
Chapter 2
Computation in Physical Systems:
A Normative Mapping Account

Paul Schweizer

Abstract The relationship between abstract formal procedures and the activities of
actual physical systems has proved to be surprisingly subtle and controversial, and
there are a number of competing accounts of when a physical system can be properly
said to implement a mathematical formalism and hence perform a computation. I
defend an account wherein computational descriptions of physical systems are high-
level normative interpretations motivated by our pragmatic concerns. Furthermore,
the criteria of utility and success vary according to our diverse purposes and
pragmatic goals. Hence there is no independent or uniform fact to the matter, and
I advance the ‘anti-realist’ conclusion that computational descriptions of physical
systems are not founded upon deep ontological distinctions, but rather upon interest-
relative human conventions. Hence physical computation is a ‘conventional’ rather
than a ‘natural’ kind.

Keywords Computational Theory of Mind · Physical computation · Simple
mapping account · Pancomputationalism · Computational stance

2.1 Introduction

What is computation? There are two basic ways to look at the issue: (1) in theory,
as a type of mathematical ‘process’ – as something that belongs to a purely
abstract and formal domain, like topology, set theory or real analysis; and (2)
in practice, as the activity of certain physical systems − as what computers do,
where a computer is a concrete device that exists in actual space and time. The
connection between these two perspectives is generally conceived to lie in the
implementation relation: a physical system or device performs a computation when

P. Schweizer (�)
Institute for Language, Cognition and Computation, School of Informatics,
University of Edinburgh, Edinburgh, UK
e-mail: paul@inf.ed.ac.uk

© Springer Nature Switzerland AG 2019
D. Berkich, M. V. d’Alfonso (eds.), On the Cognitive, Ethical, and Scientific
Dimensions of Artificial Intelligence, Philosophical Studies Series 134,
https://doi.org/10.1007/978-3-030-01800-9_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01800-9_2&domain=pdf
mailto:paul@inf.ed.ac.uk
https://doi.org/10.1007/978-3-030-01800-9_2

28 P. Schweizer

it ‘implements’ or ‘realizes’ a particular abstract formalism. However, specifying
the criteria under which the implementation relation properly obtains has proved
surprisingly subtle and controversial, and there are a number of opposing views on
the constraints that must be satisfied in order for a physical system to count as a
‘genuine’ implementation.

2.2 A Simple Mapping Account

A very straightforward and elegant account articulated by Putnam (1988) and others
is based on a simple mapping between physical structure and abstract formalism.
Accordingly, a physical system P performs a computation C just in case there is a
mapping from the actual physical states of P to the abstract computational states
of C, such that the transitions between physical states reflect the abstract state
transitions as specified by the mapping. The minimalism, neutrality and generality
of the Simple Mapping Account (henceforth SMA, adopting the terminology of
Piccinini 2015a) make it a natural choice as the in-principle standard for physical
implementation − it takes the Mathematical Theory of Computation (MTC) as its
starting point and adds no substantial assumptions. And because it adds no further
assumptions or restrictions, SMA is in an important sense maximally liberal – there
will exist abstract mappings from a huge class of physical systems and processes to
an equally huge class of computational formalisms.

And there is a clear sense in which this is a significant theoretical virtue.
It is standard practice in computer science to apply computational descriptions
to various physical systems at will, simply on the condition that the mapping
yields an interesting or useful perspective. For example, simple physical devices
such as parking ticket dispensers or traffic light controllers can be modelled in
terms of Finite State Machines, without any reference to the original intentions
of their designers nor to the actual details of their internal causal structure. In
such cases, computational ascriptions constitute an idealized depiction, one that
abstracts away from many actual features of the device to yield a simplified
formal model of selected aspects of the device. This is quite analogous to applying
mathematical formalisms such as differential equations to various physical systems
to characterize aspects of their trajectories through state space. In both cases, the
mapping from physical phenomena to mathematical formalism is highly reliant on
both idealization and approximation, and deliberately neglects many aspects of the
internal causal mechanisms.

In this type of endeavor, which aspects of the system are selected for abstract
modelling is not fundamental to the system per se, but instead remains a question of
human choice relative to our interests and goals. There are any number of different
perspectives and levels for describing the very same system, and none of them is
privileged. A traditional spring-driven analogue clock can be formally modelled at
various microphysical levels – at a subatomic level in terms of quantum mechanical

2 Computation in Physical Systems: A Normative Mapping Account 29

processes and interactions, and at a higher microphysical level in terms of molecular
thermodynamics. In the latter case, it could also be described in more abstract
functional terms as a temperature detector, where the mean molecular kinetic energy
of its metallic components tracks the ambient atmospheric temperature. And it can
be described and modelled at various macrophysical levels as well, such as an
intricate classical mechanism with states evolving in accord with continuous real
valued equations. It could also be described in more idealized conventional terms,
where certain selected continuous features are broken into discrete segments and
given a chronological interpretation. And yet again, this relatively advanced design
level stance could be ignored, and the object could be given a more rudimentary
functional depiction, e.g. where its size and inertial properties make it useful as a
doorstop.

For computation to remain an unfettered, and maximally adaptable mathematical
tool, like set theory or topology, it is requisite that no fixed or preconceived limits
be placed upon its potential range of physical interpretation. And indeed, SMA
exemplifies this neutrality and universality with respect to the possible relations
between abstract formal structure and ‘concrete’ physical phenomena. In this vein,
Putnam (1988) gives a technical proof of the theorem that every open physical
system implements every (inputless) Finite State Machine (FSM). He provides a
generic depiction of a physical system as a bounded, continuous region of space-
time, and the basic idea is that the region is held constant but sliced up in an as many
different ways as one likes in order to define a sequence of disjunctive ‘physical
states’ that can be mapped to any given run of a FSM.

And Searle famously promulgates the universality of SMA with the claim that
virtually any physical system can be interpreted as implementing virtually any
formal procedure. For example, Searle (1990) asserts that the molecules in his wall
could be interpreted as running the WordStar program. The claim is simply put
forward with no further defense, but Copeland (1996) provides a proof of what he
calls ‘Searle’s Theorem’, which he observes is essentially a notational variant of
Newman’s (1928) objection to Russell (although Copeland then goes on to reject
SMA).

This broad-minded position on physical computation arises as the natural inverse
of the standard and uncontroversial view that abstract formal procedures, as such,
are multiply realizable. It’s clearly possible to implement the very same compu-
tational formalism using vastly different arrangements of mass/energy. Following
notation and terminology introduced in Schweizer (2012), let us call this top-down
feature ‘downward multiple realizability’, wherein, for any given formal procedure,
this same abstract formalism can be implemented via an arbitrarily large number
of distinct types of physical systems. And let us denote this type of downward
multiple realizability as ‘↓MR’. The basic perspective advocated by Putnam and
Searle then goes in the reverse direction. Let us call the bottom-up view that
any given physical system can be interpreted as implementing an indeterminately
large number of different computational formalisms ‘upward MR’ and denote it
as ‘↑MR’. The basic import of ↑MR is the non-uniqueness of computational

30 P. Schweizer

ascriptions to particular configurations of mass/energy. In the extreme versions of
↑MR propounded by Putnam and Searle, it is not simply a case of non-uniqueness,
but rather there are apparently no significant constraints at all – it is held to be
possible to interpret virtually any open physical system as realizing virtually every
computational procedure. Let us call this more extreme version ‘universal upward
MR’ and denote it as ‘↑MR*’. ↑MR* is noteworthy in that it provides the theoretical
limit case in terms of abstraction away from physical specifics or limitations, and in
this sense is comparable to the idea that, e.g., any physical object can be an element
in a limitless number of distinct sets.

2.3 The Computational Stance

Many philosophers have found the degree of liberality induced by SMA objection-
able. Historically, these objections stem from the conflict between critics versus
proponents of the Computational Theory of Mind (CTM). Critics of CTM have
used SMA to argue that a computational approach to the mind is empirically
vacuous. These ‘trivialization’ arguments hold that, a la ↑MR*, a mapping will
obtain between virtually any physical system and virtually any formalism, which
in turn is construed as fatally undermining CTM, since whatever computational
procedures are held to account for our cognitive attributes will also be realized by
a myriad of other ‘deviant’ physical systems, such as buckets of water and possibly
even stones. Hence by CTM it would seem to follow that such obviously insentient
systems have the same cognitive attributes that we do, which is then taken as a
reductio ad absurdum disproof of CTM.

In response to ↑MR* and the associated trivialization claims, a host of authors,
including Fodor (1981), Maudlin (1989), Chrisley (1994), Chalmers (1996),
Copeland (1996), Shagrir (2001), Block (2002), Sprevak (2010), Milkowski
(2013), Rescorla (2014), Piccinini (2015b) advocate additional constraints on
the implementation relation, so that it is no longer a ‘simple’ or theoretically
neutral mapping. In effect, these restrictions serve to preclude a vast number
of physical systems from the domain of the mapping function, in an attempt to
separate ‘true’ or ‘genuine’ implementations from the many presumably ‘false’
cases countenanced by SMA. These constraints include: causal, counterfactual,
semantic, and mechanistic/functional criteria.

However, I advance quite a different type of response to the situation. First,
instead of attempting to ‘save’ CTM by constraining the account of physical
implementation, I hold that SMA does not actually constitute a threat to scientif-
ically plausible versions of CTM. No one thinks that SMA ‘threatens’ electrical
engineering or our ability to design and utilize sophisticated computational artifacts,
and in my view, the particular version of CTM that is undermined by SMA is
not one that should be accepted in any case. Second, I argue that none of the
proposed constraints provides a truly general and satisfactory ‘realist’ account of

2 Computation in Physical Systems: A Normative Mapping Account 31

physical implementation – indeed, none succeeds at providing a globally applicable
necessary condition. So I advocate retaining a very liberal SMA view of physical
implementation, that derives from the basic insights of Turing, Kripke, Putnam
and Searle, while rejecting the standard anti-CTM conclusion of the trivialization
arguments.

In line with SMA and ↑MR, I argue that computation is not an ‘intrinsic’ property
of physical systems, in the sense that (a) it is founded on an observer-dependent act
of ascription, upon an entirely conventional correlation between physical structure
and abstract formalism. Furthermore, (b) this conventional mapping is essentially
prescriptive in nature, and hence projects an outside normative standard onto the
activities of a purely physical device. In this manner we adopt what could be termed
a ‘Computational Stance’ towards physical systems. This approach is in some ways
comparable to Dennett’s (1981) Intentional Stance, wherein intentional states such
as beliefs and desires are not posited as objectively real phenomena. Instead, they
are treated as mere ‘calculational devices’ or ‘abstracta’ in Reichenbach’s sense
(like point masses and perfectly frictionless surfaces in classical mechanics), used
to predict observable events but without any additional ontological commitments.

Analogously, I would construe abstract computational states on a similar footing.
In the case of our purpose-built artifacts, these abstract states are idealized formal
notions that we employ to describe such devices from a higher design-level perspec-
tive. Classic digital computation is rule-governed syntax manipulation, and as such
is no more intrinsic to physical configurations than is syntax itself. Furthermore,
discrete states are themselves idealizations, since the physical processes that we
interpret as performing digital computations are continuous (in the standard non-
quantum case). Thus discrete states do not literally correspond to the underlying
causal substrate. We must abstract away from the continuity of actual physical
processes and impose a scheme of conventional demarcations to attain values that
we can then interpret as discrete. Hence this elemental building block of digital
procedures must be projected onto the natural order from the very beginning (as
Turing observed in 1950), and in this respect is a convenient fiction rather than a
literal depiction.

Dennett holds that there is no internal matter of fact distinguishing systems
that ‘really’ possess intentional states from those which do not – the strategy only
requires us to view the system as if it possessed such states. Hence there is nothing
in principle to stop one from depicting a stone as an intentional system if one so
chooses. In a similar vein, I would argue that there is no deep or metaphysically
grounded fact regarding whether or not a physical system ‘really’ implements
a given computational formalism. In the case of artifacts such as my desk top
computer, I can gain a huge increase in the ability to predict its future states if I adopt
a computational stance as opposed to viewing it as a brute physical mechanism.
And this is because it has been designed and constructed for exactly this purpose,
just as an electric toaster has been designed and constructed to perform a particular
function. In contrast, a stone has not been so designed, and the pragmatic value of
viewing it in computational terms will be rather limited.

32 P. Schweizer

2.4 Critique of the Causal Account

I will now critically address some of the proposed constraints on SMA, with
the aim of showing that none provides a principled necessary condition for
physical computation. The causal account supplies one of the most natural and
intuitively compelling constraints on the implementation relation. Chalmers (1996),
for example, contends that it is a necessary condition that the pattern of abstract
state transitions must be the image under the mapping of an appropriate transition
of physical states of the machine, where the relation between succeeding physical
states in this sequence is governed by proper causal regularities. Furthermore, these
regularities are supposed to ‘mirror’ the structure of the abstract formalism. The
imposition of such a constraint will screen off a vast number of Putnam’s sequences
of physical states, with the aim of reducing the domain of the mapping function to
a tiny subset of purportedly ‘legitimate’ cases of implementation.

However, I argue that the causal constraint is too stringent in general and rules
out a significant number of cases which should not be excluded. And although it’s
a more specialized and sophisticated approach, the mechanistic/functional account
shares some key features with the causal, so many of the following criticisms
carry over to this account as well. A basic problem with causal and mechanistic
approaches is that they place emphasis on the wrong level of conceptual analysis.
Rather than addressing the question of whether or not a given configuration of
mass/energy implements a given computational formalism, causal considerations
instead address the lower level and divergent practical question of how, in certain
circumstances and over limited spans of time, this implementational sequence is
mechanically generated.

The inessential status of causal structure can be elucidated with the observation
that the key factor in judging that a given configuration of mass/energy implements
a particular computational formalism is simply because, according to our abstract
blueprint, the correct series of physical state transitions actually occurs. As an
exemplary case of where appeal to causal regularities is completely irrelevant to
determining whether or not a given sequence of states counts as an implementation,
consider Turing’s original (1936) heuristics, where the paradigm of actualized
computation is a human computor, meticulously following a program of instructions
and executing computations by hand with pencil and paper. In this seminal and
classic example of concrete realization, the transitions from one state to the next
are not governed by causal regularities in any straightforward mechanical sense.
When I take a table of instructions specifying a particular abstract TM and perform
a computation on some input by sketching the configuration of the tape and
read/write head at each step in the sequence, the transitions sketched on the paper
are not themselves causally connected: as in the virtual machine states in standard
computers, one sketch in the sequence in no way causes the next to occur.

2 Computation in Physical Systems: A Normative Mapping Account 33

In terms of the ‘causal’ factors underpinning their occurrence, it is primarily
through my understanding of the instructions and intentional choice to execute the
procedure that the next stage in the sequence appears. But my complex behaviour
as a human agent deliberately following instructions is not something that we
currently have any hope of being able to recast in terms of causal regularities at
the purely physical level of description. Furthermore, whatever causal factors at
this level do ultimately underwrite my ability to execute the procedure, they will
be exceedingly convoluted and indirect, and there is no reason to believe that they
will ‘mirror’ (or even remotely resemble) the structure of the formalism. In cases of
intentionally mediated causation, we accept the sequence of configurations on the
paper as an implementation of the program, not because we have the faintest idea of
the underlying causal story, but rather because the sequence itself is correct and can
be seen to follow the procedural rules. In other words, the projected mapping, a la
SMA, has been preserved.

To continue the example, consider the following 3 state Turing machine M given
by the four quadruples:

q11Rq1 q101q2 q21Lq2 q20Rq3

The first element in each quadruple (e.g. q1 in the first case) is the current state, the
second element is the currently scanned symbol (either 1 or 0) the third element is
the overt action (move R or L one square, or print a 1 or a 0), and the last element
is the covert ‘act’ of entering the next state. Now suppose I’m confronted with an
initial tape configuration

01100 . . . (all other squares to the right are blank) .

Armed with the foregoing explication of the quadruple notation, along with a few
basic operational conventions (as described in Boolos and Jeffrey 1989), I can act
as a perfectly good human computor and manifest a physical implementation of
the respective Turing machine computation. With pencil and paper I can perform
the sequence of 6 transitions determined by the input configuration and then halt.
Indeed, I’ve now keyed into the digital file generating this document the very same
sequence that I sketched in my notebook, and have thus produced an alternate
physical realization of the same computation. The machine starts in its lowest
numbered state reading the leftmost non-blank square (where the contents of a
square are indicated by the corresponding digit in the tape string). An underline
indicates the currently scanned square, and the number below this indicates the
current state. The machine halts when it enters a state for which there is no
instruction.

34 P. Schweizer

q11Rq1; q101q2; q21Lq2; q20Rq3 on input 01100…

Start 01100…
1

01100…
1

01100…
1

01110…
2

01110…
2

01110…
2

01110…
2
01110… Halt

3

It’s important to note that the foregoing sequence of configurations is not just
a linguistic description of a possible physical implementation. Instead, the actual
syntactic tokens are themselves concrete realizations extended in physical space-
time. Manipulating syntactic tokens on a piece of paper is a transformation of the
physical environment that itself constitutes a realization of the abstract formalism.
And the same is true of the sequence of symbols generated above – it’s a physical
implementation of the abstract TM computation generated by Microsoft Word.

But what is the causal structure underling the Microsoft implementation? It
doesn’t really matter. The entries in this sequence bear no decipherable causal
relations to each other – they’re simply generated by what is stored in the digital
file that is stored in the computer connected to the monitor. The actual computation
in space-time appearing as I type is a sequence of illuminated patterns projected
onto the screen, not supported by any causal regularities that ‘mirror’ the structure
of the Turing machine program. It’s surely true that every event must have a
cause, but my point is that surface inspection alone reveals that this sequence is
a proper realization of the specified TM program on input 01100 . . . To arrive at the
judgement, we do not need to know anything about the causal mechanisms whereby
this sequence was produced.

And what is the semantic interpretation of the Microsoft implementation? Again,
it doesn’t really matter. The computation itself is comprised of rule governed syn-
tactic transformations. How these transformations are then semantically construed
is superfluous to the execution of the program. If we choose, we can interpret M’s
activity as computing the function f (x) = x + 1 on positive integers expressed in
monadic notation (and which halts on the same square at which it starts), so that
the foregoing sequence of configurations is a computation of f (2) = 2 + 1 = 3.
However, this is clearly not essential to the formal procedure itself.

2 Computation in Physical Systems: A Normative Mapping Account 35

And what would have happened if a different input string had been attempted?
Again, it doesn’t really matter. What matters is that, in accord with the formal
procedure, the foregoing sequence is correct – it satisfies the essential normative
specification as a series of rule governed transformations on the input specified.

2.5 Implementation as Proof in First-Order Logic

Each quadruple in the TM program can be seen as a conditional instruction, so that,
e.g., the first quadruple is the conditional: if in state q1 reading a 1, then print a 0
and enter state q1. Hence it is the logical form of the if-then statement that captures
the significance of the TM instruction, and this is all that must be satisfied by an
implementation. Again, this is a quintessentially normative constraint, and it’s a
basic fact of logic that the truth-functional character of the material conditional does
not imply any causal connection between antecedent and consequent.

This same fundamental point is made even more graphic by noting that Turing
machine computations can be formalized in first-order logic with identity (FOL=).
Each quadruple instruction can be rendered as a universally quantified conditional
indicating the result of executing the instruction. In providing the details of the
formalization, our object language L for FOL = will contain the symbols o and
′ as distinguished vocabulary items, where o is a singular constant that, under the
intended interpretation I, denotes the number 0, and where ′ is a 1-place function
symbol which under I denotes the successor function. With these resources we can
construct canonical numerals intended to denote numbers in the obvious fashion,
e.g., where o′ is the numeral for the number 1, o′′ the numeral for 2, etc.

In order to formalize the very simple machine M depicted above, we can make
do with the assumption that the operant squares are unbounded only to the right.
Furthermore, a blank square is construed as containing the symbol ‘0’, and only
finitely many squares are ever non-blank (i.e. contain the symbol ‘1’). To begin
the formalization, let all the operant squares of the tape be labelled by a natural
number, with the leftmost such square labelled with 0, the next with 1, etc. (the
labelling number is distinct from the symbol occurring in the square). We adopt
the convention that the positive integer input is expressed in monadic notation, with
the leftmost ‘1’ occurring in square number 1. At the start of the computation, all
non-input squares of the tape are blank, and the machine starts in state 1 reading
square 1.

Let t be the ‘time’ variable ranging over steps in the computation. We need
two final FOL vocabulary items: for each state qi of a given machine, pick a
2-place predicate Qi. For each symbol Sj the machine can read/write, pick a 2-
place predicate Sj (in this case there are only two). The domian D of the intended
interpretation I is the set of natural numbers, and tQix is true in I iff at time t M is
in state qi scanning square number x, and tSjx is true in I iff at time t the symbol Sj

is in square number x. With these details in place we can now proceed to formalize
M’s program of instructions.

36 P. Schweizer

The first quadruple q11Rq1 is rendered as the ‘axiom’ A1

∀t∀x∀y
[
(tQ1x ∧ tS1x) → (

t ′Q1x
′ ∧ (

tS0y → t ′S0y ∧ tS1y → t ′S1y
))]

Under the intended interpretation this axiom ‘says that’ if machine M is in state
q1 at time t scanning square number x on which the symbol S1 (= 1) occurs, then
at time t + 1 M is in state q1 scanning square x + 1, and in all squares the same
symbol appears at time t + 1as at time t.

Various authors (including Chalmers 1996 and Copeland 1996) have objected to
Putnam’s proof because it relies on material conditionals, and it is claimed that more
powerful counterfactual machinery is required to account for possibilities other than
the input actually given. However, it is significant to note that the above universally
quantified conditional ranges over all times and all squares in any computation, and
hence exhaustively covers all relevant possibilities.

q101q2 is rendered as A2

∀t∀x∀y [(tQ1x ∧ tS0x)

→ (
t ′Q2x ∧ t ′S1x ∧ (

y �= x → (
tS0y → t ′S0y ∧ tS1y → t ′S1y

)))]

q21Lq2 yields A3

∀t∀x∀y
[(

tQ2x
′ ∧ tS1x

′) → (
t ′Q2x ∧ (

tS0y → t ′S0y ∧ tS1y → t ′S1y
))]

q20Rq3 yields A4

∀t∀x∀y
[
(tQ2x ∧ tS0x) → (

t ′Q3x
′ ∧ (

tS0y → t ′S0y ∧ tS1y → t ′S1y
))]

The set {A1,A2,A3,A4} formalizes M’s program.
Next two arithmetical axioms are needed to govern the behavior of ′ and <. The

first axiom says that each integer is the successor of exactly one integer: A′

∀z∃x
(
z = x′) ∧ ∀z∀x∀y

((
z = x′ ∧ z = y′) → x = y

)
.

The axiom governing < states that: A<

∀x∀y∀z (x < y ∧ y < z → x < z) ∧ ∀x∀y
(
x′ = y → x < y

)

∧ ∀x∀y (x < y → x �= y) (needed for the entailment relation below)

2 Computation in Physical Systems: A Normative Mapping Account 37

Finally, for the initial configuration with ‘01100’ as starting input

(t = 0 in state q1 reading square 1) : A0

oQ1o′ ∧ oS1o′ ∧ oS1o′′ ∧ ∀y
((

y �=o′ ∧ y �=o′′) → oS0y
)

Let � = {A1,A2,A3,A4, A′,A<,A0}
Now � completely formalizes the ‘actions’ of machine M on input ‘01100’, and

each step n in the previously sketched sequence of configurations, constituting the
computation on input ‘01100’, is syntactically encoded by a sentence Tn in FOL=.
Furthermore, the sentence Tn is logically entailed by �.

For t = 1 the sentence T1:

o′Q1o′′ ∧ o′S1o′ ∧ o′S1o′′ ∧ ∀y
((

y �=o′ ∧ y �=o′′) → o′S0y
)

For t = 2 the sentence T2:

o′′Q1o′′′∧ o′′S1o′∧ o′′S1o′′∧ o′′S0o′′′ ∧ ∀y
((

y �=o′ ∧ y �=o′′ ∧ y �=o′′′) → o′′S0y
)

For t = 3 the sentence T3:

o′′′Q2o′′′∧ o′′′S1o′∧ o′′′S1o′′∧ o′′′S1o′′′∧ ∀y
((
y �=o′∧ y �=o′′ ∧ y �=o′′′)→o′′′S0y

)

...

For t = 7 the sentence T7:

o′′′′′′′Q3o′ ∧ o′′′′′′′S1o′ ∧ o′′′′′′′ S1o′′ ∧ o′′′′′′′S1o′′′

∧ ∀y
((

y �=o′ ∧ y �=o′′ ∧ y �=o′′′) → o′′′′′′′S0y
)

M has no instructions for q3 and hence will halt if it enters this state. So the
‘canonical’ Halting Sentence H for this machine is

∃t∃x (tQ3x ∧ tS0x) ∨ ∃t∃x (tQ3x ∧ tS1x)

and it’s provable (by mathematical induction) that � � H, since � � T8 and T8 �
H.

38 P. Schweizer

Logical entailment is an abstract mathematical relation, but a particular proof is
a concrete syntactic phenomenon extended in physical space-time. In this manner,
the foregoing Turing machine computation is equivalent to a proof in FOL=, and
any such proof carried out with pencil and paper, following the rules of your
favorite first-order deductive system, counts as a physical implementation of the
computation.

It seems a very strange and implausible view to maintain that the property of
being a proof in first-order logic is constrained by underlying causal regularities
or mechanistic features. Indeed, when I mark student exams in my Introduction
to Logic course, considerations of underlying causal regularities and biological
mechanisms play no role whatever in determining whether some sequence of
formulas is or is not a proof. The only thing that matters is whether or not the
rules have been correctly followed, and this is a purely normative consideration.
And since a proof of the relevant sort counts as an implementation of a Turing
machine computation, it follows that causal regularities likewise have no bearing on
the status of such implementations. Indeed, part of the reason that underlying causal
considerations are the wrong level of analysis is that there is no sense in which error
or malfunction can occur when viewed from this basic physical perspective. This
thread will be resumed in Sect. 2.7.

The foregoing counterexamples show that causal and mechanistic factors do
not impose a necessary condition on physical implementation. Instead, the only
necessary condition is that the intended mapping, a la SMA, is preserved. In
particular, we don’t need to take into account the mechanics of how this success
has been achieved in order to judge that it has it has occurred. And indeed, this
is directly comparable to other abstract, rule governed activities such as chess. A
game of chess is constituted by a sequence of moves on a geometrically defined
board. Like computations, chess games are substrate neutral and can be realized in
a virtually limitless variety of physical media. Furthermore, in ascertaining whether
a given sequence is a legitimate game, all we need to know is whether or not each
move is in accordance with the abstract structural rules of chess. The question of
how these moves were physically accomplished is entirely irrelevant. Was the white
bishop picked up and moved with the right hand or the left? Held between thumb
and forefinger or thumb and index finger. Or perhaps moved by the power of psycho
kinesis? Obviously the answer makes no difference.

2.6 Counterfactual Constraints

The counterfactual requirement is aimed at another apparently ‘slack’ feature
incorporated by Putnam and the SMA, viz. the mapping from formalism to physical
system is defined for only a single run, and says nothing about what would have
happened if a different input had been given. And it is objected that this is too weak
to satisfy the more rigorous operational notion of being a ‘genuine’ realization.
However, in response to this quite natural proposal, it is worth noting that for a

2 Computation in Physical Systems: A Normative Mapping Account 39

physical system to realize a rich computational formalism with proper input and
output capacities, such as an abstract TM, this will always be a matter of mere
approximation. For example, any given physical device will have a finite upper
bound on the size of input strings it is able to process, its storage capacities will
likewise be severely limited, and so will its actual running time. In principle there are
computations that formal TMs can perform which, even given the fastest and most
powerful physical devices we could imagine, would take longer than the lifespan of
our galaxy to execute. Hence even the fastest and most powerful physical devices
we could envision will still fail to support all the salient counterfactuals.

So it will never be possible to construct a complete physical realization of an
abstract TM – the extent to which a concrete device can execute the full counterfac-
tual range of state transitions of which the abstract machine is capable will always be
a matter of degree. For example, consider the exceedingly simple machine M given
above. It’s a straightforward matter to exhibit particular computations on small
inputs. But there is no finite upper bound on the size of input strings that this abstract
machine can handle. The set of four quadruples yields a mathematically well defined
and effective procedure for adding one to a monadic input string which contains in
excess of, say, 101000000000000000000000000000 1’s. It’s not physically possible for any
artefact that we could build to carry out computations for such astronomically large
inputs. Hence no physical implementation of this simple three state TM can deal
with the full range of possible inputs.

So, in general, the class of counterfactual cases on alternative inputs with which
a physical realization can cope is by necessity limited – not all counterfactual cases
will be supported by any physical device implementing any TM. And this renders
the appeal to counterfactuals inescapably ad hoc. The restrictive strategy demands
that the mapping be able to support counterfactual sequences of transitions on inputs
not actually given − but precisely how many inputs not actually given? One, two,
twenty trillion? For any implementation, there will be a finite upper bound on the
size of input string it can process, and beyond that size there will be infinitely many
potential inputs for which it will not be able to perform the salient computation.

This indicates that there is no clear or principled cut off point demarking
‘genuine’ implementations from ‘false’ ones in terms of counterfactuals. As another,
more common place, illustration of the ad hoc nature of the appeal to counterfac-
tuals, consider a standard pocket calculator that can intake numbers up to, say, 6
digits in decimal notion. Is this a ‘false’ realization of the corresponding algorithm
for addition, since it can’t calculate 106 + 106? It’s an approximate instantiation
which is nonetheless exceedingly useful for everyday sums. It will always be a
matter of degree how many counterfactuals can be supported, where a single run
on one input is the minimal case. Where in principle can the line be drawn after
that? It’s a matter of our purposes and goals as interpreters and epistemic agents,
and is not an objective question about the ‘true’ nature of the physical device as
an implementation. In some cases we might only be interested in the answer for a
single input, a single run.

In addition, Bishop (2009) has importantly extended the SMA strategy to show
that any predetermined finite set of counterfactuals can be accommodated on this

40 P. Schweizer

approach. From this I would conclude that the underlying and more general con-
straint of concern to those who would delimit the range of physical implementation
is neither causal nor counterfactual. Instead, the point to emphasize is that in ↑MR*
exercises of this sort, the mapping is entirely ex post facto. The abstract procedural
‘trajectory’ is already known and used as the basis for interpreting various state
transitions in the open system and hence characterizing it as an implementation.
Hence using this ex post facto tactic, even finite sets of counterfactuals can
be included. And as emphasized above, our actual computational artefacts are
themselves only capable of handling finite sets of counterfactuals.

For a physical device to successfully ‘perform a computation’ is distinct from
‘fully implementing a computational formalism’. Performing a computation is an
occurrent series of events, an actual sequence of physical state transitions yielding
an output value in accord with the normative requirements of the mapping. And this
can be satisfied in the case of computing the value of a single output on a given input.
In contrast, fully implementing a computational formalism is a much more stringent
and hypothetical notion, requiring appeal to counterfactuals, and as above, this will
only ever obtain as a matter of degree. In light of this distinction, it is clearly possible
for a physical device to successfully perform a computation without instantiating a
complete computational formalism, which distinction in turn fatally undermines the
theoretical force of counterfactuals in attempting to determine whether a physical
process has ‘really’ performed a computation.

2.7 Computational Ascriptions Are Normative

As mentioned above, part of the reason why underlying causal considerations are
the wrong level of analysis is that there is no sense in which error or malfunction
can occur at this basic physical plane. Physical systems, as such, are governed by
natural laws, while formal systems are intrinsically rule governed. In the case of
our computational artefacts, a system governed by natural laws must be deliberately
engineered so that it can be interpreted as evolving in accordance with a chosen rule
governed formal system. ‘Obedience’ to natural law is an essentially descriptive
matter and there is no sense in which mistakes or error can be involved – such laws
cannot be broken, and the time evolution of material systems is wholly determined
(in the classical case at least) by the regularities in question. On the other hand,
‘obedience’ to formal rules is an essentially normative matter, and there is a vital
sense in which error and malfunction can occur.

This normativity has nothing to do with ethical or religious considerations,
but simply with conventionally imposed norms. Suppose we are playing a game
of chess. It’s my move and it’s clear that I’m about to be checkmated by your
queen. So I pick up your queen and throw it out the window. You object with the
exclamation ‘You can’t do that!’ And I reply, ‘What do you mean – I just did’.
In this case the physical processes in question are in perfect accord with natural
law, but have discontinued implementing the norms of chess. Similarly, if my desk

2 Computation in Physical Systems: A Normative Mapping Account 41

top machine is dosed with petrol and set on fire while still in operation, the time
evolution of the hardware will remain in perfect descriptive accord with natural
law. However, it will very soon fail to comply with the normative requirements
of implementing Microsoft Word, and serious computational malfunctions will
ensue. Being an implementation of Microsoft Word is a normative and provisional
interpretation of the hardware system, which can be withdrawn when something
goes ‘wrong’ or when the system is disrupted by non-design intended forces −
being an implementation of Microsoft Word is not intrinsic to the physical structure
itself. It is only at a non-intrinsic prescriptive level of description that ‘breakdowns’
can occur, and we characterize these phenomena as malfunctions only because our
extrinsic ascription has been violated (as in Kripke 1982).

Accordingly, I would argue that the status of computation is very different
than the status of abstract mathematical theories in physics. In physics we are
attempting to give a fundamental characterization of ‘reality’, and in principle
at least all existent phenomena supervene upon this fundamental level. There is
no substrate neutrality in this case, and instead we are attempting to arrive at a
theoretical description of the fixed and given natural order. So the mapping from
abstract formalism to physical values is not purely conventional as with SMA –
e.g. the variables are mapped to basic physical magnitudes and not just anything
we please. And in the mathematical descriptions of basic physical theory there is
no normativity involved. If the predictions of a particular theory, say Newtonian
mechanics, turn out to be incorrect in certain cases, we do not say that physical
reality has therefore ‘malfunctioned’. Instead we say that Newtonian mechanics is
at fault and our mathematical description itself is incorrect.

Imagine that we take a device intended to compute some given arithmetical
function. There is always a non-zero probability of error for any algorithm
implemented in the physical world – files become ‘corrupted’, overheating induces
processing ‘faults’, ‘errors’ are propagated. Since error is always possible it follows
that there is no independent fact of the matter regarding which function or algorithm
is ‘really’ being computed. Suppose we say that the device is computing addition.
We confirm this by testing its behaviour on 50 thousand inputs and it gives the
correct outputs. But unknown to us the device possesses a mechanical fault, and
when we keep going it gives some ‘wrong’ answers for larger inputs. So which
function is it really computing − addition with errors, or the actual function in
extension that corresponds to its physical behaviour? I would say there is no
objective fact to the matter. In the arithmetical case there’s an extra level of
attributed abstract computational ‘behaviour’ that is always underdetermined by
its actual performance, and which does not supervene upon underlying physical
microstructure.

According to Piccinini (2015b), one of the prime advantages of the mechanistic
approach is that it can account for cases of miscomputation. In this regard it diverges
from a purely causal story by invoking normative/functional considerations. How-
ever, I would respond that these normative standards are not objective features of
physical systems per se, but rather are purely conventional human interpretations, on
the same par with computational ascriptions themselves. In the case of artifacts, the

42 P. Schweizer

mechanistic account must invoke the intentions of the human designers in order to
characterize error and malfunction. But this does not successfully address Kripke’s
philosophical critique, since the purpose and normativity are still entirely in the eye
of the human beholder.

In the case of biological systems, including brains, the mechanistic account shifts
the burden of the intentional homunculus onto the ‘purposiveness’ of biological
‘design’. According to this type of neo-Darwinian strategy, something has a
particular biological function if this function was selected in the course of the
organism’s evolutionary history. In the present discussion there is not sufficient
space to offer a sustained critique of this move. However, in brief I would argue that
the attribution of purpose is again just a subjective projection on the part of human
theorists, and constitutes a potentially misleading gloss on evolutionary processes.
The term ‘natural selection’ can suggest that some sort of choice mechanism is
involved, which can in turn suggest a form of proto-intentionality on the part of
biology – as if ‘Mother Nature’ literally chooses the most fit to survive. But of
course this is only a metaphorical take on the fact that possessing some aimlessly
mutated trait which just happens to constitute an advantage over ones competitors
will mechanically cause the possessor to propagate more numerously. The actual
mechanisms are all straightforwardly causal, and there is no real need to invoke
anthropomorphic heuristics appealing to purpose or design. The operational effect
of possessing a randomly generated favorable trait will appear as if the trait were
‘selected’, but of course there is no ‘invisible hand’ at work. It may be an arch
conservative stand in contemporary intellectual culture, but I would still concur with
Hume that it’s a basic conceptual fallacy to try and derive an ‘ought’ from an ‘is’.

2.8 Computational Ascriptions Are Interest Relative

I would now like to propose a different perspective on the issue. Rather than
distinguishing ‘true’ from ‘false’ cases of implementation, what the various pro-
posed constraints do instead is to go some distance in distinguishing interesting
and pragmatically useful implementations from the many uninteresting, trivial and
useless cases that abound in the space of theoretical possibility. It’s certainly true
that there is no pragmatic value in most interpretive exercises compatible with ↑MR
and ↑MR*. Ascribing computational activity to physical systems is useful to us only
insofar as it supplies informative outputs.

So, interesting and useful mappings are such that we can directly read-off
something that follows from the implemented formalism, but which we didn’t
already know in advance and explicitly incorporate into the mapping from the start.
That’s the incredible value of our computational artefacts, and it’s one of the only
practical motivations for playing the interpretation game in the first place. Hence a
crucial difference between our computational artefacts and the attributions of formal
structure to naturally occurring open systems, as employed by ↑MR* exercises, is

2 Computation in Physical Systems: A Normative Mapping Account 43

that the mapping in the latter case is entirely ex post facto and thus supplies us
with no epistemic gains. The abstract procedural ‘trajectory’ is already known and
used as the basis for interpreting various state transitions in the open system and
hence characterizing it as an implementation. In sharp contrast, we can use the
intended interpretation of our artefacts both to predict their future behaviour, as
well as discover previously unknown output values automatically.

And this is obviously why an engineered correlation obtains between fine-
grained causal structure and abstract formal structure in the case of our artefacts –
we want them to be informative and reliable! We also want them to be highly
versatile, and this is where counterfactual considerations can come to the fore in
practice: over time we do runs on a huge number of different inputs, and in principle
the future outputs follow as direct consequences of the intended interpretation. And
this is where semantic considerations can enter the picture – the purely syntactic
formalisms are designed to preserve truth in our intended interpretation, so that from
the automated syntactic transformations we can apply our interest-relative semantics
and hence discover new truths about our chosen semantic domain. In general, a
particular physical device is useful to us as a computer only when its salient states
are distinguishable by us with our measuring devices, and when we can put the
system into a selected initial state to compute the output of our chosen algorithm
on a wide range of input values. And these features will be relative to our current
technological capabilities.

These pragmatic considerations supply clear and well motivated criteria for
differentiating useful from useless cases of physical implementation. And I would
advocate this type of pragmatic taxonomy in lieu of attempts to give overarching
theoretical constraints purporting to distinguish literally ‘true’ from ‘false’ cases.
The pragmatic factors do not supply global and uniform necessary conditions (and
the ever present non-zero probability of error indicates than none is sufficient,
either). Different desiderata will have shifting roles and prominence in different
contexts of application, and will be satisfied to varying degrees dependent on the
goals and purposes in question, as well as the state of our technological progress.
Computation is a highly versatile tool, and there is no single and objective class
of phenomena that can be isolated as comprising the ‘real’ instances of physical
implementation. Instead, SMA specifies the maximal and context neutral space of
possibilities, and varying pragmatic considerations can then be applied to carve out
different subsets within this space which prove useful or interesting according to our
divergent human purposes. In short, physical computation is not a natural kind – it
is founded upon human convention, interpretation and choice.

2.9 Some Standard Objections

I will end the paper by briefly addressing some objections that often arise in response
to this position.

44 P. Schweizer

2.9.1 The Spectre of Pancomputationalism

In his excellent and illuminating Stanford Encyclopedia article, Piccinini (2015a)
observes that one of the motivations for rejecting SMA is that it induces ‘unlimited
pancomputationalism’, which is presumably something we should wish to avoid.
But it’s difficult to see why this type of pancomputationalism should constitute
a theoretical menace, since it goes hand in hand with anti-realism about physical
computation, and simply implies that any number of abstract mappings exist in a
purely mathematical sense. Analogously, there are any number of abstract mappings
that exist from the set of positive integers to collections of physical objects and
particles. For example, the set of O2 molecules in some arbitrarily delimited region
of the atmosphere is enumerated via some function on the positive integers. And
this region can be defined as a proper subset of some other region and the same
molecules are enumerated by any number of different functions. Hence the same
molecules can be members of arbitrarily many different sets and images under many
different mappings. Is this a threat? For the most part we don’t care about all these
possible sets and enumerations. But in some cases we do, as in the set of human
beings living in some country, when it comes time to do a census.

2.9.2 The Threat to CTM

I endorse a purely formal and non-intrinsic account of computation, and conse-
quently argue that the mathematical theory of computation alone is not sufficient
to provide a full explanatory theory of particular subject disciplines, such as a
computational theory of the mind. This is a specialized scientific application that
requires many additional resources appropriate to the phenomena and subject area
under investigation. Computation is an extremely powerful and versatile formal tool,
that can be applied to a virtually limitless range of phenomena. However com-
putation per se has no mystical powers, and merely implementing the ‘right’ sort
of computational formalism cannot magically transform some given arrangement
of mass/energy into a mind. On my account, much more is required than merely
implementing a formal procedure. In particular, the system must be able to do a
host of complex and sophisticated things within a multifaceted environment. See
Schweizer (2016) for further discussion.

2.9.3 Not All Levels of Description Are ‘Intrinsic’
from the Perspective of Physics

There are many levels of description that are not ‘intrinsic’ from the perspective
of fundamental physics, but are nonetheless perfectly legitimate and scientifically

2 Computation in Physical Systems: A Normative Mapping Account 45

respectable. For example, various arrangements of mass/energy configured in such
a way as to perform some clear biological function, such as ‘being a kidney’. In
response, I would argue that the attribution of computational structure is crucially
disanalogous to cases such as this, which still trade on characteristics which are
themselves essentially physical in nature. In order to be a kidney, a particular
assemblage of material stuff must do things with other instances of material stuff
that are characterized in terms of, e.g. the chemical composition of blood, waste
products, filtering, etc. There is an objective, observer independent fact of the matter
regarding whether or not a given configuration of matter performs the chemically
specified functions required of kidneys, because biological functions are defined
in terms of cause and effect relations in the physical world, and in stark contrast,
computational realizations are not.

There is a pronounced difference here between actual versus abstract character-
istics which makes attributions of computational structure observer dependent in a
manner not shared by biological functions. The inputs to a computational system are
essentially ‘symbolic’ rather than physical, where the material implementations of
the symbolic or formal inputs must be interpreted as such by an outside agent, and
where this symbolic interpretation is entirely conventional in nature. This marks a
prominent discontinuity in levels of description.

2.9.4 There Are Objective Constraints If Given an Appropriate
Physical Description

Not just anything goes as SMA seems to suggest – there are objective constraints at
appropriately specified levels of physical description, e.g. circuit theory (see Scheutz
1999). And I would agree that, relative to particular design parameters imposed
by human engineers, in conjunction with known principles of materials science,
there can be very tightly constrained abstract solutions. SMA does not imply that
such mappings are ‘arbitrary’, and surely the impressive success and reliability
of our artifacts is not a subjective phenomenon. As with Dennett’s Intentional
Stance, predictive success is an objective criterion. However, to the extent that
success is achieved, it ultimately rests upon skilled manipulation of the physical
substrate. And the ever present possibility of error and malfunction indicates that an
abstract computational description of this (continuous) substrate is still a normative
idealization and not an ‘intrinsic’ characterization. There is nothing physically or
metaphysically privileged about circuit theory as a level of description, and it does
not preclude alternative characterizations and different computational mappings
ascribed to the very same physical system. Hence such ‘favored’ mappings have
no impact on the basic SMA perspective.

46 P. Schweizer

2.9.5 SMA Cannot Differentiate a Stone from a Sophisticated
Computational Artifact

And surely there is a difference, objectors will contend, and hence SMA does not
provide a satisfactory account of computation in physical systems. To this complaint
I would reply that the crucial difference is in our ability to manipulate the artifact
in order to acquire new information. Artifacts are specifically designed and built to
satisfy non ex post facto mappings – this is why they’re so useful and why we pay
good money for them. But this feature does not ground an ontological distinction
between ‘real’ versus ‘spurious’ implementations. In other cases we appeal to ex
post facto methods, as in error checking the very same artifacts. And in the case
of ‘natural computation’, if we have a theory concerning what computation a given
biological system is performing, then we can predict future physical states of the
system, and also test our theory, by carrying out the computation first and then
looking to see if it maps to the empirical facts.

References

Bishop, J.M. 2009. Why computers can’t feel pain. Minds and Machines 19: 507–516.
Block, N. 2002. Searle’s arguments against cognitive science. In Views into the Chinese room, ed.

J. Preston and J.M. Bishop. Oxford: Oxford University Press.
Boolos, G., and R.C. Jeffrey. 1989. Computability and logic. 3rd ed. Cambridge: Cambridge

University Press.
Chalmers, D.J. 1996. Does a rock implement every finite-state automaton? Synthese 108: 309–333.
Chrisley, R.L. 1994. Why everything doesn’t realize every computation. Minds and Machines 4:

403–420.
Copeland, J. 1996. What is computation? Synthese 108: 335–359.
Dennett, D. 1981. True believers: the intentional strategy and why it works. In A. F. Heath (Ed.)

Scientific Explanation: Papers Based on Herbert Spencer Lectures given in the University of
Oxford, Oxford: University Press.

Fodor, J. 1981. The mind-body problem. Scientific American 24: 114.
Kripke, S. 1982. Wittgenstein on rules and private language. Cambridge: Harvard University Press.
Maudlin, T. 1989. Computation and consciousness. Journal of Philosophy 86 (8): 407–432.
Milkowski, M. 2013. Explaining the computational mind. Cambridge: MIT Press.
Newman, M. 1928. Mr. Russell’s “Causal Theory of Perception”. Mind 37: 137–148.
Piccinini, G. 2015a. Computation in physical systems. In The Stanford encyclopedia of

philosophy, ed. E.N. Zalta. http://plato.stanford.edu/archives/fall2015/entries/computation-
physicalsystems/.

———. 2015b. Physical computation. Oxford: Oxford University Press.
Putnam, H. 1988. Representation and reality. Cambridge: MIT Press.
Rescorla, M. 2014. A theory of computational implementation. Synthese 191: 1277–1307.
Scheutz, M. 1999. When physical systems realize functions. Minds and Machines 9 (2): 161–196.
Schweizer, P. 2012. Physical instantiation and the propositional attitudes. Cognitive Computation

4: 226–235.
———. 2016. In what sense does the brain compute? In Computing and philosophy, Synthese

library 375, ed. V.C. Müller, 63–79. Heidelberg: Springer.

http://plato.stanford.edu/archives/fall2015/entries/computation-physicalsystems/

2 Computation in Physical Systems: A Normative Mapping Account 47

Searle, J. 1990. Is the brain a digital computer? Proceedings of the American Philosophical
Association 64: 21–37.

Shagrir, O. 2001. Content, computation and externalism. Mind 110 (438): 369–400.
Sprevak, M. 2010. Computation, individuation, and the received view on representations. Studies

in History and Philosophy of Science 41: 260–270.
Turing, A. 1936. On computable numbers, with an application to the entscheidungsproblem.

Proceeding of the London Mathematical Society, (series 2) 42: 230–265.
———. 1950. Computing machinery and intelligence. Mind 59: 433–460.

	2 Computation in Physical Systems: A Normative Mapping Account
	2.1 Introduction
	2.2 A Simple Mapping Account
	2.3 The Computational Stance
	2.4 Critique of the Causal Account
	2.5 Implementation as Proof in First-Order Logic
	2.6 Counterfactual Constraints
	2.7 Computational Ascriptions Are Normative
	2.8 Computational Ascriptions Are Interest Relative
	2.9 Some Standard Objections
	2.9.1 The Spectre of Pancomputationalism
	2.9.2 The Threat to CTM
	2.9.3 Not All Levels of Description Are `Intrinsic' from the Perspective of Physics
	2.9.4 There Are Objective Constraints If Given an Appropriate Physical Description
	2.9.5 SMA Cannot Differentiate a Stone from a Sophisticated Computational Artifact

	References

