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Abstract Wearable sensor networks enable human motion capture and activity
recognition in-field. This technology found widespread use in many areas, where
location independent information gathering is useful, e.g., in healthcare and sports,
workflow analysis, human-computer-interaction, robotics, and entertainment. Two
major approaches for deriving information from wearable sensor networks are in
focus here: the model-based estimation of 3D joint kinematics based on networks of
inertial measurement units (IMUs) and the activity recognition based on multimodal
body sensor networks using machine learning algorithms. The characteristics, work-
ing principles, challenges, potentials, and target applications of these two approaches
are described individually and in synergy.

1 Introduction

In the nineties cheap motion sensors together with low power, compact wireless
processing and communication capabilities started becoming available. This led to
the idea of using such sensors for in-field (also called “in the wild”) capture of human
motion in terms of 3D kinematics [Pic17] and recognition of general human activity
[Sch99, Bao04]. Driven by continuous cost, size, power consumption reduction,
and integration into accessories and smart textiles [Zhe14], this technology found
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widespread use in many areas, where “in vivo” information gathering is important.
This ranges from healthcare and sports [Shu14, Won15, Che16, Men16, Ios16] over
industrial ergonomics and workflow analysis [Vig13, Won15, Ble15a] to human-
computer-interaction and robotics, e.g., [Tag14], to name some prominent examples.

On an abstract level two general approaches can be identified for deriving differ-
ent types of information from wearable sensor networks [Lop16]. The first approach
focuses on the estimation of 3D joint kinematics,which in essence amounts to the cap-
ture of the poses (orientations, positions), (angular) velocities, and (angular) acceler-
ations of each relevant body part (body segments or joints). Here, the goal is to enable
personalized biomechanical analyzes outside the lab and at relatively low cost, but
with comparable accuracy to laboratory-based gold standard systems (e.g., [Sut02]).
This approach generally relies on inertial measurement units (IMUs) in combina-
tion with model-based sensor fusion algorithms, e.g., [Mie16]. It uses physical and
biomechanical models and is independent of training data. State of the art methods
typically require one IMU on each body segment that should be captured. In other
words, the price for an exact motion estimation (which is suitable for biomechanical
analyzes) is the need for a potentially large number of sensors, and possibly strict
placement and attachment constraints may need to be observed.

The second approach abstracts from the capture of exact bodymotions and focuses
on using machine learning techniques to build statistical models of relevant activities
based on signals from fewer sensors, in particular sensors placed on fewer (often just
one) body locations. Here, lesser accuracy and level of detail, dependence on training
data, and a “black box” statistical character of the model are the price that has to be
paid for a less obtrusive, easier to deploy system.While IMUs also play an important
role in this approach, they are often complemented by other sensors ranging from
microphones over textile stretch sensors, capacitive body sensors, pressure sensors
and ultrasonic sensors to eye trackers and wearable cameras [Shu14,Won15, Ble15a,
Pap17].

The following sections describe the individual working principles, challenges,
and potential applications of these two approaches, then their existing and potential
synergies on method and application level. Finally, different aspects of how the
technology canbebeneficially used in the context of support systems are summarized.

2 IMU Based 3D Kinematics Estimation

2.1 Working Principles

In the area of IMU based kinematics estimation the motions of a person are approx-
imated through the motion of a pre-known biomechanical model that is driven by
noisy and biased IMU measurements (angular velocities, accelerations, mostly also
magnetic fields) through a stochastic sensor fusion algorithm. This is in contrast to
optical gold standard systems, e.g., [Sut02], where the 3D positions of reflective
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markers precisely placed on anatomical landmarks are measured directly and joint
centers and angles are geometrically derived from these [Lea07].

The biomechanical model typically consists of rigid segments, approximating the
human bones. These are connected through joints that can optionally be constrained
regarding their degrees of freedom (DoF). Besides a personalized biomechanical
model (e.g., in terms of segment lengths), the reconstruction of biomechanically
valuable joint kinematics data requires knowledge about the relative transforma-
tions between IMU and segment coordinate systems, the so-called IMU-to-segment
calibrations. Figure 1 illustrates the above-mentioned aspects.

A sensor fusion algorithm here denotes a combination of a set of stochastic equa-
tions to describe the estimation problem, often called a state-space model, and an
estimation method to solve this problem. The state-space model defines (1) the vari-

Fig. 1 Lower body 3D kinematics estimation. Left: setup with seven IMUs on feet, lower and
upper legs, and pelvis as well as reflective markers according to Leardini et al. [Lea07]. Right:
Biomechanical model of the lower bodywith connected segments (magenta lines), joint centers (red
spheres), four contact points on each foot (green spheres), IMU placement, and involved coordinate
frames. A technical coordinate system is associated to each IMU (I). The segment coordinate
systems (S) are drawn at the proximal ends of the segments. The six degrees of freedom (DoF)
transformations, each in terms of an orientation (quaternion) qSI and a translation IS, between the
IMU coordinate frames and the associated segment coordinate frames are called IMU-to-segment
calibrations. One such calibration is shown at the right thigh. The symbol G denotes the global
coordinate system. The figures have been taken from [Ble17, Mie17]
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Fig. 2 Illustration of an extended Kalman filter (upper row) and a sliding-window optimization
(lower row) based solution to IMU based kinematics estimation of an upper limb. On the right
side, a general state-space formulation with motion and measurement models for the prediction
and correction step of a recursive filter, as well as, a weighted least squares cost function with hard
constraints for batchwize numerical optimization are indicated

ables (states) of interest, i.e., the segment kinematics or joint angles, (2) the evo-
lution of these variables over time (motion models), i.e. difference equations based
on assumptions on how the human body moves, (3) how the measurements relate to
these variables (measurement models), i.e., forward kinematic equations that relate
the motion of the biomechanical model to the IMU measurements. This informa-
tion is often combined with further constraints from the biomechanical model, such
as limited joint DoFs and ranges of motion to restrict the solution space. For IMU
based kinematics estimation the resulting estimation problem is nonlinear. Methods
to solve this problem (based onnoisy data anduncertain assumptions) typically utilize
Bayesian inference, where a nonlinear maximum a posteriori estimate can be found
in multiple ways [Thr05, Gus12], e.g., via an extended Kalman filter (EKF), which
works based on a predictor-corrector scheme, or via sliding-window/moving hori-
zon (nonlinear weighted least squares) optimization, to name two (online-capable)
approaches. Figure 2 illustrates these two approaches.

2.2 Challenges and Solution Approaches

IMU based pose estimation typically suffers from integration drift. This is caused
by integrating the noisy and biased gyroscope measurements to obtain orientation
changes and byusing this for gravity-compensating the accelerometermeasurements,
which are thendouble integrated to obtain position changes [Kok16].Orientation drift
is often compensated for by additionally using magnetometers. These provide valu-
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able orientation information in the case of a homogeneous magnetic field. However,
the assumption concerning the global magnetic field is often violated, particularly in
indoor environments [Lig16]. Therefore, recent research addressed the development
of new sensor fusionmethods, which canworkwithout usingmagnetometer informa-
tion; e.g.,Miezal et al. [Mie16] showed that a combination of a redundant biomechan-
ical model definition with biomechanical and kinematic constraints accounted for
in an optimization-based state estimation method show lower orientation drift and
higher biomechanical model error tolerance compared to the more classical kine-
matic chain and EKF based sensor fusion method. It was also shown that pairwise
kinematic constraints can reduce drift at the joints, e.g., [Wen15, Fas17]. To obtain
long-term stable global heading orientation estimation (i.e., transversal plane rota-
tion), additional sensors (e.g., cameras [Ble09]) or scenario-dependent assumptions
(e.g., a reset pose or walking on a straight line) can be exploited.

Translation drift can be reduced through so-called zero velocity updates at sta-
tionary points on the biomechanical model, a well-known concept from the field
of Pedestrian Dead-Reckoning [Har13]; e.g., in [Mie17] a probabilistic kinematics-
based ground contact estimationmethod using four contact points on an anatomically
motivated foot model (see Fig. 1) was proposed and in [Ble17] it was integrated with
different sensor fusion methods. The results show significant drift reduction for dif-
ferent types of locomotion, such as walking, running, and jumping. To obtain long-
term stable global translation estimation, again, additional sensors, such as cameras
[Ble09], ultrawideband or global positioning system (GPS) [Hol11, Kok15], can
be used. Another area of research addresses methods for obtaining valid and reli-
able IMU-to-segment calibration parameters (see Fig. 1). State-of-the-art procedures
are based on the user performing predefined static poses or functional movements,
which make such a system less easy to use and can favor human-induced errors (cf.
[Bou15]). An emerging field of research are self-calibration methods, which deter-
mine the calibration parameters from sensor measurements without prior knowledge
or assumptions about the performed movements, e.g., [See14] proposes a method
for two linked segments and [Tae16] proposes a promising proof-of-principle for an
online-capable calibration correction and segment kinematics estimation method for
the lower limbs.

2.3 Potential Applications

IMU based 3D kinematics estimation enables the reconstruction of individual move-
ment patterns and biomechanically interpretable data (such as joint ranges of motion,
trajectories of joints or other anatomical landmarks, segment orientations, spatiotem-
poral locomotion parameters) in-field. This ability is useful for different application
areas. Some popular examples together with the parameters of interest are summa-
rized in the following:
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• Clinical movement analysis [Che16, Ble17]. In numerous areas ofmedicine, quan-
titative movement analysis, e.g., gait analysis, has proven effective in supporting
assessments, diagnoses, and therapies. Here, a lightweight and easy-to-use wear-
ablemeasurement system could support functional diagnostics and valid follow-up
and documentation in everyday clinical practice.

• Rehabilitation exercises [Ble13, Lam15]. Exploiting the online processing capa-
bilities of IMU based 3D kinematics estimation, this can also be used to promote
and support self-training by providing direct feedback to patients on themovement
quality. This is often combined with game-based features to increase motivation
(e.g., [Gor17, Ste17]).

• Sports [Won15, Men16]. In-field capturing capabilities are of particular interest
in the area of sports. Here, IMU based 3D kinematics estimation can be used e.g.,
for analyzing and improving athletic performance (cf. [Ree16] for an analysis
of running kinematics during a marathon) or for investigating and treating sport-
specific injuries (e.g., assessing leg axis stability after an anterior cruciate ligament
injury [Che16]).

• Workflow analysis and assistance. In this area, IMU based 3D kinematics esti-
mation can be used for different purposes, e.g., for: (1) designing and raising the
awareness for ergonomically safe workflows (see [Vig13] for an IMU based sys-
tem providing real-time ergonomic feedback on hazardous postures), (2) providing
user monitoring as ingredient for building an intelligent workflow assistance sys-
tem [Ble15a], (3) providing kinematic information to control wearable assistive
devices, e.g., exoskeletons to support overhead work.

Other application areas for IMU based 3D kinematics estimation, which are only
shortly mentioned here, are entertainment (e.g., gesture-based game control, anima-
tion of virtual characters) and robotics (e.g., teleoperation).

3 Human Activity Recognition Based on Multimodal Body
Sensor Networks

3.1 Motivation

Moving away from the notion of having the exact trajectory of each body part as
starting point for activity analysis is justified by three considerations. First, many
activities have a distinct motion signature that can be detected even by a single sensor
at various body locations. As an example, consider step detection. On the one hand
the tracking of the trajectory of at least upper and lower legs is needed for exact step
analysis. On the other hand, the up and downmotion associatedwith each step and the
shock of the foot hitting the ground produces a distinct acceleration signature that can
be easily detected at nearly all body locations (this is how commercial step counters
work). Second, for many activities there are important sources of information beyond
the tracking of body parts kinematics. As an example, consider grasping an object
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and putting it on the table. The graspingmotion of the fingers, including an estimation
of the force, can be derived from the activity of the muscles in the lower arm which
in terms can be sensed using electromyography (EMG), capacitive sensing, or textile
pressure sensing matrices. In addition, putting the object on the table often produces
a characteristic sound which can be detected with a body worn microphone. Given
the above additional sensing modalities a rough estimate of the overall arm motion
that can be derived from a single wrist worn IMU may be sufficient in terms of
motion information. Third, there are many activities where body motions (at least in
terms of limbs trajectories), aremore or less irrelevant. A good example are cognition
dominated activities such as reading, watching a movie, or having a conversation.
In addition to obvious sources of information such as audio and first-person video,
head motion patterns and eye tracking have been shown to be the key sources of
information to distinguish such activities [Ish14].

3.2 Abstract Motion Signatures

As an example of an abstract motion signature the acceleration signal produced by a
sensor in a trouser side pocket when the user is walking up and down stairs is shown
in Fig. 3. A close inspection shows that there is obvious structure in the data which
can be mapped onto features of human steps. We have one part corresponding to the
leg being put forward and one for the leg being pulled from behind. In the walking
downstairs case we have sharp peaks corresponding to the impact of the foot on the
lower step. In the walking up signal soft peaks caused by the lifting and straightening
of the leg can be seen. There are three main approaches for the automatic analysis
of such signals.

First, abstract features such as mean, variance, root mean square (RMS), and
frequency distribution can be computed on a sliding window with a length corre-
sponding to the time scale of the underlying activity. In the case of step analysis this
corresponds to around one second (typical step frequency). The features are then

Fig. 3 Signals from an acceleration sensor worn by a person in a trouser side pocket while taking
two steps up (left) and down (right) the stairs
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fed into statistical classifiers such as Support Vector Machines (SVMs) or neural
networks for the recognition of the underlying activities. For simple tasks such as
modes of locomotion recognition (walking, running, walking up/down stairs etc.)
such a simple approach is often sufficient.

Second, probabilistic time series modeling methods can be applied to better cap-
ture the temporal characteristics of the activity in question. Traditionally, Hidden
MarkovModels [Moj12, Dav16] (HMMs) have been widely used for wearable activ-
ity recognition. Related methods are Conditional Random Fields or various other
variations of Dynamic Bayesian Networks (of which HMMs are just a special case).
In most cases a separate model is trained for each activity. For recognition each of the
trainedmodels are applied to the signal and the one producing the highest probability
is selected (which means the corresponding class is recognized). Such models have
been used for the recognition of manipulative gestures (picking objects up, operat-
ing tools, eating, drinking etc.) from wrist/arm worn motion sensors, which are, in
general, harder to separate than modes of locomotion [Jun08].

Third, template matchingmethods such as Dynamic TimeWarping (DTW) can be
applied to detect characteristic signal parts [Pha10]. To this end an “average” signal
is computed from a large number of examples for each class. For recognition the
class whose template is the best match is selected.

3.3 Combination of Abstract Motion and Other Information

When abstract motion signatures fail to provide sufficient discriminative power addi-
tional sensing modalities can help. For many activities sound is a very rich source of
information. A good example is the use of tools such as a hammer, screwdriver, saw,
drill etc. in a wood workshop task [War06]. The respective motions can be quite sub-
tle and difficult to detect in a continuous stream of data. However, the activities have
very distinct sounds associated with them. In general, frequency transformations on
windows anywhere between 100 ms and 1 s followed by either linear discriminant
analysis (LDA), principle component analysis (PCA) or computation of standard
frequency domain features such as frequency centroid, bandwidth, spectral rolloff
frequency, band energy ratio or cepstral coefficients are used. As shown in Fig. 4
differential sound intensity analysis can also be used to localize the sound’s source
with respect to the user or even different body parts. Examples of other relevant
sensors that have been used in multimodal activity recognition are:

• Muscle activity [Ogr07, Amf06, Che12]monitoring using force sensitive resistors,
textile pressure mats or capacitive sensors. The basic idea is that muscle activity
leads to shape changes on the surface of the corresponding body part. At the same
time looking at muscle activity can provide information that may be difficult to
access using direct motion sensors such as IMUs. Thus, the motion of fingers and
the palm is driven by muscles in the lower arm where sensors can be mounted
much more easily than on the fingers themselves.
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Fig. 4 Augmenting the recognitionofwoodworkshop activities through soundprocessing [War06].
Top: using sound intensity difference between amicrophone on the wrist and on the chest to identify
sounds that originate close to the hand (e.g., from a machine that a hand is operating). Bottom left:
Using linear discriminant analysis (LDA) of the frequency distribution to discriminate between the
sounds of different tools. Bottom right: The overall recognition architecture

• Body sound. Many processes going on inside the human body create sounds that
can be detected with appropriate wearable microphones. Examples range from
muscle and joint motion through breathing, heartbeat and coughing to chewing
and swallowing. Thus, for example an ear worn microphone can reliably detect
chewing including the distinction between different types of food [Amf05].

• Hand tracking using ultrasonic tracking [Ogr12]. The idea is that the location of
the hand with respect to the object on which the user is working is an important
piece of information with respect to the user’s activity. An alternative approach
is to use a lower arm mounted radio-frequency identification (RFID) reader and
RFID tags placed on objects.

• When working with IMUs magnetic fields and ferromagnetic objects in the envi-
ronment are often seen as a problem as they disturb the signal (cf. Sect. 2.2).
However, such disturbances can also be seen as a source of useful information.
Thus, in general, different object appliances andmachines will have a uniquemag-
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netic signature which can be used to recognize when the body worn IMU is near
them [Bah10].

• Air pressure. While absolute air pressure depends on the weather and is not useful
for activity recognition, fine air pressure variations can be used to detect changes
in sensors’ altitude corresponding to activities such as walking up or down stairs
or even sitting down or standing up.

• Furthermore, high-level background information such as location, credit card
transactions, data from autonomous devices such as smart home components,
power consumptions in buildings and similar can be used to enhance activity
recognition.

Since different sensors produce very different types of signals, feeding them into
a single classifier seldomly produces good results. Instead, hierarchical, multi-stage
recognition architectures have been exploitedwhere different sensors are used to clas-
sify different activity components and the final recognition is done with appropriate
sensor fusion (see Fig. 4). Recently, deep learning systems have been demonstrated
to be able to replace such hand-crafted architectures with automatic extractions of
intermediate feature hierarchies [Ord16].

Note, as alreadymentioned inSect. 1, central differences of the described approach
with respect to the above mentioned one (IMU based 3D kinematics estimation)
are both in the level of detail with which information is reconstructed (recognized
activities versus exact body motions) and the type of methods and models used
(black-box statistical models and machine learning algorithms, which result in a
dependence on training data, versus model-based sensor fusion methods, which are
generally applicable and provide biomechanically interpretable data, but typically
have stricter placement and attachment constraints).

4 Existing and Potential Synergies

While the two approaches (IMU based 3D kinematics estimation and general human
activity recognition) have been presented separately in the above sections, there are
indeed many existing and potential synergies both on method and on application
level. Some of these are shortly indicated in the following.

• Sensor reduction. Consider the case where a full-body 3D kinematics reconstruc-
tion is needed, but the mounting of sensors on all body segments (e.g., 17 IMUs in
commercially available systems [Xse17]) is infeasible. Here, large datasets of pre-
cisely captured motion (e.g., using a full IMU setup or a gold standard capturing
system) have been combined with machine learning algorithms for reconstruct-
ing the full-body kinematics with a reduced amount of IMUs; e.g., Tautges et al.
[Tau11] uses four accelerometers and Wouda et al. [Wou16] uses five IMUs. In
[Mar17], visually pleasing results were obtained with six IMUs using an offline
global optimization approach together with kinematic constraints. Obviously, such
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approaches introduce a dataset dependence and come at the cost of reduced accu-
racy, which can, however, be sufficient for specific applications.

• Automatic sensor assignment to body locations. Setting up a system with multiple
IMUs can be error-prone regarding the correct placement of the IMUs on the dif-
ferent body segments. Here, machine learning algorithms [Kun05, Kun07, Kun14,
Wee13, Zim18], as well as, hierarchical construction-based methods [Gra16] have
been applied to obtain an automatic assignment during a predefined movement
(e.g., walking). This has been used as pre-processing step for both IMU based 3D
kinematics estimation and general activity recognition.

• Reduction of soft tissue and clothing artifacts. Soft tissue [Lea05] and clothing
artifacts concern all body-mounted measurement systems. They constitute a major
source of error in both IMU based 3D kinematics estimation and activity recog-
nition [Moh17]. Recent literature provides initial model-based [Kok14] and data-
level [Ols17] approaches to address soft tissue artifacts. Based on studies with
optical markers attached to the skin [Cam12], Olsson and Halvorsen [Ols17] argue
that a linear model is sufficient to compensate for soft tissue artifacts. In [Men15],
soft tissue artifacts are compensated for in IMU based 3D kinematics estimation
of the upper limbs via a linear regression approach that considers the person’s
body and arm total mass, fat mass, lean mass, and fat percentage. The regression
is then used to obtain corrected estimates for planar arm movements. Integrating
sensors into comfortable (i.e., not very tight) clothes (smart textiles) makes it more
feasible to wear multiple sensors over a longer period of time. However, this also
results in more severe artifacts. In [Moh17], a deep learning approach is proposed
for increasing the signal-to-noise ratio for the case of IMUs being integrated into
a training suit.

• Automatic segmentation of repetitive motions (e.g., rehabilitation exercises). In
[Ble15b], amachine learning approach is used to segment themotion data obtained
from IMUbased 3Dkinematics estimation for counting and evaluating single exer-
cise repetitions. There are several advantages of performing the segmentation on
the level of reconstructed 3D kinematic data instead of on raw sensor signals, e.g.,
obtaining biomechanically interpretable features andbeingmore independent from
the sensing hardware (cf. also [Ble15a]). A fusion with complementary sensors,
such as pressure insoles or mobile force sensors, could enhance both biomechan-
ical analysis (moving from kinematics to kinetics) and activity segmentation.

• Locomotion analysis. In locomotion analysis both kinematic (e.g., joint angles
and segment orientations) and spatiotemporal parameters are of importance (cf.
Sect. 2.3).While IMUbased 3Dkinematics estimation can immediately deliver the
former, detection of the critical locomotion events (e.g., initial and terminal con-
tact) is required for deducing the latter from the kinematics data. This is typically
based on machine learning algorithms [Che16]. Note, in well-defined scenarios,
such as walking straight on flat ground, spatiotemporal parameters have also solely
been extracted based onmachine learning algorithms, e.g., from two shoe-mounted
IMUs using deep convolutional neural networks [Han17].

• Long-term context-sensitive biomechanical analysis, e.g., for the purpose of (med-
ical) movement analysis in everyday life (instead of in a specific assessment sit-
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uation) or for ergonomic feedback throughout the workday, could be a further
scenario for a potential synergy. Here, classifications based on few sensors (to
reduce energy consumption) could be used to trigger detailed biomechanical ana-
lyzes with additional sensors, only if relevant activities have been detected (e.g.,
normal walking, standing up/sitting down, or manipulating high weights).

5 Conclusion

Human motion capturing and activity recognition using wearable sensor networks
represent enabling technologies, which can be used to enhance support/assistance
systems in many application areas (e.g., in healthcare and sports, workflow analysis,
human-computer-interaction, robotics, and entertainment, as already exemplified in
the above sections). Knowledge about a user’s motion, activity and possible environ-
ment allows assistance systems and assistive devices to adapt to the user and his or her
context. This can improve usability and usefulness; e.g., think of Augmented Reality
manuals which provide step-by-step guidance for manual workflows, exoskeletons
to support overheadworkwhich regulate the amount of support based on thewearer’s
motions and activities, leg prostheses which adapt their settings to best support the
wearer’s intended activity (e.g., standing up, climbing stairs). Another aspect con-
cerns the improvement of human-machine-interaction; e.g., think of social robotics
where knowledge about the human partners’ motions or activities is essential to
enable natural interactions. Enabling the provision of (online) feedback concerning
a person’s motion or activity is another aspect, which can be beneficial, e.g., think
of motor learning in the context of rehabilitation or sports where feedback is both
effective and motivational. An obvious aspect concerns the ability to provide in-field
monitoring (either for online feedback or documentation), e.g., of daily living activ-
ities, specific movement patterns, but also sleep, nutrition or other body functions.
These are all relevant in the health context, e.g., think of telemedicine, home based
rehabilitation or early diagnosis. Another area is ergonomics, where in-field biome-
chanical analyzes can be helpful to design and raise the awareness of ergonomically
safeworkflows. In all of these real-world examples, respective support/assistance sys-
tems require or can at least benefit frommobile (i.e., location-independent instead of
stationary hardware dependent) information gathering. This can be provided based
on wearable sensor networks.
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