query opti-
mization

Raymond T. Ng, Timos
K. Sellis, Yannis E. Ioan-
nidis, Kyuseok Shim

VLDB J.
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Fig. 3.1 Record linkage process

Data preparation aims to make the records coming from different data sources
comparable. The process includes steps such as parsing, data transformation, data
standardisation and attribute matching, which have been recognised as crucial steps
in the RL process [14].

Search space reduction focuses on improving the speed of the RL process
through reduction of the number of record comparisons. If we need to link two
data sets, S and T , then potentially we should compare each record from S with
each record from T . Hence, the total number of comparisons would be |S| × |T |.
To reduce the potentially large number of record comparisons, different forms of
indexing and filtering, collectively referred to as blocking [2, 8, 39], are deployed
in RL systems. The idea of blocking is to use a blocking function to divide records
into a set of blocks. The candidate pairs of records for linkage are then selected from
records within the same block only.

Record comparison is a process of determining similarity between any candidate
pair of records provided as an output of the blocking process. Comparing records
relies strongly on the use of a similarity measure, in which selection of such
measures is a key issue [12]. Given two records s and t represented by N attributes
f1, . . . , fN , a similarity measure m quantifies similarity between the two records on
one of the attributes. It returns a numeric value ranging between 0 and 1, referred
to as a similarity value. A similarity measure is formulated as m : dom(fi) ×
dom(fi) → [0, 1], where dom(fi) denotes the domain of attribute fi . Value 1
indicates that the pair of records have the exact same values on an attribute according
to the similarity measure. Value 0 indicates that there is no similarity between the
attributes values for the two records. There are many available similarity measures,
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e.g. Jaro [21], Jaro-Winkler [48], Jaccard [19], Q-Gram [36] and Levenshtein edit
distance [27]. Depending on the types of data in RL, similarity measures have
different levels of accuracy [9] and as emphasised in [3], there does not exist a
single similarity measure for all data sets.

Record pair classification is the process of classifying the compared pairs of
records as either match or non-match. The existing approaches can be broadly
divided into two categories. The first category of approaches rely on applying
generic linkage rules (LR) and different similarity measures to identify those pairs of
records that are similar enough to be considered as matching [15, 42]. Notationally:

[S, T ,M] �⇒ LR : S × T → 0, 1 (3.1)

where M refers to a set of similarity measures, and 0, 1 indicate match and non-
match, respectively. With the second category of approaches, each pair of records is
represented as a comparison vector with N elements. Given two records r1 and r2
represented by N attributes f1, . . . , fN and a similarity measure m, a comparison
vector for s and t is formulated as:

m(s, t) =< m(r1.f1, r2.f1), . . . , m(r1.fN , r2.fN) > (3.2)

The comparison vector represents a set of N numeric similarities, each calculated
with a similarity measure on the corresponding pair of attribute values of the two
records. The task of RL is then considered as a comparison vector classification
problem [11], i.e., whether a comparison vector is classified as match or non-match,
for a pair of matching or non-matching records, respectively. Notationally:

[S, T ,m] �⇒ LR : −→V → 0, 1 (3.3)

where
−→
V = {m(si, tj ) : si ∈ S, tj ∈ T } is the set of comparison vectors generated

for each record pair from S × T .
With learning-based RL methods (e.g. applying statistical or machine learning

techniques), a linkage model is learnt from training data and then applied to link
new pairs of records. The training data set has the following format:

D = {(s1, t1, l1), (s2, t2, l2), . . . , (sn, tn, ln)} (3.4)

where each triple consists of a record pair (si, ti) and a label li with value 1 or 0 if
the two records match or not, respectively.

In this chapter, we focus on the problem of classifying pairs of records based on
their similarity, which is one of the primary fields of research in RL. A large number
of effective supervised approaches to RL have been proposed in the past [7, 12].
Supervised approaches require labelled training data with known matching status of
the record pairs. In particular, a substantial collection of comparison vectors labelled
as match or non-match is required in order to train a supervised model. Obtaining
high-quality training data in a real-world scenario is challenging or even impossible
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in some cases. In the next section, we will review some of the recently proposed
approaches to RL that allow us to relax or completely remove the requirement for
labelled data.

3.1.2 Overview of Existing Semi-supervised and Unsupervised
Record Linkage Techniques

In order to address the problem of lack of labelled data, various semi-supervised
and unsupervised learning techniques have been proposed for RL over the past
few years [7]. In semi-supervised learning, only a small set of labelled instances
and a large set of unlabelled instances are used in the training process. With
unsupervised approaches, no labelled data, in the form of record pairs with known
matching status, is required for generating the decision model. Below, we give a
brief overview of the most recent semi-supervised and unsupervised approaches to
RL.

– Crowdsourced-based methods. Given the availability of easily accessible crowd-
sourcing platforms such as Amazon Mechanical Turk and Crowdflower, there
has been a lot of interest in the human-in-the-loop approaches to RL. Those
approaches leverage the crowd’s ability to solve the RL problem. In order to
minimise the number of questions sent to the crowd, hybrid human–machine
systems have been explored. Those models utilise machines to select a subset
of record pair candidates, which are then sent to the crowd for labelling. The
feedback obtained from the crowd is then utilised to label the remaining pairs.

– Active learning. Similar to crowdsourcing RL, this is a human-in-the-loop-based
approach. The aim of active learning is to reduce the number of record pairs that
need to be labelled via actively selecting the most informative examples. Active
learning algorithms select a small subset of record pairs which are then sent for
manual labelling to a user. The obtained labels are further utilised in the learning
process. The process is repeated until all examples are labelled.

– Iterative self-learning. Given a training data set L = {xi, yi}li=1 (referred to
as seeds) and an unlabelled data set U = {xj }l+u

j=l+1 (usually, L � U ), the
self-learning process aims to train a classifier h on L initially and then use the
classifier to label all unlabelled data in U. Following this, the most confidently
classified unlabelled examples are selected as new training examples and moved
into L. The process is repeated until a stopping condition is met.

– Graph-based models. Those approaches use graphs to model record’s structure.
The nodes in the graphs represent records and their properties. The edges
represent the relation between them. The goal is to estimate the likelihood of
two nodes being connected with an edge in a graph.

– Bayesian models. Those approaches represent the relations between records as
a bipartite graph, in which records are linked to latent true variables. They
assume conditional independence between records, given the latent individuals,
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and independence between the attributes values within individuals. The goal is
to estimate the probability that two records are linked to the same latent true
variable.

– Self-learning with automatically generated seeds. Those methods are based on
the same idea as the aforementioned self-learning-based approaches, with the
difference that they automatically generate their own set of labelled record pairs,
which are then used as seeds to start the learning process.

– Optimisation of an objective function. With those approaches, an objective
function used to evaluate the performance of an RL model using only unlabelled
data is formulated. Following this, a searching algorithm is applied to find the
RL model which maximises/minimises the objective function.

– Knowledge graph embedding. In the most recent work, knowledge graph embed-
dings have been proposed for solving the RL problem. The basic idea is to embed
entities and their relations into a low-dimensional vector space, which can then
be used for matching entity pairs.

3.1.3 Existing Publicly Available Data Sets for Evaluation of
Record Linkage Models

Below, we describe the most common data sets that are used by researchers working
in the field of RL for evaluation and comparison of different RL models. Some of
the data sets contain records from only one data source, which is appropriate for the
deduplication task. Most of the data sets are publicly available.

– Restaurant1 A collection of 864 records from the Fodor’s and Zagat’s restaurant
guides. The task is to find records referring to the same restaurant. Each record
is represented by five attributes: name, phone number, address, city and cuisine.
The data set contains 112 duplicates.

– Cora (see footnote 1) The data set contains a collection of 1295 bibliographic
records of research papers on machine learning. Citations of the same paper may
have a different format; therefore, the task here is to recognise citations of the
same paper. Each of the records contains the publication’s author name, paper’s
title, name of the venue where the paper was published and the date. The data set
contains 17,184 matching pairs.

– DBLP-ACM2 Data set containing bibliographic records from 2 data sets of size
2616 and 2294. In total, there are 2224 unique entities. Each record is represented
by four attributes: title of the paper, authors’ names, name of the venue and the
year of publication.

1http://www.cs.utexas.edu/users/ml/riddle/data.html.
2https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/
benchmark_datasets_for_entity_resolution.

http://www.cs.utexas.edu/users/ml/riddle/data.html
https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
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– DBLP-Scholar (see footnote 2) This data set contains bibliographic records of 2
data sets of size 2616 and 65,263 with 5347 matching pairs. The format of the
records is the same as the DBLP-ACM data set.

– Amazon-Google Products (see footnote 2) The data set contains product records
from 2 data sets of size 1363 and 3226, respectively. There are a total of 1300
matching record pairs. The records are represented by four attributes including
product name, product description, name of the manufacturer and the price of the
product.

– Abt-Buy (see footnote 2) A collection of product records from two data sources
of size 1081 and 1092. The format of the records is the same as with Amazon-
Google Products. There are 1097 unique entities in total.

– Census3 This is a collection of synthetic census records generated by the US
Census Bureau. There are two data sets with 449 and 392 records, respectively.
The number of matching record pairs is 327. Each record contains first and last
name, middle initials, a street number and a street name.

– CDDB4 A collection of 9763 records of CD albums containing information such
as artist name, title, genre and the year when the album was published. There are
6087 matching record pairs.

3.1.4 Evaluation of Record Linkage Quality

The quality of an RL model can be evaluated assuming that some data sets with truly
labelled record pairs as match or non-match are available. Most of the RL data sets
are very unbalanced with a much larger fraction of non-matching record pairs. Given
the lopsided distribution, the number of record pairs which were correctly classified
by the model as non-matches dominates its final evaluation. For this reason, the
accuracy measure is not suitable for the evaluation of RL models. Consider the
case of Restaurant data set, where there only could be 112 record pairs correctly
classified as match and 372,704 pairs that can be correctly labelled as non-match.
A simple classification of all record pairs as non-matches will result in a very high
accuracy, which clearly will not be meaningful. Consequently, in majority of the
papers the authors use F -measure as the evaluation measure for RL quality. F -
measure is the harmonic mean between precision and recall and only has high value
if both precision and recall are high.

3https://www.census.gov/data/datasets.html.
4http://www.freedb.org/en/download__server_software.4.html.

https://www.census.gov/data/datasets.html
http://www.freedb.org/en/download__server_software.4.html
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3.2 Semi-supervised Record Linkage

In order to address the problem of lack of labelled data, various semi-supervised
techniques have been proposed for RL, over the past few years. Those approaches
try to relax the assumption on availability of a substantial training set. They usually
only require a small set of labelled examples, which is then utilised to label the
remaining record pairs. In the following sections, we review the most recently
proposed semi-supervised RL methods.

3.2.1 Crowdsourced-Based Methods

The limitations of learning-based approaches and the existence of easily accessible
crowdsourcing platforms lead to the development of many human-in-the-loop-based
approaches. Crowdsourcing platforms allow us to task people with small jobs, such
as text or image labelling, via a programmatic interface. The idea of crowdsourced-
based RL is to use a crowd of people for identifying whether a record pair
represent the same real-world object. A brute-force method based on crowdsourcing
enumerates every record pair and sends them to the crowd. Obviously, for a large
data set this would involve huge monetary costs and waiting time. Different studies
tried to address this problem in order to avoid the exhaustive comparison of all
the records. In [30], the authors proposed a batching strategy where multiple pairs
of records are placed in a single request. It was demonstrated that batching can
significantly improve the efficiency with only small loss in accuracy. However, such
an approach still suffers from a scalability problem even for a modest data set size
hence it is not sufficient to enable RL to be done at scale. To reduce the number of
questions being sent to the crowd, a number of hybrid human–machine approaches
were proposed. The research in this area is focused on two main challenges. First
one is the development of intelligence machine-based techniques for ruling out
obvious non-matching pairs and selecting an optimal set of questions to minimise
the monetary cost. Second challenge is how to utilise labels obtained from the crowd
for automatic labelling of the remaining record pairs.

In [43], a technique, which applies transitive relations between records to reduce
the number of crowdsourced record pairs, is proposed. All records are modelled as
nodes in a graph with edges representing labels for pairs of records. The authors
formulate two transitive relations that allow us to deduct some of the missing edges
in the graph. According to the positive transitive relations, if there exists a path
between two records which only consists of matching pairs, then the pair of records
can also be deducted as a match. According to the negative transitive relation, if
there exists a path between two records which contains a single non-matching pair,
then the pair of records can be deducted as a non-matching. In other cases, the label
for the two records cannot be deducted. In their work, the authors observed that
labelling a matching pair at first will lead to fewer or equal number of crowdsourced
pairs. Following this observation, they apply a sorting algorithm which aims to
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identify labelling order that minimises the number of crowdsourced pairs. The
two labelling processes, based on crowdsourcing and based on transitive relation
deduction, are performed in parallel. Any labels obtained from a crowdsourcing
platform are instantly utilised to deduct unlabelled pairs. It has been demonstrated
that such an approach can reduce the cost with little loss in the results quality.
One obvious drawback of this approach is the assumption that the crowd always
returns a correct result. When errors occur in the results obtained from the crowd,
the transitive relation fails and tends to amplify it. For instance, suppose that r1 = r2
and r2 �= r3, but the crowd returns r1 = r2 and r2 = r3. Consequently, we can
incorrectly deduct that r1 = r3.

A hybrid human–machine framework for entity resolution, which also utilises
the transitive relations, is proposed in [28]. The first phase of the proposed model is
pruning of a large number of dissimilar pairs. For this purpose, a set of similarity-
based rules is generated using some given positive and negative examples. The rules
are then applied with a distributed in memory system in order to select a set of
candidate record pairs. In the second phase, a selection inference refine framework
is applied to verify the candidate pairs. The framework first selects tasks (record
pairs) for the crowd. In order to minimise the monetary costs, the tasks are first
ordered in a way that the pairs with higher probability of being a match are sent
to the crowd first. The probability is estimated using the similarity between the
records. The answers from the crowd are then used to answer unasked tasks using
the transitivity assumption. The process is repeated until all candidate record pairs
are labelled. To address the human error issue, they developed a truth inference
system for crowdsourcing [50], which implements most of the existing inference
algorithms. Truth Inference aims to infer the truth for each task while considering
the quality level of each worker. The framework in [28] can automatically infer the
quality of workers and hence identify a high-quality answer for each task what leads
to better linking accuracy.

An approach based on correlation-clustering, which tries to address the sensitiv-
ity to the human errors problem, is proposed in [47]. The overall idea of this work
is to divide all records into disjoint clusters, such that any two records belonging
to the same cluster represent the same entity. First, a similarity score function is
constructed, which together with a threshold is used to prune dissimilar record pairs.
Following this, a selected set of record pairs is sent to the crowd for labelling. Each
record pair is evaluated by multiple crowd workers. Crowd-based similarity score
is defined as a percentage of crowd workers who believed that two records refer
to the same entity. Based on the crowd-based similarity score, the records are split
into a number of disjoint clusters. All the record pairs eliminated in the pruning
process automatically obtain a score of zero. Finally, the cluster refinement phase
is performed, where a number of selected pairs are issued to the crowd to check if
their answers are consistent with the clusters. If many of the answers contradict with
the clustering, the clusters are adjusted. Using multiple workers for each record pair
and the refinement phase help to address the problem of human error. It however
requires a larger number of questions to be asked, which increases the monetary
costs.
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In order to further reduce the monetary costs, a partial-order-based crowdsourced
entity framework is proposed in [5]. The authors define a partial order, where
one pair of records (ri

1, rj
1) precedes another pair (ri

2, rj
2) if (ri

1, rj
1) has no

smaller similarity than (ri
2, rj

2) on every attribute. All pairs of records are modelled
as a graph based on the partial order, where each vertex represents a pair and
directed edge from (ri

1, rj
1) to (ri

2, rj
2) indicates that the former precedes the

latter. Selected vertex in the graph is sent to the crowd for labelling. If a vertex is
labelled as a match, all the pairs preceding this pair are automatically labelled as a
match. If a vertex is labelled as a non-match, all succeeding pairs are automatically
label as a non-match. To further reduce the number of questions, similar vertices
are grouped together. A path-based pair selection algorithm is proposed to minimise
the number of questions to be asked. In order to address the possible errors coming
from the crowd, each vertex is labelled by multiple workers. For the vertex with
low confidence, an additional weighted similarity is applied before the vertex is
labelled as match or non-match. The proposed partial-order allows to further reduce
the candidate pairs delivered for crowd task, and it has been demonstrated that it can
obtain superior accuracy in comparison to other approaches. However, it might not
be applicable with noisy data sets, where the preceding condition does not hold for
many record pairs.

The crowdsourced-based RL systems do not require any data for training, and
according to the presented results, they can achieve superior accuracy to some
other semi-supervised and unsupervised approaches. However, those methods can
be costly for large data sets and also require a long waiting time on the feedback
from the crowd workers. Each of the aforementioned methods assumes that the data
is structured and represented by an aligned set of attributes. Some of the methods
perform record comparisons, either for pruning or automatic labelling of record
pairs. However, the problem of selecting matching schema used for comparing
records is not addressed in any of the paper.

3.2.2 Learning-Based Approaches

With the learning-based approaches, RL is considered as a comparison vector
classification problem, where each vector represents similarity values between a
record pair calculated with a similarity measure. They rely on training data sets to
train a classification model. In order to address the limitations of supervised RL
models, various semi-supervised learning techniques have been proposed for RL
over the past few years. Those methods require only a small subset out of all the
given record pairs to be labelled as match or non-match. A popular and promising
approach to semi-supervised RL is the one based on active learning (AL) [1]. The
basic idea of AL is to reduce the labelling effort by interactively querying the user
for labels of the most informative examples. Instead of labelling a large number
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of examples, as in the case of supervised learning, AL selects a small subset to be
labelled by the user. The selection is made based on the examples labelled in the
previous iteration.

In [46], the authors propose an interactive training model based on AL. With this
approach, all the record pairs are clustered by their comparison vectors. Following
this, a number of comparison vectors from each cluster are selected and their
corresponding pairs of records are then manually classified by a user as match
or non-match and added to the final training set. Based on the feedback received
from the user, the purity of each cluster is calculated. The purity is formulated as
the proportion of classified comparison vectors that have the majority label. For
each cluster, if the purity is greater than a predefined threshold, the remaining
comparison vectors from the cluster are automatically labelled as match or non-
match and added to the training data set. Otherwise, the cluster is further split into
sub-clusters. The process is repeated recursively until the total budget for manual
labelling has been fully used. The crucial factor of this approach is the selection of
the most informative comparison vectors within the clusters. The authors explore
a number of different selection methods, including random selection, selection of
vectors that are farthest away within the cluster and combination of the farthest
apart vectors with the vector closest to the centre of the cluster. It is demonstrated
that the approach obtains comparable results to supervised models, yet it requires
significantly lower runtime and labelling effort. The performance of the model relies
on the selection of a number of parameters including budget size, number of vectors
selected from each cluster in the AL process and the purity threshold. Those may
be hard to determine without any labelled data provided before the learning process
begins. The method also relies on the selection of similarity measures and attributes
used for generating the comparison vectors.

The application of AL and genetic programming for learning linking rules was
explored in [16] and [25]. A linkage rule is defined as a similarity function (which
assigns a similarity value to each record pair) and a threshold. A pair of records is
considered as matching according to a linkage rule, if the similarity value exceeds
the threshold. With [16] and [25], linkage rules are represented as trees built with
different types of operators. In [16], they use similarity operators, which evaluate
the similarity between values of two inputs using a similarity measure, aggregation
operators for aggregating the similarity scores and value operators which retrieve
values of a specific attribute or a transformation of those values (e.g. normalisation,
and tokenisation). The idea of the algorithm is to construct a population of candidate
linkage rules iteratively while building a set of reference links between records. The
algorithm begins with a random population of linkage rules and an empty set of
links. As part of this process, compatible pairs of attributes are identified based on
their values overlap. There are three steps involved in each iteration: (1) Selection
of the link candidates to be manually labelled by a user from a pool of unlabelled
entity pairs. The selected links are those that reduce the version space of the linkage
rules from the entire population. (2) Manual labelling of the selected links as correct
or incorrect, which are then added to the set of reference links. (3) Evolving of the
population, which is based on the current reference links, by creating new linkage
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rules from the existing population using the genetic operators. The evolving process
is continued until a linkage rule that covers the current set of labelled links is found.

A similar idea of using genetic algorithm and AL for finding the most appropriate
linkage rule is presented in [32]. The link specifications are formulated as trees,
which combine different atomic link specifications. An atomic link specification
uses a single similarity measure to determine similarity between two attributes’
values, which is then compared with a threshold. A pair of atomic link specifications
can be combined via operators such as AND, OR and XOR. The algorithm begins
with generating a random population of link specifications. All individuals in
the population are then applied to link instances from two data sources. The
pairs of records on which the individuals disagree the most are then selected for
manual labelling. The fitness of each individual is calculated using F -measure on
the available labelled links. The link specifications are evolved using the genetic
operators: reproduction, mutation and crossover.

Application of genetic algorithms and AL reduces the requirement for labelled
data. It also allows us to address the problem of selecting an optimal matching
scheme, since multiple similarity measures and attributes can be used by different
linkage rules. However, genetic algorithms have to check many different configura-
tions to reach the convergence, which may not scale with large data sets.

Two different approaches to RL based on semi-supervised learning are proposed
in [25] and [37]. Both of the methods require a small set of record pairs, labelled
as match or non-match, to start the training process. The system in [25] is based
on the idea of self-learning. The set of labelled examples provided as an input is
used to initially train a classification model. The initial classification model is then
applied to classify the unseen data. A small percentage of the most confidently
classified record pairs is selected to iteratively train the classification model. The
process is repeated for a number of iterations, or until all the unseen data are
labelled. To maximise the performance of the model on unseen data, an ensemble
technique referred to as boosting is employed together with weighted Majority
Voting. The system relaxes the assumption on substantial training data set required
for constructing the classification model. It addresses the learning performance
problem by applying ensemble techniques to improve the accuracy. However, it
requires a number of parameters to be specified, including the maximum number
of iterations, and the percentages of the most confident matching and non-matching
examples to be selected in each iteration. It also relies on the selection of similarity
measures.

In [37], a links learning algorithm that requires only positive examples is
proposed. The authors refer to the fact that the public interlinked RDF data on the
Web provide only positive links and no negative examples are available. Therefore,
for a supervised machine learning method to be applied for link discovery, the user
has to provide the algorithm with negative examples. With the proposed approach, a
set of initial atomic link specifications that achieve the highest possible F -measure
for all known record pairs is selected. The link specifications are constructed using
different combinations of similarity measures and attributes. After deriving atomic
link specifications, an iterative search through a solution space is performed with
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F -measure as the score function, in order to compute more complex specifications.
This work somehow relaxes the assumption on labelled data. However, in many
realistic scenarios the positive links between records are not available. In fact,
in majority of cases, it is much easier to obtain negative links among records.
Therefore, the approach has limited application to realistic scenarios.

3.3 Unsupervised Record Linkage

Semi-supervised learning significantly reduces the number of manually labelled
examples required for generating an RL model. However, it still requires a certain
amount of human input in the training process. In this section, we provide an
overview of recently proposed approaches that try to completely remove the
requirement for labelled training data.

3.3.1 Graph-Based Models

A group of unsupervised models for collective RL, which use graphs to model
record’s structure, were proposed. In [51], RDF data are modelled as multi-type
graphs, and the collective RL is formulated as a multi-type graph summarisation
problem. With the multi-type graph, the vertices represent different types of proper-
ties (e.g. name, and title), and edges represent co-occurrence between two properties
or similarity between two properties of the same type. The similarities between the
vertices are calculated using a similarity measure. The RDF graph is then converted
into a summary graph, where the nodes representing different mentions of the same
entity belong to the same super node. The graph summarisation is considered as
an optimisation problem, which accommodates two types of similarities between
vertices. Inherent similarity described by the content of the nodes (string similarities
between their labels) and structural similarity reflecting connectivity patterns in the
multi-graph. The algorithm starts with a random summary graph. The number of
super nodes is fixed via backward search procedure, which repeatedly removes one
or many super nodes from the summary graph with the lowest information. Once
the number of super nodes is fixed, the assignment (of vertices to super nodes) is
optimised. The procedures are repeated until a locally optimal summary graph is
found.

In [49], a framework that takes into account content-based similarity and topo-
logical structure, to estimate probability that two records refer to the same entity, is
proposed. The framework is composed of two main components. First component
is responsible for generating a weighted bipartite graph between terms and pairs
of records. The graph represents the importance of terms and similarities of record
pairs. Two records are considered similar if they contain similar terms. A recursive
formula is applied for estimating the term’s weights and record’s similarities, where



3 Semi-supervised and Unsupervised Approaches to Record Pairs. . . 69

a term is assigned with a high weight if all the record pairs sharing the term
have high similarity. The similarity between two records is calculated as the sum
of normalised common terms’ weights. The second component is responsible for
constructing a weighted record graph to estimate the likelihood of two records
referring to the same entity based on a similarity function. The likelihoods are
estimated with a customised version of the standard random walk. The estimated
likelihoods are then applied to update the terms’ weights in the bipartite graph until
the join optimum can be found. The experimental evaluation showed that without
any labelled data the approach can be comparable to the crowd-assisted methods.

3.3.2 Bayesian Models

Recently, Bayesian methods and latent variable modelling have been explored in
unsupervised RL. In [38, 41], a Bayesian approach based on a parametric model
for categorical data is proposed. With this approach, matching and non-matching
records are modelled as a bipartite graph, with edges linking an observed record to
the latent entity to which it corresponds. All latent entities have true values for their
attributes and the attribute values of the associated records can be distorted from the
true values with some probability. The goal is to estimate the posterior distribution
of the linkage, which can be considered as a process of clustering similar records
to hypothesised latent entity. The model is estimated with a hybrid Markov chain
Monte Carlo algorithm [20]. It assumes conditional independence of records and
different attributes for the same record. Such a linkage structure allows for unified
representation of multi-source RL and deduplication under a single framework.
The model can only be applied to categorical data, which does not take under
consideration the distance between two different string representations that do not
exactly agree (e.g. different version of the same name). The Bayesian model also
requires the specification of the priors for the latent entities’ values, which may
be difficult to specify in particular for string values. Further advancements to this
model are made in [35]. The authors extend the model, to both categorical and string
values, using a coreference matrix. Similarly in [40], the model was extended to
incorporate non-categorical data using the empirical distribution of the data for each
attribute as the prior for the corresponding attribute values of the latent entities. An
advantage of Bayesian models is that they handle the uncertainty quantification for
the resulting estimates.

In [18], a method based on cluster matching is proposed to tackle the unsu-
pervised RL of multiple-type network data. The approach assumes that different
networks have common latent clusters, which have a specific interaction pattern
to other clusters (e.g. synonym groups in multiple lexical networks in multiple
languages or matching user communities in different friendship networks). The
goal is then to find matching clusters from different networks (unsupervised cluster
matching). A non-parametric Bayesian model is applied to cluster objects (nodes)
in different networks into shared set of clusters, assuming that interaction patterns
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between clusters are shared among different networks. Objects assigned to the
same clusters within a network are considered as matching. The cluster number
is automatically inferred using Dirichlet process. With the proposed method, every
object is assumed to be assigned into a cluster; however, in real-world scenarios
some objects may not be relevant. In [17], the model was expanded to address this
problem. The model estimates the cluster assignments and the relevance of objects
simultaneously. Consequently, only the objects that are relevant from the clusters
are considered, which improves the matching performance.

3.3.3 Learning-Based Approaches

Unsupervised learning methods, which allow us to train a classification model
without any ground truth data, have also been explored in the field of RL. An
approach that received a lot of interest is the one based on automatic self-learning.
Automatic self-learning methods eliminate the requirement for labelled data to be
provided as an input by generating its own initial training set. In [6], an approach to
automatic seed selection, referred to as nearest based, is applied. With the nearest-
based approach, all comparison vectors are sorted by their distances (e.g. Manhattan
or Euclidean distance) from the origin [0, 0, . . . ] and from the vector with all
similarities equal to 1 ([1, 1, . . . ]). Following this, the respective nearest vectors are
selected as match and non-match seeds. The number of match and non-match seeds
to be selected are taken as the input parameters to the method. The authors evaluate
three sizes of the non-match seeds, namely 1%, 5% and 10% of the entire data set.
Following this, an appropriate ratio of similarity vectors is selected as match seeds.
After selecting seeds, a classification model is trained incrementally following the
self-learning procedure. In the same work, it was observed that this approach did
not provide good quality match seeds when the data set contained only a small
number of matching records or there were some fields with a large proportion of
abbreviations.

In [26], an unsupervised system based on automatic self-learning for matching
entities in schema-free RDF files is proposed. The overall idea of the approach is
to generate its own heuristic training set, which can then be used for learning a
link specification function. In the training set generator process, each RDF file is
converted into bag-of-words document. Following this, the term frequencies and
inverse document frequencies together with a threshold are applied to eliminate
the obvious non-matching pairs. All selected pairs are further sorted in descending
order according to the Token-Jaccard similarity score. All pairs from the top of
the list (including only instances that occur at most once) are selected as positive
training examples. The negative training examples are generated by permuting the
pairs selected as positive examples. The selected training examples are applied
in the property alignment (attribute matching) step, using column similarities
of attributes over the matching and non-matching examples. Following this, the
training examples are converted into feature vectors. The two sets of feature vectors
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are then applied for training the classification model. It has been demonstrated in
the experimental evaluation that the proposed approach, with SVM as a learning
method, was competitive with the supervised SVM on some data sets.

In [24], an approach based on combination of ensemble learning and automatic
self-learning was proposed. Ensemble learning is a process of training and com-
bining a number of different classification models in order to improve the overall
performance. The initial training set is generated following the similar idea as in [6].
To improve the quality of the training set, they incorporate unsupervised attribute
weighting into the process of automatic selection of seeds. The authors propose
to first create multiple views of the record pairs by generating the comparison
vectors applying different matching schemes. Each matching scheme is composed
of different combinations of attributes and similarity measures. Following this, a
self-learning process is performed with each of the views individually. At the end,
the final classification decisions are made based on the combined predictions of
all individual models. In order to improve the final classifier ensemble model,
two unsupervised diversity measures are proposed; first one for selecting an
optimal combination of views and second one for selecting subset of the most
diverse self-learning models. Finally, they use the contribution ratio of the selected
self-learning models to eliminate those with poor accuracy. Application of multi-
view ensemble learning improves the learning process and allows to address the
problem of selecting the most appropriate matching schemes without labelled data.
However, application of ensemble learning causes increased number of record
comparisons performed in the linking process, which may not scale with larger data
sets given.

Approaches that generate their own training data have a clear advantage over
techniques such as AL, since they do not require any data to be labelled manually.
However, they rely on the selection of high-quality seeds, which is not trivial.
Most of them apply a similarity threshold to decide whether a pair of records is
similar/dissimilar enough to be included in the initial training set. Selection of an
appropriate threshold may require a deep knowledge of the data and the domain.

3.3.4 Objective Function Optimisation

In recent work, unsupervised techniques for RL based on maximising the value of
a pseudo F -measure [34] were proposed [33, 34]. Pseudo F -measure is formulated
based on the assumption that while different records often represent the same entity
in different repositories, distinct record within one data set is expected to denote
distinct entity. The main advantage of this measure is the fact that it can be calculated
using only unlabelled records.

For two sets of records, S and T , and a list of record pairs M ∈ S × T selected
by an algorithm as matches, the pseudo precision and pseudo recall are defined as
follows:
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P(M) = |s|∃t : (s, t) ∈ M|∑
s |t : (s, t) ∈ M| (3.5)

R(M) = |s|∃t : (s, t) ∈ M| + |t |∃s : (s, t) ∈ M|∑
s |S| + |T |

(3.6)

Following this, the pseudo F -measure is formulated as:

F(M) = (1+ β2)
P (M)R(M)

β2P(M)+ R(M)
(3.7)

The idea is to find the decision rule for record matching, which maximises the
value of the objective function (pseudo F -measure) applying genetic programming
[34] or a hierarchical grid search [33]. In both cases, a search space of RL
rules is formulated by manipulating weights and similarity measures for pairs of
attributes, modifying the similarity threshold values and changing the aggregation
function for individual similarities. Applying the pseudo F -measure to evaluate
the linkage performance allows to eliminate the requirement for labelled data,
and it also addresses the problem of selecting an optimal similarity measure.
However, a comparative analysis shows that there is a considerable gap between
their performance and that of supervised systems. Apart from this, a recent study
demonstrated that on real data the pseudo F -measure is often not correlated with
the true F -measure, which raises concerns about whether it can be applied to predict
the real accuracy of an RL model [33]. Finally, the method makes some assumptions
regarding the data set, which reduces its generality.

A novel optimisation approach to unsupervised RL is proposed in [23]. In
this work, a scoring technique using a weighted sum formulation is defined for
aggregating similarities between records. Considering a pair of records, the overall
similarity is measured as a weighted sum of similarities along each of the attributes
and using each of the available similarity measures. The goal of the method is
in learning the set of weights so that the aggregated similarity score estimate
the linkage likelihood effectively. Following this, an objective function is defined,
which is motivated by the unambiguity of the scoring. In other words, the aim
is to estimate the weights so that the result’s similarity scoring for each pair of
records is either closer to the lower extreme (match) or closer to the higher extreme
(non-match). A gradient decent algorithm is adopted for optimising the objective
function. Following the optimisation process, all the record pairs are ranked in
decreasing order according to their similarity scores. The method does not require
any labelled data, and it addresses the problem of similarity measure selection.
Given the nature of gradient decent algorithm, it is also more efficient when applied
with large data sets than some of the other existing approaches. However, for the
method to be applicable in a practical scenario, one would need to apply a cut-off
point in the ranked list, so that record pairs above the cut-off could be regarded as
match, and those below may be considered as non-match. Estimation of the cut-off
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point can be problematic without gold-standard labelled data, which narrows the
applicability of the proposed approach.

3.3.5 Knowledge Graph Embedding

Recently, great attention was given to learning embeddings of entities and relations
[4] in knowledge graphs to then use them for entity linking. A typical knowledge
graph is represented by triple facts of (head, label, tail) or (h, l, t), which indicate
that there exists a relationship of type label between the entities head and tail. A
knowledge graph is represented as KG = (E,R, T ) where E,R, T refer to entities,
relations and triples, respectively.

In [4], an energy-based model is used for learning low-dimensional embeddings
of entities and relations such that h + r � t . The aim is to find embeddings such
that, for two entities h, t and a relationship l, if (h, l, t) holds then the embedding of
t should be close to the embedding of t plus a vector that depends on l. The energy
function is defined as:

d(h, l, t) = ‖h+ r − t‖L1/L2 (3.8)

For a given set S of triplets, the embeddings are learnt via minimisation of the
objective function:

L =
∑

(h,l,t)∈S

∑
(h′,l′,t ′)∈S′

[γ + d(h, l, t)− d(h′, l′, t ′)]+ (3.9)

where [x]+ = max{0, x}, and S′ stands for negative sample set of S:

S′ = (h′, l, t)|h′ ∈ E ∪ (h, l, t ′)|t ′ ∈ E (3.10)

In later work, a number of methods which can deal with more complicated
relations were proposed [22, 29, 45]. In [52], a model was proposed which encodes
the embeddings of entities and relationships following [4] and [44] for each of
the multiple knowledge graphs. Following this, the knowledge embeddings from
different knowledge graphs are joined into unified semantic space using a small
seed set of linked entities. The knowledge-based embeddings and joint embeddings
are applied for linking entities from different knowledge graphs.

In [13], a self-learning algorithm was applied together with knowledge graph
embedding for unsupervised entity linking. The proposed model does not require
any prior linked entities. However, it assumes that the alignments between attributes
across the knowledge graphs are given. The proposed framework consists of two
components: knowledge graph embeddings and entity linking. The self-learning
is applied as a feedback mechanism from the entity linking to the graph knowl-
edge embeddings. In the first iteration, the knowledge embeddings are initialised
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randomly. Following this, the entity pairs are sorted according to their semantic
distance. The top entities are selected and labelled as matches. In the next iterations,
the learnt triples are used to update all the embeddings. The model was evaluated
on some of the RL data sets; however, it was not compared against any other type
of methods such as learning-based methods.

3.4 Limitations and Future Research Directions

The problem of semi-supervised and unsupervised RL has been addressed in a
vast number of studies in the past decade. The majority of the work in this area
has been focused on relaxing the assumptions on existence of a training data set
available for learning the linkage model. Following the aforementioned review, one
can note that significant progress was made in this area. The existing methods allow
to reduce the manual effort of labelling data or entirely eliminate it. However, the
existing approaches make some assumptions regarding the data, which limits their
application in real-world scenarios. Most of the existing work focuses on a scenario
where the data to be linked is structured and consists of records represented by a
common set of well-aligned attributes. Some RL methods were developed to deal
with data stored in the RDF format. Only a few of the aforementioned papers address
the problem of schema matching. Most of the work assumes that the pairs of records’
attributes to be used for comparison are given. The problem of selecting optimal
similarity measures has only been addressed in a few of the discussed papers.

Below, we list some topics that have not been addressed by any of the discussed
work on semi-supervised and unsupervised RL. The challenge related to those
topics rises in unsupervised scenarios, when no ground truth information is provided
regarding the matching status of the data to be linked.

– Unstructured and complex data. Nowadays, increasingly data is stored in free
text format, where no specific attributes are provided, for example, social media
posts, news article, emails and Web pages. With this type of data, preprocessing
and data extraction techniques need to be applied before the RL process can be
performed.

– Heterogeneous data types. Different data sources, even within the same domain,
can be extremely heterogeneous. For example, medical records of a patient can
be stored in many different formats, such as images, structured record in a
database or reports in a free text. In order to link such multi-type data, methods
for comparing and determining similarity between data in different formats are
required.

– Linking accuracy. Many different techniques of reducing or eliminating manually
labelled data from the learning process have been proposed. However, there is
still a gap between quality of the linking of the unsupervised and supervised
RL methods. Most of the aforementioned methods are based on similarity
values obtained from similarity measures and in some cases, additional relational
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information. This information have been proven to be very effective while linking
records with supervised RL techniques. Nevertheless, there is a need for some
more advanced approaches that can provide high linking quality when no labelled
data or domain expertise is provided.

3.5 Conclusions

In this paper, we provided an overview of the most recent advances in the unsu-
pervised and semi-supervised approaches to identifying pairs of records referring
to the same entity. In particular, we considered different techniques that have been
explored in order to relax the assumption on manually labelled data being available
for learning RL models. We first provided an introduction and talked about the
significance of RL as a part of a bigger data integration problem. We described
the RL process in more detail and provided a formal definition of the problem. We
also gave a list of data sets that are commonly applied for evaluation of different
RL models. We then looked in detail on two families of approaches, namely semi-
supervised and unsupervised. With semi-supervised approaches, we considered
crowdsource-based methods and learning-based techniques. Within the family of
unsupervised approaches, we covered graph-based models, learning-based models,
models based on an optimisation of an objective function and also knowledge graph
embedding models.

The focus of this chapter was to provide information on any of the recent
techniques that have been explored to address the problem of semi-supervised and
unsupervised RL. The chapter provides a good overview of the recent advances
and points out some remaining challenges and directions for future research. This
chapter should also be helpful for readers who are looking to decide about the most
appropriate RL model to use with their data.
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Chapter 4
A Review of Unsupervised and
Semi-supervised Blocking Methods for
Record Linkage

Kevin O’Hare, Anna Jurek-Loughrey, and Cassio de Campos

Abstract Record linkage, referred to also as entity resolution, is a process of
identifying records representing the same real-world entity (e.g. a person) across
varied data sources. To reduce the computational complexity associated with record
comparisons, a task referred to as blocking is commonly performed prior to the
linkage process. The blocking task involves partitioning records into blocks of
records and treating records from different blocks as not related to the same
entity. Following this, record linkage methods are applied within each block
significantly reducing the number of record comparisons. Most of the existing
blocking techniques require some degree of parameter selection in order to optimise
the performance for a particular dataset (e.g. attributes and blocking functions used
for splitting records into blocks). Optimal parameters can be selected manually but
this is expensive in terms of time and cost and assumes a domain expert to be
available. Automatic supervised blocking techniques have been proposed; however,
they require a set of labelled data in which the matching status of each record is
known. In the majority of real-world scenarios, we do not have any information
regarding the matching status of records obtained from multiple sources. Therefore,
there is a demand for blocking techniques that sufficiently reduce the number of
record comparisons with little to no human input or labelled data required. Given
the importance of the problem, recent research efforts have seen the development
of novel unsupervised and semi-supervised blocking techniques. In this chapter, we
review existing blocking techniques and discuss their advantages and disadvantages.
We detail other research areas that have recently arose and discuss other unresolved
issues that are still to be addressed.
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4.1 Record Linkage

Record Linkage (RL) is a process of identifying and linking pairs of records
from multiple data sources (e.g. databases) representing the same real-world
entity (referred to as matching records). An overview of a general RL process is
demonstrated in Fig. 4.1.

Records are first standardised in order to remove inconsistencies between
otherwise matching values. This may consist of removing non-alphanumeric char-
acters or replacing multiple spelling variations of the same word with a single
common spelling (e.g. “John”, “Johnny”, “Jon” → “John”). Following this, the
standardised records are divided into groups (blocks) in such a manner that records
within each group have a high chance of being linked in the subsequent linkage
process. This is necessary to reduce the computational cost of linkage as record
pair comparison is computationally expensive and grows in number exponentially
with dataset sizes. Figure 4.2 depicts a simple example of a blocking process in
which records are placed into blocks according to their Surname attribute value. In
this case, the blocking process reduces the comparison space from 45 comparisons(
i.e. n(n−1)

2 where n = number of records
)

to only 8 comparisons, 2 of which are of
matching record pairs (highlighted in green).

Fig. 4.1 General overview of RL process

Fig. 4.2 Example of a simple blocking scheme



4 A Review of Unsupervised and Semi-supervised Blocking Methods for. . . 81

Following blocking, linkage is performed exclusively on the record pairs within the
same block. The blocked record pairs are compared and assigned a similarity value
which informs whether they should be considered as a match, non-match or possible
match requiring further manual review.

A good blocking method places as many matching record pairs, and as few non-
matching record pairs into the same blocks allowing for an efficient subsequent
linkage phase. Blocking methods are commonly evaluated with labelled data (with
known matching status of each record pair) using evaluation metrics such as
Reduction Ratio (RR), Pairs Completeness (PC) and a harmonic mean FRR,PC

of RR and PC [21].

Definition 1 (Reduction Ratio) For two datasets, A and B, Reduction Ratio is
defined as:

RR = 1− N

|A| × |B| , (4.1)

where |A| × |B| is the total number of unique possible among both datasets, and
N ≤ (|A| × |B|) is the number of record pairs formed by a blocking method.

RR indicates how much the comparison space is reduced after the blocking phase.
In the example from Fig. 4.2, the potential comparison space is reduced from 45
record pairs to 8, which equates to RR = 1− 8

45 = 0.82̇.

Definition 2 (Pairs Completeness) Pairs Completeness is defined as:

PC = Nm

|M| , (4.2)

where Nm ≤ |M| is the number of matching record pairs contained within the
reduced comparison space after blocking, and |M| is the number of matches within
the entire dataset.

PC is the ratio of matching record pairs found within the formed blocks. In Fig. 4.2,
there are five record pairs that are considered matches (i.e. {R1, R6}, {R2, R7},
{R4, R8}, {R4, R9} and {R8, R9}) which equates to PC = 2

5 = 0.4.
One can notice that there is a trade-off between RR and PC. Comparing

all record pairs (placing all the records in the same block) minimises RR but
maximises PC, whereas performing no comparisons at all (placing each record in
an individual block) maximises RR and minimises PC. Ideally, one looks for a
blocking method that achieves an optimal degree of both RR and PC. A commonly
applied evaluation metric, which balances the trade-off between RR and PC, is the
harmonic mean of RR and PC.

Definition 3 (Harmonic Mean of RR and PC) For a given RR and PC, the
harmonic mean is defined as:
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FRR,PC = 2 · RR · PC

RR + PC
. (4.3)

A perfect blocking method optimises both RR and PC so that only matching record
pairs are compared. To perfectly partition record pairs in such a manner is a non-
trivial task. Many different automatic blocking methods have been proposed in order
to address it.

Supervised approaches use labelled training data to generate highly proficient
blocking methods. However, in the majority of real-world scenarios we do not have
any information regarding the matching status of records obtained from multiple
sources. Therefore, there is a significant demand for blocking approaches that can
achieve good proficiency with little or no need for labelled data.

In the following sections, we review existing unsupervised and semi-supervised
blocking methods discussing their advantages and disadvantages.

4.2 Blocking Approaches

In this section, we discuss different categories of blocking algorithms, providing
examples and details on how they work as well as what advantages and disadvan-
tages they have.

4.2.1 Standard Key-Based Blocking

Standard blocking uses a set of blocking keys to determine which records should be
placed in the same block. Consider a dataset of records R = r1, . . . , rn where each
record is represented by attributes from a scheme A = a1, . . . , am. Accordingly, we
can represent a record ri as [ri,1, . . . , ri,m], where ri,j is the value that the ith record
takes for the j th attribute. A blocking key is defined as follows:

Definition 4 (Blocking Key) A blocking key is an 〈aj , h〉 combination where
aj ∈ A is an attribute and h is an indexing function. For each ri ∈ R, h takes
ri,j as an input and provides a set of values, referred to as blocking key values
(BKV), as an output.

BKVs determine into which block(s) records are placed. Each unique BKV refers
to a specific block. Due to the complexity of datasets (which may contain a variety
of issues such as missing values, typographical errors, acronyms or initialisations),
a single blocking key is rarely likely to capture all matching record pairs efficiently.
Multiple blocking keys therefore tend to be used in the form of a blocking scheme.

Definition 5 (Blocking Schemes) Given a set of individual blocking keys, K =
k1, . . . , kk

′ , a blocking scheme is a combination of keys that are used collectively.
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Fig. 4.3 Example of a disjunctive blocking scheme. For clarity, only those blocks that contain
more than one record, and thus form at least one record pair, are presented

This combination can be disjunctive, 〈ki〉∪ . . .∪〈kj 〉, conjunctive, 〈ki〉∩ . . .∩〈kj 〉,
or a disjunction of conjunctions (Disjunctive Normal Form, DNF), 〈〈ki〉 ∩ . . . ∩
〈kj 〉〉 ∪ . . .∪ 〈〈k

i
′ 〉 ∩ . . . ∩ 〈k

j
′ 〉〉.

In Fig. 4.3, a disjunctive blocking scheme is applied (i.e. 〈First Name, 1st 3
characters〉 ∪ 〈Surname, Exact Match〉). This disjunctive blocking scheme captures
more of the matching record pairs (highlighted in green) than that of Fig. 4.2 but at
a cost of generating additional record comparisons.

Effective blocking schemes may be created manually by a domain expert [13, 16]
or can be automatically learned using a blocking scheme learning (BSL) algo-
rithm [6, 34, 47]. BSL algorithms tend to follow a common general approach in
which individual blocking keys are first evaluated and then ranked according to
a criteria (e.g. ratio of matches to non-matches). The top-ranked individual keys
continue to form conjunctions until a satisfaction criteria is met (e.g. maximum
number of record pairs formed, and maximum conjunction length). The top-ranked
keys and conjunctions are then selected as a blocking scheme.

BSL algorithms have been demonstrated to be very effective [6, 34, 47] but often
require labelled data in order to indicate the “best” keys and conjunctions in a
supervised manner [6, 47]. The problem of labelled data requirement for evaluating
blocking keys was addressed in [34]. In this work, an unsupervised BSL approach,
which automatically labels its own data from the target dataset, was proposed.
Records are first placed into blocks according to their commonly shared tokens
(i.e. individual words). Following this, a window of predetermined size is slid over
the records within each block. Record pairs within the window are then compared
using the (log) Term Frequency-Inverse Document Frequency (TF-IDF) measure
(Eq. (4.4)). The Log TF-IDF measure is formally defined as:

sim(t1, t2) =
∑

q∈t1∩t2

w(t1, q) · w(t2, q), (4.4)
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where

w(t, q) = w′(t, q)√∑
q∈t w′(t, q)2

, (4.5)

and

w′(t, q) = log(tft,q + 1) · log

( |R|
dfq

+ 1

)
(4.6)

where (t1, t2) represents a record pair, w(t, q) is the normalised TF-IDF weight of
a term q in a record t , tft,q represents the term frequency of q in t , |R| is the total
number of records in the dataset R and dfq is the document frequency of the term
q in the cohort. Predefined quantities of the most and least similar record pairs are
labelled as positives and negatives, respectively. All blocking keys are applied to
the labelled record pairs creating binary feature vectors (i.e. 1 or 0 if the record pair
agree or disagree by the respective key). Keys that cover above a predetermined
proportion of negative vectors are omitted from further consideration. If the
disjunction of all permitted keys is unable to cover a predetermined proportion of
the positive vectors, then a message is returned explaining that a blocking scheme
cannot be learned under the current parameters. Otherwise, the keys are ranked
by Fisher Score [15] and applied in descending order until the predetermined
proportion of positive vectors is covered. Keys that cover new positive vectors are
iteratively added to the blocking scheme. For DNF schemes, a similar approach
is taken except the list of permitted keys is supplemented by conjunctions of keys
restricted to a predetermined maximum conjunction length. Furthermore, only those
conjunctions that have Fisher Score equal to or greater than the average Fisher
Score of the permitted keys are added. The authors note that their work is the
only one to cast blocking scheme learning as a feature selection problem. Kejriwal
and Miranker [34] evaluate their unsupervised BSL approach against the supervised
baseline approach of Bilenko et al. [6] using RR, PC and FRR,PC . In [6], blocking
keys that cover too many negatives pairs, and negative pairs covered by too many
blocking keys are excluded from consideration. The remaining keys (and their
conjunctions if applicable) are then ranked by their ratio of covered positives to
covered negatives and applied iteratively as either a disjunctive or DNF blocking
scheme. In [34], experimental evaluations indicate that their novel unsupervised
BSL algorithm is seen to at least equal the performance of the supervised baseline
in most cases. The authors document great success for both the automatic labelling
and BSL approach for each dataset but it is worth noting that these experiments
were only carried out with a small number of small datasets, the largest of which
only containing 1295 records. Whether this holds for substantially larger datasets
of higher dimensions is unknown. A further potential issue is that the automatic
labelling approach requires comparing all record pairs of a dataset that share any
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common tokens (i.e. individual words). For substantially large datasets of high
dimension, this may be non-trivial to carry out.

q-Gram indexing [4, 9, 54, 56, 69] is a popular older unsupervised blocking
approach that extends upon standard blocking. It is commonly used as a benchmark
for other approaches to compare against as it is easy to comprehend and implement.
It was first generalised in [20] and experimentally evaluated using Bi-Grams (i.e.
q = 2) in [10]. The basic concept is that a defined blocking key is used to generate
BKVs for different records of a dataset, as per the standard blocking approach,
which are then split into lists of q-Grams (i.e. substrings of length q). Permutations
of sub-lists are then constructed according to a threshold value from 0.0 → 1.0.
The threshold value is multiplied by the length of the entire q-Gram list, and
the rounded answer dictates the length of the permutations of q-Gram sub-lists
to be constructed. The different permutations of sub-lists are then concatenated
to form different blocking keys. Inverted index blocks are then created for each
key with the records placed accordingly. Figure 4.4 depicts Bi-Gram indexing
being applied to the same records of Fig. 4.2. In this case, the DNF blocking key
〈First Name, 1st 3 characters〉 ∩ 〈Postcode, Last 3 characters〉 is used to generate
the individual BKVs. These BKVs are then split into Bi-Gram lists, and a threshold
of 0.6 is used to further generate the sub-lists. As each Bi-Gram list consists of 5
Bi-Grams, this results in 5× 0.6 = 3 sub-lists of Bi-grams per record. In this case,
the comparison space is reduced to only four unique record pair comparisons, all of
which are of matching record pairs (i.e. {R4, R8}, {R4, R9}, {R8, R9} and {R2, R7}).
q-Gram indexing of a dataset results in a maximum of O(n2

b
) comparisons where b

is the number of indices or blocks created. As such, the efficiency and complexity

Fig. 4.4 Example of q-Gram indexing where q = 2 (i.e. Bi-Gram indexing). For clarity, only
those blocks that contain more than one record, and thus form at least one record pair, are presented
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of q-Grams indexing is very much dependent upon the value of q used. Smaller
q values tend to better accommodate typographical errors between near-similar
BKVs of matching records but at a cost of generating more indices which adds
to the complexity. Conversely, larger values of q reduce complexity in that fewer
indices are created but at a potential cost to PC. Additionally, the q-Gram sub-list
generation time tends to be dominated by the recursive generation of sub-lists for
longer BKVs meaning that BKV length should also be considered when selecting
q [9]. By allowing records to be inserted into multiple blocks, q-Gram indexing
allows for fuzzy-matching which is a desirable quality in a blocking technique.

In [4], Bi-Gram indexing is shown to be superior to the standard blocking and
sorted neighbour (discussed in Sect. 4.2.3) approaches. However, in [26] q-Gram
indexing was compared to a number of other blocking approaches and was found to
be among the worst performing in terms of computational runtime. In [9], it is shown
that it is possible to estimate the overhead cost of q-Gram indexing. In the same
paper, the authors note that although q-Gram indexing tends to have higher PC than
standard blocking and sorted neighbour approaches, it also has poorer RR leading
to a more time-consuming linkage process. In [63], the authors state that weighting
every Bi-Gram equally negatively affects performance. In [54, 56], an extended
variation of q-Gram indexing is described which according to the authors improves
the standard variation by generating indexing keys with higher discriminability. In
doing so, they attempt to detect all of the duplicates that standard q-Gram indexing
would detect but in fewer comparisons. They achieve this by concatenating different
combinations of at least L = max(1, [k · T ]) sequential q-Grams of a BKV where
L is derived from user-defined parameters T ∈ [0, 1] and k, which is the number of
q-Grams in the original BKV.

Another extension to standard blocking is that of Suffix-Array-based indexing [1,
7, 54, 56] in which records are blocked according to a list of suffixes of minimum
length lm derived from the respective BKV of a record by a defined blocking key.
As one can imagine, the effectiveness of Suffix-Array-based indexing is dependent
upon the set value of lm. Smaller lm values result in larger lists of suffix values
meaning that each record is placed in more blocks, improving PC at a cost to RR.
On the other hand, large lm values result in shorter lists of more distinct suffix values,
improving RR but at a potential negative cost to PC. If lm is equal to the size
of the BKV itself, then the approach is no different than standard blocking. Very
common suffixes are often excluded from consideration as their inclusion results in
extremely large blocks. In [7], Suffix-Array-based indexing is shown to have some
of the lowest PC results among a number of blocking approaches for a number of
synthetically generated evaluation datasets. An extended variation of Suffix-Array-
based indexing is defined in [54, 56] in which all substrings of length lm of a BKV
are considered rather than just the suffixes. In [54], variations of both Suffix-Array-
based indexing and its extended variation are defined in which all tokens of all
values of all entities are used rather than BKVs generated from a defined blocking
key.
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4.2.2 Schema-Agnostic Blocking Approaches

A schema provides information regarding the attributes of a dataset (e.g. the number
of attributes, column names or data types). Often, prior knowledge of a dataset
schema is necessary in order to select and use the most discriminative attributes that
are resistant to error or missing values and in cases of heterogeneous data sources
are common to each dataset. With schema-agnostic blocking methods, no such prior
information is needed. In this subsection, we detail commonly used schema-agnostic
blocking approaches as well as some variations that improve upon their original
implementation.

A commonly used schema-agnostic blocking approach is Token-Blocking
[34, 36, 37, 51, 52] in which individual records are split into bags of all possible
tokens (individual words) and grouped by their commonly shared tokens. Figure 4.5
depicts Token-Blocking applied to the same records of Fig. 4.2. Token-Blocking
is favoured by many for a number of reasons. The basic concept is very easy
to comprehend and implement and is applicable to both homogeneous and
heterogeneous data sources. Matching record pairs are highly likely to share at
least one common token therefore this approach tends to result in high PC in
all datasets. A downside of Token-Blocking is that many non-matching record
pairs may also contain at least one common token, which results in low RR. A
variation of Token-Blocking improves upon this by grouping records by common
token sequences of length n rather than individual tokens. This improves RR

significantly but at a potential negative cost to PC. A recent research trend referred
to as Meta-blocking (discussed in Sect. 4.2.6) has been used to improve the RR of
Token-Blocking with little to no negative effect to PC.

Token-Blocking can be further improved by stipulating that the common tokens
between records must be present in the same attribute column(s) in order for the
records to be placed in the same block. For homogeneous cases, this is easy to
implement as every record of a single dataset inherently shares the same schema.
For heterogeneous cases, only those attributes that are common to each of the
multiple data sources may be used. With no knowledge about the schemas, it can be
difficult to tell which (if any) attributes are common to the multiple data sources.
A further issue for heterogeneous cases is that attributes that refer to the same
real-world values may have different column headings between data sources (i.e.
“First Name”, “1st Name”, “Name-1”, “Birth Name” or “Given Name”). Therefore,
multiple data sources may erroneously be declared as sharing no common attributes
when they in fact do but under different headings. In order to allow for improved
Token-Blocking for heterogeneous cases, one would need to identify the common
attributes without referencing the schema. Papadakis et al. [51] achieve this by
combining Token-Blocking with attribute clustering. Attribute clustering is a form
of schema matching in which a similarity value is assigned to attribute column
pairs between datasets. Highly similar attribute columns are clustered together and
thought of as referring to the same value. Token-Blocking is then performed in a
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way that only records that share a common token by clustered attributes are grouped
together. In the experimental evaluations of [51], attribute clustering combined with
Token-Blocking was seen to obtain near-equal PC to that of just Token-Blocking but
in substantially less comparisons in almost every case.

4.2.3 Sorted Neighbourhood

Sorted Neighbourhood [8, 22, 56, 74] is a simple sort and merge style unsupervised
blocking method. Records are first sorted in lexicographical order according to their
respective values from a user-defined sorting key (i.e. a concatenation of substring
values from an attribute or number of attributes). A window of fixed size is then
passed over the ordered sorting key values. Only records that fit within the window
at any given time are considered in the linkage phase. As no single sorting key is
likely to perfectly order the matches of a dataset adjacently, multiple sorting keys
tend to be used in independent passes as part of a Multi-Pass Sorted Neighbourhood
approach [4, 48]. Figure 4.6 demonstrates Sorted Neighbourhood applied to the
same records of Fig. 4.2 using windows of size 3. The sorting key value in this case
consists of the first letter of the First Name attribute value combined with the last
two characters of Postcode and the entire of Age (highlighted in green).

Fig. 4.5 Example of Token-Blocking. For clarity, only those blocks that contain more than one
record, and thus form at least one record pair, are presented
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Fig. 4.6 Example of sorted neighbour

Sorted Neighbourhood is an easy to comprehend and implement blocking approach
that dates back over 20 years, making it a staple go-to blocking method in
the world of RL. In [26], Sorted Neighbourhood was seen to generate fewer
false negatives than standard blocking and outperformed all other baseline
approaches in terms of computational runtime on average. However, in the
same paper Sorted Neighbourhood was also seen to generate more unnecessary
comparison pairs than some of the other approaches. Another limitation of Sorted
Neighbourhood is its dependency upon parameter choices such as window size
and the sorting key(s). A small window size ensures a low number of comparisons
but increases the risk of overlooking matching record pairs that do not happen
to be positioned near one another in an ordered list. Conversely, a large window
size increases the number of matching record pairs formed, but also the number of
non-matching record pairs. Attributes with low diversity are poor contributors to a
sorting key as many records could have the same attribute value (i.e. gender). If the
number of records with the same sorting key value is substantially larger than the
window size, many matching record pairs could be overlooked. In cases of sensitive
data, a schema may not be available making the manual definition of a sorting
key difficult. An additional downside of the Sorted Neighbourhood approach is
the computational demand in ordering lists of sorting key values. For very large
datasets, the ordering may become a computational bottleneck.

Variants of the Sorted Neighbourhood approach have been developed that
attempt to further improve upon its efficiency and effectiveness by overcoming
some of these disadvantages. One popular variant uses dynamic window sizing
[14, 33, 41, 56, 61, 68, 69, 73, 75] to overcome the issues associated with using
windows of a fixed size. Sorting key values are ordered lexicographically, as per the
original approach, and each value is compared to those preceding it in the ordered
list until a predetermined distance threshold is exceeded. Sorting key values that fall
within the distance threshold are considered “close”, as are their respective records.
Records associated with “close” sorting key values collectively form record pairs
for linkage. Dynamically sized windows are, in practice, often much smaller than a
fixed window size, but increase in size when necessary.

In [58, 61], the dynamic window sizing variant of Sorted Neighbourhood is used
to form index trees by which RL queries can be made in sub-second time. This type
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of RL process is referred to as Real-Time RL and is discussed in greater detail in
Sect. 4.2.7.

In [36], the authors note that Sorted Neighbourhood assumes that a sorting key
can be applied to all records of a dataset (or datasets) as they all share the same
attributes (i.e. schema). This is not always the case, such as with Resource Descrip-
tion Framework (RDF) data. Therefore, the authors adapt Sorted Neighbourhood
to make it applicable. They achieve this by defining sorting keys based on the
properties in the input RDF graphs, the subject Uniform Resource Identifiers (URI)
in the respective triples or both of them. This is discussed in greater detail in
Sect. 4.2.8.

In [57], a variation of Sorted Neighbourhood is proposed in which the ordered
sorting key values of a dataset have a window of size 2 passed over them. Window
sizes are dynamically and iteratively increased if any duplicates are detected within
them. By iteratively extending window size in this manner, windows only ever
become as large as necessary (i.e. until no further matches are found).

In [29], a variation of Sorted Neighbourhood referred to as Sorted Neighbour-
hood on Encrypted Fields (SNEF) is introduced which has the advantage of
being applicable to encrypted fields. Rather than being a blocking method in its
own right, it is an implementation that improves the quality of the record pairs
that are generated by an independent blocking method (a concept referred to as
Meta-Blocking which is explained in greater detail in Sect. 4.2.6). SNEF assigns
each blocked record a score according to a rank function which is based on
the results of the used blocking process. Records within each block are ranked
accordingly, and a window of fixed size is passed over them. The intuition being that
records within blocks that have similar rank scores are indicated as being especially
similar. Records that fit within this window form record pairs for comparison as per
the general Sorted Neighbourhood approach.

To better scale Sorted Neighbourhood for large datasets, it has been combined
with the MapReduce framework [39, 40, 44, 46]. During the Mapping stage of
the MapReduce framework, the workload of finding sorting key values for different
records is partitioned so that it can be ran in parallel by many computers, rather than
sequentially by a single computer. During the subsequent Reduce stage, the records
are partitioned to each computer by sorting key values and then reduced into pairs
that share the same sorting key value.

Collectively, these variations overcome many of the disadvantages of Sorted
Neighbourhood, but parameter selection and the need for a domain expert tend to
remain an issue. In many cases, there is still a reliance upon a domain expert to
define the, potentially multiple, sorting keys that are needed. In [5], the automatic
learning of sorting keys was explored but assumes the existence of labelled data.
Additionally, although the dynamic window sizing approaches avoid selection of
a fixed window size, there is still a need to select a distance threshold value by
which the windows change size dynamically. This entails many of the same issues
associated with selecting a fixed window size, albeit to a much lesser extent.
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Fig. 4.7 Example of canopy clustering

4.2.4 Clustering-Based Blocking Methods

Clustering is a process by which records are divided into groups so that each record
is similar to the records within the same cluster (similar according to a given
similarity function) and dissimilar to records from different clusters. Overlapping
clusters may be constructed if records are permitted to be assigned to more than one
cluster. Adapted versions of the general clustering algorithm have been used as an
alternative to blocking or to aid part of the blocking process.

Canopy Clustering [3, 6, 32, 35, 45] is an adapted version of the general
clustering algorithm, that forms overlapping clusters of similar records. In Canopy
Clustering, a record is chosen (potentially at random) as a centroid, and all other
records within a loose distance threshold of it form a canopy. The centroid of a
canopy and all records within a t ight distance threshold of it form an inner circle
of especially similar records, that are excluded from becoming the centroid of
any new canopy. Additional (non-excluded) records are chosen as centroids, and
new canopies are formed in the same manner. This is best illustrated in Fig. 4.7
by centroids A, B, C and D having an inner circle of t ight distance threshold
records and outer circle of loose distance threshold records (i.e. thresholdloose >

thresholdtight ). Note that the t ight records of the different canopies never overlap.
This ensures welcome overlapping of diverse canopies that cover many records
collectively.

A disadvantage of Canopy Clustering is that its efficiency and effectiveness
are very much reliant upon appropriate selection of parameters, namely the
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loose and t ight distance threshold values and the number of centroids.
In [4], Canopy Clustering is shown to outperform standard blocking and sorted
neighbourhood when appropriate parameters are selected; however, selection of
such parameters can be difficult. Overly, loose distance threshold values may cause
very large clusters to be generated resulting in poor RR and exceptionally long
linkage runtime. On the other hand, selecting overly strict distance threshold values
can result in very small clusters to be generated, which may fail to capture many of
the matches within a dataset resulting in poor PC. Canopy Clustering complexity
is dependent upon the selected number of centroids, as every other record must be
compared to each of the centroids during the Canopy Clustering process. A smaller
number of centroids therefore increase the efficiency of the clustering process,
but at a potential cost to RR as large clusters may be generated. Conversely, a
larger number of centroids may improve PC, especially if overlapping clusters are
permitted, but at a cost to clustering efficiency. Therefore, poor parameter selection
may result in the formation of a small number of large clusters (poor RR) containing
most matching pairs (good PC), or a large number of small clusters (good RR)
containing few matching pairs (poor PC). Determining which records to use as
centroids is equally important. If multiple records referring to the same real-world
entity are used as centroids of different clusters, then many matching record pairs
may be overlooked, especially if clusters are not allowed to overlap.

In [18], a clustering approach based on the string similarity between BKVs is
used to iteratively form blocks with regulated size. Between each iteration, a block
quality and block size trade-off is used to determine which overly small blocks
should be merged in order to improve PC and which overly large blocks should be
further partitioned in order to improve RR. The authors acknowledge that although
their BSL approach takes longer than that of the baselines, they achieve superior RR

because of the regulated block sizes. They also detail that in their evaluations they
manually determined the blocking keys, and the order in which they should further
partition the overly large blocks. Automatic learning of blocking keys was left for
future work.

4.2.5 Locality-Sensitive Hashing

Locality-Sensitive Hashing (LSH)-based blocking approaches [11, 19, 25, 31, 38,
42, 50, 64, 67, 71] use several functions selected from a family of hash functions
to convert records into hash key values of a fixed size and placed into buckets of
similar records according to their respective hash key values. By stipulating that the
family of hash functions are locality-sensitive to a distance metric d, one ensures
that the probability of generating the same hash key value by a hash function is
dependent upon the distance between both records. Therefore, similar records are
likely to generate the same hash key value by a particular hash function. In this
section, we describe LSH when used with Jaccard Similarity, but other variants of
LSH may be adapted for use with other distance metrics.
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Definition 6 (Jaccard Similarity) The Jaccard Similarity of two sets of elements,
A and B, is defined as the ratio of the size of their intersection to the size of their
union (i.e. A∩B

A∪B
)

Records are first divided into sets of substrings of length k referred to as k-shingles,
a similar process to that of q-Gram Indexing discussed in Sect. 4.2.2. Just like with
q-Gram Indexing, a desirable k value is one small enough so that typographical
errors between near-similar record pairs are accounted for, but also large enough so
that the generated shingle sets are of reasonable size so complexity does not become
an issue.

For large datasets, storing all shingle sets of the respective records would be
inefficient as there would be many repeated elements of length k. Instead, the shingle
sets are used to form a sparse Boolean matrix in which the rows represent the
universal shingle set (with each element thought of as a hash function, h()) and
the columns represent each record. 1s and 0s are used to represent if the respective
record of a column does or does not contain the respective shingle element of
each row. Therefore, highly similar columns contain 1’s for many of the same
hash functions; which also means that they, and their respective records, have high
Jaccard Similarity. In Fig. 4.8, we see a Boolean matrix constructed for the same
records as that of Fig. 4.2 when using shingles of size k = 2 (i.e. Bi-Grams). For
clarity, only a small sample of the universal 2-shingle set for this case is presented.

Fig. 4.8 Example of a Boolean matrix
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Different hash functions from a Boolean matrix can be combined to form hash
table functions by which records can be placed into hash tables. A single hash
table function cannot be expected to perfectly partition a dataset into hash tables.
Therefore, multiple hash table functions are often required in order to achieve good
blocking results.

LSH is attractive as a blocking approach for a number of reasons. It can
have time complexity as low as O(n), making it highly scalable for even large
and highly dimensional datasets. LSH may also be leveraged over similarity
spaces (e.g. semantic similarity, and textual similarity) to improve block quality
by removing repeated or redundant pairs without negatively affecting accuracy [71].
As individual records are converted into Boolean vectors the approach lends itself to
privacy-preserving record linkage. With only alphanumeric characters (i.e. A → Z

and 0 → 9) and spaces, the maximum number of unique k-shingles is limited to
(26 + 10 + 1)k . However, in reality the actual number is often much smaller as
many k-shingles are unlikely to occur in real-world datasets.

Manual parameter setting is often needed when using LSH (e.g. k for k-
shingling, and L for the number of hash table functions). The authors of [38]
note that despite LSH ’s fast and effective performance it suffers from a number
of drawbacks that make it unsuitable for large-scale record linkage. In particular,
they highlight the memory requirement during the hash table generation process
and the high runtime for datasets with many duplicates. Other papers have modified
or adapted LSH as part of more complex blocking approaches that aim to overcome
some of these drawbacks. A simple Hamming distance-based LSH variation is
described in [19, 31, 42]. In this variation, values in randomly and uniformly chosen
ith positions of the universal shingle set are used to construct hash table functions.
In the same papers, the authors describe a Euclidean distance-based variation of
LSH , in which vectors of records are projected onto a Euclidean space allowing
for nearby points to be grouped together. This concept of mapping entries to a
multidimensional vector space has been well documented in older works such as
FastMap [17], StringMap [27], MetricMap [70] and SparseMap [24].

In the proceeding subsection, we give special attention to a particular variation
of LSH that has been adopted in a considerable number of recent research efforts.

4.2.5.1 LSH with MinHashing

MinHashing allows for the formation of a much smaller representation of a
Boolean matrix, that still allows for a comparable estimation of the Jaccard
similarity of two records by their respective columns. The MinHash function,
h(C), takes the value of the first row in which 1 appears in a column C. Applied
to the Boolean matrix of Table 4.1, we get {1, 3, 1, 1} for columns {C1, C2, C3, C4},
respectively (note 1 appears in the top row of columns C1, C3 and C4 but in the
third row for column C2). If the rows of a Boolean matrix are randomly permuted
(Orderings in Table 4.1), the probability that a row’s hash function assigns two
columns the same MinHash value is approximately the same as their Jaccard
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Table 4.1 Example of a Boolean matrix converted into a signature matrix

Boolean matrix Orderings

Shingles C1 C2 C3 C4 O1 O2 O3

s1 1 0 1 1 2 2 4

s2 1 0 1 1 3 10 6 Signature matrix

s3 0 1 0 0 6 4 3 C1 C2 C3 C4

s4 1 0 1 1 5 3 7 O1 1 4 1 1

s5 0 1 0 0 → 4 7 5 → O2 2 1 1 2

s6 1 0 1 1 1 5 1 O3 1 3 1 1

s7 1 0 1 1 7 8 2

s8 0 1 1 0 8 1 9

s9 0 1 0 0 9 9 10

s10 0 1 0 0 10 6 8

Similarity. MinHash signatures are generated for each record by concatenating
the individual MinHash values for each record across multiple random row order
permutations. In other words, the number of permutations dictates the length of the
MinHash signature value.

The Jaccard Similarity of a pair of MinHash signatures (fraction of MinHash

values in which they agree) is approximately equal to that of the Jaccard similarity
of their respective columns. Similar MinHash signatures are therefore indicative
of similar record pairs. The higher the number of permutations used to create the
MinHash signatures, the lower the expected error. In Table 4.1, C1 and C4 have
identical MinHash signatures, and looking at the Boolean matrix we see that this
is also the case for their Boolean vectors. Blocking only the pairs with exactly
matching signatures would be naive as even near-similar record pairs may have
different MinHash values for some hash functions (e.g. {C1, C3} and {C3, C4}).
Instead, the columns of the signature matrix are separated into l bands of m

MinHash values each. Columns containing the same MinHash vector in each
band are then blocked together as they match for that part of the signature.

MinHash LSH has an advantage over standard LSH in that different hash table
functions no longer require definition. Instead, the MinHash function is used
iteratively upon a Boolean matrix with its rows permuted between each iteration. l

and m values require definition for banding the signature matrix. However, these are
arguably easier parameters to set with than the large number of hash table functions
that potentially exist as part of the basic LSH approach. This is especially true for
cases in which the universal shingle set is of considerable size.

MinHash LSH has been used in a considerable number of recent research
papers [11, 31, 64, 71] due to it being fast, effective and relatively easy to implement.
In [64], the authors note that due to the semi-structured nature of data of the
Web, some data source schemas can potentially consist of thousands of attributes.
They acknowledge that the comparison of all attribute pairs for the purpose of
scheme matching is impracticable and, therefore, propose a MinHash LSH-based
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preprocess to reduce this comparison space significantly. The set of attributes is
represented as a matrix where each column is a vector of the attributes determined by
a weight function. By iteratively permuting the rows of the matrix and concatenating
the different MinHash values for each column, MinHash signatures can be
constructed for the attributes represented by each column. The MinHash signatures
of each attribute are then partitioned into l bands of size m. Only the attributes of
columns that agree by at least one MinHash signature band are then passed onto a
subsequent attribute-match induction algorithm, thus reducing the comparison space
significantly. In [11, 71], MinHash LSH is combined with semantic constraints in
order to better pair records based on both their textual and conceptual similarity.
In adding an additional filter by which record pairs must agree, the comparison
space formed by MinHash LSH is further reduced with little to no negative impact
upon PC. This improves RL quality overall. In [31], LSH was combined with a
homomorphic matching technique in order to allow for privacy-preserving record
linkage. The authors of this paper also state that in their experimental evaluation,
a Hamming distance variation of the LSH approach was able to achieve superior
results than that of the popular MinHash LSH variation. In [38], the authors extend
MinHash LSH to form an iterative match-merge LSH approach that reuses a single
hash table, greatly reducing the hash table generation time. As records are placed
into their respective MinHash buckets, they are checked against any already placed
records. If the newly placed record contains some or all of an already placed record,
a merge or replacement occurs accordingly. This process iteratively continues (for
all records) until a termination condition is met; that is, the reduction ratio of the
ith iteration is below a predetermined threshold. Every match-merge step that is
performed results in both a smaller record set and hash table. This is reflected in the
respective experimental evaluations in which this extended variation was observed
to operate up to 5.6 times faster than standard LSH whilst maintaining equivalent
accuracy.

4.2.6 Meta-blocking and Progressive-Blocking

Meta-Blocking methods [12, 30, 49, 51, 53, 55, 64] aim to improve the efficiency of
how linkage is performed following a blocking process. This may be achieved by
restructuring the blocks prior to linkage (Meta-Blocking), or managing how they are
processed during linkage (Progressive-Blocking), rather than by simply performing
all record pair comparisons arbitrarily.

Meta-Blocking improves the linkage efficiency of a block collection by prioritis-
ing the most promising blocks or record pairs. In [51], the authors observe that a
record paired with many other records within a block collection is unlikely to match
with any of them during linkage. To omit such record pairs from the linkage process
would therefore be useful as the number of comparisons could be reduced with
negligible cost to recall. Meta-Blocking approaches commonly accomplish this by
building a graph to represent the entity-to-block relationships of a block collection.
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In such a graph, nodes represent the individual records of a block collection, and
edges between records indicate co-occurrence of these records in at least one block.
Information from this graph can then be leveraged to indicate the most similar record
pairs within the blocks. In [51, 53, 55, 64], Meta-Blocking has been used to further
improve the RL efficiency of the unsupervised and schema-agnostic token blocking
approach by only performing linkage upon blocks or record pairs indicated as
most promising. The linkage process then continues until a cost/gain approximation
indicates finding further matches to be too costly. In [64], the authors combine
attribute clustering, token blocking and Meta-Blocking to form an unsupervised
blocking approach they refer to as the “BLAST Approach”. The blocking and
Meta-Blocking stages are evaluated with Pairs Quality (PQ) (Eq. (4.7)) used as a
surrogate for precision alongside PC and FPQ,PC , where tp is the number of true
positives (matches correctly classified as matches) and fp is the number of false
positives (non-matches incorrectly classified as matches).

PQ = |tp|
|tp| + |fp| . (4.7)

In their experimental evaluations, PQ was seen to greatly improve, whilst maintain-
ing high PC. Their approach was observed to perform equal to or better than other
blocking and Meta-Blocking approaches.

Progressive-Blocking techniques aim to learn and adapt as they progress so as to
improve the likelihood of detecting additional duplicates with minimal additional
effort. A progressive Sorted Neighbourhood approach [57] was described earlier in
Sect. 4.2.3 in which small windows that contain duplicates are extended in size in
the hope of detecting further duplicates. Iterative blocking [23, 52, 55, 72] is another
progressive approach in which any record pair classified as a match during linkage
is merged and distributed to all other blocks containing either record, replacing the
original record in the process. This implementation likely improves PC, because
what would have been previously overlooked matches now have a higher chance
of being detected due to the transitive relation of matching record pairs. Efficiency
also tends to improve in a progressive convergent manner as the repeated merging,
distribution and replacement of individual records with merged records in earlier
blocks saves the overall processing time of subsequent blocks.

4.2.7 Blocking for Real-Time RL

The approaches presented so far in this chapter describe unsupervised and semi-
supervised blocking methods for batch RL of structured relational datasets. In
batch RL, the general RL process from Fig. 4.1 is enacted in its entirety upon a
dataset or datasets. Ideally, placing most matching record pairs in blocks with few
non-matching pairs so that the computational demand of the subsequent linkage
process is reduced. Real-Time RL, on the other hand, involves a query record
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being matched against records from possibly multiple, typically disparate, large
data sources. For batch RL, runtime can be expected to be considerable if the
datasets are of substantial size or complexity, but in real-time RL queries are ideally
processed in sub-second runtime. In this section, we detail some real-time RL

blocking techniques that help achieve this goal.
In [43], an LSH blocking approach (Sect. 4.2.5) is made scalable to large-scale

dynamic datasets and query-able by combining it with a dynamic sorting tree. In this
approach, the records of large LSH blocks are sorted, and a window is passed over
them in order to return the nearest neighbours of a query record. The authors note
that as MinHash LSH involves a random permutation of rows when forming LSH

blocks, a predefined fixed sorting key may result in an entire block being returned
as a query result. To overcome this issue, the authors define a scoring function by
which one or several attributes that contain many unique and well-distributed values
may be selected as a sorting key. In their experimental evaluations, the authors
demonstrate that combining LSH with dynamic sorting trees results in much lower
query times than that of LSH alone. They further state that their approach can be
effective and efficiently used for large-scale real-time RL cases. This is particularly
true for noisy data, as LSH operates on a k-Gram level.

In [58], a forest-based sorted neighbourhood indexing technique is proposed that
aims to facilitate real-time RL by using multiple distinct index trees with different
sorting keys. In this approach, an initial build phase constructs index trees using
records from an existing database. A subsequent query phase then allows for the
built index to be queried and all relevant entries to be retrieved with the index
updated in the process. The tree data structure consists of braided trees, referred
to as AV L trees [62], that combine a height balanced binary tree property with
a double-linked list. Every node in the tree is linked to its alphabetically sorted
predecessor and successor nodes, with a list of identifiers of all records that have
the respective nodes key value as their sorting key value. The nodes of the tree
are sorted alphabetically by these sorting key values where a sorting key value is
generated for each record in the database, and a record identifier is inserted into
the tree based on the sorting key value. Record identifiers of records with matching
sorting key values are listed together to the same node as a list. This allows for
sorting key value searching to be reduced from O(log(n)), as per array-based
indexing, to O(log(k)) given that there are k different nodes in a tree, n records
in a dataset and k < n. Multiple different sorting key values are used during the
build phase to construct multiple trees with records inserted into every tree where
applicable as a node. A query record is inserted into all of the respective nodes of
the different trees according to the sorting key used to generate them. For a single
tree, all candidate records of all nodes within a window to the node containing the
query record are considered candidate matches to the query record. This repeats
for all trees forming a collective set of candidate matches to the query record. In
their experimental evaluations, the authors experiment with both fixed and adaptive
window size. The authors state that by using multiple trees blocking is noticeably
improved over use of single trees with only a minor increase to the average insertion
and query time. In the worst case, the achieved times are still considerably fast, that
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is∼1 ms insertion time and∼15 ms query time, respectively, when using three trees.
In their experimental evaluations, they found that their approach was able to perform
over one order of magnitude faster than that of a similar baseline approach [60]. The
same authors of [58] improve upon this work in another paper [59] by combining
it with automatic learning of keys used for constructing the multiple trees. They
achieve this by generating weakly labelled training data using the approach of [34]
which was described earlier in Sect. 4.2.1. With their weakly labelled data, they
evaluate individual keys and select those deemed most appropriate for real-time RL

according to a scoring function that considers three factors: key coverage, generated
block sizes and distribution of block sizes. The ideal keys are those that have high
coverage, low average block size and low variance between block sizes. In their
experimental evaluations, they evaluate the real-time RL approach of their previous
paper using keys selected by this technique, against those selected by the blocking
key selection technique of [34]. Note that in the baseline paper optimal keys were
selected for standard blocking not real-time RL. They find that their selection
technique chooses significantly better keys for real-time RL than the baseline in
terms of query time, with comparable recall for two of the three evaluation datasets
and only a 5% decrease over the baseline for the third dataset.

4.2.8 Blocking for RDF Data

Resource Description Framework (RDF) is a series of specifications for conceptu-
ally describing or modelling information among Web resources. Web information
may be represented as an RDF triple. That is, a statement in the form of a
Subject–Predicate–Object expression where a Subject is connected to an Object

by a Predicate (a verb) that details the type of relationship between the two.
Predicates may take multiple values unlike attributes in relational RL [2].
Representing Web information resources in this manner allows for their blocking
and interlinking among multiple knowledge bases. Much recent work has focused
on the blocking and linking of RDF data, a process commonly referred to as
instance matching or link discovery.

In [32], a two-step blocking scheme learner for scalable linkage discovery is
presented. With the proposed approach, an optional unsupervised dataset mapping
is first performed between a pair of dataset collections (arbitrary mixes of RDF and
tabular datasets). Matrices are generated using the dot product of the normalised
term (individual token) frequency vectors of two datasets. Pairs between collections
are then mapped according to a confidence function of the max Hungarian algo-
rithm [28] applied to a respective matrix. Following this, Mapped pairs proceed
to a second step which learns a link-discovery blocking scheme. RDF datasets
are reconciled with the tabular datasets by representing them as property tables.
From this point onwards, the problem is reduced to the more common problem
of learning effective blocking schemes for tabular datasets with differing schemas.
The authors use the same BSL approach as that of their earlier work in [34]
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(discussed in Sect. 4.2.1) and incorporate bagging (random sampling) in case there
are an insufficient number of training examples. In cases where there are no
training examples at all, they suggest using the automatic training set generation
algorithm presented in the same earlier paper. In their experimental evaluations,
perfect mapping was achieved in all three test sets. Furthermore, their approach
outperformed the baseline regardless of whether it was completely unsupervised or
provided with a perfectly labelled training set. As this approach incorporates much
of [34], it has many of the same advantages and disadvantages that were discussed
in Sect. 4.2.1.

In [65, 66], an approach is presented that selects candidate pairs by discriminating
keys chosen using domain-independent unsupervised learning. The same authors
of both papers present this work for RDF , but state in [66] that it generalises
to structured datasets too. Starting with a set of triples, all data-type Predicates

and instances are extracted. For each Predicates, all Object values are retrieved,
and three metrics (Discriminability, Coverage and FDis,Cov) are computed.
Discriminability gives an indication of the diversity of a Predicate and is
defined as the ratio of its number of unique respective Object values to its total
number of respective Object values. Any Predicates with Discriminability less
than a pre-defined threshold value are immediately omitted from consideration as
many instances have the same Object values on this Predicate which indicates
poor RR. Coverage is the ratio of the number of instances a key covers to that of
the total number of instances, indicating the Coverage of a Predicate. FDis,Cov

is the harmonic mean of Discriminability and Coverage and is used to indicate
how well a Predicate achieves a balance of being highly discriminative whilst
covering a large number of instances. The Predicate with the highest FDis,Cov

value is selected as the candidate selection key, provided that it is higher than a
predetermined threshold value. If no suitable Predicate is found, then conjunctions
of Predicates are iteratively explored until one is. Triples are indexed according
to the selected key and when selecting candidate pairs only those with n-Gram
similarity above a pre-defined threshold value are returned. In both papers, the
proposed method outperforms the baselines but the authors admit to a number of
potential problems. Firstly, they cannot be sure what effect values such as phone
numbers may have on the size of the returned candidate sets. This is due to how
their approach retrieves candidate pairs based on common n-Gram’s, and is never
evaluated using numerical data. Given data primarily describing instances in the
same geographic area, one can expect many phone numbers to share the same prefix;
therefore, oversized candidate sets would be expected. Another issue they state is
that as their algorithm looks for exact matching on query tokens when looking
up similar instances within the index that not all co-referent instances for a given
instance may be retried in poor quality datasets. They leave addressing this issue
with fuzzy matching as an area for future research.
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4.3 Conclusion

In this chapter, we discussed different categories of unsupervised and semi-super-
vised blocking methods giving examples of each and stating their advantages and
disadvantages. A number of simple blocking approaches were initially presented
that have been used for many years now. These simple approaches have been shown
to perform especially well when a domain expert with intrinsic knowledge of the
target data is at hand as they can effectively set the necessary parameters.

It was also discussed that under different circumstances (e.g. sensitive data, lack
of domain expert, RDF data and RL queries) the simple blocking approaches
may no longer be suitable therefore requiring more advanced approaches specific
to these circumstances. For each circumstance, it was explained how different
advanced blocking approaches came to be and are applicable where simple blocking
approaches are not. The ultimate goal of unsupervised blocking research is for
the development of unsupervised blocking approaches that are completely free of
parameters. The approaches presented in this chapter may be unsupervised but
operating completely parameter-free persists as a goal to be achieved. Areas of
research that have arose as a result of blocking research were also discussed,
namely Meta-Blocking, Progressive Blocking approaches and blocking approaches
for RDF data. As datasets become increasingly larger and we look to the Web
for their storage, one can predict that these particular areas of research will
become increasingly relevant. With such exponential growth, the development of
unsupervised blocking approaches for exceptionally large-scale data is expected to
continue as a relevant topic of research.
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Chapter 5
Traffic Sensing and Assessing in Digital
Transportation Systems

Hana Rabbouch, Foued Saâdaoui, and Rafaa Mraihi

Abstract By integrating relevant vision technologies, based on multiview data
and parsimonious models, into the transportation system’s infrastructure and in
vehicles themselves, the main transportation problems can be alleviated and road
safety improved along with an increase in economic productivity. This new cooper-
ative environment integrates networking, electronic, and computing technologies,
will enable safer roads, and achieve more efficient mobility and minimize the
environmental impact. It is within this context of digital transportation systems
that this chapter attempts to review the main concepts of intelligent road traffic
management. We begin by summarizing the most best-known vehicle recording
and counting devices, the major interrelated transportation problems, especially the
congestion and pollution. The main physical variables governing the urban traffic
and factors responsible for transportation problems as well as the common assessing
methodologies are overviewed. Graphics and real-life shots are occasionally used to
clearly depict the reported concepts. Then, in direct relation to the recent literature
on surveillance based on computer vision and image processing, the most efficient
counting techniques published over the few last years are reviewed and commented.
Their few drawbacks are underlined and the prospects for improvement are briefly
expressed. This chapter could be used not only as a pedagogical guide, but also as
a practical reference which explains efficient implementing of traffic management
systems into new smart cities.
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5.1 Introduction

Since antiquity, transportation has been one of the most vital factors contributing
to the global economic growth. In the beginning, water and land lanes were the
dominant transportation paradigms. With industrial revolutions came improvements
in road construction, the railways, and the airplane [10]. Today, in the digital
information age, the challenge is for global management efficiency in a new world
governed by economic alliances, environmental concerns, and logistic and trade
agreements. Thus, in this digital-focused world, effective transportation manage-
ment has never been as important as it is right now. In the new transportation
systems, several interacting and related objectives are to be considered and need to
be optimized, such as efficient traffic management, efficient moving of people, and
freight, reduce transportation-related emissions, and accurate prediction of real-time
vehicle and pedestrian flows. Intelligent transportation systems (ITS) have emerged
as the cost-effective technology that have the potential to support all these objectives
[57]. The ITS are drastically changing the way we commute by reducing traffic
congestion and vehicle collisions, both of which significantly improve road safety,
while decreasing pollution. The ITS encompass a multitude of techniques from
fundamental management systems such as traffic signal control systems, containers
management, plate recognition, or speed cameras to monitor applications, such
as closed-circuit television systems. With the rise of Information Technology and
Communications (ITC), leading to high resolution digital shooting techniques and
accessibility of intelligent beacon sensors, it becomes possible to enhance the
technical capabilities to facilitate benefits from transportation systems throughout
the world. We especially note the emergence of smart applications that include
online data processing and feedback from other transportation sources, such as
smart vehicles and parkings, geographical information systems (GIS), and weather
information [15].

By carefully integrating relevant technologies, based on both reliable data
sets and significant and parsimonious models, into the transportation system’s
infrastructure and in vehicles themselves, the main above-mentioned transportation
problems can be alleviated and road safety improved along with an increase in
productivity. This new dynamic interface integrates networking, electronic, and
computing technologies, and will enable safer roads, and achieve more efficient
mobility and minimize the environmental impact [15]. On the other hand, fusing
heterogeneous traffic information is becoming a major support leading to a fastest
growth of the ITS [20]. A variety of data collecting and communicating methods
used in ITS, such as sensors and communication networks, bring about huge
volumes of data that need to be implemented in the main transportation applications
and the related innovation on smart cities. Indeed, in order to provide more
accurate decisions about the traffic on a road network, the conventional traffic
sensors used to measure the prevailing traffic need to well interconnected and better
optimized. Several sources of data, such as cameras, radars, GPS, and cell phone
tracking, could be used to complement the information provided by conventional
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techniques. Multiple sources provide complementary data, and multi-source data
fusion can produce a better understanding of the observed situation by decreasing
the uncertainty related to the individual sources. On this basis, developing a data-
driven ITS could offer a well-adapted answer to the operational needs of traffic
management centers and traffic information operators, allowing them to achieve
their goal more efficiently.

It is within this context of digital transportation systems that this chapter attempts
to review the main concepts of the road traffic management and ITS. We begin
by summarizing the most best-known vehicle recording and counting devices, the
major interrelated transportation problems, especially the congestion and pollution.
The main physical variables governing the urban traffic and factors responsible
for transportation problems as well as the common assessing methodologies are
overviewed. Graphics and real-life shots are occasionally used to clearly depict the
reported concepts. Then, in direct relation to the recent literature on surveillance
based on computer vision and image processing, the most efficient counting
techniques published over the few last years are reviewed and commented. Their few
drawbacks are underlined and the prospects for improvement are briefly expressed.
This chapter could be used not only as a pedagogical guide, but also as a practical
reference which explains efficient implementing of traffic management systems
into new smart cities. The structure of the chapter is as follows. A summary of
the literature about essential problems related to transportation, especially those of
congestion and/or pollution phenomena, and some decision-support solutions, is
put forth in Sect. 5.2. Then, a background on the physical key factors commonly
used for assessing urban traffic flows is defined in Sect. 5.3. Section 5.4 provides
descriptions of the main traffic measurement devices, while Sects. 5.5 and 5.6 focus
on the vision-based sensors and their related statistical/mathematical models. The
final section is dedicated to the main perspectives and concluding remarks.

5.2 Main Transportation Problems and Decision-Support
Solutions

In the context of economic globalization, the need for movement of goods and
people has experienced significant growth. This increasing mobility is one of the
main causes of traffic congestion. Nowadays, reducing congestion is considered as
one of the major challenges in transportation, especially in large cities. Technically,
traffic congestion is the result of too many vehicles crowding the road space
available with the lack of alternative travel options. It takes time and energy, causes
pollution and stress, decreases productivity, and imposes costs on society. The
traffic congestion involves queuing, slower speeds, and travel times increased, which
impose costs on the economy and generate multiple impacts on urban areas and
their inhabitants. Congestion also has a range of indirect impacts, including quality
of life, security, and impacts on road space for non-vehicular users, such as users



110 H. Rabbouch et al.

of sidewalks and facade properties of the road [47]. It is a major problem that most
cities face and therefore, many measures have been taken to limit congestion. It is
believed that the identification of congestion characteristics is the first step in this
effort, because it is an essential guidance in choosing appropriate measures. Given
the cycle of transportation demand, it is not always possible to solve congestion by
increasing capacities [50]. In this context, many authorities are responsible for the
development of efficient strategies to manage demand as well in time as space, and
also discourage the growth if needed. Despite this, urban congestion has become,
over the few last years, more costly in terms of time, money, and fuel.

From a literary perspective, the most important researches have appeared just
recently. Bharadwaj et al. [8] showed that traffic congestion on city roads not
only increases the fuel consumption but consequently leads to increase in carbon
dioxide emissions, outdoor air pollution as well as increase in the exposure time
of the passengers. According to [12], for the top hundred largest US urban centers,
congestion generated 4.8 billion hours of travel delays in 2011, up from 1.1 billion
hours in 1982. Congestion also required 8.419 million cubic meters of excess
fuel consumption in 2011, up from 1.73 million cubic meters in 1982. Finally,
the excess CO2 emitted from congestion amounted to 19.524 billion kilograms
in 2011, up from 3.94 billion kilograms in 1982. Lu et al. [36] examined the
congestion and pollution consequences of driving-to-school trips. Their suggestion
to transport policymakers was to lower such congestion and environmental costs via
optimizing the spatial balance between school supply and demand. Shi et al. [52]
used the detrended cross-correlation analysis to investigate relationships between
NO2 pollution and traffic congestion. Wu et al. [61] found a significant impact
of congestion charging on traffic and emissions in Beijing. Furthermore, recent
researches have revealed that even economies are negatively affected by congestion.
Hymel [26] showed that high levels of congestion dampen employment growth.
Jin and Rafferty [29] reexamined the relationship and proved that congestion also
negatively affects income growth. Using macroscopic traffic simulations and vehicle
emissions calculation, Wu et al. [61] assessed the impact of congestion charging on
traffic and emissions in Beijing.

To face these problems, data-driven decision-making models have considerably
grown with the progress of the ICT. Measuring and analyzing tools have signifi-
cantly risen, hence providing immediate and reliable information about traffic flows,
resulting in the emergence of the concept of ITS. Such intelligent devices are
capable of providing decision makers with real-time measurements of the traffic
at a given point of the road network. Once appropriately fused and analyzed, these
heterogeneous data can be exploited to address many concerns for: (1) mobility,
with instant diffusion of traffic conditions, achieving automatic toll or the intelligent
management of lights and priorities traffic, planning of new infrastructure; (2)
security, with automatic incident detection or monitoring of vehicle tunnels, and
(3) environmental and public health, with pollution control and infrastructure
regulation (lighting, tunnel ventilation). In the literature, several techniques have
been proposed for the purpose of multi-sensor fusion under heterogeneous data con-
figurations. Due to the different types of sensors that are used and the heterogeneous
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nature of information that needs to be combined, different data fusion techniques are
being developed to suit the applications and data. These techniques were drawn from
a wide range of areas including artificial intelligence, pattern recognition, statistical
estimation, and other areas.

Treiber et al. [55] developed an advanced interpolation method for estimating
smooth spatio-temporal profiles for local highway traffic variables such as flow,
speed, and density. The method was based on an adaptive smoothing method which
takes as input stationary detector data as typically collected by traffic control centers.
Their method was also generalized to allow for fusion with floating car data or other
traffic information. Faouzi et al. [20] provided a survey of how data fusion is used
in different areas of ITS. Anand et al. [2] used a data fusion approach based on the
Kalman filtering which brings the advantages of both spatial and location-based
data for the estimation of traffic density. Subsequently, the estimated data were
utilized for predicting density forward to future time intervals using a time series
regression model. In Shan et al. [51], an incomplete traffic data fusing method was
proposed to estimate traffic state. Their approach improves missing data estimation
by extracting data correlations and applying incomplete data fusion, implementing
the two approaches in parallel. The main research focus is on extracting the inherent
spatio-temporal correlations of traffic states data from road segments based on a
multiple linear regression model. He et al. [25] made an investigation into the
fusion of a new data combination from cellular handoff probe system and microwave
sensors. And a fusion method based on the neural network technique was proposed.
To identify the factors influencing the accuracy of fusion results, they analyzed
the sensitivity of those factors by changing the inputs of neural network-based
fusion model. Their experiments shown that handoff link length and sample size
were identified as the most influential parameters to the precision of fusion. Weibin
et al. [60] proposed a data fusion method to merge traffic speed from different data
sources according to their prior probability that can be inferred from a high-order
multivariable Markov model, which is itself developed in a systemic perspective.

5.3 Road Traffic Properties

5.3.1 Traffic Components

In general, the road traffic [17] consists of two main components: (1) infrastructure
and (2) moving objects. The infrastructure is a set of interconnected structural
elements which form the framework to support all the traffic structure. For example,
for roads and motorway networks, infrastructure contains structures such as bridges,
culverts, signage and markings, electrical systems (street lights and traffic), and edge
treatments (curbs, sidewalks, landscaping). The moving objects are individuals who
use infrastructure, mainly said vehicles. Pedestrians are not considered because their
movements are supposed to depend on moving objects. Note that stopped or parked
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vehicles, as defined in road rules, are considered as a part of the infrastructure, and
generally, are not taken into account. In other words, only objects in motion on
the road and interact with signals are considered. In the following subsections, we
introduce the basic variables and the usual measures for traffic analysis. Vehicles can
be roughly categorized into four modes: the two and three wheels vehicles, heavy
goods vehicles (HGV), public transports, and light vehicles (LV). In this chapter,
we will consider, as in Cohen [16] and [17], that vehicles are divisible, i.e., they can
be expressed passenger car units (PCU), which corresponds in French to Unité de
Véhicule Particulier.

5.3.2 Elementary Variables of the Traffic

The considerable development of the traffic and the constant increase in car
ownership have necessitated the development of the theory of traffic engineering to
be able to describe, explain, and predict the interactions of vehicles as well as overall
movements in road infrastructure. This theory, be it deterministic or probabilistic,
is introduced through a number of variables, relationships, or distribution of
characteristics [16]. Below are the main elementary variables of the traffic.

5.3.2.1 Inter-vehicular Time Gap

At a given point of the road, the inter-vehicular time gap [17, 48] is the time that
elapses between the moment of passage of two successive vehicles (see Fig. 5.1).
This variable is particularly useful in the studies related to road safety and in

Fig. 5.1 Inter-vehicular time gap



5 Traffic Sensing and Assessing in Digital Transportation Systems 113

many traffic simulation problems [6]. Nowadays, several real-time algorithms for
regulating crossroads with lights in city use the inter-vehicular time gap. This
parameter allows to understand the effects of the composition of the traffic on
the flow traffic conditions. Experimental observation enables obtaining empirical
distributions of the gaps. Hence, in addition to the well-known features of position
and dispersion, the empirical distribution of the gaps provides several useful
indicators, some of which are the proportion of short-intervals (threshold level
below which the traffic is considered dangerous) and the equivalence coefficient
e (PCU), which expresses each class of vehicles as a number of passenger cars [17].
The characteristics of the gap distributions vary according to the type of the road,
traffic level, composition, weather conditions and visibility, etc.

5.3.2.2 Flow Rate

The flow rate corresponds to the distribution of vehicles in time. As defined in [16]
and [17], the average flow q at the point x between t1 and t2 is given as,

q(t1, t2, x) = 
(t1, t2, x)

t2 − t1
, (5.1)

where 
(t1, t2, x) denotes the number of vehicles past by x between the two
instants. Experimentally, the flow rate can be determined by simple counting
(traditionally by humans) on the road. In mathematics and physics, the flow of
vehicles is commonly considered continuous. We then define the flow function
q(x, t) at point x and at time t as,

q(x, t) = lim
δt→0

q

(
2t − δt

2
,

2t + δt

2
, x

)
. (5.2)

This definition does not apply to a discrete traffic flow analysis, since the limit would
be either infinite or zero, depending on a vehicle passes at time t or not. Obviously,
there is a convergence of q(t − δt

2 , t + δt
2 , x) towards q(x, t) for small values of

δt . To make the connection with the microscopic approach, let us mention that the
average flow rate is equal to the average of the inverse of the inter-vehicular time gap
(here denoted h) for a stationary flow (flow rate which does not vary much around
its average). If we consider N the number of inter-vehicular times observed for a
period T at a given point of the road, we have,

T =
N∑

i=1

hi = N × h̄, (5.3)
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where h̄ denotes the average time interval. Therefore, the estimated flow rate qi is

q = N

T
= 1

h̄
. (5.4)

As commented in [17], it is commonly admitted in the literature that the maximum
flow rate can reach about 0.5 vehicles per second.

5.3.2.3 Traffic Density

The traffic density can be defined as the number of vehicles per unit length of the
roadway. The average density k(x1, x2, t) at time t over a limited section of the road
between two points x1 and x2 corresponds to the ratio,

k(x1, x2, t) = 
(x1, x2, t)

x2 − x1
, (5.5)

where 
(t1, t2, x) denotes the number of vehicles in the section at time t . This
physical quantity can be measured using aerial photography or video cameras [17].
The physical mathematics theory defines the continuous concentration k(x, t) at the
point x and at time t as,

k(x, t) = lim
δt→0

k

(
2x − δx

2
,

2x + δx

2
, t

)
. (5.6)

5.3.2.4 Occupancy Rate

The occupancy rate is a dimensionless quantity, defined as the proportion of time
during which the loop remains occupied. The occupancy rate, often denoted τ , is
directly related to the density k, the mean length of vehicles L, and the length of the
sensor l, with τ = k(L + l). Nowadays, several researches in the field of logistics,
urbanism, and tourism use the occupancy rate as fundamental variable to explain
many vital factors of the modern transport policy [3, 31, 44]. The magnetic loops
are commonly used to collect occupancy rate data. The magnetic loops are well-
known sensors often embedded within the roadway, and sensitive to changes of the
magnetic field produced by the passage metal masses of the vehicles.

5.3.2.5 Vehicle Speed

The speed is the distance covered per unit time [59]. For each vehicle, recording the
instantaneous speed can characterize the temporal profile of the speed. It is one of
the main indices characterizing the road traffic and is frequently used for assessing
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the energy consumption of vehicles. Over a course of period T , the average speed
of a vehicle is defined as,

ν̄ = 1

T

∫ T

0
ν(t)dt, (5.7)

where ν(t) is the instantaneous speed of the vehicle at time t . However, it is not
convenient to track the speed for each vehicle. Thus, average speeds are measured
by sampling vehicles in a given area over a period of time. Two main definitions of
mean speed are identified: time mean speed (TMS) and space mean speed (SMS).
At a fixed point of the road, the TMS can be considered as the arithmetic mean of
instantaneous speeds νi of N vehicles, passing during an indeterminate period of
time,

νt = 1

N

N∑
i=1

νi, (5.8)

where νi = di

t
, with di the distance traveled by the ith vehicle during the period t .

The SMS notion is more useful in practice and it is considered more accurate than
the TMS. It is measured over the whole roadway segment. Consecutive images or
video sequences of a roadway track the speed of individual vehicles, and then the
average is calculated. The data for calculating the SMS may be taken from satellite
images, traffic cameras, or both.

νs =
(

1

N

N∑
j=1

(1/νi)

)−1

(5.9)

where νj = d
tj

, tj is the time required for the vehicle j to travel the distance d. N

represents the number of vehicles passing the roadway segment. Thus, the SMS can
be viewed as the harmonic mean of the speeds.

5.3.2.6 Fundamental Diagram of Traffic Flow

The fundamental diagram of traffic flow [16] represents the macroscopic relation-
ship involving traffic flow, traffic density, and velocity. It is often called macroscopic
fundamental diagram (MFD). The fundamental diagram is sensitive to many factors
such as road geometry, nature and composition of traffic, weather conditions,
and operating measures. It is commonly used to predict the capability of a road
system, or its behavior when applying inflow regulation or speed limits. The traffic
is assumed homogeneous and stationary. In other words, the flow rate, density,
and speed vary slightly around their respective means, q̄, k̄, and ν̄. As depicted
in Fig. 5.2, a low density corresponds to high speed of the flow. This speed is
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Fig. 5.2 Fundamental diagram of traffic flow

commonly called free speed. Inversely, as k increases, the dispersion between
vehicles become more important, and consequently, ν decreases. This suggests that
ν is a decreasing function of k. The fundamental diagram describes the capacity of
the network in terms of vehicle density with μ being the maximum capacity of the
network and η being the jam density of the network. The maximum capacity of the
network is the region at the peak of the function.

5.3.3 Assessing Traffic Congestion

5.3.3.1 Main Attempts

Researches in this context have rapidly grown on the basis of the fundamental
diagram. The aim was to give a more precise meaning to the concept of congestion
by linking contributions of engineering to those of the economy, hence offering an
effective identification and control of congestion. The desire to clarify the concept
of congestion throughout externalities has led Kolm [32] to develop the principle of
service quality, where he showed that the main cause is the accumulation of road
users, leading finally to a lower transportation service quality. The quality of service
is considered in terms of daytime according to the fundamental diagram. This notion
of quality particularly interests us and is close to the general definition of Arnott
and Kraus [4]. It allows to distinguish a request amount of a demand for quality and
raises the question of arbitration between the two. The answer in the case of traffic
congestion passes through the pricing. Kolm [32] formalizes congestion by the
speed-flow function while providing nuance in determining the speed. He considers
the speed according to the spacing between vehicles. Thus, congestion occurs when
the speed of a vehicle is limited by that of the preceding one. In other words, the
congestion function is based on the relationship between speed and vehicle spacing.
It is composed of three parameters which together takes the form of a production
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Fig. 5.3 Rains causing massive traffic jams in Riyadh

function of service: The first ν expresses the speed, the second nt measures the
quantity of vehicles per unit of time served, while the third z reflects the offer in
service considering ν as a function of nt . Therefore, congestion is expressed in time
lost by the individuals based on the traffic density. The time factor is considered as
determinant of the quality of service produced by an infrastructure.

Vickrey [56] gave a more accurate definition to the congestion which contradicts
the notions of transport externality. The question is no longer to evaluate congestion
but to analyze the flow conditions of roads including the most difficult places, such
as nodes, strictures of ways, pavement jams, or weather as shown in Fig. 5.3. The
congestion effect is seen as the difference between actual arrival time and the arrival
time in unperturbed condition for movement between two landmarks X and Y .
This approach seems effective, especially for problems where urban congestion
depends heavily on time and individuals’ behavior (anticipation, relocating, etc.)
(see Laroche [34]). Finally, let us mention that Hau [24], attempting to characterize
the capacity of a roadway, has shown that it varies little from one country to another,
as long as only the tread is considered. It gives an average of 1000 vehicles per hour
and per direction for a two-lane road and about 1800–2000 vehicles per hour and
per direction for a four-lane road [34].

5.3.3.2 Congestion Measures

As discussed in [34, 49], most congestion indices are calculated from measurement
of travel time (or delay). Both references distinguish between measure and index



118 H. Rabbouch et al.

in the sense that the measure is linked to a unit (additional travel time in minutes)
while an index reads without. Most of the measurements are made by comparing the
actual situation to the initial situation. The definitions point in the same direction as
the National Cooperative Highway Research Program (NCHRP) Reports 398 [35]
and 618 [11] that present the main congestion measures and indices as follows:

• Travel Rate (TR in minutes per mile): The TR is a direct indicator of the amount
of travel time, which makes it relevant to travelers.

TR (min/mile) = travel time (min)

segment length (miles)
(5.10)

• Delay Rate (DR in minutes per mile): The DR is the rate of time loss for vehicles
operating in congested conditions for a specified roadway segment or trip.

DR (min/mile) = Actual Travel Rate− Acceptable Travel Rate (5.11)

• Relative Delay Rate (RDR): The RDR is a dimensionless measure that can
be used as a congestion index to compare the relative congestion on facilities,
modes, or systems in relation to different mobility standards for system elements
such as freeways, arterial streets, and transit routes.

RDR = Delay Rate

Acceptable Travel Rate
(5.12)

• Delay Ratio (DRa): The DRa is a dimensionless measure that can be used to
compare or combine the relative congestion levels on facilities with different
operating characteristics like freeways, arterial streets, and transit routes.

DRa = Delay Rate

Actual Travel Rate
(5.13)

• Corridor Mobility Index (CMI): The CMI consists of the speed of person
movement value divided by some standard value, such as one freeway lane
operating at nearly peak efficiency with a typical urban vehicle occupancy rate.
This may be one method of addressing the magnitude and relativity problems
with the speed of person movement.

CMI = Passenger Volume× Average Travel Speed

Optimum Facility Value
(5.14)

• Travel Rate Index (TRI): This index allows to compare measured travel rates to
free flow conditions for any combination of streets and freeways. The values can
be related to the public as an indicator of the length of extra time spent in the
transportation system during a trip.
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TRI =

[
FTR

FFFR × FPPVMT

]
+
[

PASTR
PASFFR × PASPPVMT

]

[FPPVMT + PASPPVMT] , (5.15)

where acronyms are respectively FTR: Freeway Travel Rate; FFFR: Freeway
Free Flow Rate; FPPVMT: Freeway Peak Period Vehicle Miles Traveled; PASTR:
Principal Arterial Street Travel Rate; PASFFR: Principal Arterial Street Free
Flow Rate; and PASPPVMT: Principal Arterial Street Peak Period Vehicle Miles
Traveled.

• Buffer Time Index (BTI): The BTI is a measure of trip reliability that expresses
the amount of extra buffer time needed to be on time for 95% of the trips. As with
the TRI, indexing the measure provides a time- and distance-neutral measure, but
the actual minute values could be used by an individual traveler for a particular
trip length or specific origin–destination (O-D) pair.

BTI =

[
95th Percentile Travel Time− Average Travel Time

]
(min)

Average Travel Time (min)
100%,

(5.16)

In the NCHRP reports, it is mentioned that it is complex to develop a congestion
measure that takes into account all the aspects that characterize congestion.
Consequently, several measures have been developed. In most of the interesting
methods, travel time measurement and delay are considered key elements in defining
the congestion. The travel time is used to calculate the speed of travel and the delay
on a route. The annual average daily traffic (AADT) is also an important information
to quantify the demand on each section of the road network. From this information,
it is relatively easy to define one or more indices with one or with a combination
of these parameters (travel time, delay, speed, AADT or their derivatives: veh/km,
etc.).

Moreover, among indexes which have been proposed, the only one which
measures the full range of system performance and which allows comparisons
across metropolitan areas is the roadway congestion index (RCI) developed by
Texas Transportation Institute [54]. The RCI is a measure of vehicle travel density
on major roadways in an urban area and it is composed as follows:

RCI =

[
Freeway

VMT(ln/mile)
× Freeway

VMT

]
+
[

PAS
VMT(ln/mile)

× PAS
VMT

]

[
a × Freeway

VMT

]
+
[
b × PAS

VMT

] , (5.17)

where acronyms stand for: PAS VMT: Principal Arterial Street Vehicle
Miles Traveled; PAS VMT (ln/mile): Principal Arterial Street Vehicle Miles
Traveled per lane mile; Freeway VMT: Freeway Daily Vehicle Miles Traveled;
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Freeway VMT (ln/mile): Freeway Daily Vehicle Miles Traveled per lane mile. a

and b are two parameters varying depending on the type of lane. An RCI exceeding
1 indicates an undesirable congestion level, on an average, on the freeways and
principal arterial street systems during the peak period.

5.4 Different Measurement Devices

There are generally two types of traffic sensors: intrusive systems (installed in
the shod) and non-intrusive systems (installed on roadsides, or embedded within
vehicles). Intrusive sensors are mostly inductive loops placed within each circulation
channel, which react to the passage of vehicles [39]. The introduction of a double
loop also allows measuring the speed and length of vehicles. The major drawback
of inductive loops is the need to intervene in the road, and thus, disrupt the traffic
for installation and maintenance. Moreover, the loops are limited to functions of
counting and measuring and individual classification by traffic lane.

On the other hand, non-intrusive sensors are remote sensors using various
technologies, such as radar, laser, ultrasound, and video. The radar is able to count
and measure the speed of vehicles (by Doppler or by frequency modulation) on a
strip of circulation whatever the climate. The radars are generally fairly expensive
equipment. Lasers emit an energy beam which scans detecting surface (a driving
lane). The transit time is measured and is used to model a profile of the vehicle. By
using two successive detection planes, a laser system is also capable of measuring
the vehicle speed. With the capture of the 3D profile of the vehicle, lasers allow a
detailed and accurate classification of vehicles. They usually work for a single traffic
lane and are quite expensive. Ultrasonic sensors work similarly to the radar but in
a range of lower frequency. They can be disrupted by emissions of certain vehicles
and have difficulty measuring fast movements. However, economic considerations
make these sensors an ideal choice for operators.

Finally, sensors based on the vision analysis use a traffic camera to capture
images and videos from road networks to be analyzed. A camera placed at a
optimal distance can record up to two or three traffic lanes. A processing unit
is then established in order to perform the interpretation of these sub-shots and
extract the vehicles and assess their behavior. However, cameras operating in the
traffic are commonly affected by adverse conditions that influence the visibility
(night, rain, snow, fog, shadows, etc.). On the other hand, the camera is now a
reliable and very inexpensive sensor, and secondly, it provides a representation
(pictures) directly usable by humans because the signal is close to that perceived
by the eye. It has been widely installed on roads these recent years for passive
surveillance needs.
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5.4.1 Pneumatic Sensors

Pneumatic sensors (see Fig. 5.6) can perform traffic counts, and thus measure flow
rates. They consist of a rubber cable, stretched across the floor and connected to
a detector. The crushing of the cable at the passage of a vehicle causes a pressure
detected by a manometer activating a relay. It is then possible to count the number
of axles passing over the sensor by cumulating pulses in a counter. The counters are
then expressed in PCU. These sensors, still prevalent for road counts, have some
advantages, including ease of installation, good portability of the sensor–detector
assembly, and possibility of battery operation providing an autonomy of several
days. However, the system is of a high average cost. In addition, the cable can be
pulled off during the passage of heavy vehicles. In saturated state, imprecision can
sometimes exceed 20%.

5.4.2 Electromagnetic Loops

The electromagnetic loop is considered among the most practical devices for
measuring traffic parameters in many countries. It is polyvalent in its application
since it can be installed both in towns and on highways and expressways. The sensor
consists of an inductive loop embedded within the road surface. The passage of the
metal mass of a vehicle over the loop causes a variation of the electromagnetic field.
This variation results in a voltage pulse whose length is linked to the vehicle and
its passage time. A single loop by way allows to measure flow rate observations but
also the occupancy rate τ , defined by

τ = 100

T

N∑
i=1

τi (5.18)

where τi is the occupation time of the loop corresponding to the measure period i,
and T is the total measurement time.

5.4.3 Acoustic Sensors: Ultrasonics

The acoustic sensor consists of a directional antenna fixed on a support. This
antenna emits an ultrasound wave propagating with a known speed. When passing
a vehicle, ultrasound wave strikes a reflective surface. A fraction of this wave
reflected by the mobile, and is then sensed by the receiver after a certain detection
time. This duration of detection time allows calculation of the occupancy rate. The
detector also provides a counting of vehicles. The sensor may often be mounted
on a gantry above and in the center of the traffic lane. Detection time is thus
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variable according to vehicles height. This feature allows to discriminate several
categories. A proper mounting avoids the reception of false echoes. In conditions of
normal operation, the accuracy of distance measurement is±0.5 m. The propagation
velocity of ultrasound waves being dependent on the temperature and humidity of
the air (Figs. 5.4, 5.5, 5.6, and 5.7).

5.4.4 Microwave Sensors

A microwave sensor [38] is a low-cost advanced sensor used for detecting and
measuring traffic at intersections and on roadways. The term microwave refers to the
wavelength of the transmitted energy, usually between 1 and 30 cm, corresponding
to a frequency range of 1–30 GHz. This detector provides per-lane presence
indication, as well as volume, occupancy, speeds, and classification information, in
up to eight lanes or detection zones simultaneously. A microwave radar provides the
option of multiple lane operation, but cannot detect stopped vehicles. Two types of

Fig. 5.4 Doppler microwave
(TC26-B, Operating
Frequency: 10.525 GHz)
vehicle motion sensor
(Source: MS Sedco company,
Indianapolis, USA)

Fig. 5.5 Passive infrared
radar traffic detector (Source:
FA BEMA Mobile Traffic
Lights)
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Fig. 5.6 Pneumatic road tube
traffic data recorder installed
at Prince Saud Bin
Mohammed Bin Muqrin
Road in the north of Riyadh
(Saudi Arabian capital)

Fig. 5.7 Permanent traffic
camera at King Fahd Road,
one of the main north-south
roads of Jeddah (major urban
center of western Saudi
Arabia)
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microwave sensors are used in traffic management applications, continuous wave
(CW) Doppler radar and frequency modulated continuous wave (FMCW) radar.
Doppler sensors are most commonly used. They transmit a signal that is constant in
frequency with respect to time. According to the Doppler principle, the motion of a
vehicle in the detection zone causes a shift in the frequency of the reflected signal.
A photograph of Doppler microwave radar used for vehicle detection purposes can
be seen in Fig. 5.4.

5.4.5 Infrared Sensors

Infrared (IR) sensors are electronic instruments that are used to capture certain
characteristics of its neighborhood by either detecting and/or emitting infrared
radiations. Two IR sensors are used for traffic flow modeling applications: (1)
infrared sensors called active, illuminate detection zones with low-power infrared
energy transmitted by laser diodes operating in the near infrared region of the
electromagnetic spectrum at 0.85 mm. A part of the transmitted energy is reflected
or scattered by vehicles back towards the sensor, and (2) passive infrared sensors
transmit no energy of their own. Rather they detect: energy emitted from vehicles,
road surfaces, and other objects in their field-of-view, and energy emitted by the
atmosphere and reflected by vehicles, road surfaces, or other objects into the sensor
aperture.

The energy captured by IR sensors is focused by an optical system onto an
infrared-sensitive material mounted at the focal plane of the optics. This material
transforms the reflected and emitted energy into electrical signals. Signals are
transmitted to a processing stage, where they are analyzed for the presence of
a vehicle. The sensors are mounted overhead to view approaching or departing
traffic. They can also be mounted in a side-looking configuration [30]. IR sensors
are utilized for signal control; volume, speed, and class measurement; detection of
pedestrians in crosswalks; and transmission of traffic information to motorists. A
picture of a passive infrared radar traffic detector is given in Fig. 5.5.

5.4.6 Video Sensors

The above-presented techniques are often electromagnetic and electronic detection
systems that can sense a set of vehicles passing or arriving at a certain point.
Such equipments are either buried under the roadway surface or embedded into
the roadway. Thus, they are too cumbersome and cannot therefore be maintained.
In comparison with old sensors, traffic cameras are installed on the roadside and
are considered as a major component of most ITS. Monitoring centers receive
live records and perform video analyses. Today, since cameras are easily operated,
controlled, and maintained, the traffic video data have replaced old-fashioned
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ones and are now extensively applied to resolve many other transport problems.
It deserves to be mentioned that a higher accuracy could be expected through
the integration of multiple data sources including both traditional and modern
technologies. However, it is still a challenge to better integrate heterogeneous data
and fusing them into a singular data scheme.

The video cameras have been introduced to advanced traffic management to
ensure surveillance in the main arteries given their ability to transmit closed-circuit
television imagery to a human operator for interpretation [1, 5, 7, 13, 22, 37]. These
days, traffic managers use video and image processing to automatically analyze
scenes of interest, and then, extract valuable information for traffic management
and surveillance purposes (see Fig. 5.7). A video image processor system (VIPS)
typically consists of one or several cameras, a microprocessor-based computer for
digitizing and analyzing the imagery, and softwares for interpreting the images
and converting them into traffic flow data. A VIPS can replace several in-ground
inductive loops, provide detection of vehicles across several lanes, and perhaps
lower maintenance costs. Some VIPS process data from more than one camera and
further expand the area over which data are collected [30].

VIPS detects vehicles through the analysis of binary or color images or video
sequences gathered by cameras at roadway sections. Binary imaging analysis is
performed by image processing algorithms that examine the variation of gray levels
in groups of pixels (picture elements) contained in the video frames. Several studies
have been conducted on algorithms that are sensitive to color features, for example,
those that act in eliminating shadow artifacts or enhance vehicle discrimination in
adverse weather conditions (see Rabbouch et al. [45]). Along with vehicle class and
size data, color fingerprints or signatures have been proposed to determine traffic
volume, turning movements, lane changes, and link travel time by reidentifying
a vehicle or group at a downstream site [30]. As discussed in [33, 41, 58], the
main traffic video processing algorithms are designed to omit gray level or color
variations in the stationary image background. These algorithms are supposed to
also ignore variations caused by weather conditions, shadows, and daytime or
nighttime artifacts, but retain objects identified as automobiles, trucks or buses,
motorcycles, and bicycles. Traffic flow parameters are calculated by analyzing
successive video frames.

5.5 Traffic Video Processing

5.5.1 Recent Research

Detecting moving objects in a sequence of images taken at different intervals is
one of the important areas of computer vision. Several applications in different
disciplines work on the detection of any moving object, such as video surveillance,
remote sensing, medical treatment, and underwater detection. [23]. The area that
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interests us in this chapter is video surveillance, in particular, the analysis of the
images of a traffic scene. Generally, vehicles present an important tool in people’s
daily lives. It is for this reason that researchers are interested in studying road traffic.
In this context, several methods have been proposed for detecting, tracking, and
counting vehicles. We present a brief literature review of these methods in what
follows.

The literature associated with the traffic video surveillance focuses on automatic
vehicle counting (AVC) using basic image/video processing techniques, with the
aim of obtaining useful statistics on roads exploitation. The paper [40] is dedicated
to the detection and counting of vehicles in the day environment using real-time flow
traffic through differential techniques. The basic idea used is the variation in traffic
flow density due to the presence of a vehicle in the scene. In this work, a differential
algorithm is designed to detect and count vehicles. With this method, the authors
managed to control in real time the flow of traffic in urban areas. In [18], the authors
present a method for detecting vehicles and a counting system based on digital
image processing techniques. These images can be taken by IP cameras installed
at the top of existing traffic lights. Using the proposed approach, it is possible to
detect the number of vehicles waiting on each side of the intersection, in order to
provide the necessary information for optimal traffic management. After integrating
the proposed algorithms into a traffic management system, it was possible to reduce
CO2 and fuel emissions by half compared to the standard fixed time scheduler.

More recently, Jang et al. [27] proposed an algorithm to detect and count
vehicles passing by a certain point in the video of traffic flow monitoring. The
particularity of this algorithm is to calculate an approximate value of the velocity
while counting vehicles using mixture models for background modeling. Raghtate
et al. [46] introduced a technique to avoid human surveillance and automate the
video surveillance system. This technique avoids the need to have a background
image of the traffic. For an input video signal given, the frames are extracted. The
selected images are used to estimate the background. This background image is
subtracted from each input video image and the foreground object is obtained. After
post-treatment technique, the counting of vehicles is done. Xia et al. [62] proposed
an EM-estimated Gaussian mixture model to improve quality segmentation of
moving vehicles. In addition, a method of restoration is designed to eliminate noise.
A morphological feature and color histogram are finally used to solve occlusion
problems. Efficacy and efficiency experiments show that the proposed approach can
improve the result of vehicle counting and vehicle occlusion detection. Finally, the
research in [42] proposes a method based on a scale-invariant feature transform
(SIFT) algorithm, to carry out the classification and counting of the vehicles.
This algorithm allows the detection of remarkable points that will identify an
object. These points are invariant to scaling, rotation, and translation as well as
affine transformations and illumination changes. This improves the efficiency of
classification and counting of vehicles. It is noticeable that other recent researches
in this context are well discussed in [45].
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5.5.2 Challenges in Modeling Traffic Scenes

For any indoor or outdoor scene, changes occur over time. Thus, it is primordial
for any substantive model to be able to tolerate these changes. Nevertheless, these
changes can be local, affecting only parts of the background, or global affecting
the entire background. The analysis of these changes is important to understand the
motivations behind different background subtraction procedures [9]. The possible
changes in a background scene can be roughly classified according to their source.
We essentially have:

• Illumination changes: which can be (1) gradual change in lighting, such as
changing the relative location of the sun during the day, (2) sudden lighting
changes, such as turning lights on or off in an indoor scene, and/or (3) shadows
thrown on the background by objects in the background, for example, by moving
objects in the foreground (moving shadows).

• Motion change: which are principally caused by (1) small movements of the
camera, which cause an overall movement of the image. Indeed, despite the
assumption that the cameras are stationary, the movements of small cameras due
to the wind load, and (2) parts of the background are moving. For example, the
branches of trees move with the wind.

• Structural change: These are changes introduced within the background, includ-
ing any changes in the appearance or geometry of the scene background caused
by the targets. For example, if someone moves something from the background,
or if a car is parked in the scene or comes out of the scene.

5.6 Statistical Modeling of Traffic Video Data

In this section, we introduce some widely used statistical modeling approaches for
traffic video data. For each model, we present initial conditions and main properties.
For simplicity, the intensity of pixels is considered as observation.

5.6.1 Probabilistic Principle

The technique of background/foreground segmentation can be explained as follows.
For a pixel, the observed intensity is a random variable that has a value based on
whether the pixel belongs to the background or the foreground. Given the intensity
observed at a pixel at time t , denoted xt , we have to classify this pixel on the
background BG or the foreground classes FG . It is a subject of classification
into two groups. In a Bayesian framework, we test whether this pixel belongs to
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the background or to the foreground, based on the ratio between the posterior
probabilities p(BG |xt )/p(FG |xt ). Using Bayes rule, we can compute posterior
probabilities as

p(BG |xt ) = p(xt |BG )p(BG )

p(xt )
, p(FG |xt ) = p(xt |FG )p(FG )

p(xt )
, (5.19)

where p(xt |BG ) and p(xt |FG ) are the likelihoods of observations xt given the
background and foreground models, respectively. The terms p(BG ) and p(FG )

are the prior beliefs that the pixel belongs to the background or the foreground [9].
If equal priors are assumed, the ratio between the posterior is reduced to the ratio
between the probability, which is typically indicated by the likelihood ratio

p(xt |BG )

p(xt |FG )
. (5.20)

Hence, modeling the statistical background aims to provide estimates for the
likelihood that the observation gives a model for the background and a model for
the foreground. However, since the intensity of a foreground pixel can arbitrarily
take any value, the foreground distribution is assumed to be uniform. Finally, the
problem leads to a classification problem in one class, and a decision can be made
by comparing the probability of observing the background model with a threshold,

{
xt belongs to BG if p(xt |BG ) ≥ ε

xt belongs to FG otherwise,
(5.21)

where ε is a threshold parameter. Therefore, any background subtraction approach
requires a statistical model to estimate the probability of observing data in the base
class. In the following, we discuss parametric methods that assume a Gaussian
model or a mixture of Gaussian model for the pixel process.

5.6.2 Gaussian Background Model

In background modeling, pixel intensity is the most commonly used characteristic
in traffic video processing. In a static scene, a simple noise model that can be
considered for the pixel process is the independent stationary additive Gaussian
noise model [14]. Accordingly, the distribution of the noise at a defined pixel is
a Gaussian distributed with a zero mean and σ standard deviation density, i.e.,
N (0, σ 2). Formally, the intensity observed at this pixel is a random variable with a
Gaussian distribution

P(xt |BG ) ≈ N (μ, σ 2) = 1

σ
√

2π
exp

(xt − μ)2

2σ 2 . (5.22)
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This Gaussian intensity model is known as single Gaussian background model. In
the case of color frames, since pixel observation is a high dimension vector, xt ∈ R

d ,
a multivariate Gaussian density is considered, with a density given by

P(xt |BG ) ≈ N (μ,Σ) = 1√
2π |Σ | exp

−1

2
(xt − μ)T Σ−1(xt − μ), (5.23)

where μ ∈ R
d is the mean vector, and Σ ∈ R

d×d is the covariance matrix of the
distribution.

5.6.3 Mixture Gaussian Background Model

Typically, in outdoor environments with moving objects, the background of the
scene is not totally static. For example, a pixel can present the image of the sky
in a frame, a leaf of tree in another frame. In these cases, the pixel will have
a different intensity. Therefore, a single Gaussian assumption for the probability
density function of the pixel intensity will not be adequate. Rather et al. [21]
proposed a generalization based on a mixture of Gaussians to model such variations.
A mixture of three Gaussian distributions was used to model the pixel value of traffic
surveillance applications. These three Gaussian distributions were corresponding
to shadow, road, and vehicle distribution. Stauffer and Grimson [53] presented a
generalized approach. A mixture of G Gaussian distributions (G is typically chosen
between 3 and 5) is used to model the pixel intensity. The probability that a pixel
has the intensity xt at time t is given by

P(xt |BG ) =
G∑

g=1

wg,tN (xt ;μg,t ,Σg,t ), (5.24)

where N (.;μg,t ,Σg,t ) is a Gaussian density function with a mean μg,t and
covariance Σg,t = σ 2

g,t I . wg,t is the weight for the g-th Gaussian components.
The sum of weights across all components is equal to 1. The subscript t indicates
that the mean, the covariance, and the weight of each component are updated at
each step. The mixture model has proven to be very efficient both indoors and
outdoors situations. Later, many modifications have been proposed to the Stauffer
and Grimson’s model [53]. An illustration of a real case of vehicle detection using
background subtraction based on mixture models is given in Fig. 5.8.

5.6.4 Nonparametric Background Model

In the external scenes, there are dynamic zones such as the ripple of the waters.
The modeling of these dynamic zones requires a more flexible representation of
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Fig. 5.8 Vehicle detection and counting in a video sequence using background subtraction based
on Gaussian mixture models (GMMs). The video was taken from the entrance of Mecca (Makkah-
Al-Mukarramah) city in Saudi Arabia (Source: Getty Images, Chicago, IL 60603 USA). (a)
Arbitrary frame. (b) Noisy background. (c) Filtered background. (d) Detecting vehicles

the background probability distribution at each pixel. This encourages the use of
a nonparametric density estimator for background modeling [19]. This technique
consists of modeling the background with a kernel-based nonparametric model. The
probability density of a pixel at time t is presented by the following equation:

Pk(Xt ) = 1

N

N∑
i=1

φ(xt − xi) (5.25)

where φ is the kernel function. Using a Gaussian-type kernel function, which
amounts to considering a centered Gaussian function N (0,Σ), the density function
is defined by:

Pk(Xt ) =
N∑

i=1

1

(2π)
d
2 |Σ | 1

2

exp
{
− 1

2
(xt − xi)

T Σ−1
t (xt − xi)

}
. (5.26)

For each pixel, the probability density is assumed Pr(Xt ). The pixel xt is decided
as a background pixel if it satisfies the following condition: Pk(Xt ) ≥ ε, with
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ε a threshold to be arbitrarily fixed, and d represents the size of the space. It is
notable that the method remains robust even in dynamic background frameworks
with the presence of light perturbations. Nevertheless, introducing a kernel function
significantly increases calculation time and complexity of the algorithm.

5.6.5 PCA-Based Background Subtraction

Oliver et al. [43] proposed a strategy based on a principal component analysis
(PCA). The principle of the strategy is to have a background which describes
the motion variation in a reduced multidimensional space. The PCA is known
as a dimensionality reduction method. The authors suggested applying the ACP
on N frames of the video to lead to a base of eigenvectors. Then, the first two
eigenvectors are retained since they best explain the variance of these N frames,
which can reduce the size of the space of representation. Once the model is built,
each new frame I is projected onto the representation space in order to model
the fixed regions of the scene. Objects are detected by calculating the difference
between the input image I and the image I ′. It is notable that this approach becomes
ineffective if the background is evolutionary. The main steps of the approach called
eigenbackgrounds are (Fig. 5.9):

• Arrange N frames into a column matrix M ,
• Find the covariance matrix C = MMt ,
• Diagonalize the matrix C to obtain an eigenvector base φ and eigenvalues λ,
• Keep the two first eigenvectors,
• Project each new image I into the two-dimensional space, and then rebuild the

image,
• Differentiate between the input image and the reconstructed image to detect the

moving object.

5.7 Conclusion

Nowadays, modern digital traffic sensors and other intelligent surveillance tech-
nologies are increasingly deployed into transportation networks [45]. Infrastructure-
based sensors are the most frequently used, seeing they are permanent and can
be easily installed in the road or in its neighborhoods (e.g., on lighting poles,
posts, buildings, and signs). They may be manually fixed during preventive road
construction or maintenance, or by sensor injection machinery for rapid installation.
Many other techniques like radar sensors, GPS, and digital cameras are increasingly
used to measure important factors such as speed, category, and density of vehicles in
order to provide traffic more reliable traffic information. Such a precious informa-
tion will be subsequently exploited by planning and forecasting engineers to develop
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Fig. 5.9 Vehicle detection using (a) nonparametric background subtraction and (b) PCA-based
background subtraction (Sources: (a) Elgamal et al. [19] and (b) Javed et al. [28])

intelligent interfaces. In this chapter, the main principles of traffic engineering, data
collection, and measuring technologies as well as the most advanced vision-based
models for the detection and tracking of vehicles are reviewed. In this context, we
take stock of the recent literature on the main strategies for implementing these
techniques with the aim of solving the major transportation problems, in particular,
the congestion pollution.
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Chapter 6
How Did the Discussion Go: Discourse
Act Classification in Social Media
Conversations

Subhabrata Dutta, Tanmoy Chakraborty, and Dipankar Das

Abstract Over the last two decades, social media has emerged as almost an
alternate world where people communicate with each other and express opinions
about almost anything. This makes platforms like Facebook, Reddit, Twitter,
Myspace, etc., a rich bank of heterogeneous data, primarily expressed via text but
reflecting all textual and non-textual data that human interaction can produce. We
propose a novel attention-based hierarchical LSTM model to classify discourse
act sequences in social media conversations, aimed at mining data from online
discussion using textual meanings beyond sentence level. The very uniqueness of
the task is the complete categorization of possible pragmatic roles in informal
textual discussions, contrary to extraction of question–answers, stance detection,
or sarcasm identification which are very much role specific tasks. Early attempt
was made on a Reddit discussion dataset. We train our model on the same
data, and present test results on two different datasets, one from Reddit and one
from Facebook. Our proposed model outperformed the previous one in terms
of domain independence; without using platform-dependent structural features,
our hierarchical LSTM with word relevance attention mechanism achieved F1-
scores of 71% and 66%, respectively, to predict discourse roles of comments
in Reddit and Facebook discussions. Efficiency of recurrent and convolutional
architectures in order to learn discursive representation on the same task has been
presented and analyzed, with different word and comment embedding schemes. Our
attention mechanism enables us to inquire into relevance ordering of text segments
according to their roles in discourse. We present a human annotator experiment to
unveil important observations about modeling and data annotation. Equipped with
our text-based discourse identification model, we inquire into how heterogeneous
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non-textual features like location, time, leaning of information, etc. play their roles
in characterizing online discussions on Facebook.

6.1 Introduction

While the predominant mode of people engaging in discussions on social media
is via text, recent advents have pushed these communication to non-textual modes
also. The most simple example of such communications are reactions in Facebook.
People tend to express their opinions towards a content or opinions of others via
categorized reactions like “love,” “angry,” or a mere simple “like.” Platforms like
Reddit provide “upvote” and “downvote” options to express categorized opinions.
In an ongoing discussion, these options add newer structures of opinion exchange;
users tend to express their opinion towards others using these options and such non-
textual mode of discourse run parallel to the textual one.

There are still other factors effecting how online discussions proceed. There are
heated topics of discussion where an user represents his/her community sentiments,
like religion, race, political affiliation, location, etc. People bunk onto the sources
of information like news reports, videos, and images, and these behaviors change
with time. Even for a single topic, character of discussions varies temporally as new
information floods in, from multiple modes. Exploring relationships between these
heterogeneous features may reveal valuable understanding of online discussions.
But to continue, one needs to identify intentions or roles of different people in
discussion, depending on text only. Heterogeneity can be explored over that primary
identification of discourse.

The term Discourse has been defined in numerous ways in linguist commu-
nity. Broadly, discourse is how we meaningfully relate written or spoken natural
language segments. In case of dialogues, we deal with compound discourses
constituted by Narrative Discourse and Repartee Discourse [17].
While narrative discourse focuses on the depiction of motion, repartee discourse
engages to describe speech exchanges. This second part varies in nature with varying
types and platforms of dialogue. For example, in spoken dialogues, utterances of a
single speaker are much more intervened compared to email conversation, due to
more interruption and real-time transmission–reception when we talk face-to-face.

With the boom of social media, more and more people are expressing opinions,
queries, and arguments on topics innumerable, opening a completely new type of
repartee discourse. This has opened scopes of understanding how people engage
in discussions. In fact, this can be extended to almost any platform where people
interact with each other in an informal manner like Facebook, Twitter, Reddit,
CreateDebate, etc. Participation in discussions is not homogeneous across these
platforms; while Facebook or Twitter are more used for expression of opinions
and argumentation, platforms like Reddit or different community forums have
large usage for querying and answering. One method of understanding discussions
has been to identify high-level discourse structures in such conversations. These
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Table 6.1 Examples of discourse acts in discussion threads

Comment Discourse act tag

U1: I’m not form the US but am interested in US politics. So here is my
question: Is Obamacare failing? If the democrats had won. Would they also
be in a hurry to fix Obamacare because of flaws in the law?

Question

U2 (replying U1): The straight up answer to your question is “it’s com-
plicated”. In my point, million have obtained insurance, some who were
uninsurable before, primary care is available to more, maternal care, mental
health, and more are available to closer to everyone in the US.

Answer

U3 (replying to U2): But not as many people obtain insurance as the CBO
predicted in 2009, insurance costs too much, and the Obamacare is still a
massive government overreach.

Disagreement

U4 (replying to U2): That was a good answer! Appreciation

structures tend to assign categories called Discourse Acts to each textual
utterance (comments, messages, etc.) that pertain to their role in the conversation.

Like discourse processing in plain documents, discourse parsing of dialogues is
a two-step process: identification of discourse constituent or elementary discourse
units and then establishing discourse relation between them. In dialogues, each
utterance is linked to the utterance it was replied to. In Table 6.1 U2 is linked to
U1, U3 is linked to U2, and so on. In case of structured platforms like CreateDebate
or Reddit, these links are already known. Each comment in these platforms is an
explicit reply to some other. But in Facebook or various group chat platforms,
this structure is not explicitly known. Dutta et al. [10] proposed a support vector
machine-based framework to decide which comment is put in reply to whom, in
case of Facebook discussion threads. A much complete work on tagging discourse
acts of discussion comments is the Coarse Discourse Dataset [35]. This is
a Reddit dataset with over 9000 discussion threads comprised of over 100,000 com-
ments. Each comment is classified into one of the nine different discourse act tags,
namely Announcement, Question, Answer, Elaboration, Humor, Agreement,
Disagreement, Appreciation, and Negative reaction, with undecidable roles as
Other.

Given the constituency information, a single discussion thread becomes a tree
with the first or opening comment being the root node. Depth-first traversal of
this tree yields multiple linear sequences of comments; each posed as a reply to
its previous one. We then hypothesize that identification of discourse role of each
comment depends on its ancestors along the chain and not only its parent comment;
thus the problem becomes classification of sequence of comments to corresponding
sequence of discourse acts. This is a familiar problem of mapping input sequences
to same length output sequences, and a variety of traditional and neural learning
models exist to solve this.

Recurrent Neural Networks or RNNs revolutionized the modeling of
sequential data with its emergence. Given an RNN with xt as input in current
timestep, ht−1 as hidden layer output from previous timestep, output for current
timestep ot is computed as f (xt , ht−1) where the network learns function f .
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Theoretically, this enables an RNN to learn dependencies in sequences which
can be spread to arbitrary distances. Practically this is not the case, as Vanishing
Gradient Problem [14] restricts RNNs to learn long-term dependencies. This is
where Long Short Term Memory or LSTM models [13] come into play. In
LSTMs, a separate memory cell is used to remember long-term dependencies, which
can be updated depending on current input; so at each timestep, LSTM takes current
input xt and previous memory cell state ct−1 as input and compute output ot and
current cell state ct . Governing equations of an LSTM are

it = σi(xtWxi + ht−1Whi + bi) (6.1)

ft = σf (xtWxf + ht−1Whf + bf ) (6.2)

ct = ft � ct−1 + it � σc(xtWxc + ht−1Whc + bc) (6.3)

ot = σo(xtWxo + ht−1Who + bo) (6.4)

ht = ot � σh(ct ) (6.5)

where xt is input vector, ft is forget gate activation vector, it is input gate activation
vector, ot is output gate activation vector, ht is output vector of LSTM, ct is cell
state, and W and b are weight and bias matrices. Malhotra et al. [20] showed that
stacking up LSTM layers above each other enhances learning; deeper layers tend to
model more complex representations from the previous layer output. This idea of
stacking up multiple LSTM layers will be used in our experiments also.

LSTMs have been proved to be very much efficient in NLP tasks where sequence
classification or time series forecasting applies [27, 28, 33]. LSTMs, when allowed
to focus particular segments of input data, perform even better. Intuitively, this
directs the model to remember relations regarding focused segments with additional
priority. This is the basic idea behind Attention Mechanisms.

We pose our problem to identify discourse role of participants in online discus-
sion with a broader problem of mapping heterogeneous real-world phenomenons
with the characteristics of discussions on social media. We organize the rest of the
chapter in the following manner:

• In Sect. 6.2 we present a survey of works related to linking real-world phe-
nomenons with social media data, network analysis of social media interactions,
discourse act tagging, and an important subproblem of stance detection.

• Section 6.3 presents the working and underlying rationale of our proposed
multidimensional LSTM model with attention mechanism for discourse act
tagging, along with one multi-layer perceptron model, two pure LSTM-based
models, and one convolutional LSTM model.

• With the model definitions completed, we move on to experiment methodologies
used in detail in Sect. 6.4.
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• Section 6.5 contains the evaluations of the model performance along with a
comparative study.

• We introspect into the shortcomings of our models and propose some possibilities
of overcoming them in Sect. 6.6.

• In Sect. 6.7 we discuss how our model can be used to characterize online
discussions to predict temporal variation of argumentation, possible effects of
external sources of information, and emergence and reflection of community
sentiments.

6.2 Related Work

Linking social media to real-world events has gained much focus from the start of
this decade; mostly related to entity recognition and opinion mining. Bollen et al. [3]
analyzed text contents of tweet streams to build a mood time series and studied its
relation with the stock market time series. They used two different mood tracking
tools to tag each tweet, tested those tools to predict moods of user regarding two
different social events and finally devised a Granger causality analysis and a self-
organizing fuzzy neural network to find correlation between this mood time series
and daily up-downs of Dow Jones industrial average (DJIA) from March 2008 to
December 2008. They achieved an accuracy of 86% to predict the direction of
DJIA. Similar type of work was presented by Wang et al. [31]; they proposed a
real-time system for Twitter sentiment analysis of US presidential election 2012.
O’Connor et al. [23] linked several surveys on political presidential poll and
consumer confidence in the USA to contemporary Twitter text sentiment. Most
of these works and related ones tend to analyze sentiments of opinions expressed
in social media data. Tan et al. [29] incorporated Twitter networking structure to
classify user-level text sentiments.

As they become a platform to reflect thoughts and opinions, social media has its
intrinsic role of networking, of connecting people and make some information flow.
Subsequently, problems like community detection, information flow prediction,
rumor detection, etc. emerge. Chakraborty et al. [5] presented a survey of metrics
to evaluate community detection systems. Without going into much detail, one can
refer to [19, 26, 32] as noteworthy works on analysis and prediction of what type of
content propagates more over social media.

Research developments discussed till now have mostly relied on the semantics
of the text in focus. Analyzing text in discourse level to do the same job is less
explored yet promising approach. Trevithick and Clippinger [30] proposed how
speech acts of message contents can be used to characterize relationship between
participants in social networking. Somasundaran et al. [25] showed how opinion
polarity classification can be improved by considering discourse relations.

The idea of discourse acts originated from spoken dialogues (also called speech
acts). Bunt [4] proposed an ISO standardization for dialogue act annotation
in spoken dialogues. Clark and Popescu-Belis [6] proposed MALTUS, a multi-
layered discourse act tagging for spoken dialogues. In case of textual conversations
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they do not readily translate. Repartee discourse, as discussed in Sect. 6.1, varies
in qualitative nature when we go from speech to text, a major cause being
the asynchronous nature of textual exchanges. Within the textual arena, formal
communications like emails show distinctly different nature of exchange compared
to informal conversations like chats or open discussion platforms. Assigning speech
act like labels to emails was another approach [7]; this labeling was based on an
idea about intention of action expressed by the mail sender, so they used tags like
request or commitment as discourse roles. Kalchbrenner and Blunsom [15] proposed
a neural model for classifying dialogue acts in transcribed telephone conversations.
They used convolutional architecture to produce sentence representation from word
embeddings, and then a recurrent network to map each convoluted utterance to
corresponding discourse act. A similar type of architecture has been implemented
in our work for comparison.

Most of the previous research in online discussion has focused on extraction of
question–answer pairs. Ding et al. [8] developed a CRF-based model to identify
context and question–answer discourse in a dataset constructed from Tripadvisor
forum. Some endeavored on understanding argumentative discourse in online
platforms dedicated for debating [12, 22] and limited to a handful of topics. Bhatia
et al. [2] proposed a discourse act classification scheme on Ubuntu and Tripadvisor
forum posts. Although they tend to classify not extract specific types of posts, the
data they chose, and discourse acts they specified was more of query-solution type.
Arguello and Shaffer [1] handled a similar problem, predicting discourse acts for
MOOC forum posts. Both of the previous works focused on similar type of data on
limited domain: they tend to classify discourse roles of posts which are put to mostly
ask for help, answer some queries or evaluate some previous post. These are not like
new age social networks with almost no bar on topics of discussion, covering from
political debate to simple query-answering related to restaurants.

As mentioned earlier, a variety of approaches has been proposed regarding
argumentation discourse, precisely, stance detection. Now stance detection can be
viewed as a two-way problem. Both for monologues and dialogues, stance detection
can be approached with fixed target set. That is, the subject about which to detect
the stances is predefined. On the other hand, dynamic understanding of debate topic
and stance detection around those topics is a much more complex task to solve.
O’Connor et al. [23] presented a stance detection model from a large Tweet dataset
covering numerous topics. Identification of political stances in social has gathered
much focus recently. With a fixed target subject, Lai et al. [16] and Wang et al. [34]
provide much insight to this problem.

The attention-based LSTM model proposed by Du et al. [9] bears much similarity
with our proposed model. They addressed the problem of target specific stance
detection using neural models. To make an LSTM focus on parts of text which
may relate to the target subject, they used word vectors augmented with vectors
representing words of target topic.

All these works mentioned earlier focused on specific types of discourse, and
relied on data at par with those discourse types. To the best of our knowledge,
Zhang et al. [35] proposed the first complete discourse categorization of textual



6 Discourse Act in Social Media 143

discussions in a broad platform, dealing with numerous topics. They proposed a
CRF-based model to predict high-level discourse act labels of comments, using
textual content-based features as well as structural features. With all the features,
this model achieved a F1 score of 0.747. But without structural features, F1
score dropped to 0.507. The structural features they used were word counts in a
comment, depth of comment in thread, length of sentences, etc. These features
are highly dependent on which discussion forum is being referred to. Their dataset
was prepared from Reddit discussion threads, and therefore these structural features
predominantly correspond to Reddit’s own discussion types. For example, if one
plans to test this model on Twitter discussion, structural features will not translate
due to word limit of tweets. Same goes for Facebook as users idea about engaging
in conversations in Facebook differs from Reddit, thereby changing the way people
talk. Scott et al. [24] and Misra et al. [11] presented two independent studies on
discourse of social media, focusing on Twitter and Facebook, respectively. Both
of them show a common finding, mediator platform with its functionality and
constraints largely determines the pragmatics of mediated conversations. That is
why we use the coarse discourse dataset as primary data to train and test our models,
but exclude explicit representation of structural features and focus solely on content
to make our model platform independent.

6.3 Model Description

As there is no previous neural network model for the high-level discourse labeling
tasks in case of asynchronous textual conversations, to the best of our knowledge, we
devised five different neural network-based models along with our finally proposed
multidimensional LSTM model with word relevance attention mechanism. We
begin by describing these models.

6.3.1 Multi-Layer Perceptron Model

In Sect. 6.1 we hypothesized that prediction of discourse role of a comment in a
chain is affected by all its ancestors in that chain. An MLP model contradicts this
hypothesis, predicting discourse acts one by one. We present this model to justify
our hypothesis.

Let Ci and Ci+1 be the pretrained vector representation of comments in a chain
where Ci+1 is put in reply to Ci ; Di is the discourse act represented in an one-hot
vector of size 10 (no. of classes). Input to our MLP is a vector I resulting from
concatenation of Ci , Di , and Ci+1, and model predicts Di + 1. Stepwise internal
computations are as follows:

H1 = f1(I •W1 + B1) (6.6)
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H2 = f1(H1 •W2 + B2) (6.7)

D = f2(H1 •W2 + B2) (6.8)

where f1 and f2 are Sigmoid and Softmax nonlinearity, respectively, W and B are
weight and bias matrices of corresponding layer. Last output D gives a probability
distribution over the 10 classes to predict. The MLP tries to minimize the categorical
cross entropy of D in the course of learning.

6.3.2 LSTM with Pretrained Comment Vectors

Now to go along with our hypothesis, we design a simple LSTM model (Fig. 6.1)
with sequence of comment vectors C = [C0, C1, . . . , Cn] as input and sequence of
predicted discourse acts D = [D0,D1, . . . , Dn] as output. Sequential outputs from
the LSTM are connected to a densely connected layer with softmax activation to
get the probability distribution of Di’s, just like Eq. (6.8). Similar to the MLP, this
model attempts to minimize categorical cross entropy for each Di ∈ D.

6.3.3 Two-Dimensional LSTM

Previous two models take each comment as a pretrained vector. Our next model
explores the task word by word and representations of comments are learned within
discourse act prediction task. Rationale behind this was the assumption that, given
the discourse act tagging target, intermediate representation of comments learned

Di+1

DiCi Ci+1

D0 D1 Dn

C0 C1 Cn

Ci = pretrained vector of i-th comment
Di = Discourse act label of i-th comment

Fig. 6.1 Architectures of MLP (left) and LSTM (right) using pretrained comment vectors
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by sequential processing of words will contain more long distance dependencies
between words. As we are dealing with pragmatic task, larger contexts of words
are needed to be taken into account, and theoretically LSTMs can capture such
dependencies better. As depicted in Fig. 6.2, each comment Cj is represented as

a sequence of words {Wj
i }. The model can be segmented into two parts: word-

dimension stacked LSTM and comment-dimension LSTM. If we denote each LSTM
layer as a black-box function L , then the stepwise computations are as follows:

W′ = L (W) (6.9)

C = L ′(W′) (6.10)

D = L (C) (6.11)

where L returns sequential output and L ′ returns single output.
We used one-hot vector representation for the input words; an embedding layer

was used to produce distributed word vectors. Weights of this embedding layer was
set to pretrained word vectors, so that during training, our model fine-tunes the word
vectors.
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6.3.4 Two-Dimensional LSTM with Word Relevance Attention

Compared to the MLP model, those using LSTMs approach the problem of dis-
course act prediction task as a sequence-to-sequence modeling. In two-dimensional
LSTM model, we have taken into account how the comments are being constructed
from sequence of words to capture pragmatic relation between words. Still, in two-
dimensional LSTM model we just discussed, intermediate representation of each
comment depends only on the words constituting itself. This bars the model to pick
relevant words in relation to the previous comments, topics of discussion, etc., and
simply same words in two different comments with two different discourse context
get same relevance. We propose an attention mechanism with the two-dimensional
LSTM model to let it learn to assign more relevance on particular words depending
on context.

6.3.4.1 Word Relevance Attention

Apparently question–answer discourse is easy to identify. Questions possess distinct
parts-of-speech ordering (mostly starting with verbs), and answers are always paired
with questions. Discourse roles like agreement, disagreement, humor, etc. are rather
complex to distinguish. These discourse relations can often be identified with
stances and content to justify stances. These stances can be based on the topic of
discussion or the parent comment. That is, the task becomes to identify stance of
two comments against a set of common topic words. We exploit a special structural
leverage of online public forum discussion to identify topic of discussion. In case
of human–human interaction via speech or via personal messages, usually a person
is able to recall only a last few utterances. But in public forums, all the previous
comments are open to read. Out of all those messages, the first (thread starter)
comment is the one defining the topic of discussion. Every user tries to post their
comment in relevance to those topics.

The attention mechanism we propose is hypothesized to exploit these phe-
nomenons. We select specific words (nouns, verbs, adjectives, and adverbs) from
the first comment of the thread and the parent comment (one that is replied to) as
discourse target. We take weighted mean of these words to produce two vectors,
corresponding to the first comment and the previous comment (in our experiment
we used tf-idf weights to focus on important words from these two comments).
These two vectors are then augmented with each word of the current comment. If
Wf = [wf

0 , . . . , w
f

M−1] and Wp = [wp

0 , . . . , w
p

N−1] be the sequence of words
extracted from the first and the previous comments, respectively, then

W ′
f =

M−1∑
i=0

w
f
i t

f
i

M
(6.12)
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W ′
p =

N−1∑
i=0

w
p
i t

p
i

N
(6.13)

where t
f
i and t

p
i represent tf-idf value of the i-th word in Wf and Wp, respectively.

We do not use plain tf-idf values calculated with comments being represented as
documents. Instead, as proposed in [10], we use hierarchical frequencies. As the
first comment represents topic of discussion, and this is a characteristic of the thread,
we take threads as documents and calculate inverse thread frequency of the words.
With the previous comment words, we rather focus on the discussion context, which
changes comment by comment. To extract relevant context words, for the previous
comment, we compute inverse comment frequencies over the whole dataset. So t

f
i is

term frequency multiplied by inverse thread frequency, whereas t
p
i is term frequency

multiplied by inverse comment frequency.
W ′

f and W ′
p now can be visualized as vectors representing relevant contents

of first and previous comment, respectively. They are concatenated with each
word vector of the current comment to generate target augmented vectors T =
[T0, . . . , TC] where C is the number of words in current comment (Fig. 6.3).
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Fig. 6.3 Word relevance attention architecture
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Now we are going to make our model learn relevance ordering from T. Given
dimensionality of the word vectors used V , we initialize a trainable weight matrix
K of order C × 3V , and produce a vector S = [s0, . . . , sC] such that,

si =
3V∑
j=0

K[i][j ] ∗ T[i][j ] ∀i ∈ [0, C] (6.14)

This operation serves two purposes. Suppose, K[i] contains all ones and all the
word vector entries of T[i] are positive. Then larger values of si will signify greater
similarity between target word vector and i-th word vector of current comment.
Practically word vector entries will be both positive and negative, and the attention
may learn corresponding weight values in K to maximize si for similar words.
On the other hand, K may learn to pose proper weights over related adjectives or
negation words and even discourse connective prepositions to reflect their relevance
when generating comment vectors. Applying softmax over S, we get a probability
distribution P = [p0, . . . , pC] over the words of current comment.

Now we get back to two-dimensional LSTM model discussed in Sect. 6.3.3. The
relevance probability P is applied to the outputs of the first LSTM of the word-
dimension part,

Wrel[i] = piW′[i] ∀i ∈ [0, C] (6.15)

where W′ corresponds from Eq. (6.9) and Wrel is the focused word sequence
representation which will be fed to the next LSTM layer to generate comment
vector.

6.3.5 Convolutional Generation of Intermediate Comment
Vectors

In our proposed two-dimensional LSTM model, intermediate representation of each
comment was computed using a stacked LSTM model. To compare the performance
of this model, we also devised a convolutional model which generates a single vector
from the word images (sequence of words now constituting a 2D matrix of size
C × V ) by convoluting and average-pooling. This model actually resembles to an
N-gram model, as we use three parallel 1D convolution with filter sizes two, three,
and four and concatenate the three pooling results to a single vector representing
the comment. So the model actually learns to extract bi-gram, tri-gram, and 4-gram
features from the comments to generate the vector. Convoluted and concatenated
vector is then fed to an LSTM to predict the discourse act sequence, identical to the
comment-dimension LSTM of Sect. 6.3.3. This model is experimented both with
and without the attention mechanism proposed (Fig. 6.4).
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Table 6.2 The presence of
different discourse act classes
in coarse discourse dataset

Discourse act Total no. of comments % in dataset

Question 17,681 17.6

Answer 41,658 41.5

Announcement 2024 2.0

Elaboration 18,927 18.8

Agreement 5072 5.1

Disagreement 3436 3.4

Humor 2409 2.4

Appreciation 8807 8.8

Negative reaction 1899 1.9

6.4 Experiments

6.4.1 Dataset

We used the course discourse dataset1 of Reddit discussions as our primary dataset
to train and test our models. An in-depth analysis of the data can be found in [35]
(Table 6.2).

1https://github.com/dmorr-google/coarse-discourse.

https://github.com/dmorr-google/coarse-discourse
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Another dataset of comparably smaller size was also used, solely to test the best
three models from test results on the coarse discourse dataset. This dataset is an
extended version of the Facebook discussion dataset prepared by Dutta et al. [10].
We manually annotated the data with discourse act labels as per the rating guidelines
with the coarse discourse data. This dataset contains 20 threads of discussions under
posts from Facebook pages of various newsgroups like BBC, The New York Times,
The Times of India, The Guardian, etc., with a total of 1177 comments altogether.
These discussions were mostly related to heated contemporary social and political
issues like US Presidential Election 2016, Terrorist Attacks, Brexit, etc.

6.4.2 Pretrained Embeddings

As discussed in the model descriptions, we used either pretrained word or comment
embeddings. For word embeddings, we used Word2Vec [21] on the comments from
both the datasets taken together. We generated six different word embedding sets
with vector size 50, 100, 150, 200, 300, and 400 and ran pilot experiments with the
two-dimensional LSTM and convolutional LSTM models using each embeddings
on a small fraction of the dataset. We observed that increasing vector size beyond
150 did not bring any further betterment of performance and only burdened the
hardware performance. So we stick to the 150-length word embedding throughout
the experiments.

Same idea was used for pretrained comment embeddings. Doc2Vec [18] was
used to produce ten different paragraph embeddings ranging from size 500 to 1500,
and finally the one with size 700 was taken.

6.4.3 Training Models

We used fivefold stratified cross validation to train and test all the models. As the
length of comment sequences varies from 2 to 11, and further number of words
present in each comment varies substantially, we had to pad each comment with
zeros. Longer chains are actually rarer, and thus to avoid too much padded data, we
take equal length sequences at a time. That is, we train a model on sequences of
length i, save the learned weights, and load them to a new model for sequences of
length i + 1. We optimized hyper-parameters of all the models using scikit-learn’s2

grid search.
A CRF model using all the features (content + structure) used by Zhang et al.

[35] was also trained. We test this model on Facebook dataset to present a full
comparison of our models along with the state of the art.

2http://scikit-learn.org.

http://scikit-learn.org
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6.4.4 Human Annotator Testing

From the inter-annotator reliability measures presented by Zhang et al. [35],
one can see that distinguishing discourse act labels other than question, answer,
and announcement is a very much subjective process. So we devised an evalua-
tion of model performance by human subjects from linguistic and non-linguistic
backgrounds. A small fraction of the testing data from Reddit dataset was used
for this purpose (20 threads containing a total 657 sequences), with the same
rating guidelines. Two different set of experiments were done using each group of
annotators:

1. Zero knowledge testing of model. Annotators are presented with predictions
made by a model. They evaluate the predictions without prior knowledge of the
labeling in corpus.

2. Zero knowledge testing followed by allowed correction. Annotators do zero
knowledge testing, then we present them the corresponding labeling in corpus.
They are allowed to make changes in their previous decisions if they think so.

3. Self-prediction. Annotators were asked to predict discourse tags, and we
evaluated their performance compared to the corpus labels.

6.5 Observations

6.5.1 Model Performances

We start with presenting results of testing all the models proposed on coarse
discourse dataset. As shown in Table 6.3, our first hypothesis of modeling the
problem as a seq2seq prediction task clearly holds true. All four models processing
sequence of comments as input outperforms the MLP model by big margin. We do
not use this model for further experiments.

In an overall performance, convolutional generation of comment representation
had an edge over recurrent generation when not equipped with the word relevance
attention. To dig a bit further, we need to look into the class-wise performance of the

Table 6.3 Overall performance of all models tested on Reddit dataset

Models Precision Recall F1 score

MLP 0.51 0.43 0.46

LSTM with paragraph-vectors 0.58 0.57 0.57

2D LSTM 0.60 0.61 0.60

CNN-LSTM 0.62 0.60 0.61

CNN-LSTM with attention 0.65 0.63 0.64

2D LSTM with attention 0.72 0.71 0.71
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Fig. 6.5 Model performances and fraction of argumentative discourse roles present in sequence
vs. length of comment sequence

four models presented in Fig. 6.6. The CNN-LSTM model actually performed much
better compared to the 2D LSTM in classes like question, answer, announcement,
and elaboration. But classes like humor, agreement, disagreement, appreciation, and
negative reaction show the other way round. Though this phenomenon demands an
in-depth analysis, we present a rather intuitive explanation here.

Our CNN-LSTM model takes bi-grams, tri-grams, and four-grams from the
comment consecutively and constructs parallel representations based on them. This
captures the local organization of text very well. Discourse roles of the first type are
more easily predictable with such local organizations. But they fail to capture long
distance relationships between words in a text, which is more important to identify
argumentative discourses of the second type. LSTMs have an edge over CNNs when
the problem is to identify long dependencies.

But simple 2D LSTMs does not learn to know which long-term dependencies are
actually to put more focus on. Word-dimension part of the model tries to capture
internal discourse organization of a comment without taking into account what
the high-level discourse is going on. Theoretically, making these LSTMs stateful
would have solved this problem, but in reality mere statefulness cannot capture this
much information content. The attention mechanism we proposed tried to solve
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this problem, at least partially. We can see the sheer rise of performance in both
the CNN-LSTM and 2D-LSTM model when equipped with the word relevance
probability computed using previous and first comment words. But here again, 2D
LSTMs exploited the attention much more rigorously compared to the convolutional
one.

From the nine discourse act roles, we identified agreement, disagreement, humor,
appreciation, and negative-reaction as part of argumentative discourse. In Fig. 6.5,
the presence of argumentative discourse can be seen more manifesting in longer
chains. As the length of chain increases, two challenges occur simultaneously: the
comment-dimension LSTM has to remember the learnings from more previous
comments; on the other hand, with the increase in argumentative discourse, stance
detection problem with dynamic targets comes more into play. We can check
the performances of our two-dimensional LSTM model, with and without word
relevance attention, and CNN-LSTM with word relevance attention, given the
variation of the two challenges (Fig. 6.6).

Now we move on to compare our best two models (CNN-LSTM and 2D LSTM,
both with attention) with the state-of-the-art CRF-based model by Zhang et al. [35].
On the Reddit dataset, CRF model with only content features (with F1 score 0.50)
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was clearly outperformed by our models by big margin. However, the one with all
the features still got better results compared to us, with F1 score 0.74. But on the
Facebook dataset, as presented in Table 6.4, our 2D LSTM with word relevance
attention clearly performed better compared to the all feature CRF. Though this test
is not exhaustive with data from other discussion platforms, we can still conclude
that our model achieved better domain independence.

6.5.2 Human Annotator Evaluation

Low inter-annotator reliability presented for the Reddit dataset reflects substantially
in the test results from human evaluation. As we can see, when presented with
the annotations done by our 2D LSTM with attention model, human annotators
evaluated those to be better performing compared to the actual results evaluated by
corpus annotations. When presented with the corpus annotations, these annotators
changed their decision to decrease the scores. As we can see, this change is much
higher for annotators from non-linguistic backgrounds (Table 6.5).

When annotators were asked to predict the labels themselves, their performance
also varied by a big margin. Average scores for linguistic and non-linguistic
background annotators have been presented. Worst case to best case results varied
from 0.68 (by a non-linguistic annotator) to 0.82 (by a linguistic annotator). We also
observed them to tag same comment in different sequences with different discourse
roles.

Table 6.4 Comparison with
state-of-the-art model on
Facebook data

Models Precision Recall F1 score

CNN-LSTM with attention 0.61 0.57 0.58

CRF with all features 0.62 0.63 0.62
2D LSTM with attention 0.65 0.68 0.66

Bold values highlight the previous state-of-the-art and develop-
ment we made

Table 6.5 Results of human
annotator testing

Annotator
background

Evaluation
method

F1 score

Linguistics Zero knowledge 0.74

Zero knowledge
with correction

0.72

Self-prediction 0.81

Non-linguistics Zero knowledge 0.77

Zero knowledge
with correction

0.71

Self-prediction 0.73

Actual performance 0.70
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Just curious if anyone has ideas that don't use the tabs for a 

multiday trip I may take next week. Not a huge fan, but I do 

use them when I do large quantities.

{Question}

{Disagreement} Serious? That thing is incredibly impractical for back-

packing!

Why has none mentioned LifeStraw yet?

Fig. 6.7 Example of word relevance learned; blue text denotes first comment; darker labels on
words signify higher relevance assigned

6.5.3 Learning Word Relevance

Figure 6.7 shows an example of how the attention mechanism weighted different
words in the comment depending on the first and the previous comment. The
comment shown in example acquired a disagreement-type discourse role. Darker
gray labels signify higher relevance values assigned to the word by the attention
mechanism. From the first comment we can see that the discussion evolves around
some backpacking tools. The parent comment mentioned a named entity, possibly
a particular brand name. The attention framework picked up the adjectives and
adverbs in the current comment to as more relevant words. Also a discourse
connective at the beginning was identified to mark the discourse role. For the parent
comment also, words identifying the query nature of the comment have been put on
more weighting.

From this relevance ordering, two related observations can be made. Firstly,
with more fine tuning and a lot more of training data, this framework can lead
us to an unsupervised marking of text for discourse connectives, importantly,
high-level discourse connectives. Unlike discourse connectives present in a single
document, dialogue cues marking high-level discourse might be expressed by word
structures like some tree or graph. They do bear non-consecutive long distance
interdependencies for sure. Secondly, for argumentative/stance-taking discourse,
word relevance resembles sentiment lexicons.

6.6 Error Analysis and Possible Solutions

Results of human annotator testing clearly indicate that labeling of discourse roles
is very much a subjective process. In fact, a comment in a thread can have different
discourse roles when taken in different chain of linked comments. Comments
which manifest multiple discourse roles (e.g., disagreement and negative reaction
simultaneously) should be allowed to be labeled with multiple tags with possibly a
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probability distribution over them. Or we can devise hierarchical labeling, so that
each comment has a broad level discourse act tag, and more sub-acts under that.

We devised our attention mechanism to make the word-dimension LSTM peep
into words from first and parent comment. But our very assumption that discourse
act tagging is a seq2seq problem is not actually being exploited here. The flow of
narrative discourse within comments in the chain other than the first and the parent
one must be taken into account when the sequence of words is being modeled into
a comment vector.

With the attention mechanism, our model was able to distinguish between query-
type discourse and argumentative discourse. But within these broad discourse types,
every discourse classes bear some more complex semantic and pragmatic features,
and a further focus is necessary for better prediction of similar discourse roles. For
example, our model misclassified only 7% of comments of query-type discourse
as an argumentative one. But a huge 22% of negative reaction-type comments
have been misclassified as disagreement. Same goes for other similar classes. If
we take disagreement vs negative reaction confusion as an example, focusing on
textual features regarding justification or subjectivity would help us more. Humors
are actually the most complex discourse to predict. In an argument, without the
knowledge of the stance of a person beforehand, humors (to be precise, sarcasms)
are almost similar to agreements or appreciations. Thus a speaker profiling would
also be needed for the task. Coarse discourse dataset has an average 1.66 posts from
each author. This is pretty high for a single dataset but not enough for a complex task
like speaker profiling, specially using neural models. Possibly a joint source model
can help here, where a separate author data will be collected and used in parallel.

Using pretrained word vectors incorporate semantic relations of words in a
comment. For example, this makes the model to identify Democrats being related to
politics or republicans or Hilary. But this can never capture the antagonistic relation
between Obamacare and Trump. Thus, given two short texts with such words and
not much explanation (discourse roles like negative reaction), a model would need
either much larger training set or some way to incorporate world knowledge. With
our model, many of such instances have been misclassified.

Last but not the least, though we took a linear sequence of comments as input to
classify, almost all discussion platforms originally follow a tree structure (the one
from which we picked up each individual sequence). Now when a person starts
typing a reply to a certain comment, he or she can see all the other comments
present there; possibly many of those comments are reply to the comment he or
she is writing a reply to. And these comments do have weak effects on discourse
roles; that is, not only the linear sequence, the whole thread tree needs to process at
a time for better understanding of the discourse.



6 Discourse Act in Social Media 157

6.7 Characterizing Discussions with Discourse Roles

Up until this point, we discussed our proposed model to classify discourse acts
of comments from text. With our nine different discourse roles, we can, at least
apparently, characterize discussions and explore temporal patterns, community
sentiments, etc. We separately collected 12 threads of discussion regarding Jallikattu
comprising 894 comments from 59 users. These 12 threads are the discussions on
Facebook pages of different news groups posting reports and videos about Jallikattu.
We used our hierarchical LSTM with attention to tag each comment with discourse
roles and explore the following hypothesis:

1. A set of threads with more question–answer or appreciation tags can be
hypothesized to be one where participants are acquiring and sharing information.
On the other hand, threads with disagreement, negative reaction, or humor tags
are more likely to be argumentative or quarrelsome one. Temporal changes in
nature of discourse reflect changing engagement of people.

2. Disagreement, negative reaction, or humor relation between two comments group
the corresponding users to antagonistic communities, whereas agreement and
appreciation reflect a belonging to similar community.

Jallikattu is an ancient ritual in Tamil Nadu (southern-most state of India), much
like bull fighting. In 2016, a massive unrest followed the government decision to ban
the festival. The decision was taken on 14th January. Figure 6.8 shows the change in
discourse type in discussions over Facebook as time goes. One can clearly observe
that, at the beginning the discourse showed an inquisitive nature, with mostly
question–answer-appreciation type discourse acts prevailing. One explanation can
be, within this time, people engaging in discussions were not much aware about

Question, Answer, Appreciation

Disagreement, Humor, 
Negative Reaction

1.00

0.75

0.50

0.25

2 4 6 8 10 12 14 16

days spent

Fig. 6.8 Temporal plot showing how fraction of discourse patterns change with time spent over
Jallikattu debate
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what is happening and the focus was to know things. As time passes, mode of
engagement changes more towards argumentation, with people taking firm position.

Our attempt to explore our second hypothesis revealed some actual community
patterns. As stated, we tried to group people into two partitions depending on the
discourse acts of their comments and to whom these were posted. For this purpose,
we manually collected geographical location of the users participating in those
discussions. Our observation was quite aligned with the real-world situation: users
almost got partitioned into two antagonistic groups, one mostly comprised of users
from Tamil Nadu, and the other mostly from northern India.

A peculiar pattern about nature of argumentation revealed, depending on the
original post under which the discussion is going on. When the original post was
video or images of unrest, we got a sharp rise in two specific discourse acts, negative
reaction and appreciation. In case of original post being extensive news report or
socio-cultural analysis, elaboration, agreement, and disagreement prevailed. The
former can be specified as a case of subjective argumentation, with less objective
reasoning, while the latter may contain factual argumentation.

6.8 Conclusion

Understanding complex pragmatics is a new and intriguing problem posed in front
of computational linguists. With dialogues, this becomes far more challenging. In
those work, we present a neural model which, naively speaking, employs layered
memory to understand how individual words tend to constitute a meaningful
comment, and then how multiple comments constitute a meaningful discussion.
With the word relevance attention mechanism, our model tends to learn which words
should be given more importance while deciding the discourse role of a comment.
The proposed multidimensional LSTM with word attention not only outperformed
the previous work on complete discourse act tagging, but also yielded better results
in subproblems like question–answer extraction or stance detection compared to
many previous works.

We can extend this idea of world relevance to larger contexts than only the
previous and first comments. This may even equip us with an introspection into
propagation of topic, sentiment, and other linguistic features through conversations.
We used the only available dataset with a sizable amount of training samples, and
the imbalance of per-class samples might have restricted our model to achieve best
performance. But with sufficient amount of training data from different platforms,
this model can possibly present a breakthrough in analysis of discourse in dialogues.

We used our model to characterize a small stream of discussions regarding a
single topic; that too in a single platform. But this revealed the potential of discourse
relation to be exploited in social network analyses. This can be further extended
to understand argumentation, particularly in multimodal environment, and how
different information sources tend to shape online discussions.
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Chapter 7
Learning from Imbalanced Datasets with
Cross-View Cooperation-Based Ensemble
Methods

Cécile Capponi and Sokol Koço

Abstract In this paper, we address the problem of learning from imbalanced multi-
class datasets in a supervised setting when multiple descriptions of the data—also
called views—are available. Each view incorporates various information on the
examples, and in particular, depending on the task at hand, each view might be
better at recognizing only a subset of the classes. Establishing a sort of cooperation
between the views is needed for all the classes to be equally recognized—a
crucial problem particularly for imbalanced datasets. The novelty of our work
consists in capitalizing on the complementariness of the views so that each class
can be processed by the most appropriate view(s), thus improving the per-class
performances of the final classifier. The main contribution of this paper are two
ensemble learning methods based on recent theoretical works on the use of the
confusion matrix’s norm as an error measure, while empirical results show the
benefits of the proposed approaches.

7.1 Introduction

In machine learning, a frequent issue for datasets coming from real-life applications
is the problem of imbalanced classes: some classes (called majority classes) are
more represented than the others (the minority ones). On the other hand, the data
may be described by different sets of attributes, also called views. The capability of
views to deal with a multi-class learning problem is uneven: some views are usually
more appropriate than others to process some classes (cf. Fig. 7.1) : it is therefore
worthwhile to encourage the right views to recognize the right classes, especially in
the case of classes that are underpopulated.

The purpose of the work presented in this paper is to address these two
imbalanced properties as one: how to exploit the specificities that each view has
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Fig. 7.1 Extract from the dataset Animals with Attributes [14]: three examples of classes gorilla,
polar bear, and rabbit. One first view reflecting colors (such as histograms of colors) would be
sufficient to distinguish polar bears from gorillas, but not enough to discriminate either gorillas
from rabbits or rabbits from polar bears. For achieving these two latest purposes, one might expect
that image descriptors reflecting edges or segmentation would be better than colors. Multi-class
and multi-view classifications are sometimes entangled. (a) The original images (the first view is
extracted from them, focusing on colors). (b) The animals are separated from the background (the
second view)

on a per class basis so that the final classifier equally recognizes both majority and
minority classes?

To the best of our knowledge, multi-view and imbalanced multi-class supervised
classification problems have always been tackled in separate ways. On one side, the
supervised multi-view setting is often processed through early fusion of description
spaces, or through late fusion of every classifier learnt from the various description
spaces [1, 18]. Among the late fusion approaches, the indisputable success of MKL
[2] must be balanced with the time required for its processing of high input space
dimensions [8]. On the other side, the imbalanced classes problems have been
addressed through two main approaches [9, 10]:

– resampling (e.g., SMOTE: [4]) which aims at rebalancing the sample,
– cost-sensitive methods which make use of class-based loss functions for building

models that take into account the imbalanced rate of the training set (e.g., [21]).

Both approaches are sometimes coupled with specific feature selection tech-
niques (e.g., [23]) such that the most appropriate features are identified for
recognizing the hardest (smallest) classes.

In this paper, we advocate that promoting the cooperation between imbalanced
views leads to finding the most appropriate view(s) for each class, thus improving
the performances of the final classifier for imbalanced classes problems. Figure 7.2
depicts an example of distributed confusion between classes among views according
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Fig. 7.2 Multi-view multi-class imbalanced confusions in a nutshell. Here are density functions
of three classes among two views: the description space is R in both views (X = R×R), and three
examples are pictured according to their description values in each view. Independently from class
imbalance (which is not represented), one can easily notice that the confusion rates according to
the Bayes error are not balanced within both views: for example, there is more confusion between
c2 and c3 in view 1 than in view 2. If the Bayes’ rule would apply on the first view, then the
example 3 would be classified in c2, whereas on the second view the decision would be c3. This
illustrates that both views should be considered and combined in a proper way in order to decide
the right class for each example’s data. If we consider the class imbalance problem (which means
that P(y) would favor classes over-represented in the dataset), then example 2 is more likely to be
classified as c3 rather than c2 in view 1 as far as c2 is under-represented compared to c3, whereas
that confusion is less prominent in view 1

to the Bayes error: such a problem arises in many balanced datasets, and is naturally
amplified with class imbalance due to the P(y) of the Bayes’ rule.1 We propose
here an algorithm that encourages the cooperation among views/classes in order to
select the right view for reducing the confusion between each couple of classes.

Based on recent theoretical results on the use of the confusion matrix’s norm
as an error measure (e.g., [17]), the aim of the proposed methods is to find the
best combination of views for each class ensuring a small confusion norm. Roughly
speaking, our proposal is a cost-sensitive method combined with a greedy selection
among predefined groups of features (named views).

The remainder of this paper is organized as follows: Sects. 7.2 and 7.3 introduce
the notation used in this paper and the motivations and frameworks on which
the proposed approaches rely on. The main contribution of this paper is given in
Sects. 7.4 and 7.5, where we show step by step how to derive multi-view methods
for the imbalanced setting. Finally, Sect. 7.6 gives the experimental results, and we
conclude in Sects. 7.7 and 7.8.

1The Bayes’ rule B(x) chooses y that maximizes P(x|y)P (y)/P (x).
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7.2 Theoretical Inspiration from Multi-Class Boosting:
Settings

7.2.1 General Notation

Matrices and vectors are denoted by bold capital letters like C and bold small
letters like x, respectively. The entry of the l-th row and the k-th column of C is
denoted C(l, k), or simply cl,k . λmax(C) and T r(C), respectively, correspond to the
largest eigenvalue and the trace of C. The spectral or operator norm ‖C‖ of C is
defined as:

‖C‖ def= max
v �=0

‖Cv‖2

‖v‖2

def= √λmax(C∗C),

where ‖ · ‖2 is the Euclidian norm and C∗ is the conjugate transpose of C. The inner
product and the Frobenius inner product of two matrices A and B are denoted AB
and A · B, respectively.

The indicator function is denoted by I; K is the number of classes, m the number
of views, n the number of examples, and ny the number of examples of class y,
where y ∈ {1, . . . , K}. X, Y , and H are the input, output, and hypothesis spaces,
respectively; (xi, yi), xi or i are interchangeably used to denote the ith training
example.

7.2.2 Multi-Class Boosting Framework

In this paper we use the boosting framework for multi-class classification introduced
in [16], and more precisely the one defined for AdaBoost.MM. Algorithms based
on the AdaBoost family maintain a distribution over the training samples in order to
identify hard-to-classify examples: the greater the weight of an example, the greater
the need to correctly classify these data. In the considered setting, the distribution
over the training examples is replaced by a cost matrix. Let S = {(xi, yi)}ni=1 be a
training sample, where xi ∈ X and yi ∈ {1, . . . , K}. The cost matrix D ∈ R

n×K is
constructed so that for a given example (xi, yi), ∀k �= yi : D(i, yi) ≤ D(i, k), where
i is the row of D corresponding to (xi, yi).

This cost matrix is a particular case of cost matrices used in cost-sensitive
methods (for example, [20]), where classification costs are given for each example
and each class. However, contrary to those methods, the matrix is not given prior to
the learning process, but it is updated after each iteration of AdaBoost.MM so that
the misclassification cost reflects the difficulty of correctly classifying an example.
That is, the costs are increased for examples that are hard to classify, and they are
decreased for easier ones.
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In AdaBoost.MM, the cost matrix D at iteration T is defined as follows:

DT (i, k)
def=

⎧⎪⎪⎨
⎪⎪⎩

efT (i,k)−fT (i,yi ) if k �= yi

−∑
k �=yi

efT (i,k)−fT (i,yi ) otherwise,

where fT (i, k) is the score function computed as: fT (i, k) =∑T
t=1 αt I[ht (i) = k].

At each iteration t , AdaBoost.MM selects the classifier h and its weight α that
minimize the exponential loss:

ht , αt = argmin
h,α

n∑
i=1

∑
k �=yi

eft (i,k)−ft (i,yi ), (7.1)

where: ft (i, k) =
t−1∑
s=1

αsI[hs(i) = k] + αI[h(i) = k].

The final hypothesis of AdaBoost.MM is a weighted majority vote:

H(x) = argmax
k=1,...,K

fT (i, k).

7.2.3 The Supervised Multi-View Setting

Following previous works [11–13], the multi-view setting that we considered in
this paper is supervised. In the case of mono-view classification, where a predictor
capable of reliably computing the label associated with some input data, the learning
problem hinges on a training set S = {(xi, yi)}ni=1, which is an i.i.d. sample of n

observations where xi ∈ X , yi ∈ Y , and (xi, yi) ∼ DX×Y = D. In the multi-view
setting, the input space X is a product of m spaces X (v), v = 1, . . . , m, and we note
D(v) ∼ P(X(v), Y ) where X(v) is a random variable that ranges in X (v).

Multi-view learning is the usual problem of learning ĥ ∈ H : X → Y such that
the generalization risk is minimized, i.e.,

ĥ = argminh∈HR(h) = argminh∈H E∼D [�(h(x), y)]

where � : Y×Y → R
+ is some loss function, for example, the 0–1 loss: �(y, y′) =

1y �=y′ .
For each view v, let ĥ(v) : X (v) → Y be such that

ĥ(v) = argminh∈H(v) E∼D(v)

[
�(h(v)(x), y)

]
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In order for the multi-view learning to be worthwhile, we obviously expect that
∀v ∈ [1, . . . , m],

E∼D(v)

[
�(ĥ(v)(x), y)

]
> E∼D

[
�(ĥ(x), y)

]

which means that it is beneficial to consider several views than the best one.

7.3 Reducing the Class Confusion with Multi-View Insights

7.3.1 Confusion Matrix: A Probabilistic Definition

When dealing with imbalanced classes, a common tool used to measure the
goodness of a classifier is the confusion matrix. Previous works on the confusion
matrix (e.g., [15, 17], etc.), advocate that using the operator norm of (a particular
formulation of) the confusion matrix as an optimization criterion is a reasonable
choice for dealing with the imbalanced classes problem. Following in their steps, in
this paper we consider a particular definition of the confusion matrix:

Definition 1 For a given classifier H ∈ H, an unknown distribution D over X×Y ,
and a training set S = {(xi, yi)}ni=1 i.i.d according to D, the true and empirical
confusion matrices of h, denoted C = (cl,k)1≤l,k≤K and CS = (ĉl,k)1≤l,k≤K ,
respectively, are defined as:

cl,k
def=
{

0 if l = k

P(x,y)∼D(H(x) = k|y = l) otherwise.

ĉl,k
def=

⎧⎪⎨
⎪⎩

0 if l = k
n∑

i=1

1

nl

I[H(xi) = k]I[yi = l] otherwise,

Contrary to the usual (probabilistic) definition of the confusion matrix, the diagonal
entries are zeroed. The advantage of this formulation is twofold: first, it takes into
account only the errors of the classifier, and second, its operator norm gives a bound
on the true risk of the classifier. Indeed, let p = [P(y = 1), . . . , P (y = K)] be the
vector of class priors distribution, then we have:

R(h)
def= P(x,y)∼D(H(x) �= y) = ‖pC‖1 ≤

√
K‖C‖, (7.2)

where R(h) is the true risk of h and ‖ · ‖1 denotes the l1-norm. The aim of
the methods presented is this paper is thus to find a classifier Ĥ that verifies the
following criterion:

Ĥ = argmin
H∈H

‖C‖. (7.3)
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7.3.2 From the Confusion Matrix Norm to an Optimization
Problem

The confusion matrix C, as given in Definition 1, depends on the unknown
distribution D, thus making the problem given in Eq. (7.3) difficult to tackle directly.
In order to bypass this, we make use of Theorem 1 in [17], which bounds the norm
of the true confusion matrix by the norm of its empirical estimation. We give here
a reformulation of the theorem for the supervised setting, where the considered loss
is the indicator function I.

Corollary 1 For any δ ∈ (0; 1], it holds with probability 1 − δ over a sample
S(x,y)∼D that:

‖C‖ ≤ ‖CS‖ +
√√√√2K

K∑
k=1

1

nk

log
K

δ
,

where CS is the empirical confusion matrix computed for a classifier h over S.

The direct implication of Corollary 1 is that minimizing the norm of the empirical
confusion matrix results in the minimization of its true norm. Unfortunately, due to
the nature of the confusion matrix in Definition 1, an analytical expression for the
norm of the matrix is difficult to compute. We thus consider an upper bound on
‖CS‖2:

‖CS‖2 = λmax(C∗SCS) ≤ T r(C∗SCS) ≤
K∑

l=1

∑
k �=l

ĉl,k = ‖CS‖1. (7.4)

In the last part of Eq. (7.4), we abuse the notation and denote the entry-wise l1-norm
of the matrix by ‖C‖1. Equation (7.4) implies that the updated goal is:

Ĥ = argmin
H∈H

‖C‖1. (7.5)

Another drawback of the confusion matrix as given in Definition 1 is the presence
of the indicator function, which is not optimization friendly. One way to handle this
is to replace the indicator function with loss functions �l,k(H, x) defined over two
classes, so that ∀(x, y) ∈ S and l, k ∈ {1, . . . , K}, I(h(x) �= y) ≤ �l,k(H, x).
Applying these losses to Eq. (7.4), we have the actual upper bound of the confusion
matrix’s norm:

‖C‖1 ≤
n∑

i=1

∑
k �=yi

1

nyi

�yi ,k(H, xi ). (7.6)
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7.3.3 A Multi-View Classifier

In the multi-view setting, an example is represented by various sets of attributes,
called views. Although they represent the same objects, different views might
be suited for different tasks and/or categories (classes) of objects. For instance,
in image classification, the view color is more suited for distinguishing between
gorillas and polar bears, than between cats and dogs. The motivation behind the
work in this paper is to deal with both imbalanced data (some classes are more
represented than others in the training set) and imbalanced views (some views are
suited only for a subset of the classes). While the optimization problem given in
Eq. (7.5) deals with the imbalanced nature of the dataset, the multi-view aspect has
not yet been considered.

Assuming that each view is more adapted only for a subset of classes, one
possible way to implement this in a classifier is to associate a coefficient to each
view based on its prediction. The better a view v recognizes a class c, the higher this
coefficient β

(v)
c should be. More precisely, the considered classifier is the following:

H(x) = argmax
c∈1,...,K

m∑
v=1

β(v)
c I[h(v)(x) = c] (7.7)

where ∀c ∈{1, . . . , K},
m∑

v=1

β(v)
c = 1 and β(v)

c ∈ [0, 1]. (7.8)

In Eq. (7.7), h(v) denotes the classifier learnt on view v and β
(v)
c can be seen as the

confidence that view v gets right for class c (hence the need for these coefficients
to be positives). Due to the sum condition imposed in Eq. (7.8), the coefficients
β

(v)
c also define how the views cooperate one with another, and we refer to them as

cooperation coefficients.
In the following sections, we describe step by step how to learn a cooperation-

based multi-view classifier as defined in Eq. (7.7), which is a solution to the
optimization problem in Eq. (7.5) and subjected to the conditions of Eq. (7.8).

7.4 Multi-View Classification with Cooperation

The multi-view classifier in Eq. (7.7) associates to an example i the class k that
obtains the highest score φ(i, k), computed as follows:

φ(i, k) =
∑

v∈{1,...,m}
β

(v)
k I[h(v)(i) = k]
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If an example i is misclassified, then there exists at least one class k �= yi such
that φ(i, k) ≥ φ(i, yi), that is, eφ(i,k)−φ(i,yi ) ≥ 1. On the other hand, i correctly
classified implies that ∀k �= yi, φ(i, k) ≤ φ(i, yi) and 0 < eφ(i,k)−φ(i,yi ) ≤ 1.
Basically, the exponential loss based on the score functions φ satisfies the conditions
put on the losses in Eq. (7.6). Injecting these exponential losses in Eq. (7.6), we have:

‖CS‖1 ≤
n∑

i=1

∑
k �=yi

1

nyi

�yi ,k(h, xi) ≤
n∑

i=1

∑
k �=yi

1

nyi

eφ(i,k)−φ(i,yi )

=
n∑

i=1

∑
k �=yi

1

nyi

e

m∑
v=1

(β
(v)
k I[h(v)(i)=k]−β

(v)
yi

I[h(v)(i)=yi ])
(7.9)

A first approach to minimizing the norm of the confusion matrix is to find the
classifiers and the cooperation coefficients that are the solution of the optimization
problem given in Eq. (7.9). This formulation is quite similar to the most general
formulation of multiple kernel learning (MKL) methods [2], where the kernels and
the weighting coefficients are learnt at the same time. The differences are that in our
case, the classifiers are not limited to kernels, the number of coefficients is higher,
and we use an exponential loss function.

The main advantage of this approach is that the cooperation between the views
is promoted both in the training phase of the classifiers and in the choice of the
coefficients. However, on the downside, the classifiers need to be learnt at the same
time—which can make the learning procedure quite tedious—and it is not clear what
the minimization goal for each classifier is. A friendlier (and easier to interpret)
expression for Eq. (7.9) can be obtained by limiting the cooperation between the
views only to the choice of the coefficients. The following result is a key step in this
direction.

Lemma 1 Let n ∈ N and a1, . . . , an ≤ 1, so that
∑n

j=1 aj ≤ 1. Then the following
inequality is true:

exp

⎛
⎝

n∑
j=1

aj

⎞
⎠ ≤

n∑
j=1

exp(aj ). (7.10)

Proof The proof for this result is realized by induction : first we show that the result
holds for two variables, then we prove the general case.

The first condition we set on the coefficients in the optimization problem of
Eq. (7.8) is that their values should be in [0, 1]. The second condition requires that,
for each class, the coefficients sum up to 1. Together, these conditions imply that the
inner sums in Eq. (7.9) take their values in [−1, 1], same as each of their elements.
We can thus apply Lemma 1 to further simplify the expression given in Eq. (7.9).
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‖CS‖1 ≤
n∑

i=1

∑
k �=yi

1

nyi

e

m∑
v=1

(β
(v)
k I[hj (i)=k]−β

(v)
yi

I[h(v)(i)=yi ])

≤
n∑

i=1

∑
k �=yi

1

nyi

m∑
v=1

eβ
(v)
k I[h(v)(i)=k]−β

(v)
yi

I[h(v)(i)=yi ]

=
m∑

v=1

n∑
i=1

∑
k �=yi

eβ
(v)
k I[h(v)(i)=k]−β

(v)
yi

I[h(v)(i)=yi ]

nyi

≤
m∑

v=1

�(h(v)), (7.11)

where �(h(v)) =
n∑

i=1

∑
k �=yi

1
nyi

eβ
(v)
k I[h(v)(i)=k]−β

(v)
yi

I[h(v)(i)=yi ] defines the loss of the

classifier h(v)—whose predictions are weighted by the coefficients β
(v)
k ,∀k ∈

{1, . . . , K}—on the training set S.
Minimizing the norm of the confusion matrix for a multi-view classifier H , as

defined in Eq. (7.7), ends up finding the classifiers and coefficients that minimize the

loss
m∑

v=1
�(h(v)). Remark that for fixed values of the coefficients, Eq. (7.11) suggests

that for each view, it suffices to find the classifier minimizing the loss �(·), instead of
finding the classifiers that minimize a loss depending on their combination (which
was the case in Eq. (7.9)).

Although the training procedure where all the coefficients and classifiers are
learnt at the same time is still a viable solution, the previous remark suggests that a
two-step procedure is better adapted for this case. The first step consists in finding,
for each view, the classifier whose error �(·) is minimal. The second step consists
in finding the coefficients that minimize the whole loss (Eq. (7.11)). Due to the for-
mulation of Eq. (7.11), the coefficients of one class can be computed independently
from the coefficients of the other classes. More precisely, let S

(v)
+ denote the set

of examples correctly classified by h(v) and S
(v)
− the set of misclassified ones. The

right-handed side of Eq. (7.11) can be written as:

m∑
v=1

n∑
i=1

∑
k �=yi

1

nyi

eβ
(v)
k I[h(v)(i)=k]−β

(v)
yi

I[h(v)(i)=yi ]

=
m∑

v=1

∑

i∈S
(v)
+

K − 1

nyi

e−β
(v)
yi +

m∑
v=1

∑

i∈S
(v)
−

(
K − 2

nyi

+ e
−β

(v)

h(v)(i)

nyi

)

=
K∑

c=1

m∑
v=1

(
e−β

(v)
c A+ eβ

(v)
c B

)
+ C, (7.12)
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where:

A =
∑

i∈S
(v)
+

K − 1

nyi

I[yi = c], B =
∑

i∈S
(v)
−

1

nyi

I[h(v)(i) = c]

and C =
K∑

c=1

m∑
v=1

∑

i∈S
(v)
−

K − 2

nyi

I[h(v)(i) = c].

The first equality is obtained by splitting the training sample in S
(v)
+ and S

(v)
− , for all

views v. In the third equality, we replace yi and h(v)(i) by a label c, which allows
us to regroup the non-constant terms (that is, those depending on β

(v)
c ).

Equation (7.12) suggests that for a given class c, the coefficients β
(v)
c ,∀v ∈

{1, . . . , m} should be the ones that minimize the per class loss �(c):

m∑
v=1

(
e−β

(v)
c A+ eβ

(v)
c B

)
. (7.13)

The pseudo-code of the two-step method is given in Algorithm 1. The stopping
criterion can be related to the empirical loss of the classifier computed on S, or
the drop of the loss in Eq. (7.12), and so on. Contrary to the MKL-like approach
suggested in Eq. (7.9), in the two-step method, the classifiers can be learnt in
parallel, reducing the training time for the algorithm.

7.5 Boosting The Cooperation

7.5.1 A Multi-View Boosting Method from the Confusion
Matrix Norm Minimization

The two-step procedure in Algorithm 1 suggests that at each iteration the learnt
classifiers should minimize some training error weighted by cooperation coefficients
associated with the training examples. More precisely, the training procedure for
each view consists in learning a classifier that minimizes a weighted empirical error,
re-weighting the examples based on the performances of the classifier and reiterating
until a stopping criterion is met. Interestingly, this procedure is fairly similar to
iterative boosting methods, such as AdaBoost [6] and its multi-class formulation
AdaBoost.MM, recalled in Sect. 7.2.2. In this section, we study the case where the
classifiers h(v) in Eq. (7.11) are replaced with boosted classifiers.
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Algorithm 1 Carako
Given :
S = {(xi , yi )}ni=1 where xi ∈ X (1) × X (2) × . . .× X (m), yi ∈ {1, . . . , K}
Initialise :
For all 1 ≤ c ≤ K, 1 ≤ v ≤ m,β

(v)
c = rand(0,1) (w.r.t. to Eq. (7.8))

while stopping criterion not met:

1. ∀v ∈ {1, . . . , m}, train h(v) minimizing the loss �(h(v)) (Eq. (7.11))
2. ∀c ∈ {1, . . . , K}, compute β

(v)
c minimizing the loss �(c) (Eq. (7.13)), w.r.t. conditions in

Eq. (7.8)

Output :

H(·) = argmaxc∈{1,...,K}
m∑

v=1

β(v)
c I[h(v)(·) = c]

An iterative boosting method runs for T rounds and its output hypothesis is
computed as follows:

h(·) = argmaxc∈{1,...,K}
T∑

t=1

αt I[ht (·) = c],

where ht are classifiers performing slightly better than random guessing (also called
weak classifiers) and αt are positive real-valued coefficients that represent the
importance given to ht . The main advantage of weak classifiers is that they can
be used to exploit localized informations. Thus the motivation for replacing the per-
view classifiers in Eq. (7.11) with multiple weak classifiers learnt on the views is to
better use the localized information in each view, in particular information related
to how the view recognizes the various classes.

When defining the multi-view classifier in Eq. (7.7), we argued that each classi-
fier should be associated with an importance coefficient depending on the prediction.
However, having a single coefficient per class and view might not be a good
strategy when dealing with boosted classifiers, since each of the weak classifiers
has different performances. Thus we propose to associate to each classifier not only
its importance coefficient, but also coefficients depending on its actual prediction:

h(v)(·) = argmaxc∈{1,...,K}
T∑

t=1

α
(v)
t β

(v)
t,c I[h(v)

t (·) = c], where β
(v)
t,c ∈ [0, 1].

(7.14)
In this case the coefficient associated with a view v for a class c is:

β(v)
c =

∑T
t=1 α

(v)
t β

(v)
t,c∑T

t=1 α
(v)
t

.
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The condition ∀t ∈ {1, . . . , T },∀c ∈ {1, . . . , K},∑m
v=1 β

(v)
t,c = 1 ensures that

β
(v)
c is always smaller than 1. The downside is that it does not guarantee that
∀c ∈ {1, . . . , K},∑m

v=1 β
(v)
c = 1, but rather that

∑m
v=1 β

(v)
c ≤ 1.

The classifier defined in Eq. (7.14) is similar to the classifier defined in Eq. (7.7):
for a given example, it computes a score for each class. In particular for examples
in the training sample S = {(xi , yi)}ni=1, these scores correspond to:

f
(v)
T (i, c) =

T∑
t=1

α
(v)
t β

(v)
t,c I[h(v)

t (i) = c], for 1 ≤ v ≤ m, 1 ≤ c ≤ K, 1 ≤ i ≤ n.

Armed with these score functions, we are now ready to tackle the last optimiza-
tion problem in this paper. Continuing from Eq. (7.11), we have:

‖CS‖1 ≤
m∑

v=1

n∑
i=1

∑
c �=yi

1

nyi

eβ
(v)
c I[h(v)(i)=c]−β

(v)
yi

I[h(v)(i)=yi ]

≤
m∑

v=1

n∑
i=1

∑
c �=yi

1

nyi

eI[h(v)(i)=c] ≤
m∑

v=1

n∑
i=1

∑
c �=yi

1

nyi

eln(2+exp[f (v)
T (i,c)−f

(v)
T (i,yi )])

=
∑

v,i,c �=yi

1

nyi

eΔf,T (v,c,yi ) + 2mK(K − 1), (7.15)

where Δf,T (v, c, yi) = f
(v)
T (i, c)− f

(v)
T (i, yi).

The second inequality follows from the fact that the coefficients β
(v)
c are positive

and at most 1. For the third inequality a particular case of the logistic loss is used.
If h(v) predicts class c, for example, i (I[h(v)(i) = c] = 1), then f

(v)
T (i, c) ≥

f
(v)
T (i, yi) and exp(f

(v)
T (i, c) − f

(v)
T (i, yi)) ≥ 1. Since the difference between the

scores may be infinitely small, we use 2 in the logistic loss, which ensures ln(2 +
exp[f (v)

T (i, c) − f
(v)
T (i, yi)]) ≥ 1. In the case where h(v) predicts another class for

i, other than c, then ln(2+ exp[f (v)
T (i, c)− f

(v)
T (i, yi)]) > 0.

We have thus:

‖CS‖1 ≤
m∑

v=1

�(h(v))+ 2mK(K − 1), (7.16)

where �(h(v)) =
n∑

i=1

∑
c �=yi

1
nyi

exp(f
(v)
T (i, c) − f

(v)
T (i, yi)) defines the loss of the

combinations of all the classifiers learnt on view v. Equation (7.16) suggests that
at each iteration, for each view, a classifier that minimizes the loss �(hj ) should
be learnt. It is interesting to notice that the loss �(h(v)) is quite similar to the loss
of AdaBoost.MM, as given in Eq. (7.1) in Sect. 7.2, except for the coefficients β

(v)
c,t
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and the re-weighting coefficients 1
nyi

. In other words, an AdaBoost.MM-like process

should take place in each view. It follows that a cost matrix should be maintained
for each view and the classifier (and its importance coefficient) should be computed
in a similar way as in AdaBoost.MM or in MuMBo [13].

Similarly to the two-step procedures in Carako (Algorithm 1), the algorithm
μCoMBo derived from the minimization of the loss in Eq. (7.16) uses a two-
step procedure at each iteration: first a classifier is learnt for each view and the
importance coefficient is computed as in Algorithm 2, and second, the cooperation
coefficients are computed so that they minimize the loss. The pseudo-code of
μCoMBo is given in Algorithm 2. Due to the boosting nature of the method, the
stopping criterion used is the number of iterations.

Algorithm 2 μCoMBo: MUlti-view COnfusion Matrix BOosting
Given
– S = {(x1, y1), . . . , (xn, yn)} where xi ∈ X (1) × . . .× X (m), yi ∈ {1, . . . , K}
– T the number of iterations
– ∀i ∈ {1, . . . , n}, ∀v ∈ {1, . . . , m}, ∀c ∈ {1, . . . , K}

f
(v)
0 (i, c) = 0, β

(v)
0,c = 1/m and

D(v)
0 (i, c) =

{ 1
nyi

if c �= yi

−K−1
nyi

if c = yi

for t = 1 to T do

∀v: Get h
(v)
t and α

(v)
t = 1

2 ln 1+δ
(v)
t

1−δ
(v)
t

, where δt = −∑n
i=1 D(v)

t−1(i,h
(v)
t (xi ))∑n

i=1
∑

c �=yi
D(v)

t−1(i,c)

Compute β
(v)
t,c , ∀v ∈ {1, . . . , m}, c ∈ {1, . . . , K} minimizing Eq. (7.15)

Update cost matrices (for each v = 1, . . . , m):

D(v)
t (i, c) =

⎧⎪⎨
⎪⎩

1
nyi

ef
(v)
t (i,c)−f

(v)
t (i,yi ) if c �= yi

−
K∑

l �=yi

ef
(v)
t (i,l)−f

(v)
t (i,yi )

nyi
if c = yi

where f
(v)
t (i, c) =

t∑
z=1

α
(v)
z β

(v)
z,c I1[h(v)

z (i) = c]
end for
Output final hypothesis :

H(·) = argmaxc∈{1,...,K}
T∑

t=1

m∑
v=1

β
(v)
t,c α

(v)
t I[h(v)

t (·) = c]
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7.5.2 On the Theoretical Properties of μCoMBo

One of the most important properties of (adaptive) boosting algorithms is that the
total loss (Eq. (7.1) for AdaBoost.MM) drops at each iteration, provided that the
chosen classifier weight verifies the boostability conditions. In the binary case, the
classifier is required to perform slightly better than random guessing (that is, its error
should be smaller than 0.5). For multi-class algorithms, such as AdaBoost.MM and
μCoMBo, the condition consists in finding classifiers whose classification cost (that
is, error) should be smaller that the one for an arbitrary baseline. Theorem 1 states
that, for a given view, if the selected classifier verifies the multi-class boostability
condition, then the total loss of μCoMBo (computed from that view) decreases.

Theorem 1 For a given view v ∈ {1, . . . , m}, suppose the cost matrix D(v)
t is

chosen as in the Algorithm 2, and the returned classifier h
(v)
t satisfies the edge

condition for the baseline U
δ
(v)
t

and cost matrix D(v)
t , i.e., D(v)

t · 1
h

(v)
t
≤ D(v)

t ·U
δ
(v)
t

,

where 1h is the matrix defined as 1h(i, l) = I[h(i) = l].
Then choosing a weight α

(v)
t > 0 for h

(v)
t allows

�t (h
(v)) ≤ κ

(v)
t �t−1(h

(v)),

to hold, with:

κ
(v)
t = 1− 1

2

(
eα

(v)
t − e−α

(v)
t

)
δ
(v)
t + 1

2

(
eα

(v)
t + e−α

(v)
t − 2

)

Proof The proof is similar to the one provided for AdaBoost.MM in [16].

The result given in Theorem 1 implies that choosing the importance coefficient

as in Algorithm 2, the drop of the loss for a view v is
√

1− δ
(v)
t . That is, at each

iteration, after the first step which consists in choosing a classifier per view, the total
drop in loss is:

m∑
v=1

�t (h
(v)) ≤

m∑
v=1

√
1− δ

(v)
t �t−1(h

(v)). (7.17)

As long as the classifiers learnt on the views achieve positive edges on their
corresponding cost matrices, the whole loss is guaranteed to decrease.

Note that in the right side of Eq. (7.17), the loss �t−1(h
(v)) depends on the score

functions defined as:

f
(v)
t (i, c) =

t−1∑
z=1

α(v)
z β(v)

z,c I[h(v)
z (i) = c] + α

(v)
t β

(v)
t,c I[h(v)

t (i) = c],
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since the classifiers are learnt before the cooperation coefficients β, that is, we
simply suppose that all these coefficients are equal to 1. Obviously the drop in the
final loss, after the second step of iteration t , is much bigger given that all the β

take their values in [0, 1] and at most one of the β
(v)
t,c is at 1 for a given class c.

However, since these coefficients are computed as a solution to an optimization
problem, finding an analytical expression for the actual drop after iteration t is quite
challenging.

7.6 Experimental Results

Experimental results of algorithms CARAKO and μCoMBo are compared with
results obtained with state-of-the-art methods.

These experiments are intended to ascertain the relevance of the herein proposed
algorithms, by checking the experimental gaps achieved when comparing mono and
multi-view confusion imbalanced within a multi-class setting. As such, no tuning
of hyperparameters was done (default hyperparameters are considered), and only
one—reduced—dataset was considered.

In order to have a first insight into the relevance of the approaches, we processed
experiments on a subset of the Animal with Attributes (AwA) images open database
proposed in [14], because it regroups the two problems addressed in this paper: (1)
AwA is highly imbalanced: some classes are way more represented than others, and
(2) AwA comes with six pre-extracted feature representations (thus, views) for each
image, related to different properties of the images.

7.6.1 AwA Presentation and Experimental Protocols

Originally, AwA comes with 50 classes and six views on images. We extracted2 six
classes, from the less represented to the most populated; class names (and number of
examples) are: beaver (184), buffalo (559), deer (1072), gorilla (802), lion (483),
and polar+bear (815). Four views (for a total of 6940 real attributes) among six
were selected both on the nature of information contained therein (local versus
global) and the possibility of the view to recognize all the classes or some of them.
More precisely, we consider: color histogram features (2688 attributes), local self-
similarity features (2000 attributes), PyramidHOG (PHOG) (252 attributes), and
scale-invariant feature transform features (2000 attributes).

Some examples of the animal classes are given in Fig. 7.3.

2The original dataset comes with a high number of examples (more than 30,000), classes (50),
and real features (10,520). Currently, intensive experiments are on their way, with grid-search
hyperparameters tuning over more learning methods, running over the while AwA datasets: it
should take several months.
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Fig. 7.3 Some examples of the six selected classes of AwA

Classifiers Six methods are tested: (1–2) early fusion: AdaBoost.MM and
μCoMBo on the concatenation of the views, (3–4) late fusion: AdaBoost.MM
and CARAKO, (5) multi-view methods: μCoMBo, and (6) multiclassMKL from the
Shogun toolbox [19].

For the boosting-based methods, we used 1-level decision trees (stumps) as weak
learners and they were run for 100 iterations; for Carako, the depth of the trees was
limited to 10. The MKL were learnt with gaussian kernels on each view (same
parameters: mean=8, width=2), with a regularized L1 norm and the regularization
parameter C = 1.0, and ε = 0.001.

Evaluation Protocol Through a fivefold cross-validation process, we evaluated
each classifier along five measures: per-class recall, overall accuracy, MAUC, G-
mean, and norm of the confusion matrix. If K is the number of classes:

MAUC =
∑
i �=j

AUCi,j

K(K − 1)
and G-mean =

⎛
⎝ ∏

j=1,...,K

recallj

⎞
⎠

1
K

G-mean and MAUC consider each class independently from its population in the
learning sample; a G-mean is zero whenever one minor class has a zero recall.

7.6.2 Performance Results

Table 7.1 gives the results for accuracy, G-mean, MAUC, and norm of the confusion
matrix, as well as an indication of the training time.3 About the overall accuracy,

3The multiclassMKL is quite long for it is a QCQP problem, hardly depending on the number of
classes and views (kernels); boosting approaches benefits from the possibility of parallelizing the
weak classifiers training.
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the better performing method is multiclassMKL, while the recalls per class indicate
that MKL focus on majority class, mechanically improving the overall accuracy.
Second best method is μCoMBo, which is encouraging since it means that adding
the cooperation between the views leads to good results while promoting equity
among imbalanced classes. The difference between early CoMBo and μCoMBo
relies on the fact that the latter encourages such a cooperation among views, while
the former only learns a model after the normalized concatenation of all the views. It
is then worth noticing that multi-view learning (μCoMBo) actually helps to achieve
better results when minimizing a bound of the confusion norm when facing class-
imbalanced datasets.

Concerning the per-class recalls, early μCoMBo, Carako, and the multi-view
μCoMBo all tend to reduce the impact of majority classes, while focusing on
the minority ones. This behavior was expected through the minimization of the
confusion norm. Symmetrically, AdaBoost.MM (both early and late fusion) and
MKL clearly all favor the majority classes over the minority ones.

About measures dedicated to multi-class approaches, G-mean, and MAUC
point out the smoothing effect of μCoMBo on errors which helps to better take
into consideration the minority classes. According to G-mean and MAUC, the
results strongly suggest that the best method is μCoMBo, which was expected
since μCoMBo was designed to deal with imbalanced multi-view datasets. As for
accuracy, the performances of the various methods on the G-mean imply that both
μCoMBo and Carako promote some sort of leveling process among the classes,
thus a better equity among them; however, μCoMBo ends up with better results
than Carako, thanks to the cooperation among views. AdaBoost.MM and MKL have
poor G-mean since they fail to recognize beaver, the minority class.

7.7 Discussion

This work merges imbalanced multi-view and multi-class learning, and proposes a
boosting-like algorithm to address it. As far as we know, albeit many even recent
results about ensemble-based imbalanced multi-class learning have been published
[3, 5, 7, 9, 22, 23], no other approach has emerged that would meanwhile consider
the capabilities of multi-view diversity of information sources. As a consequence,
the proposed approach here is quite original, and cannot be fairly compared with
any other state-of-the-art theory or algorithm.

Our preliminary experimental results show that our approach seems to be relevant
for facing imbalanced views and classes, together with theoretical guarantees. As
such, this work raises several questions and prospect works.

On the Confusion Matrix In Eqs. (7.4)–(7.6), the operator norm of the confusion
matrix is bounded by the l1-norm. First, remark that due to the equivalence
between norms in finite dimension, minimizing the (entry-wise) l1-norm is a viable
alternative to the original goal, and it ensures that the learning procedure outputs
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a classifier with a low error. Second, as briefly commented upon in Sect. 7.3, it is
quite difficult to find an analytical expression for the operator norm of the confusion
matrix in the supervised setting as given in Definition 1. In order to bypass these
shortcomings and to tackle the original goal (minimizing the operator norm of the
confusion matrix), future works will be focused on exploring alternative definitions
for the confusion matrix, such as loss-based confusion matrices as in [17], entry-
wise decomposition of the confusion matrix as in [15], and three-dimensional
tensors.

On the Optimized Norm Aside from the choice of the confusion matrix, another
research question touched upon in this paper is the choice of the norm. We think that
it would be interesting to define and study other norms, such as the l1-norm, other
p-norms, or even more exotic norms. In particular, a challenging problem is the
definition of confusion matrices and confusion matrices’ norms for the multi-view
setting either as a generalization of the usual definitions to the three-dimensional
tensor, or based on the tensor’s theory.

On the Loss Functions The main advantage of the result in Eq. (7.6) is the flexibility
of the loss functions. Although our work is mainly based on the exponential losses,
Eqs. (7.9) and (7.15) show that other information can be embedded in the losses. As
such, Eq. (7.6) can be used to derive other (novel) multi-view imbalanced learning
methods by either choosing other loss functions, or modifying the information
contained therein (such as enforcing the cooperation between the views, embedding
prior information on the classes, etc.).

On the Combined Learners In Sect. 7.4, we argued that the main advantage of
Carako (Algorithm 1) over MKL is the fact that our method is not limited to kernel
methods. Other, more empirical, works will be focused on testing Carako with other
learning methods and studying the effect that the cooperation between the views has
on the final combined classifier.

On Theoretical Improvements Finally, future work will also be focused on finding
tighter bounds for the result given in Eq. (7.15). As is, the constant term (right-
handed side of the equation) depends on the number of classes and when this number
is important, the constant might overshadow the true objective in the left-handed
side of the equation. Although this might not present a real challenge for current
multi-view imbalanced datasets, we think that finding tighter bounds will not only
address a crucial issue for our approach, but it might also allow to derive novel
algorithms in the same spirit as μCoMBo.

7.8 Conclusion

In this paper, we proposed various multi-view ensemble learning methods, proposed
in Sects. 7.4 and 7.5, for dealing with imbalanced views and classes. The novelty
of our approach consists in injecting a cooperation-based multi-view classifier
(Eq. (7.7)) in the imbalanced classes framework (Eq. (7.5)). This choice is mainly
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motivated by the promotion of the cooperation between the views in the output
space, so that each view is associated with the classes it recognizes best. Our
intuition is further confirmed by the empirical results in Sect. 7.6. We think that the
work presented here is a first clear answer to the question posed in the introduction,
while at the same time raising various research questions (e.g., the choices of the
confusion matrix, its norm, the multi-view classifier, etc.). In the near future, a deep
study of the complexity of μCoMBo is required, which mainly involves the specific
properties of the non-linear convex optimization it relies on.

Acknowledgement This work is partially funded by the French ANR project LIVES ANR-15-
CE23-0026.
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Chapter 8
Entity Linking in Enterprise Search:
Combining Textual and Structural
Information

Sumit Bhatia

Abstract Fast and correct identification of named entities in queries is crucial for
query understanding and to map the query to information in structured knowledge
base. Most of the existing works have focused on utilizing search logs and manually
curated knowledge bases for entity linking and often involve complex graph
operations and are generally slow. We describe a simple, yet fast and accurate,
probabilistic entity linking algorithm that can be used in enterprise settings where
automatically constructed, domain-specific knowledge graphs are used. In addition
to the linked graph structure, textual evidence from the domain-specific corpus is
also utilized to improve the performance.

8.1 Introduction

With increasing popularity of virtual assistants like SIRI and Google Now, users
are interacting with search systems by asking natural language questions that often
contain named entity mentions. A large-scale study by Pang and Kumar [40]
observed statistically significant temporal increases in the fraction of questions–
queries received by search engines and searchers tend to use more question–queries
for complex information needs [3]. In case of web search engines, a large fraction of
queries contain a named entity (estimates vary from 40% [31] to 60% [42]). Hence,
fast and correct identification of named entities in user queries is crucial for query
understanding and to map the query to information in structured knowledge base.
Advancements in semantic search technology have enabled modern information
retrieval systems to utilize structured knowledge bases such as DBPedia [2] and
Yago [45] to satisfy users’ information needs.

Most of the existing works on entity linking focus on linking the entities in long
documents [26, 30]. These methods make use of the large context around the target
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mention in the document. Therefore, these methods are limited to perform on long
text documents. However, some methods have been proposed that perform entity
linking in short sentences [20, 27]. They rely on the collective disambiguation [15]
of all the entity mentions appear in the sentences. Thus, these methods take long
time in computing the confidence scores for all the combinations.

Most of the existing work on entity linking in search queries utilizes information
derived from query logs and open knowledge bases such as DBPedia and Freebase
(Sect. 8.2). Such techniques, however, are not suited for enterprise and domain-
specific search systems such as legal, medical, and healthcare, due to very small
user bases resulting in small query logs and the absence of rich domain-specific
knowledge bases. Recently, there have been development of systems for automatic
construction of semantic knowledge bases for domain-specific corpora [12, 48]
and systems that use such domain-specific knowledge bases [38]. In this chapter,
we describe a method for entity disambiguation and linking, developed especially
for enterprise settings, where such external resources are often not available. The
proposed system offers users a search interface to search for the indexed information
and uses the underlying knowledge base to enhance search results and provide
additional entity-centric data exploration capabilities that allow users to explore
hidden relationships between entities discovered automatically from a domain-
specific corpus.

The system automatically constructs a structured knowledge base by identifying
entities and their relationships from input text corpora using the method described
by Castelli et al. [12]. Thus, for each relationship discovered by the system, the
corresponding mention text provides additional contextual information about the
entities and relationships present in that mention. We posit that the dense graph
structure discovered from the corpus, as well as the additional context provided
by the associated mention text, can be utilized together for linking entity name
mentions in search queries to corresponding entities in the graph. Our proposed
entity linking algorithm is intuitive, relies on a theoretical sound probabilistic
framework, and is fast and scalable with an average response time of ≈ 87 ms.
Figure 8.1 shows the working of proposed algorithm in action where top ranked

Fig. 8.1 Entity suggestions produced by proposed approach using text and entity context in search
query
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suggestions for named mentions Sergey and Larry are showed. As will be
described in detail in Sect. 8.3, note that the algorithm is making these suggestions
by utilizing the terms in questions (search, algorithm) as well as relationships
between all target entities for mentions “Sergey” and “Larry” in the graph. The
algorithm figures out that entities “Sergey Brin” and “Larry Page” have strong
evidences from their textual content as well as these two entities are strongly
connected in the graph, and hence they are suggested as most probable relevant
entities in the context of question.

The material presented in this chapter is an extended version of our ESWC
2016 paper [5], and we provide a detailed survey of the representative work on
entity linking and discuss their shortcomings when applied to enterprise settings.
We describe our proposed approach in detail with several examples to illustrate
the working of the algorithm. We hope that the additional details will help the
readers, especially beginners and practitioners, to understand the finer details and
workings of the proposed approach and will help them implement the approach for
their custom applications.

8.2 Related Work

We first discuss early works that provide the foundation for the general entity
linking task and define the problem in context of knowledge graphs. We then review
representative works that addressed entity linking in longer documents as well as
much shorter text fragments such as web queries and tweets.

8.2.1 Entity Linking Background

At its core, the problem of entity linking is similar to the general problem of record
linkage that was first introduced by Dunn [18] in the context of assembling all
public records of an individual. This idea was further popularized by Newcombe
et al. [39] that proposed the use of computers to link multiple separately recorded
pieces of information about a particular person or family for census applications.
In general, record linkage refers to the task of finding and linking records about an
entity spread across multiple datasets. This is an extensively studied problem in the
field of databases and data mining, and a detailed survey is out of the scope of this
chapter. We direct the interested reader to excellent surveys on this topic by Brizan
and Tansel [11] and Christen [14].

Entity linking, as studied in this chapter, refers to the task of linking the mention
of a named entity in text (a sentence, keyword query, etc.) to the corresponding
entity in a knowledge base. Let us consider the following piece of text about Barack
Obama to understand the challenges involved.
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Barack Obama served as the 44th President of the United States from 2009 to 2017. He was
born in Honolulu, Hawaii. Obama has two daughters.

A named entity recognizer [35, 37] when run on the above text will be able
to identify Barack Obama and Obama as two named entities. However, these
two different surface forms correspond to the same entity BarackObama in the
underlying knowledge base. Hence, it is required for the system to be able to identify
that these two different mentions are variations of the same entity name and link
them to the same canonical entity, a task known as entity normalization [29]. Also,
note that in the above example text, the pronoun he also refers to Barack Obama.
This task of determining different expressions (nouns, pronouns, etc.) that refer
to the same entity is known as coreference resolution [19]. Note that depending
upon the requirements, it may also be required to perform coreference resolution
and entity normalization across multiple documents [4, 28, 41]. While the tasks
of named entity recognition, coreference resolution, and entity normalization have
been studied extensively, entity linking involves the additional step of aligning
the identified and normalized entity mention to its corresponding entity in the
knowledge base.

8.2.2 Linking Entities in Documents and Web Pages

Entity linking has been studied under various application scenarios. SemTag [17]
was one of the first systems to consider the task of linking entities in web pages
to entities in a knowledge base (Stanford TAP entity catalog [22]). Wikipedia,
owing to exhaustive coverage of general concepts, has been used as the underlying
knowledge base to link entity mentions in documents, web pages, news articles,
etc. [15, 26, 34, 36, 43]. Mihalcea and Csomai [34] introduced the Wikify! system to
extract keywords from documents and link them to their corresponding Wikipedia
pages. Cucerzan [15] utilized Wikipedia category information, in addition to
contextual similarities between documents and Wikipedia based features entity
normalization and linking. Kulkarni et al. [30] premised that entities mentioned in a
coherent document are topically related and showed that utilizing this information
to collectively link entities in a document can help improve performance. Hoffart
et al. [26] proposed a comprehensive framework for collective entity disambiguation
and linking that combines local contextual information about the input mention with
coherence among candidate entities for all entity mentions together.

8.2.3 Linking Entities in Short Text Fragments

The methods discussed till now have focused on performing entity linking for longer
documents like web pages, news articles, etc. Such documents generally contain
enough contextual clues as well as additional metadata that could aid identifying
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appropriate mentions. In case of shorter text documents, such as microblogs, or web
search queries that are generally a few keywords long, successful entity linking has
to rely on specific application specific contextual clues and metadata in absence of
large document context. For example, in case of linking entity mentions in tweets,
user characteristics, interest profiles, social network properties such as retweets and
likes can be utilized [23, 32, 44]. Ferragina and Scaiella [20] utilize the anchor
texts of Wikipedia articles to construct a dictionary of different surface forms or
name variations for entities and use that to identify entity mentions in short text
fragments. The final set of target entities is then determined by collective agreement
among different potential mappings. Hoffart et al. [27] describe an algorithm
that performs collective entity linking by computing overlap between the sets of
keywords associated with each target entity. For creating the set of keywords, noun
phrases from Wikipedia entity pages are used. The proposed algorithm achieves
good performance for both short and long texts, as well as for less popular, long tail
entities.

Another challenging setting for performing entity linking is in the context of
web search queries that are often just a collection of few keywords. Typical ways
to perform entity linking in such systems is to approximate semantic similarity
between queries and entities by utilizing their respective language models [21, 25].
Successful identification and linking of entity mentions in queries can also help
improve retrieval performance by means of query expansion using entity features
from the knowledge base [16]. Another challenge for entity linking in search
systems is that it has to be performed before the actual retrieval takes place and thus,
needs to be completed in just a few milliseconds. Blanco, Ottaviano, and Meij [10]
describe a space efficient algorithm for entity linking for web search queries that is
able to process queries in sub-milliseconds time.

These methods use features derived from query logs to gather user context,
target documents, etc., to get context. However, in many enterprise systems, such
additional metadata is not readily available [7]. Further, the knowledge bases used
in such systems may not be as rich as Wikipedia lacking hyperlinks, metadata,
etc., and are often constructed using automated methods [8]. However, context is
important [6]. In this work, we discuss how we can utilize the limited context
available in the input query (text, entity mentions) and utilize the textual information
in background corpus coupled with rich graph structure to perform entity linking in
enterprise search systems.

8.3 Proposed Approach

We first describe the problem setting and our assumptions, and provide a proba-
bilistic formulation of the entity linking problem. We also discuss how different
application settings can be mapped to the proposed formulation and then provide
a solution for entity linking that utilizes structural properties of entities in the
knowledge graph and information from the background text corpus.
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8.3.1 Problem Setting

Let us consider a knowledge graph K = {E,R} where E is the set of entities
(nodes) and R is the set of relationships (edges). Let us also assume the availability
of a background text corpus C.1 Let Mr be the set of all the mentions of the
relationship r in the background text corpus. As an example, consider the relation-
ship 〈SteveJobs〉, f ounderOf, 〈AppleInc.〉 and one of its many mentions from
Wikipedia, “Jobs and Wozniak co-founded Apple in 1976 to sell Wozniak’s Apple
I personal computer.” Note that in addition to the relationship under consideration,
this mention also provides additional contextual clues about the entities SteveJobs

and AppleInc. (Wozniak, personal computer are related to Steve Jobs and Apple
Inc.)

8.3.2 Problem Formulation

Let Q = {C, T } be the input query where T is the ambiguous token, and C =
{Ec,Wc} is the context under which we have to disambiguate T . The context is
provided by the words (Wc = {wc1, wc2, . . . , wcl}) in the query and the set of
unambiguous entities Ec = {ec1, ec2, . . . , ecm}. Note that initially, this entity set
can be empty if there are no unambiguous entity mentions in the query and in such
cases, only textual information is considered. The task is to map the ambiguous
token T to one of the possible target entities.

This is a generalized statement of the entity linking task and covers a variety of
end-applications and scenarios as discussed below.

• Search Systems: The user typically enters a few keywords and the task is to
link the keywords in query to an entity in the knowledge graph. Note that not all
the terms in the query correspond to entity mentions and the problem is further
exacerbated by the inherent ambiguity of keyword queries [24]. For example,
in the query obama speeches, obama corresponds to the entity Barack
Obama and speeches provides the information need of the user. Also note
that keyword queries lack the additional contextual information that is present
while linking entities in documents. To overcome this, web search systems often
utilize query logs and user activity to gather context about users’ information
needs [24]. Once terms in the queries are linked to corresponding entities in the
graph, related entities can also be offered as recommendations to the end-user for
further browsing [9].

1For domain-specific applications where the knowledge graph is constructed using automated
methods, the set of input documents constitute the background corpus. For applications that use
generic, open-domain knowledge bases such as DBPedia and WikiData, Wikipedia could be used
as the background text corpus.
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• Question Answering Systems: By identifying entities of interest in the question,
the underlying knowledge base can be used to retrieve the appropriate facts
required to answer the question [47]. In a typical QA system, the user enters
a natural language question such as When did Steve become ceo of
Microsoft? Here, the terms of interest are Steve and Microsoft. Also
note that in this example, Microsoft also provides contextual evidence that
provides additional support for Steve Ballmer compared to many other person
entities named Steve such Steve Jobs or Steve Wozniak that will have less
relevance to Microsoft than Steve Ballmer. Once the system correctly links
steve to Steve Ballmer, appropriate facts from the knowledge graph can be
easily retrieved and presented as answer to the user.

8.3.3 Proposed Solution

On receiving the input query, the first step in the solution to the problem as
formulated above is to identify entity mentions in the query. These mentions are then
linked to the corresponding entity in the knowledge graph. These entity mentions
could be identified using NLP libraries such as Apache Open NLP2 and Stanford
Named Entity Recognizer.3

After identifying the token T that is a named entity mention in the query Q,
the next step is to generate a list of target candidate entities. Such a list could be
generated by using a dictionary that contains different surface forms of the entity
names [30, 46, 49, 50]. For example, a dictionary could be constructed that maps
different surface forms of the entity Barack Obama such as Barack Obama,
Barack H. Obama, and President Obama to the entity. Since we are
interested in mapping the token to entities in the knowledge graph K = {E,R},
we select all the entities that contain token T as a sub-string in their name.
For example, for the token Steve all entities such as Steve Jobs, Steve
Wozniak, and Steve Lawrence constitute the set of target entities. Note
that for domain-specific applications, such a dictionary could also be constructed
by using domain-specific sources such as the gene and protein dictionaries used in
the KnIT system for studying protein–protein interactions [38]. For generic, open-
domain systems, Wikipedia has been used extensively to create such dictionaries by
utilizing disambiguation and redirect pages, anchor text and hyperlinks, etc.

Formally, let ET = {eT 1, eT 2, . . . , eT m} be the set of target entities for the
ambiguous token T in the query. Using the context information, we can produce
a ranked list of target entities by computing P(eT i |C), i.e., the probability that the
user is interested in entity eT i given the context C. Using Bayes’ theorem, we can
write P(eT i |C) as follows:

2http://opennlp.apache.org/.
3https://nlp.stanford.edu/software/CRF-NER.html.

http://opennlp.apache.org/
https://nlp.stanford.edu/software/CRF-NER.html
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P(eT i |C) = P(eT i)P (C|eT i)

P (C)
(8.1)

Here P(eT i) represents the prior probability of the entity eT i to be relevant
without any context information. This prior probability can be computed in multiple
ways based on the application requirements. For example, priors can be computed
based on frequency of individual entities or temporal information (such as recency)
in case of news domain. In this work, we assume a frequency based prior indicating
that in the absence of any context information, the probability of an entity being
relevant is directly proportional to its frequency in the graph. Further, since we
are only interested in relative ordering of the target entities, we can ignore the
denominator P(C) as its value will be same for all the target entities. With these
assumptions, Eq. (8.1) can be re-written as follows:

P(eT i |C) ∝ P(eT i)× P(C|eT i) (8.2)

Here P(C|eT i) represents the probability of observing the context C after having
seen the entity eT i . Note that the context C consists of two components—text
context and entity context. Assuming that the probability of observing text and entity
context is conditionally independent, above equation can be reduced as follows:

P(eT i |C) ∝ P(eT i)× P(Wc|eT i)× P(Ec|eT i) (8.3)

= P(eT i)︸ ︷︷ ︸
entity prior

×
∏

wc∈Wc

P (wc|eT i)

︸ ︷︷ ︸
text context

×
∏

ec∈Ec

P (ec|eT i)

︸ ︷︷ ︸
entity context

(8.4)

8.3.3.1 Computing Entity Context Contribution

The entity context factor in Eq. (8.4) corresponds to the evidence for target entity
given Ec, the set of entities forming the context. For each individual entity ec

forming the context, we need to compute P(ec|eT i), i.e., the probability of observing
ec after observing the target entity eT i . Intuitively, there is a higher chance of
observing an entity that is involved in multiple relationship with eT i than an entity
that only has a few relationships with eT i . Thus, we can estimate P(ec|eT i) as
follows:

P(ec|eT i) = relCount(ec, eT i)+ 1

relCount(ec)+ |E| (8.5)

Note that the factor of 1 in numerator and |E| (size of entity set E) in the
denominator have been added to smoothen the probability values for entities that
are not involved in any relationship with eT i .
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8.3.3.2 Computing Text Context Contribution

The text context factor in Eq. (8.4) corresponds to the evidence for target entity given
Wc, the terms present in the input query. For each individual query term wc, we need
to compute P(wc|eT i), i.e., the probability of observing wc given eT i . In order to
compute this probability, we construct mention language models for each entity in
the knowledge graph that capture different contexts in which the entity appears in
the corpus.

To construct such a mention language model for an entity e, we need to capture
all the mention sentences, i.e., the sentences from the text corpus that talk about
entity e. In automatically constructed graphs, where rule based or machine learned
systems identify entity and relationship mentions from text, the source text for each
extracted relationship and entity can be utilized to capture all the mention sentences
for entity e by combining all the source sentences from which the entity and its
relationships were identified. The mention documents created in this way capture
different contexts under which the entity has been observed in the input corpus. For
example, a lot of relationships of Steve Jobs are with Apple products, executives,
etc. So sentences for these relationships will contain mentions of things related to
Apple, in addition to entity names. For example, sentences containing relationships
of Steve Jobs with iPhone will contain words like design, touchscreen, mobile, apps,
battery, etc., and all these contextual clues are captured in mention document for
Steve Jobs.

The mention documents created in this way can be used to compute the
probability P(wc|eT i) as follows:

P(wc|ET i) = P(wc|MET i
) (8.6)

= no. of times wc appears in MET i
+ 1

|MET i
| +N

(8.7)

Here N is the size of the vocabulary and MET i
is the mention document for entity

ET i .

8.3.3.3 Putting It All Together

We now illustrate the working of the proposed approach through an example as
illustrated in Fig. 8.2. Consider the input question, “Which search algorithm did
sergey and larry invent.” In this question, the NER module identifies sergey and
larry as the two named entities that need to be linked to the corresponding entities in
the knowledge graph. The two ambiguous tokens and the natural language question
are fed as input to the system. As discussed, the first step is to generate a list of
target entities that is performed by retrieving all entities from the graph containing
sergey and larry in their names. For each such target entity, we need to compute
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Fig. 8.2 Illustration of the proposed approach

the entity and text context components as described in Eq. (8.4). The entity context
component helps in collective disambiguation of entities by taking into account the
pairwise relevance of the target entities for the two ambiguous tokens. For example,
the pair <Sergey Brin, Larry Page> will have much stronger connections in the
graph (both Google co-founders share many common relations) compared to the
pair <Sergey Brin, Larry Ellison> (Larry Ellison being co-founder of Oracle shares
much less relations with Sergey Brin). Likewise, for the text context component,
the mention language models of all target entities are used to find the entities that
have the highest probability of generating the context terms in the questions such
as search and algorithm. Thus, entities such as Sergey Brin, Larry page, and Larry
Ellison get high text context component scores due to their relations with computer
science related concepts. The two scores for all the target entities are combined to
produce a final ranked list as illustrated in the figure.

8.4 Evaluation

8.4.1 Data Description

We use a semantic graph constructed from text of all articles in Wikipedia by
automatically extracting the entities and their relations by using IBM’s Watson
natural language understanding (NLU) services.4 Even though there exist popular
knowledge bases like DBPedia that contain high quality data, we chose to construct
a semantic graph using automated means as such a graph will be closer to many
practical real-world scenarios where high quality curated graphs are often not
available and one has to resort to automatic methods of constructing knowledge

4https://www.ibm.com/watson/services/natural-language-understanding/.

https://www.ibm.com/watson/services/natural-language-understanding/
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bases. Our graph contains more than 30 million entities and 192 million distinct
relationships in comparison to 4.5 million entities and 70 million relationships in
DBpedia.

8.4.2 Benchmark Test Set and Baselines

For evaluating the proposed approach, we use the KORE50 [27] dataset that contains
50 short sentences with highly ambiguous entity mentions (Table 8.1). This widely
used dataset is considered among the hardest dataset for entity disambiguation and is
being used widely for evaluating entity disambiguation/linking approaches. Further,
on an average, there are only 14 words and roughly 3 mentions per sentence, thus
making it ideal for evaluating our approach as it enables us to identify our interactive
approach. Average sentence length (after stop word removal) is 6.88 words per
sentence and each sentence has 2.96 entity mentions on an average. Every mention
has an average of 631 candidates to disambiguate in YAGO knowledge base [45].
However, it varies for different knowledge bases. Our automatically constructed
knowledge base has 2261 candidates per mention to disambiguate illustrating the
difficulty in entity linking due to high noise in automatically constructed knowledge
bases when compared with manually curated/cleaned knowledge bases such as
DBpedia. We also provide the performance numbers for a number of commonly
used methods on the same dataset for reference [1, 13, 26, 27, 33] (Table 8.2).

Table 8.1 Characteristics of
KORE50 dataset

Average sentence length 14.68

Average sentence length after stop word removal 6.88

Average entity mentions per sentence 2.96

Table 8.2 Entity
disambiguation accuracy,
measured in terms of
precision, as achieved by the
proposed approach

Method Precision

Joint-DiSER-TopN [1] 0.72

AIDA-2012 [26] 0.57

AIDA-2013 [27] 0.64

Wikifier [13] 0.41

DBpedia spotlight [33] 0.35

Proposed method accuracy @ Rank 1 0.52

Proposed method accuracy @ Rank 5 0.65

Proposed method accuracy @ Rank 10 0.74

The table also provides accuracy achieved by several
commonly used methods at Rank 1, as reported in
the respective papers. For the proposed approach,
precision achieved at Ranks 5 and 10 is also reported
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8.4.3 Results and Discussions

The results of our proposed approach and various other state-of-the-art methods
for entity linking on the same dataset are tabulated in Table 8.2. We note that on
the standard KORE 50 dataset for entity disambiguation, our proposed approach,
while being much simpler than the other reported methods, achieves comparable
performance in terms of precision values at Rank 1. The top achieving methods do
achieve better accuracy number but at the cost of higher complexity, reliance on
many external resources of data, and consequently, slower speeds. For example,
as reported by Hoffart et al. [27], the average time taken for disambiguation is
1.285 s with a standard deviation of 3.925 s. On the other hand, as we observe from
Table 8.3, median response time for the proposed approach is about 86 ms, with the
maximum response time being 125 ms. Such low response times were possible due
to the fact that we utilized the signals from mention text and relationship information
about entities that are much more computationally efficient to compute,5 instead
of performing complex and time-consuming graph operations as in other methods,
while not sacrificing on the accuracy.

Figure 8.3 illustrates the working of proposed system in action for a variety of
input <query,context> combinations. In Fig. 8.3a, the token Steve is provided
without any context and the system returns a list sorted by entity prior (frequency).
Next, in Fig. 8.3b–d, the results for the token Steve under different context terms
are shown. Note how the system finds different entities in each case with changing
context. Likewise, Fig. 8.3e shows the results for token larry without any context.
However, as soon as we provide another token to disambiguate (Sergey) in
Fig. 8.3f, the entity context component kicks in and collectively determines the most
probable entities for both sergey and larry.

Table 8.3 Average candidate
list size and response times
per query

Candidate size Response time (ms)

Min. 0 85

Average 7917.27 87.34

Median 2261.5 86

Max. 183,546 125

The experiments were conducted on a standard
MacBook Pro laptop with 16 GB RAM and an Intel
i7 processor

5Text context components can be computed by using an inverted index implementation where using
the context terms as queries, most relevant mention docs (and thus the corresponding entities) can
be retrieved in a single query. Likewise, entity context component can be computed by just counting
the number of connections between target entities—can be performed in a single optimized SQL
query.
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Fig. 8.3 Some examples of the proposed entity linking approach in action. Note how the
suggestions for entities change in sub-figures (a)–(d) with varying contexts. Also note that how
the entity context helps retrieve relevant results for larry in sub-figures (e) and (f). First, in sub-
figure (e), in the absence of any context, the suggestions offered for Larry are simply ranked
by the frequency prior, suggesting most popular entities containing larry in their name. Next,
in sub-figure (f), when the user types Sergey, the system collectively disambiguates Larry as
Larry Page and Sergey as Sergey Brin—note that this corresponds to the entity context
component of the ranking function

8.5 Conclusions

In this chapter, we discussed the problem of mapping entity mentions in natural
language search queries to corresponding entities in an automatically constructed
knowledge graph. We provided a review of representative works on entity linking
and their shortcomings when applied to enterprise settings. We then proposed
an approach that utilizes the dense graph structure as well as additional context
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provided by the mention text. Experimental evaluation on a standard dataset shows
that the proposed approach is able to achieve high accuracy (comparable to other
state-of-the-art methods) with a median response time of 86 ms.
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Chapter 9
Clustering Multi-View Data Using
Non-negative Matrix Factorization
and Manifold Learning for Effective
Understanding: A Survey Paper

Khanh Luong and Richi Nayak

Abstract Multi-view data that contains the data represented in many types of
features has received much attention recently. The class of method utilizing non-
negative matrix factorization (NMF) and manifold learning to seek the meaningful
latent structure of data has been popularly used for both traditional data and multi-
view data. The NMF and manifold-based multi-view clustering methods focus on
dealing with the challenges of manifold learning and applying manifold learning on
the NMF framework. This paper provides a comprehensive review of this important
class of methods on multi-view data. We conduct an extensive experiment on several
datasets and raise many open problems that can be dealt with in the future so a higher
clustering performance can be achieved.

9.1 Introduction

With the rapid growth of computing technology, datasets in real world are getting
richer in terms of both semantic and structures. This has led to represent the
data from multiple perspectives and has given rise to a new term “multi-view”
for this type of data. Data analytic methods that exploit multi-view data result in
generating more meaningful and realistic outcomes by bringing the complementary
and compatible information together [1]. The multi-view clustering problem can
be seen as a process of simultaneously learning from multiple views to yield the
consensus and general grouping information of the dataset.

Due to the data representing with multiple views, the underlying data model is
usually very sparse and high dimensional. Finding clusters on the original search
space is very expensive and results in an unrealistic and unstable clustering solution.
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Therefore most of the existing multi-view learning methods attempt to learn the
low-dimensional latent features of data as a first step for further processing. These
methods are based on subspace learning or non-negative matrix factorization (NMF)
framework [1–4]. Between these two approaches, the multi-view clustering methods
that utilize NMF have been received much attention and proved to be more effective
due to their ability to learn the effective latent features by projecting original high-
dimensional to a low-dimensional space [5, 6]. However, the NMF framework
respects the Euclidean space only and fails to preserve the geometric structures of
original data when projecting it to lower order [7]. In other words, the neighbouring
objects in original space may not remain neighbours in the new space. Maintaining
of the geometric structure in lower order is necessary for learning a meaningful
representation and effective understanding of data and clusters.

Manifold learning [8] is a newly emerging approach in dimensionality reduction
aiming at preserving the local and/or the global geometric structures of the
original data [9, 10]. Manifold learning is combined with the NMF framework to
discover and maintain the geometric structure of data when projecting it to a lower
dimensional embedded space [1, 4, 11, 12]. Clustering methods based on NMF with
the aid of manifold learning have shown the effectiveness over the other state-of-
the-art methods. Unfortunately, it is not a trivial task to find the intrinsic manifold
of the data. Finding the inaccurate manifold can cause poor clustering outcome.
How to achieve the accurate manifold of the data is hard for the traditional NMF-
based clustering methods. This challenge is increased significantly when applying
NMF and manifold learning on a multi-view clustering problem.

Moreover, recent research has pointed out that though data is represented with
multiple views, the manifolds of data are believed to be lying on a convex hull of
the manifold of all views [1]. Hence, when using manifold learning on multi-view,
in addition to the difficulty of learning the accurate manifold on each view, multi-
view learning should also deal with how to learn the accurate consensus manifold
from multiple views and then learn the meaningful consensus coefficient matrix
respecting the consensus manifold. It has been evidenced in the literature that it is
not a trivial task to effectively employ manifold learning for NMF-based multi-view
data for effective understanding. Researchers have proposed a number of methods to
deal with this problem ranging from focusing on learning the accurate manifold on
each data view [4, 11, 12] to learning the correct consensus manifold from multiple
views after having manifold learned on each view [1]. This is an emerging research
field that needs attention and requires to be presented in a systematic fashion.
There has been no comprehensive discussion of this specific field of multi-view
clustering and associated methods. We propose to present a survey paper that will (1)
provide a general view of how to understand multi-view problem via applying NMF
and learning manifold; (2) include an experimental study on well-known multi-
view datasets to investigate the effectiveness of the methods on datasets and (3)
discuss the challenging problems that can be addressed in the future research. To
the best of our knowledge, this will be the first survey paper to summarize a class of
clustering methods combining NMF and manifold learning to effectively understand
the challenging multi-view data problem.
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9.2 Multi-View Data Clustering

9.2.1 Overview of Multi-View Data

With the availability of collecting data from different sources or extracted from
different feature extractors, the multi-view data is becoming ubiquitous. For exam-
ple, the image data can naturally be described by different aspects of visual
characteristics [1]. The multiple views in this data can be generated by the processes
such as scale-invariant feature transform (SIFT) [13], speeded-up robust features
(SURF), histogram of oriented gradients (HOG) [14], local binary patterns (LBP)
[15], GIST [16], and CENTRIST [17]. A web-based dataset can be represented
by multiple views derived by content, hyperlink (inbound-link or outbound-link)
and usage logs. In a multilingual dataset, multiple views are derived by different
languages used for representing original documents. A multimedia data can be
represented by multiple views of colour, texture, shape, etc., and a bioinformatics
dataset can be represented with multiple views of mRNAexpression, RNA sequence
and protein–protein interaction. The multi-view data not only contains valuable,
compatible and complementary information but also contains a diversity of different
views. Figure 9.1 shows an example of multi-view data.

A special but popular case of multi-view data occurs when data is missing in
some views, named as incomplete or partial multi-view data [18–20]. An example
is a multilingual dataset where all documents do not have equivalent translation

English documents
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Fig. 9.1 An example of multi-view/multi-type relational data. The multi-view dataset is repre-
sented by two views: English terms and French terms. The MTRD dataset has three object types:
English documents, English terms and French terms. The intra-type relationships are represented
as solid lines and inter-type relationships are represented as dotted lines
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Fig. 9.2 An example of partial multi-view dataset

on every language. As illustrated in Fig. 9.2, documents d2 and d5 do not have
representation on view 1 (English terms) and documents d4 and d6 do not have
corresponding representations on view 2 (French terms). Another class of multi-
view data is multi-type relational data (MTRD) where a sample object is represented
with multiple relationships. An MTRD dataset will include different types of objects
as well as different types of relationships including inter-type and intra-type. An
intra-type relationship models the relationships between objects of the same type
and an inter-type relationship describes the relationships between objects of two
different types. Studying a sample object in relationships with other type objects
is similar to considering the object in different views. A multi-view dataset can be
considered as an MTRD dataset. For example, the multi-view multilingual dataset
mentioned above is also an MTRD. In this case, the document object type is the
sample object type and different object types corresponding to different languages
are different feature object types, as shown in Fig. 9.1. Under multi-view data,
documents in the dataset are represented under view 1 (English terms) or view 2
(French terms). On view 1, document d3 will be represented by three English terms
et2, et3 and et4. On view 2, i.e., when looking at the French translation version
of all documents, the document d3 will be represented by two French terms f t1
and f t2. The representations of samples on features of different views are plotted
as dashed lines and the similarities between samples or between features on each
view are represented as solid lines in Fig. 9.1. Under multi-type relational data
setting, documents in the dataset can have multiple relations with other object types,
i.e., English terms and French terms. For example, document d3 has relationships
with three English terms et2, et3 and et4 and at the same time d3 has relationships
with French terms f t1 and f t2. Inter-type relationships between sample objects
and different feature objects are represented by dashed lines and the intra-type
relationships between objects of the same type are represented by solid lines in
Fig. 9.1.
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9.2.2 NMF-Based Multi-View Data Clustering Definition

Suppose X = {X1, X2, . . . , Xnv } is a multi-view dataset with nv views in total and
the data in view vth is represented in the data matrix Xv ∈ R

n×mv+ , where n is the
number of samples and mv is the number of features of the vth view. The multi-view
data NMF-based clustering task is to group data samples into clusters by using the
low-rank space learned by utilizing all complementary and compatible views data
in the factorizing process.

There are two popular forms of objective function for the NMF-based multi-view
low-dimensional learning. The first form follows the objective function introduced
in MultiNMF [21] and used in many other works [19, 22–24], written as below,

min
nv∑

v=1

‖Xv −HvWv‖2
F , s.t. Hv ≥ 0,Wv ≥ 0 (9.1)

where Hv ∈ Rn×r+ is the new low-rank representation of data corresponding to the
basis Wv ∈ R

r×mv+ under the vth view, r denotes the number of the new rank. The
optimizing process in this objective function, similar to conventional NMF objective
function [5], is to update {Hv}v=1...nv and {Wv}v=1...nv , returning in the optimal low-
rank matrices Hv and Wv such that HvWv is a good approximation of Xv for all
v = 1 . . . nv .

In the fusion step, the consensus latent feature matrix of all views, denoted as H∗,
is normally calculated by linearly combining all individual low-rank representations
as in [22],

H∗ =
nv∑

v=1

Hv/nv (9.2)

or taking the average as in [23],

H∗ = [H1 . . . Hnv ] (9.3)

or effectively learning at the same time as the low-rank representations are learned
via the factorizing step as in [21],

min
nv∑

v=1

‖Xv−HvWv‖2
F+

nv∑
v=1

‖Hv−H∗‖2
F , s.t. Hv ≥ 0, H∗ ≥ 0, Wv ≥ 0 (9.4)

The objective function in Eqs. (9.1)–(9.4) is able to simultaneously learn different
low-rank data representations from different data views. In the later step, the
consensus data matrix will be learned via compensating the newly learned data
representations from all views.
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The second form to learn the low-dimensional representations for multi-view
data is utilized in multi-view coupled matrix factorization (MVCMF) [25], inspired
from the data fusion topic [26, 27],

min
nv∑

v=1

‖Xv −H∗Wv‖2
F , s.t. H∗ ≥ 0, Wv ≥ 0 (9.5)

where Wv ∈ R
r×mv+ is the basis representation of data under the vth view and

H∗ is the consensus coefficient matrix learned from all views. In this objective
function, factor matrices to be updated including H∗ and {Wv}v=1...nv . Using this
objective function, the consensus coefficient matrix will be learned directly during
the learning process. This can help reducing the computation cost since a fusion step
to learn the consensus matrix will be unnecessary.

For MTRD setting, apart from sample object type, different feature views can
be considered as different feature object types. The data represented on each view
is corresponding to the inter-type relationship between sample object type and each
feature object type. In particular, data view Xv is the inter-type relationship between
sample and feature object type vth. We use Rhl to denote the inter-type relationship
between object type hth and object type lth. The number of inter-relationship
matrices in MTRD setting may be larger than the number of data matrices in multi-
view setting since there may exist relationships between different feature object
types. For example, a web-page dataset with two-view data, i.e., between web-
pages and terms and between web-pages and concepts may have three inter-type
relationship matrices such as between web-pages and terms, between web-pages
and concepts and between terms and concepts. The objective function for the
MTRD low-rank learning normally utilizes the non-negative matrix tri-factorization
(NMTF) framework [28]. It can be expressed as,

min
m∑

h,l=1

‖Rhl −GhShlG
T
l ‖2

F , s.t. Gh ≥ 0,Gl ≥ 0 (9.6)

where m is the number of object types, Gh ∈ R
nh×r
+ , Gl ∈ R

nl×r
+ and Shl ∈ Rr×r+ .

Gh and Gl are the low-rank factor matrices of object types hth and lth. Learning
the cluster structure of object type hth will enhance the clustering performance on
object type lth while the clustering process on object type hth can be determined by
the clustering of object type lth at the same time. Consequentially, simultaneously
learning cluster structures of all object types will help enhancing the clustering
performance of the sample object type. With regard to the equivalence between
the MTRD and multi-view setting, let us suppose object type h is the sample object
type and object type l is the feature view l, it can be inferred that Rhl , Gh and Gl in
Eq. (9.6) are equivalent to Xl , Hl and Wl in Eq. (9.1), respectively.

The problem of simultaneous clustering of multi-type relational data in Eq. (9.6)
can be complicated in solving. Therefore, a variation using symmetric non-negative
matrix tri-factorization (STNMF) objective function has been proposed in [29] and
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has also been used in other methods [11, 12]. In the STNMF setting, all the inter-type
relationships between different object types are encoded using the new formulation
of matrix R in Eq. (9.7). Note that R is a symmetric matrix since Rhl = RT

lh.

R =

⎡
⎢⎢⎢⎣

0n1×n1 R
n1×n2
12 · · · Rn1×nm

1m

R
n2×n1
21 0 · · · Rn2×nm

2m
...

...
. . .

...

R
nm×n1
m1 R

nm×n2
m2 · · · 0nm×nm

⎤
⎥⎥⎥⎦ (9.7)

The STNMF objective function is written as

min
∥∥R −GSGT

∥∥2
F

, s.t. G ≥ 0 (9.8)

In this objective function, S is the trade-off matrix and has the symmetric form
similar to R. G is the symmetric factor matrix that contains all low-rank factor
matrices of all object types in the following form:

G =

⎡
⎢⎢⎢⎣

G
n1×r
1 0n1×r · · · 0n1×r

0n2×r G
n2×r
2 · · · 0n2×r

...
...

. . .
...

0nm×r 0nm×r · · · Gnm×r
m

⎤
⎥⎥⎥⎦ (9.9)

where m is the number of object types, equal to the number of views plus 1. The
symmetric formulation in Eq. (9.8) can learn factor matrices for all object types
simultaneously since all the inter-relationship information have been utilized at
the same time during the learning process. The objective function in Eq. (9.8) has
provided an elegant and flexible formula for the problem of representing the MTRD.
This formulation of objective function can be effectively extended to incorporate
other regularizations in order to obtain the higher clustering performance; however,
as per our experiments, the methods based on symmetric NMF require more running
time as compared to the other methods based on the objective function in Eq. (9.6).

9.3 NMF Framework and Manifold Learning on
Traditional Data

NMF is an established method to find an approximate product of smaller matrices
equivalent to the original data matrix for learning lower rank matrices. In clustering,
an NMF-based method attempts to project data into the new lower dimensional
space and then seeks the latent groups in the new low embedded space. Due to the
ability to learn part-based representations, NMF has been proved to be the effective
and flexible clustering method, especially in very high-dimensional data [30]. In
the first NMF-based clustering method [30], NMF derived the latent semantic space
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and determined the document groups based on how each document is combined
with each document topic cluster. This first method deploying NMF to document
clustering marked a new era. Another NMF based typical work on traditional one
view data is ONMTF (orthogonal non-negative matrix factorization) [28]. This work
applied the orthogonal constraint on factor matrices of both samples and features,
leading to both non-negative and orthogonal constraints are used at the same time.
These two constraints on factor matrices turn these matrices into cluster indicator
matrices, thus make ONMTF be a well-defined NMF co-clustering-based method.
This establishes that the NMF-based clustering solution is not only unique but it is
also meaningful and interpretable. NMF-based clustering methods have shown the
effectiveness of NMF over other traditional clustering methods such as K-means
or hierarchical clustering methods. However, NMF-based methods that focus on
finding the approximate factor matrices have been criticized to fail to preserve
the geometric structure of data [7]. In other words, the geometric structure of the
learned low-order representation may not share the similar geometric structure as
the original structure of the original data.

On the other hand, the manifold learning [8] algorithms have been known to
learn the intrinsic manifold or geometric structure of data. These algorithms work
on the assumption that the nearby points should have similar embeddings. This
assumption requires the learning process to ensure the distances between points
remain unchanged.

9.3.1 Formulation of Manifold Learning on Traditional Data

The formulation of manifold learning has been addressed in many previous works
[8, 31], we make a review here for the benefit of the paper’s logicality.

Suppose H is the low-rank latent feature matrix on the new mapped space learnt
from data matrix X. We have the following optimizing term to ensure the data points
in new space are smooth with the intrinsic geometric structure of the original data.

min
n∑

i,j=1

‖hi − hj‖2aij (9.10)

where A = {aij }n×n is the adjacency matrix captured by building the k nearest
neighbour (kNN) graph, aij is defined as [7, 8],

a(i, j) =
{

tij if xi ∈ Nk(xj ) or xj ∈ Nk(xi)

0, otherwise
(9.11)

where T = {tij } represents the input affinity information between all pairs of data
points xi and xj , e.g., the similarities between pairs of documents in a text dataset.
N k(xi) denotes k nearest neighbours of xi . It can be obviously inferred from the
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definition of A that the adjacency matrix A contains only the high relatedness values
of data points that are residing in the k nearest neighbour areas. If two data points
xi and xj are not in neighbourhood area of each other, their corresponding value aij

will be set to be zero. ‖hi − hj‖2 in Eq. (9.10) is the Euclidean distance estimating
the closeness between two new representations hi and hj projected for arbitrary xi ,
xj data points.

There are two main cases for data points when they are projected to the new
lower dimensional space.

Case 1 If two data points xi , xj are far in the original space, i.e., aij = 0, the
optimizing term in Eq. (9.10) will not bring any effect to the learning process.

Case 2 If two data points xi , xj are close in the original space, i.e., aij > 0, their
new representations hi , hj should share the same neighbourhood or their distance
‖hi − hj‖2 should be as small as possible. The optimizing term in Eq. (9.10) will
minimize the distance between two representations hi and hj when aij > 0 (i.e., xi

and xj are close in the original data space). Eq. (9.10) can be equivalently written as
below,

⇔ min

⎛
⎝

n∑
i=1

hih
′
i

n∑
j=1

aij +
n∑

j=1

hjh
′
j

n∑
i=1

aij − 2
n∑

i=1

n∑
j=1

hih
′
j aij

⎞
⎠ (9.12)

⇔ min
(
2T r

(
HT DH

)− 2T r
(
HT AH

))
(9.13)

⇔ minT r
(
HT LH

)
(9.14)

where T r(.) denotes the trace of a matrix. D is the diagonal matrix where
dii = ∑n

j=1 aij and L = D − A is the Laplacian graph. The minimizing term
in Eq. (9.14) is called the manifold learning regularization [7, 8]. This manifold
learning is combined with NMF framework in clustering to find accurate and
meaningful clustering solutions while maintaining the original structure of data.
Since NMF factorizes the higher-order data matrix into smaller matrices, it applies
many approximations. Incorporating manifold learning into NMF framework helps
approximating the factor matrices that maintain the geometric structure of the
original data and produces meaningful clusters. On the traditional data, GNMF
[7] was the first method to incorporate manifold learning into NMF framework to
learn the low-rank representations that preserve the local geometric structure. Due to
maintaining distances between neighbouring points when projecting to lower order,
close points in original space are guaranteed to share the same cluster. This helps
resulting in the meaningful cluster solution. The objective function of GNMF on
traditional one-view data is defined as below:

min ‖X −HW‖2
F + T r

(
HT LH

)
, s.t. H ≥ 0, W ≥ 0 (9.15)

where L is the Laplacian graph, constructed as in Eq. (9.14).
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9.4 NMF Framework and Manifold Learning
on Multi-View Data

On multi-view data, the NMF objective function to learn the latent features with the
local geometric structure preserved on all views is as [1, 20],

min
nv∑

v=1

(‖Xv −HvWv‖2
F + T r

(
HT

v LvHv

))
, s.t. Hv ≥ 0, Wv ≥ 0 (9.16)

where Lv = Dv − Av is the Laplacian graph and Av is the adjacency matrix built
on data view vth. The second term in this objective function helps the learning
process to return in the low-rank latent feature matrices {Hv} that are smooth with
the intrinsic geometric structure of data view vth and thus can be more meaningful
as compared to latent feature matrices {Hv} obtained from the multi-view NMF
objective function in Eq. (9.1).

Applying manifold learning on NMF-based clustering methods for multi-view
data is not a trivial extension of traditional data. Since data on different views may
sample on different structures, there are three main family of methods according to
the way they deal with this challenge.

Firstly, a natural extension of manifold learning on multi-view data is learning
the intrinsic manifold of data on each view and ensuring the low-rank data in the
new mapped space is smooth with the intrinsic manifold on the corresponding view.
This first family of methods focus on learning and preserving the manifold on each
view to learn different view factor matrices and constrain the consensus matrix to
be the best consensus of all factor matrices.

Secondly, similar to the case of using manifold on traditional data, the most
important thing is to learn the accurate manifold embedded on each view and
constrain the low-rank representation on each view to lie on the corresponding
intrinsic manifold. This will help to achieve accurate cluster structures from each
view, the necessity to learn the correct consensus coefficient matrix. This second
family of methods rely on learning the accurate manifold on each view to learn the
meaningful common matrix.

Thirdly, some state-of-the-art methods regard that the intrinsic manifold in the
dataset is embedded in a convex hull of all the manifolds of all views [1, 12].
The convex hull of all manifolds from all views can be the minimal convex set
containing all manifolds or a convex combinations of all manifolds [32]. After
learning the consensus manifold, it is a vital problem to learn the low-order
representations to ensure the smoothness with the intrinsic manifold learned from all
views. Therefore, this emerging family of methods focus on learning the consensus
manifold embedded from multiple manifolds from all views. They rely on the
learned consensus manifold to find the consensus coefficient matrix.

This section provides a comprehensive review of the three family of NMF-based
clustering methods on multi-view data.
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9.4.1 Learning the Consensus Matrix Relying on Learning
the Manifold on Each View

An easy extension of transforming the application of manifold learning from a single
view to multi-view is learning manifold of data on each view and attempting to
preserve the manifold when learning the low-dimension data on each view.

Based on the assumption that different views data should embed similar cluster
structures, authors in [24] proposed the objective function that attempts to learn
the low-rank representations from all views such as these representations are as
similar as possible. At the end of the optimizing process, it is believed that each
coefficient matrix will become the consensus coefficient matrix and will embed the
cluster structure. In order to ensure the meaningfulness of the consensus matrix, the
graph regularization is incorporated into the objective function to help to learn the
low-rank representations respecting their corresponding manifolds. The objective
function is as

min
nv∑

v=1

(
‖Xv −HvWv‖2

F +
nv∑

v=1

nv∑
s=1

‖Hv −Hs‖2
F + αR + λ

nv∑
v=1

T r
(
HT

v LvHv

))
,

s.t. Wv ≥ 0,Hv ≥ 0
(9.17)

The first term in the objective function requires Hv to be the best low-rank
representation learned from data view Xv . The second term requires that coefficient
matrix Hv must be similar to other coefficient matrices of other views. The third
term R = min

∑nv

v=1 ‖(Hv)
T − I‖2

F is added to emphasize the orthogonality
constraint on factor matrix Hv . The advantage of the constraint is to returning the
unique and interpretable matrix [28]. The last term is to guarantee the manifold
assumption of every data point on the low-dimensional space, i.e., the low-rank data
points should lie on the embedded manifold of the corresponding view.

It can be noted that the low-rank representation Hv from each view is restricted
by using many constraints in objective function Eq. (9.17). This helps returning in
the good low-order representations on the well-defined datasets, yet it can cause bad
results on some datasets because of too many constraints.

In the context of MTRD, dual regularized co-clustering (DRCC) [33] is designed
for co-clustering data, i.e., simultaneously clustering samples and features in a
dataset where data samples are represented by one type feature. Co-clustering or
clustering on bi-type data is based on the duality between samples and feature and
is a special case of multi-view (i.e., one-view data) clustering and MTRD (i.e., two-
type data) clustering. DRCC is the first method designed for manifolds on both data
samples and data features though the co-clustering problem was first presented in
[34]. In DRCC objective function, the sample and feature are simultaneously being
clustered. This co-clustering process will be able to investigate the structures of
features and the clustering of features will boost the clustering process of samples.
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The more accurate feature clusters are learned, the more accurate sample clusters
will be achieved. Therefore simultaneously seeking the low-rank representations of
samples and features as well as simultaneously maintaining the geometric structures
of low-dimensional spaces of both samples and features as in DRCC objective
function is believed to be the most effective learning process for the co-clustering
problem.

In DRCC, two graphs, one for data samples and the other for data features,
are constructed to model the local geometric structure information. This graph
regularization is incorporated in the NMF objective function to introduce the
smoothness of both data points and data features with their embedded manifolds.
The objective function is as below:

min
(∥∥X −HSFT

∥∥2
F
+ λT r

(
HT LH H

))+ μT r
(
FT LF F

))

s.t. H ≥ 0, F ≥ 0
(9.18)

It is noted in DRCC that the l2-norm constraint is assigned on rows of H and F to
ensure the objective function is lower bounded and the trade-off matrix S is relaxed
to take any signs.

As a formal extension of DRCC, STNMF [29] proposed to learn manifolds for
all object types in an MTRD dataset. The objective function is as

min
∥∥R −GSGT

∥∥2
F
+ λT r

(
GT LG

)
, s.t. G ≥ 0 (9.19)

where the Laplacian L is symmetrically defined as

L =

⎡
⎢⎢⎢⎣

L
n1×n1
1 0n1×n2 · · · 0n1×nm

0n2×n1 L
n2×n2
2 · · · 0nm×n2

...
...

. . .
...

0nm×n1 0nm×n2 · · · Lnm×nm

k

⎤
⎥⎥⎥⎦ (9.20)

L1 is the Laplacian defined on sample object type, L2 is the Laplacian defined on
feature object type 1 and so on. The symmetric inter-type relationship R and the
symmetric factor matrices G are defined as in Eqs. (9.7) and (9.9), respectively.
STNMF was the first method utilizing NMF to simultaneously cluster many object
types. STNMF proposed a novel symmetric framework for the MTRD clustering
problem and incorporated Laplacian matrices to learn manifolds on sample object
types and all feature object types.

For the context of partial multi-view data, inspired from the NMF-based method
for partial data [18], DCNMF [20] was designed using the NMF framework,
but incorporates manifold learning while looking for the meaningful common
coefficient matrix. On the one hand, the method learns the manifold of data on every
view and aims to preserve the manifold as a constraint of the objective function to be
followed. Similar to the other methods [1, 24], the low-rank representations learned
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from all views will be ensured to be smooth with the intrinsic shape of each view.
On the other hand, based on the assumption of the cluster similarity constraint, the
objective function is designed to ensure the paired examples in the partial multi-view
data to be as similar as possible. For this goal, the coefficient matrices of different
views are forced to be learned toward the common consensus matrix. By this way,
the common matrix is learned during the optimization process and at the same time
with views’ coefficient matrices.

Similar to [20], the graph regularized partial multi-view clustering (GPMVC)
method [19] attempts to learn the meaningful representation on each view by
respecting the geometrical structure of data on each view when using NMF to
project higher-dimensional to lower-dimensional space. The objective function is
as below:

min
nv∑

v=1

(‖Xv −HvWv‖2
F + μv‖HvQv −H∗‖2

F + λvT r
(
HT

v LvHv

))
(9.21)

where Qv is a diagonal matrix, constructed as (qv)jj = ∑i (wv)ij . Qv is used to
normalize the coefficient matrix Hv to help different Hv from different views are
scale comparable. With the objective function, H∗ is believed to contain meaningful
latent features learned from all views as the learning process maintains the closeness
between points in the neighbourhood area on each view. Though these methods [19,
20] provide an effective approach for partial multi-view clustering, due to avoiding
the learning of consensus manifold, the low-rank representations may not reflect the
true geometric structure of original data.

9.4.2 Learning the Consensus Coefficient Matrix Relying
on Learning the Accurate Manifold on Each View

Manifold learning can aim at preserving the local or global geometric structures of
data [10]. Since locality preserving shows a tendency to group similar data, most
manifold learning methods incorporated in clustering aim at preserving the local
structure of the data. These manifold learning methods rely on building a kNN
graph, a powerful technique used widely in machine learning and data mining.
The kNN graph models the neighbourhood information for each data point and
encodes the closeness between each data point to all its neighbours. This closeness
information will be embedded in the learning process to make sure the projection
respect the local geometric structure of data. Since the closeness of data objects
can be varied depending on different types of data, the pairwise similarity can
be calculated based on different similarity weighted schemes such as Euclidean
distance, Cosine similarity or Gaussian kernel.

Relational multi-manifold co-clustering (RMC) [12] was proposed in an effort
to learn the accurate intrinsic manifold for MTRD data. RMC learns the optimal
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manifold from a combination of many predefined manifolds. The predefined
manifolds are built as initial guesses of graph Laplacian. Different guesses can
be constructed by different kinds of weighted schemes or different values for the
neighbourhood size parameter. In RMC, the intrinsic manifold is calculated by the
following equation:

L =
q∑

i=1

μiL̃i, s.t.
q∑

i=1

μi = 1, μi ≥ 0 (9.22)

where L̃i denotes a candidate manifold i and q is the number of candidate
manifolds. Each candidate manifold is a combination of different manifolds of
different object types expressed as the symmetric form equation,

L̃i =

⎡
⎢⎢⎣

L1 0 0
0 L2 0
. . . . . . . . .

0 0 Lm

⎤
⎥⎥⎦ (9.23)

L1 is the Laplacian of samples data and different Li are different manifolds of
different feature object types. The candidate Laplacian graph L̃i will be embedded
in the symmetric framework with the objective function below:

J = min
∥∥R −GSGT

∥∥2
F
+ αT r

(
GT

(
q∑

i=1

μiL̃i

)
G

)
+ β‖μ‖2 (9.24)

R and G are non-negative and formulated as in Eqs. (9.7) and (9.9), respectively.
l2-norm on μ is for the even distribution of the parameter for all manifolds and it
prevents the parameter overfitting to one manifold. Since RMC considers several
possible manifolds, the learned consensus manifold is believed to be the closest to
the intrinsic manifold of original data. Though it learns many manifolds but they
are of the same type, i.e., based on kNN graph. Consequently, the learned manifold
in RMC is less diverse while requiring the extra computational cost to calculate
the ensemble manifold. In addition, the parameter k for building kNN graph can
not be known a priori. This makes the use of kNN an uncertainty. Knowing the
right value for neighbourhood size k helps to choose all useful neighbours when
constructing the kNN graph. Thus it helps to learn a more meaningful affinity
matrix that is a necessity to learn the accurate manifold and achieving meaningful
clustering solution. However, a big value of k may lead to involving non-useful
neighbour points in the kNN graph and can lead to learning an inaccurate manifold
and a small value of k may not include all useful neighbour points and will lead
to learning an incomplete manifold. To ensure learning a more diverse manifold
or ensure all useful neighbour information is included in constructing the affinity
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matrix, RHCHME proposed to build the manifold by combining Euclidean distance
learning and subspace learning. The complete manifold is learned as

L = αLE + LS (9.25)

where LS = D − AS with D is the diagonal matrix where (d)ii = ∑j (a
S)ij , AS

is the similarity matrix learned from considering data points lying on subspaces,
i.e., two data points will be considered as neighbours if they belong to the same
subspace, despite the distance between them [35]. LE = D − AE with (d)ii =∑

j (a
E)ij , AE is the affinity matrix derived from constructing kNN graph as in

Eq. (9.11).
The Laplacian matrix constructed as in RHCMHE can learn a more compre-

hensive intrinsic manifold for data when projecting. The objective function of
RHCHME is based on STNMF framework and is similar to RCM. However, the
Laplacian graph is not an ensemble of many candidate manifolds but is built by
considering the data lying on manifold as well as belonging to subspace. The more
comprehensive manifold learned in RHCHME helps to provide more meaningful
clusters evidenced by more accurate clustering results. However, similar to other
clustering methods using manifold learning, RHCHME learns the manifold by
considering local geometric structure only. The local geometric-based learning
manifold aims at preserving the close distances between neighbour points and/or
ensuring membership to subspace of data points. RHCHME is similar to most
manifold learning algorithms that avoid considering distance information of data
points that do not share the same neighbourhood due to the computation cost
and the local distance has been proved to be more useful to clustering than the
global distance. However, it has been shown that preserving all distance information
both for close and far points will help to learn a more meaningful representation
[10]. Inspired by this, ARASP [4] learns an accurate manifold where all important
distance information is captured in an effective manner. Similar to RHCHME and
RMC, ARASP is designed on the setting of MTRD. ARASP proposes to build the
affinity matrix in a novel manner utilizing k nearest neighbour (kNN) graph for close
distances and p farthest neighbour (pFN) graph for far distances. The newly affinity
matrix is built ready to be regularized and embedded in the objective function to
ensure maintaining all important distances during the manifold learning process.
The affinity matrix on data type Xh is constructed as

Ah = λAn
h − βA

f
h , λ+ β = 1 (9.26)

where An
h is the weighted adjacency matrix, built from constructing kNN graph,

with the goal of preserving the local geometric structure of data. An
h is constructed

as in Eq. (9.11). A
f
h is the weighted repulsive matrix, built with the goal of keeping

dissimilar points far apart in the new mapping space. Ah constructed as in Eq. (9.26)
allows including both close and far distances of original data, therefore, can help
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resulting in a more complete manifold for learning process. A
f
h = {af

h (i, j)}nh×nh

is defined as

a
f
h (i, j) =

{
tij if xi ∈ Fp(xj ) or xj ∈ Fp(xi)

0, otherwise
(9.27)

where Fp(xi) denotes the p farthest neighbour points of xi . The ARASP objective
function is as

J1 = min

⎛
⎝ ∑

1≤h<l≤m

∥∥Rhl −GhShlG
T
l

∥∥2
F
−
∑

1≤h≤m

T r
(
GT

h LhGh

)
⎞
⎠ ,

s.t. Gh ≥ 0,Gl ≥ 0, Shl ≥ 0

(9.28)

Lh = Dh − Ah is the Laplacian graph defined on object type hth with the affinity
matrix Ah defined as in Eq. (9.26). As pointed out in [4], the pseudo orthogonal
constraint (i.e., the normalize cut-type constraint [36]) is applied on factor matrix
such that GT

h DhGh = I , ∀h = 1 . . . m, the ARASP objective function becomes

J1 = min

⎛
⎝ ∑

1≤h<l≤m

∥∥Rhl −GhShlG
T
l

∥∥2
F
−
∑

1≤h≤m

T r
(
GT

h AhGh

)
⎞
⎠ ,

s.t. Gh ≥ 0, GT
h DhGh = I , Gh1r = 1nh

, ∀h = 1 . . . m,

Shl ≥ 0, Shl1r = 1r , 1 ≤ h < l ≤ m

(9.29)

The constraints Gh1r = 1nh
and Shl1r = 1r are to apply l1-normalization on each

row of the factor matrix Gh and the association relationship matrix Shl , respectively.
The normalize cut-type constraint on factor matrix has forced the trade-off matrix
Shl to become the association relationship between clusters of different object
types. This will help the corresponding factor matrices to approach the optimal
solution. Furthermore, ARASP does not rely on using the big symmetric matrix as
other MTRD methods do but directly using the original NMF framework. Working
with the smaller matrices significantly improves the computational complexity and
results in time saving as evidenced by empirical analysis.

Though the above methods show effectiveness on MTRD data, there is no
method designed for partial multi-view data. Moreover, a combination of learning
the accurate manifold on each view and learning the accurate consensus manifold
should be considered in order to learn the best low-dimensional matrix.
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9.4.3 Learning the Consensus Coefficient Matrix Relying
on the Consensus Intrinsic Manifold

Data from all views though sampled from different manifolds should lie on the
intrinsic manifold, which is the convex hull of different manifolds [1]. The latent
low-dimensional data represented by many views should follow the consensus low
dimension. To the best of our knowledge, MMNMF [1] is the only method learning
the consensus manifold and using it in the NMF framework effectively. The method
proposes two objective functions to learn the accurate coefficient matrix relying on
the consensus manifold. The consensus manifold is learned beforehand by linearly
combining the manifolds learned from all views as

L∗ =
nv∑

v=1

λvLv (9.30)

The first objective function MMNMF1 is as,

J =
nv∑

v=1

DKL(Xv||HvWv)+ λT r
(
HT∗ L∗H∗

)
(9.31)

where DKL(.) is the Kullback–Leibler divergence. The consensus coefficient matrix
H∗ is constructed by linearly combining all views low-rank matrices as H∗ =∑nv

v=1 αvHv . In this objective function, different coefficient matrices are learned
in the new manner to ensure the local geometric structures embedded on each view.
Therefore the authors deem that the consensus matrix will be ensured to preserve the
diverse geometric structures for the newly mapped space of all views and will return
a diverse consensus matrix. Yet, this point is also a disadvantage of the objective
function, since it will balance the importance of different views and fails to learn
the accurate consensus matrix in the case where some views in the dataset are more
important than others.

In the second objective function (MMNMF2), the common coefficient matrix is
learned at the same time as different low-rank matrices from all views are learned.
The objective function [1] is expressed as

J =
nv∑

v=1

DKL(Xv||HvWv)+ αvD(H∗ −Hv)+ λT r
(
HT∗ L∗H∗

)
(9.32)

It can be noted that different factor matrices during the learning process are
constrained to be as close to the consensus matrix as possible. At the same time,
the data points belonging to the consensus low-dimensional space should lie on
the convex hull of the multi-manifold. This consensus matrix from this objective
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Table 9.1 Characteristics of methods

Learn the Learn the Learn the Learn the

consensus manifold on accurate consensus

Methods matrix each view manifold manifold

MVNMF No No No No

MultiNMF Yes No No No

STNMF Yes Yes No No

DRCC Yes Yes No No

RHCHME Yes Yes Yes No

ARASP Yes Yes Yes No

MMNMF Yes Yes No Yes

function can better reflect the latent clusters shared from all views’ data. MMNMF2
can be considered as the well-defined framework for combining NMF and manifold
learning since it is able to return the natural consensus shared from all views
that respect consensus manifold embedded. MMNMF is believed to be the most
effective method since it considers all cases of applying manifold on multi-view
data. However in this method, since the consensus manifold is linearly combining
all manifold from all views, it may fail to reflect the natural consensus manifold.
Similar to learning the consensus coefficient matrix, the consensus manifold should
also be learned naturally during the learning process.

The MMNMF method is designed for multi-view data. There are no methods
exploiting the consensus manifold designed for MTRD or partial multi-view data.
Furthermore, the NMF-based multi-view method utilizing consensus manifold
should also be combined with the techniques to learn the accurate manifold on each
view in order to achieve the best solution.

We summarize the main characteristics of the three family of methods discussed
in this section in Table 9.1.

9.5 Experiments

This section presents empirical analyses of leading NMF-based clustering methods.
The clustering performance is evaluated by using criteria of normalized mutual
information (NMI) [37], clustering accuracy (AC) and runtime performance. NMI
focuses on measuring the similarity between the cluster labels and true classes. The
accuracy is the percentage of correctly obtained labels.
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Table 9.2 Characteristic of
the datasets

Properties D1 D2 D3 D4 D5

�= classes 25 10 5 7 17

�= object types/views 3/2 3/2 3/2 3/2 3/2

�= samples 1413 1500 187 12,708 617

�= terms 2921 3000 1702 1433 –

�= concepts 2437 3000 – – –

�= links – – 578 5429 –

�= actors – – – – 1398

�= keywords – – – – 1878

9.5.1 Datasets

Several well-known multi-view datasets have been used to test the performances of
state-of-the-art multi-view clustering methods as shown in Table 9.2.

Reuters-215781 is a collection of Reuters newswire stories. The dataset is used
popularly in clustering evaluation. We made use of two subsets, R-MinMax (D1)
and R-Top (D2) extracted from the dataset. R-MinMax includes 25 classes with
at least 20 and at most 200 documents that were extracted from each class and
R-Top contains 10 largest classes. For multi-view setting, another view data was
created by using extra knowledge, i.e., Wikipedia by following steps in [11, 38] to
create a new data view between documents and concepts (along with the first view
representations between documents and terms). For MTRD setting, three object
types: documents, terms, concepts as well as three inter-type relationships between
documents–terms, documents–concepts and term–concepts are used.

Texas2 (D3) dataset describes web-pages of Texas University. The dataset
represented two views: terms and links. For MTRD setting, there are three data
types: web-pages, words and links. The clustering task is to achieve different groups
of web-pages.

Cora3 (D4) is a scientific publication dataset with a set of publications repre-
sented by two views, contents and sites.

Movie (D5) dataset contains a set of movies represented by two views, actors
and keywords. The dataset is used popularly in clustering evaluations such as [31,
39, 40]. For MTRD setting, three object types, movies, actors and keywords are
considered together with the relationships that exist between these type objects.

1http://www.daviddlewis.com/resources/testcollections/reuters21578/.
2http://www.cs.umd.edu/projects/linqs/projects/lbc/.
3http://www.cs.umd.edu/%7Esen/lbc-proj/data/cora.tgz.

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.cs.umd.edu/projects/linqs/projects/lbc/
http://www.cs.umd.edu/%7Esen/lbc-proj/data/cora.tgz
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9.5.2 Benchmarking Methods

The state-of-the-art methods belonging to three family of algorithms, as discussed
in Sect. 9.4, are used in evaluation. In the first family of algorithms, DRCC [33] and
STNMF [29] have been used. In the second family of algorithms, RHCHME [11]
and ARASP [4] have been used. In the third family of algorithms, the only proposed
method MMNMF [1] has been used.

DRCC is the co-clustering method, manifold learning is applied on both samples
and features. To compare with other MTRD and multi-view methods, we extend
DRCC to run on the MTRD dataset. Specifically, we apply manifold learning on
every object type to learn the low-rank representations of different object types such
that these low-rank factor matrices of every object types will be smooth with its
corresponding original manifold.

STNMF is the prominent method designed for MTRD data. In this method, the
manifold learning is applied on all data types and is embedded in the symmetric
matrix form.

MMNMF [1] learns the consensus coefficient matrix by linearly combining
low-rank coefficient matrices of all views, as expressed in Eq. (9.31). For easy
comparison with other NMF-based methods, we use Euclidean distance instead of
Kullback–Leibler in the cost function Eq. (9.31).

RHCHME [11] learns its complete and accurate manifold by investigating data
sampling on manifold and subspace for all object types. The method uses the
symmetric matrix form as STNMF [29] to formulate the Laplacian matrices as well
as inter-type relationships and factor matrices as in Eqs. (9.20), (9.7), (9.9).

ARASP [4] attempts to learn the accurate manifold by utilizing both close and
far distances when constructing the affinity matrices on each object type.

We also include MVNMF and MultiNMF [21] in empirical analyses that are
NMF-based clustering methods without manifold learning. These two methods will
assist us to check the role of learning the manifold when using NMF in clustering.
MVNMF is a special case of MMNMF [1] that ignores considering data lying
on manifold by setting the parameter λ to 0 in Eq. (9.31). The consensus matrix
is calculated as a linear combination of all coefficient matrices. MultiNMF [21]
learns the low-rank representations of data on different views at the same time the
consensus coefficient matrix is learned, without manifold learning.

The optimizing technique used in all benchmark methods in this paper is the
multiplicative update rule (MUR). The technique has been established in [34] where
the optimizing process will separately and sequentially update each variable in the
objective function while keeping other variables as constants until convergence.
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9.5.3 Clustering Performances

Tables 9.3 and 9.4 list the clustering results between the three families of algorithms.
The leading first family of algorithms, DRCC and STNMF learn the manifold of
data on every view and maintain the manifolds when learning data from high to low
dimension. Effect of this learning can be seen by their superior performance over
MultiNMF and MVNMF that ignore learning the manifold of data.

The methods from the second family, ARASP and RHCHME, not only learn the
manifold on every view but also learn the low-dimensional embeddings based on
learning the accurate manifold on each view. Since focusing on learning the accurate
manifold, this group of methods outperforms all other methods on all benchmark
datasets. For RHCHME, the superior performance comes from learning the diverse
manifolds by considering the data lying on manifolds as well as data belonging to
subspaces. The manifold is accurate in the sense that it is built based on the affinity
matrix that includes all useful closeness information. ARASP learns the accurate
manifold by incorporating both close and far distances information between data
points, thus it can maintain not only the local geometric structure but also the global
geometric structure of data.

The third family of algorithm that learns the consensus manifold is believed to
bring the good performance since the assumption about the consensus manifold is
promising. However, as seen from the clustering results, MMNMF achieves poorest
results majority of times. This may be due to the fact that the cluster structures of
different views can be similar; however, the geometric structure of original views

Table 9.3 NMI for each methods and datasets

Methods D1 D2 D3 D4 D5 Average

MVNMF 62.59 57.19 21.02 29.11 15.60 37.10
MultiNMF 69.40 55.09 20.65 30.49 20.87 39.30
STNMF 67.28 57.89 31.35 20.20 31.34 41.61
DRCC 72.71 59.68 35.78 31.66 33.93 46.75
RHCHME 70.36 62.04 33.15 33.53 31.34 46.08
ARASP 75.01 69.33 39.23 35.24 33.18 50.40
MMNMF 66.80 58.54 20.23 18.32 22.99 37.38

Table 9.4 Accuracy for each methods and datasets

Methods D1 D2 D3 D4 D5 Average

MVNMF 53.14 61.33 51.87 53.03 17.18 47.38
MultiNMF 52.80 64.40 53.48 46.16 23.01 47.97
STNMF 51.38 63.87 44.92 41.29 26.58 45.61
DRCC 57.32 59.13 62.57 50.33 32.58 52.39
RHCHME 65.18 64.15 50.27 55.28 31.44 53.26
ARASP 71.05 73.33 59.36 58.31 33.39 59.09
MMNMF 52.51 61.13 38.50 33.97 20.91 41.40
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may be different. Constraining the low-rank representations of different views to be
smooth with the common consensus manifold may cause the bad effect to the latent
features learning. We suppose that (1) the assumption of the consensus manifold can
only be used in the ideal situation when the data represented from different views
is sampled on similar structures or manifolds or (2) the intrinsic accurate consensus
manifold should be learned in a different way rather than linearly combining as in
MMNMF [1].

The two NFM-based clustering methods without manifold learning, MVNMF
and MultiNMF, achieve poor results since they learn the consensus matrix without
checking on how the original data is distributed in space. On most datasets,
MultiNMF performs better than MVNMF since the former method learns the
consensus matrix simultaneously with learning the low-rank matrices of all views.
Whereas MVNMF learns the consensus matrix after all factor matrices of different
views are learned, hence, the consensus matrix is simply a linear combination of all
views low-rank matrices.

With regard to time complexity (Table 9.5), we observed that STNMF, RHCHME
and MMNMF consume more running time than the other methods. STNMF
and RHCHME require some time to process on big symmetric matrix form and
MMNMF uses much time to ensure each low-rank representation of each view
respecting the consensus manifold of the data. ARASP consumes the least time and
enjoys high accuracy since it makes use of the pseudo orthogonal constraint (i.e.,
the normalized-cut type constraint) for the fast convergence [41].

9.5.4 Parameters Setting

To equally compare all methods on all datasets, we set the same ranges of sharing
parameters for all datasets and report the best results for each method on each
dataset.

Specifically, except for MultiNMF and MVNMF, there are two common param-
eters for all methods, i.e., the manifold regularization parameter λ and the neigh-
bourhood size k. For λ, we search in the range λ = {0, 1, 0.5, 1, 10, 50, 100}. For
k, we search in the range k = {5, 10, 20, 30, 50, 70, 100}. The values of these

Table 9.5 Running time for each methods and datasets

Methods D1 D2 D3 D4 D5 Average

MVNMF 77 215.48 7.8 319 18 127
MultiNMF 120.5 277 14 157 31 120
STNMF 220 240 16 136 57 134
DRCC 200 190 14 164 54 124
RHCHME 220 250 16 139 58 136
ARASP 140 100 12 74 40 73
MMNMF 262.68 209 5.7 274 63 163
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Table 9.6 Parameter for each method on each dataset

Methods Parameter D1 D2 D3 D4 D5

STNMF λ 10 10 100 20 1

k 40 20 30 5 20

DRCC λ 1 10 50 20 1

k 30 30 35 15 70

RHCHME λ 10 20 10 20 20

k 40 10 10 5 30

ARASP λ 20 10 1 20 1

β 10 20 1 10 1

k, p 40 45 45 70 35

MMNMF λ 0.1 0.1 0.1 1 0.1

k 5 20 20 5 5

parameters that allow each method to achieve the best result on each dataset are
given in Table 9.6. For example, RHCHME and STNMF achieve the best results
when λ = 10 on dataset D1 and when λ = 20 on dataset D4.

Apart from λ and k, RHCHME uses another parameter, i.e., α in Eq. (9.25) to
control the contribution of considering data lying on manifold or subspace. For
simplicity, we set α = 1 to let the two kinds of manifolds play the same role in
the manifold learning process.

In ARASP, there are two more parameters, β and p to set the role of far distance
information when constructing the affinity matrix on each data type in Eq. (9.26). To
set β, we fix the value for λ and let β value selecting such that β/λ = [0.1 . . . 1]. In
our experiment, ARASP reaches its peaks on all datasets on any value in the range.
We choose the farthest neighbourhood size p runs in the same manner as range with
the nearest neighbourhood size.

For MMNMF, the parameter λi to construct the consensus manifold in Eq. (9.30)
is set to be 1/nv , i.e., every manifold of every view play the same role in the
consensus manifold.

9.6 Discussion and Potential Work

As evidenced by the experiment results, manifold learning plays a vital role in
clustering. The reason lies on the ability to learn the intrinsic structure of data which
helps to discover the latent cluster structures. However, how to effectively apply
manifold learning on multi-view data is still an unsolved problem. Next we discuss
some of these limitations and future works.

Choosing the Appropriate Neighbourhood Size k

The problem of choosing the appropriate neighbourhood size k in kNN graph-based
method is still haunting [7, 12, 42]. Manifold learning is based on constructing the
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kNN graph, thus it also suffers from the problem of choosing k. ARASP constructs
the affinity matrix in a novel fashion by combining both close and far distances, thus
reduces the dependence of constructing the affinity matrix in the neighbourhood size
k. Similarly, RHCHME reduces the dependence on k by considering both data lying
on manifold and subspace, thus it ensures the affinity matrix to include all useful
neighbours. Though ARASP and RHCHME have provided effective techniques to
learn the affinity matrix with less dependence on k, it still needs more attention.

Another issue associated with using kNN graph is its poor performance with
high-dimensional datasets. In high-dimensional data space, the concept of distance
diminishes due to high sparsity and the k nearest neighbours start to approach the
far points [43]. Consequently, the kNN graph will become unstable or the affinity
matrix will be meaningless.

The Consensus Manifold
The idea that the consensus manifold should exist in multi-view data is novel and
promising. However, the consensus manifold should be learned in a different way
rather than linearly combining as in [1]. This area needs much needed attention.

MTRD Data Verse Multi-View Data
We observed that the MTRD data provides higher performance as compared to
multi-view data. As can be seen in experiment result, methods applied on MTRD
data such as DRCC, STNMF, RHCHME and ARASP achieve more accurate
clusters than methods designed for multi-view data. This is explained by the fact
that MTRD utilized more information than multi-view data. For instance, while
multi-view method applied on D1 can only use two views of data represented by
two data matrices such as document-term and document-concept, MTRD clustering
methods can make use of the relationships between terms and concepts. This proves
the fact that the more information used, the higher results yielded.

Integrating Data from Multi-View
As discussed in the paper, there are two forms of fusing data in multi-view problem,
one is using NMF and the other is using coupled matrix factorization. Since the
coupled matrix factorization aims to learn the consensus coefficient matrix during
the learning process instead of learning separate coefficient matrices of all views,
the assumption about the manifold on each view and the consensus manifold will
be different. Investigating how the coupled factorizing process should respect the
intrinsic manifold is promising for future work to obtain a better outcome.

9.7 Conclusion

The paper presented a survey on the class of methods using manifold learning on
the NMF framework for multi-view data. Different categories of methods have been
surveyed as well as many instances of multi-view data such as partial multi-view
data or multi-type relational data have also been investigated.
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In future works, some characteristics of data such as the density of data points
and the number of dimensions should be taken into account to investigate how
characteristic of data affects the effectiveness of using a manifold. How to learn
the accurate consensus manifold is also a promising issue to be paid attention.
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Chapter 10
Leveraging Heterogeneous Data for Fake
News Detection

K. Anoop, Manjary P. Gangan, Deepak P, and V. L. Lajish

Abstract Nowadays, a plenty of social media platforms are available to exchange
information rapidly. Such a rapid propagation and cumulation of information
form a deluge, in which it is hard to believe all the pieces of information since
it appears to be very realistic. In this context, characterizing and recognizing
misinformation, especially, fake news, is a highly recommended computational
task. News fabrication mostly happens through the textual and visual content
comprised in the news article. People spreading fake news have been intentionally
modifying the content of a news with some partially true information or use fully
manipulated information, newly fabricated stories, etc., which could mislead others.
Fake news characterization and detection are the computational studies that focus
to get rid of the highly malicious news creation and propagation. The textual and
visual content-related features, temporal and propagation patterns of the network,
that use traditional and deep neural computations are the methods to identify
fake news generation and spread. This chapter discusses the methods to leverage
heterogeneous data to curb the fake news generation and propagation. We present an
extensive review of the state-of-the-art fake news detection systems, in the context
of different modalities emphasizing the content-based approaches including text and
image modality and also discuss briefly the network, temporal, and knowledge base
approaches. This study also extends to discuss the available datasets in this area, the
open issues, and future directions of research.
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10.1 Introduction

The rapid growth in technology, the advent of internet, and digitization of media has
minimized the challenges with respect to the geographic reach to the source of news
and quick delivery of information. Besides the traditional news media, online social
network serves as the major medium to share news information along with user
opinion. There are many studies reporting the role of social networks in real-world
events, like assistance, situational awareness and support during disasters, crisis, and
emergencies [1–7]. But, the success of technological advancements and digitization
in news media is harmed by the creation and propagation of fake information.

Fake news is a category of mis- or disinformation that spreads through the
traditional news media or online social media to mislead people. Misinformation
deals with the unintentional spread of false information, whereas disinformation is
intentional [8, 9]. There are various categories of mis- or disinformation [10, 11].
False connection is one category where the news headline, caption, or the images
in the news do not correspond to the news content. Another category called false
context shares genuine content in false context. Manipulated contents are produced
by falsifying the genuine content or image in the news. Misleading contents misuse
some information to frame a different issue with the false claim. Imposter contents
impersonate the genuine sources. A hundred percentage false news content to
deceive people comes under the category of fabricated content. Satire, parody, or
trolls comes in another category that is to just amuse or fool readers and has no
harmful intentions.

The creation of fake information is not new and dates back to early thirteenth
century BC where Ramasses II spread lies and propaganda on victory of Egyptian
Empire over Hittite Empire in the battle of Kadesh [12]. Nowadays also, news is
contaminated by various sorts of fake content which makes people bewildered in the
genuineness of news reaching them. Since fake news was one of the greatest issues
of 2016, the Macquarie Dictionary Word of the Year 20161 is fake news. Similarly,
post-truth was the Oxford Dictionaries Word of the Year 2016.2 A recent interesting
research finding at MIT reports that fake news diffuses significantly faster, farther,
deeper, and broader than a real news, as a result of user retweets on the Twitter
network [13]. They find that fake news appears more novel than the real ones [14].

The inducement of fake information in news can be for several reasons like
partisanship, provoking on a topic, political influence or power, a means to earn the
profit, harm an agency or person, etc. The fake information inducers use sensational
and fabricated captions for increasing the reads, share, or internet click revenue. An
example is Click-bait, a weblink to generate advertising revenue, by providing such
sensational headlines to make the readers curious to click the linked content.

1https://www.macquariedictionary.com.au/news/view/article/431/.
2https://en.oxforddictionaries.com/word-of-the-year/word-of-the-year-2016.

https://www.macquariedictionary.com.au/news/view/article/431/
https://en.oxforddictionaries.com/word-of-the-year/word-of-the-year-2016
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10.1.1 Impact of Fake News on Society

There have been many instances highlighting the inimical effects of fake news
on real-life events. The fake news regarding the natural disasters proliferating via
online social media has lead panic and chaos among people [15]. There are studies
on the role of social media to spread fake news during natural disasters, like in
the case of Hurricane Sandy during 2012 [16] (Fig. 10.1), the earthquake in Chile
during 2010 [17], and Japanese Earthquake and Tsunami during 2011 [18]. False
information also has adverse effects on the large-scale investments and stock prices.
One such example is the fake tweet saying about an explosion that injured Barack
Obama that wiped out $130 billion in stock value within a few minutes following
a tweet [19]. Rumors are also prominent in the area of health and disease [20, 21],
terrorists attacks [22], etc. Apart from these areas, fake content is more profound
in the political news to manipulate the public events like elections [23–28]. These
ramifications of rapidly propagating fake news through social spaces on individuals
and society include the injection of biased or false beliefs to the consumers, without
their awareness, that results in changing their interpretations and response to a real
news. In effect, this disturbs the authenticity of the whole news ecosystem.

In this chapter, we provide an extensive survey of fake news detection methods
leveraging heterogeneous data. Section 10.2 describes fake news detection methods
and modalities with a special emphasis on content-based methods utilizing text
and image content. This section also briefly discusses the network and temporal
modalities for fake news detection. Section 10.3 lists out some of the available
datasets for fake news detection-related research, and Sect. 10.4 discusses the open
issues and future directions of research in fake news detection.

Fig. 10.1 Fake information tweets on Hurricane Sandy. (a) An alligator in Houston during
Hurricane Harvey. (b) New York harbor with Frankenstorm bearing down
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10.2 Fake News Detection

Fake news detection systems employ techniques to identify the genuineness of
news through the perspectives of the text and image content in the news, social
network, temporal features, and knowledge base or human-in-the-loop methods.
In general, the content-based approaches consider the text and image modalities
modeled using several machine learning techniques namely unsupervised, semi-
supervised, and supervised learning, including deep learning techniques. In textual
modality, the features of interest are stylometric, linguistic, structure and syntax
based, statistical, etc. In case of image modality, the focus is on text associated with
the image, temporal information of the posted image, or image forensic features to
detect tampering. User-based features, propagation features, structure and behavior
of the network, etc. are those considered in the domain of social network-based
fake news detection studies. To discern fake news, works are also reported using
temporal information of users, events, or articles. Fake news detection methods
also contain knowledge base approaches including human-in-the-loop methods to
discuss the worth of crowdsourcing techniques and fact-checkers that distinguish the
fake and real news. The overall architecture of fake news detection in the perspective
of modality and learning techniques utilized is shown in Fig. 10.2.

10.2.1 Textual Modality

The prevailing way of characterizing and detecting fake news relies on the content
of the news articles. In general, the content of a news article can be categorized into

Fig. 10.2 Fake news detection approaches (A: Modalities) (B: Learning techniques)
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textual and visual modality. Among these modalities, a major portion of information
in the news is populated with the help of textual modality. Following are the
sample list of text captions from fake news articles reported in two different fact-
checking portals (Snopes and PolitiFact). Where the headlines in list 1–3 and its
corresponding article is fully fake and 4th one is half true.

1. Fluoride Officially Classified as a Neurotoxin in World’s Most Prestigious
Medical Journal [29]

2. SHOCKER!!!! A University female student confesses to have infected more than
324 men in Nakuru with HIV. She targets 2000 before the year ends!!!! [30]

3. President Trump Announces Plans To Build A Monument Commemorating the
War on Christmas [31]

4. The United States has a massive trade deficit with Japan. It’s anywhere from $69
billion to a $100 billion a year [32]

A bunch of research approaches to detecting fake news relies on characterizing
and analyzing the patterns in textual data of the fake news [33–36]. Considering
the vast availability and usefulness of textual data, for detecting fake news,
researchers are more interested to provide their own news corpus which includes
both the legitimate and fake news article using crowdsourcing and fact-checking
methods. Andreas Vlachos et al., in his research study, proposes the general way of
constructing a benchmark dataset for fake news detection or checking the fact of a
social media news [37]. In order to create the textual corpus, they approached two
major fact-checkers websites including the Channel43 and PolitiFact.4 According to
Andreas Vlachos et al., this fact-checking is a traditional supervised classification
task. They find that rather than traditional binary classification, fake news detection
is multiclass, and they come up with a fine-grained labeling scheme on a five-
point scale, which includes TRUE, MOSTLY TRUE, HALF TRUE, MOSTLY
FALSE, and FALSE label for each news articles. Also, the study mentioned another
approach of semantic similarity between statements to explore fake news detection
and automated fact-checking.

William Yang in his research comes up with the creation of another benchmark
dataset for fake news detection and also tries to experiment the possibilities and
effectiveness of both traditional and the deep models of machine learning algorithms
in fake news detection [38]. LIAR is the publicly available benchmark dataset,
which includes 12.8 k human-labeled short statements from PolitiFact, and the
articles are mapped into six fine-grained labels, including PANTS-FIRE, FALSE,
BARELY TRUE, HALF-TRUE, MOSTLY TRUE, and TRUE. Because of the six
fine-grained labels, the author views the problem as a simple 6-way multi-class
classification problem. In this approach, the experiment of fake news detection is
carried out using five baselines including a majority baseline, traditional Logistic
Regression (LR), Support Vector Machine (SVM), Bi-directional Long Short-Term

3http://blogs.channel4.com/factcheck/.
4http://www.politifact.com/.

http://blogs.channel4.com/factcheck/
http://www.politifact.com/
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Memory network model(Bi-LSTM), Convolutional Neural Network (CNN), and a
Hybrid CNNs. Except for the hybrid CNNs, all other models are built only with
textual data, and the hybrid CNNs is built with the combination of text and other
metadata details like subject, speaker, job, state, contexts, party, and history. The
results are measured as validation and test set accuracy. The text classifiers such as
SVM and LR models obtained significant results. Due to overfitting, Bi-LSTM did
not perform well. CNN outperformed all models on the held-out set.

10.2.1.1 Textual Modality Features for Fake News Detection

Linguistic Features

The traditional representations of linguistic features used for modeling documents
are Lemmas (base form of morphological categories like nouns, e.g., Hospital from
Hospitals, or verbs, e.g., dance from danced, or dancing), phrases (the sentence
pieces as word sequences), and word senses (different meanings of content words,
as defined in dictionaries) [39].

N-grams

An N-gram model is defined as a probabilistic language model widely used in com-
putational linguistics (e.g., statistical natural language processing) for predicting the
next item in a contiguous sequence of N items from a given sample of text or speech.
In general, N-gram is defined as a set of co-occurring words within a given window.
For example, for a given sentence “Did a Trump Tower Open in Pyongyang,” if
N = 2, then “Did a,” “a Trump,” “Trump Tower,” “Tower Open,” “Open in,” “In
Pyongyang,” are the N-grams. An N-gram of size 1 is referred to as a unigram; size
2 is referred to as a bigram (or, less commonly, a digram); size 3 is referred to as
a trigram, and so on. To model several features from this N-gram representation,
the easiest way is to use the bag of word representations and word length features
encoded as tf-idf values.

POS

The eight parts-of-speech tagging including noun, verb, pronoun, preposition,
adverb, conjunction, participle, and article are another way of modeling the hidden
language patterns in the text documents and which can be highly utilized for the
study of fake news detection.

Punctuation

Punctuation characters such as period, comma, dashes, question marks, and excla-
mation marks are also linguistic features that might be effective in categorizing the
deceptive text from the truthful text. Several researchers report that this punctuation
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shows considerable influence on fake news detection and even in opinion spam
detection [40, 41]. Rubin et al. propose that a greater number of clauses increase
the number of punctuation marks found in satire, which informed the development
of punctuation features such as period, commas, dashes, question marks, and
exclamation marks with the help of the Linguistic Inquiry and Word Count Software
[40]. According to Veronica et al., the authors of fake news use more adverbs, verbs,
and punctuation characters than the authors of legitimate news [33].

Syntactic and Semantic Features

The syntactic representation of sentences in language also influences the detection
of fake and real news articles. The conventional way of observing the syntactic
representation among the language is by using several statistical parsers. Badaskar
et al. in his previous research work hypothesized that real sentence tends to be
grammatical, while the same may not be the case for fake sentences [42]. This
hypothesis directs the proposed work into a way of measuring the grammaticality
using a statistical parser. The log-likelihood score returned by the statistical parser
can be used to judge the grammaticality of a sentence and thus determine whether
it is fake or real. In another research work, the author captures the syntax feature
derived from production rules based on a context-free grammar tree. The parser
used for the extraction of these syntactic features is Stanford Parser [43].

The semantics of an article can be observed through the inter- and intrarela-
tionship between correlated pairs of content words and sentences. The real articles
comprise the correlated pairs of content words and sentences that correlate with each
other, and this correlation is said to be semantically coherent [42]. There are also
two different types of coherence reported in the literature, which are intra-sentence
coherence for modeling the intra-sentence word correlations and inter-sentence
coherence to model the topical redundancy.

Readability

Text understandability or readability is yet another feature for fake or deception
understanding. In general, this includes features like number of characters, complex
words, long words, number of syllables, word types, number of paragraphs, and
several other readability metrics, including the Flesh-Kincaid, Flesch Reading Ease,
Gunning Fog, and Automatic Readability Index [33].

Psycholinguistic Features

Psycholinguistics or psychology of language is used to extract the psychological
characteristics of language, including the emotions embedded, self-references, cog-
nitive complexity, etc., from a bit of text data. Matthew L. et al. in his research work
reported that the deceptive language shows characteristics of fewer self-references,
more negative emotion words, and fewer markers of cognitive complexity [35]. In
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contradiction to this work of Matthew L. et al., Catalina L. et al. propose a study
on deception detection on dating profiles using linguistic cues [44], which reports
the presence of fewer negative emotions in the deceptive dating profile. The study
of Catalina L. et al. also illustrates that profile deceptions correlate with fewer self-
references, increased negations, and fewer overall words, and throughout the study,
several hypotheses are formed mainly using the emotional and cognitive linguistic
cues.

Other relevant psycholinguistics feature sets used in different studies are the pres-
ence of affective information (positive and negative emotion), exclusive information
(but, without), motion words (walk, move, go), social processes (talk, us, friends),
cognitive processes (cause, know), etc.

Linguistic Inquiry and Word Count (LIWC) is the most popular software used
for experimenting with the psycholinguistics characteristics of a text corpus [45].
LIWC is based on a large lexicon of word categories that represent both linguistic
and psycholinguistic process including the emotional, social as well as the part-of-
speech tagging and several other kinds of word counts. Most of the research work
in both computational perspective and social science perspective use this LIWC to
evaluate their hypothesis [35, 41, 44, 46].

Stylometric Features

Stylometry is the statistical analysis of variations in literary style between one writer
or genre and another. Several stylometric features are also popularly used in the
detection of deception in the textual corpus. In general, the field of stylometry uses
combinations of linguistic features and machine learning to model the writing style
in an article. Afroz et al. in his research argue that some linguistic features change
when people hide their writing style and if we identify that features, it is a way of
detecting deception through stylistic features [47]. The major contribution of this
work is a method for detecting stylistic deception in written documents.

The writeprints feature set is a set of feature that can represent the author’s
writing style, which is proposed by Zheng et al. in his research study [48]. This
writeprints feature set includes several categories like character related (total char-
acters, the percentage of digits, percentage of letters, the percentage of uppercase
letters, frequency of character unigram, most common bigrams and trigrams, etc.),
frequency of special characters (∼, \, 〈, 〉, ], [, }, {, $, #, &, etc.) and punctuations,
word related (total words, number of characters per word, frequency of large words,
most frequent word uni-/bi-/ tri-grams, etc.), and function words and parts-of-speech
(frequency of function words and parts-of-speech). More specifically, these feature
sets can be grouped into lexical, syntactic, and content-specific features.

In addition to the writeprints feature sets, Afroz et al. experiment the
effectiveness of two other set of feature namely lying-detection feature set and
authorship-attribution features in [47]. The lying-detection feature set includes
quantity (number of syllables,number of words, and number of sentences),
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vocabulary complexity (number of big words, and number of syllables per
word), grammatical complexity (number of short sentences, number of long
sentences, Flesh–Kincaid grade level, average number of words per sentence,
sentence complexity, and number of conjunctions), uncertainty (number of words
express certainty, number of tentative words, and modal verbs), specificity and
expressiveness (rate of adjectives and adverbs, and number of effective terms),
and verbal non-immediacy (self-references, and number of first-, second-, and
third-person pronoun usage). The authorship-attribution features are the number of
unique words, complexity, Gunning-Fog readability index, character count without
whitespace, character count with whitespace, average syllables per word, sentence
count, average sentence length, and Flesch–Kincaid readability score. The authors
continue the study as a supervised classification task using Support Vector Machine
(SVM) with Sequential Minimal Optimization (SMO).

Feng et al. propose an unconventional approach of syntactic stylometry for
deception detection using features driven from Context Free Grammar (CFG) parse
trees, and the results show consistent improvement in performance over several
baselines approaches [36]. The experiments are conducted using four different
datasets scraped from product review and essay domain.

Statistical or Empirical Features

The statistical or empirical feature is also very helpful to characterize and under-
stand the hidden patterns in fake or real articles when we consider the fake or
real article detection as traditional supervised or unsupervised learning processes.
In a broader perspective, these statistical or empirical features can be classified
as traditional Bag-of-Words (BoW) approach including the Term Frequency and
Inverse Document Frequency (TF-IDF) and the latest nontraditional neural word
embedding-based features (Word2Vec, Doc2Vec, and Glove).

Bag-of-Words (BoW)

TF-IDF is a numerical statistics which focusses on how a word is important to the
document in a corpus. In general, TF-IDF is the product of Term Frequency (TF)
weights and Inverse Document Frequency (IDF) weights.

Term frequency (TFt,d ): number of times the term t occurs in document d.
Inverse document frequency (IDFt,D): it is the measure of how much information

that a word gives in the document collection, and measures whether the word is rare
or common across the document corpus.

Badaskar et al. in a research study mention that the count of uncommon pairs of
words within an article, the ratio of the perplexity of trigram and quad-gram models
for a given article, and the nature of the POS tags that occur at the start and end of
sentences in an article also belong to the category of statistical features, which can
be generally computed with the help of BoW and co-occurrence matrices [42].
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Neural Word Embedding

The traditional distributional features have been replaced from many NLP architec-
tures by the advent of neural word embedding approach. Unsupervised learning
of this word embedding illustrates the semantic relation between several words
in the text corpus, for example, king − man + woman ≈ queen. Mikolov et
al. introduce the three-layer neural architecture for the neural word embedding,
including two different models, the continuous bag of words (CBOW) and skip
gram model [49, 50]. Initially, we feed the one-hot vectors from the text corpus
to the embedding input layer and then the neurons in this layer are mapped into
a fully connected intermediate layer, then finally a softmax layer that produces
a probability distribution over words in the vocabulary. Similar architectures are
proposed by several researchers to improve the performance and efficiency; they
are Doc2Vec [51] and Global Vectors for Word Representation (GloVe) [52] vector
representations.

10.2.1.2 State-of-the-Art

A huge amount of research is carried out in this area of textual modality-based
deceptive or fake news recognition using the abovementioned different feature
sets. Perez-Rosas et al. in his research focus on two perspectives of automatic
fake news detection. First one is the creation of a novel dataset covering different
news domains and then learn the fake news patterns using a linear SVM classifier
with fivefold cross-validation [33]. To build the supervised learning model, Perez-
Rosas et al. only use the linguistic features including N-grams, punctuations,
psycholinguistic features, readability, and the syntax features. The author also
presents a corresponding analysis of the automatic and manual detection of fake
news.

A stylometric-based study for detecting hyperpartisan and fake news is proposed
by Potthast et al. This work preliminarily focuses on a large corpus creation which
includes 1627 articles that were manually fact-checked from BuzzFeed [34]. In this
study, Potthast et al. try to reveal that hyperpartisan left- and right-wing news have a
lot more in common than any of the two have with the mainstream. Also concludes
the research findings using the stylometric approach that hyperpartisan news can
be discriminated well with F1 score 0.78 and satire from with an F1 score 0.81.
Contradictory to the previous F1 scores, the experimental results show that style-
based fake news detection does not live up to scratch with an F1 score of 0.46.

Rubin et al. propose another dimension that satirical cues are used for recog-
nizing possibly misleading news articles [40]. Generally, the author illustrates the
basic concepts of satire and humor in the first part of this paper and then explains
the features of satirical news which imitate the style and format of journalistic
reporting. An SVM model built on 360 news articles using five predictive features,
like absurdity, humor, grammar, negative emotions, and punctuations, is the major
architecture proposed in this study. Among the five different features, experimental
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results report that absurdity, grammar, and punctuations are the best predicting
features for recognizing satirical news with an F -score of 87%.

On the other side of traditional learning approach, Bhatt et al. propose deep
learning architecture for fake news detection by combining neural, statistical (TF),
and other external features [53]. In this study, the unrelated headline–body pair
FNC-1 dataset is used for exploring a subtask of fake news detection and that is
stance detection. The major focus is on classifying the headline–body pairs into
agree, disagree, discuss, or unrelated classes. This study demonstrates a skip-though
vector for a neural feature, which will encode the sentence into a 4800-length vector
embedding. The number of characters n-gram match between headline–body pair
and the number of word n-gram match between headline–body pair, weighted TF-
IDF score between headline–body pair, etc. are the handcrafted external feature
combination included in this study. At last, the proposed method uses a deep neural
layer for classification of the combined features.

Chopra et al. propose a different approach to fake news recognition via stance
detection with deep learning models [54]. Similar to the previous research findings
of Bhatt et al., here also the authors use Fake News Challenge I (FCN-I) Headline–
Article dataset towards the identification of fake news. But in this proposed
approach, author first trains an SVM with TF-IDF cosine similarity feature to deter-
mine whether a headline–article pair is related or unrelated. Then, the author builds
various neural network architectures on top of Long-Short-Term-Memory (LSTM)
to predict labels including only agree, disagree, or discuss pairing. Experiments
report that a pair of Bidirectional Conditionally Encoded LSTM with Bidirectional
GLobal Attention provides the best performance.

An approach consisting of three modules—Capture, Score, and Integrate (CSI)-
based hybrid deep model, for fake news detection is proposed by Ruchansky et
al. [55]. CSI is a multimodal approach considering three characteristics of a fake
news. First one is the content of the article itself, then the behavior of user and
article, and finally the group behavior of users who propagate the article. In this,
the capture module uses the temporal representation of the article and a Recurrent
Neural Network (RNN). The score is another module which learns the source
characteristics based on the behavior of the user and finally, the integration module
combines the previous two modules. Several other deep neural architectures for fake
news detection are also reported in the literature [56–59].

Textual modality is one of the powerful ways of detecting whether an information
is legitimate or fake. Other than the fake news detection, we can use textual modality
to detect rumor [60], hoax [61], stance [62], satire [63], humor [64, 65], irony [66],
deception [67], and misinformation in online reviews [68].

10.2.2 Image Modality

Images attract attention than text for being vivid and easily comprehensible. They
are prevalent on social networking sites and reach a large number of people rapidly.
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Fig. 10.3 The Vanishing Commissar. (a) Joseph Stalin pictured with Nikolai Yezhov. (b)
Retouched photograph removing Nikolai Yezhov

But, these images propagating through the networking sites are prone to various
forgeries to present false information to the users. The art of making fake images
is not new and dates back to the twentieth century. For instance, the “Vanishing
Commissar”5 (Fig. 10.3a) where Joseph Stalin pictured with the Nikolai Yezhov
was retouched to entirely remove Yezhov (Fig. 10.3b), from an official press photo
for spreading propaganda.

Nowadays, there exist much software that allows even relatively inexperienced
users to edit the digital images with such a perfection without leaving any trace
of tampering, that it is hard to distinguish the forged images from the original
photographs. There also exists powerful software that artificially generates highly
photorealistic images, as if taken by a digital camera and deceive human eyes. And
hence, we are no longer in a world where seeing is believing. This brings into
account the significance of assessing the trustworthiness of an image propagating
through the networking sites.

Fake images on social media can be broadly categorized as outdated images,
inaccurate images, and manipulated images. Outdated images associate old images
with a current news event. An example of outdated images is shown in Fig. 10.4a,
which claims an image of two children in Nepal earthquake in 2015 but is originally
an image of two Vietnamese taken in 2007.6 Inaccurate images are used to describe
false events. An example showing inaccurate images is given in Fig. 10.4b, where
the image claims as a kind girl helping a homeless old man is a posed picture for
commercial exploration.7 Figure 10.4c shows a six-head snake as an example of
manipulated or tampered images.8

5http://webarchive.nationalarchives.gov.uk/20120203152804/http://www.tate.org.uk/tateetc/
issue8/erasurerevelation.htm.
6https://www.snopes.com/fact-check/nepal-earthquake-photo/.
7http://www.chinadaily.com.cn/china/2013-03/29/content_16357003.htm.
8https://www.snopes.com/fact-check/7-headed-snake/.

http://webarchive.nationalarchives.gov.uk/20120203152804/http://www.tate.org.uk/tateetc/issue8/erasurerevelation.htm
http://webarchive.nationalarchives.gov.uk/20120203152804/http://www.tate.org.uk/tateetc/issue8/erasurerevelation.htm
https://www.snopes.com/fact-check/nepal-earthquake-photo/
http://www.chinadaily.com.cn/china/2013-03/29/content_16357003.htm
https://www.snopes.com/fact-check/7-headed-snake/
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Fig. 10.4 Fake images on social media. (a) Outdated image. (b) Inaccurate image. (c) Tampered
image

Image tampering can of three different types—image splicing, copy-move
attack, and resampling/histogram operations. The method of copying one part of
an image and inserting it into another refers to image splicing operation which
is done to realize impossible facts. Image splicing detection algorithms employ
the idea of finding out regions in an image that are significantly different from
rest of the image [69–74]. The copy-move attacks practice taking a part of an
image and copying it in the same image, to conceal something or to falsely add
information. This type of attacks is detected using common image content search
algorithms to find the internal replications [75–80]. The third type of tampering
called resampling/histogram operations is well-intended and rarely change image
semantics [81–85].

There are only a few works related to verifying the authenticity of a news article
from the image modality aspect. Most of the works among them are based on the
textual features surrounding the images. Others include user profile image features,
temporal features of the image posted, etc. and very few are based on image forensic
features.

A characterization analysis has been performed by Gupta et al. [16] to identify
the fake images in Online Social Media and to understand the propagation of
these images using temporal, social reputation, and influence patterns. In particular,
the spread of fake images of Hurricane Sandy, during 2012, through Twitter has
been highlighted in this paper. Figure 10.5 shows some of the fake images of
Hurricane Sandy shared via twitter.9 10,350 unique tweets with fake images have
been identified to be circulated on Twitter. For the classification analysis, a dataset
containing 5767 fake and real image URLs each, of Hurricane Sandy, has been
prepared, and classification algorithms have been used on the extracted user-based
features like number of friends, followers, etc. and tweet-based features like length
of tweet, number of words, etc., to distinguish the fake and real image URLs.

9http://news.yahoo.com/10-fake-photos-hurricane-sandy-075500934.html.

http://news.yahoo.com/10-fake-photos-hurricane-sandy- 075500934.html
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Fig. 10.5 Fake image tweets of Hurricane Sandy. (a) Shark supposedly swimming through
Houston’s flooded streets. (b) Thunderstorm at Manhattan

An accuracy of 97% has been achieved using decision tree classifier with tweet-
based features implying that the analysis of tweet content and property helps to
classify fake and real image URLs on Twitter with a high accuracy, but still, the
work has been carried out using the traditional features based on text, user, and
propagation and not the image features. Another interesting result has been inferred
that approximately 86% of the tweets with fake images URLs are retweets.

From the conclusions of the abovementioned work of Gupta et al. [16], Jin et al.
[86] comes up with the assumption that for a fake news there will be less diverse and
limited number of images. The experiments are run on their real-world multimedia
dataset prepared from Sina Weibo10 constituting 146 news events, 50,287 tweets,
25,953 images, and their ground truths created from authoritative sources. Some of
the real and fake images in their dataset are shown in Fig. 10.6, respectively. In this
work, they explore the role of visual and statistical image features for automatic
news verification on microblogs. They compute five visual features: Visual Clarity
Score, Visual Coherence Score, Visual Similarity Distribution Histogram, Visual
Diversity Score, and Visual Clustering Score. These features reveal the hidden
characteristics of image distributions in a news event. Apart from visual features,
they also define seven image statistical features from the three aspects, number of
images in a tweet, popularity of images, and length-to-width ratio of images. These
features provide information on the statistics and attributes of an image in a news

10http://service.account.weibo.com/.

http://service.account.weibo.com/
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Fig. 10.6 Sample images from Sina Weibo. (a) Real images. (b) Fake images

event. To compare the results of the visual and statistical image features, they extract
the nonimage features from the aspects of text, propagation, and user proposed
in [87–90] and remove the redundancy in the combination of these 42 nonimage
features by selecting the 11 best features. These features train 4 classification
models: Support Vector Machine, Logistic regression, KStar, and Random Forest
with fourfold cross-validation. They infer that the performance of image features
by combining their 5 extracted visual and 7 extracted statistical features is slightly
inferior to the nonimage features and hence the effectiveness of nonimage features
cannot be neglected.

A work to analyze online news has been proposed by Pasquini et al. in [91]
that allows verification of the consistency of images in a news article with similar
images of the same topic. This work has been proposed as a preliminary step towards
verifying the integrity of the images which can be performed by visual inspection
or by using multimedia forensics tools. For a webpage, the textual metadata has
been extracted by identifying similarity towards the title and keywords of the
news article. Similarly, the visual metadata has been extracted by Speeded Up
Robust Features (SURF) feature matching, correlation value, and face detection
using Maximally Stable Extremal Regions (MSER) feature matching. These image
features have been used to identify some of the common cases in the news like
same objects from different views or the images that are composite of people.
For result analysis, a webpage with similar textual metadata and manipulated
images have been created by the authors to observe the behavior of the approach
towards a news with manipulated images. The system uses recursive retrieval
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Fig. 10.7 An example image
tweet used in the dataset of
[92]

procedure and a number of links and their associated images have been retrieved for
each news article. But, these images have been manually compared and classified
based on their visual similarity, which may not be applicable for sophisticated
and highly realistic manipulations and requires the employment of digital forensic
techniques. The authors also suggest the application of the proposed work for
detecting decontextualized images through a reverse approach by first retrieving
similar images of a news and then comparing its textual information.

The paper by Hossain et al. analyzes the top trending images on social media to
make sure that the images correspond to the claimed description and is real, through
a collaborative analysis model [92]. An example image used in this study is shown
in Fig. 10.7. The method searches social networks using tags describing an image
to find out whether the image has been used in another context before. They also
apply image forgery detection algorithm on the popular images retrieved using these
tags. For forgery detection, the feature vectors are the statistical measures calculated
from the co-occurrence matrix of the Steerable Pyramid Transform (SPT) subbands
over the Chroma component of the image. This feature vector is then supplied to a
Support Vector Machine (SVM) for classification.

The work by Jin et al. analyzes the image credibility by exploiting visual content
to learn image representations using deep convolutional neural network (CNN)
model [93]. They suggest the CNN model to capture complicated fake images’
characteristics. They construct a large-scale auxiliary image set from fake tweets
in social media consisting of 600,000 weakly labeled real and fake images. They
use transfer learning to train the CNN model with the auxiliary and the target
training set. They create the target image set consisting of 14,616 images with
ground truth labels, from Sina Weibo and Xinhua News Agency for fake and
real images, respectively. They find that their proposed method outperforms other
baseline methods utilizing text-based features [16], Bag-of-Visual-Words (BoVW)
features [94], ImageNet features [95], etc. They also perform an iterative transfer
learning method which boosts the performance of the system by about 10% higher
than the traditional text feature-based methods thus concluding the importance of
the visual content in image credibility analysis.
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The work by Markos et al. investigates state-of-the-art image splicing detection
algorithms on the realistic Web images disseminated through social media [96].
They study the alterations like recompression and resampling produced on the
images while passing through the social media and their impact on tampering
detection. They present a real-world dataset, the Wild Web tampered image dataset
along with the corresponding ground truths, and evaluate the state-of-the-art image
splicing detection algorithms [97–101] on this dataset in real-world verification
settings. They infer that most of these state-of-the-art image splicing detection
algorithms are specialized for certain cases. For example, the work [99] seems to
work better on the Columbia Uncompressed Image Splicing Detection Evaluation
Dataset [102]. Since most of the image splicing detection algorithms failed on
the real Web images, they conclude that the transformations that are applied to
images while they pass through the social media diminish the successful detection
of forgeries. This work thus exposes the vast gap in the state-of-the-art approaches
for successful forgery detection in social media.

10.2.3 Network Modality

Apart from content-based approaches, network behavioral properties provide fake
news detection measures using network information [88, 103, 104]. The network
modality constructs features like clustering coefficient, degree, etc. from specific
networks built using the information of users who publish related social media
posts. Different networks that are studied in this modality are stance network,
co-occurrence network, extended networks, friendship networks, and diffusion
networks. A stance network is constructed with nodes as posts corresponding to
a news and the weights over the edges indicate stance similarity. The co-occurrence
network is constructed from the user engagement information, counting the relevant
posts of users to the same news article. The following/followee network of users
posting related tweets is named as friendship networks. The features considered
in the friendship network are number of nodes, number of edges, number of
nodes without an outgoing edge, the density of Largest Connected Component
(LCC), number of edges of LCC, proportion of nodes without incoming edges,
the proportion of nodes without outgoing edges, proportion of isolated nodes,
etc. Diffusion network is an extension of the friendship network for tracking the
propagation of news using nodes as users and edges as the information diffusion
paths. The density of LCC, number of nodes of LCC, number of edges of LCC,
the proportion of nodes without incoming edges, the proportion of nodes without
outgoing edges, proportion of isolated nodes, etc. are the features considered in
the diffusion network. Extended network considers features like number of nodes,
number of edges, number of nodes without an incoming edge, number of nodes
without an outgoing edge, the density of LCC, number of edges of LCC, etc.

Gupta et al. determine the role of Twitter network graph in retweet propagation of
the fake image tweets [16]. For a user on Twitter, the social network is his follower
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graph. Gupta et al. analyze the percentage of information diffusion through this
follower graph of a user by finding the percentage of overlap between the retweet
and follower graphs and infers that in cases of crisis, people propagate tweets or
retweets what they find trending, irrespective of whether they follow the user or not.

Kwon et al. use the structural properties of the network along with user-based
features, linguistic features, and temporal features for analyzing the spreading
patterns of rumor tweets [105]. They consider three propagation structures, namely
the extended network, friendship network, and the diffusion network to estimate net-
work density, clustering coefficient, number of nodes, number of edges, information
on nonreciprocal interactions of users, etc. Even though the diffusion network size
is small, it is simple and effective to capture the flow of rumors among users. Their
results show that the network features take long time periods for better prediction
and so they suggest these features as expensive to use during the initial stages of
classification of rumors.

Kwon et al. identify key structural and linguistic features for classification
of rumors and non-rumors [88]. They extract 15 structural properties from the
friendship network, the diffusion network, and the LCC of the friendship network.
The classification is performed using a decision tree, support vector machine,
and random forest classifiers. They come to an inference that structural features
like the fraction of information flow from low- to high-degree nodes, the fraction
of singletons, etc. have high predictive power which indicates that initial rumor
conversations begin from relatively low or medium influence users and then reach a
wide set of networks.

10.2.4 Temporal Modality

Temporal modality recognizes and detects fake news by modeling the sequence
of the message, which carries the fake news. The message generates a temporal
sequence by ignoring the structural information. This post sequence can be modeled
based on the message itself, using statistical methods like Conditional Random
Fields (CRF), or message cluster.

The work by Gupta et al. aims to characterize and identify the propagation of
fake pictures on Twitter that created panic among the people during the Hurricane
Sandy of 2012 [16]. A temporal analysis is performed on their dataset of 10,350
tweets with fake image URLs by plotting the number of tweets per hour for fake
image URLs. This shows that it takes only 12 h for the fake image URLs to become
viral. This sudden spike in their propagation is via retweets of very few users. The
work finds that, out of the 10,350 tweets with fake images URLs, only 14% were
unique, the rest were all retweets.

Kwon et al. contribute providing insight into the spreading patterns of rumor
tweets over the time windows starting from the initial 3, 7, 14, and 28 to 56
days of circulation [105]. For each time window, they extract four set of features,
namely user-based features, linguistic features, structural features of the network,
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and temporal features. For rumor events, the temporal features like periodicity of
the external shock, external shock periodicity offset, interaction periodicity offset,
extracted from the daily time series of the tweets show multiple periodic spikes that
lead to a cyclic trend, whereas non-rumor events have a single prominent spike at
the initial circulation phase that decays quickly over time. The dataset consists of 72
rumor events built from two rumor archives, snopes.com and urbanlegends.about.
com, and 58 non-rumor events built from news sites like from times.com, nytimes.
com, and cnn.com. Random forest classification with threefold cross-validation
shows that even though temporal features give poor differentiation between rumor
and non-rumor events for shorter time windows, for a duration of 14 days and longer
these features exhibit high prediction performance.

Kwon et al. identify rumor characteristics by analyzing the temporal, structural,
and linguistic properties [88]. They propose a new model of periodic time series, as
an extension to the SpikeM model [106], called the Periodic External Shocks (PES)
model, that shows that rumor events have fluctuations over time. Some among the
11 temporal features extracted are starting time of breaking news, the strength of
external shock at birth, the strength of interaction periodicity, interaction periodicity
offset, the strength of external shock, the periodicity of the external shock, external
shock periodicity offset, etc. They find that among all features periodicity of external
shock has the highest power of prediction which supports the PES as a good model
for detection of rumor.

Ruchansky et al. propose a model called CSI combining three aspects—text
content of an article, user response received, and users promoting an event are
combined for fake news prediction [55]. The model contains three modules:
Capture, Score, and Integrate where Capture module uses a Recurrent Neural
Network (RNN) to capture the user’s temporal information for a given event. The
user temporal response is captured using a Long Short-Term Memory (LSTM). The
score module is for learning the source characteristic and the third module classifies
an event as fake or real.

10.2.5 Knowledge-Base or Fact-Checking Approaches

The significant motivation of fake news is to inject false claims into the news
content and ride the readers into the world of misinformation. So, a suitable and
straightforward way of detecting fake news is to investigate the truthfulness of the
information claimed by the news story. An example is the story of strange 7-foot-tall
creature found in Sante Fe, Argentina [107]. This article also presented an eye-
catching photograph of the strange animal for attracting attention to the story which
made it difficult to characterize the article as fake for a naive user (Fig. 10.8a).
The best way in such cases is to check the facts about the claim and understand
the truthfulness, which is done by snopes.com fact-checkers [108]. Fact-checkers
helped in unraveling the fact that the abovementioned 7-foot-tall creature was a
fake and digitally manipulated image based on concept art “Harry Potter werewolf”

snopes.com
urbanlegends.about.com
urbanlegends.about.com
times.com
nytimes.com
nytimes.com
cnn.com
snopes.com
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Fig. 10.8 Fake image stating a strange 7-foot-tall creature that was found in Sante Fe. (a) Fake
image. (b) Harry Potter werewolf

(Fig. 10.8b). In general, this kind of approaches is termed as the fact-checking
or knowledge-based approaches. The aim of a fact-checking or knowledge-based
approach is to collect the relevant combination of facts regarding the claim of a
story from several web sources and assign a truth value to the claim. The fact-
checking can be further classified into two, as the human-in-the-loop approaches,
where human beings take part the major role of fact-finding and computational
approaches where automated network models will check the fact.

10.2.5.1 Human-in-the-Loop Approaches

These approaches are human-centric where a person or group analyzes the fact
of an information. This approach can be further categorized as expert-oriented
fact-checking where the fact-checker is a domain expert (e.g., Full Fact,11

FactChecker,12 and PolitiFact) and crowdsourcing-based fact-checking where the
fact-checkers are normal people in the crowd.

Expert-Oriented Fact-Checking

The statistics provided by Duke Reporters’ Lab13 says that there is a large boom
happening in the area of fact-checking to flow against the enormous creation and
propagation of fake news. The number of fact-checkers around the world has tripled
over the past 4 years, increasing from 44 to 149 since the Duke Reporters’ Lab
first began counting these projects in 2014, a 239% increase [109]. Forecasting this

11https://fullfact.org/.
12http://factchecker.in/.
13https://reporterslab.org/.

https://fullfact.org/
http://factchecker.in/
https://reporterslab.org/
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trend, Google developed Google News in 2016, consisting of the news articles and
its related coverages [110]. According to Brandtzaeg et al., fact-checking service
is divided into three categories based on their area of concern [111]. These are
political and public statements (e.g., FactCheck, PolitiFact, The Washington Post,
Fact-Checker, CNN Reality Check, and Full Fact), online rumors and hoaxes (e.g.,
Snopes, Hoax-Slayer, ThruthOrFiction HoaxBusters, and Viralgranskaren—Metro),
and specific topics or controversies or particular conflicts or narrowly scoped issues
or events (e.g., StopeFake, TruthBeTold, RefugeeCheck, Climate Feedback, and
Brown Moses Blog). Other than these three categories International Fact-Checking
Network (IFCN) at Poynter illustrates a large list of fact-checkers, and they are
promoting them for their excellence. In the present scenario, the expert-oriented
fact-checkers are more imperious, but they are tedious to use in the real-time
applications due to their time complexity and cost.

Brandtzaeg et al. in his research study show trust and distrust in online fact-
checking services. Specifically, the study focuses on Snopes, FactCheck.org, and
StopFake to identify usefulness and trustworthiness of fact-checking. Positive and
negative post or conversations on fact-checking service are collected from the social
media and an analytical study is performed for the identification of usefulness and
trustworthiness of fact-checking. There are also several research approaches in the
previous literature reported about related fact-checkers and misinformation trackers
that help the process of fact-checking [112, 113].

Crowdsourcing for Fact-Checking

Contradiction to the expert-based fact-checking, the crowdsourcing-based fact-
checking employs the power of the crowd by giving chance to the common people
for annotating a news as legitimate or not. By using the benefits of crowdsourcing,
every news articles can be distributed to a group of common people through the
web, giving them the privilege to annotate or simple ways to flag towards fake
or real articles. This annotation or flag values can be then aggregated to generate
an overall decision about the given article. To address hoaxes and fake news, in
2016 Facebook came up with such a flagging option, which allow each user to flag
their story if it shows a fake content [114]. The user-flagged news articles will be
reported to signatory organizations of Poynters International Fact-Checking Code
of Principles. If the fact-checking organizations identify a story as fake, it will get
flagged as disputed, and there will be a link to the corresponding article explaining
the reason. Stories that have been disputed may also appear lower in News Feed.
Fiskkit14 is another such platform which leverages the benefits of crowdsourcing
for better online discussions and annotates whether a specific part of a news article
is true, false, fallacy, etc.

14http://fiskkit.com/.

FactCheck.org
http://fiskkit.com/
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There are also few similar research approaches reported in the literature towards
leveraging the use of crowdsourcing [115, 116]. Tschiatschek et al. in a research
study developed a novel algorithm called DETECTIVE, which performs Bayesian
inference for detecting the fake news, and also they formalize the user’s flagging
accuracy for fake news detection to improve the flags in future [115].

10.2.5.2 Computational Fact-Checking

Automatic identification and assignment of truth value to an article is the prime
objective of computational fact-checking. So to assign the truth value to a claim
revealed by an article, we have to automatically extract all relevant facts from the
available primary, secondary sources, and all other external sources including the
open web and structured knowledge graph. The open web consists of references that
can be compared with the claim propagated by the article, whereas the knowledge
graph approach represents a linked open data as a structured network, like DBPedia,
Ontology graphs, etc. So, in the knowledge graph approach, the claim will be
inferred from the open data network designed with facts.

Ciampaglia et al. propose a method for computational fact-checking by using the
shortest path between concept nodes under properly defined semantic proximity
metrics on knowledge graphs [117]. Experiments in this study are conducted
using a public knowledge graph extracted from Wikipedia, and the claims are in
the categories of history, entertainment, geography, and biographical information.
Another interesting, new dimension of the research proposed by You Wu et al.
utilizes the art of query processing or question answering into computational fact-
checking [118]. The previous literature shows several other relevant approaches
towards computational fact-checking [119].

Table 10.1 shows the different research in the literature, for characterizing and
detecting fake news using the machine learning models and several modalities
including textual, image, network, and temporal.

10.3 Datasets

The web is a major source to store and exchange heterogeneous data like text, image,
video, etc. So, the easiest way to build datasets for the study of fake news is to
crawl the web sources. Two different approaches are possible. The first one is to
crawl the social media post, tweets, or web pages using crawlers like Import.io,
and then manually annotate them using domain experts or the freedom of crowd
(crowdsourcing). In another approach, we can directly use the API’s of fact-checkers
and crawl the news article along with the class label given by a domain expert. To
recognizing fake news using network or temporal patterns, most of the datasets are
created using Twitter [87, 120] and Facebook [121, 122], and few of the works are
reported using Weibo [89]. Several API’s are available to collect the relevant article,
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Table 10.1 Different approaches for characterization and detection of fake news

Paper Modality Learning technique

[38] Textual Supervised and deep learning

[47] Textual SVM with Sequential Minimal Optimization (SMO)

[33] Textual Supervised learning (Linear SVM)

[34] Textual Supervised learning (random forest generic classifier, and
orientation-specific classifier)

[40] Textual Supervised learning (SVM)

[53] Textual Deep learning (CNN, and Bi-LSTM)

[54] Textual Supervised learning and deep learning (SVM, and LSTM)

[56] Textual Deep learning

[57] Textual Deep learning

[58] Textual Deep learning

[59] Textual Deep learning

[16] Image Supervised (Naive Bayes, J48 decision tree)

Temporal Fake image URL tweets per hour in twitter

Network Overlap between retweet and follower graph in twitter

[86] Image Supervised Leaning (SVM, LR, KStar, and random forest)

[91] Image Feature matching (SURF), and face detection (MSER)

[96] Image Statistical median Kolmogorov–Smirnov statistic

[92] Image SVM

[93] Image CNN

[105] Temporal Random forest classifier

Network

[88] Temporal Decision tree, random forest, and SVM

Network

Textual

user, and network related details from social media. Forged or tampered images for
recognizing the truthfulness of a news are also easily collected using these API and
crawlers from public web spaces. Some of the publically available datasets in the
directions of text, image, network, and temporal are listed below.

10.3.1 LIAR15

LIAR is a fine-grained six-class-labeled textual dataset for fake news detection,
which includes the truth ratings for the each labels pants-fire, false, barely true, half-
true, mostly true, and true. 2.8 K human-labeled short statement textual data in this
LIAR dataset is collected using POLITIFACT.COMs API. The label distribution for

15https://www.cs.ucsb.edu/~william/data/liar_dataset.zip.

https://www.cs.ucsb.edu/~william/data/liar_dataset.zip
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the pants-fire case is 1050 and all other labels vary from 2063 to 2638. The size of
the training set is 10,269, and the size of validation and testing sets are 1284 and
1283, respectively. The measure of average token per statement is 17.9 [38].

10.3.2 Fact-Checking-LTCSS 201416

Andreas Vlachos et al. developed this dataset for fact-checking, which contains 221
fact-checked text statements and associated information like the speaker, the time it
was made, the verdict assigned by the journalists, the link to the webpage containing
the full analysis of the verdict, the sources used, and a judgment on whether we deem
the statement as suitable for automated fact-checking [37]. The data statements are
collected from two online fact-checking portals named politifact.com and Channel4,
and they have assigned these 221 statements into fine-grained five labels or classes
including True, Mostly True, Half True, Mostly False, and False.

10.3.3 BuzzFeedNews17

This repository contains news published on Facebook page from nine different news
agencies over a week close to the 2016 US election, six from large hyperpartisan
Facebook pages (three each from the right partisanship and from the left partisan-
ship), and three from large mainstream political news pages (Politico, CNN politics,
and ABC News Politics). All the posts are fact-checked and labeled as mostly true,
a mixture of true and false, and mostly false. The total number of post in left, right,
and mainstream are 471, 666, and 1145, respectively.

10.3.4 Getting Real About Fake News: Kaggle Dataset18

This Kaggle repository is only an initial step to understand and recognize fake news.
It contains text (fake news) and related metadata scraped from 244 websites tagged
as “bullshit” by the BS Detector19 Chrome Extension by Daniel Sieradski. The BS
Detector is developed for checking the truthfulness of online news articles giving the
label outputs instead of human annotators. The total data in the repository represents
12,999 posts in total.

16https://sites.google.com/site/andreasvlachos/resources.
17https://github.com/BuzzFeedNews/2016-10-facebook-fact-check.
18https://www.kaggle.com/mrisdal/fake-news.
19https://github.com/selfagency/bs-detector.

politifact.com
https://sites.google.com/site/andreasvlachos/resources
https://github.com/BuzzFeedNews/2016-10-facebook-fact-check
https://www.kaggle.com/mrisdal/fake-news
https://github.com/selfagency/bs-detector
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10.3.5 CREDBANK20

CREDBANK is a large-scale social media corpus, crowdsourced from Twitter,
including approximately 60 million tweets collected between the mid-October 2014
and end of February 2015 [123]. All the collected tweets are then broken down into
related 100 news events, with each event assessed for credibilities by 30 annotators.
This dataset provides a platform to study the textual, network, or social context of
fake news.

10.3.6 Fake News Net21

This is an ongoing data collection repository for fake news studies in different
dimensions like textual data and social context features collected from the network
[103]. The repository includes two major components, the first one is the news
content and associated details like the source (author or publisher) of the article,
headline (short text that aims to catch the attention of reader), body text (details of
news story), and image or video (important part of body content and visual cues
to frame the story). The second one is the social context information of the article
extracted from social network sites. The social context includes the information
on the engagement of fake articles on Twitter. These are user profile, post-related
information, and user information including follower and followee.

10.3.7 Fake News Challenge (FNC)-122

FNC-1 is the dataset developed for fake news challenge, which explores how AI
techniques can be useful to beat against fake news. The FNC-1 repository is not
directly related to the process of fake news detection, even though this dataset can
be used for the initial level study of fake news called stance detection. This initial
level of stance detection can serve as a useful building block for fact-checking. This
dataset consists of headline and body text, either from the same or two different
news articles. The class labels for this headline–body text pair is classified into four:
Agree, DIsagree, Discuss, and Unrelated.

20http://compsocial.github.io/CREDBANK-data/.
21https://github.com/KaiDMML/FakeNewsNet.
22https://github.com/FakeNewsChallenge/fnc-1.

http://compsocial.github.io/CREDBANK-data/
https://github.com/KaiDMML/FakeNewsNet
https://github.com/FakeNewsChallenge/fnc-1
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10.3.8 Higgs Twitter Dataset23

Higgs dataset is the popular dataset among social media network analysis [124].
This dataset was created during and after the discovery of Higgs boson on 4th July
2012. In this dataset, a four-directional network statistics including social network
statistics, retweet network statistics, reply network statistics, and mention network
statistics are extracted from the Tweeter. The dataset was first used to study the
anatomy of a scientific rumor, a kind of misinformation [124].

10.3.9 The Wild Web Tampered Image Dataset24

The Wild Web dataset contains realistic tampered web images disseminated through
social media. This dataset was developed keeping in mind that most of the images
found on the web are usually prone to post-processing operations like recompression
and rescaling. Due to this fact, a vast majority of the tamper detection algorithms
often perform poorly in the real world compared to the reported performance
[96]. The Wild Web dataset contains 13,577 forged images (80 cases of forgeries)
collected from various social media sources, along with the ground truth binary
masks localizing the forgery.

10.3.10 CASIA Tampered Image Detection Evaluation
Database25

CASIA has versions CASIA TIDEV1.0 and CASIA TIDEV2.0. The former version
contains 800 authentic and 921 spliced color JPEG images, each of size 384,256
pixels. Most of the authentic images are collected from Corel image dataset and
belong to several categories like scene images, animal images, plant images, nature
images, etc. They create spliced images by crop-and-paste operation on authentic
images. The later version V2.0 contains 7491 authentic and 5123 tampered color
images of different sizes varying from 240,160 to 900,600 pixels. This version
contains JPEG images with different Q factors and uncompressed image samples.

23https://snap.stanford.edu/data/higgs-twitter.html.
24http://mklab.iti.gr/project/wild-web-tampered-image-dataset.
25http://forensics.idealtest.org/.

https://snap.stanford.edu/data/higgs-twitter.html
http://mklab.iti.gr/project/wild-web-tampered-image-dataset
http://forensics.idealtest.org/
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10.3.11 Columbia Uncompressed Image Splicing Detection
Evaluation Dataset26

This dataset contains 183 authentic images taken using one camera with EXIF
information, and 180 spliced images created from the authentic images without
post-processing. These are uncompressed images of size ranging from 757×568 to
1152×768 pixels in TIFF and BMP formats. Most of the images are indoor scenes
[125].

10.4 Open Issues and Future Directions of Research

The study of characterizing and detecting fake news open up several related research
areas and challenges. Stance detection is one among the related research area,
which is effectively fit into the fact-checking and fake news detection pipeline
[126, 127]. FCN-I introduce stance detection in the challenge stage-1 as a helpful
initial step towards fake news identification and address how the article is related
to its heading. Hoax detection [61], and humor detection [65] is also another
such area that opens the path to fake news detection research. Classifying rumor
is yet another pipeline for fake news detection. The general role of the rumor
is to create and propagate ambiguous situations. In the previous studies, rumor
analysis is divided into four subtasks including rumor detection, rumor tracking,
stance classification, and veracity classification [128]. The traditional styles of truth
detection and deception detection can be adapted as another approach for fake news
detection in some other way [36, 129]. Despite these approaches, clickbait [130],
spammer [131], and bot detection which are not directly related to this area of
research are useful in fake news detection. Some fake news articles may be created
with clickbait headlines to attract readers and get more revenue [132]. Spammers
and bot detection research really aims to detect malicious users in the social and
web space [133]. These spammer and social bots give the insights of malicious
accounts that may aid the fake news detection.

Content-based fake news detection research comprises two important modalities,
namely the textual and image modality. Among these two modalities, most of
the works in the literature use textual modality-based approach to recognize and
identify fake news. There are very few works reported based on image modality.
The traditional approaches in textual modality-based fake news detection aim to use
the machine learning models with several features extracted from the text corpus.
In feature engineering, most of the works rely on the combination of linguistic,
psycholinguistic, stylometric, statistical, syntactic, and semantic features. Among
these features, few studies are proposed based on the sentiment or emotional

26http://www.ee.columbia.edu/ln/dvmm/downloads/authsplcuncmp/.
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elements embedded in the news corpus. According to Vosoughi et al., fake news
stories inspire fear, disgust, and surprise in replies, and real news stories inspire
anticipation, sadness, joy, and trust [14]. The studies utilizing this fact that how does
the presence of emotional parameters influence the characterization and detection
of fake news is an area to be explored. Similar to emotional context of the study,
the presence of sentiment imbibed unigrams is also not explored so well, but in
some cases, researchers explore the total sentiment polarity (positive or negative),
the presence of negation in the document, etc. along with other psycholinguistic
features using LIWC [35]. Using LIWC, the psycholinguistic aspects of fake news
are studied in several previous works of the literature but research dealing with the
psychology context of fake news, for example, the intention detection of a particular
fake news spread is not studied well.

Apart from the feature engineering, traditional machine learning models like
SVM, Random Forest, Decision tree are explored a lot in several works in the
previous research works. Ensemble learning approaches [134, 135], which use
multiple learning models to obtain better predictive performance than could be
obtained from the traditional models, can also be the other way to explore fake news
detection. Transfer learning, in another way, is useful for the problem of learning and
reusing knowledge from multiple different domains [136]. Using transfer learning,
fake news characterization and detection problem can be learned from different
feature space like raw and semantic features. It may improve the results from
traditional learning models. Other than the ensemble and transfer learning, word
embedding-based methods is another area to be mined. Deep learning methods using
neural computing including the various models of RNN and LSTM is yet another
direction of scope.

The exponential rise in the spread of communication has made fake news articles
to follow three major properties: dynamicity (it can happen fast), deception (hard to
verify), and homophily (consists with one’s beliefs). Due to these three properties of
fake news, it is hard to create a benchmark dataset with community agreed labels.
Different types of fake news propagating through social media related to politics,
health, disaster, etc. have different textual characteristics, but datasets are not yet
created considering the domain features. Even though few datasets are available
in the literature, they have only a few entries with which it is not possible to
study the overall characteristics of fake news. Some datasets only consider the fake
news detection as a binary classification problem, but the fact-checking platforms
consider the fake news as a multi-class classification problem.

Visual information that attracts people to a news is a major component that is
being forged nowadays. But, there are no much research studies reported in this area,
most of them being related to the textual and temporal information corresponding
to an image or video posted on the social network. But, since a large number
of manipulations are being done on news images and video footages, there is a
high requirement for a digital image or video forensic investigation in this area.
The greatest challenge is a dataset of real and fake images or videos. Most of the
available forged image datasets differ from the real-world set due to a series of
resampling and recompression operations happening on them.
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In case of network modality, the user–post relations is an area to explored for
better predictions apart from user profile-based features that are reported in the
literature. Another direction can be network embedding that embeds into a low-
dimensional vector space [137]. Most of the propagation features of the network
and temporal modality show poor prediction at the early stage of propagation of
a fake news. Fake news detection studies can be extended to incorporate the ideas
behind the human-in-the-loop or knowledge base approaches with other automated
approaches. A multimodal approach towards fake news detection that combines
several modalities and learning techniques for an accurate fake news detection is
a challenge and necessity.

10.5 Conclusion

Understanding the fake news ecosystem is crucial even for the common people
because it has an impact on the day-to-day events like health, social, cultural,
political aspects, etc. The rate of propagation of fake news through online social
media is exponential compared to that in traditional print media. Due to this trend
in the propagation of fake news, the impact of fake news is unpredictable. We begin
this chapter by introducing misinformation and its different forms. In this study, we
consider fake news detection, in the perspective of different modalities and learning
models. We give special emphasis on different fake news detection approaches in
the literature through textual and image modality. Both textual and image modality
approaches utilize the traditional feature-based machine learning techniques to the
current deep learning techniques. In this study, we have observed that there is a large
scope for creating a community agreed benchmark dataset in both textual and image
modality-based fake news detection. We also perform a pilot study of the network
and temporal modalities for fake news detection. Other than these modalities, this
chapter reviews several knowledge-based or fact-checking approaches including the
human-in-the-loop methods (crowdsourcing and fact-checking) and automated fact-
checking. We also discuss the details and availability of different datasets for the
future research and conclude the chapter by mentioning various open issues and
future directions.
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Chapter 11
General Framework for Multi-View
Metric Learning

Riikka Huusari, Hachem Kadri, and Cécile Capponi

Abstract We consider the problem of metric learning for multi-view data and
present a general method for learning within-view as well as between-view metrics
in vector-valued kernel spaces, as a way to capture multimodal structure of the data.
We formulate a general convex optimization problem in this context to jointly learn
the metric and the classifier or regressor in kernel feature spaces. The formulated
multi-view metric learning (MVML) can be applied to data with any number of
views, not just two, while as a kernel-based method it allows for various data types.
Indeed, it is not required for the views to have the same data type, as long as all
of them are individually kernelizable. We give concrete realizations of our iterative
algorithm in both classification and regression settings, where the metric operating
between views is also learned, either a full metric or a view-sparse one. In order to
scale the computation to large training sets, a block-wise Nyström approximation of
the multi-view kernel matrix is introduced. We justify our approach theoretically and
experimentally, and show its performance on real-world datasets against relevant
state-of-the-art methods.

11.1 Introduction

Multi-view learning refers to a learning framework where the data is described
in multiple views (or modalities). For example, we might characterize birds with
both their visual and audial characteristics, and would like to take both of these
very different representations meaningfully into account in the learning model. The
views available in the data might be not only correlated but also complementary,
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redundant, or contradictory, and it is important to consider these various view
interactions in the learning process. Thus, learning over all the views is expected
to produce a final classifier (or regressor) that is better than learning from each view
individually. The goal of this work is to develop an algorithm that would learn these
view interactions in a dataset and learn how to take advantage of them in solving the
learning problem.

Multi-view learning is well known in the semi-supervised setting, where the
agreement among views is usually optimized [4, 31]. Yet, the supervised setting has
proven to be interesting as well, independently from any agreement condition on
views. Co-regularization and multiple kernel learning (MKL) are two well-known
kernel-based frameworks for learning in the presence of multiple views in data [36].
The former attempts to optimize measures of agreement and smoothness between
the views over labeled and unlabeled examples [32]; the latter tries to efficiently
combine multiple kernels defined on each view to exploit information coming from
different representations [12].

Kernel methods are well known and much used learning paradigm in machine
learning mainly because of their appealing theoretical properties [14]. Main moti-
vation for using kernels in machine learning problems is the kernel trick, which
allows inexpensive computation of inner products in potentially infinite-dimensional
feature spaces. That is, the data is mapped to a higher-dimensional feature space but
all computations can be done with the data in original space with a kernel function,
and explicit calculations in feature spaces are never performed. Using kernels in
linear classifiers, such as SVM, we will essentially be able to perform nonlinear
classification by considering the linear method in the feature space.

Matrix-valued kernels (or operator-valued kernels) are a generalization of scalar-
valued kernels. Intuitive difference between the two is that instead of a scalar,
the kernel function in more general case outputs a matrix. The main advantage
of matrix-valued kernels is that they offer a higher degree of flexibility in encod-
ing similarities between data points. They have been applied with success in
various machine learning problems, such as multitask learning [11], functional
regression [17], and structured output prediction [6]. However, finding the optimal
matrix-valued kernel of choice for a given application is difficult, as is the question
of how to build them.

In some areas of research, such as in computational biology as well as computer
vision, kernel-based methods in multi-view context are widely used [20, 27]. As
already mentioned, one of the simplest and most known of the kernel-based multi-
view learning methods is multiple kernel learning (MKL) framework [36], where
a simple linear combination of scalar-valued kernel matrices calculated with data
from each individual view is learned. More recently, vector-valued reproducing
kernel Hilbert spaces (RKHSs) have been introduced to the field of multi-view
learning for going further than MKL by incorporating in the learning model
both within-view and between-view dependencies [16, 24]. It turns out that these
kernels and their associated vector-valued reproducing Hilbert spaces provide a
unifying framework for a number of previous multi-view kernel methods, such as
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co-regularized multi-view learning and manifold regularization, and naturally allow
to encode within-view as well as between-view similarities [25].

In order to overcome the need for choosing a kernel before the learning process,
we propose a supervised metric learning approach that learns a matrix-valued multi-
view kernel jointly with the decision function. We refer the reader to [3] for a review
of metric learning. It is worth mentioning that algorithms for learning matrix-valued
kernels have been proposed in the literature, see, for example, [9, 10, 21]. However,
these methods mainly consider separable kernels which are not suited for multi-view
setting, as will be illustrated later in this paper.

This chapter presents a general multi-view learning method that

– is suitable for data with any number of views,
– can be used with any type of kernelizable data (that is not restricted to be of the

same type across the views),
– considers view interactions in learning process and learns a metric that operates

between views.

This method, called multi-view metric learning (MVML), was originally introduced
in [15]. There the focus has only been on a squared loss function in optimization,
but here we consider a more general setting and offer also the solution in support
vector machine context. The interest of this chapter is mainly on supervised multi-
view learning, although a new, possible extension to semi-supervised setting is
introduced. We also provide more thorough experiments by adding a new dataset
and a competing method in experiments in classification context.

The chapter is organized as follows. In Sect. 11.2, we focus on theory of operator-
valued kernels and how they are used in (multi-view) learning. Section 11.3 presents
the MVML framework and introduces concrete realizations of the algorithm in both
classification and regression context, as well as theoretical results obtained. We
validate the presented method with experiments in Sect. 11.4.

11.2 Scalar- and Operator-Valued Kernels

This section is dedicated to the theory of vector-valued RKHSs and their associated
operator-valued (or matrix-valued) kernels, and how these are used in (multi-view)
learning. We consider these subjects only in extent needed to understand the multi-
view metric learning framework. For further reading on matrix-valued reproducing
kernels, see, e.g., [1, 7, 8, 17].

Notation Throughout the chapter, we use n as the number of labeled data samples
and v as the number of views present in the data. We denote vectors as bold
lowercase symbols (a), and matrices as bold uppercase (A). As we consider block-
structured matrices, the subscripts such as Aij refer to a block, not just one value.
Data is denoted x ∈ X as we consider all types of data, not just those that have
vector representation. We denote k as the traditional scalar-valued kernel function,
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and K as operator-valued kernel function. Correspondingly, the kernel matrices are
written as K and G, and the RKHS’s are K and H . If B is a Hilbert space, we
denote L (B) the set of bounded linear operators from B to B.

11.2.1 Scalar-Valued RKHSs

Before going into detail about vector-valued RKHSs, let us recall a few facts about
scalar-valued kernels. This section is not meant to be a comprehensive introduction
to kernel methods, rather it should provide an easy way for comparing the matrix-
valued kernels to scalar-valued ones. For a more thorough treatment, see, for
example, [14].

The goal of a (supervised inductive) scalar-valued learning problem is to learn a
function f : X → R (or to some subset of R, in classification usually {−1, 1}).
A scalar-valued kernel is a positive-definite function k : X ×X → R, positivity
meaning that for any αi, αj ∈ R

n∑
i,j=1

αiαj k(xi, xj ) ≥ 0

holds. An important theorem in kernel theory, representer theorem, states that for a
large class of optimization problems we can represent f with kernel as:

f (·) =
n∑

i=1

k(·, xi)αi,

where αi ∈ R. The reproducing property of kernels is written as:

〈k(·, x), f 〉K = f (x).

The motivation for using kernels in machine learning lies in the kernel trick; that is,
the kernel function corresponds to an inner product in some feature space, k(x, z) =
〈φ(x), φ(z)〉. Basically, this is a way to map the data into some, possibly infinite-
dimensional, feature space and to perform linear classification task there.

11.2.2 Vector-Valued RKHSs

This section presents general theory of vector-valued RKHSs, without considering
the restriction to multi-view setting. We assume general type of data x ∈ X and
general labels y ∈ Y . For example, in the application of operator-valued kernels to
multitask learning the label space Y equals to R

t where t is the number of tasks.
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Vector-valued RKHSs were introduced to the machine learning community by
Micchelli and Pontil [23] as a way to extend kernel machines from scalar to vector
outputs, with the goal of learning nonlinear vector-valued functions.

Definition 1 (Vector-Valued RKHS) A Hilbert space H of functions from X to
Y is called a vector-valued reproducing kernel Hilbert space if there is a positive
definite L (Y )-valued kernel K on X ×X such that:

i. the function z "→ K(x, z)y belongs to H , ∀ z, y ∈X , y ∈ Y ,
ii. ∀ f ∈H , x ∈X , y ∈ Y ,

〈f,K(x, ·)y〉H = 〈f (x), y〉Y (reproducing property).

Definition 2 (Matrix- or Operator-Valued Kernel) An L (Y )-valued kernel K

on X ×X is a function K(·, ·) : X ×X → L (Y ); it is positive semidefinite
if:

i. K(x, z) = K(z, x)∗, where ∗ denotes the transpose of a matrix (or adjoint of an
operator),

ii. and, for every r ∈ N and all {(xi, yi)i=1,...,r } ∈X × Y ,

∑
i,j

〈yi,K(xi, xj )yj 〉Y ≥ 0.

If the output space Y is R
v , then L (Y ) = R

v×v . The kernel matrix, given n

data samples, would in this case be of size nv × nv, while the scalar-valued kernel
matrix is only n× n.

In this setting, given a random training sample {xi, yi}ni=1 on X ×Y , optimiza-
tion problem:

arg min
f∈H

n∑
i=1

V (f, xi, yi)+ λ‖f ‖2
H , (11.1)

where f is a vector-valued function and V is a loss function, can be solved
in a vector-valued RKHS H by the means of a vector-valued extension of the
representer theorem.

Theorem 1 (Bijection Between Vector-Valued RKHS and Matrix-Valued Ker-
nel) An L (Y )-valued kernel K on X × X is the reproducing kernel of some
Hilbert space H , if and only if it is positive semidefinite.

Theorem 2 (Representer Theorem) Let K be a positive semidefinite matrix-
valued kernel and H its corresponding vector-valued RKHS. The solution f̂ ∈H
of the regularized optimization problem (11.1) has the following form:

f̂ (x) =
n∑

i=1

K(x, xi)ci, with ci ∈ Y . (11.2)
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With regard to the classical representer theorem, here the kernel K outputs a matrix
and the “weights” ci are vectors. The proof of Theorem 1 can be found in [17],
and of Theorem 2 in [23]. For further reading on matrix-valued kernels and their
associated RKHSs, see, e.g., [7, 8].

Examples of Operator-Valued Kernels Some well-known classes of matrix-
valued kernels include separable and transformable kernels [1].

Definition 3 (Separable Kernel) An operator-valued kernel is called separable, if
it can be written as:

K(x, z) = k(x, z)T ,

where k is a scalar-valued kernel and T ∈ L (Y ).

In multi-view setting, the matrix T is in R
v×v where v is the number of views.

This class of kernels is very attractive in terms of computational time, as it is easily
decomposable. However, the matrix T acts only on the outputs independently of the
input data, which makes it difficult for these kernels to encode necessary similarities
in multi-view setting.

Definition 4 (Transformable Kernel) An operator-valued kernel is called trans-
formable, if it can be written as:

[K(x, z)]lm = k(Smx, Slz).

Here, m and l are indices of the output matrix (views in multi-view setting) and
operators, {St }vt=1, are used to transform the data.

In contrast to separable kernels, here the St operate on input data; however, choosing
them is a difficult task.

11.2.3 Vector-Valued Multi-View Learning

This section reviews the setup for supervised multi-view learning in vector-valued
RKHSs [16, 25]. The main idea is to consider a kernel that measures not only the
similarities between examples of the same view but also those coming from different
views. Reproducing kernels of vector-valued Hilbert spaces allow encoding in
a natural way these similarities and taking into account both within-view and
between-view dependencies. Indeed, a kernel function K in this setting outputs a
matrix in R

v×v , with v the number of views, so that K(xi, xj )lm, l, m = 1, . . . , v,
is the similarity measure between examples xi and xj from the views l and m.

More formally, consider a set of n labeled data {(xi, yi) ∈X ×Y , i = 1, . . . , n},
with Y = {−1, 1} for classification or Y ⊂ R for regression. Assume that each
input instance xi = (x1

i , . . . , xv
i ) is seen in v views. We note that the views are not



11 General Framework for Multi-View Metric Learning 271

restricted to be of the same type. The supervised multi-view learning problem can
be thought of as trying to find the vector-valued function f̂ (·) = (f̂ 1(·), . . . f̂ v(·)),
with f̂ l(x) ∈ Y , solution of

arg min
f∈H ,W

n∑
i=1

V (yi,W (f (xi)))+ λ‖f ‖2. (11.3)

Here, f is a vector-valued function that groups v learning functions, each corre-
sponding to one view, and W : Rv → R is combination operator for combining the
results of the learning functions.

While the vector-valued extension of the representer theorem provides an algo-
rithmic way for computing the solution of the multi-view learning problem (11.3),
the question of choosing the multi-view kernel K remains crucial to take full
advantage of the vector-valued learning framework. In [16], a matrix-valued kernel
based on cross-covariance operators on RKHS that allow modeling variables of
multiple types and modalities was proposed. However, it has two major drawbacks:
(1) the kernel is fixed in advance and does not depend on the learning problem, and
(2) it is computationally expensive and becomes infeasible when the problem size
is very large. We avoid both of these issues by learning a block low-rank metric in
kernel feature spaces.

11.3 Multi-View Metric Learning

Here, we introduce a general framework for learning simultaneously a vector-valued
multi-view function and a positive semidefinite metric between kernel feature maps,
as well as an operator for combining the answers from the views to yield the final
decision. We then show concrete realizations of this framework in both classification
and regression context, and for learning full or sparse metric matrices that operate
between the views. We also give a Rademacher bound [2] for our algorithm(s).
Finally, we demonstrate how it can be implemented efficiently via block-wise
Nyström approximation [35].

11.3.1 Matrix-Valued Multi-View Kernel

We consider the following class of matrix-valued kernels that can operate over
multiple views:

K(xi, xj )lm =
〈
Φl

(
xl
i

)
, CXlXm

Φm

(
xm
j

)〉
, (11.4)
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where Φl (resp., Φm) is the feature map associated with the scalar-valued kernel kl

(resp., km) defined on the view l (resp., m). In the following, we will leave out the
view label from data instance when the feature map or kernel function already has
that information, e.g., instead of Φl(x

l
i ) we write Φl(xi). CXlXm

: Km → Kl is
a linear operator between the scalar-valued RKHSs Kl and Km of kernels kl and
km, respectively. The operator CXlXm

allows one to encode both within-view and
between-view similarities.

The choice of the operator CXlXm
is crucial and depends on the multi-view

problem at hand. In the following, we only consider operators CXlXm
that can be

written as CXlXm
= Φ lAlmΦT

m, where Φs = (Φs(x1), . . . , Φs(xn)) with s = l, m,
and Alm ∈ R

n×n is a positive definite matrix which plays the role of a metric
between the two feature maps associated with kernels kl and km defined over the
views l and m. This is a large set of possible operators but depends on a finite
number of parameters. It gives us the following class of kernels:

K(xi, xj )lm =
〈
Φl(xi),Φ lAlmΦT

mΦm(xj )
〉

=
〈
ΦT

l Φl(xi), AlmΦT
mΦm(xj )

〉

= 〈kl (xi), Almkm(xi)〉 , (11.5)

where we have written kl (xi) = (kl(xt , xi))
n
t=1. We note that this class is not in

general separable or transformable. However in the special case when it is possible
to write Aml = AmAl , the kernel is transformable.

It is easy to see that the lm-th block of the block kernel matrix G built from
the matrix-valued kernel (11.5) can be written as Glm = KlAlmKm, where Ks =(
ks(xi, xj )

)n
i,j=1 for view s. The block kernel matrix G = (K(xi, xj )

)n
i,j=1 in this

case has the form:

G = HAH, (11.6)

where H = blockdiag(K1, . . . , Kv),1 and the matrix A = (Alm)vl,m=1 ∈ R
nv×nv

encodes pairwise similarities between all the views. Multi-view metric learning then
corresponds to simultaneously learning the metric A and the classifier or regressor.

From this framework, with suitable choices of A, we can recover the cross-
covariance multi-view kernel of [16], or, for example, an MKL-like multi-view
kernel containing only one-view kernels.

1Given a set of n × n matrices K1, . . . , Kv , H = blockdiag(K1, . . . , Kv) is the block-diagonal
matrix satisfying Hl,l = Kl ,∀l = 1, . . . , v.
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11.3.2 Learning Problem

Using the vector-valued representer theorem (Theorem 2), the multi-view learning
problem (11.3) becomes

arg min
c1,...,cn∈Rv

n∑
i=1

V

⎛
⎝yi,W

⎛
⎝

n∑
j=1

K(xi, xj )cj

⎞
⎠
⎞
⎠+ λ

n∑
i,j=1

〈
ci , K(xi, xj )cj

〉
.

(11.7)
We will assume that the operator W calculates a weighted sum of outputs and
stores the weights in vector w. In order to jointly learn the metric matrix A with
the learning problem, we need to add additional regularizer for it. We write Hxi

to
select the rows in block-matrix H that correspond to data sample xi . Thus, we will
write more precisely

arg min
c∈Rvn

n∑
i=1

V
(
yi, w#Hxi

AHc
)
+ λ〈c, HAHc〉 + ηΩ(A), (11.8)

where A should be a positive (semi)definite matrix. However, we do not implicitly
write this into our optimization problem, since it turns out that we can optimize
without this constraint, and the result will be positive.

In order to make the problem more easily solvable and convex, we introduce a
change of variables g = AHc, and a mapping (c, A) → (g, A). This is a valid
change (see, e.g., [5]). The problem is now

arg min
g∈Rvn

n∑
i=1

V
(
yi, w#Hxi

g
)
+ λ〈g, A†g〉 + ηΩ(A), (11.9)

where † denotes pseudo-inverse. For the convexity of the problem, the main idea is
to note that

〈
g, A†g

〉
is jointly convex (see, e.g., [37]).

It is good to note that despite the misleading similarities between our work and
that of [9], we use different mappings for solving our problems, which are also
formulated differently. We also consider different classes of kernels as [9] considers
only separable kernels.

We use an alternating scheme to solve our problem. Our MVML algorithm thus
iterates over solving A and g and also w if weights are to be learned. In the following
after the illustration, we introduce the solutions for this problem with two loss
functions and two regularizers Ω in later sections.
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11.3.3 Solving for A

We note from (11.9) that the metric matrix A is only present in the two regular-
ization terms, λ〈g, A†g〉 and ηΩ(A), thus we can solve for it independently from
considering the framework we would be applying the method to.

We consider two choices of Ω(A). The first possibility is to regularize the
complexity of the whole metric matrix A in Frobenius norm:

Ω1(A) = ‖A‖2
F (11.10)

The solution of (11.9) for A with fixed g is obtained by gradient descent, where the
update rule is given by:

Ak+1 = (1− 2μη) Ak + μλ
(

Ak
)†

ggT
(

Ak
)†

, (11.11)

where μ is the step size.
As another possibility for regularization over the metric matrix, we consider

sparsity on a group level so that whole blocks corresponding to pairs of views are
put to zero. Intuitively, the block-sparse result will give insight as to which views
are interesting and worth taking into account in learning. For example, by tuning
the parameter controlling sparsity level one could derive, in some sense, an order of
importance to the views and their combinations.

The regularization term in this case is

Ω2(A) =
∑
γ∈G

‖Aγ ‖2
F . (11.12)

This is an l1/l2-regularizer over set of groups G we consider for sparsity. In our
multi-view setting, these groups correspond to combinations of views; for example,
with three views the matrix A would consist of six groups:

When we speak of combinations of views, we include both blocks of the matrix
that this combination corresponds to. Using this group regularization, in essence,
allows us to have view sparsity in our multi-view kernel matrix.

Using this sparsity-promoting regularization, the problem is solved w.r.t. A with
proximal gradient method, the update rule being

[Ak+1]γ =
(

1− η

‖[Ak − μk∇h(Ak)]γ ‖F
)

+
[Ak − μk∇h(Ak)]γ , (11.13)
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where μk is the step size,

h(Ak) = λ
〈
g, (Ak)†g

〉
and

∇h(Ak) = −λ(Ak)−1ggT (Ak)−1.

Technical details of the derivations can be found in the appendix. It is important
to note here that Eq. (11.11) is obtained by solving the optimization problem (11.9)
without considering the positivity constraint on A. Despite this, (when μη < 1

2 ) the
obtained A is symmetric and positive, and hence the learned matrix-valued multi-
view kernel is valid.

The positivity in block-sparse situation is not quite as straightforward. We note
that even if we begin iteration with positive definite (pd) matrix the next iteration
is not guaranteed to be always pd, and this is the reason for omitting the positivity
constraint in the formulation of sparse problem. Nevertheless, all block-diagonal
results are pd, and so are other results if certain conditions hold. In the experiments,
we have observed that the solution is positive semidefinite. The full derivation of
the proximal algorithm and notes about positiveness of A are in section “MVML
Optimization” in the Appendix.

11.3.4 Regression: Squared Loss

Let us consider regression framework and apply squared loss function to (11.9). Let
us denote y the vector of labels yi . We get

min
A,g

∥∥y− (wT ⊗ In

)
Hg
∥∥2 + λ

〈
g, A†g

〉
+ ηΩ(A) (11.14)

We already have solution for A with two regularizers Ω(A), thus we only consider
in this section the problem:

min
g

∥∥y− (wT ⊗ In

)
Hg
∥∥2 + λ

〈
g, A†g

〉
. (11.15)

Via a simple derivative, we arrive to the following solution for g with fixed A:

g = (H(wT ⊗ In

)T (wT ⊗ In

)
H+ λA†)−1H

(
wT ⊗ In

)T y. (11.16)

If so desired, it is also possible to learn the weights w. For fixed g and A, the
solution for w is

w = (ZT Z
)−1ZT y, (11.17)

where Z ∈ R
n×v is filled columnwise from Hg.
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The complexity of the algorithm is O(v3n3) for it computes the inverse of the
nv × nv matrix A, required for calculating g. We will show later how to reduce
the computational complexity of our algorithm via Nyström approximation, while
conserving the desirable information about the multi-view problem.

11.3.5 Classification: Hinge Loss

Moving on to classification framework, we now require our labels to be in Y =
{−1, 1}.

Applying the SVM hinge loss function to (11.9), we get

min
A,g

n∑
i=1

max
(
0, 1− yiwT Hxi

g
)+ λ〈g, A†g〉 + ηΩ(A). (11.18)

To solve g, we firstly introduce the slack variables ξi to the optimization problem,
giving us the primal problem:

min
g,ξi

1

n

n∑
i=1

ξi + λ〈g, A†g〉 (11.19)

s.t. yiwT Hxi
g ≥ 1− ξi and ξi ≥ 0 ∀i.

Solving this requires then writing the dual problem with Lagrangian multipliers, and
then solving for the multipliers αi from the quadratic problem:

max
αi

n∑
i=1

αi − 1

2λ

n∑
i,j=1

αiαjyiyj wT Hxi
AHT

xj
w, s.t. 0 ≤ αi ≤ 1

n
,

(11.20)
Having the αi , we can calculate

g = 1

2λ
A

n∑
i=1

αiyiHT
xi

w. (11.21)

11.3.6 Illustration

We illustrate with simple toy data the effects of learning both within- and between-
view metrics. We compare our method, MVML, to MKL that considers only within-
view dependencies, and to output kernel learning (OKL) [9, 10] where separable
kernels are learnt. We generated an extremely simple dataset of two classes and
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Fig. 11.1 Simple two-view dataset and its transformations—left: original data where one of the
views is completely generated from the other by a linear transformation (a shear mapping followed
by a rotation), left middle: MKL transformation, right middle: MVML transformation, and right:
OKL transformation. MVML shows a linear separation of classes (blue/pale red) of the views
(circles/triangles), while MKL and OKL do not

two views in R
2, allowing for visualization and understanding of the way the

methods perform classification with multi-view data. The second view in the dataset
is completely generated from the first, through a linear transformation (a shear
mapping followed by a rotation). The generated data and transformation arising
from applying the algorithms are shown in Fig. 11.1. The space for transformed data
is R

2 since we used linear kernels for simplicity. Our MVML is the only method
giving linear separation of the two classes. This means that it groups the data points
into groups based on their class, not view, and thus is able to construct a good
approximation of the initial data transformations by which we generated the second
view.

11.3.7 Rademacher Complexity Bound

We now provide a generalization analysis of MVML algorithm using Rademacher
complexities [2]. The notion of Rademacher complexity has been generalizable
to vector-valued hypothesis spaces [22, 29, 33]. Previous work has analyzed the
case where the matrix-valued kernel is fixed prior to learning, while our analysis
considers the kernel learning problem. It provides a Rademacher bound for our
algorithm when both the vector-valued function f and the metric between views
A are learnt. We start by recalling that the feature map associated to the matrix-
valued kernel K is the mapping Γ : X → L (Y ,H ), where X is the input
space, Y = R

v , and L (Y ,H ) is the set of bounded linear operators from Y to
H (see, e.g., [8, 23] for more details). It is known that K(x, z) = Γ (x)∗Γ (z). We
denote by ΓA the feature map associated to our multi-view kernel (Eq. (11.5)). The
hypothesis class of MVML is

Hλ = {x "→ fu,A(x) = ΓA(x)∗u : A ∈ Δ, ‖u‖H ≤ β},
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with Δ = {A : A & 0, ‖A‖F ≤ α} and β is a regularization parameter. Let
σ 1, . . . , σ v be an iid family of vectors of independent Rademacher variables where
σ i ∈ R

v, ∀ i = 1, . . . , n. The empirical Rademacher complexity of the vector-
valued class Hλ is the function R̂n(Hλ) defined as:

R̂n(Hλ) = 1

n
E

[
sup

f∈H
sup
A∈Δ

n∑
i=1

σ#i fu,A(xi)

]
.

Theorem 3 The empirical Rademacher complexity of Hλ can be upper bounded
as follows:

R̂n(Hλ) ≤ β
√

α‖q‖1

n
,

where q = (
tr(K2

l )
)v
l=1, and Kl is the Gram matrix computed from the training

set {x1, . . . , xn} with the kernel kl defined on the view l. For kernels kl such that
tr(K2

l ) ≤ τn, we have

R̂n(Hλ) ≤ β

√
ατv

n
.

The proof for the theorem can be found in the section “Proof of Theorem 3” in the
Appendix. Using well-known results [26, chapters 8, 10], this bound on Rademacher
complexity can be used to obtain generalization bounds for our algorithm. It is worth
mentioning that in our multi-view setting the matrix-valued kernel is computed
from the product of the kernel matrices defined over the views. This is why, our
assumption is on the trace of the square of the kernel matrices Kl . It is more
restrictive than the usual one in the one-view setting (tr(Kl) ≤ τn), but is satisfied in
some cases, like, for example, for diagonally dominant kernel matrices [30]. We note
that although our assumptions are more restrictive than usual, they are not artificial,
and even give further validation to our work, as we are in one sense using empirical
feature maps in our kernel, which are described as solution when kernel matrices
are diagonally dominant [30]. However, it might be interesting in future work to
investigate whether it would be possible to obtain this bound with less restrictive
constraints.

We note that the hypothesis class considered in this Rademacher bound requires
that ‖A‖F ≤ α. This is taken straight from the first version of our regular-
izer (11.10), but this holds also for our second regularizer.
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11.3.8 Computational Efficiency via Nyström Approximation

As a way to reduce the complexity of the required computations, we use Nys-
tröm approximation on each one-view kernel matrix. In Nyström approximation
method [35], a (scalar-valued) kernel matrix M is divided into four blocks:

M =
[

M11 M12

M21 M22

]
,

and is approximated by M ≈ QW†Q#, where Q = [M11 M12
]#

and W = M11.
Denote p as the number of rows of M chosen to build W. This scheme gives a low-
rank approximation of M by sampling p examples, and only the last block, M22,
will be approximated.

We could approximate the block kernel matrix G directly by applying the
Nyström approximation, but this would have the effect of removing the block
structure in the kernel matrix and consequently the useful multi-view information
might be lost. Instead, we proceed in a way that is consistent with the multi-
view problem and approximate each kernel matrix defined over one view as Kl ≈
QlW

†
l Q#l = Ql (W

†
l )

1/2(W†
l )

1/2Q#l = UlU#l ,∀ l = 1, . . . , v. The goodness of
approximation is based on the p chosen. Before performing the approximation, a
random ordering of the samples is calculated. We note that in our multi-view setting
we have to impose the same ordering over all the views.

We introduce the Nyström approximation to all our single-view kernels and
define U = blockdiag(U1, . . . , Uv). We can now approximate our multi-view
kernel (11.6) as:

G = HAH ≈ UU#AUU# = UÃU#,

where we have written Ã = U#AU. Using this scheme, we obtain a block-wise
Nyström approximation of G that preserves the multi-view structure of the kernel
matrix while allowing substantial computational gains.

Let us write the optimization problem with approximation:

min
Ã,g̃

n∑
i=1

V
(
yi, w#Uxi

g̃
)
+ λ〈g̃, Ã†g̃〉 + ηΩ(Ã). (11.22)

We note that the optimization problem is not strictly equivalent to the one before;
namely, we impose the regularization over Ã and solve for it rather than for A.

The problems will be solved as before, now just using U instead of H and
iterating over Ã and g̃. The complexity is now of order O(v3p3) rather than
O(v3n3), where p � n is the number of samples chosen for the Nyström
approximation in each block. From the obtained solution, it is possible to calculate
the original g and A if needed.
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To also reduce the complexity of predicting with our multi-view kernel frame-
work, our block-wise Nyström approximation is used again on the test kernel
matrices Ktest

s computed with the test examples. With this scheme, it is not
necessary for us to calculate the original g or A. Let us recall that for each of our
single-view kernels, we have an approximation Ks ≈ UsU#s = QsW†

s Q#s . We
choose Qtest

s to be p first columns of the matrix Ktest
s , and define the approximation

for the test kernel to be

Ktest
s ≈ Qtest

s W†
s Q#s = Qtest

s

(
W†

s

)1/2
UT

s .

In such an approximation, the error is in the last n − p columns of Ktest
s . We gain

in complexity, since if we were forced to use the test kernel as is, we would need to
calculate A from Ã in O(vn3) operations.

Solving Ã We obtain solutions for Ã from (11.22) exactly the same way as with full
kernel matrices. The obtained solution with (11.10) will again satisfy the positivity
condition when μη < 1

2 . For the sparse solution, the positivity is not always
guaranteed but is achieved if certain conditions hold (see the appendix).

The update rule for Ã with (11.10) is now

Ãk+1 = (1− 2μη) Ãk + μλ(Ãk)†g̃g̃#(Ãk)†, (11.23)

as for Ã with (11.12) we use

[Ãk+1]γ =
⎛
⎜⎝1− η∥∥∥[Ãk − μk∇h(Ãk)]γ

∥∥∥
F

⎞
⎟⎠
+

[
Ãk − μk∇h(Ãk)

]
γ

, (11.24)

where μk is the step size,

h(Ãk) = λ
〈
g̃, (Ak)†g̃

〉
and

∇h(Ãk) = −λ(Ãk)−1g̃g̃#(Ãk)−1.

Solving Regression Problem The solution for regression framework as introduced
in Sect. 11.3.4 updated to use Nyström approximated kernels is

g̃ = (U#(w# ⊗ In

)#(w# ⊗ In

)
U+ λÃ†)−1U#

(
w# ⊗ In

)#y. (11.25)

Note that inverse required in solution is now over matrix of size pv×pv rather than
nv × nv where p � n.

We can again calculate closed-form solution for w, too, yielding

w = (Z̃#Z̃)−1Z̃#y, (11.26)

where Z̃ ∈ R
n×v is filled columnwise from Ug̃.
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Solving Classification Problem As before, applying the Nyström approximated
matrices is straightforward, and gives us the following optimization problem for
variables αi :

max
αi

n∑
i=1

αi− 1

2λ

n∑
i,j=1

αiαjyiyj wT Uxi
ÃUT

xj
w, s.t. 0 ≤ αi ≤ 1

n
, (11.27)

and the solution for g̃

g̃ = 1

2λ
Ã

n∑
i=1

αiyiUT
xi

w. (11.28)

Note that with this formulation the benefit of Nyström approximation is not easy
to see as we do not explicitly have to calculate the inverse of Ã, where the gains
for complexity would be most substantial (inverse of mv × mv matrix instead of
np×np matrix). However by choosing the optimization procedure for the quadratic
problem carefully, it can be exploited to get improvements in computational cost,
mainly coming from slightly smaller matrix multiplications. Note that if extended
to semi-supervised case (next section), we will again need to calculate the inverse
of Ã, and the computational gains are more clear.

11.3.9 Extension to Semi-supervised Case

Although the method presented in this chapter is for supervised learning context, it is
possible to extend into semi-supervised setting by adding a manifold regularization
term.

We consider the term introduced in [25]:

νi〈f, Mf〉 = νB〈f, MB f〉 + νW 〈f, MW f〉 (11.29)

Here, f = (f (x1)
#, . . . , f (xn+u)

#)# and M (and matrices MB and MW ) is a
symmetric, positive operator, in this case a matrix of size (n + u)v × (n + u)v

where u is the number of unlabeled samples available.
The first term is for between-view regularization, and it measures the consistency

of the component functions across different views. The second term is for within-
view regularization measuring the smoothness of the component functions in their
corresponding views. In [25], some concrete realizations of the matrices MB and
MW are introduced.
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Let us recall that

f (z) =
n∑

i=1

K(z, xi)ci = Hn+u
z AHc = Hn+u

z g

where Hn+u is a matrix of size (n+u)v×nv. It is the kernel matrix where all labeled
and unlabeled samples will be evaluated in the kernel against the labeled samples.

Note that f is arranged differently from our other vectors and matrices. It follows
ordering by samples; that is, it is made up of n vectors of length v when our other
matrices and vectors follow ordering by views and contain parts of size n × n (or
length n). It is thus the case that we will have to rearrange matrix M to suit our
framework. We denote this as M̃. When we do this, the regularization term is

νi

〈
Hn+ug, M̃H

n+u
g
〉 = νB

〈
Hn+ug, M̃BHn+ug

〉+ νW

〈
Hn+ug, M̃W Hn+ug

〉
(11.30)

Adding this (or these) regularizer to our problem with the change of variables does
not change the solutions for metric matrix A, but affect only g. We get in this case
the solution for regression framework:

g = (H(w# ⊗ In

)#(w# ⊗ In

)
H+ λA† + ν

(
Hn+u

)#M̃Hn+u
)−1H

(
w# ⊗ In

)#y.

(11.31)
and the approximated version similarly.

For SVM framework, the new optimization problem with respect to the dual
variables αi is

max
αi

l∑
i=1

αi − 1

2

l∑
i,j=1

αiαjyiyj wT Hxi
[λA† + ν(Hn+u)#M̃Hn+u]−1HT

xj
w

(11.32)

s.t. 0 ≤ αi ≤ 1

l
.

and the solution given the parameters αi is now

g = 1

2

[
λA† + ν(Hn+u)#M̃Hn+u

]−1
l∑

i=1

αiyiHT
xi

w. (11.33)

It is possible to apply Nyström approximation also with manifold regularization,
either the same way as before or it can be calculated straight away with the
whole data and extract appropriate parts when needed. Applied to whole data, the
approximation on training data also in a sense might depend on test data, but as we
are considering manifold regularization we are in any case using the whole dataset
when learning.
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11.4 Experiments

Here, we evaluate the proposed multi-view metric learning (MVML) method on
real-world datasets and compare it to relevant methods. The chosen datasets are
“pure” multi-view datasets; that is to say, the view division arises naturally from the
data.

We perform two sets of experiments with two goals. First, we evaluate our
method in regression setting with a large range of Nyström approximation levels
in order to understand the effect it has on our algorithm. Secondly, we compare
MVML to relevant state-of-the-art methods in classification. In both cases, we use
non-multi-view methods to justify the multi-view approach. The methods we use in
addition to our own2 (MVML and MVMLsparse) are:

– MVML_Cov and MVML_I: we use pre-set kernels in our framework:
MVML_Cov uses the kernel from [16] and MVML_I refers to the case when we
have only one-view kernel matrices in the diagonal of the multi-view kernel.

– lpMKL is an algorithm for learning weights for MKL kernel [18]. We apply it
to kernel regression.

– OKL [9, 10] is a kernel learning method for separable kernels.
– MLKR [34] is an algorithm for metric learning in kernel setting.
– MUMBO [19] is a multi-class boosting-based multi-view algorithm which is

intended to reinforce the cooperation among views.
– KRR and SVM: We use kernel ridge regression and support vector machines

with one-view as well as in early fusion (ef) and late fusion (lf) in order to
validate the benefits of using multi-view methods.

We perform our experiments with Python, but for OKL and MLKR we use the
MATLAB codes provided by authors.3 In MVML, we set weights uniformly to 1

v
.

For all the datasets, we use Gaussian kernels, k(x, z) = exp(− 1
2σ 2 ‖x− z‖2).

11.4.1 Effect of Nyström Approximation

For our first experiment, we consider SARCOS-dataset,4 where the task is to map
a 21-dimensional input space (7 joint positions, 7 joint velocities, and 7 joint
accelerations) to the corresponding 7 joint torques. Here, we present results to the
first task.

The results with various levels of Nyström approximation—averaged over four
approximations—from 1% to 100% of data are shown in Fig. 11.2. Regulariza-

2Code for MVML is available at https://lives.lif.univ-mrs.fr/?page_id=12.
3https://www.cs.cornell.edu/~kilian/code/code.html and https://github.com/cciliber/matMTL.
4http://www.gaussianprocess.org/gpml/data.

https://lives.lif.univ-mrs.fr/?page_id=12
https://www.cs.cornell.edu/~kilian/code/code.html
https://github.com/cciliber/matMTL
http://www.gaussianprocess.org/gpml/data
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Fig. 11.2 Regression on Sarcos1-dataset. Left: normalized mean-squared errors (the lower the
better), middle: R2-score (the higher the better), right: running times; as functions of Nyström
approximation level (note the logarithmic scales). The results for KRR are calculated without
approximation and are shown as horizontal dashed lines. Results for view 2 and early fusion are
worse than others and outside of the scope of the two plots

tion parameters were cross-validated over values λ ∈ [1e−08, 10] and η ∈
[1e−04, 100]. Kernel parameter γ = 1/2σ 2 was fixed to be 1/number of features as
a trade-off between overfitting and underfitting. We used only 1000 data samples
of the available 44,484 in training (all 4449 in testing) to be feasibly able to
show the effect of approximating the matrices on all levels, and wish to note that
using more data samples with moderate approximation level we can yield a lower
error than presented here: for example, with 2000 training samples and Nyström
approximation level of 8%, we obtain an error of 0.3915. However, the main goal
of our experiment was to see how our algorithm behaves with various Nyström
approximation levels and because of the high complexity of our algorithm trained
on the full dataset without approximation we performed this experiment with low
amount of samples.

The lowest error was obtained with our MVMLsparse algorithm at 8% Nyström
approximation level. All the multi-view results seem to benefit from using the
approximation. Indeed, approximating the kernel matrices can be seen as a form
of regularization and our results reflect on that [28]. Overall, our MVML learning
methods have much higher computational cost with large Nyström parameters, as
can be seen from Fig. 11.2, rightmost plot. However with smaller approximation
levels with which the methods are intended to be used, the computing time is
competitive.

11.4.2 Classification Results

In our classification experiments, we use three real-world multi-view datasets:

– Flower175 (7 views, 17 classes, and 80 samples per class)

5http://www.robots.ox.ac.uk/~vgg/data/flowers/17.

http://www.robots.ox.ac.uk/~vgg/data/flowers/17
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– uWaveGesture6 (3 views, 8 classes, 896 data samples for training, and 3582
samples for testing)

– 100 Leaves7 (3 views, 100 classes, and 16 samples per class)

For the 100 Leaves dataset, we reduced the number of classes to 34 by considering
only the genus, so, for example, both “Alnus Rubra” and “Alnus Sieboldiana” are
members of the same class, “Alnus.” As there was one missing value in one of the
views for “Acer Campestre,” we do not consider those samples at all, so in total the
data contains 1584 samples. For all the experiments, we used Gaussian kernels and
set the kernel parameter to be mean of distances, σ = 1

n2

∑n
i,j=1 ‖xi − xj‖. The

regularization parameters for Flower17 and uWaveGesture were obtained by cross-
validation over values λ ∈ [1e−08, 10] and η ∈ [1e−03, 100] over training data.
The results are averaged over four approximations.

We adopted one-vs-all classification approach for multiclass classification
(except for MUMBO). The results are displayed in Table 11.1. The MVML results
are always notably better than the SVM results, or the results obtained with OKL or
MLKR. Compared to MVML, OKL and MLKR accuracies decrease more with low
approximation levels. We can see that all MVML methods perform very similarly,
sometimes the best result is obtained with fixed multi-view kernel, sometimes when
A is learned.

As an example of our sparse output with MVML, we note that running the
algorithm with Flower17 dataset with 12% approximation often resulted in an spd
matrix as in Fig. 11.3. Indeed, the resulting sparsity is very interesting and tells us
about the importance of the views and their interactions.

Fig. 11.3 An example of
learned Ã with MVMLsparse
from Flower17 (12%)
experiments

6http://www.cs.ucr.edu/~eamonn/time_series_data.
7https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set.

http://www.cs.ucr.edu/~eamonn/time_series_data
https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set
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11.5 Conclusion

This chapter has introduced a general class of matrix-valued multi-view kernels
for which we have presented multiple ways for simultaneously learning a multi-
view function and a metric in vector-valued kernel spaces. We provided an iterative
algorithm for the resulting optimization problems (two loss functions, and two
regularizers for metric matrix), and have been able to significantly lower the
high computational cost associated with kernel methods by introducing block-wise
Nyström approximation. We have also given a possible extension for applying our
method to semi-supervised setting.

We have explained the feasibility of our approach onto a trivial dataset which
reflects the objective of learning the within-view and between-view correlation
metrics. The performance of our approach was illustrated with experiments with real
multi-view datasets by comparing our method to standard multi-view approaches,
as well as methods for metric learning and kernel learning. Our sparse method is
especially appealing in the sense that it gives us very intuitive information about the
importance of the views.

Acknowledgements We thank the anonymous reviewers for their relevant and helpful comments.
This work is granted by French ANR project Lives (ANR-15-CE23-0026).

Appendix

MVML Optimization

Here, we go through the derivations of the solutions A, g, and w for our optimization
problems. The presented derivations are for the case without Nyström approxima-
tion or manifold regularization term; however, the derivations with those follow the
same idea.

Solving for A with (11.10)

When we consider g (and w) to be fixed in the MVML framework (11.9), for A with
regularizer (11.10) we have the following minimization problem:

min
A

λ
〈
g, A†g

〉
+ η‖A‖2

F
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Derivating this with respect to A gives us8

d

dA
λ
〈
g, A†g

〉
+ η‖A‖2

F

= d

dA
λ
〈
g, A†g

〉
+ η tr(AA)

= −λA†gg#A† + 2ηA

Thus, the gradient descent step will be

Ak+1 = (1− 2μη) Ak + μλ
(

Ak
)†

gg#
(

Ak
)†

when moving to the direction of negative gradient with step size μ.

Solving for A with Sparse Regularizer (11.12)

To solve A with the block-sparse regularization, we use proximal minimization. Let
us recall the optimization problem after the change of the variable:

min
A

λ〈g, A†g〉 + η
∑
γ∈G

‖Aγ ‖F ,

and denote

h(A) = λ
〈
g, A†g

〉

and

Ω(A) = η
∑
γ∈G

‖Aγ ‖F

for the two terms in our optimization problem that contain the matrix A.
Without going into the detailed theory of proximal operators and proximal

minimization, we remark that the proximal minimization algorithm update takes
the form:

Ak+1 = proxμkΩ(Ak − μk∇h(Ak)).

8Here we have used Equation 62 from Matrix cookbook (https://www.math.uwaterloo.ca/~
hwolkowi/matrixcookbook.pdf).

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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It is well known that in traditional group-lasso situation the proximal operator is

[proxμkΩ(z)]γ =
(

1− η

‖zγ ‖2

)

+
zγ ,

where z is a vector and + denotes the maximum of zero and the value inside the
brackets. In our case, we are solving for a matrix, but due to the equivalence of
Frobenius norm to vector 2-norm we can use this exact same operator. Thus, we get
as the proximal update:

[Ak+1]γ =
(

1− η

‖[Ak − μk∇h(Ak)]γ ‖F
)

+
[Ak − μk∇h(Ak)]γ ,

where

∇h(Ak) = −λ(Ak)−1gg#(Ak)−1.

We can see from the update formula and the derivative that if Ak is a positive
matrix, the update without block-multiplication, Ak − μk∇h(Ak), will be positive,
too. This is unfortunately not enough to guarantee the general positivity of Ak+1.
However, we note that it is, indeed, positive if it is block-diagonal, and in general
whenever a matrix of the multipliers α:

αst =
(

1− η

‖[Ak − μk∇h(Ak)]st‖2

)

+

is positive, then Ak+1 is, too (see [13] for reference—this is a block-wise Hadamard
product where the blocks commute).

Solving for g and w in Regression Setting

Let us first focus on the case where A and w are fixed, and we solve for g. We
calculate the derivative of the expression in Eq. (11.14):

d

dg

∥∥y− (w# ⊗ In

)
Hg
∥∥2 + λ

〈
g, A†g

〉

= d

dg
〈y, y〉 − 2

〈
y,
(
w# ⊗ In

)
Hg
〉+ 〈(w# ⊗ In

)
Hg,

(
w# ⊗ In

)
HD
〉+ λ〈g, A†g〉

= −2H
(
w# ⊗ In

)#y+ 2H
(
w# ⊗ In

)#(w# ⊗ In

)
Hg+ 2λA†g

By setting this to zero, we obtain the solution:
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g = (H(w# ⊗ In

)#(w# ⊗ In

)
H+ λA†)−1H

(
w# ⊗ In

)#y.

As for w when A and g are fixed, we need only to consider optimizing:

min
w

∥∥y− (w# ⊗ In

)
Hg
∥∥2

.

If we denote that Z ∈ R
n×v is equal to reshaping Hg by taking the elements of the

vector and arranging them onto the columns of Z, we obtain the following form:

min
w

‖y− Zw‖2.

One can easily see by taking the derivative and setting it to zero that the solution for
this is

w =
(

Z#Z
)−1

Z#y. (11.17)

Solving the SVM Problem

Let us recall the optimization problem with hinge loss:

min
A,g

n∑
i=1

max
(
0, 1− yiwT Hxi

g
)+ λ〈g, A†g〉 + ηΩ(A). (11.18)

To solve g, we firstly introduce the slack variables ξi to the optimization problem,
giving us the primal problem:

min
g,ξi

1

l

l∑
i=1

ξi + λ〈g, A†g〉

s.t. yiwT Hxi
g ≥ 1− ξi and ξi ≥ 0 ∀i.

From this, the dual problem with Lagrangian multipliers is

L(g, ξ, α, β) = 1

l

l∑
i=1

ξi + λ〈g, A†g〉 −
l∑

i=1

αi

[
ξi − 1+ yiwT Hxi

g
]−

l∑
i=1

βiξi,

with constraint that the αi and βi have to be positive (dual feasibility).
From derivative with respect to ξi , we get

d

dξi

= 1

l
− αi − βi = 0 ⇒ αi + βi = 1

l
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and the derivative with respect to g gives us

d

dg
= 2λA†g−

l∑
i=1

αiHT
xi

wyi = 0

⇒ g = 1

2λ
A

l∑
i=1

αiyiHT
xi

w. (11.21)

The αi are still unknown. When we substitute βi = 1/l − αi and the solution
obtained for g while ignoring all the terms that do not depend of αi , we are left with

max
αi

l∑
i=1

αi − 1

2λ

l∑
i,j=1

αiαjyiyj wT Hxi
AHT

xj
w, s.t. 0 ≤ αi ≤ 1

n
,

(11.20)
which is a quadratic optimization problem and can be easily solved.

Proof of Theorem 3

Theorem 3 Let H be a vector-valued RKHS associated with the multi-view kernel
K defined by Eq. (11.5). Consider the hypothesis class Hλ = {x "→ fu,A(x) =
ΓA(x)∗u : A ∈ Δ, ‖u‖H ≤ β}, with Δ = {A : A & 0, ‖A‖F ≤ α}. The empirical
Rademacher complexity of Hλ can be upper bounded as follows:

R̂n(Hλ) ≤ β
√

α‖q‖1

n
,

where q = (
tr(K2

l )
)v
l=1, and Kl is the Gram matrix computed from the training

set {x1, . . . , xn} with the kernel kl defined on the view l. For kernels kl such that
tr(K2

l ) ≤ τn, we have

R̂n(Hλ) ≤ β

√
ατv

n
.

Proof We start by recalling that the feature map associated to the operator-valued
kernel K is the mapping Γ : X → L (Y ,H ), where X is the input space,
Y = R

v , and L (Y ,H ) is the set of bounded linear operators from Y to H (see,
e.g., [8, 23] for more details). It is known that K(x, z) = Γ (x)∗Γ (z). We denote by
ΓA the feature map associated to our multi-view kernel (Eq. (11.5)). We also define
the matrix Σ = (σ )ni=1 ∈ R

nv
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R̂n(Hλ) = 1

n
E

[
sup

f∈H
sup
A∈Δ

n∑
i=1

σ#i fu,A(xi)

]

= 1

n
E

[
sup
u

sup
A

n∑
i=1

〈σ i , ΓA(xi)
∗u〉Rv

]

= 1

n
E

[
sup
u

sup
A

n∑
i=1

〈ΓA(xi)σ i , u〉H
]

(1)

≤ β

n
E

[
sup

A
‖

n∑
i=1

ΓA(xi)σ i‖H
]

(2)

= β

n
E

⎡
⎢⎢⎣sup

A

⎛
⎝

n∑
i,j=1

〈σ i , KA(xi, xj )σ j 〉Rv

⎞
⎠

1
2

⎤
⎥⎥⎦ (3)

= β

n
E

[
sup

A
(〈Σ, GAΣ〉Rnv )1/2

]

= β

n
E

[
sup

A
〈Σ, HAHΣ〉1/2

]

= β

n
E

[
sup

A
tr(HΣΣ#HA)1/2

]

≤ β

n
E

[
sup

A
tr([HΣΣ#H]2)1/4tr(A2)1/4

]
(4)

≤ β

n
E

[
sup

A
tr(H2ΣΣ#)1/2tr(A2)1/4

]

≤ β
√

α

n
E

[
sup

A
tr(H2ΣΣ#)1/2

]

= β
√

α

n
E

[
tr(H2ΣΣ#)1/2

]

≤ β
√

α

n

(
E

[
tr(H2ΣΣ#)

])1/2
(5)

= β
√

α

n

(
tr
[
H2

E(ΣΣ#)
])1/2

= β
√

α

n

√∥∥(tr(K1
2), . . . , tr(Kv

2))∥∥
1.
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Here, (1) and (3) are obtained with reproducing property, (2) and (4) with Cauchy-
Schwarz inequality, and (5) with Jensen’s inequality. The last equality follows from
the fact that tr(H2) = ∑v

l=1 tr(Kl
2). For kernels kl that satisfy tr(K2

l ) ≤ τn,
l = 1, . . . , v, we obtain that

R̂n(Hλ) ≤ β

√
ατv

n
.

()
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Chapter 12
On the Evaluation of Community
Detection Algorithms on Heterogeneous
Social Media Data

Antonela Tommasel and Daniela Godoy

Abstract One fundamental problem in social networks is the identification of
groups of elements (also known as communities) when group membership is not
explicitly available. Community detection has proven to be valuable in diverse
domains such as biology, social sciences and bibliometrics. Thus, several commu-
nity detection techniques have been developed. Nonetheless, as real networks are
very heterogenous, the question of how communities should be assessed remains
open. Whilst there are several works that have analysed the performance of diverse
community detection algorithms over artificial graph benchmarks, the evaluation
over real social networks has received comparatively less attention. Motivated by
the lack of such studies, this chapter focuses on the analysis of the performance of
community detection algorithms over social media networks, and the quantification
of the structural properties of the discovered communities.

12.1 Introduction

Social networking and microblogging sites have increased their popularity in
recent years attracting millions of users, who spend an increasing amount of
time sharing personal information and making new friends. For example, sites
like Flickr, YouTube, Facebook or Twitter allow users to create content, publish
photographies, comment on content other users shared, tag content and socially
connect with other users in the form of subscriptions or friendships. Consequently,
social networking sites affect how people communicate and interact, leading to the
formation of relationships of heterogeneous nature, origin and strength. Users might
choose their friends because they publish interesting information, share common
interests or common friends, or just because they are celebrities, amongst other
possible explanations. Thereby, topological relations could lead to the existence of
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casual links. In this context, the significance and importance of relations should
not be only analysed based on topological information, but in conjunction with
other information sources or data views, which might implicitly define connections
between social media users. For example, whether two users use the same terms
or hashtags, or post on the same topics. It is worth noting that the content users
consume or post might depend, for example, on their mood and environment [8].

One fundamental problem in social networks is the identification of groups of
elements (users, posts or other elements) when group membership is not explicitly
available. A group or community can be defined as a set of elements that interact
more frequently or are more similar to other community members than to outsiders.
Community detection has proven to be valuable in diverse domains such as biology,
social sciences and bibliometrics. For example, community detection techniques
can be used for identifying groups of users with similar purchase history on
Amazon to create more efficient product recommendation systems, detecting topics
in collaborative systems, identifying real-world landmarks in Flickr by clustering
photos, detecting events on Twitter streams or for studying the information diffusion
problem by solving the influence maximisation problem in Foursquare.

In the context of multidimensional networks, considering only one information
source might be insufficient for accurately capturing community structure [40]. For
example, in Twitter, social relations might be sparse, and users might belong to the
same community even if there are no explicit friendship relations amongst them.
Relations can also be noisy. As it is easier to connect with other users online than in
the real world, users might have thousands of online friends. Hence, the correct
identification of communities might be hindered if only friendship interactions
are considered. Conversely, other users might have a few friends, but frequently
engage in posting or commenting activities, which could reveal valuable information
for discovering communities, despite the fact that social media content might be
topically diverse and noisy. Thus, the integration of multiple information sources
could help to overcome the problem caused by incomplete or noisy information
in each dimension, as well as obtaining more accurate and reliable community
partitions. Nonetheless, combining multiple and possibly heterogeneous data views
poses new challenges; for example, how to fuse the different views for performing
an integrated analysis.

Several community detection methods have been developed based on techniques
from a variety of disciplines, such as statistical physics, biology, applied mathemat-
ics, computer science or sociology [44], mostly relying on similarity measurements
amongst the nodes in the network [38], which might not be simple. Interestingly,
most of them only focus on one data view. Moreover, although all methods aim
at identifying meaningful communities, as they might rely on different notions of
communities, their results might not be always directly comparable. In most real-
world applications, a unique correspondence between nodes and communities (i.e.
a ground truth) might not be available, which hinders the reliability assessment
of community detection techniques. As a result, community detection algorithms
are traditionally tested on a few real or artificial networks [30]. As real-world
social networks are very heterogeneous, the question regarding over which data
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evaluate the algorithms remains open. On the other hand, artificial networks rely
on various statistics like average degree, degree distribution and shortest path
average, amongst others, which are not possible to control in a real environment.
Hence, in both cases, algorithms are usually evaluated over networks with very
specific and limited set of characteristics, which might not match the typical
features of real-world networks. Whilst there are several works that have analysed
the performance of diverse community detection algorithms over artificial graph
benchmarks [12, 18, 30, 44], their evaluation over real social networks has received
comparatively less attention [20].

Considering the increasing amount of available information in social networks,
the necessity of integrating such heterogeneous information and the lack of studies
analysing the problem of community detection over real-world networks, this
chapter addresses three challenges. First, the definition and extraction of multiple
sources of information regarding user interactions and activities that can be inferred
from social media data. Second, the assessment of the performance of community
detection algorithms in the context of two real-world social media networks.
Third, the exploration and evaluation of diverse similarity measures that could be
considered during the community detection process. To that end, it is also explored
how to quantify the structural properties of the discovered communities in terms
of several quality metrics. The final goal of this study is to provide some insights
regarding the integration of diverse information sources and user interactions, as
well as the selection of both algorithms and metrics for performing and assessing
the community detection process.

The rest of this chapter is organised as follows. Section 12.2 discusses related
research. Section 12.3 describes background concepts regarding the definition
and extraction of graphs from social media sites, and presents the community
detection techniques and the similarity metrics evaluated in this study. Section 12.4
describes the experimental evaluation performed over two real-world networks from
Twitter and Flickr. Section 12.5 presents the observed results. Finally, Sect. 12.6
summarises the results and conclusions drawn from the analysis.

12.2 Related Work

According to graph theory [22], communities have also been defined as cliques
(every node is adjacent to each other) or connected components (every pair of nodes
is connected by at least a path). In this context, the goal of community detection
techniques (also known as graph clustering techniques) is to divide the nodes into
communities (or clusters), such that the nodes of a particular community are similar
or connected in some predefined sense [38]. Several works have been dedicated to
formalise the intuition that a community is a set of nodes that has more or better
connections between its members than with the remainder of the network [20].
For example, in some cases it might be desirable to obtain communities of similar
order and/or density. Interestingly, not every graph presents a structure with natural
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communities. In the case of a uniform graph structure in which edges are evenly
distributed over the set of nodes, clustering results will be rather arbitrary.

Community detection techniques can be either local or global. Generally [31], the
definition of global communities relies on the number of edges falling between them
(cut size), the profoundness of their separation, modularity (i.e. the extent to which a
given community partition deviates from the hypothetical state in which the network
would be randomly rewired under the constraint of same-degree for each node [27])
or on the similarity between nodes. Community detection can be performed either
by considering all data elements at once, or by iteratively assigning one element
at a time to the appropriate cluster. Approaches that require the entire graph to be
simultaneously accessible do not scale for large graphs [38].

On the other hand, local community detection techniques provide an alternative
to alleviate scalability challenges of global techniques as they only focus on a
portion of the network under study. Thus, they are expected to circumvent the
memory bottleneck faced by global methods. Since it is not feasible to study the
community structure as a whole in terms of space and computational complexity,
communities can be progressively discovered by means of the explicit or implicit
relations defined between the nodes. This type of technique starts the network
exploration process from a set of seed nodes and progressively adds adjacent nodes
to the community as long as those node additions lead to the increment of some
local community quality measure [31].

In general, local techniques present limitations that need to be addressed in order
to be effectively applied on large-scale social networks. First, the performance of
local techniques is affected by the density (the number of links of the interconnected
communities and the total number of links of the network) and the size of
networks [29]. In this regard, techniques based on optimising modularity might
fail to identify communities that are smaller than a size that depends on the
number of nodes in the network and the link density of communities, even when
communities are unambiguously discovered [13]. Fortunato and Barthélemy [13]
found that the detection of communities based on modularity is not consistent
with the modularity optimisation, which might favour network partitions in large
communities. According to the authors, by enforcing modularity optimisation, the
different possible partitions of the network are explored at a coarse level, so that
communities that are smaller than a determined scale might not be resolved. The
origin of the resolution scale lies in the fact that modularity is a sum of terms,
where each term corresponds to a community. Thus, finding the maximal modularity
is equivalent to look for the ideal trade-off between the number of terms in the
sum. An increment in the number of communities does not necessarily imply an
increment in modularity, as communities would be smaller so each term of the sum
would also be smaller. Furthermore, modularity optimisation results in communities
with similar sizes, which causes modularity to have a peak. The problem is that the
supposedly optimal partition imposed by mathematics does not necessarily capture
the actual community structure of the network, in which communities might have
heterogeneous sizes. As a result, alternative measures for analysing community
partitions have to be devised.
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The remainder of this section presents relevant works that have aimed at defining
benchmarks for comparing the performance of community detection techniques
(Sect. 12.2.1), and metrics for comparing the performance of community detection
techniques (Sect. 12.2.2).

12.2.1 Benchmarks for Community Detection

For newly designed techniques, it is necessary to assess their performance and
compare it with that of other techniques. Nonetheless, the evaluation of techniques
has received little attention in the literature [12]. As a result, it might be difficult
to determine which technique is most reliable in the context of a certain domain
or application. Generally, evaluations consist in applying the new techniques to a
small set of simple benchmark graphs, whose community structure is known or
easy to recover; for example, the social network of Zachary’s karate club [45], the
social network of bottlenose dolphins living in Doubtful Sound [21] or the American
college football teams [14]. Zachary’s karate club is one of the most used graphs and
comprises two communities. In the American college football team graph, there
are 115 nodes representing the teams, which are connected if they have played
against each other. The natural partition of the graph comprises 12 communities,
each representing a geographical area. Note that both networks are undirected and
non-overlapping, as it is very difficult to find directed graph datasets with known
community structures and sufficient size [22]. When considering real networks, it
is worth noting that there is no guarantee that meaningful communities, defined on
the basis of non-structural information, will match those detected by methods solely
based on graph structure [12]. Moreover, in most cases, graph datasets are of small
scale, which hinders their usefulness for assessing the performance of techniques at
large scales. Thereby, it is crucial that the scientific community agrees on a standard
evaluation procedure. In this context, several works have focused on the design of
artificial benchmark graphs.

Condon and Karp [6] proposed one of the first graph benchmarks based on the
planted �-partition model with n = g · � nodes divided in � communities with
g nodes each. In this model, nodes of the same community are connected with
a probability pin, whilst nodes belonging to different communities are connected
with a probability pout. In this regard, each community represents a random Erdös-
Réngy graph with a connection probability p = pin. The modelled graph will
have a community structure when the intracluster edge density is higher than the
intercluster edge density, i.e. pin > pout. Following this model, Girvan and Newman
[14] introduced one of the most known benchmarks, which is parametrised so that
each network has 128 nodes divided into 4 groups, implying that pin and pout are
not independent [12].

Although the �-partition model is widely used, all nodes have approximately
the same degree, and all communities have the same size by construction. These
two features might not reflect the characteristics of real networks, in which degree
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distributions might be skewed with many nodes with low degree coexisting with
a few nodes with high degree (for example, in online social networks). Brandes
et al. [3] proposed a modification to the model named Gaussian random partition
generator in which community sizes have a Gaussian distribution. This variation
on community sizes also introduces heterogeneity in the degree distribution, as the
expected degree of a node will depend on the number of nodes in its community.
However, the introduced variations might still not be enough to represent real
networks. In all cases, the hypothesis that the connecting probabilities of each node
with the other nodes in the community or even with other communities are constant
might not represent the actual properties of networks.

Lancichinetti et al. [19] proposed the LFR benchmark, in which the distributions
of degree and community sizes are assumed to be governed by independent power
laws. Graphs are built as follows. First, community sizes are defined based on a
predefined power law distribution. Second, each node in a community is assigned a
degree, which is defined considering another predefined power law. Third, all stubs
of vertices of the same community are randomly connected to each other to maintain
the predefined degree distribution. Fourth, each node is connected to nodes in the
other communities.

It is worth noting that the described benchmarks correspond to undirected
networks. Although the problem of detecting communities on directed networks has
received comparatively less attention than on undirected networks, several bench-
marks have been introduced to deal with special types of graphs and community
structures. For example, Arenas et al. [1] extended Girvan and Newman’s [14]
benchmark to build graphs with embedded hierarchical structures. Additionally,
Lancichinetti and Fortunato [18] proposed a modification of the LFR benchmark to
create weighted, directed, and unweighted and overlapping networks. The weighted
graph is built based on an unweighted graph by assigning positive real numbers
to each edge. To that end, two new parameters are defined. The first parameter is
used to assign a strength to each node such that the power law relation between the
strength and the node degree is frequently observed in real networks. The second
parameter is used to assign the internal strength, which is defined as the sum of
the weights of the connections between a node and all its neighbours belonging
to the same community. Then, a greedy algorithm is applied to the graph so that
weights are consistent with the connection probabilities. For directed networks,
changes are imposed in the degree definition. Whilst in-degrees are defined based on
a power law, out-degrees are defined based on a δ-distribution. Finally, connections
are established by preserving both distributions.

In the case of unweighted and overlapping graphs, a new topological mixing
parameter is introduced to define the number of neighbours of a node that have at
least one membership in common. The generating procedure is equivalent to the
generation of a bipartite network where the two classes are the communities, and
nodes comply to the requirement that the sum of community sizes equals the sum
of node memberships. Although this benchmark aims at simulating the features
observed in real-world networks, the requirement that overlapping nodes interact
with the same number of embedded communities might be unrealistic [42]. Simple
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generalisations were proposed in which each overlapping node might belong to
different numbers of communities [25], or communities are converted to fuzzy
associations by adding a belonging coefficient to the occurrence of nodes [15].
Similarly, Sawardecker et al. [37] also proposed an extension of Girvan and
Newman [14]’s benchmark in which the probability of an edge to be present in
the network is a non-decreasing function based on the set of co-memberships of its
vertices.

12.2.2 Comparing Community Detection Techniques

In addition to considering graphs with a known community structure, the quality
of the communities discovered by a technique should be compared to that of other
techniques, aiming at selecting the most accurate one. This implies the selection of
criteria depending on the known structure of the network to define how similar the
discovered communities are. Several metrics have been used for this purpose, which
can be divided into three categories [12]: metrics based on pair counting, community
matching or information theory. Metrics based on pair counting depend on the
number of pairs of nodes that are assigned to the same or different communities.
Similarity metrics based on community matching aim at finding the largest overlap
between pairs of communities belonging to different partitions. A common problem
of this type of metrics is that some communities might not be considered if the
overlap with other communities is not large enough. The third category is based
on casting the problem of comparing communities as the problem of message
decoding in the context of information theory. The rationale of these metrics is
that if two community partitions are similar, little information is needed to infer
one partition, given the other. Thus, such extra information can be used as a
measure of dissimilarity. Evaluating the quality of the discovered communities is
non-trivial. The problem worsens when analysing overlapping communities [42], as
extending the evaluation metrics from disjoint to overlapping communities is rarely
straightforward.

Generally, there are two criteria to analyse the goodness of a community parti-
tion [20]. First, the number of edges or links amongst the nodes in each community,
and second, the number of edges amongst the members of each community in
relation to the nodes outside of it. These criteria characterise the connectivity
structure of a given community, built on the assumption that communities comprise
sets of nodes with many inner connections and few outer connections. Table 12.1
presents the definitions of the used metrics, where S represents the set of nodes of a
community, E represents the set of edges of a community, nS is the number of nodes
in community S, cS is the number of edges in the boundary of the community, i.e.
cS = |{(u, v) : u ∈ S, v /∈ S}|, mS is the number of edges inside the community,
i.e. mS = |{(u, v) : u, v ∈ S}|, d (u) is the degree of node u, σsw is the number of
shortest paths from node s to w and σsw (v) is the number of shortest paths from
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Table 12.1 Community quality measures

Cut ratio (↓) Measures the fraction of existing edges (out of all possible edges)
leaving the community. cS

nS (n− nS)

Triangle separation
ratio (TPR) (↑)

Measures the fraction of nodes inside a community that belong to a
triad. 1/nS∗
|{u : u ∈ S, {(v,w) : v,w ∈ S, (v,w) ∈ E, (u,w) ∈ E,

(v,w) ∈ E} �= ∅}|
Conductance (↓) Measures the fraction of total edge volume that points outside the

community. cS
2 ∗mS + cS

Flake out degree
fraction (FlakeODF)
(↓)

Measures the fraction of nodes in the community that has fewer edges
pointing inside the community than outside.
1/nS ∗ |{u : u ∈ S} , |{(u, v) ∈ E, v ∈ S}| < d (u) /2|

Betweenness
centrality (↑)

Measures how often a node appears on shortest paths between nodes

in the community. 1/nS ∗∑u,v,w∈S,u�=v �=w
σsw (v)

σsw

Closeness centrality
(↑)

Measures the average distance between every pair of nodes in the

community. 1/nS ∗∑u,v∈S,u�=v
1

distance (u, v)

Eccentricity (↓) Averages the distance from each node to the farthest node in the
community. 1/nS ∗∑u∈S max{distance (u, v) : v ∈ S}

Density (↑) Measures the fraction of edges (out of all possible edges) that appear
between the nodes in the community. It is based on the supposition

that good communities are well connected. 2 ∗mS
nS (nS − 1)

Clustering
coefficient (↑)

It is based on the supposition that communities are manifestations of
locally inhomogeneous distributions of edges as pairs of nodes with
common neighbours are more likely to be connected with each other.

1/nS ∗∑u∈S
|(v,w) ∈ E : v,w ∈ S, (u, v) ∈ E ∧ (u,w) ∈ E|

d (u) ∗ (d (u)− 1)

Separability (↑) Measures the ratio between the internal and external number of edges
in the community. It is based on the supposition that good
communities are well-separated from the rest of the network, i.e.
communities have relatively few edges pointing to other communities.
mS
cS

node s to w that pass through v. The arrows indicate whether a higher (↑) or a lower
(↓) score is preferable.

Considering the described types of metrics, Lancichinetti and Fortunato [18]
analysed the performance of 12 algorithms in the context of undirected and
unweighted, and directed and weighted networks. Performance was evaluated
in terms of computational time and normalised mutual information. Yang et al.
[44] evaluated 8 algorithms by quantifying their accuracy using complementary
measures and their computing time. The authors aimed at studying the dependency
between network size, computing time and the predicting power of techniques.
Finally, closely related to this study, Leskovec et al. [20] evaluated community
detection algorithms over real networks: a bipartite authors-papers networks from
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DBLP,1 the Enron e-mail network,2 a co-authorship network from Arxiv3 and a
social network from Epinions.4 Note that no social media data network was selected
for the analysis. The authors aimed at understanding the biases in the communities
discovered by the selected algorithms by analysing several objective functions.

12.3 Community Detection on Social Media

Considering the increasing amount of available information in social networks, the
development of a large number of community detection techniques, the necessity
of integrating heterogeneous data from multiple source, and the lack of studies
analysing either the performance assessment of community detection techniques,
or the problem of community detection over real-world networks, this chapter
focuses on four aspects. First, the definition of a graph in the context of social
media data (Sect. 12.3.1). Second, the analysis of the performance of several
community detection techniques (presented in Sect. 12.3.2). Third, the exploration
and evaluation of diverse similarity metrics that could be considered during the
community detection process (defined in Sect. 12.3.3). Fourth, the quantification
of the properties and characteristics of communities that determine the goodness
of algorithms (presented in Sect. 12.3.4). The final goal of this study is to provide
some insights regarding the integration of diverse information sources and user
interactions for community detection, as well as the selection of both the algorithms
and the metrics for assessing the community detection process.

12.3.1 Graph Derivation on Social Media

To apply a community detection algorithm, the information on which the underlying
graph structure is going to be based on has to be defined. Multiple and diverse
information sources can be extracted from social media data, and hence multiple
graph structures can be defined. Nodes might not only represent real people but
also other entities such as neighbourhoods, Web pages or tweets, amongst others,
depending on the task at hand to perform [23]. Then, once communities are
found, they can be integrated in diverse learning tasks such as topic detection, text
classification or clustering, link prediction or even feature selection.

Most community detection techniques are purely based on explicit social rela-
tions; however, in the context of social media data, both the social relations between

1http://snap.stanford.edu/data/com-DBLP.html.
2http://snap.stanford.edu/data/email-Enron.html.
3http://snap.stanford.edu/data/cit-HepPh.html.
4http://snap.stanford.edu/data/soc-Epinions1.html.

http://snap.stanford.edu/data/com-DBLP.html
http://snap.stanford.edu/data/email-Enron.html
http://snap.stanford.edu/data/cit-HepPh.html
http://snap.stanford.edu/data/soc-Epinions1.html
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users and the characteristics of the published content are important for improving
the quality of the discovered communities [40]. Hence, besides the relations between
posts derived from the actual social relations between their authors (i.e. two posts are
socially connected if their authors are socially related), posts’ content resemblance
or common categories (in case they are available) could also help to establish
relations between them. It is worth noting that social information and content-
based relations offer complementary views of data, in this case, posts. Thus,
no individual relation might be sufficient for accurately determining community
memberships [39]. For example, social information might be sparse and noisy,
whilst content-based information could be irrelevant or redundant. Hence, it is
important to adequately combine the different types of relations for performing
community detection in social networks.

Content-based relations could be used either to establish new relations between
posts that are not socially related (named Independent graph derivation) or to
reinforce the social relations already found amongst posts (named Weighted graph
derivation). In the former case, social and content relations are assumed to be
independent from each other, i.e. edges in the graph represent not only social links
but also separated content ones. Hence, when considering both types of relations
independently, two nodes might be connected even when there is no explicit social
connection between them. In this graph derivation, the different relationships are
integrated by adding their corresponding matrices, as ARels = ∑i∈Rels Ai , where
ARels represents the aggregated adjacency matrix, Rels is the set of selected
relationships and Ai are the adjacency matrices. Note that no differentiation is made
between the social and content-based relationships.

On the Weighted derivation, the graph only includes edges representing the social
relation between nodes, whose strength or relevance is given by the content features.
Thus, in this case, the quality of the social ties between nodes depends on an
adequate definition of the content-based features, which should allow to fully exploit
the social media data information. The final adjacency matrix for this derivation can
be defined as ARels = ASocial ·∑i∈RelsW

Ai +∑i∈{Rels−Social−RelsW }Ai , where
ASocial represents the adjacency matrix for the Social relation and RelsW the set
of relationships chosen for weighting the Social relationship. Note that this graph
derivation also allows the integration of independent relationships, as showed by the
second term in the Equation.

By definition, all content-based relations are symmetric, i.e. they do not have
directionality. However, the same does not necessarily apply to the social or friend-
ship relations. For example, when considering the Follower/Followee relationship in
Twitter or the social relations in Instagram, the fact that user A follows user B does
not imply that user B also follows user A. Whilst the diverse social networks exhibit
different reciprocity levels, most community detection techniques only leverage
on undirected (and perhaps weighted) graphs. It is worth noting that developing
community detection techniques for directed graphs might be a difficult task [12],
and that several concepts that are theoretically well defined for undirected graphs
have not been yet extended to directed ones [22].
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12.3.2 Algorithms to Compare

Both global and local community detection algorithms were selected for the
comparison, which are described as follows.

Cobweb It is an incremental clustering algorithm [11]. The goal is to learn from
observations, in opposition to learning from examples. Cobweb incrementally
organises observations into a classification tree, in which each node is labelled
by a probabilistic concept that summarises the attribute-value distributions of the
elements under such particular node. Search is guided by a heuristic measure
called Category Utility, which can be regarded as a trade-off between the intraclass
similarity and interclass dissimilarity of elements.

Edge Betweenness It is a hierarchical decomposition process in which edges are
removed in the decreasing order of their Edge Betweenness score [14, 27]. This
technique focuses on the least central edges that connect separated communities.
Hence, communities are created by progressively removing edges from the original
graph. The computational complexity of the algorithm is �

(
v · e2

)
, where v

represents the number of nodes in the graph and e the number of edges, which might
make it impractical for large and dense graphs. One disadvantage of this algorithm
is that it builds a full dendrogram and does not provide any guidance about where
to cut it to obtain the final community partition, hence other measures are needed to
find that optimal partition.

Expectation Maximisation (EM) It is an iterative algorithm that alternates
between two steps, expectation (E) and maximisation (M) [9]. When applied to
clustering, expectation maximisation (EM) uses finite Gaussian mixture models
and iteratively estimates a set of parameters until a desired convergence value is
achieved. In the E step, for each instance it computes its membership possibility
to each cluster based on the initial parameters. In the M step, parameters are
recomputed based on the new membership possibilities. Theoretically, the running
time is not bounded.

Farthest First It is a variant of the K-means algorithm that places each cluster
centre aiming at maximising the cluster radius [16]. The algorithm operates in two
steps: centroid selection and cluster assignment. The centroid selection step begins
by selecting a random data point as the original cluster centre. Then, it iteratively
chooses the next centres as the data points that are farthest from the previously
selected one, until the desired number of centroids has been selected. In the cluster
assignment step, all other data points are assigned to the nearest centroid. The
computational complexity of this algorithm is �(v · k), where k represents the
number of desired clusters, making it suitable for large-scale applications.

Fast Greedy It is a bottom-up hierarchical approach that tries to optimise modu-
larity in a greedy manner [5]. At first, each node belongs to a separated community.
Then, communities are iteratively merged such that each merge is locally optimal.
The merges stop when it is infeasible to increase modularity. The computational
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complexity of the algorithm is �(e · d · log (v)), where d represents the depth of the
dendrogram describing the community structure. This algorithm faces the resolution
limit problem, caused by inefficiencies derived from merging communities with
unbalanced sizes [41].

Infomap This algorithm optimises the map equation [36] exploiting the informa-
tion-theoretic duality between the problem of data compression, and the problem of
how to extract significant patterns or structures from such data. The map equation
specifies the theoretical limit of the trajectories of a random walker on the network.
Community structure is represented through a two-level nomenclature based on
Huffman coding. The rationale behind this optimisation is that on partitions con-
taining few intercommunity paths, the walker will probably stay longer inside the
communities, leading to compact representations. The computational complexity of
the algorithm is �(e).

Label Propagation In this algorithm [34], each node is assigned one of k labels.
Then, labels are iteratively reassigned such that nodes take the most frequent label
of its neighbours synchronously. The process is repeated until each node is labelled
with the most frequent label in its neighbourhood. This algorithm is solely based on
network structure and does not require neither optimisation of an objective function
nor prior information about the communities. Although it is a fast technique, it
provides unstable results, as they depend on the initial label configuration and the
random decision of breaking ties. The computational complexity of the algorithm is
�(v + e).

Leading Eigenvector It is a top-down hierarchical approach that optimises mod-
ularity in terms of a matrix eigenspectrum [26], leading to a centrality measure
that identifies those vertices that occupy central positions within the communities to
which they belong. The algorithm starts by computing the leading eigenvector of the
modularity matrix. Then, it iteratively splits the graph into two parts to maximise
the modularity improvement based on the leading eigenvector and stops once the
modularity of the network subdivision is negative. The running time of the algorithm
is �

(
v2 + v · e), or �

(
v2
)

for sparse graphs.

Louvain Algorithm It is one of the most known and easy to implement algorithms,
based on a greedy optimisation of modularity [2]. The algorithm is divided into two
steps that are iteratively performed until there are no more changes. First, each node
in the graph is assigned to a different community. For each node, it is moved to
the community for which the positive modularity gain is maximum. This process
is sequentially and repeatedly applied until modularity cannot be improved. The
second step builds a new network whose nodes are the communities found during
the first step. By definition, the number of communities decreases at each pass, thus
most of the running time is concentrated on the first iterations. The computational
time of the algorithm is �(v · log (v)).

Spinglass This algorithm aims at finding communities via a Spinglass model and
simulated annealing based on statistical physics [35]. In this model, each particle
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(i.e. node) can be in one of c spin states (i.e. the maximum number of communities),
and the interactions amongst particles (i.e. edges between nodes) define which
nodes might stay on the same state, and which are likely to have different states.
Then, the model is simulated and the final spin states of particles define the final
community partition. Note that spin states could remain empty, hence reducing
the number of found communities. Due to the nature of simulations, the algorithm
is not deterministic, but it has parameters that allow determining the sizes of the
communities to be found. The computational complexity of the algorithm for sparse
graphs is approximately �

(
v3.2
)
.

Walktrap Similarly to Infomap, this algorithm is based on random walks [33]. The
rationale is that short distance random walks tend to stay in the same community
as they are assumed to have few edges outside them. At first, all nodes belong to
different communities, and the distances between all adjacent nodes are computed.
Then, two adjacent communities are iteratively chosen and merged, updating the
corresponding distances. The output of the algorithm is a full dendrogram. The
computational complexity of the algorithm is �

(
v2 · e), and �

(
v2 · log (v)

)
for

sparse graphs.

X-Means This algorithm aims at overcoming three K-means shortcomings [32]:
the scaling inefficiency, the manual definition of the number of clusters, and the
proneness to remain on local minima. It works as K-means until all instances have
been assigned to their corresponding community or cluster. Then, it attempts to
split each community into two separate communities by computing the Bayesian
information criterion (BIC) on both the original community and the two newly
created ones. In those cases the BIC for the new communities is higher than that
for the previously defined communities, the new communities are retained and the
total number of communities is increased. This process is iteratively repeated until
convergence. Once all K values are tested, the best community partition is chosen.

12.3.3 Vertex Similarity

Most community detection techniques are based on computing the similarity
amongst nodes [38]. For example, in a graph in which nodes represent posts, the
similarities amongst them could be used to group together nodes that are not only
well connected but also similar to each other. However, assessing node similarity
might not be computationally simple, and even more complex than clustering the
graph once all similarities are known.

The quality of the discovered communities might be greatly affected by the
selection of the similarity metric. Hence, such metric has to be carefully chosen.
Furthermore, as the different metrics assess node similarity from different points of
view, they could be combined to perform a more comprehensive assessment. The
Harmonic mean, which is less biased to the presence of outliers than the Arithmetic
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mean, adds a possibility for combining similarity scores. Note that for combining
the scores, they must be normalised to the same range.

Metrics for computing similarity amongst nodes can be divided into three gro-
ups [38], which are summarised in Table 12.2:

Distance/Similarity Metrics Traditionally, these metrics are based on some dis-
tance property. Distance metrics should comply with three criteria: the distance
between a node and itself is zero, distances are symmetrical and the triangle
inequality holds. Similarity metrics resulting from the adaptation of distance metrics
also comply with the three criteria. A great number of distance metrics have been
defined and used in the literature [10, 17]. Examples of these metrics include
Euclidean Distance, Manhattan Distance and Tanimoto Coefficient, amongst others.

Adjacency-Based Metrics In several environments, nodes lack of properties
that allow computing their similarity [38]. The most straightforward manner for
determining whether two nodes are similar only using adjacency information is
to analyse the overlap of their neighbourhoods. Nonetheless, correlation analyses
could also be applied to determine community structure based on adjacency infor-
mation. Examples of these metrics include [10, 17]: Jaccard Similarity, Common
Neighbours and Pearson Correlation, amongst others.

Connectivity Metrics Communities in graphs can also be defined through node
connectivity by computing the number of paths between each pair of nodes [38].
In this regard, nodes belonging to the same community should be highly connected
to each other. Connectivity metrics could be used to define the similarity amongst
nodes. For example, nodes could be regarded as similar if they are connected by a
number of paths higher than a predefined threshold, or similarity could be defined
proportionally to the number of paths connecting the nodes. However, defining the
threshold might be difficult, as its selection often involves knowing the diameter
of the graph a priori. Choosing a large threshold in relation to the diameter of
the graph might result in communities containing large portions of the graph,
whereas choosing a small threshold might split natural communities into two or
more subcommunities.

12.3.4 Quality Metrics

The criteria proposed by Leskovec et al. [20] (summarised in Table 12.1) char-
acterise the connectivity structure of a given community built on the assumption
that communities comprise sets of nodes with many inner connections and few
outer connections. Nonetheless, connectivity structure might not be the only
important characteristic of communities. In this regard, two additional functions
were considered. First, a function characterising communities’ content cohesiveness
defined as the average Cosine Similarity amongst all node pairs in the community
(named ContentCohesiveness). Second, as Twitter trending topics and Flickr photos
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are assigned to classes, the Entropy of the classes given the community assignments
was also analysed. As scores were computed for each individual community, they
were averaged to obtain the score corresponding to a given community partition. To
ensure metrics’ comparability, all results were normalised to the range [0; 1], and
adjusted so that the highest scores represent the best ones.

12.4 Experimental Evaluation

This section presents the experimental evaluation performed to assess the effective-
ness of the selected community detection algorithms over social media data, and is
organised as follows. First, Sect. 12.4.1 describes the data collections used. Then,
Sect. 12.4.2 describes the implementation details. Finally, Sect. 12.4.3 details the
graphs derived from social media used to perform the evaluation. The final goal of
this study is to provide some insights regarding the selection of both the algorithms
and the metrics for performing and assessing the community detection process.

12.4.1 Dataset

The performance of the technique was evaluated considering two real-world datasets
collected from Twitter5 [46] and Flickr6 [24]. Table 12.3 summarises the main
characteristics of both datasets. The Twitter dataset includes the content of more
than 500,000 tweets belonging to 1036 trending topics, which were manually
assigned to one of four categories: News, Ongoing Events, Memes (trending topics
triggered by viral ideas) and Commemoratives (the commemoration of a certain
person or event that is being remembered in a given day, for example birthdays or
memorials). For the purpose of the experimental evaluation, each trending topic was
regarded as a node in the graph, i.e. each node grouped the tweet set associated to
the corresponding trending topic.

The Flickr dataset comprises the metadata associated to original images from the
NUS-WIDE dataset [4]. For each photo, the dataset included information regarding
the owner, description, title, comments, tags, manually annotated labels and the
groups in which the photo was posted. Labels were considered as the category of
photos, and hence the community ground truth. Photos could be assigned to 81
different concepts (belonging to different categories such as, scene, object, event,
program, people and graphics), which were extracted from frequently used tags,
representing either general (e.g. “animal”) or specific (e.g. “dog”) concepts. Only
photos containing at least one tag or description were kept. The dataset also provides

5http://www.twitter.com/
6http://snap.stanford.edu/data/web-flickr.html.

http://www.twitter.com/
http://snap.stanford.edu/data/web-flickr.html
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Table 12.3 Data collection’s
main characteristics

(a) Twitter data collection

Number of instances 1036

Number of features 226,043

Number of classes 4

Number of following relations 251,522,840

Average number of followees 816

Average number of features per
instance

1084

Average number of instances per
class

259

(b) Flickr data collection

Number of instances 190,339

Number of features 947,829

Number of classes 81

Number of taggers 58,144

Number of commenters 569,765

Pairs of photos posted by the same
user

77,909

Pairs of photos posted by users who
are friends

8,825,738

Average number of features per
instance

5

Average number of instances per
class

1007

information regarding the topological relations between the users and their photos,
including an indicator for whether both photos were taken by the same user, and
an indicator for whether two users were socially related. For the purpose of the
experimental evaluation, each photo was considered as a node in the graph.

12.4.2 Experimental Settings

The performance of the selected community detection and clustering techniques was
evaluated for different graph sizes ranging between 50 and 1000 posts. In order to
make the results comparable, the implementations of the algorithms provided by
three widely used libraries were used: Gephi Toolkit,7 WEKA8 and Igraph.9 Both
Gephi Toolkit and WEKA are implemented in Java, whilst Igraph is available in R,
C++ and Python. For the purpose of this evaluation, the Python implementation was

7https://gephi.org.
8https://www.cs.waikato.ac.nz/ml/weka/.
9http://igraph.org/.

https://gephi.org
https://www.cs.waikato.ac.nz/ml/weka/
http://igraph.org/
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chosen. For Cobweb, EM, Farthest First and X-Means clustering algorithms, their
WEKA implementation was used. Specifically, the density-based implementations
were selected to evaluate the generated partitions in a cross-validated manner. The
graph was represented in the arff format in which each node was considered an
instance, and features also represented nodes. The value of each feature represented
the weight of the edge between the corresponding nodes. On the other hand,
for Edge Betweenness, Fast Greedy, Infomap, Label Propagation, Spinglass and
Walktrap, it was used their Igraph implementation. Finally, as regards the Louvain
algorithm, the Gephi implementation was used. The number of communities or
clusters to detect was automatically discovered in all cases. For those algorithms
returning a full dendrogram, the chosen community partition corresponded to the
one maximising modularity.

12.4.3 Graph Creation

Evaluation was performed considering the Social relationship and the combinations
of relationships obtaining the best results in [40], regarding the independent and
weighted graph derivations, which are summarised in Tables 12.4 and 12.5 for the
Twitter and Flickr datasets, respectively. Additionally, the table shows for each of
the analysed relationships the average and standard deviation of the node’s degrees
for each of the graph sizes tested. As most algorithms are designed to work with
undirected graphs, a symmetrisation strategy was applied to the directed graphs
resulting from considering the asymmetrical Social relationship. Particularly, a
simple symmetrisation in which the new adjacency matrix U can be defined as
U = A + AT was applied. As a result, in the case a pair of nodes is connected
with edges in both directions, the weight of the edge in the symmetrised graph will
correspond to the sum of the weight of the directed edges.

12.5 Experimental Results

Interestingly, not every tested algorithm was able to find a meaningful number of
communities (i.e. a number between 1 and the number of nodes) for each of the
analysed relationships, hence those results are not reported. Considering the results
obtained for each of the evaluated graph sizes, it was analysed whether the different
samples achieved similar quality; in other words, whether the algorithms behaved
stable across different graph sizes. Data normality was evaluated by performing both
the Shapiro and the Anderson–Darling tests [7]. As data was shown not to be normal,
the Kruskal–Wallis test for unrelated samples was applied to the results obtained for
each metric and analysed combinations of relations. Particularly, each of the results
obtained for a determined graph size was regarded as a sample. The confidence value
was set to 0.01. To perform the test, the null and the alternative hypothesis were
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defined. The null hypothesis stated that no difference existed amongst the results
of the different samples, i.e. the alternatives behaved stable over the different graph
sizes. On the contrary, the alternative hypothesis stated that changes in the size of
the graph caused changes in the behaviour of the algorithms. In all cases, the null
hypothesis could not be rejected, due to a p-value higher than the confidence value,
or a critical value higher than the obtained statistic value. In consequence, it could be
assumed that the algorithms did not change their behaviour as the size of the graph
changed. Hence, for clarity of presentation, the results across different graph sizes
are summarised by their mean value. The statistical invariability of results confirms
the findings in [44] that stated that the performance of the algorithms on artificial
networks is independent of the network size.

12.5.1 Evaluation of Quality Metrics

A correlation test was applied to the results obtained for all metrics to assess the
relationship between them. For all the obtained community structures, the scores
corresponding to all the metrics in Table 12.1 were computed. The correlation
between the metrics’ results was evaluated according to the definitions and methods
proposed in [7]. The normality of results was evaluated by analysing their skewness,
kurtosis, and performing both the Shapiro and the Anderson–Darling tests. As
the normality tests failed for at least one result sample, correlation results had to
be evaluated by means of non-parametric tests. Thus, correlation was measured
by means of the Spearman Rank Order correlation. The confidence value for
considering a correlation statistically significant was set to 0.05. The minimum
correlation value for two metrics to be considered highly correlated was set to 0.7.
Figure 12.1 summarises the obtained results for the Twitter dataset by depicting the
significant relations found. Interestingly, although TPR is not highly correlated with
any other metric (the highest correlation was 0.52 with the ClusteringCoefficient),
the obtained results showed that the metric has no sufficient discriminative power
amongst the different evaluated community detection alternatives. Particularly, its
standard deviation was 0.27. Consequently, TPR was not considered for assessing
the quality of communities. As the figure shows, metrics can be grouped into four
clusters, out of which a representative metric can be chosen. These results are in
agreement with those in [43], showing that although there are different quality
measures for structurally assessing the quality of communities, such definitions are
heavily correlated. Nonetheless, the results obtained for TPR, CutRatio and Density
(i.e. the representative metrics for each group) did not show statistical differences
amongst the results for the different combinations of alternatives. Consequently,
results are only reported for FlakeODF. On the other hand, no correlation was found
amongst ContentCohesiveness and Entropy. Similar results were observed for the
Flickr dataset.
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Fig. 12.1 Statistical correlation between quality assessment metrics

12.5.2 Evaluation of Community Detection Algorithms

This section presents the evaluation of the selected community detection algorithms
for the Twitter (Sect. 12.5.2.1) and Flickr (Sect. 12.5.2.2) datasets. For both datasets,
a statistical analysis was performed to determine whether the differences amongst
results were statistically significant. As data was shown not to be normal, the
Friedman test for related samples was applied to the results obtained for each
community detection algorithm and combination of relations. Particularly, the
results obtained for a determined node relationship across all community detection
algorithms were regarded as a sample. To perform the test, two hypotheses were
defined: the null and the alternative hypothesis. The null hypothesis stated that no
difference existed amongst the results of the different samples, i.e. the discovered
communities are independent from the algorithm used for discovering them, and the
observed differences are due to chance. On the contrary, the alternative hypothesis
stated that the observed differences amongst the different community structures are
incidental, and not due to chance.

12.5.2.1 Results for the Twitter Dataset

The reported results include all the community detection algorithms previously
described with the exception of Edge Betweenness as for each evaluated graph struc-
ture this algorithm required more than 2 h of execution, thereby being only suitable
for small networks, and not for real-time processing applications. Additionally, the
experimental evaluation showed that the algorithms that best scaled as the network
size increased were Louvain and X-Means. On the other hand, Infomap, Walktrap
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Fig. 12.2 Community detection results for the independent social and content views for the
Twitter dataset. (a) Social. (b) SimilarContent-0.6. (c) SharedClass. (d) Social & SimilarContent-
0.6. (e) Social & SharedClass. (f) Social & SharedClass & SharedTag & SimilarContent-0.6. (g)
Social & SharedClass & SharedTag & SimilarContent

and Spinglass did not scale well, hindering their applicability on large networks or
real-time applications. These findings are in agreement with those in [44].

Independent Social and Content Views Figure 12.2 shows the obtained results for
the different combinations of node relationships for the independent derivation of
the social graph. As it can be observed, there was no clear dominance of neither
the traditional clustering techniques nor the algorithms specifically designed for
community detection, as the quality of the obtained communities for each algorithm
varied according to the node relationships under consideration.

The highest quality communities were found for high density networks. More-
over, most algorithms did not obtain stable results across the evaluated relationships.
For example, Farthest First was amongst the best performing algorithms for Social,
but also was the worst performing one for SharedClass. Similarly, Spinglass was
one of the best performing algorithms for SharedClass, but the worst one for Social.
These results show the instability and lack of robustness of algorithms when varying
the underlying graph structure. Moreover, results exposed the sensitiveness (as
shown in Table 12.4) of algorithms to the network degree, as described in [28]. For
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example, the quality of the communities found by Spinglass and X-Means increased
as the average degree of the network increased. On the other hand, for Leading
Eigenvector the effect was the inverse, i.e. the quality of the found communities
decreased as the average node degree increased. Finally, Walktrap consistently
obtained communities of lower quality than other algorithms, independently of
network density. Label Propagation only obtained results for the combinations of
relationship with the lowest average node degree.

Interestingly, in the case of Social, several community detection algorithms found
community partitions with higher ContentCohesiveness than when considering
SharedClass, even though explicit content information was not included. Moreover,
those same algorithms obtained the highest ContentCohesivess for SimilarContent-
0.6, with competitive Entropy and FlakeODF results. These differences were
maintained when both relationships were combined. The obtained results might
also expose the redundancy of relationships, as combining either two of four
relationships obtained similar results for most algorithms. Particularly, results
were similar for Social & SharedClass (combination of two relationships) and
Social & SharedClass & SharedTag & SimilarContent-0.6 (combination of four
relationships). In those cases, all algorithms discovered partitions with low Content-
Cohesiveness even though, the individual relationships allowed discovering content
cohesive communities.

As regards the differences between the clustering and the community detection
algorithms, a curious phenomenon appeared when analysing the results for Social,
SharedClass and their combination. Whilst for Social, results did not show a clear
dominance of any type of technique, for SharedClass, the best average results were
obtained by the community detection techniques. However, when combining both
relations the tendencies were reverted, and clustering techniques obtained the best
results. This phenomenon emphasises the instability and sensitivity of algorithms.

Finally, it is worth noting that the Louvain algorithm was able to find relatively
high-quality communities across almost every analysed individual and combinations
of relationships, regardless of the density of the analysed graph. Particularly,
the performed Wilcoxon test showed with a confidence of 0.01 the statistical
superiority of Louvain regarding EM and Spinglass for the three quality metrics.
When solely considering FlakeODF and Entropy, Louvain obtained statistically
superior results than EM, Spinglass, Walktrap, Hierarchical Clusterer, Fast Greedy,
Label Propagation, X-Means and Leading Eigenvector. These results showed the
capabilities of the algorithm and its stability. Moreover, the results agree with those
in [44], which stated the superiority of the communities found by the Louvain
algorithm, especially for large graphs.

Weighted Social View Figure 12.3 shows the obtained results of the weighted
derivation of the social graph for the different combinations of node relationships.
Similarly to the results obtained for the independent graph derivation, there is no
clear dominance of any type of technique, excepting for those relations considering
SimilarContent-0.6, for which clustering algorithms consistently obtained the worst
results. Interestingly, for this graph derivation, Label Propagation was able to
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Fig. 12.3 Community detection results for the weighted social views for the Twitter dataset.
(a) Social-W-SimilarContent-0.6. (b) Social-W-SharedClass. (c) Social-W-SimilarContent-0.6 &
SharedClass. (d) Social-W-SharedClass & SimilarContent-0.6. (e) Social-W-SharedTag & Shared-
Class

find a meaningful number of communities for every analysed relation. Its results
were competitive regarding other techniques in all cases, but for the relationship
yielding the highest node average degree. These results showed the sensitivity of
the algorithm to the network degree distribution. As regard the diverse evaluated
relations, results evidenced that techniques were dominated by the information
provided by SharedClass, i.e. algorithms obtained almost equal results in every
combination of relationships including SharedClass.

EM and Fast Greedy were shown to have contrasting results. Whilst EM was
amongst the best performing techniques for Social-W-SharedTag & SharedClass
and the worst one for Social-W-SimilarContent-0.6, Fast Greedy obtained exactly
the reverse results. These results continued to expose the sensitivity of techniques
towards the underlying graph distribution. Additionally, Farthest First was shown to
improve the quality of the found communities as the density of the graph increased.
Walktrap continued to exhibit poor performance for this graph derivation. Unlike
for the independent graph derivation, the quality of the communities found by
Spinglass decreased as the node average degree increased. The results for the
Louvain algorithm continued to be the most stable ones across all relationships,
confirming the robustness of the algorithm for finding high-quality communities.
Finally, similarly as for the other graph derivation, a Wilcoxon test confirmed with a
confidence of 0.01 the superiority of Louvain regarding other evaluated algorithms.
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12.5.2.2 Results for the Flickr Dataset

Similarly as for the Twitter dataset, no results are reported for Edge Betweenness
due to the excessive execution time. Additionally, no results are reported for Coweb
as it did not allow to obtain a significant number of communities for any of the
selected combinations of relationships. As for the Twitter dataset, the algorithms that
best scaled as the network size increased were Louvain and X-Means. Moreover,
unlike for the Twitter dataset, Label Propagation obtained a meaningful number of
communities for every analysed combinations of relationships.

Independent Social and Content Views Figure 12.4 shows the obtained results for
the different combinations of node relationships for the independent derivation
of the social graph. As it can be observed, there was no clear dominance of
neither the traditional clustering techniques nor the algorithms specifically designed
for community detection, as the quality of the obtained communities for each
algorithm varied according to the node relationships under consideration. The
highest differences were observed for ContentCohesiveness, which achieved the
lowest results for the Social relationship.

Similarly as for the Twitter dataset, the best results were found for high density
networks. Nonetheless, none relationship or combination of them was able to obtain
high results for the three metrics simultaneously. For example, FlakeODF and
Entropy were high for Social, TaggedSameUser and Social & TaggedSameUser,
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Fig. 12.4 Community detection results for the independent social and content views for the Flickr
dataset. (a) Social. (b) SimilarContent-0.6. (c) TaggedSameUser. (d) Social & SimilarContent-0.6.
(e) Social & TaggedSameUser
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whilst ContentCohesiveness was high for Social & SimilarContent-0.6. Moreover,
most algorithms did not obtain stable results across the evaluated relationships. For
example, EM was amongst the best performing algorithms for TaggedSameUser
and Social & TaggedSameUser, but also was the worst performing one for the other
three combinations of relationships. Similarly, Infomap was the best performing
algorithm for SimilarContent-0.6 and Social & SimilarContent-0.6, but one of the
worst for Social & TaggedSameUser. These results show the instability and lack
of robustness of algorithms when varying the underlying graph structure. The
sensitiveness of algorithms to network degree observed for the Twitter dataset was
also observed for this dataset (as shown in Table 12.5); for example, the relative
quality of the communities found by X-Means and EM increased as the average
degree of the network increased. Interestingly, the quality of Spinglass results
changed independently of the underlying node degree.

The obtained results might also expose the redundancy of relationships, as
combining two relationships obtained similar results to those obtained for the
individual relationships for several algorithms. For example, results were similar
for Social and Social & SimilarContent-0.6, and for TaggedSameUser and Social
& TaggedSameUser. These results might imply that the characteristics of the
discovered communities are dominated by only one relationship of the pair.

As regards the differences between the clustering and the community detection
algorithms, results did not show a clear dominance of any type of technique, as both
community detection and clustering techniques achieved both high- and low-quality
results. Nonetheless, in all cases the best results were obtained by community
detection techniques (Infomap and Louvain), followed, in some cases, by clustering
techniques, whilst the worst results were obtained by clustering techniques (EM and
Hierarchical Clusterer). This phenomenon emphasises the instability and sensitivity
of algorithms. Finally, it is worth noting that the Louvain algorithm obtained the best
average results for four of the analysed individual and combinations of relationships,
regardless of the density of the analysed graph. These results continue to show the
capabilities of the algorithm and its robustness.

Weighted Social View Figure 12.5 shows the results obtained for the weighted
derivation of the social graph for the different combinations of node relationships.
Unlike the results observed for the independent graph derivation, the worst quality
communities were consistently obtained by two clustering techniques X-Means and
EM. On the other hand, the best results were obtained by community detection
techniques in all cases.

For this graph derivation, the differences of average node degree were lower
than for the independent derivation, excepting for Social-W-SimilarContent &
SimilarContent-0.6 (the relationship combination showing the highest average
node degree), whose average degree was a 98% higher than the second highest
one (Social-W-SharedClass & SimilarContent-0.6). In this regard, most of the
techniques showed stable results for four of the five combinations of relationships
analysed. Then, in the case of EM, Spinglass and X-Means, the quality of the
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Fig. 12.5 Community detection results for the weighted social views for the Flickr dataset.
(a) Social-W-SharedClass & SimilarContent-0.6. (b) Social-W-SimilarContent & SimilarContent-
0.6. (c) Social-W-TaggedSameUser & SharedClass. (d) Social-W-CommentedSameUser &
SimilarContent-0.6. (e) Social-W-SharedTag & SimilarContent-0.6

discovered communities increased when the average node degree increased, whilst
the quality of Hierarchical Clusterer, Farthest First, Infomap and Label Propagation
decreased.

The results for Louvain, Fast Greedy and Leading Eigenvector were the most
stable ones across all relationships. These results confirm the robustness of Louvain
for community detection on heterogeneous graph structures. Finally, similarly as for
the independent graph derivation, a Wilcoxon test confirmed with a confidence of
0.05 the superiority of Louvain regarding other evaluated algorithms.

12.5.3 Evaluation of Vertex Similarity Metrics

This section presents the evaluation of the selected vertex similarity metrics for the
Twitter (Sect. 12.5.3.1) and Flickr (Sect. 12.5.3.2) datasets. Similarly to the evalu-
ation of the community detection techniques, the stability of the vertex similarity
metrics across the different evaluated graph sizes was statistically analysed. As data
was shown not to be normal, the Kruskal–Wallis test for unrelated samples was
applied to the results obtained for each metric and each of the analysed combinations
of relations. The results obtained for each graph size were regarded as a sample.
The confidence value was set to 0.01. Results showed that the hypothesis that no
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difference existed amongst the results of the different samples could not be rejected,
as either the p-value was higher than the set confidence value or the critical value
was higher than the obtained statistic value. Hence, the diverse vertex similarity
metrics could be assumed to behave stable across the different graph sizes. For
clarity of presentation, the results across different graph sizes are summarised by
their mean value.

Finally, a statistical analysis was performed to determine whether the differences
amongst results were statistically significant. As data was shown not to be normal,
the Friedman test for related samples was applied to the results obtained for
each vertex similarity metric and combination of relations. Particularly, the results
obtained for a determined node relationship across all vertex similarities were
regarded as a sample. The null hypothesis stated that no difference existed amongst
the results of the different samples, i.e. discovering communities based on the full
node set yielded the same quality than iteratively extracting one node from the
set and inserting it using vertex similarity metrics. On the contrary, the alternative
hypothesis stated that inserting a node in an already computed community structure
does not lead to the same community quality than using the full node set.

12.5.3.1 Results for the Twitter Dataset

As the following subsections show, no differences were observed between the
results for the different graph derivations. This evaluation continued to expose the
redundancy amongst relationships.

Independent Social and Content Views Figure 12.6 shows the obtained results for
the different combinations of node relationships for the independent derivation of
the social graph. As it can be observed, results obtained for each vertex similarity
metric are similar to those obtained when considering all nodes in the community
detection process (named Full Communities). Interestingly, differences are only
observable after the fourth decimal place.

The biggest differences were found for SharedClass (Fig. 12.6c) and SimilarCon-
tent-0.6 (Fig. 12.6b). When considering SharedClass, the communities discovered
for the full set of nodes had higher ContentCohesiveness and Entropy than those
obtained for the vertex similarity metrics. Conversely, in the case of SimilarContent-
0.6, the ContentCohesiveness obtained for the full set of nodes was lower than that
observed for the vertex similarity metrics. Note that the highest differences were
observed for the lowest density graph. These results could imply that community
structures are very sensitive to small changes in the node set. For example, it could
occur that removing one node could alter the strength of links forcing the separation
of a community into two or more communities. Then, when the node is inserted in
the community structure, communities are not merged, altering their quality.

The results of Social & SharedClass (Fig. 12.6e), Social & SharedClass &
SharedTag & SimilarContent-0.6 (Fig. 12.6d) and Social & SharedClass & Sha-
redTag & SimilarContent (Fig. 12.6g) are identical. These results reinforce the fact
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Fig. 12.6 Vertex similarity results for the independent social and content views for the Twitter
dataset. (a) Social. (b) SimilarContent-0.6. (c) SharedClass. (d) Social & SimilarContent-0.6. (e)
Social & SharedClass. (f) Social & SharedClass & SharedTag & SimilarContent-0.6. (g) Social &
SharedClass & SharedTag & SimilarContent

that in some cases, adding more information does not imply an improvement of
results. Instead, information sources might be redundant. As observed, for low-
density graphs, S/orensen, PearsonCorrelation and their combination achieved
higher results than the other metrics.

Table 12.6 summarises the results obtained for each vertex similarity metric
averaged for every node relationship analysed. The best three results obtained for
each metric are highlighted in bold. Interestingly, in average, considering the full
node set achieved the lowest ContentCohesiveness, but the highest Entropy and
FlakeODF. Note that Harmonic obtained high results for the three evaluated
metrics, showing the highest ContentCohesivenness values.

The performed Friedman test showed with a confidence of 1.229e−07 that the
null hypothesis should be rejected, meaning that there is a difference between any
of the analysed pair of results. To discover the pairs for which a statistical difference
existed, the Wilcoxon test was applied defining the same hypotheses. Wilcoxon
results showed with a confidence of 0.05 the existence of significant differences
amongst the diverse vertex similarity metrics. For example, Cosine Similarity
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Table 12.6 Summary of vertex similarity results for the independent graph derivation of the
Twitter dataset

FlakeODF ContentCohesiveness Entropy

Full Communities 0.30 0.38 0.23
Cosine 0.29 0.41 0.19

Cosine-Weighted 0.29 0.41 0.19

Euclidean 0.29 0.41 0.19

Euclidean-Weighted 0.29 0.41 0.19

Harmonic 0.31 0.48 0.20
HDI 0.29 0.41 0.19

HPI 0.29 0.41 0.19

LHN 0.29 0.41 0.19

Manhattan-Weighted 0.29 0.41 0.19

PearsonCorrelation 0.30 0.48 0.20
Sorensen 0.31 0.48 0.19

Tanimoto 0.29 0.41 0.19

Tanimoto-Weighted 0.29 0.41 0.19

results were shown to be statistically different and lower than most of those
of the other metrics. On the other hand, PearsonCorrelation and Harmonic

were shown to be statistically superior to the other metrics. Finally, no statistical
difference was found amongst the binary and weighted variations of the metrics.

Weighted Social View Figure 12.7 shows the obtained results for the different
combinations of node relationships for the weighted derivation of the social
graph. As it can be observed, the behaviour of the vertex similarity metrics
did not change regarding the other graph derivation strategy. For three combi-
nations of relationships, considering the full node set allowed to obtain higher
Entropy, and a slight improvement of ContentCohesiveness. These results also
exposed the redundancy amongst node relationships as Social-W-SharedClass
(Fig. 12.7b), Social-W-SimilarContent-0.6 & SharedClass (Fig. 12.7c), Social-W-
SharedClass & SimilarContent-0.6 (Fig. 12.9b) and Social-W-SharedTag & Shared-
Class (Fig. 12.7e) achieved similar results.

Table 12.7 summarises the results obtained for each vertex similarity metric
averaged for every node relationship analysed. The best results obtained for each
metric are in bold. Interestingly, in average, considering the full node set achieved
the lowest ContentCohesiveness but the highest Entropy. Unlike for the other graph
derivation, using the full node set did not discover the most structurally cohesive
communities. Similarly to the previous case, Harmonic was amongst the best
performing vertex similarity metrics.

The same statistical analyses performed for the independent derivation results
were performed for this graph derivation. The Friedman test showed with a
confidence of 1.049e−11 that the null hypothesis should be rejected, meaning
that there was a difference between any of the analysed pair of results. Then, the
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Fig. 12.7 Vertex similarity results for the weighted social views for the Twitter dataset. (a) Social-
W-SimilarContent-0.6. (b) Social-W-SharedClass. (c) Social-W-SimilarContent-0.6 & Shared-
Class. (d) Social-W-SharedClass & SimilarContent-0.6. (e) Social-W-SharedTag & SharedClass

Table 12.7 Summary of vertex similarity results for the weighted graph derivation of the Twitter
dataset

FlakeODF ContentCohesiveness Entropy

Full Communities 0.30 0.38 0.45
Cosine 0.31 0.39 0.28

Cosine-Weighted 0.31 0.39 0.28

Euclidean 0.32 0.40 0.29

Euclidean-Weighted 0.32 0.40 0.29

Harmonic 0.33 0.49 0.30
HDI 0.31 0.39 0.28

HPI 0.31 0.39 0.28

LHN 0.31 0.39 0.28

Manhattan-Weighted 0.32 0.40 0.29

PearsonCorrelation 0.31 0.49 0.30
Sorensen 0.31 0.49 0.30
Tanimoto 0.31 0.39 0.28

Tanimoto-Weighted 0.31 0.39 0.28
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Wilcoxon test was applied. Results showed with a confidence of 0.05 the existence
of significant differences amongst the diverse vertex similarity metrics. For example,
Cosine Similarity results were shown to be statistically different and lower than
most of those of the other metrics, whilst PearsonCorrelation and Harmonic

were shown to be statistically superior to the other metrics.

12.5.3.2 Results for the Flickr Dataset

As the following subsections show, the results for this dataset present some
differences regarding those observed for the Twitter dataset. Such differences could
be due to the intrinsic and particular characteristics of each social network under
analysis. Additionally, some differences were observed between the analysed graph
derivations.

Independent Social and Content Views Figure 12.8 shows the obtained results for
the different combinations of node relationships for the independent derivation of
the social graph. As it can be observed, in terms of FlakeODF results obtained for
each vertex similarity metric are similar to those obtained for Full Communities.
In most cases, differences are only observed after the third decimal place. Discov-
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Fig. 12.8 Vertex similarity results for the independent social and content views for the Flickr
dataset. (a) Social. (b) SimilarContent-0.6. (c) TaggedSameUser. (d) Social & SimilarContent-0.6.
(e) Social & TaggedSameUser
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ering communities for the full node set obtained the best average results for every
combination of relationships, excepting SimilarContent-0.6.

In terms of Entropy, the biggest differences were observed for SimilarContent-
0.6 (Fig. 12.8b) and Social & SimilarContent-0.6 (Fig. 12.8d). In those cases, the
best average results were obtained when considering Full Communities, followed
by the results of Euclidean-Weighted, Manhattan-Weighted and T animoto-
Weighted. As observed for the community detection algorithms, the results for
those combinations of relationships are similar, which might imply that the charac-
teristics of the discovered communities are dominated by only one relationship of
the pair. For the remaining three combinations of relationships, Full Communities

obtained the highest Entropy results, with differences up to a 71% regarding the
different similarity metrics. As regards ContentCohesiveness, for those alternatives
considering SimilarContent-0.6, Full Communities did not discover the highest
quality communities.

Table 12.8 summarises the results obtained for each vertex similarity metric
averaged for every node relationship analysed. The best results obtained for each
metric are highlighted in bold. Note that for FlakeODF average results were almost
equal for every analysed similarity metric. Interestingly, in average, considering
Full Communities achieved the lowest FlakeODF, but the highest ContentCo-
hesiveness and Entropy. These results differ from those observed for the Twitter
dataset, in which FullCommunities achieved the lowest ContentCohesiveness
and the highest FlakeODF. Moreover, unlike for the Twitter dataset, the weighted
versions of Cosine, Manhattan and Euclidean obtained higher results than
Harmonic.

Table 12.8 Summary of vertex similarity results for the independent graph derivation of the Flickr
dataset

FlakeODF ContentCohesiveness Entropy

Full Communities 0.77 0.29 0.92
Cosine 0.79 0.18 0.71

Cosine-Weighted 0.80 0.19 0.72

Euclidean 0.80 0.18 0.70

Euclidean-Weighted 0.80 0.18 0.78
Harmonic 0.80 0.18 0.69

HDI 0.79 0.18 0.70

HPI 0.79 0.18 0.72

LHN 0.80 0.18 0.72

Manhattan-Weighted 0.80 0.18 0.78
PearsonCorrelation 0.80 0.18 0.69

Sorensen 0.80 0.18 0.70

Tanimoto 0.79 0.18 0.70

Tanimoto-Weighted 0.80 0.19 0.76
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The performed Friedman test showed with a confidence of 1.229e−07 that the
null hypothesis should be rejected, meaning that there is a difference between
any of the analysed pair of results. To discover the pairs for which a statistical
difference existed, the Wilcoxon test was applied defining the same hypotheses.
Wilcoxon results showed with a confidence value of 0.05 the existence of significant
differences amongst the diverse vertex similarity metrics. For example, Euclidean

results were shown to be statistically different and lower than most of those of
the other metrics, in terms of FlakeODF and ContentCohesiveness. On the other
hand, T animoto-Weighted was shown to be statistically different than most of
the other metrics in terms of Entropy. Interestingly, FullCommunities showed to
be statistically superior than several metrics, in terms of ContentCohesiveness for
HPI , LHN , Manhattan−Weighted, T animoto, Pearson and Euclidean. No
significant differences were observed in terms of FlakeODF and Entropy. Finally,
even though differences were observed for the binary and weighted variations of the
metrics, such differences were not statistically significant.

Weighted Social View Figure 12.9 shows the obtained results for the different
combinations of node relationships for the weighted derivation of the social
graph. For every combination of relationships, considering the full node set
allowed to obtain the highest Entropy results. Moreover, for every combination
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Fig. 12.9 Vertex similarity results for the weighted social views for the Flickr dataset. (a)
Social-W-SharedClass & SimilarContent-0.6. (b) Social-W-SimilarContent & SimilarContent-
0.6. (c) Social-W-TaggedSameUser & SharedClass. (d) Social-W-CommentedSameUser &
SimilarContent-0.6. (e) Social-W-SharedTag & SimilarContent-0.6
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Table 12.9 Summary of vertex similarity results for the weighted graph derivation of the Flickr
dataset

FlakeODF ContentCohesiveness Entropy

Full Communities 0.77 0.56 0.89
Cosine 0.76 0.20 0.69

Cosine-Weighted 0.76 0.22 0.74

Euclidean 0.76 0.21 0.68

Euclidean-Weighted 0.76 0.21 0.85
Harmonic 0.76 0.21 0.66

HDI 0.76 0.20 0.68

HPI 0.76 0.20 0.72

LHN 0.76 0.22 0.71

Manhattan-Weighted 0.76 0.21 0.85
PearsonCorrelation 0.76 0.20 0.66

Sorensen 0.76 0.20 0.66

Tanimoto 0.76 0.20 0.68

Tanimoto-Weighted 0.76 0.21 0.82

excepting Social-W-TaggedSameUser & SimilarContent-0.6, FullCommunities

obtained the highest ContentCohesiveness, with differences up to a 300%. These
results also exposed the redundancy amongst node relationships as Social-
W-SharedTag & SimilarContent-0.6 and (Fig. 12.9e) Social-W-SharedClass &
SimilarContent-0.6 (Fig. 12.9a) obtained similar results. The same applies for
Social-W-TaggedSameUser & SimilarContent-0.6 (Fig. 12.9c) and Social-W-
CommentedSameUser & SimilarContent-0.6 (Fig. 12.9d).

Table 12.9 summarises the results obtained for each vertex similarity metric
averaged for every node relationship analysed. The best results obtained for each
metric are in bold. Similarly as for the independent graph derivation, all metrics
obtained similar average FlakeODF. However, unlike for the independent graph
derivation, Full Communities obtained the highest average results. The highest
differences were observed for ContentConhesiveness. The same statistical analyses
performed for the independent derivation results were performed for this graph
derivation. Results showed the same tendencies than for the independent graph
derivation.

12.6 Conclusions

Social networking and microblogging sites have increased their popularity in recent
years attracting millions of users, who spend an increasing amount of time on those
sites sharing personal information and making new friends. For example, sites like
Flickr, YouTube, Facebook or Twitter allow users to create content, publish photos,
comment on content other users shared, tag content and socially connect with other
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users in the form of subscriptions or friendships. Consequently, social networking
sites affect how people communicate and interact with each other.

One fundamental problem in social networks is the identification of groups of
elements (users, posts or other elements) when group membership is not explicitly
available. A group, or community, can be defined as a set of elements that interact
more frequently or are more similar to other community members than to outsiders.
Community detection has proven to be valuable in diverse domains such as biology,
social sciences and bibliometrics. As a result, several community detection methods
have been developed based on techniques from a variety of disciplines. Given the
heterogeneity of real-world networks, one question that arises is how to effectively
evaluate the algorithms.

Motivated by the lack of studies analysing the problem of community detection
over real-world social media networks, this chapter focused on the analysis of
the performance of community detection algorithms over such type of networks
(particularly over Twitter and Flickr) including the effect of diverse metrics for
assessing community membership. To that end, it was also explored how to
quantify the structural properties of the discovered communities in terms of several
quality metrics. The obtained results exposed the sensitivity of community detection
algorithms to the density and structure of the underlying graph distribution, and
hence their lack of robustness. Results showed that the Louvain algorithm achieved
high-quality communities for almost every analysed combination of relationships,
reinforcing its capabilities and stability for accurately discovering community
structures, as claimed by [44]. Moreover, the study showed the relation and
dependence of several quality metrics. Finally, as regards community membership,
most of the analysed metrics obtained similar results. Nonetheless, those results
varied according to the analysed dataset, highlighting the importance of considering
the intrinsic characteristics of the social network under analysis for the community
detection process.
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