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Abstract. Robotic manipulators can be controlled in an autonomous way with
great precision and dexterity. At the same time they can be equipped with
sensors capable of conveying highly precise information on the surroundings,
many times superior to that of a human sensory system. However, our limited
capacity of interfacing these robots with the human body makes current pros-
thetic systems to be perceived by the users as simple tools rather than limbs.
After decades of developments, osseointegration, selective nerve transfers, and
nerve electrodes for sensory feedback have all been clinically tested in humans
and are opening a new gateway for implementation of novel control strategies.
Here, an overview of the most promising myocontrol and myoelectric signal
processing technics to pave the way to longer-term visions of true limb
replacement are presented.

1 Introduction

With the turn of the 20th century, first truly actuated arm prosthetic systems came to the
market. Though still praised for its performance [1], Bowden cable driven body
powered hook has since been gradually replaced by the myoelectically (EMG) con-
trolled powered systems. With the development of new materials and manufacturing
techniques the prosthetic hardware has been considerably improved, but the basic
myocontrol chain has remained the same. Following the EMG signal acquisition and
conditioning, signal feature extraction is done. Features are further fed to the control
system which estimates the desired actions and the mapping to the prosthetic motor
commands is made. If available, the signals of the sensors of the prosthesis are finally
fed back to the user and thus effectively the control loop is being closed.

For years, elements of this myocontrol chain have been modified offering different
takes on extracting and estimating user’s intentions. Until recently, this evolution was
mainly incremental and based on machine learning myocontrol postulates introduced in
the 1970s [2]. Gradually, the laboratory based performance has been increasing, and
only recently these solutions have made it to the market.

However, years of development have also yielded techniques such as osseointe-
gration which allows direct skeletal attachments of prosthetics and moreover estab-
lishes a direct gateway for wired intramuscular recordings and nerve stimulation [3].
Targeted Muscle Reinnervation (TMR) [4] and selective nerve transfers [5] offer an
access to an increased information content coming from the neural drive by fully
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embracing the concept of muscle as an amplifier of the nerve signal. This is done by
rerouting the residual nerves of the amputated limb to the neighboring intact muscle
tissue.

With these new techniques and technologies, we are experiencing a conceptual
change in each of the elements of the myocontrol chain and as such novel strategies for
upper limb prosthetics are being introduced. The following sections will introduce the
most promising advancements in each of the myocontrol chain blocks.

2 Improvements of the Myocontrol Chain

2.1 Feature Extraction

Most commonly myocontorol interfaces treat EMG as an interferent signal (colored
noise) from which a set of global features are extracted. These usually consider
amplitude or spectral moments either in case of standard direct control or for identi-
fying sets of predefined movements through pattern recognition [6].

Since the introduction of the high-density (HD) EMG sensors a new set of algo-
rithms for the extraction of the sources of neural information have been developed.
Leveraging on the high spatial sampling, using blind source separation approach an
EMG deconvolution can be performed and the discharge timings of individual motor
neurons responsible for muscle contractions can be obtained.

Thanks to TMR which allows formation of spatially large EMG sources, these
motor unit spike trains can be robustly extracted and used as highly descriptive input
features of a variety of control systems. By enabling direct interfacing to the neural
information stored at the spinal cord level, these novel features are able to significantly
improve performance of classic myocontrol systems [7]. Though, it should be noted
that currently these efforts have been validated only in offline investigations.

2.2 Control Algorithms

Commercially available prosthetic systems have until recently been solely relying on
the direct control approaches accompanied by a simple state machine which allowed
articulation of different DoFs through a set of switches. Few years ago Coapt [8] has
brought to the market the first pattern recognition system based on a simple classifier
with eight electrode setup. This system relies on a common assumption that each
motion is followed by a distinguishable EMG pattern that can be classified and as such
used for control of a prosthetic system. While highly popular these systems are known
to highly suffer from temporal EMG changes induced by a variety of factors such as
fatigue, electrode shift, sweat, arm position or end effector load change. In addition,
estimation of simultaneous motions requires significant expansion of the algorithm
training data set which is not really practical.

To address some of these challenges a series of regression based approaches
relating input EMG signals to targeted output kinematic/kinetic variables have been
introduced. The main difference to classification is that here a continuous output value
is estimated for each DoF in contrast to a discrete class. This enables an independent
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simultaneous and proportional control. Still these control systems remain highly sen-
sitive to noise resulting in efficient estimation of only a couple of DoFs.

With increased number of independent EMG sources made readily available
through selective nerve transfers, a hybrid solution combing the pattern recognition and
regression into a single control system has been show very effective [9]. By running the
two estimators in parallel the highly precise and defined single DoF motions are being
handled by multiarticulated pattern recognition algorithm, while those including mul-
tiple DoFs are identified and processed by the regressor.

With the help of TMR and HD EMG a fully musculoskeletal model based control
algorithm translating EMG signals to joint moments has recently been achieved [7].
Seven DoFs of the arm have been considered using 14 muscle-tendon units. The
obtained joint moments were reconstructed into joint angles closely resembling those
recorded from the sound limb during mirrored motions.

2.3 Mapping of the Outputs

Classifiers outputs are commonly mapped in such way so that desired gestures syn-
chronously drive motors of the prosthesis into the predefined shape for the given class.
The speed with which that is achieved is either constant or is proportional to the level
of the detected contractions. On the other hand regressor outputs can also drive the
motors of the estimated DoF(s) to the estimated position and as such provide more
natural mapping.

Recently, an end effector simultaneous and proportional position and orientation
EMG control has been shown plausible for multi joint arm system [10]. The control has
been achieved by mapping the HD EMG regressor outputs to Cartesian and Polar
coordinates of the tip of the prosthetic hand at the end of the 6 DoF robotic arm. While
not fully intuitive, this system can be highly effective in the case of high level
amputations.

2.4 Feedback Loop

Recent study has shown that in the nerves innervating the upper limbs, sensory axons
outnumber motor axons by a ratio of at least 9:1 [11]. This is a strong indication that
the introduction of a closed loop in the prosthetic control system is necessary in order
to achieve natural control.

Broad and successful implementation of osseointegration has allowed formation of
a unique bidirectional gateway which allows sensory stimulation of the nerves avail-
able in the stump [3]. By using cuff electrodes and sub motor threshold stimulation a
natural sense of touch has been restored. It has been shown that this further enhanced
the user acceptance of the device and allowed improved control to be achieved.
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3 Conclusion

The recent advances in the restoration of upper extremity functions combined with the
rapidly developing technologies and manufacturing techniques have allowed signifi-
cant improvements across various parts of the myocontrol chain including introduction
of highly descriptive features, powerful signal and model driven control approaches,
alternative control mapping strategies and chronical nerve stimulation for establishing
the natural feedback loop.

Considering the recent advancements in the control strategies, we are at the verge
of developing revolutionary bidirectional myocontrol technics which can eventually
bring us closer to the genuine limb replacement.

References

1. Schweitzer, W., Thali, M.J., Egger, D.: Case-study of a user-driven prosthetic arm design:
bionic hand versus customized body-powered technology in a highly demanding work
environment. J. Neuroeng. Rehabil. 15(1), 1 (2018)

2. Lawrence, P.D., Lin, W.-C.: Statistical decision making in the real-time control of an arm aid
for the disabled. IEEE Trans. Syst. Man Cybern. (SMC-2)(1), 35–42 (1972)

3. Ortiz-Catalan, M., Hakansson, B., Branemark, R.: An osseointegrated human-machine
gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl.
Med. 6(257), 257re6 (2014)

4. Kuiken, T.A., Li, G., Lock, B.A., Lipschutz, R.D., Miller, L.A., Stubblefield, K.A.,
Englehart, K.B.: Targeted muscle reinnervation for real-time myoelectric control of
multifunction artificial arms. JAMA 301(6), 619–628 (2009)

5. Bergmeister, K.D., Vujaklija, I., Muceli, S., Sturma, A., Hruby, L.A., Prahm, C., Riedl, O.,
Salminger, S., Manzano-Szalai, K., Aman, M., Russold, M.-F., Hofer, C., Principe, J.,
Farina, D., Aszmann, O.C.: Broadband prosthetic interfaces: combining nerve transfers and
implantable multichannel EMG technology to decode spinal motor neuron activity. Front.
Neurosci. 11, 421 (2017)

6. Zhou, P., Lowery, M.M., Englehart, K.B., Huang, H., Li, G., Hargrove, L., Dewald, J.P.A.,
Kuiken, T.A.: Decoding a new neural machine interface for control of artificial limbs.
J. Neurophysiol. 98(5), 2974–2982 (2007)

7. Farina, D., Vujaklija, I., Sartori, M., Kapelner, T., Negro, F., Jiang, N., Bergmeister, K.,
Andalib, A., Principe, J., Aszmann, O.C.: Man/machine interface based on the discharge
timings of spinal motor neurons after targeted muscle reinnervation. Nat. Biomed. Eng. 1(2),
25 (2017)

8. Coapt LLC.: Coapt engineering (2016). http://www.coaptengineering.com/. Accessed 29
April 2016

9. Amsuess, S., Vujaklija, I., Goebel, P., Roche, A.D., Graimann, B., Aszmann, O.C., Farina,
D.: Context-dependent upper limb prosthesis control for natural and robust use. IEEE Trans.
Neural Syst. Rehabil. Eng. 24(7), 744–753 (2016)

10. Ison, M., Vujaklija, I., Whitsell, B., Farina, D., Artemiadis, P.: High-density electromyo-
graphy and motor skill learning for robust long-term control of a 7-DoF robot arm. IEEE
Trans. Neural Syst. Rehabil. Eng. 24(4), 1–10 (2015)

11. Gesslbauer, B., Hruby, L.A., Roche, A.D., Farina, D., Blumer, R., Aszmann, O.C.: Axonal
components of nerves innervating the human arm. Ann. Neurol. 82(3), 396–408 (2017)

174 I. Vujaklija

http://www.coaptengineering.com/

	Novel Control Strategies for Upper Limb Prosthetics
	Abstract
	1 Introduction
	2 Improvements of the Myocontrol Chain
	2.1 Feature Extraction
	2.2 Control Algorithms
	2.3 Mapping of the Outputs
	2.4 Feedback Loop

	3 Conclusion
	References




