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Abstract. Estimating the contributions of individual muscles during
limb movements is crucial to understand motor system organization. In
pathological conditions, identifying the roles of each individual muscles
may provide a basis for devising personalized treatments. In a previous
study we demonstrated how arm and muscle geometry can be estimated
from isometric force data and used to reliably estimate isometric end-
point forces in various arm configurations. Here we use a Hill-type muscle
model to predict muscle torques and equivalent endpoint forces during
planar arm movements in real-time. In conjunction with a planar robot
manipulandum, the model is then used to modify the directions of action
of individual muscles or muscle groups.

1 Introduction

Muscle activity (EMG) has been often used as a control signal to operate a pros-
thesis. In isometric conditions, EMG activity may be assumed to reflect the force
generated by that muscle [1]. The relation is much more complex during move-
ments. For this reason, the task of building a myoprocessor – a computational
module which is able of reliably estimating muscle torques from the recorded
muscle activity and movement signals (kinematics, external forces) in real-time
and during movements, has proven quite challenging. Recently, Durandau [2]
used EMG activity in conjunction with movement kinematics and ground reac-
tion forces to predict the torques generated by individual lower limb muscles in
real-time, in a variety of lower-limb movements. Hasson [3] developed an upper
limb myoprocessor with one degree of freedom (DoF) in order to study neu-
romuscular system adaptation. In a previous study [4] we estimated isometric
endpoint forces in various arm configurations. Here we extend this work by esti-
mating muscle torques and equivalent endpoint forces during movements. Our
final aim is to use the myoprocessor, in conjunction with a planar robot manip-
ulandum with two degrees of freedom, in order to generate force fields that
mimic individual muscles or groups of muscles and to study the corresponding
adaptation phenomena during movements.
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2 Materials and Methods

2.1 Experimental Apparatus and Task

The subjects sat in front of a 40′′ computer monitor placed vertically about
1 m away, at eye level. They grasped with their right hand the handle of a
planar manipulandum with two degrees of freedom [5]. Torso and wrist were
restrained. Seat position was adjusted so that, with the cursor pointing at the
center of the workspace, the elbow and the shoulder joints were flexed about
90◦ and 45◦. The robot handle included a support for the forearm to partly
compensate for the effect of gravity. A Force/Torque sensor (Gamma 130-10,
ATI Industrial Automation, USA), mounted on the robot handle, measured the
interaction force between subject and robot. We recorded hand kinematics and
the activity of eight muscles – see [4] for details. We designed a motor task which
specifically aimed at model calibration (parameters identification) and test of
the myo-processor. The task involves reaching movements through a sequence of
seven targets, xP1, . . . , xP7 evenly distributed within the whole arm workspace –
see Fig. 1, left – and isometric force steps. During the isometric phase, the robot
generated a position-dependent force (stiffness: 8 kN/m) directed toward each
of the seven targets. Subjects were instructed to push against the force field to
generate quasi-isometric force steps (amplitude: 25 N) in twelve directions. The
target force was displayed as a white circle. The current force generated by the
subject was depicted as a green arrow; see Fig. 1, right. Once the target force
was reached, the target changed its color from white to red, and the subjects
had to hold the force for 3 s, then the target circle disappeared. At this point,
the subjects had to relax for 3 s, until a new force target appeared. The whole
sequence (movement and force generation) was repeated for a total of 5 times.
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Fig. 1. Experimental protocol. Reaching movements through a sequence of seven tar-
gets (top; scale bar: 5 cm) and isometric force steps (25 N) centered around each target
(bottom)

A total of four subjects (3 M + 1 F, age 25 ± 1) participated in this pilot
study, all right-handed and with no previous history of neurological disorders.

2.2 Myoprocessor Model

The EMG activity, U(t), was normalized with respect to minimum and maximum
activation, calculated over the whole trial. We then calculated neural activation,
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n(t) as the output of a second-order low-pass filter: τ2n̈ + 2τ ṅ + n = u with τ =
40 ms. The muscle model has the Lloyd/Thelen structure [6], with a contractile
element (CE), a parallel element (PE) and a tendon element (TE). As simplifying
assumption, we assumed a constant tendon length, i.e. lTE = lTE0 . The joint
torque τm is calculated as

τm = Jm(q)T · Fm (1)

where q is arm configuration (shoulder and elbow angles), Jm(q) (matrix of
muscle moment arms) is the Jacobian of the vector of lengths of the muscle-
tendon complex, lMT (q), and Fm is muscle force. We used a polynomial model
to model the dependence of Jm(q) on arm configuration [4].

2.3 Model Identification

To estimate the muscle parameters from the movement data we used a two-step
procedure.

Muscle Geometric and ‘Static’ Parameters. We first focused on the iso-
metric portion of the experiment. For each muscle we estimated the maximum
activation, Umax as the maximum activation over all force directions and arm
configurations. In isometric conditions, the endpoint force, Fh – i.e. the force
exerted on the robot handle – reflects the muscle-generated torque:

τm = J(q)TFh (2)

where J(q) is the Jacobian of the forward kinematics transformation x = x(q),
where x is hand position. We formulated the estimation procedure as a quadratic
optimization problem:

{
minp

∑7
i=1

∑12
d=1

∑T
t=1

[
τm(t) − Jm(q(t))T · Fm

]2 + μ ‖Fmax‖2
J ij
m(q) · bij > 0 i = 1 . . . 2, j = 1 . . . M

(3)

The additional constraints reflect the requirement that irrespective of the
parameters values, moment arm of a given muscle with respect to a joint can-
not change its sign. We set bij = 1 if muscle j is an extensor for joint i, and
bij = −1 otherwise. The second part of the cost function penalizes solutions
involving muscle co-contraction. The parameter vector p includes moment arm
geometry, peak muscle force and all the static of muscle model parameters, i.e.
p = {Fmax, . . .}.

Muscle Dynamic Parameters. To estimate the muscle dynamic parameters
of the Hill-based Model we focused on the movement data. During movements
the hand force measured by the force sensor, Fh(t) reflects not only muscle torque
τm, but also arm dynamics:

I(q)q̈ + C(q, q̇) = τdyn(q, q̇, q̈) = τm − J(q)T · Fh (4)
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so that τm = J(q)T Ḟh+τdyn. We used a normative model of arm dynamics, whose
parameters were determined from individual subjects’ mass and arm geometry
[7], in conjunction with measured joint rotations, angular velocities and accel-
erations to calculate the inverse dynamics, τdyn at each time instant. We then
minimized the following cost function:

min
p

4∑
r=1

7∑
i=1

Tir∑
t=1

[
J(q(t))T · Fh(t) + τdyn − Jm(q(t))T · Fm

]2
(5)

where r = 1, . . . , 4 are the repetitions and i = 1, . . . , 7 are the movements. The
model parameters here describe, for each muscle, the dependence of CE force on
shortening or lengthening speed, i.e. p = {Ah, Bconc

h , Becc
h }.

3 Results and Conclusions

Figure 2 shows, for the different movements, the measured and reconstructed
joint torques for a typical subject. In most configurations, the model correctly
captures the main features of the muscle biomechanics and control, with a coeffi-
cient of determination (R2) ranging from 0.67 to 0.92 in isometric reconstruction
and from 0.15 to 0.63 during movements. After parameter identification, we then
simulated a EMG-driven force field which reproduced the equivalent endpoint
force generated by one specific muscle (biceps short head). Model-generated
forces turned out to be smooth and consistent with the biceps’ expected direc-
tions of action. Although preliminar, this work is one step forward the implemen-
tation of a general myo-processor which is capable of estimating muscle torques
in a variety of conditions.

Fig. 2. Reconstruction of muscle torques during movement. Estimated (black) and
reconstructed muscle torques (red) - mean ± SE - for a three specific movements, for
a typical subject
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