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Abstract. Robot-assisted exercises often use controllers which auto-
matically adapt task parameters to the user’s performance. One prob-
lem with these controllers is how to accommodate the wide variety of
degrees of impairment and to properly track the user’s improvement in
spite of the inherent variability of performance that is typical of these
tasks. Here we describe an adaptive controller model which uses rein-
forcement learning to maintain a model of user’s performance and uses
it to continuously regulate the task parameter. We show that the model
rapidly identifies the user’s model parameters and then smoothly tracks
performance improvements.

1 Introduction

Robots are now widely used in the treatment of persons with neuromotor impair-
ments. In robot-assisted exercise, robots provide assistive or perturbing forces
which either facilitate or challenge user’s movements [1]. Several studies also
showed that robots can be used to facilitate learning a new motor skill [2] and
to transfer a skill from expert to näıve subjects [3]. One of the challenges is that
the difficulty level of the exercise should match the user’s residual motor capabil-
ities. An exercise that is too difficult or too easy may reduce user’s involvement
with negative effects on recovery/learning. A way to prevent this is to adjust the
exercise’s difficulty level – for instance, the magnitude of assistive forces to the
user’s For this reason, robot-assisted exercises often include controllers which
automatically adapt task parameters to the user’s performance. One problem
with these controllers is how to accommodate the wide variety of degrees of
impairment and to properly track the user’s improvement in spite of the inher-
ent variability of performance that is typical of these tasks. Here we describe an
adaptive controller model which uses reinforcement learning to maintain a model
of user’s performance and uses it to continuously regulate the task parameter.
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2 Materials and Methods

2.1 Adaptive Control Model

The controller uses reinforcement learning to estimate, trial by trial, the user’s
model and to calculate the task parameters at the next trial. The user model
plays the role of the ‘critic’. An ‘actor’ calculates the next task parameters.
The reward provided at the end of each trial is typically a complex function of
the user’s motor action and is affected by the task parameters specified by the
robot, uR. We assume that, for a given user’s skill level, the reward depends
monotonically on the task parameters. We specifically use a logistic function:
r(t) = 1/1 + e−β(uR(t)−K) + v(t), where v(t) ∼ N(0, R) reflects the observation
that due to performance variability the movement score may fluctuate from trial
to trial even if the task parameters remain the same. This model is general
enough to accommodate a large variety of situations.

(1) User Model (Critic): We take the unknown parameters as the user
model’s state vector: x =Δ [K,β]T . We also assume that the temporal evolution
of the user model is described by: x(t+1) = x(t)+w(t), where w(t) ∼ N(0, Q) is
process noise. This is interpreted as a smoothness constraint on the temporal evo-
lution of the model parameters. The critic aims at maintaining an estimate x̂(t)
of the state vector, given the task parameter, uR(t), and the observed reward,
r(t). This is done through and Extended Kalman filter algorithm, in which the
correction step is defined as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W (t) = P (t)− · Ĉ(t)T ·
[(

Ĉ(t) · P (t)− · Ĉ(t)T
)

+ R
]−1

x̂(t)+ = x̂(t)− + W (t) · [r(t) − r̂(t)]

P (t)+ =
(
I − W (t) · Ĉ(t)

)
· P (t)−

(1)

where the expected reward, r̂(t) is defined as

r̂(t) = 1/
{

{1 + e−x̂2(t)
−[uR(t)−x̂1(t)

−]
}

(2)

and: Ĉ(t) =
[−x̂−

2 · r̂(1 − r̂), (uR − x̂−
1 ) · r̂(1 − r̂)

]
. The prediction step is

defined as: {
x̂(t + 1)− = x̂(t)+

P (t + 1)− = P (t)+ + Q
(3)

(2) Action Selection (Actor): Action selection aims at selecting the next robot
action, uR(t + 1) in order to obtain the target reward r∗:

uR(t + 1) = x̂1(t + 1)− − 1
x̂2(t + 1)− · log

(
1
r∗ − 1

)

+ η(t) (4)

where η(t) ∼ N(0, E) is exploration noise.
(3) Model Parameters: The model has three parameters, R, Q, E. In addition,

we need to specify the initial values of estimated state, its covariance, and robot
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input, i.e. x̂+(0) = x0, P+(0) = V0 and uR(0) = u0. As a general procedure we
assume that the task parameter, uR, ranges from umin to umax. As a consequence,
xmin

2 = 10/ [9(xmax − xmin)] and xmax
2 = 30xmax

2 . We then take R = 0.01,
√

Q =
diag

[
0.4(umax − umin), 0.005(xmax

2 − xmin
2 )

]
, and

√
E = 0.05(umax − umin). We

also set x0 = [um x2m] where um = (umin +umax)/2 and x2m = (xmin
2 +xmax

2 )/2.

2.2 Experimental Apparatus and Task

We used a planar robot manipulandum [4] specifically designed for motor learn-
ing studies and robot therapy. Subjects sat in front of a 43” LED monitor and
grasped the handle of a planar manipulandum [4] with their dominant hand.
Torso and shoulder were restrained by means of suitable holders. The forearm
was supported to compensate gravity and a wrist band reduced wrist movements.
The task consisted of controlling a virtual ’tool’, consisting of a simulated mass
(m = 5 kg) connected to the robot handle through a linear spring. Subjects
were instructed to move the virtual mass as fast as possible toward a target. To
do so, subjects must learn to control the mass-spring dynamics and the internal
degrees of freedom of the virtual tool [5]. The spring stiffness, K, determines task
difficulty. With a high stiffness, the task is little different from simple reaching.
With a low stiffness, the task is very challenging because the mass is very hard to
control. After each trial, the subjects received a 0–1 score, calculated in terms of
movement time and curvature of the trajctory of the virtual mass. In a previous
study, training with this task led to an improved sensorimotor coordination in
persons with Multiple Sclerosis [6]. To validate the model, five healthy subjects
(3 male and 2 female, age 25 ± 2) underwent a 300-trial training section. We
took Kmax = 200 N/m and Kmin = 50 N/m as the ranges of variation of the task
difficulty. We compared learning performance with that of five control subjects
(3 male and 2 female, age 25 ± 2) performing the same exercise protocol, but
with a constant stiffness value (K = 100 N/m).

3 Results

Figure 1 shows the time course of the model parameters estimates, calculated for
all subject (mean ± SE). In the very early trials the model identifies the user
model. After that, the model parameters change gradually as the performance
improves.

Figure 2 shows the temporal evolution of the score, r, calculates for all sub-
jects (mean ± SE). After the initial model exploration trials, r reaches the target
score r∗, changing the stiffness value and modifying the difficulty of the task.
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Fig. 1. Temporal evolution of the model parameters, x1 (top) and x2 (bottom), aver-
aged over all subjects (Mean ± SE)

Fig. 2. Temporal evolution of the score, averaged for all subjects (mean ± SE). The
green dotted line indicates the target score r∗ which was set to r∗ = 0.75

4 Discussion and Conclusions

We designed an adaptive controller of task difficulty or assistance level which
is general enough to work with any exercise and robust enough to deal with
the variability typically observed in motor learning and/or rehabilitation trials.
Early tests – to be confirmed in a larger experiment – suggest that adaptive
control of task difficulty leads to faster and more stable learning.
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