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Abstract. Flow cytometry is a powerful analytical method, allowing to
measure several properties individually for even hundreds of thousands
of particles contained in some sample. Their joint distribution is a highly
informative descriptor, yet directly unusable for standard machine learn-
ing methods.

Hence, such data is traditionally pre-processed into numerical fea-
tures, which is often a manual or semi-automatic process. This paper
introduces flowForest, an ensemble classifier capable of directly process-
ing flow cytomtery data, modelled after the popular Random Forest
method. We demonstrate that it can achieve high classification perfor-
mance in a fully automatic way.
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1 Introduction

Flow cytometry is a modern, high-throughput laboratory technique for a thor-
ough analysis of various particle suspensions. In a flow cytometer, the said sus-
pension is forced though a thin capillary, in a way that only a single particle
at a time passes through a system of detectors. This way, the machine can in
principle analyse each particle separately, and generate a number of indepen-
dent measurements corresponding to its various properties; some systems may
even use this data to sort particles of certain classes into separate containers for
further investigation.

Most often, the method is used to analyse suspensions of biological cells and
cell fragments (usually blood), while detectors measure light scattering prop-
erties and fluorescence emissions of a number of fluorophore dies that can be
selectively attached to particles based on their characteristics, usually by using
modified antibodies.

Flow cytometry is widely used in biomedical research and applications;
among others in agriculture [6,15], ecology [7,16], immunology [4,9] and medicine
[1,13]. Still, the volume and complexity of the data it provides makes it an impor-
tant field for applications of computational data analysis techniques [11,14].
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In this paper we investigate a problem of supervised classification of sus-
pensions, each quantified by a single or a series of flow cytometry experiments.
Traditionally, this is done in two stages [3,8,12]: first, the raw flow cytometry
data is somehow, often manually, clustered in order to be reduced into a set
of particle populations. Then, population cardinalities and other properties are
used as features, yielding a fairly standard information system which can be used
with numerous supervised classification methods.

In contrast, we aim to develop a fully automatic, generic method which would
not rely on an explicit notion of particle populations, but rather some intrinsic
mapping established from the training data. To this end, we propose a novel
algorithm called flowForest, which is a modification of Random Forest, a pop-
ular, powerful and versatile model for classification and regression proposed by
Breiman in 2001 [5].

1.1 Background

For a sake of flowForest definition, we have assumed a certain model of the
information system representing a generic flow cytometry experiment; it does
not cover all possibilities, however we believe it is generic enough for flowForest
to be widely applicable in practice. The said information system is organised as
follows; at the top level we have N objects, each corresponding to one sample and
annotated with a binary decision. Either certain class can be featured or they
may be equivalent, which allows for controlling on which aspects of a problem
the algorithm shall focus; this aspect will be further discussed in Sect. 2.

While particles in a sample may often be stained to expose more properties
than a cytometer may measure, it is common that one sample is split into T
parts (further call tubes), which are then stained according to different protocols
to expose various sets of properties, and finally, separately fed to a flow cytome-
ter. To facilitate this, we assume that each object contains T flow cytometry
measurements numbered from 1 to T , and that t-th measurement in each object
corresponds to a sample stained according to a same protocol t, consequently
that the cytometer measured a set of pt parameters in that case.

Finally, each measurement is a set of some number of events, each of which
is a vector of numbers, measured values of parameters pt. Ideally, any event
should correspond to a single particle, but in practice it may as well correspond
to a small group of particles, some contaminant or be a measurement artefact;
hence, a modelling method must be robust to such inputs. Anyhow, pt defines
a multidimensional phase space in which events are located according to some
probability density function representing a composition of various populations of
particles in the sample. The flow cytometry analysis heavily relies on a concept
of a gate, a compact subset of this space of an arbitrary shape which naturally
describes a certain subset of events which it contains. In particular, gates are
often understood strictly as corresponding to a certain particle population; yet,
in this paper we will adhere to a general definition, as, quite obviously, inference
on such meaningful gates is logically equivalent to an inference on a combination
of seemingly nonsense gates (which is actually what flowForest does). While in
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general standard gate is relevant only in context of a single tube and we consider
multi-tube data, it is handy to extend its notion in this regard; i.e., we will further
assume that a gate also denotes on which tube it operates.

2 Materials and Methods

FlowForest, similar to Random Forest, is an ensemble classifier composed of
decision trees; weak, weakly correlated and non-biased classifiers, predictions of
which are agreed via simple voting. Still, flowForest uses a specialised form of
decision trees—which branches operate directly on flow cytometry data rather
than through a previously defined or calculated descriptors. In this regard, it
can be considered to be a special case of a First Order Random Forest [17];
still, we believe that the applied specialisations are crucial for its robustness and
computational feasibility. Alternatively, according to the Generalised Random
Forest framework proposed in [10], flowForest is identical to Random Forest
except uses pivot classifiers composed of a gate G, event statistic E, a function
mapping event subset into a single real value, finally a threshold value mapping
such statistic’s value into a binary outcome, L or R. Such a 3-tier structure is
motivated by the flow cytometry data structure, and adheres to the variability
of construction process of each tier. The threshold can be easily and explicitly
optimised via simple sweep. The set of reasonable event statistics is both small
and basically forced by the data structure motivating an easy best-of-few selec-
tion. On the other hand, the gate is well fitted to be selected randomly (provided
certain quality requirements). Such a substantial source of randomness lowers
correlations between trees, which is essential for voting to bring performance
improvements.

Precisely, flowForest is built using the following procedure, presented in a
pseudocode form as Algorithm 1. Every tree is grown using different N -element
bootstrap sample of the training N -element set, called bag. This way roughly
one-third of training objects are not used in the bootstrap sample for a given
tree; they form a so-called out-of-bag subset (OOB).

The tree is built according to a standard, recursive partitioning scheme. For
an input set of objects we first check if they belong to a single class; if so, a leaf
with this class is generated. Otherwise, we build a split. To this end, m gates are
randomly generated and for each of them and each object a table of statistics is
calculated, containing the count and the average value of each of k parameters
for events enclosed by the gate. For these m · (k + 1) constructed statistics, we
consider all possible N threshold values and assess their performance of splitting
the decision into possibly homogeneous parts; Gini impurity is used as a criterion.
Finally, we select a single best triple of gate, statistic and threshold as the pivot,
and recursively apply this procedure for each part of the split input. As in the
case of the Random Forest method, we aim at growing trees to a maximum extent
possible, that is the maximal depth is set large enough to be only a technical
safeguard, and we do not trim the final tree.

After repeating this randomized procedure n times, a collection of n trees is
obtained, constituting a flowForest. Classification of an object is done by simple
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Algorithm 1. flowForest model training
Given: training set T , tree count n, tried gates count m, maximal depth d
function partition(training subset X , recursion depth left d)

if decision(X ) is purely one class or d = 0 then
return most frequent class in decision(X ) � Generates a leaf

else
S ← ∅
for i = 1, m do

G ← random gate (on a random tube)
Ξ ← for each element of X , a set of events within G
S ← S ∪ {(G, event count of each element of Ξ)}
for j = 1, number of event parameters in Ξ do

S ← S ∪ {(G, average value of parameter j in each element of Ξ)}
end for

end for
S ← best pivot among features in S, completed with an optimal threshold
(Xl, Xr) ← X split according to S
return (S, partition(Xl, d−1), partition(Xr, d−1)) � Generates a branch

end if
end function
for i ← 1, n do

B ← bootstrap sample of T
forest[i] ← partition(B, d)

end for
return forest

voting of all trees in the ensemble; the fraction of votes on certain class is returned
as well, which can be used as a continuous estimate of the model confidence.

The crucial part of this approach is the gate generation step; here we have
used a simple idea of making a cuboid centred on a random event and sized
randomly, though proportional to the dimensions of the cloud of all events. Nat-
urally, we do not expect such gates to be meaningful as understood by a flow
cytometry expert; they are rather probes which results become a description
of event populations only after being combined by the overall model struc-
ture. Precisely, we use a following algorithm. First, we select a random tube.
One event C is randomly picked from randomly chosen object from that tube.
Let’s now assume that event C is characterized by k parameters (c1, c2, . . . ck).
Subsequently, k numbers e1, e2, . . . , ek are sampled from uniform distribution
U(0.05, 1). Let ai and bi be, respectively, 5-th and 95-th percentile of events
distribution on i-th parameter. We define

ri =
ei · (bi − ai)

2

for all k parameters. Finally, we construct a cuboid rectangular gate defined as
follows [c1 − r1, c1 + r1]×[c2 − r2, c2 + r2]×. . .×[ck − rk, ck + rk] . As mentioned
earlier, not all possible random gates are fit for further consideration; some may
be trivially nonsense, like being to small or unfortunately located to contain
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any event with reasonable odds. On the other hand, gates containing very small
numbers of events (several per object on average) will have a substantial entropy
and may lead to overfitting, similar to how categorical variables with a number
of levels close to the number of objects would behave in a regular Random Forest
model.

This is why we employ a simple quality control (QC) procedure of dropping
any gate which contains less than two events for some object. One should note,
however, that gates covering almost all events are not problematic, as they catch
global properties of the sample. Additionally, in case there is a featured positive
class, we also reject gates for which the average count of contained events is
higher for the objects of the negative class than for of the positive class. This way,
splits are substantially more likely to be based on the representative populations
of cells for the positive class.

Obviously, it is possible that some other method of generating gates may be
more appropriate, especially in certain cases; such modifications are the most
natural path of extending flowForest in the future. One should also note that
such a framework allows for incorporating existing expert knowledge, either by
also considering gates given a priori, or by evaluating simple splits on some
meta attributes. These extensions are not considered in this work, however, as
we focus on formulating a possibly generic and autonomous method.

Similar to Random Forest, flowForest can establish an OOB estimate of an
error. This procedure works as follows. Each object is predicted by a subset of
trees for which this object was OOB, and only those predictions are combined
by a regular voting. Such predictions are then compared with true classes and
summarized into an OOB estimation of a prediction error, or any other possible
performance metric (precision, recall, F-score, etc.).

FlowForest is implemented as an open source R package, available from
https://github.com/flowforest/flowforest.

3 Results and Discussion

We have assessed the algorithm using three real-world flow cytometry data sets,
earlier used in the FlowCAP II challenge [2]:

– AML, discrimination between patients affected by acute myeloid leukaemia
and healthy donors, based on blood and bone marrow aspirate samples. 359
objects (316 normal, negative, and 43 AML, positive), 8 tubes, 7 parameters
per each tube, effectively 42 parameters total.

– HVTN, discrimination between post-HIV vaccine blood samples stimulated
by two HIV antigens. 96 objects (48 GAG-, 28 ENV-stimulated, equivalent),
single tube, 11 parameters (we discarded the technical, non-informational
time parameter, corresponding to the time of an event detection).

– HEU, discrimination between infants exposed to HIV but uninfected and not
exposed to HIV, based on blood samples. 44 objects (24 unexposed, negative,
and 20 HIV-exposed, positive), 7 tubes, 10 parameters (as in case of HVTN,

https://github.com/flowforest/flowforest
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we discarded the time parameter) per each tube, effectively 70 parameters
total.

During the challenge, all data sets were split into a training and testing subsets;
we have performed our analysis both using this split, to obtain accuracy numbers
comparable with those achieved by the participants. Next, we have performed a
10-fold cross-validation to investigate the robustness of the flowForest method;
while classes are not balanced, we employed a slight variation of a canonical
methodology, forcing all folds to have the same class distribution as the whole
set. Finally, we have trained a model on a full data set to gather the OOB error
estimate.

HVTN, Accuracy HVTN, AUROC HVTN, F−score

AML, Accuracy AML, AUROC AML, F−score
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Fig. 1. FlowForest classification performance on AML and HVTN problems, measured
by accuracy, area under ROC curve and F-score, for n = 200 and different values
of m. Three types of assessments were applied—cross-validation, test set as used in
FlowCAP, finally OOB error estimate.

While flowForest is a stochastic algorithm, all these assessments have been
replicated 10 times with different random seeds. We have investigated a number
of gate tries parameter m values, namely 1, 2, 5, 10, 20, 50 and 100. The tree
count parameter n was fixed to 200, which we found enough for ensemble pre-
dictions to stabilise. Performance was measured as raw accuracy, F-score and
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HEU, Accuracy HEU, AUROC HEU, F−score
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Fig. 2. FlowForest classification performance on a non-informative HVTN problem,
for n = 200 and different values of m. Three types of assessments were applied—cross-
validation, test set as used in FlowCAP, finally OOB error estimate.

the area under ROC curve (AUROC). As the model confidence score required
for AUROC, we have employed the fraction of trees in the ensemble which voted
on the positive class.

The collected results for AML and HVTN problems have been presented on
Fig. 1. One can see that the model was quite accurate, yielding over 90% accuracy
in all investigated cases; there is also a good agreement between cross-validation
and OOB estimates of error, which is important provided that the latter can
be calculated in roughly one tenth of the CPU time. Both had relatively low
variance across realisations, proving that the algorithm has converged and is
robust to small disturbances.

Neither FlowCAP test subset seem to be representative for its corresponding
full data set, however they allow us to compare flowForest with other methods,
described in the after-challenge paper [2]. Using this metric, in case of the AML
set, the method is able to reliably provide perfect accuracy for m = 5 or 10,
namely achieve perfect classification in 65% of realisations, and a perfect ordering
(AUROC=1) in 85%. This is consistent with the results of FlowCAP, in which
9 out of 23 submissions were perfect and the median F-score was .97; also the
FlowCAP organisers concluded that the problem was relatively easy, and the
only issue was a single outlier object.

On the other hand, HVTN was more challenging; flowForest required m = 50
to achieve best test result, and the average F-score was .95; this is worse than 6
(out of 9) methods which obtained perfect classification, and equal to one other
method. However, only one of them, flowType+feaLect, was not a part of an ad
hoc pipeline tuned to the problem and did not used biological knowledge.

It is also interesting to focus on m = 1, which corresponds to a forest built on
random gates, selected only to fulfil QC criteria but not optimal with respect to
the split. While, as expected, it never was an optimal value, it lead to a surpris-
ingly good performance, showing the capabilities of a tree ensemble structure.
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The HEU set was claimed to be non-informative by the challenge organisers;
despite this fact, it is interesting to check whether flowForest can provide a
negative answer in such case. The results of this experiment are presented on
Fig. 2. One can see that in all investigated set-ups the model has degenerated and
predicted all test objects as not-exposed; similarly, distributions of AUROC and
accuracy under cross-validation and OOB were centred around random-guessing
values.

The Fig. 3 presents the evolution of the model accuracy during the forest
construction; one can see that in case of meaningful AML and HVTN problems
the process converges, and that there is a significant gain from gathering trees
into an ensemble, as expected from a Random Forest-based method. In case of
HEU, AUROC converges to a nonsense value, and its course is substantially
more variable.
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Fig. 3. Evolution of the flowForest accuracy, expressed as a cross-validation estimate
of AUROC, with the growing ensemble size (n ∈ [1, 200]). Each of three random repli-
cations is shown as a separate line; parameter m is fixed to 10.

4 Conclusions

The undoubtful, rising role of flow cytometry in biomedical research and
medicine, as well as the volume and complexity of data it provides, calls for
a novel, more automated analytical tools.

In this paper, we propose flowForest, a novel classifier based on the popular
Random Forest method. We show that it can provide an accurate, robust clas-
sification on a pure flow cytometry outputs, without specialised pre-processing,
injected biological knowledge, ad hoc assumptions nor any other prior informa-
tion, and with minimal hyper-parameter tuning. To our knowledge, this is the
only available method of a said capability, with virtually all other approaches
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following a two-step scenario in which data is first gated, and the inference is
done only on such obtained, simplified representation. This way flowForest may
discover more subtle aspects of the problem, by effectively investigating gates
that are only relevant in specific, local contexts.

We also demonstrate, based on the HEU dataset, that it can reliably detect
an inconclusive problem, avoiding over-fitting despite highly dimensional repre-
sentation of data it uses. Quite obviously, this is a crucial property for a reliability
of any potential methodology involving it, which is especially important given
numerous uses of machine learning in biomedical research had suffered from such
issues.

Thus, we believe it may be useful to assist manual studies, as it provides
a perfectly unbiased view of data, or become a part of an automatic analysis
pipeline.
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