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Preface

Sharing economy refers to a market model that enables and facilitates the sharing of
access to goods and services. For example, Uber allows riders to share a car. Airbnb
allows homeowners to share their extra rooms with renters. Groupon crowdsources
demands, enabling customers to share the benefit of discounted goods and services,
whereas Kickstarter crowdsources funds, enabling backers to fund a project jointly.
Unlike the classic supply chain settings in which a firm makes inventory and supply
decisions, in a sharing economy, supply is crowdsourced and can be modulated by a
platform. The matching-supply-with-demand process in a sharing economy requires
novel perspectives and tools to address challenges and identify opportunities.

This edited book examines the challenges and opportunities arising from today’s
sharing economy from an operations management perspective. Individual chapter
authors present state-of-the-art research that examines the general impact of sharing
economy on production and consumption, the intermediary role of a sharing plat-
form, crowdsourcing management, and various context-based operational problems.

Toronto, Canada Ming Hu
March 2018
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Chapter 1
Introduction

Ming Hu

Abstract This introduction provides an overview of the book with highlights of all
chapters.

This book aims to address what it takes to be successful in today’s sharing
economy from an operational perspective. Sharing economy may refer to an online
platform that enables individuals or small entities as buyers and sellers to “transact”
effectively and efficiently or a market model that allows sharing of access to
goods and services. Operations management has the tradition of coming from and
going back to real-life applications. It deals with the management of the processes
of matching supply with demand. The emerging business processes in a sharing
economy call for active management, as well as adequate attention from operations
researchers. However, as the business side of a sharing economy is still emerging
and rapidly evolving, there is a lack of a comprehensive overview of ongoing
academic efforts in addressing its operational problems. To fill the void, this book
is, to the best of our knowledge, the first to present cutting-edge research on sharing
economy from globally recognized field experts organized in one place. For future
research directions, a good resource is Chen et al. (2018).

1.1 Overall Structure

This book is comprised of 21 chapters that are divided into four parts.

• The first part (Chaps. 2, 3, 4, and 5) explores the general impact of sharing
economy on the production, consumption, and society. For example, with
sharing dynamics taken into account, how the sharing economy affects the
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2 M. Hu

consumption of goods and services and consumer welfare. Moreover, the section
also highlights operational opportunities and challenges of a sharing economy.

• The second part (Chaps. 6, 7, 8, 9, 10, 11, 12, and 13) explores the intermediary
role of a sharing platform that matches crowdsourced supply with demand. The
decisions of the platform can be pricing decisions on the supply and demand
sides, detailed matching decisions at the operational level, or decisions about
capacity, information disclosure and payment schemes.

• The third part (Chaps. 14, 15, and 16) investigates the crowdsourcing man-
agement on a sharing platform with the goal to crowdsource both demand
(group buying) and supply, such as funds (crowdfunding) and innovative ideas
(tournament).

• The fourth part is (Chaps. 17, 18, 19, 20, and 21) dedicated to context-based
operational problems of popular sharing economy applications, for example, how
to dynamically rebalance bikes for a bike-sharing system, how to design service
zones for one-way carsharing services such as Car2Go, and for homeowners how
should they set prices on Airbnb.

Ultimately, the book introduces the reader to the fundamentals of operations in
sharing economy and highlights the latest research on the topic.

1.2 Chapter Highlights

1.2.1 Part I: Impact of Sharing Economy

1.2.1.1 Economic Impact

In Chap. 2, Saif Benjaafar, Guangwen Kong, Xiang Li, and Costas Courcoubetis
study an equilibrium model of peer-to-peer product sharing, or collaborative
consumption, where individuals with different usage levels make decisions about
whether to own or rent a homogenous product. Owners can generate income
from renting their products to non-owners while non-owners can access these
products through renting. The authors characterize equilibrium outcomes, including
ownership and usage levels, consumer surplus, and social welfare. They compare
these equilibrium outcomes in systems with and without collaborative consumption
and examine the impact of various problem parameters. Their findings indicate
that collaborative consumption can result in either lower or higher ownership and
usage levels, with higher ownership and usage levels more likely when the cost of
ownership is high.

In Chap. 3, Baojun Jiang and Lin Tian also examine the strategic and economic
impact of product sharing among consumers. Consumers buy many products but
end up not fully utilizing them. A product owner’s self-use values can differ
over time, and in a period of low self-use value, the owner may rent out her
product in a product-sharing market. Transaction costs in the sharing market have
a non-monotonic effect on the manufacturer’s profits, consumer surplus, and social
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welfare. When the manufacturer strategically chooses its retail price, consumers’
sharing of products with high marginal costs is win-win both for the firm and
the consumers, whereas their sharing of products with low marginal costs can
be lose-lose. Moreover, in the presence of a sharing market, the firm will find
it optimal to strategically increase its quality, leading to higher profits but lower
consumer surplus. Lastly, within a distribution channel framework, product sharing
can sometimes benefit the downstream retailer at the expense of the upstream
manufacturer.

1.2.1.2 Operational Opportunity and Challenge

In Chap. 4, Tunay Tunca builds a framework for identifying, describing and
analyzing operational factors that shape the efficiency of a sharing economy. In
particular, these factors are: (1) utilization of sunk and fixed costs, (2) utilization
of bit-sized resources, (3) utilization of human idle time, (4) utilization of networks
to lower barriers to entry into workforce and markets and (5) assigning people new
operational and economic roles. Then he discusses some potential downsides and
pitfalls that arise as the side effects of these operational efficiencies of the sharing
economy business models and foreseeable regulatory issues that may need attention.

In Chap. 5, Siddhartha Banerjee and Ramesh Johari outline the main challenges
of ridesharing platforms in various aspects such as large-scale learning, real-time
stochastic control, and market design. The authors present an approach to modeling,
optimizing, and reasoning about such platforms, and describe how rigorous analysis
has been used with great success in designing efficient algorithms for real-time
decision making, in informing the market design aspects of these platforms, and
in understanding the impact of these platforms in a broader societal context.

1.2.2 Part II: Intermediary Role of a Sharing Platform

1.2.2.1 Intermediation via Pricing and Matching

The following three chapters are primarily motivated by ridesharing platforms.
In Chap. 6, Gerard Cachon, Kaitlin Daniels, and Ruben Lobel focus on two-

sided pricing as a moderating mechanism. The platforms may charge consumers
prices and pay individual service providers wages, conditional on market conditions.
The authors study several pricing schemes, with a specific focus on a contingent
pricing policy that requires wages to be a fixed commission rate of dynamic prices.
Although this heuristic policy is not optimal, it is shown to generally achieve nearly
the optimal profit. As labor becomes more expensive, consumers are better off with
the heuristic contingent pricing policy relative to fixed pricing, because they benefit
both from lower prices during normal demand and expanded access to service during
peak demand.
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In Chap. 7, Jiaru Bai, Rick So, Chris Tang, Xiqun Chen, and Hai Wang also study
two-sided pricing in a sharing economy. They adopt a queueing model with both the
supply and demand endogenously dependent on the price the platform charges its
customers and the wage the platform pays its independent providers. The authors
use the steady-state performance in equilibrium to characterize the optimal price,
optimal wage and optimal commission rate that maximize the profit of the platform.
They find that it is optimal for the platform to offer time-dependent commission
rates by providing a higher rate during peak hours and a lower rate otherwise.

In Chap. 8, Yiwei Chen, Ming Hu, and Yun Zhou study the pricing and matching
decisions of a platform in simultaneously managing the supply and demand.
First, the authors explore how the platform could optimally set the price and
wage for a single service or product in different market conditions, and provide
provable performance guarantee for the fixed commission contract. Second, even
with determined pricing decisions, the platform still faces the task of matching
customers with suppliers. Then they consider a stochastic, dynamic model with
multiple demand types to be matched with multiple supply types over a planning
horizon. They characterize the optimal matching policy by determining the priorities
of the demand-supply pairs, under a sufficient condition on the reward structure.
Finally, they study the joint pricing and matching decision by a platform for a single
service or product and take into account suppliers’ and customers’ forward-looking
behavior. They propose a simple heuristic policy and show it is asymptotically
optimal when both sides of the market have sufficiently large volumes.

1.2.2.2 Intermediation via Information and Payment

In Chap. 9, Gad Allon, Achal Bassamboo, and Eren Çil study large-scale, web-
based service marketplaces, where many small service providers compete among
themselves in catering to customers with diverse needs. Customers who frequent
these marketplaces seek quick resolutions and thus are usually willing to trade prices
with waiting times. They discuss the role of the moderating platform in facilitating
information gathering, operational efficiency, and communication among agents
in such service marketplaces. Perhaps surprisingly, they show that operational
efficiency may be detrimental to the overall efficiency of the marketplace. Then
they establish that to reap the expected gains of operational efficiency for the
marketplace, the moderating platform may need to complement the operational
efficiency by enabling communication among its agents.

In Chap. 10, Kostas Bimpikis and Yiangos Papanastasiou focus on the informa-
tion disclosure as a moderating scheme to incentivize customers to take system-
optimal actions. Crowd-sourced content in the form of online product reviews or
recommendations is an integral feature of most Internet-based service platforms
and marketplaces. Customers may find such information useful when deciding
among potential alternatives; at the same time, the process of generating such
content is mainly driven by the customers’ decisions themselves. The authors
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focus on a platform that can potentially incentivize the actions of self-interested
customers by appropriately designing an information provision policy or a payment
scheme.

In Chap. 11, Ying-Ju Chen, Costis Maglaras, and Gustavo Vulcano study an
aggregated marketplace where potential buyers arrive and submit requests-for-
quotes. There are independent suppliers each modeled as a queueing system
that competes for these requests. Each supplier offers a bid that comprises a
fixed price and a dynamic target lead time, and the cheapest supplier wins the
order as long as the quote meets the buyer’s willingness to pay. The authors
characterize the asymptotic performance of this system as the demand and the
supplier capacities grow large and obtain insights into the equilibrium behavior
of the suppliers. To overcome the efficiency loss from supplier competition, they
propose a compensation-while-idling mechanism that the marketplace can impose:
each supplier gets monetary compensation from other suppliers during his idle time.
This mechanism induces suppliers to implement the centralized solution.

1.2.2.3 Intermediation in the Presence of Self-Scheduling Suppliers

Although the self-interested behavior of individual suppliers is an indispensable
feature of most of the previous chapters in Part II, the following chapters build on
classical operational models such as the newsvendor model and queueing systems
and focus specifically on incorporating the self-scheduling behavior of individual
suppliers.

In Chap. 12, Itai Gurvich, Martin Lariviere, and Antonio Moreno study capacity
management of a service provider over a horizon when its workers have the
flexibility to choose when they will (or will not) work and optimize their schedules
based on the offered compensation and individual availability. The authors provide
an augmented newsvendor formula to capture the tradeoffs for the firm and the
agents. If the firm could keep the flexibility but have direct control of agents for
the same wages, it would not only generate higher profit, as it is expected, but
would also provide better service levels to its customers. If the agents require a
“minimum wage” to remain in the agent pool, they will have to relinquish some
of their flexibility. To pay a minimum wage, the firm must restrict the number of
agents that can work in some time intervals. If the pool of agents is sufficiently
large relative to peak demand, the firm benefits from self-scheduling behavior of
individual suppliers.

In Chap. 13, Rouba Ibrahim also focuses on the self-scheduling behavior of
individual workers. When such behavior is allowed, the number of workers available
in any period is uncertain. She adopts a queueing-theoretic framework to study the
effective management of service systems where the number of available agents is
random. She begins by surveying some theoretical results on the control of queueing
systems with uncertainty in the number of servers. Then, she illustrates how to apply
those theoretical results to study the problems of staffing and controlling queueing
systems with self-scheduling workers and impatient, time-sensitive, customers.
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1.2.3 Part III: Crowdsourcing Management

1.2.3.1 Group Buying and Crowdfunding

In Chap. 14, Ming Hu, Mengze Shi, and Jiahua Wu investigate the two popular
business models, namely, online group buying and crowdfunding. The former
crowdsources demand, and the latter crowdsources funds. Both share the same
unique feature of an all-or-nothing mechanism, where transactions will take place
only if the total number of committed purchases or pledges exceeds a specified
threshold within a specified period. The authors seek to understand the impact of
the all-or-nothing mechanism on consumer behavior, as well as the optimal design
of such mechanisms from the perspective of third-party platforms like Groupon
and Kickstarter. First, using a dataset from the online group buying industry, they
empirically identify two types of threshold-induced effects on consumer behavior.
Next, they study the optimal design of all-or-nothing mechanisms from two different
perspectives, namely, information disclosure and pricing.

In Chap. 15, Simone Marinesi, Karan Girotra, and Serguei Netessine study group
buying and its impact on a service provider. They model a capacity-constrained
firm offering service to a random-sized population of strategic customers in two
representative time periods, a desirable hot period and a less desirable slow period.
They show that strategic consumer behavior under group buying with an all-or-
nothing threshold increases the firm’s profits. When threshold discounts are offered
through an intermediary platform, arrangements often used in practice distort the
incentives of the intermediary, and typically result in a higher discount and a lower
activation threshold relative to what would be optimal for the service firm. The
authors consider alternative deal designs and find that the best designs compromise
the service provider’s flexibility to provide customers with clear offer terms.

1.2.3.2 Crowdsourcing Contest

In Chap. 16, Laurence Ales, Soo-Haeng Cho, and Ersin Körpeoğlu present a general
model framework of innovation contests, in which an organizer crowdsources
solutions to an innovation-related problem from a group of independent agents.
Agents, who can be heterogeneous in their ability levels, exert efforts to improve
their solutions, and their solution qualities are uncertain due to the innovation
and evaluation processes. The framework captures main features of a contest and
encompasses several existing models in the literature. Using this framework, the
authors analyze two critical decisions of the organizer: a set of awards that will be
distributed to agents and whether to restrict entry to a contest or to run an open
contest. They provide a taxonomy of the contest literature and discuss past and
current research on innovation contests as well as a set of exciting future research
directions.
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1.2.4 Part IV: Context-Based Operational Problems in Sharing
Economy

1.2.4.1 Bike Sharing

In Chap. 17, Mabel Chou, Qizhang Liu, Chung-Piaw Teo, and Deanna Yeo develop
practical operations models to support decision making in the design and manage-
ment of public bicycle-sharing systems. They develop a network flow model with
proportionality constraints to estimate the flow of bicycles within the network, and
to estimate the number of trips and the number of docks needed at each station.
The authors also examine the impact of periodic redistribution of bicycles in the
network. The same approach can be extended to incorporate the decisions of station
locations, by taking into account the proportional flow constraints into a mixed-
integer programming formulation. Using a set of bus transit data, they implemented
this approach to identify the ideal locations for the bicycle stations in a new town of
Singapore.

In Chap. 18, Daniel Freund, Shane Henderson, and David Shmoys also discuss
planning methods for bike-sharing systems. They study specific questions such as
decisions related to the number of docks to allocate to each station, how to rebalance
the system by moving bikes to match demand, and how to expand the network.
They discuss linear integer programming models, specially-tailored optimization
algorithms, and simulation methods. All of these methods rely on a careful statistical
analysis of bike-sharing data, which they also briefly review. This chapter is based
on their 4-year collaboration with Citi Bike in New York City, and its parent
company Motivate.

1.2.4.2 Vehicle Sharing

In Chap. 19, Long He, Ho-Yin Mak, and Ying Rong study the free-float model
of vehicle sharing, which allows users to start and end rentals at any location
within a defined service region. Compared with conventional models of vehicle
sharing, the free-float model offers its users the flexibility to make one-way, two-
way and multi-stop trips, and as a result, provides a more viable alternative to
individual vehicle ownership. On the other hand, the flexibility of the free-float
model leads to many operations management challenges that must be overcome for
such vehicle sharing systems to be economically sustainable. The authors review
several operations management problems in vehicle sharing including system
design, vehicle repositioning, fleet sizing, dynamic pricing and reservation policy. In
particular, they discuss the optimization models for service region design and fleet
repositioning.
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1.2.4.3 Short-Term Rental

In Chap. 20, Jun Li, Antonio Moreno, and Dennis J. Zhang study Airbnb, the largest
marketplace that allows people to rent short-term lodging from property owners.
One of the distinct features of such a sharing-economy marketplace is that the
supply side includes individual nonprofessional decision makers, in addition to firms
and professional agents. Using a data set of prices and availability of listings on
Airbnb, the authors find that there exist substantial differences in the operational
and financial performance of professional and nonprofessional hosts. They provide
empirical evidence to explain such performance differences between professionals
and nonprofessionals: nonprofessional hosts are less likely to offer contingent rates
across stay dates based on the underlying demand patterns.

1.2.4.4 Online Advertising

In Chap. 21, Santiago Balseiro, Ozan Candogan, and Huseyin Gurkan study online
advertising, in which impressions are sold to advertisers via real-time auctions
organized by central platforms referred to as ad exchanges. Advertisers participate
in the auctions run by exchanges through intermediaries which acquire impressions
on their behalf. Intermediaries are specialized entities that provide targeted services
for a particular segment of the market, and typically there are multiple stages of
intermediation. Moreover, an advertiser may have private information, e.g., budget,
targeting criterion or value attributed to an impression. First, the authors study
the mechanism design problem of an intermediary who offers a contract to an
advertiser with a private budget and a private targeting criterion. They characterize
the optimal mechanism and establish that the presence of the intermediary results
in more straightforward bidding policies. Next, they study the strategic interaction
among intermediaries organized in a chain network. They characterize a subgame
perfect equilibrium of the resulting game among intermediaries and show that the
most profitable position in the intermediation chain depends on the underlying value
distribution of the advertiser.

References
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Chapter 2
Peer-to-Peer Product Sharing

Saif Benjaafar, Guangwen Kong, Xiang Li, and Costas Courcoubetis

Abstract We describe an equilibrium model of peer-to-peer product sharing,
or collaborative consumption, where individuals with varying usage levels make
decisions about whether or not to own a homogenous product. Owners are able to
generate income from renting their products to non-owners while non-owners are
able to access these products through renting on as needed basis. We characterize
equilibrium outcomes, including ownership and usage levels, consumer surplus,
and social welfare. We compare each outcome in systems with and without
collaborative consumption and examine the impact of various problem parameters.
Our findings indicate that collaborative consumption can result in either lower
or higher ownership and usage levels, with higher ownership and usage levels
more likely when the cost of ownership is high. Our findings also indicate that
consumers always benefit from collaborative consumption, with individuals who, in
the absence of collaborative consumption, are indifferent between owning and not
owning benefitting the most. We study both profit maximizing and social welfare
maximizing platforms and compare equilibrium outcomes under both in terms of
ownership, usage, and social welfare. We find that the difference in social welfare
between the profit maximizing and social welfare maximizing platforms is relatively
modest.

This chapter is based on the paper “Peer-to-Peer Product Sharing: Implications for Ownership,
Usage and Social Welfare in the Sharing Economy”, Published Online: 16 May 2018 in
Management Science, https://doi.org/10.1287/mnsc.2017.2970
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2.1 Introduction

We are witnessing, across a wide range of domains, a shift away from the exclusive
ownership and consumption of resources to one of shared use and consumption.
This shift is taking advantage of innovative new ways of peer-to-peer sharing
that are voluntary and enabled by internet-based exchange markets and mediation
platforms. Value is derived from the fact that many resources are acquired to satisfy
infrequent demand but are otherwise poorly utilized (for example, the average car
in the US is used less than 5% of the time). Several successful businesses in the
US and elsewhere, such as Getaround for cars, Spinlister for bikes, 3D Hubs for
3D printers, LiquidSpace for office space, MachineryLink for farm equipment and
JustPark for parking, provide a proof of concept and evidence for the viability of
peer-to-peer product sharing or collaborative consumption (the term we use in the
rest of the chapter). These businesses and others allow owners to rent on a short-term
basis poorly utilized assets and non-owners to access these assets through renting
on an as-needed basis. Collectively, these businesses and other manifestations of
the collaborative consumption of products and services are giving rise to what is
becoming known as the sharing economy.1

The peer-to-peer sharing of products is not a new concept. However, recent
technological advances in several areas have made it more feasible by lowering the
associated search and transaction costs. These advances include the development
of online marketplaces, mobile devices and platforms, electronic payments, and
two-way reputation systems whereby users rate providers and providers rate
users. Other drivers behind the rise of collaborative consumption are societal and
include increased population density in urban areas around the world, increased
concern about the environment (collaborative consumption is viewed as a more
sustainable alternative to traditional modes of consumption), and increased desire
for community and altruism among the young and educated.

Collaborative consumption has the potential of increasing access while reducing
investments in resources and infrastructure. In turn, this could have the twin benefit
of improving consumer welfare (individuals who may not otherwise afford a product
now have an opportunity to use it) while reducing societal costs (externalities,
such as pollution that may be associated with the production, distribution, use,
and disposal of the product). It also has the potential of providing a source
of net income for owners by monetizing poorly utilized assets, which are in
some cases also expensive and rapidly depreciating. Take cars for example. The
availability of a sharing option could lead some to forego car ownership in favor

1The term sharing economy has been used to refer to businesses that enable the foregoing of
ownership in favor of “on-demand” access. In several cases, this involves a single entity that
owns the physical assets (e.g., Zipcar for short term car rentals). It also encompasses the peer-
to-peer provisioning of services (e.g., Uber for transportation services, TaskRabbit for errands, and
Postmates for small deliveries). For further discussion and additional examples, see Botsman and
Rogers (2010), Malhotra and Van Alstyne (2014), Cusumano (2014), and Chase (2015).
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of on-demand access. In turn, this could result in a corresponding reduction in
congestion and emissions and, eventually, in reduced investments in roads and
parking infrastructure. However, increased collaborative consumption may have
other consequences, some of which may be undesirable. For example, greater
access to cars could increase car usage and, therefore, lead to more congestion and
pollution if it is not accompanied by a sufficient reduction in the numbers of cars.2

It could also lead to speculative investments in cars and price inflation, or affect the
availability and pricing of other modes of public transport, such as taxis, buses, and
trains.

Collaborative consumption raises several important questions. How does col-
laborative consumption affect ownership and usage of resources? Is it necessarily
the case that collaborative consumption leads to lower ownership, lower usage, or
both (and therefore to improved environmental impact)? If not, what conditions
would favor lower ownership, lower usage, or both? Who benefits the most from
collaborative consumption among owners and renters? To what extent would a profit
maximizing platform, through its choice of rental prices, improve social welfare? To
what extent do frictions, such as extra wear and tear renters place on rented resources
and inconvenience experienced by renters affect platform profit and social welfare?

In this chapter, we address these and other related questions. We describe an
equilibrium model of peer-to-peer product sharing, where individuals with varying
usage levels make decisions about whether or not to own a homogenous product.
In the presence of collaborative consumption, owners are able to generate income
from renting their products to non-owners while non-owners are able to access these
products through renting. The matching of owners and renters is facilitated by a
platform, which sets the rental price and charges a commission fee.3 Because supply
and demand can fluctuate over the short run, we allow for the possibility that an
owner may not always be able to find a renter when she puts her product up for
rent. Similarly, we allow for the possibility that a renter may not always be able to
find a product to rent when he needs one. We refer to the uncertainty regarding the
availability of renters and products as matching friction and describe a model for
this uncertainty. We also account for the cost incurred by owners due to the extra

2An article in the New York Times (2015) notes that “The average daytime speed of cars in
Manhattan’s business districts has fallen to just under 8 miles per hour this year, from about 9.15
miles per hour in 2009. City officials say that car services like Uber and Lyft are partly to blame.
So Mayor Bill de Blasio is proposing to cap their growth.” Note that, although the peer-to-peer
product sharing we consider is different from the type of product sharing enabled by Uber (which
requires the involvement of the owner as a service provider), the two share similarities in that they
provide non-owners with access to a product without having to own it.
3A variety of pricing approaches are observed in practice. Some platforms allow owners to choose
their own prices. Others (e.g., DriveMycar) determine the price. There are also cases where the
approach is hybrid, with owners determining a minimum acceptable price but allowing the platform
to adjust it higher (e.g., Turo), or with the platform suggesting a price (e.g., JustShareIt) but
allowing owners to deviate. From conversations the authors had with several industry executives,
there appears to be a push toward platform pricing, with several platforms investing in the
development of sophisticated pricing engines to support owners.
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wear and tear that a renter places on a rented product and for the inconvenience cost
experienced by renters for using a product that is not their own.

For a given price and a commission rate, we characterize equilibrium ownership
and usage levels, consumer surplus, and social welfare. We compare each in systems
with and without collaborative consumption and examine the impact of various
problem parameters including price, commission rate, cost of ownership, extra wear
and tear cost, and inconvenience cost. We also do so when the price is a decision
made by the platform to maximize either profit or social welfare. Our main findings
include the following:

• Depending on the rental price, we show that collaborative consumption can
result in either higher or lower ownership. In particular, we show that when the
rental price is sufficiently high (above a well-specified threshold), collaborative
consumption leads to higher ownership. We show that this threshold is decreasing
in the cost of ownership. That is, collaborative consumption is more likely to
lead to more ownership when the cost of ownership is high (this is because
collaborative consumption allows individuals to offset the high ownership cost
and pulls in a segment of the population that may not otherwise choose to own).

• Similarly, we show that collaborative consumption can lead to either higher or
lower usage, with usage being higher when price is sufficiently high. Thus, it is
possible for collaborative consumption to result in both higher ownership and
higher usage (it is also possible for ownership to be lower but usage to be higher
and for both ownership and usage to be lower).

• These results continue to hold in settings where the rental price is determined
by a profit maximizing or a social welfare maximizing platform. In particular,
collaborative consumption can still lead to either higher or lower ownership and
usage with higher ownership and usage more likely when the cost of ownership
is higher.

• We show that consumers always benefit from collaborative consumption, with
individuals who, in the absence of collaborative consumption, are indifferent
between owning and not owning benefitting the most. This is because among
non-owners those with the most usage (and therefore end up renting the most)
benefit the most from collaborative consumption. Similarly, among owners, those
with the least usage (and therefore end up earning the most rental income) benefit
the most.

• For a profit maximizing platform, we show that profit is not monotonic in the
cost of ownership, implying that a platform is least profitable when the cost of
ownership is either very high or very low (those two extremes lead to scenarios
with either mostly renters and few owners or mostly owners and few renters). The
platform is most profitable when owners and renters are sufficiently balanced.
For similar reasons, social welfare is also highest when owners and renters are
sufficiently balanced.

• We observe that profit is also not monotonic in the extra wear and tear renters
place on a rented product, implying that a platform may not always have an
incentive to reduce this cost. This is because the platform can leverage this cost
to induce desirable ownership levels without resorting to extreme pricing, which
can be detrimental to its revenue.
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The rest of the chapter is organized as follows. In Sect. 2.2, we provide a review
of related literature. In Sect. 2.3, we describe our model. In Sect. 2.4, we provide
an analysis of the equilibrium. In Sect. 2.5, we consider the platform’s problem.
In Sect. 2.6, we offer concluding comments. Proofs and various extensions of the
analysis can be found in the full length paper Benjaafar et al. (2018).

2.2 Literature Review

Our work is related to the literature on peer-to-peer markets (see Einav et al. 2016 for
a recent review). Within this literature, there is a small but growing stream that deals
with peer-to-peer markets with collaborative consumption features. Fradkin et al.
(2015) studies sources of inefficiency in matching buyers and suppliers in online
market places. Using a counterfactual study, they show how changes to the ranking
algorithm of Airbnb can improve the rate at which buyers are successfully matched
with suppliers. Zervas et al. (2015) examine the relationship between Airbnb supply
and hotel room revenue and find that an increase in Airbnb supply has only a
modest negative impact on hotel revenue. Cullen and Farronato (2018) describe a
model of peer-to-peer labor marketplaces. They calibrate the model using data from
TaskRabbit and find that supply is highly elastic, with increases in demand matched
by increases in supply per worker with little or no impact on price.

Papers that are closest in spirit to ours are Fraiberger and Sundararajan (2015)
and Jiang and Tian (2018). Fraiberger and Sundararajan (2015) describe a dynamic
programming model where individuals make decisions in each period regarding
whether to purchase a new car, purchase a used a car, or not purchase anything.
They model matching friction, as we do, but assume that the renter-owner matching
probabilities are exogenously specified and not affected by the ratio of owners to
renters (in our case, we allow for these to depend on the ratio of owners to renters
which turns out to be critical in the decisions of individuals on whether to own
or rent). They use the model to carry out a numerical study. For the parameter
values they consider, they show that collaborative consumption leads to a reduction
in new and used car ownership, an increase in the fraction of the population who
do not own, and an increase in the usage intensity per vehicle. In this chapter,
we show that ownership and usage can actually either increase or decrease with
collaborative consumption and provide analytical results regarding conditions under
which different combinations of outcomes can occur. We also study the decision of
the platform regarding pricing and the impact of various parameters on platform
profitability.

Jiang and Tian (2018) describe a two-period model, where individuals first decide
on whether or not to own a product. This is followed by owners deciding in each
period on whether to use the product themselves or rent it. They assume that demand
always matches supply through a market clearing price and do not consider, as we
do, the possibility of a mismatch, because of matching friction, between supply and
demand. They focus on the decision of the product manufacturer. In particular, they
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study how the manufacturer should choose its retail price and product quality in
anticipation of sharing by consumers. In contrast, we focus on the decision of the
platform which in our case decides on the rental price.

Empirical studies that examine the impact of peer-to-peer product sharing on
ownership and usage are scarce. Clark et al. (2014) present results from a survey
of British users of a peer-to-peer car sharing service. They find that peer-to-peer car
sharing has led to a net increase in the number of miles driven by car renters. van der
Linden and Franciscus (2016) examine differences in the prevalence of peer-to-peer
car sharing among several European cities. They find that peer-to-peer car sharing is
more prevalent in cities where a larger share of trips is taken by public transport and
where there is a city center less suitable for car use. Ballus-Armet et al. (2014) report
on a survey in San Francisco of public perception of peer-to-peer car sharing. They
find that approximately 25% of surveyed car owners would be willing to share their
personal vehicles through peer-to-peer car sharing, with liability and trust concerns
being the primary deterrents. They also find that those who drive almost every day
are less likely to rent through peer-to-peer car sharing, while those who use public
transit at least once per week are more likely to do so. There are a few studies
that consider car sharing that involves a third party service provider, such as a car
rental company. For example, Nijland et al. (2015) (and also Martin and Shaheen
2011) find that car sharing would lead to a net decrease in car usage. On the other
hand, a study by KPMG (Korosec 2015) projects a significant increase in miles
driven by cars and attributes this to increased usage of on-demand transportation
services. In general, there does not appear to be a consensus yet on the impact of
car sharing on car usage and ownership. This chapter, by providing a framework for
understanding how various factors may affect product sharing outcomes, could be
useful in informing future empirical studies.

There is a growing body of literature that focuses on the concept of servicization.
Servicization refers to a business model under which a firm that supplies a product
to the market retains ownership of the product and instead charges customers per use
(e.g., printer manufacturers charging customers per printed page instead of charging
them for the purchase of a printer or car manufacturers renting cars on a short term
basis instead of selling them or leasing them on a long term basis). Agrawal and
Bellos (2017) examine the extent to which servicization affects ownership and usage
and the associated environmental impact.4 Orsdemir et al. (2017) evaluate both the
profitability and the environmental impact of servicization. Bellos et al. (2017) study
the economic and environmental implications of an auto manufacturer, in addition
to selling cars, offering a car sharing service. Additional discussion and examples of

4Under a servicization model, the firm can exert costly effort to improve certain characteristics
of the product such as its energy efficiency during use or its durability. This could lower the
corresponding operating costs, which in turn could result in higher usage. The phenomenon of
higher efficiency leading to more usage is commonly referred to as the rebound effect. See Greening
et al. [2000] for an overview and references. In our setting, the introduction of collaborative
consumption can lead, under some conditions, to higher ownership because of the rental income
owners derive from ownership.
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servicization can be found in Agrawal and Bellos (2017) and the references therein.
Peer-to-peer product sharing is different from servicization in that there is no single
entity that owns the rental units, with owners being simultaneously consumers and
suppliers of the market. As a result, the payoff of one side of the market depends
on the availability of the other side. This, coupled with the fact that supply and
demand are not guaranteed to be matched with each other, makes ownership and
usage decisions more complicated than those under servicization.

Finally, we note that collaborative consumption has the features of a two sided-
market (see for example Rochet and Tirole 2006; Weyl 2010; Hagiu and Wright
2015). Collaborative consumption is different from two-sided markets in several
ways, the most important of which is that the two sides are not distinct. In
collaborative consumption, being either an owner or a renter is a decision that
users of the platform make, with more owners implying fewer renters, and vice-
versa. Collaborative consumption shares also features of secondary markets for used
goods (see for example Waldman 2003). Markets with collaborative consumption
are different from those with a secondary market for used goods in that there is no
permanent transfer of ownership from the seller to the buyer and the usage by the
renter does not preclude usage by the owner.

2.3 Model Description

In this section, we describe our model of collaborative consumption. The model
is applicable to the case of peer to peer product sharing where owners make their
products available for rent when they are not using them and non-owners can rent
from owners to fulfill their usage needs. We reference the case of car sharing.
However, the model applies more broadly to the collaborative consumption of other
products. We consider a population of individuals who are heterogeneous in their
product usage, with their type characterized by their usage level ξ . We assume
that usage is exogenously determined (i.e., the usage of each individual is mostly
inflexible) and the utility derived by an individual with type ξ , u(ξ) is linear in ξ

with u(ξ) = ξ . We use a linear utility for ease of exposition and to allow for closed
form expressions. A linear utility has constant returns to scale, and, without loss
of generality, the utility derived from each unit of usage can be normalized to 1.
Also without loss of generality, we normalize the usage level to [0, 1], where ξ = 0
corresponds to no usage at all and ξ = 1 to full usage. We let f (ξ) denote the
density function of the usage distribution in the population.

We assume products are homogeneous in their features, quality, and cost of
ownership. In the absence of collaborative consumption, each individual makes a
decision about whether or not to own. In the presence of collaborative consumption,
each individual decides on whether to own, rent from others who own, or neither.
Owners incur the fixed cost of ownership but can now generate income by renting
their products to others who choose not to own. Renters pay the rental fee but avoid
the fixed cost of ownership.
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We let p denote the rental price per unit of usage that renters pay (a uniform
price is consistent with observed practices by certain peer-to-peer platforms when
the goods are homogenous). This rental price may be set by a third party platform
(an entity that may be motivated by profit, social welfare, or some other concern;
see Sect. 2.5 for further discussion). The platform extracts a commission from
successful transactions. We denote the commission rate as γ , where 0 ≤ γ < 1,
so that the rental income seen by the owner per unit of usage is (1 − γ )p. We
let α, where 0 ≤ α ≤ 1, denote the fraction of time in equilibrium that an owner,
whenever she puts her product up for rent, is successful in finding a renter. Similarly,
we denote by β, where 0 ≤ β ≤ 1, the fraction of time that a renter, whenever
he decides to rent, is successful in finding an available product (the parameters α

and β are determined endogenously in equilibrium). A renter resorts to his outside
option (e.g., public transport in the case of cars) whenever he is not successful
in finding a product to rent. The owner incurs a fixed cost of ownership, denoted
by c, which may include not just the purchase cost (if costs are expressed per
unit time, this cost would be amortized accordingly) but also other ownership-
related costs such as those related to storage and insurance. Whenever the product
is rented, the owner incurs an additional cost, denoted by do, due to extra wear
and tear the renter places on the product. Renters, on the other hand, incur an
inconvenience cost, denoted by dr (in addition to paying the rental fee), from using
someone else’s product and not their own. Without loss of generality, we assume that
c, p, do, dr ∈ [0, 1] and normalize the value of the outside option (e.g., using public
transport) to 0.

We assume that p(1 − γ ) ≥ do so that an owner would always put her product
out for rent when she is not using it. Note that usage corresponds to the portion of
time an owner would like to have access to her product, regardless of whether or
not she is actually using it. An owner has always priority in accessing her product.
Hence her usage can always be fulfilled. We also assume that p + dr ≤ 1 so
that a renter always prefers renting to the outside option. Otherwise, rentals would
never take place as the outside option is assumed to be always available. There are
of course settings where an individual would like to use a mix of options (e.g.,
different transportation methods). In that case, ξ corresponds to the portion of usage
that an individual prefers to fulfill using the product (e.g., a car and not public
transport).

The payoff of an owner with usage level ξ can now be expressed as

πo(ξ) = ξ + (1− ξ)α[(1− γ )p − do] − c, (2.1)

while the payoff of a renter as

πr(ξ) = βξ − β(p + dr)ξ. (2.2)

The payoff of an owner has three terms: the utility derived from usage, the income
derived from renting (net of the wear and tear cost), and the cost of ownership. The
income from renting is realized only when the owner is able to find a renter. The
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payoff of a renter is the difference between the utility derived from renting and the
cost of renting (the sum of rental price and inconvenience cost). A renter derives
utility and incurs costs whenever he is successful in renting a product.

An individual with type ξ would participate in collaborative consumption as an
owner if the following conditions are satisfied

πo(ξ) ≥ πr(ξ) and πo(ξ) ≥ 0.

The first constraint ensures that an individual who chooses to be an owner prefers
to be an owner to being a renter. The second constraint is a participation constraint
that ensures the individual participates in collaborative consumption. Similarly, an
individual with type ξ would participate in collaborative consumption as a renter if
the following conditions are satisfied

πr(ξ) ≥ πo(ξ) and πr(ξ) ≥ 0.

Noting that, for any given pair of α and β in [0, 1], πo(ξ)−πr(ξ) is monotonically
increasing and πr(ξ) ≥ 0 for ξ ∈ [0, 1], collaborative consumption would take place
if there exists θ ∈ (0, 1) such that

πo(θ) = πr(θ). (2.3)

The parameter θ would then segment the population into owners and renters, where
individuals with ξ > θ are owners and individuals with ξ < θ are renters (an
individual with ξ = θ is indifferent between owning and renting).

We refer to ω = ∫
[θ,1] f (ξ) dξ , the fraction of owners in the population,

as the ownership level or simply ownership. In addition, we refer to q(θ) =∫
[θ,1] ξf (ξ) dξ + β

∫
[0,θ] ξf (ξ) dξ , the total usage generated from the population,

as the usage level or simply usage. Note that the first term is usage due to owners,
and the second term is usage due to renters (and hence modulated by β).

2.3.1 Matching Supply with Demand

In the presence of collaborative consumption, let D(θ) denote the aggregate demand
(for rentals) generated by renters and S(θ) the aggregate supply generated by
owners, for given θ . Then, D(θ) = ∫[0,θ) ξf (ξ) dξ and S(θ) = ∫[θ,1](1−ξ)f (ξ) dξ .
Moreover, the amount of demand from renters that is fulfilled must equal the amount
of supply from owners that is matched with renters. In other words, the following
fundamental relationship must be satisfied

αS(θ) = βD(θ). (2.4)

The parameters α and β, along with θ , are determined endogenously in equilibrium.
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As mentioned earlier, matching friction can arise because of short term fluctua-
tions in supply and demand (even though overall supply and demand are constant in
the long run). This short term fluctuation may be due to the inherent variability in the
timing of individual rental requests or in the duration of individual rental periods.
Consequently, an available product may not find an immediate renter and a renter
may not always be able to find an available product. In constructing a model for α
and β, the following are desirable properties: (i) α (β) increases (deceases) in θ ;
(ii) α approaches 1 (0) when θ approaches 1 (0); (iii) β approaches 1 (0) when θ

approaches 0 (1), and (iv) α and β must satisfy the supply-demand relationship in
Eq. 2.4.

Below we describe a plausible model for the short term dynamics of matching
owners and renters. The model takes the view that in the short term (e.g., over the
course of a day) demand is not realized all at once but requests for rentals arise
continuously over time with random interarrival times. The intensity of the arrival
process is of course determined by the total demand (e.g., total demand per day). The
supply translates into individual products available for rent (for simplicity assume
that supply is realized all at once and does not fluctuate over the time during which
rental requests arrive). Once a product is rented, it becomes unavailable for the
duration of the rental time, which may also be random. Because of the randomness
in the interarrival times between requests and rental times per request, a request may
arrive and find all products rented out. Assuming renters do not wait for a product
to become available, such a request would then go unfulfilled. Also, because of this
randomness, a product may not be rented all the time even if total demand exceeds
total supply.

The dynamics described above are similar to those of a multi-server loss
queueing system.5 In such a system, 1 − β would correspond to the blocking
probability (the probability that a rental request finds all products rented out, or,
in queueing parlance, the arrival of a request finds all servers busy) while α would
correspond to the utilization of the servers (the probability that a product is being
rented out).

If we let m denote the mean rental time per rental, the arrival rate (in terms of
rental requests per unit time) is given by λ(θ) = D(θ)/m, and service capacity (the
number of rental requests that can be fulfilled per unit time) by μ(θ) = S(θ)/m.6

Therefore, we can express the workload (the ratio of the arrival rate to the service

5In a multi-server loss queueing system, customers arrive over time to receive service from a set of
identical servers. A customer who does not find an available server upon arrival leaves the system
without getting service. A customer who finds one or more available servers proceeds to receive
service from one of these servers. Service takes a specified amount of time. Upon completion of
service, the corresponding server becomes available. Both the interarrival and service times can be
stochastic (see Cooper 1981, for additional details).
6For example, suppose the aggregate demand for renting per unit time is D(θ) = 1000 h and the
aggregate supply for renting per unit time is S(θ) = 2000 h. If the average rental period is m = 5 h,
then the arrival rate and the service capacity of the system are respectively λ(θ) = D(θ)/m = 200
and μ(θ) = S(θ)/m = 400 requests per unit time.
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capacity) of the system as ρ(θ) = λ(θ)/μ(θ) = D(θ)/S(θ) and the utilization as
α = βλ(θ)/μ(θ) = βD(θ)/S(θ) (these relationships are of course consistent with
the supply-demand relationship in Eq. 2.4).

Assuming that we can approximate the arrival process by a Poisson process (this
is a reasonable assumption given that the arrival process arises from a continuum of
renters who make independent decisions about when to seek a rental), the blocking
probability, 1−β, can be approximated by 1−1/(1+ ρ) (see Benjaafar et al. 2018,
for details). This leads to the following approximation of α and β

α = ρ

1+ ρ
= D(θ)

S(θ)+D(θ)
, (2.5)

and

β = 1

1+ ρ
= S(θ)

S(θ)+D(θ)
. (2.6)

Note that α and β, as specified in the above expressions, satisfy the properties (i)–
(iv) described above. Interestingly, these expressions can also be obtained directly
from the supply-demand relationship in Eq. 2.4 if we require that α+β = 1 (Eqs. 2.5
and 2.6 are in that case the unique solution to Eq. 2.4).

The expressions in Eqs. 2.5 and 2.6 allow for both α and β to be strictly less than
one and for the possibility of matching friction for both owners and renters. In the
rest of the chapter, we rely on this approximation for our analysis. The model for α
and β specified by these expressions is not unique in satisfying properties (i)–(iv).
We expect other plausible models that satisfy these properties to lead to results that
are qualitatively similar to those we describe in the next two sections.

We are now ready to proceed with the analysis of the equilibrium. An equilibrium
under collaborative consumption exists if there exists (θ, α) ∈ (0, 1)2 that is a
solution to Eqs. 2.3 and 2.5. When it exists, we denote this solution by (θ∗, α∗).
Knowing the equilibrium allows us to answer important questions regarding product
ownership, usage, and social welfare, among others.

2.4 Equilibrium Analysis

In this section, we consider the case where the price is exogenously specified. In
Sect. 2.5, we treat the case where the price is chosen optimally by the platform. As
mentioned in Sect. 2.3, the rental price must satisfy do/(1− γ ) ≤ p ≤ 1−dr , since
otherwise, either the owners or renters will not participate. We denote the set of
admissible prices by A = [do/(1− γ ), 1− dr ]. For ease of exposition and to allow
for closed form expressions, we assume that ξ is uniformly distributed in [0, 1].

Letting θ denote the solution to πo(ξ) = πr(ξ) leads to

θ = c − ((1− γ )p − do)α

p + dr + (1− p − dr)α − ((1− γ )p − do)α
. (2.7)
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Given θ , the aggregate demand under collaborative consumption is given by D(θ) =
1
2θ

2 and the aggregate supply by S(θ) = 1
2 (1− θ)2. This leads to ρ(θ) = θ2 ·

(1− θ)−2, and by Eq. 2.5

α = θ2

(1− θ)2 + θ2
. (2.8)

An equilibrium exists if Eqs. 2.7 and 2.8 admit a solution (θ∗, α∗) in (0, 1)2.
In the following theorem, we establish the existence and uniqueness of such

an equilibrium. Let Ω = {(p, γ, c, do, dr )|c ∈ (0, 1), γ ∈ [0, 1), (do, dr ) ∈
[0, 1]2, p ∈ A}.
Theorem 1 A unique equilibrium (θ∗, α∗) exists for each (p, γ, c, do, dr ) ∈ Ω .
Moreover, θ∗ and α∗ both (i) strictly increase with the cost of ownership c,
commission rate γ and extra wear and tear cost do, and (ii) strictly decrease with
rental price p and inconvenience cost dr .

The existence of the equilibrium is guaranteed by the Intermediate Value Theorem.
The uniqueness is due to the monotonicity of Eqs. 2.7 and 2.8; see Benjaafar et al.
(2018) for a proof of this and all subsequent results.

Let ω∗ and q∗ denote the corresponding ownership and total usage in equilib-
rium. Then, ω∗ = 1 − θ∗ and q∗ = 1

2 (1− α∗θ∗2), where the expression for q∗
follows from noting that q∗ = ∫[θ∗,1] ξ dξ + β

∫
[0,θ∗] ξ dξ (note that total usage is

the sum of usage from the owners and the fraction of usage from the non-owners
that is satisfied through renting).

The following proposition describes how ownership and usage in equilibrium
vary with the problems parameters.

Proposition 2 In equilibrium, ownership ω∗ and usage q∗ both strictly increase
in price p and inconvenience cost dr , and strictly decrease in cost of ownership c,
commission rate γ and extra wear and tear cost do.

While the monotonicity results in Proposition 2 are perhaps expected, it is
not clear how ownership and usage under collaborative consumption compare to
those under no collaborative consumption. In the following subsection, we provide
comparisons between systems with and without collaborative consumption, and
address the questions of whether or not collaborative consumption reduces product
ownership and usage.

2.4.1 Impact of Collaborative Consumption on Ownership and
Usage

In the absence of collaborative consumption, an individual would own a product if
u(ξ) ≥ c and would not otherwise. Let θ̂ denote the solution to u(ξ) = c. Then,
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the fraction of the population that corresponds to owners (ownership) is given by
ω̂ = ∫[θ̂ ,1] f (ξ) dξ = 1−c, with an associated usage given by q̂ = ∫[θ̂ ,1] ξf (ξ) dξ =
1
2 (1− c2).

In the following proposition, we compare ownership level with and without
collaborative consumption. Without loss of generality, we assume here (and in the
rest of the chapter) that do/(1− γ ) < 1 − dr so that the set of admissible prices
consists of more than a single price.

Proposition 3 There exists pω ∈ (do/(1− γ ), 1−dr) such that ω∗ = ω̂ if p = pω,
ω∗ < ω̂ if p < pω, and ω∗ > ω̂ otherwise. Moreover, ∂pω/∂γ > 0, ∂pω/∂c < 0,
∂pω/∂do > 0, and ∂pω/∂dr < 0.

Proposition 3 shows that depending on the rental price p, collaborative consump-
tion can result in either lower or higher ownership. In particular, when the rental
price p is sufficiently high (above the threshold pω), collaborative consumption
leads to higher ownership (e.g., more cars). Moreover, the threshold pω is decreasing
in the cost of ownership c and renter’s inconvenience dr , and increasing in the
commission rate γ and extra wear and tear cost do. The fact that pω is decreasing
in c is perhaps surprising as it shows that collaborative consumption is more likely
to lead to more ownership (and not less) when the cost of owning is high. This
can be explained as follows. In the absence of collaborative consumption, when
the cost of ownership is high, there are mostly non-owners. With the introduction
of collaborative consumption, owning becomes more affordable as rental income
subsidizes the high cost of ownership. In that case, even at low rental prices, there
are individuals (those with high usage) who would switch to being owners. This
switch is made more attractive by the high probability of finding a renter (given
the high fraction of renters in the population). On the other hand,when the cost of
ownership is low, only individuals with low usage are non-owners. For collaborative
consumption to turn these non-owners into owners and lead to higher ownership,
the rental price needs to be high. This is also needed to compensate for the low
probability of finding a renter.

Similarly, usage can be either lower or higher with collaborative consumption
than without it. In this case, there is again a price threshold pq above which
usage is higher with collaborative consumption, and below which usage is higher
without collaborative consumption. When either do or dr is sufficiently high,
collaborative consumption always leads to higher usage. The result is formally
stated in Proposition 4.

Proposition 4 There exists t ∈ (0, 1) such that (i) if do/(1− γ )+dr < t , then there
exists pq ∈ (do/(1− γ ), 1 − dr) such that q∗ = q̂ if p = pq , q∗ < q̂ if p < pq ,
and q∗ > q̂ if p > pq ; (ii) otherwise, q∗ ≥ q̂ for all p ∈ [do/(1− γ ), 1− dr ].

Unlike pω, the price threshold pq is not monotonic in c (see Fig. 2.1). As c

increases, pq first increases then decreases. To understand the reason, note that
collaborative consumption can lead to higher usage due to the new usage from
non-owners. On the other hand, it can lead to lower usage if ownership decreases
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Fig. 2.1 Ownership and
usage for varying rental
prices and ownership costs
(higher/lower
ownership/usage is relative to
the case without collaborative
consumption; γ = 0.4,
do = dr = 0)

sufficiently (certainly to a level lower than that without collaborative consumption)
such that the decrease in usage from those who switch from owning to renting is
larger than the increase in usage from those who are non-owners. This implies
that lower usage is less likely to happen if either (i) the individuals who switch
from owning to renting can fulfill most of their usage via renting, or (ii) the usage
from non-owners is high. The first scenario is true when the population of owners is
high (i.e., the cost of ownership is low), whereas the second scenario is true when
the population of non-owners is high (i.e., cost of ownership is high). Therefore,
collaborative consumption is less likely to lead to lower usage when the cost of
ownership is either very low or very high. Hence, the threshold pq is first increasing
then decreasing in c. When the cost of ownership is moderate, there is a balance of
owners and non-owners without collaborative consumption, allowing for ownership
to sufficiently decrease with relatively moderate rental prices, which in turn leads to
lower usage and, correspondingly, a relatively higher threshold pq .

The following corollary to Propositions 3 and 4 summarizes the joint impact of
p and c on ownership and usage.

Corollary 5 In settings where pω and pq are well defined (per Propositions 3
and 4), collaborative consumption leads to higher ownership and higher usage
when p > pω, lower ownership but higher usage when pq < p ≤ pω, and lower
ownership and lower usage when p ≤ pq .

Corollary 5, along with Propositions 3 and 4, show how price thresholds
pω and pq segment the full range of values of c and p into three regions, in
which collaborative consumption leads to (i) lower ownership and lower usage,
(ii) lower ownership but higher usage, and (iii) higher ownership and higher usage.
These three regions are illustrated in Fig. 2.1. These results highlight the fact
that the impact of collaborative consumption on ownership and usage is perhaps
more nuanced than what is sometimes claimed by advocates of collaborative
consumption. The results could have implications for public policy. For example,
in regions where the cost of ownership is high, the results imply that, unless rental
prices are kept sufficiently low or the commission extracted by the platform is made
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Fig. 2.2 Impact of usage
level on consumer payoff
(θ∗ > c, p = 0.4, γ = 0.4,
c = 0.25, do = dr = 0)

sufficiently high, collaborative consumption would lead to more ownership and
more usage. This could be an undesirable outcome if there are negative externalities
associated with ownership and usage. Higher usage also implies less usage of the
outside option (e.g., less use of public transport).

2.4.2 Impact of Collaborative Consumption on Consumers

Next, we examine the impact of collaborative consumption on consumer payoff.
Consumer payoff is of course always higher with the introduction of collaborative
consumption (consumers retain the option of either owning or not owning, but now
enjoy the additional benefit of earning rental income if they decide to own, or of
fulfilling some of their usage through renting if they decide not to own). What is
less clear is who, among consumers with different usage levels, benefit more from
collaborative consumption.

Proposition 6 Let π∗(ξ) and π̂(ξ) denote respectively the consumer payoff with
and without collaborative consumption. Then, the difference in consumer payoff
π∗(ξ)− π̂(ξ) is positive, piecewise linear, strictly increasing on [0, c), and strictly
decreasing on [c, 1].

An important implication from Proposition 6 (from the fact that the difference
in consumer surplus π∗(ξ) − π̂(ξ) is strictly increasing on [0, c) and strictly
decreasing on [c, 1]) is that consumers who benefit the most from collaborative
consumption are those who are indifferent between owning and not owning without
collaborative consumption (recall that [c, 1] corresponds to the population of owners
in the absence of collaborative consumption). This can be explained by noting
that there are always three segments of consumers. In the case where θ∗ ≥ c

(see Fig. 2.2), which corresponds to the case where ownership decreases with
collaborative consumption, the first segment corresponds to consumers who are
non-owners in the absence of collaborative consumption and continue to be non-
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owners with collaborative consumption (indicated by “non-owners→non-owners”
in Fig. 2.2). The benefit these consumers derive from collaborative consumption is
due to fulfilling part of their usage through accessing a rented product. This benefit
is increasing in their usage.

The second segment corresponds to consumers who are owners in the absence
of collaborative consumption and switch to being non-owners with collaborative
consumption (indicated by “owners→non-owners”). These consumers have to give
up the fulfillment of some usage (because a rental product may not always be
available) and the amount they give up is increasing in their usage. Therefore,
the amount of benefit they receive from renting decreases in their usage level. The
third segment consists of consumers who are owners in the absence of collaborative
consumption and continue to be owners with collaborative consumption (indicated
by “owners→owners”). The benefit they experience is due to rental income. This
income is decreasing in their usage (they have less capacity to rent when they have
more usage). A similar explanation can be provided for the case where θ∗ < c.

2.5 The Platform’s Problem

In this section, we consider the problem faced by the platform. We first consider
the case of a for-profit platform whose objective is to maximize the revenue from
successful transactions. Then, we consider the case of a not-for-profit platform (e.g.,
a platform owned by a non-profit organization, government agency, or municipality)
whose objective is to maximize social welfare.7 We compare the outcomes of these
platforms in terms of ownership, usage and social welfare. We also benchmark the
social welfare of these platforms against the maximum feasible social welfare.

A platform may decide, among others, on the price and commission rate. In this
section, we focus on price as the primary decision made by the platform and treat
other parameters as being exogenously specified (a survey of major peer-to-peer
car sharing platforms worldwide reveals that commission rates fall mostly within a
relatively narrow range, from 30% to 40% for those that include insurance, and
do not typically vary across markets in which platforms operate). There are of
course settings where the price is a decision made by the owners. Price may then
be determined through a market clearing mechanism (i.e., the price under which
supply equals demand; see Jiang and Tian 2018). In our case, because of the friction
in matching supply and demand, the supply-demand balance equation in Eq. 2.4
can, per Theorem 1, be satisfied by any feasible price. Thus, the market clearing
price is not unique and the system may settle on a price that maximizes neither
social welfare nor platform revenue. Moreover, as we show in Sect. 2.5.1, platform

7An example of a not-for-profit platform is NeighborGoods, a peer-to-peer platform that facilitates
the sharing of household goods. NeighborGoods allows owners to earn a rental fee but does not
extract for itself a commission fee.
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revenue (or social welfare) can be highly sensitive to price, giving the platform
an incentive to optimize price. Platform pricing may also be beneficial to owners
as it can serve as a coordinating tool and reduce competition among them. More
significantly, and as we show in Sect. 2.5.2, the social welfare that results from a
for-profit platform tends to be close to that resulting from a not-for-profit platform.

In what follows, we provide detailed analysis for the for-profit and not-for-profit
platforms under the assumptions of Sect. 2.4. In Sects. 2.5.1, 2.5.2, and 2.5.3, we
consider the case where (do, dr ) = (0, 0). In Sect. 2.5.4, we discuss the case where
(do, dr ) �= (0, 0).

2.5.1 The For-Profit Platform

For a for-profit platform, the objective is to maximize γpαS(θ), the commission
income generated from the fraction of supply that is matched with demand. In
particular, the platforms optimization problem can be stated as follows.

max
p

vr(p) = γpαS(θ) (2.9)

subject to πo(θ) = πr(θ), (2.10)

α = D(θ)

D(θ)+ S(θ)
, (2.11)

do

1− γ
≤ p ≤ 1− dr . (2.12)

The constraints Eqs. 2.10 and 2.11 are the defining equations for the equilibrium
(θ∗, α∗). The constraint Eq. 2.12 ensures that price is in the feasible set A. In what
follows, we assume that γ > 0 (the platform’s revenue is otherwise always zero).

Under the assumptions of Sect. 2.4, the for-profit platform’s problem can be
restated as follows:

max
p

vr(p) = 1

2
γpα(1− θ)2 (2.13)

subject to constraints Eqs. 2.7 and 2.8 and p ∈ A. It is difficult to analyze Eq. 2.13
directly. However, as the map between θ and p is bijective, we can use Eqs. 2.7
and 2.8 to express p in terms of θ as

p(θ) = −θ
3 + 2cθ2 − 2cθ + c

θ(θ − 1)(γ θ − 1)
. (2.14)

Hence, Eq. 2.13 can be expressed as

max
θ

vr (θ) = γ

2

(1− θ)θ(θ3 − 2cθ2 + 2cθ − c)

((1− θ)2 + θ2)(γ θ − 1)
subject to θ ∈ [θ, θ ]

(2.15)
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where θ is the solution to (2.7) and (2.8) at p = 1, θ is the solution at p = 0,
and [θ, θ ] is the set of solutions induced by p ∈ [0, 1]. We can use (2.14) to verify
whether θ is in [θ, θ ]. Specifically, θ < θ if p(θ) > 1, θ ∈ [θ, θ ] if p(θ) ∈ [0, 1],
and θ > θ if p(θ) < 0.

Proposition 7 The function vr(θ) is strictly quasiconcave in θ .

Proposition 7 shows that the platform’s problem is not difficult to solve.
Depending on the value of γ and c, vr(θ) is either decreasing or first increasing then
decreasing on [θ, θ ]. In both cases, the optimal solution to (2.15), which we denote
by θ∗r , is unique. We let p∗r , ω∗r , and q∗r denote the corresponding price, ownership,
and usage, respectively. We also use the notation v∗r to denote the optimal revenue
vr(θ

∗
r ).

Proposition 8 The platform’s optimal revenue, v∗r , is strictly quasiconcave in c,
first strictly increasing and then strictly decreasing.

Proposition 8 suggests that a platform would be most profitable when the cost
of ownership is “moderate” and away from the extremes of being either very high
or very low. In these extreme cases, not enough transactions take place because
of either not enough renters (when the cost of ownership is low) or not enough
owners (when the cost of ownership is high). This is perhaps consistent with the
experience of iCarsclub, a peer-to-peer car sharing platform, that was first launched
in Singapore, a country where the cost of ownership is exceptionally high and
car ownership is low. iCarsclub struggled in Singapore and had to temporarily
suspend operations. However, it is thriving in China where it operates under the
name PPzuche and is present in several cities (Clifford Teo, CEO of iCarsclub,
personal communication, 2015). This result also implies that a platform may have an
incentive to affect the cost of ownership. For example, when the cost of ownership is
low, a platform may find it beneficial to impose a fixed membership fee on owners,
increasing the effective cost of ownership. On the other hand, when the cost of
ownership is high, the platform may find it beneficial to lower the effective cost of
ownership by offering, for example, subsidies (or assistance with financing) toward
the purchase of new products.

Proposition 9 There exists a threshold cr,ω ∈ (0, 1) such that optimal ownership
ω∗r = ω̂ if c = cr,ω, ω∗r < ω̂ if c < cr,ω, and ω∗r > ω̂ otherwise, with cr,ω strictly
increasing in γ .

Proposition 9 shows that it continues to be possible, even when the price is chosen
optimally by a revenue maximizing platform, for collaborative consumption to lead
to either higher or lower ownership. In particular, collaborative consumption leads
to higher ownership when the cost of ownership is sufficiently high (above the
threshold cr,ω) and to lower ownership when the cost of ownership is sufficiently
low (below the threshold cr,ω). This can be explained as follows. The platform has
an incentive to somewhat balance supply and demand (otherwise few rentals will
take place). When the cost of ownership is high, ownership is low in the absence of
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Fig. 2.3 Impact of
ownership cost on ownership
and usage (higher/lower
ownership/usage is relative to
the case without collaborative
consumption; γ = 0.4,
do = dr = 0)

collaborative consumption. In this case, the platform would try to induce, via higher
prices, higher ownership, so as to generate more supply (hence, the result that a
sufficiently high cost of ownership leads to higher ownership under collaborative
consumption).8 Similarly, when the cost of ownership is low, the platform would
try to induce lower ownership via lower prices, so as to generate more demand
(hence, the result that a sufficiently low cost of ownership leads to low ownership
under collaborative consumption).

We also observe that usage under platform pricing can be either higher or
lower than that without collaborative consumption. Again, there exists a threshold
cr,q < cr,ω in the cost of ownership, below which collaborative consumption leads to
lower usage and above which collaborative consumption leads to higher usage. The
impact of ownership cost on product ownership and usage under platform pricing is
illustrated in Fig. 2.3 (the platform optimal price corresponds to the dashed curve).

2.5.2 The Not-for-Profit Platform

For a not-for-profit platform, the objective is to maximize social welfare (i.e., the
sum of consumer surplus and platform revenue). Thus, the platform’s problem can
be stated as

max
p

vs(p) =
∫

[θ,1]
(ξ − c)f (ξ) dξ +

∫

[0,θ)
βξf (ξ) dξ, (2.16)

subject to constraints Eqs. 2.10, 2.11, and 2.12.

8This perhaps validates concerns expressed by the Singapore authorities that allowing peer-to-
peer car sharing would increase car usage and road congestion and their initial decision to restrict
peer-to-peer car rentals to evenings and weekends (Clifford Teo, CEO of iCarsclub, personal
communication, 2015).
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Under the assumptions of Sect. 2.4, the platform’s problem can be restated as
follows:

max
p

vs(p) = 1

2
(1− αθ2)− (1− θ)c (2.17)

subject to constraints Eqs. 2.7 and 2.8 and p ∈ A, or equivalently as

max
θ

vs(θ) = 1

2

(

1− θ4

(1− θ)2 + θ2

)

−(1−θ)c subject to θ ∈ [θ, θ ]. (2.18)

Analysis and results similar to those obtained for the for-profit platform can be
obtained for the not-for-profit platform. In particular, we can show that the social
welfare function, vs , is strictly concave in θ , indicating that computing the optimal
solution for the not-for-profit platform is also not difficult (we omit the details for
the sake of brevity). The result also implies that Eq. 2.18 admits a unique optimal
solution, which we denote by θ∗s , with a resulting optimal social welfare which we
denote by v∗s .

The following proposition characterizes θ∗s for varying values of γ .

Proposition 10 There exists a strictly positive decreasing function γs(c) such that
θ∗s ∈ (θ, θ) if γ < γs , and θ∗s = θ otherwise. Consequently, if γ ≤ γs(c), then

max
θ∈[θ,θ ]

vs = max
θ∈[0,1] vs.

Proposition 10 shows that θ∗s is an interior solution (satisfying (∂vs/∂θ)(θ
∗
s ) = 0)

if the commission rate is sufficiently low (below the threshold γs). Otherwise, it
is the boundary solution θ . In particular, θ∗s could never take the value of θ . An
important implication of this result is that, when γ < γs , a not-for-profit platform
that relies on price alone as a decision variable would be able to achieve the
maximum feasible social welfare (i.e., the social welfare that would be realized by a
social planner who can directly decide on the fraction of non-owners, θ ). Note that
this is especially true if the not-for-profit platform does not charge a commission fee
(i.e., γ = 0).

Similar to the case of the for-profit platform, we can also show that a not-for-
profit platform can lead to either higher or lower ownership or usage (relative to the
case without collaborative consumption). Again, there are thresholds cs,q < cs,ω in
the cost of ownership such that (i) ownership and usage are both lower if c ≤ cs,q ,
(ii) ownership is lower but usage is higher if cs,q < c ≤ cs,ω, and (iii) ownership
and usage are both higher if c > cs,ω.

In the following proposition, we compare outcomes under the for-profit and not-
for-profit platforms. In particular, we show that a not-for-profit platform would
always charge a lower price than a for-profit platform. Therefore, it would also
induce lower ownership and lower usage.
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Fig. 2.4 Impact of ownership
cost on social welfare
(γ = 0.2, do = dr = 0)

Proposition 11 Let p∗s , ω∗s and q∗s denote the optimal price, ownership and usage
levels under a not-for-profit platform, respectively. Then, p∗s ≤ p∗r , ω∗s ≤ ω∗r , and
q∗s ≤ q∗r .

A not-for-profit platform induces lower ownership by charging lower prices
because it accounts for the negative impact of the cost of ownership on social wel-
fare. In settings where there are negative externalities associated with ownership and
usage, the result in Proposition 11 shows that, even without explicitly accounting
for these costs, the not-for-profit platform would also lower such externalities (since
both ownership and usage are lower). The fact that social welfare is maximized at
prices lower than those that would be charged by a for-profit platform suggests that
a regulator may be able to nudge a for-profit platform toward outcomes with higher
social welfare by putting a cap on price.

Figure 2.4 illustrates the differences in social welfare between a system without
collaborative consumption and systems with collaborative consumption under
(a) a for-profit platform (a revenue-maximizing platform) and (b) a not-for-
profit platform (a social welfare-maximizing platform). Systems with collaborative
consumption can improve social welfare substantially, especially when the cost
of ownership is neither too high nor too low (in those extreme cases, there are
either mostly owners or mostly renters and, therefore, few transactions). However,
the differences in social welfare between the for-profit and not-for-profit platforms
are not very significant. This is because both platforms have a similar interest in
maintaining a relative balance of renters and owners.

2.5.3 Systems with Negative Externalities

In this section, we consider settings where there are negative externalities associated
with either usage or ownership. In that case, social welfare must account for the
additional cost of these externalities. In particular, the following additional terms



32 S. Benjaafar et al.

must be subtracted from the expression of social welfare in Eq. 2.16

eqq(θ)+ eωω(θ),

or equivalently

eq

(∫

[θ,1]
ξf (ξ) dξ + β

∫

[0,θ)
ξf (ξ) dξ

)

+ eω

∫

[θ,1]
f (ξ) dξ,

where eq and eω correspond to the social (or environmental) cost per unit of
usage and per unit of ownership, respectively. This is consistent with the so-called
lifecycle approach to assessing the social impact of using and owning products
(see, for example Reap et al. 2008). The parameter eq accounts for the social (or
environmental) cost of using a product not captured by the utility (e.g., the cost of
pollution associated with using a product), while eω would account for the social
cost of product manufacturing, distribution, and end-of-life disposal.

For a not-for-profit platform, the optimization problem can then be restated as

max
θ

ve(θ) = 1

2
(1− eq)

(

1− θ4

(1− θ)2 + θ2

)

− (c + eω)(1− θ)

subject to θ ∈ [θ, θ ].

It is easy to show that the modified social welfare function ve is still strictly
quasiconcave in θ . Moreover, the optimal solution, which we denote by θ∗e , is strictly
increasing in both eq and eω. As a result, the ownership and usage levels obtained
under eq > 0 and eω > 0 are lower than those obtained under eq = eω = 0.
Therefore, Proposition 11 continues to hold. However, Proposition 10 may no longer
be valid if either eq or eω is too large. That is, the platform may not be able to achieve
the maximum feasible social welfare even if the commission rate is negligible. In
this case, in order to achieve a higher social welfare, the platform may need to either
subsidize non-owners (e.g., improve rental experience by reducing inconvenience
cost) or penalize owners (e.g., make the ownership cost higher by charging extra tax
on ownership), in addition to setting a low rental price.

We conclude this section by addressing the question of whether collaborative
consumption reduces the total cost of negative externalities, eqq(θ) + eωω(θ).
Recall that collaborative consumption (under either a for-profit or a not-for-profit
platform) leads to lower ownership and lower usage when the cost of ownership
is sufficiently low, and it leads to higher ownership and higher usage when the
cost of ownership is sufficiently high (see Fig. 2.3). This implies that collaborative
consumption could either decrease or increase negative externalities, with a decrease
more likely when the cost of ownership is low. In numerical experiments, we
observe that there exists a threshold on the cost of ownership, which we denote
by ce, such that collaborative consumption reduces negative externalities if and only
if c < ce. We also observe that ce is decreasing in eq and increasing in eω, indicating
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that collaborative consumption is more likely to reduce negative externalities if the
social (or environmental) cost of using products is relatively low compared to that
of owning.

2.5.4 The Impact of Extra Wear and Tear and Inconvenience
Costs

In this section, we consider the case where (do, dr ) �= 0. The extra wear and tear cost
do reduces the payoff of owners and, therefore, places a lower bound on the set of
admissible prices: p ≥ do/(1− γ ). Similarly, the inconvenience cost dr reduces the
payoff of renters and, consequently, places an upper bound on the price: p ≤ 1−dr .
Obtaining analytical results is difficult. However, we are able to confirm numerically
that all the results obtained for (do, dr ) = 0 continue to hold (details are omitted for
brevity).

Of additional interest is the impact of do and dr on platform revenue and social
welfare. For both the for-profit and not-for-profit platforms, we observe that social
welfare is decreasing in both do and dr . This is consistent with intuition. However,
revenue for the for-profit platform can be non-monotonic in do. In particular, when
the cost of ownership is low, platform revenue can first increase then decrease
with do. This effect appears related to the fact that platform revenue is, per
Proposition 8, non-monotonic in the cost of ownership. A higher value of do can
be beneficial to the platform if it helps balance the amount of owners and renters
(i.e., reduce ownership), leading to a greater amount of transactions. An implication
of this result is that a for-profit platform may not always have an incentive to reduce
the extra wear and tear cost.9 On the other hand, the inconvenience cost dr does
not have the same effect on platform revenue. An increase in dr could lead to more
transactions. However, it limits the price a platform could charge. The net effect is
that the platform revenue is always decreasing in dr .

2.6 Concluding Comments

In this chapter, we described an equilibrium model of collaborative consumption.
We characterized equilibrium outcomes, including ownership and usage levels,
consumer surplus, and social welfare. We compared each outcome in systems

9Note that, in some cases, a platform could exert costly effort to reduce this cost. For example,
when extra wear and tear is, in part, due to renters’ negligence, more effort could be invested in
the vetting of would-be renters. Alternatively, the platform could provide more comprehensive
insurance coverage or monitor more closely the usage behavior of a renter (such monitoring
technology is already available for example in the case of cars).
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Table 2.1 Notation

Symbol Meaning

ξ ∈ [0, 1] Individual usage level

f (ξ) Density function for individual usage distribution

p ∈ [0, 1] Rental price

γ ∈ [0, 1) Commission fee

c ∈ (0, 1) Cost of ownership

do ∈ [0, 1] Moral hazard cost for owners

dr ∈ [0, 1] Inconvenience cost for renters

α ∈ [0, 1] Matching probability for owners

β ∈ [0, 1] Matching probability for renters

πo(ξ) Payoff for an owner with usage level ξ

πr (ξ) Payoff for a renter with usage level ξ

θ Individual usage level at which point πo(ξ) = πr(ξ)

S(θ) Aggregate rental supply generated from owners for a given θ

D(θ) Aggregate rental demand generated from renters for a given θ

θ∗ θ in equilibrium

α∗ α in equilibrium

ω∗ Ownership level in equilibrium in the presence of collaborative consumption

q∗ Total usage level in equilibrium in the presence of collaborative consumption

ω̂ Ownership level in the absence of collaborative consumption

q̂ Total usage level in the absence of collaborative consumption

pω Price threshold at which point ω∗ = ω̂

pq Price threshold at which point q∗ = q̂

vr Platform revenue and objective function for the for-profit platform

θ∗r Optimal solution to the for-profit platform’s problem

v∗r Optimal platform revenue vr (θ
∗
r ) and value function for the for-profit platform

p∗r Optimal price under the for-profit platform

ω∗r Optimal ownership under the for-profit platform

u∗r Optimal usage under the for-profit platform

vs Social welfare and objective function for the not-for-profit platform

θ∗s Optimal solution to the not-for-profit platform’s problem

v∗s Optimal social welfare vs(θ
∗
s ) and value function for the not-for-profit platform

ω∗s Optimal ownership under the not-for-profit platform

u∗s Optimal usage under the not-for-profit platform

ve Social welfare accounting for social costs on ownership and usage

eω Social cost per unit of ownerhsip

eq Social cost per unit of usage

with and without collaborative consumption and examined the impact of various
problem parameters including rental price, platform’s commission rate, cost of
ownership, owner’s extra wear and tear cost, and renter’s inconvenience cost. Our
findings indicate that collaborative consumption can result in either higher or lower
ownership and usage levels, with higher ownership and usage levels more likely



2 Peer-to-Peer Product Sharing 35

when the cost of ownership is high. We showed that consumers always benefit from
collaborative consumption, with individuals who, in the absence of collaborative
consumption, are indifferent between owning and not owning benefitting the most.
We also showed that the platform’s profit is not monotonic in the cost of ownership
(first increasing and then decreasing), implying that a platform is least profitable
when the cost of ownership is either very high or very low (also suggesting that
a platform may have an incentive to affect the cost of ownership by, for example,
imposing membership fees or providing subsidies). In addition, we observed that,
when the cost of ownership is low, platform profit can be increasing in the extra
wear and tear cost, suggesting that a for-profit platform may not always have an
incentive to eliminate this cost.

In Benjaafar et al. (2018), we consider several extensions to the model described
in this chapter, including systems where (1) individuals are heterogeneous in their
sensitivity to moral hazard and inconvenience, (2) usage is endogenous, (3) non-
owners have the option of renting from a third party service provider, (4) usage has
a general distribution, and (5) platforms may own assets of their own.

Possible avenues for future research are many. We mention a few examples. It
would be of interest to consider settings where there is competition among multiple
platforms, with owners and renters having the option of participating in one or
more such platforms. Given that the effective demand the platform would face is
non-monotonic in price, competition may not necessarily lead (as in a standard
competitive setting) to lower prices. In this case, the competing platforms must
account for the need to balance, via their choice of prices, the supply of owners
and renters. It would also be interesting to investigate other forms of peer-to-peer
product sharing, such as those that involve concurrent use of the product by multiple
renters (as in car pooling) or by the owner and the renter (as in some forms of home
sharing). In such cases, more usage by the owner may not necessarily imply less
usage by non-owners.

Finally, in Table 2.1, we define all notations used throughout the chapter.
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Chapter 3
The Strategic and Economic Implications
of Consumer-to-Consumer Product
Sharing

Baojun Jiang and Lin Tian

Abstract In recent years, mobile communications technologies and online sharing
platforms have made collaborative consumption among consumers a major trend in
the economy. Consumers buy many products but end up not fully utilizing them. A
product owners self-use values can differ over time, and in a period of low self-use
value, the owner may rent out her product in a product-sharing market. This paper
develops an analytical framework to examine the strategic and economic impact
of product sharing among consumers. Our analysis shows that transaction costs in
the sharing market have a non-monotonic effect on the firm’s profits, consumer
surplus, and social welfare. We find that when the firm strategically chooses its
retail price, consumers sharing of products with high marginal costs is win-win for
the firm and the consumers whereas their sharing of products with low marginal
costs can be lose-lose. Further, in the presence of the sharing market, the firm
will find it optimal to strategically increase its quality, leading to higher profits but
lower consumer surplus. In addition, within a distribution channel framework, the
existence of the sharing market is more likely to increase the downstream retailers
profit than the upstream manufacturers profit, i.e., product sharing can sometimes
benefit the downstream retailer at the expense of the upstream manufacturer.

3.1 Introduction

Many products that consumers buy or own are not fully utilized. In the sharing
economy, these underutilized products can be put to use by other consumers through
many sharing platforms. The recent economic recession and social concerns about
consumption sustainability lead consumers and society as a whole to explore more
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efficient use of resources and products. As a result, collaborative consumption has
emerged as a global trend, enabled by technological advances in online, mobile
communications. Many online platforms have helped to facilitate consumer-to-
consumer sharing for a wide range of products and services such as bicycles
(Spinlister), boats (Boatbound, GetMyBoat), cars (Turo, Getaround), working or
parking spaces (Citizen Space, JustPark), car rides (Lyft, Uber, Zimride), short-
term rental (Airbnb, Roomorama), gardens (Shared Earth, Landshare), clothing,
portable tools/appliances, electronics, and household items (FriendsWithThings,
Neighborgoods). In farmer communities in developing countries, the sharing of
agricultural equipment is also common.

We can conceptually classify peer-to-peer sharing into two broad categories,
depending on the types of resources being shared. First, if the shared underutilized
resource is the consumers’ own time and provision of services, we have peer-to-
peer offering of services as on TaskRabbit, Uber, or Didi Chuxing. Second, if the
shared underutilized resource is tangible assets or products that consumers own,
we have consumer-to-consumer product sharing as on Turo or Neighborgoods.
When consumers share their purchased products (e.g., sharing of cars on Turo),
the manufacturers of the products are affected and may strategically change their
decisions. By contrast, when consumers share their time or ability (e.g., a consumer
on TaskRabbit assembles IKEA furniture for another consumer), typically there is
no strategic manufacturer of time involved (i.e., each consumer’s time resource is
endowed from birth, not manufactured by some economic agent).

In this research we focus on the consumer-to-consumer sharing of products (e.g.,
on Turo or Neighborgoods), not the peer-to-peer offering of services (e.g., on Airbnb
or Uber).1 Many product-sharing transactions involve the renters paying a fee to the
product owners through a sharing platform. From the consumer’s perspective, shar-
ing under-utilized products seems profitable and also environmentally responsible.
How does product sharing affect the manufacturer? Though managers are wary of
such sharing, anecdotal evidence shows that some firms are proactively responding
to the emerging trend of collaborative consumption. For example, General Motors
(GM) has worked with RelayRides (now Turo) to make it easier for owners to rent
out their under-used OnStar-enabled GM vehicles to offset the cost of ownership, by
introducing features such as remote unlocking of doors by authorized renters using
their smartphones (General Motors 2012).

Our model captures the idea that a consumer’s usage value for a product may
vary over time. In each usage period, a product owner can decide whether to use
the product herself or to rent it out to others through a third-party product-sharing
platform, and consumers who did not purchase the product can decide whether to
rent the product from the product-sharing platform. For each sharing transaction, the

1Though we use consumer-to-consumer sharing as the context, our model applies equally to
business-to-business sharing of products, e.g., the sharing of equipment among businesses or
hospitals. The essence is that a firm/manufacturer’s customers may rent out the product to its other
potential customers during periods of low self-use value.
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renting consumer pays a rental fee to the platform, which keeps a percentage of that
rental fee as service fee and gives the rest to the product owner. The product owner
will endure two types of transaction costs when renting out her product—one that is
proportional to the sharing price (e.g., the platform’s fee) and one that is independent
of the sharing price (e.g., costs of delivering and picking up the product). We develop
an analytical framework with these key market features to study how a firm—
the brand owner or manufacturer of the product—should strategically choose its
retail price and product quality to respond to anticipated sharing by consumers.2

We examine the impacts of product sharing on the firm’s pricing strategy, profits,
consumer surplus, and social welfare.

We highlight a few major findings from our analysis. First, transaction costs in
the sharing market have a non-monotonic effect on the firm’s profits, consumer
surplus, and social welfare. Second, when the firm strategically chooses its retail
price, consumers’ sharing of products with high marginal costs is win-win for the
firm and the consumers whereas their sharing of products with low marginal costs
can be lose-lose. Third, in the presence of the sharing market, the firm will find
it optimal to strategically increase its quality, leading to higher profits but lower
consumer surplus. Fourth, within a distribution channel framework, the existence of
the sharing market is more likely to increase the downstream retailer’s profit than
the upstream manufacturer’s profit. Further, we have analyzed the robustness of our
results and insights to several alternative modeling assumptions, and provided some
potential directions for future research.

Our research contributes to the emerging research literature on the consumer-
to-consumer sharing or collaborative consumption. The fast growing trend in
the sharing economy has recently received much attention in both practice and
academia. Most extant work on consumer-to-consumer sharing has been concep-
tually depicting the phenomenon (e.g., Belk 2010, 2014). Both empirical and
analytical researches are lacking in the published literature and are of great
managerial and academic interest. Fraiberger and Sundararajan (2015) use the US
automobile industry data and peer-to-peer car rental data from Getaround to study
the welfare and distributional effects of a peer-to-peer rental market. Zervas et al.
(2017) empirically estimate the impact of Airbnb’s entry on the incumbent hotels’
pricing and revenues, using a dataset collected on Airbnb listings in Texas and a
decade-long panel of quarterly tax revenue for Texas hotels.

Weber (2014) shows that if the lender and the renter are risk-neutral, a sharing
intermediary can eliminate the moral-hazard problem by providing optimal insur-
ance to the lender and first-best incentives to the renter to exert care. Benjaafar
et al. (2018) analyze how the platform should optimally set the rental price on the
sharing platform; they find that, depending on the rental price, product ownership
and usage levels can be higher or lower than the case without the sharing market.
Bai et al. (2016) use a queueing model to study the coordination of supply and
demand on an on-demand, peer-to-peer service platform. They show that when the

2For expositional convenience, we refer to the firm/manufacturer as “it” and a consumer as “she.”
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potential customer demand increases, it is optimal for the platform to raise its price,
wages, and the payout ratio. Weber (2016) uses an overlapping-generations model
to show that a sharing market tends to increase the product price, and benefit the firm
and the consumer for high-cost products. Bellos et al. (2017) examine the strategic
interactions of business model choice and product line design in the car sharing
economy. He et al. (2017) study how to design a geographical service region for
car-sharing service providers to operate the service. They focus on the trade-offs
between maximizing customer catchment by covering travel needs and controlling
fleet operation costs.

Our research complements the stream of literature on secondary used-goods
market (e.g., Hendel and Lizzeri 1999; Johnson 2011; Chen et al. 2013), where
consumers sell their products rather than share their products. Note that a used-
goods sale transaction involves a permanent transfer of product ownership from
the seller to the buyer, whereas a product-sharing transaction involves merely a
temporary transfer of use right from the product owner to the renter only for the
particular sharing period and the product owner owns the continuation usage value
of the product for the future periods. This distinction is shown to have a qualitatively
different effect on the market outcome. Our research also complements the rent-or-
buy and leasing literature (e.g., Desai and Purohit 1998; Desai 1999; Agrawal et al.
2012), which studies a firm’s optimal selling or leasing strategy. By contrast, we
examine the consumer’s rent-or-buy decision in a marketplace where a firm’s end
customers, rather than the firm itself, can rent out their purchased products in a
consumer-to-consumer sharing market. In essence, the firm’s end customers can be
its indirect competitors, because some potential buyers of the product may switch
from buying to renting from the sharing market.

3.2 Modeling Framework

A monopolist firm produces a product of quality q at a constant marginal cost of c.
The monopolist sells the product at price p to consumers, each of whom buys at
most one unit and can derive usage value from the product in n time periods. Note
that the consumer’s product sharing is a short-term event. For example, car owners
typically rent out their cars on Turo on a daily basis, but car manufacturers do not
dynamically change their prices on a daily basis even when they respond to the
existence of the product sharing market by pricing strategically or even changing
their product quality (e.g., General Motors added new features to their cars to
facilitate consumers’ easier and more reliable car-sharing on RelayRides). So, to
reduce analytical complexity, we focus on the fairly reasonable case where the firm
will strategically choose its price but will not dynamically adjust that price from one
sharing period to another.

At the end of the n usage periods, the product has some salvage value ε (e.g., it
can be sold in a secondary used-goods market). Each consumer’s per-period usage
value from the product may vary over time. Consumer i’s usage values vij for
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Fig. 3.1 Model structure

j = 1, 2, . . . , n depend on the product’s quality (q) and her willingness to pay
for quality (θij ); we assume vij = qθij , where θij is uniformly distributed in the
consumer population: θij ∼ U [0, 1]. Without loss of generality, we normalize the
total number of consumers to one. This type of model for quality and consumer
heterogeneity has been widely adopted in the economics and marketing literature
since Mussa and Rosen (1978). For expositional clarity/succinctness, we assume
n = 2 for the main model. That is, the consumer can derive usage value from the
product in two usage periods j = 1, 2; two periods are enough to capture the key
market characteristic that a consumer’s usage value can vary across time and that
during a period of low usage value she can forgo her self-use and earn some income
by renting out her product through a sharing platform. If the consumer rents out
her product, she will earn a rental fee for that period but needs to pay the platform a
percentage fee, denoted by α ∈ [0, 1) fraction of the rental fee. Typically in practice,
the sharing platform collects the rental fee from the renter, keeps a fixed α fraction
of that fee as service charge, and will give the remaining fraction (1 − α) to the
product owner. We model two types of transaction costs endured by the product
owner when renting out her product—one that is proportional to the sharing price
(e.g., the platform’s fee) and one that is independent of the sharing price (e.g., costs
of delivering and picking up the product, or the accelerated product maintenance
cost due to moral hazard of the renter). From here on, unless stated otherwise, we
use the term “transaction cost” to refer to the latter and the platform fee to refer to
the former. Let t ≥ 0 denote the transaction cost for each sharing transaction. The
market structure is illustrated in Fig. 3.1.
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Consumer’s Strategic Options. Consumers are forward-looking; at the time of
their product-purchase decision, they rationally anticipate the possibility of sharing
or renting the product in the sharing market. Each consumer i has eight (not-clearly-
dominated) options: (i) buy the product and use it in both periods; (ii) buy the
product, use it in period 1 and rent it out in the sharing market in period; (iii) buy the
product, rent it out in the sharing market in period 1 and use it in period 2; (iv) do
not buy the product but rent it in both periods; (v) do not buy the product but rent it
only in period 1; (vi) do not buy the product but rent it only in period 2; (vii) buy the
product (as a speculator) and rent it out in both periods; (viii) neither buy nor rent
the product (i.e., the outside option).

Market Clearing Mechanism. With a sharing market, consumers may choose any
of the above eight options. In each product-usage period, some consumers may rent
out their purchased products while others may rent a product from the product-
sharing market. In equilibrium, the supply and the demand for product sharing will
be equal.3 In each period j , there will be a market-clearing price (pj ) that works to
match the supply and demand; a consumer needs to pay pj to rent the product from
the market and a consumer who rents out her product will receive a fee of (1− α)pj

while the platform keeps αpj as its service fee.
Timing of Events. The timing of events in the core model is as follows. First, the
firm chooses its retail price p. Second, consumers decide whether to buy the product.
Third, in each usage period, consumers who bought the product before decide
whether to use it themselves or to rent it out in the sharing market while consumers
who did not buy the product decide whether to rent it from the sharing market, which
clears at some endogenously determined equilibrium price pj , at which there is no
excess demand or supply for sharing. Note that after each sharing transaction, the
product is returned from the renter to the original product owner, who will obtain
the salvage value (ε) at the end of the last usage period. Note also that the platform’s
percentage fee (α) is taken as given; this is because in practice the sharing platform’s
percentage fee is the same across different products. If we endogenize α in our
model, it would imply that the platform optimizes its percentage fee on an individual
product basis, charging a different percentage for different products, which clearly
does not reflect reality. In reality, the sharing platforms charge a fixed percentage
fee across different products, and that percentage is typically between 10% (e.g., on
Spinlister) to 25% (e.g., on Turo).

3The firm is assumed to play no direct role in the product-sharing market. In reality, in many
markets, the firms (manufacturers) themselves do not offer hour-to-hour or day-to-day rentals of
their products. This may be because the firm’s transaction cost for managing renting of its products
is much higher than that for consumers. For example, a consumer with an Xbox console can rent
it to others in her local area on a daily or weekly basis much more efficiently than Microsoft, the
producer of the Xbox, since the company would have many logistical issues (e.g., due to the lack of
physical presence in the consumer’s local area or city). Indeed, in reality, on these product-sharing
platforms (or the firms’ stores), we typically do not see the firms themselves offering to rent their
products on a day-to-day basis; for example, we do not see General Motors offering hourly rental
of their cars on car-sharing websites or at its own dealerships.
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3.3 Effects of Sharing on Firm’s Pricing Strategy, Profit, and
Consumer Surplus

In this section, we assume that the firm has developed the product, which has a
quality level of q with a marginal cost of production c. We examine the impact of
consumer-to-consumer product sharing on the firm’s price, profit, the consumer’s
surplus, and social welfare. In specific, we study how two key factors—transaction
costs (t and the platform’s fee α) and the firm’s marginal cost (c)—affect the
economic impact of collaborative consumption.

One may intuit that when the transaction cost for product sharing (i.e., t)
increases, the firm should raise the price of its product since its customers will be
less likely to offer the competing rental option to other consumers, making these
consumers more likely to buy the product. However, we find that a higher transaction
cost in the sharing market will actually lead to a price drop by the firm. This is
because some of the product buyers, who have a high usage value in one period but
a low usage value in the other period, will not be able to earn as much rental income
from the sharing market and hence will no longer be willing to buy the product at
the same price. To compensate and attract some of these buyers, the firm will find
it optimal to reduce its price. In practice, the sharing platform often tries to reduce
the transaction cost to the product owners by offering free insurance coverage or by
enabling the product owners to rate the renters after sharing transactions, which will
to some extent alleviate the moral hazard problem and reduce the transaction cost.
Our result implies that increased incentives for the consumer’s product sharing, i.e.,
lower friction or transaction costs in the sharing market, can actually induce the
manufacturer to raise rather than lower its price.

Also we find, because of the firm’s strategic pricing, a change in the transaction
cost (t) can lead to a non-monotonic effect on the firm’s profit, the social welfare and
the total consumer surplus. So the sharing platform’s efforts to reduce transaction
costs may not always benefit the consumers or the manufacturer. As the transaction
cost decreases, product owners are more likely to share their products to earn higher
rental income (net of the transaction cost and the platform fee), but the firm’s
strategic increase of its price will not only reduce the customer’s net sharing benefit
but also force some customers who only use the product themselves to drop out of
the market. Hence, the total consumer surplus in the market can drop.

Note that t is a product-sharing transaction cost that is independent of the sharing
price whereas the sharing platform’s percentage fee represents a transaction cost
that is directly proportional to the sharing price. By similar analysis and intuition,
we easily obtain the corollary that a decrease of the sharing platform’s percentage
fee (i.e., α) may not always benefit the consumers or the firm. In summary, frictions
in the sharing market (e.g., the product-sharing transaction cost t and the platform
percentage fee α) have a non-monotonic effect on the firm’s profit and the total
consumer surplus.

Some questions naturally arise. When is the firm likely to benefit from the
consumers’ product sharing? Under what situations will the sharing market increase
consumer surplus and social welfare? Does product sharing necessarily affect the
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consumer and the firm in opposite ways? Note that if the sharing platform’s
percentage fee is excessively high (i.e., α > 1 − t/q), there will be no sharing
transactions in equilibrium. For our main analysis, we assume that the platform’s
percentage fee is not too high; more specifically, α < α∗ for some α∗ < 1 − t/q.
Our analysis shows that the firm’s marginal cost and the transaction cost for sharing
play an important role in determining the effects of the product-sharing market.

The conventional wisdom is that since the product-sharing market provides
consumers with a sharing alternative to buying the product, it will lead to lower
profitability for the firm, higher consumer surplus and social welfare. Our analysis
shows that when the firm’s unit cost and the transaction cost are low, product sharing
among consumers will indeed hurt the firm. In the absence of the product-sharing
market, the firm’s optimal strategy for a low-cost product is to set a low price such
that a large number of consumers will buy the product in equilibrium. However,
when the product-sharing market exists, fewer consumers than before will buy the
product even if the firm still sets the same low price, because some consumers can
get the product from the sharing market, especially when the transaction cost is low
(such that some product owners will share). Anticipating product sharing among
consumers, the firm will find it optimal to raise its retail price, in an attempt to
capture at least some of the value enhanced by the sharing market. However, the
higher price is not enough to offset the loss in unit sales, resulting in a lower profit
for the firm than when there is no sharing market.

Further, our analysis shows that when the firm’s unit cost is low and the
transaction cost is low, the existence of a product-sharing market not only reduces
the firm’s profit, but also lowers the total consumer surplus. The intuition hinges on
the fact that the firm will significantly increase its price (from its low price in the
absence of the sharing market), leading to fewer units of the product being sold and
fewer consumers will use the product even with the sharing market. Contrary to the
conventional wisdom, this finding suggests that product sharing among consumers
may make them worse off if the firm anticipates such behaviors and strategically
increases its price. This lose-lose scenario for product sharing happens for products
with low marginal costs of production. Can the product-sharing market benefit the
firm or the consumers?

Our analysis also shows that when the firm’s unit cost of production is high,
product sharing among consumers is win-win for the firm and the consumers. When
the product-sharing market does not exist, the firm’s optimal strategy for its high-
cost product is to set a high price, and in equilibrium only a small number of
consumers will buy the product. With the product-sharing market, the firm has an
incentive to increase its retail price. However, this is quantitatively different from
the case of a low-cost product—the firm’s optimal price in the absence of sharing is
already high, the magnitude of the price increase due to consumers’ product sharing
is not as dramatic for high-cost products. Furthermore, the firm can save a lot of
marginal costs of production by selling fewer units at higher prices, which many
consumers are willing to pay because of the potential earnings from renting out the
product in the sharing market. Therefore the firm is better off. This finding suggests
that a firm with high marginal costs of production may have incentives to promote
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or improve the sharing market to encourage consumers to share the product even if
the firm does not directly profit from the sharing market, because it can indirectly
benefit by strategically raising its price to extract some value created by the sharing
market.

Note that in the absence of the product-sharing market, only a small number of
consumers will buy and use the high-cost product because of its high price. When a
product-sharing market exists, some consumers with high usage values only in one
period who otherwise will not buy the product will now buy the product even though
the price is higher. This is because they anticipate the potential income from renting
out the product during the period with low self-use value. The market-expansion
effect is relatively stronger for products with high marginal costs—more consumers
can use the product (either buy or rent) when the sharing market exists. As a result,
consumers’ product sharing will increase the total consumer surplus (and also the
social welfare).

In summary, our analyses suggest that the consumer’s sharing of high-cost
products (such as high-tech products, cars, or agricultural equipment in developing
countries) is overall beneficial for both the consumers and the manufacturer. In
contrast, the sharing of products with very low marginal costs (such as digital
products, information goods, or small tools) may be bad for both consumers and
the firm. The findings are consistent with the anecdotal observations that firms in
industries with high unit costs tend to encourage or facilitate sharing (e.g., GM) and
firms selling information goods tend to discourage or curb consumers’ sharing.

Next we analyze and discuss the robustness of our insights to several alternative
modeling assumptions. First, we have extended our two-period product-sharing
model to an n-period model. For analytical tractability, we assume that consumers
learn their usage in each period at the beginning of that period. That is, when
deciding whether to buy a product from the firm in the first period, consumers know
their first-period usage value (i.e., vi1), but for later periods j = 2, . . . , n they know
only the distribution of their usage value, i.e., vij ∼ U [0, q]. We find that our main
results remain qualitatively the same. Product sharing is win-win for the firm and the
consumers when the firm’s marginal cost is high, and lose-lose when the marginal
cost is low.

Second, our core model has not explicitly considered any depreciation of the
product over time. If we allow for product depreciation, e.g., the product quality is
q for the first period but q(1−Δ) for the second period, where Δ represents the rate
of depreciation over time, we find that in equilibrium Δ will lower both the firm’s
retail price and the second-period sharing price. The analytical solutions for such
a model become very cumbersome, but our main qualitative insights and intuitions
remain the same as long as Δ is not too large.

Third, the sharing market has a salient moral-hazard problem—the consumer
renting other’s product may use it more abusively or carelessly than the product’s
owner does. For example, the renter may drive a rented car much less carefully with
fast acceleration, hard braking or not slowing down on uneven or speed-bumped
roads. In our core model, the transaction cost t can be interpreted as a reduced-
form moral-hazard cost that is imposed on the product owner who rents out her
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product. For example, we can set t to be the expected cost to the product owner,
which is the damage or accelerated depreciation d multiplied by the probability w

of such damage occurring. We have also analyzed a more explicit model of moral
hazard in the sharing market. More specifically, we assume that for each period the
product is rented out, its quality will decrease by δq (δ < 1) and its salvage value
will decrease by m (<ε). In reality, the renters may not be able to readily observe
the quality-degradation of a previously rented product (i.e., whether a product has
been rented out before). We analyze two cases. First, we analyze the case where
the quality-degradation of a previously rented product (due to the renter’s moral
hazard) is observable. Second, we examine the case where the renter does not
directly observe the quality-degradation of a previously rented product but will infer
an expected degradation in quality of δ̃q with δ̃ ≤ δ, which in equilibrium will be
fulfilled (from the early-period outcome). Our analysis shows that all our results
remain qualitatively the same whether the renters observe the quality-degradation
caused by moral hazard. The only difference with our core model is that no sharing
transaction occurs in the first period, i.e., in equilibrium only consumers with high
first-period usage value will buy the product. These consumers will use the product
themselves in the first period and rent it out in the second period if their self-
usage value is low. We acknowledge that this analysis is based on a two-period
model for analytical tractability. In a general n-period model with moral hazard, the
analysis for the sharing market becomes analytically intractable because there will
be different quality variations of the products in the sharing market.

Fourth, our core model assumes that the product owner bears all transaction
costs for sharing. But in reality, both the product owner and the renter have some
transaction costs, for example, the renter may also have to incur some costs for
picking up and returning the rented product. We have analyzed a product-sharing
model with both parties having some transaction costs: the product owner incurs
a cost t1 and the renter incurs a cost t2 for each sharing transaction. We show
that this model extension is equivalent to our core model with the product owner’s
transaction cost t replaced by t1+(1−α)t2. Note that the total transaction cost t1+t2
is not perfectly or fully internalized through the sharing price—the effective total
transaction cost is smaller than the direct sum. So, when the renter shares some of
the total transaction cost, product-sharing transactions will be more likely to occur.
The underlying reason for this effect hinges on the fact that the renter’s transaction
cost tends to reduce the product-sharing price, which lowers the platform fee paid
by the product owner, making sharing more likely.

Besides analyzing the above four formal models, we would also like to briefly
discuss how our results may be affected if some other model assumptions are
relaxed. First, we have implicitly assumed that consumers know ex ante (at the time
of purchase) their usage valuation for each period. Actually, this assumption is not
necessary, e.g., if consumer i has her usage values vi1 and vi2 switched between two
periods, it will make no difference in our analysis as long as the consumer learns
her usage value for each period at the beginning of that period. The assumption
we make is only that the consumer’s usage value in the population is uniformly
distributed in each period. In addition, we have assumed that the consumer’s usage
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values across different periods are not correlated. Note that if the consumers’ usage
values are perfectly positively correlated (e.g., each consumer has the same usage
values across all periods), in equilibrium there will not be any product sharing
among consumers. In a model in which the consumers’ valuations are partially
correlated across different periods, we expect our main results and intuitions to
hold qualitatively the same as long as there is enough valuation heterogeneity
across consumers and across periods such that product sharing will occur in the
market. The effects of product sharing will be moderated by positive correlation
and enhanced by negative correlation between the consumer’s usage values.

Second, note that our model explicitly allows consumers to work as a third-party,
rental company, which buys the product from the manufacturer/firm and rents it out
in all periods. However, we have assumed that such a rental company acquires the
product at the same price as consumers do, which leads to no speculators or pure
rental agencies in equilibrium. In practice, a rental company might be able to buy
the product at cheaper prices than consumers can, or perhaps has lower transaction
costs than consumers. In that situation, the product-sharing price in the market will
tend to be lower, and hence we expect that the impacts of consumer-to-consumer
sharing will be moderated. The intuition and tradeoff from our analysis will still
be relevant. As we observe in reality, even in markets with product rental agencies,
consumer-to-consumer product sharing is still flourishing.

Third, our main model implicitly assumes an efficient sharing market, i.e., when
a match of supply and demand for sharing at a sharing price is possible, the sharing
transaction will occur with certainty. In reality, there can be inefficiency in the
market; that is, there may be a positive probability that some sharing transactions
will not take place at the theoretical market-clearing price, for random reasons
such as severe weather. Conceptually, one can extend our model to incorporate that
probability into the sharing market. In that case, when making the product purchase
decision, the consumers will lower their expected revenue from the sharing market.
However, we expect that barring extreme inefficiency in the sharing market, our key
results and insights will remain qualitatively the same, albeit the parameter regions
may change.

Lastly, our model assumes that all consumers are forward-looking and fully
anticipate the possibility of product sharing. The opposite assumption is that
consumers are all myopic, i.e., their purchase decisions are based only on their
current-period utility and when deciding whether to buy the product they will not
consider the potential income from product sharing in the future. In that extreme
case, obviously, the firm’s pricing and quality decisions will be the same as if the
product-sharing market does not exist. However, since product owners can ex post
decide to rent the product out during usage periods with low self-use values, the
consumer surplus will be higher than in the case of forward-looking consumers—
interestingly, consumers are better off being myopic than being strategic and
forward-looking. In a model in which some consumers are myopic, we expect
our main results and intuition to stay qualitatively the same as long as a large
enough fraction of consumers are strategic, though the quantitative effects will be
moderated.
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3.4 Effects of Sharing on Product Quality and Distribution
Channel

In this section, we examine the effects of consumer-to-consumer product sharing on
firm’s product quality decision, and its impacts on a distribution channel.

3.4.1 Effects of Sharing on Product Quality

With booming and maturing of sharing markets, one may expect that firms will
over time become more strategic when they design their products in anticipation
of the consumers’ product sharing. In this section, we explore such a situation,
where the firm responds to the anticipated product sharing among consumers by
strategically choosing not only its price but also its product quality. How will such
strategic behaviors by the firm influence the market outcome and the impact of the
consumer’s product sharing? We address this research question by extending the
core model to allow for the firm’s endogenous quality decision.

The firm’s marginal cost of production typically depends on the quality level
of the product. For example, a luxury model of a car will cost the manufacturer
more to make than an economy model. For analytical tractability, we use the
commonly adopted quadratic cost function: c = k1q

2. To simplify the later
analytical expressions, instead of expressing the product’s salvage value as some
fraction of the cost (c) of producing the product, we write the product’s salvage
value as ε = k2q

2, where k2 < k1, i.e., the salvage value is k2/k1 fraction of the
marginal cost of the product.

Note that the transaction cost (t) for sharing can be related to the product’s value,
which depends on the quality of the product. For example, other things being equal,
the product owner will assess a higher (moral-hazard) cost for accelerated product
depreciation or maintenance when sharing an expensive high-quality car than when
sharing a low-quality economy car. This can be due to, for instance, the anticipated
higher cost of maintenance services for the high-quality car (e.g., changing its high-
performance tires or brakes) or other risks associated with sharing. For simplicity,
we assume that t = τq, where τ represents the transactional friction of sharing. Note
that the extended game builds on the core model analyzed in the earlier sections;
the only difference is that the firm will now strategically choose both p and q to
maximize its profit. Since no consumers will share the product if τ ≥ 1 − α (in
which case whether the sharing market exists makes no difference), we will focus
on the nontrivial parameter region of τ ∈ [0, 1− α).

Our analysis shows that the consumer’s product sharing gives the firm a strategic
incentive to increase product quality. With the sharing market, those consumers with
a high usage value in one period and a low usage value in another period will be
willing to pay more for the product since they can earn some rental income from
the sharing market when their own usage value is low. This in effect increases those
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consumers’ willingness to pay for quality and hence gives the firm an incentive to
raise its product quality in equilibrium. However, the increase in product quality
does not lead to an increase in consumer surplus. In fact, because the firm will
strategically raise its retail price to target a smaller number of customers, the
existence of the sharing market will reduce the total consumer surplus even though
some consumers with very high valuation for quality will become better off (due to
the quality increase). By choosing its product quality and price strategically, the firm
will make more profits when the sharing market exists. This result is different from
the case where the firm strategically chooses only its price. The potential positive
effect of product sharing on consumer surplus goes away and the firm is always
better off when it strategically chooses both its product quality and price. This
difference mainly comes from the fact that, in anticipating the consumers’ product
sharing, the firm’s endogenous quality decision allows it to strategically select a
price-quality pair (or equivalently a price-cost pair, since the firm’s marginal cost
is a function of quality) to ensure higher profitability by extracting more surplus
from customers. We also find that the sharing market increases social welfare when
the transaction cost is low but not when the transaction cost is high. This finding
suggests that it can be overall socially beneficial to reduce the transaction cost in the
sharing market.

3.4.2 Effects of Sharing on Distribution Channel

Most consumer products are sold through distribution channels or intermediaries
rather than directly by manufacturers. In addition, manufacturers have to build
production capacities long before the selling seasons. So, it is of both practical and
academic interest to study how the fast-growing product-sharing phenomena affect
distribution channels. In our current research (Tian and Jiang 2018), we address
the following research questions. How will consumer-to-consumer product sharing
affect different members (e.g., the upstream manufacturer and the downstream
retailer) of the distribution channel? Will consumers’ product sharing increase or
decrease the manufacturer’s optimal capacity? On one hand, one may intuit that
because of higher utilization of the products, the manufacturer should reduce its
capacity. One the other hand, the sharing economy allows firms better utilize any
excess capacity during time of low demand, so firms should have more incentive
to increase their capacity (PWC 2015). Ex ante, it is not clear how product
sharing affects a manufacturer’s optimal capacity or what factors are important in
determining that effect. But clearly, as the sharing economy grows, a strategic firm
with long-term vision should consider the effect of sharing in its capacity-planning
decision.

We address these research questions by extending our earlier model to consider
a distribution channel, in which an upstream manufacturer chooses the production
capacity and sells its product at a wholesale price to a downstream retailer, which
chooses its retail price to consumers. Using an n-period product-sharing model, we
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analyze how the upstream manufacturer should strategically choose its production
capacity and wholesale price, and how the retailer should strategically choose its
retail price, to respond to anticipated product sharing by the consumers. For analyt-
ical tractability, we assume that consumers learn their usage in each period at the
beginning of that period. Note that increasing production capacity often requires the
manufacturer to make additional fixed-cost investments beforehand, e.g., expanding
the production facilities and acquiring more machinery or equipment. So, in our
model, the manufacturer first chooses what capacity level K to build—the maximum
number of units of the product that the manufacturer can produce—subject to the
commonly used quadratic fixed cost C (K) = ϕK2, where ϕ > 0 measures how
costly it is for the manufacturer to build production capacity. A small ϕ means that
the manufacturer is very cost-efficient at building up its production capacity.

Our analysis reveals that there exists a threshold for the capacity cost coefficient,
above which product sharing will raise the manufacturer’s optimal capacity and
below which it will reduce the manufacturer’s optimal capacity. The intuition lies in
the tradeoff between the cannibalization effect and the value-enhancement effect of
product sharing. The product-sharing market offers consumers a sharing alternative
to buying the product, which lowers the demand intercept and tends to make fewer
consumers buy the product—the cannibalization effect. However, anticipating the
potential rental income from the sharing market, strategic consumers will ascribe
a higher value to owning the product and will tend to be less price sensitive (i.e.,
the demand curve becomes less steep); thus, at a given retail price, consumers
will be more likely to buy the product when a sharing market exists—the value-
enhancement effect. When production capacity is not very costly to build, due
to the high availability of products for sharing, the cannibalization effect of the
sharing market will dominate its value-enhancement effect. But, if capacity is very
costly to build, the relatively low availability of products available for sharing
will lead to high sharing prices, making the value-enhancement effect of the
sharing market dominate its cannibalization effect. Thus, in that case, consumer-
to-consumer sharing can actually lead to higher production, increasing both unit
sales and the efficiency of the product’s utilization.

We find that when the manufacturer strategically chooses its capacity, consumer-
to-consumer product sharing will increase the downstream retailer’s equilibrium
share of the total gross profit margin in the channel relative to the case of no
sharing. Capacity cost tends to induce the manufacturer to raise its wholesale
price, leaving less room for the retailer to price strategically, which effectively
reduces double marginalization and the retailer’s power in the channel. However,
product sharing, relative to no sharing, gives consumers more value for owning
the product, increasing their willingness to pay for the product and reducing their
price sensitivity, which will therefore provide more room for the retailer’s strategic
pricing, increasing the retailer’s power in the channel. In other words, the sharing
market tends to exacerbate the double-marginalization problem in the channel.

We also show that product sharing can be lose-lose, lose-win, or win-win for
the manufacturer and the retailer, depending on the manufacturer’s capacity cost
efficiency. When capacity is very costly, both the manufacturer and the retailer
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will benefit from the consumer’s product sharing; when capacity is not very costly,
product sharing among consumers will make both the manufacturer and the retailer
worse off. The intuition also lies in the tradeoff between the cannibalization
effect and the value-enhancement effect of the sharing market. When production
capacity is very costly to build, the value-enhancement effect of product sharing will
dominate the cannibalization effect, making the firms better off; in contrast, when
capacity is very inexpensive to build, the opposite is true, i.e., both firms are worse
off. Furthermore, when the capacity cost is in the middle range, product sharing will
make the manufacturer worse off but the retailer better off; this suggests that product
sharing is more likely to increase the retailer’s profit than the manufacturer’s profit.
This result is consistent with the result that in a channel with endogenous capacity,
sharing among consumers tends to increase the downstream retailer’s share of the
total gross margin in the channel. In such a distribution channel, the retailer is more
likely to have an incentive to promote or facilitate consumer-to-consumer sharing,
especially when capacity is costly to build.

3.5 Conclusions and Discussions

Collaborative consumption has emerged as a major trend in recent years as the
global economic recession has put financial pressure on consumers and as social
concerns about consumption sustainability bring the society’s attention to effective
use of resources and products. Advances in mobile communication technologies
and online product-sharing platforms have helped to facilitate product sharing
among consumers on an unprecedented scale. Consumers share a wide range of
products from bicycles, cars, videogame consoles, to clothing, portable tools, and
household appliances. We have provided an analytical model that captures the idea
that a consumer’s own usage value for her purchased product may vary over time.
In a period of low self-use value, the product owner can forgo her product use
and rent it out to others through a third-party sharing platform. For each sharing
transaction, the renting customer pays a rental fee and the product owner pays
the platform a percentage fee. We have examined the consumer’s purchasing and
sharing decisions, and investigated how a brand owner or manufacturer of the
product should strategically choose its price and product quality to respond to
the anticipated product sharing among consumers. We have also examined how
consumer-to-consumer product sharing affects a distribution channel.

We have shown several main findings. First, transaction costs in the sharing
market, such as the transaction cost or the platform’s percentage fee, have a
non-monotonic impact on the firm’s profit, consumer surplus, and social welfare.
Second, if the firm strategically chooses its price (taking quality as given), then
product sharing among consumers can be either lose-lose or win-win for the firm
and the consumers. It is lose-lose when the firm’s marginal cost is low and the
transaction cost is not too high. In contrast, it is win-win if the firm’s marginal cost
is high. Third, if the firm strategically chooses both its price and product quality in
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anticipation of the sharing market, consumer-to-consumer product sharing will lead
to higher quality but even higher prices, increasing the firm’s profit but lowering
consumer surplus. Fourth, in a distribution channel, the existence of the sharing
market is more likely to increase the retailer’s profit than the manufacturer’s profit,
i.e., product sharing can sometimes benefit the downstream retailer at the expense
of the upstream manufacturer.

We conclude by pointing out some caveats and potential directions for future
research. First, we have analyzed only a monopoly market. We expect that if the
firm has competitors, its ability to extract consumer surplus from the product’s
value enhanced by the sharing market will be moderated, depending on the level
of competition and product differentiation among competitors. So, consumers will
be more likely to benefit from sharing whereas the firms’ gains from sharing may
be very limited. Second, we have assumed that the firm plays no direct role in the
sharing market. As the sharing economy grows, the firm itself may enter the sharing
market. For example, BMW has recently entered into the U.S. car-sharing market
and launched a new car-sharing service called ReachNow.4 Our future research
will focus on the tradeoff that a firm faces when directly entering into the sharing
market. Third, for analytically tractability, we have implicitly assumed that the
firm keeps a uniform pricing strategy and does not adjust its retail price from one
usage period to another. Clearly, given the already high complexity of the current
analytical framework, one will have to make other modeling simplifications to be
able to study dynamic pricing strategies in a market with consumer-to-consumer
product sharing. We leave it to future research to explore the potential new insights
from a framework with intertemporal price discriminations by the manufacturer
and/or the retailer. Fourth, we have not explicitly modeled any uncertainty in the
sharing market. In essence, the consumer is assumed to be risk neutral and makes
her decision based on the average of the anticipated revenue from product-sharing
transactions. We have also focused on search goods rather than experience goods,
whose quality may not be fully observed by the consumers prior to purchase. We
will leave it to future research to study the effects of uncertainty in the sharing
market and uncertainty in the firm’s product quality. Fifth, we have assumed an
exogenous proportional fee by the sharing platform, in line with the observed reality,
where the platform’s percentage fee does not vary across different products or
product categories. However, it may be of interest to examine what happens if the
platform charges different fee percentages based on some product characteristics
(e.g., a lower percentage for high-end products to encourage sharing of such
products). Such studies may provide strategic recommendations different from the
platforms’ current strategies of not adjusting fee percentages based on products or
product categories. Price discrimination issues by the sharing platform also deserve
their own theoretical study in future research. Lastly, collaborative consumption
in the sharing economy is a fast growing trend; we have studied consumer-to-

4https://techcrunch.com/2016/04/08/bmw-just-jumped-into-the-u-s-car-sharing-biz-with-the-
help-of-yc-alum-ridecell/

https://techcrunch.com/2016/04/08/bmw-just-jumped-into-the-u-s-car-sharing-biz-with-the-help-of-yc-alum-ridecell/
https://techcrunch.com/2016/04/08/bmw-just-jumped-into-the-u-s-car-sharing-biz-with-the-help-of-yc-alum-ridecell/
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consumer product sharing but not peer-to-peer service offerings such as Uber. When
consumers share their purchased products (e.g., tools or cars), the manufacturers
and the retailers of those products will be affected and can strategically change their
decisions, which is the focus of our research. In contrast, when consumers offer
their time or services (e.g., a consumer on TaskRabbit assembles IKEA furniture for
another consumer), typically there is no strategic upstream supplier (manufacturer
or retailer). In those situations, the labor market and the traditional service providers
may be affected by the peer-to-peer service platforms. Theoretical and empirical
research on both types of collaborative consumption are of great managerial and
academic interest.

Acknowledgements This chapter is extensively based on the authors’ paper in Management
Science (Jiang and Tian 2018).
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Chapter 4
Operational Factors in the Sharing
Economy: A Framework

Tunay I. Tunca

Abstract Applications of sharing economy, from ride and home sharing to crowd-
funding to online freelance markets have been playing increasingly prominent
roles in people’s daily lives. An important reason for sharing economy’s rise to
prominence is the operational efficiencies it introduces, and the related savings
and other economic benefits it unlocks. In this paper, we provide a framework
identifying and describing the forces of sharing economy that fuel the success of
the novel business models of the concept. In addition, we study two applications,
namely ride sharing and group buying, in more detail, analyzing the operational
efficiencies created by each business model with the framework we introduced and
providing evidence from recent related literature for the efficiency gains they bring
about. Finally we discuss some potential downsides and pitfalls that arise as the
side effects of these operational efficiencies of sharing economy business models,
and the related regulatory issues ahead that may need attention.

4.1 Introduction

Since the final decade of the twentieth century, the Internet has been changing the
society and the global economy in a scale and intensity that can be considered
unprecedented for any technology in human history. There are drastic and irre-
versible differences in the way people communicate, work, shop, search for and
retrieve information, obtain news, consume entertainment, socially organize, travel,
connect with friends, family and strangers, and carry out many other aspects of
their lives today, compared to before Internet started entering daily life two just two
decades ago. Among many ways the Internet has affected peoples’ lives, perhaps
one that had the most direct economic effect and that has generated one of the
highest efficiency gains is its enabling of the sharing economy in the past decade.
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Spanning many aspects and facets of the economy, today sharing economy
touches hundreds of millions of peoples’ lives daily both as consumers and
providers. Its extent spans a wide variety of concepts and contexts from ride sharing
to home sharing, group buying to crowdfunding, and peer-to-peer lending to online
freelancing. In its foundation, the idea is utilizing distributed networks of people
and resources, by bringing them together to increase efficiency of value creation by
physical and financial assets, time, connections, expertise, and labor. The powerful
and ever growing network effects on the Internet present an enormous potential for
the growth of the sharing economy. The global sharing economy is expected to grow
from $14 billion in 2014 to $335 billion dollars by 2025 (Yaraghi and Ravi 2017).

There are many ways the sharing economy creates and unlocks value. Many of
the efficiencies it creates fall in the domain of operational efficiency since the force
behind the engine of the sharing economy is essentially better matching of demand
and supply through improved utilization of resources. This includes improved
logistics, improved allocation of peoples’ time and living spaces, efficient utilization
of networks and incorporation of small scale scattered and dormant resources
into the active economy. This article presents a framework for understanding the
operational factors and advantages that shape and power the sharing economy.
The goal is building a systematic and well-connected structure for identifying,
understanding and analyzing parts and applications of the operations management
on sharing economy under a unified umbrella. We further provide examples from
recent applications and literature in the area to demonstrate how the elements of our
framework appear in this research and how one can analyze the insights from these
studies under the lens of this framework.

The rest of this article is organized as follows: Sect. 4.2 presents and discusses
our framework. Section 4.3 presents two applications of sharing economy business
models as examples, showing how the operational advantages presented in the
framework yield efficiencies for these models, and discusses empirical evidence
from recent literature on their value creation. Finally, Sect. 4.4 offers our concluding
remarks.

4.2 The Framework

In this section, we present our framework of five sharing economy operational
factors that shape the efficiency of the concept’s business applications. In particular,
these are:

1. Utilization of sunk and fixed costs
2. Utilization of bit sized resources
3. Utilization of human idle time
4. Utilization of networks to lower barriers to entry into workforce and markets
5. Assigning people new operational and economic roles

We next explain and analyze each one of these factors in detail.
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1. Utilization of Sunk and Fixed Costs One of the most impactful ways the
sharing economy unlocks value that would have been otherwise lost is its enabling
increased usage of dormant resources. Consider the following: It is estimated that
on average a given car is parked 95% of the time (Barter 2013; Morris 2016).
This means that at any given time point, hundreds of millions of cars around the
world are dormant resources that do not generate concrete economic value that
fulfill their potential. Similarly, according to National Association of Home Builders
(NAHB) there were approximately 7.5 million second homes in the United States
(Zhao 2016). Including the empty rooms in the primary homes of more than 125
million households in the country (Statista 2016), tens of millions of rooms in
American homes every day go unused. Therefore, it is not surprising that, once
platforms were made available for cars to be utilized through ride sharing, within a
few years of Uber’s and Lyft’s respective starts, the number of cars used for ride-
sharing worldwide by Uber surpassed one million in 2015, and reached 700,000
for Lyft in 2017 (Lazo 2015; Weise and della Cava 2017). Similarly, in less than a
decade from AirBnB’s foundation, the number of listings available worldwide on
that platform surpassed four million in 2017 (Hartmans 2017). In addition, another
advantage these sharing economy providers have is that commercial transportation
and hospitality services require not only provision of new replacement resources
themselves, but also need additional fixed costs of operation, such as maintenance,
insurance and registration fees for cars, and taxes, utilities, and other costs such as
association dues for houses. Therefore, when one considers the competition between
commercial entities and individual providers, this highlights another advantage for
sharing economy business models: A significant portion of the fixed operating costs
are sunk costs for sharing economy providers, and another significant portion of
these costs can be better amortized and spread out over time and usage. This
reduces the overall effective operating costs for the sharing economy providers
and puts the traditional commercial providers such as taxi companies and hotels
in a significant competitive cost disadvantage. This cost asymmetry further fuels
the explosive increase of market share for the sharing economy providers versus
traditional commercial entities.

2. Utilization of Bit-Sized Resources Through the power and reach of the
Internet, the sharing economy has unprecedented ability to utilize small, distributed
resources. Perhaps one of the best examples for this advantage is the rise of Peer-to-
Peer (P2P) lending. In P2P lending sites, ordinary people come together to finance
small size loans for each other. The loan amounts are usually limited, by rules, to a
range of $1,000 to $40,000, and the average loan size is typically less than $15,000
(Cunningham 2015; Singh 2016; Frankel 2017). The borrowers and the loan risk
are rated by the online platform, and the lenders can view and choose by themselves
whom and which loans to finance. In the past decade, P2P lending industry showed
tremendous growth. The two largest P2P lending sites in the U.S., namely Lending
Club and Prosper, both originated in mid 2000s, account for a combined $36 billion
dollars in loans processed as of 2017 (Investment Zen 2017; Lending Club 2017),
and the market potential for P2P lending is estimated to be higher than $350 billion
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(Singh 2016). The driving force behind this explosive growth is the ability to
bring together the demand and supply for very small resources with centralized,
low-cost operations. Without an online business model like P2P lending, the loan
matching has to be done through banks, and in some cases even through very high
interest payday loan services, which add substantial amounts of financing costs and
overhead, resulting in lower returns for the lenders and high interest rates for the
borrowers. P2P lending, however, is a win-win for both lenders and borrowers. What
is more, one can expect that with reduced interest rates on loans, many borrowers
who would have been priced out of the market are now able to borrow money and
use it, stimulating further economic activity, which means that P2P lending unlocks
significant value in the economy. Parallel arguments can also be made for ride
sharing and home sharing markets. Drivers who operate on ride sharing platforms
like Uber and Lyft have full flexibility on when to drive and when to be inactive.
That means that if they have a small amount of time in hand and prefer to drive at
that point, they can drive to earn money and generate value. Similarly, without the
home sharing business models like AirBnB, it would not be possible to organize and
match hundreds of thousands of unused but potentially available rooms in private
homes with the demand for those rooms. This is an unprecedented flexibility in
utilization of such small sized resources, which, in aggregate constitute a substantial
and otherwise untapped economic value.

3. Utilization of Human Idle Time According to United States Department of
Labor, in 2015 average American, 15 years or older, spent 4 h and 59 min for leisure,
relaxation and sports every day (Bureau of Labor Statistics 2015). According to the
same report, unemployed individuals had nearly 7 h of free time while people with
full-time employment had more than 4 h free time per day on average. Although
the level for satisfactory amount of free time per day varies from person to person,
especially at times of high unemployment, the amount of free time people have and
prefer to be working can be substantial. Furthermore, this idle time comes with
near zero opportunity (or shadow) cost and utilization of it is almost entirely a
net upside. With the flexibility of the “work any time” concept, sharing economy
business models enable people who have free time to participate in the economy,
and can generate great amount of net value for the society. A very good example
for this phenomenon is online freelance market places. Freelance marketplaces,
such as Upwork (formerly Odesk, which had merged with Elance, two pioneering
freelance websites), Fiverr and TaskRabbit connect demand and supply for labor
for a very broad spectrum of services, ranging from coding, web design, graphic
design, writing, more recently to home improvement, consulting, marketing, and
accounting. By doing so, these websites allow people from a broad range of
professions to independently book jobs at a per task basis, which means that the
providers have flexibility to organize their schedules and take a task during their
idle times. This enables people to efficiently decide how to utilize potentially many
different pieces of their free time, which they would not necessarily have been able
to otherwise. A recent study has found that there are about 55 million freelancers
in the U.S. corresponding to 35% of the U.S. workforce with total earnings of
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approximately $1 Trillion in 2016, and 66% of these freelancers declared that
amount of work they found online had increased in that same year (Upwork 2016).
Although some freelancers use these websites as their only source of employment,
many use it for supplemental work as well. Similar arguments can be applied to ride
sharing and to some ways home sharing. Overall the value generated by efficient
utilization of human resources enabled by sharing economy business models is
substantial, especially when one includes the additional societal and economic
benefits of reduced unemployment brought about in the population.

4. Utilization of Networks to Lower Barriers to Entry into Workforce Many
of the factors we discuss in our framework have effects on lowering the barriers
to entry. However, through utilization of the global Internet infrastructure, sharing
economy has another very powerful way in lowering the barriers to entry, specifi-
cally into labor markets. Once again, a very good example of this is ride sharing.
For decades, the taxi industry had been tightly controlled through municipalities,
with medallions (effectively licenses to operate individual taxicabs in a certain
municipality) sold to a limited number of taxi companies and individuals at
substantial prices. In many cases, the exorbitantly high prices of these medallions
signalled the extent of imbalance in demand and supply. (Please see Sect. 4.3.1
below for detailed statistics in medallion prices and related factors.) Another
indicator of this imbalance is how in the past few years the numbers of Uber and
Lyft drivers skyrocketed. For instance in approximately 18 months following the
launch of UberX, the number of drivers who were active providers (defined as
those who completed at least four trips a month) increased to 160,000 (Hall and
Krueger 2015). One of the most important reasons for this increase is reduction in
search and matching costs. Before UberX enabled these drivers to connect potential
customers, an individual effectively could not enter the market to provide rides
for fares. This was not necessarily because of legal barriers, which proved to be
not too difficult an obstacle to overcome (Lawler 2013; Geron 2013), especially
compared to the much bigger obstacle of connecting of drivers and passengers
in real time (U.S. Department of Transportation 2006; Chan and Shaheen 2012).
The availability of smartphones with GPS technology finally solved the problem
by 2010 and the biggest barrier to entry to the market was removed. This lead
to business models like Uber and Lyft, where the company only provides the
platform for matching customers and drivers, hence solving the most challenging
part, and having removed that barrier, every driver individually can choose to enter
the market with ease, essentially by downloading an App and signing up with the
company (and in some cases going through certain background checks). Similar
arguments can be made for home sharing companies and online freelance market
places as well. The effects of these lowered barriers on their respective industries
can be tremendous, as we discuss in more detail for the ridesharing industry
in Sect. 4.3.1.

5. Assigning People New Operational and Economic Roles One of the most
unique ways the sharing economy affects the business environment is its ability
to assign and leverage new business roles to people. Aside from the immediate
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examples that come to mind like how with much ease ride-sharing allows people to
become commercial drivers, and home sharing allows people to become providers
in the hospitality industry, this effect in fact is much broader than it first catches
the eye. Two interesting examples come from Crowdfunding and Group Buying.
Originating in early 2000s Crowdfunding allows many small donors or investors
to chip in funds for the realization of a project or getting a start up off the ground
(Du et al. 2017; Miller 2017). There are two types of crowdfunding events: The
first kind is the more philanthropic type, in which a number of donors effectively
give their money for a cause or product they would like to see materialized without
much expectations other than occasionally a token gift, which could be the funded
product. This market, lead by websites such as Kickstarter and Indiegogo, with
average funding amount per campaign about $990, has reached a total estimated
transaction volume of $7.32 billion dollars in 2017, and is predicted to grow to
a transaction volume of $18.97 billion by 2021 (Statista 2017a). In this model,
the participants are enabled to become philanthropic contributors or partners in
projects, which otherwise would not have materialized. In the second form of
Crowdfunding, which is also called Crowdinvesting, in which participants provide
funds with the expectation that they will become equity holders in a start up
company if the company successfully launches. Lead in the U.S. by sites such as
EquityNet, CrowdCube and Seedrs, the global market size of this segment is $5.69
billion with expected 2021 market size of $19.33 billion, and the average project
funding amount in this segment is about $120,000 (Statista 2017b). Although
being an inherently risky activity, Crowdinvesting allows individuals to effectively
assume the role of small scale venture capitalists, an activity that became legal only
recently in the United States by the “Jumpstart Our Business Startups” (JOBS)
act of 2012, (Reiss 2016), while enabling the funding of thousands of potential
start ups that can generate billions of dollars of value for the global economy.
Finally, another striking example comes from Group Buying, which generates
significant value for both companies and customers by incentivizing customers to
assume the role of sales agents. We discuss Group Buying in more detail below in
Sect. 4.3.2.

In different sharing economy business model applications, one may be able to see
all of these five factors or a subset at work, in many cases the factors interacting and
teaming up with each other to amplify and complement the effects of one another.
We will next discuss two examples in detail to demonstrate the application of our
framework.

4.3 Examples

In this section we discuss two sharing economy business models, namely Ride
Sharing and Group Buying, more closely within the structure of our framework,
highlighting the factors that affect the business landscape for these two particular
applications.
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Fig. 4.1 The growth of Uber (the top two panels) and Lyft (the bottom two panels) in New York
City from early 2015 to August 2017. For each company, the left panel illustrates weekly number
of dispatches, and the right panel depicts the weekly number of unique vehicles dispatched for this
time period. (Data source: New York City Open Data, https://opendata.cityofnewyork.us/)

4.3.1 Ride Sharing

Of all the many influential applications of the Sharing Economy, perhaps the most
ubiquitous one is ride sharing. Considering that the concept materialized in practice
less than a decade ago, there are few disruptive new business models in history
that had industry-shaking effects as fast and strongly as ride sharing did. Today
the industry is lead in the United States by Uber and Lyft, with an estimated total
number of daily rides in the United States being more than 5.5 million and 1 million
for these companies respectively (Locklear 2017), and their major global rival
China’s Didi Chuxing accounting for upwards of 20 million daily rides (Millward
2016). Uber and Lyft are estimated to be worth more than $60 billion and about $7.5
billion dollars respectively (Russell 2017; Etherington 2017), while Didi Chuxing
has an estimated value of $50 billion (Macfarlane 2017).

Figure 4.1 demonstrates the growth of number of weekly dispatches and the
number of unique vehicles dispatched by Uber and Lyft in New York City from
early 2015 to August 2017. Note the growth in number of weekly dispatches for
Uber from 151,235 in January 2015 to 1,995,459 in July 2017, a growth rate
of approximately 9% a month or 181% a year. Similarly the number of weekly
dispatches for Lyft grew from 11,588 in April 2015 to 536,966 in July 2017, by
approximately 15% a month or 418% a year. Further, for Uber, the weekly number
of unique vehicles dispatched increased from less than 8,980 in January 2015 to

https://opendata.cityofnewyork.us/
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49,665 in the beginning of August 2017, corresponding to an average monthly
increase of close to 1,300 vehicles. For Lyft, weekly number of dispatched vehicles
increased from 1,501 in April 2015 to 22,144 in August 2017, an average monthly
increase of about 740. These numbers are even more striking when compared to the
total number of taxi medallions in New York City, which was capped at 13,587 for
2016 and 2017 (Agovino 2017). According to Certify, the second largest expense
management software provider in North America, in the fourth quarter of 2016,
Uber captured the majority of ground transportation business transactions processed
through their system, with a market share of 52% (Hagan 2017).

What accounts for this astonishing growth of ridesharing activity? When viewed
through the lens of the framework we presented in Sect. 4.2, the components of
the success of ride sharing companies like Uber and Didi emerge clearly. First,
ride-sharing uses existing resources, namely private cars, which means that, fixed
costs such as purchasing, periodic maintenance, registration and taxes are sunk.
That is, other than drivers’ opportunity cost of time, and the marginal operating
costs of gas usage, amortization and added maintenance, which are similar or often
lower compared to commercial taxi marginal operating costs, there are minimal
additional cost considerations. This creates an enormous strategic advantage for ride
sharing providers compared to taxi service providers at the time of entry decision
since taxi service providers have to internalize the fixed costs of acquisition in their
decisions, while drivers who join Uber or Lyft consider most of the fixed costs as
sunk. Second, looking at the marginal costs, we see that for ride-sharing services, the
main component of this type of cost that could differ from that of the taxi services is
the driver’s opportunity cost of time. Combining the availability of human idle time
for unemployed and part-time employed individuals, and the ability to use smaller
bits of time that enables people with full-time employment to provide ride-sharing
services at times convenient to them, it can be claimed that individual opportunity
cost for time for ride-share drivers is low. Considering the fact that many taxi drivers
are third party agents that work for taxi owners, one can conclude that in large
part, taxi marginal costs are further influenced by the requirement to provide the
primary employment income for the drivers. Therefore, ride sharing not only has
a fixed-cost advantage to commercial taxi model, but also a significant marginal
cost advantage. Therefore, once the technology that could utilize networks to enable
real time peer-to-peer driver-customer matching emerged, many people who could
potentially be interested in providing rides for fares could be assigned new roles
as drivers and easily enter the market. The resulting effect could be estimated as
ride-sharing services taking significant market share away from taxi services.

One way to see the manifestation of this effect is looking at the revealed
market valuation of license to operate a taxicab. Figure 4.2 displays the average
monthly taxi medallion price in New York City from January 2010 to August
2017. Historically, due to limited number of availability medallions in major cities,
medallion prices have been substantial. This can also be seen in the figure, where
up until mid 2013, there is a steady upward trend in the price, with the average
price peaking in June 2013 at $1,050,625. After that point, the price becomes more
volatile but still stays high until mid 2014, still exceeding $1 million in July 2014.



4 Operational Factors in the Sharing Economy: A Framework 63

Fig. 4.2 Average monthly non-foreclosure taxi medallion price in New York City from January
2010 to August 2017 (for full medallion sales only). (Data source: New York City Taxi and
Limousine Commission)

Beyond that, however, coinciding with the tremendous growth in ride-sharing as
depicted in Fig. 4.1, there is a dramatic crash in the medallion price, with the average
price falling as low as $181,666 in June 2017. In August 2017 the average price
for unrestricted, non-foreclosure medallion sales transactions in New York City was
$237,500, a 77.4% decline from the peak average monthly price within a time frame
of about 4 years.

Another indicator of this sudden unexpected value loss in taxi licenses is the
significant increase in the number of medallion foreclosures in the past few years.
Figure 4.3 illustrates the rise of foreclosures in New York City, again on the 2010–
2017 time frame. As can be seen from the figure, the number of foreclosures for
each month between January 2010 to September 2014 was zero except for one
foreclosure in August 2011. After September 2014, however, there is a steady
and persistent rise in the number of foreclosures with 25 foreclosures in the first
8 months of 2017 and nine foreclosures in August 2017 alone. Overall, the totality
of this evidence reflects the pattern of a strong disruptive technology with significant
economic advantage, as pointed out by our discussion of the application of our
framework, entering an existing market, fundamentally altering it and driving the
cost-disadvantaged incumbents substantially out of market share and even the
business itself.

Finally, one can also measure the magnitude of the welfare improving effects of
the cost advantage coming from the ride sharing business model. Using transactional
data obtained from Didi Chuxing, spanning December 2015 and January 2016,
Ming et al. (2017) study demand, supply and price formation in the Beijing



64 T. I. Tunca

Fig. 4.3 Number of taxi medallion foreclosures in New York City per month from January 2010
to August 2017. (Data source: New York City Taxi and Limousine Commission)

ride-sharing market. Employing a two-sided multinomial logit preference based
regression model, and controlling for factors such as time of the day, weather,
air pollution, weekend and holiday effects, they estimate the consumer demand
and driver supply for ridesharing services for 3-min intervals during a 24 h cycle.
They calculate that the estimated average ride-sharing price is lower than that of
the average taxi price by approximately 29%, and using the demand and supply
estimates from the regression analysis, through a counterfactual analysis, they show
that increasing ride-sharing fares to the taxi fare levels would result in about
20% expected consumer welfare loss. That is, empirical evidence supports that
lower consumer prices resulting from lower operating costs for the ride-sharing
business model generate real economic advantage and create substantial value for
customers.

4.3.2 Group Buying

Another application that demonstrates how sharing economy business models are
able to extract economic value that would otherwise be very difficult or impossible
to harness is group buying. Internet based group buying models initiated in early
2000s and brought into public conscience in the U.S. with companies like Groupon
and LivingSocial. The main idea of group buying is that the higher the number
of customers that join in the purchase the lower the unit price of the product or the
service offered. This is usually implemented using discrete thresholds. That is, if the
number of sign ups exceed a certain threshold, the unit price is discounted by a pre-
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determined amount which is called the “deal discount”. In a group buying event,
there is a fixed event window, which is announced in advance. During the event
window, customers arrive at different times, (in most implementations) observe the
current number of existing sign ups, and make a decision whether to join or not. In
some implementations, there is a non-refundable deposit that a customer pays if she
decides to join. At the end of the event window, depending on the number of sign
ups, the unit price is announced, and at this point, some customers who signed up
may leave if they choose to, forfeiting any deposit they paid at the time of sign up.
The remaining customers pay the balance between the realized unit price and the
deposit, and receive the good or the service from the provider.

Group Buying as a retailing method organized by e-commerce websites for
particular retailers is gaining significant popularity recently around the world,
especially in Asia. In 2016, Taobao, China’s largest e-commerce platform, hosted
more than 200,000 individual group buying events, generating revenues exceeding
32 billion Chinese yuan or approximately $4.8 billion US dollars for the retailers
(www.sohu.com). Examining the benefits of group buying for customers and the
retailers who sell through these events from the perspective of our framework helps
reveal why. First, the main idea behind group buying is essentially efficient use of
bit sized resources. Volume discounts is a procurement strategy traditionally very
effectively used by large companies or entities that buy large quantities (Ovans
2000; Pei et al. 2011). Bulk buying reduces transaction costs that come from search
and implementation, decreases overhead and spreads fixed costs among a large
number of units, and thereby saves money to the seller, and the generated surplus
can be shared with the buyer through volume discounts for a mutually beneficial
transaction. One can easily see that there is great potential to unlock value if the
strategy can be expanded to aggregate individual buyers’ transactions. From this
perspective, each buyer’s unit purchase is a bit sized resource that can be put to
efficient use only when aggregated with many other purchases to generate value
for the entire system. Thus, as a sharing economy business model, group buying
successfully makes use of existing scattered small resources, which otherwise would
be either not used or used suboptimally. Before group buying mechanisms were
enabled by the Internet, however, there had not been a method to efficiently bring
this idea to life. With the mass communication and coordination capabilities that
come through the Internet and utilization of networks that exist on the web, this
barrier to implementation and entry has been reduced significantly.

Further, group buying, has another very important particular capability to
generate value in a very creative way. Just as Crowdfunding and Crowdinvesting
assign new roles to people to participate in the economy as philanthropists and
small size venture capitalists, as we had discussed in Sect. 4.2, Group Buying creates
incentives for ordinary customers to assume the role of sales agents for a retailer or
a service provider. When customers participate or plan to participate in a group
buying event, they benefit from a price reduction only if sufficient number of other
customers sign up as well. Therefore, customers have an incentive to spread the
word about the event in their social circles, informing and convincing others to join,
including family, friends and acquaintances, as well as in some cases, utilizing social

www.sohu.com
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networks on the Internet such as Facebook to advertise the potential deal and recruit
potential customers. This can bring a significant demand boost and value for the
retailer with minimal costs since the company gets all this extra promotion for free,
and this surplus can be shared with the customers in the form of deal discounts. In
addition, the mechanism also makes efficient economic use of human idle time, by
allowing people to decide whether they would like to utilize their existing free time
to spend on promoting the group buying event, thereby putting a low opportunity
cost resource into use to create economic value.

The capability of group buying to incentivize customers to spend effort as
sales agents had been recognized and studied in the academic literature, albeit
only by theoretical studies (Jing and Xie 2011; Chen and Lu 2015). In a recent
study Ming and Tunca (2017) provide empirical evidence for the existence of
the value generated by group buying events and measure its magnitude. Ming
and Tunca first develop a dynamic game-theoretical model to capture the sign
up behavior of the customers during the group buying event window. They then
use sign up data from 266 group buying events hosted by Taobao for a major
Chinese appliance manufacturer in 2013 to estimate the customer arrival rates for
these group buying events. Utilizing additional sales and product data for 2715
other instances where products were sold through traditional single-prices, and
controlling for factors such as product review scores by customers, product types
and characteristics, and date effects, they demonstrate that selling through a group
buying event instead of traditional single-pricing boosted the demand on average
by more than 15%. Further, through a counterfactual analysis, they compare the
retailer’s realized profits to its predicted profits for the case, where the products
were sold through traditional single-pricing, and estimate that on average, selling
through group buying improved retailer profits by approximately 11%. Overall this
study provides empirical evidence for increased demand and the value unlocked by
employing group buying events in the channel, and testifies for the effectiveness of
this innovative sharing economy business model.

4.4 Concluding Remarks

In a very short amount of time, sharing economy has grown from virtual non-
existence into a major economic force with a significant role in shaping the global
business environment. In this article, we presented a framework to help dissect the
forces that enable sharing economy business models to be so effectively disruptive in
changing industries, generate substantial social and economic value, and distribute
it broadly in the society. We then analyzed two sharing economy business models,
namely Ride Sharing and Group Buying, in detail utilizing this framework, and
discussed the empirical evidence from recent research supporting the predictions
coming from the framework about the value generated by these business models.
The insights from this analysis can be utilized for other examples of sharing
economy applications, which can also be analyzed in a similar way.
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An important thing to note however, is that the powerful forces that favor the
sharing economy as we discussed in this article, also have downsides, which may
limit or reduce the benefits the society can obtain from these innovative business
models. One example is the problem of commercial leasing on AirBnB platform. In
the home sharing market, the lowered barriers to entry not only allows individuals to
make use of vacant rooms in their homes by renting them out on a short term basis,
but also enables entities with commercial interests to take advantage of the platform
to essentially run larger scale renting businesses by leasing out multiple units or
entire buildings. Such entities in some cases are even claimed to acquire buildings in
some neighborhoods solely for the purpose of renting them out on AirBnB. This in a
way amounts to enabling businesses to run disguised hotel operations without going
through regulated channels and in some cases in residential districts. According to
a report by the American Hotel and Lodging Association (AH&LA), in the United
States, AirBnB hosts renting two or more units accounted for 32.1% of listings and
89% of the platform’s revenue growth in 2016 (CBRE 2017). One example of a city
with this problem is Washington D.C. where, according to AH&LA president and
CEO Katherine Lugar, 24% of AirBnB revenue comes from hosts with more than 20
units listed (Ting 2017). Although these figures are contested by AirBnB, the issue
is certainly under the attention of the company as well as municipalities. In 2015
and 2016, AirBnB was accused of removing thousands of listings by commercial
operators before making the data on its operations in New York City publicly
available (Kulwin 2016; Rossi 2016). In response, cities like San Francisco and
New York are implementing stricter laws on short-term rentals and as a result, being
targeted with litigation by AirBnB. The commercial operators on AirBnB are not
only a threat to traditional hospitality businesses like hotels, but also to cities and
neighborhoods, and clandestine commercial entry to the market can steal business
away from individuals, reducing the spread of social value generated by the business
model.

Another issue that could become problematic in the future concerns individuals
who make sharing economy platforms their main career or job outlet. Even though
sharing economy is valued by providers and customers for enabling people to
be hired for individual “one-off” tasks, thereby creating flexibility and improving
utilization of resources, this also means that people who provide these services,
such as drivers for ridesharing services or professionals who offer their services on
online freelance marketplaces are by default, offer work for the sharing economy
without benefits such as medical insurance or retirement accounts, or standard
workers’ protections. In fact two recent court decisions in London and New York
declared that Uber must treat at least some of its drivers as employees, potentially
requiring the company to pay millions of dollars in benefits such as healthcare
contributions, and overtime and holiday pay (Kerr 2016; Furfaro 2017). On the
worker’s protection side, the company was sued in Los Angeles and in U.S. federal
courts with allegations on committing fraud on driver compensation and for the
rights of the drivers to unionize (Rubin 2017; Denton 2017). Concerns about benefits
should also be kept in mind for freelancers who plan to use online platforms as
their main source for work, since the income made by freelancers may be deceiving
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without considering payments for health insurance and routine business expenses,
especially also considering the fees paid to the platform. The issue of employee
rights and benefits is still a significant concern that is not fully resolved for many
sharing economy business models.

Finally, the powerful network and communication technologies that fuel the
sharing economy by enabling millions of people around the globe to connect,
coordinate and transact at will also raise important privacy concerns. For instance,
in order to be able to match customers with drivers in real time and facilitate
and keep track of payments, ride sharing platforms have to collect and record
detailed GPS location records for millions of passengers and drivers alike. Similarly
home sharing companies have records of travel destinations, dates and lengths of
stay histories for millions of users. Peer-to-peer lending websites have access to
information on the amounts and purposes for the loans their borrowers secure
through their platforms, and the history of their creditworthiness, and personal
payments or lack thereof. Collection of tracking of such large amounts of highly
personal information has created significant personal and financial cybersecurity
concerns, as well as concerns about the intrusive use of the data by the platforms
themselves. For instance, Uber’s tracking of customers through IP addresses even
after they disabled their phones’ GPS feature, its collection of data that goes beyond
the basic trip information, and giving its employees improper access to that data
caused significant debate and calls for new privacy legislation covering ride sharing
companies’ activities (Lyons 2015; Mueffelmann 2015). Unless carefully addressed,
such concerns can create major setbacks and impede the growth and development
of sharing economy business models.

Overall, the promise of the sharing economy in improving welfare of millions of
people worldwide is immense. However, moving forward, industry self regulation
as well as protective legislation is necessary to prevent abuse of the operational
advantages offered by sharing economy business models, to reduce and control the
negative externalities they may generate, and to protect their intended economic
value creation for a broad base of the society.
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Chapter 5
Ride Sharing

Siddhartha Banerjee and Ramesh Johari

Abstract Ridesharing platforms such as Didi, Lyft, Ola and Uber are increasingly
important components of the transportation infrastructure. However, our under-
standing of their design and operations, and their effect on society at large, is
not yet well understood. From an academic perspective, these platforms present
challenges in large-scale learning, real-time stochastic control, and market design.
Their popularity has led to a growing body of academic work across several
disciplines, with researchers addressing similar questions with vastly different tools
and models. Our aim in this chapter is to outline the main challenges in ridesharing,
and to present an approach to modeling, optimizing, and reasoning about such
platforms. We describe how rigorous analysis has been used with great success
in designing efficient algorithms for real-time decision making, in informing the
market design aspects of these platforms, and in understanding the impact of these
platforms in their larger societal context.

5.1 Introduction

Since their founding over the last decade, ridesharing platforms have experienced
extraordinary growth. At their core, these platforms reduce the friction in matching
and dispatch for transportation. They do so based on a pair of matched driver and
passenger mobile apps; a typical transaction starting with a potential passenger
opening her app and requesting a ride, following which a centralized dispatcher
matches her to a nearby driver if one is available. However, underlying this simple
model are three features which fuel much of the success of these firms:
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1. Data Collection and Analytics: The driver and passenger apps enable extremely
high temporal and spatial resolution for data collection. Ridesharing platforms
track the position of all drivers and passengers in the system. Moreover, modern
graph analytics and predictive models allow the platform to leverage this data to
obtain very good estimates of travel-times, instantaneous demand, and long-term
driver and passenger engagement metrics.

2. Real-time Operations and Control: An important reason behind the success of
ridesharing platforms is their reliability and lack of friction in requesting a ride.
Critical to this is the ability of the platform to rebalance demand and supply
over time and space. A key tool for this purpose is dynamic pricing: ridesharing
platforms adjust prices in real-time; in addition, however, the platforms have
several other real-time dispatch and rebalancing tools, as well as different means
for regulating and/or pooling instantaneous demand.

3. Market design: Ridesharing platforms typically do not employ drivers, but rather,
create a marketplace between passengers and freelance drivers. Drivers can
choose when and where to work (or not), and earn a share of the earnings per ride.
To deal with this uncertainty in supply, ridesharing platforms need to understand
the longer term equilibrium impacts of their real-time control on driver and
passenger decisions, as well as on the platform’s overall performance.

The challenge in studying ridesharing platforms is that the above features interact
with each other in fundamental ways. To analyze any particular aspect of the
platform, one has to account for its effect on the others – for example, to test a
new pricing strategy, the platform must control for short timescale spatio-temporal
variations in demand and supply, as well as long-term effect on driver and passenger
entry decisions. On the other hand, incorporating all aspects simultaneously may
lead to intractable models.

Our main aim in this chapter is to outline a stochastic-network based micro-
foundation for ridesharing platforms. The framework we present is adapted pri-
marily from our prior work on these questions in Banerjee et al. (2015, 2017),
which in turn were based on our experience in working on the design of pricing
and matching algorithms at Lyft.1 The popularity of ridesharing platforms has in
recent years led to a growing body of work by researchers across several disciplines,
including applied probability, optimization and network algorithms, economics and
market design, transportation and urban planning, and even statistical physics. These
works address similar problems, but using vastly differing models and tools, and this
makes it difficult to translate the findings across different fields. While we do not
in any way claim that the framework we present herein is the only way to model
such platforms, we do believe that it captures the salient features of ridesharing,
while being amenable to analysis and simulation. Our hope is that having such a
common modeling framework will help unify the insights of researchers working in
this exciting area.

1SB worked there in 2014–2015, and was involved in designing their early pricing algorithms.
www.lyft.com

www.lyft.com
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The rest of the chapter is organized as follows. First, in Sect. 5.2, we provide a
high-level description of the essential features of a ridesharing platform, and outline
the different operational and market design challenges facing the platform. Next, in
Sect. 5.3, building on our prior work in Banerjee et al. (2015, 2017), we describe
how queueing-network models can be adapted to study ridesharing platforms. In
particular, we focus on how they capture the critical features of such platforms:
the high-resolution state description and two-sided nature, the real-time pricing and
control tools, and the longer-term strategic interactions of drivers, passengers and
the platform. In Sect. 5.4, we briefly summarize the operational and market design
insights that can be derived from this modeling framework; in particular, we focus
on how the model has been used to develop efficient control algorithms (based on
results from Banerjee et al. 2017) and market mechanisms (following ideas outlined
in Banerjee et al. 2015). Finally, in Sect. 5.5, we survey some of the related literature
in ridesharing, and more generally, on control of stochastic networks and two-sided
marketplaces.

5.2 Anatomy of a Modern Ridesharing Platform

In this section we describe the basic anatomy of a ridesharing platform. We
divide our presentation in three parts: first, we discuss a fundamental separation
of timescales that should guide any modeling of a ridesharing platform. Next, we
discuss the strategic choices that guide the behavior of drivers and passengers on
the platform. Finally, we discuss operation and design of the platform itself, taking
both the timescale separation and incentives into account.

5.2.1 Timescales

There is an intrinsic timescale separation in the strategic interaction of drivers and
passengers, as well as operation of the platform. In particular, ridesharing platforms
have distinct behaviors on the following two timescales:

(i) A fast timescale (roughly, intra-minute), which captures the instantaneous
dynamics of cars and passengers in the network; and

(ii) A slow timescale (roughly, intra-week), over which drivers make decisions as
to how much and when to be on the platform.

The fast timescale provides the backdrop for the short-term operational and
market design choices of the platform (especially pricing and matching), while the
strategic consequences of these choices unfold over the slower timescale. While
passengers primarily make entry decisions on the fast timescale (“Do I want
to take this ride, given the current price and availability?”), drivers make such
decisions on a longer timescale. This separation of the agent dynamics thus provides
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a convenient separation between how the platform’s policies affect drivers and
passengers: control policies influence instantaneous passenger-vehicle dynamics,
while the aggregate effect of these policies affect the longer-term entry decisions of
drivers. Both timescales are discussed in more detail in Sect. 5.2.2. We note that this
viewpoint ignores other dynamics: for example, intra-hour changes in demand rates,
or intra-year interactions between ridesharing firms and public transit providers.
However, we argue that the two timescales we consider are crucial for understanding
the first-order behavior of ridesharing platforms.

5.2.2 Strategic Choices

What are the main strategic choices made by participants in ridesharing platforms?
We already alluded to the strategic modeling of one side of the platform: for the
most part, passengers can be modeled by assuming they make an instantaneous
decision of whether to participate based on price (and possibility also availability
information) on the platform. Platforms refer to “app-opens” as opportunities to
potentially engage a passenger; a subsequent “ride request” refers to the passenger
actually choosing to request a ride. In what follows, we will typically assume that
passengers choose to request a ride as long as the price of the ride is below a private
reservation value.

Drivers exhibit far more complex strategic behavior. While there is some
evidence that drivers will locally optimize on short timescales (e.g., perhaps moving
to a nearby block if there is evidence that prices are higher there), for the most part
it is reasonable to assume that drivers are relatively inelastic on short timescales, as
noted above.

Instead, the key choice made by drivers on a longer timescale is entry – both
where they choose to drive, as well as what days and times during the week
they choose to do so. Drivers make these decisions in response to what they
observe on shorter timescales, forming expectations based on their experiences
while driving. These entry decisions can be quite sophisticated, reflecting spatio-
temporal differences in the driver’s experience within the platform.

The incentive structure of platforms can be quite complex, in ways that we
do not necessarily capture in the models discussed in this chapter. For example,
both sides rate each other after a ride is complete; these rating systems play a key
role in determining, for drivers in particular, whether they are allowed to stay in
the platform. As another example, experienced drivers are relatively sophisticated
about time-of-day effects (i.e., when demand is expected to be higher or lower),
and they will choose to keep their app online or offline accordingly. Platforms can
also provide longer-term incentives to drivers, particularly through the fee structure
(i.e., what percentage is given to drivers as their pay); we do not study the optimal
design of fees. Finally, drivers are also constantly making choices about how and
whether to multihome – i.e., participate in multiple platforms at once. Multihoming
has important consequences for the availability of drivers in each platform, and
warrants further attention from academic researchers studying ridesharing.
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5.2.3 Operation and Market Design

A platform’s operation and market design can be roughly summarized by three
pieces: information revelation, pricing, and dispatch.

First, platforms reveal information to both passengers and drivers about the state
of the system. For passengers, this is in the form of ETA (estimated time of arrival),
which captures the distribution of drivers locally near a passenger. For drivers,
the platform provides information on the distribution of demand. There is also
extensive information collected and visible on the ratings provided to each side of
the platform.

Second, a crucial aspect of these platforms is that they constantly make choices
about the fare that will be charged to passengers. The typical model is that platforms
publish a base fare schedule, that determines a baseline rate for any trip. Next, they
will modify this base fare by a multiplier that adjusts the base fare to account for
local demand-supply imbalances: when supply is scarce, the multiplier increases.
In the past, platforms would not publish a fare estimate, because passengers were
not asked to enter a destination at the time of the ride request; in these settings,
the platform simply displayed the price multiplier to the passenger at time of ride
request. Now, platforms publish the expected fare for a ride to the passenger at
the time of ride request, in response to solicitation of the destination. These fares
incorporate the price multiplier.

Once ride requests are made, platforms must actually match drivers to passen-
gers; this is dispatch. Platforms typically match passengers to their closest driver. A
more recent development in ridesharing is the introduction of carpooling (UberPool,
Lyft Line); these products match multiple passengers with a single driver. In addi-
tion, platforms are becoming more sophisticated in how they manage the dispatch
problem; for example, while in the past occupied drivers were not considered in the
dispatch problem, now platforms will anticipate the fact that a driver will free up
before making the next match. Such policies reduce driver idle times.

We have only provided a brief overview of the operational aspects of these plat-
forms, focusing on the elements that are most important for our models below. Of
course, in reality there is a great deal more complexity. For example, platforms must
work to develop a product interface that allows passengers and drivers to make good
choices; they must develop marketing mechanisms and on-boarding mechanisms to
attract driver supply; and they are working more and more to provide sophisticated
long-term incentives to drivers, as noted above. These topics are important dimen-
sions of the platforms, and may provide fruitful avenues for future study.

5.3 A Modeling Framework for Ridesharing Platforms

In this section, we outline a formal stochastic model of a ridesharing platform, and
formulate the various associated control and market design problems. The basic
framework we introduce below is adapted from the models proposed in Banerjee
et al. (2015, 2017). It provides a rich modeling framework for ridesharing platforms,
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allowing us to study many different features, controls and metrics. Moreover, despite
its complexity, the model turns out to be surprisingly amenable to analysis. In
subsequent sections, we describe how the framework can be used to study control
policies for the system dynamics, market-design questions for the driver-passenger
marketplace and inter-platform interactions. Moreover, we also describe how the
framework can be extended to study other design aspects of such platforms.

As we discuss before, a key to modeling ridesharing platforms is identifying the
appropriate timescales for different agent interactions. To this end, our framework
combines a Markov chain model with time-invariant parameters for capturing the
instantaneous dynamics of vehicles and passengers (the fast-timescale), with an
equilibrium analysis that captures entry decisions of drivers and passengers as
well as the objectives of the platform, based on the average system performance
(the slow-timescale. Although the model below allows for modeling fairly complex
agent behavior, we focus on a particular behavioral model, wherein we assume that
passengers primarily react under the fast-timescale (i.e., to instantaneous vehicle
availability and prices), while drivers react under the slow-timescale (i.e., based on
long-term average earnings). This is a choice we make based on a combination of
our experience on working on these platforms, as well as for pedagogical reasons:
as described in Sect. 5.2, these interactions capture the first-order behavior of these
platforms, while enabling a tractable analysis of the stochastic platform dynamics
and long-term strategic interactions.

That said, we note that our modeling choices ignore four important dynamics:
(i) short-term fluctuations in system parameters (e.g., changing demand or bursty
arrivals), (ii) short-term strategic behavior of drivers (e.g., strategic repositioning
and ride cancellations), (iii) long-term effects on passenger behavior (e.g., demand
screening due to persistent low availability or high prices), and (iv) competitive
interactions between platforms (e.g., price cuts, driver retention incentives). Under-
standing the impact these interactions is important, but are to some extent secondary
to the questions we consider. Thus, though some of our results, as well as a growing
body of work by others, apply to these questions, we choose not to dwell on them
in this chapter.

5.3.1 Modeling Stochastic Dynamics of the Platform

We now define a stochastic model for the fast-timescale dynamics of a ridesharing
system. The main elements of the model are summarized in Fig. 5.1.

State space and Markovian dynamics We model the fast-timescale dynamics of
a ridesharing platform using a stochastic processing network framework (Kelly
and Yudovina 2014): We consider a partition of a city into a set of n stations
(corresponding to locations or neighborhoods in a city), and use a continuous-time
Markov chain to track the positions of k units (i.e., vehicles) which are either idle
at these stations or transiting (i.e., in a ride) between them. Each ride involves a
driver picking up a passenger in one region, and dropping her off in another. These
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Fig. 5.1 Illustrating the stochastic dynamics of a ridesharing platform. (a) Summary of model
parameters, (b) The dispatch graph, (c) Idle driver queue under state-dependent pricing. Figure a
summarizes the primary components of our model for a ridesharing platform (in this case, with
state-independent pricing). The platform depicted has 4 stations V = {a, b, c, d}, and m vehicles.
Random variables are depicted in red; here, the random process {Xv} tracks the number of idle units
at stations, while {Xij } tracks the units in transit between stations i and j (with mean travel-time
τij ). Zooming into station a, we see that passengers with destination {b, c} arrive at a according
to Poisson processes with rate {λab, λac}; these arrivals are then ‘thinned’ to λav(pav) by setting
(state-independent, but destination dependent) prices {pab, pac}. (Adapted from Banerjee et al.
2017). In figure b, we depict the bipartite graph for the dispatch problem, for the network in figure
a under the assumption that station pairs (a, b) and (a, c) are close enough to use each other’s
supply. An arriving passenger at station b can thus be matched to a vehicle at either station a or b –
in the figure, we choose to match the arrival to a vehicle at station a. (Adapted from Banerjee et al.
2018). Figure c shows the birth-death chain for the number of idle drivers in a single station, under
local state-dependent pricing policies. The arrival rate φ of vehicles to the station is determined
by the overall network. The rate of departures (i.e., matched rides), however, is modulated by the
pricing policy. Here, we have depicted a base arrival rate of passengers λ, and a simple single-
threshold local pricing policy, where the platform uses a ‘base’ fare p� when the number of drivers
is greater than a threshold θ , else charges a ‘primetime’ price ph > p� (hence the queue drains
slower when there are ≤ θ drivers). (Adapted from Banerjee et al. 2015)

rides can be modulated via a set of controls – primarily pricing, but also dispatch
and empty-unit rebalancing. To study the efficacy of different controls, we analyze
the long-term average performance of the system; in other words, we study various
metrics of interest in steady state. We henceforth use V = {1, 2, . . . , n} to denote
the set of stations, and E = {(i, j) ∈ V × V } to be the set of source-destination
pairs.
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Formally, at any time t ≥ 0, the state of the ridesharing system is denoted as
X(t) = {{Xi(t)}i∈V , {Xij (t)}ij∈E}, where Xv(t) denotes the number of units which
are idle at station i, and Xij (t) denotes the number of units in transit (either in
a ride, or rebalancing) between stations i and j . As per our assumption, the sum
over all states must at all times add up to k. Denoting N = n + (n2

)
to be the

dimension of X, we have that the state space of the Markov chain is given by SN,k =
{{xi, xij } ∈ N

N
0 |

∑
i∈V xi +∑ij∈E xij = k}. Note that the state-space is finite.

Since our focus is on the long-run average performance, i.e., under the steady state
of the Markov chain, for ease of notation, we henceforth suppress the dependence
on time t .

Passenger arrivals and ride requests Potential passengers who desire to travel
between stations i and j (henceforth, type-ij passengers) arrive at station i

following a stochastic process with average rate λij (alternately, average inter-arrival
time 1/λij ). It is reasonable to assume the inter-arrival times to be independent, and
hence, invoking the Palm-Khintchine theorem (cf. Chapter 14 in Kallenberg 2006),
we assume that type-ij passengers arrive according to a Poisson process of rate λij .

To model the ‘willingness-to-pay’ of the passengers, we assume that each type-
ij passenger has a ride value drawn independently from a distribution Fij (·). Upon
arrival at i, a customer is quoted a point-to-point price pij (which may potentially
depend on the current state X(t)); she then requests a ride if her value exceeds
this price, i.e. with probability 1 − Fij (pij ). At this point, if at least one unit is
available at station i (or more generally, at any sufficiently “nearby” station), then
she is matched to it. If on the other hand she is unwilling to pay the price, or is not
matched to a vehicle, then she leaves the system immediately. We assume that Fij

has a density and that all values are positive with some probability, i.e. Fij (0) < 1.
The passenger dynamics outlined above is referred to in the stochastic modeling

community as a loss-system model. The possibility of immediate departure without
a ride request captures the possibility that a passenger typically has outside
options (walking/public transit/other ridesharing firms) which she turns to if the
platform proves unattractive at the moment. In practice, with dynamic pricing, some
passengers may tend to wait for a while to see if prices change (although ridesharing
platforms may also freeze their prices for a given passenger, while still adjusting
them for others), or cars become available. Such heterogeneity in passenger
impatience can be accommodated in our model to some extent (for example, as a
negative queue, akin to lost-sales models in inventory systems). However, the effects
of such behavior is not well understood in practice, and currently, most ridesharing
firms do not specifically account for passenger impatience in their policies.

Vehicle travel times Once a unit is dispatched to serve a passenger, it then needs
to go pick up and drive the passenger to her destination station. We use the state
variable Xij (t) to track the number of units in transition between stations i and j .
When a customer engages a unit to travel from i to j , the state changes to X−ei+eij
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(i.e., Xi → Xi − 1 and Xij → Xij + 1). The unit remains in transit for a random
time, drawn independently from some general distribution Gij (·) with mean τij .
Upon reaching its destination, the unit drops off the passenger, and the system state
changes to X− eij + ej .

For convenience, we will assume henceforth that transit times are exponentially
distributed, with average transit-times τij . This is primarily for ease of exposition, as
it allows us to keep track of only the number of vehicles in transit between any two
stations (as opposed to their exact time of arrival; this follows from the memoryless
property of the exponential distribution). We note though that the predictions of
the model remain essentially unchanged for any general (independent) travel time
with mean τij . We also assume that the demand characteristics and ride rewards
are independent of the actual transit times (dependence on average transit times
τij can be embedded in the model parameters). Finally, note that we do not
model stochastic correlation in travel times (e.g., that might arise because trips
share a common road network) – a potentially interesting direction for future
work.

We conclude with two additional observations about transit-times. First, we note
that though the above discussion is primarily for vehicles dropping-off passengers,
the transit times also apply to settings where empty vehicles move between
stations to improve the demand-supply balance. Second, in many cases, the model
and results greatly simplify if we assume that transit times are identically zero:
in particular, note that in such a setting, we only need to keep track of idle
vehicles at the stations. Introducing transit times tends to complicate analysis as
it may lead to situations where availability is low as almost all vehicles are in
transit (this corresponds to the so-called heavy-traffic regime in queueing models).
Understanding the significance of transit times are in designing ridesharing policies
is an under-explored question, and one which we will not deal with in this chapter
in any significant detail.

5.3.2 Platform Controls

We now consider three primary ways in which the platform can intervene to
affect the fast-timescale dynamics: (i) demand modulation via pricing, (ii) demand
redirection via dispatch, and (iii) supply redirection via empty-vehicle rebalancing.
We describe these in details below; note however that all these different controls are
essentially linear transformations of the demand and supply flows, and moreover,
can be combined together (and often are in practice).

Demand modulation (pricing) By adjusting the price pij for a ride from i to j ,
the platform can modulate the rate at which such rides are requested. To understand
the effect of such a price, it is useful to define the inverse demand (or quantile)
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function qij = 1− Fij (pij ).2 Now, for a fixed pricing policy p with corresponding
quantiles q, the effective demand rate from i to j (i.e. type-ij passengers with value
exceeding pij ) follows a Poisson process with rate λij qij – this follows from the
probabilistic thinning property of a Poisson process.

The most general model for pricing in the above model is that of global state-
dependent prices, where the platform selects pij (t) at time t as a function of
the overall state X(t) – this induces a state-dependent Poisson process of type-
ij passengers with rate λij qij (X). A natural relaxation of this is that of local
state-dependent prices, where pij is a function of the local state Xi(t) at the
source. Finally, in state-independent pricing, pij is set to be independent of the
instantaneous system state. The three pricing schemes decrease in complexity, and
moreover, require decreasing levels of system engineering to enable – understanding
their comparative behavior is thus of great importance. Banerjee et al. (2017)
study the relation between global state-dependent and state-independent prices,
while Banerjee et al. (2015) focus on local state-independent prices to understand
the value of dynamic pricing in ridesharing platforms.

Demand redirection (dispatch) Though it is typically infeasible to redirect
passengers to nearby stations (although this has been experimented with by Lyft
and Uber in some markets), what is often possible is to match an incoming ride
request station i to units which are idle at “nearby” stations. This is based on the
underlying assumption that passengers are insensitive to small delays in pickup as
compared to pickup time of the nearest unit. This is not strictly true in practice,
as passengers are known to be sensitive to the pickup time (ETA); however,
it is a convenient abstraction for our model, and moreover, can be refined by
incorporating probabilistic ride cancellations due to longer pickup times. Moreover,
longer dispatches may affect drivers, and this can be modeled by a cost for each
possible dispatch decision.

To formally define a dispatch policy, we define a compatibility graph G = (V ,E)

on the set of stations, with edges between pairs of stations that are near enough
such that a passenger arriving at one can be served using a unit from the other (see
Fig. 5.1b for an example). As with pricing, we can define a state-dependent dispatch
policy μ(X) which, for each ride requested at station i, decides from which station
in {i} ∪ {j : (i, j) ∈ E}, the customer is served. Such a dispatch policy now induces
a rate fij (μ) of customers arriving at i that travel to j using a unit from k, and a
rate zik(μ) of customers arriving at i who are matched to a unit at k. Note that if
μ is chosen in a state-independent manner (wherein a request is randomly routed
to a neighboring station), then it may lead to a failed dispatch despite there being
idle units; such policies however are more tractable to analyze, and hence have been
considered in Ozkan and Ward (2016) and Banerjee et al. (2017). More recently,

2It is convenient to assume that the density of Fij is positive everywhere in its domain, implying
that there is a 1-1 mapping between prices and quantiles; this allows us to write pij = F−1

ij (1−qij ).
We note however that this is not necessary for the results we present.
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state-dependent dispatch policies were analyzed by Banerjee et al. (2018) (albeit
without costs for dispatch from neighboring stations).

Supply redirection (rebalancing) This is a catch-all for any control policy which
allows the platform to affect the position of a unit at the end of a ride, i.e., whether
the unit remains at the destination station or moves to another station without
a passenger. Such a control is sometimes referred to as empty-car rebalancing,
and such rebalancing typically is modeled as incurring a cost (for vehicle miles
traveled/idle time of drivers). In practice, rebalancing is less common in current
ridesharing systems (in comparison to bikesharing/carsharing systems), as drivers
themselves choose where to go when idle – however, platforms do try to influence
these decisions via information displays, incentive schemes, etc. With the potential
introduction of autonomous vehicles, such control may become more prevalent.

We can model a rebalancing policy as a state-dependent control r(X) which, for
each trip ending at a station i, redirects the unit to some station j (which could be i).
This results in an increase in state Xij , and has associated cost cij . Since redirection
is costly for drivers, it is natural to assume that redirected units arriving at a station
are not redirected again. Details of how to incorporate this in the above model are
provided in Braverman et al. (2016) and Banerjee et al. (2017).

5.3.3 Platform Objectives

Given the above system dynamics (with fixed parameters k, λij , Fij , τij ), our aim
is to study the long-term average performance of various platform metrics. More
precisely, we want to design control policies to maximize relevant performance
metrics under the stationary distribution π(x) of the Markov chain induced by our
controls. Note that for given n, k and under any policy, the resulting Markov chain
is finite-state (since the number of stations and units is fixed); furthermore, it is
irreducible under weak assumptions on the prices and the demand (see Banerjee
et al. 2017 for details). Now, using basic Markov chain theory, we have that our
system has a unique steady-state distribution π(·) with π(x) ≥ 0 ∀ x ∈ SN,k and∑

x∈SN,k
π(x) = 1.

Following Banerjee et al. (2017), we consider objective functions that decompose
into per-ride reward functions Iij (p), which correspond to the reward obtained from
a passenger riding between stations i and j at price p. In particular, such a structure
admits three canonical objectives:

• Volume of Trade or Throughput: the total rate of rides in the system (setting
Iij (p) = 1).

• Social welfare: the contribution to social welfare from each i → j ride is given
by Iij (p) = EV∼Fij

[V | V ≥ p].
• Revenue: to find the platform’s revenue rate (assuming it keeps a fraction 1 − γ

of the earnings), we set Iij (p) = (1− γ ) · p.
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To formally define the objective, we focus on the case of pricing. Now, for a given
objective Iij (·), the aim of the platform is to select prices p(X) (with corresponding
quantiles q(X)) that maximizes the rate of reward accumulation under the stationary
distribution. This can be written as:

OBJm(p) =
∑

x∈SN,k

π(x) ·
(∑

i,j

λij qij (x)Iij (pij (x))
)

, (5.1)

where π(x) is the stationary distribution of the Markov chain under pricing policy p.
Equation 5.1 can be understood as follows: at any station i, customers destined for j
arrive via a Poisson process with rate λij , and find the system in state x ∈ SN,k with
probability π(x) (this follows from the “Poisson Averages See Time Averages” or
PASTA property; see Kelly and Yudovina 2014, for details). They are then quoted
a price pij (x), and engage a ride with probability qij (x) = 1 − Fij (pij (x)).
The resulting ride contributes Iij (qij (x)) to the expected objective. Recall that
unavailability of units is captured by our assumption that qij (x) = 0 whenever
xi = 0.

Though the above equation is most naturally written in terms of prices, it turns
out to be non-concave even for a single station. However, a standard price-theoretic
trick (for example, see Hartline 2013) in such cases is to instead write the objective
in terms of quantiles, whereupon it turns out to be concave for most cases of interest.
In particular, abusing notation to define Iij (q) := Iij (F

−1
ij (1 − q)), and defining

reward curves Rij (q) := q · Iij (q), it can be shown that Rij (q) are concave in q

for throughput and welfare under any distribution, and for revenue under regular
distributions (a wide class of distributions which includes all increasing hazard-rate
distributions; see Banerjee et al. 2017; Hartline 2013, for details).

However, the convexity of Rij (q) does not imply that the optimization problem
in Eq. 5.1 admits a tractable solution, as we still have to determine the average under
the stationary distribution. This involves solving a fixed-point constraint, which in
general can be non-tractable. In fact, Banerjee et al. (2017) provide an example
which shows that the problem is non-concave even for a setting with 3 stations and
a single unit!

5.3.4 Local Controls and Closed Queueing Models

Although the stochastic dynamics described above is complex, it is still amenable
to study via simulation. Moreover, in some special cases, its analysis can be greatly
simplified using classical results from queueing theory (Serfozo 1999; Kelly 1979).
In particular, a critical tool used in Banerjee et al. (2015, 2017) is the fact that under
state independent control policies (pricing, dispatch, rebalancing), as well as under
local state-dependent pricing, the stationary distribution of the resulting Markov
chains is known in closed form. This now allows us to study the design of control
policies in an analytic way. We now briefly provide some background behind this
methodology.
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The general Markov chain described in the previous sections (involving a fixed
number k of units, located in one of N queues) is a special example of a closed
queueing network (see Kelly 1979; Serfozo 1999). “Closed” here refers to the
fact that the number of units remains constant; in contrast, in open networks,
units may arrive and depart from the system. These networks are well-studied
in applied probability, and in general may have complex stationary distributions.
However, a critical property uniting the settings mentioned above (state-independent
controls, local state-dependent pricing) is that the resulting Markov chain in each
case is quasireversible (Kelly 1979). This is a particular structural property of
Markov chains which generalizes the notion of reversibility. The exact definition is
somewhat technical, but for our purposes, the crucial fact is that quasi-reversibility
is sufficient to ensure the stationary distribution is product form, i.e.

π(x) = 1

Z

∏

i

fi(xi)
∏

ij

fij (xij ),

where Z is the appropriate normalizing constant. The exact form of the local poten-
tials fi, fij depend on the precise nature of the system and controls; see Banerjee
et al. (2015, 2017) for details. For illustration purposes, we develop this in more
detail below for the special case of state-independent pricing and instantaneous
transfers.

An important property of state-independent control prices is that the rate of units
departing from any station i at any time t when Xi(t) > 0 is a constant, independent
of the state of the network. The resulting model is a special case of a closed queueing
model proposed by Gordon and Newell (1967).

Definition 1 A Gordon-Newell network is a continuous-time Markov chain on
states x ∈ SN,k , in which for any state x and any i, j ∈ [n], the chain transitions
from x to x−ei+ej at a rate μirij1{xi (t)>0}, where μi > 0 is referred to as the service
rate at station i, and rij ≥ 0 are the routing probabilities that satisfy

∑
j rij = 1.

In other words, if units are present at a station i in state x, then departures from
that station occur according to a Poisson distribution with rate μi > 0; condi-
tioning on a departure, the destination j is chosen according to state-independent
routing probabilities rij . For this network, the resulting steady-state distribution
{πp,m(x)}x∈SN,k

was established to be product form via the celebrated Gordon-
Newell theorem.

Theorem 1 (Gordon and Newell 1967) Consider a k-unit n-station Gordon-
Newell network with transition rates μi and routing probabilities rij . Let {wi}i∈[n]
denote the invariant distribution associated with the routing probability matrix
{rij }i,j∈[n], and define the traffic intensity at station i as ρi = wi/

∑
j rij . Then

the stationary distribution is given by:

π(x) = 1

Gm

n∏

j=1

(ρj )
xj , (5.2)

with normalization constant Gm =∑x∈Sk,m

∏n
j=1(ρj )

xj .
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To see that the Markovian dynamics resulting from state-independent pricing
policies fulfill the conditions of Gordon-Newell networks, observe that fixing a
price pij (with corresponding qij ) results in a Poisson process with rate λij qij of
arriving customers willing to pay price pij . These customers engage a unit only if
one is available, otherwise they leave the system. Thus, given quantiles q, the time
to a departure from station i is distributed exponentially with rate μi = ∑j λij qij
when Xi > 0 and with rate 0 otherwise. Further, conditioned on an arriving
customer having value at least equal to the quoted price, the probability that the
customer’s destination is j , is rij = λij qij /

∑
k λikqik , independent of system state.

Now we can use the Gordon-Newell theorem to simplify the objective function
in Eq. 5.1 to get an explicit function of the quantiles q. The functions obtained
are somewhat involved, and hence we omit them here; interested readers should
refer Banerjee et al. (2017) for details.

5.3.5 Modeling Endogenous Entry of Drivers

Finally, we turn our attention to agent behavior in the slow-timescale – in particular,
we discuss how the above model can be used to model the endogenous entry
decisions made by drivers.

At a high level, the slow timescale allows us to capture the marketplace aspect
of ridesharing platforms, by allowing us to specify the strategic aspects of agent-
platform interactions. In particular, as we mention before, our primary use of the
slow timescale is to model the endogenous entry decision of drivers, which thereby
determines the number of vehicles k in equilibrium. We note though that a similar
idea of determining the parameters of the fast-timescale model based on strategic
considerations at a slower timescale can be used to model other agent interactions
– in particular, an interesting open question is to model the effect of high ETAs or
prices on passenger rates.

Our treatment here follows the model in Banerjee et al. (2015). The main
assumption for the slow-timescale driver decisions is that each potential driver
in the pool has a reservation earning-rate (or earning-rate target), and makes an
endogenous entry decision (i.e., determines whether or not to work on the platform)
by comparing their expected earning-rate on the platform to this target. We assume
that the earning-rate target for each driver is drawn i.i.d. from some distribution
Gd . On the other hand, the earning rate of a driver on the platform depends on
the specific wage structure implemented by the platform – this is an aspect which
different platforms have experimented with, and one whose effects are not yet well
understood. For this chapter, as in Banerjee et al. (2015) (and as above), we assume
that the driver gets a fraction γ of the price of each ride that he is matched to. Note
that this is the policy currently followed by most ridesharing firms.

For convenience, we henceforth analyze the behavior of a single station under
local state-dependent pricing; this can however be extended to the entire network
using standard queueing theoretic tools. The setting is depicted in Fig. 5.1c. Let
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X represent the instantaneous number of idle units at the station, and suppose the
potential pool of drivers is of size k̄. Given pricing policy p(X), the passenger arrival
rate is λF̄ (p(Xi)) (where F̄ (·) = 1 − F(·)); the equilibrium number of drivers k

is now determined by the system performance in the fast timescale (which in turn
depends on k). Formally, the equilibrium rates of passenger requests and number of
drivers must satisfy:

λ(X) = λF̄ (p(X)), k = k̄Gd

(
η

ι+ τ

)

, (5.3)

where η denotes the expected per-ride earnings, ι the expected waiting time for a
driver between rides, and τ the expected ride time. Exact expressions for these can
be computed using the product form characterization of the stationary distribution
discussed in Sect. 5.3.4. Note though that η and ι depend on λ and μ, as well as the
pricing policy p(X). Details of these computations, and of the existence/uniqueness
of the equilibrium, are given in Banerjee et al. (2015).

5.4 Analyzing the Model: Key Findings

We now briefly describe some of the insights that can we obtain by analyzing the
queueing-theoretic model described laid out in the preceding sections. First, we
summarize the results from Banerjee et al. (2017), where for any given number of
units K , the authors show how we can design control policies for the fast-timescale
dynamics, with strong performance guarantees. On the positive side, these policies
surprisingly turn out to be state-independent. On the negative side, however, the
results do not give insight into the number of units K that emerge in equilibrium.
Moreover, the results critically depend on having full knowledge of the Markov
chain parameters (in particular, passenger arrival rates λij and willingess-to-pay
distributions Fij ).

To characterize the equilibrium behavior of the system, as well as understand
how to achieve good performance without perfect knowledge of system parameters,
we turn to the use of state-dependent prices (in particular, local state-dependent
prices). In Sect. 5.4.2, we summarize the results from Banerjee et al. (2015). Here,
the authors show that while on the one hand state independent and dependent prices
are asymptotically the same, the latter is much more robust to mis-specifications
in system parameters. In more detail, they show that on the one hand, as the
number of drivers and rate of passenger arrivals jointly scale to infinity, state-
dependent pricing becomes asymptotically equal to state-independent pricing; on
the other hand, they show that state-dependent prices are much less sensitive
compared to state-independent prices under small perturbations in the system
parameters.
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5.4.1 Fast-Timescale Control of Platform Dynamics

We first turn to the question of choosing control policies for a given k that maximize
the objective considered in Eq. 5.1. Note thought that these controls are extremely
high-dimensional as they can in general depend on the instantaneous state of the
system; moreover, as we discuss in Sect. 5.3.3, the problem is non-convex even in
simple settings.

In Banerjee et al. (2017), the authors circumvent these problems via a novel
technique for deriving control policies based on a convex relaxation which they term
the elevated flow relaxation. The main idea behind this technique is to construct
a concave pointwise upper bound for the objective, which is convex and hence
admits a tractable optimization. This can be done essentially by assuming an infinite
supply at each node, while simultaneously introducing additional flow-conservation
constraints to capture the balance of units arriving to and exiting from any node in
the stationary distribution. The authors prove that their new elevated objective is
bounded below by the original objective, and thus optimal solutions in the elevated
optimization problem are bounded below in value by optimal solutions in the
original optimization problem. More importantly, they also prove lower bounds on
the performance of natural state-independent policies provided by the relaxation,
thereby establishing their approximation guarantees. They do so via the following
three-step program:

1. First, they derive efficiently-computable upper bounds for the performance of
any control policy, which encode essential ‘conservation laws’ of the system (in
particular, flow balance at nodes and capacity constraints on number of vehicles
on the road), while being amenable to optimization.

2. Next, they show that under an infinite-supply limit, where k ↗∞ while all other
parameters stay fixed, the achievable objective values under state-independent
control policies exactly match the set of achievable upper bounds defined by the
elevated flow relaxation.

3. Finally, using the product-form characterization of the stationary distribution
under state-independent policies, they show that the performance of any policy in
a setting with k units is within a factor of 1+ (n− 1)/k (assuming instantaneous
transfers) of its performance in the infinite-supply setting.3

The versatility of the above framework allows it to be extended to more complex
multi-objective settings, where the goal is to optimize some objective subject to
a lower bound on another. A canonical example of this is the so-called Ramsey
pricing problem (Ramsey 1927), where the platform aims to design a pricing policy
to maximize system revenue subject to a lower bound on the system welfare; this
is very relevant for most nascent ridesharing platforms, who are aiming to build

3Here we define the approximation factor as the ratio of the objective of the optimal policy to that
of the proposed policy; this convention, which ensures the approximation ratio is always greater
than 1, is common in the approximation algorithms literature.
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a customer base. The authors also extend their analysis to include travel times, and
show that increasing travel times may lead the approximation factor to degrade from
1 + O(1/k) under instantaneous transfers to 1 + O(1/

√
k) in the worst case. One

way to understand this phenomena is to note that assuming all other parameters
stay fixed, increasing travel times leads to an increase in the amount of ‘work’
each incoming passenger needs from the k units; in the extreme case, most units
are in transit at any time, and get engaged immediately as soon as they become
idle.

The results in Banerjee et al. (2015) also recover and unify several other existing
results in this area, and provide a general framework for deriving approximation
algorithms for many other settings. In particular, the techniques provide an elemen-
tary proof of the so-called large-market (or ‘fluid limit’) optimality of the proposed
state-independent policy; this form of limiting result was also obtained around the
same time by Braverman et al. (2016) (for rebalancing) and Ozkan and Ward (2016)
(for dispatch), via more technical limit interchange arguments.

Finally, the authors of Banerjee et al. (2017) also show that the bounds obtained
via the above technique are tight compared to the optimal policy. This follows from
an example earlier proposed in Waserhole and Jost (2016), comprising of a ring of
n stations, with equal request rate between every pair of adjacent stations except for
one bottleneck link. The same example can also be modified to show similar bounds
on the performance of any state-independent policy. Going beyond such policies
is difficult; however, some recent work Banerjee et al. (2018) has proposed state-
dependent algorithms which for large k, and under some additional conditions, can
be shown to have 1+ e−O(k) competitive ratio.

5.4.2 The Slow Timescale: Pricing and Driver Entry

The previous section provides a solution for the chief fast-timescale operational
design questions in a ridesharing platform – given a supply of units, how best to
use pricing, dispatch and rebalancing to balance the demand and supply. We next
turn to understanding the slow-timescale response of drivers to such policies –
in particular, we want to understand the impact of pricing policies on the overall
marketplace equilibrium. To this end, we summarize the findings of Banerjee et al.
(2015), who use the micro-foundations in Sect. 5.3 to compare the impact of two
pricing schemes: (i) state-independent (i.e., static) pricing, where the price is fixed
as a function of the fast-timescale system parameters, but not the instantaneous
state4), and (ii) dynamic pricing policies, where the prices react to the system
state. Following the discussion in Sect. 5.3.4, they focus on local state-dependent

4More specifically, these correspond to quasi-static policies, where the price remains fixed for
blocks of time on the order of hours, but can be changed over slower timescales to reflect change
in average demand/supply. Such policies are commonly used by traditional taxi firms.
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pricing policies, as these admit closed-form stationary distributions; moreover, they
focus on a simple class of threshold policies, wherein the platform raises the price
whenever the number of available drivers in a region falls below a threshold.

The results in Banerjee et al. (2017) which we summarized in Sect. 5.4.1 indicate
that when the supply is fixed, then state-independent policies, if correctly chosen, are
very competitive compared to the optimal policy. The main contribution of Banerjee
et al. (2015) is in understanding the effects of the pricing scheme on the equilibrium
supply of drivers, and also, on characterizing the sensitivity of the two policies to
parameter uncertainty. The major technical hurdle in doing so is that unlike the
fast-timescale stationary distribution, the equilibrium of the system (as defined in
Eq. 5.3) does not admit a closed-form expression for the driver/passenger arrival
rates.

The Large-Market Scaling To circumvent this, the authors of Banerjee et al.
(2015) study the system under a large-market scaling, wherein they consider a
sequence of systems parametrized by ν, wherein K̄(ν) = K̄0ν and λ(ν) = λν,
and all other system parameters, as well as the pricing policy p, are held fixed.
They then let ν approach∞, and study the normalized equilibrium supply state, i.e.
limν→∞(K(ν)/ν), of the limiting system. For dynamic pricing policies, in addition
to scaling K̄0 and μ0, they keep the set of prices fixed, but allow the threshold θ(ν)

to scale with ν.
Under the large-market scaling, the authors of Banerjee et al. (2015) characterize

the equilibrium rates for the limiting system in closed form, for both static and
dynamic pricing. An example of this convergence and limiting characterization can
be seen graphically in Fig. 5.2a, which is similar to the plots given in Banerjee et al.
(2015); here we have plotted the normalized equilibrium throughput (i.e., rate of
matched rides) vs. static price p (the green curves), and also, for a class of dynamic
pricing policies (the maroon curves) where we keep one price fixed at the red vertical
dotted line. The dotted curves are numerically computed for n ∈ {1, 10, 100, 1000},
and can be seen to be monotonically converging up to the solid curves, which plot
the theoretical large-market limits characterized in Banerjee et al. (2015).

Optimal Performance of Pricing Policies One surprising aspect of Fig. 5.2a is
that the optimal throughput in the large-market limit over the dynamic pricing
policies we consider appears to coincide with that obtained under static pricing.
The authors of Banerjee et al. (2015) show, however, that this fact is true for
all threshold dynamic pricing policies under fairly weak conditions: in particular,
they prove that as long as all passenger value distributions Fij have an increasing
hazard rate, then the optimal normalized throughput in the large-market limit under
dynamic (i.e., local state-dependent) pricing collapses to that obtained under the
optimal static (i.e., state-independent) pricing policy. This combined with the results
in Banerjee et al. (2017) shows that the platform cannot improve performance
much by employing state-dependent pricing. Similar results are shown in Baner-
jee et al. (2015) for revenue and welfare, and also for multi-threshold pricing
policies.
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Fig. 5.2 Impact of pricing policies in ridesharing platforms: (a) Pricing policies in the large-
market limit, (b) robustness of dynamic pricing. Figure a depicts the normalized equilibrium
throughput in a ridesharing platform under static pricing (in black), and under dynamic pricing (in
maroon) with one price fixed at the red vertical line. The dotted lines show the throughput curve
for different values of the scaling parameter ν, with higher curves corresponding to higher values
of ν. The solid curves plot the theoretical large-market limits. Note that in the large-market limit,
the optimal throughput under both policies is the same (indicated by the black vertical dotted line).
Figure b demonstrates the sensitivity of pricing policies to demand uncertainty: For a fixed K̄0, we
consider baseline passenger arrival rate λ ∈ 4±10%, and compare the normalized throughput under
(i) the optimal static policy with λ = 4 (indicated by the black vertical dotted line), and (ii) the
dynamic-pricing policy which sets p� based on λ = 3.6, and ph based on λ = 4.4 (indicated by
the red vertical dotted lines). The dashed green curve shows the performance of the optimal static-
pricing corresponding to the actual λ. We generated the plots for a single-node network, following
the model described in Banerjee et al. (2015); in particular, we use demand value-distribution F ∼
Exponential(0.5), and driver reservation-value distribution Gd ∼ Exponential(0.8)

We note here that the result given above is asymptotic; the plots in Fig. 5.2a
clearly show that dynamic pricing does have gains over static pricing for smaller
values of the scaling parameter ν. The non-trivial aspect is that the difference in
performance vanishes in the limit. Note also that the performance of a dynamic
pricing policy with prices (p�, ph) is not identical to the performance with static
price p� or ph, and in fact, it can be shown that passengers experience both prices
in the large-market limit.

Robustness of Pricing Policies More importantly, we note that the result that
optimal static pricing and optimal dynamic pricing are asymptotically equivalent
requires a key assumption: that the platform has knowledge of system parameters
(e.g., the exogenous arrival rates of drivers and passengers, and distributions of
reservation values). What should the platform do when these parameters are not
well-known, and may even be highly variable?

To address this issue, the second main result in Banerjee et al. (2015) establishes
a significant benefit that dynamic pricing holds over static pricing: robustness.
Specifically, the authors of Banerjee et al. (2015) show that if the system operator



92 S. Banerjee and R. Johari

chooses the optimal threshold dynamic (resp., static) pricing policy assuming
some predicted system parameters K̄0, λ, but the true parameters deviate from the
predictions, then dynamic pricing maintains a much higher share of the optimal
throughput relative to the optimal static pricing. This property is graphically
depicted in Fig. 5.2b; for a more formal characterization of this property, we refer
the reader to Banerjee et al. (2015).

5.5 Related Literature

In this section, we summarize the intellectual foundations our work builds on, as
well as provide a brief survey of the growing literature on ridesharing across many
fields. One of the great attractions of ridesharing is that the underlying questions
lie at the intersection of several disciplines – economics, stochastic modeling
and control, operations management, and network algorithms. The models and
algorithms we have covered in this chapter borrows ideas from all these disciplines,
and in a sense, we believe such a merging of ideas is critical to understanding
these platforms. On the other hand, the diversity of disciplines makes it difficult
to properly reference and comment on all the work related to this topic, and thus we
acknowledge at the outset that our discussion below should be viewed as a survey
of the main issues, rather than a comprehensive index of all relevant research.

Queueing networks and stochastic control Our model for the fast-timescale
dynamics builds on the rich toolbox of queueing network models, starting from the
seminal work of Jackson (1963) on open networks (i.e., where the number of units
can change), and Gordon and Newell (1967) and Baskett et al. (1975) on closed
networks (where the number of units is fixed, as in our setting). An excellent survey
of these models is provided in the books by Kelly (1979), Kelly and Yudovina (2014)
and Serfozo (1999). More recently, these models have found extensive use in several
applied disciplines, including in the design of communications networks (Srikant
and Ying 2013) and computer systems (Harchol-Balter 2013). A more recent line of
work develops a similar theory for matching queues, obtaining surprising product
form characterizations (Adan and Weiss 2012; Visschers et al. 2012; Moyal et al.
2017).

Optimal control of open queueing networks also has a long history, going
back to the work of Whittle (1985), and more recently, these ideas have been
extended to open matching networks (Bušić and Meyn 2014; Nazari and Stolyar
2016). However, there is much less work for closed networks. This in part due
to the lack of a closed-form expression for the normalization constant though in
our setting, it is computable in O(nm) time via iterative techniques; see Buzen
(1973) and Reiser and Lavenberg (1980). Consequently, most previous work
on closed queueing networks used heuristics, with limited or no guarantees. In
particular, heuristics based on ensuring ‘fairness’ properties (which are similar to
the circulation constraints we discuss in Sect. 5.4.1) have been used in transportation
setting to optimize weighted throughput (George 2012) and minimize rebalancing
costs (Zhang and Pavone 2016).
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The first formal approximation guarantees for control of closed networks was
given by Waserhole and Jost (2016), who derived a pricing policy for maximizing
throughput; this result is a special case of the results of Banerjee et al. (2017) that
we present in Sect. 5.4.1. Other recent works (Braverman et al. 2016; Ozkan and
Ward 2016) have formally characterized the large-market limits for closed queueing
networks, and proposed asymptotically optimal rebalancing and dispatch policies
(these results can however be derived directly using the techniques in Banerjee et al.
2017).

Parallel to the work on control, there has also been a long line of research on
strategic behavior in queueing systems; see Naor (1969) for early work in this
area and Hassin and Haviv (2003) for an overview of these models. Typically,
these works consider systems with a fixed number of servers, who serve arriving
customers who are sensitive to price and delay. In contrast, our model considers
strategic behavior on the part of the servers (i.e., the drivers). In this respect our
treatment is closer to the recent work on queues with strategic servers (Gurvich
et al. 2014; Gopalakrishnan et al. 2016).

Economics of two-sided platforms From an economics standpoint, the strategic
aspects of our micro-foundations are in the spirit of the literature on the price theory
of two-sided platforms (Rochet and Tirole 2006; Caillaud and Jullien 2003; Rysman
2009; Armstrong 2006; Armstrong and Wright 2007); refer to Weyl (2010) for an
excellent summary and unification of this literature. This line of work typically
studies the design two-sided markets under exogenously specified utility functions
for agents. One critical difference in our approach is in building up the market model
from the underlying stochastic dynamics, rather than specifying it exogenously. This
is critical as having a dynamic model allows us to study dynamic pricing, which is
one of the hallmarks of ridesharing platforms.

Stylized market models like the ones referenced above have been started being
used for studying ridesharing as well. In particular, several recent works study the
impact of spatial and temporal variations in prices on driver decisions in the fast
timescale (Castillo et al. 2017; Bimpikis et al. 2016), a topic which we have not
covered in this chapter. On the other hand, there is less work on using these to study
inter-firm competition; one partial move in this direction is the work of Séjourné
et al. (2017), which studies the additional societal costs of multi-firm ridesharing
ecosystems under exogenous demand fragmentation.

An important difference in our treatment of the ridesharing marketplace is that
we incorporate both stochastic dynamics and strategic interactions. Doing so is
challenging as one needs to reason about market equilibria under a combination of
dynamics and strategic interactions. One important approach that helps circumvent
this is that of using large-market limits; this is the approach we adopt in Sect. 5.4.2,
following the treatment in Banerjee et al. (2015). Large-market limits have grown in
importance in recent years; see Kojima and Pathak (2009) and Azevedo and Budish
(2012) for examples of this in the matching market literature, and Arnosti et al.
(2014) for an application of this approach for dynamic matching markets.
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Pricing and operations management A unique feature of ridesharing firms is that
it is one of very few marketplaces where the platform can set the prices. Conse-
quently, the study of such platforms shares commonalities to that of monopolist
pricing. In particular, the comparison of static and dynamic pricing policies is a
core topic of the literature on revenue management; refer to Talluri and Van Ryzin
(2006) and Bitran and Caldentey (2003) for an overview of pricing approaches, and
Gallego and Van Ryzin (1994) for an analysis of dynamic pricing based on current
inventory levels. More recent work applies techniques from approximate dynamic
programming to tackle problems in logistics with dynamic arrivals and pricing
(Adelman 2007; Levi and Radovanović 2010; Hampshire et al. 2009). Though
similar to the fast-timescale control problem, these approaches typically can deal
only with small systems, as their dimensionality scales rapidly with the number of
stations; moreover, many of the techniques have no provable guarantees.

We note that though the results in the revenue management literature are similar
in spirit to ours (in particular, the optimality of static pricing in a large-system limit),
there is a very significant difference in the underlying settings. In particular, while
the primary concern of monopolist pricing in a one-sided platform is to regulate
demand in the face of changing inventory levels, the role of prices in ridesharing is
to simultaneously regulate both instantaneous demand-supply mismatches and the
entry decisions of drivers.

Data-driven simulations and empirical studies Finally, in addition to the the-
oretical studies we mention above, there is also a parallel line of work which
studies the same questions from a numerical perspective, either via data-driven
simulation models, or experimental studies. Though such studies are of great
importance, a big roadblock in this space is the lack of good data-sets and academic
access to ridesharing platforms. An indicator of this state of affairs is the fact that
several of the studies below were possible due to the New York City taxi dataset
(http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml), which has played
an important role as a public repository in this space. While we recognize the
difficulties in data sharing, we emphasize that it is critical that the academic
community works to cultivate publicly available data-sets that can be used as
reference points for research in this area, across a range of platforms, geographies,
and timescales.

In terms of data-driven simulation, a notable work is that of Santi et al. (2014),
which used the NYC taxi dataset to study the benefits of pooling – combining
multiple rides into one. The work introduced the idea of compatible rides based
on a diversion threshold constraint, where two ride-requests are considered to be
amenable to pooling if the total origin-to-destination time (with diversions) for each
ride is within an additive constant of the trip time without pooling. This idea proved
influential in the subsequent design of Lyft Line and Uber Pool; moreover, it also
spurred further research into the algorithmic challenges of determining such pooled
rides in real-time and at scale (Spieser et al. 2016; Alonso-Mora et al. 2017).

Empirical work on the internal dynamics of ridesharing platforms is challenging,
as it depends on access to their proprietary data. As a consequence, most recent

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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work has involved collaborations between external researchers and data scientists.
Several of these study the behavior of dynamic pricing. For example, Hall et al.
(2015) presents a natural experiment that occurred when Uber’s surge pricing
algorithm failed over the New Year’s Eve celebration in 2014–2015. In Chen and
Sheldon (2016), the authors claim that dynamic pricing incentivizes more drivers
to participate in the platform, and to meet supply shortages (analogous to the entry
decisions described above in our analysis). The paper Hall et al. (2017) highlights
the difference in timescales in market equilibration: in the short run driver supply is
relatively inelastic, but in the long run driver supply enters in response to persistently
higher prices.

5.6 Conclusion

In this chapter, we have outlined a stochastic modeling framework for ridesharing
platforms, which is based on the ideas presented in our prior work on this topic
(Banerjee et al. 2015, 2017), as well as work by several others on similar problems.
In particular, in Sect. 5.3, we have presented this model in great detail, discussing
all the assumptions that underlie this model, and arguing as to why these capture
first-order phenomena in such platforms. We have also pointed out which aspects of
these platforms lie outside our model.

One reason for our championing of this framework is its success in providing
both theoretical insights and practical guidance into the design of pricing and
dispatch policies on these platforms; we have summarized some of these results
in Sect. 5.4. Our hope, however, is that this framework will go beyond the results
presented to inspire and unify future studies into ridesharing platforms. To this end,
we have outlined many open questions – in particular, there is a need for research
into understanding the effect of driver strategic behavior on the fast timescale; the
robustness of control policies to medium timescale changes in system parameters;
the structure of efficient policies for ride pooling; the role of autonomous vehicles
in the ridesharing landscape; the design of longer-term contracts for drivers and
passengers; the interaction between multiple ridesharing platforms and between
ridesharing and public transit; and the overall impact of ridesharing on society as
a whole. These are difficult problems, and may not have any clear-cut answer –
however, we hope the framework we have presented here will provide a benchmark
for studying all these questions. We eagerly look forward to future research on these
topics.
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Chapter 6
The Role of Surge Pricing on a Service
Platform with Self-Scheduling Capacity

Gerard P. Cachon, Kaitlin M. Daniels, and Ruben Lobel

Abstract Recent platforms, like Uber and Lyft, offer service to consumers via
“self-scheduling” providers who decide for themselves how often to work. These
platforms may charge consumers prices and pay providers wages that adjust based
on prevailing demand conditions. For example, Uber uses “surge pricing” which
pays providers a fixed commission of its dynamic price. With a stylized model
that yields analytical and numerical results, we study several pricing schemes that
could be implemented on a service platform, including surge pricing. Our base
model places no restrictions on the platform’s dynamic pricing and waging schemes,
whereas our surge pricing analogue requires wages to be a fixed fraction of dynamic
prices and our traditional taxi analogue requires prices to be fixed. We show that
although surge pricing is not optimal, it generally achieves nearly the optimal profit,
justifying its use in practice. Despite its merits for the platform, surge pricing has
been criticized due to concerns for the welfare of consumers. In our model, as labor
becomes more expensive, consumers are better off with surge pricing relative to
fixed pricing because they benefit both from lower prices during normal demand

This chapter is adapted from Cachon et al. (2017), reprinted by permission, Gerard P Cachon,
Kaitlin M Daniels & Ruben Lobel, The Role of Surge Pricing on a Service Platform with Self-
Scheduling Capacity, Manufacturing & Service Operations Management, 2017. Copyright 2017,
the Institute for Operations Research and the Management Sciences, 5521 Research Park Drive,
Suite 200, Catonsville, MD 21228 USA.
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and expanded access to service during peak demand. We conclude, in contrast to
popular criticism, that both the platform and consumers can benefit from the use of
surge pricing on a platform with self-scheduling capacity.

6.1 Introduction

The “gig-economy” has created new ways for firms to provide service to consumers.
Instead of centrally scheduling the shifts of workers, gig-economy firms allow
workers to independently set their hours with no advance notice required by the
firm. The firm’s role becomes that of a platform that matches available providers to
consumers demanding service. We use the term “self-scheduling” to describe this
relationship.

Examples of platforms with self-scheduling capacity include ridesharing plat-
forms Uber and Lyft, and delivery services Postmates and Instacart. A provider for
one of these platforms first makes the long-term decision to join the platform (e.g.
register as an Uber driver), which providers only do if they expect to earn more than
their next best alternative. A provider then makes short term decisions about whether
or not to work at each moment in time. This decision is influenced by the wage per
service offered by the platform, the opportunity cost of the provider’s time (e.g. a
provider’s opportunity cost is high at times when he has a medical appointment but
low when he has nothing on his schedule), and the provider’s expectations about the
availability of work. Note that providers respond not only to the volume of demand
for service but also to the volume of competing providers. Specifically, a provider’s
decision is based on the prevalence of demand relative to the amount of offered
capacity.

Although the platform does not directly control the number of providers working
at a time, it still takes an active role in managing its capacity to maximize its profit.
The platform sets the price charged to consumers, the wage offered to providers,
and regulates the maximum number of providers allowed to join the platform.
Furthermore, the platform may dynamically set price and wage in response to
changes in the state of the world. For example, Uber has become known for its
dynamic policy called “surge pricing.”

While the platform is clearly motivated to maximize its profit, it must also con-
sider the impact of its actions on other stakeholders. Dynamic pricing policies have
come under fire from consumers who feel that the practice unfairly discriminates
(Kosoff 2015; Stoller 2014). With potential regulation in mind, it is important to
understand the extent to which there is tension between maximizing platform profit
and maintaining consumer welfare.

Refer to a set of price, wage, and recruitment decisions as a contract. In this paper,
we study the form of a gig-economy platform’s profit maximizing contract and its
effect on the welfare of consumers. This “optimal” contract has state-dependent
prices and independent, state-dependent wages. As a point of comparison, we
introduce the “fixed” contract, in which the platform is restricted to offer the same



6 Service Platform with Self-Scheduling Capacity 103

price in all states of the world. The comparison of consumer welfare elucidates the
effect of dynamic prices on consumers. Echoing practice, we additionally consider
the “commission” contract, in which the platform pays providers a fixed percentage
of a dynamic price. Commission contracts are common (e.g. surge pricing), so
analysis of this contract allows us to quantify the loss the platform incurs from
imposing the fixed commission constraint.

While unconstrained dynamic incentives maximize the platform’s profit, in most
cases the platform does not strongly prefer the optimal contract to the commission
contract. Although not always optimal, the commission contract achieves near
optimal profit and is simple to implement, which may explain its use in practice.
Furthermore, we show that the improvement in platform profit from dynamic
incentives is not necessarily to the detriment of consumer surplus. In markets where
demand is rationed with the fixed contract, i.e., consumers do not always have
access to service, dynamic incentives increase access to service and so serve more
consumers. Consumers benefit from expanded access more than they suffer from
increased prices during peak demand states, leading to a net benefit. However, in
markets where the fixed contract provides sufficient capacity to serve all consumers
in all states of the world, dynamic incentives provide the same level of access to
service at a higher price during peak demand, making consumers worse off. Thus,
if the lack of dynamic incentives leads to poor service, consumers benefit from the
introduction of surge-pricing type policies.

6.2 Literature Review

Our work is primarily connected to three domains in the existing literature: research
on capacity and pricing, revenue management models, and recent papers on peer-
to-peer platforms and self-scheduling capacity. For simplicity and consistency, we
refer to the various components in other papers using the terms relevant for our
model. For example, the “platform” is the organization responsible for designing
the market, “providers” generate capacity, “dynamic prices” are demand-contingent
payments from consumers to the platform in exchange for service, and “dynamic
wages” are demand-contingent payments from the platform to providers.

Several papers study competition among multiple providers and establish that
competition can lead to excessive entry (e.g., Mankiw and Whinston 1986) and a
platform should discourage competition to mitigate the losses in system value due
to this issue (e.g., Bernstein and Federgruen 2005; Cachon and Lariviere 2005), but
those papers do not consider dynamic wages or prices.

A set of papers considers peak-load pricing, the practice of charging higher
prices during peak periods of demand (e.g., Gale and Holmes 1993). The primary
motivation of peak-load pricing is to increase revenue by shifting demand from the
peak period to the off-peak period. We do not incorporate this capability into our
model. For example, consumers in need of transportation during a rainy evening are
unable to postpone their need to a time with better weather.
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There is work on the value of dynamic prices in systems that experience
congestion, but with fixed capacity: e.g., Çelik and Maglaras (2008), Ata and Olsen
(2009), and Kim and Randhawa (2017). Banerjee et al. (2015) considers the value
of dynamic pricing in a model with random arrivals of consumers and providers.
Unlike us, they find that dynamic pricing provides no benefit in terms of maximizing
the platform’s expected profit or system welfare, but they have a single demand
regime whereas in our model some periods (importantly) have predictably higher
demand than others for a given price.

There is a considerable literature on “two-sided markets” in which platforms earn
rents by creating a market for buyers and sellers to transact (e.g., a game console
maker as the platform between game developers and consumers) (e.g., Rochet and
Tirole 2006). Daniels (2017) demonstrates the fundamental differences between
classic two-sided markets models and models explicitly tailored to the gig-economy.

Peer-to-peer service platforms have attracted significant academic interest; e.g.
Kabra et al. (2017), Hong and Pavlou (2014), Snir and Hitt (2003), Moreno and
Terwiesch (2014), and Yoganarasimhan (2013). Those papers investigate how to
subsidize different market players to accelerate the growth of a peer-to-peer plat-
form, whether consumers have geographic preferences over providers, the influence
of platform design on provider quality, and how provider reputation impacts the
market. We do not explore those issues: our providers are ex-ante homogenous
and do not build reputations. Fraiberger and Sundararajan (2015) investigate
the interaction between ownership and sharing on a peer-to-peer marketplace, a
dynamic that is not addressed in our model. Cohen et al. (2016) use Uber transaction
data to measure the amount of consumer surplus generated given the implementation
of surge pricing, but they do not estimate a counterfactual consumer surplus level
with other contractual forms.

There is modeling and empirical work on the competition between peer-to-peer
service marketplaces and existing markets: Einav et al. (2016), Zervas et al. (2017),
Seamans and Zhu (2013), Cramer and Krueger (2016), and Kroft and Pope (2014).
We do not directly consider the competition between the platform and incumbents.

Several papers (e.g., Hu and Zhou 2016; Allon et al. 2012) explore the process for
matching providers to consumers when capacities are exogenous and all participants
have preferences for the match they receive (e.g. a courier prefers to be matched
to a nearby consumer). We do not consider matching because our consumers and
providers are homogeneous, so careful matching does not provide a benefit.

Closest to our work are papers on self-scheduling capacity. Ibrahim and Arifoglu
(2015) considers a model in which the platform chooses the number of providers and
providers are either assigned by the platform to work in one of two different periods
or they self select which of the two periods they work in. Unlike in our model, the
platform can directly control the number of providers in the system. Taylor (2017)
and Bai et al. (2016) study queuing systems in which a platform creates a market for
service where arrivals of consumers and servers are endogenously determined based
on decisions to seek and provide service respectively. Their models do not consider
dynamic prices or wages, and the number of potential providers is exogenous (i.e.,
capacity decisions are made on a single, short-term, time scale). Gurvich et al.
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(2016) studies a model in which a platform directly chooses the number of available
providers, the wage for each provider who chooses to work, and a cap on the
number of providers who are allowed to work: given the platform’s prevailing wage,
more providers may want to work than the platform wants. They do not include
dynamic pricing – in all versions of their model the platform selects a single price.
They also do not impose an earnings constraint for providers. Instead, they impose
an exogenous minimum wage. In our model providers decide whether to join the
platform based on rational expectations of future earnings.

6.3 Model

To capture the relevant dynamics of the gig economy, we construct a two period
model of provider behavior. At the outset, the platform sets the terms of its contract,
which is comprised of prices charged to consumers, wages offered to providers, and
a maximum number of recruited providers, N . In the first period, potential providers
make the long-term decision about whether to join the platform (e.g. register as an
Uber driver). We refer to this decision as the “joining decision.” This decision is
relevant over a long horizon. In contrast, the second period represents a provider’s
short term decisions about whether or not to offer service through the platform
(e.g. go out on the road to drive for Uber). We refer to this as the “participation
decision.” Only providers that join the platform in the first period can participate in
the second period. While in practice providers make many participation decisions,
for simplicity we condense these decisions into a single period (see Fig. 6.1).

When deciding to join, providers weigh their expected earnings from future
participation in the platform’s market against the value of their next best alternative,
denoted by c1. We assume that providers are homogeneous in the value of this
alternative (e.g. everyone considering driving for Uber has similar qualifications and
hence similar alternative employment opportunities) and that potential providers
are numerous. Consequently, either all potential providers want to join to the
platform, or none do. It follows that every profitable contract recruits exactly the

Fig. 6.1 Timeline of events
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maximum number of allowed providers, N . Our model approximates a market with
many potential providers and a highly elastic supply curve: with sufficiently high
expected earnings the platform recruits ample capacity but few potential providers
are interested if expected earnings fall below c1.

Providers join in expectation of a random shock that determines the state of the
world in the second period. This shock determines “latent demand,” i.e., the number
of consumers who would seek a free service, in the second period. Specifically,
demand in state j is Dj = (aj −pj )

+, where pj is the price the platform charges in
state j and aj is the latent demand in state j . As an illustration, consider the effect of
rain on the operations of Uber. More consumers seek an Uber ride when it rains (Hall
et al. 2015). Uber drivers cannot perfectly predict future weather, but the availability
of demand affects earnings from participation. Hence providers evaluate joining
based on expected future earnings. For simplicity we consider only two possible
states, “high” and “low” with corresponding subscripts h and l, where the low state
has smaller latent demand than the high state, i.e., al < ah. Denote the probability
of state j occurring by fj .

In the second period, providers observe the state of the world (e.g. Uber drivers
can see if it is raining) and decide whether to offer service. Providers must make
themselves available to provide service before the platform matches them with
consumers. For example, Uber matches drivers to nearby consumers, so drivers
must be on the road to receive ride-requests. Hence providers decide to participate
in advance of being matched to a customer. Suppose each provider has the capacity
to serve at most one consumer in the second period. A provider then assesses his
expected earnings from participation to be the product of the wage offered per
service by the platform and the probability that the provider is matched with a
consumer. Suppose consumers do not have preferences over providers and vice
versa, so the platform is equally likely to match any consumer to any available
provider. Then the probability that a provider is matched, φj , is the maximum
of the ratio of demand to the number of competing providers and the provider’s
capacity. Providers weigh these earnings against their opportunity cost, c2. This
cost represents the value of the provider’s time; for example a provider with doctor’s
appointment would have high c2 while a provider without any plans would have low
c2. A provider then participates only if the earnings from doing so exceed c2 (for
evidence that providers make profit maximizing decisions see Farber 2015; Chen
and Sheldon 2015). For simplicity, the following analysis assumes that providers
have homogeneous c2, though the results presented here generalize to heterogeneous
c2 (see Cachon et al. 2017, for details). Because providers must be available to
receive a match, they incur their c2 regardless of whether they are matched. A
provider’s expected profit from participation in state j is

wjφj − c2.

Because all providers are homogeneous, they play a symmetric mixed strategy.
Let θj denote the probability that a provider participates in state j . If demand
exceeds the number of recruited providers in the first stage, N , then all recruited
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providers participate as long as their wage exceeds c2. If recruitment exceeds
demand, then θj fraction of recruited providers participate, where

θj = min

{
wj

c2

aj − pj

N
, 1

}

.

Notice that if c2 ≤ wj(aj −pj )/N , then all providers participate (i.e., θj = 1) even
though some are rationed. Otherwise, only some recruited providers participate and
they all earn 0 profit. In the first stage providers expect to earn the corresponding
profit,

∑

j

(

wj min

{
Dj

θjN
, 1

}

− c2

)

fj . (6.1)

For any number of providers to join, the platform must ensure that (6.1) ≥ c1.
The platform anticipates the behavior of providers described above and corre-

spondingly chooses its contract at the outset of the decision horizon. The contract is
composed of prices, pj , and wages wj for each state of the world, and recruitment
level N . The platform earns a margin pj − wj on each service it successfully
provides and may not provide service to more consumers than there are active
providers. Hence, the platform solves:

max
wl,wh,pl ,ph,N

∑

j

(pj − wj)min
{
aj − pj , θjN

}
fj , (6.2)

s.t.
∑

j

(

wj min

{
Dj

θjN
, 1

}

− c2

)

fj ≥ c1. (6.3)

The platform may include additional constraints to ensure that prices are fixed, i.e.,
pl = ph, or that the platform offers a fixed commission, i.e., wl/pl = wh/ph.
Notice that for a particular demand realization, price, and wage, it is possible that
demand exceeds the platform’s capacity to serve. In this case the probability that a
provider gets a match is 1, and consumers are randomly rationed. Alternatively, it
is possible that there are fewer available providers than there are consumers seeking
service. In this case all consumers receive service but providers are randomly
rationed, and φj < 1. In either case, the mismatch in supply and demand creates a
cost for the platform. If providers are not fully utilized, then they require an inflated
wage to ensure that their expected earnings exceed c1. If instead consumers are
rationed, the platform misses making a sale.

In addition to profit, we measure the consumer surplus resulting from the
platform’s contract choice. Similar to Cohen et al. (2015), we define consumer
surplus with linear stochastic demand by:

S
.=
∑

j

aj − pj

2
min{aj − pj , θjN}fj .
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Consumer surplus decreases in price and increases in the number of consumers
served, which depends both on the number of recruited providers and on the fraction
of recruits that participate. Hence the platform can increase consumer surplus by
either decreasing price or expanding access to service.

Call the “optimal contract” the solution to the platform’s problem described by
(1) and (2). The platform can achieve its optimal profit by offering the smallest
payment required to induce participation in the low state (i.e., wl = c2), while
compensating providers in the high state for both the cost of participating and the
opportunity cost of joining (i.e., wh = c2 + c1/fh). The platform then recruits
sufficiently many providers to ensure that all demand is met, so there is no demand
rationing with the optimal contract. The platform’s optimal dynamic pricing scheme
achieves platform profit and consumer surplus as outlined in the proposition below.
(For proofs see the Technical Appendix of Cachon et al. 2017)

Proposition 1 With the optimal contract, the platform earns

Uo = max

{
1

4

(

(al − c2)
2fl +

(

ah − c2 − c1

fh

)2

fh

)

,
1

4
(alfl + ahfh − c2 − c1)

2

}

and produces consumer surplus

So =
{

1
8 ((al − c2)

2fl + (ah − c2 − c1/fh)
2fh), c1 < (ah − al)fh,

1
8 (alfl + ahfh − c2 − c1)

2, (ah − al)fh < c1.

6.4 Profitability of Commission Contract

To quantify the cost of imposing a fixed commission, we construct the “commission
contract.” In this setting, the platform is constrained to pay providers a fixed
multiple, β, of the price in each state. The commission contract is the solution to:

max
β,pl ,ph,N

∑

j

(1− β)pj min
{
aj − pj , θjN

}
fj ,

s.t.
∑

j

(

βpj min

{
Dj

θjN
, 1

}

− c2

)

fj ≥ c1.

This is equivalent to the platform’s original problem with an additional constraint
requiring wl/pl = wh/ph. This constraint is irrelevant when joining cost is high: if
(ah−al)fh < c1 then the effective commission, wj/pj , with the optimal contract is
the same in each state. In contrast, if the joining cost is “low,” i.e., c1 ≤ (ah−al)fh,
then the platform uses a dynamic commission with the optimal contract. Hence,
with low c1 the commission contract forces platform offer a commission that is
suboptimal in one or both states, reducing the platform’s profit relative to the optimal
contract.
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Proposition 2 The following is a lower bound for the ratio of the platform’s
profit with the commission contract, Uβ , and the platform’s profit with the optimal
contract, Uo: min{Uβ/Uo} = (1 + √fh)/2. This bound is achieved either when
c1 = 0 or c2 = 0.

The proposition above reports on a lower bound for the platform’s profit with
the commission contract. The commission contract performs poorly when one of
the two costs is very low (either c1 or c2) and the probability of high demand is
small. As c2 → 0, the optimal contract chooses a low commission when demand
is low (to prevent too much participation) and, when demand is high, chooses
a sufficiently high commission to give providers enough profit (c1/fh) to justify
joining the platform. This disparity in the two commissions creates a challenge for
the commission contract, which is required to choose a single commission. With the
other extreme, c1 → 0, the joining constraint is not important. Instead, the focus
is on the incentive for providers to participate. Because pl < ph, which implies
c2/ph < c2/pl , the best commission with low demand is higher than with high
demand (because both states must yield at least c2 for the providers to participate).
Again, the commission contract does not do well with this disparity in commissions.
In the extreme, as fh→ 0, the fixed commission contract earns only 1/2 of the profit
of the optimal contract. However, when the two demand states are equally likely, the
commission contract earns at least 85% of the optimal profit (1/2)(1+√1/2).

To test the tightness of this bound, we numerically analyze 13,689 parameter
combinations and evaluate the ratio Uβ/Uo. According to the bound in Propo-
sition 2, the commission contract has the most room for deviation from optimal
profit when fh is small. The tested parameter combinations all contain the extreme
value fh = 0.05 with the intention of illustrating the worst performance of the
commission contract relative to the optimal contract. Without loss of generality, set
the expected latent demand ā

.= alfl + ahfh = 100. We then vary the ratio of
δ

.= al/ā, which is bounded between zero and one by definition and produces a
corresponding ah = ā(1− (1− fh)δ)/fh. We consider only scenarios in which it is
possible for the platform to serve low demand, i.e., c2/al ∈ [0, 1], and in which it is
possible for the platform to recruit, i.e., c1/(ahfh+ alfl − c2) ∈ [0, 1]. The specific
values of these parameters are summarized in Table 6.1.

Although there are cases in which the commission contract performs poorly
relative to the optimal contract, this requires special parameters. For example,
consider only the extreme cases in which fh = 0.05, which yields a lower bound
of Uβ/Uo = 0.612. Evaluation of 13,689 evenly spaced observations throughout
the feasible parameter space yields a minimum profit ratio close to the lower bound,
Uβ/Uo = 0.6185. (The lower bound is not achieved because the extreme border

Table 6.1 A summary of tested parameter values. All combinations of these values constitute
13,689 numerical experiments

Parameters δ c2/al c1/(ahfh + alfl − c2)

Values {0.1, 0.2, . . . , 0.9} {0.025, 0.050, . . . , 0.975} {0.025, 0.050, . . . , 0.975}
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Table 6.2 Quartiles and mean of Uβ/Uo

Minimum Q1 Median Mean Q3 Maximum

Uβ/Uo 0.6185 0.9871 0.9995 0.9755 1.000 1.000

conditions c1 = 0 or c2 = 0 are not included.) However, as illustrated in Table 6.2,
the average ratio is Uβ/Uo = 0.9755 and the median ratio is Uβ/Uo = 0.9995. We
conclude that for the majority of parameters, the commission contract yields nearly
optimal profit.

6.5 Impact of Dynamic Prices on Consumers

The platform’s pricing scheme affects not only the platform’s profit but also
the surplus accrued by consumers. Consumers have decried dynamic pricing of
on-demand services as price gauging with such vehemence that regulators have
considered limiting the practice (Kosoff 2015). Here we measure the effect of
dynamic pricing on consumer surplus to determine whether dynamic pricing is as
damaging as some consumers believe.

Call the platform’s contract without dynamic pricing the “fixed contract.” With
this contract, the platform may adjust its payments to providers on a state-by-state
basis, but prices remain fixed across states, i.e., pl = ph. With this contract, the
platform is unable to match supply and demand in each state and so suffers from
the resulting inefficiency. The fixed contract takes one of the following forms: full
utilization of providers in all states but rationing of consumers in the high state, full
service for consumers but rationing some providers in the low state, or service only
for consumers in the high state. Refer to these possible options as the “poor service,”
“poor utilization,” and “high demand only” outcomes, respectively.

Proposition 3 The optimal contract has higher consumer surplus than the fixed
contract if and only if “poor service” or “only high demand” is the best version of
the fixed contract.

Proposition 3 identifies the situations in which the optimal contract increases
consumer surplus relative to the fixed contract. If providers are relatively expensive
(high c1) then the fixed contract involves demand rationing (poor service) and
consumers benefit from switching from the fixed contract to the optimal contract.
In these cases the fixed contract is unable to provide adequate supply and, even
though consumers pay more in the high demand state with the optimal contract,
the additional supply available with the optimal contract leads to higher consumer
surplus. However, if providers are relatively cheap (low c1) then the fixed contract
fully serves consumers at the expense of provider utilization (e.g., the poor
utilization version), and consumers are worse off with a switch to the optimal
contract.
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6.6 Conclusion

We study a platform that offers a service via a pool of independent providers.
Providers self-schedule when they offer their service to the customers on the
platform and decide whether or not to join the platform based on their earnings
expectations. Demand varies over the long-term but is predictable in the short-term.
Two inefficiencies can arise: (i) demand can be rationed either because too few
providers join the platform or too few choose to participate; and (ii) capacity can be
rationed because competition for a limited number of jobs leads too many providers
to participate. Demand rationing is costly because some customers are unable to
access the service that they value at the price charged, and the customers that do
get the service might not be the ones that value it the most. Capacity rationing is
costly because participating providers are not fully utilized but still incur their full
opportunity cost of joining the platform. Both forms of rationing factor into the
decision of providers as to whether to join the platform or not.

We study several contractual forms that vary in how prices respond to demand.
The most basic contract, the fixed contract, sets a single price no matter what
demand level occurs. The commission contract allows dynamic prices but requires
prices to be a fixed multiple of the state-dependent wages offered to providers. The
commission contract mimics pricing used in practice, such as Uber’s surge pricing
policy. Finally, we study an optimal contract, which imposes no restrictions on the
platform’s state-dependent prices and wages. Our main result is that even though
the commission contract is not optimal, it yields nearly the optimal profit for the
platform in the vast majority of plausible scenarios.

While maximizing profit is clearly an important objective for the platform, it isn’t
the only relevant one. A considerable amount of controversy has arisen over whether
surge pricing gouges consumers. Hence, a platform should also be concerned with
how it influences consumer surplus. The optimal contract leads to ambiguous
welfare implications, which depend on how the fixed contract manages demand and
capacity. If providers are relatively inexpensive (i.e., their opportunity cost to join
the platform is low), then the fixed contract recruits an ample number of providers
and underutilizes them during low demand periods. In this setting, switching to
the optimal contract always works to the disadvantage of consumers because the
platform recruits fewer providers and, in the high demand state, charges more and
serves fewer customers. However, if providers have a high opportunity cost, then
the fixed contract recruits a limited number of providers and forces customers during
peak demand to suffer through poor service. In those cases, providers and consumers
are better off with the introduction of the optimal contract: capacity expands to serve
more customers in all demand states. To frame this in the context of ride-sharing, if
with the fixed contract (e.g. taxis) it is hard to find service at peak demand times (e.g.
a rainy evening), then Uber’s introduction of surge pricing (i.e., dynamic pricing) is
likely to make both Uber and consumers better off.
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Chapter 7
Time-Based Payout Ratio for
Coordinating Supply and Demand on an
On-Demand Service Platform

Jiaru Bai, Kut C. So, Christopher S. Tang, Xiqun (Michael) Chen,
and Hai Wang

Abstract Many on-demand service platforms use a fixed payout ratio (i.e., the
percentage of the platform’s revenue that is paid to the providers) regardless of
the customer demand and the number of participating providers that tend to vary
over time. In this chapter, we examine the implications of time-based payout ratios.
To do so, we first present a queueing model with endogenous supply (number of
participating providers) and endogenous demand (customer request rate) to model
this on-demand service platform. In our model, earnings-sensitive independent
providers have heterogeneous reservation price (for work participation) to serve
wait-time and price-sensitive customers with heterogeneous valuation of the service.
As such, both the supply and demand are “endogenously” dependent on the price
the platform charges its customers and the wage the platform pays its independent
providers. We use the steady state performance (associated with the M/M/1 queue)
in equilibrium to characterize the optimal price, optimal wage and optimal payout
ratio that maximize the profit of the platform. We find that it is optimal for the
platform to offer time-based payout ratios by offering a higher payout ratio during
peak hours and a lower payout ratio during non-peak hours.
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7.1 Introduction

Recent advances in internet/mobile technologies have enabled the creation of
various innovative on-demand service platforms for providing on-demand services
anytime/anywhere. Examples include grocery delivery services (e.g., Instacart,
Google Express), meal delivery services (e.g., Sprig, Blue Apron), and food delivery
services directly from restaurants (e.g., DoorDash, Deliveroo (U.K.), Yelp’s Eat24),
consumer goods delivery services (e.g., UberRush), dog-walking services (e.g.,
Wag), and taxi-style transportation (e.g., Uber, Didi).

Due to dynamic customer demand anytime/anywhere, most on-demand plat-
forms use independent providers to fulfill customer demands. However, because
independent agents do not get compensated for idle times, earnings depends on
wage rate and utilization, which depends on customer demand. At the same time,
the demand associated with wait-time and price-sensitive customers depends on
two key factors: price and waiting time. Since customer’s waiting time depends on
the number of participating agents, which depends on the wage and the customer
demand. Therefore, the “supply” of participating agents and the “demand” of
customer requests are endogenously dependent on the wage and the price specified
by the firm. Hence, it is a big challenge for the platform to (1) set the right wage (i.e.,
compensation) to get the right supply (i.e., the right number of earnings-sensitive
participating agents); and (2) charge the right price to control the right demand (i.e.,
the right amount of wait-time and price-sensitive customers).

In view of the intricate relationship between endogenous supply and demand
through wage and price selections, we develop an analytical framework to examine
how an on-demand service firm should set its price, wage and payout ratio (i.e.,
the ratio of wage over price). (Throughout this paper, we shall refer to “payout
ratio” as the percentage of the price collected from the customers that is paid to
the providers.) In our framework, we use a queueing model to study the situation
where both supply (i.e., number of providers) and demand (i.e., customer arrival
rate) are “endogenously” dependent on wage, price and other operating factors. Our
model captures an operating environment where (1) wait-time and price-sensitive
customers are “heterogeneous” in their evaluation of the service; and (2) earnings-
sensitive independent providers are “heterogeneous” in their reservation price (i.e.,
the minimum wage for work participation).

By analyzing the steady state performance of our queueing model in equilibrium,
we characterize the optimal price, wage and payout ratio (i.e., the ratio of wage over
price) in the basic setting under which the objective is to maximize the firm’s profit.
We then extend our analysis to a more general setting under which the objective is
to maximize the firm’s profit plus the welfare of the consumers and providers. For
both settings, we obtain two key findings:

1. When the potential customer demand becomes higher, it is optimal for the firm
to charge a higher price, pay a higher wage, and offer a higher payout ratio.

2. When customers become more wait-time sensitive, it is optimal for the firm to
pay a higher wage and offer a higher payout ratio; however, the firm may need to
charge a lower price to sustain the demand of increasingly impatient customers.
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Our findings have the following managerial implications. First, as both the
optimal price and the optimal wage are increasing in the maximum potential
customer demand rate, our result provides an additional explanation/justification
for an on-demand service firm (such as Uber) to charge its customers a higher price
and pay its independent providers a higher wage when demand is higher. Second,
while it is simple to share a fixed percentage of its revenue with the independent
agents (e.g., Uber shares 80% of its revenue with its drivers; see Damodaran 2014),
we find that the firm can increase its own profit as well as the total (customer and
provider) welfare by offering a higher payout ratio when demand is higher. We hope
this result might motivate on-demand service firms to re-evaluate their current fixed
revenue sharing scheme. For instance, the firm may offer a higher (lower) payout
ratio during peak hours (non-peak hours). Third, we also find that it is optimal
for the firm to reduce its payout ratio when the number of registered independent
providers becomes larger. This analytical result provides an economic justification
for explaining why Uber reduced its payout ratio from 0.8 (initial payout ratio
for its first cohorts of drivers) to 0.75 (for its second cohorts of drivers in 2014).
Fourth, for urgent on-demand services with highly wait-time sensitive customers,
the firm may need to lower its price to sustain demand from increasingly impatient
customers.

This chapter is organized as follows. We provide a brief review of related
literature in Sect. 7.2. Section 7.3 presents our queueing model of endogenous
supply and demand along with heterogeneous providers and customers. In Sect. 7.4,
we analyze the equilibrium behavior of our queueing system to determine the
optimal price, wage and payout ratio for maximizing the firm’s profit. We also adapt
our base model to two special cases when the firm uses a fixed payout ratio and
when the firm sets a fixed service level. We construct some illustrative numerical
examples in Sect. 7.5 based on actual data provided by Didi: the leading taxi-style
transportation on-demand service in China. We conclude in Sect. 7.6. Due to page
limits, all mathematical proofs for the results are available at: https://papers.ssrn.
com/sol3/papers.cfm?abstract_id=2831794.

7.2 Literature Review

Recent developments of various on-demand service platforms such as Uber and
DoorDash (see Kokalitcheva 2015; Wirtz and Tang 2016; Shoot 2015) have moti-
vated researchers to explore various operational issues. First, there is an on-going
debate regarding the definition of independent contractors for various on-demand
service platforms (e.g., see Roose 2014). At the same time, it is of interest to
examine how dynamic wage affects supply especially when independent providers
can freely choose whether and when to work. Chen and Sheldon (2015) examined
transactional data associated with 25 million trips obtained from Uber and showed
empirically that dynamic wage (due to surge pricing) could entice independent
drivers to work for longer hours. Moreno and Terwiesch (2014) also examined

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2831794
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2831794
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empirically the independent contractor’s bidding behavior on freelancing platforms.
Allon et al. (2012) explored the process for matching providers to consumers when
capacities are exogenous.

A number of researchers have recently studied the impact of wage and price
on supply and demand in the context of on-demand services. Specifically, they
examined whether it would be beneficial for an on-demand service firm to adjust its
prices and wages dynamically based on real-time system status including the current
number of customers requesting service and the number of providers in the system.
Riquelme et al. (2015) and Cachon et al. (2017) compared the impact of static versus
dynamic prices and wages. By assuming that customers are heterogeneous in terms
of valuation and the payout ratio is exogenously given, Riquelme et al. (2015) found
that static pricing performs well. On the other hand, Cachon et al. (2017) found
that surge pricing performs well by assuming that customers are homogeneous
and the payout ratio is endogenously determined. Hu and Zhou (2017) developed
a general model where supply purely depends on wage and demand purely depends
on price, and derived the conditions under which the optimal revenue sharing ratio
is a linear function of the demand rate. Gurvich et al. (2016) also developed a
newsvendor-style model to examine the optimal price and wage decisions. This
stream of research assumes that customer demand is independent of waiting time
and supply (or capacity) is independent of system utilization over time. In contrast,
our model captures the rational behavior of customers who are sensitive to wait-time
(and price) and independent providers who are sensitive to earnings which depend
on the system utilization.

One research stream in the queueing literature has studied pricing decisions for
services where customers can incur waiting or delay costs. Of particular relevance
to our paper, a number of research papers have examined an operating environment
that uses a static uniform (non-discriminatory) pricing strategy for heterogeneous
customers. Afeche and Mendelson (2004) analyzed the revenue-maximizing and
socially optimal equilibria under uniform pricing for heterogeneous customers
with different evaluations of their service, and found that the classical result
that the revenue-maximizing admission price is higher than the socially-optimal
price (see, e.g., Naor 1969) can be reversed under a more generalized delay cost
structure. Zhou et al. (2014) analyzed the structure of the optimal uniform pricing
strategies for two classes of customers with different service valuations and wait-
time sensitivities. Armony and Haviv (2003) and Afanasyev and Mendelson (2010)
studied the competition between two firms under uniform pricing for two classes
of heterogeneous customers. All the above research papers, however, are based on
the assumption that capacity is exogenously given. In contrast, our paper considers
the case when the supply (capacity) depends on wage and system utilization, which
needs to be determined endogenously.

Finally, our model is closely related to some recent work by Taylor (2017). To
our knowledge, Taylor (2017) is the first to examine pre-committed price and wage
based on customer demand and other operating factors in the context of on-demand
services. He compared the optimal prices when the providers are independent
contractors or regular employees, and examined the impact of wait-time sensitivity
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on the optimal price and wage using a two-point distribution for both the customer
valuation of the service and the provider’s reservation price. Our model allows these
two distributions to be continuous, and complements Taylor’s work in two important
ways. First, our focus is to examine the impact of demand rate, wait-time sensitivity,
service rate, and the size of available providers (who are on-reserve) on the optimal
price, wage and payout ratio (ratio between the optimal wage and the optimal price).
Second, in addition to maximizing its profit, we also consider the case when the firm
maximizes the sum of its own profit and the total consumer and provider surplus. We
find that our key results continue to hold: the optimal price, the optimal wage and
the optimal revenue sharing ratio are increasing in the potential customer demand
rate.

7.3 A Model of Wait-Time Sensitive Demand and Earnings
Sensitive Supply

We consider an on-demand service platform (e.g., Uber) that coordinates randomly
arriving (price and wait-time sensitive) customers with (earning-sensitive) indepen-
dent service providers. Customers arrive randomly at the platform to request for
service, and each service request consists of a (random) amount of service units to
be processed by a service provider (e.g., travel distance in km). The platform charges
each customer a fixed price rate p per service unit (e.g., dollar per km), and offers
a fixed wage rate w per service unit to each participating service provider. (Here,
we use “wage rate” per service unit so that the payout ratio w/p is well defined.
However, we shall compute “earnings rate” per unit time later for providers to decide
whether to participate or not.) In the same spirit as in Taylor (2017), the price rate p
and wage rate w are pre-committed. However, their values can vary across different
time periods depending on the specific market characteristics such as the average
customer demand rate and the expected number of available providers. Given p and
w, each customer decides whether to use the platform to request for service, and
each independent provider decides whether to participate.1 The primary objective
of the platform is to select the optimal price rate and wage rate, denoted by p∗
and w∗, to maximize its average profit.

1For each service request, the platform will assign one of the available participating providers
to serve the customer. For instance, the service platform can assign an available participating
provider based on certain specific criteria (e.g., Uber assigns an available driver closest to the
pickup location), or can announce a service request to all available participating service providers
and assign the request to the first respondent.
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7.3.1 Customer Request Rate λ and Price Rate p

During a certain time period, the maximum potential customer demand rate for the
service during this time period is given by λ̄, each of which has a valuation of the
service that is based on a value rate v per service unit, where v spreads over the
range [0, 1] according to a cumulative distribution function F( ·) so that F(0) = 0
and F(1) = 1. To capture the notion of wait-time sensitivity, we assume that the
utility function of a customer with value rate v is given by

U(v) = (v − p)d − cWq, (7.1)

where v − p is the surplus per service unit and d represents the average service
units dictated by a customer (not the provider), c denotes the cost of waiting per
unit time, and Wq represents the expected wait-time for the service. In this case, a
rational customer with valuation v will request for service only if U(v) ≥ 0 i.e.,
only if v ≥ p+ (c/d)Wq . Hence, the platform can use p and w to indirectly control
the effective demand (i.e., the customer request rate) λ so that

λ = Prob{U(v) ≥ 0} · λ̄ = Prob{v ≥ p + (c/d)Wq} · λ̄.

By defining the “target” service level s = Prob{v ≥ p + (c/d)Wq}, the effective
customer request rate λ (i.e., demand) is given by:

λ = sλ̄. (7.2)

Because of the one-to-one correspondence between target service level s and the
effective demand rate λ, we shall focus our analysis on s instead of λ throughout
this paper for mathematical convenience. Using the fact that s = Prob{v ≥ p +
(c/d)Wq} and that v ∼ F( ·), the price rate p satisfies the following equation:

p = F−1(1− s)− c

d
Wq, (7.3)

where the price rate p decreases in the expected wait-time Wq and the unit waiting
cost c.

7.3.2 Number of Participating Providers k and Wage Rate w

Let K be the (maximum) number of potential earnings-sensitive providers who
may decide to participate over the same time period. (Essentially, K represents
the number of registered providers who are eligible to participate.) For any given
(p,w), let k be the actual number of providers participating on the platform, where
k ≤ K . Also, let μ denote the average service speed (number of service units
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processed per unit time; e.g., travel speed measured in terms of km per hour) of
the service providers so that μ/d represents the service rate of the providers (i.e.,
average number of customers served per hour).2 Given the customer request rate λ

and the number of participating providers k, the utilization of these k participating
providers is equal to λ/(k · (μ/d)), where λd < kμ to ensure system stability. The
average wage per unit time of a participating provider (when working) is equal to the
wage per service unit w multiplied by the average service speed μ. Accounting for
the utilization, the average “earning rate” per unit time of a participating provider is
equal to wμ · (λd/(kμ)) = w(λd/k).3

To model the notion of earnings-sensitivity, we assume that each potential
provider has a reservation rate r per unit time (i.e., corresponding to his outside
option), where r varies across different providers. To model the heterogeneity
among providers, we assume that there is a continuum of provider types so that the
reservation rate r spreads over the range [0, 1] according to a cumulative distribution
function G( ·), where G( ·) is a strictly increasing function with G(0) = 0 and
G(1) = 1. For a (potential) provider with reservation rate r , he will participate to
offer service only if his average earning rate w(λd/k) is at least equal to r .

Let β denote the proportion of providers who participate in the platform to offer
service during this time period. Then, β = Prob{r ≤ w(λd)/k} = G(w(λd)/k),
and the actual number of participating providers k (i.e., supply) is given by

k = βK. (7.4)

Also, in equilibrium, β = G(w(λd)/k) so that:

G−1(β) = w
λd

k
. (7.5)

From (7.4) and (7.5), we can express the wage rate w as a function of the number of
participating providers k:

w = G−1(β)
k

λd
= G−1

(
k

K

)
k

λd
. (7.6)

2If the service units d are already measured in terms of time units, we can simply set μ = 1 in this
case.
3For independent service providers, utilization and wage rate are the two key factors for their
participation. For example, DePhills (2016) reported that Uber drivers obtain higher earnings
primarily because their utilization rate (measured in terms of percentage of miles driven with a
passenger) is much higher than that for taxi drivers. For instance, Uber driver’s utilization is 64.2%,
while taxi driver’s utilization is only 40.7% in Los Angeles.
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7.3.3 Problem Formulation

Since the platform earns an average profit of (p − w)d for each customer request,
the platform’s average total profit is then equal to π = λ(p − w)d. By substituting
(7.3) and (7.6) into the profit function, we can express the profit function π as a
function of (k, s) below:

π(k, s) = λd

[

F−1(1− s)− c

d
Wq −G−1

(
k

K

)
k

λd

]

. (7.7)

Considering the system stability condition λd < kμ, the optimization problem of
the platform can be formulated as:

max
k,s

π(k, s) ≡ λd

[

F−1(1− s)− c

d
Wq −G−1

(
k

K

)
k

λd

]

,

subject to k > λd/μ. (7.8)

By using the optimal number of participating providers k∗ and the optimal demand
rate λ∗ via optimal s∗ through (7.2), we can use (7.3) and (7.6) to retrieve the
corresponding optimal price rate p∗ and optimal wage rate w∗ from k∗ and λ∗.

7.4 The Base Model

To enable us to characterize the optimal solution to problem (7.8), we shall assume
that the distribution of value rate v and the reservation wage rate r are uniformly
distributed over the range [0,1] so that F(v) = v and G(r) = r . Also, we
shall approximate the (expected) waiting time Wq given in the customer’s utility
function (7.1) based on an M/M/1 queue with service rate k(μ/d) so that the wait-
time function Wq has the following simple closed-form expression:

Wq = λ

(k · μ/d) · (k · μ/d − λ)
= λd2

kμ(kμ− λd)
. (7.9)

More formally, we shall assume that the following assumption holds for the
reminder of this paper.

Assumption 1 F(.) ∼ U [0, 1], G(.) ∼ U [0, 1], and Wq = λd2/[kμ(kμ− λd)].
Under Assumption 1, the price, wage and profit functions given in (7.3), (7.6)

and (7.7), respectively, can be simplified as:

p = (1− s)− c

(
λd

kμ

)
1

kμ− λd
(7.10)
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w = k2

Kλd
(7.11)

π(k, s) = λd

[

(1− s)− c

(
λd

kμ

)
1

kμ− λd
− k2

Kλd

]

. (7.12)

By using the above expressions, we can maximize the expected profit π(k, s)

given in (7.7) subject to the system stability constraint: k > λd/μ, and obtain the
following results:

Proposition 1 The optimal price p∗, the optimal wage w∗, and the platform’s
optimal profit π∗ exhibit the following characteristics:

1. When K or μ increases, w∗ decreases, π∗ increases, but p∗ is not necessarily
monotonic.

2. When c increases, w∗ increases, π∗ decreases, but p∗ is not necessarily
monotonic.

3. When λ̄ or d increases, w∗, p∗ and π∗ increase.

As given in the proof of Proposition 1, we can also derive some monotonicity
properties on how the different model parameters affect the optimal service level s∗,
the optimal number of providers k∗, the optimal expected wait-time W ∗q , the optimal
customer request rate λ∗, and the optimal system utilization ρ∗ = λ∗d/(k∗μ). We
summarize these monotonicity properties in Table 7.1.

Proposition 1 shows that when the maximum number of potential providers K (or
when the service speed μ) increases, the potential capacity of the system becomes
larger. As such, the platform can increase the number of providers k∗ and increase
the service rate s∗ (or the corresponding customer request rate λ∗) by lowering its
wage rate w∗, and can obtain a higher profit π∗. However, when k∗ and s∗ (as well
as λ∗) increase, Eq. 7.10 reveals that the optimal price rate p∗ is not necessarily
monotonic. This explains the first statement. This result implies that it is beneficial
for the platform to recruit more potential service providers K to join the platform,
and help (if possible) to increase their average service speed μ.

Next, when the waiting cost c increases, the platform should lower the service
level s∗ so as to reduce the corresponding customer request rate λ∗ and expected
wait-time Wq as given in (7.9). Consequently, the platform earns less. However, as

Table 7.1 Impact of model
parameters on s∗, k∗, W ∗q , λ∗
and ρ∗

s∗ k∗ W ∗q λ∗ ρ∗

K ↑ ↑ ↓ ↑ ×
μ ↑ × ↓ ↑ ×
c ↓ × ↓ ↓ ↓
λ̄ ↓ ↑ ↑ ↑ ↑
d ↓ ↑ ↑ ↓ ↑
↑(increasing); ↓(decreasing);
×(non-monotonic)
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the optimal number of providers k∗ is not necessarily monotonic, Eq. 7.10 reveals
that the optimal price rate p∗ is also not necessarily monotonic. This explains the
second statement.

Finally, when the potential customer demand rate λ̄ increases, the third statement
reveals that the platform should increase its price rate p∗ to increase the customer
request rate λ∗ (even though the service level s∗ is actually lower since λ∗ =
s∗ · λ̄), and increase its wage rate w∗ so as to attract more providers k∗ to
participate. Overall, the platform earns a higher profit π∗ when the potential
customer demand rate λ̄ increases. Also, when the average amount of service units
d increases, it increases the overall workload to the system for each customer
request and essentially has the same effect as increasing the customer demand rate
λ̄. Consequently, the optimal price rate, the optimal wage rate and the optimal profit
behave the same. This explains the third statement.

While optimal price rate is not necessarily monotonic with respect to K , μ and
c, we can prove the following monotonicity property of the optimal payout ratio
w∗/p∗ as the model parameters change.

Proposition 2 The optimal payout ratio w∗/p∗ increases in c, λ̄ and d, and
decreases in K and μ.

Proposition 2 shows that the platform should increase the payout ratio w∗/p∗ to
its providers when the customer’s waiting cost c is higher, the maximum customer
demand rate λ̄ is higher or the average amount of service units d is higher. On
the other hand, the platform should reduce the payout ratio when the maximum
number of potential service providers K or the average service speed μ increases.
One interesting implication of this result is that it would be more profitable for an
on-demand transportation service platform (such as Uber) to increase the payout
ratio to its participating drivers when the customer demand rate λ̄ is higher and/or
the travel speed μ is lower during rush hours.

Proposition 2 also indicates that it is more profitable for the platform to lower its
payout ratio when the number of registered providers K increases. It is interesting
to note that this result is consistent with Uber’s strategy as reported by Huet
(2014) that Uber offered a payout ratio of 0.8 for its first cohorts of drivers in San
Francisco initially, but Uber lowered its payout ratio to 0.75 for its second cohorts of
drivers in 2014 (i.e., as the number of registered drivers increases). Therefore, this
result provides an economic justification for Uber to reduce its payout ratio as K

increases.

7.4.1 Special Case 1: When the Payout Ratio w/p Is Fixed

As many on-demand service platforms (such as Uber and Didi) have adopted a fixed
payout ratio to their service providers, we can adapt our base model to analyze this
special case by imposing an additional constraint w/p = α. We can use a similar
analysis to establish the following result.
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Proposition 3 Under the additional constraint that w/p = α, 0 < α < 1, both the
optimal wage rate w∗ and the optimal price rate p∗ increase in λ̄ and d.

When the payout ratio is held constant so that w/p = α, Proposition 3 implies
that the optimal price rate p∗ (and thus the optimal wage rate w∗ due to a fixed
payout ratio) should both be higher when customer demand rate for service λ̄ is
higher or when the average amount of service units d is higher. (We remark that the
optimal price and wages rates, however, are not necessarily monotone in either the
number of available service providers K , the average service speed μ, or the unit
waiting cost c.) Our results thus suggest that an on-demand transportation service
platform of using a fixed payout ratio (such as Uber) should charge a higher price
(and thus provide a higher wage rate) during rush hours when the customer demand
is high. This result is consistent with the notion of “surge pricing” as adopted by
Uber and Lyft; see Cachon et al. (2017) for some recent discussions on the role of
surge pricing.

We note that both Propositions 1 and 3 reveal that when the customer demand
is higher, the platform should charge a higher price rate and offer a higher wage
rate, regardless of whether the payout ratio is variable or fixed. In Sect. 7.6, we
shall further compare the optimal profits of the platform between these two different
settings using some numerical examples motivated by the sample data provided by
Didi.

7.4.2 Special Case 2: When the Service Level Is Exogenously
Given

As on-demand service platforms continue to emerge and innovate, a new start-up
platform might need to target a very high service level to ensure high customer
satisfaction and gain popularity, at the expense of a lower near-term profit, during the
initial phase of its operations. We can adapt our base model to analyze this special
case by imposing a fixed target service level s. In other words, when the parameter s
(or equivalently, the customer request rate λ because λ = sλ̄) is exogenously given,
the optimization problem of the platform is now reduced to:

max
k

π(k) ≡ λd

[

(1− s)− c

(
λd

kμ

)
1

kμ− λd
− k2

Kλd

]

, subject to k >
λd

μ
.

It is straightforward to show that the above profit function π(k) is concave and
we can determine the optimal number of participating providers k∗ using the first-
order condition. Then, we can use (7.10) and (7.11) to retrieve the corresponding
optimal price rate p∗ and optimal wage rate w∗ from the value of k∗. The following
proposition summarizes the main results for this special case.4

4The results of Proposition 4 continue to hold under more general distributions F( ·) or G( ·) and
general wait-time function Wq . For ease of exposition, we shall relegate the details to an appendix,
which is available from the first author.



126 J. Bai et al.

Proposition 4 The optimal price p∗, the optimal wage w∗, and the optimal profit
π∗ exhibit the following characteristics:

1. When K or μ increases, p∗ increases, w∗ decreases, and π∗ increases.
2. When c increases, p∗ decreases, w∗ increases, and π∗ decreases.
3. When λ̄ or d increases, p∗ decreases and w∗ increases.

Proposition 4 can be interpreted as follows. When the maximum number of
potential providers K or the service speed μ becomes higher, the potential capacity
of the system increases. The first statement asserts that it is then optimal for the
platform to charge a higher price p∗ (because of lower wait-time due to higher
capacity), offer a lower wage w∗ (because there are plenty of potential providers),
and earn a higher profit π∗. The second statement states that when customers
become less patient (i.e., when c increases), the platform should lower its price p∗
(to compensate for the higher waiting cost), offer a higher wage w∗ (to entice more
providers to offer service), and consequently, the platform earns less. Finally, when
the customer request rate λ (or equivalent, λ̄, as λ = sλ̄ and s is fixed) or the average
amount of service unit d increases, the average workload of the system increases.
As such, the third statement reveals that the platform should lower its price p∗ to
compensate for the higher waiting cost and offer a higher wage w∗ to entice more
providers to participate.

By comparing the results of Propositions 1 and 4, one can observe that most
of the results remain the same except for the characteristics of the optimal price
rate p∗. When the service level s is endogenously determined, the optimal price rate
p∗ is not necessarily monotonic for certain model parameters, as stated in the first
two statements of Proposition 1. However, when λ̄ increases, the third statement of
Proposition 1 reveals an opposite result, i.e., the optimal price rate p∗ increases,
versus p∗ being decreasing in λ̄ as given in Proposition 4. We can explain this
opposite result as follows. When λ̄ increases under a given s, the customer demand
rate λ = sλ̄ increases, and consequently, the platform has to offer a higher wage
rate w∗ to increase the number of providers k∗. Without the flexibility to adjust s,
one can use (7.10) and the fact that λ = sλ̄ to show that the corresponding optimal
price rate p∗ would decrease as stated in Proposition 4. On the other hand, when s

(or thus the customer request rate λ) is endogenously determined, the platform has
the flexibility to charge a higher price rate p∗ and offer a higher wage rate w∗ to
better coordinate demand and supply as stated in Proposition 1.

We point out that Proposition 4 confirms the results (as also shown in Proposi-
tion 1) that it is always beneficial for the platform to recruit more potential service
providers to join the platform (i.e., increase K), and to help (if possible) providers
to increase their average service speed μ, regardless of whether the service level is
fixed or endogenously determined.

We can use the results of Proposition 4 to characterize the optimal payout ratio
w∗/p∗ as follows:
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Corollary 1 The optimal payout ratio w∗/p∗ increases in c, λ̄ and d, but decreases
in K and μ.

The results in Corollary 1 are consistent with those given in Proposition 2. In
particular, the platform should still increase the payout ratio w∗/p∗ to its providers
when the customer’s waiting cost c is higher or the maximum customer demand
rate λ̄ is higher, but should reduce the payout ratio when the maximum number of
potential service providers K or the average service speed μ increases, even if the
platform intends to maintain a constant target service level s at any time.

7.5 Numerical Illustrations Based on Didi Data

To illustrate the implications of our analytical results presented in this paper, we
have collected real data from Didi, the largest on-demand ride sharing service
platform operating in over 360 cities in China.5

7.5.1 Background Information

Our data was based on rides that took place in the city of Hangzhou, the capital city
of Zhejiang province with an urban population of over seven millions people, during
the time periods between September 7–13 and November 1–30 in 2015.

In Hangzhou city, Didi has approximately 13,000 registered drivers offering
different types of services including Taxi (traditional taxi service),6 Express/Private
(equivalent to UberX/Black with on-demand drivers), and Hitch (passengers sharing
similar routes). For our numerical illustrations, we shall focus on the data associated
with the Express/Private service, which accounts for 60% of all rides provided by
Didi in Hangzhou. There were 13,000 registered drivers for all services, but the
exact number of Express/Private drivers was not known to us. We shall assume
that 60% of Didi drivers were Express/Private drivers, i.e., the number of registered
Express/Private drivers in Hangzhou city was estimated to be K = 7,800.

5http://www.xiaojukeji.com/en/company.html. Didi was founded in June 2012 and merged with
Kuaidi (a major competitor) in February 2015 as a way to defend its market share when Uber
officially launched its service in China in July 2014. In August 2016, Uber decided to retreat from
China and its China operations merged with Didi.
6Unlike Uber’s business model that aims to displace the traditional taxi services, Didi integrates
taxi services into its business model by providing its mobile hailing service to taxi drivers free of
charge.

http://www.xiaojukeji.com/en/company.html
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Fig. 7.1 Number of rides and drivers across different hours

7.5.2 Number of Rides and Drivers Across Different Hours

Figure 7.1 depicts the average number of Express/Private rides and drivers across
different hours on any given day. (Here, Hour 8 represents 1-hour interval 8 a.m.–
9 a.m., Hour 19 for 7 p.m.–8 p.m., and so on. Data for Hours 1–7 were omitted due
to incomplete data in the database.) We observe from the Didi data that the pattern
depicted in Fig. 7.1 is consistent throughout the weekdays, even though the average
number of rides and drivers were slightly lower on Saturdays and Sundays, and that
the peak hours are being Hours 9 and 19, and the slowest hours are being Hours
23 and 24. For instance, during the peak Hour 19, there were an average of 1,969
Express/Private rides and an average of 1,182 drivers in any given day. However,
during the late night Hour 23, there were only an average of 1,033 rides and an
average of 600 drivers.

7.5.3 Travel Distance and Travel Speed

While the average number of rides and drivers vary substantially across different
hours of the day, it is interesting to note from Fig. 7.2 that the average travel distance
for each Express/Private ride is rather stable across different hours. For example, the
average travel distance d during the peak Hour 19 and during the late night Hour 23
were 6.3 and 6.6 km, respectively, while the average price per km p charged by
Didi during these 2 hours were RMB 3.13 and RMB 2.76; respectively. We can
also estimate the average travel speed across hours μ, and they were about 19
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Fig. 7.2 Average travel distance and average price per kilometer across different hours

and 26 km/hour for Hour 19 and Hour 23, respectively. These numbers are thus
consistent with the actual expected traffic conditions, which show that traffic is much
less congested during late night hours.

7.5.4 Pricing and Wage Rates

Didi’s price p for its service consists of two components so that p = p1 + p2,
where p1 represents the fare that is primarily based on the travel distance, and p2
represents surcharges (e.g., tolls). Accordingly, Didi paid its drivers according to the
following scheme. When a passenger pays a total fee of p, the driver will receive
(p1 · 80%− 0.5) · (100% − 1.77%) + p2 · (100% − 1.77%) from Didi, but the
driver needs to pay p2 to cover various surcharges. Thus, the actual wage that Didi
pays its drivers is approximately 80% of the total price; i.e., w ≈ 0.8p. Figure 7.2
also shows that the average price per kilometer charged by Didi (excluding the
surcharges) is relatively stable across different hours of the day. However, we
observe that the average price per km p charged by Didi was RMB 3.13 during
the peak hour (i.e., hour 19) and it was RMB 2.76 during the non-peak hour
(i.e., hour 23). It is interesting to note that the observed price is higher during the
peak hours, which corroborates with our results as stated in Proposition 3 that the
optimal price rate p∗ should be higher when customer demand rate for service is
higher.



130 J. Bai et al.

7.5.5 Strategic Factors and Their Implications

It is important to note that the observed price that Didi charged its passengers was
heavily discounted or subsidized during the data collection periods for the following
two strategic reasons: (a) Didi wanted to attract more passengers by pricing its
service below the traditional taxi services7; and (b) Didi was engaged in a price
war to compete with Uber by offering discount coupons to compete for market
share. In addition to offering heavily discounted price to attract passengers, Didi
also provided extra “side payments” to its drivers to entice more drivers to join their
platform due to the intense market competition. In addition to the regular payments
of approximately 80% of the fare collected from the passengers, Didi (and Uber)
had offered extra payments and additional bonus (e.g., Didi offers an extra bonus
if the number of rides provided by a driver exceeds a certain quota within a 7-day
period).

While we were unable to obtain the details of the bonus scheme, BBC (2016)
had reported that the extra payment can be as high as 110% of the fare paid by
the passengers. With such generous payments, more drivers reported to work and
there was no need for Didi to use surge pricing to attract more drivers to offer
rides during peak hours. This explains why Didi was able to offer relatively stable
pricing in Hangzhou as depicted in Fig. 7.2. Furthermore, the waiting time for Dids’s
service was reasonably short with an adequate supply of drivers. Specifically, the
average waiting time of all Express/Private rides over the aforementioned time
periods was about 6 min, of which the waiting time for accepting a ride request
was approximately 1 min, while the waiting time for picking up a passenger was
approximately 5 min.

In view of the heavily discounted price due to the above strategic reasons, the
price per km p as reported in Fig. 7.2 was biased and did not represent the regular
prices p the firm should quote and the actual wages w should offer in equilibrium.
Nevertheless, we shall use the data given in the Didi database to construct our
numerical examples below to illustrate how our analytical results would compare
with the actual prices/wages as reported in Didi’s data set.

7.5.6 Numerical Examples for Illustrative Purposes

We next provide some numerical examples based on the Didi data to illustrate our
model results and discuss their implications. In all our numerical examples, we set
the maximum number of drivers K = 7,800. We examined the average income for

7In Hangzhou, taxi charges RMB 11 initially and then RMB 2.6 per km. As a way to entice
passengers to choose Didi over taxi service, Didi had priced its service below taxi rates to increase
market share. Based on our discussions with passengers in China, there was an expectation that
Didi’s price rate was lower than the taxi rate.
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taxi drivers in Hangzhou city and the average major out-of-pocket expenses borne
by the Didi drivers (including car insurance, license, fuel cost, etc.), and estimated
that a minimum hourly wage of RMB 30 is required for a Didi driver to offer service.
Thus, we assume that the hourly wage reservation r is distributed uniformly between
RMB 30 to RMB 40 in our numerical examples.

As discussed earlier, the data were collected during the time when Didi (and
Uber) was offering large fare discounts to attract riders, and so there was an
expectation among riders that Didi price was less than the taxi rate in Hangzhou
(which is RMB 2.6 per km). Thus, we used the taxi rate as a benchmark and assume
that the customer value per km v is distributed uniformly between RMB 3 to RMB
4 in our numerical examples.

As shown in Fig. 7.2, the average travel distances did not vary significantly across
hours, so we simply set the average travel distance d = 6 km across all hours in
order to focus our discussions on how different demand and congesting levels would
affect the optimal price and wage rates across different hours of the day. It is difficult
to provide an accurate estimate of the waiting cost parameter c, and so we simply
varied the value of c from RMB 200 to RMB 2,200 per hour to illustrate how the
optimal price and wage rates would change with respect to the cost of customer
waiting for service.8

We used data from two specific time periods to show our model results as
illustrative examples for our discussions. In particular, we picked Hour 19 to
represent peak-hour characteristics with high demand and travel congestion levels,
and Hour 23 to represent non-peak hour characteristics with lower demand and
congestion levels. Specifically, we set the average demand λ̄ = 2,000 with an
average service speed μ = 19 km/hour, and λ̄ = 1,000 with an average service
speed μ = 26 km/hour, respectively, in these two scenarios. In each scenario, we
solved the base model as discussed in Sect. 7.4. The optimal number of participating
drivers k∗, price rate p∗ and wage rate w∗ are given in Figs. 7.3 and 7.4 for the peak
hour and non-peak hour scenarios, respectively.

These numerical results illustrate the properties as stated in Proposition 1.
For example, the optimal wages w∗ increases as the waiting cost c increases in
both Figs. 7.3 and 7.4, which illustrates the results as stated in statement 2 of
Proposition 1. By comparing the results in Figs. 7.3 and 7.4, we can also observe
that the values of k∗ (scale on the left), p∗ and w∗ (scale on the right) are all higher
during the peak hour (Fig. 7.3) than those during the non-peak hour (Fig. 7.4). These
properties illustrate the results as stated in statements 1 and 3 of Proposition 1 (and

8While it is difficult to estimate the waiting cost, Gómez-Ibáñez et al. (1999) reported that
the waiting cost for a working class passenger in San Francisco is approximately 195% of the
passenger’s after-tax wages. Using this estimate and the fact that the average hourly wage of
workers in Hangzhou is approximately RMB 40 per hour (Wu 2016), one can argue that the
waiting cost for an average passenger in Hangzhou is approximately RMB 80 per hour. However,
accounting for the income inequality and the impatient characteristics of most city dwellers in
China (Li 2016), we simply choose to consider the range of c varying from RMB 200 to RMB
2200 for illustrative purposes.
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Fig. 7.3 Optimal number of participating drivers, optimal price and wage rates during peak hours
(λ̄ = 2000 and μ = 19 km/hour)

Fig. 7.4 Optimal number of participating drivers, optimal price and wage rates during non-peak
hours (λ̄ = 1000 and μ = 26 km/hour)
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Fig. 7.5 Comparisons of the optimal dynamic payout ratios between peak and non-peak hours

Table 7.1), because the peak hour period has a higher customer demand rate λ̄ and a
slower service speed μ than that during non-peak hour period. However, the optimal
number of participating driver k∗ is not monotonic in the waiting cost c. In both
scenarios, the optimal price rate p∗ decreases as c increases. (However, the optimal
price rate p∗ is not necessarily monotonic in c (in general), as noted in statement 2
of Proposition 1.)

We also computed the optimal payout ratio α∗ = w∗/p∗; see Fig. 7.5. The
optimal payout ratio α∗ increases from 0.68 to 0.84 for the peak hour scenario and
from 0.54 to 0.72 for the non-peak hour scenario, respectively, as c increases from
200 to 2,200. Also, observe from Fig. 7.5 that the optimal payout ratio is always
higher for the peak hour scenario than that for the non-peak hour scenario for
any fixed value of c. (We note that these monotonicity properties are proved in
Proposition 2.)

As Didi used a fixed payout ratio α ≈ 0.8, it would be interesting to compare
the corresponding optimal profit between using the dynamic payout ratio α∗ as
given in our model versus using a fixed payout ratio α = 0.8 to examine the
potential benefits of adopting the optimal dynamic payout ratio. We illustrate our
results in Fig. 7.6 based on the peak hour scenario (i.e., Hour 19). Our numerical
results show that, during these peak hour periods, using a dynamic payout ratio α∗
can substantially increase the profit of the service platform over that using a fixed
payout ratio of 0.8, especially when the waiting cost c is low when the optimal
payout ratio is significantly different from 0.8 in our numerical examples here. For
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Fig. 7.6 Comparisons of optimal profit between the optimal dynamic payout ratio and a fixed
payout ratio for the peak hour scenario

instance, when c = 600, the optimal profit is equal to 10,115 when the platform uses
the optimal payout ratio α∗ = 0.69. However, if the platform uses a fixed payout
ratio of 0.8, then the profit is equal to 7,001, which is much lower. However, it is
important to point out that Didi (and Uber as well) used a fixed payout ratio due to
various market considerations such as intense competition for driver participation
and ridership as well as other practical implementation issues. Nevertheless, our
results can serve as a guideline for understanding the magnitude of potential benefits
for a hypothetical situation where such market considerations were no longer valid.
Specifically, Fig. 7.6 suggests that, when the waiting cost c is low, using a dynamic
payout ratio can enable the platform to earn a much higher profit.

7.6 Conclusion

In this chapter, we develop an analytical framework to understand how on-demand
service platforms should set their optimal price and wage to match the needs
of providers and customers taking into considerations the underlying supply and
demand characteristics. The framework consists of a queueing model that captures
some important market characteristics including time-sensitive customers and
earning-sensitive suppliers. We analyze the steady state performance of a two-sided
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queue in equilibrium and investigate the behavior of the optimal price and wage
rates. We derive analytical results to show how different model parameters would
affect these optimal price and wage rates. Our findings provide some interesting
implications in managing prices and wages for on-demand service platforms.

Using some actual data collected from a major ride-sharing company in China,
we construct some numerical examples to illustrate the results of our analytical
model and discuss various implications on the optimal price and wage with respect
to the underlying market characteristics. Although our model does not capture some
important practical issues due to intense competition existed in China when the data
were collected (and thus cannot be used to accurately predict the actual behavior of
the players in the market), our analytical results can help to illustrate and explain
some general observations that are consistent with the actual data provided by
the company. More importantly, our model results can serve as a guideline for
potentially increasing profitability when the underlying market conditions were to
evolve to be consistent with the operating environment captured in our modeling
framework. Specifically, we illustrate the potential benefits if the company were to
adopt a time-based payout ratio versus their current practice of using a fixed payout
ratio.
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Chapter 8
Pricing and Matching in the Sharing
Economy

Yiwei Chen, Ming Hu, and Yun Zhou

Abstract Sharing economy platforms use crowdsourced suppliers to provide
customers with services or goods. Their decision making often revolves around
pricing and matching. Platforms like Uber charge the customers a price for using the
services or goods and offer the crowdsourced suppliers a wage or pay for providing
the services or goods. First, we study how the platform could optimally set the price
and the wage for a single service or product in different market conditions, and
investigate the performance of the fixed commission contract which uses a fixed
commission percentage across all market conditions. Second, even with determined
pricing decisions, the platform also faces the task of matching customers with
suppliers. We consider a stochastic, dynamic model with multiple demand types to
be matched with multiple supply types over a planning horizon. We characterize the
optimal matching policy by determining the priorities of the demand-supply pairs,
under a sufficient condition on the reward structure. Then, the results are applied
to two cases with more specific reward structures; namely, the horizontal reward
structure and the vertical reward structure, to better characterize the optimal policy.
Finally, we study the joint pricing and matching decision by a platform for a single
service or product and take into account suppliers’ and customers’ forward-looking
behavior. We propose a simple heuristic policy: fixed price and wage plus waiting
compensation, in conjunction with the greedy matching policy on a first-come-first-
served basis. This heuristic policy induces forward-looking suppliers and customers
to behave myopically and is shown to be asymptotically optimal.
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8.1 Introduction

The rise of the sharing economy has revolutionized industries such as taxi and
hotel. Empowered with information technology, sharing economy platforms connect
crowdsourced suppliers with customers. Uber, the venture-funded startup and one of
the pioneers in the sharing economy, for example, matches a prospective passenger
with a space in a nearby car owned by someone else. Uber’s service has now
expanded to over 300 cities in the world, recording its two billionth ride in 2016.
Together with other ridesharing services such as Sidecar and Lyft, the company is
leading a disruption to the taxi industry. The car rental company FlightCar offers
travelers free parking at the airport, and then rent out their cars in exchange.
In the logistics industry, firms are starting to hire independent couriers for last
mile deliveries. One example is Amazon’s “Amazon Flex” program, which uses
independent contractor drivers to deliver packages.

8.1.1 Two-Sided Pricing

Pricing decisions are crucial for sharing economy platforms like Uber. Just like
price-sensitive customers on the demand side, crowdsourced suppliers are also
sensitive to their monetary rewards for providing services. Thus wage for suppliers
and price for customers are the two critical controls for the platform such as Uber
and Lyft to coordinate supply and demand. With time-varying market conditions
with different supply and demand patterns, platforms often need to adjust its price
and wage dynamically.

Sharing economy platforms in real life often use the fixed commission rate
contract when they set their price and wage. Under this contract, all parties agree
that the platform takes a fixed percentage of the revenue regardless of the market
condition. Uber started its business taking a 20% commission on all rides and now
has raised and lowered that rate in different cities depending on the supply of drivers
and rider demand. Lyft currently charges a 25% commission. As supply and demand
conditions change over time, the platform would ideally want to update both price
and wage accordingly to match supply with demand. With the fixed commission
contract, the pricing decision and its associated wage determined by the fixed
commission contract is suboptimal. In this chapter, we investigate the performance
of the best fixed-commission contract against the model in which the platform set
price and wage optimally in each scenario to maximize its profit.

8.1.2 Two-Sided Matching

As intermediaries, platforms in the sharing economy also face the task of man-
aging the matching between crowdsourced suppliers and customers. For example,
carpooling platforms such as iCarpool and UberPool match a driver heading to a
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Table 8.1 Comparisons between Monge sequence and modified Monge conditions

Monge sequence Modified Monge condition

Static, deterministic and balanced Dynamic, stochastic and unbalanced

transportation problem matching problem

on a sequence on pairs

sufficient and necessary sufficient, and robustly necessary

a greedy algorithm: our result:

(1) priority property (1) priority property

(2) match as much as possible (2) match-down-to policy

destination with several riders to the same destination (or in the same direction).
Under “inventory commingling program,” its Amazon crowdsources inventories of
an identical item from third-party merchants to its warehouses, to fulfill online
orders.1 A nonprofit organization, United Network for Organ Sharing (UNOS),
allocates donated organs to patients in need of transplantation. In those examples,
both supply and demand may have heterogeneous types. For instance, drivers and
customers are differentiated by their locations; Organs and patients differ in health
status. In addition to heterogeneous types, the arrivals of supply and demand are
usually random and beyond the direct control of the platform. In this chapter, we
formulate the intermediary firm’s dynamic matching problem as a discrete-time
stochastic dynamic program. We derive structural properties of optimal matching
policies and develop good heuristic policies.

More specifically, we establish the modified Monge condition that specifies a
dominance relation between two pairs of demand and supply types. The modified
Monge conditions are sufficient and robustly necessary for the optimal matching
policy to satisfy the following priority properties in the dynamic matching problem.
First, for any two pairs of demand and supply types with one strictly dominating
the other, it is optimal to prioritize the matching of the dominating pair over the
dominated pair. Second, it is optimal to greedily match a perfect pair of demand
and supply types that dominates all other pairs sharing its demand or supply type.
The modified Monge condition generalizes the condition of a Monge sequence,
discovered by Gaspard Monge in 1781, which guarantees a static and balanced
transportation problem to be solved by a greedy algorithm (see Table 8.1 for
comparisons). As a result of the priority properties, the optimal matching policy
boils down to a match-down-to structure (instead of matching as much as possible
in the greedy algorithm) when considering a specific pair of demand and supply
types, along with the priority hierarchy. In fact, in the optimal policy, if some pair
of demand and supply types is not matched as much as possible, all pairs that are
strictly dominated by this pair should not be matched at all.

1A product ordered from Amazon or a third-party supplier may not have originated from the
original supplier. The program gives Amazon the flexibility to ship products on the basis of their
geographic proximity to customers, thus shortening delivery times and reducing shipping costs.
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While two pairs of demand and supply types that share a common node may not
be comparable under the modified Monge condition, the priority properties continue
to hold for those pairs that indeed satisfy the modified Monge conditions, even when
not all pairs are comparable. In addition, we provide bounds and heuristics for the
general problem as follows.

As a heuristic method, we consider the deterministic counterpart of the stochastic
dynamic problem for any period with the t amount of remaining time in the horizon
and any given levels of demand and supply; this can be written as a linear program
with O(n × m × T ) variables. We show that the deterministic model provides an
upper bound on the optimal total surplus of the stochastic model, and that it is
asymptotically optimal to re-solve the linear program for the current period and
state and apply the solution as a heuristic policy, when the arrival rate of demand
and supply of every type becomes increasingly large.

8.1.3 Pricing and Matching Under Strategic Behavior

Suppliers and customers can time their transactions based on market prices and
their expectation of the likelihood of being matched. For example, freelance drivers
can choose when to work, and luxury fashion customers may time their purchases.
Chen et al. (2015) observe that Uber’s customers often prefer to “wait out” the
price surges. Then it is desirable to design market-making policies, i.e., pricing and
matching policies that take into account the strategic behavior of customers and
suppliers.

We propose a simple market-making policy in the market of a single product or
service at which forward-looking customers and suppliers with stationary valuation
and cost distributions arrive following Poisson processes with constant rates over a
finite horizon. On the pricing side, the market maker posts fixed ask and bid prices
plus a (time-dependent) price adjustment as compensation for the expected cost of
waiting to be matched, and on the matching side, the market maker implements
the greedy matching policy on a first-come-first-served basis. Those fixed prices
balance demand and supply and can be computed efficiently. The commitment to
the fixed base prices with a price adjustment for expected waiting cost induces the
strategic customers and suppliers to behave myopically. They will submit a request
for matching upon arrival without delay if the customer’s valuation is no less than
the fixed ask price or the supplier’s cost is no more than the fixed bid price. The
price adjustment on top of the fixed prices for a customer or a supplier arriving at
a specific time is the expected cost of waiting to be matched after submitting his or
her matching request. The effective prices offered after compensating for waiting
are in general time-varying and tend to have opposite trends at the beginning and
the end of the horizon. But we show that when the volumes of demand and supply
are large, the compensation for waiting becomes negligible (more specifically, it
is O(1/n1/3) where n is the scaling of the arrival rates) and the effective price
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trajectory tends to be stationary; moreover, when customers are willing to wait for a
certain length of time without being compensated, the heuristic price trajectory can
become stationary.

We use the mechanism design approach to establish a closed-form upper bound
of the intermediary’s optimal profit. We show that the relative profit loss of our
simple market-making policy relative to the profit upper bound is O(1/n1/2) as the
arrival rates on both sides are scaled up by n. That is, our simple market-making
policy is nearly optimal as the market size grows up.

8.2 Two-Sided Pricing and Fixed Commission

In this section, we consider a platform that coordinates the matching of customer
demand with crowdsourced supply by optimally setting prices for both the demand
and supply sides.

8.2.1 The Price and Wage Optimization Problem

Let K = {1, 2, . . . , K} be a set of possible scenarios of market conditions. Scenario
k occurs with probability ρk . Each scenario is characterized by a demand curve and
a supply curve. In Scenario k, the total amount of customers who are willing to pay
for the service at a price of p is dk(p). We call dk(p) the raw demand function
which naturally should satisfy the downward-sloping property; namely, dk(p) is a
decreasing function in p.2 As is consistent with the operations literature, the number
of satisfied customers may be capped by the available supply. Given a posted wage
w, the total amount of independent contractors or suppliers, who are willing to
provide the service, is sk(w). This is the number of suppliers who would show
up if they were guaranteed to be matched with a customer. We call sk(w) the raw
supply function, which is assumed to be increasing in w. For simplicity, we assume
dk(p) and sk(w) are continuous functions. One can also interpret dk(p) as the tail
probability function of a customer’s willingness-to-pay (up to a constant scalar), and
sk(w) of the cumulative distribution function (c.d.f.) of a supplier’s willingness-to-
sell (up to a constant scalar). We assume that sk(0) = 0 (i.e., no supplier would
be willing to join the market if the wage is 0), and that limp→∞ dk(p) = 0 (i.e.,
demand would be choked off if the price is set outrageously high).

The sequence of events from the perspective of the platform is as follows.
In Stage 1, the nature selects a scenario. Given a realized Scenario k, the

platform decides on the price pk , with the wage following from the pre-determined
commission contract as wk = f (pk).

2The monotonicity in this chapter is in its weaker sense unless otherwise specified.
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In Stage 2, all customers and suppliers observe p and w and play a simultaneous
game by deciding on whether to enter the marketplace. The platform clears the
market by matching arriving demand and supply. If there are more suppliers than
customers in the marketplace, suppliers are rationed to be matched with a customer,
and vice versa. The rationing rule can be arbitrary and is announced upfront.

Given the observed price p and wage w, we characterize the behavior of
customers and suppliers in a specific Scenario k. We allow customers or suppliers
to anticipate their chances of being matched and assume that they know the demand
curve dk(p) and supply curve sk(w). They join the market if their surplus of joining
is nonnegative. Somewhat surprisingly, the following result shows that the matching
quantity in equilibrium can be computed as if the customers or suppliers are naïve
in the sense that they do not anticipate the likelihood of being matched. All proofs
in this section can be found in Hu and Zhou (2018b).

Proposition 1 For a given price p and wage w, the matching quantity when the
suppliers and customers strategically anticipate the matching likelihood, is equal to
min{dk(p), sk(w)}.

By Proposition 1, the profit of the platform in any Scenario k given price p and
wage w, πk(p,w), is the product of the profit margin p −w and the total matching
quantity, i.e., πk(p,w) = (p − w)min{dk(p), sk(w)}. The platform’s objective is
to solve the following problem to maximize its profit in Scenario k.

max
p≥0, w≥0

πk(p,w). (8.1)

We proceed to solve the above problem. The following proposition shows that
instead of maximizing the profit with respect to p and w, we can first find the
optimal matching quantity z∗k , from which the optimal price p∗k and wage w∗k can be
recovered.

Theorem 1 (Maximization of platform profit) Let z∗k ∈ arg maxz≥0[d−1
k (z) −

s−1
k (z)]z. Then the optimal price and wage are, respectively,

p∗ = d−1
k (z∗k) and w∗k = s−1(z∗k),

where d−1
k (z) ≡ max{p ≥ 0 | dk(p) = z} and s−1

k (z) ≡ min{w ≥ 0 | sk(w) = z}.
Once we solve (8.1), the optimal expected profit across all scenarios is P ∗ =∑K
k=1 ρkπk(p

∗
k , w

∗
k ).

Theorem 1 reduces the two-dimensional price and wage optimization problem
to a one-dimensional problem. The intuition behind is that for a given scenario, in
anticipation of the market formation, there is no incentive for the platform to set
the price and wage such that there is more supply arriving than the demand or vice
versa. That is, it is optimal for the platform to set the price and wage such that
the arriving demand is equal to the arriving supply. Hence, the problem reduces to
finding the optimal matching quantity, from which the optimal price and wage can
be obtained.
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8.2.2 The Fixed Commission Contract

Under a fixed commission contract, the following step precedes Steps 1 and 2 in the
sequence of events.

Stage 0: the platform can decide and commit to a fixed commission rate, i.e., the
wage is always a fixed fraction γ ∈ (0, 1) of the price.

We present an illustrative example of the fixed commission contract.

Example 1 Suppose that in a scenario k ∈ K , the supply function is sk(w) =
sk0F

s
k (w) and the demand function is dk(p) = dk0[1 − Fd

k (p)]. Here, F s
k (resp.

Fd
k ) is the c.d.f. of the conditional normal distribution (conditioned on nonnegative

values) with mean μs
k (resp. μd

k ) and standard deviation σ s
k (resp. σd

k ). The supply
and demand curves are obtained assuming that a supplier joins the market if and
only if the wage exceeds his/her willingness-to-sell (opportunity cost for providing
services), a customer joins the market if and only if the price is below his/her
willingness-to-pay (valuation of the service), and both supplier’s willingness-to-
sell and customer’s willingness-to-pay follow conditional normal distributions.
The parameters sk0 and dk0 represent the numbers of the potential suppliers and
customers, respectively. Recall that ρk is the probability for observing Scenario
k ∈ K .

We consider K = 10 scenarios. The parameters sk0, dk0, μs
k , σ s

k , μd
k , σd

k and ρk
are chosen as in Table 8.2. To isolate the effect of the market size, we hold the pool
size of potential suppliers and customers fixed (sk0 = 1, dk0 = 1.2 for all k ∈ K ).
The mean of the suppliers’ opportunity cost is increasing across the scenarios, and
so is the mean of the customers’ valuation. Imagine as k increases, the weather
condition worsens, and customers value more going by car more than say, using a
bike sharing service, but at the same time, drivers also value staying at home more
than driving. To focus on the first order effect, we set the standard deviation σ s

k of
the suppliers’ cost to be 1

3 of the mean μs
k and the same on the demand side.

In each Scenario k, the optimal price p∗k , optimal wage w∗k , and the ratio
γ ∗k = w∗k /p∗k in the benchmark are displayed in Table 8.3. As expected, we see
that both price p∗k and wage w∗k increase in k. Since both suppliers’ cost and
customers’ valuation increase as the weather condition worsens, the platform needs

Table 8.2 Parameters in the illustrative example

Scenario k 1 2 3 4 5 6 7 8 9 10

sk0 1 1 1 1 1 1 1 1 1 1

μs
k 15 16 17 18 19 20 21 22 23 24

σ s
k 5 5.33 5.67 6 6.33 6.67 7 7.33 7.67 8

dk0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

μd
k 10 12 14 16 18 20 22 24 26 28

σd
k 3.33 4 4.67 5.33 6 6.67 7.33 8 8.67 9.33

ρk 0.05 0.05 0.1 0.1 0.2 0.2 0.1 0.1 0.05 0.05
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Table 8.3 Optimal wages, prices and ratios in the illustrative example

Scenario k 1 2 3 4 5 6 7 8 9 10

p∗k 14.20 16.52 18.79 25.90 27.11 28.32 29.53 30.74 31.95 33.16

w∗k 9.24 10.59 11.87 13.10 14.28 15.44 16.57 17.69 18.79 19.88

γ ∗k 0.651 0.641 0.631 0.622 0.614 0.606 0.599 0.593 0.587 0.581

to increase the wage to attract more suppliers and raise the price to suppress the
growing demand. We observe that the optimal wage/price ratio γ ∗k decreases in k.
This implies that the platform does not need to increase the commission ratio to
incentivize the suppliers. This is because even though γ ∗k decreases as k increases,
the optimal wage w∗k = γ ∗k p∗k is in fact increased and is sufficient for incentivizing
the drivers to get on the street.

When the platform freely sets both wage and price in each scenario, the optimal
expected profit of the platform in the benchmark is achieved by applying the wage-
price pair (w∗k , p∗k ) in Scenario k and is equal to

∑
k∈K ρkπk(w

∗
k , p

∗
k ) = 2.311.

Under the fixed commission contract w = γp, the optimal expected profit of the
platform is achieved by applying the price p̌k(γ ) = arg maxp≥0 πk(γp, p) for
given γ in Scenario k. The optimal fixed commission contract for maximizing the
platform’s profit can be found by solving maxγ∈[0,1]

∑
k∈K ρkπk(γ p̌k(γ ), p̌k(γ )).

With the given parameters, the optimal ratio γ̌ = 0.6063. This fixed commission
contract achieves a surprisingly high profit 2.307, which is 99.82% of the optimal
profit achieved by {(w∗k , p∗k )}k∈K . �

Motivated by Example 1, we investigate the performance of the fixed commission
contract. The following result shows that, under a mild condition on the supply
curves, the optimal fixed commission contract can achieve a decent portion of
optimality.

Theorem 2 (Concave supply curve: 3/4-optimality of fixed commission) Sup-
pose sk(w) is concave for all k ∈ K .

(i) For any Scenario k, γ ∗k ≡ w∗k /p∗k ≤ 50%.

(ii) The expected profit achieved by a heuristic commission contract with γ =
(1− γ̄ )γ̄ /(1− γ ) (≤ 50%) is at least 3

4P
∗, where γ̄ = maxk∈K γ ∗k and

γ = mink∈K γ ∗k .

Theorem 2(ii) says that as long as the supply curve is concave, a fixed commis-
sion contract can achieve 75% of the optimality of the benchmark. Theorem 2(i)
says that for any scenario the ratio of the optimal wage to price in the benchmark
should be no more than 50% (i.e., the commission rate is over 50%). This ratio
may seem overly low and may be caused by lack of competition in the model.
Uber currently leaves the drivers a fraction of 70–80% of fares paid by the riders.
Thus, Theorem 2(i) may imply that the Uber’s current pricing practice is not profit
maximizing, which is consistent with the news reports saying that Uber is not
making a profit. Indeed, in practice, the platform may charge a lower commission
due to fairness concerns and to improve supplier welfare. Nevertheless, platforms
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Table 8.4 Statistics of the performance of the fixed commission contract:normal distributions

Maximum Minimum Mean Median Standard deviation

96.30% 82.54% 91.07% 91.33% 2.32%

Table 8.5 Statistics of the performance of the fixed commission contract: log-normal distributions

Maximum Minimum Mean Median Standard deviation

95.43% 76.52% 88.35% 88.59% 3.23%

like Uber have strong bargaining powers over their suppliers and may try to raise
the commission to increase profit if it would not overly irritating the suppliers. For
example, Uber and Lyft started with a 20% commission and later increased the rate
to 25% in most cities. Currently, the Lyft fee in New York City is 31.4%.

8.2.3 Numerical Study

To close this section, we now present numerical experiments to further investigate
the performance of the fixed commission contract against the optimal expected profit
of the platform.

As in the illustrative example, we consider conditional normal distribution for
the supplier’s opportunity costs and customers’ valuations. For the conditional-
normally distributed supply cost, the supply curve is neither convex nor concave. We
consider K = 48 scenarios in total. Following the same notation as in Example 1,
we draw the parameters sk0, μs

k , σ s
k , dk0, μd

k and σd
k independently and uniformly

at random, in the following manner: sk0 ∼ U [0, 1], μs
k ∼ U [10, 20], σ s

k ∼
U [0.1μs

k, 0.4μs
k], dk0 ∼ U [0, 1], μd

k ∼ U [10, 20] and σ s
k ∼ U [0.1μs

k, 0.4μs
k],

where U [A,B] denotes the uniform distribution over the interval [A,B]. To
generate the probabilities ρk , k ∈ K , we first draw ρ̃k ∼ U [0, 1] for every k,
and then normalize the ρ̃k’s, i.e., ρk = ρ̃k/

∑
k∈K ρ̃k .

We generate a total number of 400 instances of a combination of parameters for
the K = 48 number of scenarios and summarize the statistics on the performance
of the best fixed commission contract in Table 8.4. The results show that the
performance of the best fixed commission contract is consistently good, with the
worst case achieving 82.54% of the optimality.

We further generate 400 instances where the suppliers’ cost X and customers’
valuation Y follow log-normal distributions, i.e., log(X) follows a normal distri-
bution with mean μs

k and standard deviation σ s
k , and log(Y ) follows a normal

distribution with mean μd
k and standard deviation σd

k . The number of scenarios
is still K = 48. We randomly draw all the parameters in the same way as we
did for the normal distributions. Table 8.5 shows the performance of the fixed
commission contract. While the performance is slightly worse compared with that
under the normal distributions, it is still consistently good, with even the worst case
performing better than the performance guarantee 75% we obtained for the case of
concave supply curves.
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8.3 Dynamic Matching with Heterogeneous Types

We now study a dynamic matching model of the platform in which price and wage
are either exogenous (e.g., price and wage have been fixed for a while and accepted
by all parties when Uber assigns a rider to a driver) or irrelevant (e.g., for organ
sharing, in the majority of countries except only a few it is not allowed to put a price
tag on organs).

Consider a finite horizon with a total number of T periods. In practice, even
though demand and supply arrive in continuous time, matching decisions are
typically not made in real time. For example, Amazon periodically optimizes the
way in which it matches customer orders and its warehouses (see Xu et al. 2009).
At the beginning of each period, n types of demand and m types of supply arrive
in random quantities. Let D be the set of demand types and S be the set of
supply types. With a slight abuse of notation, we write D = {1, 2, . . . , n} and
S = {1, 2, . . . , m}, noting that D and S are disjoint sets. We use i to index a
demand type and j to index a supply type. The pairs of demand and supply form
a bipartite graph. An arc (i, j) represents a match between type i demand and type
j supply. For simplicity, we consider a complete bipartite graph in the base model.
In other words, any demand type can potentially be matched with any supply type,
obviously with different rewards (or equivalently, mismatch costs). We denote the
complete set of arcs by A = {(i, j) | i ∈ D, j ∈ S }.

We denote, as system states, the demand vector by x = (x1, . . . , xn) ∈ R
n+ and

the supply vector by y = (y1, . . . , ym) ∈ R
m+, where xi and yj are the quantity

of type i demand and type j supply available to be matched. Although we assume
that the states and the demand and supply arrivals are continuous quantities (and
therefore so are the matching decisions), our results can be readily replicated if
those quantities are discrete. On observing the state (x, y) ∈ R

n+m+ , the firm decides
on the quantity qij of type i demand to be matched with type j supply, for any i ∈ D
and j ∈ S . For conciseness, we write the decision variables of matching quantities
in a matrix form as Q = (qij ) ∈ R

n×m+ , with Qi its i-th row (as a row vector)
and Qj its j -th column (as a column vector). We assume that there is a reward rij
for matching one unit of type i demand and one unit of type j supply for all i, j .
Similarly, we can write the rewards in a matrix form as R = (rij ) ∈ R

n×m. Thus
the total reward from matching is linear in the matching quantities. That is, R◦Q ≡∑n

i=1
∑m

j=1 rij qij , where “◦” gives the sum of elements of the Hadamard product
of two matrices. The post-matching levels of type i demand and type j supply are
given by ui = xi−1mQT

i = xi−∑m
j ′=1 qij ′ and vj = yj−1nQj = yj−∑n

i′=1 qi′j ,
respectively. That is, u = x − 1mQT and v = y − 1nQ. The post-matching levels
cannot be negative; i.e., u ≥ 0, v ≥ 0.

After the matching is done in each period, each unit of unmatched demand and
supply incurs a holding cost of c and h respectively. The cost on the demand side
could be the loss of goodwill or customers’ waiting costs. Consequently, the total
holding cost amounts to c1nuT+h1mvT = c

∑n
i=1 ui+h

∑m
j=1 vj . The unmatched

demand and supply carry over to the next period with carry-over rates α and β,
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respectively. In other words, (1 − α) fraction of demand and (1 − β) fraction of
supply leave the system. Without loss of generality, we assume they leave the system
with zero surpluses.

The firm’s goal is to determine a matching policy Q∗ = (q∗ij ) that maximizes
the expected total discounted surplus. (Our perspective is the maximizing of social
welfare. Alternatively, the formulation can account for profit maximization if rij is
interpreted as the revenue collected from a matching, and c and h are interpreted
as the penalty paid to demand and supply for showing up but without a successful
match in a period.) Let Vt (x, y) be the optimal expected total discounted surplus
given that it is in period t and the current state is (x, y). We formulate the finite-
horizon problem by using the following stochastic dynamic program:

Vt (x, y) = max
Q∈{Q≥0|u≥0,v≥0}

Ht(Q, x, y),

Ht (Q, x, y) = R ◦Q− c1nuT − h1mvT + γ EVt+1(αu+ Dt , βv+ St ), (8.2)

where γ ≤ 1 is the discount factor. The boundary conditions are VT+1(x, y) = 0
for all (x, y), without loss of generality. In other words, at the end of the horizon, all
unmatched demand and supply leave the system with zero surpluses.

8.3.1 Priority Properties of the Optimal Matching Policy

We provide sufficient conditions for prioritizing the demand-supply pairs (i.e., the
arcs of the bipartite network) under the optimal matching policy. The conditions
we provide are imposed on the reward matrix and independent of any other system
parameters. Those conditions guarantee that specific priority structural properties
hold for the dynamic problem at any time and with any realized demand and supply.
For succinctness, we may only present the definitions and results on one side of the
market, analogous definitions and results can be easily stated and obtained for the
other side by symmetry.

We define a relation “�” between arcs as follows and show it is a partial order.
We refer readers to Hu and Zhou (2018a) for proofs in this section. First, we consider
neighboring arcs in the bipartite graph.

Definition 1 (Modified Monge condition for arcs with a common node) (i, j) �
(i, j ′), if

(i) rij ≥ rij ′ and

(ii) rij + ri′j ′ ≥ rij ′ + ri′j for all i′ ∈ D . (D)

(When i′ = i, condition (D) holds automatically. It is easy to see that (i, j) � (i, j ′)
holds automatically for j ′ = j .)
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We further define a relation between arcs that do not share any node but can be
connected through a sequence of neighboring arcs regulated by the relation “�”.

Definition 2 (Modified Monge condition for arcs without common nodes) For
i �= i′ and j �= j ′, we say (i, j) � (i′, j ′) if there exists a sequence of arcs (i1, j1),

(i2, j2), . . . , (ik, jk) such that either ik = ik+1 or jk = jk+1 for k = 1, . . . , n − 1,
and (i, j) = (i1, j1) � (i2, j2) � · · · � (ik, jk) = (i′, j ′).

Further, we define the equivalence and strict dominance of two pairs (i, j) and
(i′, j ′) as follows.

Definition 3 We say (i, j) is equivalent to (i′, j ′), denoted by (i, j) ∼ (i′, j ′), if
(i, j) � (i′, j ′) and (i′, j ′) � (i, j). We say (i, j) strictly dominates (i′, j ′), denoted
by (i, j) � (i′, j ′), if (i, j) � (i′, j ′) but (i, j) is not equivalent to (i′, j ′).

For any arc (i, j) ∈ A , we define a set of neighboring arcs that are strictly
dominated by (i, j): Lij ≡

{
(i′′, j) | (i, j) � (i′′, j)

}∪ {(i, j ′′) | (i, j) � (i, j ′′)
}
.

We also define

wij = wij (Q, x, y) ≡ min

{

xi −
∑

j ′:(i,j ′)/∈Lij

qij ′ , yj −
∑

i′:(i′,j)/∈Lij

qi′j

}

.

If wij = 0, type i or j is exhausted by the matching over arcs outside the set Lij .
The following theorem establishes a sufficient condition for a demand-supply

pair (i, j) to be prioritized over another pair (i′, j ′).

Theorem 3 (Partial order implies priority) Without loss of generality, assume
x > 0 and y > 0 in period t .3 There exists an optimal decision Q∗ such that for any
(i, j) � (i′, j ′), min{w∗ij , q∗i′j ′ } = 0, i.e., either Q∗ exhausts type i or j over arcs
outside Lij , or q∗

i′j ′ = 0.

The northwest corner rule under the assumption of a Monge sequence can
completely solve the deterministic and balanced version of the problem in a
greedy fashion. For the stochastic version, we show in Theorem 3 that the priority
structure preserves under the modified Monge conditions, a somewhat stronger set
of assumptions than the Monge sequence.4 However, even a pair has higher priority
in the optimal matching, they are not necessarily matched in a greedy fashion;
when they are not exhausted, all pairs that have strictly lower priority should not
be matched.

Next, we provide a sufficient condition for a pair of demand and supply types to
be matched greedily over all other possible matching options.

3If xi = 0 (or yj = 0), we can delete demand node i (or supply node j ) and all its connected arcs,
on which matching quantities are set to zero.
4If all arcs are comparable under our partial order along the sequence, then it is a Monge sequence.
But we do not require all arcs to be comparable.
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Theorem 4 (When greedy matching is optimal) If (i, j) � (i, j ′) for all j ′ ∈ S
and (i, j) � (i′, j) for all i′ ∈ D , then q∗ij = min

{
xi, yj

}
.

Theorem 4 is not a direct consequence of Theorem 3. By directly applying
Theorem 3, we can only say that under the conditions in Theorem 4, it is optimal
for the firm to prioritize the matching of type i demand and type j supply over any
other possibilities. However, it may still be possible that the firm has reserved some
type i demand and type j supply without greedily matching them.

As an immediate application of Theorem 4, consider demand and supply types
that are specified by their locations in a Euclidean space. The reward of matching
supply with demand is a fixed prize minus the disutility proportional to the
Euclidean distance between the supply location and the demand location. It is easy
to verify that a demand type and a supply type from the same location forms a
perfect pair, and by Theorem 4, they should be matched as much as possible. To see
why they are a perfect pair, we have rii+ri′j ′ ≥ rij ′ +ri′i because di′j ′ ≤ dij ′ +di′i ,
where dij is the Euclidean distance between the locations of type i demand and type
j supply. The latter inequality is simply the triangle inequality. We summarize this
result as follows.

Corollary 1 In a Euclidean space with horizontally differentiated types as loca-
tions, it is optimal to match the demand and supply from the same location greedily.

Corollary 1 suggests that with geographic locations as types, the intermediary
firm such as Uber and Amazon should always match a demand with a supply if they
are originated from the same geographic region, or practically speaking if they are
sufficiently close to each other.

In the followings, we present two reward structures, for which Theorem 3 can be
applied to characterize the optimal matching policy.

8.3.1.1 Unidirectional Horizontal Types

Let the n demand and m supply types be distributed on a fixed route C (e.g., a
line segment) with a given direction. All the demand types have distinct locations
(otherwise we can treat two demand types sharing the same location as the same
type) and so do the supply types. For any two types t1, t2, we write t1 → t2 to denote
that t1 is located before t2, along the given direction. We denote by d(t1, t2) the travel
distance from the location of t1 to that of t2 along the given direction. The unit
matching reward rij between type i demand and type j supply is a nonincreasing
function f of the distance between the two types, which is measured as follows.
Distance-based reward implies horizontal preferences since a demand/supply type
would “prefer” (in the eyes of the platform) a supply/demand type that is “closer”
to herself.

For i ∈ D and j ∈ S such that j → i, we define dij = d(j, i). For i ∈ D and
j ∈ S such that i → j , we consider one of the following definitions:

(i) (Directed line segment) dij = N , where N is an arbitrarily large number;
(ii) (Directed circle) dij = |C| − d(i, j), where |C| is the length of the route C;

(iii) (Undirected line segment) dij = d(i, j).
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In case (i), a supply type is not allowed to travel counter to the given direction. In
this case, C is a directed line segment, on which i ∈ D and j ∈ S can be matched
with each other if and only if j → i. The product upgrading model has the structure
of a directed line segment (see, e.g., Yu et al. 2015).

In case (ii), a type j supply can travel along the given direction to reach a type i

demand if j → i. If i → j , j needs to travel to the end of the route along the
given direction, then “reappears” at the origin of the route and continues along the
direction to reach i. This is equivalent to the case in which C is a directed (say,
clockwise) circle and a supply type always needs to go clockwise on the circle to
reach a demand type.

In case (iii), a supply type can go along or counter to the direction to reach a
demand type. Thus the direction no longer plays a role, and C is equivalent to an
undirected line segment.

For i ∈ D and j ∈ S , let seg (i←j) denote the segment of the route traveled by
j to reach i.

Provided that the unit reward rij = f (dij ) is linear in dij , the following priority
structure can be inferred from Theorem 3.

Theorem 5 (Distance-based priority) Suppose f is a linear and decreasing
function.

(i) If seg (i←j) ⊆ seg (i←j ′), then (i, j) � (i, j ′). Similarly, if seg (i←j) ⊆
seg (i′←j), then (i, j) � (i′, j).

(ii) In the case of undirected line segment, if seg (i←j) ⊆ seg (i′←j ′) and
seg (i←j) has the same direction with seg (i′←j ′), then (i, j) � (i′, j ′).

(iii) In the case of directed line segment and circle, seg (i←j) ⊆ seg (i′←j ′) is
equivalent to (i, j) � (i′, j ′).

Theorem 5 (i) implies that a shorter distance leads to a higher priority when
we compare two pairs of demand and supply with a common node. Moreover, as
suggested by the following theorem, for the directed line segment and the directed
circle, each demand or supply type should be matched greedily with its closest
match.

Theorem 6 (Greedy match of perfect pairs) Consider the directed line segment
case or the directed circle case. Suppose that seg (i←j) does not contain any other
types than themselves. If f is nonincreasing and convex, q∗ij = min{xi, yj }.

8.3.1.2 Vertical Types

We consider the case where the demand and supply types have “quality” differences.
The unit reward takes the form rij = rdi + rsj , where rdi and rsj are contributions
made by type i demand and type j supply, respectively. Without loss of generality,
we index the types such that rd1 > · · · > rdn and rs1 > · · · > rsm.

With the additive reward structure, rij + ri′j ′ = rij ′ + ri′j for all i, i′ ∈ D and
j, j ′ ∈ S . This implies that for two neighboring arcs, (i, j) � (i′, j) if and only if
rdi ≥ rd

i′ , and (i, j) � (i, j ′) if and only if rsj ≥ rs
j ′ . This observation can easily be
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generalized as (i, j) � (i′, j ′) if and only if i < i′ and j < j ′. By Theorem 4, it is
optimal to match type 1 demand and type 1 supply greedily. From Theorem 3, the
arc (i, j) has priority over (i, j ′) and (i′, j) for all j ′ > j and i′ > i.

This leads to an optimal policy that follows a top-down matching procedure.

Corollary 2 (Top-down matching) Line up demand types and supply types sepa-
rately in increasing order of their indices. Match from the top, down to some level.
The optimal matching decision Q in a period is fully determined by a total matching
quantity Q ≡∑n

i′=1
∑m

j ′=1 qi′j ′ .

8.3.2 Bound and Heuristic

We study the deterministic counterpart of the stochastic problem in its general form.
We show that the heuristic suggested by the deterministic model can be computed
efficiently and is asymptotically optimal for the stochastic problem.

We consider the deterministic model by ignoring the uncertainty and assume that
the mean demand quantity λit = EDit and mean supply quantity μjt = E Sjt arrive
in each period. The following linear program gives the formulation of the problem
from period τ to period T :

(Px, y
τ ) max

qij t , xit , yjt

T∑

t=τ
γ t−1

[ n∑

i=1

m∑

j=1

rij qij t − c

( n∑

i=1

xit −
n∑

i=1

m∑

j=1

qij t

)

− h

( m∑

j=1

yjt −
n∑

i=1

m∑

j=1

qij t

)]

s.t.
m∑

j=1

qij t ≤ xit , i ∈ D, t = τ, τ + 1, . . . , T ,

n∑

i=1

qij t ≤ yjt , 1 ≤ j ≤ m, τ ≤ t ≤ T ,

xi,t+1 = α

(

xit −
m∑

j=1

qij t

)

+ λit , i ∈ D, t = τ, . . . , T − 1,

yj,t+1=β
(

yjt−
n∑

i=1

qij t

)

+μjt , 1 ≤ j ≤ m, τ ≤ t ≤ T−1,

qij t ≥ 0, i ∈ D, j ∈ S , t = τ, . . . , T ,

xiτ = xi, yjτ = yj , i ∈ D, j ∈ S , (8.3)

where (x, y) = (x1, . . . , xn, y1, . . . , ym) is a given initial state at the beginning of
period τ .
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From the optimal solution to (Px,y
τ ), {q̂ij t , x̂it , ŷj t }i∈D , j∈S , t=τ,...,T , we obtain

a feasible matching decision {q̂ijτ }i∈D , j∈S in period τ for state (x, y), and use
it as a heuristic decision. If we start in period 1 with an initial state (x1, y1), we
will solve (Px1,y1

1 ) to obtain matching decisions {q̂ij1}i∈D ,j∈S in period 1. Given a
realization of demand and supply in period 2 as D2 = d2 and S2 = s2, respectively,
the state in period 2 is then (x2, y2) = (αû + d2, βv̂ + s2). We then solve (Px2,y2

2 )
to obtain the heuristic decision for period 2. We proceed until period T to obtain
the heuristic decisions along a sample path of demand and supply realization. The
above procedure is referred to as the deterministic re-solving heuristic.

Intuitively, one would expect that the uncertainty in demand and supply in the
stochastic model would result in a lower expected surplus. This is confirmed by the
following proposition.

Proposition 2 (Deterministic upper bound) The deterministic model provides an
upper bound on the optimal total surplus of the stochastic model.

If we scale up the arrival of demand and supply of all types by a multiplier
k (i.e., Dit = ∑k

�=1 D
(k)
it and Sjt = ∑k

�=1 S
(k)
j t for all i ∈ D and j ∈ S ,

where D
(1)
it , . . . , D

(k)
it are independent and identically distributed (i.i.d.) random

variables and S
(1)
j t , . . . , S

(k)
j t are i.i.d. random variables), the policy suggested by

the deterministic re-solving heuristic becomes asymptotically optimal as k→∞.
With the scalar k, let V k

t (x, y) be the value function and V
resolve(k)
t (x, y) the value

for applying the deterministic re-solving heuristic in system k.

Theorem 7 (Asymptotic optimality of the deterministic heuristic and rate of
convergence) In the stochastic system k, the deterministic re-solving heuristic
leads to the relative error [V k

t (x, y)−V resolve(k)
t ]/V k

t (x, y) = O(1/
√
k) as k→∞.

8.3.2.1 Numerical Study

Consider a 10-period dynamic matching problem with 5 supply types and 5
demand types. For each instance of the problem, we generate the time-independent
parameters uniformly at random as follows.

Let rij ∼ U [50, 150] (for all i ∈ D and j ∈ S ), c ∼ U [0, 50], h ∼ U [0, 50],
α ∼ U [0, 1], β ∼ U [0, 1], λi = EDi ∼ U [10, 25], μj = ESj ∼ U [10, 25],
γ ∼ U [0.8, 1].

In addition, we also randomly generate the initial state (x0, y0) at the beginning
of the first period. We let xi0 ∼ U [0, 30] and yj0 ∼ U [0, 30] for all i ∈ D and
j ∈ S .

We run two sets of numerical experiments described as follows.

(a) Demand and supply follow a uniform distribution. For given realizations of λi
and μj , we generate δdi ∼ U [0, λi] and δsj ∼ U [0, μj ]. Then, we let Di ∼
U [λi − δdi , λi + δdi ] and Sj ∼ U [μj − δsj , μj + δsj ].
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(b) Demand and supply follow conditional normal distributions (conditioned on
nonnegative values). For given realizations of λi and μj , we generate σd

i ∼
U [0, λi/3] and σ s

j ∼ U [0, μj /3]. Then, we let Di (resp. Sj ) be the conditional

normal distribution with mean λi (resp. μj ) and standard deviation σd
i (resp.

σ s
j ).

Note that all the parameters are generated independently. For each randomly
generated instance, we solve the 10-period deterministic problem (P) and obtain
the optimal value V det, which is an upper bound of the optimal value V opt of the
stochastic problem. Let Ṽ be the optimal value of the expected total discounted
reward minus costs when the deterministic heuristic is applied throughout the
decision horizon. We calculate Ṽ approximately by simulation: For each randomly
generated sample path ω, in period t (t = 1, . . . , T ) with state (xt (ω), yt (ω)), apply
the optimal decision from solving the (T − t + 1)-period problem with initial state
(xt (ω), yt (ω)); The total reward minus cost for the sample path ω can be easily
calculated; Then we average over 5000 sample paths to obtain the approximate
value of Ṽ . Since (V opt − Ṽ )/V opt ≤ (V det − Ṽ )/V det ≡ ρ, the relative error
by the deterministic heuristic is even smaller if ρ is small. Thus, we focus on ρ to
measure the relative error.

For the set (a) of the experiments, 600 instances are generated. Among the 600
instances, the maximum value of ρ is 21.24%, the mean is 9.84%, and the median
is 9.51%.

For the set (b) of the experiments, 820 instances are generated. Among the 820
instances, the maximum value of ρ is 19.24%, the mean is 7.24%, and the median
is 6.79%.

8.4 Pricing and Matching with Strategic Suppliers and
Customers

In this section, we study the joint pricing and matching decision of an intermediary
platform. Consider an intermediary who dynamically matches demand and supply
of a single-type product or service. Customers and suppliers have heterogeneous
valuations and sequentially arrive at the market over a finite horizon [0, T ]. The
intermediary implements an anonymous posted price mechanism on both demand
and supply sides. That is, at each point of time t ∈ [0, T ], the intermediary posts
demand-side price πd

t (i.e., ask price) that she charges customers for each unit of
the product and supply-side price πs

t (i.e., bid price) that she pays to suppliers for
each unit of the product.

Customer behavior Over the horizon [0, T ], customers with heterogeneous val-
uations arrive at the intermediary according to a Poisson process with rate λd . A
customer arriving at time t is endowed with a product valuation v ∈ [v, v̄], as a
realization from a willingness-to-pay distribution. We denote by

φ ≡ (tφ, vφ),
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the “type” of an arriving customer which specifies her arrival time tφ and valuation
vφ . Every customer purchases at most one unit of the product. Customers are
forward-looking and can strategically determine when to request to buy the product.
Specifically, for every customer φ, at each point of time after her arrival, she decides
to either continue to monitor price dynamics or stop doing so by either sending
a request to the intermediary for buying the product or permanently leaving the
market without buying anything. We denote by τφ ∈ [tφ, T ] the time that customer
φ stops monitoring price dynamics. We denote by aφ ∈ {0, 1} the indicator function
of whether customer φ requests to buy the product at time τφ . A customer who
requests to buy the product keeps on staying in the market until her demand is
matched with a unit of supply. As an exception, if a customer’s demand cannot
be matched by the end of the horizon, then she withdraws her demand request from
the intermediary and leaves the market. We denote by sφ ∈ [τφ, T ] the time when
customer φ leaves the market. We denote by mφ ∈ {0, 1} the indicator function
of whether customer φ’s demand request is successfully matched with a supplier
at time sφ . Customer φ pays pφ = πd

τφ
mφ to the intermediary, i.e., if customer φ’s

demand is successfully matched with a supplier, then she pays the demand-side price
posted at the time that she requests to buy the product, πd

τφ
; otherwise, she makes no

payment to the intermediary. This business rule is consistent with the practice of the
ride-hailing industry. In that setting, riders and drivers submit matching requests and
then wait to be matched. If a rider is not matched with any driver for some reason,
no payment will be made by the rider, and the rider will also not be compensated by
the intermediary for the wait.

We define the tuple

yφ ≡ (τφ, aφ, sφ,mφ, pφ).

Customer φ garners utility

Ud(φ, yφ) = vφmφ − pφ − b(sφ − tφ),

where b ∈ R+ is customer φ’s per unit of time disutility from staying in the system
over [tφ, sφ], hereafter called as the customers’ waiting cost parameter, which is
assumed to be common knowledge.

As mentioned, we allow for the heterogeneity of customer arrival times and
valuations. A customer’s arrival time and valuation are private information and are
independent from each other. We denote the cumulative distribution function (c.d.f.)
of customer product valuation by Fd(·) and the corresponding probability density
function (p.d.f.) by f d(·). We denote F̄ d(·) ≡ 1 − Fd(·). In addition to assuming
F̄ d(·) has an inverse, denoted by F̄ d,−1(·), we make a standard assumption on the
valuation distribution:

Assumption 1 (Willingness-to-pay) The customer virtual value function V d(v) ≡
v − F̄ d(v)/f d(v) is increasing in v ∈ [v, v̄].
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Supplier behavior Over the horizon [0, T ], suppliers arrive at the intermediary
according to a Poisson process with rate λs . A supplier arriving at time t has c as a
production and delivery cost for a good, or opportunity cost for providing a service,
where c ∈ [c, c̄]. We assume c ≤ v̄. We denote by

ψ ≡ (tψ , cψ),

the “type” of an arriving supplier. Every supplier sells at most one unit of the
product. All suppliers are forward-looking and can strategically determine when
to request to sell her product. For every supplier ψ , at each point of time after her
arrival, she decides to either continue to monitor price dynamics or stop doing so by
either sending a request to the intermediary for selling the product or permanently
leaving the market without selling anything. We denote by τψ ∈ [tψ , T ] the time that
supplier ψ stops monitoring price dynamics. We denote by aψ ∈ {0, 1} the indicator
function of whether supplier ψ requests to sell her product at time τψ . A supplier
who requests to sell her product keeps on staying in the market until she is matched
with a customer. Consistent with the demand side, as an exception, if a supplier
cannot be matched by the end of the horizon, then she withdraws her supply request
from the intermediary and leaves the market. We denote by sψ ∈ [τψ, T ] the time
when supplier ψ leaves the market. We denote by mψ ∈ {0, 1} the indicator function
of whether supplier ψ’s supply is successfully matched with a unit of demand at sψ .
The intermediary pays the supplier ψ with pψ = πs

τψ
mψ , i.e., if supplier ψ’s supply

is successfully matched with a demand, then the intermediary pays her the supply-
side price posted at the time that she requests to sell the product, πs

τψ
; otherwise, she

receives no payment from the intermediary.
We define the tuple

yψ ≡ (τψ, aψ, sψ,mψ, pψ).

Supplier ψ garners utility

Us(ψ, yψ) = pψ − cψmψ − h(sψ − tψ ),

where h ∈ R+ is supplier ψ’s per unit of time disutility from staying in the system
over [tψ , sψ ], hereafter called as the suppliers’ waiting cost parameter, which is also
assumed to be common knowledge. In addition, like the demand side, we assume
there is no heterogeneity in suppliers’ waiting cost parameter h.

As mentioned, we allow for the heterogeneity of suppliers’ arrival times and
supply costs. A supplier’s arrival time and supply cost are private information and
are independent of each other. We denote the c.d.f. of supplier product producing
and delivering cost by F s(·) and the corresponding p.d.f. by f s(·). In addition
to assuming F s(·) has an inverse, denoted by F s,−1(·), we make the following
assumption on the supply cost distribution:
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Assumption 2 (Willingness-to-sell) The supplier virtual cost function V s(c) ≡
c + F s(c)/f s(c) is increasing in c ∈ [c, c̄].
Game dynamics and the equilibrium Before the start of the horizon, the interme-
diary determines a pricing policy on both demand and supply sides

π = {(πd
t , π

s
t ) : t ∈ [0, T ]},

and a demand and supply matching policy

M = {(sφ,mφ), (sψ ,mψ) : (τφ ∈ [0, T ], aφ = 1), (τψ ∈ [0, T ], aψ = 1)}.

The pricing policy π and the matching policy M are in general dynamic policies
depending on the realized uncertainty up to the decision point. The intermediary
commits to implement this pricing policy π and matching policy M over the entire
course of the horizon. The intermediary’s pricing and matching policies are common
knowledge for all customers and suppliers. We denote by Ht ≡ {φ,ψ : tφ ≤ t,

tψ ≤ t} the set of customer and supplier types that arrive up to time t . Define by φt ≡
{(τφ, aφ) : τφ ≤ t, aφ = 1} the set of demand-side information that the intermediary
collects up to time t . Define by φt

M ≡ {(sφ,mφ) : sφ ≤ t} the set of matching
decisions the intermediary has made on the demand side up to time t . Similarly,
define by ψt ≡ {(τψ, aψ) : τψ ≤ t, aψ = 1} the set of supply-side information that
the intermediary collects up to time t and by ψt

M ≡ {(sψ,mψ) : sψ ≤ t} the set of
matching decisions the intermediary has made on the supply side up to time t . Define
by πd,t ≡ {πd

t ′ : t ′ ∈ [0, t]} the historic demand-side prices posted up to time t .
Define by πs,t ≡ {πs

t ′ : t ′ ∈ [0, t]} the historic supply-side prices posted up to time t .
Define a filtration {Ft : t ≥ 0} with Ft = σ(φt−, φt−

M ,ψt−, ψt−
M ,πd,t−, πs,t−). A

feasible pricing policy π requires πd
t and πs

t to be Ft -progressive. Denote by Π the
set of all feasible pricing policies. A feasible matching policy M requires {sφ ≤ t}
and mφ , and {sψ ≤ t} and mψ to be Ft -progressive, and to satisfy the demand
and supply balancing condition that

∑
φ∈Ht 1{sφ = t, mφ = 1} =

∑
ψ∈Ht 1{sψ =

t, mψ = 1} for all t ∈ [0, T ]. Denote by M the set of all feasible matching
policies.

During the horizon, on the demand side, customers are forward-looking and
employ (symmetric) stopping and purchasing rules contingent on their types that
constitute a symmetric Markov Perfect Equilibrium. The following information
structure is mainly motivated by the current practice of ride-hailing apps. Our
results would still hold under alternative information structures with an update of the
waiting time compensation. For a given customer φ, the information available to her
at time t ∈ [tφ, T ] consists of demand-side price dynamics that she tracks during her
stay in the system, {πd

t ′ : t ′ ∈ [tφ, t]}, and the number of unmatched supply during
her stay in the system, {Us

t ′− : t ′ ∈ [tφ, t]}, where Us
t ′− =

∑
ψ∈Ht ′− 1{τψ < t ′,

aψ = 1, sψ ≥ t ′}. Therefore, at each point of time t ∈ [tφ, T ], the event associated
with the stopping decision {τφ ≤ t} and the purchasing decision aφ are adapted to
σ(πd

t ′ , U
s
t ′− : t ′ ∈ [tφ, t]). Under the intermediary’s pricing policy π and matching
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policy M , for a given customer type φ, the optimal stopping rule τ
π,M
φ and the

optimal purchasing rule a
π,M
φ are the optimal solution to the following optimization

problem

sup
τφ∈[tφ ,T ], aφ∈{0,1}

E
[
Ud(φ, yφ)

∣
∣ πd

tφ
, Us

tφ−, φ
]
,

where the expectation assumes that other customers use symmetric stopping and
purchasing rules.

On the supply side, suppliers are forward-looking and employ (symmetric)
stopping and selling rules contingent on their types that constitute a symmetric
Markov Perfect Equilibrium. For a given supplier ψ , the information available to her
at time t ∈ [tψ , T ] consists of supply-side price dynamics that she tracks during her
stay in the system, {πs

t ′ : t ′ ∈ [tψ , t]}. Therefore, at each point of time t ∈ [tψ , T ],
the event associated with the stopping decision {τψ ≤ t} and the selling decision aψ
are adapted to σ(πs

t ′ : t ′ ∈ [tψ , t]). Under the intermediary’s pricing policy π and

matching policy M , for a given supplier type ψ , the optimal stopping rule τπ,Mψ and

the optimal selling rule a
π,M
ψ are the optimal solution to the following optimization

problem

sup
τψ∈[tψ ,T ], aψ∈{0,1}

E
[
Us(ψ, yψ)

∣
∣ πs

tψ
, ψ
]
,

where the expectation assumes that other suppliers use symmetric stopping and
selling rules.

Our goal in this paper is to construct a price process π ∈ Π and a matching
policy M ∈ M , and characterize the corresponding customer stopping rule τ

π,M
φ

and purchasing rule a
π,M
φ and supplier stopping rule τ

π,M
ψ and selling rule a

π,M
ψ to

maximize the intermediary’s expected profit

Jπ,M = E

[ ∑

φ∈HT

pφ −
∑

ψ∈HT

pψ

]

.

8.4.1 Upper Bound of the Intermediary’s Optimal Profit

In this subsection, we establish an upper bound of the intermediary’s optimal profit.
As we will see in the subsequent subsections, this upper bound will be use to
quantify the performance of our proposed heuristic policy.
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Consider the following problem (B) that assumes that the intermediary is
clairvoyant that she knows customer and supplier arrival processes HT over [0, T ]
at time 0:

max
{xφψ :φ,ψ∈HT }

∑

φ,ψ∈HT

(V d(vφ)− V s(cψ)− b(tψ − tφ)
+ − h(tφ − tψ )

+) xφψ

s.t.
∑

ψ∈HT

xφψ ≤ 1, ∀ φ ∈ HT ,

∑

φ∈HT

xφψ ≤ 1, ∀ ψ ∈ HT ,

xφψ ∈ {0, 1} , ∀ φ,ψ ∈ HT .

(B)
Note that problem (B) is simply a deterministic assignment problem. It has

the following interpretation. If customer φ and supplier ψ are matched, then the
intermediary collects revenue from customer φ with the amount that is equal to her
virtual value, V d(vφ), subsidizes supplier ψ with the amount that is equal to her
virtual cost, V s(cψ), and suffers from either customer φ’s waiting for supplier ψ or
vice versa, depending on whoever arrives earlier. We denote by J̄ (HT ) the optimal
value of problem (B) conditional on customer and supplier arrival processes HT .
We have the following result. All proofs in this section can be found in Chen and
Hu (2018).

Lemma 1 The intermediary’s profit under any pricing policy π ∈ Π and matching
policy M ∈M is upper bounded by the expected optimal value of problem (B),

Jπ,M ≤ E[J̄ (HT )].

8.4.2 A Simple Dynamic Policy: Asymptotic Optimality

In this subsection, we begin with characterizing the intermediary’s optimal policy in
an auxiliary setting wherein all uncertainties are washed away, and all customers and
suppliers behave myopically. We then use this policy as a basis to develop another
policy for the primary setting that takes into account customers’ and suppliers’
waiting disutility.

8.4.2.1 Optimal Policy in an Auxiliary Setting

We consider an auxiliary version of the primary stochastic model. In this auxiliary
problem, the system is fully deterministic, and customers and suppliers are infinites-
imal and myopic. To be precise, in the auxiliary problem, the intermediary solves
the following optimization problem:
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max
π̂∈Π

∫ T

0
λdπ̂d

t F̄
d(π̂d

t )dt −
∫ T

0
λsπ̂ s

t F
s(π̂ s

t )dt

s.t. λdF̄ d(π̂d
t ) = λsF s(π̂ s

t ), ∀ t ∈ [0, T ],
(D)

where π̂ = {(π̂d
t , π̂

s
t ) : t ∈ [0, T ]} is an arbitrary measurable function from [0, T ]

to R
2+.

In problem (D), the intermediary determines the demand-side price trajectory{
π̂d
t : t ∈ [0, T ]

}
and the supply-side price trajectory

{
π̂ s
t : t ∈ [0, T ]

}
at time 0.

The intermediary’s pricing policy π̂ is feasible if it clears the market at each point
of time t , λdF̄ d

(
π̂d
t

) = λsF s
(
π̂ s
t

)
. Under the pricing policy π̂ , over the entire

season [0, T ], the total revenue that the intermediary collects from customers is∫ T
0 λdπ̂d

t F̄
d
(
π̂d
t

)
dt , and the total cost that the intermediary incurs from compen-

sating suppliers is
∫ T

0 λsπ̂ s
t F

s
(
π̂ s
t

)
dt . The intermediary aims at maximizing her

net profit over the entire season.
Now, we characterize the intermediary’s optimal policy and profit in this

auxiliary setting.

Proposition 3 (Optimal solution to the deterministic problem) The optimal
solution to problem (D) is that the intermediary simply posts fixed prices p∗ and
w∗ for customers and suppliers, respectively, throughout the horizon, where prices
p∗ and w∗ always exist and are determined by the following conditions:

(i) (Demand-supply balancing condition)

λdT F̄ d(p∗) = λsT F s(w∗) ≡ μ∗; (8.4)

(ii) (Virtual value-cost balancing condition)

μ∗ = max{μ ∈ [0,min{λdT , λsT }] : V (μ) ≥ 0}, (8.5)

where V (μ) ≡ V d(F̄ d,−1(μ/(λdT )))− V s(F s,−1(μ/(λsT ))).

Moreover, p∗ ≥ w∗. The optimal value of program (D) is

J̄ ∗ = (p∗ − w∗)μ∗. (8.6)

We observe that the optimal price pair (p∗, w∗) is determined by Eqs. (8.4)
and (8.5). Equation (8.4) is the market-clearing condition. Under this condition,
the number of customers who purchase the product is equal to the number of
suppliers who sell the product. Equation (8.5) entails that either the intermediary has
matched the most number of customers and suppliers under the optimal price pair
(p∗, w∗) and it is infeasible to match an additional pair of customer and supplier,
μ∗ = min{λdT , λsT }, or although it is feasible to match more pairs of customers
and suppliers, μ > μ∗, by adjusting the price pair (p∗, w∗), the marginal revenue
that the intermediary collects from enabling one additional customer to get the
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product is less than the marginal cost that the intermediary incurs from enabling one
additional supplier to sell the product, i.e., the intermediary’s marginal net profit
from matching one additional customer with one additional supplier is negative,
V (μ) < 0.

The intermediary’s optimal profit in this auxiliary setting, J̄ ∗, has the following
property.

Lemma 2 We have

E[J̄ (HT )] ≤ J̄ ∗.

8.4.2.2 Waiting Adjusted Fixed Pricing Policy

We use the optimal policy in the auxiliary setting characterized above to propose a
simple dynamic pricing and matching policy and show that this policy is nearly
optimal. We begin by presenting the matching part of our policy, the greedy
matching policy, denoted by Mg. Under this policy, the intermediary matches each
demand (resp. supply) request as soon as a unit of supply (resp. demand) is available
on a first-come-first-served basis. Therefore, the intermediary minimizes demand
and supply mismatch at each point of time. Define

It ≡
∑

ψ∈Ht

1{τψ ≤ t, aψ = 1} −
∑

φ∈Ht

1{τφ ≤ t, aφ = 1}.

Therefore, at each point of time t , the number of unmatched supply is (It )+ and the
number of unmatched demand is (It )

−. This matching policy is natural, practical
and fair.

Along with the simple greedy matching part of our policy, we next present the
pricing part, the waiting adjusted fixed pricing (FP) policy, denoted by πWFP =
{πWFP, d

t , πWFP, s
t : t ∈ [0, T ]}. This policy is constructed in the following way.

Recall from the previous subsection that the intermediary’s optimal pricing policy
in the auxiliary deterministic myopic customer and supplier model is to post fixed
prices p∗ and w∗ on the demand and supply sides, respectively. However, in our
original stochastic system, although this policy is easy to implement, it does not
lead to simple customers’ and suppliers’ behavior. The presence of customers’
and suppliers’ arrival uncertainty in the original model can cause them to wait
to be matched with waiting disutilities, even though customers and suppliers do
not strategize their entry to the matching pool given fixed prices. Therefore, if the
intermediary posts prices p∗ and w∗ on the demand and supply sides, respectively,
then a customer (resp. supplier) cannot make the purchasing (resp. selling) decision
by merely comparing her valuation (resp. cost) with p∗ (resp. w∗). She has to
take into account the joint effects of the price p∗ (resp. w∗) and the waiting
disutility. To alleviate customers’ and suppliers’ computational burdens and ease
their decisions, we require the intermediary to adjust the fixed prices p∗ and w∗ by
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taking into account the waiting disutility that customers and suppliers incur, such
that a customer (resp. supplier) can make an easy decision by merely comparing her
valuation (resp. cost) with p∗ (resp. w∗).

Formally, under policy πWFP, the prices posted at each point of time t ∈ [0, T ]
on demand and supply sides, respectively, are given by

π
WFP, d
t = p∗ − b

EIt−[sφ − tφ |tφ = t, vφ ≥ p∗, (It−)+]
Pr(mφ = 1|tφ = t, vφ ≥ p∗, (It−)+)

,

π
WFP, s
t = w∗ + h

E[sψ − tψ |tψ = t, cψ ≤ w∗]
Pr(mψ = 1|tψ = t, cψ ≤ w∗)

,

where p∗ and w∗ are determined by Eqs. (8.4) and (8.5), respectively, and the
expectations and the supply-demand mismatch quantity It are computed under
the assumption that all customers (resp. suppliers) behave myopically, i.e., every
customer φ (resp. supplier ψ) makes her purchasing (resp. selling) decision at her
arrival time, τφ = tφ (resp. τψ = tψ ), and decides to purchase (resp. sell) if and only
if her valuation (resp. cost) is no less (resp. more) than p∗ (resp. w∗).

The waiting compensation terms have the following properties. First, the prob-
ability of being matched for a customer (resp. supplier) is in the denominator of
the waiting compensation, because the monetary funds exchange hands only when
a match is realized. Second, due to customers’ and suppliers’ different information
structures, on the demand side, each customer φ’s expected time of staying in the
system and the probability of being matched are conditional on the number of
unmatched supply, (Itφ−)+. Since (Itφ−)+ is a random variable, the demand-side
compensation term is random. As a result, the demand-side pricing policy πWFP, d

is a contingent policy. In contrast, on the supply side, because a supplier does not
have the information of the number of unmatched supply or demand at any point
of time, the supplier’s expected time of staying in the system and the probability of
being matched are not conditional on the number of unmatched supply or demand.
Therefore, the supply-side compensation for each point of time is deterministic. As
a result, the supply-side pricing policy πWFP, s is a deterministic policy.

Now, we establish an equilibrium stopping and requesting rules for customers
and suppliers when the intermediary follows the waiting adjusted FP and the greedy
matching policy.

Theorem 8 (Strategic myopia) Assume that the intermediary adopts the waiting
adjusted FP policy πWFP and the greedy matching policy Mg. Then in an equilib-
rium, all forward-looking buyers and sellers behave myopically, i.e., they will submit
a request for matching upon arrival without delay if the buyer’s valuation is no less
than p∗ or the seller’s cost is no more than w∗.

In our model, the stochastic nature of customers’ and suppliers’ arrival processes
makes them to wait to be matched and hence to incur waiting disutilities. Therefore,
the waiting adjustment terms play a vital role in compensating their losses and then
induce them to behave myopically.
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So far, we have shown with waiting compensation, the two-sided pricing policy
πWFP is dynamic. The following proposition characterizes the variability of the
pricing policy in an asymptotic sense.

Proposition 4 (Waiting compensation) For any t ∈ [0, T ) and any k ∈ [0, 1), we
have

EIt−
[
p∗ − π

WFP,d
t

] ≤ b
min {kT , T − t} + T min {K, 1}

1−min {K, 1} ,

π
WFP,s
t − w∗ ≤ h

min {kT , T − t} + T min {K, 1}
1−min {K, 1} ,

where K ≡ 20/(μ∗min{k2, (1− t/T )2}). In addition, we have the following
results:

(i) If customers are fully patient, i.e., b = 0, then π
WFP, d
t = p∗. If suppliers are

fully patient, i.e., h = 0, then π
WFP, s
t = w∗.

(ii) Consider a sequence of systems. In the n-th system, λd,(n) = nαd λd with αd > 0
and λs,(n) = nαsλs with αs > 0. Denote α ≡ min{αd, αs}. For any t ∈ [0, T ),
we have

lim sup
n→∞

EIt−
[
p∗,(n) − π

WFP, d, (n)
t

] ≤ O

(
1

nα/3

)

,

lim sup
n→∞

π
WFP, s, (n)
t − w∗,(n) ≤ O

(
1

nα/3

)

.

We make the following observations from this proposition. First, if customers
(resp. suppliers) are fully patient, i.e., b = 0 (resp. h = 0), they do not incur
any waiting disutility, although they may spend time in waiting to be matched.
Therefore, πWFP does not need to be adjusted from the base fixed prices (p∗, w∗).
Second, in the high-volume regime in which customers’ and suppliers’ arrival rates
grow large (scaled by n), regardless of whether they grow at the same or different
speeds (measured by αd and αs), the waiting adjusted terms on both demand and
supply sides in the policy πWFP diminish to zero, i.e., the policy πWFP tends to be
the fixed pricing policy (p∗, w∗). In addition, as n grows large, the variability of
πWFP decays to zero at a speed that is no slower than 1/nα/3.

Next, we analyze the performance of the waiting adjusted FP and the greedy
matching policy Mg.

Theorem 9 (Performance guarantee) Under the waiting adjusted FP policy
πWFP and the greedy matching policy Mg,

JπWFP,Mg

E[J̄ (HT )] ≥
JπWFP,Mg

J̄ ∗
≥ 1−

(

1+ 2

3

(b + h) T

p∗ − w∗

)
1√
μ∗

.
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In addition, consider a sequence of systems. In the n-th system, λd,(n) = nαd λd with
αd > 0 and λs,(n) = nαs λs with αs > 0. Denote α ≡ min {αd, αs}. Therefore,

JπWFP,Mg,(n)

E[J̄ (n)(HT )] ≥
JπWFP,Mg, (n)

J̄ ∗,(n)
≥ 1−O

(
1√
nα

)

.

Theorem 9 has the following implications. First, as both customers’ and suppli-
ers’ arrival rates grow large (scaled by n), regardless of whether they grow up at the
same or different speeds (measured by αd and αs), the simple, waiting adjusted FP
policy πWFP and greedy matching policy Mg, are asymptotically optimal. Second,
as n grows large, the relative profit loss of implementing the simple heuristic policy,
compared to the optimal mechanism, converges to zero at a speed that is no slower
than 1/

√
nα , where α = min {αd, αs}. Put differently, the relative additional benefit

of implementing any more sophisticated policy, than our simple heuristic, is no more
than a magnitude of 1/

√
nα .

8.5 Conclusion

Operations management is about matching supply with demand at the operational
level. We study pricing and matching problems for a sharing economy platform
to coordinate demand and supply. First, we show that the commonly used fixed
commission contract by a platform achieves a guaranteed portion of the optimal
expected profit under full flexibility of optimally choosing both wage and price
for every possible market condition. Second, we formulate a stochastic dynamic
programming model to study the problem of matching heterogeneous types of
demand and supply. For that model, we propose the modified Monge condition
to establish the priority structure of the optimal matching policy, as well as a
deterministic re-solving heuristic for computing the optimal matching decisions.
Lastly, we study the joint pricing and matching decision by a platform for a single
service and take into account suppliers’ and customers’ forward-looking behavior.
We propose a simple pricing and matching policy under which suppliers and
customers behave myopically. We use the mechanism design approach to show that
our policy is asymptotically optimal when the market sizes of both sides become
sufficiently large.
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Chapter 9
Large-Scale Service Marketplaces: The
Role of the Moderating Firm

Gad Allon, Achal Bassamboo, and Eren B. Çil

Abstract Recently, large-scale, web-based service marketplaces, where many
small service providers compete among themselves in catering to customers with
diverse needs, have emerged. Customers who frequent these marketplaces seek
quick resolutions and thus are usually willing to trade prices with waiting times. The
main goal of the paper is to discuss the role of the moderating firm in facilitating
information gathering, operational efficiency, and communication among agents
in service marketplaces. Surprisingly, we show that operational efficiency may be
detrimental to the overall efficiency of the marketplace. Further, we establish that
to reap the “expected” gains of operational efficiency, the moderating firm may
need to complement the operational efficiency by enabling communication among
its agents. The study emphasizes the scale of such marketplaces and the impact it
has on the outcomes (This chapter is based on our published paper (see Allon et al.,
Manag Sci 58:1854–1872, 2012).).

9.1 Introduction

Recently, large-scale, web-based service marketplaces, where many small service
providers (agents) compete among themselves in catering to customers with diverse
needs, have emerged. Customers who frequent these marketplaces seek quick
resolutions for their temporary problems and thus are usually willing to trade prices
with waiting times. These marketplaces are typically operated by an independent
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firm, which we shall refer to as the moderating firm. The moderating firm establishes
the infrastructure for the interaction between customers and agents. In particular, it
provides the customers and the agents with the information required to make their
decisions. These moderating firms vary with respect to their involvement in the
marketplace. They can introduce operational tools that specify how the customers
and the agents are matched together. For instance, while some of the moderating
firms allow customers to choose a specific service provider directly, others allow
customers to post their needs and let service providers apply, postponing the service
provider selection decision of the customers until they obtain enough information
about agents’ availability. Moreover, moderating firms can introduce strategic tools
that allow communication and collaboration among the agents themselves. These
different involvements result in different economic and operational systems, and
thus vary in their level of efficiency and the outcomes for both customers and service
providers.

A typical example of such a marketplace is UpWork.com, where over 10,000,000
registered freelancers compete to provide online solutions. UpWork.com allows for
two types of interaction between customers and service providers. Customers can
go directly to a programmer and ask him to provide the service. The customers are
then queued for this specific agent. In this type of interaction, most of the time is
spent waiting for the agent to complete his previous jobs (36% of the waiting time
is spent from the moment the customer chooses the agent until the agent begins
working.1). On the other hand, UpWork.com also allows customers to post jobs and
wait while agents apply for the job. In this type of interaction, a negligible amount
of time passes until more than 10 agents apply, leaving the decision at the hands of
the customer. Another large-scale, online service marketplace is ServiceLive.com,
which is a start-up owned by Sears Holding Company. ServiceLive.com (with the
slogan of “your price, your time”) caters to time and price-conscious customers
and service providers in the home repair and improvement arena. ServiceLive.com
allows its customers to choose among multiple agents once they describe their
projects. This type of interaction between customers and service providers is
equivalent to the second one described for UpWork.com. Both UpWork.com and
ServiceLive.com receive 10% of the revenue obtained by the providers at service
completion. In both marketplaces, the moderating firms allow customers to browse
among tens of thousands of agents and communicate with different providers.

Both UpWork.com and ServiceLive.com are part of a growing industry of
online service marketplaces. According to a survey conducted by Upwork.com (see
Upwork Press Release 2016), freelancers contributed over $1 trillion in freelance
earnings to the economy. The same surveys reports that more than three-quarters
of freelancers view their jobs as more appealing than a traditional job. More
importantly, nearly half of full-time freelancers surveyed by upwork.com mentioned
that they raised their rates in the past year, and more than half plan indicate their
plans to raise their rates next year.

1This is based on data obtained from UpWork.com for about 10,000 randomly chosen transactions.
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Motivated by these online service marketplaces, we aim to study the moderating
firm’s role in the service marketplace where the objective of the individual players,
customers as well as service providers, is to maximize their own utility. We distin-
guish between three degrees of moderating firms’ involvement in such markets:

1. No-intervention: the moderating firm restricts its involvement to providing the
facility for agents to advertise their services and set their prices, and for
customers to compare the different agents.

2. Operational efficiency: the moderating firm provides additional mechanisms that
facilitate efficient matching between customers and service providers. These
mechanisms aim at reducing the inefficiency associated with having the right
agent with the right capability idle while a customer with similar needs is waiting
in line for another agent. As we will discuss, a system in which customers post
their needs and wait for agents’ applications is an example of such a mechanism.

3. Enabling Communication: the moderating firm may allow providers to commu-
nicate among themselves and exchange information on prices and job require-
ments.

To study the different configurations possible in such marketplaces we consider
a sequence of related games where the set of possible strategies and the solution
concepts vary to reflect the different modes of interaction available in the market-
place, either between the customer and the agents or between the agents themselves.
Specifically, we study the following three games:

No-intervention Model In this game, each agent chooses his price and operates
as a single-server queue. Customers then choose agents based on prices and
waiting times. We characterize the Subgame Perfect Nash equilibrium in this
game.

Operational Efficiency Model In this game, the mechanism introduced by the
moderating firm efficiently matches customers interested in purchasing the
service at a particular price with the available agents charging that or a lower
price. This mechanism achieves the desired level of efficiency by virtually
grouping all agents charging the same price. In contrast to the no-intervention
model, customers do not need to commit to a specific agent upon their arrival.

Communication Enabled Model In this game, agents can exchange informa-
tion in a non-committal, costless manner. As in the model with operational
efficiency, all the agents charging the same price are virtually grouped, and
customers choose the price/sub-pool. We would be interested in allowing limited
pre-play communication among the agents within a noncooperative structure;
i.e., the agents are free to discuss their pricing strategies but not allowed to
make binding commitments. Ray (1996) claims that the possibility of pre-
play communication have motivated the notion of strong Nash equilibrium, see
Aumann (1959), which requires stability against deviations by every conceivable
coalition. Following this idea, we use a refinement of the Subgame Perfect Nash
Equilibrium concept that requires the equilibrium to be (limited size) coalition
proof.
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We next state our key findings along with the contributions of the paper:

1. We appear to be the first to distinguish between tools aimed at increasing the
operational efficiency and tools aimed at changing the nature of the strategic
interaction by enabling communication. We show these tools have a non-trivial
impact on the outcomes for all involved parties.

2. In analyzing a market with operational efficiency, we first show that only the
prices in a small neighborhood of the operating cost of agents are sustained
as equilibrium outcomes when supply exceeds demand. Further, when demand
exceeds supply, we are able to show that operational efficiency leads to multiple
equilibria in markets with a sufficiently large number of agents. In many of these
equilibria, the emerging prices are lower than those arising in the market with
no-intervention.

3. We show that to overcome the possible deterioration of the profits discussed
above, the moderating firm can allow for communication among the agents, even
if done through a non-binding mechanism. The main contribution of this result
is in showing that the operational efficiency needs to be complemented with the
ability to communicate in order to obtain desirable outcomes for the involved
parties. These desirable outcomes are only achievable in a marketplace where
demand exceeds supply. Therefore, the contribution is also in highlighting the
fact that it is crucial to understand the specific market conditions in terms of the
ratio between demand and supply.

9.2 Literature Review

The previous work related with this chapter can be divided into two categories. The
first category consists of research that studies the applications of queueing theory
in service systems. The second one consists of research focused on developing
approximations to analyze complex service systems.

Service systems with customers, who are both price and time sensitive, have
attracted the attention of researchers for many years. The analysis of such systems
dates back to Naor’s seminal work (see Naor 1969), which analyzes customer behav-
ior in a single-server queueing system. Motivated by his work, many researchers
study the service systems facing price- and delay-sensitive customers in various
settings. We refer the reader to Hassin and Haviv (2003) for an extensive summary of
the early attempts in this line of research. More recently, Cachon and Harker (2002)
and Allon and Federgruen (2007) studies the competition between multiple firms
offering substitute but differentiated services by modeling the customer behavior
implicitly via an exogenously given demand function. An alternative approach is
followed in Chen and Wan (2003), where authors examine the customers’ choice
problem explicitly by embedding it into the firms’ pricing problem. Other notable
examples focusing on the customers’ demand decision in competition models are
Ha et al. (2003), and Cachon and Zhang (2007).
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The pricing and the capacity planning problem of the service systems can easily
become analytically intractable when trying to study more complex models, such
as a multi-server queueing systems. Recognizing this difficulty, many researchers
seek robust and accurate approximations to analyze multi-server queues. Halfin and
Whitt (1981) is the first paper that proposes and analyzes a multi-server framework.
This framework is aimed at developing approximations, which are asymptotically
correct, for multi-server systems. It has been applied by many researchers to
study the pricing and service design problem of a monopoly in more realistic and
detailed settings. Armony and Maglaras (2004) and Maglaras and Zeevi (2005) are
examples of recent work using the asymptotic analysis to tackle complexity of these
problems. Furthermore, Garnett et al. (2002), Ward and Glynn (2003), and Zeltyn
and Mandelbaum (2005) extend the asymptotic analysis of Markovian queueing
system by considering customer abandonments.

The idea of using approximation methods can also be applied to characterize the
equilibrium behavior of the firms in a competitive environment. To our knowledge,
Allon and Gurvich (2010) is the first paper studying competition among complex
queueing systems by using asymptotic analysis to approximate the queueing
dynamics. Another recent paper studying the equilibrium characterization of a
competitive marketplace using asymptotic analysis is Chen et al. (2008). They
consider a marketplace with multiple suppliers competing with each other over
their prices and target lead times. There are two main differences between these
two papers and our work. First, both of them study a service environment with
a fixed number of decision makers (firms) while the number of decision makers
in our marketplace (agents) is growing. Second, they only consider a competitive
environment where the firms behave individually. In contrast, we study the non-
cooperative case as well as the case where the agents have a limited level of
collaboration.

In the field of operations management (OM), the majority of the papers employ-
ing game-theoretic foundations study non-cooperative settings. For an excellent
survey, we refer to Cachon and Netessine (2004). There is also a growing literature
that studies the OM problems in the context of cooperative game theory. Nagarajan
and Sošić (2008) provide an extensive summary of the applications of cooperative
game theory in supply chain management. Notable examples are the formation
of coalitions among retailers to share their inventories, suppliers, and marketing
powers (see Granot and Sošić 2005; Sošić 2006; Nagarajan and Sošić 2007).
This body of research is related with our work, where we look for the limited
collaboration among agents.

Our work may also be viewed as related to the literature on labor markets that
studies the wage dynamics (see Burdett and Mortensen 1998; Manning 2003, 2004;
Michaelides 2010). In both our model and labor economics literature, people or
firms with service needs seek an employee or an agent to perform the job they
requested. In our model, service seekers trade-off time they need to wait until
their job starts and cost, the phenomenon generally disregarded in labor economics
literature. Further, our focus is on a market for temporary help, which means that
the engagement between sides ends upon the service completion. This stands in
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contrast to the labor economics literature in which the engagement is assumed to be
permanent. It is also important to note the difference between interventions studied
in our model and the ones in the labor economics literature. Unlike the interventions
we studied, which focus on improving operational efficiency, the interventions
discussed in labor economics are usually aimed at regulating wages directly. The
model we consider in this chapter also differs from the literature on market
microstructure. This body of literature studies market makers who can set prices and
hold inventories of assets in order to stabilize markets (see Garman 1976; Amihud
and Mendelson 1980; Ho and Stoll 1983) and a comprehensive survey by Biais
et al. (2005). However, the moderating firm considered in this chapter has no direct
price-setting power and cannot respond to customers’ service requests. Furthermore,
papers studying market microstructure disregard the operational details such as
waiting and idleness.

9.3 Model Formulation

Consider a service marketplace where agents and customers make their decisions
in order to maximize their individual utilities. Customers’ need for the service is
generated according to a Poisson process with rate Λ. This forms the “potential
demand” for the marketplace. A customer decides whether to join the marketplace
or not: If she decides not to join the system, her utility is zero. If she joins
the system, she decides who would process her job. The customers who join the
marketplace form the “effective demand” for the marketplace. The exact nature of
this decision depends on the specific structure of the marketplace, decided upfront
by the moderating firm. We shall elaborate on the choices of customers in Sects. 9.4,
9.5, and 9.6. We assume that the service time required to satisfy the requests of a
given customer is exponentially distributed with rate μ. Without loss of generality,
we let μ = 1. When the service of a customer is successfully completed, she pays
the price of the service, earns a reward of R, and incurs a waiting cost of c per
unit time until her service commences.2 As the customers visiting the marketplace
seek temporary help, a customer joining the system may become impatient while
waiting for her service to start and abandon. In this case, the abandoning customer
does not pay any price or earn any reward, but she does incur a waiting cost for
the time she spends in the system. We assume that customers’ abandonment times
are independent of all other stochastic components and are exponentially distributed
with mean ma . Customers decide whether to request service or not and by whom to
be served according to their expected utility. The expected utility of a customer is
based on the reward, the price and the anticipated waiting time.

2Our model can also be used to study a setting where customers incurs waiting cost also during
their service. One can incorporate that by modifying the customer reward from R to R − c/μ.
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The above summarizes the demand arriving to the marketplace. Next, we discuss
the service provision in a marketplace with k ex-ante identical agents.3 The only
decision of an agent is to choose a price for his service; each agent makes this
decision independently. Let (p1, . . . , pk) denote the resulting price vector with pn

being the price chosen by the nth agent. We normalized the operating cost of the
agents to zero for notational convenience. The expected revenue of an agent depends
on the price he chooses and his demand volume.

We refer to the ratio Λ/(μk) as the demand-supply ratio of the system and denote
it by ρ. The demand-supply ratio is a first order measure for the mismatch between
aggregate demand and the total processing capacity. Marketplaces vary with respect
to their demand-supply ratio, ρ, and, as we shall discuss, ρ has a significant impact
on the market outcome. We broadly categorize marketplaces into two: Buyer’s
market where ρ ≤ 1, and seller’s market where ρ > 1.

9.4 No-Intervention Model

The essential role of the moderating firm in a large scale marketplace is to set
up the infrastructure for the interaction between players. This is crucial because
all players have to be equipped with the necessary information, such as prices to
make their decisions, yet individual players cannot gather this information on their
own. When the moderating firm provides only the required information, it has no
impact on the strategic interaction taking place in the marketplace. We thus refer to
such a setting as the no-intervention model. We analyze the dynamics of a large-
scale marketplace in the no-intervention model not only to derive insights about the
behavior of the self-interested and competing players in such a system, but also to
build a benchmark for the cases in which the moderating firm introduces additional
features which change the nature of the marketplace. Therefore, in this section, we
study the behavior of a marketplace where the moderating firm confines itself to
aggregating and providing information.

We model the strategic interaction between the agents and the customers as a
sequential move game. Given the setup of Sect. 9.3, along with the above mentioned
role of the moderating firm, the agents first announce their prices. Each arriving
customer observes these prices and decides whether to request service or not.
Further, if a customer decides to join the system, she also chooses the agent who
processes her service request. The service of a customer starts immediately if
the agent she chooses is available. Otherwise, she joins the queue in front of the
agent and waits for her service to commence. We denote the fraction of customers
choosing agent-n by Dn. Then, ΛDn is the demand volume for agent-n.

3We will discuss a model with heterogenous agents in Sect. 9.7.
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More specifically, each agent’s operations can be modeled as an M/M/1 +M

queueing system4 where the arrival rate of customers depends on the strategies of
customers and agents.5 If the rate of customers who request service from an agent
charging price p is λ, the utility of a customer requesting service from this agent
is U(λ, p) = (R − p)[1 − β(λ)] −W(λ)c, where β(λ), which will be referred to
as the abandonment function, is the probability of abandonment, and W(λ) is the
expected waiting time, in an M/M/1 +M system with arrival rate λ, service rate
1, and abandonment rate 1/ma . Using queueing theory, the utility of customers can
be rewritten as U(λ, p) = (R − p+ cma)[1− β(λ)] − cma . Similarly, the revenue
of that agent is V (λ, p) = pλ[1− β(λ)]. It is important to note that V (λ, p) is the
revenue rate of an agent, but throughout the paper we will refer to it as the revenue
for ease of exposition.

As we consider a sequential move game, we are interested in the Subgame Perfect
Nash Equilibrium (SPNE) of the game. We begin by characterizing the equilibrium
in the second stage game where customers make their service requests given the
agents’ pricing decisions. Then, based on the second stage equilibrium, we derive
the equilibrium of the first stage in which only agents make pricing decisions.

Fixing the agents’ strategies (pn)
k
n=1, an arriving customer observes the agents’

prices and chooses the agent who maximizes her utility, anticipating the behavior
of all other customers. Therefore, in equilibrium a customer chooses an agent only
if the utility she obtains from him (weakly) dominates her utility from any other
agent. This is also known as “Nash Flow Equilibrium” (see Roughgarden 2005) in
the congestion games literature. We formally define the Customer Equilibrium as
follows:

Definition 1 (Customers Equilibrium) Given (pn)
k
n=1, we say that (Dn)

k
n=1 is a

Customers Equilibrium if the following conditions are satisfied:

1. For any n with Dn > 0, we have that U(ΛDn, pn) ≥ U(ΛDm,pm) ≥ 0, for all
m ≤ k.

2. If U(ΛDn, pn) > 0 for some n ≤ k, then
∑k

n=1 Dn = 1.

The first condition of the Customer Equilibrium requires that customers request
service from an agent in equilibrium only if that agent is one of their best
alternatives. Moreover, the second condition ensures that all customers join the
system if it is possible to earn strictly positive utility by requesting service from
an agent. Customer Equilibrium exists by the continuity of the utility functions and
Rath (1992). In the following proposition, we show that for any given price vector,
the second stage game has a unique equilibrium.

4+M notation denotes the exponential abandonment times.
5Note that an agent can process more than one jobs at the same time in certain settings. In such
settings, a processor sharing model will be a more appropriate queueing model, yet these models
are known to be significantly more complex than our queueing model. Our model can be viewed
as an approximation of such settings.
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Proposition 1 Given a price vector (pn)
k
n=1, there is a unique Customer Equilib-

rium.

Since the Customer Equilibrium is unique for any given price vector, we
denote the fraction of customers requesting service from agent-n in equilibrium by
DCE

n (p1, . . . , pk) when (p1, . . . , pk) are the prices announced by agents. DCE
n (p1,

. . . , pk) is well defined in the light of Proposition 1.
We can now move to the first stage game which is played only among the

agents. An equilibrium in this stage requires that none of the agents can improve
his revenues by deviating unilaterally while taking the customers’ response into
account. We formalize this in the following definition:

Definition 2 (Subgame Perfect Nash Equilibrium) Let (Dn, pn)
k
n=1 summarize

the strategy of all players in the market for all n = 1, . . . , k. Then, (Dn, pn)
k
n=1 is a

SPNE if the following conditions are satisfied:

1. Dn = DCE
n (p1, . . . , pk) for all n ≤ k.

2. For any � ≤ k, we have

V (ΛD�, p�) = max
p′

V (ΛDCE
� (p1, . . . , p�−1, p

′, p�+1, . . . , pk), p
′).

The first condition requires that (Dn)
k
n=1 arises in equilibrium in the second stage

game. The second condition states that none of the agents has incentive to change
his price. Note that agents take into account the impact price changes have on the
Customer Equilibrium, and thus on demand.

9.4.1 Characterization of SPNE

In this section, we our restrict attention to symmetric SPNE where all agents charge
the same price p in the first stage. This is a natural choice since all agents are
identical. We will discuss non-symmetric equilibria in Sect. 9.7.

A price p emerges in equilibrium in the first stage if a single agent chooses to
charge p to maximize his revenues given that all other agents announce p. When all
other k − 1 agents announce p, a generic agent, say agent-�, solves the following
maximization problem to determine his best-response:

max
p�≥0

p�ΛDCE
� (p, . . . , p, p�, p, . . . , p)

[
1− β(ΛDCE

� (p, . . . , p, p�, p, . . . , p))
]

(9.1)
In this problem, the objective function is the revenue of agent-� when he charges

p� and the remaining agents charge p. Thus, p is a symmetric equilibrium in the first
stage game if it is a solution to the above problem. We denote the symmetric SPNE
by (D∗, p∗) where all agents charge p∗ and each agent has a demand of ΛD∗, i.e.
DCE

n (p, . . . , p) = D∗ for any n ≤ k. We characterize the symmetric SPNE in the
following theorem:
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Theorem 1 If β(λ) is concave, then there exists a symmetric SPNE. Furthermore,
the symmetric SPNE is characterized as follows:

1. If Λ ≥ kλ0, then the symmetric SPNE is

(D∗, p∗) =
(

min{λmon, ρ}
Λ

,R + cma − cma

1− β(min{λmon, ρ})
)

.

2. If Λ ≤ kλ0, then the symmetric SPNE is

(D∗, p∗) =
(

1

k
, (R + cma)− (R + cma)(k − 1)

k/(1− ν(ρ))− 1

)

.

Here λmon is the unique solution to 1− β(λ)− λβ ′(λ) = cma/(R + cma), λ0 is the
unique solution to

(R + cma)(k − 1)− cma

1− β(λ)

(
k

1− ν(λ)
− 1

)

= 0,

and ν(λ) = λβ ′(λ)/(1− β(λ)).

Similar to Theorems 1–3 in Chen and Wan (2003), the above result suggests
that agents behave as local monopolists and charge their monopoly prices when the
arrival rate is sufficiently high. Moreover, in this case, agents may choose not to
cover the market completely. However, once the arrival rate becomes less than λ0,
the equilibrium price will be pushed down as the agents are engaged in a cut-throat
competition, where intensity of competition can be quantified by the strictly positive
utility left for customers in the equilibrium. It is also worth noting that utility of
customers in the equilibrium increases as the arrival rate decreases.

Remark 1 Concavity of the abandonment function, β(λ), is a sufficient condition
for the existence of symmetric equilibrium. In Lemma 1 in Allon et al. (2012), we
show that β(λ) is concave when ma ≤ 1, i.e. abandonment rate is higher than service
rate. Furthermore, conducting a numerical study, we observe that β(λ) is concave
even for 1 ≤ ma ≤ 2. However, for higher values of ma , the function β(λ) is not
concave in λ. This is not surprising given the complicated structure of queueing
systems with impatient customers. For instance, Armony et al. (2009) shows the
difficulty of proving the convexity of the expected head-count in the steady state
of a system with customer abandonments. Even though β(λ) is not concave, there
can be a symmetric SPNE, and the above theorem characterizes this symmetric
equilibrium. Numerically, we see that the equilibrium candidate characterized above
still emerges as the symmetric SPNE when β(λ) is not concave. In this numerical
study, we consider a marketplace where R = 1, c ∈ {0.05, 0.06, . . . , 0.2}, and
k = 50. Then, we study five scenarios that differ in the average abandonment time
ma and lead to non-concave β(λ). We assume ma ∈ {5, 6, . . . , 10}. For each of
these scenarios, we show that the price proposed as equilibrium price in Theorem 1
is equilibrium by varying the arrival rate Λ on a grid from 10 to 50 with a step
size of 1.
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9.5 Operational Efficiency Model

In the previous section, we characterized the market outcome in the absence of
any intervention on the part of the moderating firm. We now turn to discuss the
impact of different mechanisms used by the moderating firm. As we discussed
in the introduction, the moderating firm may provide a mechanism that improves
the operational efficiency of the whole system by efficiently matching customers
and agents. This mechanism aims at reducing inefficiency due to the possibility
of having a customer waiting in line for a busy agent while an agent who can
serve her is idle. This efficiency improvement is equivalent to virtually grouping
the agents charging the same price. For instance, UpWork.com achieves this goal
by allowing customers to post their needs and allowing service providers to apply
to these postings. When a customer posts a job at UpWork.com, agents that are
willing to serve this customer apply to the posting. Among the applicants charging
less than what the customer wants to pay, the customer will favor agents based
on their immediate availability. The main driver of the operational efficiency in
this setting is the fact that customers no longer need to specify an agent upon
their arrival because the job posting mechanism allows customers to postpone their
service request decisions until they have enough information about the availability
of the providers.

In this section, we modify the service marketplace considered in Sect. 9.4 by
assuming that the mechanism introduced by the moderating firm ensures that
customers do not stay in line when there is an idle agent willing to serve them
by charging the price they want to pay or less. This can be modeled as a queuing
network where the agents announcing the same price are virtually grouped together.
Once each agent announces a price per customer to be served, we can construct
a resulting price vector (pn)

N
n=1 where N ≤ k is the number of different prices

announced by the agents. We refer to the agents announcing the price pn as sub-
pool-n and denote the number of agents in the sub-pool-n by yn. Hence, (pn, yn)

N
n=1

summarizes the strategy of all agents.
Under this mechanism, we model the customer decision making and experience

as follows: If there are different prices announced by the agents, i.e., N > 1, the
customer chooses a sub-pool from which she requests the service. We refer to the
price charged by this sub-pool as the “preferred price”. Each customer who decides
to join the system enters the service immediately if there is an available agent either
in the sub-pool she chooses or in any sub-pool announcing a price less than her
preferred price. Moreover, the customer is served by the sub-pool offering the lowest
price among all available sub-pools. Otherwise, she waits in a queue until an agent,
who charges a price less than or equal to her preferred price, becomes available.
We denote the fraction of customers requesting service from sub-pool-n by Dn. In
this model of customer experience, there are two crucial features: (1) The service
of an arriving customer commences immediately when there are available agents
charging less than or equal to her preferred price, (2) If they have to wait, customers
no longer wait for a specific agent rather for an available agent.
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As we model the marketplace as a queuing network, the operations of each
sub-pool depend on the operations of the other sub-pools. For instance, each sub-
pool may handle customers from the other sub-pools (giving priority to its “own”
customers) while some of the other sub-pools are serving its customers. Therefore,
given the strategies of agents, (pn, yn)

N
n=1, and the service decisions of customers,

(Dn)
N
n=1, the expected utility of a customer choosing the sub-pool-� depends on all

of these decisions, and can be written as:

U�(D1, . . . , DN ;p1, . . . , pN ; y1, . . . , yN) = PServ
��

[
(R−p�+cma)(1−β�)−cma

]

+
∑

m�=�
PServ
�m

(R − pm),

where β�(D1, . . . , DN ;p1, . . . , pN ; y1, . . . , yN) denotes the probability of aban-
donment in the sub-pool-�, and PServ�m(D1, . . . , DN ;p1, . . . , pN ; y1, . . . , yN)

denotes the probability that a customer choosing the sub-pool-� is served by
the sub-pool-m when ΛDn is the rate of customer arrival to the sub-pool-n
for n = 1, . . . , N . We want to note that for any sub-pool-�, PServ�m = 0
for any m such that pm > p� since customer choosing sub-pool-� cannot
be served by a sub-pool charging more than p�. Furthermore, the revenue
of an agent in sub-pool-� is: V�(D1, . . . , DN ;p1, . . . , pN ; y1, . . . , yN) =
p�σ�(D1, . . . , DN ;p1, . . . , pN ; y1, . . . , yN), where σ�(. . . ; . . . ; . . . ) is utilization
of agents in sub-pool-� when ΛDn is the rate of customer arrival to the sub-pool-n
for n = 1, . . . , N . Here, we assume that a customer choosing the sub-pool-� pays
pm when she is served by sub-pool-m for m �= �.

It is also worth noting that a marketplace operates as an M/M/k + M system
when all agents charge the same price. This allows us to employ the well-known
limiting behavior of the multi-server systems to characterize the market outcome.
Furthermore, in the case, where the agents announce different prices, we will
show that the interdependency between the sub-pools announcing different prices
diminishes as the market grows. In fact, large-scale marketplaces operate “almost
like” the combination of independent multi-server systems.

The strategic interaction between the agents and the customers is modeled, as
before, as a sequential move game. However, we use a slightly different second stage
equilibrium than the one in Definition 1 since the customers decision and utility is
changed by the new mechanism. The new customer equilibrium, which we refer to
as Market Customer Equilibrium, uses the concept of Nash Flow Equilibrium with
the requirement that customers only care for the prices announced by the sub-pools
instead of individual prices.

Definition 3 (Market Customers Equilibrium) Given (pn, yn)
N
n=1, we say that

(Dn)
N
n=1 is a Market Customers Equilibrium (MCE) if the following conditions are

satisfied:
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1. For any � with D� > 0, we have that U�(D1, . . . , DN ;p1, . . . , pN ; y1, . . . , yN) ≥
Um(D1, . . . , DN ;p1, . . . , pN ; y1, . . . , yN), for all m ≤ N .

2. If U�(D1, . . . , DN ;p1, . . . , pN ; y1, . . . , yN) > 0 for some � ≤ N , then∑N
n=1 Dn = 1.

While MCE always exists by the continuity of the utility functions and Rath
(1992), its uniqueness cannot be guaranteed. For notational convenience, we shall
assume that the best outcome from the customer perspective arises when there are
multiple MCE (In fact, it can be shown that the limit of all MCEs is unique as the
number of agents in the market grows). As the outcome is assumed to be unique,
we denote the fraction of customers requesting service from sub-pool-n in a Market
Customer Equilibrium by DMCE

n (p1, . . . , pN ; y1, . . . , yN) when (pn, yn)
N
n=1 is a

tuple of two vectors whose components are the prices and the number of agents
announcing them.

Agents make pricing decisions in the first stage of the game. Unlike the no-
intervention model, we need to account for two types of unilateral deviation of
agents: an agent can either choose to deviate by joining an existing sub-pool or
announce a new price. Therefore, an equilibrium in the first stage should be immune
to any of these two deviations. One can show that, as the market grows, there exists a
profitable unilateral deviation from any price in a buyer’s market. In analyzing such
markets, we would like to highlight the following two observations: (1) The arising
system dynamic is too complex for exact analysis yet amenable to asymptotic
analysis. (2) While a single agent, indeed, may have profitable deviations from
every price in a buyer’s market, the gains from deviations are small and diminish
as the market grows. Thus, following Dixon (1987) and recently Allon and Gurvich
(2010), we study a somewhat weaker notion of equilibrium, which allows us to
characterize the market outcome (if one exists), as the market grows even when Nash
equilibrium does not exist. To this end, we consider a sequence of marketplaces
indexed by the number of agents, i.e., there are k agents in the kth marketplace.
The arrival rate in the kth marketplace is assumed to be Λk = ρk. This ensures
that the demand-supply ratio is constant along the sequence of marketplaces. Then,
in each market, we focus on an equilibrium concept, which requires immunity
against only deviations that improve the revenue of an agent by at least ε ≥ 0 as
formally stated in Definition 4 (See below). We refer to ε as the level of equilibrium
approximation. We denote the level of equilibrium approximation in the kth market
by εk , and we assume that εk → 0 and εk

√
k → ∞ as k → ∞. We study

the behavior of the equilibrium along the sequence of marketplaces we described
above in order to derive the equilibrium in a marketplace with large number
of agents.

Definition 4 (ε-Market Equilibrium) Let (Dk
n, p

k
n, y

k
n)

N
n=1 summarize the strat-

egy of all players in the kth market with ykn > 0 for all n = 1, . . . , N .
Then, (Dk

n, p
k
n, y

k
n)

N
n=1 is an ε-Market Equilibrium if the following conditions are

satisfied:
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1. Dk
n = DMCE

n (pk
1, . . . , p

k
N ; yk1 , . . . , ykN ) for all n ≤ N .

2. For any � ≤ N and m ≤ N , we have that

V�(D
k
1, . . . , D

k
N ;pk

1, . . . , p
k
N ; yk1 , . . . , ykN )

≥ V�(D̂
k
1, . . . , D̂

k
N ;pk

1, . . . , p
k
N ; ŷk1 , . . . , ŷkN )− εk,

where ŷkn = ykn − 1 if n = �, ŷkn = ykn + 1 if n = m, ŷkn = ykn otherwise, and
D̂k

n = DMCE
n (pk

1, . . . , p
k
N ; ŷk1 , . . . , ŷkN ) for all n ≤ N .

3. For any � ≤ N and p′ �= pk
n for all n = 1, . . . , N , we have that

V�(D
k
1, . . . , D

k
N ;pk

1, . . . , p
k
N ; yk1 , . . . , ykN)

≥ VN+1(D̂
k
1, . . . , D̂

k
N+1;pk

1, . . . , p
k
N , p

′; ŷk1 , . . . , ŷkN+1)− εk,

where ŷkn = ykn − 1 if n = �, ŷkn = 1 if n = N + 1, ŷkn = ykn otherwise, and
D̂k

n = DMCE
n (pk

1, . . . , p
k
N , p

′; ŷk1 , . . . , ŷkN+1) for all n ≤ N + 1.

The first condition in the above definition requires that the vector (Dk
n)

N
n=1 forms

an equilibrium among the customers if the agents choose the strategy (pk
n, y

k
n)

N
n=1.

The second and third conditions characterize the equilibrium in the first stage game:
The second condition states that an agent cannot improve his revenue by more than
εk when he joins an existing sub-pool, while the third condition states that an agent
cannot improve his revenue by more than εk when he introduces a new sub-pool. We
next turn to characterize the equilibrium in the kth marketplace. Note that if εk ≡ 0
for all k, then the above definition reduces to that of the Nash Equilibrium.

9.5.1 Characterization of the Market Equilibrium

In this subsection, we study the symmetric equilibrium for the sequence of
marketplaces we constructed above. As a first step towards characterizing the
symmetric equilibrium, we derive the revenues of agents when they announce the
same price in the kth marketplace. As we noted before, such a marketplace operates
as an M/M/k + M system with arrival rate ΛkDMCE

1 (pk; k), service rate 1, and
abandonment rate 1/ma , where DMCE

1 (pk; k) is the Market Customer Equilibrium
when all k agents charge pk . Therefore, the revenue of an agent in this case is given
by

V1(D
MCE
1 (pk; k);pk; k) = pρDMCE

1 (pk; k)[1− βM(ΛkDMCE
1 (pk; k); k)], (9.2)

where βM(λ; k) is probability of abandonment in M/M/k+M system with arrival
rate λ, service rate 1, and abandonment rate 1/ma .
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In order to characterize an εk-symmetric Market Equilibrium, we need to verify
that a single agent does not have any incentive to deviate to a price other than pk

in the kth marketplace. Recall that if an agent chooses p′ �= pk , this amounts
to creating his own sub-pool, and his revenue is given by V2(D

MCE
1 (pk, p′; k −

1, 1),DMCE
2 (pk, p′; k−1, 1);pk, p′; k−1, 1), where (DMCE

n (pk, p′; k−1, 1))2
n=1

is the Market Customer Equilibrium given that k − 1 agents charge pk and one
agent charges p′. We then say that a price pk emerges as the symmetric εk-Market
Equilibrium if

V1(D
MCE
1 (pk; k), pk, k)

≥ max
0≤p′≤R

V2
(
DMCE

1 (pk, p′; k− 1, 1),DMCE
2 (pk, p′; k− 1, 1);pk, p′; k − 1, 1

)

− εk, (9.3)

where the left-hand side is the revenues of agents when all agents charge pk , and the
right-hand side is the maximum revenue that a single agent can obtain by deviating
from pk .

To understand the behavior of the market outcome in large markets, we shall first
study the left-hand side of (9.3) along the trajectory of marketplaces in which all k
agents charge pk and pk → p as k → ∞. In a buyer’s market, we show that all
customers join the system in equilibrium as long as p < R since they experience
negligible waiting times and obtain approximately the utility of R−p by joining in
a marketplace with a large number of agents. Therefore, the revenue of each agent is
approximated by pρ in a buyer’s market when p < R. In a seller’s market, some of
the customers leave the market immediately due to the high congestion level even
if p < R, but the rate of customers requesting service should, in equilibrium, be
higher than the processing capacity when p < R. Therefore, agents are always
“over-utilized” in a seller’s market and the revenue of each agent is approximately
p when p < R. When p = R, the rate of customers requesting service depends on
the convergence rate of pk both in a buyer’s and a seller’s market. Thus, p min{ρ, 1}
constitutes an upper bound for the revenue of each agent if p = R. The following
proposition presents these results formally.

Proposition 2 Let DMCE
1 (pk; k) be the Market Customer Equilibrium when all

agents charge pk in the kth marketplace such that limk→∞ pk = p. When= p < R,
we have that limk→∞DMCE

1 (pk; k) = min{1, (R − p + cma)/(ρcma)} and

lim
k→∞V1(D

MCE
1 (pk; k);pk; k) =

{
pρ if ρ ≤ 1

p if ρ > 1
.

When p = R, we have that lim supk→∞DMCE
1 (pk; k) ≤ min{1, 1/ρ}, and

lim
k→∞V1(D

MCE
1 (pk; k);pk; k) ≤

{
pρ if ρ ≤ 1

p if ρ > 1
.
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After approximating the revenue of the agents when they charge the same price,
we now focus on the maximum revenue that an agent can obtain by creating his
own sub-pool. As we did above, we again distinguish between buyer’s and seller’s
markets.

9.5.1.1 Buyer’s Market

When all agents charge the same price pk in a buyer’s market, we next show that a
single agent can improve his revenue when he decreases his price. Such a cut will
allow a single agent to serve not only his own customers but also the customers
choosing the price pk . In fact, his revenue can be arbitrarily close to pk following
a small price cut as long as the rate of customers requesting service is bounded
away from zero when all agents charge pk , i.e., limk→∞DMCE

1 (pk; k) > 0. The
following proposition proves this observation formally.

Proposition 3 Let

V ′(pk; k) = max
0≤p′<pk

V2

(
DMCE

1 (pk, p′; k − 1, 1),

DMCE
2 (pk, p′; k − 1, 1);pk, p′; k − 1, 1

)

for any sequence of pk with limk→∞ pk = p. Then, we have that lim infk→∞
V ′k(pk; k) > 0 when p > 0. Furthermore, when limk→∞DMCE

1 (pk; k) > 0, we
have the relation limk→∞ V ′(pk; k) = p.

As we established in Proposition 2, the revenue of an agent when all agents
charge the same price pk can be bounded from above by pkρ in large marketplaces.
Then, Proposition 3 implies that any pk satisfying limk→∞ pk = p > εk/(1 − ρ)

cannot emerge as the equilibrium price of a symmetric εk-Market Equilibrium for
large k. Thus, as limk→∞ εk = 0, we obtain that any sequence of prices except the
ones converging to zero cannot be sustained as the equilibrium price of a symmetric
εk-Market Equilibrium along the trajectory of marketplaces. Note that we do not
need to analyze the revenue of an agent after a price increase because it is sufficient
to demonstrate the existence of one profitable deviation in order to show that a
given price cannot be an equilibrium outcome. We formalize these observations in
the following theorem.

Theorem 2 In a buyer’s market with ρ < 1,

1. Let pk
EQ be a price emerging as the equilibrium price of a symmetric εk-Market

Equilibrium in the kth marketplace. Then, for any ξ > 0, there exists a K such
that pk

EQ < ξ for all k > K .

2. There exists a K such that zero is an equilibrium price of a symmetric εk-Market
Equilibrium in the kth marketplace for all k > K .
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3. Let Πk
OE and Πk

NI be the total revenue in the kth marketplace with and without
operational efficiency, respectively. Then, for any ξ > 0, there exists a K such
that Πk

OE/Π
k
NI < ξ for all k > K .

The above theorem states that if a moderating firm provides efficient matching in
a buyer’s market, the equilibrium outcome of the marketplace will converge to zero.
As the profit of the firm is the share of the revenue generated in the marketplace,
providing efficient matching deteriorates the profit of the firm compared to the no-
intervention case as well as the revenue of the agents. In fact, we show that the ratio
between the total revenue generated in a marketplace under operational efficiency
and under the no-intervention converges to zero. We also establish that zero can
emerge as the equilibrium price in large marketplaces. In Sect. 9.7, we discuss the
extension of the above theorem, which is based on showing that the revenues of
agents converges to zero even in a non-symmetric equilibrium.

9.5.1.2 Seller’s Market

After discussing the impact of providing efficient matching in a buyer’s market,
we now focus on a seller’s market. Unlike in a buyer’s market, a single agent
cannot improve his revenue after a price cut since it does not improve his utilization
significantly. Note that agents are already “over-utilized,” and earning a revenue
of pk while they are charging the same price pk in a seller’s market. Therefore,
in a seller’s market, the only possible profitable deviation for a single agent is
to increase his price in large enough marketplaces. In such a deviation, a single
agent loses some of his customers because of his high price, and he also loses the
benefits of efficient matching since he becomes an individual provider. Both of these
factors will limit his ability to make higher profit. In fact, the following proposition
establishes an upper bound on the asymptotic revenue which a single agent can
generate by increasing his price.

Proposition 4 Let

V ′(pk; k) = max
pk≤p′≤R

V1

(
DMCE

1 (p′, pk; 1, k − 1),

DMCE
2 (p′, pk; 1, k − 1);p′, pk; 1, k − 1

)

for any given sequence of prices pk such that limk→∞ pk = p. When p < R in
a seller’s market (ρ > 1), we have that

lim sup
k→∞

V ′(pk; k) ≤ (R+cma)λ
Δ(p;R)[1−β(λΔ(p;R))]

−λΔ(p;R)(Δ(p;R)+cma),

where Δ(p;R) = max{0, (R − p + cma)/ρ − cma}, and λΔ(p;R) is the unique
solution to 1− β(λ)− λβ ′(λ) = (Δ(p;R)+ cma)/(R + cma).
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When a single provider increases his price, we show that the demand for agents,
who do not change their prices, is almost the same as their original demand before
deviation. Hence, the utility of customers choosing the sub-pool consisting of k − 1
agents is Δ(p;R), which is the utility that the customers obtain in the Market
Customer Equilibrium in a large marketplace when all agents charge pk . Then, to
approximate the maximum post-deviation revenue, one can treat the deviating agent
as a monopoly whose customers have an outside option with the value of Δ(p;R).
In fact, the above proposition shows that this approximation constitutes an upper
bound on the agent’s post-deviation revenue. A monopoly always makes sure that
the utility of customers is exactly equal to their outside option, by setting the price
to R + cma − (Δ(p;R)+ cma)/(1− β(λ)) for any given target of demand rate λ.
He then picks λ, maximizing his revenue and sets his price accordingly. We refer the
reader to the proof of Proposition 4 for a more detailed discussion on the revenue
maximization problem of a monopoly.

Combining the two observations above, it is clear that in a large marketplace, a
price pk emerges as the symmetric εk-Market Equilibrium outcome if pk is greater
than the profit of a monopoly serving customers with outside option Δ(p;R). We
state this result in the following theorem.

Theorem 3 In a seller’s market (ρ > 1), let

p∗ ∈P(ρ;R) ≡ {p : p > (R + cma)λ
Δ(p;R)[1− β(λΔ(p;R))]

− λΔ(p;R)(Δ(p;R)+ cma), 0 ≤ p < R
}
,

where Δ(p;R), and λΔ(p;R) are defined as in Proposition 4. Then, for any given
sequence of prices p∗k that converges to p∗ as k → ∞, there exists a K such
that p∗k emerges as the equilibrium price of a symmetric εk-Market Equilibrium in
the kth marketplace for all k > K . Furthermore, for any ρ1 > ρ2, we have that
P(ρ1;R) ⊆P(ρ2;R).

The above theorem characterizes the set of symmetric εk-Market Equilibria for
large marketplaces. The theorem does not guarantee the uniqueness of such an
equilibrium, i.e. P(ρ;R) may not be a singleton. In fact, P(ρ;R) may consist
of uncountably many prices. Furthermore, we show that P(ρ;R) shrinks as ρ

increases. As the demand-supply ratio increases, customers experience significant
waiting times even if they are served by a price-generated pool. Therefore, the level
of customer surplus that a deviating agent has to forego declines as ρ rises. As a
result of this, a single agent has more room to deviate and improve his revenue
when demand is high. It is also worth highlighting that a single agent has such a
profitable deviation opportunity even though the number of agents grows to infinity.

Characterizing the set of symmetric equilibria, P(ρ;R), is difficult in general.
For illustrative purposes, we consider the case where the abandonment rate is equal
to the service rate. We show that a similar structure holds for the settings when
μ �= ma using a numerical study (see Allon et al. 2012). The next corollary
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Fig. 9.1 The prices that form a symmetric market equilibrium as a function of the demand-supply
mismatch (ρ). The service rates and abandonment rates are assumed to be one

characterizes the correspondence P(ρ;R) as well as the asymptotic behavior of
the unique equilibrium price under the no-intervention model.

Corollary 1 Suppose the abandonment rate is equal to the service rate. Then, we
have that

1. λΔ(p;R) = log[(R + c)/(Δ(p;R)+ c)] where Δ(p;R) is defined as in
Proposition 4. Furthermore, the correspondence P(ρ;R) defined in Theorem 3
can be expressed as

P(ρ;R)=
{

p : p>R+c−
(

1+ log

(
R+c

Δ(p;R)+ c

))

[Δ(p;R)+c], 0≤p<R

}

.

2. limk→∞ pk
NI = pNI ≡ (R+c)min{1−ρ/(eρ − 1), 1− (c/R) log((R + c)/c)},

where pk
NI is the unique equilibrium price under no-intervention setting in the

kth marketplace.

Figure 9.1 displays the correspondence P(ρ;R) and the limit pNI . More
specifically, the gray area represents the prices that can emerge as the equilibrium
price of a symmetric equilibrium in a large marketplace and the bold curve depicts
pNI . We observe that for all ρ > 1, the set P(ρ;R) is not a singleton. In fact,
we have a wide range of prices that can form an equilibrium. Furthermore, many
of the possible equilibrium prices in P(ρ;R) are lower than pNI . The intuition
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behind this result is the following: In a marketplace where the moderating firm
efficiently matches customers and agents, a single agent, who deviates by increasing
his price, loses benefits of efficient matching, and thus cannot sustain the same
quality of service (in terms of waiting times) as his “original” pool. It turns out
that the deviating agent cannot improve his “original” revenue by decreasing his
price either. Thus, in a seller’s market, the price-generated pool serves as a deterrent
against single agent deviations even if prices are unappealing from a system point of
view. It is also important to note that such lower prices lead to loss in total revenue
for the marketplace compared to the no-intervention setting. While one may expect
operational efficiency tools to be a leverage for higher revenues in the market, it
is surprising to see that reducing the unnecessary waiting and idleness present in a
system with no-intervention may deteriorate the revenues.

Myerson (1991) argues that the question of which equilibrium would emerge as
the outcome of a game with multiple equilibria can be answered with the focal-
point effect phenomenon.6 Our goal in this chapter is not to conclude that only
the low prices can be a focal-point. In fact, when comparing the equilibrium prices
in a market with and without operational efficiency, one should also observe that
operational efficiency does not only serve as a deterrent for deviations from low
prices but also prevents deviations from high prices for any level of demand-supply
ratio. Moreover, when the aggregate demand is sufficiently high, efficient matching
always leads to higher profits, although the equilibrium prices under operational
efficiency may be slightly lower than the unique equilibrium in a market without
operational efficiency.

Our analysis in this section assumes that a customer with a preferred price p�

pays pm when she is served by sub-pool-m for any m �= �. In real marketplaces such
as UpWork.com, customers may end up paying a price between their preferred price
and the prices asked by the providers when these prices are different. To account for
that, one may envision an extension of our model, in which a customer choosing
sub-pool-� pays φp�+ (1− φ)pm, where φ ∈ (0, 1), when an agent from sub-pool-
m, with m �= � serves her. In such a model, our key findings, which are equilibrium
prices are close to zero in a buyer’s market, and some of the equilibrium outcomes
may lead to profit loss in a seller’s market, would continue to hold.

In this section, we study a specific mechanism that the moderating firm uses
to achieve operational efficiency. There are other mechanisms, such as providing
real-time congestion information, that may be used by the moderating firm. When
customers are able to obtain real-time congestion information, Allon et al. (2012)
shows that our analytical results for a buyers market continue to hold, while a
simulation experiment demonstrates that multiple, possibly harmful equilibria also
exist in a sellers market.

6Focal-point effects are any psychological or cultural norms that tends to focus players’ attention
on one equilibrium.
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9.6 Communication Enabled Model

In this section, we continue to study the impact of different mechanisms used by
the moderating firm. As we mentioned in the introduction, the moderating firm may
complement its operational tool discussed in the previous section with a strategic
tool, which changes the nature of the interaction among agents. In a marketplace
such as UpWork.com, service providers are offered discussion boards in which they
are allowed to exchange information. Moreover, the market supports the creation
of affiliation groups, which are self-enforcing entities. We will thus focus on the
impact of enabling communication among agents on the market outcome.

The economics literature suggests that, when the players have the opportunity
to perform non-binding pre-play communication among themselves, the stability of
an outcome can be threatened by potential deviations formed by coalitions, even in
noncooperative games. Following this idea, the well-know notion of Strong Nash
Equilibrium (SNE) requires stability against deviations formed by any conceivable
coalitions (see Aumann 1959). The main drawback of SNE is that many of the
games do not have any SNE.

In this section, we modify the marketplace we study in the previous section by
assuming that agents have opportunities to make non-binding communication prior
to making their decisions, so that they can try to self-coordinate their actions in a
mutually beneficial way, despite the fact that each agent selfishly maximizes his own
utility.

Echoing the ideas in the economics literature, allowing communication among
agents changes the equilibrium concept we use to characterize the outcome in the
marketplace. We model this by proposing a new equilibrium concept that allows
several agents to deviate together. More specifically, the new concept requires that
a strategy of agents should be immune to any coalitions. Since a marketplace tends
to be large, e.g., there are hundreds of thousands of agents in UpWork.com, one has
to restrict the possible size of a coalition. We denote the largest fraction of agents
that is allowed to deviate together by δ ∈ (1/k, 1]. As in Sect. 9.5, we focus on the
deviations that improve the revenues of agents at least by ε ≥ 0. Furthermore, we
again study the behavior of the equilibrium along the sequence of marketplaces we
described in Sect. 9.5. Recall that there are k agents, the arrival rate is Λk = ρk, and
the level of equilibrium approximation is εk , with the same asymptotic properties as
in Sect. 9.5, in the kth marketplace. We let δk be the largest fraction of agents that
is allowed to deviate together in the kth marketplace. We assume that δkk →∞ as
k→∞. This condition states that the number of agents allowed to deviate increases
without bound as the market size increases. We refer to our new equilibrium concept
as (δ, ε)-Market Equilibrium which is defined as follows:

Definition 5 ((δ, ε)-Market Equilibrium) Let (Dk
n, p

k
n, y

k
n)

N
n=1 summarize the

strategy of all players in the kth market with ykn > 0 for all n = 1, . . . , N . Then,
(Dk

n, p
k
n, y

k
n)

N
n=1 is a (δk, εk)-Market Equilibrium if the following conditions are

satisfied:

1. Dk
n = DMCE

n (pk
1, . . . , p

k
N ; yk1 , . . . , ykN ) for all n ≤ N .
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2. For any � ≤ N , m ≤ N , and 0 < d ≤ min{yk� , �δkk�}, we have that

V�(D
k
1, . . . , D

k
N ;pk

1, . . . , p
k
N ; yk1 , . . . , ykN )

≥ V�(D̂
k
1, . . . , D̂

k
N ;pk

1, . . . , p
k
N ; ŷk1 , . . . , ŷkN )− εk,

where ŷkn = ykn − d if n = �, ŷkn = ykn + d if n = m, ŷkn = ykn otherwise, and
D̂k

n = DMCE
n (pk

1, . . . , p
k
N ; ŷk1 , . . . , ŷkN ) for all n ≤ N .

3. For any � ≤ N , 0 < d ≤ min{yk� , �δkk�}, and p′ �= pn for all n = 1, . . . , N , we
have that

V�(D
k
1, . . . , D

k
N ;pk

1, . . . , p
k
N ; yk1 , . . . , ykN)

≥ VN+1(D̂
k
1, . . . , D̂

k
N+1;pk

1, . . . , p
k
N , p

′; ŷk1 , . . . , ŷkN+1)− εk,

where ŷkn = ykn − d if n = �, ŷkn = d if n = N + 1, ŷkn = ykn otherwise, and
D̂k

n = DMCE
n (pk

1, . . . , p
k
N , p

′; ŷk1 , . . . , ŷkN+1) for all n ≤ N + 1.

The above definition is closely related to the definition of ε-Market Equilibrium
in Sect. 9.5. The key difference between these two equilibrium definitions is that
(δ, ε)-Market Equilibrium allows a group of agents to deviate by either forming a
new sub-pool or joining an existing one. In fact, our new equilibrium concept is a
refinement of the ε-Market Equilibrium. Therefore, any (δ, ε)-Market Equilibrium
is also a ε-Market Equilibrium. Employing the (δ, ε)-Market Equilibrium concept,
we expect that the set of prices that can be sustained as a ε-Market Equilibrium
will shrink since (δ, ε)-Market Equilibrium is more restrictive. Kalai (2004) and
Gradwohl and Reingold (2008) study large games and shows that all Nash Equilibria
of certain large games are resilient to deviations by coalitions. Such a phenomena
does not exist in our model.7

9.6.1 Characterization of the (δ, ε)-Market Equilibrium

Similar to Sect. 9.5, we focus on the symmetric (δ, ε)-ME where all agents charge
the same price. The revenue of an agent when all agents charge the same price pk is
the same as in (9.2), and thus Proposition 2 establishes its asymptotic behavior.

In a buyer’s market with ρ < 1, we showed that only the prices in a small
neighborhood of zero can emerge as a symmetric ε-Market Equilibrium in large

7According to the definition in Gradwohl and Reingold (2008), a Nash Equilibrium is resilient to
coalitions if players cannot improve their revenues “too much” even after a coordinated deviation.
In our setting, “too much” has to be almost as much as the customer reward, R, in order to apply
their results to our game. Clearly, this makes the definition of resilience vacuous because none of
the agents can increase his revenue by more than R.
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marketplaces. As a direct implication of the fact that (δ, ε)-Market Equilibrium is
a refinement of the ε-Market Equilibrium, any sequence of prices that emerge as
symmetric (δ, ε)-Market Equilibrium converges to zero as the market size grows.
Furthermore, we show that p = 0 can emerge as the equilibrium price in large
marketplaces.

Theorem 4 Let pk
EQ be a price emerging as a symmetric (δk, εk)-Market Equilib-

rium in the kth marketplace where ρ < 1. Then, for any ξ > 0, there exists a K such
that pk

EQ < ξ for all k > K . Furthermore, when limk→∞ δk = 0, there exists a K

such that zero is an equilibrium price of a symmetric (δk, εk)-Market Equilibrium
in the kth marketplace for all k > K .

In a seller’s market, Proposition 2 shows that the rate of customers requesting
service will exceed the processing capacity of agents when all agents charge a
price lower than R. Therefore, customers experience significant waiting times,
and not only pay the price of the service but also incur a strictly positive waiting
cost. Then, we show that a small group of agents can use the fact that customers
pay an extra cost to increase their prices while ensuring that they are still “over-
utilized” after the price increase. Since this small group of agents increases
their prices without hurting their utilization, this deviation clearly improves their
revenues (This is in contrast to the setting in Sect. 9.5 where the utilization of
a single agent does drop after a price decrease). Thus, in a seller’s market, only
the prices, which are very close to R, can emerge as the equilibrium price of
a symmetric (δ, ε)-Market Equilibrium in large marketplaces. To contrast this
result with the result in Theorem 3, it is worth noting that a single agent has
only a limited opportunity to improve his revenue by increasing his price as in
most cases, the revenue improvement due to the price increase is overcome by
the drop in utilization. Therefore, without the communication opportunity, it was
possible to observe low prices as the market outcome even though demand exceeds
supply.

Theorem 5 Let pk
EQ be a price emerging as a symmetric (δk, εk)-Market Equilib-

rium in the kth marketplace where ρ > 1. Then, for any ξ > 0, there exists a K such
that pk

EQ > R − ξ and DMCE
1 (pk

EQ; k) > 1/ρ − ξ for all k > K . Furthermore,

there exist a sequence p∗k and a K such that p∗k forms a symmetric (δk, εk)-Market
Equilibrium in the kth marketplace, for all k > K .

The above result shows that agents can sustain a price, which extracts all of the
customer surplus, as the equilibrium outcome in a seller’s market. Moreover, it also
implies that the marketplace cannot be congested in the equilibrium even in a seller’s
market since any level of congestion can be capitalized by agents through a price
increase.

Theorem 5 characterizes the unique limit of symmetric (δ, ε)-Market Equilib-
rium, but this result can be extended by showing that R is indeed the unique limit of
all possible (δ, ε)-Market Equilibria as discussed in Sect. 9.7. Furthermore, Allon
et al. (2012) shows that the ability to communicate leads to high equilibrium prices
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when the moderating firm provides real-time queue information in order to reduce
the mismatch between customers and agents as long as the largest fraction of agents
that is allowed to deviate together is close to 1.

9.7 A Marketplace with Non-identical Agents

In Sect. 9.3, we introduce a model where all of the agents in the marketplace are a
priori identical. However, it is natural to imagine that large service marketplaces
attract service providers with different skill sets, which provide their customers
different values for the service. Thus, we explore the robustness of the conclusions
of the previous sections to the heterogeneity among providers.

To this end, we consider a marketplace where agents provide the same service
but in different quality levels, say low and high. We assume that customers value the
service with respect to its quality. Particularly, customers earn a reward of RH and
RL when they are served by a high-quality and a low-quality agent, respectively.
Without loss of generality, we assume RL ≤ RH . The model set-up is the same as
in Sect. 9.3, and we use a similar mode of analysis as in Sects. 9.4, 9.5, and 9.6.

The behavior of the marketplace when the moderating firm confines itself
to setting up the necessary infrastructure is very similar to the equilibrium in
Theorem 1: Agents may behave as local monopolists when the arrival rate is
sufficiently high. Furthermore, once the arrival rate is less than a certain threshold,
customers observe lower prices, which allow them to earn strictly positive utility,
due to the intensified competition. However, we also encounter new results when we
allow for heterogeneous agents. First, unlike the identical agent model, we observe
that the main driver of equilibrium outcomes for certain parameters is not only the
competition between providers but also the fact that agents offer different quality
of service. For instance, when the demand rate is in a certain range, high-quality
agents charge a low price and forego a significant customer surplus both because
of the low demand and the fact that they want to keep the low-quality agents
out of the marketplace. We also show that it is possible to have a continuum of
symmetric equilibria, whereas we always have a unique symmetric equilibrium with
the identical agents.

The impact of improving the operational efficiency in a marketplace with non-
identical agents is also similar to our findings in the identical agents model: When
demand is sufficiently low in a buyer’s market, the revenues of agents are always
in a small neighborhood of zero in large marketplaces. In a seller’s market, there
are multiple equilibria, which may lead to profit loss for the firm compared to
the no-intervention model. Unlike the identical agents model, we show that there
may be multiple equilibria even in a buyer’s market as long as demand exceeds
the total capacity of high-quality agents. However, most of these equilibrium prices
may be very low compare to the equilibrium outcome in the no-intervention model.
Thus, providing tools to improve the operational efficiency may still deteriorate the
moderating firm’s profit.
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Finally, we explore the impact of enabling communication among agents in
a market with non-identical agents. As in Sect. 9.6, we establish that pre-play
communication helps agents sustain the profit maximizing one among the multiple
equilibria arising due to providing operational efficiency.

Our results in the non-identical agents model also provide insights about the
non-symmetric equilibrium outcomes in the identical agents model. In particular,
our model with non-identical agents helps us to prove that the non-symmetric
equilibrium may exist only for a small range of demand- supply ratio ρ in the no-
intervention model with identical agents, and this range becomes negligible as the
number of agents grow. Furthermore, using our results in this section, we show that
in the operational efficiency model with identical agents, the revenues of all agents
in any non-symmetric equilibrium (if exits) should be in a small neighborhood of
zero in a buyer’s market. We also show that, in the communication model with
identical agents, even if there are any non-symmetric equilibria in a seller’s market,
the revenue of each agent in equilibrium should converge to R as well as the price
they charge.

We refer the reader to Allon et al. (2012) for a detailed discussion of our findings
in this section.

9.8 Conclusion

In this chapter, we study a marketplace in which many small service providers
compete with each other in providing service to self-interested customers looking
for temporary help. The main focus of the paper is on the role of the moderating
firm, which sets up the marketplace and creates the infrastructure where agents
and customers interact. To this end, we explore the impact of different strategies
employed by the moderating firm by considering three market models.

We characterize the market outcomes in each of these models. We observe
that outcomes critically depend on the moderating firm’s involvement and market
conditions, i.e., whether it is a buyer’s or a seller’s market. Since different types
of involvement of the moderating firm result in different equilibrium prices and
customer demand, the moderating firm aims to intervene in the marketplace in order
to make sure that the “right” prices and customer demand emerge in equilibrium.
Specifically, the moderating firm tries to maximize the revenues of agents since its
profit is a share of the agents’ revenues.

We show that when the firm ensures efficient operational matching and enables
agent communication in a seller’s market, the natural upper-bound on the revenue
generated in a marketplace8 is asymptotically achievable, and thus, using these two

8In a given marketplace, the total revenues of the agents cannot exceed min{Λ, k}R since they
cannot charge more than R, and their effective demand is the minimum of their processing capacity
and the aggregate demand.
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tools together dominates any other strategy from the moderating firm’s perspective
in a seller’s market. We also show that efficient operational matching in a buyer’s
market leads to arbitrarily small total marketplace revenue compared to the total
revenue under the no-intervention model. Hence, using the matching mechanism
we discuss in this chapter is not advisable in a buyer’s market despite the fact
that it reduces the mismatch between demand and supply. This result is somewhat
counter-intuitive, because the efficiency improvement due to better matching is not
necessarily translated into additional profits. It seems other tools aimed at improving
the operational efficiency, such as providing real-time queue information, will have
a similar impact on the moderating firm’s profit in a buyer’s market.

Both UpWork.com and ServiceLive.com are currently in their growth stage
and have not achieved their full potential in terms of demand for their services.
However, both firms can and should project the “mature” market conditions
and decide on their appropriate measures to adopt. Given the moderate level of
congestion in UpWork.com, one may infer that the marketplace can be identified as
a seller’s market. Following the discussion before, UpWork.com’s decision to offer
operational tools complemented with strategic tools is well justified.

In this chapter, we focus on the operational and strategic tools that the firm
can use to be involved in the marketplace. There are also other possible ways
for a moderating firm to intervene in the marketplace including introducing a
skill screening mechanism. In general, these mechanisms take the form of skill
tests and/or certification programs that are run by moderating firms. For instance,
UpWork.com offers various exams to test the ability of the candidate providers. If
necessary, UpWork.com can use these exams to disqualify some of the agents, and
thus control the portfolio of different agent types (e.g., flexible, dedicated) and the
service capacity in the marketplace. It is in the best interest of the moderating firm to
use its skill tests in order to make sure that the “right” prices and customer demand
emerge in the marketplace. To gain insights about the effectiveness of skill screening
as a revenue maximization tool, in Allon et al. (2017), we analyze how much benefit
the firm obtains after each additional skill test. Our findings in this paper suggest that
the firm does not need to regulate the marketplace via skill screening when agents
are endowed with highly compatible skills. As the compatibility of agent skills
weakens, we show that the firm starts to experience substantial revenue benefits
from skill screening. We also show that the skill screening becomes more effective
as the different classes of customers start to vary in terms of their processing time
needs. When intervention is needed, we establish that the marginal benefit from skill
testing may decline sharply. In fact, under certain demand structures, firm does not
gain any revenue benefits from an additional skill test.

It is also possible that a moderating firm can be involved in the marketplace via
contracting with agents or providing a suggested price. Particularly, the setting in
which the firm provides a suggested price can be viewed as pre-play communication
and will indeed shrink the set of equilibria. However, these type of interactions
between the moderating firm and agents are outside the scope of this chapter as
these settings are not a market per-se anymore. In such environments, the firm would
decide on prices as well as the allocation of agents to customers.
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While modeling operational efficiency, we assume that agents give priority to
their own customers. One may consider an extension of our model in which agents
are allowed to choose both priority and prices, simultaneously. The equilibria that
arise in our model with fixed priority rule would still be sustained in such an
extended game. Hence, the main spirit of our findings, namely, the fact that pro-
viding operational efficiency may lead to profit loss, would not change. Additional
equilibria would be possible in the extended model only when demand exceeds
supply.
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Chapter 10
Inducing Exploration in Service
Platforms

Kostas Bimpikis and Yiangos Papanastasiou

Abstract Crowd-sourced content in the form of online product reviews or rec-
ommendations is an integral feature of most Internet-based service platforms and
marketplaces, including Yelp, TripAdvisor, Netflix, and Amazon. Customers may
find such information useful when deciding between potential alternatives; at the
same time, the process of generating such content is mainly driven by the cus-
tomers’ decisions themselves. In other words, the service platform or marketplace
“explores” the set of available options through its customers’ decisions, while they
“exploit” the information they obtain from the platform about past experiences to
determine whether and what to purchase. Unlike the extensive work on the trade-
off between exploration and exploitation in the context of multi-armed bandits, the
canonical framework we discuss in this chapter involves a principal that explores
a set of options through the actions of self-interested agents. In this framework,
the incentives of the principal and the agents towards exploration are misaligned,
but the former can potentially incentivize the actions of the latter by appropriately
designing a payment scheme or an information provision policy.

10.1 Introduction

An important function of most Internet-based platforms that act as intermediaries
between customers and service providers is the provision of information regarding
the quality of the potential alternatives faced by the consumers. As the service
platform landscape continues to evolve, the dominant form of generating such
information is through crowdsourcing: after transacting with a service provider, a
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customer may provide feedback on the provider’s performance; this feedback is
recorded by the platform and may become available to subsequent customers and
assist them with their decision-making.

While soliciting feedback from customers is both straightforward and cost-
effective, the crowdsourcing process through which information about the quality
of the providers is generated is inherently inefficient from a system perspective,
since it relies on the customers’ self-interested choices. For an illustration of this
inefficiency, consider the following example: a customer arrives at the platform
and is presented with a choice between two providers, A and B. Provider A has
eight “good” reviews and two “bad” reviews; Provider B has one of each. Given
the available information (we assume that the customer is risk-neutral), provider
A appears to be the better option; thus, the customer chooses A, and subsequently
provides feedback on her choice. In fact, as long as provider A maintains a higher
number of “good” reviews than “bad,” he will always be preferred to provider
B. However, this may not be the optimal outcome from a system perspective,
which here refers to the outcome that maximizes the expected utility of the entire
population of customers, because the customers’ self-interested choices do not
generate sufficient information on provider B to determine that he is, in fact, the
inferior option.

The above example describes a phenomenon known in the experimentation
literature as “under-exploration,” as the self-interested individuals tend to take
actions that “over-exploit” the information available to them. This chapter takes
the perspective of a principal (e.g., the platform designer) who is interested in
the efficient generation of information in such a system, where efficiency entails
balancing exploration against exploitation with the goal of maximizing a long-run
objective. Because the principal cannot dictate to the agents which action to take,
she must find ways of incentivizing them to take system-optimal actions. Although
we discuss a number of ways of achieving this, our main focus is on the active use of
information disclosure, and in particular on the design of informational mechanisms
that incentivize exploration in decentralized learning settings.

10.2 Related Literature

Studying the tradeoff between exploration and exploitation has a long research
tradition in the context of the multi-armed bandit problem. In its classic version,
a forward-looking decision maker makes a choice sequentially among a set of
alternative arms, each of which generates rewards according to an ex ante unknown
distribution. Every time an arm is chosen, the decision maker receives a reward,
which, apart from its intrinsic value, is used to learn about the arm’s underlying
reward distribution. When deciding which arm to play, the decision maker faces the
tradeoff between the arm that she currently believes to be superior (exploitation)
given the information she has at her disposal, or an alternative arm with the goal
of acquiring knowledge that can be used to make better-informed decisions in the
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future (exploration). Since its inception, the multi-armed bandit framework has
found numerous applications in various real-world settings (e.g., Caro and Gallien
(2007), study dynamic assortment of seasonal goods in the presence of demand
learning, while Bertsimas and Mersereau (2007), consider learning in the context of
developing marketing strategies).

In most existing applications of the multi-armed bandit framework, a single
decision maker dynamically decides on the actions to be taken while observing
the outcomes of her past actions. As such, the decision maker fully internalizes
the benefits of exploration when taking actions that may not be optimal as far as
maximizing her present payoff is concerned. In contrast, this chapter focuses on
settings that can be essentially cast as decentralized multi-armed bandits problems:
there is a forward-looking principal (the designer) who seeks to maximize a long-
term objective, while actions are taken by a series of (short-lived) agents. In
particular, we discuss recent work along this direction that is mostly motivated by
the growing popularity of online recommendation platforms. In a nice contribution,
Kremer et al. (2014) focus on eliciting experimentation in an environment where
outcomes are deterministic, while Papanastasiou et al. (2017) consider a stochastic
environment, in which the designer is effectively tasked with managing a dynamic
exploration-exploitation trade-off. Furthermore, Che and Horner (2017) consider a
single-product setting where a designer at any time optimally “spams” a fraction
of consumers to learn about the product’s quality. Frazier et al. (2014) aim to
investigate how the principal can incentivize the agents to take her desired actions by
offering direct monetary payments, i.e., their focus is not on the role of information
disclosure policies (there is no ex ante or ex post asymmetry of information
between the designer and the agents). Finally, Hörner and Skrzypacz (2016) also
survey recent related work that combines ideas from experimentation, learning, and
strategic interactions, with a particular emphasis on understanding how information
but also delegation can be employed to deal with agents’ incentives.1

Given the emphasis on the role of information the principal shares with the
agents, the work we discuss here is related to, but quite distinct from, the well-
developed literature on “cheap talk” (e.g., Crawford and Sobel 1982; Allon et al.
2011). In cheap-talk games, the principal privately observes the realization of an
informative signal, after which she (costlessly) communicates any message she
wants to the agent. In this work, there is emphasis on how the message received
by the agent is interpreted, and whether any information can be credibly transmitted
by the principal. In contrast, the principal in the settings we consider commits ex
ante to an information-provision policy, which maps realizations of the informative
signal to messages. Once this policy has been decided and implemented, the
principal cannot manipulate the information she discloses (e.g., by misrepresenting
the signal realization). In this case, there is no issue of how the agents will interpret
the messages; rather, the focus is on how the principal should structure credible
messages in a manner that internalizes the misalignment between her and the
consumers’ objectives.

1Kleinberg and Slivkins (2017) also presented recently a comprehensive tutorial related to these
issues.
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As such, this chapter discusses work that is more in the spirit of the recent stream
of literature that examines how a principal can design/re-structure informative
signals in ways that render agents ex ante more likely to take desirable actions.
Bimpikis and Drakopoulos (2016) find that in order to overcome the adverse effects
of free-riding, teams of agents working separately towards the same goal should
initially not be allowed to share their progress for some pre-determined amount of
time. Bimpikis et al. (2018) investigate innovation contests and demonstrate how
award structures should be designed so as to implicitly enforce information-sharing
mechanisms that incentivize participants to remain active in the contest. Kamenica
and Gentzkow (2011) and Rayo and Segal (2010) illustrate an explicit technique
for structuring informative signals—referred to as “Bayesian persuasion”—in static
(i.e., one-shot) settings.

Furthermore, the discussion here connects to the work on social learning. The
basic setup involves agents (e.g., consumers) that are initially endowed with private
information regarding some unobservable state of the world (e.g., product quality).
When actions (e.g., purchase decisions) are taken sequentially and are commonly
observable, the seminal papers by Banerjee (1992) and Bikhchandani et al. (1992)
demonstrate that herds may be triggered, whereby agents rationally disregard
their private information and simply mimic the action of their predecessor. This
classic paradigm has since been extended in multiple directions (e.g., representative
references along this direction include Acemoglu et al. 2011, 2014; Lobel and Sadler
2015; Besbes and Scarsini 2017).

While the above papers focus on studying features of the learning process
itself, another stream of literature investigates how firms can use their opera-
tional levers to steer the social-learning process to their advantage. Bose et al.
(2006) and Crapis et al. (2017) investigate dynamic pricing in the presence of
social learning that occurs on the basis of actions (i.e., purchase decisions) and
outcomes (i.e., product reviews), respectively. Veeraraghavan and Debo (2009)
and Debo et al. (2012) consider how customers’ queue-joining behavior depends
on observable queue-length, and how service-rate decisions may be used to
influence this behavior. Papanastasiou and Savva (2017) and Feldman et al.
(2018) highlight how pricing and product-design policies are affected by the
interaction between product reviews and strategic consumer behavior (see also
Swinney (2011) for additional related work), while Allon and Zhang (2017) explore
service-level differentiation for service organizations whose customers engage
in communication through their social networks. Complementing this literature,
the present chapter explores how the firm (platform) can influence consumer
decisions and learning through its information-provision policy, a lever, which
may also be used in conjunction with other operational levers (e.g., pricing,
inventory).

Finally, the chapter is also broadly related to a recent line of work that studies
operational decisions in the context of Internet-enabled business models. Among
others, Marinesi et al. (2017) and Hu et al. (2013) study group-buying platforms;
Balseiro et al. (2014, 2015) consider the design and operations of ad-exchanges;
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Kanoria and Saban (2017) address search in two-sided platforms; and Taylor (2018),
Cachon et al. (2017), and Bimpikis et al. (2017a) explore optimal pricing and
compensation policies in on-demand service platforms.2

10.3 Illustrative Example

The following example, which is taken from Kremer et al. (2014), provides a nice
illustration of the setting and the questions we explore in this chapter.

Example 1 Agents choose sequentially between products A and B. Agent i makes
her decision based on her prior on the quality of the two products and the
information she obtains from the principal. In turn, the principal observes the
choices and resulting payoffs of agents 1, . . . , i − 1, and makes a recommendation
to agent i, i.e., whether to purchase product A or B. The principal commits ex
ante to the mechanism that generates the recommendation for agent i, i.e., the
function that maps the actions and payoffs of agents 1, . . . , i − 1 to a binary
recommendation. Furthermore, agents know the mechanism set by the principal
for generating recommendations and take it into account when they form their
(posterior) beliefs about the quality of the two products.

Assume that the agents’ common prior is that the quality of product A is
uniformly distributed in [−1, 5] whereas the quality of product B is uniformly
distributed in [−5, 5]. Also, assume that when an agent buys a product, her (realized)
payoff is equal to the quality of the product, i.e., one purchase is enough to reveal
a product’s (true) quality. Finally, suppose that the principal aims to explore both
alternatives as soon as possible (so that she recommends the best one to future
agents).

If information about past choices and outcomes were observable by the agents,
the second agent would choose to take action B only if the payoff of the first agent
(that would optimally take action A) was negative. Otherwise, i.e., if product A
has positive payoff, the second agent (and subsequently all future agents) would
choose product A and no agent would find it optimal to explore product B (which,
nevertheless, could have been the optimal choice).

On the other hand, if agents do not directly observe prior choices and outcomes,
the principal could induce more exploration by recommending action B to the
second agent whenever the payoff associated with product A is less than one. In
other words, the principal could send a binary message to the second agent: choose
A if the first agent’s payoff was higher than one and choose B, otherwise. Similarly,
the principal can employ the following policy for the third agent: recommend
choosing product B if (i) the second agent was recommended to choose product
B and it turned out that B’s payoff is higher than A’s; or (ii) both the first and

2There is also recent empirical work exploring operational issues on online marketplaces, e.g.,
Moon et al. (2017), Li and Netessine (2017), and Bimpikis et al. (2017b).



198 K. Bimpikis and Y. Papanastasiou

the second agent chose product A but its payoff is between 1 and 3.23. It is
straightforward to show that following this policy guarantees that agents would
have explored both options by the third time period unless the payoff for product
A is higher than 3.23 (one can similarly extend the policy for the fourth agent to
ensure that by the fourth time period both options are explored with certainty).

In sum, agents find it optimal to follow the principal’s recommendations, which,
in turn, leads to more exploration and better outcomes on aggregate (assuming that
the population of agents is large enough). The simple takeaway message that one
can draw from this example is that by coarsening the information that the principal
shares with the agents, she is able to mitigate their misalignment of interests.

10.4 Benchmark Model

Building on the discussion above, we consider a setting, where a series of agents
interact with a principal who manages the disclosure of information regarding the
experiences of their predecessors. For concreteness and to be in line with Sect. 10.3,
we anchor our exposition in the example of an online platform which is operated
by a designer and is used by customers to assist with their choice of a service
provider. We assume that the marketplace features two providers, A and B; let
S = {A,B}.3 Each provider i ∈ S is fully characterized by a probability pi , which
represents the provider’s service quality. Upon using provider i, a customer receives
reward equal to one with probability pi , and equal to zero otherwise; that is, service
outcomes constitute independent draws from a Bernoulli distribution with success
probability pi . Initially, pi is known to the designer and the customers only to the
extent of a common prior belief, which is expressed in our model through a Beta
random variable with shape parameters {si1, f i

1 }, with si1, f
i
1 ∈ Z+.4,5

At the beginning of each time period t ∈ T , T = {1, 2, . . .}, a single customer
visits the platform, observes information pertaining to the experiences of past
customers, and chooses a provider. We assume that upon completion of service,
and before the end of period t , the customer reports to the platform whether her
experience was positive or negative (i.e., the realization of the Bernoulli random
variable associated with her service experience). At any time t , the knowledge
accumulated by the platform is summarized by the information state (henceforth

3Our analysis can be readily extended to the case of more than two providers.
4The probability density function of a Beta(s, f ) random variable is given by

g(x; s, f ) = xs−1(1− x)f−1

B(s, f )
, for x ∈ [0, 1].

5The platform and the customers hold the same prior belief, so that platform actions (e.g., the
choice of an information-provision policy) do not convey any additional information on provider
quality to the customers (e.g., Bergemann and Välimäki 1997; Bose et al. 2006; Papanastasiou and
Savva 2017).
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“state”) xt = {xAt , xBt }, where xit = {sit , f i
t } and sit (f i

t ) is the accumulated number
of successful (failed) service outcomes for provider i up to period t (this includes
the initial successes and failures, si1 and f i

1 , specified in the prior belief). When the
system state is xt , the Bayesian posterior belief over the quality pi is Beta(sit , f

i
t ),

and the expected utility for the next customer if she uses i is r(xt , i) = sit /(s
i
t +f i

t ).
In general, the history of service outcomes (i.e., the system state xt ) is not

directly observable to the customers. Instead, there is a platform designer who
commits upfront to a “messaging policy” that acts as an instrument of information-
provision to the customers.6 This policy specifies the message that is displayed
on the platform, given any underlying system state. In addition, the platform may
accompany messages with monetary payments to customers as a further incentive
to induce them to take certain actions (in fact, Frazier et al. (2014), exclusively
explores the case where all generated information is observable to customers and the
platform has the discretion to incentivize their actions through monetary transfers
in the form of “coupons”).7 The designer’s objective in choosing her messaging
policy is to maximize the expected sum of customers’ discounted rewards over an
infinite horizon (i.e., customer surplus), applying a discount factor of δ ∈ [0, 1).8

Customers are modeled as homogeneous, short-lived, rational agents. In our main
analysis, we assume that customers know the period of their arrival (however, the
qualitative insights we obtain are robust to relaxing this assumption). Upon visiting
the platform, each customer observes a message generated by the designer’s policy
and chooses a service provider with the goal of maximizing her individual expected
reward.

The designer’s choice of messaging policy (and potential monetary transfers to
customers), along with the customers’ choices of service provider in response to
this policy, simultaneously govern the dynamics of both the learning process and
the customers’ reward stream.

10.5 Inducing Exploration

The section explores whether the designer can incentivize customers to take actions
that contribute to her long-run objective of generating information about the
available service providers using mainly the platform’s messaging policy. At the

6Commitment is a reasonable assumption in the context of online platforms, where information
provision occurs on the basis of pre-decided algorithms and the large volume of products/services
hosted renders ad-hoc adjustments of the automatically-generated content prohibitively costly.
7The generic term “message” refers to a specific configuration of information that is observed
by the customer; examples of messages include detailed outcome histories (i.e., distributions of
customer reviews), relative rankings of providers, or recommendations for a specific product.
8More generally, our analysis is relevant for cases where the platform has a different (e.g., longer-
run) objective than its users.
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end of the section, we also report on work that has studied the use of monetary
transfers in a similar setting.

Equilibrium and Model Dynamics We begin our analysis by formalizing the
strategic interaction between the designer and the customers. There are two main
features of this interaction. First, the designer’s messaging policy, which takes the
platform state as an input and generates a message to be displayed by the platform to
the next incoming customer. Second, the customers’ choice strategy, which takes the
platform’s message in any given period as an input and determines the customer’s
action (choice of provider).

Let X ⊆ Z
4+ denote the set of possible states of the platform such that xt ∈ X for

all t ∈ T , and define the discrete set M of feasible messages that the platform can
display to an incoming customer in period t (see Footnote 7).

A messaging policy g(·) is a (possibly stochastic) mapping from the set of states
X to the set of messages M; that is, a messaging policy g associates with each state
xt ∈ X a probability P(g(xt ) = m) that message m ∈ M is displayed on the
platform. Let G be the set of possible messaging policies.

In each period t , a single customer enters the system, observes the platform’s
message and chooses a service provider from the set S. The period-t customer’s
choice strategy, denoted by ct (·), is a mapping from the set of messages M to the set
of service providers S. Let Ct be the set of possible choice strategies for the period-t
customer, and define c(·) := [c1(·), c2(·), . . .].

The designer’s messaging policy g along with the customers’ choice strategy c

generate a controlled Markov chain characterized by the stochastic state-action pairs
{(xt , yt ); t ∈ T }, where the actions yt that accompany the states xt are determined
by the designer’s policy and the customers’ strategy via yt = ct (g(xt )). When the
state of the system is xt , the expected reward of a customer that uses provider i is
r(xt , i) = sit /(s

i
t + f i

t ). Transitions between system states occur as follows. The
initial state x1 is determined by the prior belief over the two providers; when the
state of the system is xt and action yt is chosen by the period-t customer, the state
in period t + 1, xt+1 = {xAt+1, x

B
t+1}, is determined as follows:

xit+1 = xit for i �= yt , xit+1 =
{
{sit + 1, f i

t } w.p. r(xt , i)

{sit , f i
t + 1} w.p. 1− r(xt , i)

for i = yt .

The above transition probabilities reflect the learning dynamics of the system: new
information regarding the quality of provider i is generated in period t only if the
provider is chosen by the period-t customer.9

The sequence of events in our model is described in reverse chronological order
as follows. Each customer observes the designer’s messaging policy and chooses

9Note that for the case of a Bernoulli reward process the current probability of success (i.e., the
Bayesian probability of the next trial being a success given the current state of the system) is equal
to the immediate expected reward, r(xt , i) (e.g., Gittins et al. 2011).
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a choice strategy ct to maximize her individual expected reward. In particular, the
period-t customer’s response to message m, c∗t (m) maximizes:

Ext [r(xt , ct ) | g(xt ) = m].10

At the beginning of the time horizon, the designer (taking into account the
customers’ response to any messaging policy), commits to a policy that maximizes
the expected sum of customers’ discounted rewards. In particular, the designer’s
messaging policy g∗(xt ) maximizes

E

[∑

t∈T
δt−1r(xt , yt )

]

, for yt = c∗t (g(xt )).

Incentive-Compatible Recommendation Policies In general, multiple equilibria
exist that result in the same payoff for the designer and the customers, and the same
dynamics in the learning process, not least because the same information can be
conveyed from the designer to the customers through a multitude of interchangeable
messages contained in M . We follow Allon et al. (2011) in referring to such
equilibria as being “dynamics-and-outcome equivalent”. In our analysis, we will
employ the result of Lemma 1 below to simplify the exposition and focus attention
on the informational content of equilibria, rather than on the alternative ways in
which these equilibria can be implemented. Before stating the lemma, we define
a subclass of messaging policies, which we refer to as “incentive-compatible
recommendation policies.”

Definition 1 (ICRP: Incentive-Compatible Recommendation Policy) A recom-
mendation policy is a messaging policy defined as

g(xt ) =
{
A w.p. qxt

B w.p. 1− qxt ,
(10.1)

where qxt ∈ [0, 1] for all xt ∈ X. A recommendation policy is said to be incentive-
compatible if for all xt ∈ X, t ∈ T , we have c∗t (g(xt )) = g(xt ).

Put simply, under an ICRP the platform recommends either provider A or provider
B to the period-t customer, and the customer finds it Bayes-rational to follow this
recommendation. We may now state the following result, which is analogous to
the revelation principle in the mechanism-design literature, and suggests that any
feasible platform payoff can be achieved through some ICRP.

10This expectation can be computed by the period-t customer, since the ex ante probability that
the state in period t is xt (i.e., unconditional on the message g(xt )) is known to the customer
through her knowledge of the designer’s policy in previous periods and the preceding customers’
best response to this policy.
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Lemma 1 For any arbitrary messaging policy g, there exists an ICRP g′ which
induces a dynamics-and-outcome equivalent equilibrium in the game between the
designer and the customers.

A proof for Lemma 1 can be found in Papanastasiou et al. (2017).

First Best As a primer to our main analysis, we consider how the designer would
direct individual customers to the two providers, had the customers’ actions been
under her full control. The solution to the designer’s full-control problem is due to
Gittins and Jones (1974) and consists of directing customers in each period to the
provider with the highest Gittins Index. The Gittins index for service i when in state
zi is denoted by Gi(z

i) and given by:

Gi(z
i) = sup

τ>0

E
[∑τ−1

t=0 δt r(xit , i) | xi0 = zi
]

E
[∑τ−1

t=0 δt | xi0 = zi
] , (10.2)

where τ is a past-measurable stopping time (i.e., measurable with respect to the
information obtained up to time τ ) and r(xit , i) is the instantaneous expected reward
of provider i in state xit .

In the decentralized system, the designer’s ability to direct customers to her
desired provider will be limited by the customers’ self-interested behavior. Each
customer knows (i) the prior belief summarized by the initial state, x1; (ii) the time
period, t ; and (iii) the designer’s messaging policy, g. Upon visiting the platform,
the customer observes a message m, updates her belief over the current system state,
xt , and selects the provider which maximizes her individual expected reward. As a
consequence, the designer will be able to achieve first-best only if she can design a
messaging policy which induces customers to make Gittins-optimal decisions in
all periods and in all system states—a sufficient condition for at least one such
messaging policy to exist is the existence of an ICRP which always recommends
the provider of highest Gittins index.

Throughout the following analysis we will refer to provider choices that are
desirable from the platform’s perspective as being “system-optimal.”

10.5.1 Strategic Information Disclosure

Typically, the provider will not be able to achieve the first best given that
Gittins-based recommendations (system optimal provider choice) are not incentive
compatible in general. This section provides a characterization of the designer’s
optimal policy in the presence of incentive constraints resulting from the customers’
decision making.
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By Lemma 1, the designer in our model seeks to find the best possible ICRP,
that is, to choose optimally the probabilities qxt that define the recommendations
received by the period-t customer in each possible system state:

g(xt ) =
{
A w.p. qxt

B w.p. 1− qxt ,

while at the same time ensuring that any recommendation received by the period-t
customer is incentive compatible. The designer’s general problem may be framed as
the following Constrained Markov Decision Process (CMDP; see Altman 1999),

max
g(xt )

E

[∑

t∈T
δt−1r(xt , g(xt ))

]

s.t. Ext [r(xt , A) | g(xt ) = A] ≥ Ext [r(xt , B) | g(xt ) = A], ∀t ∈ T ,

Ext [r(xt , B) | g(xt ) = B] ≥ Ext [r(xt , A) | g(xt ) = B], ∀t ∈ T , (10.3)

where the constraints state that any recommendation that is generated by policy g

in period t is found to be incentive compatible (and is therefore followed) by the
period-t customer.

The presence of the IC constraints introduces both direct and indirect complica-
tions. The direct complication is that recommendations generated by the designer’s
policy in all states that could occur in period t must now be viewed jointly, since
such recommendations are coupled by the need to satisfy the period-t customer’s
IC constraints. The indirect complication is that the designer’s choice of policy up
to period t affects the beliefs of customers that visit the platform in periods t + 1
onwards, and therefore (through the IC constraints) also affects the feasible region
of recommendations in future periods.

To facilitate exposition of the result that follows, we introduce the following
additional notation. Let Xt be the set of states that are reachable from the initial state
x1 (under some policy) in period t , so that the total state space is X = ⋃t∈T Xt .
Denote by Pkiz the transition probability from state k to state z when provider i
is used (note that these probabilities have been specified in Sect. 10.5), and let Δa

denote the Dirac delta function concentrated at a.11

Proposition 1 The optimal ICRP is given by

q∗k =
ρ(k,A)

∑
i∈S ρ(k, i)

,

11The result of Proposition 1 extends readily to the case of |S| = n providers (in this case, an
ICRP consists of n possible recommendations, and each recommendation must satisfy n − 1 IC
constraints per period), as well as to alternative platform objective functions (by replacing r(k, i)

with suitable reward functions).
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where ρ(k, i) solve

max
ρ

∑

k∈X

∑

i∈S
ρ(k, i)r(k, i)

s.t.
∑

k∈Xt

ρ(k, B)[r(k, B)− r(k,A)] ≥ 0, ∀t ∈ T ,

∑

k∈X

∑

i∈S
ρ(k, i) (Δz(k)− δPkiz) = Δx1(z), ∀z ∈ X,

ρ(k, i) ≥ 0, ∀k ∈ X, i ∈ S. (10.4)

A few comments on the solution technique of Proposition 1 are warranted. To
solve the designer’s problem, the objective and constraints of the CMDP (10.3) are
first expressed as sums of the immediate expected reward in each state-action pair,
r(k, i), multiplied by the time-discounted “occupancy” of the pair, ρ(k, i). Then,
the LP (10.4) optimizes over the admissible set of occupancy measures, which
is described by the LP’s constraints. In particular, in the context of our problem,
any admissible occupancy measure must be consistent with (i) the customers’
incentives (this is captured by the period-specific inequality constraints, which
ensure that each period-t customer finds the recommendation she receives IC), and
(ii) the system’s dynamics (this is captured by the state-specific equality constraints,
which ensure that the occupancy of each state is consistent with the system’s
state-transition probabilities).12 Finally, once the optimal occupancy measure has
been identified, the probabilities q∗k are chosen in a manner that induces this
measure.

To gain insight into the structure of optimal policies, it is instructive to consider
a finite-horizon version of the problem, consisting of TF time periods. In this
case, applying Theorem 3.8 of Altman (1999) reveals that the optimal ICRP uses
randomized recommendations in at most TF states. As the horizon length TF
increases, the state space grows exponentially, but the number of states in which
randomization occurs grows only linearly (for instance, the number of possible
states for TF = 20 is of the order 1012, but randomization occurs in at most
20 states). This suggests that optimal policies consist mainly of deterministic
recommendations, relying extensively on the merging different information states
that could correspond to different optimal actions for the customers to “persuade”
them to explore.

12Note that the solution to LP (10.4) can also be used to retrieve the period-t customer’s belief
over the system state upon entry to the platform; specifically, this belief is given by P(xt = z) =∑

i∈S ρ(z, i)/(
∑

k∈Xt

∑
i∈S ρ(k, i)).
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10.5.2 The Value of Information Obfuscation

The “curse of dimensionality” renders the optimal solution to the designer’s general
problem computationally intractable. However, by combining the structural insights
yielded by our analysis (i.e., state-merging, limited randomizations, sufficiency of
two-message policies), it is possible to generate tractable and effective heuristic
solutions. In this section, we consider one such heuristic and use it to establish that
the value of information obfuscation is significant, even if this is implemented in a
simple and intuitive manner (we note that the payoff under any heuristic serves as a
lower bound on the payoff of the optimal policy described in Proposition 1).

Consider the following Gittins-based heuristic, which combines our preceding
analysis with the centralized solution to the designer’s problem to deliver IC
recommendations. Let pxt denote the probability that the state in period t is xt . The
heuristic is initialized by choosing the starting state x1 and proceeds by repeating
two steps. First, it solves the period-t linear program:

max
0≤qxt≤1

∑

xt∈X
pxt qxt [GA(xt )−GB(xt )]

s.t.
∑

xt∈X
pxt (1− qxt )[r(xt , B)− r(xt , A)] ≥ 0, (10.5)

and stores the solution qxt (this is the designer’s recommendation policy for
period t); second, the period-t solution is used along with the probabilities pxt to
calculate the probabilities pxt+1 . The two steps are repeated until a pre-specified
period t = K is reached, after which a full-information policy is employed (or,
equivalently, an ICRP which always recommends the provider of highest expected
reward). Essentially, in each of the first K periods of the horizon, the heuristic
employs state-merging to deliver recommendations that maximize the expected
Gittins index, subject to the recommendations being IC.

To evaluate the benefits of information obfuscation (in the sense of the Gittins-
based heuristic), we conduct the numerical experiments presented in Table 10.1.
The table focuses on the added “learning value” of obfuscation in comparison
to that of a FI policy. Specifically, we first calculate the difference (π∗ − πNI ),
i.e., the difference between the platform’s payoff when no social learning takes
place (πNI ) and when social learning takes place optimally (π∗). This difference
is an upper bound on the learning value that can be achieved by the designer
in the decentralized system through information-provision. We then calculate the
percentage of this value achieved under FI (ΔπFI ) and under the Gittins-based
heuristic (Δπ(ĝ)).

The upper half of the table pertains to initial states which are “unfavorable”
for the designer, in the sense that there is an ex ante misalignment between the
provider of highest expected reward and the provider of highest Gittins index; by
contrast, the lower part of the table pertains to “favorable” initial states. Across
all instances we consider, the heuristic performs significantly better than full



206 K. Bimpikis and Y. Papanastasiou

Table 10.1 Proportion of first-best learning value captured in the decentralized system by FI ,
defined as ΔπFI = (πFI − πNI )/(π∗ − πNI ), and by the Gittins-based heuristic ĝ with K = 50,
defined as Δπ(ĝ) = (π(ĝ)− πNI )/(π∗ − πNI ) (where π∗, πFI , πNI and π(ĝ) denote expected
platform payoff under first best, FI , NI and the Gittins-based heuristic, respectively). r(x1, i) and
std(x1, i) denote, respectively, the expectation and standard deviation of the reward of provider
i ∈ {A,B} at the initial state x1. Parameter values: δ = 0.99

x1 = {(aA1 , bA1 ), (aB1 , bB1 )} r(x1, A) std(x1, A) r(x1, B) std(x1, B) ΔπFI (%) Δπ(ĝ)(%)

{(6, 3), (1, 1)} 0.67 0.15 0.5 0.29 47.2 96.3

{(12, 6), (1, 1)} 0.67 0.11 0.5 0.29 18.6 85.0

{(18, 9), (1, 1)} 0.67 0.09 0.5 0.29 6.0 83.7

{(15, 6), (2, 1)} 0.71 0.10 0.67 0.24 58.1 97.8

{(15, 6), (4, 2)} 0.71 0.10 0.67 0.18 66.0 90.7

{(15, 6), (6, 3)} 0.71 0.10 0.67 0.15 71.7 93.0

{(1, 1), (3, 6)} 0.5 0.29 0.33 0.15 87.6 100

{(1, 1), (6, 12)} 0.5 0.29 0.33 0.11 81.0 95.9

{(1, 1), (9, 18)} 0.5 0.29 0.33 0.09 80.0 100

{(1, 1), (3, 6)} 0.5 0.29 0.33 0.15 85.4 94.6

{(3, 3), (3, 6)} 0.5 0.19 0.33 0.15 85.9 94.6

{(6, 6), (3, 6)} 0.5 0.14 0.33 0.15 51.1 96.2

information. Furthermore, we observe that the benefit is highest when the initial
state is unfavorable: in such cases, under full information the customers tend to
stick with the ex ante preferable provider and only rarely engage in experimentation
with the alternative option. Next, notice that in each of the four subgroups of initial
states, the ex ante expected reward of the two providers is maintained constant,
but the variance of one of the two changes; this allows us to capture different
environments in terms of the potential benefits of exploration. Here, intuitively, we
observe that the benefits of information obfuscation are especially pronounced when
the quality of the ex ante preferable provider is relatively certain while the quality
of the alternative provider is relatively uncertain.

10.5.3 Minimizing Regret

In the setting we have considered so far, the designer’s objective was to maximize
the expected discounted sum of the customers’ rewards over an infinite horizon.
A related objective that has been studied in the literature is that of minimizing the
designer’s long-run regret. Typically, focusing on regret as the designer’s objective
simplifies the analysis (at least to some extent) and, thus, allows for a different set
of results that mainly provide reasonable guarantees of performance for relatively
simple strategies.

The discussion in this section follows Kremer et al. (2014) and Mansour et al.
(2015). In the context of minimizing regret, the performance of a suggested policy
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is compared to the case that the designer knows the stochastic process generating
the rewards for its customers, i.e., knows pi for i ∈ {A,B}, and, thus, would always
direct them towards the better of the two service providers.

Kremer et al. (2014) consider a horizon of T time periods (thus, T incoming
customers) and propose the following policy for generating messages (recommen-
dations) to them:

1. Customers are partitioned into �T/m� blocks of m customers each. Customers
belonging to the same block receive the same recommendation (and, thus, end
up using the same service provider at the induced equilibrium). Customers in the
first block are recommended to visit the provider that is ex ante more likely to
generate higher expected rewards (based on the common prior), say provider A.

2. The designer observes the realizations of the rewards for the first m agents
and computes the average empirical mean reward, μ̂A, for provider A, i.e., the
provider that is ex ante more likely to be a better choice for the customers.

3. Keeping μ̂A fixed throughout the horizon, the designer recommends provider B
to the i-th block of customers, if μ̂A ∈ (θi−1, θi], where {θi}�T/m�i=1 is a set of
thresholds that the designer determines so that the recommendations she makes
to customers are incentive compatible (essentially θi is such that customers
would be indifferent between following the designer’s recommendation and
choosing the provider that is ex ante more likely to generate higher rewards,
i.e., provider A, if μ̂A was exactly equal to the threshold).13 The first time
customers are recommended to use provider B (and, as a result, end up using
B), the designer computes μ̂B based on their realized rewards.

4. After the designer recommends provider B for the first time and computes μ̂B ,
the messaging policy takes the following form:

– If μ̂A ≤ θi−1, the designer recommends the provider that corresponds to the
highest empirical mean, i.e., she recommends provider A if μ̂A ≥ μ̂B , and
provider B otherwise.

– μ̂A > θi , the designer recommends provider A.

Kremer et al. (2014) provide the following theorem for the performance of the
messaging policy described above:

Theorem 1 Setting the size of each block to T 2/3 ln T , i.e., m = T 2/3 ln T , guaran-
tees that the average regret per customer, i.e., the expected difference between taking
the best possible action and following the designer’s recommendation, is bounded
above by:

C
ln T

T 1/3 ,

where C is a constant that depends only on the priors.

13This is a natural generalization of the computation in the example of Sect. 10.3.
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In other words, the theorem above implies that as the horizon gets longer (equiv-
alently, the population of customers getting recommendations from the platform
increases), the average regret per customer becomes negligible. Thus, this simple
policy that appropriately partitions customers into different blocks, achieves a
reasonably good asymptotic performance compared to always choosing the best
available service provider.

Mansour et al. (2015) extend Kremer et al. (2014) by considering a setting
where in each of T time periods n new customers interact with the platform and
simultaneously take an action (out of k ≥ 2 potential alternatives). The payoff of
each customer is determined by an underlying state (that captures the quality of
each of the alternatives) and the actions of the rest of the customers in her cohort.
As in Kremer et al. (2014) and Mansour et al. (2015) present results on (simple)
policies that are near-optimal (in a regret minimization sense) compared to the best-
in-hindsight policy.14

10.5.4 Incentivizing Customers Using Payments

Although we mainly focus on the role of the designer’s information disclosure
policy to induce system-optimal actions, it is reasonable to consider a setting
where the designer may use monetary transfers as a way to promote exploration
among the platform’s customers. In particular, a very interesting direction for future
work would be to extend the modeling framework in Sect. 10.4 to a setting where
the designer can combine her messaging policy with monetary transfers with the
objective of maximizing the discounted sum of the customers’ expected rewards
minus the corresponding transfers.

Relatedly, Frazier et al. (2014) explore the use of monetary transfers as a way
to incentivize exploration when the information generated by the customers’ past
interactions with the service providers is available to both the designer but also
to future customers, i.e., there is no ex post information asymmetry between the
designer and the customers. For example, two extreme policies that one could
consider (and Frazier et al. (2014) discuss briefly) would be the following:

1. The designer never compensates customers for taking an action. Then, each
customers chooses the action that maximizes her one time period payoff based
on the information generated by past actions. In other words, customers never
“explore” and always “exploit” (based on the history of actions and payoffs that
they observe). Such myopic behavior is typically suboptimal given that the rate
of exploration is inefficient from the designer’s perspective.

14Che and Horner (2017) also consider the problem of optimally designing recommendation
policies in a setting where information about the quality of two potential alternatives arrives
continuously over time—their setting uses the exponential bandit framework of Keller et al. (2005)
as a building block.
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2. On the other extreme, the designer compensates customers sufficiently to induce
customers to take the system-optimal action at every time period, i.e., the
designer offers a payment to the customer taking action at time t , which is
equal to the difference between the expected reward corresponding to the service
provider with the highest Gittins index at t and the service provider that would
be myopically optimal to choose given the available information. Obviously, this
policy generates the system-optimal rate of exploration, but it may lead to large
cumulative payments from the designer.

Frazier et al. (2014) provide a characterization of the extent to which payments
from the designer to the customers can mitigate their incentive constraints and
recover the optimal reward on aggregate. In particular, letting OPT denote the
first best cumulative rewards, i.e., the discounted sum of the expected rewards
corresponding to always choosing the service provider with the highest Gittins
index, they call a point (α, β) ∈ [0, 1]2 achievable at discount rate δ if there exists
a payment policy for the designer, i.e., a mapping from the history of observations
to payments to customers, that satisfies the following two conditions:

1. The discounted sum of the expected rewards corresponding to the policy is at
least as high as α · OPT.

2. The discounted sum of the expected payments corresponding to the policy is at
most as high as β · OPT.

The main result in Frazier et al. (2014) is the following theorem that provides a
remarkably clean characterization of the set of points that can be achieved by the
designer.

Theorem 2 Let (α, β) be a point in [0, 1]2. Then, (α, β) is achievable at discount
rate δ if and only if the following condition holds:

√
β +√1− α >

√
δ.

Theorem 2 provides some insight on what the designer can (and cannot) do using
payments (“coupons”) to incentivize the platform’s customers. A basic ingredient
of the proof is a set of policies that involve mixing between the two extremes
described above, i.e., the policy that involves no payments and the one where
payments are large enough to induce customers to take the action with the highest
Gittins index (thus, giving some idea on what type of policies may lead to good
performance for the designer). Note that this is a worst-case result, i.e., it bounds the
designer’s performance against any distribution of rewards. Thus, the designer could
potentially achieve a higher discounted sum of expected rewards in environments
where the uncertainty in payoffs takes a more specific form, like the one specified
in Sect. 10.4.15 Importantly though, Theorem 2 assumes that customers can observe
the entire history of actions and their corresponding rewards; thus, it does not offer
any insight on how the designer might appropriately disclose information to increase
the set of achievable points.

15However, the analysis may, in general, be quite challenging.
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10.6 Promising Directions

So far, we have mainly used the example of an online recommendation platform to
describe the main questions that motivate this chapter and illustrate a number of key
findings. However, the idea that a platform (principal) can appropriately design the
information flow to its users (agents) as a way to incentivize them to take actions
that may not be myopically optimal is more widely applicable and, to a large extent,
still unexplored. In this section, we briefly describe two other application settings
that may provide interesting starting points for future work in the area.

10.6.1 Learning in Dynamic Contests

Innovation contests are gaining in popularity as a tool that firms and institutions
employ to outsource their R&D and innovation efforts to the crowd. An open call
is placed for a project that participants compete to finish and the winners, if any,
are awarded a prize. Recent successful examples include The NetFlix Prize and the
Heritage Prize,16 and a growing number of ventures like Innocentive, TopCoder,
and Kaggle provide online platforms to connect innovation seekers with potential
innovators.

The objective of the contest designer is to maximize the probability of reaching
the innovation goal while minimizing the time it takes to complete the project.
Obviously, the success of a contest depends crucially on the pool of participants
and the amount of effort they decide to exert. Typically, innovation projects have the
following three key features. First, progress towards the end goal takes the form of a
series of breakthroughs interspersed between long intervals of seeming stagnation.
Second, and quite importantly, it is not clear at the onset whether the end goal is
attainable, even if it is clearly specified, or which of potentially many alternative
approaches would be the best one to use. Finally, a third feature that distinguishes
innovation contests from other settings involving competition among agents, is that
agents can learn from one another: an agent’s (partial) progress towards the goal
provides useful information to the rest about the feasibility of the project and/or the
best approach to follow.17

16The NetFlix Prize offered a million dollars to anyone who succeeded in improving the company’s
recommendation algorithm by a certain margin and was concluded in 2009. The Heritage Prize was
a multi-year contest whose goal was to provide an algorithm that predicts patient readmissions to
hospitals. A successful breakthrough was obtained in 2013.
17In addition to the work that we discuss here, which mainly focuses on the dynamics of learning
and competition in contests, there is also an extensive body of work that explore a number of
questions in a static framework, e.g., Terwiesch and Xu (2008), Ales et al. (2017), and Körpeoğlu
and Cho (2017).
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These three features imply that news about a participant’s progress has the
following interesting dual role: it makes agents more optimistic about the state of
the world, as the goal is more likely to be attainable; thus, agents have a higher
incentive to exert costly effort. We call this the encouragement effect.18 At the same
time, such information implies that one of the participants has a lead, which might
negatively affect effort provision from the remaining agents as the likelihood of
them beating the leader and winning the prize becomes slimmer. We refer to this
as the competition effect. These two effects interact with one other in subtle ways
over the duration of the contest, and understanding this interaction is of first-order
importance for contest design.

Thus, the contest’s information disclosure policy (e.g., through intermediate
milestone awards) may have a large effect on the agents’ participation and effort
provision and, consequently, on the likelihood that the contest will be successful.
In recent work, Bimpikis et al. (2018) consider the question of whether and
when should the contest designer disclose information regarding the competitors’
(partial) progress with the goal of maximizing her expected payoff. Interest-
ingly, they illustrate the benefits of non-trivial information disclosure policies,
where the designer withholds information from the agents and only releases it
after a certain amount of time has elapsed. Such designs further highlight the
active role that information may play in incentivizing agents to participate in the
contest.

Second, they identify the role of intermediate awards as a way for the designer to
implement the desired information disclosure policy—the policy that maximizes
the effort provision of the agents and consequently the chances of innovation
taking place. Intermediate awards are very common in innovation contests (the
aforementioned NetFlix and Heritage prizes are examples of contests that have
employed intermediate awards) and the discussion here provides a potential reason
for their ubiquity.

A simple illustration of the main ideas in Bimpikis et al. (2018) is the following.
Consider an innovation contest that consists of well-defined milestones. For exam-
ple, the goal of the Netflix prize was to achieve an improvement of 10% over the
company’s proprietary algorithm, with a first progress prize set at 1% improvement.
In this example, reaching the milestone of 1% improvement constitutes partial
progress towards the goal, and we assume that the agents and the designer are able
to verifiably communicate this. Assume for now that the innovation is attainable
with certainty given enough effort, and that agents are fully aware of that. The
lack of progress towards the goal is then solely a result of the stochastic return on
effort. When no information is disclosed about the agents’ progress, they become
progressively more pessimistic about the prospect of them winning, as they believe
that someone must have made progress and that they are now lagging behind in

18The term “encouragement” originates from the literature on strategic experimentation (e.g.,
Bolton and Harris 1999; Keller et al. 2005).
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the race towards the end goal. This might lead them to abandon the contest, thus
decreasing the aggregate level of effort and consequently increasing the time to
complete the innovation project.

In contrast, when there is uncertainty about the feasibility of the end goal, agents
that have made little or no progress towards the goal become pessimistic about
whether it is even possible to complete the contest. If this persists, an agent may
drop out of the competition as she believes that it is not worth putting the effort
for what is likely an unattainable goal, reducing aggregate experimentation in the
process and decreasing the chances of reaching a feasible innovation.

This highlights the complex role that information about the agents’ progress play
in this environment. In the first scenario, when the competition effect is dominant
(since there is no uncertainty about the attainability of the end goal), disclosing
that one of the participants is ahead may deter future effort provision as it implies
that the probability of winning is lower for the laggards. In the second case, when
the encouragement effect dominates, an agent’s progress can be perceived as good
news, since it reduces the uncertainty regarding the feasibility of the end goal.19

Several directions may be worth pursuing following the main ideas presented
in this section. Bimpikis et al. (2018) and Halac et al. (2017) consider contests
with well-defined goals that may be unattainable. Alternatively, one could consider
a setting where the contest designer’s goal is to obtain the best solution or
implementation possible to a given project. There can exist multiple approaches that
one could employ and observing each other’s progress reveals information about
their relative merits.20 What is then the optimal way to disclose information as way
to balance the tradeoff between exploring the space of alternative approaches and
driving effort towards those that look most promising?

An agent’s progress provides information not only about the feasibility of the
innovation project or the quality of the approach she is employing but also her skill
level. Thus, in a setting where there is uncertainty about how good the competition
is, appropriately designing an information disclosure policy may play an important
role in keeping agents engaged and willing to exert effort.21

10.6.2 Dealing with Misinformation

The 2016 US presidential elections and the associated “fake news” phenomenon
highlighted the importance of incentivizing a new form of “exploration” in the

19Bimpikis and Drakopoulos (2016) and Halac et al. (2017) also consider a strategic experimen-
tation framework to study the interplay between a principal and the agents’ incentives and how
appropriately designing information disclosure mechanisms may increase welfare.
20Girotra et al. (2010), Kornish and Ulrich (2011), Huang et al. (2014), and Jiang et al. (2016) are
recent empirical studies that consider the role of learning and feedback in crowdsourcing contests
and, more broadly, in the innovation process.
21There are also a number of notable recent papers that consider different aspects of contest design
and its applications, e.g., Seel and Strack (2016), Hu and Wang (2017), and Strack (2016).
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online space. Rather than exploration with the goal of identifying the quality of
a product, the term here refers to exploration with the goal of evaluating the quality
of an information source; for instance, if the information source in question is a
news article circulating in a social media platform, exploration refers to the process
of “fact-checking” the article’s content to determine its validity.

With this context in mind, Papanastasiou (2017) develops a sequential model
of news propagation with endogenous fact-checking, and identifies pathological
outcomes whereby fabricated news articles fail to be detected and subsequently
spread throughout the society, manipulating the beliefs of the agents in the process.
In this setting, there is “under-exploration” from a system perspective in the sense
that individual agents do not internalize the impact of their fact-checking decisions
on the actions and beliefs of their downstream peers, which in turn may result in
inadequate levels of fact-checking. The study proceeds by analyzing a first-order
defense against the propagation of fake news involving a social media platform
that decides whether and when to intervene with the sharing of a news article by
conducting its own fact-check (an approach recently adopted by Facebook).

An alternative to the platform conducting its own fact-checks is that of incentiviz-
ing the agents to do so through direct monetary payments, in a manner analogous
to the setup of Frazier et al. (2014). Perhaps a more interesting avenue, however,
is the design of appropriate information-disclosure mechanisms that may be able
to achieve the same effect in a cost-effective way. One insight from Papanastasiou
(2017) is that the fact-checking decisions of agents are influenced to a large extent by
the number of times the information in question has been shared between their peers.
Thus, one might expect that the concealment of such information by the platform
may increase the amount of scrutiny an article undergoes, thereby reducing the
propagation of fabricated information. At the same time, too much fact-checking
is also an inefficient outcome: every fact-check incurs a cost to the agents which
may be unnecessary. It follows that, as in Papanastasiou et al. (2017), the optimal
information policy must strike a balance between allowing the agents to exploit the
information generated by their peers, while also motivating them to explore (fact-
check) at a system-optimal level.

In a somewhat related direction, Candogan and Drakopoulos (2017) study the
tradeoff between user engagement and misinformation in the context of an online
social networking platform. The content available on the platform may contain
inaccuracies and false claims. The platform, which knows the quality of its content,
may use a signaling device, e.g., recommend whether agents engage or not with the
content, so as to induce a desired engagement behavior. A main emphasis in this line
of work is the interplay between the platform’s (signaling) policy and the structure
of the agents’ social network.

10.7 Concluding Remarks

This chapter showcases that choosing whether, when, and what information to
disclose to agents may have a first-order impact on the payoff of a principal. Most
of the exposition centers around the example of an online recommendation platform



214 K. Bimpikis and Y. Papanastasiou

(e.g., Yelp or Tripadvisor) but as we highlight in Sect. 10.6 these ideas may apply
to many more real-world settings. Our hope is that the discussion provided here
makes clear that information disclosure policies may be effective operational levers
especially in the context of online platforms that rely on their users for ensuring a
high quality of service. We believe that the role of information flows in mitigating
the potential misalignment of interests between a principal and an agent/set of agents
is quite important and relatively unexplored, and may thus provide a fruitful avenue
for future research.22 Although the scope of the ideas presented here is quite broad,
we expect that they will be particularly relevant in the design and operations of
online platforms and marketplaces.
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Chapter 11
Design of an Aggregated Marketplace
Under Congestion Effects: Asymptotic
Analysis and Equilibrium
Characterization

Ying-Ju Chen, Costis Maglaras, and Gustavo Vulcano

Abstract We study an aggregated marketplace where potential buyers arrive and
submit requests-for-quotes (RFQs). There are n independent suppliers modeled
as M/GI/1 queues that compete for these requests. Each supplier submits a bid
that comprises of a fixed price and a dynamic target leadtime, and the cheapest
supplier wins the order as long as the quote meets the buyer’s willingness to
pay. We characterize the asymptotic performance of this system as the demand
and the supplier capacities grow large, and subsequently extract insights about the
equilibrium behavior of the suppliers. We show that supplier competition results
in a mixed-strategy equilibrium phenomenon that is significantly different from
the centralized solution. In order to overcome the efficiency loss, we propose a
compensation-while-idling mechanism that coordinates the system: each supplier
gets monetary compensation from other suppliers during his idle periods. This
mechanism alters suppliers’ objectives and implements the centralized solution at
their own will.
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11.1 Introduction

11.1.1 Background and Motivation

Electronic markets (e-markets) have proliferated in the last two decades or so as
means to efficiently aggregate supply and demand for services or goods, in an
effort to reduce search and transaction costs, improve market outcomes, and benefit
both participants that supply and demand services. We study a mathematical model
motivated by such marketplaces for services or goods that are subject to congestion
effects, manifested in terms of delays until the product is delivered. The focus is on
analyzing the market dynamics and gaining insight regarding the competition across
suppliers when services are produced in a make-to-order manner (that is modeled
via a queueing facility) and where congestion signals are state-dependent.

As part of the dynamics of the e-market evolution, several large-scale, market-
places have emerged. Examples include global freelancing platforms like Upwork,
Guru and Freelancer, where business entities and independent workers connect
and collaborate remotely. To illustrate the magnitude of the phenomenon, by 2017
Upwork has connected 12M registered freelancers with 5M registered clients to
execute 3M jobs posted annually, worth a total of $1 billion USD.

In these platforms, many small service providers (e.g., individual computer
programmers) seek work orders. Customers (e.g., employers) post job descriptions
in the form of RFQs, and have service providers bid on the work. Customers then
look at previous ratings and work history of the different candidates before settling
on either a contract rate, or a pay-per hour agreement. Generally, money is escrowed
by each of the websites (intermediaries), which release the payment to the service
provider when the work is completed, while skimming a commission – typically
5–20% of money that changes hands. In addition, sometimes intermediaries also
charge a membership fee to the parties involved to enjoy more benefits (e.g.,
Freelancer offers different monthly and annual plans).

An important portion of the projects auctioned out via these markets are complex
and could be better addressed via a team as opposed to an individual. To better serve
and bid in such cases, many freelance workers are represented via agents that pool
capacity as traditional agents would do, and also provide project management in
executing the complex projects so as to best use the pooled resources. These agents
aggregate the capacity of many individual freelance providers.

In these settings, customers usually require specific skill sets, quality, and
timeliness from their providers, and account for these needs as well as for cost in
their utility function. This multidimensional assessment can be captured by a scoring
index that a customer assigns to each potential provider. The bids are ranked, and
the order is then awarded to the most “desirable” service provider. In this way,
the final allocation for each work order is decided based on a reverse auction.
Even though multiple service attributes can be subsumed in the scoring function,
two of the most relevant ones are expected delay and price. Customers visiting
these marketplaces usually seek quick solutions and are willing to trade prices
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with waiting times. In this regard, aggregated marketplaces like the aforementioned
ones raise several interesting practical and theoretical questions. Sometimes the role
of the intermediary is passive, neutral, and limits to pooling supply and demand
in an exchange platform. In this case: How does the system dynamics evolve as
service providers (suppliers) compete for each potential order by posting a price
and a state-dependent delay estimate? How should these suppliers determine their
bidding strategies? Is the market efficient under competitive behavior? What is the
typical distribution of completion delays that emerges in equilibrium (e.g., what set
of different delays would a randomly arriving RFQ encounter)?

When the market is inefficient, the intermediary may take a more active role in
the sense of proposing a coordination scheme to align the suppliers’ incentives.
Is it possible to achieve this centralized optimal solution? If so, how can it be
implemented in practical terms?1 For instance, nowadays AirBnb helps the hosts
to make pricing decisions (to maximize the total pie of collected revenue) and eBay
helps sellers to set prices by suggesting the trending price for an item.

We make some initial progress in addressing these questions. Specifically, we
introduce a stylized mathematical model to study the aggregated marketplace in
settings characterized by high volume of transactions. The first goal of our study is
to understand the dynamics and performance of the system, and gain insight on the
pricing and capacity game among suppliers. Second, to gain insight on the dynamics
of such a marketplace, specifically understand how congestion delays reduce overall
demand, and how this reduction, in turn, reduces the congestion offered by the
suppliers. This moderating effect of congestion stems from the fact that customers
are delay sensitive, and, furthermore, that their choice of the “cheaper” supplier to
send their order will reduce the workload directed to more congested suppliers.
Moreover, the strategic choice made by the arriving customers will couple the
congestion (or backlog) of all suppliers – something that we observe in practice.
Finally, identify the coordination failure of this marketplace, if there is one, and how
it manifests itself, and propose simple coordination mechanisms. Methodologically,
we focus on large scale systems and develop a useful framework for studying

1There are other applications that share the same salient feature of several firms competing in
offering some type of substitutable service that is differentiated with respect to its price and delay.
Perhaps one of the most pervasive comes from the US equities market, which comprises of many
exchanges, such as the NYSE, NASDAQ, NYSE Arca, BATS Global Markets, etc. Exchanges
typically function as electronic limit order books, operating under a “price-time” priority rule,
and their high-frequency dynamics can be modeled as multi-class queueing systems. Exchanges
offer a rebate to liquidity providers, i.e., traders that post limit orders that “make” markets when
their orders get filled, and charge a fee to “takers” of liquidity that initiate trades using marketable
orders that transact against posted limit orders. The magnitudes of these make-take fees vary across
exchanges and are comparable to the spread plus a significant fraction of the overall trading costs.
Exchanges often change their fees and rebates in an effort to attract liquidity. Market participants
employ so called “smart order routers” that take into account real-time market data, including
queue and trading rate information, and formulate an order routing problem to trade off between
rebates and a notion of expected delay, fill probabilities, and/or expected adverse selection. Once
again, prices are fixed but delays are state dependent.
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the supplier game, which is otherwise intractable, by studying a much simpler
approximating one dimensional diffusion process instead of a multi-dimensional,
state dependent discrete Markov process.

In a bit more detail, we assume that potential buyers arrive according to a
Poisson process and submit order requests, and that the suppliers (modeled as
M/GI/1 queues) compete for these requests. Initially, suppliers decide the capacity
(i.e., service rate) to offer, which is a static, long term decision. While operating,
each supplier processes orders in a first-in-first-out manner, and submits a bid that
comprises a fixed price and a target leadtime that depends on his own queue status.
In fact, a key distinction of our work is that the delay quotations are dynamic rather
than based on a steady-state assessment of the queue size. When suppliers submit
bids, they face an economic tradeoff: a high price will lead to high revenues per
order, but will reduce the total number of orders awarded, which will cause excessive
idleness and implicit revenue loss; a low price will result in many awarded orders
and large backlogs, that, in turn, will cause long delay quotations thus increasing
the full cost of the respective bid. The arriving buyer then uses a scoring function
to compute the net utility associated with her bid, and awards the order to the
lowest-quote supplier in order to maximize her own surplus (provided that it is
nonnegative).

11.1.2 Overview of Results

This appears to be one of the first papers to study competition in queues with
substitutable products or services and state dependent congestion information. The
discrete choice among substitutable products of potential consumers, the state
dependent nature of the congestion signals, and the decentralized control among
suppliers complicate the analysis of this system, rendering brute force analysis to be
essentially intractable.2

The first contribution is to propose a tractable way for studying the decentralized
market. As a preliminary step towards solving the capacity and pricing game, we
analyze the queueing performance of this stochastic dynamic system assuming that
the price vector is given. The solution to this problem allows suppliers to evaluate
their revenues given their prices as well as the prices of the competitors, which is
an essential subroutine in the equilibrium analysis of the supplier pricing game. So,

2The distinction regarding consumer choice model is important. With partially substitutable
products, one could model consumer choice through a multi-product demand function, where the
demand for one product depends on the price and delay of all products in a continuous manner.
This is not the case with perfectly substitutable products, where demand may switch from one
product to another in a discontinuous manner. For example, in a setting with two equally priced
products, all consumers will select the one with the lower delay. This would increase the delay
estimate of the faster option, causing all consumers to choose the alternative option. That is, small
differences in price and delay, may lead to dramatic differences in demand for one of the suppliers.
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given a specified price vector, our first set of results characterizes the behavior of
the marketplace using an asymptotic analysis where the potential demand and the
supplier processing capacities grow large simultaneously. This asymptotic analysis
is motivated by the following observation: If this market were served by a unique
supplier (modeled as an M/GI/1 queue as well), then it would be economically
optimal for this supplier to set the price that induces the so-called “heavy-traffic”
operating regime; i.e., rather than assuming that the system is operating in the heavy
traffic regime, as is often done, this result provides a primitive economic foundation
that this regime emerges naturally since it optimizes the system-wide revenues (e.g.,
see Besbes 2006; Maglaras and Zeevi 2003). Specifically, if Λ is the market size,
then the above result states that the economically optimal price is of the form p∗ =
p̄+π/

√
Λ, where p̄ is the price that induces full resource utilization in the absence

of any congestion, and π is a constant.
With the above fact in mind, we formulate the performance analysis sub-problem

in a novel way that becomes asymptotically tractable in settings with large capacities
and large volume of transactions. Specifically, based on the above observation, the
starting point of our analysis is to write the suppliers’ price bids as perturbations
around the price p̄ of the form pi = p̄ + πi/

√
Λ, for a constant πi , where Λ

is viewed as a natural proxy for system size. Letting Λ grow large, we derive
the corresponding fluid and diffusion approximations. The fluid model transient
analysis is helpful in establishing an important state space collapse (SSC) result
through a variation of an approach developed by Bramson (1998). The SSC property
establishes that the suppliers’ dynamics are asymptotically coupled and can be
described as a function of the aggregate (system-wide) workload process, and,
moreover, SSC implies that a supplier is able to know his competitors’ bids by
simply observing awaiting orders in his own buffer. We prove a weak convergence
result of the workload process to a one-dimensional reflected Ornstein–Uhlenbeck
(O-U) process, where interestingly the reflection point may be away from zero
depending on the suppliers’ prices. The latter implies the nonintuitive property that
the aggregate workload process can never drain even though some of the suppliers
may be idling, and this happens if the suppliers differ in their pricing. The derivation
of the diffusion model extends “standard” results to this setting with self-interested
routing policies based on dynamic information, which is of independent interest.

Second, using the asymptotic characterization of system behavior at a fixed
choice of prices and capacities, we characterize the revenue stream of each supplier
using the steady state properties of the reflected O-U process. This is then used to
study the resulting pricing game. We find that the pricing game does not admit a
pure strategy equilibrium. We specify the structure of the supporting mixed strategy
equilibria where suppliers randomize over their pricing decisions. We also prove that
the second-order efficiency loss of the decentralized solution can be arbitrarily large.
It is worth noting that our approximate analysis of the supplier game is internally
consistent in the sense that the lower order price perturbations that essentially
capture the supplier pricing game do not become unbounded, but rather stay finite.
In essence, all suppliers choose to operate in the asymptotic regime we identified
and used in our analysis. The framework of studying the appropriate asymptotic
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formulation of the aggregated market in the context with self interested buyers and
state dependent congestion information, and using the derived diffusion to study the
supplier game is novel. Such problems had not been studied in the literature before,
in part due to their inherent complexity, and their proposed roadmap advanced seems
to be of broader interest.

Third, the discrepancy between the centralized solution and the decentralized
equilibrium calls for the development of a mechanism to coordinate the marketplace,
so that all suppliers would self-select to price according to the centralized solution.
Our proposal relies on a transfer pricing scheme that compensates suppliers during
idle periods. The existence of the intermediary in the motivating examples described
above provides the natural support to implement it.

11.1.3 Literature Review

Our work touches on three related bodies of literature: (1) Economics of queues,
(2) Competitive models in queueing contexts, and (3) Approximation schemes to
analyze complex queueing models.

The literature that studies pricing in the context of single-server queues dates
back to Naor (1969). The demand model that we consider here is inspired by
Mendelson (1985): There is a single class of potential customers that arrive
according to a Poisson arrival process, each having a private valuation that is an
independent draw from a general distribution, and a delay sensitivity parameter that
is common across all customers. Mendelson and Whang (1990) extends that model
to multiple customer types, and Afèche (2013) extends it to a revenue maximization
setting. In the context of queueing models with pricing and service competition,
starting from the early papers by Levhari and Luski (1978) and Luski (1976),
customers are commonly assumed to select their service provider on the basis of a
“full cost” that consists of a fixed price plus a waiting cost. In both Levhari and Luski
(1978) and Luski (1976), competition is modeled in a duopoly setting where firms
operate as M/M/1 queueing systems. Relaxations of the early papers include Loch
(1991), which studies a variant of Luski (1976) in which the providers are modeled
as symmetric M/GI/1 systems. Lederer and Li (1997) generalizes Loch (1991) for
arbitrary number of service providers. Allon and Federgruen (2007) treats the price
and waiting time cost as separate firm attributes that can be traded off differently by
each arriving customer. These papers focused on customers making decisions based
on steady-state performance measures.

Our use of asymptotic approximations and heavy traffic analysis to study the
supplier game is motivated by the results of Besbes (2006) and Maglaras and Zeevi
(2003), who showed that in large scale systems the heavy traffic regime is the one
induced by the revenue maximizing price. Our work implicitly assumes the validity
of the heavy traffic regime in deriving its asymptotic approximation (as opposed
to proving it as in the two papers above). The equilibrium pricing behavior of the
competing suppliers supports the rationale of this assumption in the sense that no
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supplier wishes to price in a way that would deviate from that operating regime.
The derivation of our limit model makes heavy use of the work by Mandelbaum
and Pats (1995) on queues with state dependent parameters, and of the framework
developed by Bramson (1998) for proving state space collapse results. We also use
technical results from Ata and Kumar (2005) and Williams (1998) in our analysis.
However, the combination of all our model features does not fit neatly the technical
requirements of the aforementioned papers, as shown in the proofs contained in the
online appendix.

A queueing paper that studies a model that is similar to ours in a heavy
traffic asymptotic regime is Stolyar (2005). The key differences are the following:
(a) Stolyar (2005) assumes strictly convex delay cost functions as opposed to linear,
(b) it does not consider pricing (or some term that could account for its effect in the
routing rule), and (c) it does not allow for admission control decisions that can turn
away users when the system is congested. The latter is captured by the behavior of
self-interested users that differ in their valuations, and as a result will choose not join
the market if the full cost exceeds their value. Taken together, these three elements
necessitate a new analysis that leads to insights that differ than what was observed
in Stolyar (2005). Perhaps the most notable difference is the fact that as a result of
the pricing game, the workload process will not reflect at the origin, but instead it
will reflect at some strictly positive quantity.

Other papers accounting for congestion pricing include DiPalantino et al. (2011),
which studies two types of contractual agreements in oligopolistic service indus-
tries: service level guarantees (SLG) and best effort (BE), where firms provide the
best possible service given their infrastructure. Allon and Gurvich (2010) appeals
to an asymptotic analysis to study a competitive game of a queueing model, and
propose a general recipe for relating the asymptotic outcome to that of the original
system. They show that the pricing decisions and service level guarantees result in
respectively first-order and second-order effects on the suppliers’ payoffs. At a high
level the approach of Allon and Gurvich (2010) is similar to ours, but the presence of
real-time delay information and of perfectly substitutable lead to different models
and results. However, and different from our mixed-strategy equilibrium analysis,
they exploit the notion of ε-Nash equilibrium to explain the players’ behavior.
The follow-up paper Allon et al. (2012) studies a large-scale marketplace with a
moderating firm and numerous service providers, but different from us the authors
use a static measure of the waiting time standard (usually the expected value or some
percentile of the steady state distribution). Finally, Maglaras et al. (2016) studied a
mathematical model similar to ours, albeit, in a non-stationary environment, which
was motivated by limit order routing in fragmented limit order book (financial
equity) markets; apart from deriving a similar state space collapse result, they found
empirical support for their findings in an analysis of a large scale US equities market
data set.

The remainder is organized as follows. In Sect. 11.2, we describe the model
details. Next, Sect. 11.3 derives the asymptotic characterization of the marketplace
behavior, and Sect. 11.4 characterizes the equilibrium behavior of the supplier pric-
ing game. Finally, Sect. 11.5 includes our concluding remarks. All the proofs and
more details of the analysis can be found in the technical report Chen et al. (2008).
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11.2 Model

11.2.1 Description of the Market

We consider an aggregated marketplace where a divisible homogeneous product
(e.g., computer programming work) is exchanged. The market functions as follows:

Order arrivals Potential buyers arrive to the marketplace according to a Poisson
arrival process with intensity Λ, and submit requests-for-quotes (RFQs). Each RFQ
corresponds to the procurement of one unit of the product. Each buyer has a private
valuation v for her order that is an independent draw from a general, continuously
differentiable distribution F(·). Buyers are delay-sensitive and incur a cost c per
unit of delay. Thus, buyers are homogeneous with respect to delay preferences, and
heterogeneous with respect to valuations (though symmetric across the common
c.d.f. F(·)). A buyer that arrives at time t initiates a RFQ process to procure one
unit of the product.

Suppliers The market is served by a set of suppliers N = {1, . . . , n}. Each
supplier i is modeled as an M/GI/1 queue with an infinite capacity buffer
managed in a First-In-First-Out fashion. Service times at supplier i follow a general
distribution with mean 1/μ′i and standard deviation σi . Let μ̂ := ∑

i∈N μ′i/Λ
be the (normalized) aggregated service rate of the market. We assume that the
capacity vector μ′ ≡ {μ′i} is common knowledge. This fact can also be sustained by
information provided by intermediary entities like the ones discussed in Sect. 11.1.

Market mechanism Suppliers compete for this request by submitting bids that
comprise a price pi and a target leadtime di(t). We assume that the price component
of the bid is state-independent, i.e., supplier i always submits the same price bid pi

for all orders. The leadtime component of the bid submitted by each supplier i is
state-dependent and equals the expected time it would take to complete that order;
cf. Eq. 11.6 later on. We are assuming here that the supplier always submits a
truthful estimate of the expected delay di(t). In fact, in the presence of a market
intermediary, the misreport of expected delays is discouraged through the display
of past experiences of buyers with a given supplier, e.g. through publicly available
ratings and reviews. This revealed information acts as a threatening device to favor
the honest disclosure of suppliers’ availabilities.

On their end, buyers are price- and delay-sensitive, and for each supplier i they
associate a “full cost” given by pi + cdi(t), where the delay sensitivity parameter
c is assumed to be common for all buyers. Upon reception of the bids, the buyer
awards her order to the lowest cost supplier, provided that her net utility is positive,
i.e., v ≥ mini∈N {pi + c di(t)}; otherwise, the buyer leaves without submitting any
order. Whenever a tie occurs, the order is awarded by randomizing uniformly among
the cheapest suppliers.3

3We could also allow other tie-breaking rules, and it can be verified that our results are not prone
to the specific choice of tie-breaking rules.
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Given vectors p = (p1, . . . , pn), and d(t) = (d1(t), . . . , dn(t)), the instanta-
neous rate at which orders enter this aggregated market is given by

λ(p, d(t)) = ΛF̄
(

min
i
{pi + c di(t)}

)
. (11.1)

Focusing on the right-hand-side of the above expression, we note that the buyers’
valuation distribution F(·) determines the nature of the aggregate demand rate
function.4 Let x = mini pi and, with slight abuse of notation, write λ(x) in place
of λ(p, 0), where 0 is the vector of zeros. We further define ε(x) = −(dλ(x)/dx) ·
(x/λ(x)). The expression ε(x) can be regarded as the price elasticity of the demand
rate, as it measures the proportional change of demand rate in response to the price
change. We will make the following intuitive economic assumption:

Assumption 1 Given x = mini pi , λ(p, 0) is elastic in the sense that ε(x) > 1 for
all price vectors p in the set {p : 0 ≤ λ(p, 0) ≤∑n

i=1 μ
′
i}.

The above assumption implies that in the absence of delays, a decrease in the
minimum price would result in an increase in the market-wide aggregated revenue
rate p ·λ(p, 0).5 Of course, this would increase the utilization levels of the suppliers
and lead to increased congestion and delays, thereby moderating the aggregate
arrival rate λ(p, d(t)).

Let A(t) be the cumulative number of orders awarded to all the competing
suppliers up to time t ,

A(t) = N

(

Λ

∫ t

0
F̄
(

min
i∈N
{pi + c di(s)}

)
ds

)

, (11.2)

where N(t) is a unit rate Poisson process and the equality holds only in distribution.
To represent the cumulative number of orders for each individual supplier, we first
define

J (t) ≡ {i ∈ N : pi + cdi(t) ≤ pj + cdj (t),∀j ∈ N } (11.3)

as the set of cheapest suppliers at time t . Further, define ΞJ (t) as the random
variable that assigns the orders uniformly amongst the cheapest suppliers. That
is, ΞJ (t) = i with probability 1/|J (t)| if i ∈ J (t), where |J (t)| > 0 is

4For example, if v ∼ U [0,Λ/α], then the demand function is linear, of the form λ(x) = Λ− α x,
where x = mini{pi+cdi(t)}; if v ∼ exp(α), then the demand is exponential, with λ(x) = Λe−αx .
5This implication follows directly from the economics literature. When ε(x) > 1, the proportional
increase of demand rate is larger than the proportional decrease of price. As the revenue is the
product of price and demand rate, the aggregated revenue rate ends up being higher. Suppose
further that there are no congestion effects and that there exists a central planner who could select
a common price p and an aggregate capacity μ̂. Under a linear capacity cost hμ̂ and an arrival
rate Λ, the solution to the problem maxp,μ̂{pλ(p, 0) − hΛμ̂: 0 ≤ λ(p, 0) ≤ Λμ̂} results in a
capacity decision that satisfies the above assumption.
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the cardinality of J (t), and ΞJ (t) = i with zero probability otherwise. For
the ease of the exposition, we will assume that J (t) and ΞJ (t) are defined as
continuous processes for all t ≥ 0, even if no actual arrival occurs at that time. This
allows us to write the cumulative number of orders awarded to supplier i, denoted
by Ai(t), as

Ai(t) =
∫ t

0
1{ ΞJ (s) = i}dA(s), (11.4)

where 1{·} is the indicator function. Note also that A(t) =∑i∈N Ai(t).

Supplier dynamics Let Qi(t) denote supplier i’s number of jobs in the system
(i.e., in queue or in service) at time t , and Ti(t) denote the cumulative time that
supplier i has devoted into producing orders up to time t , with Ti(0) = 0. Let Yi(t)
denote the idleness incurred by supplier i up to time t . Note that Ti(t)+Yi(t) = t for
each supplier i; moreover, Yi(t) can only increase at a time t when the queue Qi(t)

is empty. Let Si(t) be the number of supplier i’s service completions when working
continuously during t time units, and Di(t) = Si(Ti(t)) be the cumulative number
of departures up to time t . The production dynamics at supplier i are summarized in
the expression:

Qi(t) = Qi(0)+ Ai(t)−Di(t). (11.5)

Given this notation, then

di(t) = Qi(t)+ 1

μ′i
, (11.6)

is the expected sojourn time of the new incoming order, given that it gets awarded to
supplier i and the current queue length is Qi(t). Under our modeling assumptions,
supplier i will therefore bid (pi, di(t)), where di(t) is given by Eq. 11.6. Each
supplier knows his own system queue length Qi(t), but is not informed about his
competitors’ queue lengths.

11.2.2 Problems to Address

We study three problems related to the market model described above:

1. Performance analysis for a given p and μ′: Given a fixed price vector p and
a vector of processing capacities μ′, the first task is to characterize the system
performance, i.e., to characterize the behavior of the queue length processes
Qi(t) at each supplier, and calculate the resulting revenue streams for each
supplier. A supplier’s long-run average revenue is

Ωi(pi, p−i ) ≡ pi · lim
t→∞

Si(Ti(t))

t
, (11.7)
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where p−i ≡ (p1, . . . , pi−1, pi+1, . . . , pn) denotes other suppliers’ price
decisions. Our goal, therefore, is to analyze the performance of relevant system
dynamics that leads to a tractable representation of these long-run average
revenues.

2. Characterization of market equilibrium: The above problem serves as an input
to study the competitive equilibrium that characterizes the supplier capacity and
pricing games, both of which are one-shot games where each supplier selects
his service rate and static price, successively. We further show that the capacity
selections constitute the first-order effects on the suppliers’ payoffs and the
pricing decisions are of second order; thus, we can conveniently decouple the
equilibrium analysis into two separate stages. For the first-stage, capacity game,
since the capacities (service rates) are assumed to be publicly observable, we
adopt the Nash equilibrium as our solution concept. For the second-stage, pricing
game, the suppliers may be uninformed about the queue lengths of the competi-
tors, which may potentially lead to information incompleteness. However, as we
will show, the suppliers’ competitive behavior is insensitive to this knowledge;
consequently, we adopt again the standard Nash equilibrium (under complete
information) as our solution concept. Given the revenue specified in Eq. 11.7, a
Nash equilibrium {p∗i } requires that p∗i = arg maxpi

Ωi(pi, p
∗−i ), ∀i ∈ N .

3. Market efficiency and market coordination: Our objective here is to characterize
the efficiency loss:

max
p

{∑

i∈N
Ωi(pi, p−i )

}

−
∑

i∈N
Ωi(p

∗
i , p

∗−i ), (11.8)

i.e., the difference between the revenue of a system where a central planner would
control the pricing decision of each supplier (i.e., the first best solution), and
the sum of the revenues collected in the competitive framework. If the market
equilibrium is inefficient, we would like to specify a simple market mechanism
that coordinates the market and achieves the first best solution identified above.
Such a mechanism could specify, for example, the rules according to which
orders are allocated and payments are distributed among the suppliers.

11.3 Asymptotic Analysis of Marketplace Dynamics

This section focuses on the first problem described in Sect. 11.2. Despite the
relatively simple structure of the suppliers’ systems and the customer/supplier
interaction, it is still fairly hard to study their dynamics due to the state-dependent
delay quotations and the dynamic allocation of orders. Our approach is to develop an
approximate model for the market dynamics that is rigorously validated in settings
where the demand volume and processing capacities of the various suppliers are
large. In this regime, the market and supplier dynamics simplify significantly, and
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are essentially captured through a tractable one-dimensional diffusion process. This
limiting model provides insights about the structural properties of this market, and
provides a vehicle within which we are able to analyze the supplier game and the
emerging market equilibrium. This is pursued in the next section.

11.3.1 Background: Revenue Maximization for an M/M/1
Monopolistic Supplier

As a motivation for our subsequent analysis, this subsection will summarize some
known results regarding the behavior of a monopolistic supplier modeled as an
M/M/1 queue that offers a product to a market of price and delay sensitive cus-
tomers. The supplier posts a static price and dynamically announces the prevailing
(state-dependent) expected sojourn time for orders arriving at time t , which is given
by d(t) = (Q(t) + 1)/μ. The assumptions on the customer purchase behavior are
those described in the previous section. Given p and d(t), the instantaneous demand
rate into the system at time t is given by λ(t) = ΛF̄ (p+ cd(t)). The supplier wants
to select p to maximize his long-run expected revenue rate.

It is easy to characterize the structure of the revenue maximizing solution in
settings where the potential market size Λ and the processing capacity μ grow large.
Specifically, we will consider a sequence of problem instances indexed by r, where
Λr = r and μr = rμ; that is, r denotes the size of the market. The characteristics
of the potential customers, namely their price sensitivity c and valuation distribution
F(·), remain unchanged along this sequence. Let p̂ = arg maxpF̄ (p), and p̄ be the
price such that relation ΛrF̄ (p̄) = μr holds. That is, neglecting congestion effects,
p̂ is the price that maximizes the revenue rate and p̄ is the price that induces full
resource utilization, and both of these quantities are independent of r . Assumption 1
implies that p̂ < p̄ (or equivalently, ΛrF̄ (p̂) > μr) thus accentuating the tension
between revenue maximization and the resulting congestion effects. Besbes (2006)
showed that the revenue maximizing price, denoted by p∗,r , is of the form

p∗,r = p̄ + π∗/
√
r + o(1/

√
r), (11.9)

where π∗ is a constant independent of r . Moreover, the resulting queue lengths
Qr(t) are of order

√
r , or in a bit more detail, the normalized queue length process

Q̃r (t) = Qr(t)/
√
r has a well defined stochastic process limit as r → ∞. Since

the processing time is itself of order 1/r , the resulting delays are of order 1/
√
r .

Following Maglaras and Zeevi (2003), the delays are moderate in absolute terms
(of order 1/

√
r) but significant when compared to the actual service time (of order

1/r). If the supplier can select the price and capacity μ, the latter assuming a linear
capacity cost, then the optimal capacity choice is indeed such that p̂ < p̄ (where p̄

is determined by μ), i.e., making the above regime the “interesting” one to consider.
Finally, we note that the above results also hold for the case of generally distributed
service times (Besbes 2006).
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11.3.2 Setup for Asymptotic Analysis

Given a set of suppliers characterized by their prices and capacities pi, μ
′
i , we

propose the following approximation:

1. Define the normalized parameters μi = μ′i/Λ for every supplier i.
2. Define p̄ to be the price such that ΛF̄ (p̄) =∑i∈N μ′i . Define πi =

√
Λ(pi−p̄)

so that the prices pi can be represented as pi = p̄ + πi/
√
Λ.

3. Embed the system under consideration in the sequence of systems indexed by r

and defined through the sequence of parameters:

Λr = r, μr
i = rμi, ∀i ∈ N , cr = c, v ∼ F(·), (11.10)

and prices given by pr
i = p̄ + πi/

√
r for all i.

Given the preceding discussion, one would expect that the market may operate
in a manner that induces almost full resource utilization, and where the underlying
set of prices takes the form assumed in item 3 above. This would be true if the
market were managed by a central planner that could coordinate the supplier pricing
and capacity decisions. The approach we pursue is to embed the system we wish
to study in the sequence of systems indexed by r and described in Eq. 11.10, and
subsequently approximate the performance of the original system with that of a
limit system that is obtained as r → ∞, which is more tractable. Note that for
r = Λ in Eq. 11.10, where Λ denotes the market size of the potential order flow
as described in the previous section, we recover the exact system we wish to study.
If Λ is sufficiently large, then the proposed approximation is expected to be fairly
accurate.

The remainder of this section derives an asymptotic characterization of the
performance of a market that operates under a set of parameters (p, μ′) that are
embedded in the sequence Eq. 11.10.

11.3.3 Transient Dynamics via a Fluid Model Analysis

The derivation of the asymptotic limit model (specifically, Proposition 2) will show
that the following set of equations

Q̄i(t) = Q̄i(0)+ Āi(t)− D̄i(t),∀i ∈ N , (11.11)

Āi(t) =
∫ t

0

1

|J (t)| 1
{
i ∈J (t)

}
ΛF̄ (p̄) ds, ∀i ∈ N , (11.12)

D̄i(t) = μiT̄i(t), ∀i ∈ N , (11.13)
∫ t

0
Q̄i(s)dȲi(s) = 0, ∀i ∈ N , (11.14)
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T̄i (t)+ Ȳi (t) = t, ∀i ∈ N , (11.15)

W̄ (t) =
∑

i∈N

Q̄i(t)

μi

. (11.16)

captures the market’s transient dynamics over short periods of length 1/
√
r . This

subsection studies the transient evolution of Eqs. 11.11, 11.12, 11.13, 11.14, 11.15,
and 11.16 starting from arbitrary initial conditions.

In Eqs. 11.11, 11.12, 11.13, 11.14, 11.15, and 11.16, the processes Q̄, Ā, D̄, T̄ , Ȳ

are the fluid analogues of Q,A,D, T , Y defined in Sect. 11.2, and W̄ is the fluid
analog of the system workload W . Equation 11.11 keeps track of the queue sizes.
Equation 11.12 indicates how the arrivals are routed to these servers: An arrival
walks away if her valuation is sufficiently low; otherwise, she joins server i based
on the routing rule specified in Sect. 11.2. From Eq. 11.12, the orders get awarded to
the various suppliers at a rate ΛF̄ (p̄) =∑i∈N μ′i , i.e., F̄ (p̄) =∑i∈N μi (as indi-
cated by the aggregate counting process N(F̄ (p̄)t)). Equation 11.14 demonstrates
the non-idling property: Ȳi (t) cannot increase unless Q̄i(t) = 0. Equation 11.15 is
a time-balance constraint. Finally, Eq. 11.16 establishes the connection between the
total workload and the queue lengths.

The next proposition establishes that starting from any arbitrary initial condition,
the transient evolution of the market (as captured through Eqs. 11.11, 11.12, 11.13,
11.14, 11.15), and 11.16 converges to a state configuration where all suppliers are
equally costly in terms of the full cost of the bids given by (price + c × delay).
This is, of course, a consequence of the market mechanism that awards orders to
the cheapest supplier(s), until their queue lengths build up so that their full costs
become equal. Simultaneously, expensive suppliers do not get any new orders and
therefore drain their backlogs until their costs become equal to that of the cheapest
suppliers. From then onwards, orders are distributed in a way that balances the load
across suppliers. This result is robust with respect to the tie-breaking rule that one
may apply when multiple suppliers share the same full cost.

Proposition 1 Let sixtuple (Q̄, Ā, D̄, T̄ , Ȳ , W̄ ) be the solution to Eqs. 11.11,
11.12, 11.13, 11.14, 11.15, and 11.16 with max{|Q̄(0)|, |W̄ (0)|} ≤ M0 for some
constant M0. Then for all δ > 0, there exists a continuous function s(δ,M0) < ∞
such that

max
i,j∈N

∣
∣
∣
∣

(

πi + c
Q̄i(s)

μi

)

−
(

πj + c
Q̄j (s)

μj

)∣∣
∣
∣ < δ, ∀s > s(δ,M0). (11.17)

11.3.4 State-Space Collapse and the Aggregate Marketplace
Behavior

The next result shows that the transients studied above appear instantaneously in the
natural time scale of the system, and as such the marketplace dynamics evolve as if
all suppliers are equally costly at all times.
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We use the superscript r to denote the performance parameters in the r-th
system, e.g., Ar

i (t), S
r
i (t), T

r
i (t), and Qr

i (t). The (expected) workload (i.e., the
time needed to drain all current pending orders across all suppliers) is defined as
Wr(t) =∑i∈N (Qr

i (t)/μ
r
i ).

Motivated by the discussion in Sect. 11.3.1, we will optimistically assume (and
later on validate) that the supplier queue lengths are of order

√
r , and accordingly

define the re-scaled queue length processes for all suppliers according to

Q̃r
i (t) =

Qr
i (t)√
r

. (11.18)

The corresponding re-scaled expected workload process is given by W̃ r (t) =√
rWr(t) =∑i∈N (Q̃r

i (t)/μi).
Define Z̃r (t) = π̄ + c̄W̃ r (t), where π̄ = ∑i∈N πi/n and c̄ = c/n. Z̃r (t) can

be regarded as a proxy for the average of the second-order terms of suppliers’ bids
since Z̃r (t) = (1/n)

∑
i∈N (πi + c(Q̃r

i (t)/μi)). Note that the first-order term, p̄, is
common for all suppliers, and can be omitted while comparing suppliers’ bids.

Proposition 2 (State Space Collapse) Suppose πi + c(Q̃r
i (0)/μi) = π̄ + c̄W̃ r (0)

in probability, ∀i ∈ N . Then, for all τ > 0, for all ε > 0, as r →∞,

P

{

sup
0≤t≤τ

max
i,j∈N

∣
∣
∣
∣

(

πi + c
Q̃r

i (t)

μi

)

−
(

πj + c
Q̃r

j (t)

μj

)∣
∣
∣
∣ > ε

}

→ 0,

P

{

sup
0≤t≤τ

max
i∈N

∣
∣
∣
∣

(

πi + c
Q̃r

i (t)

μi

)

− Z̃r (t)

∣
∣
∣
∣ > ε

}

→ 0.

The proof applies the “hydrodynamic scaling” framework of Bramson (1998),
which is introduced in the context of studying the heavy-traffic asymptotic behavior
of multi-class queueing networks. Our model falls outside the class of problems
studied in Bramson (1998), but as we show in the online appendix, his analysis can
be extended to address our setting in a fairly straightforward manner.

11.3.5 Limit Model and Discussion

Proposition 2 shows that the supplier behavior can be inferred by analyzing
an appropriately defined one-dimensional process Z̃r (t) that is related to the
aggregated market workload. This also implies that although each supplier only
observes his own backlog, he is capable of inferring the backlog (or at least the full
cost) of all other competing suppliers.

The next theorem characterizes the limiting behavior of the one-dimensional
process Z̃r (t), and as a result also those of W̃ r (t) and Q̃r (t).
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Theorem 1 (Weak Convergence) Suppose πi + c(Q̃r
i (0)/μi) = π̄ + c̄ W̃ r (0)

in probability, ∀i ∈ N . Then Z̃r (t) weakly converges to a reflected Ornstein-
Unlenbeck process Z̃(t) that satisfies

Z̃(t) = Z̃(0)− γ c

∫ t

0
Z̃(s) ds + Ũ (t)+ c

√
σ 2 + μ̂

μ̂
B(t), (11.19)

where B(t) is a standard Brownian motion, Ũ (0) = 0, Ũ (t) is continuous and
nondecreasing, and Ũ (t) increases only when Z̃(t) = π̂ . The parameters are γ =
f (p̄)/F̄ (p̄), and σ ≡

√∑
i∈N σ 2

i . In addition, W̃ r (t) ⇒ (1/c̄)(Z̃(t) − π̄), and

Q̃r
i (t)⇒ (μi/c)(Z̃(t)− πi), ∀i ∈ N .

The process Ũ (t) is the limiting process of Ũ r (t) ≡ (c/μ̂)
∑

i∈N μiỸ
r
i (t)

(defined in the proof of Theorem 1), which can be regarded as the aggregate market
idleness of the system.

This theorem characterizes the limiting marketplace behavior under a given price
vector p. The market exhibits a form of “resource pooling” across suppliers. Given
that Z̃(t) ≥ π̂ , it follows that W̃ (t) ≥ (1/c̄)maxi∈N (πi − π̄) := ζ. This says that
unless all the suppliers submit the same price bid, the aggregate workload in the
marketplace will always be strictly positive and at a given time t , some suppliers
will never incur any idleness. The intuition for this result is the following. When the
queue of the most expensive supplier(s) gets depleted, and this supplier(s) starts to
idle, the imbalance between the aggregate arrival rate and service rate force suppliers
to build up their queue lengths instantaneously. Consequently, suppliers that price
below π̂ never deplete their queue lengths asymptotically. γ, that controls the speed
of the reversion of the aggregate workload process, is extracted from the customer
valuation distribution. γ measures the sensitivity of the demand function to changes
to the full price “π + cd(t)”, and it is proportional to the demand elasticity at p̄.

To summarize, in the limit model, the suppliers’ queue length processes follow
from Q̃i(t) = (μi/c)(Z̃(t)−πi), ∀i ∈ N , where Z̃(t) is defined through Eq. 11.19.
The next section will use this result as an input to study the suppliers’ pricing game.

11.3.6 A Numerical Example

To demonstrate the system dynamics, we consider a system with two M/M/1
servers, delay sensitivity parameter c = 0.5, and arrival rate of buyers Λ = 1. The
valuation v of each customer is assumed to follow an exponential distribution with
mean 0.1. The aggregate and individual service rates are respectively μ̂ = e−1.3,
μ1 = 0.8μ̂, and μ2 = 0.2μ̂. Moreover, suppose the price parameters are π1 = −1,
π2 = −2, and therefore π̄ = (π1 + π2)/2 = −1.5.

We run simulations using Arena (a discrete-event simulation software) and at
places supplement it with Matlab to compute the relevant parameters.
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Fig. 11.1 An instance of
workload process when
r = 30
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Fig. 11.2 An instance of
workload process when
r = 80
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In Figs. 11.1 and 11.2, we illustrate the workload trajectories for r = 30 and
r = 80, respectively, for one replication. Given these parameters, the respective
boundaries are 0.365 and 0.224 for r = 30 and r = 80. Note that our mathematical
statement is established on the steady-state workload process. We can either perform
a very long run (say with 600,000 arrivals in expectation) and break each output
record from the (single) run into a few large batches. Alternatively, we can run many
replications and identify appropriate warm-up and run-length times (for example
3,000 replications, each of which generates roughly 200 arrivals). We find that
both approaches lead to very similar statistical outcomes, and hence we report
only the former. When r = 80 and the simulation time is 600,000/80 units, we
find that 92.93% of time the system workload is above the boundary 0.224. When
r = 30 (and the corresponding simulation time is 600,000/30 units), however, this
proportion goes down to 71.22%. This suggests that our mathematical result of
asymptotically negligible time below boundary is more applicable when the scaling
factor is large.
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11.4 Competitive Behavior and Market Efficiency

In this section, we discuss the equilibrium behavior of suppliers in the capacity
and pricing games described in Sect. 11.2. We use the performance characterization
of Sect. 11.3 and cast the suppliers’ prices as “small” deviations around the market
clearing price p̄. This distinction results in a first-stage capacity game that affects the
first-order revenues, and a second-stage, pricing game, that adjusts prices around the
first-order price. Then, we briefly discuss the centralized solution that maximizes the
aggregate payoffs. Next, we characterize the non-cooperative behavior of suppliers
under the competitive environment. Finally, we propose a coordination scheme that
achieves the aggregate payoff under the centralized solution, and describe how this
coordination scheme can be implemented in the original system.

11.4.1 Suppliers’ First-Order Payoffs and the Capacity Game

Let Rr
i (t) denote supplier i’s cumulative revenue. Since the pricing is static, supplier

i earns Rr
i (t) = (p̄ + πi/

√
r)Sr

i (t − Y r
i (t)), where Sr

i (·) is the counting service
completion process, and Y r

i (t) is the cumulative idleness process for supplier i. The
next lemma shows that the “first-order” revenues of the suppliers only depend on
the first-order price term p̄ and the service rates {μi}’s.

Lemma 1 Rr
i (t)/r → p̄μi t , as r →∞, ∀i ∈ N .

Lemma 1 demonstrates that the capacity choice (μi) has a first-order effect on the
suppliers’ revenues. If we attach an appropriate capacity cost ci(μi) to the suppliers,
the capacity game can be explicitly posted. In the centralized system, a central
planner decides the service rates (capacities) to maximize the net revenue:

max{μi }

{∑

i

μip̄(
∑

i

μi)−
∑

i

ci(μi)

}

. (11.20)

This centralized solution can be obtained via a two-stage problem in which we first
find the optimal allocation for each individual to minimize the aggregate cost:

C(μ̂) = min{μi }

{∑

i

ci(μi), s.t.
∑

i

μi = μ̂, μi ≥ 0, ∀i
}

, (11.21)

and then optimize over the aggregate service rate via maxμ̂{μ̂p̄(μ̂)−C(μ̂)| μ̂ ≥ 0}.
In a Nash equilibrium {μ∗i }’s, supplier i chooses a capacity such that

μ∗i = arg max
μi

{

μip̄(μi +
∑

j �=i
μ∗j )− ci(μi)

}

, (11.22)
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where p̄ = (F̄ )−1(
∑

i μi/λ) is the price that induces the full resource utilization.
Furthermore, if μ̂p̄(μ̂) is concave in μ̂ and ci(μi) is convex in μi, ∀i,6 there exists
a pure-strategy Nash equilibrium in the capacity game. Based on this existence
result, we can characterize the pure-strategy equilibrium from the best responses
of suppliers against others’ strategies. Specifically, a Nash equilibrium {μ∗i }ni=1
satisfies

μ∗i p̄′
(∑

i

μ∗i
)
+ p̄

(∑

i

μ∗i
)
− c′i (μ∗i ) = 0, ∀i. (11.23)

It can be verified that in the decentralized (Nash) equilibrium, each supplier
intends to build a capacity μ∗i higher than the centralized solution. This over-
investment result follows from the ignorance of the negative externality a supplier
brings to the entire system, as a supplier may benefit from over-investment since
this allows him to capture a higher market share. This is reminiscent of the demand-
stealing effect in the classical Cournot competition.

11.4.2 Suppliers’ Second-Order Payoffs
and the Pricing Game

To study the suppliers’ pricing game we will focus on the second order correction
around Rr

i (t) defined as rri (t) ≡ (1/
√
r)(Rr

i (t) − rp̄μit),∀i ∈ N . The limiting
processes of these corrected terms are characterized in the following lemma.

Lemma 2 rri (t) ⇒ ri(t), as r → ∞,∀i ∈ N , where ri(t) := μiπit +
p̄σiBs,i(t)− μip̄Ỹi(t) and Ỹi (t) is the limiting process of Ỹ r

i (t) as r →∞.

Instead of using the revenue functions {Ωi(pi, p−i )}’s defined in (11.7), we will
study the suppliers’ pricing game based on their (second-order) revenues given by

Ψi(πi, π−i ) ≡ lim
t→∞

ri(t)

t
= μi(πi − p̄E[Ỹi (∞)]), (11.24)

where π−i ≡ (π1, . . . , πi−1, πi+1, . . . , πn), and (with some abuse of notation)
E[Ỹi (∞)] := limt→∞(Ỹi(t)/t). Define hi as the (steady-state) proportion of the
market idleness incurred by supplier i, i.e.,

E[Ỹi (∞)] = hiE[Ũ (∞)], (11.25)

6These assumptions are commonly adopted in revenue management, although in some context the
arrival rate is used instead of the service rate, which makes no difference in heavy traffic regime,
see e.g. Gallego and van Ryzin (1994).
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where we again denote by E[Ũ (∞)] := limt→∞(Ũ(t)/t) the long-run average of
the aggregate idleness Ũ (t) specified in Theorem 1.

Dividing Eq. 11.19 by t and letting t →∞, we obtain that

E[Ũ (∞)] = lim
t→∞

Ũ (t)

t
= γ cE[Z̃(∞)] = γ cβ

φ(π̂/β)

1−Φ(π̂/β)
, (11.26)

where

β =
√
c(μ̂+ σ 2)

2γ μ̂2 , (11.27)

and the closed-form expression follows from the fact that the reflected Ornstein–
Uhlenbeck process Z̃(t) has the stationary distribution as a truncated Normal
random variable (Browne and Whitt 2003, Proposition 1).7 We do not derive the
closed-form expressions of {hi}’s since they are not needed for our equilibrium
analysis.

Let J = {j | πj = π̂}, where π̂ ≡ maxi∈N πi , denote the set of the most
expensive suppliers (allowing for ties). From Theorem 1 we have that Z̃(t) ≥ π̂

for all t ≥ 0 and that Q̃r
j (t) ⇒ (μj/c)(Z̃(t) − πj ) > 0, for all t ≥ 0, ∀j /∈ J . It

follows that Ỹi (t) = 0 for all t ≥ 0, and therefore hj = 0, ∀j /∈ J . Given Eqs. 11.24
and 11.25, we obtain the suppliers’ second-order long-run average revenue functions
as follows:

Ψi(πi, π−i ) =
⎧
⎨

⎩

μiπi − μip̄hiγ cβ
φ(π̂/β)

1−Φ(π̂/β)
, if i ∈ J,

μiπi, otherwise.
(11.28)

11.4.3 Centralized System Performance

In the centralized version of the system, a central planner makes the price decisions
π ≡ (π1, . . . , πn) in order to maximize the total aggregated revenue:

max
π

{∑

i∈N
μiπi − p̄γ μ̂β

φ(π̂/β)

1−Φ(π̂/β)
: πi ≤ π̂

}

, (11.29)

where we have applied
∑

i∈J μihi = μ̂/c to combine all the penalties imposed on
the most expensive suppliers.

7We can verify that using their notation, the Z̃(t) process corresponds to the following parameters:
a = γ c,m = 0, and the process has only a left reflecting barrier π̂ .
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For convenience, we define L (π̂) ≡ p̄γ μ̂β φ(π̂/β)/[1−Φ(π̂/β)] as the
revenue loss that the system suffers if π̂ is the highest price offered. The optimal
pricing decisions are summarized in the following lemma:

Lemma 3 In a centralized system, all prices πi’s are equal. The optimal static price
is πC := arg maxπ [μ̂π −L (π)].

11.4.4 Competitive Equilibrium

In a decentralized (competitive) system, each supplier is maximizing his own payoff,
Ψi(πi, π−i ), in a non-cooperative way: maxπi Ψi(πi, π−i ). Recalling the definition
of L (π̂), we can rewrite the supplier’s payoff in Eq. 11.28 as

Ψi(πi, π−i ) = μiπi − μihi
c

μ̂
L (π̂) 1{i ∈ J } (11.30)

In the following we characterize the equilibrium behavior. We will split our discus-
sion in two cases, depending on whether suppliers are endowed with homogeneous
or heterogeneous service rates.

11.4.4.1 Homogeneous Service Rate Case

We first consider the case where the service rates are the same across suppliers,
i.e., μi = μj ≡ μ, ∀i, j ∈ N , and focus on symmetric equilibria. Define π∗ =
arg maxπ [μπ −L (π)] and Ψ ∗ ≡ μπ∗ −L (π∗). Note that we are charging all the
idling penalty to a single supplier. In this way, a price π∗ guarantees a lower bound
for the payoff Ψi(πi, π−i ). Hence, Ψ ∗ is the payoff that any supplier can guarantee
for himself, i.e., his minmax level. We further let π := Ψ ∗/μ = π∗ −L (π∗)/μ <

π∗ and observe that choosing price π < π is a dominated strategy. Thus, π can be
regarded as a lower bound of suppliers’ rational pricing strategies.

Although a standard approach is to look for a pure-strategy Nash equilibrium,
in the next proposition we show that none exists. Instead, we shall focus on the
mixed-strategy competitive equilibrium. Let G(π) denote the mixing cumulative
probability distribution of a supplier’s pricing strategy π . The next proposition
characterizes the structure of these mixing probabilities.

Proposition 3 With homogeneous rates, there exists a unique symmetric equilib-
rium in which all suppliers randomize continuously over [π, π∗], and every supplier
gets Ψ ∗. The randomizing distribution is G(π) = [μ(π − π)/L (π)]1/(n−1), ∀π ∈
[π, π∗].

The reason for not having any pure-strategy equilibrium is intuitively due to the
discontinuity of suppliers’ revenue functions. This creates an incentive for the cheap
suppliers to increase their prices all the way to π̂; however, they would also avoid to
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reach π̂ when themselves become the most expensive and incur a discontinuous
penalty. Note that the range over which the price is randomized is completely
determined by the individual’s problem. In all generic cases, no tie of the highest
static price may occur. In other words, the market idleness process is contributed
by only one supplier. Moreover, any tie of two prices takes place with probability
zero, which is in contrast to the centralized system where prices are always equal.
Therefore, our homogeneous service model suggests that price dispersion can be
regarded as a sign of incoordination. Also note that in equilibrium, the expected
payoff of a supplier is identical to the case where he carries the entire market
idleness, and hence he receives on average the minmax level. Competitive behavior
drives away the possibility of extracting additional revenues.

Having characterized the competitive equilibrium, we now turn to the market
efficiency issue. Define ΠC ≡ maxπ̂

{
μ̂π̂ −L (π̂)

}
as the aggregate (second-

order) revenue under the centralized solution and Π∗ as the aggregate revenue
among suppliers in the unique competitive equilibrium. The next proposition shows
that the efficiency loss can be arbitrarily large when the number of suppliers
explodes.

Proposition 4 Suppose that the service rates are homogeneous. For any given
aggregate service rate μ̂, for any given constant M , there exists a sufficiently large
number NM such that |ΠC −Π∗| > M , ∀n > NM .

Proposition 4 shows that as the number of suppliers grows, the competitive
behavior among the suppliers may result in an unbounded efficiency loss. This
demonstrates a significant inefficiency due to the market mechanism and it therefore
calls for the need of a coordination scheme, as we investigate in Sect. 11.4.5. Note
that this statement is asymptotic in the sense of the number of suppliers, which is
different from the case in Sect. 11.3, and it is particularly relevant in the context of
the large-scale systems discussed in Sect. 11.1. By restricting ourselves to the case
of fixed aggregate service rate, we can then illustrate that the efficiency loss that
results from the market idleness term also plays a pivotal role.

Note also that the first-order aggregate revenues of the centralized solution and
the competitive equilibrium coincide; nevertheless, this is by construction of the
asymptotic regime specified in Sect. 11.3.

11.4.4.2 Heterogeneous Service Rate Case

Now we consider the scenario where suppliers are endowed with different service
rates. We again first define a global maximizers π∗1 , π∗2 ,. . . , π∗n , if supplier i

(1 ≤ i ≤ n) is the one who proposes the highest price solely; i.e., we define
π∗i = arg maxπi [μiπi −L (πi)] and Ψ ∗i ≡ μiπ

∗
i −L (π∗i ) as the global maximum

revenue that supplier i can achieve as J = {i}. Next we let πi = Ψ ∗i /μi and recall
that choosing price π < πi is a dominated strategy for supplier i. The following
proposition characterizes the relevant properties of an equilibrium needed for our
purpose. Gi(·) denotes the mixing distribution that supplier i adopts in equilibrium.
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Proposition 5 Suppose suppliers are endowed with heterogeneous service rates.
Then in a competitive equilibrium,

• All Gi(·)’s have the same left endpoint (denoted by s) of their supports. Moreover,
s ≥ maxi∈N πi.

• Suppliers’ expected payoffs are proportional to their service rates {μi}’s.
• If n = 2 and μ1 > μ2, then there exists a unique equilibrium in which supplier i’s

revenue is μiπ1, i = 1, 2. The equilibrium mixing probabilities are respectively

G2(π) = μ1(π − π1)

L (π)
, ∀π ∈ [π1, π

∗
1 ],

G1(π) = μ2(π − π1)

L (π)
, ∀π ∈ [π1, π

∗
1 ),

(11.31)

and G1(π
∗
1 ) = 1. G1(π) = G2(π) = 0,∀π ≤ π1.

The first result on left endpoints is not surprising. This comes directly from
an analogous argument for Proposition 3. The second result captures the ex ante
difference between suppliers’ payoff function: higher service rate brings higher
equilibrium payoff. When we restrict to the duopoly setting, we know perfectly
the range over which suppliers randomize their prices, and we can obtain closed-
form expressions for their expected payoffs. They randomize the prices over the
same range, and the supplier with a higher service rate tends to set a lower price:
his mixing distribution stochastically dominates the other’s in the usual, first-order
sense. This implies that when a supplier has a capacity advantage, he can afford to
price lower to capture more customers.

11.4.4.3 Numerical Results

In this section, our goal is to compare the performance between the centralized
solution and the competitive equilibrium. We consider a system with n M/M/1
servers, delay sensitivity parameter c = 0.5, and arrival rate of buyers Λ = 1. The
valuation v of each customer is assumed to follow an exponential distribution with
mean 0.1, and p̄ is set such that the effective arrival rate P(v ≥ p̄) matches the
total service rate μ̂. As an example, if we let μ̂ = e−1.3, then p̄ can be obtained as
follows: Λe−10p̄ = μ̂⇔ p̄ ≈ 0.13. The other relevant parameter is γ = f (p̄)/(1−
F(p̄)) = 10. Note that as we scale according to Λ = r and μ̂ = μ̂r , p̄ stays
unchanged.

The next two figures compare the centralized solution and the competitive
equilibrium. Take n = 2 and assume μ̂ = μ1 + μ2 = e−1.3. Without loss of
generality, we assume that supplier 1 has a higher capacity and let a ≡ μ1/μ̂ ∈
(0.5, 1) denote the heterogeneity of service rates between these two suppliers.
Figure 11.3 demonstrates the mixing distributions of supplier 1 under a competitive
equilibrium with different values of a. Figure 11.4 presents the upper and lower
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Fig. 11.3 The mixing
distribution of prices versus
the heterogeneity of service
rates
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Fig. 11.4 The bounds of
prices versus the
heterogeneity of service rates
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bounds of the price for the mixing distributions. Note that the mixing distribution
may have a point mass at the upper bound π∗1 , in which case the mixing distribution
jumps to 1 at π∗1 (e.g., a = 0.57, 0.64, 0.71 in Fig. 11.3). Although the mixing
distributions of supplier 2 have no point mass, the comparison of the mixing
distributions across different degrees of heterogeneity is qualitatively similar and
therefore is omitted. Combining Figs. 11.3 and 11.4, there is no unambiguous
prediction for the suppliers’ pricing decisions when the capacity heterogeneity
increases. The increase of the heterogeneity, a, has two effects. First, it mitigates
the competition between the suppliers due to the difference of capacities. This
might induce higher prices. Second, the increase of a also increases the variance
of the service time (since σ = [(1/(aμ̂))2 + (1/((1− a)μ̂))2]1/2 is increasing in
a ∈ (0.5, 1)). This increases the magnitude of the second-order price through the
parameter β. Since the second-order price is negative, it implies that the suppliers
would set a lower price when the variance is higher. Because of these two conflicting
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forces, no clear ranking of the mixing distribution can be obtained (as seen in
Fig. 11.3), and the bounds are not monotonic (in the same direction) as the degree
of heterogeneity increases (see Fig. 11.4). Note also that in the centralized solution,
only one price is set:

πC ≡ arg max
π

{

μ̂π − p̄γ μ̂β
φ(π/β)

1−Φ(π/β)

}

∈ [4.5, 6.0]

when a ∈ [0.5, 0.71]. Since πC is strictly positive, the prices in the competitive
equilibrium are significantly lower than the price under the centralized control.

Finally, we investigate how the number of suppliers affects the efficiency
gap between the centralized solution and the competitive equilibrium. To this
end, we focus on the case with homogeneous suppliers. This allows us to fully
characterize the equilibrium pricing strategies and the suppliers’ expected (second-
order) revenues. We first assume μ̂ = e−1.3 and increase n, the number of suppliers.
The individual service rate is μi = μ̂/n, ∀i ∈ N . As demonstrated in Fig. 11.5,
the range of prices becomes more negative when more suppliers participate in the
market, due to a more severe competition among suppliers. In Fig. 11.6, we draw the
expected aggregate (second-order) revenue of the market,

∑
i∈N Ψi(πi, π−i ), and

vary the number of suppliers. We find that the expected aggregate revenue decreases
when there are more suppliers due to the increasing price competition (as presented
in Fig. 11.6). Thus, the mis-coordination problem becomes more serious when more
suppliers participate in the market.

Fig. 11.5 The mixing
distribution of prices versus
the number of suppliers
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Fig. 11.6 The expected
aggregate revenue versus the
number of suppliers
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11.4.4.4 A Remark on the Suppliers’ Participation

In characterizing the equilibrium behavior of the suppliers’ pricing game, we have
neglected the suppliers’ participation decisions. Note that the pricing decisions
{πj}’s only affect the suppliers’ second-order revenues, which are simply small
perturbations around the first-order revenues p̄μi . (as seen in Lemma 1). Thus,
a supplier is willing to participate if and only if his first-order revenue p̄μi is
positive, which depends on the capacity (service rate) decisions rather than the
pricing decisions.

To study the capacity game, we can assume that each supplier incurs a cost of
capacity, ci(μi). Since the pricing decisions do not affect the first-order term, the
suppliers choose their capacities to maximize

max
μi≥0
{p̄μi − ci(μi)}, (11.32)

where the value of p̄ is endogenously determined through F̄ (p̄) = ∑
j∈N μj ,

i.e., p̄ = F̄−1(
∑

j∈N μj ). The function F̄−1(
∑

j∈N μj ) can be interpreted as
the inverse demand function, since it represents the customers’ effective arrival rate
given the aggregate capacity

∑
j∈N μj . Notably, the above capacity game does not

involve any stochastic term.
Moreover, according to Watts (1996, Corollary 1), this capacity game has a

unique equilibrium if the following conditions are satisfied: (1) μF̄−1(μ) is concave
in μ; (2) ci(μi) is weakly convex in μi ; and (3) there exists a sufficiently large μ∗
such that μF̄−1(μ) − ci(μ) is decreasing in μ when μ > μ∗. The first condition
is related to the price elasticity of the demand, the second condition implies a
diseconomy of scale for the capacity investment, and the third condition simply
ensures that the aggregate market payoff never explodes. These conditions are
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widely adopted in many surplus sharing games, which contains the celebrated
Cournot competition as a special case, to ensure that the competitive equilibrium
is well-behaved (see Watts 1996, and the references therein).

Finally, a supplier is willing to participate in the market whenever in equilibrium
maxμi≥0{p̄μi − ci(μi)} ≥ 0. If we consider a special case in which the marginal
cost of capacity is constant, i.e., ci(μi) = ciμi , ∀μi , it is verifiable that only the
suppliers that are more cost efficient will participate, ie., the ones for whom ci < p̄.

11.4.5 Coordination Scheme

The above competitive equilibrium analysis reveals that each supplier receives
an expected payoff lower than what he would obtain under the centralized solu-
tion. This implies that the centralized solution Pareto dominates all decentralized
equilibria. Thus, implementing a coordination scheme results in no conflict of
interests, even though the suppliers may be ex ante heterogeneous with respect
to service rates. In addition, as the market size grows, the competitive behavior
among suppliers may result in an unbounded efficiency loss. This demonstrates a
significant inefficiency due to the market mechanism and motivates the search for a
coordination scheme.8

11.4.5.1 Sufficient Condition for Coordination

We will first study the suppliers’ behavior if they were “forced” to share the penalty,
or revenue loss, that arises due to the market idleness. Under this scheme, supplier
i’s payoff is

ΨPS
i (πi, π−i ) ≡ μiπi − μi

μ̂
L (max

j∈N
πj ), (11.33)

where the superscript PS refers to penalty sharing according to the service rates.
The first term μiπi is the gross revenue supplier i earns by serving customers, and
the second term (μi/μ̂)L (maxj∈N πj ) corresponds to his penalty share that is
proportional to his service rate μi . Note that this scheme is budget-balanced, i.e., no
financing from outside parties is required. Let {πPS

i }′s denote the equilibrium prices
under this sharing scheme. Under this sharing scheme, the centralized solution can
be achieved.

8It is worth mentioning that the mixed-strategy equilibrium is studied mainly to demonstrate
the discrepancy between the centralized system and the decentralized market equilibrium. It is
conceivable that the implementation or identification of such a mixed-strategy equilibrium requires
fairly sophisticated communication and consensus among the suppliers. Nevertheless, the Pareto
dominance result justifies why such a coordination scheme is required and desired irrespective of
the implementation issue of the mixed-strategy equilibrium.
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Proposition 6 Under the penalty sharing schemes that satisfy Eq. 11.33, {πPS
i =

πC, ∀i ∈ N } is the unique equilibrium.

Under the PS scheme, a supplier’s objective is in fact an affine function of the
aggregate revenue Eq. 11.29. Hence, this coordination mechanism eliminates the
wrong incentives of suppliers, regardless of the number of suppliers and their service
rates. Since in both the competitive and the coordinated equilibria the suppliers’
expected payoffs are proportional to their service rates, all suppliers have a natural
incentive to join.

11.4.5.2 “Compensation-While-Idling” Mechanism That Achieves
Coordination

The natural question is whether we can implement a penalty-sharing mechanism
based on observable quantities. We now show that this is achievable through an
appropriate set of transfer prices between suppliers when one or more suppliers are
idling.

Let ηij be the transfer price per unit of time from supplier i to supplier j when
supplier j is idle in the limit model, with ηii = 0. The second-order revenue process
for a supplier i under this compensation scheme becomes

r̃P S
i (t) = r̃i (t)+ δ̃i (t), (11.34)

where

r̃i (t) ≡ μiπit + p̄σiBs,i(t)− μip̄Ỹi(t), (11.35)

δ̃i (t) ≡
∑

j∈N ,j �=i
ηji Ỹi (t)−

∑

j∈N ,j �=i
ηij Ỹj (t). (11.36)

According to Eq. 11.35, the three terms correspond to his revenue from serving
customers. In Eq. 11.36, δ̃i (t) corresponds to the net transfers for supplier i:∑

j∈N ,j �=i ηji Ỹi (t) is the compensation he receives from other suppliers during

the idle period, and
∑

j∈N ,j �=i ηij Ỹj (t) is the cash outflow to other suppliers while
compensating their idleness.

Given Eq. 11.34, supplier i’s long-run average revenue can be expressed as

Ψ̃i(πi, π−i ) ≡ lim
t→∞

1

t
[r̃i (t)+ δ̃i (t)]

= μiπi − μip̄E[Ỹi (∞)] +
∑

j∈N ,j �=i
ηjiE[Ỹi (∞)] (11.37)

−
∑

j∈N ,j �=i
ηijE[Ỹj (∞)].

The next proposition specifies a set of transfer prices that implement the PS
scheme.
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Proposition 7 The transfer prices

ηij = μiμj

μ̂
p̄, ∀i �= j, i, j ∈ N , and ηii = 0, ∀i ∈ N , (11.38)

implement the PS rule, i.e., Ψ̃i(πi, π−i ) = ΨPS
i (πi, π−i ).

The transfer prices proposed in Proposition 7 essentially eliminate the imbalance
between the current share of the market idleness incurred by an individual supplier
and his required share ((μi/μ̂)L (maxj∈N πj )). Given these transfer prices, every
supplier’s objective is aligned with the centralized system (i.e., the objective is
ΨPS
i (πi, π−i ) in Eq. 11.33), and thus all suppliers are induced to set prices equal

to πC .
Proposition 7 shows that we are able to achieve coordination since given any

chosen prices, we can align the suppliers’ objectives with the planer’s objective.
To implement this compensation scheme in the original system, we can simply
request each supplier make transfers according to Eq. 11.38. This mechanism can
be implemented and monitored by the intermediary in the market.

Note that the coordination scheme is independent of the static prices {πi}’s; it
only requires the information of the service rates {μi : 1 ≤ i ≤ n}, which are
publicly available in our model. In fact, to facilitate the coordination scheme, the
market intermediary needs to have access to the current queue lengths, and should
be able to perfectly observe the idleness of suppliers.

11.4.6 Simulation Results

To close the loop, we shall return to the original system described in Sect. 11.3.2 and
see how the competitive equilibrium and coordination scheme fare. To this end, we
again run simulations using the Arena model. The parameters are the same as those
in Sect. 11.4.4.3: c = 0.5, Λ = 1, μ̂ = e−1.3, and the valuation v is exponentially
distributed with mean 0.1.

Mixing distributions of prices Compared with Sect. 11.3.6, a new challenge
arises: we cannot arbitrarily assign prices, because now the suppliers determine
their competitive prices as equilibrium outcomes. We shall use the results from
Sect. 11.4.4.3 as inputs to our Arena model for both homogeneous and heteroge-
neous cases of suppliers. We note that the equilibrium pricing strategy is described
by a continuous distribution without simple expressions (see Propositions 3 and 5).
Thus, the usual inverse-transform method fails to apply (because the inverse of
distribution function is not known). Furthermore, the acceptance-rejection method
is also not suitable for this problem, because it requires an explicit expression of
density function that is not available. Our treatment follows from a similar idea to
Fig. 11.3. We first discretize them and record the cumulative distribution at discrete
points. We choose the mesh sufficiently small and make linear interpolation to
replicate approximately the original continuous distribution.
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Second-order revenues In terms of suppliers’ profits, we focus exclusively on
the pricing game in which the second-order correction around Rr

i (t) defined as
rri (t) ≡ (1/

√
r)(Rr

i (t) − rp̄μit),∀i ∈ N . Note that given μ̂ = e−1.3, p̄ ≈ 0.13.
When there are two suppliers (n = 2), we let a ≡ (μ1/μ̂) ∈ (0.5, 1) denote
the heterogeneity of service rates between these two suppliers. We examine two
scenarios: in the homogeneous case a = 0.5, these two suppliers are endowed with
the same service rate (capacity). In the heterogeneous case, we choose a = 0.71.

Regarding the tie-breaking rule, here we examine two rules: the smallest index
first rule by which supplier 1 gets the priority, and the random priority rule by which
customers choose between tied suppliers with equal probabilities. For the random
priority rule, we add a “two-way by chance” module to rout the customers randomly
with 50–50 chances when there is a tie. For all the following simulations, we conduct
1,000 replications, each of which takes the warm up of 120 arrivals and regular
simulation of 600 arrivals in expectation. The scaling factor r is fixed at 1,000. The
confidence level is set at 5% when we make the statistical statements of hypothesis
testing. We use two-sample-t two-tailed tests when we compare across different
scenarios and paired-t tests when comparing between the two suppliers within each
scenario.

Revenue comparison: Symmetric case First, we consider two symmetric suppli-
ers (a = 0.5) and compare the suppliers’ second-order revenues in the competitive
equilibrium and under the coordination scheme. We find that the average difference
of suppliers 1s and 2s revenues in these two scenarios are statistically significant. For
supplier 1, the estimated revenue difference is 0.758 whereas the 95% confidence
interval is 0± 0.00419. Similarly, supplier 2s estimated revenue difference 0.76 and
0.76 falls outside ±0.00421. Therefore, the coordination scheme indeed leads to
higher expected revenues for both suppliers.

Revenue comparison: Asymmetric case Second, we consider two asymmetric
suppliers (a = 0.71). In this case, the coordination scheme again yields higher
expected revenues for both suppliers that are statistically significant. The estimated
revenue improvements for suppliers 1 and 2 are 0.992 and 0.351 respectively, and
they fall outside the 95% confidence intervals ±0.0026 and ±0.00284. We can
also compare the two suppliers’ revenues. Naturally, their (second-order) revenues
are different due to heterogeneous service rates. Using paired-t tests, we observe
that the revenue differences are statistically significant in both the competitive and
coordinated scenarios (−0.435 and 0.206 on average), and their corresponding
confidence intervals are ±0.00295 and ±0.00488.

Tie-breaking rule Third, we can also examine the impact of tie-breaking rule. For
this matter, we use the symmetric supplier case as illustration. We first start with
the competitive equilibrium and compare the two tie-breaking rules: smallest index
first and random rules. For the competitive equilibrium we fail to reject the null
hypothesis, i.e., the suppliers’ revenues are statistically indistinguishable under the
two rules. In contrast, under the coordination scheme the tie-breaking rule matters
substantially. The estimated revenue difference is 0.0857 and it falls outside the 95%
confidence interval ±0.00323.
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The above discrepancy can be explained intuitively. In the competitive equilib-
rium, both suppliers randomize their prices. Thus, the chance of seeing an actual
tie is infinitesimal (zero probability in theory). Therefore, the tie-breaking rule
rarely comes in action. However, under the coordination scheme, both suppliers
are induced to set prices at πC . Because their service rates are identical, often
times ties actually happen and the priority rule goes in favor of supplier 1. In this
case, random tie-breaking ensures the fair routing between suppliers and it leads
to statistically significant consequences. Further to the above observation, we run
additional comparisons between the two suppliers. Under the smallest index first
rule, supplier 1 earns on average 0.176 more than supplier 2, which is outside the
95% confidence interval ±0.00308. Under the random priority rule, this difference
is negligible (−0.000792 on average).

To summarize, our simulations suggest that (1) the coordination scheme is
effective in both homogeneous and heterogeneous scenarios, and this benefit applies
to all suppliers; (2) tie-breaking rules are inconsequential when suppliers adopt
randomized pricing, but they do matter when instead deterministic prices are
chosen.

11.5 Conclusions

We study an oligopolistic model in which suppliers compete for buyers that are
both price and delay sensitive. We apply both fluid and diffusion approximations
to simplify the multi-dimensional characteristics of the decoupled suppliers into a
single-dimensional aggregated problem. Specifically, we establish the “state space
collapse” result in this system: the multi-dimensional queue length processes at
the suppliers can be captured by a single-dimensional workload process of the
aggregate supply in the market, which can be expressed explicitly as a reflected
Ornstein–Unlenbeck process with analytical expressions. Based on this aggregated
workload process, we derive the suppliers’ long-run average revenues and show
that the suppliers’ competition results in a price randomization over bounded
ranges, whereas under the centralized control suppliers should set identical and
deterministic prices.

To eliminate the inefficiency due to the competition, we propose a novel
compensation-while-idling mechanism that coordinates the system: each supplier
gets monetary transfers from other suppliers during his idle periods. This mech-
anism alters suppliers’ objectives and implements the centralized solution at their
own will. The implementation only requires a set of static transfer prices that are
independent of the suppliers’ prices and the queueing dynamics such as the current
queue lengths or the cumulative idleness. Its simplicity is an appealing feature to be
considered for practical implementations in intermediary platforms such as online
exchanges.
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Chapter 12
Operations in the On-Demand Economy:
Staffing Services with Self-Scheduling
Capacity

Itai Gurvich, Martin Lariviere, and Antonio Moreno

Abstract Motivated by recent innovations in service delivery such as ride-sharing
services and work-from-home call centers, we study capacity management when
workers self-schedule. Our service provider chooses capacity to maximize its profit
(revenue from served customers minus capacity costs) over a horizon. Because
demand varies over the horizon, the provider benefits from flexibility to adjust
its capacity from period to period. However, the firm controls its capacity only
indirectly through compensation. The agents have the flexibility to choose when
they will or will not work and they optimize their schedules based on the compen-
sation offered and their individual availability. To guarantee adequate capacity, the
firm must offer sufficiently high compensation. An augmented newsvendor formula
captures the tradeoffs for the firm and the agents. If the firm could keep the flexibility
but summon as many agents as it wants (i.e., have direct control) for the same wages
it would not only generate higher profit, as is expected, but would also provide better
service levels to its customers. If the agents require a “minimum wage” to remain
in the agent pool they will have to relinquish some of their flexibility. To pay a
minimum wage the firm must restrict the number of agents that can work in some
time intervals. The costs to the firm are countered by the self-scheduling firm’s
flexibility to match supply to varying demand. If the pool of agents is sufficiently
large relative to peak demand, the firm earns more than it would if it had control of
agents’ schedules but had to maintain a fixed staffing level over the horizon.
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12.1 Introduction

Staffing in service environments is a challenging problem. Firms must control
costs while assuring adequate capacity to serve demand. In tackling this problem,
managers have always maintained an important trump card: the ability to order
workers to work at specific times. The construction of the schedule might involve
worker preference, union rules, or government regulations but, at the end of the
day, each worker has been told when she is expected to begin and end her shift.
Furthermore, these directives have been backed by implicit (and often explicit)
consequences for not adhering to an assigned schedule.

In some novel service settings, however, firms are surrendering this power.
Instead of ordering workers to punch in and out at appointed times, firms are
allowing agents to create their own schedules, choosing whether and when to work
based on personal preferences. We are not speaking here of professional knowledge
workers who are given flexible schedules as long as projects are completed on time.
Rather, we are focusing on industries such as ride-sharing services (e.g., Uber and
Lyft), work-from-home call centers (e.g., Arise Virtual Solutions and LiveOps), or
delivery services (e.g., Instacart and GrubHub) which must have capacity available
to service demand as it arises.

These service providers have put themselves in a tenuous position. On the one
hand, they need to provide their customers with good service. Ride-sharing services,
for example, compete against conventional taxis and public transportation in part
by emphasizing their availability. In the words of Uber’s chief executive, “Uber
is ALWAYS a reliable ride.” (Kalanick 2012). Delivering on these commitments
requires capacity; without adequate staffing, these service providers will fail to
honor their obligations.

On the other hand, these service providers promise their agents1 flexibility and
cannot simply dictate when they should work. Food delivery service GrubHub, for
example, promises that its “delivery partners” can pick when they want to work and
that they will earn “competitive pay” when they do.2 Work-from-home call center
LiveOps makes a similar pitch:

As a LiveOps independent agent, you can benefit from a highly flexible and rewarding
opportunity. . . . As an independent contractor providing services to LiveOps’ clients, you
are your own boss!3

Flexibility and control of one’s schedule are important to agents. In a study of Uber
drivers (conducted for Uber), 85% of respondents cited the ability “to have more

1Describing the people serving customers for these firms requires some finesse. Generally, those
answering calls or driving customers are not employees. Rather, they are independent contractors
whose continued relationship with the service provider is dependent on achieving a minimal level
of performance (e.g., an Uber driver rating) over time. We will generally refer to those serving
customers as agents.
2http://driver.grubhub.com/. Accessed May 24, 2016.
3http://www.liveops.com/company/careers-jobs Accessed May 24, 2016.

http://driver.grubhub.com/
http://www.liveops.com/company/careers-jobs


12 Staffing Services with Self-Scheduling Capacity 251

flexibility in my schedule” as a motivation to drive for the company (Hall and
Krueger 2016). Additionally, Lyft and Uber have pointed to the fact that drivers
set their own schedules in contesting lawsuits on whether drivers should be deemed
employees or independent contractors (Levine and McBride 2015). Consequently,
these firms cannot simply renege on allowing agents to self schedule. They must
instead use incentives schemes to induce the right number of agents to be available
at the right time.

A service provider must also assure that its agents have adequate earnings over
time. Some of these firms aggressively recruit and compete with each other for
agents.4 There are blogs that inform about work conditions in competing services.5

Firms are consequently rightly concerned when websites ask whether a particular
company is a “work-from-home scam”6 or when former agents complain in public
forums that a firm is “the worst company ever” offering “below average” pay.7

The provider’s problem can thus be understood as managing agent participation
on two different time scales. On a longer-term basis (measured in weeks or months),
the firm must maintain an adequate pool of eligible agents. In order to keep agents
in the pool, the firm must ensure that agents earn enough to make collaborating with
the firm an attractive opportunity. On a short-term basis (measured in hours or less),
it must attract enough – but not too many – agents for each time interval over some
horizon to maximize its profit while achieving a desired service level.

The goal of this paper is to examine how a firm that allows its agents to self
schedule solves this problem. We consider a firm that staffs a service system facing
time-varying arrivals over a horizon. The firm recruits a pool of agents who in each
period choose whether or not to work. A given agent’s willingness to work varies
with each period as she draws an availability threshold at the start of each period.
Thus, given the terms the firm offers, an agent may want to work this morning but
then be unavailable this afternoon.

The firm has three control levers at its disposal. First, it can set the pool size
– that is, how many agents it recruits and qualifies to serve customers. Since
training agents takes time, the pool size is set at the start of the horizon and
cannot be adjusted based on the demand in a given period. The second lever is
the compensation offered to agents who work in a period. This can vary from time
period to time period. For most of our analysis, we assume the firm offers a fixed
compensation for each time interval (e.g., $15 per hour). However, we demonstrate
that the firm can achieve identical results through alternative schemes, such as a
piece-rate compensation, that depend on the number of customers an agent serves.
Finally, we allow the firm to impose a cap on the number of agents that are active in

4http://www.forbes.com/sites/ellenhuet/2014/05/30/how-uber-and-lyft-are-trying-to-kill-each-
other/
5http://therideshareguy.com/category/lyft-vs-uber/
6See workathomemoms.about.com/od/callcenterdataentry/a/arise.htm accessed on May 24, 2016.
7See www.glassdoor.com/Reviews/Employee-Review-LiveOps-RVW2743190.htm accessed on
May 24, 2016.

http://www.forbes.com/sites/ellenhuet/2014/05/30/how-uber-and-lyft-are-trying-to-kill-each-other/
http://www.forbes.com/sites/ellenhuet/2014/05/30/how-uber-and-lyft-are-trying-to-kill-each-other/
http://therideshareguy.com/category/lyft-vs-uber/
www.glassdoor.com/Reviews/Employee-Review-LiveOps-RVW2743190.htm
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a period. That is, the firm can tell an agent she cannot work in a given time interval
even though she is willing to do so. Delivery service DoorDash, for example, limits
the number of agents working in a given area at a given time (Campbell 2015).

We use a newsvendor setting in which demand and capacity can vary from period
to period and find that the optimal decision is an elegant variant of the classical
critical-fractile formula. Suppose that the firm offers agents a wage of η and receives
revenue p from successfully serving a customer. Under conventional staffing (i.e.,
assuming that the firm can order any number of agents to work in a given period),
the firm would employ enough agents so that the probability of turning customers
away is η/p. The corresponding probability under self scheduling, however, is
η/p + F(η)/(pf (η)), where F is a distribution governing agent availability and
f its density.

This explicitly captures the cost of relinquishing direct control of capacity. If
the firm could choose how many agents to summon for the same wage of η, rather
than leaving this decision to the agents, it would set a higher staffing level and
have higher profits. Further, customers would benefit from a higher service level.
The drop in customer service from self scheduling is exacerbated when demand
varies over the horizon. In a horizon with both high and low demand periods (in the
sense of stochastically larger or smaller demand distributions), the provider offers
agents higher pay in high demand periods and makes more capacity available, but
the service level customers see falls in high demand periods.

We also demonstrate that the firm must use all three control levers – particularly
capping the number of active agents – when it has to satisfy a nontrivial constraint
on agent earnings. Absent an earnings constraint (i.e., when the firm only needs
to consider gaining adequate agent participation in each period), the firm has an
incentive to make its pool of agents as large as possible. It is then able to offer
relatively low wages in both high and low demand periods and still induce a large
number of agents to work. Once there is a constraint on agent earnings, however, the
firm cannot slash wages. This drives up costs both because it pays more and because
that higher pay induces too many agents to work. In particular, low-volume periods
will be overstaffed. Capping the number of active agents addresses this problem.
This, however, implies that agents must sacrifice some scheduling flexibility in order
to guarantee a minimum compensation level.

The necessity of a cap does not go away if one replaces a per-period wage with a
piece rate. However, its role changes. Under a per-period wage, a cap keeps the firm
from paying for agents it does not want at the prevailing wage. Under a piece rate,
the cap keeps excessive competition between agents from diluting agents’ earnings.

Our work is related to the literature on principal-agent models (see Salanie 1997;
Laffont and Martimort 2009, for reviews). The classical models focus on hiring an
agent to exert effort for the benefit of the principal when the agent’s actual effort
cannot be observed. The principal is concerned with both directing the agent’s
action as well as gaining the agent’s participation. We do not explicitly model
effort. In effect, we assume monitoring is sufficient to assure that agents provide the
appropriate level of effort. Our attention is squarely on assuring agent participation.
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There has been some work in the operations literature looking at two-sided
markets that match tasks with service providers (e.g., see Allon et al. 2012; Moreno
and Terwiesch 2015). In these papers, individual clients look to buy a specific
service (e.g., coding a smart phone app) that can be carried out by one individual.
The question here is how different rules or information structures affect market
performance. In our case, the service provider commits to serving customers with
homogeneous requests that any available agent can handle. The question is then how
the firm assures it has sufficient capacity to meet demand. Closer to our motivating
applications, Riquelme et al. (2015) model a ride-sharing platform as a queue with
customers requesting service and drivers executing rides. The paper studies how
dynamic pricing benefits the platform.

To our knowledge there are only a handful of papers that explicitly deal with self-
scheduling agents. Cachon et al. (2017) consider a one period problem in which
agents join a platform’s pool before knowing the market demand. Their analysis
focuses on how the platform optimally adjusts agent payments and retail prices
to efficiently allocate capacity after uncertainty is resolved. In our multi-period
model temporal variation is predictable (i.e., everyone knowns when “rush hour” is).
Compensation is then dynamic but set in advance. In Taylor (2018), customers are
delay sensitive so demand increases as waiting time decreases. In a queuing setting,
it is shown that prices do not necessarily increase with congestion. Uncertainty is a
key driver of these results since compensation and prices are set before uncertainty
is resolved. In our setting, demand is not delay sensitive and all parties are informed
about the level of demand.

A key distinction between our paper and the aforementioned two papers is that
we consider not one but a sequence of periods with different but known statistical
properties. The size of the agent pool is constant during the entire time horizon
which creates a coupling between the different periods. The firm can, however, vary
the compensation levels and the caps it puts on realized capacity. Ibrahim (2018)
also considers a multi-period queueing model in which the pool size is optimized
once in the beginning of the horizon and the decision maker has no further control
of the number of active servers in each period. Our decision maker, in contrast,
is endowed with the ability to affect the number of active servers by varying the
compensation.

12.2 Model

We consider a service provider selling to customers over a horizon composed of T
time intervals. In period t (for 1 ≤ t ≤ T ), the firm’s revenue is determined by
the number of available agents and market conditions. Let At denote the number
of agents available in period t and A = (A1, . . . , AT ). We assume that each agent
can serve one customer per period making the firm’s staffing level equivalent to its
capacity. We assume that market conditions in period t are captured by a probability
distribution Gt . That is, the actual demand in period t , Dt , is drawn from Gt . One
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expects, for example, Gt to exhibit day of the week or time of day seasonality (e.g.,
call volume peaks in the late morning). Let G = (G1, . . . ,GT ).

Let R (At ,Gt ) denote the firm’s revenue in a period t with At available agents
and market conditions Gt . Then,

R (At ,Gt ) = pSt (At ) = p

(∫ At

0
xgt (x) dx + AtḠt (At )

)

, (12.1)

where g is the density of G, which we assume to be strictly positive, and Ḡ = 1−G.
St (At ) is then expected unit sales in period t given staffing level At . The retail price
p is fixed over the horizon. In Sect. 12.4, we allow the firm to choose p. The firm’s
revenue over the horizon is RT (A,G) =∑T

t=1 R (At ,Gt ) .

We assume that the firm pays agents ηt for being available in period t . For now,
we assume that compensation is implemented through a per-interval compensation
(e.g., paying $15 per hour). We discuss alternative compensation schemes in
Sect. 12.4. The firms profit at period t is then given by

Π(At ,Gt ) = R(At ,Gt )− ηtAt ,

and its profit over the horizon by ΠT (A,G) =∑T
t=1 Π(At ,Gt ).

Given a vector η = (η1, . . . , ηT ), the firm would like to use staffing levels A∗
that maximize ΠT and schedule A∗t agents to be available in period t. However,
under self scheduling it cannot directly order At agents to work. Instead it must offer
sufficient compensation to induce that many agents to choose to work. We suppose
that the firm has a pool of N qualified agents. Interpret N as the number of agents
that are affiliated with (or belong to) the network of a firm, who have been trained to
serve customers. Thus, N is the maximum number of agents that could potentially
work in a given period. However, it is not the case that all pool members will work;
some may find the firm’s offered compensation in that period to be insufficient.

We model variation in agents’ availability to work by assuming that each agent
has an availability threshold for each period. An agent may thus be available for
work this morning because they have drawn a low threshold but be unavailable
this afternoon or tomorrow morning because they have drawn a significantly higher
threshold. More formally, each agent draws an availability threshold τ from a
distribution F at the start of each period. Agents are assumed to be statistically
identical and independent of each other. The distribution does not vary over time,
and a given agent’s draw for period t is independent of her draw for any other
period. We consider having F depend on the time period in Sect. 12.4. We assume
that F is continuous with a strictly positive density f on a support (0, Φ). Let
F̄ (τ ) = 1 − F (τ) . We assume that F is log-concave, a condition that holds for
many common distributions (see Bergstrom and Bagnoli 2005).

Agents are risk neutral and seek to maximize their earnings subject to only
working in periods in which they expect to earn more than the availability threshold
they have drawn for that period. Thus, an agent with realized availability threshold τt
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in period t makes herself available to work if the firm offers compensation ηt greater
than τt . The total number of agents interested in working in period t is then NF(ηt ).
Note that we are implicitly appealing to the law of large numbers by assuming that
the pool of qualified agents is sufficiently large that working with average number
of available agents is a reasonable approximation of the actual number of available
agents.

The firm’s problem is then to maximize ΠT (A,G) by manipulating its available
control levers. We consider three. The first is the pool size N. Since training agents
takes time, this decision must be made up front. The pool size is thus constant over
the horizon. The second variable is the agent compensation which is allowed to
vary from period to period. Finally, the firm may impose a cap Kt on the number
agents allowed to work in period t. If, under the offered compensation, the number
of interested agents, NF(ηt ), exceeds the number the firm wants, it can choose
to limit access only to the number it needs. With a cap Kt, the staffing level is
At = NF(ηt ) ∧ Kt . Allowing the possibility of an access cap requires some
assumption regarding how the firm chooses from among interested agents. We will
assume random rationing: the agents who work in an interval are chosen randomly
from amongst those that are interested. Other rationing mechanisms are possible; for
example, Netessine and Yakubovich (2012) discuss several settings in which better
workers are given priority.

To this basic problem we can add a constraint related to agent welfare. As
discussed in the introduction, firms have an interest in assuring that they are seen as
providing good opportunities for workers. We model this by imposing a constraint
on the agents’ compensation. We consider a per-period earnings constraint that
requires ηt ≥ β for all t = 1, . . . , T . This β is the “minimum wage.” In a setting
with a long repetitive horizon (as in virtual call centers where consecutive weeks
are similar), this is equivalent to requiring that agents get sufficient earnings on
any “type” of interval in which they work. If β = 0 the firm faces no earnings
constraints.

Given these considerations, we can write the general form of the firm’s optimiza-
tion problem as

max
η,N,K

ΠT (A,G)

s.t. At = NF(ηt ) ∧Kt, t = 1, . . . , T , (12.2)

ηt ≥ β, t = 1, . . . , T .

We will consider variants of this problem where some decision variables are
fixed (rather than adjustable). If any variable is fixed, this will be explicitly stated.
For future reference, with one period this optimization problem is spelled out as

max
η,N,K

p

(∫ A

0
xg (x) dx + AḠ (A)

)

− ηA

s.t. A = NF(η) ∧K, (12.3)

η ≥ β.
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12.3 Analysis

In this section we establish the following three key results:

1. Theorem 1: Controlling capacity only indirectly imposes costs on the firm and
its customers. If the firm could pay the same wages but have direct control of
capacity it would have (obviously) a higher profit but it would also staff with
more agents and, in turn, provide a higher service level.

2. Theorem 2: Under self-scheduling agents are better off in high demand periods
(their compensation is higher) but customers are worse off (they experience a
lower service level).

3. Theorem 3: In the presence of earnings constraints, the firm must use all of the
tools in its toolbox. To maximize its profit, it is necessary for the firm to cap
access in low demand periods but not necessarily in high demand period. Thus,
an earnings guarantee comes at a cost to agents – their flexibility to self-schedule
will be compromised.

The challenges brought about by self-scheduling should be weighed against the
value of the flexibility self-scheduling brings. We explore this point in Sect. 12.3.4.

12.3.1 The Cost of Self Scheduling

To begin, we assume that customer arrivals are identically distributed in each period,
i.e., Gt ≡ G, and hence drop the dependence on the time period from the notation.
We first optimize the compensation level assuming that the pool size is fixed, that
the firm does not consider earnings constraints (i.e., β = 0), and that no access cap
is used.

The firm here solves Eq. 12.3 with β = 0, i.e., it maximizes R(A,G)−ηA where

R (A,G) = pS (A) = p

(∫ A

0
xg (x) dx + AḠ (A)

)

.

The following lemma is immediately derived from the first-order condition.

Lemma 1 The unique optimal compensation level η∗ satisfies

G
(
NF(η∗)

) = 1− η∗ + F (η∗)/f (η∗)
p

. (12.4)

The uniqueness of η∗ follows from the log-concavity of F , which implies that the
reversed hazard rate f (η∗)/F (η∗) is monotonically decreasing. In the mechanism
design literature, η∗ + F (η∗)/f (η∗) is known as the virtual cost. That is, the
decision maker acts as if her marginal cost is η∗ + F (η∗)/f (η∗) even though she
pays agents only η∗.
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To capture the cost of indirect control, one can ask how many agents would the
firm choose if, for the same wages, it could summon as many as agents as it wanted
to maximize the profit:

Π∗(η∗) := max
A
{pS (A)− η∗A}. (12.5)

With direct control its staffing level would be A (η∗) given by

G
(
A
(
η∗
)) = 1− η∗

p
. (12.6)

The following theorem supports that, with the same wages, direct control of
capacity not only increases profits (as intuitively expected) but also improves service
level for the customer (All proofs appear in the appendix.)

Theorem 1 For any given N ≥ 0, direct-control of capacity leads to higher
staffing level and profit relative to self scheduling, i.e., NF(η∗) ≤ A (η∗) and
Π(NF(η∗),G)

≤ Π(A (η∗) ,G).

We thus have a clear statement that direct control may be valuable to the firm and
its customer. Of course, to obtain direct control of capacity the firm would likely
have to pay the agents a premium for losing their flexibility. But for a sufficiently
small premium, the service provider will opt for direct control. Suppose that the firm
must offer η∗ + Δ to compensate agents for giving up their flexibility. As long as
Δ < F (η∗)/f (η∗), directly controlling capacity will result in a higher staffing level
– and higher revenue – than self scheduling at η∗. The firm will prefer direct control
as long as the increase in revenue is sufficient to offset higher staffing costs. The
move to direct control would also benefit customers as they have a greater chance
of receiving service.

The extent of the difference in outcomes between the self-scheduling setting and
the benchmark depends on problem parameters. We next consider how the pool size
and the distribution of the agent’s availability threshold affect the firm’s actions. To
this end, we write η∗F,N to capture explicitly the dependence of the optimal agent
compensation on the availability threshold distribution.

Lemma 2 The firm’s profit increases as either N increases or the availability
threshold distribution decreases in the reversed hazard rate order, i.e.,

Π(NF1(η
∗
F1,N

),G) ≥ Π(NF2(η
∗
F2,N

),G) given F1 and F2 if
f1 (τ )

F1 (τ )
≤ f2 (τ )

F2 (τ )
.

The compensation rate for agents decreases as either N increases or the availability
threshold distribution decreases in the reversed hazard rate order. Finally, the
service level increases as N increases.
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Fig. 12.1 The impact of pool size and availability threshold distribution on service level. F2 is
larger than F1 in the reverse hazard rate ordering

A large pool promises more agents with low availability thresholds, which allows
for a lower payment to agents. Additionally, since F (η)/f (η) is increasing in η,
the service level increases as η decreases and the negative effect of self-scheduling
on service level decreases. Consequently, while self scheduling is less profitable, a
self-scheduling firm sacrifices little when it has a large pool of agents.

Holding the pool size fixed, a smaller distribution of availability thresholds in
the reverse hazard order means that a greater fraction of the pool is available at any
compensation rate, which increases the firm’s profit. No simple monotonicity claims
can be made about the dependence of the service level on the threshold distribution.
Suppose demand is uniform over [0, 100] while the availability threshold is one
of two power function distributions, F1(x) = x for 0 < x < 1 or F2(x) = x2

for 0 < x < 1. Note that F2 is larger than F1 in the reverse hazard rate
ordering. Figure 12.1 shows that the lower compensation rate under a smaller
distribution does not necessarily translate to a higher service level. For smaller pool
sizes, customers see a higher service level when agents have the larger availability
threshold distribution F2. This relationship is reversed when the pool size is large.
Intuitively, two countervailing forces are at play. On the one hand, a smaller
threshold distribution means that more agents will be willing to work for any
value of η, which favors a higher service level. On the other, a smaller threshold
distribution means that the firm faces a higher virtual cost for any value of η, which
argues for a lower service level. Larger pool sizes amplify the former effect causing
it to be the dominating force as the number of agents grows.
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12.3.2 Earnings Constraint and Agent Flexibility

Taking Lemma 2 to its logical conclusion, and assuming no costs of maintaining its
pool (see Sect. 12.4.3), the firm would set N as large as possible, maximizing its
earnings but squeezing the agents.

This is no longer feasible if there is a nontrivial constraint, β > 0, on agent
earnings. It is obvious that if η∗, for a given N , is greater than β (where η∗ is
determined by Eq. 12.4), the earnings constraint is not binding and the firm can use
η∗ for compensation. If η∗ < β, the firm would set the compensation per interval
at β and would have NF(β) interested agents. As stated in Lemma 2, the optimal
compensation η∗ is a decreasing with the pool size: for sufficiently large N , the
earnings constraint will bind.

Lemma 3 Any optimal solution to Eq. 12.3 with β > 0 has η∗ = β and N∗ ≥
N̄ := Ḡ−1 (β/p) /F (β). For all values of N > N̄ such that η∗N < β, the firm can
strictly increase its profit by setting a cap and the optimal cap is set at K∗ = A (β).

If N = N̄ the optimal compensation will be precisely η∗ = β. If the pool is larger
compensation is fixed at β and the staffing is capped at A(β). This cap ensures that
the firm does not have to pay more agents than it needs at the prevailing wage:
it is able to attract all the agents it needs at compensation β as if endowed with
direct control. In other words, direct control would not affect the number of active
agents, increase the firm’s profit or improve the customers’ service level. That not
all interested agents are able to join (because of the cap at A(β)) implies that the
agents give up some of their flexibility in return for a guaranteed compensation.

12.3.3 Time-Varying Demand

As we just saw, with stationary demand, if the firm is allowed to choose its pool
size, it can set N∗ = Ḡ−1(β/p)/F (β) so that capping the number of agents that
work is not necessary. The firm can choose N∗ such that the number of interested
agents is exactly the number it wants. However, the cap regains its relevance in an
environment with time-varying demand.

Suppose that there are two types of intervals (low and high) with respective
demand distributions Gl and Gh, such that Gh is stochastically greater than Gl

in the sense of first order stochastic dominance. Let us assume that there are Tl
intervals of low demand and Th of high demand. The firm seeks to maximize

ΠT (A,G) := p (TlSl(Al)+ ThSh(Ah))− (ηlTlAl + ηhThAh),

where Si (i = l, h) is as in Eq. 12.5 with G replaced by Gi . Let η∗i,N be the solution
to Eq. 12.4 when the demand distribution is Gi, i = l, h, the pool size is N , and
K = ∞. Let Ai (β) = Ḡ−1

i (β/p) be the solution to Eq. 12.6 with η = β and the
demand distribution Gi, i = l, h.
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Theorem 2 Consider Eq. 12.2 with fixed N and β = 0. Then, the optimal
compensation is lower in low demand periods, i.e., η∗l,N ≤ η∗h,N , and the staffing
level is, consequently, lower. The service level is, however, higher in low demand
periods.

Theorem 3 Every optimal solution to Eq. 12.2 has η∗l,N = η∗h,N = β and N∗ ≥
N̄ := Ah(β)/F (β) = Ḡ−1

h (β/p) /F (β). The assigned capacity satisfies N∗F(β)∧
K∗l = Al(β) and N∗F(β) ∧ K∗h = Ah(β). In particular, in any optimal solution,
the firm uses a cap K∗l = Al(β) in the low demand period.

Theorems 2 and 3 offer two important insights. First, the ability to cap the number
of active agents is crucial to controlling the firm’s costs when it must guarantee a
minimum earning level under time-varying demand. Without it, low demand periods
would be overstaffed. Second, regardless of earning constraints, it is never optimal
for the firm to offer a higher service level in high demand periods. This continues to
be true even when the retail price is a decision variable; see Sect. 12.4.2.

Before moving on, a brief discussion of alternative service models is due. We
could consider other revenue models than the newsvendor. All that is needed for the
insights to persist is that the expected unit sales be increasing and concave in the
staffing level. One could, for example, suppose that sales are given by an Erlang
loss model in which inducing more agents to work results in fewer lost sales.

That said, the newsvendor is applicable in a wide variety of settings. Facing
significant uncertainty in call volume, a newsvendor model provides a good
approximation for call-center optimization; see e.g. Bassamboo et al. (2010). To
relate this specifically to our setup, consider a call center with a single group of
servers serving a single type of customers with finite patience. If the number of
agents is A and the call volume comes from a distribution G, then S(A) provides
a good approximation for the number of calls served. The average number of calls
that abandon is the expected volume minus those served. If a contract with a client
compensates the call center a p for each call served, the call center is optimizing
capacity so as to maximize pS(A)− ηA just as in our study above. In this way, the
self-scheduling newsvendor captures, at least in first order, the challenges faced by
a call-center provider such as Arise Virtual Solutions or LiveOps.

12.3.4 The Benefit of Flexible Capacity

Despite of the challenges we have highlighted thus far with self scheduling – driven
by the indirect control a self-scheduling firm has of its capacity – a significant
advantage of self scheduling in a service setting is that it provides greater flexibility
to respond to demand variation relative to traditional models. In call centers, this
advantage corresponds to the fact that agents can work for very short periods (e.g.,
in half hour windows), eliminating the constraint of scheduling workers for shifts
lasting several hours. The benefit of flexibility could overwhelm the challenges of
self scheduling. We explore this issue through a numerical experiment that both
supports this intuitive claim and highlights an important subtlety.
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As an approximation for Poisson arrivals, the demand distribution is normal
(truncated at 0) with a mean λi and standard deviation

√
λi for i ∈ {l, h}. The

agents’ threshold distribution is normal with mean 7 and standard deviation of 3.
The retail price is 10. We impose no earnings constraint (i.e., β = 0) and fix the
pool size to N = 400.

We consider an eight-period horizon. We manipulate the extent of time variation
by changing the number Th of high demand periods. Given the mix of high and
low demand periods, we solve for the optimal wages, ηl and ηh for low and high
demand periods respectively, using (12.4) and compute the service provider’s profit
under self-scheduling.

We then compute the firm’s profit if it relinquished its flexibility in return for
direct control. This is the inflexible + direct control benchmark. So that we can
compare against the self-scheduling firm, the benchmark still pays the wages ηl and
ηh determined before. Direct control means that, given these wages, it can choose
the number of servers it uses. However, this number is chosen once and remains the
same on all periods.8

In the upper panel of Fig. 12.2, we consider the case where λl = 100
and λh = 200. As intuitively expected, the value of flexibility overwhelms the
relative lack of capacity control. Self scheduling is close to the inflexible + direct
control benchmark when there is little temporal variability in demand but performs
substantially better when there is a mix of high and low demand periods.

In the lower panel, we increase the high demand volume to λh = 400. Here,
when the number of high demand periods exceed five, the cost of incentivizing
agents to work overwhelms the value of flexibility. The pool size (N = 400) is
tight relative to the high demand rate of λh = 400. The self-scheduling firm is
consequently significantly understaffed, leaving a substantial amount of money on
the table. The benchmark will summon many more agents. Thus, when the pool size
is small relative to peak demand, flexibility may be less important than control. Said
another way, it is important for a self-scheduling firm to have a pool that is large
relative to peak demand.

12.4 Variants of the Base Model

We consider four extensions of our base model: (i) alternative compensation
schemes in which agent earnings are tied to the volume of customers served; (ii) a
price dependent newsvendor setting in which the firms sets both agent compensation
and the retail prices; (iii) A setting where there is a cost associated with maintaining
a larger pool; and (iv) agents that have availability threshold distributions that vary
over the horizon.

8Fixing the staffing level for the entire horizon is admittedly extreme. However, it implies that the
result do not depend on the exact sequence of high and low demand periods.
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Fig. 12.2 How profit varies as the mix of high and low demand periods changes: The value of
flexibility may be compromised if the pool size is not big enough relative to high demand
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12.4.1 Volume-Dependent Compensation Schemes

Thus far we have assumed that the firm pays agents a fixed per-period amount
η∗: an agent that signs-up to work Monday 10:00–10:30 gets η∗ regardless of the
number of customers served. However, many self-scheduling firms tie agent pay
to utilization. Ride-sharing service such as Lyft and Uber compensate drivers by
splitting fares with them. Similarly, call centers like LiveOps and Arise Virtual
Solutions use piece-rate compensation or some combination of piece rate and a
guaranteed per-interval minimum. The firm might reasonably prefer some sort of
volume-dependent compensation. For example, a piece rate may address moral
hazard issues (that we have left unmodeled) and induce agents to exert more effort.
Additionally, a piece rate is easier on a firm’s finances since it only pays agents
when it has been paid by the client; such a consideration may be important for a
nascent firm with limited resources.

Here we show that within our model with risk-neutral agents many reasonable
compensation mechanisms are equivalent. Namely, that there exists a translation
from one scheme to the other that generates the same outcomes in terms of staffing,
service level and expected firm profit.

In particular, we will focus on piece-rate compensation in which an agent
earns φt per completed transaction in period t . To determine how much an agent
earns under such a scheme, we need to know how many transactions she completes.
Let Xj

t denote the number of customers agent j serves in period t . The distribution
of Xj

t depends on several factors including the number of active agents, the demand
distribution Gt , and how the firm allocates work among agents. If some agents are
given higher priority as demand is allocated among working agents, they will earn
more money than those with lower priority. Here we assume that jobs are distributed
uniformly among the active agents. (For a setting in which routing is non-uniform
see Stouras et al. 2016). Thus, each agent will serve in expectation St (At )/At

customers where St (·) is as in Eq. 12.5 with G replaced by Gt . An agent’s expected
earnings in period t are then μt = φtS(At )/At , and the number of interested agents
is NF(φtS(At )/At ).

Recall that the number of agents interested in working in period t when the firm
pays a fixed amount ηt is NF(ηt ). In comparing these values, note that under a
fixed rate scheme, an agent can determine whether or not to work by considering
only her own availability threshold. Under a piece rate scheme, however, an agent
must consider both her threshold and what other agents are doing. We must in this
case consider an equilibrium among the agents in which the number of interested
agents is equal to the number that join, i.e., that NF (φtSt (At )/At ) = At .

Lemma 4 Fix N , Gt , and φt . There then exists an equilibrium Ae
t , characterized

by the unique solution to the equation

NF

(
φtSt (A

e
t )

Ae
t

)

= Ae
t . (12.7)
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It is a priori conceivable that this equilibrium structure introduces constraints
into the firm’s optimization problem or, in other words, that an optimal solution
(N∗, η∗,K∗) to the firm’s optimization problem is not implementable via a piece
rate. The following simple argument is a proof to the contrary: the firm can move
from per-interval compensation to piece-rate compensation without compromising
its profits or customer service level.

Suppose that the firm is using a feasible solution (N, η,K) with Ki ≥ NF(ηi),
i = l, h (so that access is not really limited). The firm should offer the piece rate
φ′ = (φ′l , φ′h

)
such that

NF

(
φ′iSi(Ai)

Ai

)

= Ai,

where Ai = NF(ηi). Since (N, η,K) is a feasible solution to the firm’s problem,
it must be that N ≥ NF(ηi) = Ai so that the existence of φ′ follows from
the continuity of F . With this choice of φ′, the number of agents that sign-up in
equilibrium is (using Lemma 4) the unique solution to NF(φ′iSi(Ai)/Ai) = Ai

which must equal Ai by construction.
If (N∗, η∗,K∗) is an optimal solution to the firm’s optimization problem

Eq. 12.3, then the firm can set the piece rate at φ∗i = η∗i Ai/Si(Ai) where Ai =
N∗F(η∗i )∧K∗i . With this translation, the optimal solution (N∗, η∗,K∗) to the firm’s
problem with interval compensation is equivalent to the solution (N∗, φ∗,K∗) with
piece rate compensation: (i) the number of agents interested for each interval is the
same (and using the same cap, so is the number of people actually signing-up), (ii)
the staffing level is the same and, hence, (iii) the expected firm profit and customer
service level are the same.

There are, however, subtle differences between the piece rate and fixed compen-
sation. First, the firm’s staffing costs are deterministic under fixed compensation but
these costs are variable under a piece rate. Thus a properly chosen piece rate delivers
the same expected profit as the optimal fixed interval compensation but the realized
profit for a given demand outcome differs.

Second, piece rate compensation lessens the impact of increasing the pool
size. Under fixed rate compensation, doubling the pool size while holding the
compensation rate constant will double the number of interested agents. The
response to an increase in the pool size is less elastic when a piece rate is used. If
the pool size is doubled while the piece rate is unchanged, the number of interested
agents increases but does not double. Competition between agents could dissuade
an agent, who was indifferent between working and not working under the original
pool size, from participating as the pool grows.

Lastly, the cap on the number of active agents plays a different role under a piece
rate than under a fixed per-period compensation. Under the latter, the firm’s labor
costs are fixed with regard to the demand realization. The cap serves to control this
fixed cost and prevents the firm from paying for labor on which it would expect an
inadequate return. From this perspective, a cap would seem to be unnecessary when
the firm moves to a piece rate system. Labor is no longer a fixed cost and unutilized
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capacity would appear to be costless to the firm. That unutilized capacity, however,
does impose a burden on the firm. A large number of available agents reduces
everyone’s expected utilization and expected earnings for a given φ. Competition
between agents undermines the firm’s ability to compensate agents adequately with
a relatively low piece rate. Without a cap, the firm would have to raise the piece rate,
driving up its cost of serving customers.

Piece rate and fixed compensation are two extremes. Fixed compensation means
agents do not face any volume risk while under a piece rate they carry all the risk.
A two-part tariff (i.e., νt + φtX

j
t ) or a piece rate with a minimum guarantee (i.e.,

max{κt , φtXj
t }) offer intermediate mechanisms. A call center we have worked with

pays agents a piece rate with a guaranteed minimum payment level. Uber has also
been reported to guarantee an hourly rate at some time periods (Kirsner 2014). Given
our analysis for piece rate it is not a surprise (and, indeed, can be easily shown) that
these mechanisms are also equivalent, within our model, to fixed compensation.

12.4.2 Price-Dependent Newsvendor

Our assumption that the retail price is fixed regardless of whether demand is high or
low is appropriate in some settings (e.g., a work-from-home call centers). Yet, other
services (notably ride-sharing firms) raise their prices when demand increases. This
calls into question one of our earlier results that customer experience a lower service
in high-demand periods. In Theorem 2 we showed that if the retail price is fixed, an
increase in staffing costs results in the firm picking a lower service level. If now the
retail price also increases, it is not clear that it is still optimal to let customer service
levels fall.

To examine these issues, we suppose that demand in a low-volume interval given
a retail price p is a random variable ξp with distribution Gl (x|p) and that ξp
becomes smaller in the sense of first order stochastic dominance as p increases.
That is, Gl (x|p) ≤ Gl

(
x|p̂) for all x for all p ≤ p̂. Next we assume that demand

in a high-volume interval for a given price is θξp for some θ > 1. The corresponding
demand distribution is then Gh(x|p) = Gl((x/θ)|p). We assume that there is
sufficient structure on Gl(x|p) that the firm has unique pricing and staffing decisions
for both low and high volume periods (see Petruzzi and Dada 1999).

Letting Si (A, p) be expected unit sales in a type i ∈ {l, h} period given staffing
level A and retail price p, one can show that

Sh (A, p) = θSl(A/θ, p).

For the moment, suppose the firm directly controls staffing, hiring as many agents
as it wants at wage η in either type of period. Let Âi (η) and p̂i (η) be the optimal
staffing level and price, respectively, for a type i = l, h interval. It is straightforward
to show that p̂h (η) = p̂l (η) and Âh (η) = θÂl (η) . Thus a firm which manages its
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staff in a conventional fashion does not employ period-dependent pricing; it sticks
with the same retail price and adjusts its staffing level to achieve the same service
level in both high and low volume periods.

This will no longer hold if the firm allows agents to self schedule. Increasing staff
above Âl (η) requires dipping further into the pool of agents which, in turn, drives
up staffing cost. Higher costs then lead to a higher retail price. That is, prices surge
higher in this framework not because of the market structure but because of higher
costs.

The fact that the firm boosts the retail price does not yet tell us how service-level
behaves and whether (or not) making the retail price endogenous leads to a departure
from Theorem 2. To examine how the service level varies with demand under self
scheduling, we work with a specific demand distribution. Suppose that Gl(x|p) =
x/D(p) where D(p) is a non-negative strictly decreasing function. Since demand
is uniformly distributed, the expected demand (given a price) p is D(p)/2. Let
ε(p) = −pD′(p)/D(p) be the elasticity of expected demand. We assume that ε (p)
is increasing, i.e., that demand becomes less elastic as the price falls.

If the firm directly controls staffing, its problem for high volume periods is

max
p,A
{pSh (A, p)− ηA}.

With the uniformly distributed demand, we have

Sh (A, p) = A− A2

2θD (p)
,

which results in the following first order conditions:

A

θD (p)
= 1− η

p
, (12.8)

ε (p) = 2

A/(θD(p))
− 1. (12.9)

Equation 12.8 is the classical critical fractile solution that ties the capacity A to
a targeted service level. Equation 12.9 relates the service level to the elasticity of
demand: the higher the service level, the lower the elasticity. To go the other way, a
higher elasticity corresponds to a lower service level.

Substituting Eq. 12.8 into Eq. 12.9 yields an implicit expression for the optimal
price p̂

p̂ = η
1+ ε

(
p̂
)

ε
(
p̂
)− 1

. (12.10)

Equation 12.10 does not depend on θ . This is a specific instance of our more general
argument above that the retail price is independent of the scale of demand when the
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firm directly controls staffing. Further, the right-hand side of Eq. 12.10 is decreasing
in p if ε(p) is strictly increasing. Consequently, p̂ is increasing in η so that higher
agent wages move the firm to a higher level of elasticity on the demand curve. Going
back to Eq. 12.9, a higher elasticity corresponds to a lower service level. Thus when
faced with higher staffing costs, the firm charges more but offers worst service.9

Turning to the self-scheduling setting, the firm’s problem for given a pool-size of
N is

max
p,η
{pSh (NF (η) , p)− ηNF (η)},

which yields the following first order conditions (the analogues to Eqs. 12.8 and
12.9)

NF (η)

θD (p)
= 1− η + F (η)/f (η)

p
,

ε (p) = 2

NF (η)/(θD (p))
− 1.

We again have (recall Eq. 12.4) that the self-scheduling firm works with an inflated
marginal cost of capacity. That higher cost leads to higher price than one would
have when capacity is directly controlled. If ε (p) is strictly increasing, this leads to
a lower service level. Further, the chosen compensation rate is now increasing in θ.

Thus a firm that lets its agents self-schedule will charge more but, as in Theorem 2,
offer worse service in high-demand periods.

12.4.3 When Maintaining a Larger Pool Costs More

In our basic model, the only mechanism keeping the firm from recruiting an infinite
number of agents is a possible concern for agent welfare, as modeled through the
earnings constraint. Suppose, alternatively, that the firm incurs a cost of M(N) for
maintaining a pool of size N agents. Before considering the cost of maintaining the
pool, the profit in period i given N is then

Πi(N) = p

(∫ NF(η∗i,N )

0
xgi (x) dx +NF(η∗i,N )Ḡi

(
NF(η∗i,N )

)
)

−η∗i,NNF(η∗i,N ).

9This conclusion depends on ε (p) being strictly increasing. If D (p) = p−ε̃ , the elasticity of
demand is constant at ε̃, making p̂ proportional to η and the optimal service level independent
of η.
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Fig. 12.3 Optimizing jointly pool size and wages with linear holding cost M(N) = c ∗N : Profits
as a function of the cost coefficient c

Notice that η∗i,N depends on N . It is straightforward to show that profit is concave
in N and that Π ′h(N) ≥ Π ′l (N). Additionally, Π ′i (N) = 0 if the earnings constraint
would be binding in a type i period given pool size N .

If M(N) is weakly convex the objective function (summing the profit over all
periods and subtracting the pool cost) is concave implying that the maximization
problem has an interior (and finite) solution N∗. Because the marginal return on
agents is higher in high-demand periods, N∗ is increasing in the number of high-
demand periods.

A cost to maintaining the pool does not necessarily obviate the need to impose
an access cap. If the cost of maintaining the pool does not increase too quickly, the
service provider may still need to restrict access in low demand periods. Specifically,
if N∗ > Ḡ−1

l (β) /F (β) , the service provider would benefit from capping the
number of agents working in low demand periods.

This is demonstrated in Fig. 12.3. Here we use a linear pool-cost function
M(N) = c ∗ N . For each value of the coefficient c, we solve the optimization
problem to find the optimal staffing N∗ and the optimal wages η∗(N∗). We use a
retail price p = 10, arrival rates λl = 100 and λh = 200. We have a total of eight
periods in the horizon, with Th = 5 and Tl = 3. Agent thresholds follow a normal
distribution with mean 7 and standard deviation of 3.

We vary the coefficient c from 1 to 10 and consider three cases. In the first,
there is no earnings constraint (i.e., β = 0). In the second, there is an earnings
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constraint with β = 5 but the firm never limits access. The third case replicates the
second but now allows for the use of an access cap. Across all three examples, we
see that the higher values of c lower profitability as one would expect. Note that
this is not driven just by increased pool costs; higher pool costs drive up per-period
compensation which reduces staffing levels and thus revenues.

We also see that the earnings constraint decreases the provider’s profit when the
pool costs are not too high. This is particularly true when the firm does not limit
access. (That is, an access cap still creates value.) However, when the marginal cost
of increasing the pool is high, the differences between the three cases go away. At
high values of c, the pool is so small that the optimal compensation is greater than
β in low-demand periods even in the first scenario.

Finally, it is worth thinking about what drives the cost of maintaining the pool.
Clearly, there is some overhead to tracking a large number of agents. But some costs
could be endogenous and depend on how the firm manages its agents. For example,
because the introduction of caps inevitably limit agent flexibility, imposing caps may
decrease the willingness of agents to work for the firm in the first place.10 Within
this model this could be captured by assuming that allowing caps increase the cost
of recruiting and maintaining the pool, i.e., c may increase as we move from the
second to the third case. In such as setting, we are over-stating the gain in moving
between these settings.

12.4.4 Period-Dependent Threshold Distributions

In our base model, the distribution of agent threshold values is independent of the
period. This is obviously unrealistic. Many people opt to work for a self-scheduling
firm in part because existing obligations (e.g., having young children) make working
a conventional schedule difficult. However, many of these obligations have a known
schedule (e.g., the preschool gets out at the same time every weekday); this should
be reflected in the distribution of threshold values.

Here, we suppose that the distribution of threshold values depends on the time
interval of the horizon. Let ΩT be the set of all time intervals. Let Ωd and Ωu be
subsets of ΩT such that Ωd ∪ Ωu = ΩT and Ωd ∩ Ωu = ∅. An agent draws her
threshold value for period t from Fd [Fu] if t ∈ Ωd [t ∈ Ωu] . Further, we assume
that Fu is stochastically larger than Fd , i.e., that Fu (t) ≤ Fd (t) for all t. Ωd is

10For example, note the following complaint about UK on-demand delivery service Deliveroo: “I
was working in a bar when a friend of mine started working for Deliveroo. I was sick of working
until 2am and I really like cycling so I decided to join too. I wanted as many hours as possible, but
cycle couriers mainly do a three-hour shift at lunchtime and three hours in the evening, because
those are the busiest times for Deliveroo. . . . Its not flexible either. We used to have a system where
you could swap shifts with people but they said it was too chaotic. Now you do the same shifts every
week.” (https://www.theguardian.com/money/2016/jun/15/he-truth-about-working-for-deliveroo-
uber-and-the-on-demand-economy?CMP=share_btn_tw)

https://www.theguardian.com/money/2016/jun/15/he-truth-about-working-for-deliveroo-uber-and-the-on-demand-economy?CMP=share_btn_tw
https://www.theguardian.com/money/2016/jun/15/he-truth-about-working-for-deliveroo-uber-and-the-on-demand-economy?CMP=share_btn_tw
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then the set of desirable time intervals in the sense that each agent has a higher
probability of drawing a low threshold in these intervals than in the undesirable
intervals of Ωu. Stated another way, a given compensation rate will induce more
agents to work in a desirable interval than in undesirable interval.

When there is no earnings constraint, agent preferences over periods only
modestly complicate the firm’s problem. Let Ωh and Ωl be the collection of time
periods in which demand is high or low respectively. When the threshold distribution
does not depend on the time period, the compensation offered in period t depends
only on whether t falls in Ωh or Ωl . If the distribution varies with the time interval,
compensation in period t depends on whether t lies in Ωd∩Ωh or Ωd∩Ωl and so on.
The firm must then calculate four different compensation rates using the appropriate
version of (12.4).

Things get more interesting when the firm must satisfy a non-trivial per-period
earning. Now the firm offers β in every period and the question becomes how large
a pool to recruit. Regardless of whether a high demand period falls in Ωd and Ωu,
the firm would want Ah (β) = Ḡ−1

h (β/p) working. The pool size necessary to
achieve this staffing level is higher if the period in question is undesirable. Thus,
if Ωu ∩Ωh �= ∅, the firm sets N = Ah (β) /Fu (β) > Ah (β) /Fd (β). However,
assuming Ωd ∩Ωh �= ∅, then desirable, high-volume periods will be overstaffed.
Consequently, we conclude that the firm may cap access to high-volume periods if it
must satisfy a non-trivial earnings constraint and the distribution of agent thresholds
varies with the time period.

It is conceptually straightforward (albeit notationally cumbersome) to extend
these results to having two types (say, A and B) of agents each of which has its
own set of desirable and undesirable time periods. Assume that the firm offers the
same compensation to both types of agents. This would be appropriate if the agents
type (say, stay-at-home parents and college students) affects their availability but
not their productivity. If there is no earnings constraint, the firm would now need
to have eight different compensation rates that depend on the demand and whether
or not the period is desirable for Type A agents, Type B agents or both. With a
non-trivial earnings constraint, the action turns on how many agents of each type to
recruit. The number of agents will be determined by a subset of the possible kinds of
high-demand periods (e.g., periods that both types undesirable and those that Type
A agents find undesirables but Type B desires but not those periods that both types
desire). Caps will not be necessary in the periods that determine the staffing levels
but will be in other high-demand periods.

12.5 Concluding Remarks

We studied a model in which a service provider allows its agents to choose when
to work, a scheme being adopted in multiple service markets and stands in contrast
to traditional models where the firm has direct control of capacity. The firm faces
time varying demand over a horizon and must recruit and train a pool of agents.
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The firm sets the pool size at the start of the horizon and the pool size cannot be
adjusted dynamically. In each period, agents in the pool choose whether or not to
work. An agent’s willingness to work varies from period to period and the firm can
offer a different compensation every period to attract enough workers to provide an
adequate service level.

Our objective is to understand the costs of relinquishing direct control of capacity.
These should be weighted against the value of flexibility that such self-scheduling
models bring.

We frame the problem in terms of a newsvendor model in which demand and
capacity can vary from period to period and show that the optimal decision is a
variant of the classical critical-fractile formula. We show that the firm picks a lower
service level than it would in a standard newsvendor setting, lowering its profits
and making it harder for customers to get served. The drop in customer service is
affected by the time-varying pattern of demand. In a horizon with both high and low
demand periods, the provider offers agents higher pay in high demand periods and
makes more capacity available, but the service level customers see is lower in high
demand periods.

These issues are mitigated if the firm can recruit a large pool of agents. As the
pool size grows, the firm can pay agents less and less and the gap between self
scheduling and the benchmark newsvendor problem decreases. If the firm does not
need to ensure a minimum earnings constraint to the agents, the firm has an incentive
to make its pool of agents as large as possible. It is then able to offer relatively low
wages in both high and low demand periods and still induce enough agents to work.
Of course, agents are worse off in this case. If there is a constraint on agent earnings,
however, the firm is limited in its ability to reduce wages. This is costly to the firm
because it pays has to pay higher wages and because that higher pay may induce
too many agents to work in some periods. Capping the number of active agents that
can work in some periods addresses this problem. The firm chooses its pool large
enough that it can get, on a period-by-period basis, exactly the number of agents it
needs at the guaranteed wage. However, to control its cost, the firm caps the number
of agents working in some periods. The implication is that agents must sacrifice
some scheduling flexibility in order to guarantee a minimum compensation level.

For most of our analysis we have assumed the firm offers a fixed compensation
for each time interval the agent is active. However, we have demonstrated that the
firm can achieve identical results through alternative schemes, such as a piece-
rate compensation, that depend on the number of customers an agent serves. We
have also presented extensions that consider price-dependent demand and period-
dependent threshold distributions.
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Appendix

Proof of Theorem 1

The right hand side of Eq. 12.4 is smaller than that of Eq. 12.6 so that, since G

is increasing in its argument, we must have that NF(η∗) ≤ A(η∗). For the profit
comparison, notice that NF(η∗), would generate in the benchmark problem the
profit Π(NF(η∗),G). Since A(η∗) is, by definition, the optimal solution for the
fixed wages η∗, it must be the case that Π(A(η∗),G) ≥ Π(NF(η∗),G). $%

Proof of Lemma 2

We first show the monotonicity results for the compensation followed by the service
level and, finally, the profits. It is useful to re-write Eq. 12.4 as

Ḡ(NF(η∗)) = η∗ + F(η∗)/f (η∗)
p

. (12.11)

Compensation That compensation strictly increases with p and strictly decreases
with N is evident from Eq. 12.11. Consider for instance p. Suppose to reach a
contradiction that, as p increases, the compensation η∗ actually decreases. Then, the
right-hand-side of Eq. 12.11 decreases by the monotonicity of F/f so that the left-
hand side Ḡ(NF(η)) must also decrease. This would entail (since F is increasing
and Ḡ is decreasing) that η∗ increases with p which is a contradiction.

To prove that the compensation increases with the agent availability distribution
F notice that, assuming F2 dominates F1 in the reverse hazard rate ordering,

η∗2 +
F2
(
η∗2
)

f2
(
η∗2
) ≤ η∗2 +

F1
(
η∗2
)

f1
(
η∗2
) . (12.12)

Further, if F1 is smaller than F2 in the reverse hazard rate order, then it is also smaller
in the regular stochastic ordering sense, F̄1(x) ≤ F̄2(x) (or F1(x) ≥ F2(x)), so that,
since Ḡ is decreasing,

Ḡ
(
NF1

(
η∗2
)) ≤ Ḡ

(
NF2

(
η∗2
))

(12.13)

By Eq. 12.11,

Ḡ
(
NF1

(
η∗1
))=η∗1+F1

(
η∗1
)
/f1

(
η∗1
)

p
and Ḡ

(
NF2

(
η∗2
))=η∗2 + F2

(
η∗2
)
/f2

(
η∗2
)

p
,
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so that combining Eqs. 12.12 and 12.13 we have

Ḡ(NF1(η
∗
2)) ≤ Ḡ(NF2(η

∗
2)) = η∗2 +

F2
(
η∗2
)

f2
(
η∗2
) ≤ η∗2 +

F1
(
η∗2
)

f1
(
η∗2
) . (12.14)

Assume now, to reach a contradiction, that η∗2 < η∗1. Then, since the right hand side
of Eq. 12.14 increases strictly in the compensation and the left hand side strictly
decreases, we would get that

Ḡ(NF1(η
∗
1)) < Ḡ(NF1(η

∗
2)) ≤ η∗2 +

F1
(
η∗2
)

f1
(
η∗2
) < η∗1 +

F1
(
η∗1
)

f1
(
η∗1
) ,

which contradicts Eq. 12.11. We conclude that η∗1 ≤ η∗2.

Service level The fact that the service level increases with p is evident from the
optimal fractile formula Eq. 12.11 and from the fact, already proved, that the optimal
compensation increases with p. Similar is the observation that the optimal service
level increases with N .

Profits To show that profits increase with the pool size N , take N2 > N1. Let η∗N1
be the optimal compensation level at N1. Since N2 > N1, N2F(η∗N1

) > N1F(η∗N1
).

In particular, we can find η̄ < η∗N1
such that N2F(η̄) = N1F(η∗N1

). With this η̄, then,
the firm gets the same staffing level under (N2, η̄) as under (N1, η

∗
N1
) and, in turn,

the same revenue. The staffing costs are smaller under (N2, η̄) since η̄N2F(η̄) =
η̄N1F(η∗N1

) < η∗N1
N1F(η∗N1

). Thus, the pair (N2, η̄) generates a higher profit for
the firm than the pair (N1, η

∗
N1
). In particular, (N2, η

∗
N2
) generates higher profits that

(N1, η
∗
N1
).

An identical argument is used to study the effect of an increase (in the sense of
reverse hazard ordering) in the availability distribution starting with the observation
that, since reverse hazard rate ordering implies stochastic ordering, NF1(η

∗
F2
) ≥

NF2(η
∗
F2
) where N is fixed and η∗F2

is the optimal compensation under F2. If
NF1(η

∗
F2
) = NF1(η

∗
F2
), then under F1, η∗F2

generates the same profit as the optimal
solution for F1 and, in particular, the optimal profit under F1 is higher. If the
inequality is strict, i.e., NF1(η

∗
F2
) > NF2(η

∗
F2
) we can proceed, as before, by

finding η̄ that generates the same staffing and revenue but lower staffing cost. $%

Proof of Lemma 3

Let η∗N be the optimal compensation in Eq. 12.4 when the pool size is N . Suppose
that N is such that η∗N > β. By Lemma 2, the firm’s profits are strictly increasing in
N and the compensation is decreasing in N . Thus, the firm will optimally increase
N (and decrease η∗N ) until it hits β and we conclude that any optimal solution must
have η∗N = β. The firm’s optimal N , is then given by maximizing (over N ), the
profits
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Π(NF(β),G) = pS(NF(β))− βNF(β).

This is a standard newsvendor problem so that the optimal level of N is given by the
(unique) solution to Ḡ(NF(β)) = β/p, or, equivalently, N∗ = Ḡ−1(β/p)/F (β).
If the pool size is set at N∗ = N̄ := Ḡ−1(β/p)/F (β) no caps are needed.

The firm also has optimal solutions with N∗ > N̄ but in that case it must use
a cap. To prove this take N �= N∗ with η∗N < β. The firm, to meet, the earnings
constraint must increase the compensation to β in which case NF(β) agents sign
up and the firm’s profit is given by

Π(NF(β),G) = p

∫ NF(β)

0
xg (x) dx + pNF (β) Ḡ(NF(β))− βNF(β).

Recall that

Π(A(β),G)=p
(∫ A(β)

0
xg (x) dx + A(β)Ḡ(A(β))

)

−βA(β)=p
∫ A(β)

0
xg (x) dx,

where we use the fact that, by definition, Ḡ(A(β)) = β/p. There are two cases
to consider depending on whether NF(β) > A(β) or NF(β) < A(β). The case
that NF(β) = A(β) is ruled out by the assumption that N �= N∗. Suppose that
NF(β) > A(β) (the other case is argued identically).

Π(NF(β),G)−Π(A(β),G)=p
∫ NF(β)

A(β)

xg (x) dx+pNF (β) Ḡ(NF(β))−βNF(β).

Notice that

p

∫ NF(β)

A(β)

xg (x) dx ≤ pNF(β)(Ḡ(A(β))− Ḡ(NF(β)),

Thus,

Π(NF(β),G)−Π(A(β),G)

≤ pNF(β)(Ḡ(A(β))− Ḡ(NF(β))+ pNF (β) Ḡ(NF(β))− βNF(β) = 0,

where we used the fact that Ḡ(A(β)) = β/p. In fact, since NF(β) > A(β),

pNF(β)(Ḡ(A(β))− Ḡ(NF(β)) > p

∫ NF(β)

A(β)

xg (x) dx,

we can conclude that
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Π(NF(β),G)−Π(A(β),G) < 0,

so that the firm is better off with the cap. By the definition of A(β) it is immediate
that A(β) is the optimal cap. $%

Proof of Theorem 2

Here we fix N and omit it from the subscript. Recall that η∗l and η∗h are characterized
through the equations

Ḡh(NF(η∗h)) =
η∗h + F(η∗h)/f (η∗h)

p
and Ḡl(NF(η∗l )) =

η∗l + F(η∗l )/f (η∗l )
p

.

Suppose, to reach a contradiction, that η∗h < η∗l . Then, using the log-concavity of F
(which implies, in particular, that F/f is increasing), we have that

Ḡh(NF(η∗h)) =
η∗h + F(η∗h)/f (η∗h)

p
<

η∗l + F(η∗l )/f (η∗l )
p

= Ḡl(NF(η∗l )).
(12.15)

Since F and G have strictly positive densities F(η∗h) < F(η∗l ) so that (since Ḡ

is strictly decreasing) Ḡl(NF(η∗h)) > Ḡl(NF(η∗l )). Using the assumed stochastic
ordering we then have that

Ḡh(NF(η∗h)) ≥ Ḡl(NF(η∗h)) > Ḡl(NF(η∗l )),

which is a contradiction to Eq. 12.15. It must be then that η∗h ≥ η∗l . Consequently,
the staffing levels satisfy NF(η∗h) ≥ NF(η∗l ). Finally, since F/f is increasing,
η∗h + F(η∗h)/f (η∗h) ≥ η∗l + F(η∗l )/f (η∗l ) and

Gh(NF(η∗h)) = 1−η∗h + F(η∗h)/f (η∗h)
p

< 1−η∗l + F(η∗l )/f (η∗l )
p

= Gh(NF(η∗h)),

so that the service level is higher in low demand periods. $%

Proof of Theorem 3

Consider a pool size N < Ah(β)/F (β) = Ḡ−1
h (β/p)/F (β). We will show that

such a level cannot be optimal. There are two cases to consider depending on how
η∗h,N in Eq. 12.4 relates to β.
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Case I: η∗
h,N

< β In this case, in the absence of the earnings constraint the firm
would optimally choose a compensation level below β. For a given level N , we can
treat both types of periods (high and low) independently and, by Lemma 3, the firm
sets its compensation levels at β and utilizes a cap Kl = Al(β) in the low demand
periods where Al(β) is the solution to Eq. 12.6 with demand distribution Gl . In this
case the cap in high demand periods is unnecessary because NF(β) < Ah(β).

The active capacity is then NF(β)∧Ah(β) and NF(β)∧Al(β) in the high and
low demand periods. Thus, the firm’s profits for values of N < Ah(β)/F (β) with
η∗h,N < β is given by

Π̄(N) := ThΠ(NF(β) ∧ Ah(β),Gh)+ TlΠ(NF(β) ∧ Al(β),Gl).

Notice that Π̄(N) is increasing in N . Since η∗h,N is decreasing in N , it continues

to hold that η∗h,N < β as we increase N . Thus, the firm’s profit follows Π̄(N)

and is increasing in N and, in particular, any optimal solution must have N∗ ≥
Ah(β)/F (β). If the firm chooses N = Ḡ−1

h (β/p)/F (β) no cap is needed at the
high demand period because NF(β) = Ah(β). A cap is needed in the low demand
period unless η∗l,N = η∗h,N = β (notice that by Theorem 2 it is always the case that
η∗l,N ≤ η∗h,N ).

Case II: η∗
h,N

> β Since the earnings constraint is not binding the firm will use
η∗h,N as the optimal compensation in the high demand period. By Lemma 2, the firm
could increase its profit in high demand period by increasing N . If also, η∗l,N > β,
the same applies to low demand periods so that strictly increasing N is optimal. If
η∗l,N < β the firm uses a cap in the low demand period and, as before, the firm’s
profit are increasing in N .

Thus, as long as N is such that η∗h,N > β, the firm can increase its profits by

increasing N . Let Ñ be the smallest pool size such that η∗h,N = β. (Recall that we

treat N as continuous variable so that such a Ñ exists). It must be the case that
Ñ ≥ Ah(β)/F (β) = Ḡ−1

h (β/p)/F (β). Otherwise, Ḡh(ÑF (β)) < β/p but, at
the same time, being a solution to Eq. 12.4, η∗h,N = β satisfies Ḡh(ÑF (β)) =
(β + F(β)/f (β))/p ≥ β/p which is a contradiction. We conclude that Ñ ≥
Ah(β)/F (β).

Finally, by Lemma 2 if Ñ is strictly greater than Ah(β)/F (β), the firm will set a
cap to Kl = Al(β) and Kh = Ah(β). As above, the firm can then decrease N until it
hits Ah(β)/F (β) without decreasing its profits. At this point no cap is needed in the
high demand period because N = Ah(β)/F (β) but it is needed in the low demand
periods if η∗l,N < η∗h,N = β. $%
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Proof of Lemma 4

Consider the function h(x) := NF(φS(x)/x) − x. It is easily verified that
S(x)/x → 1 as x → 0, so that h(x) = NF(φS(x)/x) − x → NF(φ) as x → 0.
Since F is bounded by 1 we have, as x →∞, that h(x)→−∞. Combined, we just
established that both h(x)→−∞ as x →∞ and h(x)→ NF(φ) as x → 0. Since
F and G have densities the function h(x) is continuous on (0,∞) so that there must
exist x0 such that h(x0) = 0. The fact that this point is unique then follows from the
fact that h is monotone decreasing. Indeed, since S′(x) = Ḡ(x),

h′(x) = Nf

(

φ
S(x)

x

)

φ
S′(x)− 1

x2 − 1 = −Nf
(

φ
S(x)

x

)

φ
1− Ḡ(x)

x2 − 1 < 0.

$%
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Chapter 13
On Queues with a Random Capacity:
Some Theory, and an Application

Rouba Ibrahim

Abstract One standard assumption in workforce management is that the firm can
dictate to workers when to show up to work. However, that assumption is challenged
in modern business environments, such as those arising in the sharing economy,
where workers enjoy various degrees of flexibility, including the right to decide
when to work. For example, a ride-sharing service cannot impose on its drivers
to be on the road at specific times; similarly, a virtual call-center manager cannot
direct her agents to be available for select shifts. When self-scheduling is allowed,
the number of workers available in any time period is uncertain. In this chapter, we
are concerned with the effective management of service systems where capacity,
i.e., the number of available agents, is random. We rely on a queueing-theoretic
framework, because customers are time-sensitive and delays are ubiquitous in the
services industry, and focus on the performance analysis and control of a queueing
system with a random number of servers. In particular, we begin by surveying some
theoretical results on the control of queueing systems with uncertainty in parameters
(here, the number of servers). Then, we illustrate how to apply those theoretical
results to study the problems of staffing and controlling queueing systems with self-
scheduling servers and impatient, time-sensitive, customers.

13.1 Introduction

Nowadays, there seems to be “an Uber for everything,” e.g., for food delivery,
parking, haircuts, domestic cleaning, etc. Such on-demand services are typically
provided by online service platforms, which match consumers with workers who
are willing to perform said services for a certain fee. The rise of those on-demand
platforms has transformed the ways in which services are sought and delivered. For
example, rather than managing a team of employees, an on-demand service provider
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must manage a virtual pool of independent contractors who have a legal right to
various degrees of flexibility, e.g., in deciding which tasks to perform, or in setting
their own schedules.

The effective management of innovative businesses in the sharing economy
presents new challenges for practitioners and academics alike. To illustrate, let us
consider the call-center industry. In recent years, virtual call centers have become
increasingly prevalent (Vocalcom 2014). In virtual call centers, such as LiveOps
(liveops.com) or Arise (arise.com), self-scheduling agents are usually independent
contractors who have no requirement on the least number of working hours to be
fulfilled, and are free to choose their own working periods in 30-min intervals. The
standard staffing question (how many agents should the firm have?) is especially
relevant in virtual call centers. This is because managing those systems involves two
different time scales, and the agent pool size cannot be easily adjusted at very short
time notice: (i) weeks ahead of time, typically 4–10 weeks, the system manager
selects the total staffing level in the system to allow sufficient time for agent training
and qualification; and, (ii) days or, in many cases, just hours ahead of time, agents
select their own schedules. Since the agent population is both remote and large, up to
hundreds of agents, system managers cannot simply solicit their agents’ scheduling
preferences ahead of time. For example, hiring decisions in virtual call centers often
do not even involve a face-to-face interview. Moreover, the promised scheduling
flexibility constitutes the main appeal of these jobs, and cannot be simply restricted
by the firm. Therefore, hiring the right number of self-scheduling agents which
scales appropriately to fit customer needs is a fundamental challenge.

Similar operational challenges arise in other service contexts as well. Amazon
Flex (flex.amazon.com) relies on independent contractors to deliver Amazon Prime
Now packages, which have a short delivery deadline, usually 1–2 h. Those delivery
workers enjoy the flexibility of setting their preferred delivery times. Ride-sharing
services, such as Uber (Uber.com) or Lyft (lyft.com), also allow their drivers to
self-schedule. They use “surge pricing” to ensure the participation of a sufficient
number of drivers in different time periods. While each of those settings poses
unique operational challenges, agents may be viewed as being strategic in each.
That is, they are decision makers who choose whether or not to be available for
work in a given shift based on their individual preferences or availabilities.

We are interested in studying the effective operational management of such
service systems. To do so, we adopt a queueing-theoretic framework. Relying on
queueing models is natural, in our setting, because customers are time-sensitive and
delays are ubiquitous in the services industry. To wit, there is a broad literature in
queueing theory which studies the problems of staffing and controlling large-scale
service systems; e.g., for surveys of applications in call-center management, see
Gans et al. (2003) and Akşin et al. (2007). Much of that body of research formulates
recommendations based on queueing models with several realistic features, such
as time-varying parameters and non-standard network structures. However, one
prevalent assumption in those models is that the number of servers is deterministic.
As such, the realized staffing level in any given time period is assumed to be equal
to the planned staffing level for that period. In contrast, with self-scheduling agents,
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a firm cannot simply impose on its workers to show up to work at a given time. In
other words, the number of agents in any given shift is uncertain, i.e., it must be
modelled as a random variable instead.

This chapter studies optimal staffing and control decisions in queueing systems
with a random number of servers. Thus, we can position our work, broadly, as
being part of the literature on controlling queueing systems with model-parameter
uncertainty. This literature can be classified into two main categories: The first
category aims at reducing parameter uncertainty through better forecasting (Shen
and Huang 2008; Aldor-Noiman et al. 2009; Ibrahim and L’Ecuyer 2013, etc.).
The second category, which is more closely related to our approach, investigates
effective decision-making in the context of queueing systems with uncertain
parameters (Harrison and Zeevi 2005; Whitt 2006b; Bassamboo and Zeevi 2009;
Gans et al. 2015, etc.). With that in mind, our aim in this chapter is two-fold.
First, we provide some required theoretical background. Specifically, in Sect. 13.2,
we survey recent papers which propose approximations to queueing systems with
uncertain parameters; those approximations are grounded in many-server heavy-
traffic limits. Second, we illustrate how those theoretical results may be applied;
we devote all remaining sections to that aim. Specifically, we describe some results
from Ibrahim (2017a) who studies the operational management of queueing systems
with self-scheduling agents, using both short-term and long-term controls.

13.2 Theoretical Background: Queues with Uncertain
Parameters

At a high level, the analysis of queueing systems with uncertain parameters is
complicated, for the most part, because it involves two “layers” of variability: (i)
stochastic variability, for any realized value of the underlying uncertain parameter,
since e.g., interarrival, service, and patience times are random; and (ii) parameter
uncertainty, since the parameter itself, e.g., the number of servers in our setting,
is random. Because of that analytical complexity, and because we are primarily
interested in studying the operations of large service systems, it is useful to
rely on many-server heavy-traffic limiting regimes, which typically simplify the
analysis and yield valuable insight. In particular, performance measures of interest,
e.g., the expected queue length in our setting, are approximated by limits of
appropriate sequences, where the arrival rate is allowed to grow without bound. To
rigorously justify the appropriateness of such approximations, we have to quantify
their corresponding errors, asymptotically in large systems. Specifically, we have
to determine how the orders of magnitudes of those errors grow as the system
size (or the arrival rate) increases. Here, we focus on two problem formulations,
corresponding to two regimes, which have been proposed in the literature.

Stochastic-fluid approximation The first formulation assumes that uncertainty
effects dominate stochastic fluctuations. That is, stochastic fluctuations may be
ignored, in large systems, and one can focus solely on uncertainty effects. The
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Fig. 13.1 Queue lengths
seen by arriving customers in
two independent simulation
replications of an
M/M/N +M model where
N follows a truncated
Nor(72, 30) distribution and
λ = 100

intuition is that detailed fluctuations of stochastic processes (item i above) are
typically realized on a short time scale, whereas parameter uncertainty (item ii
above) is typically realized on a longer time scale. So, if uncertainty effects are
“large,” then stochastic fluctuations become less critical in describing performance
in the system. For example, with self-scheduling servers, variability in the numbers
of servers is realized from shift to shift, i.e., over the hourly time scale. In contrast,
variability due to the randomness in arrivals, service times, and times to abandon, is
realized on a shorter time scale, e.g., over the course of a few seconds or minutes.
In this case, if the uncertainty in the number of servers is larger than the order
of stochastic fluctuations, then one can derive e.g., cost-minimizing staffing levels,
by solving a stochastic-fluid optimization problem which is a fluid-type problem
where only parameter uncertainty is accounted for. This type of approximation was
first proposed in Harrison and Zeevi (2005) for the control of a multi-class queueing
system, and considered in e.g., Bassamboo et al. (2010) for random arrival rates,
and Dong and Ibrahim (2017) for a random number of servers.

For further emphasis, that difference in time scales can be visualised in e.g.,
computer simulations of the system. In particular, to simulate the system, one
first draws a random variate from the distribution of the number of servers, and
then simulates a queueing model with that realization for the number of servers.
In another (independent) simulation run, one draws another realization from that
same distribution, simulates the system for that new realization, and so on. The
variability in the number of servers across multiple simulation runs is due to the
long-run parameter uncertainty, whereas the variability within a given run, e.g.,
fluctuations of the queue length around its average in that run, is due to short-term
stochastic fluctuations. We illustrate stochastic-fluid approximations in Figs. 13.1
and 13.2. In Fig. 13.1, we plot simulation sample paths of the queue lengths seen
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Fig. 13.2 Average queue
lengths in two independent
simulation replications of an
M/M/N +M model where
N follows a truncated
Nor(72, 30) distribution and
λ = 100

by arriving customers in a queueing system where the number of servers is random
(here, assumed to follow a truncated normal distribution), and where the system is,
on average, overloaded. The solid horizontal line in each subfigure corresponds to
the average queue length in that simulation run. As expected, conditional on the
realized number of servers, the magnitude of stochastic fluctuations around the
average is on the order of the square-root of the arrival rate (Garnett et al. 2002),
while the average queue-length itself is on the order of the arrival rate. In Fig. 13.2,
we “ignore” stochastic fluctuations, and approximate the queue length seen upon
arrival by the average queue length in that run. We note that this average changes
depending on the run, i.e., depending on the specific realization for the number of
servers in that particular run. Relying on a stochastic-fluid approximation amounts
to focusing on that cross-run variation in the means, while ignoring the more refined
stochastic fluctuations within a given simulation run.

Fluid approximation The second formulation assumes that both uncertainty
effects and stochastic fluctuations are negligible, and can be ignored. In this
regime, we derive, e.g., the optimal staffing policy, by solving a deterministic fluid
optimization problem instead. To illustrate, this corresponds to additionally ignoring
the variations in the average queue-lengths across the different runs in Fig. 13.2.
Whitt (2006a) conjectured the existence of a deterministic fluid limit for general
overloaded queueing systems. That fluid limit was later established in Kang et al.
(2010) and Zhang (2013). While crude fluid approximations are generally less
accurate than their stochastic-fluid counterparts, they remain very useful because
they usually have a remarkably simple form. Moreover, they are extremely accurate
in many cases, so that there may be no tangible advantage from considering more
refined approximations.



284 R. Ibrahim

Dong and Ibrahim (2017) compare the asymptotic accuracies, i.e., the orders of
magnitude of errors, corresponding to both stochastic fluid and fluid approximations
in a system with a random number of servers. To summarize their main result,
which parallels the result in Bassamboo et al. (2010) for random arrival rates: When
the variance of the number of servers is asymptotically large, in particular larger
than the square-root order of stochastic fluctuations, the system may be considered
to be in an uncertainty-dominated regime where stochastic-fluid approximations
are remarkably accurate. Moreover, the more variable the number of servers, the
more accurate are those stochastic-fluid approximations. In contrast, if that variance
is asymptotically small, in particular at most equal to the square-root order of
stochastic fluctuations, then the system may be considered to be in a variability-
dominated regime, where there is no tangible benefit from using stochastic-fluid
approximations over fluid approximations.

13.2.1 Self-Scheduling Servers: A Binomial Distribution

To model self-scheduling agent behavior, it is natural to assume that there is a pool
of agents, of size n, and that each agent from that pool makes an independent
decision to join a shift j with a given probability, rj . In this case, the random
number of servers in shift j , which we denote by Nj , has a binomial distribution,
Bin(n, rj ), where n is the number of trials and rj is the success probability. Because
Var[Nj ] =

√
nrj (1− rj ), the variance is on the square-root order, i.e., it is of

the same order as stochastic fluctuations in the system. Thus, there should be no
advantage in using the stochastic-fluid model, over the fluid model, when the system
is large. Intuitively, this is because the binomial distribution “concentrates” around
its mean, nrj , when n is large. We can formally prove this intuition (here, we focus
on a single shift since the results easily extend to multiple shifts). To do so, we
restrict attention to exponentially-distributed service times and a Poisson arrival
process. In particular, service times are independent and identically distributed
(i.i.d.) random variables with an exponential distribution and mean 1/μ. We assume,
without loss of generality, that μ = 1; this amounts to measuring time in units of
mean service times. We assume that each customer will abandon if he is unable
to start service before a random amount of time, which we refer to as his patience
time. Abandonment makes the system stable, irrespective of the realized numbers
of servers. There is unlimited waiting space, and we use the first-come-first-served
(FCFS) service discipline.

We consider a sequence of queueing models indexed by the arrival rate λ, and
study system performance as λ increases without bound. The number of servers
in the λth system is Nλ ∼ Bin(nλ, r). We assume that the traffic intensity ρ ≡
λ/E[Nλ] = λ/rnλ remains fixed as λ increases. Let QNλ denote the steady-state
queue length and αNλ the net customer abandonment rate in the M/M/Nλ + GI

queue (abandonment makes the system stable). We refer to the cases with ρ > 1,
ρ < 1, and ρ = 1 as the overloaded, underloaded, and quality-and-efficiency driven
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(QED) regimes, respectively. Since Nλ is random, an M/M/Nλ +GI system with
e.g., ρ > 1 may or may not be overloaded, i.e., having λ > Nλ. Let q̄ρ and ᾱρ
be the fluid approximations for the queue length and net abandonment rates with
a traffic intensity ρ. The following theorem establishes the asymptotic accuracy of
fluid approximations with a binomially-distributed number of servers.

Theorem 1 Consider an M/M/Nλ+GI queueing model with Nλ ∼ Bin(nλ, r),

1. If ρ > 1 (overloaded regime), then there exists a finite constant K > 0 such that

lim sup
λ→∞

∣
∣E[QNλ ] − rnλq̄ρ

∣
∣ ≤ K and lim

λ→∞
∣
∣E[αNλ] − rnλᾱρ

∣
∣→ 0.

2. If ρ = 1 (critically-loaded regime), then there exist finite constants K ′1,K ′2 > 0
such that

lim sup
λ→∞

E[QNλ] ≤ K ′1
√
λ and lim sup

λ→∞
E[αNλ ] ≤ K ′2

√
λ.

3. If ρ < 1 (underloaded regime), then

lim
λ→∞E[QNλ] → 0 and lim

λ→∞E[αNλ ] → 0.

Theorem 1 shows that, in the overloaded system, the fluid approximation for
the expected queue length is asymptotically accurate up to O(1),1 and the fluid
approximation for the net abandonment rate is asymptotically accurate up to o(1),
i.e., the corresponding error is asymptotically bounded in the former case, and it
decreases with the arrival rate in the latter case. In other words, fluid approximations
are “extremely accurate” in the overloaded regime. In the critically-loaded system,
those fluid-approximation errors are O(

√
λ), i.e., they grow in the square-root of

the size of the system. In the underloaded regime, fluid approximations are o(1)-
accurate since errors for both performance measures decrease with the arrival rate.
In other words, relying on fluid approximations is justifiable when the number
of servers follows a binomial distribution, which is a reasonable model for self-
scheduling server behavior.

13.2.2 What Do the Asymptotic Results Mean?

To interpret the asymptotic results of Theorem 1, it is important to clearly
distinguish between stochastic fluctuations for the queue-length process (which can
be observed, e.g., in a given simulation run), and the accuracy of many-server fluid

1Let f and g be two functions defined on some subset of R. Then, as n→∞, (1) f (n) = O(g(n))

if there exists M > 0 and C > 0 such that |f (n)| ≤ M|g(n)| for n ≥ C; (2) f (n) = o(g(n)) if for
all ε > 0, there exists N such that |f (n)| ≤ ε|g(n)| for all n ≥ N .
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Fig. 13.3 Queue length seen upon arrival in a single simulation run with ρ = 1 and n = 100. The
fluid limit is equal to 0

approximations for the expected queue-length (obtained by averaging over multiple
simulation runs, and quantified by letting λ increase). Figures 13.3, 13.4, 13.5, 13.6,
13.7, and 13.8 are based on simulations of an M/M/n +M queueing model with
service rate μ = 1 and abandonment rate θ = 0.5. We consider a deterministic
number of servers in these simulations because the same intuitions continue to hold
when the number of servers is binomially distributed instead.

In Figs. 13.3 and 13.4, we present queue-length sample paths based each on a
single simulation run in a system where n = λ i.e., ρ = 1. For such parameter
values, critical-loading approximations (Garnett et al. 2002) are known to describe
the system well. For Fig. 13.3, we let λ = 100, and for Fig. 13.4, we let λ = 1000.
In each figure, the fluid limit is identically equal to 0. It is clear from Figs. 13.3
and 13.4 that the magnitude of stochastic fluctuations in the system is on the order of√
λ, as expected. The same continues to hold in an overloaded system, as illustrated

in Figs. 13.5 and 13.6, where we let ρ = 1.4 instead.
The asymptotic accuracy results of Theorem 1 describe how the expected queue

length differs from its fluid limit as λ increases. Figure 13.7 considers different λ
values, ranging from λ = 100 to λ = 1000, in critically-loaded systems where
n = λ. As a function of λ, we plot estimates of the expected queue length which
are based on averages over 10 independent simulation runs of length 10 million
arrivals each. In Fig. 13.8, we do the same but let ρ = 1.4 instead, i.e., we consider
an overloaded system. Contrasting Figs. 13.7 and 13.8 illustrates our asymptotic
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Fig. 13.4 Queue length seen upon arrival in a single simulation run with ρ = 1 and n = 1000.
The fluid limit is equal to 0

Fig. 13.5 Queue length seen upon arrival in a single simulation run with ρ = 1.4 and n = 100.
The fluid limit is equal to 80
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Fig. 13.6 Queue length seen upon arrival in a single simulation run with ρ = 1.4 and n = 1000.
The fluid limit is equal to 800

Fig. 13.7 Averages of queue lengths for varying λ where nλ = λ
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Fig. 13.8 Averages of queue lengths for varying λ where λ/nλ = 1.4

accuracy results in Theorem 1. In the critically-loaded case, i.e., Fig. 13.7, stochastic
fluctuations are consistent with those suggested by the central limit theorem, i.e.,
they are on the order of

√
λ. In the overloaded case, i.e., Fig. 13.8, stochastic

fluctuations are better explained by large deviations theory: Fluid approximations
are practically indistinguishable from the estimates for average queue-lengths; see
Bassamboo et al. (2010) for related additional discussion.

This section presented the theoretical background needed to study performance
in queueing systems with randomness in capacity. In the remainder of this chapter,
we apply that theoretical framework to formulate managerial recommendations on
the operational management of queueing systems with self-scheduling servers.

13.3 Self-Scheduling Agents: A Long-Term Staffing Decision

13.3.1 The Model

There are k shifts, and agents show up at random for these shifts. In particular, an
agent shows up for work in shift j with a given probability, rj , independently of
other agents. We denote the total pool size by n. The number of agents in shift j
is a random variable with a binomial distribution, Nj ∼ Bin(n, rj ), where n is the
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number of trials and rj is the success probability. That is, nrj is the expected number
of agents that show up to work in shift j . Customers arrive to the system according
to general stationary processes with rates λj . We assume that there is no service
overlap between the different shifts, i.e., customers who arrive during a shift must
be served by agents who are assigned to that shift. This assumption is reasonable
when the system is large enough: In this case, processing any customers who remain
in queue at the end of a given shift would not take too long, because there are many
servers working in parallel. In each shift, we consider a G/G/Nj + GI model.
Patience times are i.i.d. across customers, and have a cdf F , complementary cdf
(ccdf) F̄ , density function f , hazard-rate function ha , and mean 1/θ for some θ > 0.
Service times are assumed to be i.i.d with a general distribution. The arrival, service,
and abandonment processes are all mutually independent, also independent of the
number of servers. We continue to use the FCFS service discipline.

The system manager must select an appropriate total staffing level, n, to
effectively balance staffing and operational costs. With a binomially-distributed
number of servers, relying on a fluid approximation is justified in large systems
(Sect. 13.2.1). In other words, both stochastic variability and parameter uncertainty
may be assumed to be of second order, relative to average performance measures
in the system. By ignoring stochasticity, the key challenge in managing a random
capacity reduces to the salient heterogeneity across shifts, in both demand rates and
agent availabilities. To illustrate this point, let us compare the settings with a single
and two shifts. With a single shift, assume that each agent has a probability 0.25
of showing up for that shift, and that 100 agents are needed. Then, with a pool of
n = 400 self-scheduling agents, 100 agents will show up on average. Thus, by
staffing a large enough agent pool, the manager could induce the desired number of
agents to show up, on average. Now, with two shifts, e.g., morning and afternoon,
assume that each agent has probabilities 0.25 to show up in the morning shift, and
0.5 to show up in the afternoon shift. Also, assume that 100 agents are needed for
the morning shift, and 150 for the afternoon shift. Then, staffing a pool that is large
enough to meet demand in one of the two shifts, on average, will lead to either
overstaffing or understaffing the other shift. With multiple shifts and heterogeneous
arrival rates and show-up probabilities, it is not clear, a priori, how the manager
should staff her system: Should she aim to match demand in some shifts, but not
others? What should this decision depend on? We investigate such questions in what
follows.

13.3.2 Fluid Formulation

As in Bassamboo and Randhawa (2010), we consider two quality-of-service costs,
indexed by the shift j : (i) A delay cost, hj , per customer for each unit of time that
this customer spends waiting to be served, and (ii) an abandonment penalty cost,
pj , incurred per customer who abandons before being served. Each agent is paid cj
per unit time in shift j , if she is available for work in that shift. The system manager
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must decide on the staffing level, n. Let q̄ρn and ᾱρn be the fluid approximations for
the queue-length and net abandonment rates with a traffic intensity ρn ≡ λ/nμ.

Staffing decisions in systems with self-scheduling agents cannot, usually, be
made “on the fly”. Because of this, a manager must make her staffing decision
in advance: She may not know, with certainty, the availability of each agent in
her workforce and she cannot enforce attendance but, given current technological
advances, she should be able to obtain historical estimates of joining probabilities
of agents; these are the rj in our model. For example, based on analyzing human
resources data in her firm, she may know that stay-at-home parents usually prefer
to work in the morning, while children are at school, but may not know whether
a specific work-from-home parent will show up to work on a given morning. She
may know that higher compensations are typically offered during certain times of
day (ride-sharing) or for certain client companies (virtual call centers), but may not
know the exact “surge prices” that are going to be in effect, if any. To capture such
challenges, we assume that the compensation, cj , and the show-up probability, rj ,
are fixed (we will relax those assumptions later). In other words, we begin by solving
the problem:

minimize
n∈N

C(n) ≡
∑

1≤j≤k

(
nrj cj + pj · ᾱρn/rj + hj · q̄ρn/rj

)
, (13.1)

where N denotes the set of natural integers.

13.3.3 Optimal Staffing Policy

13.3.3.1 No Self-Scheduling

To quantify the impact of self-scheduling, we need to choose a useful benchmark.
Without self-scheduling, the system manager can select the optimal staffing levels,
n∗j , independently for each shift j . To specify n∗j , we need to make additional
assumptions. The density of the fluid that has been waiting for exactly u time units,
in shift j , is equal to λj F̄ (u). Therefore, the corresponding (unscaled) queue length
is given by qj =

∫ wj

0 λj F̄ (u) du, where wj denotes the waiting time given service.
The net abandonment rate (unscaled) in shift j is equal to λjF (wj ). In the absence
of self-scheduling, we must have that n∗j = λj F̄ (w∗j ) ≤ λj where w∗j is the optimal
waiting time in shift j ; this is because it is suboptimal to staff more than λj agents
in shift j , i.e., underload that shift. In shift j , w∗j is determined by solving:

min
wj≥0

λj

(

(cj − pj )F̄ (wj )+ hj

∫ wj

0
F̄ (u) du

)

. (13.2)

Hereafter, we make the following assumption, which states that staffing costs are
sufficiently inexpensive.
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Assumption 1 For all j , cj < min{hj/ha(0)+ pj , hj /θ + pj }.
It is useful to offer a brief comment on the validity of Assumption 1. To do so,

let us assume that cj corresponds to the minimum wage which is close to $7 per
hour in the United states. Let us also take the time unit to be one hour. Assume that
θ = 4, i.e., a customer is willing to wait on average for 15 min before abandoning.
For a numerical value of hj , we make use of existing empirical evidence from the
call-center literature, e.g., Akşin et al. (2013). Based on their results (see Table 4
in that paper), customers attribute a waiting cost of roughly 1 $ per minute. This
translates into 60 $ per hour. For such values, the assumption that we make on the
staffing cost is satisfied irrespective of the value of pj . Under Assumption 1, it is
easy to establish the following result for the solution to problem Eq. 13.2.

Proposition 1 Under Assumption 1, in a system with no self-scheduling servers, it
is optimal to match the supply and demand rates in every shift, i.e., n∗j = λj .

In other words, we choose as benchmark a setting where it is optimal to match
demand and supply in each of the shifts. This is the case when staffing costs are
not too high, as per Assumption 1. When demand and supply are matched in each
shift, there is no delay, at fluid scale. Thus, the customer abandonment distribution
does not play any role, since customers do not abandon. With self-scheduling, the
manager is no longer able to set n∗j independently for each shift and must decide,
instead, on the total pool size n. Because of the ensuing imbalance between demand
and supply, some shifts may be congested. Thus, because of self-scheduling, the
customer abandonment distribution will now play an important role in congested
shifts. Here, we study how to exploit that role to mitigate the cost of self-scheduling.

13.3.3.2 Self-Scheduling Capacity

To capture the heterogeneity across different shifts, we define the augmented arrival
rate Γj ≡ λj/rj , and let Γ0 ≡ 0. This will allow us to characterize, in a simple
manner, the optimal solution to the staffing problem in Eq. 13.1. Letting n = Γj

amounts to matching the supply and demand rates in shift j . This is because the
number of agents who show up in shift j is then equal to n · rj = Γj · rj = λj .
In a sense, the respective values of Γj , across shifts, quantify the degree of self-
scheduling imbalance in the system. In particular, if Γj ≡ Γ are identical across
all shifts, then it is easy to see that staffing n = Γ would eliminate the cost of self-
scheduling, on average. However, if the Γj ’s are “very different” across the different
shifts, then managing self-scheduling agents becomes increasingly difficult, i.e.,
leading to a higher cost. In an overloaded shift j , we have that Γj F̄ (wj ) = n,
i.e., wj = F̄−1(n/Γj ). Since it is never optimal to strictly underload all shifts, the
staffing problem in Eq. 13.1 can be defined piecewise:

minimize
0≤n≤Γk

C(n) ≡
k∑

j=1

1(Γj−1 ≤ n < Γj )uj (n), (13.3)
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where 1(n ∈ A) denotes the indicator function over the set A, and uj (n) is given
by:

uj (n) ≡
k∑

i=1

cinri +
k∑

i=j

(

pi(λi − nri)+ hiλi

∫ F̄−1(n/Γi)

0
F̄ (u) du

)

, (13.4)

i.e., uj (n) is the total cost incurred if n is chosen in the interval [Γj−1, Γj ). It turns
out that the solution to Eq. 13.3 depends on the monotonicity of the hazard rate of
the abandonment distribution. Here is how.

Monotonically increasing hazard rate A monotonically increasing hazard rate
corresponds to customer patience “wearing out” as the customers waits longer in
queue. For abandonment distributions with a monotonically increasing hazard rate
(including the exponential distribution with a constant hazard rate), we find that it
is optimal to match the supply and demand rates in one of the k shifts when servers
self schedule, with the remaining shifts being either over or under staffed; this lies
in contrast to matching supply and demand in all shifts without self-scheduling, as
per Proposition 1. In particular, the following proposition holds:

Proposition 2 For abandonment distributions with a monotonically non-
decreasing hazard rate, there is one shift i0 where the supply and demand rates
must be matched, i.e., n∗ = Γi0 .

The optimality of overstaffing certain shifts lends some support to the staffing
policies adopted in virtual call centers such as LiveOps or Arise, where agents
regularly complain about the fact that there are “too many other agents on board”
and, consequently, “too few calls to answer”. However, the compensation structure
in those settings is different: There, the manager typically uses volume-dependent
pay, e.g., agents earn a piece-rate compensation in addition to some base salary.
Under our fixed compensation structure, we find that overstaffing certain shifts can
minimize costs, but that this is not true across all shifts.

Monotonically decreasing hazard rate We now consider abandonment distribu-
tions with a monotonically decreasing hazard rate, which is consistent with the way
call-center customers abandon in practice. A monotonically decreasing hazard rate
for abandonment corresponds to customers becoming increasingly patient as they
wait long in queue, e.g., because they feel that “they have waited already for so
long, so why not wait a little longer?”.

Proposition 3 For abandonment distributions with a monotonically decreasing
hazard rate, it is optimal to either under or over staff every shift (no matching),
or to match the supply and demand rates in one of the shifts.

Interestingly, Proposition 3 shows that it may be optimal for the manager to
not match the supply and demand rates anywhere, i.e., to effectively under or over
load every shift. In practical terms, Proposition 3 shows that it may be optimal for
the manager to maintain an imbalance between the average supply and demand
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rates in each of the shifts. In other words, the conventional wisdom for workforce
management in call centers, which is to staff just enough agents to meet projected
incoming demand, may no longer be the right approach with self-scheduling agents,
since it may be optimal not to meet the established service level in any shift, but
rather to exceed or fall below it.

To summarize, the optimal staffing policy in a system with self-scheduling agents
is not straightforward, and strongly depends on both the show-up behavior of agents
and the impatience distribution of customers. In particular, it may be optimal to
match supply and demand in exactly one shift (monotonically increasing hazard
rate), or no shift at all (monotonically decreasing hazard rate). This lies in contrast
with the benchmark solution where the abandonment distribution played no role,
and it is optimal to match supply and demand across all shifts. Of course, having
both understaffed and overstaffed shifts in the optimal staffing policy means that
the manager cannot eliminate the imbalance between supply and demand, which is
due to self-scheduling, by adjusting the staffing level in her system. Thus, we need
to investigate short-term controls in the system as well, in addition to the long-run
staffing decision. We do so in what follows.

13.4 Short-Term Controls

It is natural to investigate how to control the compensation, cj , for each shift j .
In particular, we assumed in Eq. 13.1 that the agent show-up probability, rj , was
exogenously specified. In practice, rj usually depends on the compensation offered
in shift j . In order to capture how changes in cj may impact agent show-up behavior,
we assume, as in Gurvich et al. (2017), that agents are statistically identical and have
an availability threshold (opportunity cost) T for showing up in shift j . Letting G(·)
denote the cumulative distribution function (cdf) of T , an agent shows up in shift j
with probability rj ≡ G(cj ). We also assume that G(·) is log-concave with positive
density function g(·); this will be used later to ensure uniqueness of solutions in our
optimization problems.

Nevertheless, there is also a need to consider alternative tools, besides compen-
sation and staffing, to control the system. First, the manager may be restricted in
how much and how often she can modify compensation. This is certainly the case in
virtual call centers because of market transparency and fierce competition between
providers. Also, in virtual call centers, compensations are often set in advance by
client companies rather than by the virtual call-center platform itself. In this case, the
responsibility of the platform is to staff and train agents, and act as an intermediary
between client companies and their agents. Second, while pricing influences agents,
it cannot always be used to influence the behaviour of customers, e.g., in service-
oriented virtual call centers; thus, there is a need to consider customer-side controls.
Third, there is considerable concern about the extent to which pricing should be
used as a control in on-demand service platforms, because of extreme and frequent
fluctuations.
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In some settings, it may be possible to cap the participation of agents in certain
shifts; e.g., this is the case in virtual call centers where the manager can easily
choose which shifts to make available for self-scheduling agents to choose from.
However, capping agent participation is restrictive, and agents usually complain
when too few shifts are available. Moreover, capping may not be possible in certain
settings, e.g., with ride-sharing services where drivers may already be on the road,
so that it would be difficult to prohibit them from driving at different times. Thus,
we do not consider such a control in this chapter. Instead, we investigate controls on
the customer side, as follows.

In Sect. 13.3, we characterized the role played by the abandonment distribution
in a system with randomness in capacity. Because of this, it is natural to investigate
ways of controlling customer impatience to alleviate the system’s cost. Here, we
propose to do so via delay announcements in the system. We assume that the
provision of delay announcements is costless for the manager, and that a single
announcement is given to each delayed customer immediately upon arrival. The
idea of using delay announcements as a control of customer impatience is not
new. Indeed, it has been explored both empirically and analytically in several
papers, albeit in contexts different from ours; for a survey of those papers, see
Ibrahim (2017b). At a high level, while compensation is used to control agent
joining behavior in our setting, the announcements are used to control customer
behavior instead. However, it should be noted at the onset that the announcements
cannot be used to restore balance in the system, i.e., entirely eliminate the cost of
self-scheduling. Indeed, while delay information incites impatient customers (who
would have abandoned anyway) to abandon earlier, thus leading to a reduction in
waiting costs, it does not impact the overall abandonment rate in the system.

In the remainder of this chapter, we study how a manager should decide on
staffing, compensation, and announcements both separately and jointly. It is unclear,
a priori, what the interaction between our three controls will be, i.e., how one would
affect the other. It is also unclear how a manager who has the options of making
announcements and controlling compensations would staff her system: Would she
use these three controls to consistently match supply and demand in all shifts? Or,
would she continue to overstaff/understaff some shifts? If so, then when?

13.4.1 Delay Announcements: Performance Impact

In this work, we contend that the announcements made must be truthful and accu-
rate, for otherwise customers will learn to mistrust them. Studying the performance
impact of delay announcements, when customers respond to these announcements
by updating their abandonment distributions, is challenging. Indeed, changes in
customer impatience affect system dynamics and, in turn, the future announcements
made. For example, if customers abandon faster because of high announcements,
then future waiting times, and future announcements which depend on those waiting
times, should be shorter. When waiting times decrease, customers are inclined to
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Fig. 13.9 No equilibrium, multiple equilibria, and a single equilibrium under different
announcement-dependent abandonment distributions

be patient and wait for service, thus making delays longer again, and so on. In
a nutshell, studying the impact of the announcements involves characterizing an
equilibrium in the system. At a high level, an equilibrium must correspond to the
long-run performance in the system, where the average announced delay coincides
with the average experienced delay.

First, it is not clear whether such an equilibrium exists, or if it is unique; indeed,
there may be multiple equilibria and the system may exhibit oscillations between
those equilibria. We illustrate these possibilities in Fig. 13.9, where we assume
different customer-response functions, in each subfigure, and plot simulation-
based sample paths of waiting times for each such function. (The specifics of
the model are not important, and are therefore omitted.) The three subfigures,
from left to right, correspond to having no equilibrium, multiple equilibria, and a
unique equilibrium, respectively. Second, even when a unique equilibrium exists,
it is not clear how to specify that the announcement and the corresponding
delay, which are both random variables, coincide in that equilibrium, e.g., this
could be in expectation, in distribution, or asymptotically when scaled in an
appropriate way. Third, it is not clear how stochastic fluctuations around the
equilibrium affect the system’s performance. Even under Markovian assumptions,
explicit analysis of the underlying birth-and-death process is analytically complex.
This is so because the transition rates of the birth-and-death chain would all
be dependent on the announcements. Therefore, analysis is typically done in an
asymptotic regime instead. Here, we do so in the context of a fluid model, as in
Armony et al. (2009) who consider a single shift instead, and a context different
from ours.

Because we consider a system with multiple shifts, and different shifts have
different congestion levels and therefore different delay announcements, we obtain
in each shift a different announcement-dependent abandonment distribution. Herein
lies the complexity of considering multiple shifts: The announcements may lead
to shorter delays in some shifts, but not in others, and the aggregate effect of
those announcements is unclear. To derive insights, we focus hereafter on an
exponential abandonment distribution with an announcement-dependent rate. In
particular, letting w be the announcement made, customers abandon according to an
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exponential abandonment distribution with rate θ(w). For a fixed agent pool size, n,
we let we

j (n) denote the equilibrium delay in shift j , which is dependent on n. We
must have:

λj e
−we

j (n)θ(w
e
j (n)) = nG(cj ), i.e., e

−we
j (n)θ(w

e
j (n)) = n

Γj

, (13.5)

by conservation of flow in shift j . The total cost in the system, with the announce-
ments, is

Ca(n) ≡
k∑

i=1

cjnG(cj )+
k∑

i=1

(

pj + hj

θ(we
j (n))

)

(λj − nG(cj ))
+. (13.6)

Assuming that θ(·) is continuous and strictly increasing, consistently with the
empirical evidence in e.g., Mandelbaum and Zeltyn (2013) and Aksin et al. (2016),
guarantees the existence and uniqueness of an equilibrium we

j (n) in every shift j .
In what follows, we also assume that θ(w) is a differentiable function of w and that
limw→∞ θ(w) > 0.

13.4.1.1 When Do the Announcements Reduce the Cost of
Self-Scheduling?

To gain a deep understanding, it is useful to begin by exploring the performance
impact of each short-term control separately. Therefore, we first assume that the
manager communicates delay announcements in all congested shifts, and that
compensations and the staffing level are fixed. We then ask the question: Do
the announcements help in reducing the cost of self-scheduling? Naturally, the
announcements are effective if they incite customers to abandon faster than they
would have otherwise. In our problem, we have different Γj values and, conse-
quently, different announcement-dependent abandonment rates given by Eq. 13.5.
We let θ0 denote the abandonment rate without the announcements, which is
constant across all shifts. By Proposition 2, because the times to abandon are
assumed to be exponentially distributed, it is optimal to critically load one shift, call
it ic, i.e., n∗ = Γic without the announcements. We now derive a simple sufficient
condition under which the announcements lead to an overall decrease in the system’s
cost.

Proposition 4 With exponential abandonment with an announcement-dependent
rate θ(w), if

θ0 · θ−1(θ0) < ln

(
Γic+1

Γic

)

, (13.7)

then Ca(n
∗) < C∗ for Ca(·) in Eq. 13.6, where C∗ is the optimal solution to Eq. 13.1

with n∗ = Γic .
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Fig. 13.10 Threshold on θ0
as given by Proposition 4

The condition in Eq. 13.7 means that customers do not abandon “too fast” in
the absence of the announcements. This is because it can be shown, under our
assumption on θ(·), that the function on the left-hand-side of Eq. 13.7 is increasing
in θ0 ≥ 0. Thus, the condition may be equivalently interpreted as imposing a
threshold, say M , on θ0.

In Fig. 13.10, we plot how the value of the threshold M varies with the degree
of self-scheduling “imbalance,” as measured by Γic+1/Γic .

2 The area under the
threshold curve corresponds to values of θ0 for which the provision of delay
announcements decreases the overall cost in the system. In other words, this is when
the announcements are effective. It is interesting to note that this area increases
as Γic+1/Γic increases, i.e., the announcements are increasingly effective as self-
scheduling causes a greater imbalance in the system.

13.4.1.2 A New Staffing Problem

Since the announcements lead to a decrease in waiting times, it is natural to
investigate whether it is optimal for the manager to create additional congestion
by understaffing her system. This is because this increased congestion would,
subsequently, be reduced by the announcements. To explore this, we now assume
that the manager can jointly optimize the staffing level in her system, along with
the announcements. The manager’s staffing problem, assuming that she makes
announcements in all shifts at a later stage, is given by:

2We assume that k = 10; c = 1.1; h = 0.5; p = 1.0; avg. λ = 55; r = 0.4; with announcements:
θ(w) = 1.5− e−2w .
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min
n∈N

k∑

j=1

(

cjnG(cj )+
(

pj + hj

θ(we
j (n))

)

(λj − nG(cj ))
+
)

, (13.8)

where we replace the constant abandonment rate θ0 by different announcement-
dependent rates, θ(we

j (n)), depending on both the shift and the staffing level n. That
is, in setting her optimal staffing level, the manager needs to consider the subsequent
dependence of customer abandonment behavior on the selected pool size. Let n∗a
denote the optimal solution to Eq. 13.8, with the announcements, and n∗ denote the
optimal solution to Eq. 13.1, without the announcements.

Proposition 5 With exponential abandonment with an announcement-dependent
rate θ(w), if

θ0 · θ−1(θ0) < min
1≤i≤k−1

ln (Γi+1/Γi) , (13.9)

then n∗a < n∗.

That is, under Eq. 13.9, it is optimal for the manager to hire a smaller agent pool
than without the announcements. Condition Eq. 13.9 could also be interpreted as an
upper bound on θ0, albeit a tighter one than in Proposition 4. Proposition 5 does not
give an indication of the extent to which cost can be reduced by staffing a smaller
pool. In Fig. 13.11, we plot the percent decrease in the cost of self-scheduling as
a function of the self-scheduling imbalance in the system, as measured through
Γk/Γ1: The higher Γk/Γ1, the larger the imbalance. Figure 13.11 shows that the
announcements become increasingly effective as the self-scheduling imbalance in
the system increases.

To summarize, we find that delay announcements are most effective when there is
a significant imbalance which arises from having “very” heterogeneous augmented
arrival rates, e.g., because the agents have “very” different show-up probabilities
across the different periods. This is a desirable property, because we want the
announcements to be able to control the system in that case. The announcements
are also effective when customers are relatively patient in the benchmark system,
because delay information incites them to abandon faster.

13.5 Joint Control of Compensation and Delay
Announcements

In a ride-sharing platform, the manager may know that a concert will end shortly
in a given region (say in the next 15–30 min), and anticipate a surge in demand
for Uber cars. She would then use short-term controls, e.g., pricing, to incite more
agents to go to that region. She would not, however, be able to control her overall
pool of drivers, i.e., hire and train more Uber drivers, because such a decision must
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Fig. 13.11 Percent decrease in the system’s cost by solving Eq. 13.8

be made weeks in advance. To mimic this situation, we assume that the staffing level
is equal to n, and investigate the optimal compensation to be offered in shift k. We
let l denote the minimum wage allowed in any shift. The manager may decide on ck
separately for each shift k:

min
ck≥l

{

cknG(ck)+
(

pk + hk

θ

)

(λk − nG(ck))
+
}

. (13.10)

For expositional ease, we let Lk ≡ pk + hk/θ capture customer-related costs, and
denote ψn

k ≡ G−1(λk/n). If ck = ψn
k , then nG(ck) = λk . In other words, using

compensation ck = ψn
k in shift k incites just enough agents to meet demand in that

shift. It will also be convenient to define ak < Lk as follows:

G(ak)

(

1+ (ak − Lk)
g(ak)

G(ak)

)

= 0. (13.11)

The optimal compensation in problem Eq. 13.10 is given by the following lemma.
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Lemma 1 The optimal compensation in shift k, solution to Eq. 13.10, depends on
n as follows:

1. If n ≥ λk/G(l), then c∗k = l and shift k is overstaffed;
2. If λk/G(ak) ≤ n < λk/G(l), then c∗k = ψn

k and demand and supply are matched
in shift k;

3. If n < λk/G(ak) < λk/G(l), then c∗k = ak and shift k is understaffed.

It is not surprising that the optimal compensation in a given shift depends on the
total pool size, n, and that the larger the pool, the smaller the compensation needed to
incite agents to participate. In particular, we find that the manager uses the minimum
wage in shift k when the agent pool size is very large (case (a)). In this case, the man-
ager need not use high compensation to incite sufficient agent participation in the
shift. For moderate values of the agent pool size (case (b)), the manager sets com-
pensation to match demand and supply in the shift, i.e., c∗k = ψn

k . Finally, when the
pool size is very small (case (c)), inciting sufficient agent participation is too costly
for the manager, so she sets a compensation that leads to an understaffed shift k.

We now turn to the more interesting case where the manager may jointly control
both the provision of delay announcements and the compensation offered, in each
shift. For tractability, we assume that the announcement-dependent abandonment
rate is constant and equal to θ̃ > θ , where θ is the rate without the announcements.
We denote L̃k ≡ pk+hk/θ̃ and note that L̃k < Lk ≡ hk+pk/θ . Thus, it is optimal
for the manager to make announcements in every overloaded shift, since doing so
would reduce the cost of congestion in that shift. While it is clear that making
announcements is beneficial to the manager in that case, it is unclear whether agents
will be better or worse off because of the announcements. We continue to assume
that the staffing level n is fixed, and we investigate the optimal compensation in
a shift where the manager is allowed to make delay announcements. Since the
announcements are only relevant when the system is congested, we focus on case
(c) in Lemma 1, i.e., we assume that n < λk/G(ak) for ak in Eq. 13.11. We let
c̃∗k denote the optimal compensation in shift k, assuming that the manager makes
announcements in that shift; i.e., c̃∗k minimizes cknG(ck) + L̃k (λk − nG(ck))

+. In
the following lemma, we show that c̃∗k = ãk < c∗k = ak where

G(ãk)

(

1+ (ãk − L̃k)
g(ãk)

G(ãk)

)

= 0. (13.12)

Lemma 2 If the manager has the option of making delay announcements, then
agents receive lower compensation, i.e., they are worse off.

Intuitively, because the manager is able to reduce congestion in the system by
resorting to the announcements, she does not need to incite too many agents to
participate. Thus, she offers lower compensation. In other words, instead of using
high compensation to incite higher agent participation, she uses the announcements
to disincentivize customer waiting instead, thereby relieving the congestion caused
by self-scheduling.
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13.6 Jointly Optimizing Long and Short-Term Controls

We are now ready to investigate the joint optimization problem, where the manager
may use all three controls, staffing, compensation, and the announcements, at once.
Here is the manager’s problem when she can optimize all controls:

minimize
cj≥l,n∈N

Π(n, c) ≡
∑

1≤j≤k

(
cj · nG(cj)+ L̃j (λj − nG(cj ))

+) , (13.13)

where c ≡ (c1, c2, · · · , ck) is the k-dimensional vector of compensations and, as
before, L̃j ≡ pj + hj/θ̃ is the adjusted congestion cost which accounts for the
effect of the announcements. To better position our results, we recall that when
capping agents is allowed, the optimal compensation is set equal to the minimum
wage in all shifts (Gurvich et al. 2017), irrespective of the value of that wage, and the
staffing level high enough to match demand in the highest-demand shift (with the
offered minimum wage). Supply is capped in the overstaffed shifts. In our context,
because capping is deemed undesirable and not allowed, we find that the optimal
compensation depends on the value of the minimum wage, in particular whether it
is “low” or “high,” the manager may offer higher compensation than the minimum
wage in some shifts, and may still either understaff or overstaff some shifts. In
understaffed shifts, she uses the announcements. Problem Eq. 13.13 may be solved
in two stages, first fixing the staffing level n (assuming that the announcements
are made in every congested shift) and solving for the optimal compensation, as
a function of n and, second, determining the optimal staffing level by exploiting
that structure for the optimal compensation. However, the solution to Eq. 13.13 is
algebraically complex with multiple shifts. Thus, we focus on two special cases: (i)
the minimum wage is sufficiently low, and (ii) the minimum wage is sufficiently
high.

13.6.1 Low Minimum Wage

We begin by considering the case where the minimum wage is “sufficiently low”. In
particular, we define:

l0 = G−1
(

mini{λi}
maxi{λi/G(ãi)}

)

where ãk is given in Eq. 13.12. (13.14)

Then, the following lemma holds for l < l0.

Lemma 3 If the minimum wage is sufficiently low, then all shifts are either
overstaffed or have matched supply and demand. Moreover, there exists at least
one shift where demand and supply are matched. The manager does not resort to
using delay announcements.
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Lemma 3 shows that the manager need not always resort to using the announce-
ments. In particular, if the minimum wage is “low enough,” then she will hire
enough agents and offer high compensations so that n∗G(c∗i ) ≥ λi in each shift
i, i.e., no period is congested and there is no need to resort to the announcements.
Moreover, she will offer a compensation that is strictly higher than the minimum
wage in at least one of the shifts (with highest demand rates). Intuitively, because
the minimum wage is small, the manager is less restricted in the compensation
that she has to pay her agents. Therefore, she can afford to staff a larger pool
and eliminate congestion in her system. This also explains why she is then able
to pay her agents a compensation which is strictly larger than the minimum
wage. Because no shift is congested, the manager does not resort to making delay
announcements.

13.6.2 High Minimum Wage

We now explore the case where the minimum wage is “sufficiently high”. In
particular, we assume that ãi < l < L̃i for all i. In the following lemma, we show
that the manager would then make announcements.

Lemma 4 If the minimum wage is sufficiently high, then the manager uses the
minimum wage in all shifts. Moreover, there exists a shift where supply and demand
are matched, with the remaining shifts either under or over staffed; announcements
are made in every congested shift.

Lemma 4 shows that the manager must set compensation equal to the minimum
wage in every shift, if that minimum wage is sufficiently high. In this case, the
manager must staff a smaller agent pool (because it would be too costly to employ
many agents), and she will use the announcements to alleviate congestion in
understaffed periods.

13.7 Conclusions

The recent and ongoing growth of the sharing economy has motivated several recent
papers in the academic literature; indeed, this book is testament to that growing
interest. In this chapter, we surveyed some theoretical results on the analysis of
queueing systems with uncertain parameters, and described how such results may
be applied for the effective management of queueing systems with self-scheduling
agents. Because of the analytical complexity in such settings, queueing-theoretic
approximations, which are grounded in many-server heavy-traffic limits, are useful
in generating valuable insight.
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Nevertheless, there remains numerous directions that are interesting to explore.
For example, several modelling extensions (e.g., multiplicity of customer classes)
remain to be explored. Our modelling approach was based on approximating system
dynamics by using a fluid model. This is justifiable when the number of servers
is binomially-distributed. In general, e.g., when there is considerable variability in
agent show-up behavior or when the binomial distribution is not appropriate, there is
a need to explore more refined approximations, jointly with dynamic compensation
decisions and other controls. In studying the effect of delay announcements, we
focused on a setting where the announcement-dependent abandonment rate is
constant. In practice, customer response to the announcements tends to be non-
regular, exhibiting jumps at the epochs of announcements. Developing tools to
study such a response, in a setting where there is randomness in capacity, would
be interesting to explore as well.

Technical Appendix

Proof of Theorem 1

The Overloaded Regime

O(1)-Accuracy for the Fluid Queue Length

We begin by establishing the asymptotic O(1)-accuracy for the expected queue
length. Let 0 < ε < r and define k1 ≡ r − ε and k2 ≡ r + ε. Assume that ε
is small enough so that ρr/(r + ε) > 1. Denote E[QNλ |Nλ = s] ≡ E[Qs] where
Qs is the steady-state queue length in the corresponding M/M/s +GI queue with
the same arrival rate.

Conditioning and unconditioning on Nλ Conditioning on Nλ, we can write:

|E[QNλ] − rnλq̄ρ |

=
∣
∣
∣
∣
∑

s≥0

E[Qs]P(Nλ = s)− rnλq̄ρ

∣
∣
∣
∣

=
∣
∣
∣
∣
∑

s≥0

(E[Qs] − sq̄ρ)P(Nλ = s)

∣
∣
∣
∣ since E[Nλ] = rnλ =

∑

s≥0

sP(Nλ = s),

≤
∣
∣
∣
∣

∑

s<k1nλ or s>k2nλ

(E[Qs] − sq̄ρ)P(Nλ = s)

∣
∣
∣
∣

+
∣
∣
∣
∣

∑

k1nλ≤s≤k2nλ

(E[Qs] − sq̄ρ)P(Nλ = s)

∣
∣
∣
∣.
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We now turn to establishing asymptotic bounds for Aλ and Bλ, defined as
follows:

Aλ ≡
∣
∣
∣
∣

∑

s<k1nλ or s>k2nλ

(E[Qs] − sq̄ρ)P(Nλ = s)

∣
∣
∣
∣ and

Bλ ≡
∣
∣
∣
∣

∑

k1nλ≤s≤k2nλ

(E[Qs] − sq̄ρ)P(Nλ = s)

∣
∣
∣
∣.

Asymptotic bound for Nλ far from nλr We begin by showing that Aλ is
asymptotically negligible.

Lemma 5 limλ→∞Aλ = 0.

Proof We can write,

Aλ =
∣
∣
∣
∣

∑

s>k2nλ or s<k1nλ

E[Qs]P(Nλ = s)−
∑

s>k2nλ or s<k1nλ

sq̄ρP(Nλ = s)

∣
∣
∣
∣,

≤ E[Q0]
∑

s>k2nλ or s<k1nλ

P(Nλ = s)+
∑

s>k2nλ or s<k1nλ

sq̄ρP(Nλ = s).

Also, define A
(1)
λ ≡ E[Q0]∑s>k2nλ or s<k1nλ

P(Nλ = s) and A
(2)
λ ≡∑

s>k2nλ or s<k1nλ
s · q̄ρP(Nλ = s). Note that Q0 has the same distribution as

the steady-state number in the system in an M/GI/∞ model with Poisson
arrivals at rate λ = rnλρ and i.i.d. generally distributed service times having
the same distribution, F , as the abandonment times in our original model.
Therefore, exploiting standard results for the infinite-server queue, Q0 has a
Poisson distribution with mean λ/θ = rnλρ/θ , i.e., E[Q0] = O(λ). Applying
Hoeffding’s inequality to the binomial distribution: P (k1nλ ≤ Nλ ≤ k2nλ) ≥
1− 2e−2ε2nλ; equivalently, P (k1nλ > Nλ or Nλ > k2nλ) ≤ 2e−2ε2nλ . Thus,

A
(1)
λ =E[Q0]

∑

s>k2nλ or s<k1nλ

P(Nλ = s)=E[Q0]·P (k1nλ >Nλ or Nλ >k2nλ) → 0

as λ→∞.

We now turn to showing that A(2)
λ is asymptotically negligible as well. Note that:

A
(2)
λ = q̄ρ

∑

s>k2nλ or s<k1nλ

sP(Nλ = s) = q̄ρE[Nλ1{Nλ > k2nλ or Nλ < k1nλ}],
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where 1{·} denotes an indicator random variable. By the Cauchy-Schwarz
inequality:

E[Nλ1{Nλ > k2nλ or Nλ < k1nλ}]

≤
√
E[N2

λ ]P(Nλ > k2nλ or Nλ < k1nλ)

=
√
(nλr(1− r)+ n2

λr
2)P(Nλ > k2nλ or Nλ < k1nλ)→ 0 as λ→∞.

Therefore, A(2)
λ → 0 as λ→ ∞. Combining the above, we obtain that Aλ → 0 as

well.

Asymptotic bound for Nλ close to nλr We now characterize Bλ for large λ.

Lemma 6 There exists a finite constant C > 0 such that lim supλ→∞ Bλ ≤ C.

Proof We begin by writing Bλ as follows,

Bλ ≤
∑

k1nλ≤s≤k2nλ

∣
∣E[Qs] − sq̄ρs

∣
∣P(Nλ = s)+

∣
∣
∣
∣

∑

k1nλ≤s≤k2nλ

s(q̄ρs−q̄ρ)P(Nλ = s)

∣
∣
∣
∣,

(13.15)
where ρs ≡ nλrρ/s and q̄ρs is the fluid limit for the queue length in the M/M/s +
GI queue with traffic intensity ρs (the arrival rate is λ = rnλρ and the number of
servers is s). Let,

B
(1)
λ ≡

∑

k1nλ≤s≤k2nλ

|E[Qs] − sq̄ρs |P(Nλ = s) and

B
(2)
λ ≡

∣
∣
∣
∣

∑

k1nλ≤s≤k2nλ

s(q̄ρs − q̄ρ)P(Nλ = s)

∣
∣
∣
∣.

First, we consider B(1)
λ and show that it is asymptotically bounded. Fix nλ and note

that to each k1nλ ≤ s ≤ k2nλ corresponds a traffic intensity ρs in the M/M/s+GI

system, where ρs = nλrρ/s and 1 < ρr/(r + ε) ≤ ρs ≤ ρr/(r − ε). By Theorem
5 of Bassamboo and Randhawa (2010), assuming that f is strictly positive and
continuously differentiable,

lim sup
λ→∞

|E[Qs] − sq̄ρs | ≤
√
f (w̄ρs )

(
3|f ′(w̄ρs )|
ρsf 2(w̄ρs )

+ 1

2

)

, (13.16)

where w̄ρs is the fluid limit for the steady-state waiting time in the overloaded
M/M/s + GI queue with traffic intensity ρs . Note that for ρr/(r + ε) ≤ ρs ≤
ρr/(r − ε), we have that w̄ρr/(r+ε) ≤ w̄ρs ≤ w̄ρr/(r−ε). By the continuity of the
bounding function in Eq. 13.16 and the boundedness theorem, we conclude that
there exists a finite constant C1 > 0 such that
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sup
k1nλ≤s≤k2nλ

√
f (w̄ρs )

(
3|f ′(w̄ρs )|
ρ′f 2(w̄ρs )

+ 1

2

)

≤ C1. (13.17)

Since

B
(1)
λ =

∑

k1nλ≤s≤k2nλ

|E[Qs] − sq̄ρs |P(Nλ = s)

≤ sup
k1nλ≤s≤k2nλ

|E[Qs] − sq̄ρs |
∑

k1nλ≤s≤k2nλ

P(Nλ = s)

≤ sup
k1nλ≤s≤k2nλ

|E[Qs] − sq̄ρs |,

combining Eqs. 13.16 and 13.17 yields that lim supλ→∞ B
(1)
λ ≤ C1 by taking limits

on both sides. There remains to study the asymptotic behaviour of B(2)
λ . Note that

q̄ρs = ρs
∫ (F̄ )−1(1/ρs)

0 F̄ (u) du, e.g., by equations (3.6) and (3.7) in Whitt (2006a).
Consider,

∣
∣
∣
∣
∑

s≥0

s

(

ρs

∫ (F̄ )−1(1/ρs)

0
F̄ (x) dx − ρ

∫ (F̄ )−1(1/ρ)

0
F̄ (u) du

)

P(Nλ = s)

∣
∣
∣
∣

=
∣
∣
∣
∣
∑

s≥0

(

nλrρ

∫ (F̄ )−1(s/nλrρ)

0
F̄ (u) du− sρ

∫ (F̄ )−1(1/ρ)

0
F̄ (u) du

)

P(Nλ = s)

∣
∣
∣
∣,

=
∣
∣
∣
∣E

[(

nλrρ

∫ (F̄ )−1(Nλ/nλrρ)

0
F̄ (u) du−Nλρ

∫ (F̄ )−1(1/ρ)

0
F̄ (u) du

)]∣
∣
∣
∣,

=
∣
∣
∣
∣nλρrE

[(∫ (F̄ )−1(Nλ/nλrρ)

(F̄ )−1(1/ρ)
F̄ (u) du

)]∣∣
∣
∣.

We now show that there must exist a finite constant C2 > 0 such that

∣
∣
∣
∣nλρrE

[(∫ (F̄ )−1(Nλ/nλrρ)

(F̄ )−1(1/ρ)
F̄ (u) du

)]∣
∣
∣
∣ ≤ C2

for λ large enough. To this aim, define the function

gλ(x) = nλρr

∫ (F̄ )−1(x/nλrρ)

(F̄ )−1(1/ρ)
F̄ (u) du for x ≥ 0.

For a given λ, we use a Taylor-series expansion of E[gλ(Nλ)] around E[Nλ] = nλr

(we can do this since gλ is sufficiently differentiable and the moments of Nλ are
finite):
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|E[gλ(Nλ)]| =
∣
∣
∣
∣E

[

gλ(nλr)+ g′λ(nλr) (Nλ − nλr)+ 1

2
g′′λ(nλr)(Nλ − rnλ)

2
]∣
∣
∣
∣

+ O(1/λ).

Indeed, by computing the centralized moments of Nλ and higher-order derivatives
of gλ, it can be shown that the remainder term in the Taylor series is O(1/λ). Also,
gλ(nλr) = 0 and

g′λ(nλr) = −
1/ρ

f
(
F̄−1(1/ρ)

) and g′′λ(nλr) = −
1

rnλρ

h1(ρ)+ (1/ρ)h2(ρ)/h1(ρ)

h2
1(ρ)

,

where h1(ρ) = f (F̄−1(1/ρ)) and h2(ρ) = f ′(F̄−1(1/ρ)). Thus, there exists C2 >

0 such that:

|E[gλ(Nλ)]| ≈
∣
∣
∣
∣
1

2
g′′λ(nλr)nλr(1− r)

∣
∣
∣
∣ ≤ C2 for λ large enough.

We now turn to the asymptotic behaviour of B(2)
λ . Note that:

B
(2)
λ = |E[gλ(Nλ)1{Nλ ∈ [k1nλ, k2nλ]}]|, and

|E[gλ(Nλ)]| = |E[gλ(Nλ)1{Nλ ∈ [k1nλ, k2nλ]}]
+ E[gλ(Nλ)1{Nλ /∈ [k1nλ, k2nλ]}]|.

Bounding the second term in the last equality,

E[gλ(Nλ)1{Nλ /∈ [k1nλ, k2nλ]}]
≤ |E[gλ(Nλ)1{Nλ /∈ [k1nλ, k2nλ]}]|

≤
√
E[g2

λ(Nλ)]P(Nλ /∈ [k1nλ, k2nλ]) (Cauchy Schwarz inequality)

→ 0,

since P(Nλ /∈ [k1nλ, k2nλ]) vanishes exponentially fast as λ → ∞, and
E[g2

λ(Nλ)] = O(λ2) since

∫ (F̄ )−1(Nλ/nλrρ)

(F̄ )−1(1/ρ)
F̄ (u) du ≤ 1/θ.
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Thus,

lim sup
λ→∞

B
(2)
λ = lim sup

λ→∞
|E[gλ(Nλ)1{Nλ ∈ [k1nλ, k2nλ]}]| ≤ C2.

Combining the above, there exists C > 0 such that lim supλ→∞ Bλ ≤ C.

O(1)-accuracy Since both Aλ and Bλ are asymptotically bounded, there must exist
K > 0 such that, as desired:

lim sup
λ→∞

∣
∣E[QNλ] − rnλq̄ρ

∣
∣ ≤ K.

o(1)-Accuracy for the Fluid Net Abandonment Rate

The proof for the net abandonment rate proceeds along similar lines, so we will be
brief. Paralleling Eq. 13.16, and denoting E[αNλ |Nλ = s] ≡ E[αs], we can exploit
Theorem 5 in Bassamboo and Randhawa (2010) to show that

∑
k1nλ≤s≤k2nλ

(E[αs]−
sᾱρs )P(Nλ = s) → 0 as λ → ∞. Moreover, by equation (3.3) in Whitt (2006a):
ᾱρs = ρs − 1; thus, s(ᾱρs − ᾱρ) = ρ(nλr − s). We can then write:

∑

k1nλ≤s≤k2nλ

s(ᾱρs − ᾱρ)P(Nλ = s) = ρE[(nr −Nλ)1(k1nλ ≤ Nλ ≤ k2nλ)],

and deduce that E[(nr −Nλ)1(k1nλ ≤ Nλ ≤ k2nλ)] → 0 since E[Nλ] = rnλ.

The Underloaded Regime

Let 0 < ε < r be small enough so that ρr/(r − ε) < 1, and recall that k1 ≡ r − ε

and k2 ≡ r + ε. Then, conditioning on Nλ:

E[QNλ] =
∑

k1nλ≤s≤k2nλ

E[Qs]P(Nλ = s)+
∑

k1nλ>s or s>k2nλ

E[Qs]P(Nλ = s),

≤
∑

k1nλ≤s≤k2nλ

E[Qs]P(Nλ = s)+ E[Q0]
∑

k1nλ>s or s>k2nλ

P(Nλ = s).

As in the proof of Theorem 1, we can show that: E[Q0]∑k1nλ>s or s>k2nλ
P(Nλ=s)→

0 as λ → ∞. Also,
∑

k1nλ≤s≤k2nλ
E[Qs]P(Nλ = s) ≤ E[Q(k1nλ)]∑k1nλ≤s≤k2nλ

P(Nλ=s). Since E[Q(k1nλ)] is the expected steady-state queue length in an
underloaded queue, it converges to 0 as λ → ∞, e.g., see Theorem 5.1 in
Zeltyn and Mandelbaum (2005). The limit for the net abandonment follows
similarly.
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The Critically-Loaded Regime

We condition on Nλ:

E[QNλ] =
∑

k1nλ≤s<nλr

E[Qs]P(Nλ = s)

+
∑

nλr<s≤k2nλ

E[Qs]P(Nλ = s)+ E[Qnλr ]P(Nλ = nλr),

≤
∑

k1nλ≤s<nλr

|E[Qs] − sq̄ρs |P(Nλ = s)+
∑

k1nλ≤s<nλr

sq̄ρsP(Nλ = s)

+
∑

nλr<s≤k2nλ

E[Qs]P(Nλ = s)+ E[Q(nλr)]P(Nλ = nλr), (13.18)

where ρs = rρnλ/s. Paralleling Eqs. 13.16 and 13.17, we can show that there exists
a finite constant C′1 such that for large λ:

∑
k1nλ≤s<nλr

|E[Qs] − sq̄ρs |P(Nλ = s) ≤
C′1 since ρs > 1 for all k1nλ ≤ s < nλr . Also,

∑

k1nλ≤s<nλr

sq̄ρsP(Nλ = s)

=
∑

k1nλ≤s<nλr

nλr

(∫ (F̄ )−1(s/nλr)

0
F̄ (x) dx

)

P(Nλ = s)

= E

[(

nλr

∫ (F̄ )−1(Nλ/nλr)

0
F̄ (x) dx

)

1(Nλ ∈ [k1nλ, nλr))

]

. (13.19)

Using arguments as in Theorem 1 (noting e.g., that gλ(nλr) =
∫ F̄−1(1)

0 F̄ (x)dx =
0), we can show that there exists a finite C′2 > 0 such that

lim sup
λ→∞

E

[(

nλr

∫ (F̄ )−1(Nλ/nλr)

0
F̄ (x) dx

)

1(Nλ ∈ [k1nλ, nλr))

]

≤ C′2.

By Theorem 4.1 of Zeltyn and Mandelbaum (2005), there exists K ′ > 0 such that
E[Qnλr ] ≤ K ′

√
λ for large enough λ. Given that

∑
nλr<s≤k2nλ

E[Qs]P(Nλ = s)→
0 as λ→∞ (underloaded regime), we obtain that the entire expression in Eq. 13.18
is O(

√
λ). The proof for the abandonment rate follows along similar lines, so we

omit the relevant details.
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Proofs of Propositions

Proposition 2 If the abandonment distribution is exponential, then for Γi−1 ≤ n <

Γi , ui(n) =∑k
j=1 cj rjn+

∑k
j=i (pj + hj/θ)(λj − nrj ). We assume:

k∑

j=1

cj rj −
k∑

j=i0
Ljrj < 0 and

k∑

j=1

cj rj −
k∑

j=i0+1

Ljrj > 0. (13.20)

Clearly, under condition Eq. 13.20, C(n) is piecewise linear with piecewise negative
slopes for n ≤ Γi0 , and strictly positive slopes for n > Γi0 .

With a monotonically increasing hazard rate, we have

ui(n) =
k∑

j=1

cj rjn+
k∑

j=i

(

pj (λj − nrj )+ hjλj

∫ F̄−1(nrj /λj )

0
F̄ (u) du

)

.

Thus,

u′i (n) =
k∑

j=1

cj rj −
k∑

j=i
rj

[

pj + hj

ha(F̄−1(n/Γj ))

]

,

which is strictly decreasing in n, i.e., u′′i (n) < 0. Thus, the objective is piecewise
strictly concave. The minimum must be achieved at some Γi′ , at which we critically
load shift i′.

Proposition 3 In [Γi−1, Γi), u′i (n) is as in the proof of Proposition 2, so that

u
′′
i (n) > 0 and the function is piecewise convex. It also follows that u′i (n1) <

u′i+1(n2) for n1 ∈ [Γi, Γi+1) and n2 ∈ [Γi+1, Γi+2). In other words, if C′(x) > 0,
then C′(y) > 0 for y ≥ x. Thus, the minimum n∗ will be at the interior of an interval
(Γi0−1, Γi0) if u′i0(Γi0−1) < 0 and u′i0(Γi0−) > 0. Here is a sufficient condition for
this to be the case.

Sufficient condition There exists i0, β, γ > 0 such that:

Γi0−1

Γi0

< β;
k∑

i=1

ciri −
k∑

i=i0
ri

(

pi + hi

fa(F̄−1(β))

)

< 0;

Γi0

Γk

> γ ;
k∑

i=1

ciri −
k∑

i=i0
ri

(

pi + hi

fa(F̄−1(γ ))

)

> 0.
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To see why this implies an interior point solution, note that:

u′i0(Γi0−1) =
k∑

i=1

ciri −
k∑

i=i0
ri

(

pi + hi

fa(F̄−1(Γi0−1/Γi))

)

<

k∑

i=1

ciri −
k∑

i=i0
ri

(

pi + hi

fa(F̄−1(Γi0−1/Γi0))

)

<

k∑

i=1

ciri −
k∑

i=i0
ri

(

pi + hi

fa
(
F̄−1 (β)

)

)

< 0 by assumption.

Furthermore,

u′i0(Γ
−
i0
) =

k∑

i=1

ciri −
k∑

i=i0
ri

(

pi + hi

fa(F̄−1(Γ −i0 /Γi))

)

>

k∑

i=1

ciri −
k∑

i=i0
ri

(

pi + hi

fa(F̄−1(Γ −i0 /Γk))

)

>

k∑

i=1

ciri −
k∑

i=i0
ri

(

pi + hi

fa(F̄−1(γ ))

)

> 0.

Combining both, we get that u′i0(Γi0−1) < 0 and u′i0(Γ
−
i0
) > 0 which, combined

with the fact that C′(·) increases across intervals, implies that the minimizer must
lie strictly in the interval (Γi0−1, Γi0). In words, if the imbalance between the
augmented arrival rates Γi0/Γi0+1 is small enough, it is optimal to “strike a balance”
between the two shifts, i.e., underloading a shift, while overloading the other.

Proposition 4 It suffices to show that θ(we
i+1(Γic )) > θ0 for i ≥ ic. To see this,

note that: λi+1e
−we

i+1θ(w
e
i+1) = Γic ri+1. This implies: e−w

e
i+1θ(w

e
i+1) = Γic/Γi+1, for

i ≥ ic, i.e., we
i+1θ(w

e
i+1) = ln(Γi+1/Γic ). Assume that θ0·θ−1(θ0) < ln(Γic+1/Γic ).

Then, θ0 · θ−1(θ0) < we
i+1θ(w

e
i+1) for i ≥ ic since Γic+1 ≤ Γi+1 for i ≥ ic. Since

xθ−1(x) is increasing in x, we obtain that we
i+1 > θ−1(θ0), which implies that

θ(we
i+1) > θ0 for i ≥ ic, as desired. Then, Ca(Γic ) < C(Γic ) = C∗, and we get

strict reduction in cost due to the announcements.

Proposition 5 It suffices to show that, for all n, C′a(n) > C′(n). If this holds,
then C′(n) > 0 would imply C′a(n) > 0, so that Ca(·) increases whenever C(·)
increases, which leads to n∗a < n∗. Fix n ∈ [Γi0−1, Γi0), for some i0. Then, Ca(n) =∑k

i=1 cinri +
∑k

i=i0(pi + hi/θ(w
e
i ))(λi − nri) where e−we

i θ(w
e
i ) = n/Γi . That is,

for i ≥ i0,
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we
i θ(w

e
i ) = ln

(
Γi

n

)

> ln

(
Γi

Γi0

)

> min
1≤i≤k−1

ln

(
Γi+1

Γi

)

> θ0 · θ−1(θ0),

under condition Eq. 13.9. This implies that θ(we
i ) > θ0 for all i ≥ i0. Note that for

n ∈ [Γi0−1, Γi0),

C′a(n) =
k∑

i=1

ciri −
k∑

i=i0
piri −

k∑

i=i0

rihi

θ(we
i )

+
k∑

i=i0
hi(λi − nri)

θ ′(we
i )

nθ2(we
i )(θ

′(we
i )w

e
i + θ(we

i ))
.

Thus, assuming condition Eq. 13.9 implies that C′a(n) > C′(n), for every n ∈
[Γi0−1, Γi0). Since we can let i0 denote any period index, we obtain that n∗a < n∗.

Lemma 1 We derive the optimal compensation for a fixed value of the pool size n.
Since c∗i can be decided upon separately for each shift, we focus on a single shift
setting in what follows, i.e., we fix the shift i. The solution depends on the specific
value of n.

1. n ≥ λi/G(l). c∗i = l, i.e., offer minimum wage and overstaff shift i (under-
loaded).

2. n < λi/G(l). Note that we must have that λi ≥ nG(ci) i.e., ci ≤ G−1(λi/n)

because it will not be cost effective for the manager to incite more supply than
the demand in the shift.

Subcase 1 We assume that Li ≤ l. In this case, the problem becomes:

min
Li≤l≤ci≤G−1(λi/n)

{nciG(ci)+ Li(λi − nG(ci))}

which is equivalent to

minimize
Li≤l≤ci≤G−1(λi/n)

ti(ci) ≡ (ci − Li)G(ci).

Since ci > Li , it is readily seen that the objective is increasing in ci . Thus, we
must have that c∗i = l. That is, we offer minimum wage and understaff shift i
(over-loaded).

Subcase 2 We now assume that Li > l. In this case, λi/G(Li) < λi/G(l).
We then consider the two intervals: (a) n ≤ λi/G(Li) < λi/G(l) and
(b) λi/G(Li) < n < λi/G(l).

(a) n ≤ λi/G(Li) < λi/G(l). The problem is now:

min
l≤ci≤min{G−1(λi/n),Li }

{nciG(ci)+ Li(λi − nG(ci))}
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which is equivalent to solving:

minimize
l≤ci≤min{Li,G

−1(λi/n)}
ti (ci) ≡ (ci − Li)G(ci).

Note that t ′i (ci) = G(ci)(1 + (ci − Li)g(ci)/G(ci)). In this case, we have
Li ≤ G−1(λi/n). Since t ′(Li) ≥ 0, and ti (·) is convex under log-concavity
of G, we obtain that:

(i) If t ′i (l) < 0 i.e., (1+ (l−Li)g(l)/G(l)) < 0, then there exists an optimal
c∗i = ai ∈ (l, Li) where t ′(ai) = 0;

(ii) If t ′i (l) ≥ 0 i.e., (1+ (l − Li)g(l)/G(l)) ≥ 0, then we have c∗i = l.

In both cases (i) and (ii), the system is overloaded, i.e., the manager incites a
smaller supply than the demand in shift i.

(b) Now, consider: λi/G(Li) < n < λi/G(l). Let 0 < ai < Li be such that
t ′i (ai) = 0 i.e.,

G(ai)

(

1+ (ai − Li)
g(ai)

G(ai)

)

= 0.

The optimization problem is

min
l≤ci≤G−1(λi/n)<Li

ti(ci).

Note that if ai < l, then c∗i = l (by the convexity of the objective); in other
words, the manager offers the minimum wage and runs shift i overloaded.
Now, assume that ai ≥ l. We then have the following two cases:

(i) t ′(G−1(λi/n)) ≤ 0 i.e., G−1(λi/n) ≤ ai , i.e., λi/G(Li) < λi/G(ai) ≤
n < λi/G(l). In this case, c∗i = G−1(λi/n) which means that the manager
incites a supply equal to the demand, i.e., she critically loads her shift.

(ii) t ′(G−1(λi/n)) > 0, i.e., G−1(λi/n) > ai , i.e., λi/G(Li) < n <

λi/G(ai) ≤ λi/G(l). In this case, c∗i = ai and the manager incites a
supply that is smaller than the demand, i.e., she overloads her shift.

Lemma 2 We let ãk be the solution to Eq. 13.12. Then, t̃ ′(x) ≡ G(x)(1 + (x −
L̃k)g(x)/G(x)) is increasing for x ≤ L̃k by the log-concavity of G(·). If ak > L̃k ,
then it must be that ak > ãk since ãk < L̃k . Let us now assume that ak ≤ L̃k . Since
L̃k < Lk , we must have that

G(ak)

(

1+ (ak − L̃k)
g(ak)

G(ak)

)

> G(ak)

(

1+ (ak − Lk)
g(ak)

G(ak)

)

= G(ãk)

(

1+ (ãk − L̃k)
g(ãk)

G(ãk)

)

0.
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Because t̃ ′(x) is increasing in x for x ≤ L̃k , and we have both ak, ãk ≤ L̃k , we also
obtain that ak > ãk . If n < λk/G(ak), then we must also have that n < λk/G(ãk),
so that the optimal compensation as per Lemma 1 is to set c̃∗k = ãk < c∗k = ak . We
note that if n is as in cases (a) and (b) of Lemma 1, then the compensation offered to
agents is unchanged since compensation is set so that there is no congestion in the
shift. We also note that if ãk < l < ak then c̃∗k = l so that c̃∗k < c∗k as well. In other
words, agents are worse off in all cases.

Lemma 3 Note that if l < l0 then max{λi/G(ãi)} < min{λi/G(l)}. For
max{λi/G(ãi)} < n < min{λi/G(l)}, we must have that Π ′(n) < 0. Thus, n∗ ≥
min{λi/G(l)} > max{λi/G(ãi)}, and we do not overload or use the announcements
in any shift (since Π ′(n) is strictly increasing in n). It is readily seen that we cannot,
for an optimal n∗, have all shifts strictly underloaded. Thus, there must exist i0 as
specified in the lemma.

Lemma 4 In this case, problem Eq. 13.13 simplifies to:

minimize
n≥0

Π(n) ≡
∑

{i:n≥λi/G(l)}
nlG(l) (underloaded)

+
∑

{i:n<λi/G(l)}
lnG(l)+ L̃i(λi − nG(l))

(overload+
announcements)

Note that Π(n) is piecewise linear. Then, Π ′(n) = klG(l)−∑{i:n<λi/G(l)} L̃iG(l).
Clearly, as n increases, Π ′(n) increases too. Under our assumptions, there must exist
a unique k0 such that Π ′(n) < 0 for n < λk0/G(l) and Π ′(n) > 0 for n > λk0/G(l).
The optimal solution is to set n∗ = λk0/G(l).

References
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Chapter 14
Online Group Buying and
Crowdfunding: Two Cases of
All-or-Nothing Mechanisms

Ming Hu, Mengze Shi, and Jiahua Wu

Abstract This chapter focuses on the two popular business models, namely, online
group buying and crowdfunding. Both models use variations of all-or-nothing mech-
anisms, where transactions will take place only if the total number of committed
purchases/pledges exceeds a specified threshold within a certain period. We seek
to understand the impact of all-or-nothing mechanisms on consumer behavior, as
well as the optimal design of such mechanisms, from the perspective of third-party
platforms like Groupon and Kickstarter. First, using a dataset from the online group
buying industry, we empirically identify two types of threshold-induced effects
on consumer behavior. Next, we study optimal information disclosure and pricing
strategies under all-or-nothing mechanisms. We show that it is always beneficial for
the firm to disclose the cumulative number of sign-ups to reduce the uncertainty for
later arrivals. Regarding pricing, we show that the introduction of a price menu for
the same product can be a win-win for both the creator and buyers.

14.1 Introduction

The motivation of this study stems from two popular business models, namely,
online group buying and crowdfunding. Online group buying is a scheme designed
to help coordinate a group of interested buyers so that they can reach their common
purchase goals. In a typical group-buying deal, no transaction will take place unless
the total number of committed purchases exceeds a specified threshold within a
certain period. Online group-buying websites first appeared in the late 1990s, as part
of the wave of innovative online market-based mechanisms. Usually, the consumers
had to make the purchase commitment through escrow payment systems. Most of

M. Hu (�) · M. Shi
Rotman School of Management, University of Toronto, Toronto, ON, Canada
e-mail: ming.hu@rotman.utoronto.ca; mshi@rotman.utoronto.ca

J. Wu
Imperial College Business School, Imperial College London, London, UK
e-mail: j.wu@imperial.ac.uk

© Springer Nature Switzerland AG 2019
M. Hu (ed.), Sharing Economy, Springer Series in Supply Chain Management 6,
https://doi.org/10.1007/978-3-030-01863-4_14

319

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01863-4_14&domain=pdf
mailto:ming.hu@rotman.utoronto.ca
mailto:mshi@rotman.utoronto.ca
mailto:j.wu@imperial.ac.uk
https://doi.org/10.1007/978-3-030-01863-4_14


320 M. Hu et al.

the representative group-buying websites that became popular in the late 1990s,
including Mercata, Mobshop, and Letsbuyit, either ceased operating or changed
their business models a few years later (Kauffman and Wang 2002). Interestingly,
despite the failure of these pioneering group-buying sites, a decade later another
generation of social buying websites like Groupon and LivingSocial emerged. Led
by the market leader, Groupon, these newcomers started their business with offering
“a deal a day” tailored to each local market.

Crowdfunding allows creators to raise funds from potential buyers to start their
ventures and in return, the creators offer products to the buyers.1 The creators can
be designers, musicians, software developers, or any kind of inventors. Unlike in the
conventional retail setting, here a buyer not only commits to purchasing the product
but also prepays to fund the project. A project will be successfully funded only if the
total value of committed purchases exceeds a specified goal within a certain time.
The crowdfunding industry has experienced tremendous growth in recent years. For
instance, Kickstarter is one of the leading online non-equity crowdfunding sites that
match people (the “crowd”) with projects. It has raised more than $800 million and
supported more than 50,000 projects in the four years since its inception in 2009.
With the passing in the US of the Jumpstart Our Business Startups Act in September
2013, the crowdfunding industry acquired legitimacy and is expected to lead a new
era of entrepreneurship.

What these two business models share in common is the underlying mechanism,
namely, the all-or-nothing mechanism, where transactions will take place only if the
total number of committed purchases/pledges exceeds a specified threshold within
a certain period. There are many reasons why a project needs a certain number of
buyers and a certain amount of funds to start. In the context of crowdfunding, for
instance, there may be economies of scale due to high initial setup costs on the
supply side. Most digital products fall into this category. On the demand side, the
product may exhibit positive externality and it requires enough users for the product
to be valuable enough. In this chapter, we seek to have a thorough understanding of
the impact of all-or-nothing mechanisms on consumer behavior, as well as their
optimal design, from the perspective of third-party platforms like Groupon and
Kickstarter.

In the context of online group buying, we first empirically investigate the effect
of thresholds on consumer’s sign-up behavior. Our investigation utilizes a dataset
collected from Groupon.com, during a period when the company predominantly
used “a deal a day” format for each local market. For each Groupon deal, deal
characteristics, threshold level, and real-time updated number of sign-ups were
posted on the website. These data provide us with an opportunity to infer the effects
of thresholds from the sign-up patterns over time. Our study finds two types of
threshold-induced behavior. The first type of threshold effects refers to a substantial
increase in the number of sign-ups around the time when the threshold is reached.

1On equity crowdfunding sites, funders are also investors for the creators’ financial endeavors.
This chapter focuses on non-equity crowdfunding where buyers are also funders but not investors.
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The second threshold effect refers to a stronger positive relation between the number
of new sign-ups and the cumulative number of sign-ups before the thresholds are
met than afterward. We discuss several mechanisms compatible with the findings
that may serve as potential hypotheses for future research.

After establishing the impact of all-or-nothing mechanisms on consumer behav-
ior, we will study the optimal design of all-or-nothing mechanisms from the
perspective of third-party platforms like Groupon and Kickstarter. Under all-
or-nothing mechanisms, consumers are linked together by the common goal of
project success. Thus, it is crucial for the firm to facilitate the coordination among
consumers to improve the chance of project success.

We first investigate the information disclosure strategy, specifically, whether or
not the sponsor should ask participants to make decisions without knowing the
choices of others. We take the perspective of group-buying platforms like Groupon
and investigate the impact of alternative information disclosure strategies on deal
success rates. Knowing how to improve the success rates is vital because group-
buying firms typically earn revenues from successful listings only and not all
group-buying deals succeed. Without careful analysis, the firm’s decision does not
appear straightforward because of the uncertainty about the number of consumer
arrivals and their individual valuations. Looking forward, one can find it beneficial
to post the number of sign-ups if a large cohort of consumers with high individual
valuations turn out in the early stage, but it can be detrimental if the first cohort of
consumers turns out to be small and have low individual valuations.

To investigate the influence of information disclosure strategies on deal success
rates, we develop a two-period model where two cohorts of consumers arrive at the
deal sequentially. The two-period model is a stylized capture of the fact that earlier
arrivals are faced with more uncertainty in the deal’s success rate than later arrivals.
The firm being studied chooses between a “sequential mechanism” where the firm
posts the number of sign-ups at the end of the first period, and a “simultaneous
mechanism” where the firm does not post the first-period outcome. Somewhat
surprisingly, our analysis shows that the deal’s success rate is always higher under
the sequential mechanism. To understand this result requires backward-inductive
reasoning, starting with the second period and then moving back to the first period.
A sequential mechanism increases the ex-ante expected sign-up rates of the second
cohort of consumers by eliminating the uncertainty facing them. The increased
expected sign-up rates of the second cohort enhance the confidence of the first
cohort of consumers, thereby increasing the ex-ante expected sign-up rates of the
first cohort. This result underscores the importance of modeling and investigating
the dynamics of sign-up behavior under online group buying. The result also offers
a potential explanation for why firms like Groupon and Kickstarter display the
updated number of sign-ups along with the minimum number required to unlock
the deals.

Last, we study various pricing strategies in facilitating coordination among
consumers in the context of crowdfunding. In crowdfunding, a creator may design
a menu of price options when buyers have heterogeneous valuations. A crucial
consideration in the menu design is incentive compatibility; that is, each type of
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consumers should be better off by choosing the option designed for them than by
choosing any other options. In addition, a creator needs to consider the anticipated
project success rate. In the design of the price menu for a crowdfunding project,
how would the creator’s consideration of project success affect the optimal pricing
decisions?

To investigate this question, we propose and analyze a two-period model where
a creator may charge different prices over time to sequentially arriving buyers. The
decisions of the earlier buyers are posted to the later arrivals. The buyers decide
whether or not to purchase and which price option to choose according to their
valuations. It turns out that, given the same product but at different prices, the buyer
with a high product valuation may choose the high-price option in crowdfunding to
ensure the success of the project. This will be the case as long as a buyer perceives
that other buyers may have low product valuations. Interestingly, this “over-pay”
behavior can also improve total buyer surplus, and hence the introduction of
discriminatory pricing strategies, such as a menu, can be win-win for both the
creator and buyers. This result is in stark contrast to the traditional situation where
consumers would generally prefer the low-price option given no difference in
quality.

14.2 Consumer Behavior Under All-or-Nothing Mechanisms

We first empirically investigate the effect of all-or-nothing mechanisms on con-
sumer’s sign-up behavior utilizing a dataset collected from Groupon.com. The
online group-buying industry has witnessed phenomenal growth since the début of
Groupon in 2008. Group-buying firms are third-party intermediaries that facilitate
the coordination among a large group of consumers. Such coordination permits
consumers to enjoy the quantity discounts offered by the sellers collectively.
Groupon, since its début in 2008, increased its total number of subscribers to over
200 million as of March 2013. Groupon extended its coverage to more than 500
markets in 48 countries, up from just 28 U.S. markets in 2009.

We hired a research assistant at a major university to build a data crawler on the
Google App Engine platform. The data crawler extracted deal information, such as
deal description, deal price, discount level, and threshold, whenever a new deal was
posted. The program updated the cumulative number of sign-ups with the interval
of every five minutes. We use this real-time dataset to keep track of consumers’
responses to various group buying deals during the lifetime of each deal and to
uncover the patterns of sign-up accumulation.

Our data includes a total of 4,208 deals from 86 cities or regions covered by
Groupon between September 28th, 2010 and December 07th, 2010. The duration of
the observation period was 71 days in total. For each deal, we recorded a set of deal
attributes and monitored the inter-temporal sign-up process. Table 14.1 presents the
summary statistics for all these 4,208 deals. The average deal price in the sample
was $30.68, with an average discount level of 56% off. Each of these deals contained
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Table 14.1 Summary statistics of all deals

Mean Std. Dev. Minimum Maximum

Deal attributes

Deal price ($) 30.68 30.53 2 250

Discount level (%) 56.35 9.96 19 96

Threshold 55.40 68.50 3 800

Market population (thousands) 854.30 1,332.94 56 8,364

Outcome

Total amount purchased 784.80 1,331.57 5 29,380

Note: Deal Price denotes the net price a consumer needed to pay if the deal tips. Discount Level
denotes the markdown of deal price relative to the regular price. Threshold denotes the minimum
number of committed purchases for the deal to succeed. Market Population is the population of the
local market where the deal was posted. Total Amount Purchased denotes the number of consumers
who purchased the product or service by the end of the sign-up process

a threshold of sign-up numbers for the deal to succeed. A group-buying deal would
be off if the total number of committed consumers did not reach the threshold. The
average threshold value specified by Groupon was around 55. The average number
of coupons purchased for each deal was around 785. In our sample, all deals reached
the thresholds before expiration.

During our data-collection period, deals were posted daily for 24 h from Mon-
days to Thursdays. However, the duration of deals posted on Fridays and weekends
could vary from 24 to 72 h. In some relatively small markets, Groupon would post
72-h deals on Friday. We also saw a transition from 72-h deals to 48-h deals during
our data-collection period.

14.2.1 Empirical Model

Our primary objective is to investigate the effects of thresholds on the rate of signing
up to the deals. However, many confounding factors, such as varying online traffic
to the websites at different times of the day and unobserved deal heterogeneity, may
contribute to the sign-up pattern. We seek to establish the threshold effects through
formal statistical analyses rigorously.

14.2.1.1 The Base Model

We start our analysis with a flexible model specification to distill the sign-up pattern
around the thresholds. We include a series of time dummy variables, with each
variable capturing the sign-up pattern during a 5-min time interval around the period
when the threshold was reached. The dependent variable in our model, denoted
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by yi,t , is the number of new sign-ups during the t th time interval for deal i. To
control the unobserved deal heterogeneity, we apply a deal-fixed effect model with
the following specification:

yi,t =
T∑

j=−T
αj I{si,t=j} + ψt + μi + εi,t , (14.1)

where t represents the time index before re-aligning the deals, and si,t indicates the
time index after re-aligning the deals at the period when the threshold was reached.
Recall that with the re-aligned data, time 0 is the period when a deal reaches its
threshold. Consequently, si,t is equal to 0 if deal i reaches its threshold at time
period t . Similarly, si,t = j for all j > 0 (resp., j < 0) represents that time period t

is the j th period after (resp., before) deal i reaches its threshold, and I{si,t=j} for all
j is a dummy variable which is equal to 1 if si,t = j , and zero otherwise. The set
of time dummy variables, I{si,t=j}, j = −T , . . . , T , is used to capture the sign-up
pattern around the time when the thresholds are reached, where T reflects the width
of the time window. In addition, ψt measures the time-of-the-day fixed effect using
a 5-min time dummy, and μi measures the deal fixed effects. The term εi,t is the
error component.

To estimate the base model, we can apply standard approaches for estimating
fixed-effects panel models. The fixed effects can be eliminated by either taking
differences between adjacent observations from the same deal or subtracting the
average over time from every variable, i.e., time-demeaning. Then, we can apply
the generalized least squared (GLS) estimator to the transformed data.

14.2.1.2 The Extended Model with Lagged Variables

Though the base model allows us to capture the sign-up pattern around thresholds
in a flexible way, it does not reflect the dependency of the new sign-ups on
the cumulative number of sign-ups. Consequently, we extend the base model by
introducing the lagged cumulative sign-ups, Yi,t−1, into the model. The extended
model can be formulated as follows:

yi,t =
T∑

j=−T
αj I{si,t=j} +

T∑

j=−T
βj I{si,t=j}Yi,t−1 + ψt + μi + εi,t . (14.2)

Similar to the base model, we include the interactions between time dummies after
re-alignment, I{si,t=j}, and the lagged cumulative number of sign-ups, Yi,t−1, to
capture the relationship between the new sign-ups and the cumulative number of
sign-ups in a flexible way.

However, unlike the base model which can be estimated consistently using GLS
estimator, the estimation of a fixed effects model with lagged variables is more
technically involved. The lagged regressor is likely to be correlated with the fixed
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effects, which gives rise to “dynamic panel bias” (Nickell 1981). To solve this
problem, we apply the generalized method of moments (GMM) approach proposed
by Arellano and Bond (1991). First, we take a difference of Eq. (14.2) to eliminate
the deal fixed effects:

yi,t − yi,t−1 =
T∑

j=−T
αj
(
I{si,t=j} − I{si,t−1=j}

)

+
T∑

j=−T
βj
(
I{si,t=j}Yi,t−1 − I{si,t−1=j}Yi,t−2

)

+ (ψt − ψt−1)+ (εi,t − εi,t−1). (14.3)

As Yi,t−1 is correlated with the error term, specifically εi,t−1, GLS yields inconsis-
tent estimates after the first-difference transformation. However, if there is no serial
correlation in the error term εi,t , then the longer lags of the regressors, i.e., Yi,k ,
k = t − 2, . . . , 1, which are correlated with yi,t−1 (see Eq. (14.2)), and thus Yi,t−1,
but not with the error term εi,t−1, can serve as instruments for the model after the
first-difference transformation. In the case of our model, Yi,t−2, and I{si,t−1=j}Yi,t−2,
together with their longer lags can serve as GMM instruments for Eq. (14.3). The
differences of the strictly exogenous variables, i.e., I{si,t−1=j} and ψt , can serve as
standard instruments.

We capture the unobserved heterogeneity across deals with deal fixed effects.
The observed deal variations as described by product/service categories, deal prices
and discounts, and city characteristics are unlikely to capture all sources of deal
heterogeneities. For example, restaurants in a city can have different locations,
offer different cuisines, and enjoy different reputations. For Eq. (14.2) to identify
threshold effects on group-buying deals, we implicitly assume that unobserved deal
attributes are accounted for by a time-invariant component, i.e., μi . This fixed
component controls for unobserved deal attributes, which may positively correlate
with both lagged cumulative number of sign-ups, Yi,t−1, and the number of new
sign-ups, yi,t , and thus solves an “errors in variables” type of endogeneity problem
(Villas-Boas and Winer 1999). Given the panel data structure, we can use deal-
specific fixed effects to control the variations across deals.

14.2.2 Results

We next present the empirical results for the base model and the extended model.
Our analysis uses a one-and-a-half-hour time window before and after the threshold
was reached for regression analysis, i.e., T = 17. The usage of a relatively
small time window around the time when thresholds were reached eliminates other
unrelated factors and allows us to focus on the effects of thresholds on consumers’
sign-up behavior.
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Since the earliest observation serves as the reference level, we have a total of 34
5-min time dummy variables, i.e., I{si,t=j}, j = −16, . . . , 17, to capture the sign-up
pattern around thresholds. To focus on the main findings, we do not interact every
single time dummy variable with the lagged cumulative number of sign-ups. Instead,
we divide the three-hour time window into four non-overlapping time periods of
equal length, create four new time dummies, with each representing a 45-min time
interval, and interact the newly created time dummies with the lagged cumulative
number of sign-ups. The interaction terms between these four time dummies and
the lagged cumulative number of sign-ups are sufficient to capture the level shift
in the ratio between new sign-ups and the cumulative number of sign-ups when
the thresholds were passed, as well as the trend of the ratio both before and after
reaching the thresholds.

Table 14.2 shows the regression result of our base model. The coefficient of
the time dummy when the thresholds were reached (α̂0 = 3.582, p < 0.01) is
significantly greater than the coefficients of other time dummies, which indicates a
clear spike in the number of sign-ups during the time interval when the thresholds
were reached after we control for heterogeneous time traffic and unobserved deal
heterogeneity. This establishes the first-type of threshold effects: a surge in the
number of new sign-ups around the time when the threshold was reached.

Table 14.3 shows the regression results of our extended model. The result from
the GLS estimator is presented as a benchmark. We show the results from the

Table 14.2 Regression results of the base model using three-hour data

Estimates Estimates Estimates Estimates Estimates Estimates

α−16 −0.094∗∗ α−10 −0.437∗∗∗ α−4 −0.076 α1 0.131 α7 0.355∗∗ α13 0.953∗∗∗

(0.037) (0.063) (0.101) (0.185) (0.178) (0.212)

α−15 −0.152∗∗∗ α−9 −0.447∗∗∗ α−3 −0.266∗∗ α2 −0.085 α8 0.623∗∗∗ α14 1.140∗∗∗

(0.041) (0.067) (0.106) (0.152) (0.193) (0.232)

α−14 −0.257∗∗∗ α−8 −0.385∗∗∗ α−2 −0.198∗ α3 0.104 α9 0.642∗∗∗ α15 1.277∗∗∗

(0.043) (0.074) (0.112) (0.150) (0.187) (0.237)

α−13 −0.288∗∗∗ α−7 −0.396∗∗∗ α−1 0.023 α4 0.400∗∗ α10 0.634∗∗∗ α16 1.403∗∗∗

(0.051) (0.080) (0.130) (0.161) (0.198) (0.252)

α−12 −0.351∗∗∗ α−6 −0.394∗∗∗ α0 3.582∗∗∗ α5 0.223 α11 0.881∗∗∗ α17 1.477∗∗∗

(0.052) (0.087) (0.315) (0.156) (0.216) (0.296)

α−11 −0.357∗∗∗ α−5 −0.347∗∗∗ α6 0.211 α12 0.942∗∗∗

(0.058) (0.094) (0.181) (0.212)

Time-of-the-day fixed effects Yes

Deal fixed effects Yes

Number of observations 147,112

Number of deals 4,208

Adjusted R-squared 0.026

Note: The dependent variable is the number of new sign-ups per 5-min time interval. Standard
errors are clustered by deal and reported in parentheses
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
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Table 14.4 Statistical tests using estimates in Table 14.3

GMM GMM GMM GMM GMM GMM

GLS (2 lags) (3 lags) (4 lags) GLS (2 lags) (3 lags) (4 lags)

α0 − α−5 3.535∗∗∗ 3.270∗∗∗ 3.319∗∗∗ 3.312∗∗∗ α0 − α1 3.164∗∗∗ 3.248∗∗∗ 3.302∗∗∗ 3.215∗∗∗

(0.330) (0.335) (0.335) (0.327) (0.303) (0.348) (0.369) (0.388)

α0 − α−4 3.319∗∗∗ 3.102∗∗∗ 3.145∗∗∗ 3.139∗∗∗ α0 − α2 3.465∗∗∗ 3.607∗∗∗ 3.651∗∗∗ 3.559∗∗∗

(0.323) (0.325) (0.326) (0.320) (0.330) (0.392) (0.417) (0.444)

α0 − α−3 3.586∗∗∗ 3.423∗∗∗ 3.457∗∗∗ 3.452∗∗∗ α0 − α3 3.358∗∗∗ 3.550∗∗∗ 3.582∗∗∗ 3.487∗∗∗

(0.312) (0.312) (0.314) (0.309) (0.348) (0.418) (0.437) (0.466)

α0 − α−2 3.591∗∗∗ 3.480∗∗∗ 3.504∗∗∗ 3.500∗∗∗ α0 − α4 3.158∗∗∗ 3.406∗∗∗ 3.427∗∗∗ 3.328∗∗∗

(0.304) (0.303) (0.305) (0.301) (0.337) (0.416) (0.437) (0.463)

α0 − α−1 3.455∗∗∗ 3.399∗∗∗ 3.412∗∗∗ 3.410∗∗∗ α0 − α5 3.451∗∗∗ 3.759∗∗∗ 3.767∗∗∗ 3.665∗∗∗

(0.296) (0.295) (0.296) (0.295) (0.328) (0.412) (0.431) (0.461)

β1 − β2 0.010∗∗∗ 0.011∗ 0.009 0.010∗ β2 − β3 0.004 0.011∗∗∗ 0.010∗∗∗ 0.011∗∗∗

(0.003) (0.006) (0.006) (0.007) (0.003) (0.003) (0.003) (0.003)

Note: Standard errors are clustered by deal and reported in parentheses. Significance levels are
related to the null hypothesis H0: combination of coefficients = 0
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

GMM estimator using two, three and four lags of GMM instrumental variables.
Specifically, GMM instruments include the lagged cumulative number of sign-
ups, and the lagged interaction terms between the 45-min time dummies and the
cumulative number of sign-ups. In theory, we can use all valid lagged regressors,
i.e., those with lags of two and more. However, the number of instruments would be
quadratic in the time dimension of the panel, and the GMM estimator may perform
poorly with a large number of instruments (Roodman 2009). Too many instruments
may overfit endogenous variables, bias coefficient estimates, and thus the results
from the finite sample may be far from the asymptotic ideal. In our analysis, we
apply the GMM estimator using two, three and four lags of instrumental variables.
As shown in columns 2, 3 and 4 in Table 14.3, the results are robust with respect to
the number of lags used.

After controlling for the lagged cumulative number of sign-ups, the surge in the
number of sign-ups during the interval when the threshold was reached remains.
We further verify this finding by conducting Wald tests on the differences between
the estimated coefficients of the time dummy when the threshold was reached, and
other time dummies within the half-an-hour time window either before or after the
threshold was reached. As shown in the first part of Table 14.4, the differences
between the coefficients are all statistically significant. To quantify this effect, we
define a spike index as the measure for the additional number of sign-ups due to
the thresholds. Specifically, the spike index is equal to

∑5
j=−5(α̂0 − α̂j )/10. Using

the results from the GMM estimator with 2 lags, the spike index across all deals
is 3.424. That is, on average, around 3.424 more consumers would sign up to the
deal during the 5-min time interval when the threshold was reached (statistically
significant, p < 0.01). To assess the magnitude of this effect, note that during the
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half-an-hour time window before and after the threshold was reached, on average
there were approximately 3.6 consumers signing up ever 5 min. Thus, the existence
of thresholds produces a substantial boost in sales.

We also observe a level shift in the ratio between the new sign-ups and the
cumulative number of sign-ups. Specifically, our test results show that the ratio
in the 45-min time window before the thresholds is higher than that in the 45-
min time window after the thresholds by around 0.01, which is consistent among
the results from the GLS estimator and GMM estimator with various lags (see test
results of β1 − β2 in Table 14.4). The difference in the ratio before and after the
thresholds is significant from the GLS estimator and GMM estimator using either
2 lags or 4 lags. However, the difference is insignificant from the GMM estimator
using 3 lags. The underlying reason might be the weak instruments for 3 and 4
lags to be discussed below. The estimated coefficients from the GMM estimator
also indicate that the ratio between new sign-ups and the cumulative number of
sign-ups continues decreasing after reaching the thresholds (see test results on
β2−β3 in Table 14.4). After the thresholds, the ratio in the second 45-min period is
significantly lower than that in the first 45-min time window.

It is worth noting that the validity of the GMM estimator will be violated if
the error component εi,t is serially correlated over time. To address this concern, we
apply post-estimation tools of the GMM estimator and examine the serial correlation
structure of the new error component εi,t−εi,t−1. The second-order serial correlation
is −0.662 (p = 0.508), suggesting that the error components in Eq. (14.2), i.e., εi,t ,
are indeed uncorrelated over time.

Another potential concern with the GMM estimator is weak instruments. When
the correlation between instrumental variables and the endogenous variable is low,
the asymptotic distribution of the coefficients breaks down, and GMM estimates
may not be consistent (Bound et al. 1995). In this case, the standard errors on
GMM estimates are likely to be larger than those on GLS estimates. For our model,
the concern of weak instruments may become important if the lagged cumulative
number of sign-ups is not informative in predicting the new sign-ups.

To test the existence of weak instruments, we regress the endogenous variable
after the first-difference transformation, i.e., yi,t , on various lags of the cumulative
number of sign-ups. The regression analysis is conducted using 2 lags to 4 lags,
and the F-statistics are summarized in Table 14.5. We refer to the rule of thumb
suggested by Staiger and Stock (1997) that the finite-sample bias of instrumental
variables would not be a serious problem when the F-statistic is greater than 10.

Table 14.5 F-statistics for
the instrumental variable
regressions

2 lags 3 lags 4 lags

F-statistic of Yi,t−1 18.03 16.32 12.56

F-statistic of Yi,t−2 11.37 0.40 0.36

F-statistic of Yi,t−3 13.21 0.24

F-statistic of Yi,t−4 7.23
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When we use only two lags, the F-statistics on both lags is greater than the cut-off
value of 10. However, the results with more than 2 lags show that the correlation
between the number of new sign-ups and some lagged cumulative number of sign-
ups is low. Since the incremental number of sign-ups within a short period is likely
to be highly correlated, utilizing a more lagged cumulative number of sign-ups may
not increase the power in predicting the number of new sign-ups, rendering some
lagged variables as weak instruments.

14.2.3 Potential Mechanisms Behind Threshold Effects

Our analysis has documented and substantiated two types of threshold effects in
online group buying. However, the aggregate nature of the data prevents us from
identifying the exact mechanisms contributing to these effects. In this section, we
discuss several mechanisms compatible with the findings that may serve as potential
hypotheses for future research.

For the first type of threshold effects, i.e., the sudden surge of sign-ups around the
time when thresholds were reached, we consider three possible mechanisms: value
enhancement, postponed decision making, and higher consumer awareness. First, a
consumer may derive positive psychological value from beating a target. When the
cumulative number of sign-ups approaches a threshold, consumers may experience
an urge to beat the target and sign up in a “frenzy” fashion. Such “frenzy”, which
is similar with “bidding frenzy” phenomenon widely observed towards the end of
auctions, may reflect a mental state “characterized by a high level of excitement,
a strong sense of competition, and an intense desire to win” (see, e.g., Ku et al.
2005; Heyman et al. 2004; Häubl and Popkowski Leszczyc 2004). Second, some
consumers may postpone sign-up decisions until the deals are about to be on. When
the number of sign-ups is small, consumers face the uncertainty on deal success
and the risk of not receiving the discount at the end. Thus, some consumers may
choose to postpone their sign-up decisions if the cost to track the sign-up numbers
is sufficiently low. Such postponement of action could lead to a surge in the number
of sign-ups around the time when the thresholds were reached. Third, the number of
sign-ups may surge around the thresholds because of increased consumer awareness
to the deals generated by a firm’s communication strategy. When a deal comes
close to its threshold, a group-buying firm may feature the deal on its front page,
highlight the deal in its email to the subscribers, or coordinate with third-party deal
aggregators to enhance the placement of the deal on their websites.

For the second type of threshold effects, i.e., the level shift of the ratio between
the number of new sign-ups and the cumulative number of sign-ups before and
after the thresholds were reached, we discuss four alternative mechanisms: word-
of-mouth referral, observational learning, consumer heterogeneity, and demand
satiation. First, people who have already signed up to deals play an active role in
disseminating deal information. In our model, the positive relationship between
the number of new sign-ups and the cumulative number of sign-ups may capture
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the intensity of such referrals (e.g., Bass et al. 1994). Following this logic,
our regression results would suggest a stronger intensity of referrals before the
thresholds were reached. This result is consistent with the view of group buying
business as a marketing tool to exploit social interactions between consumers. For
instance, Jing and Xie (2011) show that some informed consumers can be motivated
to persuade their social contacts to join the group-buying deals to ensure deal
success.

Second, herding behavior or observational learning may explain the positive
relationship between the number of new sign-ups and the cumulative number of
sign-ups, as demonstrated in Zhang and Liu (2012). In the context of group buying,
some consumers can be uncertain about the actual quality of the suppliers and hence
the value of the deals. These consumers may infer the quality of suppliers from the
number of consumers who have already signed up to the deal. With this rationale,
the level shift of βj indicates that, when making their own purchase decisions,
individual consumers would be more likely to resort to the choices of others before
the thresholds were reached and when the deals were uncertain.

Third, different types of consumers may arrive at the deal site before and after
thresholds are reached. For instance, tech-savvy consumers may learn about the
deals and sign up earlier. These consumers can be more capable of engaging in
referrals through online social networks. The early arrivals may also perceive the
referrals to be more valuable because their contacts are unlikely to be aware of the
deal. As a result, word-of-mouth referrals should be stronger before the thresholds
were reached. Finally, there might exist satiation in both the market demand and
the reach of word-of-mouth referrals. If the satiation levels happen to be reached
around the same time when thresholds were achieved, then we would observe more
sign-ups per 5-min interval before the thresholds than afterward.

The mechanisms discussed above have different implications on the economic
impact of threshold effects. Based on the GMM estimator with 2 lags, on average
there were 3.4 additional sign-ups during the periods when thresholds were reached.
Moreover, the relation between the new sign-ups and the cumulative number of
sign-ups experienced a drop right after reaching the thresholds and continued the
decreasing trend afterward. To accurately quantify the economic implications of
threshold effects, it is necessary to account for specific underlying mechanisms. For
example, for the first-type of threshold effects, one needs to know the extent of inter-
temporal substitutions, i.e., whether some consumers might sign up sooner or later
if thresholds did not exist. Similarly, for the second-type of threshold effects, one
needs to confirm if word-of-mouth referral was the driving force. As data limitation
prevents us from identifying such specific mechanisms, we leave to future research
to investigate the economic implications of threshold effects. For both types of
threshold effects, the magnitude of the effect is likely to be greater when the success
rate is lower, or the stake is higher. Groupon’s daily deals studied in this paper
were generally expected to be on. The success rate can be much lower in other
markets with all-or-nothing mechanisms. For instance, the success rate was 43% at
Kickstarter (blog.kickstarter.com) and 12.3% on Prosper.com (Zhang and Liu 2012).
Economic implications of threshold effects are thus expected to be higher in these
markets.
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14.3 Coordination Under All-or-Nothing Mechanisms

Having established the impact of all-or-nothing mechanisms on consumers’ behav-
ior, in this section, we study how the firm could improve the chances of project
success by facilitating coordination among consumers. Knowing how to improve
the success rates is important because firms typically earn revenues from successful
listings only and not all listings succeed. For example, from the launch of Kick-
starter.com in April 2009 to March 2011, a total of 20,371 projects were proposed.
Among them, 7,496 projects attracted enough funds, leading to a success rate of
43% (blog.kickstarter.com). We study the problem from two different perspectives,
namely, information disclosure and pricing strategies.

14.3.1 Information Disclosure

We first investigate the optimal information disclosure policy under all-or-nothing
mechanisms. We consider a market where a firm uses the group-buying format
to promote a product or service to consumers. To illustrate the critical insights
of the firm’s design of the mechanism and subsequent consumer responses, we
resort to a stylized model with two consumers and two periods. A two-person
model is an efficient way to capture the sequential nature of consumer arrivals
and the interdependence between purchase decisions of early and late arrivals. In
practice, firms may use variations of all-or-nothing mechanisms depending on the
specific products or services being promoted. For instance, Kickstarter sets the total
amount of demanded dollar commitment as the threshold, and the project sign-
up horizon typically can last for several weeks. We base our description of the
model on group-buying websites like Groupon, where the individual decision is
binary.

14.3.1.1 Model Setup

At the beginning of the first period, the firm posts its group-buying deal, which
is characterized by three elements: group-buying price p, a minimum number of
buyers N required, and a time horizon of two periods for signing up. In the two-
person model, we assume that one consumer arrives in the first period, and the other
in the second period. Each consumer demands and may purchase up to one unit of
the product or service. We limit the threshold N to be 2. That is, the deal succeeds
if and only if both consumers sign up for the deal, and they receive the product or
service at a price of p. Otherwise, the deal is off and no transaction takes place. The
individual product valuation for consumer i is denoted by Vi , which is drawn from
a cumulative distribution function Fi(·).
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A consumer decides to sign on to the group-buying deal if and only if she
expects a discounted utility from the deal at least as high as that of not signing
on to the deal. To sign on to the deal is a commitment to purchase if the deal is
on. In making the decision, a consumer takes into consideration her own valuation
for the deal as well as her expectation about the success rate of the group-buying
deal. In the two-person case, one consumer uses the other consumer’s sign-up
likelihood as the belief in making sign-up decisions. Conditional on signing on
to the deal by herself, the deal’s success is a direct consequence of the other
consumer’s sign-up decision. We assume that consumers form rational expectations
and focus on the pure strategy equilibria of the game. Specifically, we denote
by Hi(q−i ) the likelihood of an individual consumer i’s signing on to a group-
buying deal, where q−i is consumer −i’s sign-up likelihood that consumer i

expects. This notation emphasizes that the likelihood of signing up depends on
the other consumer’s sign-up likelihood, but suppresses its dependence on the
characteristics of the deal. We assume the following relation between Hi(q−i )
and q−i .

Assumption 1 (Sign-Up Likelihood) For all i and q−i ∈ [0, 1], we assume

1. Hi(q−i = 0) = 0;
2. Hi(q−i ) is non-decreasing in q−i .

Assumption 1(i) states that if a consumer expects with certainty that the other
consumer will not sign up, then she expects zero benefits from signing on to the
deal and will not sign up. Assumption 1(ii) indicates that the higher the likelihood
that a consumer expects the other consumer to sign up, the higher the probability
that the consumer will sign up.

If both consumers can adequately communicate with each other before making
sign-up decisions, the first-best solution of the deal’s success rate can be obtained
at H1(1) · H2(1). However, a full information structure is uncommon in reality
where typical consumers do not reveal their own private information to strangers
in online group-buying settings. Instead, the firm considers two alternative group-
buying mechanisms: a sequential mechanism and a simultaneous mechanism. The
distinction between these two mechanisms is created by the firm’s decision on
whether to reveal information to the consumer who arrives in the second period;
specifically, the second consumer can see the choice of the consumer who arrives
in the first period under a sequential mechanism, but not under a simultaneous
mechanism. When a firm adopts the simultaneous mechanism, although the second
consumer arrives and makes a decision later than the first consumer, she does not
gain any information advantage by arriving late. Not disclosing the choice of the first
consumer makes the process equivalent to one where consumers simultaneously
make decisions under appropriate time discounting adjustment. Thus, we define
the simultaneous and sequential mechanisms from an information perspective, not
based on the sequence of arrivals. Our approach follows the tradition of Varian
(1994). The distinction between simultaneous and sequential mechanisms in this
paper is similar in nature to that between sealed and sequential auctions. We
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assume away observational learning where consumers may draw quality inferences
from observation of peer choices, though the sign-up pattern under the sequential
mechanism is similar to information cascades (Zhang 2010).

The firm’s goal is to achieve a higher success rate. Higher success rates lead
to higher expected profits when the firm receives a fixed lump-sum gain for each
successful deal or a variable profit for each committed purchase given the deal
is successful. Given any group-buying mechanism, the game consumers play is
in nature a coordination game. To achieve a higher success rate, the firm aims at
attaining better coordination between consumers. We interpret the success rate in
the following sense.

Definition 1 (Success Rate) The success rate measures the ex-ante likelihood that
a group-buying deal is successful before the consumers arrive.

The higher the success rate, the higher the expected payoffs for the firm and the
higher the expected individual and total surpluses for consumers.

14.3.1.2 Equilibrium Analysis Under Simultaneous Mechanism

When the firm adopts the simultaneous mechanism, neither consumer is informed
of the sign-up decision of the other. As a result, each consumer bases her sign-up
decision on her belief in the valuation of the other one. The game is a Bayesian game
in the Harsanyi sense (Harsanyi 1968) where “types” are defined by valuations.
Specifically, the realized type of consumer i is defined by its realized valuation
vi , which is private information known to the consumer herself but not to the
other consumer. Similarly, we denote by Vi the corresponding random variable of
consumer i’s types, whose distribution is public information. For any consumer i,
si(vi) ∈ {0, 1} denotes the decision rule that consumer i takes to decide whether
to sign up or not, given her realized type being vi . Given consumer i’s sign-up
decision si(vi) and the other consumer −i’s sign-up decision s−i (v−i ), the surplus
of consumer i is denoted as πi(si(vi), s−i (v−i )).

Definition 2 (Bayesian Equilibrium) The Bayesian equilibrium strategy {s∗i (vi)}
for the simultaneous game is defined by the best-response strategy played by each
consumer i, s∗i (vi) ∈ arg maxsi (vi )∈{0,1}EV−i {πi(si(vi), s

∗−i (V−i ))} for all vi .

The existence of Bayesian equilibria follows standard arguments (Tabarrok
1998). When consumers make sign-up decisions under the simultaneous mecha-
nism, the consumer who arrives in the second period faces the same uncertainty in
the sign-up probability of the other consumer as the one arrives in the first period.
The solution scheme for this type of game has the following structure: there exists
a valuation range for consumer i such that the consumer signs up if and only if
her valuation falls into such a range. At the beginning of the game, the ex-ante
belief of the firm on the success rate under a Bayesian equilibrium strategy

{
s∗i (vi)

}
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can be characterized by q∗ = P
(∑2

i=1 s
∗
i (Vi) = 2

)
, which is the success rate at

equilibrium. Since the revenue of a group-buying site depends on the success of
deals, from this point on we compare different mechanisms by the seller’s expected
deal success rate.

Denote qi the belief of consumer i’s sign-up likelihood held by consumer −i.
As a result, consumer 1 signs up with probability H1(q2), and consumer 2 signs up
with probability H2(q1). Equilibrium is characterized by a pair of beliefs (q∗1 , q∗2 )
that satisfies the following conditions

H1(q
∗
2 ) = q∗1 , H2(q

∗
1 ) = q∗2 .

Equivalently, q∗i is given by

q = Hi(H−i (q)), i = 1, 2.

The above equations characterize equilibria in the sense that any Bayesian equi-
librium results in a pair of beliefs (q∗1 , q∗2 ) which satisfies the equations, and
any pair of beliefs (q∗1 , q∗2 ) that satisfies the equations correspond to a Bayesian
equilibrium where consumer i behaves as if consumer −i signs up for the deal with
probability q∗−i . The existence of such pair of beliefs (q∗1 , q∗2 ), and equivalently, the
existence of a Bayesian equilibrium in pure strategies, is a direct consequence of
Tarski’s Fixed Point Theorem, since Hi(H−i (q)) is non-decreasing in q ∈ [0, 1],
i = 1, 2, by Assumption 1.

Following the preceding discussion, the success rate q∗ at equilibrium can be
characterized by

q∗ = P(X1(q
∗
2 )+X2(q

∗
1 ) = 2) = H1(q

∗
2 ) ·H2(q

∗
1 ), (14.4)

where Xi(q) is a Bernoulli random variable with success probability Hi(q), i =
1, 2.

Notice that q∗i is given by q = Hi(H−i (q)), i = 1, 2, so there may exist multiple
equilibria. Similar to Jackson and Yariv (2007), we categorize equilibria into two
types, stable equilibria, and tipping points, depending on their sensitivity to minor
perturbation in belief. Next, we provide a formal definition.

Definition 3 (Stable Equilibrium and Tipping Point) A pair of beliefs (q∗1 , q∗2 ) is
a stable equilibrium (tipping point) if for all i = 1, 2, there exists ε′ > 0 such that for
all ε ∈ (0, ε′), when consumer i expects that the other consumer makes her decision
with the belief q∗i − ε, consumer i’s sign-up likelihood will be higher (lower) than
q∗i − ε; when consumer i expects that the other consumer makes her decision with
the belief q∗i +ε, consumer i’s sign-up likelihood will be lower (higher) than q∗i +ε.



14 Online Group Buying and Crowdfunding 337

14.3.1.3 Equilibrium Analysis Under Sequential Mechanism

Under the sequential mechanism, at the beginning of the second period, the firm
posts the decision of the consumer who arrives in the first period. Since two
consumers make decisions sequentially, the first consumer needs to predict the sign-
up probability of the second consumer. The sequential game we analyze follows the
concept of rational expectations (RE) equilibrium.

Definition 4 (RE Equilibrium) For any realization vi of the valuation for con-
sumer i who moves first, an RE equilibrium q∗−i (vi) in the sequential game satisfies:
(i) Consumer i plays an optimal strategy of whether to sign up S∗i (vi) ∈ {0, 1},
given belief q−i about the sign-up likelihood of consumer−i; (ii) Given the decision
S∗i (vi) from consumer i and any realization v−i of the valuation of consumer −i,
consumer −i plays a best-response strategy S∗−i (v−i; S∗i (vi)) ∈ {0, 1}; (iii) The
belief is consistent with the sign-up likelihood of consumer −i: q−i = q∗−i (vi) =
P
(
S∗−i (V−i; S∗i (vi)) = 1

)
.

Suppose consumer i arrives in the first period and consumer −i arrives in the
second period. When the second consumer makes her decision, there is no more
uncertainty about the future. Given the decision of the first consumer, the optimal
strategy for the second consumer can be characterized by a valuation range: to sign
up if and only if (a) the first consumer signs up and (b) her own valuation falls into
the range for signing up with the likelihood of the first consumer’s sign-up being 1.
After solving the best response from the second consumer, we move backward to
the first consumer. Suppose consumer i expects that consumer −i will sign up with
probability q−i . Then consumer i signs up with probability Hi(q−i ) in the first
period. At equilibrium, q∗−i is consistent with consumer −i’s sign-up likelihood,
i.e., q∗−i = H−i (1).

From the seller’s perspective, the success rate Q∗i at equilibrium can be charac-
terized by

Q∗i = P(Xi(q
∗−i )+X−i (1) = 2) = Hi(q

∗−i ) ·H−i (1), (14.5)

where Xi(q), X−i (1) are Bernoulli random variables with success probability Hi(q)

and H−i (1), respectively. It is noteworthy that the equilibrium under the sequential
mechanism is guaranteed to be unique, and hence it is stable.

14.3.1.4 Mechanism Design: Simultaneous or Sequential?

Given the potential presence of multiple equilibria under the simultaneous mech-
anism, how can one compare the success rates under simultaneous and sequential
mechanisms? We adopt the approach proposed in Jackson and Yariv (2007) because
it allows us to compare the set of equilibria regardless of equilibrium multiplicity.
First, we formalize our criteria for comparisons of each consumer’s belief regarding
the other consumer’s sign-up likelihood by the following definition.



338 M. Hu et al.

Definition 5 (Higher Beliefs) For each individual consumer, one scenario or
mechanism generates a higher belief than another if, for any belief at a stable
equilibrium of the latter, there exists a higher belief at a stable equilibrium of the
former, and for any belief at a tipping point of the latter there is a lower belief at a
tipping point of the former or no lower tipping points of the former at all.

The reason why the sequential mechanism yields higher beliefs for both con-
sumers is two-fold. First, with no tipping point, it is more likely for consumers’
expectations to move upwards to the beliefs at the stable equilibrium. Second,
when the stable equilibrium is reached, the beliefs regarding the other consumer’s
sign-up likelihood under the sequential mechanism is higher than that under the
simultaneous mechanism for both consumers. If both consumers have higher
expectations at equilibrium, then each individual is more likely to sign up, and thus
the deal is more likely to succeed. Consequently, we can compare the deal’s success
rate by comparing the belief held by each individual consumer.

Definition 6 (Higher Success Rates) One scenario or mechanism generates a
higher success rate than another if the belief of each consumer in the former is
higher than the belief of the consumer in the latter in the sense of Definition 5.

To formally compare the belief held by each individual under alternative
mechanisms, consider f (q) and g(q) as two functions parameterized by q ∈ [0, 1].
Suppose f (q) ≥ g(q) for any q ∈ [0, 1]. That is f (q) is always higher than
g(q) point-wisely for any belief q ∈ [0, 1]. Then, for any left-to-right crossing
point of curve g(q) with the 45◦ line, there always exists a higher crossing point of
curve f (q); for any right-to-left crossing point of curve g(q), there exists no lower
crossing point of curve f (q). Consequently, if f (q) ≥ g(q) for all q ∈ [0, 1], we
can conclude that mechanism with equilibrium characterization f (q) = q yields
higher belief than mechanism with equilibrium characterization g(q) = q.

Recall that, when consumer i arrives first, and consumer −i arrives later, the
belief held by consumer−i, q∗i , under the simultaneous mechanism is given by q =
Hi(H−i )(q), and the belief held by consumer −i under the sequential mechanism
is simply 1. As 1 ≥ Hi(H−i )(q) for any q ∈ [0, 1], the sequential mechanism
yields higher belief than the simultaneous mechanism for consumer i. Similarly,
for the first mover consumer i, as H−i (1) ≥ H−i (Hi(q)) for any q ∈ [0, 1],
the sequential mechanism yields higher belief than the simultaneous mechanism
for consumer i as well. Given the preceding discussions, we have the following
proposition.

Proposition 1 (Mechanism Comparison for the Two-Person Game) Everything
else being equal, the sequential mechanism always yields higher success rates than
the simultaneous mechanism.

The driving force behind this result is that in the simultaneous mechanism,
each consumer faces uncertainty about the other consumer when making decisions.
However, in the sequential mechanism, the second consumer decides only after the
uncertainty about the first consumer has been resolved. Moreover, in anticipation of
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that the second consumer will make the sign-up decision without facing uncertainty
in the success rate, the first consumer’s confidence about the second consumer’s
sign-up likelihood is consequently boosted.

14.3.2 Pricing

Next, we study how various pricing options could be used to facilitate consumer
coordination under all-or-nothing mechanisms. To investigate this question, we
use a similar two-period model, but now prices are endogenized. We base our
description of the model on crowdfunding websites like Kickstarter.

14.3.2.1 Model Setup

Consider a risk-neutral creator who adopts a sequential crowdfunding mechanism
for selling products. The creator posts a proposed project, with specific price
information, on a crowdfunding platform. The sign-up process expires after two
periods. In each period t , one buyer arrives at the proposed project. We denote the
buyer at time t as Bt , with t = 1, 2. For the proposed project to succeed, both buyers
would have to sign up.

Buyers may have different product valuations. To model this heterogeneity, we
assume their valuations are i.i.d. with the following two-point distribution:

Vt =
{
H with probability α,

L with probability 1− α,

where H > L > 0.
Upon arrival at the project in period 1, buyer B1 realizes a private product

valuation, makes the purchase decision, and leaves the site. The creator observes
and announces the purchase decision of B1. Then, buyer B2 arrives at the project,
realizes a private product valuation, observes the purchase decision of buyer B1, and
makes her own purchase decision. Both buyers are fully rational and make purchase
decisions to maximize their own expected utility.

At the beginning of the game, the creator makes the pricing decision and posts
it on a crowdfunding website. In addition, the creator decides the funding target,
denoted by T . The creator commits to an all-or-nothing mechanism such that the
project succeeds only if the total amount pledged reaches or exceeds T . Otherwise,
the project fails. When making decisions, the creator knows the distribution of
product valuations of two buyers but does not know the exactly realized valuations.
The creator’s goal is to maximize the expected profit from the proposed project. We
assume, without loss of generality, that there is no transaction cost associated with
pledging or rewarding, and there is no time discounting over the sign-up horizon.
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Next, we define alternative pricing strategies with the target endogenized to be
consistent with the pricing strategy and analyze their profitability.

14.3.2.2 Alternative Pricing Policies

Uniform Pricing With a uniform pricing strategy, the creator posts a single price
of p for her product. Since the project succeeds only if both buyers sign up for the
project and pay p, the creator can effectively set T = 2p. Price p can take any
positive value; however, given the two-point distribution of product valuations, the
optimal price should be either p = H or p = L. Thus, it suffices to consider the
following two cases:

Margin Strategy (H) With this strategy, the creator sets the price at pH = H and
the target at T H = 2H : any target beyond 2H would doom the project to failure;
any target in (H +L, 2H ] is equivalent to 2H , which sells only to high-type buyers,
consistent with the term of “margin strategy.” Under this strategy, a high-type buyer
will sign up, but a low-type buyer will decline. This strategy has a success rate of
sH = α2 and the creator has an expected profit of πH = 2α2H .

Volume Strategy (L) With this strategy, the creator sets the price at pL = L and the
target at T L = 2L: any target below 2L is equivalent to 2L, with only the low price
being paid, consistent with the term of “volume strategy.” Under this strategy, both
buyers will sign up, regardless of their types, and the project always succeeds; i.e.,
sL = 1. The creator’s profit is πL = 2L.

Compared to the margin strategy, the volume strategy gives the creator a higher
chance of project success; however, given that the project succeeds, the volume
strategy yields a lower margin.

Intertemporal Pricing (D) With this strategy, a creator sets different prices for
different periods, denoted by pD

t for period t , t = 1, 2. Following the same logic
as before, given the two-point distribution of product valuations, the optimal price
in each period must be either L or H . That leads to two candidate strategies, either
(pD

1 , pD
2 ) = (H,L) or (pD

1 , pD
2 ) = (L,H).

The creator’s goal is T D = H + L: any target in (2L,H + L] is equivalent to
H + L, which leads to different prices charged in different periods, consistent with
the term of “intertemporal pricing strategy.” The success rate is sD = α and the
creator’s expected profit is πD = α(H + L). Note that since the buyers arriving
at different periods have the same distribution of product valuations, the creator is
indifferent between these two intertemporal pricing strategies.

Menu Pricing (M) With this strategy, the creator posts a menu of two prices, a
high price of pM

h and a low price of pM
l , where pM

l ≤ L ≤ pM
h ≤ H . Unlike

intertemporal pricing, the optimal prices on the menu may not be equal to the two
valuation points H and L (see Lemma 1 below). The creator sets the target at the
sum of the high and low prices, i.e., T M = pM

h +pM
l : any target in (2pM

l , pM
h +pM

l ]
is equivalent to pM

h + pM
l , which requires at least one buyer to pay the high price.
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The menu pricing strategy proposed here may not appear to be a valid menu
because the products of the same quality have different prices. That is done
intentionally to tease out a buyer’s incentive to overpay in crowdfunding.2 With
the traditional selling mechanism, such a menu would not work because each buyer
would always choose the lower price option. However, in crowdfunding, a buyer,
who is also a funder, may select the higher price if such a choice could substantially
increase the likelihood of the project success. This is because that one buyer’s
behavior affects another buyer’s expected utility; that is, positive externality arises
from the common goal of project success.

We solve the optimal menu strategy with the backward induction method. In
period 2, buyer B2 observes the contribution of the earlier buyer B1 and makes her
own decision accordingly. Specifically, if B1 has signed up at pM

h , B2 always signs
up at the low price pM

l ≤ L, regardless of product valuations. On the other hand, if
B1 has signed up at pM

l , B2 either pledges pM
h or does not sign up at all: for B2 to

sign up at pM
l is meaningless because the project will certainly fail. Hence, buyer

B2 should sign up at pM
h if her product valuation is H and otherwise not sign up at

all. Recall that the probability is α for the product valuation to be H .
Next, we move back to the first period and consider buyer B1. If her product

valuation is L, she always signs up at pM
l . Otherwise, she can choose between two

options. By choosing the low-price option pM
l , B1 expects a larger surplus H −pM

l

but a lower success rate at α. Alternatively, by choosing the high-price option pM
h ,

the buyer expects a smaller surplus H − pM
h but a higher success rate at 1. A high-

type B1 would prefer the high-price option pM
h over the low-price option pM

l if and
only if the following incentive-compatibility (IC) condition is satisfied:

α(H − pM
l ) ≤ H − pM

h . (IC)

The creator decides the optimal menu of prices to maximize the expected profit,
subject to the condition (IC). Analyzing the creator’s problem leads to the following
lemma.

Lemma 1 (Optimal Menu Strategy) With the menu strategy, the creator’s optimal
prices are pM

h = (1 − α)H + αL, pM
l = L and the optimal target is T M =

(1− α)H + (1+ α)L. The corresponding success rate is sM = α(2− α), and the
expected profit is πM = α(2− α)((1− α)H + (1+ α)L).

Lemma 1 indicates that with the menu pricing strategy, everything else being
equal, as long as the high price pM

h is low enough such that the (IC) condition is sat-
isfied, a high-type buyer B1 prefers to pay the high price, even though a lower price
option is available. The amount of overpayment is pM

h − pM
l = (1 − α)(H − L),

2The price menu may not be far stretched from practice. Many projects on Kickstarter contain
levels with minute quality differences. For each interpretation, one may consider a trivial quality
for the price menu in this section.



342 M. Hu et al.

which increases with product valuation gap H − L and decreases with α. Thus,
when product valuation is more heterogeneous between different types of buyers or
when buyer B1 is more pessimistic about the product valuation of buyer B2, a
high-type buyer B1 has a greater incentive to overpay. With a larger gap H − L,
a high-type buyer B1 derives more utility from the project and is thus more willing
to take a sacrifice to ensure the project’s success. Similarly, with a smaller α, the risk
of project failure is high, and thus the incentive to overpay is higher. As α decreases
from 1 to a small value ε > 0, the amount of overpayment increases from 0 to
(1− ε)(H − L), close to H − L.

When a high-type B1 chooses price option pM
h , this buyer enjoys a surplus of

α(H−L). Since the project is sure to succeed, the buyer B2 will choose the low price
of pM

l = L. Otherwise, had the buyer B1 chosen pM
l , a high-type buyer B2 would

have to pay pM
h and incur a reduction of surplus (1 − α)(H − L). Thus, when the

high-type buyer B1 pays the higher price, the overpayment has a positive externality
effect on the second buyer’s surplus. Moreover, the size of the positive externality
effect increases with the high price option in the menu. Thus, the crowdfunding
mechanism not only artificially creates an externality effect among the decisions of
buyers, but also determines the size of the externality effect endogenously.

14.3.2.3 Optimal Pricing Strategy

The creator determines the optimal pricing strategy by comparing the expected
profits from each of the alternative pricing strategies. We summarize our analysis
in the proposition below.

Proposition 2 (Optimal Pricing Strategy) The creator’s optimal strategy is

1. volume strategy, if

H

L
≤ 2− α2

α(2− α)
;

2. menu strategy, if

2− α2

α(2− α)
≤ H

L
and α ≤ 3−√5

2
, or

2− α2

α(2− α)
≤ H

L
≤ 1+ α − α2

3α − α2 − 1
;

3. intertemporal strategy, if

1

2
≤ α and

1+ α − α2

3α − α2 − 1
≤ H

L
≤ 1

2α − 1
, or

3−√5

2
≤ α ≤ 1

2
and

1+ α − α2

3α − α2 − 1
≤ H

L
;
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4. margin strategy, if

1

2
≤ α and

1

2α − 1
≤ H

L
.

Proposition 2 indicates that each of the four pricing strategies can be optimal
within certain parameter subspaces. Uniform pricing strategies are optimal in two
extreme cases. Specifically, given the valuation of L, the volume strategy is optimal
when buyers are unlikely to have high product valuation (i.e., small α) or when
high- and low-type buyers have a narrow valuation gap (i.e., H/L is close to 1).
Intuitively, it can be seen that if both buyers are very likely to have a low product
valuation, then the creator should pursue the volume strategy. The expected gain
from targeting at only high-type buyers is not worth the risk that the project may
fail. At the other extreme, if buyers are very likely to have a high valuation (i.e.,
large α) and the valuation gap between high- and low-type buyers is large (i.e.,
large H/L), then the creator should go for the margin strategy. In other words, if
both buyers are very likely to have a high product valuation which is much higher
than the low valuation, the creator should pursue the margin strategy. The gain from
targeting the high-type buyers is significant, and the risk is bearable.

Two types of discriminatory pricing strategy, namely, the intertemporal and menu
pricing strategies, are more profitable than the uniform pricing strategies when the
fraction of high-type buyers (α) is not very large and the valuation ratio (H/L)
is large enough, in other words, when buyers believe that others may have low
product valuations and the product valuations are heterogeneous sufficiently. The
difference between these two discriminatory pricing strategies is the timing: while
the same menu of two options exists in both periods with a menu pricing strategy,
a unique option is available in each period with an intertemporal pricing strategy.
It is important to note that, first, with our model, an optimal discriminatory pricing
strategy degenerates into a uniform pricing strategy in the traditional selling setting.
The intertemporal, or menu, pricing strategy becomes optimal with a crowdfunding
mechanism because a common target links two buyers. As a result, a high-type
buyer may choose the high-price option to compensate for the small contribution
from a low-type buyer. Second, the buyers can achieve coordination without any
explicit interactions. In our model, self-interested buyers do not incorporate other
buyers’ utilities into their objectives (as in Chen and Li 2013), nor do some buyers
communicate with others to increase their valuations (as in Jing and Xie 2011).

Table 14.6 shows the target amount and project success rate for each type of
pricing strategy. Specifically, the target amount increases in the order of volume
strategy, menu strategy, intertemporal strategy and margin strategy, and the project

Table 14.6 Success rate and
target

Success rate Target

Volume strategy 1 2L

Menu strategy 2α − α2 (1− α)H + (1+ α)L

Intertemporal strategy α H + L

Margin strategy α2 2H
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success rate decreases in the same order. When the fraction of high-type buyers (α)
increases, the differences in the success rate among different strategies diminish, but
the differences in the target level remain large. A high target leads to a low project
success rate, and vice versa.3

To sum up, in a model without product quality differentiation, menu pricing
strategy can be optimal in a crowdfunding mechanism. When buyers are sufficiently
heterogeneous in product valuation, offering a menu of prices can help achieve
a better balance between volume (or success rate) and margin. A novel insight
is that a self-interested high-type buyer might be willing to pay extra to ensure
the project’s success. Thus, by turning buyers into funders, the crowdfunding
mechanism enhances coordination among different buyers. Moreover, the menu
pricing strategy, by choosing a proper level of the high-price option below H ,
moderates the high-type buyer’s sacrifice and optimizes the coordination incentive.
Crowdfunding creates compatibility between the purchases of two buyers who share
the common goal of the project success. As a result, each buyer’s behavior has
an external effect on other buyers’ utilities. The extent of the externality effect is
regulated by the price difference in the menu.

14.4 Conclusion

Motivated by online group buying and crowdfunding, this chapter studies the
common underlying mechanism behind the two business models, namely, all-or-
nothing mechanisms. First, using a dataset from the online group buying industry,
we empirically identify two types of threshold effects on consumer behavior induced
by the mechanism. The first type of threshold effects refers to a substantial increase
in the number of sign-ups around the time when the threshold was reached, and the
second type of threshold effects refers to a stronger positive relation between the
number of new sign-ups and the cumulative number of sign-ups before reaching
the thresholds than afterward. For a more detailed discussion, please see Wu et al.
(2014), who also discuss the heterogeneity of thresholds effects across different
product categories and geographic locations.

Next, we discuss the optimal design of all-or-nothing mechanisms from the
perspective of third-party platforms like Groupon and Kickstarter. We first study
information disclosure strategies in the context of online group buying. In partic-
ular, we examine the success rate of a group-buying deal under two alternative
mechanisms: a sequential mechanism and a simultaneous mechanism. Our analysis
shows that all other things being the same, a sequential mechanism dominates a
simultaneous mechanism. Interestingly, posting the cumulative number of sign-ups

3Our model can be easily adapted to situations where a not-for-profit creator wants to maximize
the success rate, subject to raising enough funds to cover setup costs in advance. The fixed setup
costs can become the exogenous target. Table 14.6 can be used as a guide for the optimal pricing
strategy given the exogenous target. For example, if the exogenous target T falls in the range
(2L, (1− α)H + (1+ α)L], the menu strategy maximizes the success rate.
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from the first period can reduce uncertainty and thus increase the expected sign-ups
among the second cohort of consumers. The increased second-period sign-ups can,
in turn, improve the confidence among the first cohort of consumers and lead to a
higher expected number of sign-ups in the first period, thus further increasing the
deal’s success rate. This backward-inductive perspective, starting from the second
period and going back to the first period, is crucial to understanding the intuition
behind our result. The driving force behind our result is that consumers essentially
play a coordination game, and the sequential mechanism, by revealing information
from one cohort to the other, allows for better coordination. We then study, in the
context of crowdfunding, how all-or-nothing mechanisms may affect a creator’s
pricing decisions on the basis of a two-period game where cohorts of buyers arrive at
a crowdfunding project and make sign-up decisions sequentially. Our results show
that, even when product options are the same, high-type buyers may still choose
the high-price option. This result is unique to the crowdfunding mechanism, where
tacit coordination among buyers is necessary to ensure the project success. For more
detailed analysis of the preceding two strategies, interested readers are referred to
Hu et al. (2013) and Hu et al. (2015).

While this chapter offers useful insights into the impact and design of online
group buying and crowdfunding, future research is required to further our under-
standing of the issue. For instance, traditionally, the effort to improve the success
rates of projects concentrates on optimizing the upfront design of project character-
istics. However, because of the inherent uncertainty and all-or-nothing mechanism
of online group buying and crowdfunding projects, contingently providing incen-
tives or adjusting project features over the course of a campaign can be as crucial
as the upfront design. As a first step towards the understanding of dynamic policies,
Du et al. (2017) study the optimal design of contingent stimulus policies for
crowdfunding campaigns.
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Chapter 15
Threshold Discounting: Operational
Benefits, Potential Drawbacks, and
Optimal Design

Simone Marinesi, Karan Girotra, and Serguei Netessine

Abstract We study the use of threshold discounting, the practice of offering service
at a discounted price only if at least a given number of customers show interest in
it, pioneered by Groupon. We model a capacity-constrained firm offering service
to a random-sized population of strategic customers in two representative time
periods, a desirable hot period and a less desirable slow period. A comparison
with the traditional approach typically employed in such circumstances (slow
period discounting or closing) reveals that threshold discounting boosts the firm’s
operational performance on account of two advantages. First, the contingent
discount incentivizes slow period consumption when the market for the service
is large and reduces supply of the service when the market is small, allowing the
firm to respond to the service’s unobserved market potential. Second, activation
of the threshold discount signals the market size to strategic customers, supplying
them with information on service availability, and inducing them into self-selecting
the consumption period to one that improves the firm’s capacity utilization and
profit. Unlike typical settings with strategic customers, their strategicbehavior in our
setting increases the firm’s profits. When threshold discounts are offered through
an intermediary, arrangements often used in practice distort the incentives of the
intermediary, and typically result in a higher discount and a lower activation
threshold relative to what would be optimal for the service firm. We consider
alternate deal designs, and we find that the best designs compromise the service
provider’s flexibility in order to provide customers with clear offer terms.
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15.1 Introduction

Firms often operate in environments in which they must serve highly variable
demand with capacity that is fixed in the short term. Demand seasonality makes
it even more difficult for service firms to maintain high capacity utilization, as spare
capacity in low-demand periods typically cannot be used to serve customers in high-
demand periods. Among the industries that struggle with this problem are the movie
theater industry ($10.2 Billion of revenues in 2016), the restaurant industry ($783
Billion in 2016),1 and a broad variety of retail services, such as spas, bowling clubs,
circuses, museums, etc.

Over the last decade, advances in online technology have allowed firms to reach
an unprecedented level of engagement with their customers. In particular, around
2010 there has been a sudden surge in online discounted deals. The most famous
online deal website is certainly Groupon: founded in late 2008 and the first of
an innovative breed of firms, it grew by 2,241% in its second year of operation –
faster than celebrated firms like Amazon or Ebay – and went public in 2011, raising
$700 Million to become the largest IPO by a US Internet company after Google.2

Groupon’s growth was fueled by the use of an innovative discount structure, in
which customers could purchase retail services with a substantial discount, but the
discount was valid only if at least a certain number of customers showed interest in
the offering. From here on, we refer to deals where discounted service is contingent
on a threshold number of customers purchasing it as threshold discounting offers.

The popularity of threshold discounting increased dramatically since Groupon
started using these offers, together with the industry that grew around them,
becoming an almost essential feature for the hundreds of websites that spawned all
over the world trying to imitate Groupon’s business model.3 These offers have been
highly praised by the business press, and have more recently received the attention
of the academic community as well. Their celebrated advantages can be summarized
in the ability to leverage “network effects” and economies of scale.

From the existing studies that exist on threshold discounting offers emerges a
picture that is incomplete and controversial. Incomplete, because the advantages of
such offers have so far been studied only from a marketing perspective – ignoring,
for example, capacity constraints – and little is known about their impact on a firm’s
operations. Controversial, because it is difficult to reconcile the celebrated advan-
tages of threshold discounting offers with their progressive discontinuation by many
online discounters, including Groupon. Moreover, no analysis has been attempted so
far to determine how threshold discounting offers should be implemented in details.

1Sources: https://goo.gl/emx1jR, https://goo.gl/7DvBqD. Expected revenues for the United States.
2See “Groupon’s IPO biggest by U.S. Web company since Google”, Reuters, November 4, 2011,
http://goo.gl/h8VFj, and “Groupon IPO: Growth Rate Is 2,241%”, The Wall Street Journal, June 2,
2011, http://goo.gl/UFFwK
3See “LivingSocial aims to be different from Groupon”, Sep 23, 2011, https://bloom.bg/2wcGtnt,
and “Psyched to Buy, in Groups”, New York Times, Feb 9, 2011, http://nyti.ms/2wXVcmK

https://goo.gl/emx1jR
https://goo.gl/7DvBqD
http://goo.gl/h8VFj
http://goo.gl/UFFwK
https://bloom.bg/2wcGtnt
http://nyti.ms/2wXVcmK
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Hence, three important questions remain open. What is the advantage of threshold
discounting from an operational perspective? How can we reconcile the advantage
that such offers provide to merchants with their progressive discontinuation? What
is the best way to design threshold discounting offers in order to best leverage their
operational advantage?

The objective of this paper is to provide answers to these three questions.
We consider a typical situation in which threshold discounting is used, i.e., a
capacity-constrained firm offers his services to a random-sized population of
strategically-acting customers who prefer to be served on a desirable “hot” time
period over a less desirable “slow” time period (e.g., a movie theater on Saturday
versus Monday evening), with the degree of preference for the hot period over the
slow period varying across the population. Demand is thus variable but substitutable
between two vertically differentiated services, the hot-period service and the slow-
period service.

To answer the first question on the operational advantages of threshold dis-
counting offers, we compare them with a more traditional approach typically
used by firms in this context, that is, to either close on the slow period, or open
on the slow period at a discounted price. The comparison reveals that threshold
discounting outperforms the traditional approach on account of two effects. First,
by setting an activation threshold, threshold discounting endows the firm with a
built-in, demand-responsive mechanism (which we refer to as responsive duality)
that matches different market states with appropriate pricing/closing decisions,
resulting in higher capacity utilization and better fixed costs management. Second,
threshold discounting induces a strategic scarcity effect that increases customers’
responsiveness to slow-period discounts by exploiting their strategic behavior:
inducing them into self-selecting their consumption period to one that better
serves the firm’s interests of managing capacity and margins. Notably, the superior
performance of threshold discounting over the traditional approach holds even in
the absence of economies of scale or network consumption effects, the only benefits
of threshold discounting that have been studied so far.

Our comparison also highlights an (unexpected) impact of strategic customers
on the effectiveness of threshold discounting. The literature on strategic customers
has largely found that they reduce a firm’s profit because they time their purchases
in order to get lower prices, thus reducing margins for the firm. In contrast with the
literature, we find that in our context having more strategic customers is beneficial
for the firm, that is, the higher the fraction of strategic customers in the population,
the higher the firm’s profit.

To answer the question on why threshold discounting offers may have been
discontinued, we consider the case in which threshold discounting is offered through
an intermediary with high negotiating power (such as Groupon) as it often happens
in practice. We find that in these cases the intermediary has strong incentives to
prefer a lower activation threshold (often equal to zero) a higher discount relative to
what is in the interest of the service provider. This result suggests that disappearance
of the activation threshold and the very high discounts that are usually featured
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with threshold discounting offers may be due to incentive misalignment between
the powerful intermediaries that dominate the industry and the service providers
that need their services.

To answer our last question on how to best design threshold discounting offers,
we study various dimensions of their design. We first consider if the firm should
commit upfront to the number of customers required for the deal to be active, or
instead decide on the deal activation only after observing the subscription level.
Interestingly, we find that postponing the deal-activation decision to incorporate
the market information contained in the subscription level is harmful to the firm.
We then investigate the best time for the firm to reveal whether the threshold has
been reached – specifically, if this should be before both periods begin or not – and
find that early disclosure is the superior design. We also compare time-restricted
threshold discounts with the often-used unrestricted discounts, and find that time-
restricted discounts are superior. Finally, we show that under certain conditions the
preferred design with committed threshold, early disclosure, and time-restricted
discount can be further improved by offering targeted discounts that reduce lost
margins while retaining all the operational advantages of these deals.

Our work makes several contributions. This is the first study to examine the
operational advantages of threshold discounting, a popular phenomenon that has
spawned a multi-billion-dollar online deals industry. In contrast with the strategic
customer behavior literature in operations, we show that in our setting, strategic
customer behavior is beneficial. Further, we provide clear prescriptions about the
design and use of threshold discounts – specifically, that a service provider is
always better off offering a committed threshold, early disclosure, time-restricted
threshold discount as opposed to the variety of other designs touted by deal
intermediaries and designers, and we show that focused threshold discounts can
improve profits even further. Our analysis cautions potential users of these discounts
to the incentive conflicts inherent in the current modes of offering these discounts
through intermediaries, and provides an explanation for why threshold discounts
have been discontinued despite their potential benefits for service providers. Overall,
our work argues that threshold discounting is an overlooked strategy for managing
capacity that, if used correctly, can significantly improve a firm’s operational
performance and profit.

15.2 Literature Review

Our work is related to three different streams of literature: group-buying and
quantity discounts, strategic consumers, and demand manipulation via pricing.

Group-Buying and Quantity Discounts In the early 2000s, several group buying
websites like Mercata.com, LetsBuyIt.com, and Mobshop.com were founded with
the objective of aggregating the buying power of customers to obtain quantity
discounts. Anand and Aron (2003) model these group buying practices with a firm
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offering a price-quantity menu to customers, and find that group buying is better
than a simple fixed price only when either demand uncertainty satisfies certain
conditions, or economies of scale are coupled with production postponement. In
a similar spirit, Chen et al. (2007) study group buying auctions, where a firm
commits to a price-quantity function and customers arrive stochastically and bid
their reservation price; they find that group buying is better than simple fixed pricing
only in the presence of economies of scale, or when the firm is risk-seeking. Unlike
our paper, the above works do not consider vertically differentiated services or
threshold discounting schemes.

Closer to our work are recent papers that specifically investigate threshold
discounting offers. Jing and Xie (2011) show that in a threshold discounting offer,
informed players reach out to their uninformed friends in an attempt to reach
the threshold and obtain the discount, to the firm’s benefit. Chen and Zhang
(2014) analytically show that threshold discounts are the optimal mechanism to
price discriminate a population of customers, under some conditions on the size
uncertainty of different customer segments. Li and Wu (2018) and Wu et al. (2014)
empirically study the evolution of customers’ subscriptions over time, with the
former studying herding and word-of-mouth effects, and the latter examining effects
driven by the activation threshold. Hu et al. (2013) models the impact of two modes
of pledging – sequential or simultaneous – on customers’ pledging decisions and
firm profit. The success of Groupon has also spurred studies on broader issues
other than threshold discounts – see Edelman et al. (2016) and references therein.
While similarly inspired, none of these papers take an operational perspective on
threshold discounting offers, consider inter-temporal demand substitution effects,
provide explanations for why major players have discontinued threshold discounting
offers, or studies how to best design threshold discounting offers.

Strategic Customers A few decades ago, Coase (1972) conjectured that a monop-
olist selling a durable good would eventually lower its price down to marginal cost
when facing infinitely patient consumers. Recent years have seen renewed interest
in the operational implications of customer strategic behavior. Most of the work
has focused on strategic purchasing delay on the part of customers when a firm
sells a finite inventory of a durable good and may change the price over time. Su
(2007) considers customers with different valuations for the product and degrees
of patience, and develops insights on how the interplay of these characteristics
affects the firm’s pricing policy and profit. Liu and van Ryzin (2008) study how
the capacity choice of a firm can be used to induce a rationing risk on risk-
averse strategic customers and limit their strategic purchasing delay. Cachon and
Swinney (2009) consider a setting in which the firm cannot commit in advance
to prices, and they study the value of quick response strategies to mitigate the
negative effect of strategic purchase delays on the part of customers when there
are different classes of customers, while Cachon and Swinney (2011) explore the
interplay of quick response and enhanced design in fast fashion systems. Aviv
and Pazgal (2008) consider both pre-announced and contingent pricing strategies,
and they provide recommendations for when these different approaches should be
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used if both are viable. Su and Zhang (2008) study the value of both quantity and
price commitment, and show how a decentralized supply chain can exploit the
inefficiencies of decentralization as a commitment device to indirectly implement
price and quantity commitment strategies, even when commitments are not credible.
Strategic customers have also been studied in other situations, see Netessine and
Tang (2009) for more references.

Like many of the above work, our customers time their purchases taking into
account the strategic behavior of other players. Unlike the above papers, however,
we explore the consequences of such strategic behavior in a novel setting, a firm that
employs threshold discounting while offering service in two vertically differentiated
service periods. The impact of strategic customer behavior in our context are
unexpected and in contrast with the main findings from this large literature.

Demand Manipulation via Pricing This body of literature deals with situations
in which a capacity-constrained (or inventory-constrained) firm can use the pricing
decision to reduce the supply-demand mismatch.

All the literature on revenue management, for instance, focuses on this topic (see
Talluri and Van Ryzin 2006, for a survey) including all papers on peak load pricing
(see Crew et al. 1995, for a survey on this topic). In his paper on price dispersion,
Dana (1999) shows the operational benefit of shifting demand across time periods
by rationing the number of seats offered at a lower price, even when firms cannot
predict the peak time. In other settings, Lus and Muriel (2009) find that pricing is
more effective than technology choices at balancing supply and demand when a firm
sells highly substitutable products, and Boyacı and Özer (2010) show how advanced
selling and pricing can be jointly used to reduce the demand-supply mismatch.

Our paper departs from the existing literature in that we study a way to reduce
the supply-demand mismatch through a novel pricing approach: namely, we study
the use of correctly designed threshold discounting offers in the presence of
strategically-acting customers.

15.3 The Model

15.3.1 Preliminaries

Consider a capacity-constrained service provider that offers his services in two time
periods to a random-sized population of strategically acting customers. Customers
prefer to be served in a desirable “hot” time period over a less desirable “slow” time
period (e.g., a movie theater on Saturday versus Monday night) and have varying
degrees of preference. After briefly describing the model, we first examine the
traditional approach typically employed by firms in similar circumstances – a choice
between closing down or discounting on the slow period – and then we compare the
result with threshold discounting offers as popularized by online deal sites such as
Groupon, LetsGroop, BigDeal, etc.
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Service Economics We model provision of the service in two representative time
periods: in a hot period preferred by customers, at a price rh, and in a less preferred
slow period.4 The service provider has capacity to serve at most k customers during
each service period, but has the flexibility to shut down or choose any price in the
slow period. When offering the service in a given period, the service provider incurs
fixed costs cF (for employees, utilities, etc. . . ) plus an additional expense of c for
every customer served. The costs are not too prohibitive to preclude profits, cF <

k (rh − c). When demand exceeds capacity, the provider rations capacity randomly
amongst customers.

Customers The service is made available to a market comprised of infinitesimal
customers of aggregated size x̃, where x̃ is an unobserved random variable with
support R+, cumulative distribution function G, and survival function Ḡ = 1−G.
Customers value the service in the hot period at vh, vh > rh, higher than their
value in the slow period, ṽs , which varies across customers – i.e. customers differ
in the degree to which they prefer the hot period over the slow period. Each
customer’s slow period valuation, ṽs , is privately known only by the customer
herself; it is drawn from a continuous distribution, with cumulative density H ,
survival function H̄ , and support

[
v, vh

)
. Customers desire to consume the service

in at most one period, and they can choose their time of consumption strategically
– i.e. each customer takes into account the choices of other customers, thus forming
expectations of the service availability in different periods. Customers use these
refined beliefs, in addition to the provider’s announced shutdown and pricing
decisions, and the private information on the slow period valuation to make their
consumption timing decisions.

The setup described above corresponds to a wide variety of consumer services
such as movie theaters, spas, opera houses, etc. Each of these services share the
key characteristics of our setup – desirable and less desirable service periods, single
consumption, and per-period capacity that is fixed in the short run.

15.3.2 The Traditional Approach: Seasonal Closure or
Regular Discounting

Traditionally, service providers either shut down in slow periods or remain open
but try to attract customers by offering a discounted price. For example, in many
cities of mainland Europe where fixed costs of operation are substantial, restaurants
and museums typically close on Monday.5 On the other hand, in London, service
providers are often open on Mondays, but offer discounts and promotions to attract

4We place no restrictions on which period comes first.
5See http://goo.gl/M52do

http://goo.gl/M52do
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SERVICE
Customers visit in the period of 

choice and are served according 
to available capacity

THE OFFER

The provider announces whether 
he opens in the slow period, and if 
so, what price will be charged

time

The market size 
and customer valua�ons ’s 

are drawn.

Fig. 15.1 Timeline for the traditional approach

customers.6 Formally, the service provider decides whether to offer the service in
the slow period and, in case service is provided, what price to charge. The service
provider makes these decisions knowing the probability distribution of the market
size, G, but not its realization x. The sequence of events is provided in Fig. 15.1.

In the traditional approach, the service provider compares the profits from closing
on the slow period (seasonal closure) and the profits from opening and offering a
discount (regular discounting) and chooses to act so to maximize expected profit.
Closing the business in the slow period implies that the service provider gives up
some of his capacity – capacity available during the slow period – in order to save on
the fixed cost cF . In this case, customers visit during the hot period, and the service
provider serves them up to capacity. The expected profit with this approach is

Πc = (rh − c)

∫ +∞

0
min(k, x) dG(x)− cF , (15.1)

where the subscript c stands for closure.
Alternatively, the service provider may offer the service in both hot and slow

periods, albeit at a lower price rd ≤ rh in the slow period – where the subscript d
stands for regular discounting. Under this strategy, a customer’s consumption timing
best-response is driven by a trade-off between the higher utility she derives from the
hot period on the one hand, and the better prices in the slow period on the other,
both adjusted by her rational expectation regarding service availability in each time
period.

Formally, a customer visits during the slow period iff her slow period valuation
for the service is higher than a threshold valuation v̂d (rd), which is the valuation
that makes a customer indifferent between the two service periods, and is given by

(vh−rh)
∫ +∞

0
min

(

1,
k

H(v̂d)x

)

dGc(x)=(v̂d−rd)
∫ +∞

0
min

(

1,
k

H̄ (v̂d)x

)

dGc(x),

(15.2)

6For example, Maxwell’s, The Lexi Cinema, and Cavendish Conference Venues run “Monday
madness” promotions, reducing their prices on Mondays, when they expect fewer customers.

http://bit.ly/2wd3w1x
http://bit.ly/2wMQ4mp
http://goo.gl/oS8fhX
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where the LHS (RHS) represents the expected surplus of the customer from visiting
during the hot (slow) period, obtained as the product of the service surplus times the
expected availability of the service, and where Gc(x) =

∫ x
0 u dG(u)/

∫ +∞
0 dG(u)

is the cdf of the market size from the perspective of an individual customer, i.e.
conditional on her existence in the market (see Deneckere and Peck 1995, for the
derivation of customer posterior beliefs in these cases). Note that customers’ best-
response visit strategy v̂d (rd) is unique since the LHS and RHS of Eq. 15.2 are
respectively increasing and decreasing in v̂d for every price rd . The expected profit
for the provider is given by

Π∗d = max
rd

[

(rh − c)

∫ +∞

0
min

(
k,H

(
v̂d (rd)

)
x
)

dG(x)

+ (rd − c)

∫ +∞

0
min

(
k, H̄

(
v̂d (rd)

)
x
)

dG(x)− 2cF

]

. (15.3)

The potential advantage of regular discounting is best explained by rewriting the
profit as the product of the expected unit margin Md (expected profit over expected
sales) times expected capacity utilization Ud (expected sales over available capacity)
times capacity k, minus fixed costs 2cF :

Πd (rd) = max
rd

[Md (rd) · Ud (rd)] k − 2cF . (15.4)

A price reduction has two consequences for the firm: it always reduces the
expected margin – both because customers pay less during the slow period and,
because of the lower price, more customers visit in the slow period – and it shifts
some demand from the hot to the slow period. While the reduction in margin is
always harmful, the shift in demand can be beneficial; specifically, if the discount
is not excessive, the demand shift improves capacity utilization by balancing
demand across the two service periods, with the highest capacity utilization being
at rd = v̂−1

d (H−1(1/2)), when demand is the same in both periods. Formally,
Md (rd) and Ud (rd) are respectively increasing and unimodal in rd . The optimal
price is the one that optimally trades off higher margins and higher capacity
utilization.

The firm’s expected profit with the traditional approach is therefore Π∗a =
max(Πc,Π

∗
d ), where Πc and Π∗d are the profits if the firm closes on the slow day or

not, defined in Eqs. 15.1 and 15.3, respectively. While the firm must decide ex-ante
whether to close in the slow period (seasonal closure) or open and offer a discount
(regular discounting), it is instructive to compare ex-post profits as a function of
market size realization, to examine when it would have been better to open, and
when it would have been better to close. Put differently, the next Lemma provides
the strategy that would be followed by an omniscient firm, a firm that could observe
the market size from the start.
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Profit

Market size

Regular Discounting

Seasonal Closure

Capacity is binding 
under seasonal closure

Capacity is binding in the 
hot period under regular 

discounting

Capacity is binding in 
both periods under 
regular discounting

k

REGULAR DISCOUNTING IS BETTERCLOSURE IS BETTER

Fig. 15.2 Profits from regular discounting and closure

Lemma 1 The realized profits under regular discounting are higher than under
seasonal closure iff the market size realization is higher than a critical level, x◦.

All proof can be found in the online compendium.7 Figure 15.2 shows the
realized, ex-post profit of regular discounting and closure, together with their
difference, as a function of realized market size. When market size is low, closing
on the slow day is preferred, as it both saves on fixed costs and keeps margins high;
the advantage of closing is the highest when market size is equal to capacity k. Any
higher market size results in lost sales with closure, but corresponds to higher sales
if the firm is open in the slow period. Eventually, this makes regular discounting
preferred to closure when market size is higher than x◦.

Taken together, the above discussion highlights the key weakness of the tradi-
tional approach. The service provider, not knowing the actual size of the market, is
forced to make an ex-ante trade-off: choosing the preferred strategy for low market
sizes, closure, and bearing the risk of losing sales if the market size is high – due to
limited capacity – or choosing the preferred strategy when the market size is high,
regular discounting, and bearing the risk of not repaying the augmented fixed costs
if the market size is low – due to thinner margins. We next examine a threshold
discounting scheme, which alleviates this trade-off.

7http://ssrn.com/abstract=3031173

http://ssrn.com/abstract=3031173


15 Threshold Discounting 357

Customer Con�nua�on Game
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Fig. 15.3 Timeline of threshold discounting

15.3.3 Threshold Discounting

Threshold discounting allows customers to visit a firm and avail themselves of
the service in the slow period at a discounted price, contingent on enough other
customers showing interest in doing the same. In this section, we analyze the
benefits of offering such a deal to strategically acting customers.

15.3.3.1 Sequence of Events

Figure 15.3 illustrates the sequence of events for a threshold discounting scheme. At
the beginning, the market size is realized, but is not observed by either the service
provider or the customers. Then, the service provider announces a deal: the service
will be offered at a discounted price rt < rh to all customers who subscribe to the
offer, but only if at least nt of them end up signing up for it. If less than nt customers
sign up for the deal, the service provider will close during the slow period.8 Each
customer then decides whether to subscribe to the deal or not.9 At this point, the firm
announces whether the number of subscriptions is at least equal to the activation
threshold (and the deal is active) or not. Customers then choose a period to visit,
and consume the service.

In order to study this game, it is convenient to break it into two parts: the
initial deal offer, and the following continuation game (Fudenberg and Tirole 1991,
page 331), in which customers subscribe, the firm reveals the deal outcome, and
then customers visit the firm in a period of their choice. This continuation game,
which follows the initial deal offer, is strategically played only among customers: in
fact, in the deal outcome disclosure stage the firm simply reveals whether the pre-
announced threshold was reached (in Sect. 15.3.7.1 we consider an alternate design

8A weaker form of threshold discounting is one where only the pricing decision is determined by
subscribers, and the firm remains open in both periods. In this case the results are very similar, as
briefly discussed in Sect. 15.4.
9We assume that subscriptions are not binding for customers; if subscriptions are binding, i.e.,
customers are pre-charged the slow period price rd upon subscription, all our results are identical
and in fact the analysis is simpler.



358 S. Marinesi et al.

where the firm can freely make his activation decision after observing the number
of subscribers). In what follows, we first proceed with the analysis of the customer
continuation game for a given deal offer (rt , nt ), and then we include the deal offer
decision made by the firm to find the equilibrium of the full game.

15.3.3.2 Customer Continuation Game

We examine the best-response strategies of an individual customer starting from
the last stage of the continuation game, when she must decide her visit strategy,
that is, in which period to visit the firm. When the deal is not active, the service
is not available during the slow period and therefore she visits in the hot period.
When instead the deal is active, she visits in the period in which she expects to
obtain the highest surplus. Specifically, the visit strategy νi of customer i is a
function of her service valuation for the slow period vs,i , the price that she will
be charged during the slow time period, i.e. rt if she has previously subscribed
to the deal and rh otherwise, and the expected service availability in each time
period. To compute expected service availability, the customer takes into account
the vector of visit strategies of all other customers, ν−i , and updates her belief on
the realized market size conditional on the information that the deal is active. That
is, her posterior distribution of the market size accounts for the fact that at least
nt customers subscribed employing the subscription strategy σ−i , and is computed
using Bayes’ rule.

Next is the subscription stage, in which we assume that a customer subscribes
iff this increases her expected future payoff (or alternatively that the frictional
cost to subscribing is small). Specifically, the best-response subscription strategy
of customer i is a function of her valuation for the service during the slow period
vs,i , of the announced deal price rt and of the threshold nt , as well as the vectors of
subscription and visit strategies of all other players, σ−i , ν−i . The subscription stage
belongs to the class of Coordination games first defined by Schelling (1960): in this
type of game there are typically multiple equilibrium outcomes, where if enough
customers coordinate on a certain decision, a single customer has no incentives
to deviate from what the majority does. The multiple equilibria that arise can be
meaningfully grouped into two types. In type I equilibria, customers subscribe if
their valuation for the slow period is sufficiently high, while in type II equilibria,
customers never subscribe to the deal: as a consequence, the deal is never active, and
therefore not subscribing is optimal. We discard type II equilibria from our analysis
and restrict our attention hereafter to type I equilibria because a type I equilibrium
Pareto Dominates a type II equilibrium.10 Type I equilibria are characterized in the
next lemma

10Customers are better off coordinating on a type I equilibrium than on a type II equilibrium.
The reason is that by subscribing to the deal, they have a chance to get a discount and visit in
their preferred slow period, while at the same time increasing availability for those who did not
subscribe.
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Lemma 2 (Equilibrium strategies in Customer Continuation Game) In a type
I equilibrium:

1. A customer subscribes to the deal iff her valuation for the service in the slow
period is higher than a certain threshold.

2. A customer visits during the slow period iff the deal is active and her valuation
is higher than a threshold; she visits during the hot period otherwise.

3. The subscription and the visit thresholds coincide.

In equilibrium, customer subscription and visit strategies are of a threshold
type, and the thresholds for the two strategies coincide, since customers who
would visit in the slow period are the same as those who subscribe to the deal.
Thus, customer behavior can be fully summarized by just one threshold, v̂t , such
that a customer with a slow-period valuation lower than v̂t does not subscribe
to the offer and visits in the hot period, whereas a customer with a slow-period
valuation higher than v̂t subscribes to the offer, and then visits in the slow period
if the deal is active and in the hot period when the deal is not active. The
threshold valuation v̂t is the one that, conditional on the deal being active, makes
a customer indifferent between visiting in the slow and in the hot period – since
when the deal is not active both subscribers and non-subscribers visit on the hot
period and earn the same surplus. The following equation compares the threshold
customer’s surplus in each period, when the deal is active, for any deal offer
(rt , nt ):

(v̂t − rt )

∫ +∞

nt H̄ (v̂t )−1
min

(

1,
k

H̄ (v̂t )x

)

dGc(x)

= (vh − rh)

∫ +∞

nt H̄ (v̂t )−1
min

(

1,
k

H t(v̂t )x

)

dGc(x). (15.5)

The LHS represents customer surplus when she visits in the slow period, and the
RHS when she visits in the hot period. Unfortunately, for a general deal offer
(rt , nt ) there can be multiple solutions to Eq. 15.5, and consequently multiple type
I equilibria. An increase in the threshold, v̂t , implies an increase in the number of
visitors in the hot period and a corresponding decrease in the number of visitors in
the slow period. While the hot period surplus decreases when v̂t increases because a
higher fraction of customers visiting in the hot period reduces availability, the slow
period surplus generally does not increase in v̂t . A higher threshold v̂t implies fewer
customers visiting in the slow period, which should increase availability (the visit
effect), but it also means that a smaller fraction of customers subscribe to the deal,
which implies that the deal is active only when demand is higher, which in turn
implies lower availability (the subscription effect). The overall effect is therefore
ambiguous.

However, we can show that there exists a unique solution to Eq. 15.5 when the
announced price of the deal, rt , is higher than a certain level r̄ . To understand the
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drivers of this effect, it is instructive to rewrite Eq. 15.5 in terms of a comparison
between relative availability and relative surplus in the two periods:

v̂t − rt

vh − rh
=
∫ +∞
nt H̄ (v̂t )−1 min(1, k(H(v̂t )x)

−1) dGc(x)
∫ +∞
nt H̄ (v̂t )−1 min(1, k(H̄ (v̂t )x)−1) dGc(x)

. (15.6)

The LHS of the rewritten equation is the ratio of the service surplus in the slow
period to that in the hot period, whereas the RHS is the ratio of service availability
in the hot period to that in the slow period. The ratio of the service surplus (LHS)
is always increasing in the threshold, v̂t . When the deal price rt is higher than r̄ =
H−1(1/2) − vh + rh, a higher fraction of customers visit in the hot period, i.e.,
H(v̂t ) ≥ 1/2, which ensures that the ratio of service availability always decreases
in the customer threshold, v̂t . To see why, note that, as before, a higher threshold
implies a smaller fraction of visitors in the slow period and a higher fraction in the
hot period, thus decreasing the service availability ratio (the visit effect). Also as
before, a higher v̂t implies fewer subscribers, which means that the deal is active
only when demand is higher (the subscription effect): however, since rt ≥ r̄ ⇔
H(v̂t ) ≥ 1/2, this implies that the impact of higher demand in the hot period is
more severe than in the slow period. Hence, a price rt ≥ r̄ ensures that there exists
a unique equilibrium for the customer continuation game. We will show that this is
always the case for the full game.

15.3.3.3 Optimal Announcement and Equilibrium Outcome

The service provider chooses the slow period price rt and the activation threshold nt
that maximize expected profit, taking into account customer best-response strategy
v̂t (rt , nt ) characterized in Eq. 15.5. The expected profit of the firm is then

Π∗t = max
rt ,nt

[

(rh − c)

∫ nt /ᾱt

0
(min(k, x)− cF ) dG(x)

+
∫ +∞

nt /ᾱt

(min(k, αtx)(rh − c)+min(k, ᾱt x)(rt − c)− 2cF ) dG(x)

]

,

where αt = H(v̂t (rt , nt )) and ᾱt = H̄ (v̂t (rt , nt )) are the fractions of customers that
visit during the hot and slow periods, respectively, when the firm announces the deal
(rt , nt ), and where the dependence of αt and ᾱt from (rt , nt ) is omitted to improve
readability.

Lemma 3 The firm can restrict to deal offers with a discounted price higher than r̄

without any reduction in his expected profit.

This result states that the firm needs to consider only announcements with a
discounted price higher than r̄ , because it is never optimal to discount so much
that more than half of the customers visit in the slow period when the deal is active.
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This Lemma shows that even though there might be multiple type I equilibria in the
customer continuation game that ensues after the deal is announced, there is a unique
equilibrium for the full game, because the firm is always better off announcing a deal
for which there exists a unique customer best response v̂t (rt , nt ). We next compare
the profits under the unique equilibrium outcome of the threshold discounting game
with those from the traditional approach, that is, with the highest profit between
closure and regular discounting.

15.3.4 Comparing Threshold Discounting with the Traditional
Approach

Theorem 1 Threshold discounting leads to higher expected profit than the tradi-
tional approach, i.e. Π∗t > Π∗a .

The superior performance of threshold discounting arises from its most charac-
teristic feature, i.e., the activation threshold, which gives rise to two independent
sources of advantage: a responsive duality effect and a strategic scarcity effect.11

15.3.4.1 Responsive Duality

Lemma 1 showed that closing in the slow period ends up earning a higher profit
than opening and discounting if and only if market size is below a threshold.
Unfortunately, a firm considering the traditional approach needs to decide whether
to employ regular discounting or seasonal closure ex-ante, without knowing the
market size, and the choice that maximizes the expected profit may turn out to be
wrong in retrospect once market size is realized and customers visit the firm. With
threshold discounting, the firm does not have to trade off the relative strengths of
seasonal closure and regular discounting, because he can get the best of both worlds.

An appropriately designed threshold discounting offer allows the firm to ensure
that the deal gets activated only when the market size turns out to be above
a threshold of his choice (see Lemma 5 in the online compendium). In such a
contingency, the firm is balancing demand by effectively imitating the demand-
shifting effect of regular discounting. On the other hand, when the market size is
below this threshold, the deal is not activated and the service is not offered in the
slow period, so that the firm achieves fixed-cost optimization and full margins by
effectively using the seasonal closure approach. From Lemma 1, we know that
regular discounting is better than closure if and only if the market size is high
enough. This means that the activation threshold endows threshold discounting with

11The main results from this section and the following Sects. 15.3.5 and 15.3.6 also appear, or are
mentioned, in Marinesi et al. (2017), although the exact formulation and some of the underlying
assumptions may differ.
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a responsive duality, i.e. a built-in, market-responsive dual mechanism that allows
the firm to use the information supplied by customers to choose the best demand
manipulation technique to employ (closing or regular discounting) an advantage
unavailable with the traditional approach.

This responsive duality is not the only advantage of threshold discounting, the
benefits go further. Even more interesting is a strategic scarcity effect created by
threshold discounting, which allows a firm to better price discriminate strategic
customers than does regular discounting, thus improving capacity utilization even
further.

15.3.4.2 Strategic Scarcity Effect

Customers strategically think about price and availability and they react differently
to a slow-period discount that is active contingent on high market size, as opposed
to a discount that is always active. In particular, we find that a discount conditional
on a high enough market size – as the one employed by threshold discounting –
increases the fraction of demand diverted from the hot to the slow period compared
to the same level of a non-contingent discount. We call this observation the strategic
scarcity effect, which we formalize in the next theorem.

Theorem 2 For any potentially optimal slow period price r > r̄ , and for any
positive activation threshold nt > 0, threshold discounting diverts more demand
from the hot to the slow period compared to regular discounting. Formally, ∀r > r̄

and ∀nt > 0, we have that H(v̂t (r, nt )) < H(v̂d(r)).

Remember from Eq. 15.4 that the advantage of discounting the slow period
service lies in shifting demand from the hot to the slow period in order to achieve
a more equitable allocation of demand across periods – but it comes at the cost of
reducing margins. Strategic scarcity is beneficial because it accomplishes the same
result as would a additional price reduction in the slow period, that is, diverting
more customers to the slow period, but it comes as a free lunch, i.e., the provider
enjoys the additional demand shift without paying through higher discounts or lost
margins. Put differently, strategic scarcity is beneficial because it magnifies the
returns from any discounting level by increasing strategic customers’ elasticity to
price reductions compared to regular discounting.

The key cause of this effect lies in the difference in service availability between
the hot and slow periods under the two discount schemes. Under threshold discount-
ing, the fact that the deal is active signals to the customers that the market size is high
enough. This implies that availability will be lower in both time periods, but more
so in the hot period, making the slow period more desirable to customers.12 Thus,

12A simple example can clarify this property: suppose that capacity is 10, that 60% of customers
visit in the hot period, and that the market size is either 10, 20 or 30 with equal odds; then the
expected availability of the hot period relative to the slow period is (1+ 10/12+ 10/18)/(1+ 1+
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a customer who is indifferent between the two periods under regular discounting
is instead willing to visit during the slow period under threshold discounting when
the deal is active, because the active deal signals that the market size is higher than
average, hence the odds of being served shift further in favor of the slow period.
Overall, the higher effectiveness of threshold discounting due to strategic scarcity
effectively implies that the service provider can achieve the same level of capacity
utilization that a regular discounting strategy would, while keeping higher margins
and thus earning a higher profit.

15.3.4.3 A Novel Operational Advantage

To summarize, the advantages of threshold discounting stem from (1) its responsive
nature, imitating the fixed cost savings of seasonal closure when market size is low
and the demand-balancing effect of regular discounting when market size is high;
and (2) increasing customer responsiveness to slow-period discounts by signaling
the market size – via the deal activation – which enables the customer to use this
information in estimating service availability and self-selecting the consumption
period, thus increasing capacity utilization for any discount level offered. Put
simply, threshold discounting combines closure with an improved version of regular
discounting, and takes the best of each. Interestingly, both the aforementioned
advantages rely on information transmission, but while responsive duality exploits
the information that customers send to the firm (by choosing whether to subscribe
to the deal), strategic scarcity responds to information that the firm sends back to
customers (by announcing whether the threshold was reached or not).

As pointed out in the introduction, anecdotal popular press discussions of
the benefit of threshold discounts have focused on their network effects and a
consequent demand increase. Note that our model deliberately leaves out network
effects to focus on operational performance, and our effects stem solely from the
better demand-supply matching enabled by threshold discounting. Further, all the
results presented above continue to hold even when there are no economies of scale
(cF = 0). In fact, even when there are no fixed costs, threshold discounting is still
better than regular discounting at servicing customers due to the strategic scarcity
effect. This suggests that these innovative and profit-enhancing schemes do not
need to be the exclusive prerogative of high-volume businesses, but can instead
be employed by small businesses – such as those featured by Groupon and its
competitors – with equally beneficial results.

10/12) = 43/51 � 0.84 over all market states, (10/12 + 10/18)/(1 + 10/12) = 25/33 � 0.76
over the two higher states, and (10/18)/(10/12) = 2/3 � 0.67 for the highest state; that is, the
expected service availability of the hot period relative to the slow period decreases as we consider
only increasingly higher states – as strategic customers do when they learn that the activation
threshold has been reached.
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15.3.5 Impact of Strategic Customers on Threshold
Discounting Performance

Our analysis has so far assumed that all customers are strategic, in the sense that they
all account for other customers’ subscription and visit responses to the discounting
scheme offered by the firm when they make their decisions. Arguably, not all
customers are sophisticated enough to do this: Li et al. (2014), for example, estimate
the percentage of strategic consumers in the airline industry to be between 5.2% and
19.2%. In this section, we extend our analysis to consider a mixed population in
which a fraction γ of customers are strategic, and the remaining fraction 1− γ are
nonstrategic – they do not account for the decisions of other customers. This means
that in making her decision, a nonstrategic customer naively ignores both the odds of
the deal being active and the expected availability in each service period, since these
depend respectively on the subscription and visit strategies of the other customers.
A nonstrategic customer subscribes/visits in the slow period iff her service surplus
is higher than in the hot period, i.e. iff vs − rt > vh − rh, where vs is her slow-
period valuation. The profit of threshold discounting when only a fraction γ of the
population is strategic is given by (the profit expression for the traditional approach
is easily updated following the same logic)

Π
γ ∗
t = max

rt ,nt

[

(rh − c)

∫ nt ᾱt,γ (rt ,nt )
−1

0
(min(k, x)− cF ) dG(x)

+
∫ +∞

nt ᾱt,γ (rt ,nt )−1

[
min(k, αt,γ (rt , nt )x)(rh − c)

+min(k, ᾱt,γ (rt , nt )x)(rt − c)− 2cF
]

dG(x)

]

, (15.7)

where αt,γ = γH(v̂t (rt , nt , γ )) + (1 − γ )H(vh − rh + rt ) is the fraction of the
population that in equilibrium visits the firm during the slow period when the deal is
active, given by the mix of strategic and nonstrategic customers, ᾱt,γ = 1−αt,γ , and
where v̂t (rt , nt , γ ) is defined as in Eq. 15.6, with H(v̂t ) and H̄ (v̂t ) being replaced
by αt,γ and ᾱt,γ respectively.

We now reevaluate the superiority of threshold discounting when nonstrategic
customers are also present in the population.

Theorem 3 Threshold discounting outperforms the traditional approach for any
composition of strategic and nonstrategic customers in the population, including
when the population comprises entirely of nonstrategic customers.

As explained above, the advantage of threshold discounting is driven both by its
ability to mimic closure and regular discounting when most appropriate, as well as
from the strategic scarcity effect it creates. While the strategic scarcity effect relies
on customers’ ability to account for the decisions of other customers when making
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their decisions, the responsive duality advantage exploits the information contained
in the number of subscribers that does not require customers to be strategic, but
rather to signal if they are planning to visit during the slow period. Thus, even when
there are no strategic customers in the population, the operational advantages of
threshold discounting persist.

Next, we study the impact that the proportion of strategic customers in the
population has on the profits of a service provider employing threshold discounting.
Most of the existing literature on strategic customers (Su and Zhang 2008; Liu and
van Ryzin 2008; Cachon and Swinney 2009, 2011) has either proven that strategic
customers are a threat to a firm’s profit, or has taken it as granted and developed
countermeasures to reduce their harmful effect.13 The typical setting often evoked
is one in which an apparel retailer sells a finite inventory over a finite season, and
may resort to price markdowns at the end of the season in order to dispose of
leftover inventory. By anticipating price markdowns, strategic customers can decide
to postpone their purchases until the end of the season, thus buying at a discount
and reducing profits for the firm. Our setting shares several characteristics with this
typical setting. In Cachon and Swinney (2009), for instance, strategic customers can
decide to purchase in two different periods – during the season, when their valuation
for the product is higher, or at the end of the season, when their valuation is lower
– which maps exactly to the hot and slow periods in our framework. As in our
paper, in Cachon and Swinney (2009) the firm offers a reduced price in the period
that customers value the least. Finally, as in our paper, strategic customers take into
account the actions of other customers and act to maximize their expected surplus.
Despite these similarities, the effects of strategic customers in our setting are in stark
contrast with those in the classic settings studied in the literature.

Theorem 4 The profits under threshold discounting are higher with more strategic
customers in the population. Formally, Πγ1∗

t > Π
γ2∗
t for every γ1, γ2 ∈ [0, 1] such

that γ1 > γ 2.

Strategic customers differ from nonstrategic ones in that, by accounting for the
actions of the other players, they can better account for future prices and availability,
and act accordingly. In the classic setting, this leads strategic customers to wait for
otherwise unanticipated price markdowns, and this is always harmful for the firm. In
our setting, strategic behavior has different implications. First, strategic customers
account for the visit decision of the other customers, which allows them to form
expectations on the service availability of each period, accounting for the odds

13There are two exceptions. One is the empirical work by Li et al. (2014), which argues that if,
on the one hand, strategic customers reduce margins, on the other hand they increase demand,
either by forcing the firm to reduce prices, which raises demand in itself, or by making consumers
postpone purchases, thus having a second purchasing opportunity. As a result, the effect on profit
may go either way. The second exception is the working paper Chun and Ovchinnikov (2017), who
show that airlines can use loyalty programs to exploit customers’ strategic behavior, inducing them
to fly more than they need, thereby increasing demand and profit. Our result arises due to very
different underlying dynamics.
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of getting a unit of service before they visit, which is in the interest of the firm.
Second, they also account for the subscription decision of other customers, which
allows them to refine their expectation on service availability upon knowing that
the deal is active (strategic scarcity effect) which also goes in the interest of the
firm, as already discussed. In our context, there is no difference in how strategic
and nonstrategic customers account for price reductions, since the firm clearly
announces them upfront before the subscription stage – and with good reason, as
discussed below. Hence, the sophisticated decision process of strategic customers
always has a beneficial impact for the firm.

It should be noted that the firm’s commitment to a price reduction has nothing
in common with the use of price commitment strategies as a countermeasure to
strategic customers, as in Su and Zhang (2008). In their setting, the firm commits
to high enough prices at the end of the season to deter strategic customers from
purchasing at the end of the season, i.e., in the “slow” period. In our setting, the firm
announces price reductions to achieve the opposite effect, i.e., to induce customers
to purchase in the slow period. The difference arises because they consider a
firm selling inventory of a durable good, while we consider a service firm selling
capacity. For a firm selling a physical product, a customer who decides to purchase
in the low season rather than in the high season is always harmful, because it
reduces margins: hence, the firm commits to high prices in the low season to prevent
such behavior from occurring. For a service firm selling capacity, a customer who
decides to purchase in the slow period rather than in the hot period may instead
be beneficial, because it increases sales whenever capacity in the hot period is sold
out, but there is still spare capacity in the slow period: hence, the firm commits
to (appropriate) price reductions in the slow period to incentivize such behavior.
Basically, the perishable nature of capacity transforms strategic customer’s inter-
temporal purchasing decisions from a threat to margins into an opportunity to
increase capacity utilization and sales.

15.3.6 Mediated Threshold Discounting

In the most popular implementations of threshold discounting, the service provider
offers threshold discounts through an intermediary (such as Groupon), which
features the deal on its website in exchange for a commission. The main advantage
of going through a third party is to reach a larger number of customers: in this case,
threshold discounting can generate word-of-mouth effects, as Jing and Xie (2011)
analyze. From the operational perspective of our study, however, an intermediary
provides no clear advantage to the firm, though the need for an intermediary
may still arise as a way for a firm to obtain the necessary visibility and reach
his customers, possibly because customers are not aware of the firm’s website.
If threshold discounting is offered through an intermediary, decision rights are a
key consideration: who decides on the characteristics of the deal (the activation
threshold and the discounted price), the service provider or the intermediary? If it
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is the service provider, then the intermediary is simply an extra cost, and threshold
discounting is preferable to the traditional approach only insofar as the advantages
outweigh the intermediation costs. In this case our analysis above applies with the
cost of intermediation subtracted from the service provider’s profit.

In practice, however, the intermediary has a large role in shaping the char-
acteristics of the deal, because of the inexperience of the service provider, for
example, or because of its high bargaining power – the intermediary may be a local
monopolist, as Groupon was before the emergence of competition. In these cases,
it is imperative to learn how the incentives of the intermediary differ from the those
of the service provider. Based on our interactions with Groupon management, the
contract arrangement most often used in practice, possibly due to its simplicity,
observability and objectivity, is such that the intermediary earns a percentage of
the revenues from those customers that subscribed to the offer through its website.
The profit functions for the service provider under mediated threshold discounting
(superscript med) and the profit of the intermediary (superscript in) as a function of
the deal parameters, for any positive intermediation fee η, are then given by

Πmed
t (rt , nt |η) = (rh − c)

∫ nt ᾱ
−1
t,γ

0
[min(k, x)− cF ]dG(x)

+
∫ +∞

nt ᾱ
−1
t,γ

[min(k, αt,γ x)(rh − c)+min(k, ᾱt,γ x)(η̄rt − c)− 2cF ] dG(x)

Π in
t (rt , nt |η) = ηrt

∫ +∞

nt ᾱ
−1
t,γ

min(k, ᾱt,γ x) dG(x).

with η̄ = 1 − η, αt,γ and ᾱt,γ defined as in Eq. 15.7 and their dependence from
(rt , nt ) being omitted for brevity.

Theorem 5 Under mediated threshold discounting

• the intermediary chooses a lower slow period price than the firm would, for any
given activation threshold n; formally r in

t (n) < rmed
t (n)∀n > 0;

• the intermediary chooses a lower activation threshold than the firm would, for
any given slow period price r , if the fraction of strategic customers is not
excessive; formally ∀rt ∃γ̄ (rt ) ∈ (0, 1]: γ ≤ γ̄ (rt )⇒ nin

t (rt ) < nt (rt ); and
• the service provider earns a lower profit, even when the intermediation fee is

negligible, i.e., when η→ 0+,

where

r in
t (n) = arg max

rt

Π in
t (rt , n|η) s.t. rt ≤ rh,

nin
t (rt ) = arg max

nt

Π in
t (rt , nt |η) s.t. nt > 0,

rmed
t (nt ) = arg max

rt

Πmed
t (rt , nt ) s.t. rt ≤ rh, and

nt (rt ) = arg max
nt

Πt (rt , nt ) s.t. nt > 0.
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The profit of the intermediary differs from the profit of the service provider
in three important ways. First, the intermediary earns profit only on customers
who purchase during the slow period; second, the intermediary does not incur any
additional fixed cost if the service provider opens also in the slow period; and third,
the intermediary earns profit only when the deal is active. The first two differences
provide strong incentives for the intermediary to charge a lower slow-period price
than the service provider would. One reason is that the intermediary has much higher
incentives to shift demand to the slow period – for he earns nothing when customers
purchase on the hot day – and this is best achieved by lowering the price. Another
reason is that the intermediary is willing to open during the slow period as long as
this brings one cent more in revenues, while the service provider is wary of the fixed
costs that such decision brings along.

The second and third differences imply instead that, compared to the service
provider, the intermediary prefers a deal that is much more likely to be active,
meaning a lower activation threshold. The reason is that the intermediary takes
all the benefits of an active deal – higher revenues during the slow period –
without getting most of the costs associated with it – costs of opening, since these
are incurred by the service provider, and cost due to the cannibalization of the
hot period sales by the slow period, since the intermediary gains nothing from
selling during the hot period. The only cost for the intermediary in lowering the
activation threshold comes from reducing the strategic scarcity effect – a lower
threshold sends a weaker signal to strategic customers upon deal activation – which
results in lower sales in the slow period.14 However, this cost is often negligible.
To see why, one must consider the interaction between the two effects in the
Theorem 5: once the intermediary lowers the price during the slow period, demand
will further shift to the hot period; this demand shift weakens the strategic scarcity
effect, which is based on the difference in availability between the two periods,
and in how signaling a high market size via the deal activation makes such a
difference more prominent in the eyes of the customers. Once the additional price
reduction favored by the intermediary has weakened the strategic scarcity effect,
lowering the threshold is going to have little consequences on the slow period
sales.

In summary, the intermediary is better off with a lower activation threshold and
a lower price, both of which undermine the advantages of threshold discounting
for the service provider. In this case responsive duality is severely diminished, both
because the deal would be activated in market states in which it would be best not to
activate the deal, and because an excessive fraction of demand would be redirected
to the slow period, reducing the operational benefit of price discriminating between
periods. Further, the strategic scarcity effect would also be reduced on account of the
lower threshold. This logic indicates that the deal preferred by the intermediary, one

14When the hot period is busier than the slow period; otherwise, reducing the strategic effect
increases sales in the slow period, and the intermediary always prefers a lower threshold than
the service provider does.
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with a very low – if not zero – threshold and a deep discount, could substantially
reduce the profit of the service provider.15 We therefore conjecture that threshold
discounts work well when administered directly by the service provider, but not
when administered by an intermediary.

15.3.7 Design Considerations in Threshold Discounting Offers

The above analysis examined one particular design of threshold discounting, that
in which the firm pre-commits to the activation threshold for the deal, if the deal
is active or not is announced before the beginning of both time periods, and the
discount can be used only during the slow period. In practice, we encountered
numerous variations of this basic setup and, at different points of time, Groupon
experimented with other arrangements. Hence, in this section we examine alterna-
tive designs and compare them with the original design in Sect. 15.3.3, henceforth
referred to as classic threshold discounting. We consider a population that comprises
only of strategic customers since this simplifies the exposition and it has no impact
on the results.

15.3.7.1 Opaque Activation Rule

In classic threshold discounting, the firm commits to a discounted price and an
activation threshold before customers make the decision to subscribe or not: this
commitment ties the service provider’s hands, forcing him to abide by a specific
activation rule. A potentially better design is one in which the provider does not
publicly commit to a decision rule for activation, and instead makes the activation
decision after he observes how many customers have subscribed: it is in fact well-
known that postponing a decision to a later time is beneficial if this allows the
acquisition of new information that is relevant for that decision – as in this case,
where subscriptions contain new information on the market size, which is relevant to
making the activation decision. With such a design (Fig. 15.4) the service provider
announces the discount price ro before the customers’ subscription decision, yet
does not commit to any activation rule. After customers have subscribed, the
provider observes the number of subscribers, and only then announces whether or
not the deal is active. Designs of this kind are quite common in Customer Voting

15In an extensive numerical study conducted using ranges of plausible values for all parameters
and that simulates more than 800 different scenarios, we find that the intermediary prefers an
activation threshold equal to zero, i.e., prefers a deal that is always active, in over 99% of the
scenarios. Results from the numerical study have been omitted to keep the exposition short and
available from the authors upon request.
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are drawn.

Fig. 15.4 Timeline of threshold discounting with opaque activation rule (Shaded boxes are used
to highlight the main differences relative to classic threshold discounting)

Systems, whereby customers may be asked to vote for new product designs that
could be developed by the firm in the near future, but the firm does not commit to
any specific development rule in advance.16

Theorem 6 Offering threshold discounts with a committed threshold-activation
rule, as in the classic threshold discounting, is better for the firm than offering
discounts with an opaque activation rule.

Postponing the activation decision to a later time is detrimental to the firm, for
two reasons. First, by not committing to a specific threshold in advance the firm
loses the strategic advantage of being able to use the activation threshold to “steer”
customers towards the desired equilibrium. In addition, postponing the activation
decision does not provide the firm with any informational advantage, despite the
fact that this allows the firm to acquire new information that is relevant to making
the deal activation decision. The reason for this unexpected result is that, though
relevant, the information contained in the subscriptions always leads to the optimal
activation rule being a threshold decision, which the firm can determine already with
the information available before the customer subscription stage. Hence, committing
to a threshold activation rule upfront provides strategic benefits and no informational
disadvantage, and a classic threshold discounting outperforms one with an opaque
activation rule.17

15.3.7.2 Time When the Outcome of the Deal Is Announced

In classic threshold discounting, the service provider releases information about the
outcome of the deal, i.e., whether or not it is active, before both time periods begin,
allowing customers to make a consumption decision knowing if the threshold has

16See Marinesi and Girotra (2013).
17There can be cases in which some additional relevant information is exogenously revealed
between the time the deal is announced and the time subscriptions are closed, as uncertainty over
weather conditions in the case of an outdoor performance: in these cases, postponing the activation
rule may lead to an informational advantage, and which design is better depends on the relative
strength of the benefits of commitment and those of postponement.
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Fig. 15.5 Timeline of threshold discounting with late disclosure (Shaded boxes are used to
highlight the main differences relative to classic threshold discounting)

been reached. However, in cases in which there is enough time between the hot
and slow periods, the service provider could decide to disclose such information
after the hot period is over but before the slow period begins.18 Strategic customers
are responsive to price reductions, but also to changes in perceived availability. Liu
and van Ryzin (2008) and Yin et al. (2009) have shown how a firm dealing with
strategic customers can benefit from increasing the rationing risk they perceive.
It is therefore important to study the impact of postponing the deal outcome
revelation to customers, since doing so increases the uncertainty – hence the risk
– of their subsequent visit decisions, and could therefore lead to a similar effect.
The sequence of decisions and information revelation is described in Fig. 15.5.
As in classic threshold discounting, the terms of the deal – the discount and
the activation threshold – are announced upfront. The only difference is that the
outcome disclosure stage now follows the hot period, whereas in the original model
it preceded both the hot and slow periods.

Under late disclosure, the profit of the service provider takes the form

Π∗l = max
rl ,nl

[

(rh − c)

∫ nl/ᾱl

0
(min(k, αlx)− cF ) dG(x)

+
∫ +∞

nl/ᾱl

(min(k, αlx)(rh − c)+min(k, ᾱlx)(rl − c)− 2cF ) dG(x)

]

,

where ᾱl and αl are the fractions of subscribers and non-subscribers, and are a
function of the deal discount, rl , and activation threshold, nl .

Theorem 7 Classic threshold discounting, i.e. with early disclosure, achieves a
higher profit for the firm than threshold discounting with late disclosure.

Unlike in other similar settings, inducing a rationing risk on strategic customers
– by postponing the disclosure decision – turns out to be unwise. Late disclosure of
the deal outcome has two main implications for the firm. First, it impairs the inter-
temporal substitutability of demand. Specifically, in the event that the deal is not
active, the firm loses sales to those customers who subscribed to the deal and did not

18If the slow period comes before the hot period, this scheme is obviously not viable.
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Fig. 15.6 Timeline for unrestricted threshold discounting (Shaded boxes are used to highlight the
main differences relative to classic threshold discounting)

visit the service provider during the hot period because they intended to visit during
the slow period. The second implication is a consequence of the first, and it is of a
strategic nature. Given that subscribing to the deal and waiting for the slow period
does not guarantee that the provider will be open at that time, strategic customers are
less willing to visit during the slow time period than in the case of early disclosure,
i.e. αl (r, n) > αt (r, n) for every price r ≥ r̄ and every activation threshold n > 0.
This has negative implications for profit, because the service provider needs to offer
customers a higher discount for them to visit during the slow time period, further
reducing margins. Basically, this strategic implication works in the opposite way of
the strategic scarcity effect described in the discussion of Theorem 1, reducing the
effectiveness of discounts as inter-temporal demand-balancing devices.

Taken together, the previous results show that providing customers with a
transparent activation rule and full and timely information on the activation of
the deal makes threshold discounting schemes most potent, or put differently, the
less the uncertainty on the customer side, the more effective threshold discounting
becomes at increasing capacity utilization and profit.

15.3.7.3 Time Restricted Discounts

While classic threshold discounting restricts the use of the discount to slow periods,
discounted offers featured by Groupon and its numerous copycats often place no
constraints on the time period of service, i.e., if activated, the discount can be used
during hot and slow periods alike. The timeline for these type of deals, henceforth
named unrestricted threshold discounting (subscript u), is otherwise the same as for
classical threshold discounting, and it is described in Fig. 15.6.

Theorem 8 Classic threshold discounting achieves a strictly higher profit for the
firm than unrestricted threshold discounting.

Classic threshold discounting is strictly better than unrestricted threshold dis-
counting: by allowing customers to enjoy a reduced price in any period of their
choice, the service provider cripples the main advantage of price reductions, that is,
the ability to price discriminate between the hot and slow periods in order to redirect
some demand to the latter and improve capacity utilization. Despite charging the
same price in both periods, unrestricted discounting can still redirect some demand
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to the slow period; in fact, a price reduction increases the service surplus in both
periods, increasing the surplus loss for a customer from not obtaining a unit of
service, thus making customers more willing to visit in the slow period where
availability is higher. However, the magnitude of this demand-balancing effect is
small compared to what can be achieved using regular discounting. Moreover,
the cost associated with a price reduction under unrestricted threshold discounting
is much higher than under classic threshold discounting, as the service provider
reduces his margin in both time periods. As a result, under unrestricted threshold
discounting, price reductions come at a higher cost and yield a smaller operational
benefit than classic threshold discounting.

While the overall benefit of unrestricted threshold discounting will ultimately
depend on the sum of many effects (see for example Edelman et al. 2016), from a
purely operational point of view this design has severely unattractive features, and
in many cases a service provider would be better off simply using the traditional
approach.19 This may help explain the oft-repeated assertion that Groupon-like
deals were worse for many businesses than just following the traditional approach
to managing demand and capacity.20 Perhaps the wide use of unrestricted dis-
counting has been a consequence of the incentive misalignment caused by the
commonly employed deal revenue contracts illustrated in Sect. 15.3.6: in fact, under
unrestricted threshold discounting, the amount of revenues earned on subscribers
is substantially higher compared to classic threshold discounting – and so is the
commission earned by the intermediary.

15.3.7.4 Focused Threshold Discounting

One way to potentially improve threshold discounting is to observe that not all
customers need to be incentivized to visit during the slow period. Customers with a
high enough slow-period valuation value the hot period almost as much as the slow
period and prefer to visit the firm during the slow period even when no discount is
offered due to higher service availability. If we let n∗t be the equilibrium activation
threshold in classic threshold discounting, then this is true for vs ≥ v̂t

(
rh, n

∗
t

)
. This

means that classic threshold discounting is inefficient, in that it ends up providing
unnecessary monetary incentives to these customers, a source of inefficiency that
could be remedied by focusing the incentives only on those customers who actually
need them. Next, we explain the intuition behind focused threshold discounting, and
then study it formally.

19Results from an extensive numerical study not reported in this study show that even the traditional
approach is better than unrestricted threshold discounting in 90% of our scenarios, resulting on
average in a 2% higher profit.
20See for example, “Groupon Was The Single Worst Decision I Have Ever Made As A Business
Owner,” Jun 9, 2011, http://tcrn.ch/2xHeQ3G

http://tcrn.ch/2xHeQ3G
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Fig. 15.7 Timeline of a focused threshold discounting (Shaded boxes are used to highlight the
main differences relative to classic threshold discounting)

Consider an opera house performing Rigoletto on Saturday and Sunday nights.
Potential customers are comprised of active workers, who prefer Saturday over
Sunday – albeit with different degrees of preference – and retired workers, who
don’t care about time and therefore prefer Sunday evening due to higher availability.
Consider a service desired by active workers but not desired by retired workers,
such as baby-sitting. Then a focused threshold discount that offers free baby-sitting
service to subscribers for the Sunday night show could redirect the desired number
of customers to Sunday without offering unnecessary discounts to retired workers,
thus improving profits.

To formalize this intuition, suppose that customers can be divided into two
segments, one characterized by strong time preferences (vs < v̄s) that attach to
the external service a positive value V > 0, and another with weak time preferences
(vs ≥ v̄s) that find no value in the service, and that the frontier valuation v̄s is
high enough. Specifically, let ve be the value attached by a customer to an external
service, where

ve =
{
V if vs < v̄s,

0 otherwise,
with v̄s ∈ [v̂t (rh, n∗t ), vh − ε], ∀ε > 0. (15.8)

Focused threshold discounting consists in promising subscribers not a discounted
price, but rather a discount on the external service if they visit during the slow period
(Fig. 15.7).

Theorem 9 Under the conditions in Eq. 15.8, focused threshold discounting
improves profit for the firm compared to classic threshold discounting.

Indeed, when customers can be segmented in a way that links their time
preferences to their interest for some other service, the firm can employ focused
threshold discounting to improve the efficiency of his incentive system, effectively
offering an incentive only to those customers who need them, and thus achieving a
higher profit.
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15.4 Discussion

This paper studies the operational advantages of threshold discounting schemes
when used by a capacity-constrained service provider that offers two vertically
differentiated services to a random-sized population of strategically-acting cus-
tomers. We show that threshold discounting outperforms traditional approaches
on account of two phenomena: its responsive duality, which allows a firm to
match its pricing and closing decisions to different market states, and a strategic
scarcity effect, which improves the operational effectiveness of price reductions by
signaling lower hot-period availability in high market states to strategic customers.
Atypically, the presence of strategic customers increases firm profits in our context.
We find that when offered through an intermediary, threshold discounting can lose
its effectiveness if the deal specifications are chosen by the intermediary, due to
incentive misalignment caused by commonly used contracts. We further expand the
understanding of the design of threshold discounting schemes by showing that the
optimal design involves a transparent threshold, early deal disclosure, as well as
restricted discounting, and we suggest an idea for improving threshold discounting
by providing focused incentives to specific consumer segments.

Our model includes assumptions to avoid unnecessary complications to the
analysis. We consider customer heterogeneity only with respect to valuation for
the slow period, which is rich enough to both model customer preferences as
heterogeneous and create vertical differentiation between the two service periods.
Nevertheless, our results continue to hold with a more sophisticated bivariate
distribution that accounts for heterogeneity of valuations over both time periods.
Another assumption we make is that the firm takes pricing and closing decisions
only with respect to the slow period. Our results are robust to endogenizing the
closing and pricing decision in the hot period; however, making the pricing decision
non-trivial requires the bivariate model of customer preferences mentioned above
which, coupled with endogenous prices, substantially complicates the exposition
of our results. In the classic threshold discounting studied in Sect. 15.3.3, the
firm conditions both pricing and opening decisions during the slow period on
the number of subscribers. A weaker form of threshold discounting is such that
the number of subscribers merely affects pricing, and the firm is always open
during both time periods. The results in this case are very similar, because
when no discount is offered most customers shun the slow period; specifically,
threshold discounting still grants the beneficial effects described in Sect. 15.3.3
and always outperforms regular discounting, but is less effective at managing
fixed costs, so that when these are high enough seasonal closure becomes a better
choice.

In our analysis, we assume that all customers prefer the hot-period service to
the slow-period service; that is, that service periods are vertically differentiated.
This may not always be the case, as some consumers may have preferences that
differ from the majority. Our results continue to hold under more general preference
functions, where each period is preferred by a fraction of customers, except for
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the special case in which each period is preferred by exactly half of the consumer
population, since in this case there is no need to re-balance demand through the use
of discounts.

The sudden rise and (partial) fall of threshold discounting offers that motivated
this study exemplify an important lesson for firms who intend to engage with
their customers via new technologies: that any approach that leverages customer
information to and from the firm and acts upon it, as threshold discounts do, holds
the potentials to boost operational performance and profit. But also that, if not
understood in all its implications, any such approach can backfire and ultimately
cripple the same operational performance that it was meant to improve.
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Chapter 16
Innovation and Crowdsourcing Contests

Laurence Ales, Soo-Haeng Cho, and Ersin Körpeoğlu

Abstract In an innovation contest, an organizer seeks solutions to an innovation-
related problem from a group of independent agents. Agents, who can be hetero-
geneous in their ability levels, exert efforts to improve their solutions, and their
solution qualities are uncertain due to the innovation and evaluation processes. In
this chapter, we present a general model framework that captures main features
of a contest, and encompasses several existing models in the literature. Using this
framework, we analyze two important decisions of the organizer: a set of awards
that will be distributed to agents and whether to restrict entry to a contest or to run
an open contest. We provide a taxonomy of contest literature, and discuss past and
current research on innovation contests as well as a set of exciting future research
directions.

16.1 Introduction

Everybody has a creative potential and from the moment you can express this creative
potential, you can start changing the world. — Paulo Coelho

Our best ideas come from clerks and stockboys. — Sam Walton

Many organizations today look beyond their boundaries to elicit innovation. With
advances in information technology and global access to skilled individuals,
contests (also known as tournaments) have emerged as a popular and cost-effective
tool to elicit innovative solutions to challenging problems. A contest usually starts
when a contest organizer announces a problem along with contest rules such as a set
of awards (called “award scheme”) and whether the contest is open to the public or
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not. Then, agents who are interested in the contest make efforts to develop solutions
to the problem, and submit them to the organizer. Finally, the organizer evaluates
these solutions, and awards the best one(s) according to the announced rule.

This chapter focuses on two popular types of contests: innovation and crowd-
sourcing contests. In an innovation contest, an organizer seeks solutions to an
innovation-related problem from a (not necessarily large) group of agents, and in
a crowsourcing contest, the organizer seeks (not necessarily innovative) solutions
from a large group of agents. While pointing out this subtlety, we will refer to
both types of contests as “innovation contests” throughout the chapter as these
contests mostly overlap in practice. To illustrate how these contests work in practice,
consider the following example from Ales et al. (2017a) (see their introduction for
detailed examples). Since 2012, Samsung has organized several innovation contests,
called Samsung Smart App Challenge, seeking innovative apps for its products.
The contest started with Samsung’s announcement of contest rules. For example,
Samsung Smart App Challenge 2013 for Galaxy S4 was open to anyone who wished
to participate, and distributed a total of $800,000 prizes for top ten apps. The judging
criteria were uniqueness, commercial potential, functionality, usability, and design.

Innovation contests are utilized for a broad set of topics ranging from mining
solutions (e.g., Goldcorp Challenge which seeks proposals for identifying potential
gold mining targets) to design (e.g., a logo design contest for FIFA World Cup) and
software development (e.g., Samsung Smart App Challenge). While some organiza-
tions run their own contests, others employ contest platforms such as Challenge.gov,
Ennomotive, InnoCentive, Inocrowd, and TopCoder that intermediate contests on
behalf of their clients. For example, InnoCentive crowdsources innovation on behalf
of a diverse group of clients such as AARP Foundation, Eli Lilly, NASA, and P&G
(InnoCentive 2017). InnoCentive organizes ideation, theoretical, and reduction-to-
practice (RTP) challenges (in which agents develop ideas, theoretical solutions, and
prototypes, respectively) in subject areas such as chemistry and social innovation.
Agents of different background compete in these free-entry open innovation contests
for awards ranging from $5,000 to $1 million. As another example, TopCoder
crowdsources software solutions on behalf of a large client base including Best
Buy, Comcast, HP, and IBM (TopCoder 2017). Agents around the world compete
in various software development contests that are open to public, and winners are
awarded cash prizes around $10,000, and the performance of all participants is
converted into a continually updated TopCoder rating.

Through open innovation processes, an organizer can tap into a large number
of experts outside of its firm boundary, and can select the most promising solution
from many submitted solutions. Despite this benefit of having a large number of
participants, the organizer does not need to pay every participant, the organizer may
pay only one agent, the “winner,” who has submitted the best solution. In such
a winner-take-all contest, all agents except the winner bear all the costs of their
efforts. Yet, with many contest participants, agents expect their individual chance of
winning a contest to be low, and hence may not have sufficient incentives to exert
their best efforts. Thus, the contest organizer should carefully choose the right award
scheme, and determine whether to restrict the number of participants to increase the
probability of winning for individual agents.
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The objective of this chapter is to present a general model framework for
innovation contests, and provide insights into two of the organizer’s decisions that
are essential from both practical and theoretical points of view. The first decision we
study is a set of awards through which an organizer incentivizes agents to participate
in a contest and make costly efforts. From a practical point of view, it is important
for an organizer to assess when to adopt a winner-take-all award scheme and when
to offer multiple prizes. From a theoretical point of view, the winner-take-all award
scheme is almost a standard assumption in the contest literature, and it is important
to determine when this assumption is justified. The second decision we analyze in
this chapter is whether it is optimal for a contest organizer to hold an open contest
without restricting entries to the contest. From a practical point of view, this analysis
addresses when open innovation initiatives that rely on the “wisdom of crowds” are
desirable. From a theoretical point of view, several papers in the contest literature
implicitly assume that an organizer does not impose any entry restrictions to agents.
Thus, it would be interesting to examine when it is indeed optimal for an organizer
to hold an open contest. Because this decision of an organizer is closely related to
agents’ incentives, we will also discuss how participating agents change their level
of effort when additional agents enter the contest.

While discussing award scheme and entry restriction decisions based on Ales
et al. (2017a,b) and Körpeoğlu and Cho (2017), we present a general model
framework that encompasses several models that have been studied in the literature.
In particular, our framework captures the following three main features of typical
innovation contests in practice:

• When an organizer seeks the best K solutions, where K is a positive integer
between one and the total number of participants, Ales et al. (2017a) say that
there are K “contributors” among participants in a contest. In some contests,
an organizer is interested in only the best solution, so K equals one (cf. Taylor
1995). For example, in a logo design contest for FIFA World Cup, the organizer
was interested in finding the best logo to adopt. In other contests, the organizer
seeks several good solutions; for example, Samsung sought many useful apps in
Smart App Challenge.

• Following Ales et al. (2017b), we consider two sources of uncertainty that agents
face. The first source of uncertainty is referred to as “technical uncertainty,” and
this stochastic element is often modeled as a search process for the best solution
from a number of trials (e.g., Dahan and Mendelson 2001). For example, a logo
designer may experiment on several logo sketches, and s/he does not know the
results of those experiments a priori. The second source of uncertainty, called
“taste uncertainty,” is due to the subjective or unknown taste of the organizer.
For example, in Samsung Smart App Challenge, when submitting their apps,
developers do not know how judges will evaluate their apps in subjective criteria
such as uniqueness, usability, and design.

• We model agents’ heterogeneity utilizing a “productivity-based” model intro-
duced by Körpeoğlu and Cho (2017). In this model, agents are heterogeneous in
their productivity levels so that one unit of effort from a high-productivity agent
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creates higher value than that from a low-productivity agent. In practice, agents
can feature heterogeneous productivity levels due to difference in experience,
expertise, and overall ability. For instance, the TopCoder rating of an agent
can indicate his/her ability or experience level because high rating indicates
successful past performance.

The remainder of this chapter is organized as follows. In Sect. 16.2, we present
our general model framework and discuss how this model framework encompasses
existing models in the literature. In Sect. 16.3, we provide a brief taxonomy of the
literature, and discuss several interesting work in the area of innovation contests.
Then, we study the organizer’s the award scheme and entry restriction decisions
in Sects. 16.4 and 16.5. While we choose to focus on the above two decisions, we
discuss some exciting open questions in Sect. 16.6.

16.2 A General Model Framework for Innovation Contests

In this section, we describe a fairly general environment that encompasses com-
monly used models when studying innovation contests. As discussed in Sect. 16.1,
this general model essentially combines the models used in Ales et al. (2017a,b)
and Körpeoğlu and Cho (2017). In what follows, we first present our model of
agents, and then we present our model of the organizer. At the end of this section,
we briefly discuss this model in comparison to other models in the literature.

Agents Suppose that there are N (≥ 2) agents who can participate in the contest.
Each participating agent i (∈ {1, 2, . . . , N}) develops a solution to the problem
posed in the contest with solution quality (hereinafter “output”) yi ∈ Y ⊆ R ∪
{−∞,∞}. Following Ales et al. (2017b), we represent agent i’s output as a function
of improvement effort qi , a number of trials mi , trial shocks (ε̃i1, . . . , ε̃imi

), and a
taste shock ε̃i as follows:

y(qi,mi, ε̃i1, . . . , ε̃imi
, ε̃i ) = v(qi)+max{ε̃it , t = 1, . . . , mi} + ε̃i . (16.1)

This function combines the following three components. First, each agent i can exert
“improvement effort” qi , and this effort leads to a deterministic improvement v(qi)
of agent’s output, where v is an increasing and concave function of qi . Second, each
agent i may engage in a trial-and-error process by conducting several experiments,
where the agent determines a number of trials mi (hereinafter, “trial effort”). In each
trial t (= 1, 2, . . . , mi), the agent faces uncertainty in the outcome of a trial, which is
modeled through a trial shock ε̃it that follows a Gumbel distribution with E[ε̃it ] = 0
and scale parameter μ. (Throughout the chapter, we use the tilde accent to represent
random variables.) Each agent observes the outcome of these trials (ε̃i1, . . . , ε̃imi

)

and submits the best one to the organizer. Third, each agent i’s output is subject
to the taste of the organizer, which we model by a taste shock ε̃i . The taste shocks
of agents, ε̃i’s, are independent and identically distributed (i.i.d.) random variables
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with a general distribution and E[ε̃i] = 0. Unlike trial shocks ε̃it ’s, each agent i is
uncertain about the taste shock ε̃i even after the development process is over. For
practical examples and details of these components, see Ales et al. (2017b).

We next define a general form for the utility of agent i, Ua(qi,mi, xi, ci) :
R

4+ → R, which is defined over improvement effort qi , trial effort mi , monetary
compensation xi received from the organizer, and heterogenous cost coefficient ci
for exerting effort. The parameter ci is a privately known cost coefficient for agent
i, drawn from a continuous distribution Φ similar to Moldovanu and Sela (2001).
The utility of the agent takes the following form:

Ua(qi,mi, xi) = xi − ψ(ci(τ1qi + τ2mi)), (16.2)

where τ1 > 0, τ2 > 0, and ψ is convex and increasing with ψ(0) = 0. This
utility function is more general than Ales et al. (2017a,b) which consider identical
agents, but it is similar to Körpeoğlu and Cho (2017). We define total effort as ei =
τ1qi + τ2mi . For example, for an agent with improvement effort qi and trial effort
mi , total effort ei may represent the total labor hours an agent spends, where τ1 and
τ2 are time required for one unit of improvement and trial effort, respectively. Agent
i’s cost of making effort ei is ψ(ei) = ψ(ci(τ1qi + τ2mi)).

The following lemma shows that the output function y given in Eq. 16.1 can be
simplified to a new function that depends only on the agent’s total effort ei and
aggregate shock ξ̃i . The first part of the lemma is shown by Ales et al. (2017b) and
a special case of the second part of the lemma is shown by Körpeoğlu and Cho
(2017) under linear cost of effort and no output uncertainty. We present the proof of
Lemma 1(b) in “Appendix”.

Lemma 1

(a) (Lemma 1 of Ales et al. 2017b) The output function in Eq. 16.1 can be simplified
to y(ei, ξ̃i ) = r(ei) + ξ̃i in which ei is the total effort, r is a concave and
increasing function, and ξ̃i is a random shock that is independent of ei . For
example, if v(qi) = κ log(qi) for some κ > 0, then r(ei) = γ + θ log(ei) where
θ (> 0) and γ are constants.

(b) (Adapted from Körpeoğlu and Cho 2017) The cost-based model in which agents
are heterogeneous in their cost coefficients and the output function y(ei, ξ̃i ) =
r(ei) + ξ̃i is equivalent to a productivity-based model with y(ai, ei , ξ̃i ) =
r(aiei)+ ξ̃i , where ai is agent i’s heterogeneous productivity level drawn from
distribution G(ai) = 1 − Φ(1/ai) with support [a, a], and the cost of effort is
ψ(ei).

In the rest of this chapter, we use the simplified output function y(ai, ei , ξ̃i ) =
r(aiei)+ ξ̃i , and refer to ai as agent i’s productivity, ei as agent i’s effort, and ξ̃i as
agent i’s output shock. This model adds uncertainty to the productivity-based model
introduced by Körpeoğlu and Cho (2017), and adds heterogeneous productivity
levels to the model of Ales et al. (2017a). The productivity level ai is drawn from
a general distribution G over the support [a, a]. Let ãN(j), G

N
(j), and gN(j) represent



384 L. Ales et al.

the random variable, the distribution function, and the density function of the j -th
highest productivity level among N agents, respectively. It is not difficult to verify
that gN(j)(ai) = [N !/((j − 1)! (N − j)!)](1−G(ai))

j−1G(ai)
N−j g(ai). The output

shock ξ̃i (∈ Ξ) follows cumulative distribution H and density h with E[ξ̃i] = 0 and
Ξ = [s, s] where s ∈ R∪{−∞} and s ∈ R∪{∞}. Similarly, let ξ̃N(j), H

N
(j), and hN(j)

represent the random variable, the distribution function, and the density function for
the j -th highest value among N output shocks, respectively.

The Organizer The profit of the organizer, Π̂(Y,X) : Y N × R
N → R, is

defined over the output vector Y and the compensation vector X. Following Ales
et al. (2017a), we consider the case where the organizer benefits from the best
K ∈ {1, . . . , N} outputs, and refer to those agents who produce the best K outputs
as “contributors.” Formally, we can extend the definition of a contributor in Ales
et al. (2017a) (who assume that only the best output is awarded a fixed prize) by
utilizing a general compensation vector as follows:

Definition 1 Let Y (K) = {y(1)[Y ], . . . , y(K)[Y ]} where y(j)[Y ] represents the j -th
highest output in Y – for ease of notation, we use y(j) in short. The organizer’s profit
has K contributors if for all Y ∈ Y N , X ∈ R

N+ ,

(i) There exists a continuously differentiable function Π so that Π̂(Y,X) =
Π(Y (K),X);

(ii) For all j = 1, 2, . . . , K , ∂Π(Y (K),X)/∂y(j) > 0.

A compensation rule φ : Y N → R
N maps the output vector Y = (y1, . . . , yN)

to a vector of compensations the organizer pays to agents, X = (x1, . . . , xN). As
in many contests in practice, we restrict attention to the relative (also called ranked-
order) compensation rule which compensates each agent based on the agent’s
relative rank of the output. Formally, a compensation rule is called the relative
compensation rule when there exists some constant A(j) such that φi(y(j)[Y ]) =
A(j) for all i ∈ N , j = {1, . . . , N} and Y ∈ Y N . Thus, the relative compensation
rule consists of a vector of N prizes (awards), denoted by (A(1), . . . , A(N)), such
that the agent who produces the j -th best output receives a prize of A(j). We refer
to this vector of prizes as “award scheme.” Furthermore, we refer to the agent who
produces the best output as the winner, and to the award scheme that awards only
the winner as the winner-take-all (hereinafter WTA) award scheme.

With K contributors, the organizer’s profit function under the relative compensa-
tion rule is:

Π(Y (K), (A(1), A(2), . . . , A(N))) =
K∑

j=1

y(j) −
N∑

j=1

A(j), ∀ Y ∈ Y . (16.3)

Whereas Ales et al. (2017a) consider a general utility function for the organizer that
can allow risk aversion and other complex functional forms (see Sect. 5 in Ales
et al. 2017a), in this chapter, we restrict attention to a risk-neutral organizer who
maximizes profit as in Ales et al. (2017b) and Körpeoğlu and Cho (2017).
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We say that the organizer holds an “open contest” when all agents who
wish to participate in a contest are allowed to do so. An open contest proceeds
in the following sequence. First, the organizer announces the award scheme
(A(1), A(2), . . . , A(N)). Then, each agent i ∈ {1, 2, . . . , N} privately learns a
productivity level ai , and then determines whether to participate in the contest
and chooses an effort level ei . An agent who chooses not to participate receives
reservation utility 0. Each agent i who chooses to participate in the contest incurs
the cost of effort ψ(ei). Next, each agent observes an output shock ξ̃i , and produces
an output yi = r(aiei) + ξ̃i . Finally, the contest organizer collects solutions of
all participating agents, and gives awards to agents based on the award scheme
(A(1), A(2), . . . , A(N)). We assume that all parameters except the productivity
level ai are common knowledge to both agents and the organizer, and we focus
on symmetric pure-strategy Nash equilibria in which all agents with the same
productivity level make the same effort.

We next present the agent’s and organizer’s problems. Because Ales et al.
(2017a,b) and Körpeoğlu and Cho (2017) consider either agent uncertainty or
heterogeneity, we will develop an original formulation that encompasses the
formulations in those papers. Let e∗ : [a, a] → R+ denote the equilibrium
effort function, where e∗(ai) corresponds to the equilibrium effort of an agent with
productivity level ai . We first derive PN

(j)[ei |e∗, ai], the probability that agent i with
productivity ai and effort ei has the j -th highest output when all other N − 1 agents
exert effort based on the equilibrium effort function e∗. Because agent i has no
information about productivity levels of other agents, from agent i’s perspective,
another agent k has a random productivity level ãk and a random output shock ξ̃k ,
and hence a random output ỹk = r(e∗(ãk))+ ξ̃k . Let F be the distribution function
of ỹi , and let f be the corresponding density function. It is not difficult to show that
the support of ỹi is [s + r(ae∗(a)), s + r(ae∗(a))] (because it can be shown that
aie
∗(ai) is increasing in ai). We can calculate F as follows:

F(yi) = P {r(aie∗(ãi))+ ξ̃i ≤ yi} =
∫

[a,a]
H
(
yi − r(ae∗(a))

)
g(a) da. (16.4)

Let ỹN(j) be a random variable with cumulative distribution FN
(j) and density f N

(j) that
represents the j -th highest value among N outputs. Conditional on agent i having
an output shock realization s, the probability that agent i outperforms agent k by
exerting effort ei is

P {r(aiei)+ s ≥ ỹk} = P {r(aiei)+ s ≥ r(ãke
∗(ãk))+ ξ̃k}

=
∫

[a,a]
H
(
r(aiei)+ s − r(ae∗(a))

)
g(a) da.

Thus, we can write the unconditional probability that agent i with productivity level
ai has the j -th highest output among N agents as follows:
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PN
(j)[ei |e∗, ai] =
∫

s∈Ξ
(N − 1)!

(j − 1)! (N − j)!P {r(aiei)+ s > ỹk}N−jP {r(aiei)+ s < ỹk}j−1h(s) ds,

(16.5)

because N − j agents are ranked lower than agent i, j − 1 agents are ranked higher
than agent i, and they can be ordered in (N − 1)!/((j − 1)! (N − j)!) combinations.
The organizer solves the following program:

max
N≥K, (A(1),...,A(N))

Π =
K∑

j=1

∫

[s+r(ae∗(a)),s+r(ae∗(a))]
yf N

(j)(y)dy −
N∑

j=1

A(j) (16.6)

s.t.
N∑

j=1

A(j)P
N
(j)[e∗(ai)|e∗, ai] − ψ(e∗(ai)) ≥ 0, ∀ ai ∈

[
a, a

]

(16.7)

e∗(ai) = arg max
ei∈R+

N∑

j=1

PN
(j)[ei |e∗, ai]A(j) − ψ(ei), ∀ ai ∈

[
a, a

]
.

(16.8)

The objective of the organizer given in Eq. 16.6 is to choose N (≥ K) and
(A(1), . . . , A(N)) that maximize his expected profit. Participation constraint Eq. 16.7
guarantees that each agent receives non-negative from the contest in equilibrium,
and hence chooses to participate in the contest. Constraint Eq. 16.8 is the incentive
compatibility constraint through which the organizer considers the agent’s utility
maximization problem. In this problem, each agent i with productivity ai chooses
an effort ei that maximizes the expected prize

∑N
j=1 P

N
(j)[ei |e∗, ai]A(j) less the

expected cost ψ(ei), assuming that every other agent chooses an effort based on
the function e∗ in equilibrium.

Discussion The present model framework encompasses the main features of
models used in the innovation contest literature as detailed in Table 16.1. This
framework includes both heterogeneous agents and output shocks that affect agents’
outputs as well as the organizer’s payoff. Unfortunately, without making very
restrictive assumptions, such a generic model has limited analytical tractability for
two reasons. First, f N

(j)(yi) = N !/((j−1)! (N−j)!)(1−F(yi))
j−1F(yi)

N−j f (yi)
expression in the organizer’s objective Eq. 16.6 is highly complex because it
contains the multiplication of N integrals stemming from of the distribution F

in Eq. 16.4, and its density f . Second, the distribution F in Eq. 16.4 depends on
the equilibrium effort e∗, so one needs to characterize the agent’s equilibrium
effort e∗ solving the agent’s problem in Eq. 16.8 before optimizing the organizer’s
decisions. Yet, in Eq. 16.8, the agent’s probability of attaining rank j , PN

(j)[ei |e∗, ai],
is highly complex, and so is the system of equations arising from agents’ first-order
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Table 16.1 Review of innovation contest literature that use a variant of the present model
framework

Paper Model of uncertainty Model of heterogeneity Other features

Terwiesch
and Xu
(2008)

(i) Trial-and-error
projects with no
improvement effort and
no taste shock;
(ii) ideation projects with
no trial effort and a
Gumbel distributed taste
shock

Expertise-based projects
with heterogeneous
expertise levels and no
uncertainty

The organizer’s payoff is
in the weighted
combination of the best
output and the average of
all outputs

Ales et al.
(2017a)

A model that utilizes
Lemma 1(a), and
assumes a log-concave or
increasing density for the
output shock

Homogenous agents A general utility function
for the organizer that
allows risk aversion and
complementarity

Mihm and
Schlapp
(2017)

Ideation projects with no
trial-and-error
experiments and
uniformly distributed
taste shock

Expertise-based
heterogeneity in the
second period with
feedback

A two-period model with
two agents where
feedback can be given to
agents between periods

Nittala and
Krishnan
(2016)

Ideation projects as in
Terwiesch and Xu (2008)
with Gumbel distributed
taste shock

Homogenous agents Internal contests where
the organizer incurs a
cost from agents’ efforts;
and external contests
where there is a risk for
linkage of intellectual
property

Körpeoğlu
and Cho
(2017)

No output shock Productivity-based
projects that encompass
cost-projects and
expertise-based projects

The same profit function
for the organizer as T&X;
fixed cost of entry when
driving equilibrium

Ales et al.
(2017b)

Same model of
uncertainty with the
present chapter

Homogenous agents No other features

Hu and Wang
(2017)

A model that utilizes
Lemma 1(a), and
assumes a symmetric
log-concave density for
the output shock

Two agents model where
each agent has high
ability in exactly one of
two attributes

Two attribute model with
the option of running one
contests per each attribute
or a single contest for
both attributes

Körpeoğlu
et al. (2017)

A model that utilizes
Lemma 1(a) and assumes
a log-concave density for
the output shock

Homogenous agents Multiple contest
organizers and a more
general cost function that
allows economies of
scope across different
contests

Stouras et al.
(2017)

A common taste shock
that does not affect
agents’ relative rank but
impacts their absolute
outputs

Heterogeneous expertise
levels

Fixed cost of entry
leading to uncertain
number of participants
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conditions. Due to these technical complications, most papers in the literature have
chosen one of two pathways: either focus on agents’ uncertainty by suppressing
their heterogenous ability levels or focus on agents’ heterogeneity by suppressing
the uncertainty they face. Accordingly, we use this separation while discussing the
literature in the following section, and we analyze these two analytically tractable
special cases separately in Sects. 16.4 and 16.5.

16.3 A Brief Taxonomy of Contest Literature

In this section, we briefly discuss contest literature in general, and then discuss the
distinguishing factors of innovation contests. Although there is a stream of empirical
studies on contests, we restrict attention to theoretical work.

The research on contests is not new. Following the pioneering works of Tullock
(1967, 1980) and Lazear and Rosen (1981), contests have been used in various
settings such as labor tournaments (e.g., Green and Stokey 1983; Nalebuff and
Stiglitz 1983) in which employers aim to incentivize employees to exert more
effort, and sales contests (e.g., Kalra and Shi 2001) in which firms elicit effort from
salespeople. Several topics have been explored such as the optimal set of awards
that an organizer should distribute (e.g., Moldovanu and Sela 2001; Kalra and Shi
2001), the risk-taking behavior of agents in a contest (Hvide 2002), having multiple
rounds or a single round in a contest (Moldovanu and Sela 2006), and designing
auction-based mechanisms in which heterogeneous agents have different costs (Che
and Gale 2003; Siegel 2009). Vojnović (2015) provides a detailed overview of
such contests. Different from these classical contests, innovation contests possess
two important distinct features: (i) an organizer is interested in only the best
solution(s) rather than all solutions (i.e., K < N ) and (ii) agents’ uncertainty
impacts an organizer’s profit from a contest, and hence the organizer considers
agents’ uncertainty as well as their effort while determining contest rules.

As discussed in Sect. 16.2, due to tractability issues, the literature on innovation
contests has been divided into two streams. The first stream focuses primarily on
innovation contests in which agents exert effort or conduct random trials when
their outcomes are uncertain, while suppressing agent heterogeneity. Terwiesch and
Xu (2008) show that agents’ efforts always decrease with more participants but
an open contest is always optimal when considering agents’ Gumbel distributed
shocks. Ales et al. (2017a) show that more agents may lead to increased or decreased
effort from agents depending on the distribution H of the output shock, and further
show that an open contest is optimal for a general distribution only when the output
shock distribution is sufficiently spread out or the organizer seeks many diverse
solutions. Meanwhile, Ales et al. (2017b) characterize the optimal set of awards
in this environment, and prove that when agents’ uncertainty has a log-concave or
increasing density function, the winner-take-all award scheme is optimal. Mihm
and Schlapp (2017) compare different types of feedback (e.g., public, private, or no
feedback) that can be used to improve the contest outcome. Nittala and Krishnan
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(2016) compare internal innovation contests within firms, in which the organizer
incurs a cost from agents’ efforts (as they are employees), with external contests
where the organizer utilizes independent agents. Hu and Wang (2017) study a case
where the organizer seeks two attributes, and compare running a single contest for
both attributes with running two contests – one for each attribute. Körpeoğlu et al.
(2017) study multiple contests tackled by the same set of agents, and show that when
organizers seek innovative solutions rather than low-novelty tasks, it may be better
for organizers to allow agents to freely participate in multiple contests rather than
to restrict them to a single contest. They further characterize the optimal number of
parallel contests, and show that this optimal number increases with the novelty of
the solutions organizers seek.

A second stream of the literature studies contests in which heterogeneous agents
compete but with no uncertainty in agents’ outputs. These papers build on prior
research in economics such as Moldovanu and Sela (2001), who analyze the optimal
set of awards in a cost-based model where agents are heterogeneous in their cost
of effort. Liu et al. (2007) use a similar model to Moldovanu and Sela (2001) to
study prize structure, segmentation, and handicapping in a consumer contest where
the organizer aims to stimulate consumption of a good. Terwiesch and Xu (2008)
analyze an expertise-based model in which agents are heterogeneous in their initial
expertise, and show that an open contest can be optimal under certain conditions.
Körpeoğlu and Cho (2017) propose an alternative productivity-based model to unify
cost-based model of Moldovanu and Sela (2001) and expertise-based model of
Terwiesch and Xu (2008). They show that an agent’s equilibrium effort can increase
with more participants, and offer a precise explanation to this result by detailing
two opposing drivers. Körpeoğlu and Cho (2017) further show that an open contest
is more likely to be optimal than what prior studies asserted. Recently, Stouras et al.
(2017) analyze how an organizer can promote agents’ participation and effort when
only a random number of agents participate in the contest because agents incur large
fixed costs of entry, which discourage some agents from participating.

Besides the two streams of research on innovation contests discussed above, there
are some papers that use a different, more tailored modelling framework to study
special types of innovation contests. Taylor (1995) considers a contest among a
pool of identical agents, in which each agent conducts random trials until the best
output of those trials reaches a pre-determined quality level. Fullerton and McAfee
(1999) analyze a contest in which an organizer auctions entry into a contest. Both
of these papers show that more agents in a contest leads to a lower equilibrium
effort for every agent, but unlike Terwiesch and Xu (2008) and Ales et al. (2017a),
these papers conclude that the organizer should restrict entry to the contest. Erat
and Krishnan (2012) study design contests in which each agent selects one design
approach among a finite set of approaches. Bimpikis et al. (2016) study information
extraction and disclosure strategies that keep agents active in dynamic contests.
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16.4 Contests with Uncertainty

In this section, we analyze innovation contests where the output uncertainty plays
a larger role than the heterogeneity of agents. To implement this, we suppress the
agent heterogeneity by setting a = a = 1. With this assumption, in a symmetric
equilibrium, each agent exerts the same equilibrium effort e∗(ai) = e∗. In this case,
we can simplify agent i’s probability of producing the j -th highest output in Eq. 16.5
as follows:

PN
(j)[ei |e∗] =

∫

s∈Ξ
(N − 1)!

(j − 1)! (N − j)!H(s + r(ei)− r(e∗))N−j

× (1−H(s + r(ei)− r(e∗)))j−1h(s) ds. (16.9)

Then, we can rewrite the organizer problem Eqs. 16.6, 16.7, and 16.8 as follows:

max
N≥K, (A(1),...,A(N))

Π = Kr
(
e∗
)+ E

[ K∑

j=1

ξ̃N(j)

]

−
N∑

j=1

A(j) (16.10)

s.t.
1

N

N∑

j=1

A(j) ≥ ψ(e∗) (16.11)

e∗ = arg max
ei∈R+

N∑

j=1

PN
(j)[ei |e∗]A(j) − ψ(ei). (16.12)

In Sect. 16.4.1, we analyze the optimal award scheme, and in Sect. 16.4.2 we study
the decision of the organizer to restrict entry or not.

16.4.1 Optimal Award Scheme

This section discusses the optimal award scheme based on Sect. 3 of Ales et al.
(2017b). As discussed in Sect. 16.2, a tournament organizer determines an award
scheme by choosing a set of prizes (A(1), A(2), . . . , A(N)) for each ranked agent.
It is common in the literature to focus on environments where the WTA is used.
However, the WTA scheme may not always be optimal. To examine when the WTA
scheme is justified, Ales et al. (2017b) derive a necessary and sufficient condition
in their Proposition 1 under which the WTA scheme is optimal. Specifically, they
link the optimality of the WTA scheme to (i) the distribution of the output shock
and (ii) whether the participation constraint Eq. 16.11 is satisfied. Without going
into details about this condition, we will discuss when it is violated and when it is
satisfied.
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Fig. 16.1 (a) Frechet density with mean 0, shape parameter β = 1.2, and scale parameter μ = 1.5
(under which the WTA scheme is suboptimal) and (b) Gumbel density with mean 0 and μ = 1,
which is log-concave (under which the WTA scheme is optimal)

Proposition 1 (Propositions 2 of Ales et al. 2017b) For any given A, the winner-
takes-all (WTA) award scheme is suboptimal when one of the following conditions
is satisfied:

(i) lims→s h(s) = 0, lims→s |h′(s)/h(s)| <∞, and

∫

s∈Ξ
[HN

(j)(s)−HN
(1)(s)]

(
h′(s)
h(s)

)′
ds > 0, (16.13)

where Eq. 16.13 holds if h(s) is strictly log-convex (i.e., d2 logh(s)/ds2 > 0,
∀s).

(ii)
A

N
− ψ

((
ψ ′

r ′

)−1(

A

∫

s∈Ξ
(N − 1)H(s)N−2h(s)2ds

))

< 0.

We first discuss condition (i), using an example that satisfies this condition.
Observe that the density h in Fig. 16.1a features a large highly convex and
decreasing region between its peak point and its fat right tail. In this example, an
agent’s effort may be more effective in increasing the agent’s probability of attaining
some rank j (>1) than that of becoming the winner. Thus, reducing the winner prize
A(1) and increasing award A(j) corresponding to this rank j makes the agent’s effort
more effective to win a prize, and hence the agent finds it optimal to increase effort.
In practice, this may occur when it is likely that most agents generate low outputs
while a few agents generate very high outputs in the contest; for example, when
agents’ outputs are evaluated based on popularity among consumers and only few
solutions are expected to be extremely popular (e.g., evaluation based on download
counts for apps in the 2012 Samsung Smart App Challenge).

Condition (ii) in Proposition 1 specifies when agents do not find it beneficial to
participate a contest under the WTA scheme. In this case, the participation constraint
Eq. 16.11 is violated under the solution to the agent’s problem in Eq. 16.12, because
each agent’s effort in equilibrium is too high in a WTA contest to be justified by
the expected winner prize. In this case, the WTA scheme cannot be optimal to the
organizer because there is no equilibrium under the WTA. Thus, the organizer may
offer multiple awards to strategically reduce agents’ effort in order to guarantee their
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participation. Ales et al. (2017b) show that the condition in Proposition 1(ii) holds
when agents’ uncertainty is sufficiently low and/or their cost function ψ has low
convexity. This suggests that, all else being equal, the WTA scheme is more likely
to be optimal in a contest that seeks highly technical or innovative solutions that
demand more substantial increase in agents’ marginal costs of effort (e.g., an RTP
challenge at InnoCentive).

Next, we discuss sufficient conditions for ξ̃i under which the WTA scheme is
optimal.

Proposition 2 (Proposition 3 of Ales et al. 2017b) Suppose that Eq. 16.11 holds
under the WTA award scheme. Then, for any given A, the WTA award scheme
is optimal when the density h(s) of the output shock ξ̃i is log-concave (i.e.,
d2 logh(s)/ds2 ≤ 0, ∀s) or increasing in s.

According to Proposition 2, the WTA award scheme is optimal when the output
shock density is log-concave or increasing. When a density function is log-concave
or increasing, no portion of its support is highly convex and decreasing (e.g., see
Fig. 16.1b), and hence such a density violates Eq. 16.13 in Proposition 1. In fact,
the class of distributions proposed in Proposition 2 is fairly large because many of
the commonly-used distributions are either log-concave (e.g., Gumbel, exponential,
normal, uniform, and logistic distributions, and Weibull distribution with a shape
parameter greater than 1) or increasing (e.g., Weibull distribution with a shape
parameter less than or equal to 1). Thus, in practice, the WTA scheme may be
appropriate in contests where homogenous agents expect that their outputs will be
evenly distributed rather than a few agents generating very high outputs.

16.4.2 Open Innovation and Agents’ Incentives

In this section, we build our discussion on Sect. 4 of Ales et al. (2017a) that shows
when the organizer should hold an open contest that allows entry of all agents who
wish to participate in the contest. The number of participants N directly impacts
the organizer’s profit Π = Kr (e∗) + E[∑K

j=1 ξ̃
N
(j)] − A in two ways. First, N

affects the agent’s equilibrium effort e∗ and hence Kr (e∗), since K is fixed and
r(·) is increasing. Second, N affects E[∑K

j=1 ξ̃
N
(j)], which represents the expected

value of the best K outcomes from N random shocks. It is easy to see that this term
increases with N (≥ K) for any K because a more diverse set of solutions increases
the expected value of the best K outputs. Thus, for a given award A, depending on
how e∗ changes with N , Π can increase or decrease with N. When Π is increasing
with N , it is optimal for the organizer to choose an open contest. In the remainder
of this section, we first study how the agent’s equilibrium effort e∗ changes with N ,
and then when the organizer should choose an open contest.

As the number of participants N increases, one may expect that agents would
decrease their effort e∗ because their individual chance of becoming the winner
decreases. Yet, Ales et al. (2017a) show, counter-intuitively, that more participants
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do not always induce lower efforts from agents. To discuss this finding, we can
derive the equilibrium effort e∗ using the condition ψ ′(e∗)/r ′(e∗) = AIN, where
IN ≡

∫
s∈Ξ (N − 1)H (s)N−2 h (s)2 ds. Because ψ ′/r ′ is increasing, the effort e∗

is increasing (resp., decreasing) in N whenever IN is increasing (resp., decreasing)
in N ; see the following example for illustration.

Example 1

(i) When ξ̃i follows a Weibull distribution with mean 0, shape parameter β = 1,
and scale parameter μ, we have IN = (N − 1)/(μN) increasing in N . Thus,
e∗ increases with N as well.

(ii) When ξ̃i follows a Gumbel distribution with mean 0 and scale parameter μ, we
have IN = (N − 1)/(μN2). In this case, IN is decreasing in N , and so is e∗.

Ales et al. (2017a) explain the intuition for why more participants can increase
the equilibrium effort e∗ by analyzing IN as follows. From Eq. 16.12, the agent’s
marginal benefit of increasing effort is A(PN

(1))
′[e∗|e∗] = Ar ′(e∗)IN , and it

increases with (PN
(1))
′[e∗|e∗] = r ′(e∗)IN , which represents a marginal change of the

winning probability with additional effort. Thus, how e∗ changes with N depends
not on the winning probability but on the marginal impact of additional effort on the
winning probability. When IN+1 > IN , more intense competition due to a larger
number of agents increases the marginal benefit of an agent’s additional effort on
the probability of winning. In this case, agents increase effort when faced with more
intense competition.

Building on this observation, we next presents a necessary and sufficient condi-
tion on the output shock ξ̃i under which the equilibrium effort e∗ decreases with
the number agents N , and presents sufficient conditions under which e∗ increases
with N .

Proposition 3 (Proposition 1 in Ales et al. 2017a)

(a) The equilibrium effort e∗ is non-increasing for any N ≥ 2 if and only if the
density h(s) of the output shock ξ̃i satisfies

∫

s∈Ξ
(1−H(s))H(s)h′(s) ds ≤ 0. (16.14)

(b) Suppose h(s) is increasing in s or the symmetric function of h with respect
to y-axis, i.e., hr(s) ≡ h(−s) for all s, satisfies Eq. 16.14 strictly. Then, e∗ is
increasing up to some N∗ (where N∗ = ∞ for increasing h).

Condition Eq. 16.14 in Proposition 3(a) ensures that the density h is sufficiently
right-skewed as in Example 1(ii), and this condition is satisfied by any symmetric
log-concave density (e.g., normal, logistic) as well as Gumbel and exponential
densities. This implies that when agents believe that a bad outcome is at least as
likely as a good outcome, they tend to decrease effort with more participants. On
the other hand, whenever the necessary and sufficient condition given in Eq. 16.14
is violated, Proposition 3(b) shows that the equilibrium effort e∗ is increasing in
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N up to some N∗. For example, this condition is violated by a reversed Gumbel
distribution or a Weibull distribution. This implies that when agents expect good
outcomes with high likelihood, they tend to increase effort with more participants in
the contest. This finding is supported from experimental results of List et al. (2014),
which demonstrate that in contests with small size, when agents know that they have
a high chance of getting favorable outcomes, increasing the number of participants
may have positive impact on agents’ efforts (see Ales et al. (2017a) for detailed
discussion).

We next discuss the findings of Ales et al. (2017a) about when the organizer
should hold an open contest that allows all agents who wish to participate in the
contest to do so. When the equilibrium effort e∗ is increasing in the number of
agents N , the organizer’s profit increases with N because more participants in the
contest also provide a more diverse set of solutions to the organizer (i.e., increases∑K

j=1 E[ξ̃N(j)] as discussed above). Thus, it is optimal for the organizer to hold an
open contest.

When the equilibrium effort e∗ is decreasing in the number of agents N , the
organizer’s profit may increase or decrease with N , depending on whether the
benefit of having a diverse set of solutions outweighs the agents’ reduced effort.
To quantify the benefit of having a more diverse set of solutions for a general output
shock distribution H(s), the notion of a scale transformation is used. When the
output shock ξ̃i is transformed with scale parameter α, the transformed output shock
(i.e., ξ̂i = αξ̃i) has the same mean as ξ̃i at 0, and its variance is α2 times the variance
of ξ̃i . When α > 1, ξ̂i has a larger variance and its density is more spread out.
The following proposition of Ales et al. (2017a) shows that when the output shock
density h is sufficiently spread out, an open contest is optimal.

Proposition 4 (Proposition 2 of Ales et al. 2017a) For any distribution H of the
output shock ξ̃i , there exist α such that under a scale transformation of ξ̃i with
α ≥ α, an open contest with unrestricted entry is optimal for any number of
contributors K .

Proposition 4 shows that when the agents’ output uncertainty is sufficiently
large, an open contest is optimal. In practice, agents can face large uncertainty
when the organizer seeks innovative solutions (e.g., writing a software that matches
3D objects with 2D images) rather than low-novelty tasks (e.g., findings bugs in
a software). Similarly, how broadly the organizer’s problem is defined or how
objective the evaluation criteria are can play a role in agents’ uncertainty. Overall,
Proposition 4 shows that open innovation initiatives are justified when the organizer
seeks innovative solutions for broadly defined problems and/or with subjective
judging criteria.

Ales et al. (2017a) further show in their Proposition 3 that the threshold scale
parameter α, which is the minimum α required for an open contest, decreases with
the number of contributors K . This suggests that an open contest is more likely
to be optimal when there are more contributors. This result, in conjunction with
Proposition 4, generates insights that are consistent with practice. For example,
Samsung Smart App Challenge and Goldcorp Challenge are open contests, probably
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because agents face large uncertainty, and anticipate a large number of contributors.
On the other hand, in the design contest for the official emblem of the 2014 FIFA
World Cup, participating agencies were restricted to 25 (James 2014). Although
this contest also involves uncertainty, the restricted entry may be because there is a
single contributor.

16.5 Contests with Heterogenous Agents

In this section, we go back to our general model, and analyze contests where agents
feature heterogenous productivity levels, while suppressing agents’ uncertainty.
This model may be suitable for contests in which agents engage in low-novelty
tasks, and their ability levels are highly heterogeneous. For ease of illustration, we
focus on a case with a single contributor (i.e., K = 1) and a linear cost of effort
ψ(ei) = cei . This model corresponds to a special case of Körpeoğlu and Cho (2017)
by assuming that the organizer is interested in only the best solution.

In a symmetric equilibrium, an agent with productivity level ai chooses an effort
level according to the equilibrium effort function e∗(ai), and creates an output
y∗(ai). In this case, each agent can decide on an output level yi by choosing an
appropriate effort ei = r−1(yi)/ai because yi = r(aiei). Since agent i does not
know other agents’ ability levels, the equilibrium output ỹ∗ = y∗(ã) is uncertain,
where ã is a random variable that represents another agent’s unknown productivity
level. Assuming that y∗ is an increasing function of a productivity level (verified
later), we can write the probability that agent i is better than another agent as
P(yi ≥ ỹ∗) = G

(
(y∗)−1(yi)

)
. Thus, each agent i’s problem in Eq. 16.8 can be

rewritten as

max
yi

{ N∑

j=1

A(j)

(N − 1)!
(j − 1)! (N − j)!G

(
(y∗)−1(yi)

)N−j
(1−G

(
(y∗)−1(yi))

)j−1

− cr−1(yi)

ai

}

. (16.15)

In equilibrium, yi = y∗ (ai) for all agents with productivity ai . Thus, for agent i to
participate, the utility from the contest must be non-negative; i.e.,

N∑

j=1

A(j)

(N − 1)!
(j − 1)! (N − j)!G(ai)

N−j (1−G(ai))
j−1 − cr−1(y∗(ai))

ai
≥ 0.

(16.16)
Lastly, given the equilibrium effort e∗ (ai) = r−1(y∗(ai))/ai , the organizer’s profit
in Eq. 16.6 becomes:

Π =
∫ a

a

r
(
aie
∗ (ai)

)
gN(1) (ai) dai − A. (16.17)
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In Sect. 16.5.1 we study the optimal award scheme, and in Sect. 16.5.2 we analyze
the decision of the organizer to hold an open contest or restrict entry to the contest.

16.5.1 Optimal Award Scheme

In this section, as in Sect. 16.4.1, we discuss when the WTA award scheme is
optimal. The result of this section is new, so its proof is presented in “Appendix”.
Suppose that the organizer distributes two prizes to the winner and the runner-up
with a total prize of A. (The analysis can easily be generalized to multiple prizes.)
Let α ∈ [0, 0.5] be a proportion of the total prize that is awarded to the runner-up.
Then., the winner prize A(1) = (1 − α)A and the runner-up prize A(2) = αA. To
investigate when the WTA (i.e., α = 0) is optimal, we use a specific functional
form for the effort function r(e) = θ(e1−b − 1)/(1− b) (where b ≥ 0), which
is a Constant Relative Risk Aversion (CRRA) function. The CRRA effort function
collapses to the linear effort function of Moldovanu and Sela (2001) and Mihm
and Schlapp (2017) when b = 0 (i.e., limb→0 θ(e

1−b − 1)/(1− b) = θe), and
to the logarithmic effort function of Terwiesch and Xu (2008) when b = 1 (i.e.,
limb→1 θ(e

1−b − 1)/(1− b) = θ log e).

Proposition 5 Let r(e) = (e1−b − 1)/(1− b). There exists b0 such that for all
b ≤ b0, it is optimal for the organizer to set α = 0. In contrast, it is optimal for the
organizer to set α > 0 when

∫ a

a

ai
(
aie
∗(ai)

)−b ∂e∗ (ai)
∂α

gN(1)(ai) dai > 0.

Proposition 5 shows that the WTA scheme is optimal when the concavity of
the effort function (captured in parameter b) is small; this result is also illustrated
in Fig. 16.2a, b. In contrast, as Fig. 16.2c depicts, when b is large, the organizer’s
profit improves by increasing the weight on the second prize, so the WTA scheme
is suboptimal. To understand the intuition behind this result, we need to analyze the
derivative of the organizer’s profit with respect to the weight on the second prize α:

∂Π

∂α
= θ

∫ a

a

ai
(
aie
∗(ai)

)−b ∂e∗ (ai)
∂α

gN(1)(ai) dai . (16.18)

As the organizer increases the weight on the second prize, agents with low
productivity increase effort (i.e., ∂e∗(ai)/∂α > 0 for small ai) and agents with
high productivity reduce effort (i.e., ∂e∗(ai)/∂α < 0 for large ai). There are two
forces that determine whether the former effect or the latter effect dominates. On
the one hand, because the organizer is interested in the best output, the organizer
has larger weight on the effort of the high-productivity agents than low-productivity
agents. On the other hand, because the equilibrium output y∗(ei) is increasing in
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Fig. 16.2 The organizer’s profit Π as a function of the weight on the runner-up prize α when
ã ∼ Uniform(0, 1), N = 10, r(e) = e1−b/(1− b), A = 1, and c = 0.1. (a) b = 0.5 (b) b = 1
(c) b = 1.5

ai , and the effort function r is concave, additional effort by low-productivity agents
leads to larger increase in their outputs (i.e., (aie∗(ai))−b is decreasing in ai). When
the effort function is linear or close to linear (i.e., b is small), the negative effect
of the second prize (i.e., αA) on the equilibrium effort of high-productivity agents
outweighs its positive effect on the equilibrium effort of low-productivity agents, so
the WTA scheme is optimal. When the effort function is highly concave (i.e., b is
large), additional effort by low-productivity agents leads to significant increase in
their outputs so it is optimal for the organizer to offer a second prize.

Proposition 5 is similar to Propositions 2 and 5 of Moldovanu and Sela (2001),
who study a cost-based heterogeneity model with r(ei) = ei , and all contributors
(i.e., K = N ). Their Proposition 2 shows that the WTA scheme is optimal when
the cost of effort ψ is linear. Proposition 5 in Moldovanu and Sela (2001) assumes
convex ψ , and proposes a necessary and sufficient condition for the WTA scheme
to be suboptimal. Our Proposition 5 extends their results to the productivity-based
model where the organizer is interested in the best solution (i.e., K = 1), and shows
that the concavity of the effort function r is another factor that affects the optimality
of the WTA scheme.

16.5.2 Open Innovation and Agents’ Incentives

In this section, we discuss when the organizer should allow the entry of all agents
who wish to participate in a winner-take-all contest. We build on Sect. 3 of
Körpeoğlu and Cho (2017). As in Sect. 16.4.2, we first discuss how the equilibrium
output changes with the number of agents in the contest. Then, we present an
original result regarding the impact of the number of agents on the organizer.
Before describing how the equilibrium effort and output change with the number
of agents N , we present the following result from Körpeoğlu and Cho (2017). The
lemma characterizes the equilibrium effort and output under the WTA scheme,
while generalizing this lemma to the case with multiple awards in Lemma 3 of
“Appendix”.
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Fig. 16.3 The impact of an additional agent on the agent’s output: (a) empirical observation in
Boudreau et al. (2012), and (b) our theoretical prediction of y∗,N+1 − y∗,N when G ∼ Beta with
parameters 1 and 0.75; N = 10, r(e) = e0.9/0.9, A = 1, and c = 0.1

Lemma 2 (Lemma 1 of Körpeoğlu and Cho 2017) In a productivity-based
project with a general productivity distribution G and a general effort function r ,
an agent with productivity ai has equilibrium effort e∗(ai) and equilibrium output
y∗(ai), where

e∗(ai) = A

cai

∫ ai

a

agN−1
(1) (a) da and y∗(ai) = r

(
A

c

∫ ai

a

agN−1
(1) (a) da

)

.

We discuss how the agent’s output y∗ and effort e∗ change with the number of
agents N , by contrasting the implications of our model with empirical observations.
Let y∗,N and e∗,N denote the agent’s output and effort, respectively, when there
are N agents in the contest. Figure 16.3a, adapted from Fig. 7 of Boudreau et al.
(2012), depicts how the agent’s output changes with an additional high-ability
“superstar” (dotted curve) or an additional lower-ability “non-superstar” (normal
curve) in software development contests organized by TopCoder. For both cases, an
additional agent has a minimal effect on low-ability agents with TopCoder rating
less than 2000, whereas it has a negative effect on moderate-ability agents with
TopCoder rating between 2000 and 2400, and it has a positive effect on high-ability
agents with TopCoder rating over 2400. To compare such empirical observation
with our theoretical prediction, we illustrate the impact of an additional agent on
the output of agents with different productivity levels in Fig. 16.3b by plotting
y∗,N+1(ai) − y∗,N (ai) over ai . One can clearly see that the patterns in Fig. 16.3a
are strikingly similar to those in Fig. 16.3b.

In order to identify the factors that derive the patterns in Fig. 16.3a, b, we utilize
the findings of Körpeoğlu and Cho (2017). Specifically, substituting the expression
of e∗,N in their Eq. 6 into y

∗,N
i = r(aie

∗,N ), we can write y∗,N as follows:

y∗,N (ai) = r

(
A

c
GN−1

(1) (ai) E[ãN−1
(1) |ãN−1

(1) < ai]
)

. (16.19)
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In Eq. 16.19, there are two opposing forces that influence agent i’s equilibrium
output with an increase of N . First, a higher N reduces agent i’s probability
of winning the contest, which corresponds to the probability of having a higher
productivity than all other agents; i.e., P(ãN−1

(1) < ai) = GN−1
(1) (ai), decreases

with N . Second, Körpeoğlu and Cho (2017) show in their Proposition 1 that a
larger N raises the expected productivity of the runner-up, given that agent i is
the winner, E[ãN−1

(1) |ãN−1
(1) < ai]. This second effect creates positive incentives

for some agents to exert higher effort and improve output in order to win the
contest. Depending on which of these two opposing forces dominates, agent i

may generate a better or worse output y∗,N (ai). Low-ability agents are hardly
affected by increased competition because they already exert minimal effort due
to low chances of wining. Moderate-ability agents tend to have lower effort and
hence worse outputs because the impact of increased competition on their winning
probability (i.e., GN

(1)(ai)) is dominant. High-ability superstars, who have higher
winning probabilities, tend to increase effort and hence improve outputs because
the incentives for exerting higher efforts to win the contest are stronger for them
(i.e., an increase of E[ãN−1

(1) |ãN−1
(1) < ai] outweighs a decrease of GN

(1)(ai)).
Finally, we discuss when an open contest is optimal. An open contest is optimal

when the organizer’s profit increases with additional agents in the contest. Due to
agents’ heterogeneous response to additional agents in the contest, the organizer
faces a trade-off when determining whether to allow more agents in the contest.
More agents in the contest induce higher efforts from high-productivity agents,
but reduce efforts of moderate-productivity agents. Because the organizer knows
only the distribution of productivity levels of agents but does not know their exact
productivity levels a priori (for example, it is possible that all agents have moderate
productivity), it is not clear whether the organizer should hold an open contest. To
illustrate when an open contest is optimal, we consider a special case with a CRRA
effort function r(e) = θ(e1−b − 1)/(1− b) (with b ∈ [0, 1]) and a generalized beta
distribution that encompasses a beta distribution (when a = 1) with parameters d

and 1 including uniform as shown in Fig. 16.4a.

0 0.5 1

d = 0.5
d = 1
d = 1.5

0 0.5 1 0 2 4

a b cc

Fig. 16.4 The density g(a) for (a) beta distribution with parameters d and 1 (ã ∼ Beta(d, 1)),
(b) beta distribution with parameters 1.5 and 1.5 (ã ∼ Beta(1.5, 1.5)), and (c) log-normal
distribution with log-scale parameter 0 and shape parameter 1 (ã ∼ log N(0, 1))
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Proposition 6 When r(e) = θ(e1−b − 1)/(1− b), and ã ∈ [0, a] follows G(ai) =
adi /a

d (where b ∈ [0, 1] and d > 0), an open contest is optimal.

To build intuition for Proposition 6, we rewrite the organizer’s profit Π as
follows:

Π =
∫ a

a

y∗,N (ai)gN(1)(ai) dai − A = E[r(ãN(1)e∗,N (ãN(1)))] − A. (16.20)

The number of agents N has three effects on the organizer’s profit Π . First, an
increase in N reduces the equilibrium effort e∗,N of moderate-productivity agents
(i.e., e∗,N (ai) is decreasing in N for moderate values of ai). Second, a higher N

raises e∗,N for high-productivity agents. Third, the productivity level of the highest-
productivity agent in the contest, ãN(1), stochastically increases with N (i.e., ãN+1

(1)

first-order stochastically dominates ãN(1)). Proposition 6 indicates that the second
and third effects outweigh the decreased effort from moderate-productivity agents.
Thus, the organizer’s profit increases with the number of agents N , so an open
contest is optimal. While Proposition 6 shows the optimality of open contests for
the generalized beta distribution, our supplementary numerical analysis verifies that
this is also true for various other distributions such as symmetric beta distribution
(Fig. 16.4b) or a log-normal distribution (Fig. 16.4c).

16.6 Conclusion and Future Research

Innovation contests are becoming an ever more popular instrument for research
and development. This transformation makes the research in the optimal design of
contests of first-order importance. This chapter contributes to this research agenda
by proposing a general model framework that encompasses commonly used models
in the literature, and discussing two of the organizer’s important decisions: How to
award agents and whether to allow unrestricted entry to the contest. Our hope is that
this chapter can serve as a building block for future contest research, and insights
we provide can help both theorists and practitioners.

Research in innovation contests is still relatively young, and there are many
interesting open questions. First, prior literature as well as this chapter has assumed
a fixed contest duration, but the duration of a contest is also a strategic decision
that organizers make in practice. The exploration of the optimal contest duration
is an important future research direction. Second, we have adopted a relative
compensation rule in awarding agents. Comparison of this compensation rule
with other possible compensation rules may shed some light on why the relative
compensation rule is so popular in practice. Third, we have considered a case in
which the organizer is interested in a fixed number of solutions, and an interesting
future research direction is to analyze a case in which the number of solutions
organizer utilizes is endogenous to agents’ solution qualities and the cost of
implementing those solutions. Finally, characterizing equilibrium under both agent
heterogeneity and uncertainty in a general form is an important research to pursue.
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Overall, pioneering work in innovation contests has demonstrated that even the
questions that have already been studied by prior economics literature can have
completely different answers when considering the unique properties of innovation
contests such as the impact of agents’ uncertainty on the organizer’s profit and
the fact that the organizer is interested in only the best solution(s). Furthermore,
the rapid growth of contest platforms such as InnoCentive poses new questions
that were not relevant before. With abundant potential for interesting, practically
relevant, and important research questions, innovation contests are an exciting area
for future research.

Appendix

Proof of Lemma 1(b) We use superscript P to denote productivity-based model and
superscript C to denote cost-based model. Consider the productivity-based model
with the output function y(ai, ei, ξ̃i ) = r(aiei) + ξ̃i , where ai is a heterogeneous
productivity level. Let νi = aiei . Let ν∗(ai) = aie

∗(ai) be a best-response
function for agent i with productivity ai , where e∗ is the best-response effort. In
this model, from agent i’s perspective, another agent’s output is a random variable
ỹ∗,P ≡ y∗,P (ãk) = r(ν∗,P (ãk))+ ξ̃k . Thus, in a productivity-based model, an agent
i solves:

max
νi

N∑

j=1

PN
(j)[νi, ν∗,P ]A(j) − ψ(νi/ai), (16.21)

where:

PN
(j)[νi, ν∗,P ] =
∫

s∈Ξ
(N−1)!

(j−1)! (N−j)!P {r(νi)+s > ỹ∗,P }N−jP {r(νi)+ s < ỹ∗,P }j−1h(s) ds.

In a cost-based model, all agents except agent i have ν∗,C(ci). We will construct
a bijective mapping η : R+ → R+ from an agent’s cost ci to a productivity ai
(i.e., η(ci) = ai) such that given that all other agents have ν∗,P (ai) = ν∗,C(ci),
agent i will have the same best-response ν. Define agent i’s productivity as ai =
η(ci) = 1/ci . Given ν∗,P (ai) = ν∗,C(ci), another agent’s output is the following
random variable: ỹ∗,C ≡ r(ν∗,C(c̃j )) + ξ̃j = r(ν∗,P (ãj )) + ξ̃j = ỹ∗,P . Then, in a
cost-based model,

PN
(j)[νi, ν∗,C] =

∫

s∈Ξ
(N − 1)!

(j − 1)! (N − j)!P {r(νi)+ s > ỹ∗,C}N−j

× P {r(νi)+ s < ỹ∗,C}j−1h(s) ds,
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and hence

arg max
νi

N∑

j=1

PN
(j)[νi, ν∗,C]A(j) − ψ(ciνi)

= arg max
νi

N∑

j=1

PN
(j)[νi, ν∗,P ]A(j) − ψ(νi/ai), (16.22)

where the equality follows because ν̃∗,C = ν̃∗,P and ci = η−1(ai) = 1/ai . Thus,
the agent’s problem in a cost-based model is equivalent to the agent’s problem in
a productivity-based model. As a result, given that all other agents have output
ν∗,P (ai) = ν∗,C(ci), by using the mapping η, we obtain the same best response
for agent i under both models. Thus, in equilibrium, cost-based and productivity-
based models satisfy ν∗,P (ai) = ν∗,P (η(ci)) = ν∗,C(ci) = ν∗,C(1/ai). Finally,
using ã = η(c̃) = 1/c̃, we obtain

G(ai) = P(ã ≤ ai) = P(1/c̃ ≤ ai) = P(1/ai ≤ c̃) = 1−Φ(1/ai).

$%
Lemma 3 In a productivity-based project with two prizes, a general productivity
distribution G and effort function r , an agent with productivity ai has the following
equilibrium effort:

e∗ (ai) = 1

ai

∫ ai

a

a

c

[
A(1)g

N−1
(1) (a)+ A(2) (N − 1)

(
gN−2
(1) (a)− gN−1

(1) (a)
)]
da.

(16.23)

Proof of Lemma 3 First, suppose that all agents except agent i have output based
on the best-response output function y∗(ai), which is assumed to be continuously
differentiable and increasing in the productivity level ai . We can write the best-
response effort as e∗(ai) = r−1(y∗(ai))/ai . Output yi of agent i with productivity
level ai is determined by the following problem:

max
yi

{
A(1)G

N−1
(1) ((y∗)−1(yi))

+ A(2)(N − 1)
[
GN−2

(1) ((y∗)−1(yi))−GN−1
(1) ((y∗)−1(yi))

]− cr−1(yi)/ai

}
.

The first-order condition when evaluated at yi = y∗(ai) gives (note that y∗(ai) =
r(aie

∗(ai)))

[
A(1)g

N−1
(1) (ai)+A(2)(N−1)(gN−2

(1) (ai)−gN−1
(1) (ai))

] 1

(y∗)′(ai)
− c

air ′(r−1(y∗(ai))
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=
[
A(1)g

N−1
(1) (ai)+ A(2)(N − 1)(gN−2

(1) (ai)− gN−1
(1) (ai))

]

r ′(aie∗(ai))[ai(e∗)′(ai)+ e∗(ai)]
− c

air ′(aie∗(ai))
= 0. (16.24)

Multiplying both sides of Eq. 16.24 with air
′(aie∗(ai))[ai(e∗)′(ai)+ e∗(ai)]/c, we

obtain

ai

c
[A(1)g

N−1
(1) (ai)+A(2)(N−1)(gN−2

(1) (ai)−gN−1
(1) (ai))]−[ai(e∗)′(ai)+e∗(ai)] = 0.

(16.25)
Since y∗(ai) is increasing, in a contest with N > 2, the least productive agent cannot
win A(1) or A(2), so exerts zero effort (i.e., e∗(a) = 0). Thus,

e∗(ai) = 1

ai

∫ ai

a

a

c
[A(1)g

N−1
(1) (a)+ A(2)(N − 1)(gN−2

(1) (a)− gN−1
(1) (a))] da

is the solution to the solution of Eq. 16.25. Therefore, the equilibrium output
function y∗(ai) is

y∗(ai) = r

(∫ ai

a

a

c
[A(1)g

N−1
(1) (a)+ A(2)(N − 1)(gN−2

(1) (a)− gN−1
(1) (a))] da

)

.

(16.26)
Finally, we verify that the equilibrium output function y∗(ai) is continuously
differentiable and increasing in ai . Since all of the terms inside the integral in
Eq. 16.26 are continuously differentiable in ai , and r is continuously differen-
tiable, so is y∗. Taking the derivative of y∗(ai) with respect to ai , we obtain
(y∗)′(ai) = r ′(

∫ ai
a

φ(a)da) × φ(ai), where φ(ai) ≡ (ai/c)[A(1)g
N−1
(1) (ai) +

A(2)(N − 1)(gN−2
(1) (ai) − gN−1

(1) (ai))]. Thus, y∗ is increasing because r ′ > 0, and
A(1) ≥ A(2) implies

φ(ai) ≥ ai

c
[A(2)g

N−1
(1) (ai)+ A(2)(N − 1)(gN−2

(1) (ai)− gN−1
(1) (ai))]

= aiA(2)

c
(N − 2)(N − 1)G(ai)

N−3g(ai)[1−G(ai)] > 0.

Then, y∗(ai) = r(aie
∗(ai)) is the agent’s equilibrium output proposed in the lemma.

$%
Proof of Proposition 5 The derivative of V with respect to α is

∂V

∂α
=
∫ a

a

air
′(aie∗(ai))

∂e∗(ai)
∂α

gN(1)(ai) dai . (16.27)
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To evaluate Eq. 16.27, we need the equilibrium effort e∗(ai) and its derivative with
respect to α. If we substitute A(1) = (1− α)A, A(2) = αA into Eq. 16.23, and take
derivative of e∗(ai) with respect to α, we obtain

∂e∗(ai)
∂α

= A

ai

∫ ai

a

a

c
[(N − 1)gN−2

(1) (a)−NgN−1
(1) (a)] da.

Under CRRA function, noting that r ′(e) = θe−b, Eq. 16.27 becomes

∂V

∂α
= θ

∫ a

a

ai(aie
∗(ai))−b

∂e∗(ai)
∂α

gN(1)(ai)dai . (16.28)

If ∂V /∂α > 0, it is optimal for the organizer to set α > 0 which proves the second
part of the proposition.

When b = 0 (i.e., r(e) = θe), Eq. 16.28 becomes

∂V

∂α
=
∫ a

a

∫ ai

a

Aθa

c
[(N − 1)gN−2

(1) (a)−NgN−1
(1) (a)]gN(1)(ai) da dai

=
∫ a

a

Aθa

c
[gN−1

(2) (a)− gN(2)(a)]
1−GN

(1)(a)

1−G(a)
da, (16.29)

because

NgN−1
(1) (a) = N(N − 1)G(a)N−2g(a)

= N(N − 1)(1−G(a))G(a)N−2g(a)

1−G(a)
= gN(2)(a)

1−G(a)
.

Thus,

∂V

∂α
= Aθ

c

(

E

[

ãN−1
(2)

(N−1∑

j=1

G(ãN−1
(2) )j

)]

− E

[

ãN(2)

(N−1∑

j=1

G(ãN(2))
j

)])

< 0,

where the inequality follows because a(
∑N−1

j=0 G(a)j ) is an increasing function

of a, and ãN(2) is larger than ãN−1
(2) in the sense of first-order stochastic dominance

(cf. Theorem 1.A.8 of Shaked and Shanthikumar 2007). Thus, it is optimal for
the organizer to set α = 0. When b > 0, it is not difficult to verify that ∂V /∂α

is continuous in b because all terms in Eq. 16.28 are continuous in b. Then, for
sufficiently small b, we have ∂V /∂α < 0. Therefore, there exists b0 > 0 such that
for all b < b0, it is optimal for the organizer to set A(1) = A and A(2) = 0. $%
Proof of Proposition 6 Suppose that ã ∈ [0, a] follows G(ai) = adi /a

d . Substitut-
ing the effort
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e∗(ai) = Ad(N − 1)

c(d(N − 1)+ 1)

(
ai

a

)d(N−1)

and r(e) = θ
e1−b − 1

1− b

in y∗(ai) = r(aie
∗(ai)) yields

y∗(ai) = θ

1− b

(
aiAd(N − 1)

c(d(N − 1)+ 1)

(
ai

a

)d(N−1))1−b
− 1

1− b
.

Noting that gN(1)(ai) = nG(ai)
N−1g(ai) = (Nd/a)(ai/a)

d(N−1)+d−1, we can
express the organizer’s profit as

Π =
∫ a

0

[
aAd(N − 1)

c(d(N − 1)+ 1)

]1−b
(ai/a)

[d(N−1)+1](1−b) − 1

1− b

×
[
Nd

a

(
ai

a

)d(N−1)+d−1]

dai − A

=
[

aAd(N − 1)

c(d(N − 1)+ 1)

]1−b
d

1− b

[
N

[d(N − 1)+ 1](1− b)+Nd

]

− 1

1− b
− A.

Let

W(N) = ad(N − 1)

c(d(N − 1)+ 1)

(
dN

[d(N − 1)+ 1](1− b)+Nd

) 1
1−b

.

Noting that Π = (A1−bW(N)1−b)/(1− b) − 1/(1− b) − A is concave in A, the
optimal winner prize is A∗ = W(N)(1−b)/b. Substituting A∗ back to Π , we get

Π = W(N)(1−b)((1−b)/b+1)

1− b
− 1

1− b
−W(N)(1−b)/b

= W(N)(1−b)/b
[

1

1− b
− 1

]

− 1

1− b
= W(N)(1−b)/b

1− b
b − 1

1− b
.

Because W(N) is increasing with N , so is Π . $%
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Context-Based Operational Problems in
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Chapter 17
Models for Effective Deployment and
Redistribution of Shared Bicycles with
Location Choices

Mabel C. Chou, Qizhang Liu, Chung-Piaw Teo, and Deanna Yeo

Abstract We develop practical OR models to support decision making in the design
and management of public car-sharing or bicycle-sharing systems. We develop a
network flow model with proportionality constraints to estimate the flow of bicycles
within the network, and to estimate the number of trips supported by the system
given an initial allocation of bicycles at each station. Furthermore, the number of
docks needed at each station, to support the flow, can also be estimated. We also
examine the impact of periodic redistribution of bicycles in the network to support
more flows, and the location choices of bicycle stations. We conduct our numerical
analysis using transit data from the train and bus operators in Singapore. Given that a
substantial proportion of the passengers in the train system commute short distance
– more than 16% of the passengers alight within 2 stops from the start station – this
forms a latent segment of demand for the bicycle-sharing program. We argue that
for the bicycle-sharing system to be most effective for this customer segment, the
system must deploy the right number of bicycles at the right place, as this affects
the utilization rate of the bicycles, how the bicycles circulate within the system,
and also the effectiveness of any redistribution strategy. The same approach can be
extended to incorporate the issue of station location choices, by incorporating the
proportional flow constraints into the MIP formulation. Using a set of bus transit
data, we implemented this approach to identify the ideal locations for the bicycle
stations in a new town in Singapore, to support the movement of passengers from
residential areas to the train station.
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17.1 Introduction

In recent years, the sharing economy has morphed into a major part of the global
economy, impacting various aspects of consumers’ lives. Among many other
prominent examples, bike sharing which has been around since 1965 has developed
dramatically in the 2000s with the introduction of new information technology. The
number of bicycle-sharing systems (BSSs) around the world increased from around
200 in 2010 (MetroBike LLC 2011) to approximately 1200 in operation (MetroBike
LLC 2017) and more than 350 under construction or being planned for the near
future (Russell and DeMaio 2017) at the end of 2016.

With heightened concerns about global oil prices, carbon emissions, and traffic
congestion, governments around the world are exploring ways to “nudge” urban
residents to commute using public transport instead of private automobiles. Many
cities have set up public BSSs to facilitate short trips within the city. As of August
2017, there were approximately 172,700 bikes shared worldwide in 132 cities.

17.1.1 Review of the Bicycle-Sharing Systems

Bicycle-Sharing System (BSS) is perceived as a green, healthy and sustainable
mode of public transport, which helps decrease greenhouse gas emissions through
reducing road congestion and fuel consumption, and improves the first/last mile
connection to other modes of transport. The citizens of Amsterdam in the Nether-
lands initiated arguably the world’s first generation of bicycle-sharing program with
“White Bicycles” on July 28, 1965. This system operated on a rather ad hoc basis,
i.e., one could locate a white bicycle on the street, ride it to the destination, and leave
it there for the next trip. Unfortunately, due to theft and abuse, the program only
survived for several days. The second generation of the BSS came with improved
product and system design features. For example, the bicycle was specifically
designed for urban use, its components were not usable on other types of bicycles,
and public bicycle-sharing stations were equipped with coin-deposit machines. The
citizens of Copenhagen in Denmark launched such a system in 1995. However, this
system still faced the problem of bicycle theft since the system was not able to
track the identity of the users. This gave rise to the impetus to develop the third
generation of BSSs with user tracking abilities – Smart Bicycles, equipped with
electronically-locking racks, telecommunication systems, magnetic stripe cards or
smart cards, and mobile phone access. The first third generation BSS took off in
2005, with the launch of the Vélo’v in Lyon. In a typical third generation BSS, base
stations are located around the city with pre-determined number of bicycles at the
beginning of each day. Due to the unbalanced usage of bikes in the system, there
is either congestion (dock unavailability) or starvation (bicycle unavailability) of
bicycles at the stations each day, which results in a lot of unmet demands (Ghosh
et al. 2017). Through analyzing social media data for the BSSs in Spain, Serna et al.
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(2017) concluded that 16.4% of demand would be lost due to system unavailability
that was caused by uneven usage. As such, managing the redistribution activities
to increase system availability is crucial to any successful implementation of such
BSSs (The Economist 2011). Given that potential dock unavailability is a major
issue, recently a tech-on-bike/dockless system, in which the locking and rental
technology is located on the bike itself, was developed.

Bikes are now the new frontier to on-demand transportation. The number of BSSs
is expected to continue to grow as new technology is utilized to improve the current
systems. Currently, there are a few main types of Bicycle-Sharing Systems (BSSs)
in use, namely Ad-hoc, Kiosk-based, Tech-on and Managed Fleet system.

Ad-hoc Bicycle-Sharing System An ad-hoc system involves the operator purchas-
ing and distributing marked bicycles across the community without any locking
technology or bike stations. Such systems are usually informal by design and rely
on the integrity of individuals to use the bikes in an appropriate manner. The ad-hoc
bicycle-sharing system typically works in closed campuses, such as universities, or
companies located in Silicon Valley, where the area tends to be large, and the usage
of public transport is minimal.

Kiosk-Based System In a kiosk system, bikes are secured to and rented from tech-
enabled docking stations. These stations range in sophistication from simple bike
racks with key lockboxes to digital automatic locking kiosks with integrated rental
systems. Kiosk systems are more common in the public BSSs around the world.
Public BSSs can either be introduced under the government, or under joint efforts
made by a company and the government. Such examples include Taiwan’s YouBike
(collaboration between the government and a local company) and Korea’s Seoul
Bike (managed by the city government).

Tech-on Bike/Dockless System Technology advancement in recent years have
enabled tech-on-bike systems, in which the locking and rental technology is located
on the bike itself. Riders check out bikes using a smartphone app which allows them
to release the lock that secures the bike to the rack. Several Asian countries such as
China and Singapore (ofo and Mobike) (Forbes 2017) have adopted this system.
A challenge in this sharing system is that it usually results in a large number of
discarded bikes. Development of new technology which enables better tracking of
the whereabouts of the bikes is needed to handle this problem.

Managed Fleet System In a managed fleet system, bikes are stored in a central
location and managed by an employee. Typically, such bikes are equipped with
locks, and bike users would have to obtain the keys from the employee at a
centralized location, such as a student center on a campus, to unlock the bike for
usage.

While Kiosk-Based Systems are still the most commonly used systems around
the world at present, future technology development which enables better tracking
capability may increase the adoption rate for the Tech-on Bike/Dockless Systems.
However, dockless or not, managing the redistribution activities to increase system
availability is still crucial since a system without dock unavailability problems is
likely to still face bike unavailability problems.
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17.1.2 Research Issues and Structure of the Chapter

Most of the earlier work on bike redistribution focused on the operational problem
of moving bikes using special vehicles deployed for this purpose. Benchimol et al.
(2011) studied the static bike repositioning problem (SBRP) and developed a station
balancing technique based on the traveling salesman problem (TSP) to reposition
bikes by a single vehicle. Raviv et al. (2013) developed four mixed integer linear
program formulations to solve large instances with the objective of minimizing
the user dissatisfaction in face of stochastic demand. Angeloudis et al. (2014)
introduced a novel strategic repositioning algorithm to tackle SBRP, addressing both
routing and assignment problems.

Li et al. (2016) considered multiple classes of bikes in SBRP, whereas Kloimüll-
ner and Raidl (2017) considered only fully loaded vehicles for movement among
the rental stations in SBRP. Schuijbroek et al. (2017) solved SBRP by combining
inventory and vehicle routing issues in the BSSs, and proposed a new cluster-first
route-second heuristic to search for the optimal solution.

Although the aforementioned techniques are effective in reducing the reposition-
ing cost to some extent, these solutions could not incorporate the real-time demand
of the users in their approach. To tackle this issue, Shu et al. (2013) proposed a
model on bicycle deployment and flow in BSSs and used the model to address
various pertinent issues in managing bicycle-sharing networks. In the rest of this
chapter, we address the following questions by introducing the work in Shu et al.
(2013) and extending the model and discussion to incorporate location decisions in
Sect. 17.2.

• Given the location of the stations, what is the appropriate number of bicycles
to deploy in the network? The availability of bicycles affects the number of
bicycle trips made and also the bicycle utilization rate. The former measures how
much of existing demand can be captured, whereas the latter affects the economic
viability of the system. Given the demand pattern, we need an optimal number of
bicycles, appropriately located, to make effective use of the resources available
to meet demand.

• Impact of redistribution: The flow of the bicycles is dictated by the travel
patterns of the commuters. To deal with flow imbalances and to improve
bicycle utilization, we may have to do periodic redistribution of bicycles within
the system. However, if the bicycles are already heavily (or under) utilized,
the periodic redistribution strategy may have only a limited impact on the
performance of the system (measured by the additional number of bicycle trips
supported). Given the high operational cost associated with redistribution in the
BSS, it is thus crucial to estimate the improvement in performance prior to its
adoption in actual operation.

• The number of bicycle docks to be installed at each station: To make the bicycle-
sharing program implementable, we need to consider how many bicycle docks
to install at each station so that commuters can return their bicycles upon arrival
at the destination station. Clearly, the number of docks needed at each station
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depends on the utilization rate of the bicycles and how the flows are supported
in the system, and whether periodic redistribution is used to match supply with
demand. In fact, redistribution has the potential to reduce the number of docks
needed at each station. The dock design of the bicycle-sharing network is thus
intimately tied to the operational decision on bicycle redistribution. It will be
useful to have a system to help estimate the number of docks to be installed at
each station to support the flow in the system.

In this chapter, we introduce the work in Shu et al. (2013) about a simple
proportional network flow model to help to address the above issues. We discuss
the theory and intuition for this model in the next section. To validate the findings
from the model, a set of commuter data in a Singapore mass rapid transit system
to develop the demand model is used for the BSS in Sect. 17.3. By focusing on
this segment of the market, and through comparison with extensive simulation
results, we demonstrate that the proposed model can be used to approximate the
flow of bicycles in the system to a reasonable level of accuracy. In Sect. 17.2.2, we
describe how the model can be adopted for general bicycle-sharing network design
to incorporate the selection choices of bicycle stations in the network. This leads
to a mixed integer proportional network flow model with 0–1 decision variables to
denote station choices. We validate the findings in Sect. 17.4 using transit data on
bus trips in a new town in Singapore. Finally, we conclude the chapter in Sect. 17.5.

17.2 The Stochastic Network Flow Model

We assume that there are an initial allotment of bicycles at each train station. For
each time period, passengers arrive randomly at the station to use the bicycles
to travel to their destinations. Data from existing BBSs shows that bike trips are
normally within short distance. Our data also shows that in Singapore more than
16% of the train system commuters alight within two stops from the start station.
Therefore out study focus on origin-destination demands within two stops in the
transit network. The goal is to analyze and estimate the number of such trips that
can be supported and substituted by the public bicycle-sharing system, based on the
initial allotment of bicycles and the passenger arrival process. This is a technically
challenging problem.

Formally, let S denote the set of stations in the network. In each time period t ,
the number of passengers who arrive with plan to travel from station i to station
j follows a Poisson process, with rate rij (t). The total number of passengers
arriving to use bicycles at station i is thus given by a Poisson process with rate∑

j :j �=i rij (t). Within each time period, let Dij (t) and Di(t) denote the number of
arrivals traveling on each link and into each station, respectively. We assume that all
rides can be completed within a single time period. Note that bicycles are allocated
to the passengers on a first-come-first-serve basis, so that whenever the initial stock
of bicycles at a station is depleted, the late comers will not be able to ride to their
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Fig. 17.1 Bicycle flow network: time expanded graph

destinations using bicycles and such demands are considered lost. Figure 17.1 shows
the time expanded view of the entire network, where the flow on each arc depends on
the realization of the number of passengers arriving in each period to each station,
the order of arrivals, and also the number of bicycles available at the station.

To gain better insights into this problem, we consider an initial allotment of
bicycles xi(t) at station i in time period t . The number of bicycle trips that will
materialize in time period t will be min(xi(t),Di(t)). However, the number of
bicycles flowing from i to j will depend on the order of arrivals of passengers at
station i, and is more complicated to track. For 0 < p < 1, let Di(t)[p] denote
the number of tagged passengers where each passenger is tagged with probability p

upon arrival. More formally, let {ηi(p)} denote a sequence of independent Bernoulli
r.v.s with mean p, then

Di(t)[p] =
Di(t)∑

k=1

ηk(p).

By the well known Poisson Thinning Lemma, Di(t)[p] is Poisson with rate p ×
(
∑

j :j �=i rij (t)). Let pij (t) = rij (t)/
∑

k:k �=i rik(t). Hence

Dij (t) ∼ Di(t)[pij (t)].
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By a slight abuse of notation, for some number of bicycles xi(t), let

min(xi(t),Di(t))[p] =
min(xi (t),Di(t))∑

k=1

ηk(p).

If there are xi(t) bicycles at station i, the number of bicycles leaving station i at
time t is clearly min(xi(t),Di(t)). The number of bicycles traveling from i to j

however depends on the order of arrival of the customers traveling to different
destinations. In particular, the number of passengers traveling to j follows the
distribution of

min (Di(t), xi(t)) [pij (t)].

The number of bicycles at station i at the end of the time period is given by

xi(t + 1) = xi(t)−min (Di(t), xi(t))︸ ︷︷ ︸
total departures

+
∑

j :j �=i

(
min(Dj (t), xj (t))[pji(t)]

)

︸ ︷︷ ︸
total arrivals

= xi(t)−
∑

j :j �=i

(
min (Di(t), xi(t)) [pij (t)]

)

+
∑

j :j �=i

(
min(Dj (t), xj (t))[pji(t)]

)
(17.1)

The expected number of trips traversed using bicycles is given by

N∑

t=0

∑

i∈S

∑

j :j �=i
E
(

min(Di(t), xi(t))[pij (t)]
)
.

Let yi(t) = E(xi(t)), and

{
yij (t) = E

(
min (Di(t), xi(t)) [pij (t)]

)
,

yii(t) = yi(t)−∑j :j �=i yij (t).

By the above definition, yij (t) stands for the expected number of bicycles traveling
from station i to station j during time period t . We next describe some simple
structural properties of yij (t).

Lemma 1 yij (t) : yil(t) = rij (t) : ril(t).
Lemma 2 yij (t) ≤ rij (t).

Lemma 3 yi(t + 1) = yi(t)−∑j :j �=i yij (t)+
∑

j :j �=i yji(t).
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Let Z∗ denote the optimal objective value to the following linear programming
problem:

Z∗ = max
N∑

t=0

∑

i∈S

∑

j :j �=i
yij (t)

subject to yi(t + 1) = yi(t)−
∑

j :j �=i
yij (t)+

∑

j :j �=i
yji(t), ∀ i, t;

yi(t) = yii(t)+
∑

j :j �=i
yij (t), ∀ i, t;

yij (t)

yil(t)
= rij (t)

ril(t)
, ∀ i, j, l, t;

yi(0) = xi(0), ∀ i;
0 ≤ yij (t) ≤ rij (t), ∀ t, i �= j.

The second constraint depicts, for each station i, the number of bicycles which are
available at the beginning of period t equals to the number of bicycles which remain
at station i and the number of bicycles which leave station i during period t . Given
an initial allotment of bicycles at station i denoted by xi(0), the mean number of
bicycle trips supported in the BSS on each link is a feasible solution to the above LP.
Hence we have:

Theorem 1 Z∗ denotes an upper bound to the expected number of bicycle trips in
the system when the initial allotment of bicycles to station i is given by xi(0).

The above LP is surprisingly effective in providing a simple estimate on the
performance (based on the number of bicycle trips that the system can support)
of the BSS with an initial bicycle inventory position xi(0). We will use this model
extensively in the next section to examine the issues of bicycle utilization and the
value of bicycle redistribution.

Example 1 To see that the above LP is not exact, consider a 3-station example
where there are 2 bicycles at station 3 initially, and none at the other 2 stations.
Suppose r31(0) = r32(0) = 1, r23(t) = r32(t) = 1 for all t > 1, and rij (t) = 0
otherwise. In this case, to support the maximum number of flow in the network, the
optimal LP solution suppress the flow of bicycles from station 3 to station 1 and 2
in the first period, so that 2 bicycles will remain in station 3 from period 1 onwards
to serve the flow between station 2 and station 3, without parking any bicycle at
station 1. This LP solution dominates the expected number of trips in the stochastic
network flow model.
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17.2.1 Equilibrium State in Time Invariant System

In the rest of this section, we further analyze the properties of this formulation
(simple network flow with proportionality constraints) to gain insight on the
problem.

Suppose the Poisson arrival in each time period is stationary with rate rij . Is
there a way to characterize the number of bicycles in the equilibrium state of the
bicycle-sharing network? We modify the LP to provide a glimpse to the answer to
this problem.

In the equilibrium state, we expect yi(t + 1) = yi(t) as t →∞. Let

yij = lim
t→∞ yij (t).

The total number of bicycles in the system is denoted by N . Let y∗ij denote the
optimal solution to the following LP.

Z∗(∞) = max
∑

i,j∈S:j �=i
yij

subject to
∑

j :j �=i
yij =

∑

j :j �=i
yji , ∀ i;

yij

yil
= rij

ril
, ∀ i, j, l;

0 ≤ yij ≤ rij , ∀ i, j ;
∑

i

(

yii +
∑

j :j �=i
yij

)

= N.

It can be seen easily that there exists i∗ such that yi∗j = ri∗j for all j �= i∗, otherwise
we could scale the solution to improve the objective value. We call such nodes the
sink stations. Furthermore, if there exists i such that y∗ii > 0 but y∗ij < rij for all
j �= i, then we could modify the solution by shifting y∗ii to the station i∗, without
affecting the feasibility and quality of the solution. i.e.,

y∗ii ← 0, y∗i∗i∗ ← y∗i∗i∗ + y∗ii .

We call such nodes where y∗ij < rij the transient stations. Note that WLOG, we can
assume that y∗ii = 0 when i is transient.

Let z∗i =
∑

j :j �=i y∗ij . By the proportionality constraints, it is easy to see that

y∗ij =
rij∑

k:k �=i rik
z∗i .
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Note that z∗i is a solution to the following system of linear equations:

zi =
∑

j :j �=i

rj i∑
k:k �=j rjk

zj , i = 1, . . . n. (17.2)

If the transition probability matrix constructed using rji/
∑

k:k �=j rjk is irreducible,
then the above system of equations has essentially a unique solution scaled to a
constant. Note that z∗i ≤

∑
k:k �=i rik since y∗ij ≤ rij , and

∑
i z
∗
i ≤ N . Since our

objective is to maximize
∑

i z
∗
i , the solution to the linear system (17.2) is scaled

in such a way that either (i) ∃S such that z∗i =
∑

k:k �=i rik for all i ∈ S, and z∗i <∑
k:k �=i rik otherwise; or (ii)

∑
i z
∗
i = N and z∗i <

∑
k:k �=i rik for all i. S corresponds

to the set of sink nodes in the system. In case (i), the surplus N −∑i z
∗
i can be

distributed to any of the y∗ii variables for i ∈ S without affecting the optimality of
the solution.

Theorem 2 The linear program Z∗(∞) may have multiple optimal solutions, but
the flow solution y∗ij , i �= j , is uniquely determined by the rates rij , if the transition
probability matrix is irreducible. The “surplus” denoted by y∗ii for the sink nodes
are however non-determined and can be distributed across different sink nodes.

Since the surplus y∗ii have zero weights in the objective function, having large
surplus does not help improve the quality of the solution. This result indicates that
given the rates rij ’s, there is a limit N∗ such that any number of bicycles beyond
this limit N∗ will not help to improve the performance of the system.

Example 2 As shown in Fig. 17.2, we have three stations which are connected to
each other. The number beside each direct arc (i, j) stands for the arrival rate rij .
Station 1 has a net outflow of three passengers per unit, whereas stations 2 and 3 have
net inflow of two and one passenger, respectively. Naively, we expect the average
number of bicycles at station 1 to drain down to 0 quickly, with the bulk of bicycles
building up at stations 2 and 3. However, note that once the bicycle at station 1 drains
down to 0, stations 2 and 3 immediately receive less inflow and in fact station 3 will
now have a net outflow of 2 passengers per unit.

Fig. 17.2 Numerical
example with 3 stations
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Table 17.1 Computational results of the numerical example with three stations

Simulation Deterministic Gap %

t = 0 t = 50

Avg no. of bicycles at station 1 5 1.656600000 1.65666651648 0.004015241

Avg no. of bicycles at station 2 2 5.506000000 5.50643297152 0.007863631

Avg no. of bicycles at station 3 3 2.837400000 2.83690051200 −0.017603722

We use the outputs from the simulation model to plot the time average level
of bicycles at each station over 2,000 periods and summarize the computational
results in Table 17.1. In particular, the gap is calculated as 100%× (output of
the deterministic model − output of the simulation model (average of 2,000
simulations))/ output of the simulation model . We observe that the time average
number of bicycles at each station stabilizes after 10 time periods, and the LP model
gives very accurate prediction to the time average level of bicycles in the stochastic
system.

17.2.2 Bicycle-Sharing System Design with Location Choice

The previous model assumes that the stations are fixed. This is reasonable when
the location choices are obvious – like the train stations in the C-Bike system. It
is however inevitable, just like the C-bike system in Kaohshiung, for the network
to extend its reach into hot spots and residential areas to capture new passengers
who would otherwise not use the public train system for their transport needs. It is
therefore essential that we incorporate the location decision of the bicycle-sharing
stations as one of the key decisions in our model.

The difficulty in the modeling approach is to incorporate the proportionality
constraints into the formulation. We have seen in the earlier section that this class
of constraints is crucial for the LP model to approximate the performance of the
stochastic network flow model. To see that this is hard to incorporate into the
formulation, suppose station i, j , and k have been set up, but l has been omitted
in the model. Then we would need to incorporate the proportionality constraint on
the flow from i into j and k, i.e., yij (t)/yik(t) = rij (t)/rik(t), but not for flow from
i to l, since the flow ril(t) would be lost as l has not been selected as a node in the
bicycle-sharing network.

To deal with complications in the location choice formulation, we need to
introduce 0–1 decision variables into our formulation. With a slight abuse of
notation, we can redefine S as the set of potential bicycle dock stations which
includes MRT stations and neighborhood locations. Let fi be the setup cost of
installing bicycle docks at location i, qij the environmental benefit/amount charged
by the operator of trip ij , and N the number of planning periods.

We also let zi be a binary variable which represents the presence of bicycle station
at location i. We can modify the Linear Program developed in the earlier section to
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account for location choice as follows: Let ui(t) be a decision variable to denote the
effective rate of demand substitution from station i at time t . All positive flows out
of i, to any other station j at time t , normalized over the demand rate rij (t), must be
identical to this ratio ui(t). Then, the model of the BSS design with location choice
can be formulated as:

Z∗L(β) = max
xi (0),yij (t)

⎛

⎝
N∑

t=0

∑

i∈S

∑

j :j �=i
qij yij (t)−

∑

i∈S

fizi

⎞

⎠

subject to yi(t + 1) = yi(t)−
∑

j :j �=i
yij (t)+

∑

j :j �=i
yji(t), ∀ i, t; (17.3)

yi(t) = yii(t)+
∑

j :j �=i
yij (t), ∀ i, t; (17.4)

ui(t)− (1− zj ) ≤ yij (t)

rij (t)
≤ ui(t)+ (1− zj ), ∀ i, j, t; (17.5)

yi(0) = xi(0), ∀ i; (17.6)

yij (t) ≤ rij (t)zi, ∀ i, j, t; (17.7)

yij (t) ≤ rij (t)zj , ∀ i, j, t; (17.8)

0 ≤ ui(t) ≤ 1, ∀ i, t; (17.9)

zi ∈ {0, 1}, ∀ i. (17.10)

Constraint (17.5) is crucial for this formulation – when there is a station setup at
location j , then zj = 1 and yij (t) = ui(t)rij (t). This forces all flow from i to other
locations with stations setup to follow the proportionality constraint and the effective
rate of demand substitution for all trips leaving i will equal to ui(t). Otherwise, the
flow from i to j is zero. Constraints (17.7) and (17.8) model the fact that if there
are bicycle stations at both location i and j , the flow between the stations will be
no more than the demand rate. If either location i or j does not have a station, the
flow between i and j will be 0. Constraint (17.9) forces the effective rate of demand
substitution to be between 0 and 1. All the other constraints follow from the models
derived in the previous sections.

17.3 Bicycle Sharing as Substitute for Train Rides

The Mass Rapid Transit (MRT) system of Singapore operates around 5.00 a.m. to
01.00 a.m. each day, with morning peak hour traffic occurring at around 7.30 a.m.
to 9.30 a.m., and evening peak at around 5.30 p.m. to 7.30 p.m. To construct
a numerical example for our model, we use a one-week sample of train service
passenger-flow data (covering more than 10 million trips) to construct our demand
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model. Interestingly, we found that about 16% of the trips are short trips, i.e., with
passengers leaving the train system within two stops from their starting stations. The
longest trip can take up to 33 stops, but the average number of stops traversed is only
around 7.7 stops. Note that except for a handful of stations, commute time between
neighboring stations are around two to three minutes. The statistics thus show that
a significant proportion of passengers (around 16%) commute up to at most six
minutes on the train on a daily basis. An alternate public transport system such as a
public bicycle-sharing service, located at the MRT stations, is an attractive alternate
for such commuters, especially during the morning and evening peak hours. The
challenge however is to determine the right level of bicycles to deploy at each
station, and how the utilization rates are affected by the demand pattern.

We compare next the proposed proportional network flow model with a simula-
tion model to identify the operational characteristics of the bicycle-sharing service.

17.3.1 Bicycle Deployment and Utilization

We split the horizon into 15-min intervals, starting from 05:00 am, to collect
passengers data on those alighting within two stations. There are 80 time intervals
for each day and 560 time intervals for a week. We use a directed time-expanded
network to model each MRT station at each time interval on each day. Let A denote
the arc set in the time-expanded network. There are two types of arcs in A . The first
is the one which links station i in time t to station j in time t + 1, for all t in which
station j is within two stops away from station i. The other arcs are inventory arcs,
joining the same station across two consecutive time periods.

We also adopt the following notations:

• We define the system bicycle utilization rate α(t) for each time period t as
follows:

α(t) ≡
∑

i,j :i �=j yij (t)∑
i xi(0)

,

where
∑

i xi(0) represents the total number of bicycles positioned at all the
stations at the beginning of the planning horizon. Hence α(t) is the proportion of
bicycles in use at time t .

• Similarly, since the number of bicycles in the system is a constant,

β =
∑

t

α(t)

measures the total number of rides in the system, divided by the total number of
bicycles available, i.e., the (average) number of times each bicycle is being used.
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To support a larger number of trips on bicycles, we might have to deploy more
bicycles in the system, but the average bicycle utilization rate might decrease in this
case. On the other hand, if we want to enhance the bicycle utilization rate, we could
try to deploy relatively fewer bicycles in the system. Therefore, there is a one-to-one
relationship between the number of bicycles (optimally) deployed and the utilization
rate of each bicycle. To design the BSS, we opt to first determine the desired level
of β in the system. Note that β determines the economic viability of the BSS – the
bicycle needs to be used more than a threshold value within a stipulated number of
years to justify the initial investment in the bicycle.

With the above defined notations, we can modify the linear program developed
in the earlier section to account for the utilization rate:

Z∗(β) = max
xi (0),yij (t)

N∑

t=0

∑

i∈S

∑

j :j �=i
yij (t)

subject to yi(t + 1) = yi(t)−
∑

j :j �=i
yij (t)+

∑

j :j �=i
yji(t), ∀ i, t; (17.11)

N∑

t=0

∑

i∈S

∑

j :j �=i
yij (t) ≥ β

∑

i

xi(0); (17.12)

yi(t) = yii(t)+
∑

j :j �=i
yij (t), ∀ i, t; (17.13)

yij (t)

yil(t)
= rij (t)

ril(t)
, ∀ i, j, l, t; (17.14)

yi(0) = xi(0), ∀ i; (17.15)

0 ≤ yij (t) ≤ rij (t), ∀ t, i �= j. (17.16)

Note that constraint Eq. 17.12 requires the weekly bicycle utilization rate to be at
least β. The above LP determines the total number of bicycles and their deployment
at the beginning (i.e., xi(0)) of the planning horizon, to attain the desired utilization
rate of β for the system. We solve the above model using the CPLEX LP solver. We
solve the above program to obtain the maximum number of substituted trips using
bicycles, the number of bicycles positioned at each station initially, and bicycle
utilization rate α(t) at each time period.

We also compare the solutions obtained from the deterministic model with a
simulation model. The detailed steps in implementing the simulation are given as
follows.

• We fix a β, solve the deterministic model outlined in this section, and obtain the
optimal xi(0) to be deployed at each station i.
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Fig. 17.3 Short trip substitution boxplot

• We use xi(0) as the input to run the simulation model for stochastic network flow
system with Poisson demand at each arc in the network. We run the simulation
100 times for each β to obtain the sample average of the system performance.

• In each simulation, we use the direct time-expanded network and assume the
number of passengers arriving at each station during each 15 min time interval
follows a Poisson process. In particular, the mean of the inter-arrival time for
passengers arriving at Station i with destination Station j at time index t equals
to 15/rij (t). We then sort the passengers at each node according to their arrival
time at node i and discard those arrivals after 15 min. The bicycles at station i are
used by the passengers arriving on a first-come-first-serve basis. We run this for
a whole week to obtain the number of trips on bicycles and the utilization rate.

Figure 17.3 shows the performance of the bicycle-sharing network when short
trips (within 2 stops) can be completely substituted. In the figure, the x-axis
corresponds to the average daily utilization rate (denoted by α, where α = β/7).
The y-axis on the left shows the number of trips using bicycles, and the y-axis on the
right shows the number of bicycles deployed in the system. The box plots (obtained
via simulation) show that the variations in the number of bicycle trips increase when
the daily utilization rate decreases. More amazingly, the numerical results show that
the deterministic LP model yields very tight estimate (upper bound) to the average
number of trips on bicycles in the stochastic network flow model.

The relationship between the number of bicycle trips supported by the system and
the daily utilization rate appears to be almost linear – the number of trips decreases
linearly as the targeted utilization rate of the system increases. However, the number
of bicycles needed is inversely proportional to the targeted daily utilization rate, in
the optimal configuration.
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These trade-offs have important implications – it appears that an appropriate
targeted utilization rate to operate is around the region α = 30–40 in this test case
– at the rate above this level, we need to deploy a significantly many bicycles to
support a small increase in the number of supported trips. However, in this range,
the service level will not be high as a significant portion of demand for rides cannot
be supported. The average total demand within the system is around 308,000 trips,
whereas the system operating at α = 40 can only support on average 50,000
trips, under the assumption that all short trips can be substituted by bicycle rides
if possible.

17.3.2 Number of Bicycle Docks Needed

Technically, we need to set up enough number of bicycle docks at each station so
that passengers have space to return the bicycles when they reach their destinations.
We calculate the number of docks needed for each station as the maximum bicycle
quantities at each station across all time periods. Figures 17.4, 17.5, and 17.6 give
the maximum bicycle quantities at each station among all time periods for α =
10, 40, 70, for the network flow and the simulation model.

Interestingly, the data extracted from the network flow model is pretty close to
the actual peak inventory level at each station obtained from the simulation model.
Furthermore, the number of docks needed to support storage of peak inventory
decreases with increased utilization (i.e. less number of bicycles deployed).1
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Fig. 17.4 Two-stop no. of docks: deterministic model vs. simulation model

1Note that we have assumed all passengers will use bicycles to substitute their short distance MRT
trips (within 2-Stop), upon the availability of the bicycles. We have thus actually obtained a gross
over-estimate on the total volume of trips that can be substituted by bicycles. In reality, only a small
percentage of the short distance passengers captured in the data will choose to use bicycles, say
10%. Therefore, all our numbers must be scaled down by a factor of 10 accordingly. In this case,
we can see that for α = 40, the maximum number of bicycle docks we need to setup among all
stations is no more than 80 for our system.
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Fig. 17.6 Two-stop no. of docks: deterministic model vs. simulation model

The computational results also show interestingly that with a smaller number
of bicycles deployed (α = 70), the system should deploy more bicycles near and
around the stations in the central business district (Station 30–50 in the chart),
leading to a relatively higher number of docks at these stations. However, with more
bicycles available (α = 40 or α = 10), the deployment of the additional bicycles
should move towards other congested areas such as the stations near the interchange
in the East (station 1–20), leading to a surge in the number of docks there. This
suggests that the operators should focus first in the central business district area
with a small number of bicycles and stations, to capture the maximum number of
trips supported, before branching out into major residential areas as the scale of the
system grows.

17.3.3 Effectiveness of Bicycle Redistribution

With a slight abuse of notation, we redefine the time-expanded network to model
the passengers flow for each day k. Let Nk denote the time index in the network
on day k. We conduct the experiments as follows. We first solve the deterministic
model Z∗(β) proposed earlier based on the one-week data to obtain the number of
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bicycles deployed (denoted by Cβ ). We then use these as input to run the following
program (Z∗k (β)) for each day k:

Z∗k (β) = max
xi (0),yij (t)

∑

t∈Nk

∑

i∈S

∑

j :j �=i
yij (t)

subject to yi(t + 1) = yi(t)−
∑

j :j �=i
yij (t)+

∑

j :j �=i
yji(t), ∀ i, t;

∑

i

yi(0) = Cβ;

yi(t) = yii(t)+
∑

j :j �=i
yij (t), ∀ i, t;

yij (t)

yil(t)
= rij (t)

ril(t)
, ∀ i, j, l, t;

0 ≤ yij (t) ≤ rij (t), ∀ i, j, t.

The above linear program computes the optimal way to locate the Cβ bicycles in the
system, given the travel patterns of the day. Note that we solve an LP for each β.

The redistribution strategy has impact on the performance of the BSS.
Figure 17.7 shows that this strategy prevents surplus bicycles from building up
at stations, and thus reduces the need to build large number of docks at each station.
For α = 40, it reduces the peak docking stations needed from 800 to around 700.2

Although redistribution strategy can enhance the system performance in terms
of the number of substituted trips supported in the system and the number of docks
needed in each station, it is a very time consuming and expensive task. The concern
is how often shall we conduct the redistribution in the system? In the rest of this

M
ax

 N
o

. o
f 

B
ic

yc
le

s

0
100
200
300
400
500
600
700
800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
Stations

Deterministic Model with Re-Distribution
Simulation Model with Re-Distribution a = 40

49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Fig. 17.7 Two-stop no. of docks: deterministic model vs. simulation model with redistribution

2If we assume that the take-up rate for bicycle trip is only 10% of the full demand, then the
corresponding number of docks needed will be reduced by 90%, i.e., from 700 to 70 docks.
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Fig. 17.8 3-D illustration of periodic redistribution

section, we discuss the value of periodic redistribution. Figure 17.8 shows the
number of substituted trips supported in the system under given combinations of
the total number of bicycles and the number of periodic redistributions per day. In
this set of experiments, we subdivide the time horizon evenly into 80 smaller time
intervals in a day, and perform periodic redistribution at equal time interval over
a day. For certain cases, when 80 time intervals is not divisible by the number of
redistributions per day, we keep the remainder in the last time interval of the day.
Figure 17.8 shows the end result: when the total number of bicycles invested into the
system is more than 30,000, frequent periodic redistribution does not add much to
the number of bicycle trips supported by the system. Furthermore, a small number
of daily redistribution (says 2–4) suffices, since more frequent redistribution will
not add much to the total supported bicycle trips.

17.4 Case Study on Bicycle Sharing with Location Decisions

Punggol is a neighborhood in the northeastern region of Singapore. Initially an
area populated by farms, Punggol has been developed into a residential new town.
Currently, the district is home to 17,980 HDB3 flats and has an estimated residential

3Housing and Development Board – a statutory board of the Singapore Government responsible
for public housing.
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population of 59,200. There are plans to develop Punggol as Singapore’s first Eco-
Town to enhance the living environment in its estates and encourage residents to do
their part for the environment (Housing Development Board, 2010). A BSS would
be an appropriate addition to the Punggol landscape as it actively promotes different
forms of sustainable transportation.

The Punggol district is served by one Mass Rapid Transit (MRT) station, 29
bus stops, and a Light Rail Transit (LRT) network of eight stations. A total of
eight bus services serve the area. The LRT was set up in 2005 as an alternative
transportation mode or feeder service within the neighborhood. At present, private
bicycles are already being used as a mode of transportation within the Punggol area.
Residents were spotted riding their personal bicycles both on the roads as well as
on the footpaths. Also, bicycles were seen parked at LRT stations and there is even
a designated Bike Park area at the Punggol MRT Station cum Bus Interchange for
residents to park their bicycles.

We use a set of commuters data on bus and LRT services to design the bike-
sharing network. For this reason, it would be most appropriate for the candidate
locations to be at the bus stops, LRT stations, and MRT station. The 16 candidate
locations are as shown in Fig. 17.9.

There are two peaks in the travel pattern in this town. Figure 17.10 shows the
number of trips during each time period, where each time period corresponds to a
15-min period. Period 1 starts at 05:15 a.m. while Period 79 ends at 01:00 a.m.
It can also be concluded that throughout the day, the LRT is the more utilized
transportation mode.

The most traversed route is from Location 11 to 5, while the route from Location
5 to 11 is ranked second. Location 5 corresponds to the MRT Station while Location
11 corresponds to the area around a LRT Station named Meridian. It would be

Fig. 17.9 Candidate locations



17 Shared Bicycles with Location Choices 429

Fig. 17.10 Demand pattern

expected that these 2 routes are the most heavily traversed as Location 11 has the
greatest number of residential blocks surrounding it. It should also be noted that
some routes see no trips the entire day, hence suggesting that there would be little or
no demand for a BSS to cover these routes. Based on the distribution of trips across
locations, the frequency at which Location 5 is involved is significantly higher than
any of the other locations. This suggests that Location 5 would be a strong candidate
location to be chosen for a bike station. However, note that the routes involving
Location 5 also suffer more from trip imbalance throughout the day. In the morning,
there is a huge demand for bikes to go to the MRT station while in the evening
the demand transfers to bike leaving the MRT station. For the rest of the day, the
flow of passengers to and from the MRT station is much less, which might result
in bikes being stranded at the MRT station in the middle of the day. This would
affect the overall utilization of the bikes. Therefore, in solving the model, a case
where Location 5 is excluded will be solved in order to see if this results in higher
utilization of the bikes.

However, we need to account for the fact that there would not be 100% uptake of
the BSS. Based on an informal survey conducted, as well as reference to the average
uptake rates predicted for overseas systems (Dector-Vega et al. 2008), it is predicted
that the average uptake rate in Singapore should lie between 4 to 6%. Furthermore,
this uptake rate is unlikely to be constant throughout the day. It is expected that the
uptake would be higher in the mornings and evenings when the weather is cooler.
Fewer people are likely to switch to cycling in the afternoon when the weather is
hotter. This is taken into consideration by allocating a predicted uptake rate of 6%
for the periods between 05:15 a.m.–11:45 a.m. and 05:00 p.m.–01:00 a.m. and an
uptake rate of 4% for the period between 11:45 a.m.–05.00 p.m.



430 M. C. Chou et al.

Table 17.2 Optimization results

No of Initial no Final no of
locations locations of bikes at bikes at

Case Uptake rate β selected selected location location

Without accounting for redistribution costs

1 6% for periods 12 5 5 0 0

1–26, 48–79 9 4 1.6

4% for periods 11 0 4.7

27–47 12 8 11.6

15 18 12.1

2 4% throughout 10 5 5 0 0

the day 9 6 3.3

11 0 6.1

12 10 10.1

15 14 10.5

3 3% throughout 8 5 5 0 0

the day 9 8 4.4

11 0 6.6

12 9 10.1

15 13 8.9

Accounting for redistribution costs

4 6% for periods 12 5 5 0 0

1–26, 48–79 9 2 2

4% for periods 11 4 4

27–47 12 12 12

15 12 12

5 4% throughout 10 5 5 0 0

the day 9 4 4

11 4 4

12 11 11

15 11 11

We use the model introduced in Sect. 17.2.2 to design an optimal Bike-Sharing
network given 30 bikes and around four to five bike stations. The model was coded
and solved using the CPLEX MIP solver in General Algebraic Modelling System
(GAMS). We also account for the inventory imbalance at the start and end of the day,
and use that to penalize for redistribution cost. Table 17.2 summarizes the results
obtained for several cases where uptake rates were varied. The optimal number
of bike stations, optimal locations for the bike stations, and optimal number of
bikes to locate at each station initially were determined and tabulated for each case.
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The model was also run with an additional term in the objective function to penalize
for redistribution costs at the end of the day, in order to determine the effects this
had on the solution.

By inspecting the output of our location model, we obtained the following
interesting observations:

• Regardless of the uptake rate, it is found that the same number of stations is
selected. However, the utilization rate that can be achieved is reduced according
to the uptake rate. For an uptake rate of 3% throughout the day, the maximum
utilization that can be achieved is 8, compared to 10 for an uptake rate of 4%
throughout the day.

• It is interesting to note that regardless of the uptake and utilization rates, and
whether redistribution is accounted for or not, the same 5 locations are always
chosen. The location decision is thus insensitive to the accuracy of the uptake
and utilization rates.

• Even though the same locations for the bike stations are chosen for each case,
there are slight differences in the initial number of bikes that should be located at
each station. The common feature in all cases is that no bikes should be located
at Location 5 initially.

• For cases 1–3 where redistribution costs are not accounted for in the model, it is
found that the number of bikes found at each station at the end of the day varies
pretty significantly from the initial number of bikes. On average, 7.5 bikes would
have to be redistributed at the end of each day.

Take for instance the scenario corresponding to case 4 in our experiment. The
model proposed that bike stations should be installed at locations 5, 9, 11, 12,
and 15. Also, at the start of the day, there should be 2 bikes at Location 9, 4
bikes at Location 11, 12 bikes at Location 12, 12 bikes at Location 15, and none
at Location 5. The model predicted that with this configuration, the bikes should
circulate throughout the day such that at the end of each day, the number of bikes
at each station will be back to the number at the beginning of the day. We compare
the results obtained with a simulation output. The optimal number of bikes that
should be located at each station initially, which was determined by the MIP model,
was used as input in the simulation model. Again, we assumed that the number
of passengers arriving at each station i with destination j during each time period
follows a Poisson process. The simulation was run for 100 days. Table 17.3 confirms
that the stochastic model behaves more or less as predicted, with utilization rate
of 11.22, which is close to the rate of 12 predicted by the MIP model. Based on
the maximum number of bikes present at each of the locations over all the time
periods, the number of bike docks that should be installed at each station can also
be determined.
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Table 17.3 Comparison with simulation output

Station Initial number Maximum number Utilization

Simulation model 5 0 30

9 2 4

11 4 6 11.22

12 12 14

15 12 17

MIP model 5 0 25

9 2 8

11 4 8 12

12 12 13

15 12 13

17.5 Concluding Remarks

Despite the many problems and success stories of the third generation BSS, there
seems to be further advancement to the fourth generation, where more emphasis
will be placed on improved efficiency, sustainability, and usability (cf. DeMaio
2009). This can be achieved by focusing on improving the deployment and tracking
of bicycles, improving the installation and powering of bicycle stations, creating
new business models, and building both intra- and inter-transport system integration
(Forbes 2017; MetroBike LLC 2012).

In recent years, BSS vendors have emerged and created their own systems which
they sell to local operators. Also, startups like CityRide are converting bike rides
into carbon offset that can be sold on the carbon market. The evolution in business
strategies and pricing strategies allows the different BSSs to seek out a business
model that would be profitable, thus ensure that new BSSs will continue to be set
up all around the world, regardless of the goals or scale.

Nevertheless, the fundamental issue of deployment remains a challenge. The
deployment can be improved by balancing the supply and demand at each of the
bicycle stations, and providing relevant incentives in order to steer demand towards
the less popular bicycle stations or routes. In particular, operations research tools
can be used to design a network with an improved deployment of bicycles.

In this chapter, we review a novel bicycle-sharing model proposed in Shu et al.
(2013) in which passengers use bicycles to substitute their short distance trips.
We use a deterministic LP model to approximate the system performance of the
stochastic system, and show that the deterministic model can imitate the actual
system performance very closely based on actual Singapore MRT ridership data.
We use extensive numerical experiments to discuss the important issues such as the
bicycle utilization rate, the value of redistribution of the bicycles, and the number of
bicycle docks that should be set up at each station.

Our model can be extended to incorporate the scenario of using bicycles to
transport between MRT stations and neighborhoods. We implemented our model
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using a set of bus transit data in a new town in Singapore, and identified the
ideal locations to set up the bicycle stations for the bicycle-sharing network. Our
numerical results suggest that the optimal location choices are robust to input errors
– for various demand scenarios, the same set of locations are identified as optimal.

Our approach is general enough to incorporate various other features in practice.
For example, when the passengers are not able to reach their destination station
using bicycles within 15 min time period, we only need to slightly modify the arcs
in the time-expanded network defined in the earlier section to allow them to extend
across multiple time periods. The same LP based approach can be used to model
the flow of commuters in the network. Of course, in the most general case, we
need to use queueing network based approach4 to model the flow of bicycles in this
system. However, the associated optimization problem becomes intractable using
this approach, due to the time varying nature of the travel patterns.

The performance of the LP model can also be further enhanced, exploiting recent
advances in stochastic optimization (cf. Natarajan et al. 2009, 2011). In particular,
a promising direction is to enhance the model further using the constraint that

xi(t)−min (Di(t), xi(t))︸ ︷︷ ︸
total departures

> 0

if and only if all passengers arriving in time t to station i can find a bicycle. Thus

(

xi(t)−
∑

j :j �=i

(

min (Di(t), xi(t)) [pij (t)]
))

×
(

Dik(t)−
(

min (Di(t), xi(t)) [pik(t)]
))

= 0

for every OD pair i, k in all realization of the stochastic system. This can be
handled by lifting the problem into a higher dimension, and using the copositive
cone approach in Natarajan et al. (2011) to deal with the quadratic constraints.

Another interesting direction of research is to explore the usage of incentive
schemes to balance the flow. Our approach hinges crucially on the fact that system
parameters rij (t) are given as input. When they are endogenous to the model, i.e.,
that promotional activities can be used to influence the flow rate between i and j ,
then the problem is still unsolved.

We leave these and other issues to future research.

Acknowledgements We thank Singapore Mass Rapid Transit and Land Transport Authority for
providing the data used in this research. This research was supported in part by NUS Academic
Research Fund R-314-000-078-112.

4We thank Prof Gideon Weiss for pointing this out.



434 M. C. Chou et al.

References

Angeloudis P, Hu J, Bell MG (2014) A strategic repositioning algorithm for bicycle-sharing
schemes. Transportmetrica A 10(8):759–774

Benchimol M, Benchimol P, Chappert B, De La Taille A, Laroche F, Meunier F, Robinet L (2011)
Balancing the stations of a self service “bike hire” system. RAIRO-Oper Res 45(1):37–61

DeMaio P (2009) Bicycle-sharing: history, impacts, models of provision, and future. J Public
Transp 12(4):41–56

Dector-Vega G, Snead C, Phillips A (2008) Feasibility study for a central london cycle hire scheme.
Technical report, Transport for London

Forbes (2017). https://www.forbes.com/sites/ywang/2017/06/20/worth-1-billion-but-whats-
really-driving-chinas-bike-sharingboom/#608d7e69427e

Ghosh S, Varakantham P, Adulyasak Y, Jaillet P (2017) Dynamic repositioning to reduce lost
demand in bike sharing systems. J Artif Intell Res 58:387–430

Kloimüllner C, Raidl GR (2017) Full-load route planning for balancing bike shaing systems by
logic-based Benders decomposition. Networks 69(3):270–289

Li Y, Szeto WY, Long J, Shui CS (2016) A multiple type bike repositioning problem. Transp Res
Part B Methodol 90:263–278

MetroBike LLC (2011) The bike sharing blog. http://bike-sharing.blogspot.com/. Accessed 1 Oct
2011

MetroBike LLC (2012) Have card, will travel. http://bike-sharing.blogspot.com/. Accessed 17 Jan
2012

MetroBike LLC (2017) The bike sharing blog. http://bike-sharing.blogspot.com/. Accessed 19 Aug
2017

Natarajan K, Song M, Teo CP (2009) Persistency model and its applications in choice modeling.
Manag Sci 55(3):453–469

Natarajan K, Teo CP, Zheng Z (2011) Mixed zero-one linear programs under objective uncertainty:
a completely positive representation. Oper Res 59(3):713–728

Raviv T, Tzur M, Forma IA (2013) Static repositioning in a bike-sharing system: models and
solution approaches. EURO J Transp Logist 2(3):187–229

Russell M, DeMaio P (2017) The bike sharing world map. http://bike-sharing.blogspot.com/
Schuijbroek J, Hampshire RC, van Hoeve WJ (2017) Inventory rebalancing and vehicle routing in

bike sharing systems. Eur J Oper Res 257(3):992–1004
Serna A, Gerrikagoitia JK, Bernabe U, Ruiz T (2017) A method to assess sustainable mobility for

sustainable tourism: the case of the public bike systems. In: Information and communication
technologies in tourism 2017. Springer, Cham, pp 727–739

Shu J, Chou MC, Liu Q, Teo CP, Wang IL (2013) Models for effective deployment and
redistribution of bicycles within public bicycle-sharing systems. Oper Res 61(6):1346–1359

The Economist (2011) Why a Boris bike can be an existential hell. http://www.economist.com/
blogs/gulliver/2011/04/londonscycle-hirescheme/

https://www.forbes.com/sites/ywang/2017/06/20/worth-1-billion-but-whats-really-driving-chinas-bike-sharingboom/#608d7e69427e
https://www.forbes.com/sites/ywang/2017/06/20/worth-1-billion-but-whats-really-driving-chinas-bike-sharingboom/#608d7e69427e
http://bike-sharing.blogspot.com/
http://bike-sharing.blogspot.com/
http://bike-sharing.blogspot.com/
http://bike-sharing.blogspot.com/
http://www.economist.com/blogs/gulliver/2011/04/londonscycle-hirescheme/
http://www.economist.com/blogs/gulliver/2011/04/londonscycle-hirescheme/


Chapter 18
Bike Sharing

Daniel Freund, Shane G. Henderson, and David B. Shmoys

Abstract We discuss planning methods for bike-sharing systems that operate a
set of stations consisting of docks. Specific questions include decisions related to
the number of docks to allocate to each station, how to rebalance the system by
moving bikes to match demand, and expansion planning. We describe linear integer
programming models, specially tailored optimization algorithms, and simulation
methods. All of these methods rely on careful statistical analysis of bike-sharing
data, which we also briefly review. Our discussion of the issues is informed by
our 4-year collaboration with Citi Bike in New York City, and its parent company
Motivate.

18.1 Introduction

Bicycle-sharing programs are now ubiquitous. These programs allow a user to
borrow a bike at one location and return it to another. Such programs enable both
bicycle commutes and tourism use. Since users employ a bike episodically, bikes are
shared across many users. Pricing schemes for such programs vary, with a common
model being subscription based, with the first 30–45 min of each use being free.

Bike-sharing systems vary in their design. At Citi Bike in New York City, with
which we have been working since May of 2013 when they first began operations,
there are fixed station locations around the city. Each station consists of a number
of docks (also known as racks) and riders must pick up and return bikes from
stations. Another model, also having fixed stations, does not use docks, but instead
uses geo-fencing, whereby bikes need only be returned to the general proximity of
a central kiosk. Yet another model does not use stations at all. Instead, bikes are
simply left at any convenient location; the global positioning system (GPS) is used
through a smartphone app to locate a nearby bike. Indeed, almost all systems provide
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smartphone apps to aid usage, and it is conceivable that bike-sharing programs are
enabled by such technology and would be far less popular without it.

In this chapter we focus on the design used by Citi Bike, with stations and
docks. In doing so, we in no way imply that the other designs are less important.
Indeed, some of the very largest systems in the world are based on those other
designs. However, the Citi Bike design is very common, and is the one we know
well. Moreover, some of the methods we describe partially extend to other designs,
particularly those based on geofencing.

The key questions in systems like that used by Citi Bike relate to capacity
planning and rebalancing. In capacity planning, one tries to determine how to size
stations, i.e., determine the number of docks at each station. Key objectives in such
planning relate to the user experience. One wants to avoid situations where a user
cannot find a bike, or cannot find an empty dock to which they can return their bike.
With geo-fencing designs, the latter issue is less of a concern. Capacity planning
operates on a quarterly or longer timescale, because dock repositioning is non-
trivial. It is, however, quite feasible in New York, where docks typically come in sets
of 3 and are somewhat portable. In rebalancing, one attempts to move bikes between
stations to improve the user experience. Rebalancing is expensive, so it is important
to do so judiciously. Citi Bike uses both motorized and non-motorized rebalancing.
Box trucks are particularly effective in moving large quantities of bikes over long
distances, especially overnight, when streets are less congested. During the day, box
trucks are complemented by non-motorized means, including bikes towing trailers
that can hold up to 18 bikes. Optimizing these operations requires an appropriate
statistical analysis of past data to forecast future demand patterns.

Most research on rebalancing has focused on the optimization of truck routes.
A particularly important paper in this context is by Raviv and Kolka (2013) who
define a user dissatisfaction function to measure the number of out-of-stock events
at an individual station. Different ways of computing this cost function have been
suggested by Schuijbroek et al. (2017), O’Mahony (2015), and Parikh and Ukkusuri
(2015). Subsequent work by Raviv et al. (2013) defined a routing problem based on
the user dissatisfaction function; such routing problems, and attempts to solve them
to optimality for larger and larger instances, were further investigated by Forma
et al. (2015), Ho and Szeto (2014), and Szeto et al. (2016), among others. Similarly,
a line of work, starting with Rainer-Harbach et al. (2013) and followed by Raidl
et al. (2013) and Kloimüllner et al. (2014) investigated greedy strategies for the
rebalancing problem, though they considered a slight variation (i.e., a fluid version)
of the user dissatisfaction function. The work by Kloimüllner et al. (2014) stands out
in that regard in that it also applies to the dynamic case, in which unsatisfied demand
also occurs during the rebalancing process. An orthogonal approach to rebalancing
has been taken by Shu et al. (2013), O’Mahony (2015), and Jian and Henderson
(2015); all of these papers aim to find the optimal configuration of bikes at the
beginning of some period. Shu et al. (2013) assume complete knowledge of the
future and solve a flow problem; O’Mahony (2015) employs the user dissatisfaction
function; Jian and Henderson (2015) use a simulation-optimization based approach
to capture network effects. In these three versions, limited means for rebalancing are
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disregarded since the focus is solely on the optimal allocation of bikes. Contardo
et al. (2012), Vogel et al. (2014), and Nair et al. (2013) are similar to Shu et al.
(2013) in that they solve particular flow problems rather than routing problems.
Nair et al. (2013) aim to obtain certain service levels with at least some probability.
Vogel et al. (2014) presents an NP-hard flow model that also takes into consideration
a rebalancing cost. All of these assume that not only the rate of rentals and returns
at each station is known, but also the routing probability of each customer, i.e.,
the probability of a customer at a given station having a particular destination. An
approach similar to that of Jian and Henderson (2015) was pursued by Datner et al.
(2017), in which they also account for the cost of longer travel times due to out-of-
stock events rather than minimizing only the number of out-of-stock events.

A disjoint line of work has focused on minimizing the length of the route of
a single capacitated truck, or the combined length of routes for a fleet of such
trucks, that needs to visit nodes with demand and supply. The paper by Benchimol
et al. (2011) is an early example of such work. They give an approximation
algorithm, a hardness result, and a polynomial-time algorithm for instances, wherein
the underlying graph is a tree. The same problem has been studied by Chemla
et al. (2013) and Dell’Amico et al. (2014) from a mixed-integer programming
perspective. Further works in the same spirit have been pursued by Erdoğan et al.
(2014), Erdoğan et al. (2015), and Bulhões et al. (2018). The last of these introduces
multiple visits, i.e., provides an IP formulation that allows vehicles to visit the same
location repeatedly. Interestingly, Casazza et al. (2017) prove that conditions exist
that guarantee that multiple visits are not needed. Liu et al. (2016) use weather-data
and trips that have started already to predict demand for bikes and docks online,
obtain targets for stations, and then solve a routing problem minimizing travel
time. Interestingly, Di Gaspero et al. (2013), in a sense, combine the approaches of
maximizing impact and minimizing travel time: given fixed targets for each station,
the authors aim to minimize a weighted combination of travel time and absolute
value distance (summed over all stations) between the targeted bike allocation and
the one resulting from rebalancing.

Some recent papers have taken different approaches based on robust optimiza-
tion. Ghosh et al. (2016) study a repositioning appraoch based on an iterative
two-player game, in which the environment generates a demand scenario out of
feasible demand scenarios; they apply this approach to small systems with 20
stations. They also develop a simulation model, which Lowalekar et al. (2017)
use to demonstrate the benefit of multi-stage stochastic optimization. Ghosh et al.
(2017) make explicit the distinction between routing and repositioning with the
former being about minimizing travel time and the latter being about finding the
best obtainable allocation.

In contrast to the work outlined on rebalancing with trucks, O’Mahony and
Shmoys (2015) also investigate the use of trailers in bikesharing systems; later work
by Freund et al. (2016) also considers so-called corrals.

Separate from the literature on rebalancing, there is also a long line of literature
related to forecasting. Most of the forecasting relates to prediction of demand based
on historical data; examples include Li et al. (2015), Rudloff and Lackner (2014),
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Salaken et al. (2015), O’Mahony and Shmoys (2015), and Riquelme et al. (2017).
Several other forecasting questions have been studied as well: Kaspi et al. (2016)
try to detect which bikes in a system are broken given the usage data at each station,
a question relevant for routing problems such as the budgeted prize-collecting
traveling salesman problem studied by Paul et al. (2017), Hsu et al. (2016) use a
discrete choice model to study the behavior of users when faced with out-of-stock
events; Zhang et al. (2016) predict the destination and destination time of customers
given the origin, the time and personal information about the user (gender/age); an
approach to predicting pairwise demand, rather than incoming/outgoing demand at
individual stations, can be found in Singhvi et al. (2015) and Chen et al. (2016)
dynamically cluster stations to predict which stations will run out of available
bikes/docks.

Finally, there is a line of work on the design of such systems. Kabra et al.
(2015) apply techniques from econometrics to study the density with which stations
should be placed. O’Mahony (2015) defines an integer program to investigate what
allocation of docks, given a budget of docks, to existing stations minimizes out-of-
stock events (using the local user dissatisfaction function at each station); Freund
et al. (2017) extend this question in various ways and provide an efficient algorithm
to solve it. Jian et al. (2016), using simulation optimization in the same manner as
Jian and Henderson (2015), aim to find the optimal allocation of docks, though it
allows for network effects that cause non-convexities. All of these papers are based
not on rebalancing but on the question of what the result of optimal rebalancing
would look like. A similar approach is used by Saltzman and Bradford (2016), who
investigate the augmentation problem, that is, the problem of (optimally) adding
docks to existing stations. While Saltzman and Bradford (2016) use simulation, this
question can also be approached using the methodology of O’Mahony (2015) and
Freund et al. (2017).

In this chapter we first describe optimization-based methods for overnight and
real-time rebalancing. The optimization models developed for rebalancing extend
to methods for deciding how to allocate, or reallocate, docks across the stations in a
city, which is important when the initial allocations of docks need to be refined, as
is invariably the case, or where usage patterns are evolving. Such evolution is a fact
of life in New York City, where the system is constantly growing. We also discuss
methods for expansion planning, whereby additional stations are to be added to a
system. Finally, we mention incentive schemes, such as that investigated by Singla
et al. (2015), to help make a system “self balancing.” Such schemes are important,
given the expense of manually relocating bikes.

What do we not do? Perhaps the key question we do not address in this chapter is
that of pricing. How should a bike-sharing system charge its customers to ensure
profitability, or at least self-financing, while ensuring that the resulting system-
level behavior is desirable from various standpoints? This question, which is related
to, but more complex than, our discussion of incentive schemes, is still far from
settled. We refer the reader to the literature on queueing-theoretic models of such
systems, including George et al. (2012), Waserhole and Jost (2016), and Banerjee
et al. (2017).
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18.2 Data and Statistical Challenges

Bike-sharing systems generate a great deal of data. Most systems will log every
transaction, namely where and when a bike is checked out, where and when it
is returned, and by whom. This data is easily anonymized by removing the user
identity, or by creating user indices that are not linked to user names. Bikes in some
systems are also equipped with Global Positioning System (GPS) units that allow
them to be tracked as they are ridden.

We use this data to fit a stochastic model of a bike-sharing system, which
then forms the foundation for optimization models that are discussed later. This
stochastic model captures the arrival processes of bikers wanting to pick up bikes
at stations, the selection of a destination station, and the time spent biking from
the origin station to the destination station. More precisely, we assume, as is
typical in modeling bike-sharing systems, that potential bikers arrive to station i

according to a non-homogeneous Poisson process with (instantaneous) arrival rate
function (μi(t): t ≥ 0), and that the Poisson arrival processes at each station
are mutually independent. Why a Poisson arrival process? The Palm-Khintchine
theorem, e.g., p. 221 of Karlin and Taylor (1975), Çinlar (1972), and p. 107 of
Nelson (2013), tells us, roughly speaking, that the process that results when many
potential users each have a small chance of arriving in each time step is very well
approximated by a Poisson process, and the result extends to time-varying rates
as in our case. Moreover, the theorem extends to spatial arrival processes as in
our case. One might argue that the arrival processes at adjacent stations might
exhibit some dependence; when potential bikers at one station find it empty, they
might look to borrow a bike from an adjacent station. However, in our model we
assume a loss model wherein bikers not finding a bike simply leave the system,
presumably finding another mode of transportation. Assuming that a biker does find
a bike at station i, our model assumes that the biker then proceeds to station j

with probability Pij independent of all else. The matrix of routing probabilities is
thus stochastic (i.e., is non-negative with row sums equal to 1), and will typically
also be time-dependent, so we denote the matrix process by (P (t) : t ≥ 0).
Finally, we assume that the successive biking times between stations i and j

are independent and identically distributed with distribution function Gij , and
that all biking times, irrespective of origin and destination, are independent of
all else.

Fitting this model to data is challenging. First we must deal with censoring.
Censoring arises when a potential biker comes to a station, sees that there are no
bikes, and so leaves. Our data does not record a transaction, so we have no direct
observation of this event, despite the fact that it should be represented in the arrival
process. We term the process that includes such customers the nominal process;
the realized process does not include them. The nominal process is the one we
want to fit. A relatively simple approach can be used, at least reasonably, to deal
with this censoring. We assume that the normal rate function (μi(t) : t ≥ 0)
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Fig. 18.1 Per-minute demand rates, censored (dashed) and decensored (solid), for a station
in Midtown and a station in the East Village (NYC). Notice that censoring of demand for
rentals/returns has a stronger impact at times when the stations are more likely to be empty/full

of the arrival process at station i is piecewise constant over intervals of perhaps
30 min. If μik is the arrival rate at station i in the kth 30-min period, then we can
estimate μik by

μ̂ik = Nik

τik
.

Here, Nik (τik) is the cumulative number of bikes that were checked out (cumulative
amount of time that bikes were available) from station i in the kth period over
multiple instances of the arrival process. For example, if we are estimating the
arrival rate for Monday mornings from 9 a.m.–9:30 a.m. and have observed 12
weeks of data, then Nik is the total number of bikes checked out from station i from
9 a.m.–9:30 a.m. over the 12 Mondays. The quantity τik is the cumulative amount
of time within the interval 9 a.m.–9:30 a.m. over those 12 weeks during which at
least one bike was available. So τik ≤ 6 h, with strict inequality arising if station i

was ever empty in that timeframe. Figure 18.1 gives a sample of the fitted arrival
rate functions for two stations and a typical business day.

There is a second form of censoring that we cannot handle so readily. Users learn,
over time, the availability patterns of bikes at stations. If a station rarely has bikes
within a certain period, then users who would otherwise attempt to borrow a bike
at that time may learn to not even check for availability. We do not know how to
handle this issue, apart from periodically re-learning the nominal rates after system
changes that (hopefully) increase the availability of bikes.
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Fig. 18.2 The regression line is ln(observed) = 0.83 ln(Google prediction) + 1.16 + ε, where ε

is normally distributed with mean 0 and variance 0.168. The R2 value of the fit is 0.82. Durations
are measured in seconds. The blue line is the identity, the magenta line indicates 45 min, that is,
the maximum time commuters may ride without surcharge (Based on Figure 2 in Jian et al. 2016)

Fitting the transition matrix Pij (t) is relatively straightforward. Again we assume
that Pij (·) is piecewise constant. We then simply estimate it from the empirical
distribution for the destinations of bikes borrowed from station i in the appropriate
30-min period. This is the usual maximum-likelihood estimator of the transition
matrix of a Markov chain. However, it also suffers from another form of censoring.
When a biker’s destination station is full, the biker must return the bike to another
station, or wait until a rack becomes free. We do not observe, in our data, such
events. Elegant methods for handling this destination censoring would be welcome.

Finally, we want to model the biking times. These are again relatively straight-
forward to estimate from data. We use linear regression, predicting the log of the
trip durations (denoted ln(Tij ), where i and j are station indices) seen in data to
the log of the predicted cycling durations obtained from Google Maps (denoted
ln(Dij )). In this notation we suppress the fact that many station pairs have a very
large number of individual trip durations corresponding to the station pair, and
we use a single regression model to fit biking durations for all station pairs. The
resulting distribution Gij of trip durations between Stations i and j is lognormal,
with parameters obtained from the regression. Figure 18.2 shows a scatter plot in
log scale with the fitted regression line (right plot) based on 85% of the data that
lies inside the central ellipse (left plot). We used this method to attempt to ensure
that the fit is not unduly influenced by extreme data points that may represent data
errors. This approach works for all station pairs where i �= j . When i = j , so that
the biker returns the bike to the same station, we again use lognormal trip durations,
but this time with parameters that are specific to station i.

All of these fitting methods must be used with caution. In particular, Citi Bike
operations are heavily seasonal, and have been in a constant state of growth since
operations began in 2013, not only in the sense of an increasing footprint of stations,
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but also in terms of the number of rides within an existing footprint. Accordingly,
we use data from an appropriate window of time that matches, to some degree, the
time period for which we are fitting rates. For example, when fitting parameters that
are used to model operations during the summer months, we do not use winter data,
and we do not use summer data from more than one year ago. We will say more
about fitting rate parameters in the context of expansion planning in Sect. 18.6.

There is one more challenge that we have yet to overcome. Weather certainly
has a pronounced effect on ridership. When we use our models to make decisions
for, e.g., the next day, we could exploit the very reliable weather forecasts that
are available for that day. This is important because, e.g., if a storm is expected
in the morning, then ridership will be down in the morning and bikes will not be
transported in great numbers from regions where apartments are concentrated, like
the East Village in New York, to regions associated with the workplace, like the
Financial District in New York. Therefore, if the weather is also likely to be fine
in the afternoon, then great shortages of bikes will likely ensue in the afternoon.
In principle, this is easily handled by fitting parameters that are weather specific.
Nevertheless, we are yet to overcome the challenges associated with doing so in our
work with Citi Bike.

18.3 Motorized Rebalancing

We begin this section by first defining the user dissatisfaction function introduced by
Raviv and Kolka (2013). Based upon this, we then present an optimization problem
introduced by O’Mahony (2015) that finds the optimal placement of bikes across
the system at a given time. The optimization problem and the solution thereof
do not depend on the actual number of bikes at each station or the rebalancing
means available; instead, it focuses on finding the allocation that could be attained
with unlimited rebalancing resources. Thereafter, we focus on what can actually be
attained in practice by sketching the various integer programming formulations that
route resources in an attempt to achieve near-optimal allocations.

18.3.1 User Dissatisfaction Function

The user dissatisfaction function of Raviv and Kolka (2013) estimates the number of
out-of-stock events at a station over a finite time interval as a function of the number
of bikes present at the beginning of said interval. To do so, it defines a birth-death
process that is bounded above by the capacity of the station, i.e., the number of docks
there, to track the number of bikes over the course of the interval. Mathematically,
this corresponds to an M/M/1/K queue where K denotes the number of docks.
In the birth-death process, bike rentals correspond to deaths and bike returns
correspond to births. Whenever there are no bikes present, i.e., the birth-death
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Fig. 18.3 User dissatisfaction functions for various stations in New York

process is at 0, a rental experiences an out-of-stock event and the objective increases
by 1. Similarly, whenever the birth-death process is at the capacity of the station,
meaning that all docks are occupied by bikes, an attempted bike return experiences
an out-of-stock event, with respect to docks, and the objective increases by 1. Using,
for example, the decensoring techniques described in the last section, the birth
and death rates can be estimated from historical data. The work of Schuijbroek
et al. (2017) and O’Mahony (2015) then provides different ways of using time-
invariant rates to compute the expected number of out-of-stock events in an
interval as a function of the initial number of bikes. Parikh and Ukkusuri (2015)
observe that such intervals can be stitched together through standard stochastic
recursion techniques, thus generalizing the techniques to piecewise constant rates.
The resulting functions are convex as was first observed by Raviv and Kolka (2013)
(cf. Fig. 18.3).

18.3.2 Optimal Allocation Before the Rush

Given the user dissatisfaction functions, it is natural to ask what the optimal
allocation of bikes across the system looks like at the beginning of a time interval
(e.g., at 6 a.m. on a weekday). We introduce the following notation in order to
present the resulting optimization problem: for each station i, we denote its capacity
by Ki . Thus, a station that holds bi bikes at the beginning of the interval, has Ki−bi
empty docks at that time. The user dissatisfaction function at such a station i is then
written as ci(Ki − bi, bi). Writing ci as a function of two variables, rather than just
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Fig. 18.4 Optimal allocation for B ∈ {5,000, 10,000} at 6 a.m. in July 2017. The more red a
station is, the larger the fraction of docks that is occupied in the optimal solution. (Map data:
Google)

as a function of bi , facilitates the use of consistent notation in this section and the
next. Given a total number of bikes B, the optimal allocation of bikes across the
system is then given by the solution to

minimize
b

∑

i

ci(Ki − bi, bi) (18.1)

s.t.
∑

i

bi ≤ B,

0 ≤ bi ≤ Ki,

bi ∈ Z.

As one would expect, the resulting solution (cf. Fig. 18.4) suggests a great
number of bikes should be placed in residential areas, e.g., the East Village and
the Upper West Side, whereas very few bikes should be placed in commercial areas
such as the Financial District or Midtown.

In preparation for the afternoon, this image is reversed; stations that should be
full/empty in the morning should be empty/full in the afternoon (cf. Fig. 18.5).
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Fig. 18.5 Each point corresponds to a station, the coordinates correspond to the fraction of the
station’s docks that are filled in the optimal solution (B = 12, 000) at 7 a.m. and at 4 p.m.

While the described optimization problem helps understand the needs of the
system, the optimal configuration is very much unattainable. We now turn our
attention to routing problems that combine the minimization of out-of-stock events
with the constraints induced by limited rebalancing resources.

18.3.3 Resulting Routing Problems

The cleanest routing problem for motorized rebalancing in bike-sharing systems
deals with rebalancing overnight. Since systems experience very little demand
during the late evening and early morning hours (cf. Fig. 18.6), the hours in between
give operators a large time window in which to prepare for the morning rush.

Just as in the previous optimization, the integer program suggested by Raviv
et al. (2013) aims to minimize the expected number of out-of-stock events over the
course of the rush. However, rather than having a budget constraint on the number
of bikes in stations, we now have a fleet of capacitated trucks, each of which has an
initial location, a final destination, and a number of bikes that are initially loaded.
Given a bound on the length of the route of each truck to ensure that the routes have
been completed by the time the rush begins, the integer program aims to find routes
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Fig. 18.6 Average number of trips starting on weekdays in the week of July 10th 2017 partitioned
into 15-min buckets. The left (right)-hand side shows trips that start (end) at the given location

so that the resulting allocation minimizes the objective subject to no route being
longer than the bound, and each truck starting and ending its route at the specified
locations. Further, the number of bikes on each truck is bounded between 0 and its
capacity at all times, and can only change when the truck is at a station – in that case,
the change in number of bikes aboard the truck equals the negative of the change in
number of bikes in the station. Subsequent to Raviv et al. (2013), several heuristics
have been suggested by Forma et al. (2015), Ho and Szeto (2014), and Szeto et al.
(2016) to solve larger instances.

Variations of the integer program have been studied as well, e.g., by Freund et al.
(2016) who introduce a trade-off between travel-time and the number of stops to
account for the time required for the trucks to park.

Rebalancing during rush hours is often more difficult than before the rush hour,
which is one reason the focus of the rebalancing literature has been on overnight
rebalancing. The difficulties of rebalancing during rush hours are mainly due to two
complications. First, traffic congestion slows down trucks and thus reduces their
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Fig. 18.7 Minimizer of the user dissatisfaction function at each half-hour interval over the course
of the day for five stations in the East Village and five stations in the Financial District

efficiency. Second, since the system is dynamic, it is more difficult to plan ahead.
For example, a route during rush hour may involve picking up bikes at a station
that, by the time the truck arrives at that station, is already out of bikes. Moreover,
towards the end of the rush, the question arises whether or not rebalancing should
be aimed at the current rush or the subsequent period. To make this more precise,
consider a station in a residential area like the East Village. During the morning (cf.
Fig. 18.6), the station experiences much greater demand for rentals than for returns,
so it is easy to see that before the rush, say at 6 a.m., rebalancing should ensure the
station is close to being full (cf. Fig. 18.7). A little while into the rush, say at 8 a.m.,
this is still the case. However, by 10 a.m., rebalancing decisions with respect to
routing are made that only take effect when rebalancing is actually performed some
time later – by that time, say at 10:30 or 10:45 a.m., the demand has drastically
changed, as can be observed in the sharp drop in the value of the minimizer of the
user dissatisfaction function in Fig. 18.7. As the survey by de Chardon et al. (2016)
points out, this issue can lead to rebalancing actions performed at the end of the
morning rush hour being reversed by further rebalancing in the afternoon (or vice
versa).

It is thus evident that it is easier to derive appropriate rebalancing formulations
for rebalancing between peak traffic times than it is for rebalancing during peak
traffic times. However, there is a trade-off between (1) rebalancing at the beginning
of the peak when it is easy to identify where to add/take bikes, but congestion
slows down rebalancing, (2) in between peaks when it is easy to identify where
to add/take bikes, but the system is less imbalanced, (3) towards the end of
peaks when the system is imbalanced, but it is much harder to identify where
bikes should be taken/added. System operators rebalance during peak times and
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require technological support for decision-making at those times. To that end,
most academic approaches adapt the existing approaches for in-between rush-
hour rebalancing in natural ways. For example, Kloimüllner et al. (2014) adapt
the approach of Rainer-Harbach et al. (2013) and Raidl et al. (2013) under the
assumption that demand in any time interval matches its expectation.

18.4 Allocating Capacity

Forecasting and optimal motorized rebalancing, especially with a focus on overnight
activity and minimizing out-of-stock events, have received a great deal of academic
attention, but related system-design questions have not. In this section we focus on
one of these questions, namely the question how many docks should be allocated to
each station.

Given the user dissatisfaction function explored in the previous section, it is
natural to focus on station capacities; after all, the user dissatisfaction function is
a function of the number of docks at the station (cf. Fig. 18.8).

In this section, we first outline the integer program suggested by O’Mahony
(2015) to find the optimal allocation of bikes and docks, for given user dissatis-
faction functions. We then describe the results of Freund et al. (2017) extending
the integer program and review structural results that allow us to efficiently solve
the integer program to optimality. We next explore an extension of the user
dissatisfaction, described by Freund et al. (2017), that captures the advantages of
adding docks to self-balancing stations. At the end of the section we use real system-
data to indicate what improvements might be possible through reallocation of dock
capacity and discuss methods to evaluate the effect after implementation.

Fig. 18.8 User dissatisfaction function as a function of capacity and number of bikes and its long-
run average, only a function of its capacity. Since the cost of the long-run average depends on Ki ,
but not on the initial number of bikes, it is constant on every diagonal y = c− x. Further, since its
value on each diagonal is a convex combination of the values of the user dissatisfaction function
on the diagonal, it is bounded between the minimum and the maximum along that diagonal
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We assume that the demand at each station is given exogeneously and can be
estimated as in Sect. 18.2. In particular, we assume that our demand estimates for
bike usage already capture the latent demand that could be served through additional
capacity. Further, we assume that the demand for bike returns is not affected by
added capacity elsewhere within the system. While the latter assumption seems
strong, it is necessary to obtain a tractable problem. To justify this assumption, we
refer to the work of Jian et al. (2016), which uses heuristic methods from simulation
optimization whilst making only the first of the two assumptions; the results of Jian
et al. (2016) indicate that the second assumption does not have a strong effect on the
solutions.

18.4.1 Model formulation

Similar to the integer programs described in Sect. 18.3, we again aim to minimize
the system-wide expected number of out-of-stock events. However, in contrast to
the previous integer program, we now treat the number of docks Ki allocated to
station i as a decision-variable with an associated budget K on the total number of
docks.

minimize
K,b

∑

i

ci(Ki − bi, bi) (18.2)

s.t.
∑

i

Ki ≤ K,

∑

i

bi ≤ B,

∀i ∈ [n] : 0 ≤ bi ≤ Ki,

∀i ∈ [n] : li ≤ Ki ≤ ui.

It has been observed by Freund et al. (2017), as well as by Kaspi et al.
(2017), that ci is a multimodular function, meaning that it fulfills particular
convexity/diminishing return properties. We refer the reader to Murota (2003) and
the references therein for an overview of the literature related to multimodularity. It
is known that multimodular functions can be efficiently minimized.

A practically relevant extension asks to minimize the objective whilst moving a
limited number of docks, that is, given the current capacities K̂i for each station
i and a reallocation budget R it aims to minimize with the additional constraint∑

i |Ki − K̂i | ≤ R. Freund et al. (2017) prove that by first solving the integer
program with li = K̂i = ui , i.e., without allowing capacities to change, and then
running R gradient-descent steps, with an appropriately defined notion of gradient,
this extension can be solved optimally as well.
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18.4.2 Long-Run Average

Part of the motivation to study the capacity allocation stems from the notion that
limited resources to rebalance thwart attempts to attain the optimal allocation of
bikes, given a fixed allocation of docks. A legitimate criticism of the integer program
above thus questions whether the new allocation of docks, given by the optimal Kis
from the integer program, would give fewer out-of-stock events on a typical day,
on which the stations are not optimally rebalanced (as in Fig. 18.4), even under the
assumptions on the demand estimates mentioned before.

We address these concerns by explaining how Freund et al. (2017) extend the
user dissatisfaction function to study a long-run average of the expected number
of daily out-of-stock events in a regime in which no rebalancing occurs and the
number of bikes at the beginning of a day is thus solely a function of the number of
bikes at the beginning of the prevoius day and the realized demand over the course
of the previous day. Mathematically, this extension is equivalent to computing
the user dissatisfaction function over (infinitely) many days rather than just one.
Computationally, Freund et al. (2017) compute transition probabilities between
the possible numbers of bikes in a station, i.e., 0, 1, 2 . . . , Ki , at the beginning
of successive days. Obtaining the steady-state probability of the discrete Markov
chain induced by these transition probabilities, the long-run average of the user
dissatisfaction function can be calculated as a convex combination of the cost-values
with 0, 1, 2 . . . , Ki bikes.

Given the extreme contrast between the two regimes (perfect rebalancing versus
no rebalancing), it would not be surprising if the optimal dock allocations to the two
were very different. In fact, one can easily construct examples of demand estimates
for which the optimal solution for each of the two regimes is unboundedly far away
from the optimal solution in the other regime. Such examples are based on stations
with very asymmetric demand, that is, stations at which there is, over the course
of a day, great demand to rent bikes, but none to return them (or vice-versa). At
such a station, the perfect rebalancing regime can improve its objective through
each additional dock by 1 as it is likely that such a dock, when initialized with a
bike, will be used via a bike being rented. Since the long-run average reveals that
the station would end up empty more often than not anyway, it does not reward an
additional dock at such a station. Instead, the additional dock would be placed at a
station that is more likely to balance itself over the course of a whole day and yet
require the additional dock. In practice, however, such cases are rare; in the next
paragraph we describe that operators can simultaneously improve both objectives.

In Table 18.1 we describe the results of the analysis for Boston (Hubway),
Chicago (Divvy), and NYC (Citi Bike), based on Freund et al. (2017). The analysis
is based on demand estimates from July 2016. The first three columns describe the
size of the systems (in July 2016) in terms of number of stations, number of docks
at all stations combined, and number of bikes. The next six columns provide the
objectives under optimal allocation of bikes (c) and under long-run average (cπ )
for three different allocations of docks: the current allocation of docks (Present), the
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Table 18.1 Results of optimizing integer program (18.2) in New York, Chicago, and Boston with
demand estimates stemming from July 2016 usage data. The columns headlined number summarize
system statistics, the columns under c and cπ describe the objective with perfect rebalancing and
long-run average respectively. The last column provides the number of docks that need to be moved
to obtain the optimal allocation

1% of docks
Number Present moved OPT

City Stations Docks Bikes c cπ c cπ c cπ Reallocated docks

New York 449 14942 7500 4313 7275 4019 6985 2631 6231 2442

Chicago 582 9987 6000 1462 2340 1281 2165 0988 1978 0669

Boston 164 2861 1600 0614 0875 0567 0921 0479 0836 0213

allocation obtained by optimally moving 1% of the docks, and the optimal allocation
of docks (OPT). Finally, the last column contains the number of docks that would
need to be reallocated to get from the current allocation to the optimal one. Three
interesting results arise from the analysis. One, moving even a small fraction of
docks can significantly decrease the number of out-of-stock events. Two, moving
to the optimal solution may require a large fraction of docks to be moved. Three,
optimizing in either regime yields significant improvements in the other. Thus,
bike-sharing systems can have their cake and eat it too: most of the improvement
obtainable in the one regime is also obtained by optimizing for the other regime.

18.4.3 Measuring the Impact

The impact of reallocated capacity can be estimated in both an a priori and an a
posteriori way. The a priori analysis is shown in Table 18.1: by comparing, for
the current demand estimates, the objective of the continuous-time Markov chain
model, we can estimate by how much reallocating docks would reduce out-of-stock
events. Once docks have been reallocated, in the knowledge that demand patterns are
likely affected, we can then estimate new demand rates, and compute an a posteriori
estimate of the change in objective.

We can take the a posteriori analysis one step further by evaluating not only the
objective of the user dissatisfaction function, based on a continuous-time Markov
chain that uses demand estimates as its input, but rather use the observed, partially
censored, demand explicitly. Here, we only sketch the idea of how this can be done.

Consider a station that used to have 40 docks, but had 10 docks taken from it.
Suppose in the months after docks were taken away, the number of bikes in the
station never gets to 30, i.e., even with the reduced capacity, no customer returning
a bike ever experiences an out-of-stock event at the station. In that case, one can
safely assume that taking the docks away did not cause any out-of-stock events.
On the other hand, consider a station that used to have 30 docks and had 10 docks
added to it. Suppose the station emptied out every morning, and then experienced
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out-of-stock events, but then had 35 bikes returned in every afternoon rush-hour. In
that case, one can estimate the reduction in out-of-stock events to be 10: in every
afternoon rush-hour, 35 bikes are returned, 5 of which would not have been possible
with the old capacity of 30. And in every morning rush-hour those 35 are all rented,
only 30 of which would have been there if the capacity was only 30.

The idea outlined above to measure the impact a posteriori can be extended to
estimate the number of out-of-stock events due to removed capacity, when that
number is in fact greater 0. Implicit in this discussion is an assumption that no
rebalancing occurs.

18.5 Beyond Motorized Rebalancing

While most operators of bike-sharing systems deploy trucks for rebalancing, some
have developed targeted non-motorized techniques, which we briefly discuss here.
We focus on Citi Bike’s user incentive scheme, the routes of their trikes, and the
placement of their corrals.

18.5.1 Incentives

Citi Bike ran a pilot of its incentive scheme, Bike Angels, in October 2015. In the
pilot, the program targeted individual users with an incentive to drop off bikes at
stations nearby to their usual trip destinations as well as to pick up bikes at stations
nearby to their usual trip origins.

After running the pilot throughout the month of October, Citi Bike implemented a
wider program that included many more stations. Eventually, it was also extended to
all customers. In this new form, the program closely resembles the ideas outlined by
O’Mahony (2015): stations are labeled to indicate whether a station needs additional
rentals, additional returns, or is neutral. Originally, these labels were static in that
stations kept their labels for every weekday morning rush hour (6 a.m.–12 p.m.) and
each afternoon rush hour (4 a.m.–8 p.m.) over the course of two-week periods. This
has since changed as the labeling of stations became dynamic in April 2017.

The decision to adopt dynamic labels involves a trade-off between two conflicting
objectives: on the one hand, static labels provide a simpler user experience in which
customers do not have to check the current state of the system to know whether
they will be awarded points. On the other hand, static labels can lead to undesirable
outcomes when either (i) customers are incentivized to drop off (pick up) bikes at
stations that are full (empty) or (ii) customers are incentivized to drop off (pick up)
bikes that lead to an increase in the expected number of out-of-stock events. The
latter issue has been investigated, using Citi Bike’s proprietary data, by Chung et al.
(2018). In Fig. 18.9, we display the distribution of the impact on expected number
of out-of-stock events due to rentals/returns for which points were awarded between
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Fig. 18.9 Change in the user dissatisfaction function for each rental/return for which a point was
awarded, mapped over the course of each morning rush hour, evaluated for October 15 through
December 15, 2016

6 a.m. and noon in the last months of 2016. While the vast majority of such rides
(awarded through a static policy) improved the state of the system, it is noticeable
that some did not. On the one hand, a fully dynamic scheme would not award any
points to rentals/returns with negative impact on the objective. On the other hand, the
red points correspond to points that would have been awarded with a simple policy
that determines an optimal time interval for each station over which rentals/returns
are incentivized. Notably, the latter policy excludes many trips with negative impact
and only few with positive impact.

18.5.2 Valets and Corrals

Valets ride trikes towing trailers that hold up to 18 bikes, which they move back
and forth between stations – a picture of such a trailer can be found on page 2 of
O’Mahony (2015). Due to the physical difficulties of moving the heavy trailers, the
stations are not meant to be more than several blocks apart. Interestingly, as shown
in Freund et al. (2016), under the right set of assumptions, one can extend the user
dissatisfaction function to model the expected number of out-of-stock events for a
pair of stations with a trailer moving bikes back and forth between them. Combining
this with the expected number of out-of-stock events without a trailer, one can
obtain, for each feasible pair of stations, the expected improvement due to adding
a trailer. Finding the optimal trailer routes for k trailers then reduces to finding the
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maximum-weight matching of cardinality k on the graph induced by stations as
vertices and weighted edges between feasible pairs of stations, where the weight of
each edge is the improvement due to the trailer between them.

Another non-motorized instrument Citi Bike and other operators take advantage
of are so-called corrals. Corrals artificially extend the capacity of individual stations
by having one employee store bikes in the space between racks and look after them
over the course of the day. In the morning rush-hour, this allows additional bikes
to be returned, which can then, in the afternoon rush-hour, be rented again. This
approximately triples the capacity of the station. One could compute the expected
change in out-of-stock events due to adding a corral using the framework of the
user dissatisfaction functions; this would only require computing for each station
the long-run average of the user dissatisfaction function with three times its current
capacity. However, doing so would not be in line with the explicit purpose operators
pursue with the use of corrals: rather than minimizing the number of out-of-stock
events at one station, the aim is to minimize the system-wide number of return-
related out-of-stock events. Indeed, a corral at a station i can reduce (or mitigate
the effects of) out-of-stock events at nearby stations in addition to those at station
i. In Freund et al. (2016), a maximum-coverage integer program is introduced that
captures this objective.

18.6 Expansion Planning

Bikesharing programs are expanding worldwide, either through the introduction of
a new program to a city, or through the expansion of an existing program.

When a new bike-sharing program is introduced to a new city, one must decide
the number, location and capacity (number of docks) of stations, in addition to
questions relating to the number of bikes that are required. In such settings, there
is no existing data on bike-sharing demand. Indeed, we faced such a situation when
Motivate asked us to predict the level of demand they might see in a bike-sharing
network in San Francisco and the Bay Area. While there was an existing bike-
sharing network in place, it was so small as to be of no help in predicting what
might arise in a full-scale implementation. In this setting, perhaps the most viable
tool, especially now that there are a large number of bike-sharing programs around
the world, is to gauge one’s target locale (in our study, San Francisco) against
established programs in other cities. We used a regression model that predicted
bike rides as a function of city population, demographic data, geography, and
climate. We do not report on this study in detail here, instead simply noting that
our resulting estimates of demand in San Francisco were very close to estimates
produced internally, through a different method, at Motivate.

It is not possible to perfectly scale a new bike-sharing venture because of the
difficulty in estimating usage rates. Fortunately, it is usually possible to “evolve” a
bike-sharing design, expanding or contracting stations by adding or removing docks
as demand patterns become clear. Indeed, in NYC, most of Citi Bike’s docks come
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in sets of 3 or 4, and are freestanding. The primary constraint is real estate, which
is not owned by Citi Bike. Accordingly, Citi Bike must negotiate with the owners,
often the city, to obtain clearance to change the capacity of bike stations.

The creation of the Citi Bike system in NYC has proceeded in a series of stages.
In each stage, a new set of stations and bikes are installed in a geographical area
not previously served, and some adjustments are made to the existing network to
account for potential changes in flows. The initial installation in Manhattan and
Brooklyn in May 2013 was complemented by major expansions in August 2015
and August 2016 of 140 stations each. For each of these expansions, the nominal
flow (nominal demand) rates are unknown between new stations, but also between
new and existing stations. Furthermore, the nominal flow rates between existing
stations may change as a result of the expansion, although we typically expect these
latter changes to be modest.

We now review the key ideas outlined by Singhvi et al. (2015) for exploiting
existing ridership data in NYC, along with the models discussed above, to help Citi
Bike in expansion planning.

Let S be the set of existing stations and S′ be the set of new stations. Let
(λij : i, j ∈ S) denote the flow rates between existing stations before expansion. Let
(νij : i, j ∈ S∪S′) denote the flow rates between all pairs of stations after expansion.
(For simplicity we suppress the dependence of these rates on the hour of the week.)
We pursued the following agenda.

1. Use demographic data, taxi usage data and potentially other data sources to
estimate the parameters in a regression model that predicts the nominal flow
rates between existing stations, (λij : i, j ∈ S), as a function of those data.
Here we exploit the fact that these stations have been in operation for some
time, so that rates are quite well known. This model is not very effective
when used at the station level. However, when stations are aggregated into
neighborhoods, which are simply collections of stations, and rates are estimated
between neighborhoods, the predictions are more accurate.

2. Assume the nominal flow rates between existing stations do not change after
expansion, i.e., take (νij : i, j ∈ S) = (λij : i, j ∈ S).

3. Use the estimated regression model to predict the remaining nominal flow rates
after expansion, i.e., the flows from existing to new stations (νij : i ∈ S, j ∈ S′),
the flows from new to existing stations (νij : i ∈ S′, j ∈ S), and the flows between
new stations (νij : i ∈ S′, j ∈ S′). In doing so, work first at the neighborhood
level to predict inter-neighborhood trips, and then disaggregate these trips into
station-specific trips.

4. Compute the user dissatisfaction curves for each number of bikes and each
number of docks for the station-specific rates.

5. Solve the optimization problem (18.2) to determine how to allocate bikes and
docks to new and existing stations. In doing so, one can fix the dock alloca-
tions to existing stations if modifying those allocations is deemed difficult or
impossible.
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The step in the above process that is perhaps most prone to error is that
where we disaggregate the inter-neighborhood predictions to obtain station-specific
predictions. This stage of the calculation could potentially benefit from further
research.

Given that we are so uncertain about the inter-station rates after expansion, our
approach of using point estimates for those quantities in the optimization prob-
lem 18.2 is a second point of concern. An intriguing potential area of future research
is to explore versions of the optimization problem with robustness properties.

18.7 Conclusion

This chapter has introduced and discussed a range of logistical questions and
strategic concerns related to bike-sharing programs that operate a collection of
stations consisting of finite-capacity stations. The methods we have discussed have
seen extensive use with Citi Bike in New York City. Beyond the work presented
here, and still with the type of bike-sharing program operated by Citi Bike, there are
at least two important directions that are yet to be fully explored. First, alternative
pricing models might have the potential to better match supply and demand of
both bikes and racks. One can also imagine a study of revenue management
techniques for bike-sharing systems. A key challenge is that the per-ride cost of
bike-sharing to a user is very small, so there is little room to adjust prices, and
perhaps low sensitivity to price mechanisms. Second, bikes are often viewed as a
solution to the “last mile” problem, where commuters use other modes of transport,
such as the subway, in their daily commutes. Can one develop transport planning
infrastructure that allows the planning of end-to-end travel, incorporating various
modes of transport that might also include taxis and other modes?

Related planning methods for alternative bike-sharing designs are largely unex-
plored. Turnkey systems do not use docks, instead registering a bike as returned if
it is within a certain distance of a fixed station. Such stations can be approximately
modeled with the methods in this chapter if one simply assumes their capacity to
be very large, or even infinite. While this should be sufficient for many locations,
there would still be stations where demand is so great that this assumption is
inappropriate. What then? Moreover, the chaos that can ensue when bikes are left
in haphazard fashion may be untenable for certain locations, so this modeling
approach may have to be augmented with other ideas. Still other bike-sharing
programs employ GPS units on bikes, and bikes can be left in any location.
Modeling approaches to support managerial decision making in such systems are
just beginning to be explored.
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Chapter 19
Operations Management of Vehicle
Sharing Systems

Long He, Ho-Yin Mak, and Ying Rong

Abstract The emerging sharing economy has encouraged the rapid rise of vehicle
sharing businesses. Much of this growth is due to the innovation of the free-
float model, which allows users to start and end rentals at any location within a
defined service region. Compared with conventional models of vehicle sharing,
the free-float model offers its users the flexibility to make one-way, two-way
and multi-stop trips, and as a result offer a more viable alternative to individual
vehicle ownership. On the other hand, the flexibility of free-float model leads to
a number of operations management challenges that must be overcome for such
vehicle sharing systems to be economically sustainable. In this chapter, we review
several operations management problems in vehicle sharing including system
design, vehicle repositioning, fleet sizing, dynamic pricing and reservation policy.
In particular, we discuss the optimization models for service region design and fleet
repositioning in details.

19.1 Introduction

Recent novel business models emerging along with the sharing economy aim to
improve resource utilization. Because of passenger cars’ low utilization rates (on
average idle 92% of the time Time Magazine 2012), high fixed costs to own (on
average $6,500 per year) and relatively low variable costs to operate, it becomes a
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prime candidate for sharing business. The worldwide market size of car sharing is
forecast to grow from 2.3 million users in 2013 to 12 million users in 2020 (Navigant
Research 2013).

Different from the conventional station-based model, e.g., Zipcar, where cus-
tomers are required to return vehicles to the same stations where the rental trip
started, firms like car2go adopt a new operating model that allows one-way and
multi-stop trips in their free-float car sharing systems. For instance, customers are
able to check out and return cars anywhere within the service region at any on-street
parking space. In free-float systems, customers can use smartphone apps to rent,
reserve, and drop off vehicles on demand, wherever they choose. This innovative
model in car sharing has also been extend to bike sharing systems, e.g, Mobike and
ofo.

Meanwhile, electric vehicles (EVs) have been widely adopted in various vehicle
sharing business models. For instance, car2go operates EV fleets in Amsterdam,
Madrid and Stuttgart. Drivenow/Reachnow also operates with partially electric
fleets in various cities in Europe and North America. In 2017, Telepod started its
e-scooter sharing business with 7 stations in Singapore. EVs typically have higher
fixed (purchase) costs but lower variable (fuel and maintenance) costs than their
gasoline counterparts. The sharing business model allows the higher fixed costs to
be shared among multiple users, and takes advantage of the lower variable costs
through increased vehicle utilization. These innovative operations models allow
more customers to experience EVs on a daily basis without long-term commitments,
which possibly helps overcome the major barriers to EV adoption, such as the range
and resale anxiety discussed in Lim et al. (2015).

While the free-float model and the use of EVs offers new opportunities in the
vehicle sharing business, the resulting operations management can be challenging.
In this chapter, we discuss several operations problems, including service region
design, fleet sizing, fleet repositioning, dynamic pricing and reservation policy.
We classify these into strategic planning and operational decision problems in
Table 19.1. Due to the different decision time frames, the modeling approaches
and data requirement for analyzing them differ significantly. In particular, while
static (mostly mathematical programming) models are generally more suitable
for strategic planning, the operational decision making usually calls for dynamic
models (e.g., dynamic programming). We provide a brief discussion for each
problem below.

Table 19.1 Operations management problems in vehicle sharing systems

Problems Strategic decision Operational decision

Service region design X

Fleet sizing X

Fleet repositioning X

Dynamic pricing X

Reservation management X
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Service Region Design A key strategic decision in free-float vehicle sharing
systems is designing the service region. On the one hand, expanding geographical
coverage attracts more service adoption and thus higher revenue. On the other hand,
doing so brings operational challenges, such as the fleet repositioning to ensure
availability under imbalanced demand and recharging operations in the case of EV
fleets. The optimal service region design requires carefully modeling the trade-off
between these factors.

Fleet Sizing To ensure high vehicle availability (i.e., service level of the system)
and cost effectiveness, the operator must deploy an optimal fleet size given the
service region (in free-float systems) or network of stations (in station-based
systems). The model for fleet sizing should capture the relationship between vehicle
availability, utilization and fleet size (i.e., cost). Depending on the flexibility of fleet
deployment or redeployment, fleet sizing can be strategic or tactical decision. With
the close connection with the geography of the service region, it is often appropriate
to jointly optimize fleet sizing and service region design in strategic planning.

Fleet Repositioning Fleet management is one of the main operational challenges
in vehicle sharing systems, especially for free-float systems. Under time-varying and
spatially-unbalanced travel patterns of customers, the vehicles must be repositioned
throughout the day to ensure availability at locations where customers need them.
This requires analyzing and solving a dynamic optimization problem. One of the
major challenges is to overcome the curse of dimensionality as the problem size
grows with the spatial (geographical location) and temporal (planning horizon)
dimensions. Such problem is common among various vehicle sharing systems,
including both car sharing and bike sharing.

Dynamic Pricing The idea of dynamic pricing not only plays a big role in ride
sharing (e.g., surge pricing by Uber), but also in vehicle sharing systems as well.
Particularly in free-float systems, dynamic pricing can also serve as an instrument
to encourage customers to move vehicles and rebalance the fleet. Drivenow offers
discounts to customers based on the location and time of the vehicle being rented.
Optimizing these discount offerings dynamically could incentivize customers to
help reposition vehicles from less desirable locations to where they are needed.

Reservation Management While vehicle sharing systems generally provide on-
demand service, it is often important to allow customer reservations to enhance
operational efficiency. In station-based sharing systems, the number of parking
spaces is limited in each station. To better manage capacity, operators design
parking reservation policies to better utilize the parking lots and improve the
system’s flexibility by allowing one-way rental where parking availability at the
destination becomes a key constraint. On the other hand, in free-float vehicle sharing
systems, allowing for advanced reservation can enhance customer experience by
eliminating the uncertainty on availability. In this case, the operator faces the
problem of dynamically allocating capacity between advanced reservations and
real-time demand arrivals. Designing effective policies, e.g., limiting the number
and duration of reservations, are important to balance customer satisfaction and
operational efficiency of the system.
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In the next sections, we cover these problems in more details by reviewing some
of the existing work and discussing some potential research directions.

19.2 Service Region Design

Location design for vehicle sharing systems is critical in attracting customer demand
as well as managing operational costs. We first review the strategic decision of
service region design in free-float vehicle sharing systems. In particular, we consider
a sharing system equipped with EVs where recharging scheduling is also involved,
based on a recent paper He et al. (2017).

The strategic planning problem of service region design for free-float EV sharing
systems entails two major challenges. First, the travel pattern and adoption behavior
of potential customers are highly uncertain at the planning stage. Moreover, the
firm may not possess accurate data to describe the demand uncertainty before its
operations for a sufficient period, that further exacerbates such challenge. Because
strategic commitments, e.g., the acquisition of land for stations and charging
outlets, are often made in conjunction with service region design, a robust planning
methodology is imperative. Second, the operational details of EV sharing, such
as repositioning and recharging of EVs, depend on the demands from the service
region. Hence, the firm must also conscientiously account for operational cost
drivers when determining the service region with only limited data available. Taking
these factors into account, He et al. (2017) propose an integrated service region
design model that considers customers’ satisficing behavior in service adoption
together with various operational characteristics of a free-float EV sharing system.

19.2.1 Basic Model

He et al. (2017) consider an urban area consisting of a set N of non-overlapping
geographical locations (e.g., districts). The operator chooses a subset of N to be its
service region. We use binary decision variables xi to denote whether location i is
covered in the service region (xi = 1) or not (xi = 0). Throughout this chapter, we
use boldface letters to denote matrices or vectors consisting of scalar parameters or
variables denoted by the same letter. Therefore, x is the vector that consists of xi for
i ∈ N . We also define the inner product 〈A,B〉 = trace(BA), where A and B are
two matrices.

We assume that customers exhibit satisficing behavior in their service adoption.
Suppose aij is a customer’s utility of being able to travel from origin i to destination
j , which depends on both the trip frequency and the trip value to the customer.
Therefore, once the origin i is in the service region, the customer has a potential
utility of

∑
j∈N aij xj by adopting the service. Under the satisficing behavior

framework in Simon (1957), the customer would adopt the service when the total
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utility from the service exceeds a certain threshold b, known as the aspirational level.
Hence, if the origin i is served, the customer adoption decision can be modeled as
the indicator function below:

1
(∑

j∈N
aij xj ≥ b

)

=
{

1, if
∑

j∈N aij xj ≥ b

0, otherwise.

The utility values aij are heterogeneous among individual customers, even if
they reside in the same region. From the operator’s perspective, the values of aij
can be viewed as independent realizations of a random variable. Thus, we define
the adoption rate at the aggregate level as the probability of customer adoption or
the proportion of customers who adopt. The adoption rate qi can be written as the
expectation over aij in the indicator function:

qi = E

[

1
(∑

j∈N
aij xj ≥ b

)]

= Prob

(∑

j∈N
aij xj ≥ b

)

.

The operator’s profit consists of membership revenue and operational profit. Each
customer pays an fixed annual membership fee f when signing up for the service,
and pays for usage based on the duration of each rental. There is also a fixed cost
gi to the operator to serve region i. This may include infrastructure investment, e.g.,
for EV charging equipment, and parking permit costs. The service region design
problem is then formulated as follows:

max
q, x

{∑

i∈N
fQiqi −

∑

i∈N
gixi +Θ(q, x)

}

(19.1)

s.t. qi ≤ Prob

(∑

j∈N
aij xj ≥ b

)

, ∀i ∈ N (19.2)

qi ≤ xi, ∀i ∈ N (19.3)

xi ∈ {0, 1}, ∀i ∈ N.

The objective is to maximize the expected net profit in Eq. (19.1), i.e., total
revenue less fixed and operational costs from charging, repositioning and fleet
investment. For notational brevity, we temporarily denote the operational profit by
Θ(q, x), which is a function if the service region x and associated adoption rates
q. The expected revenue from membership fees is given by

∑
i∈N

∑
k∈K fQiqi ,

where Qi is the market size in region i. Constraint (19.2) defines the adoption
rate as the probability that a customer’s potential utility exceeds the aspirational
level. Furthermore, constraint (19.3) stipulates that a location must be covered for
its residents to adopt the service.
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19.2.2 Customer Adoption

We derive a tractable formulation for the probability constraint (19.2). To evaluate
the adoption rate exactly, complete information on the joint distribution of a
is required. In practice, however, perfect information is often unavailable when
strategic decisions, such as service region design, are made. Specifically, as the
firm only possesses limited operations data (e.g., from pilot studies or surveys) in
the planning stage, fitting the joint distribution of travel patterns with confidence
is generally not an easy task. Furthermore, in terms of computational tractability,
the total utility

∑
j∈N aij xj is difficult to evaluate in general due to the need

for convolutions, even if one assumes that the distributions are known and the
components of a are independent. Therefore, He et al. (2017) adopt a pragmatic
approach that features both distributional robustness and computational tractability
under limited information in their optimization model.

Relaxing the data requirement, He et al. (2017) assume that the operator only
has knowledge of certain descriptive statistics of a, in particular, their means
and covariance matrices. They study a robust model that provides the worst-case
adoption rate, i.e., the lowest adoption rate among all possible distributions P of
the utility parameters a with the given means and covariance matrices:

qi ≤ inf
p∈P

Ep

[

1
(∑

j∈N
aij xj ≥ b

)]

. (19.4)

The utility parameter aij is a nonnegative random variable, as utility would not be
reduced as more locations are covered in the service region. In the following, we use
ai = (aij )j∈I to denote the random vector of random utility parameters associated
with the origin i. We assume that the mean vector āi = (āij ) and covariance matrix
Γi = [cov(aij1 , aij2)] of ai are known for each location i ∈ I . Then, the second
moment matrix Σi is given by:

Σi := E

[
ai
1

] [
ai
1

]T
=
[

Si āi
āTi 1

]

, where Si := Γi + āi āTi .

We assume that the covariance matrix is positive semidefinite (PSD), i.e., Γi � 0,
which implies that the second moment matrix is also PSD, i.e., Σi � 0. With
a given x, the worst-case adoption rate can be obtained by solving a convex
optimization problem with PSD constraints. In other words, certain constraints in
the formulation take the form of requiring certain decision variable matrices to be
in the cone of PSD matrices. Note that a symmetric matrix M is said to be PSD
(denoted M � 0) if it satisfies vT Mv ≥ 0,∀v ∈ R

n.
Constraint (19.2) in Problem (19.1) is approximated by constraint (19.4) that is

further transformed into second-order cone constraints. A computationally tractable
formulation for the worst-case adoption rate in Eq. (19.4) is provided in Proposi-
tion 1.
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Proposition 1 (Proposition 1 in He et al. 2017) Adoption rate qi satisfies the
following set of inequalities, with second-order cone constraints (19.5), if and only
if it satisfies constraint (19.4).

∥
∥
∥
∥
∥

1− qik − vik

2Γ 1/2
i x

∥
∥
∥
∥
∥

2

≤ 1− qi + vi, ∀i ∈ N (19.5)

vi = b2 +
∑

(j1,j2)∈I×I
(āij1 āij2 + σij1j2)zj1j2 − 2b

∑

j∈N
āij xj , ∀i ∈ N (19.6)

(x, qi) ∈Xi , ∀i ∈ N, ∀k ∈ K (19.7)

(zj1j2, xj1 , xj2) ∈ Z , ∀j1, j2 ∈ I (19.8)

where vi and zj1j2 are auxiliary decision variables, and Z and Xi are feasible
regions characterized by linear constraints provided in He et al. (2017).

19.2.3 Operational Profit

It is essential to maintain service level in free-float sharing systems. Let the service
level α be the probability that customers will find available EVs at their origins when
they intend to travel. For the ease of discussion, we consider homogeneous service
level α across regions the discussion below. To consider location-specific service
level, one can replace α with αi for region i.

We describe the system dynamics using the closed queueing network in
Fig. 19.1a. Different from the typical models of call centers, in this queueing
network, the EVs, rather than the customers, are the considered entities. In a closed
network, the total number of EVs is fixed. There are four possible states of an EV
at any given time instant: (i) being idle and awaiting the next customer rental, (ii) in
transit from one idle node (i.e., the region) to another with a customer, (iii) in transit
from one idle node to another due to repositioning, or (iv) recharging at a charging
station. Thus, we define four types of queues for these four types of activities. In
what follows, we use the terms “queue” and “node” interchangeably.

We first discuss the basic queueing dynamics corresponding to activities (i) and
(ii) as if no repositioning or recharging was involved, and then further discuss how
activities (iii) and (iv) can be incorporated.

First, each idle node i, that represents region i, is considered as a queue
where EVs in state (i) discussed above remain idle until rented by a customer.
Customer requests for trips are assumed to follow Poisson processes with origin-
and destination-specific rates. Therefore, whenever there is an EV in the idle queue,
the time until the next rental is exponentially distributed. Suppose that EVs are
picked up in a first-in-first-out order, the dynamics of EV movements are analogous
to a ·/M/1 queue in which EVs queue to enter “service” (i.e., wait to be picked up
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Fig. 19.1 EV sharing operations as queueing networks. (a) Closed queueing network, (b) open
queueing network

by a customer). Since the EVs are all identical and interchangeable, and we are only
interested in the probability that there are no EVs in the queue, it is no restrictive to
impose the first-in-first-out assumption here in our analysis. Any customer requests
(which still follow the same Poisson process), that find no EV idle in the queue, will
be lost. The service level is then equivalent to the probability that the queue is not
empty.

Once an EV is picked up from idle queue i by a customer traveling to
destination j , it enters the transit node (i–j ). The duration it stays in the transit
node is the travel time from i to j . Assuming it follows a general distribution, the
transit node is then a ·/G/∞ queue with infinite capacity. At the departure from the
transit node, the EV enters the idle queue j at destination.

The flows of EVs induced by customer trips among idle nodes are usually not
balanced, due to the nature of travel patterns. Thus, it is important to conduct
repositioning (iii) to maintain availability of EVs at all locations. Similar to the
transit node in modeling customer-driven EV flows, the repositioning flows by
the operator are modeled using the reposition nodes in Fig. 19.1a, which are
also ·/G/∞ queues, with different (faster, as repositioning is to be conducted
economically) “service” rates than the corresponding transit queues.

The additional challenge in free-float EV sharing is that the EVs must be
recharged when their battery levels are low. In this model, we consider a simplified
recharging operations without tracking the battery level for individual EVs. We
assume that an EV departure from a transit queue, i.e., arrives at its destination, there
is Pc probability, as specified by the operator, to be re-routed to a recharging queue.
Again, assuming sufficient charging capacity and generally distributed charging
time, the recharging queue is modeled as an ·/G/∞ queue.

Now, we are ready to formulate the operational profit function Θ(·) mathemati-
cally. The first step is to calculate the rates of EV flows among three types of nodes:
transit flows, repositioning flows and recharging flows. In the idle queue i, denote
the parameter μi as the maximum outbound trip demand rate when all customer
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adopts the service. We use the travel distribution Pij to describe the proportion of
trips with destination j from region i, if all regions are served. Thus, by definition,∑

j∈N Pij = 1 holds. When the customer adoption rate is qi , the trip rate Ψij from
i to j is:

Ψij = Pijμiqi, ∀i, j ∈ N. (19.9)

However, not all demand for trips in Ψij is fully satisfied for the following two
reasons. First, those trips whose intended destinations are not within the service
region will not be allowed. Second, due to the availability of EVs, some demand
that find no EV available will be lost. We further introduce an auxiliary decision
variable ψij to be the realized transit flow. Therefore, we let

ψij = αΨij xj , ∀i, j ∈ N. (19.10)

Note that the constraint (19.10) is nonlinear. It can be linearized as follows:

ψij ≤ αΨij , ∀i, j ∈ N (19.11)

ψij ≤ Pijμixj , ∀i, j ∈ N (19.12)

αΨij + Pijμi(xj − 1) ≤ ψij , ∀i, j ∈ N (19.13)

We define the decision variable φij as the rate of repositioning trips from i to
j . For each idle queue i, the flows of EVs in and out must satisfy the flow balance
constraint below:

∑

j∈N
ψij +

∑

j∈N
φij =

∑

j∈N
ψji +

∑

j∈N
φji, ∀i ∈ I (19.14)

The next step is to decide on the fleet size required to ensure the desired service
level. Recall that there are four possible states of EVs and that the total fleet size
thus equals the sum of EVs at all these nodes in the closed queueing network.
However, due to interdependence among flows of different nodes in the closed
queueing network, the relationship between population (fleet) size and flow rates is
not straightforward. To derive tractable formulation, we apply the fixed population
mean (FPM) approximation (see, for example Whitt 2002). That is, we approximate
the EV population in the closed queueing network by the steady state expected
population in a closely-related open queueing network as illustrated in Fig. 19.1b.
Specifically, the idle queues work as M/M/1 queues, and the transit, repositioning
and recharging queues work as M/G/∞ queues. By disconnecting the recharging
queues from the rest of the network, we obtain an open queueing network.

The resulting open network approximation allows us to relate the fleet size to
the flow rate for each node. In particular, the expected number of EVs awaiting in
idle queue i is α/(1− α). Let tij and τij be the expected trip durations from i to
j for customer rental and repositioning trips respectively, and tc be the expected
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time to recharge an EV. Invoking Little’s law for each queue, the expected fleet
size constitutes the expected values of

∑
j∈N

∑
i∈N tijψij EVs in transit nodes,∑

i∈N
∑

j∈N τijφij EVs in repositioning nodes, and
∑

i∈N tcλi EVs in recharging
queues. Therefore, the fleet size N is no less than the following sum:

∑

i∈N

α

1− α
xi +

∑

j∈N

∑

i∈N
tijψij +

∑

i∈N

∑

j∈N
τijφij +

∑

i∈N
tcλi ≤ N. (19.15)

Finally, we explicitly calculate the operational profit Θ(q, x) that consists of
operational revenue, repositioning cost, charging cost, and fleet investment. Let ξ
be the scaling factor to unify the time unit, e.g., ξ = 365 to convert daily rates
into yearly rates. The annual operational revenue from EV usage by customers is
ξ
∑

j∈N
∑

i∈N rtijψij , where r is the per unit time usage price of an EV. Similarly,
the annual repositioning cost is ξ

∑
i∈N

∑
j∈N ητijφij , where η is the repositioning

cost per unit time. Let c be the average cost to fully recharge an EV, the total
charging cost is then ξ

∑
i∈N cλi . Lastly, based on the price and typical life span

in the EV sharing fleet, we use h as the annually amortized EV purchase cost. The
annual operational profit is therefore summarized as:

Θ(q, x) = ξ

(∑

j∈N

∑

i∈N
rtijψij −

∑

i∈N

∑

j∈N
ητijφij −

∑

i∈N
cλi

)

− hN

By combining the results from the previous two sections, the integrated opti-
mization model for the service region design problem is then formulated as a mixed
integer second-order cone program (MISOCP):

max
xi ,qi ,N,Ψij

ψij ,φij ,λi

{∑

i∈N
fQiqi −

∑

i∈N
gixi + ξ

(∑

j∈N

∑

i∈N
rtijψij −

∑

i∈N

∑

j∈N
ητijφij

−
∑

i∈N
cλi

)

− hN

}

s.t. Constraints (19.3), (19.5), (19.6), (19.7), (19.8), (19.9), (19.11), (19.12),

(19.13), (19.14) and (19.15)

qi, N,Ψij , ψij , φij , λi ≥ 0

xi ∈ {0, 1}

The above formulation is readily solvable by optimization solvers, such as CPLEX
and Gurobi, that can handle MISOCPs.



19 Operations Management of Vehicle Sharing Systems 471

Fig. 19.2 Service region designs. (a) Service region of car2go, (b) optimal service region

19.2.4 Numerical Results

He et al. (2017) demonstrate their service region design optimization framework
with a case study of car2go in San Diego, where the 61 zip codes in San Diego
county are considered the candidate regions for service coverage. Besides the
parameters estimated from public data sources, the study uses real operations data
from car2go, data regarding travel characteristics from the California Household
Travel Survey and EV charging station deployment data from the U.S. Department
of Energy. In particular, the parameters related to travel patterns are estimated using
the vehicle status data set of car2go in San Diego between March and April in
2014. Moreover, the Markovian assumption on customer arrivals is validated by
the data set.

By solving the (MISOCP) proposed in the previous section, the optimal service
region and fleet size are obtained. In Fig. 19.2a, b, we present the actual service
region of car2go San Diego as the benchmark, and the optimal service region from
solving the MISOCP. While both solutions agree in covering the downtown area of
San Diego, where currently 49.88% of the recorded trips occurred, the MISOCP
solution suggests more potential in the northern part. Furthermore, the optimal
service region in Fig. 19.2b indicates an expansion of service region with a similar
size of fleet.

Using the proposed MISOCP, He et al. (2017) observed a few insights from the
computational results. We summarize the findings as follows.

1. EV sharing systems deliver higher environmental benefits, e.g., savings in CO2
emissions, than replacing individually owned gasoline cars with EVs.
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2. While faster charging technologies help improve profit and service coverage
by improving fleet utilization, the benefits diminish as charging speed becomes
higher. Thus, it is sufficient for the operator to deploy moderately fast, but not
necessarily the fastest, charging technologies.

3. When customers’ valuation of the availability of cars is lower or that of service
coverage is higher, the optimal service region becomes larger.

19.3 Fleet Sizing

Fleet sizing is also an important planning problem for ensuring quality of service.
In vehicle sharing systems, the burden of ownership of vehicles is on the firm.
Therefore, fleet sizing involves relatively long-term investments and must be ana-
lyzed carefully at the planning stage. The service region design problem discussed
in the last section provides the optimal fleet size in Eq. 19.15, which takes into
account fleet repositioning, vehicle utilization and the spatial effect of the service
region. However, as the focus of the model is to optimize the service region while
considering fleet sizing as one of the cost drivers, a number of approximations were
made regarding fleet utilization. Therefore, it is helpful to formulate fleet sizing
models that captures these interactions in more detail, in the deployment phase once
the service region has been fixed. For instance, planning for parking availability is
one of the key factors influencing fleet sizing, as each vehicle needs a parking space
either in garage or on street.

To capture the temporal and spatial characteristics of fleet management,
approaches such as queueing networks are widely used modeling the fleet sizing
problem, e.g., see George and Xia (2011) and Hu and Liu (2016). Using a
simulation-based approach, Barrios and Godier (2014) analyze an agent-based
model that optimizes fleet size together with fleet repositioning under the objective
of maximizing the demand fulfillment. Lu et al. (2017) consider the planning
problem of purchasing parking lots/permits and deploying an initial fleet in service
regions under a budget constraint on total fleet size. We shall briefly review their
two-stage stochastic optimization model below.

19.3.1 Two-Stage Stochastic Optimization Model

Lu et al. (2017) consider a hybrid vehicle sharing system that features both reserva-
tion-based and free-float demand. The operator of the system allocates a budget
of S vehicles to a set of N regions, in order to maximize its profit together with
quality of service (QoS) over a T -period horizon. In the first stage, the operator
decides the number of parking spaces (wi) to purchase for the reservation-based
mode, the initial numbers of vehicles that require spaces in parking lots (for the
reservation-based mode) and street parking permits (for the free-float mode), x1

i and
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x2
i respectively, to allocate for each region i ∈ N . The associated cost parameters

are clot
i and cloc

i for acquiring one parking space and allocating a vehicle to the region
in region i, and cffp for obtaining one free-float parking permit. Let c1

i = cloc
i and

c2
i = cloc

i + cffp for each i ∈ N . The fleet allocation and parking planning problem
is formulated as a two-stage stochastic optimization model as follows:

min
w,x1,x2∈ZN+

{∑

i∈N

(
clot
i wi + c1

i x
1
i + c2

i x
2
i

)
+Θ(w, x1, x2)

}

(19.16)

s.t.
∑

i

(
x1
i + x2

i

)
≤ S (19.17)

x1
i ≤ wi, ∀i ∈ N (19.18)

where w = (wi), x1 = (x1
i ) and x2 = (x2

i ).
In the first stage, the operator decides wi (number of parking spaces), x1

i

(allocation of vehicles without parking permits) and x2
i (vehicles with parking

permits) in each region i, where all decision variables are required to be integer-
valued. The total fleet allocation cannot exceed the fleet budget S, as required
by constraint (19.17). Moreover, constraint (19.18) implies that vehicles without
a parking permits only park at the purchased parking spaces in parking lots. The
objective is to minimize the total cost of fleet allocation and parking space/permit
purchase, together with the operational cost Θ(w, x1, x2) in the second stage.

A spatial-temporal network is constructed for the second stage optimization
to model the dynamic fleet repositioning, given the initial system state (x1, x2)

and parking space capacity w. To evaluate Θ(w, x1, x2), Lu et al. (2017) employ
the Sample Average Approximation (SAA) method by generating i.i.d samples of
random one-way and round-trip trip demand. Due to large number of nodes and
arcs in the spatial-temporal network, the second stage optimization problem is
computational challenging. To address such difficulty, Lu et al. (2017) generalize
a branch-and-cut algorithm with a mixed-integer rounding subroutine to derive
stronger cuts from Benders cuts.

19.3.2 Numerical Results

Using a set of Zipcar trip data from the Boston-Cambridge area, Lu et al. (2017)
examine several issues in the operations of vehicle sharing. The data set contains a
record the starting-ending times of trips and the origin and destination zip codes of
each trip, from Oct 1 to Dec 1, 2014. Consistent with Zipcar’s practice, the Boston-
Cambridge area is divided into nine regions based on the travel patterns observed
in the data set. In the numerical experiments, the period is set to one hour, and
one-way trips are aggregated by the record quadruple (origin, destination, starting
hour, ending hour) and round-trips are aggregated by the triple (origin, starting hour,
ending hour).
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In the extensive numerical experiments, the mean total rental hours is fixed to
1000 vehicle-hours in a 24-h period. Moreover, the second stage cost is evaluated
with 1000 scenarios using the SAA method. The major insights from the numerical
results are listed as below.

1. When the one-way demand is exogenous, higher one-way proportion can
increase the systems profitability. If the one-way demand is endogenously driven
by pricing and strategic customer behavior, higher one-way proportion could
decrease profitability.

2. Effective fleet repositioning is important: the number of repositioning trips
increases as one-way demand increases.

3. A larger fleet size improves the system’s profitability and QoS, e.g., demand
fulfillment, substantially.

19.4 Fleet Repositioning

Once strategic decisions such as service region design and fleet investment have
been determined, it is important for the system operator to carefully and contin-
uously model the operations of the system. In the strategic service region design
problem discussed in the previous section, the repositioning activities are modeled
as a queueing network where the stationary performance is evaluated. In the
operational level, however, fleet repositioning needs to be considered in more detail.
In this section, we study models designed for fleet repositioning operations to
dynamically match vehicle supply and travel demand.

The repositioning problem in vehicle sharing has been investigated in the recent
literature. Shu et al. (2013) develop a spatial-temporal network flow model and
discuss the bicycle redistribution problem for bike sharing systems. Nair and Miller-
Hooks (2011) use a similar stochastic model and formulate a mixed-integer program
with joint chance constraints. O’Mahony and Shmoys (2015) use the operational
data from New York’s Citi Bike sharing to estimate the demand flows and solve a
mixed-integer program for overnight repositioning. By assuming the demand to be
deterministic or follow a Poisson process, optimization models are also developed in
Boyacı et al. (2015), Febbraro et al. (2012), Kek et al. (2009) and Nourinejad et al.
(2015) for fleet repositioning in one-way station-based systems. The repositioning
problem is also closely connected to classical transportation problems such as rail-
car distribution (Jordan and Turnquist 1983), empty container deployment (Crainic
et al. 1993; Shu and Song 2013) and car rental logistics (Pachon et al. 2003), as well
as the transshipment of inventories in supply chains, see, for example Rong et al.
(2010), Robinson (1990) and Tagaras (1989).

Recent papers by Benjaafar et al. (2017) and He et al. (2018) consider stochastic
dynamic programming formulations for the fleet repositioning problem, both of
which identify the optimal reposition up-to and down-to policies in a 2-region
system. While Benjaafar et al. (2017) focus on the structural properties of the
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optimal repositioning policy in a general product rental network setting, He
et al. (2018) develop a computationally tractable optimization framework to deal
with spatial and temporal demand correlations, which are not captured in the
dynamic program formulations. Specifically, Benjaafar et al. (2017) identify the no-
repositioning region in the optimal policy, i.e., not to reposition any vehicles when
the state (of vehicle distribution) lies in a certain region and to reposition to the
boundary of said region when the state is outside of the region. By allowing spatial
and temporal dependence of the demands, He et al. (2018) develop a distributionally
robust optimization formulation which is shown to be computationally efficient in
their numerical experiments.

19.4.1 Stochastic Dynamic Program Formulation

Different from conventional station-based systems, one-way trips are allowed in
free-float systems where customers can pickup any available vehicle. Without
having to inform the system about their destinations, the customers are may return
the vehicles anywhere in the service region at the end of their trips. As discussed in
the service region design problem, fleet repositioning is critical in providing desired
vehicle availability. In this section, we consider the stochastic dynamic formulation
studied in Benjaafar et al. (2017) and He et al. (2018) for the fleet repositioning
problem.

Similar to previous sections, the service region (which is exogenously fixed in
this case) is partitioned into N regions as a network where customers can travel
between any two regions in the network. With a slight abuse of notation, we also
use N to denote the set of regions. The firm conducts repositioning regularly over
T periods a day. For example, if the operator repositions in four time epochs in a
day, we set T = 4. If the operator only performs overnight repositioning, then we
have T = 1. Because the period length is usually not small, we assume that all trips,
including those made by customers and repositioning, complete within a period.
In the following, we use bold faced characters, e.g., x ∈ R

N and A ∈ R
M×N , to

vectors and matrices, where xi to the ith element of x.
Below, we present the stochastic dynamic program for the fleet repositioning

problem with finite horizon of T periods. The sequence of events is as follows.
At the beginning of period t , the operator first observes system’s state defined by
the vector xt = (xit ), where xit is the number of vehicles in region i. Before the
customer demands are realized, the operator decides the repositioning quantities
rt = (rij t ), where rij t is the number of vehicles to be repositioned from i to j . The
repositioning cost per vehicle from i to j is given by sij t . The outbound demand
arrival dit at region i is then realized. When the number of vehicles available at i is
insufficient to meet the realized demand, the unmet demand is lost with a penalty
cij t if the associated destination is j .

In a free-float system, e.g., Mobike for bike sharing, the operator is usually not
informed by the customers about their destinations until they finish their trips.
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Consequently, the operator is not able to ration the available vehicles based on
customers’ intended destinations. Similar to the setting in Sect. 19.2, the operator
may obtain the travel distributions at the aggregate level based on historical trip data.
That is, we assume that the operator knows that a customer picks up a vehicle from
region i has probability Pijt to travel to region j , where

∑
j∈N Pijt = 1. Therefore,

we can define the average penalty c̄it = ∑j∈N Pijt cij t when an outbound demand
from region i is lost. Let wit be the total fulfilled customer trips from i. The average
fulfilled customer trips from i to j can be written as wijt = Pijtwit .

To formulate the stochastic dynamic program, we assume the trip demand dt =
(dit ) follows some joint probability distribution P and is independent over time
periods. The proposed stochastic dynamic program (DP) minimizes the expected
total repositioning cost and lost sales penalty as below:

Vt (xt ) = min
rt≥0

0≤∑j∈N rij t≤xit

{ ∑

i,j∈N
sij t rij t + EP[Jt (xt , rt ,dt )]

}

. (19.19)

where

Jt (xt , rt ,dt ) =
∑

i∈[N ]
c̄it (dit − wit )+ Vt+1(xt+1),

and

xi(t+1) = xit +
∑

j∈[N ]
rjit −

∑

j∈N
rij t +

∑

j∈N
αjitwjt − wit , ∀i ∈ N, t ∈ T

wit = min

{

dit , xit +
∑

j∈N
rjit −

∑

j∈N
rij t

}

, ∀i ∈ N, t ∈ T .

and the terminal cost VT+1(xT+1) = 0.
In Eq. (19.19), the constraints require that the number of repositioning trips must

be nonnegative and that the total repositioning departures from i can not exceed
the available vehicles xit at the beginning of the period. In Jt (xt , rt ,dt ), the first
constraint updates the systems state after repositioning and demand fulfillment in
period t . Moreover, the demand fulfillment at region i is the minimum of realized
demand or the number of available vehicles.

Before discussing the optimal repositioning policy, we first characterize the
properties of the value function Vt (xt ) under some mild regulatory condition
regarding to the cost parameters. Lemma 1 provides an equivalent formulation

for the constraint wit = min
{
dit , xit +∑j∈N rjit −∑j∈N rij t

}
and shows the

convexity of Vt (xt ).
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Lemma 1 (Lemma 1 in He et al. 2018) Suppose c̄it ≥ ∑j �=i sj i(t+1)Pij t for any
i ∈ N and t ∈ T . Then,

Jt (xt , rt ,dt ) = min
wt

{∑

i∈N
c̄it (dit − wit )+ Vt+1(xt+1)

}

,

s.t. xi(t+1) = xit +
∑

j∈N
rjit −

∑

j∈N
rij t +

∑

j∈N
αjitwjt − wit , ∀i ∈ N,

wit ≤ dit , ∀i ∈ N,

wit ≤ xit +
∑

j∈N
rjit −

∑

j∈N
rij t , ∀i ∈ N,

(19.20)
and Vt (xt ) is convex in xt for any t ∈ T .

The condition c̄it ≥∑j �=i sj i(t+1)Pij t above suggests that the average profit of a
trip departing from region i exceeds the average cost of repositioning a vehicle back
to i in the subsequent period. Furthermore, it holds when the system is stationary,
e.g., cij t = pij , sij t = sij , and pij ≥ sji . Under such condition, formulation
Eq. (19.20) implies that even if the operator is not required to fully satisfy all
demand, it still optimal to satisfy as much demand as possible in the current period,

i.e., wit = min
{
dit , xit +∑j∈N rjit −∑j∈N rij t

}
.

While Vt (xt ) is convex under the given condition, the DP problem in Eq. (19.19)
still suffers from the “curse of dimensionality”. In this chapter, we illustrate the
optimal repositioning policy for a system with 2 regions.

19.4.2 The 2-Region System

Suppose the operator partitions the system into regions 1 and 2. The repositioning
decision can then be reduced to a single variable rt for repositioning from 1 to 2
in period t , where rt > 0 and < 0 represents repositioning from 1 to 2 and 2
to 1, respectively. Therefore, we can denote the repositioning amount from 1 to 2
as r+t = max(rt , 0) and that from 2 to 1 as r−t = −min(rt , 0). We further assume
that the cost parameters satisfies the condition in Lemma 1: c̄it ≥ sji(t+1)Pij t for
i, j ∈ {1, 2} and j �= i.

Suppose the fleet size C is given. In any period t , we have x1t + x2t = C. We are
then able to reduce the state variable to simply the number of available vehicles at
region 1. That is, by defining xt = x1t , the number of available vehicles at region 2
is given by x2t = C − xt . After the repositioning operations in period t , there are
yt = xt − rt number of available vehicles at region 1. We simplify the stochastic
dynamic program Eq. (19.19) into:

Vt (xt ) = min
xt−C≤rt≤xt

{
s12t r

+
t + s21t r

−
t + EP[Jt (yt ,dt )]

}
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where

Jt (yt ,dt ) = min
w1t ,w2t

{p̄1t (d1t − w1t )+ p̄2t (d2t − w2t )+ Vt+1(xt+1)} ,

s.t. xt+1 = yt − α12tw1t + α21tw2t ,

w1t ≤ min(yt , d1t ),

w2t ≤ min ((C − yt ), d2t ) ,

and the terminal cost VT+1(xT+1) = 0.
In Proposition 2, the optimal policy is derived as the reposition up-to and down-to

policy with thresholds specified as below.

Proposition 2 (Proposition 1 in He et al. 2018) Suppose c̄it ≥ sji(t+1)Pij t for
i, j ∈ {1, 2} and j �= i. For each period t , there exist xt and xt such that

r∗t (xt ) =

⎧
⎪⎪⎨

⎪⎪⎩

xt − xt , xt ∈ [0, xt ),
0, xt ∈ [xt , xt ],
xt − xt , xt ∈ (xt , C],

and

y∗t (xt ) =

⎧
⎪⎪⎨

⎪⎪⎩

xt , xt ∈ [0, xt ),
xt , xt ∈ [xt , xt ],
xt , xt ∈ (xt , C],

where xt and xt are the optimal reposition up-to and down-to levels respectively
defined by the following two convex programs

xt = arg min
0≤y≤C

{s21t y + EP[Jt (y,dt )]} , xt = arg min
0≤y≤C

{−s12t y + EP[Jt (y,dt )]} .

The optimal repositioning policy in Proposition 2 resembles the (s, S) policy
in the literature of inventory management. Such policy smooths and balances the
available vehicles between the 2 regions. There are two thresholds, xt and x̄t , that
trigger repositioning. When there are insufficient vehicles in region 1, i.e., xt < xt ,
it is optimal to increase the number of available vehicles to xt by repositioning
from region 2. Similarly, when there are too many vehicles in region 1, i.e., xt >

xt , it is optimal to reduce the number of available vehicles to xt by repositioning
some vehicles to region 2. If xt ∈ [xt , x̄t ], it is optimal to not do any repositioning.
In the special case when s12t = s21t = 0 as considered in Shu et al. (2013), the
optimal policy reduces to x̄t = xt which implies the operator to always conduct
repositioning at no repositioning cost.
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Generally, the no-repositioning interval [xt , x̄t ] is not a singleton (see Fig. 19.3
for example). Furthermore, it becomes larger when the repositioning cost becomes
higher. That is, when it is more costly to reposition, there is higher chance for the
operator to find it optimal not to conduct repositioning at all. We formally state the
results in Corollary 1.

Corollary 1 (Corollary 1 in He et al. 2018) Suppose c̄it ≥ sji(t+1)Pij t for i, j ∈
{1, 2} and j �= i. For each period t , xt is decreasing in s21t and x̄t is increasing
in s12t .

19.4.3 The N -Region System

Due to the “curse of dimensionality”, solving the DP problem in Eq. (19.19) is
generally challenging. Benjaafar et al. (2017) prove that the optimal policy can
be characterized by a no-repositioning region in the state space. When the system
state xt is inside the no-repositioning region, it is optimal for the operator not to
conduct any repositioning. When xt is outside of the no-repositioning region, it
is optimal to reposition the right amount of vehicles to the right place so that the
new system state that after repositioning is on the boundary of the no-repositioning
region. Nevertheless, the optimal repositioning quantities are not solved explicitly.

To obtain computational results that are implementable in practice, He et al.
(2018) approximate solutions based on the distributionally robust optimization
framework using the enhanced linear decision rules. The benefits of the proposed
solutions are three folds. First, it addresses the issue of “curse of dimensionality”
by using tractable approximations to the value functions. Second, instead of perfect
knowledge of the joint distribution of the demands among all regions, the proposed
solution only requires limited distributional information. Finally, it is easy to
incorporate both the demand correlations across regions and time periods from the
historical travel data directly.

19.5 Other Topics

In this section, we review recent literature on the topics of dynamic pricing and
reservation policy in the context of vehicle sharing. Many of these problems are
coupled with each other and with the ones discussed in the previous sections. For
example, the operator may use dynamic pricing as an incentive tool to support
fleet repositioning. Moreover, the repositioning decisions can be constrained by the
parking capacity across stations, in a station-based system. We briefly summarize
some recent developments in these problems.
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Fig. 19.3 Example of r∗1 (x) and y∗1 (x) when C = 20, T = 5, s12t = s21t = 1, p11t = 2, p12t = 4,
p21t = 3, p22t = 2, α11t = 0.6, α12t = 0.4, α21t = 0.7, α22t = 0.3, and d1t ∼ N(12, 3), d2t ∼
N(8, 2), for t = 1, . . . , 5. a r∗t (xt ), b y∗t (xt )
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19.5.1 Dynamic Pricing

The fleet repositioning optimization model developed in Sect. 19.4 is referred to
as the operator-based approach, where the operator is conduct the repositioning by
itself. There is an alternative to reduce the burden of the operator by motivating
customers to reposition the fleet, i.e., the user-based approach. Naturally, dynamic
pricing offers the customers incentive to reposition the fleet to the right places.

Febbraro et al. (2012) consider an user-based approach to encourage customers
to end their trips at a destination close to the zone with a shortage of vehicles.
To model the complex system dynamics in a stochastic environment, a discrete
event system (DES) is modeled and a relocation method was proposed based on
a linear integer programming formulation. In the one-way vehicle sharing system
they consider, customers are required to disclose their trip destinations such that the
operator is able to predict the vehicle locations in the near future and optimize the
fleet repositioning accordingly. Based on the DES, Febbraro et al. (2012) propose a
2-phase algorithm where the optimal repositioning quantities are determined in the
first phase and fare discount to the customers for changing their destinations in the
second phase.

Based on a closed queueing network with finite buffer and time-dependent
service times, Waserhole et al. (2013) compare several heuristics for optimal
pricing: a scenario approach, a fluid approximation, simplified stochastic models
and asymptotic approximations. Pfrommer et al. (2014) also study real-time price
incentives as a means to shape demand and reduce the need for excessive reposition-
ing. Using simulations in computational experiments, Pfrommer et al. (2014) show
that paying customers to reposition may be more cost efficient than hiring staff to
reposition bicycles, when the objective is to minimize operating costs under a given
desired service level. Focusing on a one-way station-based vehicle sharing system,
Jorge et al. (2015) develop a mixed integer nonlinear programming that sets prices
for trips to maximize profit. From the computational results in a case study of a
network of 75 stations in Lisbon (Portugal), it is demonstrated that the trip pricing
strategy can increase profit by inducing a more balanced system.

19.5.2 Reservation Management

Reservations offer an effective mechanism to coordinate the matching between
supply and demand. Not only it can control the demand arrivals, it also provides
the operator advanced demand information for operations planning by reducing
uncertainty. In the case of station-based vehicle sharing, reservations applies to both
the vehicles and parking spaces.

A complete parking reservation (CPR) policy for parking spaces at destinations,
studied in Kaspi et al. (2014), can be summarized as follows: when a customer
starts a trip, she also reveals her destination station and reserves a vacant parking
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space in that station. Such policy ensures that there is a parking space available at
the destination for vehicle return. On the other hand, it may lower the utilization
of parking spaces as other customers may not be able to access them during the
reserved period. This complicates the previous discussion on satisfying demands
for vehicles at the time of rental, as the operator needs to also consider the demand
for vacant parking spaces upon return. Based on a Markovian model, Kaspi et al.
(2014) compare the above policy with a no-reservation policy by measuring the
total excess time customers spend due to unfulfilled demand requests or delays in
returning the vehicles, where the excess time is defined as the difference between
the actual journey time and the shortest possible travel time. Through both analytical
and numerical studies, it is shown that implementing parking reservations in the
proposed policy generally improves the performance of one-way vehicle sharing
systems.

Kaspi et al. (2016) also extend the model by developing a mixed-integer linear
programming models for designing parking reservation policies, where customer
behavior is jointly considered. Based on the analysis of two case studies of real-
world systems, the study find the following insights:

1. The CPR policy delivers a significant improvement over the no-reservation policy
as shown theoretically.

2. The more reservation information is required of the customer, the better the
performances of the proposed partial reservation policies.

3. Parking space overbooking is not likely to be beneficial.

In the context of free-float vehicle sharing where customers can use any available
vehicles on street, customers are also allowed to reserve vehicles online up to
certain time period before their trips. The reservation policy of vehicles for online
customers also influences the availability of vehicles to on street customers. An
interesting research direction, as pointed out in He et al. (2017), is to investigate
efficient reservation policies, e.g., the optimal time window for vehicle reservation
and possibly fees that depend on time and vehicle availability, that may help balance
the customer trips and reduce repositioning efforts without jeopardizing the service
level.

19.6 Discussion

Vehicle sharing is a growing business model in the sharing economy, in the form of
short-term product rental. In this chapter, we discuss several operations management
problems such as the strategic planning of service region design, the dynamic fleet
management in daily operations, fleet sizing and allocation, dynamic pricing as well
as reservation policy for vehicle and parking. There are further research directions
to improve the sustainability and efficiency of vehicle sharing systems. For instance,
to maintain fleet performance, especially in the case of EV sharing, supporting
infrastructure needs to be deployed in the network. In particular, insufficient or
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costly access to charging facilities discourages the use of EVs. Charging stations
with sufficient number of chargers are required to recharge the fleet so that EVs
have sufficient battery level to serve customer trips. In the selection of charging
sites and chargers, the operators may choose between the centralized deployment
with fewer charging stations and more chargers at each station, or decentralized
deployment with more charging stations and fewer chargers at each station. The
typical tradeoff is between the saving in chargers via risk pooling and the saving
in repositioning via proximity to customers. Such tradeoff has been explored in
Mak et al. (2013), where they study the location and inventory decisions for
battery swapping stations in face of general travel demand using EVs. In the case
of EV sharing, the operational characteristics of the vehicle sharing, e.g., fleet
repositioning, and charging scheduling need to be explicitly modeled.

As an integral part of smart city development, the management of vehicle
sharing operations will inevitably become more and more data driven. There is
great potential in developing methodologies to integrate multiple data sources
(e.g., real-time travel times and public transit data) to improve forecasting of
both customer demand vehicle availability (e.g., in free-float systems, where will
customers return their vehicles in a few hours?). Integrating these data-driven real-
time forecasts, on the one hand, offers the potential to improve service efficiency
and integration with the city’s wider transportation system on the one hand, and
calls for sophisticated dynamic optimization approaches on the other. The growing
availability of vehicle sharing data is also making possible more sophisticated
empirical studies to analyze various important questions in managing vehicle
sharing systems and customers’ behavior toward them. Using usage data from the
bike sharing system in Paris, Kabra et al. (2016) estimates the impacts on ridership
of accessibility and availability of the service. As more detailed operational data
becomes available, more facets of these systems can be studied in more detail.
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Chapter 20
Agent Pricing in the Sharing Economy:
Evidence from Airbnb

Jun Li, Antonio Moreno, and Dennis J. Zhang

Abstract One of the major differences between markets that follow a “sharing
economy” paradigm and traditional two-sided markets is that the supply side in
the sharing economy often includes individual nonprofessional decision makers,
in addition to firms and professional agents. Using a data set of prices and
availability of listings on Airbnb, we find that there exist substantial differences
in the operational and financial performance of professional and nonprofessional
hosts. In particular, properties managed by professional hosts earn 16.9% more in
daily revenue, have 15.5% higher occupancy rates, and are 13.6% less likely to
exit the market compared with properties owned by nonprofessional hosts, while
controlling for property and market characteristics. We demonstrate that these
performance differences between professionals and nonprofessionals can be partly
explained by pricing inefficiencies. Specifically, we provide empirical evidence that
nonprofessional hosts are less likely to offer different rates across stay dates based
on the underlying demand patterns, such as those created by major holidays and
conventions.

20.1 Introduction

The widespread adoption of Internet infrastructure and smartphones has reduced the
transaction costs associated with individuals sharing and trading their idle resources
and capacity. This has enabled innovative business models that provide services
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using distributed capacity contributed by independent contractors. In some cases,
the agents ultimately providing the service are nonprofessional individuals who
share their spare resources, giving rise to the trend often referred to as “the sharing
economy”, which revolutionized various industries in the past years.

Most of the sharing economy business models, such as Uber and Airbnb,
are based on digital platforms (Parker et al. 2016) that connect individuals who
possess excess resources with individuals who need resources, creating two-sided
markets (Parker and Van Alstyne 2005; Eisenmann et al. 2006). On one side of the
market, the platform “contracts” the service with the customers. On the other side,
independent service providers deliver the service using their own assets. Frequently,
the platform simply acts as an intermediary and does not directly employ the service
providers nor has any ownership or control of the assets that are used to provide the
service.

Without the need to invest on physical assets or maintain a large internal
workforce, many of the sharing-economy platforms scale up quickly. In December
2014, Airbnb had a global portfolio of one million listings, exceeding the capacity of
the largest hotel groups in the world—Hilton, InterContinental and Marriott.1 On the
other hand, platforms are limited in the tools they can use to manage their capacity.
While Marriott can decide how many rooms are offered and at which prices in
each market, Airbnb cannot make that type of decisions. The independent providers
(hosts, in this case) decide whether they want to offer their properties to the market
as well as the quantity and price. This represents a change of paradigm from
traditional service models where such decisions are made within the boundaries
of the firm by professional decision makers. This paper studies the implications of
this change of paradigm represented by the sharing economy.

In particular, we focus on one of the critical differences between sharing
economies and some of the traditional two-sided markets (e.g., credit card markets,
software markets), which is that in the sharing economy the supply side often
consists of both professional (experienced) players and nonprofessional (inexperi-
enced) players. For example, on Airbnb.com, there are professional rental service
providers as well as “amateurs” who rent out their apartments occasionally.2

Studies in behavioral economics have found that nonprofessionals are more likely
to suffer from behavioral biases such as loss aversion (Mayer 2001), limited
attention (DellaVigna and Pollet 2009), and overconfidence (Malmendier and
Tate 2008). These behavioral anomalies often change the prediction of traditional
models based on complete rationality, as seen in recent operations management
modeling literature (e.g., see Su 2008; Huang et al. 2013). If the paradigm of the
sharing economy involves a shift towards services provided more and more by
nonprofessionals, it is crucial to understand how their biases translate intomarket

1Airbnb will soon be booking more rooms than the world’s largest hotel chains. Quartz. January
20, 2015.
2Airbnb in the city. New York State Office of General Attorney. October, 2014.
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outcomes, and what interventions may improve market efficiency. In this paper, we
empirically study the performance and behavioral differences between professional
and nonprofessional agents.

We developed a software procedure to scrape listing data from Airbnb.com for
all stay dates in a four-month period from December 1, 2012 to March 31, 2013
in the Chicago area. We classify hosts according to the number of properties they
list on the site. We call nonprofessional hosts those who only list one property
through Airbnb, and professional hosts those who list multiple properties, which
represent 18% of hosts in our sample. We then compare the performance of
professional and nonprofessional hosts using performance metrics commonly used
in the hospitality industry, including average daily revenue, occupancy rate and
price. We find substantial discrepancies between professional and nonprofessional
hosts. All else being equal, a property managed by a professional host earns 16.9%
higher average daily revenue, and has a 15.5% higher occupancy rate, despite being
offered for the same number of days per week at similar average price.

To understand the stability of the market, we ping the URLs of these listings one
and half year later and find a high turnover rate: 49% of previously available listings
have exited the market. In particular, properties managed by non-professional hosts
are 13.6% more likely to exit the market, everything else being equal.

We then explore the source of these discrepancies. We show that they are
in part explained by the pricing inefficiencies of nonprofessional hosts. While
professional hosts are more likely to offer different prices across stay dates based
on the underlying demand level, which results in higher occupancy rates and
revenues, nonprofessional hosts fail to do so. We also find that both professional
and nonprofessional hosts engage in minimal dynamic price adjustments across the
booking horizon. That is, they almost never adjust prices upward nor downward
even when the property is not rented out a few days prior to the stay date. Note that
this is in contrast to the common practice in the hotel industry, where the prices for
a given stay date often experience substantial changes along the booking horizon
based on time left and changes in customer willingness-to-pay.

Overall, our findings suggest that peer-to-peer platforms could consider interven-
tions that assist agents, in particular, non-professional ones, adjust their prices more
efficiently, such as the price recommendation tool recently launched by Airbnb.

20.2 Literature Review and Hypothesis Development

20.2.1 Literature Review

Sharing economy business models are capturing an increasing attention from the
academic community. Recent work has studied what drives owning vs. sharing
(Benjaafar et al. 2015; Horton and Zeckhauser 2016), how to create successful
matches in the sharing economy (Cullen and Farronato 2014), how to manage
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distributed, self-scheduling capacity (Cachon et al. 2015; Gurvich et al. 2015), or
how to design and operate urban bike sharing programs (Kabra et al. 2015).

Within in this line of research, some has explored the context created by Airbnb,
one of the most prominent platforms in the sharing economy. For example, Zervas
et al. (2014) study the effects of Airbnb on hotel revenues, Fradkin (2014) analyzes
the consequences of search frictions using internal data from Airbnb, and Edelman
et al. (2015) study racial discrimination using a field experiment on Airbnb. Our
work contributes to this emerging stream of literature.

As a new form of two-sided market, sharing economy business models inherit
important traits from the traditional two-sided markets: network externalities. That
is, each side of the market benefits from the presence of the other (David 1985;
Farrell and Saloner 1985; Katz and Shapiro 1985; Parker and Van Alstyne 2005).
However, sharing economy markets can be less efficient due to the presence of
nonprofessional service providers, who are more likely to be subject to behavioral
constraints. The focus of our work is on understanding the differences in behavior
of professional and nonprofessional service providers, and the consequences for the
market.

Behavioral differences between amateurs and professional players have received
a considerable amount of attention in the behavioral economics literature. For
example, using observational data, Mayer (2001) show that investors outperform
homeowners in the real estate market because homeowners exhibit larger loss
aversion in pricing their properties. List (2003) demonstrates, with a series of
field experiments, that professional players outperform amateurs in the card-trading
market due to endowment effects. List (2004) later shows that this performance gap
shrinks when nonprofessional players gain more experiences in the market. DellaVi-
gna (2009) surveys the empirical literature on behavioral anomalies and the resulting
performance discrepancies between professional and nonprofessional players. Our
work considers similar discrepancies between professionals and nonprofessionals
and their impacts, but in the context of the sharing economy. Given that the
sharing economy represents a general paradigm shift towards nonprofessional
service providers, it is particularly important to understand the implications of their
behavioral differences on market outcomes.

Our work is also closely related to (1) service operations literature which
considers human interactions in service contexts (e.g., Buell et al. 2015; Frei
and Morriss 2012); (2) behavioral operations literature which studies bounded
rationality and its implications on operational decisions (e.g., Su 2008; Huang et al.
2013); and (3) revenue management literature which studies theory and practice of
demand- and capacity-based revenue management (Netessine and Shumsky 2005;
Talluri and Van Ryzin 2006; Jerath et al. 2010), particularly in the hospitality
industry (Anderson and Xie 2011; Bodea et al. 2009; Lederman et al. 2014). We
find that there are substantial differences in the way revenue management tools
are implemented by professional and nonprofessional agents, which translate into
significant differences in market outcomes.
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20.2.2 Hypotheses Development

As mentioned above, past research in behavioral economics shows that profes-
sional players have superior financial and operational performance compared to
nonprofessionals in traditional markets. We hypothesize that nonprofessionals will
have inferior financial and operational performance in the Airbnb market as well.
In particular, we define our metrics as follows. Let Revenueit represent the total
revenue that property i collects for stay dates within time interval t . We can write
Revenueit as

Revenueit = NumDaysOfferedit × DailyRevenueit ,

where NumDaysOfferedit is the number of stay days that property i is offered
during time interval t , often determined exogenously before pricing decisions are
made. DailyRevenueit measures average daily revenue conditional on being offered.
We use DailyRevenueit to measure property i’s host’s financial performance, as
opposed to total revenue, i.e., Revenueit , because we do not want to penalize a
host merely because he decides to offer the property for fewer days. Note that
our definition of DailyRevenueit is parallel to the Revenue Per Available Room
(RevPAR), a performance metric commonly used by hotels. RevPAR is defined as
total room revenue divided by the number of rooms available and the number of
days available during the period under consideration. We hypothesize that:

Hypothesis 1 A property managed by a professional host has higher average daily
revenue than a property managed by a nonprofessional host, everything else being
equal.

If Hypothesis 1 is supported, we are also interested in identifying the main
channel through which professionals earn higher daily revenue. It could be that
professional hosts have higher occupancy rates, or that they can charge higher
average rent prices (controlling for property and market characteristics), or both.
We can rewrite the daily revenue as the combination of those channels, and test
them independently:

DailyRevenueit = OccupancyRateit × AverageRentPriceit

where OccupancyRateit is the occupancy rate for property i in time interval t ,
calculated as the number of days occupied divided by the total number of days
offered, and AverageRentPriceit is the average price at which property i is rented
out during time interval t (which is calculated using the prices listed on the days in
which the property was rented).

Several past studies have shown that one of the major differences between
professional and nonprofessional agents in traditional markets is that professional
agents are more likely to reach a deal (Mayer 2001; List 2003). This allows us to
hypothesize as follows.
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Hypothesis 2 A property managed by a professional host has a higher occupancy
rate than a property managed by a nonprofessional host, everything else being
equal.

Similarly, Hypothesis 1 can also be driven by the fact that professional hosts have
a higher average rent price, i.e., average price when a property is rented out. This
could be true, for example, if being a professional host signals better service quality.
Consequently, we hypothesize that:

Hypothesis 3 A property managed by a professional host has a higher average
rented price than a property managed by a nonprofessional host, everything else
being equal.

Besides merely testing whether the direction established in Hypotheses 2 and 3
is supported by the data, we are interested in their relative magnitude so that we
can identify the main driver of better revenue performance of professional hosts, if
Hypothesis 1 is supported. The following equation sums up our three hypotheses:

Revenueit = NumDaysOfferedit ×
Hypothesis 2

︷ ︸︸ ︷
OccupancyRateit ×

Hypothesis 3
︷ ︸︸ ︷
AverageRentPriceit︸ ︷︷ ︸

Hypothesis 1

.

Finally, we are interested in not only the temporary operational and financial
performance of different hosts, but also the consequences of such differences
on market dynamics in the long term. As suggested by the economics literature
(e.g., Ellison and Fudenberg 2003), one of the important long-term metrics of
two-sided markets in defining market efficiency is the number of suppliers in the
platform, which, in our case, is closely related to agents’ exiting behavior. Since
nonprofessional agents may suffer from behavioral anomalies and receive lower
than expected revenues, they are probably more likely to exit the market, possibly
in favor of other options, for instance, selling the property in the real estate market
or renting the property in the long-term rental rather than short-term rental market.3

Therefore, we hypothesize that:

Hypothesis 4 A property managed by a professional host is less likely to exit the
market than a property managed by a nonprofessional host, everything else being
equal.

3We restrict our attention to properties offered as entire apartments or houses and exclude those
properties where the hosts also reside, so that we focus on a relatively homogeneous group of hosts
with similar levels of mobility.
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20.3 Empirical Setting and Data

20.3.1 Empirical Setting: The Airbnb Platform

To study the differences in behavior between professionals and nonprofessionals,
we use data from Airbnb. Airbnb is a sharing-economy platform that connects
hosts with empty rooms to potential renters. Hosts on Airbnb list their spare rooms
or apartments/houses and determine their own daily prices for rentals. Users visit
the Airbnb website to search for desirable accommodations. Founded in 2008, the
Airbnb’s marketplace has experienced tremendous growth in the last few years.
As of 2014, there are more than one million properties worldwide and 30 million
guests who use the service. Like other traditional two-sided markets, Airbnb earns
revenues from both sides. In particular, guests pay a 9–12% service fee on average
for each reservation, depending on the length of stay and the location, while hosts
pay a 3% service fee to cover the cost of processing payments by Airbnb. Currently,
Airbnb’s business model operates with little to no regulation in most locations. As
a result, it becomes a major concern, for some local governments such as New
York City, that professional rental businesses use Airbnb to avoid taxes, and this has
been the subject of intense policy debates.4 The main focus of our study is not to
contribute to the ongoing debate about regulation in Airbnb, but to use data from the
platform as an example to study differences in behavior between professionals and
nonprofessionals that can be relevant in other sharing-economy platforms as well.

We classify Airbnb hosts in two types: (1) inexperienced individuals who list
their spare rooms or apartments/houses for rent, which we denote as nonprofessional
hosts, and (2) professional agents who manage multiple properties at the same time,
which we denoted as professional hosts. In this paper, we define professional hosts
as those who offer two or more unique units on Airbnb. Our results do not change
qualitatively if we follow the definition by New York State Attorney General’s
office and define hosts as professional hosts if they hold three or more unique. In
our sample, among hosts who offer entire apartments for rent, 18% are professional
hosts with at least two properties. The professionals who constitute these 18% hold
24% of all properties in our sample and account for 33% of all revenue in our
sample period.

20.3.2 Airbnb Data: Listings and Transactions

To conduct this study, we developed a software procedure to scrape listings around
the Chicago area on Airbnb.com for stay dates ranging from December 1, 2012
to March 31, 2013. This time horizon has the advantage that it is not affected by
the presence of automatic pricing tools that have been developed more recently,

4“Airbnb, New York State Spar Over Legality Of Rentals.” NPR. October 16, 2014.
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so it is adequate to study differences in agent behavior. The procedure works as
follows: (1) the program logs on to Airbnb.com to search for available rooms in the
Chicago area; (2) the program then follows the link to each listing and records the
information about that listing, such as location, room type, number of bedrooms,
number of bathrooms, guest reviews, identify of the host, etc.; (3) for each listing,
the crawler searches for availability and price of all stay dates during the four-
month travel period. To capture at least one month worth of availability and price
history for each listing on each stay date, the program was run on a daily basis from
November 1, 2012 until March 31, 2013. In order to study the entry and exit of
Airbnb hosts, we re-scraped Airbnb.com 18 months later, in August 2014. Since
Airbnb does not reuse the host ID, we can identify hosts who had delisted their
properties and exited the market.

We restrict our attention to offerings of an entire house or apartment and exclude
those offerings with just a part of a property. This is because hosts who provide just a
room or a bed in their house or apartment tend to have different demographics, incur
different costs of renting and sometimes rent their rooms out for different reasons
(such as social reasons). We also focus only on listings targeting short-term stays
rather than long-term stays (listings with minimum length of stay less than a week).

Documenting differences in listings between different types of hosts is informa-
tive in itself, but we also use calendar listings to impute bookings from dynamic
changes in listing availability. Based on descriptions on Airbnb’s website, when a
property is unavailable for a stay date, either booked or not offered, the price is
not displayed in the calendar. For example, if we observe on December 10th that
a property is available at $149 for the night of December 11th, it means that it has
not been booked for the stay on December 11th and it is available as of December
10th. On the other hand, if a price was displayed on booking date December 9th for
a stay on the 11th, but it is no longer displayed on December 10th, it implies that
the property was booked for December 11th on December 10th.

Table 20.1 gives a summary of all offerings, where an offering is defined as the
combination of property and stay date. Price is the last observed price along a 30-day
booking horizon prior to the date of stay. Rented is equal to 1 if the property is rented
out for the stay date. The table also displays observable property characteristics,
including number of reviews, average ratings, number of bathrooms, and number of
bedrooms.

Table 20.1 Summary statistics of listings

N Mean St. dev. Min Max

Price ($) 24,845 149.99 79.65 10 600

Rented 24,845 0.27 0.45 0 1

NumReviews 24,845 10.99 15.23 0 150

AvgRating 17,179 9.61 0.55 8 10

NumBathrooms 23,055 1.29 0.62 1 5

NumBedrooms 24,140 1.58 0.89 1 6



20 Agent Pricing in the Sharing Economy: Evidence from Airbnb 493

Inferring availability and transactions from the calendar data has some potential
limitations and requires some assumptions. First, a property could become unavail-
able in the calendar and be classified as “booked” because the host no longer wants
to offer the property for a particular night, and not because the property has been
booked. Even though one cannot completely rule out such possibility, we believe
that imputing transactions in this way offers a reasonable proxy for real bookings.
Given that we focus on listings for an entire house or apartment rather than a single
room or bed at a property, the chance that a property owner delists a property due
to personal reasons is significantly reduced because the owner does not reside at
the property. Moreover, given that we focus only on short-term rentals and Airbnb
is the leading existing short-term rental marketplace for individual properties, the
chance that a property is rented out through other channels is also greatly reduced.5

Second, a property could appear as “available” from the calendar but could actually
be unavailable. This could happen, for example, when the host has not updated the
calendar to reflect the actual availability of the property, in what Fradkin (2014)
refers to as a “stale vacancy.” Note that having access to internal data would not
solve this problem.

Because the focus of this paper is to understand the differences between the
behavior of professional and nonprofessional hosts, the aforementioned issues could
be problematic if they affected professional and nonprofessional hosts differently.
In the next subsection we present a comparison of professional and nonprofessional
hosts and we report the results of two tests that suggest that these issues do not affect
the two types of hosts differently.

Table 20.2 displays summary statistics at the weekly level for professional and
nonprofessional hosts, respectively. The first part of the table simply shows the
variables summarized in Table 20.1, for professional and nonprofessional hosts,
aggregated at the weekly level. The second part of the table includes additional
variables calculated at the weekly level. We do not observe any significant difference
in the number of days offered per property per week between professional and
nonprofessional hosts. It appears clear though, even before conducting any statistical
analysis, that properties managed by professional hosts on average earn more per
week, obtain a higher occupancy rate, and are less likely to exit the market. However,
such discrepancies in performance can be driven by the fact that professional hosts
offer more spacious properties (more bedrooms and more bathrooms), have more
reviews (though they are not necessarily rated higher), and perhaps even are located
in more popular districts. The rest of the paper studies this performance discrepancy
systematically, introducing the relevant control variables in the analysis.

5In Sect. 20.5, we focus on the subset of hosts who make their properties available more than four
days per week (50% of the time). Because of the high availability of their properties, it is less likely
that these hosts will cancel availability for other reasons. We do not find any qualitative differences
in our results by focusing on this subsample.
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Table 20.2 Summary statistics for professional and nonprofessional hosts at weekly level

Professional hosts Nonprofessional hosts

Mean St. dev. Mean St. dev.

Average price ($) 167.87 83.35 146.94 99.5

Occupancy rate 0.31 0.38 0.27 0.35

NumReviews 12.63 15.47 11.39 17.26

AvgRating 9.36 0.63 9.69 0.51

NumBathrooms 1.45 0.88 1.24 0.52

NumBedrooms 2.02 1.19 1.47 0.78

Daily revenue ($) 44.66 63.91 34.22 65.04

NumDays offered 5.89 1.94 5.79 2.02

NumWeekdays offered 4.22 1.56 4.12 1.64

NumWeekends offered 1.67 0.54 1.67 0.54

Exit† 0.28 0.45 0.57 0.50

†Exits are measured 18 months later from the original data collection period

20.4 Performance of Professional vs. Nonprofessional Hosts:
Econometric Specifications and Results

In this section we describe the overall methodology of our analysis, the construction
of our variables, and the corresponding empirical results.

20.4.1 Daily Revenue

In Hypothesis 1, we would like to understand how the daily revenue from renting
out a property depends on whether the property is managed by a professional or
a nonprofessional host. We focus on the daily revenue, DailyRevenueit , which we
average at the weekly level. There are two reasons why we construct our revenue
measure in this way. First, as mentioned above, normalizing total revenue by the
number of days each host makes their properties available allows us to tease
out the effect of predetermined availability and focus on the performance metric
driven by endogenous decisions such as pricing. Second, we choose the aggregation
level at the weekly level because we want to construct our measure in a relative
homogeneous period for each host and, at the same time, average out the day-
of-week effect. We use a family of reduced-form specifications and model daily
revenue as,

log(DailyRevenueit ) = C0 + α1Professionali + βXit + vm + vt + εit

where log(DailyRevenueit ) is the natural log transformation of daily revenue for
property i in week t , Professionali denotes whether the property is owned by a
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professional host. We control for various confounding factors that may potentially
correlate with both the daily revenue (i.e., the dependent variable) and the host
status (i.e., the treatment). First, we use zip-code-level and week-level fixed effects,
vm and vt , to control for the possibility that certain markets are more attractive to
travelers and meanwhile are also populated with more professional hosts.6 Second,
we control for the characteristics of an offering, denoted by Xit , which includes the
physical characteristics of the property (i.e.,the number of bedrooms and bathrooms)
and the quality of service (i.e., the number of guest reviews, the average review
ratings, and the average response time of the host). Moreover, we control for the rank
of an offering in the search result. If a host’s professional status (or factors correlated
with it) is used as an input to the Airbnb’s search-engine ranking algorithm, then
professional-host status can be correlated with performance through rank.

Table 20.3 shows the estimates obtained under different sets of control variables.
Column 1 only has market and time fixed effects. Column 2 controls for the physical
characteristics of the properties in addition to the fixed effects. Column 3 further

Table 20.3 Hypothesis 1
(Revenue)

Dependent variable

LogDailyRevenue

(1) (2) (3)

Professional 0.233∗∗∗ 0.217∗∗∗ 0.169∗∗

(0.072) (0.074) (0.073)

NumWeekends −0.232∗∗∗ −0.236∗∗∗ −0.147∗∗

(0.061) (0.061) (0.061)

NumBathrooms 0.070 0.209∗∗∗

(0.074) (0.074)

NumBedrooms 0.018 −0.028

(0.051) (0.050)

NumReviews 0.020∗∗∗

(0.002)

Rank −0.001∗∗∗

(0.0002)

Observations 4,297 4,297 4,297

R2 0.142 0.143 0.185

Note: ResponseTime, week-level and zip-code-level
dummy included
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

6Ideally, we would like to use a fixed-effect model to control for a listing’s specific characteristics.
However, since our independent variable of interest (i.e., whether a property is managed by a
professional or a nonprofessional host) is time-invariant, including fixed effects in our model would
absorb the effect of the variable of interest.
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includes the quality of service in the control variables.7 All three columns show that
α1 is significantly greater than zero. Hence, our empirical evidence is consistent
with Hypothesis 1. Properties managed by professional hosts on average earn higher
daily revenue than properties managed by nonprofessional hosts, with the magnitude
being 16.9% in the specification reported in Column 3.

20.4.2 Occupancy Rate and Average Rent Price

The fact that professional hosts earn higher daily revenue (Hypothesis 1) can be
attributed to them having a higher occupancy rate (Hypothesis 2), or a higher rent
price (Hypothesis 3), or both. In this section, we evaluate the two channels and
discuss their relative importance.

We start by testing our second hypothesis, which suggests that a property
managed by a professional host will have a higher weekly occupancy rate than one
managed by a nonprofessional host. We employ the same model specifications as in
the previous section:

log(Occupancyit ) = C0 + α2Professionali + βXit + vm + vt + εit ,

where log(Occupancyit ) is the log transformation of the weekly occupancy rate of
property i in week t , and all the other variables are defined as before.

Table 20.4 shows the estimates obtained under different sets of specifications. In
all columns, α2 is significantly greater than 0, which supports Hypothesis 2. Specif-
ically, properties managed by professional hosts achieve 15.5% higher occupancy
rates than properties managed by nonprofessional hosts, based on the estimates
reported in Column 3.

Besides higher occupancy rate, do professional hosts also charge higher prices?
We next evaluate the difference of rented price between professional and nonpro-
fessional hosts. We adopt the same specification structure as above, changing the
dependent variable to AvgRentPriceit :

log(AvgRentPriceit ) = C0 + α3Professionali + βXit + vm + vt + εit .

Table 20.5 shows the estimates with different specifications. In Columns 2 and
3, α3 is not significantly greater than 0, and the magnitude of the point estimates are
small as well, therefore Hypothesis 3 is not supported. That is, professional hosts
do not seem to charge a higher rental price on average. Since the dependent variable
is calculated using the prices of properties that are rented, our results indicate

7We did not find a significant effect of average rating due to its lack of variation. Moreover, average
rating is missing when there is no review available, which will limit the number of observations
when included. Therefore, we decide to drop average rating in our analyses.
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Table 20.4 Hypothesis 2
(Occupancy rate)

Dependent variable

LogOccupancyRate

(1) (2) (3)

Professional 0.173∗∗ 0.193∗∗∗ 0.155∗∗

(0.068) (0.070) (0.070)

NumWeekends −0.283∗∗∗ −0.279∗∗∗ −0.191∗∗∗

(0.058) (0.058) (0.058)

NumBathrooms −0.048 0.078

(0.070) (0.070)

NumBedrooms −0.034 −0.076

(0.048) (0.047)

NumReviews 0.020∗∗∗

(0.002)

Rank −0.0004∗∗

(0.0002)

Observations 4,297 4,297 4,297

R2 0.143 0.144 0.186

Note: ResponseTime, week-level and zip-code-level
dummy included
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 20.5 Hypothesis 3
(Average rent price)

Dependent variable

LogRentPrice

(1) (2) (3)

Professional 0.108∗∗∗ 0.032 0.022

(0.023) (0.021) (0.022)

NumWeekends 0.092∗∗∗ 0.082∗∗∗ 0.078∗∗∗

(0.019) (0.017) (0.018)

NumBathrooms 0.240∗∗∗ 0.245∗∗∗

(0.022) (0.022)

NumBedrooms 0.115∗∗∗ 0.113∗∗∗

(0.015) (0.015)

NumReviews −0.001∗∗

(0.001)

Rank −0.0003∗∗∗

(0.0001)

Observations 2,313 2,313 2,313

R2 0.288 0.438 0.444

Note: ResponseTime, week-level and zip-code-level
dummy included
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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that customers do not have a higher willingness-to-pay for properties managed by
professional after controlling for the quality of the property and the service offered.
This also alleviates potential concerns regarding to omitted variable biases.

Recall that Column 3 of Table 20.3 indicated that professional hosts on average
earn 16.9% more revenue, controlling for property and market characteristics. We
have shown that the additional revenue primarily comes from higher occupancy
rates rather than higher rented prices.

Besides the main results shown above, we also conducted analyses to ensure the
robustness of our results to various model specifications and omitted variable biases.
We find our results are still consistent using propensity score matching estimators
as well as under Rosenbaum bound sensitivity analysis (Rosenbaum 2002).

20.4.3 Exit Probability

Given that the performance of nonprofessional hosts is inferior to that of their
professional counterparts, are properties managed by nonprofessional hosts also
more likely to exit the market after a certain period of time? The literature on the
two-sided markets suggests that the revenue of the platform and the social welfare
depend critically on the size of the supply side (Armstrong 2006). Therefore, exit
probability is an important measure to consider in analyzing the health and growth
of any sharing-economy marketplace. We use a family of Logit specifications to test
this hypothesis. In particular, we model the exit rate of a property as:

Exiti = logit(C0 + α4Professionali + βXi + vm + εi),

where Exiti indicates whether property i has exited Airbnb’s market 18 months after
the original sample period. All the other variables are as previously defined.

Table 20.6 shows the results. Under all three specifications the estimates of α4
are statistically significantly negative, which supports Hypothesis 4. Computing the
marginal effects from estimates in Column 3, we conclude that a property owned by
a professional host is on average 13.6% less likely to exit the market after one and
half years, measured by marginal effect at the means.

20.5 Understanding the Differences in Performance

In this section we examine the source of the performance differences among
professional and non-professional hosts. We do so by analyzing the potential pricing
inefficiencies of nonprofessional hosts.
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Table 20.6 Hypothesis 4
(Exit)

Dependent variable

Exit

(1) (2) (3)

Professional −0.744∗∗∗ −0.632∗∗ −0.599∗∗

(0.283) (0.290) (0.299)

NumBathrooms 0.026 −0.043

(0.312) (0.319)

NumBedrooms −0.330 −0.302

(0.207) (0.211)

NumReviews −0.019∗

(0.010)

Rank −0.0002

(0.001)

Observations 317 317 317

Note: ResponseTime, zip-code-level dummy included
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The revenue management (RM) literature (Talluri and Van Ryzin 2006; Gallego
and Van Ryzin 1994; Bitran and Caldentey 2003) has extensively documented
the use and impact of various RM techniques in an array of industries providing
perishable products or services, one of which being the hotel industry (Zhao and
Zheng 2000). According to this literature, there are two RM tools widely adopted
by hotels when setting room rates: (1) variable room rates across stay dates (Talluri
and Van Ryzin 2006): hotels offer different room rates based on the day of the
week, the season, or other observable factors affecting total demand; (2) variable
room rates across booking dates (Su 2007): hotels offer different room rates based
on time left to the stay date. We therefore define two measures of the intensity of
pricing activity:

1. StayDateRateCntit , calculated as the total number of last observed price levels
for all stay dates in week t minus 1. The last observed price equals to the rented
price if a property is rented out eventually, or the listing price last observed along
the booking horizon otherwise. StayDateRateCntit = 0, for example, means that
there is no price variation across stay dates in week t because the last observed
prices are constant.

2. BookingDateRateCntit . We first calculate the number of price levels along the
30-day booking horizon for each stay date in week t minus 1. We then take the
sum of this measure over all stay dates in week t . BookingDateRateCntit = 0
indicates no price variation across booking dates for any stay date in week t , as
listing prices are constant.

We first test in our context whether the use of such RM tools, as captured
by the aforementioned variables, indeed leads to higher revenue. Inparticular, we



500 J. Li et al.

hypothesize that a property’s weekly revenue is higher if it has higher StayDateR-
atesCnt and BookingDateRatesCnt for that week. We test the hypothesis with the
following model specifications:

log(DailyRevenueit ) = C0 + θ1StayDateRateCntit + θ2BookingDateRateCntit

+ βXit + vm + vt + εit ,

log(OccupancyRateit ) = C0 + θ3StayDateRateCntit + θ4BookingDateRateCntit

+ βXit + vm + vt + εit ,

Columns 1 and 2 of Table 20.7 show that a more intense pricing activity results
in higher daily revenue and occupancy rates, controlling for property and market
characteristics. The effect is mainly driven by the use of variable rates by stay
date. We did not find significant revenue and occupancy effects of variable rates by
booking date, which can be partially driven by lack of adoption of this practice—
we observe that 75% of listings did not adjust their prices at all along the booking
horizon and 95% of them adjust their prices at most once along the booking horizon.

Given that a more intense pricing activity leads to better performance, the next
question is whether professional hosts indeed engage more in such practice and earn

Table 20.7 Impact and use of revenue management techniques

Dependent variable

LogRevenue LogOccupancyRate StayDateRateCnt BookingDateRateCnt

OLS OLS Poisson Poisson

(1) (2) (3) (4)

Professional 0.124∗∗ −0.217

(0.053) (0.133)

StayDateRateCnt 0.328∗∗∗ 0.038∗∗∗

(0.048) (0.006)

BookingDateRateCnt 0.002 −0.0002

(0.007) (0.001)

NumBathrooms 0.151∗∗ −0.001 0.178∗∗∗ 0.109

(0.069) (0.009) (0.063) (0.143)

NumBedrooms 0.005 −0.002 −0.159∗∗∗ −0.126

(0.045) (0.006) (0.042) (0.095)

NumReviews 0.022∗∗∗ 0.003∗∗∗ 0.005∗∗∗ 0.009∗∗

(0.002) (0.0002) (0.002) (0.004)

Rank −0.0004∗∗ −0.00000 −0.0005∗∗∗ −0.002∗∗∗

(0.0002) (0.00002) (0.0001) (0.0003)

Observations 4,743 4,743 4,743 4,743

R2 0.134 0.127

Note: Response Time, week-level and zip-code-level dummy included
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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higher revenues in turn. In order to test this, we use Poisson model to analyze the
levels of pricing sophistication:

StayDateRatesCntit=Poisson(C0+θ5Professionali + βXit + vm + vt + εit ),

BookingDateRatesCntit=Poisson(C0+θ6Professionali + βXit + vm + vt + εit ),

Column 3 of Table 20.7 shows that θ5 is positive and significant, which indicates
professional hosts vary property prices more often based on the date of stay.
Computing the marginal effect, we find that properties managed by professional
hosts vary prices 4.9% more frequently, calculated as marginal effect at mean. Since
θ6 is non-distinguishable from zero in Column 4, it indicates that professional hosts
do not necessarily adjust their prices more often along booking dates, which may
be driven by the lack of engagement in dynamic pricing across booking dates by all
hosts.

Overall, we have shown that a more intense pricing activity results in higher
occupancy rates and higher daily revenue. The fact that professional hosts are more
likely to engage in intense pricing activity may partially explain their superior
performances in this market. The evidence so far provides a mechanism (more
intense price adjustments) through which Hypothesis 1 and 2 (higher daily revenue
and occupancy rates for properties managed by professionals) may hold.

20.6 Conclusion

The sharing-economy business model comes with an increase in the use of
nonprofessional labor. We have used Airbnb as the empirical setting to study the
implications of this shift towards using nonprofessional service providers.

We have documented substantial discrepancies between professional and non-
professional hosts. All else being equal, a property managed by a professional
host earns more than a 16.9% higher average daily revenue, has a 15.5% higher
occupancy rate. Moreover, properties managed by professional hosts are 13.6% less
likely to exit the market compared with properties owned by nonprofessional hosts,
controlling for property and market characteristics. We have shown that these dis-
crepancies can be rationalized by the pricing inefficiencies of nonprofessional hosts.
Our findings suggest platforms like Airbnb should try to assist nonprofessionals
with their pricing and capacity-management decisions. An example of this is the
pricing that Airbnb is currently providing to its hosts or the “heat maps” that Uber
shows their drivers, to indicate areas where they are more likely to find a customer.

Although our empirical analysis has focused on Airbnb, we believe that our
results provide meaningful insights that go beyond this specific setting. Other
platforms such as Uber also use a combination of professionals (e.g., a full-
time driver offering a “black car” service) and nonprofessionals (e.g., a student
occasionally driving for Uber via their “UberX”). We expect that our findings, which
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point to a lower efficiency of nonprofessionals, could play similarly in a service
like Uber. Furthermore, as innovative business models are finding new ways of
shifting risks to different parts of the value chain including final customers (Girotra
and Netessine 2014), the inefficiencies that we observe arising from the use of
nonprofessionals could become even more important.
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Chapter 21
Intermediation in Online Advertising

Santiago R. Balseiro, Ozan Candogan, and Huseyin Gurkan

Abstract In online advertising, impressions are sold via real-time auctions which
are organized by central platforms referred to as ad exchanges. For technological
or operational reasons, advertisers generally participate in the auctions run by
exchanges through intermediaries which acquire impressions on their behalf.
Intermediaries are specialized entities that provide targeted services for a particular
segment of the market, and typically there are multiple stages of intermediation.
Moreover, an advertiser may have private information, e.g., budget, targeting
criterion or value attributed to an impression. The presence of intermediaries and
this information asymmetry introduce several new research questions. In the first
part of this chapter, we study the mechanism design problem of an intermediary
who offers a contract to an advertiser with a private budget and a private targeting
criterion. We characterize the optimal mechanism and establish that the presence
of the intermediary results in simpler bidding policies. In the second part of this
chapter, we study the strategic interaction among intermediaries organized in a
chain network. We characterize a subgame perfect equilibrium of the resulting
game among intermediaries and show that the most profitable position in the
intermediation chain depends on the underlying value distribution of the advertiser.
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21.1 Introduction

Online advertising is a rapidly growing market whose annual revenue exceeded 72.5
billion dollars in the United States in 2016 (Internet Advertising Bureau 2016).
This growth has been accompanied by technological advancements which introduce
novel tactical and operational challenges for both publishers (the supply side) and
advertisers (the demand side) such as real-time bidding and sophisticated targeting.
To overcome these challenges, publishers and advertisers increasingly work with
intermediaries who have emerged to facilitate transactions between two sides by
providing technological and managerial services.

Specifically, when a user visits a publisher’s page, an advertising opportunity,
referred to as an impression, is generated. This impression is supplied to an
exchange, where they are auctioned. These auctions take place in milliseconds after
the user’s visit to the web page. Due to the real-time nature of these auctions,
participants generally employ sophisticated algorithms for automatically targeting
users based on specific metrics. Many advertisers work with advertising agencies,
who often focus on serving similar clients, enabling them to become experts at
campaign management for a specific industry (e.g., pharmaceutical, automotive).
Advertising agencies are service-based organizations, and they serve as a man-
agerial layer, typically on top of a licensed demand side platform. Demand side
platforms (DSPs) aggregate demand from different market participants and provide
real-time bidding service in the auctions run by the exchanges. In addition, there
are other intermediaries who specialize in services such as re-targeting (tracking
a particular impression in different websites), measurement, and analytics. These
intermediaries support the entire trading infrastructure.

The presence of intermediaries in this industry introduces several new interesting
questions. What kind of contracts should an intermediary offer to an advertiser?
How should an intermediary bid on behalf of its customers? How does the presence
of an intermediary affect the efficiency of the market? How does the structure of
the intermediation network affect the profits of its participants? Do intermediaries
prefer to be closer to the supply source or demand source? This chapter sheds light
on these issues by reviewing two separate models which are studied by Balseiro
and Candogan (2017) and Balseiro et al. (2017). In the first model (hereafter OCI),
we characterize the optimal contract offered by an intermediary to an advertiser in
a setting where the advertiser’s budget and targeting criteria are private. Using our
results, we show that the presence of the intermediary results in simpler bidding
policies. In the second model (hereafter MSI), we focus on a multi-stage interme-
diation network, and analyze the relation between the intermediation network and
the profits of the market participants. To do so, we provide a game theoretic model
where intermediaries in a chain network between an exchange and an advertiser
with private values, sequentially select their mechanisms from a practically relevant
class of mechanisms. We characterize a subgame perfect equilibrium for this game,
and show that the most profitable position in the intermediation chain depends on
the underlying value distribution of the advertiser. In the remainder of this section,
we detail our contributions and relate them to the existing literature.
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21.1.1 Main Contributions

In the OCI model (see Sect. 21.2), we study the dynamic mechanism design
problem of an intermediary who offers a contract to an advertiser with a private
budget and targeting criteria. Since the private information of the advertiser is
multi dimensional, this problem in general is hard to solve. Therefore, we develop
a novel solution method which combines a performance space characterization
technique and a duality-based approach. Specifically, we first characterize the
performance space that consists of the expected cost and value achievable by any
feasible (dynamic) bidding policy, and use our duality-based approach to reduce
the optimal contract design problem to a tractable convex optimization problem. In
this way, we obtain a crisp characterization of the intermediary’s optimal bidding
policy. The policy is stationary and has two notable features: (i) the policy bids
a weighted average of the values associated with different types, and (ii) the
bids are appropriately shaded. Here, bidding a weighted average of the values
ensures truthful reporting of the advertiser while bid shading accounts for budget
constraints. Using our results, we establish that the intermediary can profitably
provide bidding service to a budget-constrained advertiser, and in some cases
increase the overall market efficiency.

Differently from the OCI model, in the MSI model (see Sect. 21.3), we consider a
setting where an advertiser seeks to acquire an impression from an exchange through
a chain of intermediaries. Using a game theoretic model, we study the mechanisms
offered by intermediaries when the advertiser’s value is private. We characterize a
subgame perfect equilibrium of the game between intermediaries within the class
of second-price mechanisms which are commonly used in the display advertising
market. We show that economic incentives are not necessarily aligned along the
chain, i.e., profit-maximizing intermediaries have incentives to shade bids and not
to allocate impressions, even when profitable for their downstream customers.
Moreover, we establish that the position in the intermediation network has a
significant impact on the profits of the intermediaries, and the most profitable
position depends on the underlying value distribution of the advertiser.

The proofs of the claims in Sects. 21.2 and 21.3 can be found in Balseiro and
Candogan (2017) and Balseiro et al. (2017), respectively.

21.1.2 Literature Review

The models considered in this chapter contribute to various streams of literature,
namely to those of intermediary problems, online advertising, and mechanism
design with budget constraints.
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21.1.2.1 Intermediary Problems

Feldman et al. (2010) and Stavrogiannis et al. (2013) focus on settings where
captive buyers bid through intermediaries to acquire impressions. In these papers,
the value distribution of the buyer has bounded support, and intermediaries directly
bid at the exchange. As opposed to the OCI model, these papers focus on captive
advertisers who are not liquidity constrained. Moreover, in these studies there are
no “multiple intermediation tiers” whereas the MSI model analyzes how multiple
intermediaries share surplus under different value distributions. Additionally, in
these papers, intermediaries are restricted to forwarding the highest bid they receive
from the buyers. However, in our models, we show that at equilibrium strategic
intermediaries shade their bids, as opposed to simply reporting upstream the highest
downstream bid. Loertscher and Niedermayer (2007, 2012) and Niazadeh et al.
(2014) consider fee setting mechanisms for an intermediary with the two-sided
private information setting introduced by Myerson and Satterthwaite (1983). These
papers consider a single intermediary (as opposed to the MSI model) with a
captive seller and captive buyer without budget constraints (as opposed to the OCI
model), and provide conditions under which an affine fee structure that is commonly
used in practice is optimal. In another recent work, Manea (2018) focuses on a
setting where intermediaries trade a single good in a network, by considering a
complete information setting in which buyers’ values are deterministic and common
knowledge in contrast to our models. We refer the reader to Condorelli and Galeotti
(2016) for a review of the recent literature on intermediation network models.

There is also a stream of papers that study intermediary problems in the context of
supply chains (see, e.g., Belavina and Girotra 2012; Wu 2004; Nguyen et al. 2016),
but these papers do not feature private information settings, unlike our models.
Moreover, there are papers which consider the problem of successive monopolies in
manufacturer-retailer settings with posted pricing schemes (see, e.g., Bresnahan and
Reiss 1985; Lariviere and Porteus 2001; Perakis and Roels 2007). In the MSI model,
we consider a more general class of mechanisms than posted pricing that allows
intermediaries to elicit the private values of downstream agents and acquire the
impression from upstream only if the downstream agents signal interest. Standard
posted pricing mechanisms do not allow for this “contingent sale” feature, which is
a prevalent in online advertising.

21.1.2.2 Online Advertising and Ad Exchanges

Mansour et al. (2012) give a brief synopsis of the auction employed by Google’s
exchange, and discusses the role of intermediaries in this auction. Although this
auction is not optimal or incentive compatible, the authors argue that the interme-
diaries’ incentives to misreport valuations is small in these auctions. The study by
Ghosh et al. (2009) considers the advertiser’s perspective. In particular, Ghosh et al.
(2009) study the design of a bidding agent who first explores the competing bids in
the market, and then bids according to the observed empirical distribution. Balseiro
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et al. (2015) and Gummadi et al. (2011) study the dynamic interactions among
budget-constrained advertisers bidding in exchanges by proposing an approximate
equilibrium concept. Iyer et al. (2014) characterize the bidding equilibrium among
advertisers who learn about their private value over time in a repeated auction setting
by using a mean-field approximation. Jiang et al. (2014) provide a simple bidding
strategy, which does not require any statistical knowledge, for a single bidder with an
average budget constraint. However these papers assume that advertisers bid directly
in the exchange and do not consider the presence of intermediaries.

21.1.2.3 Mechanism Design with Budget Constraints

Finally, the OCI model considered in this chapter is related to a stream of papers
that study mechanism design with financially constrained bidders (Laffont and
Robert 1996; Che and Gale 1998, 2000; Maskin 2000). In these papers, efficient
and optimal auctions are studied by modeling valuations as private and budgets as
either private or public information. When the budgets are private, standard auction
formats such as first-price and second-price auction are suboptimal and not revenue
equivalent. Moreover, the problem in fact becomes a multi-dimensional mechanism
design problem which is hard to solve in general. Pai and Vohra (2014) study the
problem of selling one item in a setting with multiple budget-constrained buyers by
using linear programming, and show that the optimal mechanism is implementable
via an all-pay auction. Additionally, Chawla et al. (2011) show that the problem of
selling one item to unit-demand buyers who are budget constrained can be reduced
to an unconstrained problem with a small loss in performance. In multi-unit auctions
with budget-constrained bidders, Borgs et al. (2005) and Bhattacharya et al. (2010)
study approximation algorithms to design revenue-optimal incentive-compatible
mechanisms. Brusco and Lopomo (2008, 2009) also study multi-item settings with
budget constrained bidders by focusing on ascending auction formats. Differently
from these papers, here we consider an intermediary who has no inherent value for
the items sold and does not own the items at the moment of contracting, but instead
needs to specify a mechanism to procure impressions as they arrive at the exchange.
In addition, the main objective of this chapter is to understand the presence and
profitability of such intermediaries.

21.2 Optimal Contracts for Intermediaries in Online
Advertising

In this section, we provide the OCI model and the optimal mechanism design
characterization. We consider a setting where an advertiser acquires impressions
from an exchange over a fixed horizon (e.g., a week or a month) by either bidding
directly at the exchange, or contracting with an intermediary to acquire impressions
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AdvertiserIntermediaryExchange

Exogenous
Advertisers

Fee
Policy
{Bids}

Bids Bids

Fig. 21.1 The advertiser can submit bids directly to the exchange, or through the intermediary.
The exchange has other (exogenous) bidders as well

on her behalf. This contracting advertiser is referred to as “the advertiser” when
clear from the context, to distinguish her from other exogenous advertisers. We
assume that a fixed number, n, of impressions arrive at the exchange over the
horizon.1 In the following, we denote vectors using boldface as in x, and the
transpose of this vector by xT.

Exchange The exchange sells impressions to the contracting advertiser and other
exogenous advertisers using a second-price auction with no reserve (see Fig. 21.1).
Rather than explicitly modeling the preferences of the exogenous advertisers, we
denote the exogenous advertisers’ maximum competing bid by di for impression i.
We assume that (di)

n
i=1 are i.i.d. and drawn from the cumulative distribution

function Fd(·), with the strictly positive probability density function fd(·) > 0 over
the compact support [0, D̄].

For each arriving impression i, the exchange announces some user information
in the form of an attribute vector, which may affect the value of the impression
perceived by the advertiser. We denote by αi ∈ A an attribute vector which contains
relevant information for the advertiser’s targeting criterion (such as geographical
location, age group of the viewer, tastes and interests obtained from her browsing
history). The space of attributes A is a compact subset of the Euclidean space.
We assume that the random variables (αi)ni=1 are i.i.d. with cumulative distribution
function Fα(·), and strictly positive density fα(·) > 0. We next describe how the
attribute vector αi impacts the advertiser’s valuation of the impressions.

Advertiser The advertiser has a budget and a targeting criterion which we denote
by b ∈ R+ and θ ∈ Θ , respectively. Therefore, the type of the advertiser is given
by the pair t = (b, θ) that belongs to a set T ⊆ R+ × Θ . The type t is the
private information of the advertiser. The set T is assumed to be finite, and we
denote by T � |T | its cardinality. The advertiser’s type is t ∈ T with probability
pt > 0. With some abuse of notation we denote by bt and θt the budget and targeting

1Random number of impressions can be accommodated in our model by considering dummy
arrivals that are valued at zero by the advertiser.
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criterion of type t , respectively. The value of a type t advertiser for an impression
with attributes α is given by vt (α). Here the function vt : A → R+ is bounded and
continuous in the impression attributes α ∈ A for every type t ∈ T .

Outside Option The outside option for the advertiser corresponds to running a
campaign on her own, and thus the value of the outside option is the maximum
surplus the advertiser can get by participating in the exchange directly. If an
advertiser with type t = (b, θ) pursues the outside option, she is constrained to
the set of feasible non-anticipative policies (i.e., policies that map the history to
bids) that satisfy the budget constraint for every sample path. This set of policies
is denoted by Zt . Since the exchange runs a second-price auction, a feasible policy
ζ ∈ Zt should satisfy the inequality:

n∑

i=1

1{zζi ≥ di}di ≤ bt (almost surely),

where 1{·} is the indicator function, and z
ζ
i ∈ [0, D̄] corresponds to the bid from

policy ζ for the ith impression. The optimal expected surplus of an advertiser with
type t is denoted by Vt , and obtained by solving the following optimal control
problem:

Vt � sup
ζ∈Zt

Eα,d

[
n∑

i=1

1{zζi ≥ di}(vt (αi)− di)

]

, (21.1)

where the expectation is taken with respect to the vector of impression attributes
α = (αi)

n
i=1 and maximum competing bids d = (di)

n
i=1.

21.2.1 Mechanism Design Problem

In this section we focus on the problem of the intermediary whose objective is
to run a campaign on behalf of the advertiser that can alternatively pursue her
own campaign by directly participating in the auctions of the exchange. Since the
advertiser’s type (her budget and targeting criterion) is her private information,
the intermediary’s problem can naturally be formulated as a mechanism design
problem. By the Revelation Principle, without loss of optimality, we can focus on
direct mechanisms where the advertiser reports her type t (possibly nontruthfully),
and the intermediary responds to this report by choosing a required payment xt ,
and a dynamic bidding policy ζt ∈ Z he commits to running at the exchange on
behalf of the advertiser. Here, we denote by Z the set of all non-anticipative (and
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potentially randomized) dynamic bidding policies that have no budget restrictions.2

Specifically, a mechanism (x, ζ ) for the intermediary consists of a vector of
payments x = (xt )t∈T , and a vector of non-anticipative dynamic bidding policies
associated with different types t ∈ T , ζ = (ζt )t∈T .

Note that the set Z of all non-anticipative bidding policies is a high-dimensional
set which includes all functions mapping every possible history to a bid. Therefore,
instead of searching for the optimal mechanism by optimizing directly over this set
(which may be computationally intractable), we provide an alternative technique
which relies on first characterizing the performance that can be achieved by policies
in Z . The performance of a policy ζ ∈ Z can be measured by two metrics: (i) the
intermediary’s total expected cost for running this policy

C (ζ ) � Eα,d

[ n∑

i=1

1{zζi ≥ di}di
]

,

and (ii) the total expected value

Wt (ζ ) = Eα,d

[ n∑

i=1

1{zζi ≥ di}vt (αi)
]

an advertiser of type t ∈ T derives from the impressions acquired by this policy.
We consider an optimal mechanism design problem where any performance level in
this achievable performance space can be chosen by the intermediary.

Definition 1 The achievable performance space P is given by the set of points
(c,w) ⊆ R × R

T such that there exists a policy ζ ∈ Z satisfying Wt (ζ ) = wt for
all t ∈ T and C (ζ ) ≤ c.

Following the performance space idea, the optimal mechanism can be derived by
optimizing over the costs and total expected values associated with feasible policies
(as opposed to optimizing over the policies themselves). In comparison to the set Z ,
the performance space has a much smaller dimension because it does not scale with
the time horizon, thereby yielding a more tractable formulation. In addition, after the
optimal performance levels associated with the optimal mechanism are determined,
an optimal policy that achieves the chosen performance level can be retrieved via a
synthesis procedure (described in Sect. 21.2.2.3).

We next introduce some notation. We use ct ′ to represent the total expected
cost incurred by the intermediary when the advertiser reports her type as t ′, and
the intermediary uses the policy ζt ′ to bid on behalf of her at the exchange. If
the true type of this advertiser is t , we denote her total expected value for the

2Unlike the advertiser, the intermediary does not have stringent financial constraints, thus we do
not restrict the intermediary’s policies ζ ∈ Z to satisfy any budget constraints (unlike the set of
policies Zt that can be employed by the advertiser of type t).
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impressions acquired by this policy by wt ′,t , and the matrix of total expected values
by W = (

wt ′,t
)
t ′,t∈T ∈ R

T×T . Note that the policy run for type t ′ may yield
different expected values for advertisers of different types, i.e., for types t1, t2
advertisers, we may have wt ′,t1 �= wt ′,t2 because their targeting criteria may differ.
Using this notation, the mechanism design problem of the intermediary can be stated
as follows:

max
x,c∈RT ,W∈RT×T

∑

t∈T
pt (xt − ct ) (21.2a)

s. t. wt,t − xt ≥ wt ′,t − xt ′ , ∀t, t ′ : bt ′ ≤ bt , (21.2b)

(OPT) wt,t − xt ≥ Vt , ∀t, (21.2c)

xt ≤ bt , ∀t, (21.2d)

(ct ′ , (wt ′,t )t∈T ) ∈P, ∀t ′ . (21.2e)

In (OPT), we maximize the expected profit of the intermediary, which is given
by the quantity

∑
t∈T pt (xt − ct ). Here, the variable xt represents the payment

of the advertiser whose report is t and ct is the cost of running the campaign.
The incentive compatibility (IC) constraint Eq. (21.2b) ensures that the advertiser
maximizes her payoff by reporting her type truthfully. Note that the surplus of a
type t advertiser whose report is t ′ is expressed by the quantity wt ′,t − xt ′ . For
the IC constraint, we restrict attention to the cases where the advertiser does not
report a budget larger than her true budget without loss of generality.3 Recall that
the advertiser could alternatively run her own campaign. Therefore, we guarantee
that the mechanism delivers a utility at least equal to the outside option to the
advertiser with the individual rationality (IR) constraint Eq. (21.2c). Moreover, the
payment collected by the mechanism does not exceed the advertiser’s budget due to
the budget constraint Eq. (21.2d). The constraint Eq. (21.2e) guarantees that given an
optimal solution of (OPT), the intermediary can find a bidding policy ζt that delivers
the performance (to all types) as required by the optimal solution. Specifically, this
constraint ensures that the performance of the mechanism of the intermediary lies in
the achievable performance space P , thereby implying that the structure of P plays
a key role in the solution of (OPT). Hence, we conclude this section by emphasizing
that the performance space P is convex and closed, which implies that (OPT) is a
convex optimization problem.

Lemma 1 The performance space P is convex and closed.

3Specifically, the intermediary can prevent the advertiser from overstating her budget by requiring
her to make an upfront payment equal to the reported budget, and returning the amount bt − xt at
the end of the advertising campaign (see, e.g., Che and Gale 2000).



514 S. R. Balseiro et al.

21.2.2 Optimal Mechanism Characterization

Because the performance space P does not have closed-form description, solving
(OPT) directly is algorithmically challenging. To overcome this difficulty, we
introduce a duality-based approach for the optimal mechanism design problem
which consists of dualizing some constraints of (OPT). This dual problem is a
tractable convex minimization problem that can be solved efficiently.

21.2.2.1 Dual Problem

In the dual approach we dualize the IC, IR and budget constraints of (OPT), while
optimizing over the performance space. To provide a characterization of the dual
problem, we employ the concept of support function of the performance space. The
support function φ : R× R

T → R associated with the performance space P for a
point (μ,λ) ∈ R× R

T is given by

φ(μ,λ) � sup
(c,w)∈P

λTw− μc . (21.3)

The support function φ gives the intercept of the supporting hyperplane of the
performance space P with normal (−μ,λ). The support function φ is convex
because it is obtained as the point-wise supremum of linear functions over the
performance space.

We simplify the derivation of the dual problem by momentarily writing the IC,
IR and budget constraints in matrix form. In particular, we define wt � (wt,t ′)t ′∈T
as the t th row vector of the matrix W ∈ R

T×T , and rewrite (OPT) as follows:

max
x,c,W

∑

t∈T
pt (xt − ct ) (21.4a)

s. t.
∑

t∈T
dt xt − Atwt ≤ e (21.4b)

(ct ,wt ) ∈P , ∀t. (21.4c)

where dt ∈ R
M , At ∈ R

M×T and e ∈ R
M capture the coefficients of the M ≤

T 2 + 2T linear inequalities corresponding to the IC, IR and budget constraints.
Let λ ≥ 0 in R

M be the Lagrange multiplier of constraints Eq. (21.4b). Using
these multipliers, we obtain the convex dual problem (D):

min
λ∈RM

λTe+
∑

t∈T
φ
(
pt ,λ

TAt

)
(21.5a)

(D) s. t. λTdt = pt , ∀t (21.5b)

λ ≥ 0. (21.5c)
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In the following theorem, we show that strong duality holds for (OPT) and (D).
This result is established in Balseiro and Candogan (2017) by first constructing
a feasible solution for which the performance level associated with each type t

belongs to the relative interior of P . Using this constraint qualification with the
known results from duality theory, the result follows.

Theorem 1 (OPT) admits an optimal solution. Additionally, strong duality holds,
that is, the optimal objective value of (OPT) and (D) coincide.

We next show that the support function φ can be efficiently evaluated, and then
discuss how to construct the optimal mechanism based on an optimal dual solution.

21.2.2.2 Support Function Characterization

Note that it is possible to characterize the support function more explicitly, by
restating the expression in Eq. (21.3) using Definition 1:

φ(μ,λ) = sup
ζ∈Z ,c∈R,w∈RT

{
λTw− μc s.t. C (ζ ) ≤ c ,wt = Wt (ζ )

}
. (21.6)

We next provide a closed-form expression for the support function as well
as the optimal solution of Eq. (21.6). Let ζφ(μ,λ) be a policy that bids

z
ζφ(μ,λ)
i =∑t γt vt (αi)/μ for impression i with attributes αi , and define cφ(μ,λ) �

C (ζ φ(μ,λ)) as the total expected cost of the policy and w
φ
t (μ,λ) � Wt

(
ζφ(μ,λ)

)

as the total expected value type t ∈ T has for the impressions acquired by this
policy. In the following proposition we denote by x+ = max(x, 0) the positive part
of x ∈ R.

Proposition 1 Suppose that μ > 0. In Eq. (21.6), an optimal ζ is ζφ(μ,λ), and
the unique optimal c and w are given by cφ(μ,λ) and wφ(μ,λ), respectively. More
explicitly, the support function is given by

φ(μ,λ) = nEα,d

[(∑

t∈T
γtvt (α)− μd

)+]
,

the optimal total expected cost is cφ(μ,λ) = nEα,d

[
d1
{∑

t∈T γtvt (α) ≥ μd
}]

,
and the optimal total expected value for type t ∈ T is given by

w
φ
t (μ,λ) = nEα,d

[

vt (α)1
{∑

t∈T
γtvt (α) ≥ μd

}]

.

Note that the support function can be expressed as a simple expectation (of
a piecewise-linear function) over the impression attributes and the competing bid
(Proposition 1). Moreover, the convex dual problem has a compact representation
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(recall that the dual problem has polynomial size). Hence, it follows that the dual
problem is tractable and its optimal solution can be obtained by using standard
convex optimization algorithms.

21.2.2.3 Synthesis

In this section, we provide a procedure in which the optimal solution of the dual
is used to “synthesize” the optimal contract of the intermediary by relying on
strong duality. In particular, given an optimal solution λ∗ of the dual problem (D),
we first construct the optimal policy of the intermediary ζ ∗t and then obtain the
corresponding performance (c∗t ,w∗t ) for all t ∈ T . We then solve a linear feasibility
problem that involves the constructed performance levels in order to determine the
upfront fees {x∗t }t∈T associated with the optimal contract. More formally, the steps
of our synthesis procedure can be given as follows:

Step 1. Determine an optimal solution λ∗ of the dual problem (D), and set λ∗t =(
γ ∗
t,t ′
)
t ′∈T = (λ∗)TAt and μ∗t = pt for t ∈ T .

Step 2. Set the policy of type t ∈ T to ζ ∗t � ζφ(μ∗t ,λ∗t ). The total expected cost
and value for this policy are respectively given as c∗t � cφ(μ∗t ,λ∗t ), and
w∗t � wφ(μ∗t ,λ∗t ) (see Proposition 1).

Step 3. Determine upfront fees x∗ = (x∗t )t∈T by solving

∑

t∈T
dt x
∗
t − Atw∗t ≤ e ⊥ λ∗ ≥ 0 ,

where ⊥ indicates that for each entry, at least one of these inequalities
should hold with equality.

Theorem 2 The synthesis procedure yields an optimal solution (x∗, c∗,W∗) for
(OPT) and an optimal mechanism (x∗, ζ ∗) for the intermediary.

We note that the mechanism (x∗, ζ ∗) provided in Theorem 2 is relatively easy
to implement. In this mechanism, the intermediary posts a menu of contracts
(associated with different payments and policies), and invites the advertiser to
choose the one she prefers. We next turn to the optimal policies of the intermediary
and obtain further insights on these bidding policies.

21.2.2.4 Optimal Bidding Policy

Theorem 2 implies that the optimal bidding strategy has a surprisingly simple
structure. In particular, assume that an impression with an attribute vector α arrives
at the exchange, and the advertiser is of type t . Proposition 1 suggests that under the
optimal policy the intermediary bids:
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z∗t (α) =
1

pt

∑

t ′∈T
γ ∗t,t ′vt ′(α). (21.7)

It is possible to obtain further intuition on the bidding strategy of the intermediary.
In particular, let λ∗ = (λIC,λIR,λB), where λIC = (λIC

t ′,t
)
t ′,t , λIR = (λIR

t

)
t
, λB =

(
λB
t

)
t
, and λIC

t ′,t ≥ 0, λIR
t ≥ 0, λB

t ≥ 0 respectively denote the optimal Lagrange
multipliers associated with constraints (21.2b), (21.2c), and (21.2d) of (OPT). The
next result characterizes the optimal bidding policy of the intermediary in terms of
these multipliers.

Corollary 1 Let λ∗ = (λIC,λIR,λB) be a dual optimal solution of (D). The optimal
bidding policy of the intermediary ζ ∗t for type t ∈ T is such that for an impression
with attribute vector α it bids:

z∗t (α) =
(

1− λB
t

pt

)

vt (α)+ 1

pt

∑

t ′∈T
λIC
t,t ′ (vt (α)− vt ′(α)) . (21.8)

This corollary reveals that if the IC and budget constraints are not active (and
hence λIC = λB = 0), the intermediary simply reports the true value vt (α). For
example, this case occurs when the advertiser has a large budget, and the impression
distribution is uniform (since in this case the IC constraints are not binding, see
Balseiro and Candogan (2017) for more details). Similarly, if the budget constraint
is binding, but the IC constraints are not, then the intermediary simply shades the
true value vt (α) by 1− λB

t /pt to account for the advertiser’s budget constraint.
When the IC constraints are active, the bidding strategy takes into account that

type t may have incentive to misreport her type as t ′ (the dual multiplier of the
corresponding incentive compatibility constraint is λIC

t,t ′ ≥ 0). For instance, suppose
that types t and t ′ have the same budget but t ′ has lower average valuations for
the impressions than t . Type t ′ typically pays a lower amount for the impressions
she acquires, and hence effectively has a less stringent budget constraint. Thus,
the intermediary needs to bid more aggressively to match the outside option of
type t ′, which may give the type with higher valuations an incentive to impersonate
the lower type. The term (1/pt )

∑
t ′∈T λIC

t,t ′ (vt (α)− vt ′(α)) in Eq. (21.8) ensures
that the intermediary bids more aggressively for impressions that type t highly
values when compared to other types (i.e., vt (α) > vt ′(α)), thereby eliminating
the incentive of type t to misreport her type.

21.2.3 Economic Insights

The presence of intermediation affects the online advertising market in several ways.
As an immediate example, the optimal bidding policy of an advertiser participating
in the exchange on her own has a complex dynamic shading structure, which is
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obtained by solving a dynamic program. On the other hand, the policy associated
with the optimal contract (see Corollary 1) of the intermediary has a stationary
structure. Thus, from an operational perspective, the presence of the intermediary
results in simpler bidding policies in the exchange. In addition to this impact on
the bidding policies, we shed light on the other economic insights derived from the
optimal mechanism of the intermediary by considering the following aspects.

21.2.3.1 Intermediation Profit and the Advertiser Surplus

Recall that the advertiser has the option of bidding directly in the exchange.
Therefore, the intermediary should guarantee that the advertiser has incentive to
accept the contract. In other words, the contract of the intermediary should deliver
surplus to the advertiser at least as high as the surplus of the outside option. Despite
providing this surplus to the advertiser, interestingly the intermediary still manages
to profit. The reason behind this observation can be explained by the capability
of the intermediary to deliver the surplus of the advertiser’s outside option at a
lower expected cost than the advertiser could achieve on her own. Specifically,
the advertiser’s bidding policies, when bidding directly in the exchange, have to
satisfy her budget at every realization (of impression attributes and competing bids)
whereas the intermediary has no budget constraints. Therefore, the advertiser’s
bidding policies might need to significantly shade her bid in each auction while the
intermediary can implement bidding policies that exceed the upfront fee in some
realizations. In other words, the absence of these financial constraints equips the
intermediary with a richer set of policies, and allows him to deliver the same surplus
to the advertiser at a lower cost; therefore making it profitable to intermediate.

21.2.3.2 Market Efficiency

Note that the optimal mechanism of the intermediary and the optimal bidding
policy are provided for general valuation structures. Balseiro and Candogan (2017)
provide further insights by focusing on a special case where advertisers’ targeting
criteria exhibit symmetry, e.g., uniformly distributed impression attributes. Under
this assumption, the optimal mechanism can be characterized in closed form.
Balseiro and Candogan (2017) also establish that the presence of the intermediary
in the market not only allows him to profit, but also increases the surplus of the
advertiser and market efficiency as given by the sum of the revenue of the exchange,
the intermediary’s profit, the contracting advertiser’s surplus, and the exogenous
bidders’ surpluses.
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21.3 Multi-stage Intermediation in Display Advertising

In this section, we consider a setting with multiple intermediaries positioned
between an advertiser and an exchange (see Fig. 21.2). The exchange sells a unique
indivisible impression via a second-price auction with no reserve in which exoge-
nous advertisers might participate. Since we focus on the trade that occurs through
the intermediation chain, as before, we model the highest bid of those exogenous
advertisers by a random variable d with support [0, D̄]. The advertiser seeks to
purchase the impression from the exchange, and her value for the impression is
captured by a random variable denoted by v.4 The realizations of v are drawn
from the cumulative distribution function Gv(·), with the strictly positive probability
density function gv(·) over the support V ⊆ [0,∞). We assume that the distribution
of v is common knowledge, and its realizations are the private information of the
advertiser. We also assume that the expected value of v is finite, i.e., E[v] <∞.

As opposed to the OCI model, the advertiser has no budget constraint, however,
she is constrained to purchase impression from the exchange through a chain of
m ≥ 1 intermediaries. In Fig. 21.2, the intermediation chain is illustrated. We
refer to the intermediaries closer to the advertiser as downstream intermediaries,
and the intermediaries closer to the exchange as upstream intermediaries. The
intermediaries have no value for the impression, thus they only profit in case of
purchasing the impression from upstream and reselling to downstream. Therefore,
a mechanism for an intermediary should (i) map reports from the downstream
intermediary to an upstream bid to purchase the impression from upstream, and
(ii) decide on an allocation and a payment to resell the impression to downstream.

For the set of available mechanisms, we focus on the set of second-price
mechanisms M where a mechanism (r, Y ) ∈ M consists of a reserve price
r ∈ R+ and a nondecreasing reporting function Y : R+ → R+. After receiving
a downstream report x, intermediary j with mechanism (rj , Yj ) reports Yj (x) if
x ≥ rj , otherwise reports zero. The intermediary allocates the impression only if
she wins it from upstream. The payment is determined as the minimum amount
which guarantees winning of the downstream agent. Formally, given the exogenous
bid d ∈ [0, D̄] at the exchange, we denote by Wj the set of bids of intermediary I(j)
that guarantees winning, i.e.,

ExchangeI(m)I(m−1)I(1)Advertiser

Fig. 21.2 A chain of intermediaries

4Note that in the OCI model we denote by vt (α) the value of a type t advertiser for an impression
with attributes α, thus the notation vt represents a function. However, in the MSI model, the
notation v represents a random variable which captures the value of the advertiser.
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Wj � {x ≥ 0 | x ≥ rj+1, Yj+1(x) ≥ rj+1, . . . , Ym ◦ · · · ◦ Yj+1(x) ≥ d} ,

where Yi and ri respectively denote the reporting function and reserve of inter-
mediary I(i) for i = j + 1, . . . , m, and ◦ denotes the composition operator. The
intermediary I(j) makes a payment to I(j+1) only in case of winning, and the
payment amount is given by the smallest element of the winning reports Wj , i.e.,
inf(Wj ). This payment rule is a natural extension of the second-price auction, which
is commonly used in the context of display advertising. Therefore, the set of second-
price mechanisms M extends second-price auctions to a setting with intermediaries.
We next provide some important properties of the set M by the following lemma.

Lemma 2 Suppose that intermediary I(j) selects her mechanism (rj , Yj ) ∈M for
j = 1, . . . , m, and the exchange runs a second-price auction. Then,

(a) The composition of upstream mechanisms faced by the agent I(j) for j =
0, . . . , m − 1 (where I(0) represents the advertiser) is equivalent to a second-
price auction with an exogenous random bid d∗ and reserve price r∗ given by

d∗ = Y−1
j+1 ◦ · · · ◦ Y−1

m (d)

r∗ = max
(
rj+1, Y

−1
j+1(rj+2), Y

−1
j+1 ◦ Y−1

j+2(rj+3), . . . , Y
−1
j+1 ◦ · · · ◦ Y−1

m (0)
)

where we define the inverse of a reporting function Y as Y−1(x) = inf{x̃ ≥ 0 :
Y (x̃) ≥ x}.

(b) Truthful bidding is an optimal strategy for the advertiser.

The second item in this lemma implies that the truthful bidding is a best response
for the advertiser regardless the mechanisms of the intermediaries. Therefore, we
exclude the strategic behavior of the advertiser and focus on the game among
intermediaries. We model the corresponding mechanism design game among
intermediaries as a Stackelberg game where intermediaries move sequentially from
upstream to downstream. In particular, the timing of the events is as follows:

1. The advertiser privately draws her value.
2. Intermediary I(j) determines a mechanism (rj , Yj ) ∈ M after observing the

mechanism of I(j+1) for j = m, . . . , 1.
3. The advertiser bids truthfully.
4. Intermediary I(j) learns the bid of I(j−1) and submits her own bid to I(j+1)

according to her own mechanism, for j = m, . . . , 1.
5. The exchange I(m+1) runs a second-price auction and the impression is allocated

either to exogenous bidders or to the advertiser through the intermediation chain.
6. Intermediary I(j) learns her payment to I(j+1) and charges a payment to I(j−1)

for j = m, . . . , 1.
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21.3.1 Equilibrium Characterization

We study the outcome of the strategic interaction among intermediaries by focusing
on the subgame perfect equilibria (SPE) of the induced game as a solution concept
and provide an SPE. Before stating our results, we provide some definitions that
would be useful to characterize an SPE of this game. We first introduce the virtual
value function and its inverse for a generic random variable X with a finite mean
E[X] < ∞, and c.d.f. GX(·) and strictly positive p.d.f. gX(·) over a nonnegative
support X ⊆ [0,∞).5 The virtual value function of X is given by

φX(x) = x − 1−GX(x)

gX(x)

for x ∈ X . Moreover, the inverse of the virtual value function is defined as
φ−1
X (x) � inf{x̃ ∈ X | φX(x̃) ≥ x}. We next define the projected virtual

value function for random variables with strictly increasing virtual functions. This
function projects the virtual value function to nonnegative reals, while extending its
domain to R.

Definition 2 Suppose X is an absolutely continuous random variable with a strictly
increasing virtual value function φX(·) and support X . The projected virtual value
function of X is given by

ψX(x)

⎧
⎪⎪⎨

⎪⎪⎩

sup X x ≥ sup X ,

φX(x) zX ≤ x < sup X ,

0 otherwise ,

(21.9)

where the projection point is given by zX = φ−1
X (0). If the random variable X has

an atom at zero and is absolutely continuous elsewhere in its support X , then we
define ψX(·) and zX similarly by replacing φX(·) in Eq. (21.9) with the virtual value
φX|X>0(·) of the strictly positive part of X, denoted by X|X > 0.6

In order to characterize an SPE of the game in the chain of intermediaries, we
first focus on the mechanism design problem of a single intermediary positioned
between the advertiser and the exchange, i.e., m = 1. The following lemma provides
an optimal mechanism for this case.

5The advertiser’s value v satisfies these requirements.
6Note that φX(x) = φX|X>0(x) for x ∈ X \ {0}. This can be seen by using the definition
of the virtual value function and noting that the conditional random variable X|X > 0 has
c.d.f. GX|X>0(x) = (GX(x)−GX(0))/(1−GX(0)), and p.d.f. gX|X>0(x) = gX(x)/(1−GX(0)).
Thus, focusing on the virtual value of X|X > 0 as opposed to X, excludes the atom at zero, without
impacting the (projected) virtual values elsewhere.
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Lemma 3 Suppose that there exists a single intermediary between the advertiser
and the exchange, i.e., m = 1. Then, an optimal mechanism (r, Y ) ∈ M for the
intermediary is given by

Y (x) = ψv(x),

r = zv .

When choosing her bidding strategy for the upstream auction, an intermediary
needs to optimally tradeoff the probability of winning the impression in the auction
of the exchange with the cost incurred when winning the impression (both of
which increase with the bid of the intermediary). This lemma reveals that the
intermediary’s optimal bidding strategy takes a simple structure: the intermediary
first determines the advertiser’s virtual value function, and then bids at the exchange
the projected virtual value of the report from downstream.

In the case of multiple intermediaries, there are two factors which can affect the
strategy of an intermediary: (i) the mechanisms chosen by upstream intermediaries,
and (ii) the reaction of downstream intermediaries. For the first factor, Lemma 2
suggests that in settings with multiple intermediaries, the upstream mechanism
that an intermediary faces can equivalently be represented by a second-price
auction. Therefore, in light of Lemma 3, an intermediary along the chain is not
influenced by the upstream decisions and, in turn, her actions do not influence
downstream mechanisms. For the second factor, note that the reports observed
by an intermediary I(j) can be obtained by composing the reporting functions of
intermediaries I(j−1), . . . , I(1) with the report of the advertiser. Specifically, each
intermediary in the chain can be thought as a single intermediary which connects a
“downstream agent” with “anticipated reports” induced by the optimal downstream
mechanisms along the equilibrium path to an upstream second-price auction. This
observation allows for characterizing the optimal mechanisms of intermediaries
recursively via Lemma 3, starting with the downstream intermediaries whenever the
downstream reports satisfy the regularity conditions as the advertiser’s value does.
Therefore, we first formally define the anticipated reports and provide the regularity
assumption, and characterize an SPE of the game between multiple intermediaries.

Definition 3 The anticipated report of the advertiser is W0 = v, and the anticipated
report of intermediary I(j) is

Wj = ψWj−1(Wj−1).

Note that the anticipated report Wj coincide with the report of intermediary
I(j) to the upstream mechanism if all intermediaries use the projected virtual value
functions of the downstream bids as reporting functions.
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Assumption 3 The anticipated report Wj of intermediary I(j) is well-defined and
has finite expected values for j = 1, . . . , m. Moreover, the anticipated reports have
strictly increasing virtual values, i.e., φWj

(·) (or φWj |Wj>0(·) if Wj has an atom at
zero) is strictly increasing for j = 1, . . . , m.

The following theorem provides an SPE under Assumption 3.7

Theorem 4 Suppose that Assumption 3 holds, and consider the mechanisms given
by

Y ∗j (x) = ψWj−1(x) ,

r∗j = zWj−1 ,

for j = 1, . . . , m. Then, the strategy profile where the mechanism (r∗j , Y ∗j ) is chosen
by intermediary I(j) for j = 1, . . . , m constitutes an SPE.

21.3.2 Economic Insights

Using the SPE provided in Theorem 4, we numerically explore the impact of
the advertiser’s value distribution on the reports and profits of intermediaries in
different positions. Finally, we compare our results with the double-marginalization
literature.

Intermediaries’ Bids Since the virtual value function lies below the 45 degree
line, Theorem 4 shows that the intermediaries always shade their bids (i.e., the report
functions satisfy Y ∗j (x) ≤ x). Although bid shading is always present, our numerical
studies illustrate that it takes a different structure depending on the advertiser’s
value distribution. Figure 21.3 indicates that as a result of bid shading in long
intermediation chains, unless the value of the buyer is significantly large, the bid
submitted by the intermediaries to the auction of the exchange can be equal to zero.
In such cases, even when it is profitable for the buyer, the intermediation chain does
not allocate the impression to the advertiser, thereby causing inefficiency.

Intermediaries’ Profits We next study the impact of an intermediarys position
in the chain on her profits. On one hand, downstream intermediaries closer to the
advertiser receive higher bids. On the other hand, upstream intermediaries closer to
the exchange incur lower payments to acquire the impression. The total contribution
of these opposing effects is indeterminate, and the impact of the position on profits
depends on the distribution of the advertiser’s value.

7Balseiro et al. (2017) show that this assumption holds for Generalized Pareto Distributions, a large
family of distributions including uniform, exponential and Pareto distributions.
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Fig. 21.3 This figure plots the bids of the intermediaries for different realization of the advertiser’s
value v in a market with m = 5 intermediaries when the value distribution is uniform, exponential
and shifted Pareto ((a) Uniform distribution (V = [0, 1], E[v] = 1/2), (b) Exponential distribution
(V = [0,∞), , E[v] = 1), (c) S. Pareto distribution (V = [0,∞), E[v] = 2/3))

For example, when values are exponentially distributed the expected profit of
each intermediary is the same, while for the uniform and shifted Pareto distributions
the profits depend on the position of the intermediary in the chain. In particular,
Fig. 21.4 plots the impact of the intermediary’s position on her profits conditional on
winning the impression in a market with m = 5 intermediaries when the distribution
of values is uniform, exponential and shifted Pareto. This figure shows that for
uniform and Pareto distributions, profits as a function of an intermediary’s position
in the chain, exhibit different trends. When the advertiser has a heavy-tailed value
distribution, such as the shifted Pareto distribution, the downstream intermediaries
who are closer to the advertiser have higher profits. Intuitively, this result stems
from the fact that for such distributions, with significant probability the value of the
advertiser for the impression is large, and hence the intermediaries that are closer to
the advertiser can claim significant profits. Conversely, when the advertisers value
distribution has a light-tail or a bounded support, the intermediaries find it more
profitable to be closer to the exchange, due to lower costs of acquiring impressions.
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Fig. 21.4 This figure plots the profits of intermediaries for different positions in a market with
m = 5 intermediaries when the value distribution is uniform, exponential and shifted Pareto
((a) Uniform distribution (V = [0, 1], E[v] = 1/2), (b) Exponential distribution (V = [0,∞),
E[v] = 1), (c) S. Pareto distribution (V = [0,∞), E[v] = 2/3))

This result suggests that depending on the advertiser’s value distribution for the
impressions, intermediaries may prefer to participate in different stages of the
intermediation process.

Comparison with Double-Marginalization Literature Our work is closely
related to the double-marginalization literature (see, e.g., Tirole 1988), and some
of the insights from this literature translate to our settings. In the basic double-
marginalization framework, a manufacturer supplies a good to a single downstream
retailer, who resells the good as a monopolist. Compared to the vertically integrated
industry, the theory predicts that in the case of double-marginalization the price
paid by the consumers is higher, industry profits, and the overall market efficiency
are lower.

In our setting the first-best corresponds to the case when the advertiser bids
directly in the exchange’s auction. Compared to the first-best, it is not hard to see
that as the number of intermediaries increases, the expected surplus of the advertiser,
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Fig. 21.5 Impact of the total number of intermediaries (m) on the expected surplus of the
advertiser (I(0)), and the expected revenue of the exchange (I(m+1)). All results are relative to
the first-best, which corresponds to the case when the advertiser bids directly in the exchange’s
mechanism (m = 0). In these plots, the value of the exogenous bid d is constant and equal to E[v]
((a) Uniform distribution (V = [0, 1], E[v] = 1/2), (b) Exponential distribution (V = [0,∞),
E[v] = 1), (c) S. Pareto distribution (V = [0,∞), E[v] = 2/3))

revenue of the exchange, are affected negatively. This is a direct consequence of
the bid shading behavior exhibited by the intermediaries. Figure 21.5 plots the
expected surplus of the advertisers and the expected revenue of the exchange
relative to that of first-best. This figure suggests that even one intermediary can
significantly decrease the exchange’s revenue and the surplus of the advertiser, while
multiple intermediaries can quickly decrease these quantities to almost zero. This
result is aligned with the double marginalization literature. Our analysis extends
these double-marginalization insights by quantifying the impact of the distribution
of values and the position in the intermediation chain on an agent’s profit. In
particular, when the value distribution is uniform (shifted Pareto) the advertiser (the
exchange) suffers more than the exchange (the advertiser) from intermediation. On
the other hand, the exchange and the advertiser are equivalently affected when the
value distribution is exponential. These observations are aligned with the optimal
intermediation position in multi-stage intermediation settings identified in our
analysis.
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21.4 Concluding Remarks

We study two models which shed light on the problems related to intermediation
in online advertising. In the first part, we characterize the optimal mechanism for
an intermediary which offers a contract to an advertiser with a private budget and
targeting criterion to acquire impression on her behalf. We show that the presence of
the intermediary does not harm the advertiser surplus, even further leads to a simpler
bidding policy. For this model, Balseiro and Candogan (2017) also show that the
profits of the intermediary are maximized for markets where budgets of advertisers
are neither exceedingly small nor exceedingly large by using a combination of
theoretical results and numerical experiments. In the second part, we provide a
game theoretic model to understand the strategic interaction between intermediaries
organized in a chain network, and derive economic insights via numerical analyses.
As an immediate extension of this model, more general network structures can be
considered in addition to the chain network. To this end, Balseiro et al. (2017)
study symmetric tree networks, and formally establish that the results shown in the
second part of this chapter, such as the impact of the value distribution on the most
profitable position in a network, are generalized to those networks. Moreover, they
also analyze the incentives of intermediaries to merge horizontally (within the same
tier) and vertically (across different tiers). Although the exchange considered herein
is assumed to have no reserve price, Balseiro et al. (2017) also model the strategic
behavior of the exchange, and show that the intermediation network structure plays
a key role in the profit of the exchange.
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