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Abstract. Fully automatic tracking of articulated motion in real-time
with monocular RGB camera is a challenging problem which is essential
for many virtual reality (VR) applications. In this paper, we propose a
novel temporally stable solution for this problem which can be directly
employed in VR practical applications. Our algorithm automatically esti-
mates the number of persons in the scene, generates their corresponding
person specific 3D skeletons, and estimates their initial 3D locations. For
every frame, it fits each 3D skeleton to the corresponding 2D body-parts
locations which are estimated with one of the existing CNN-based 2D
pose estimation methods. The 3D pose of every person is estimated by
maximizing an objective function that combines a skeleton fitting term
with motion and pose priors. Our algorithm detects persons who enter
or leave the scene, and dynamically generates or deletes their 3D skele-
tons. This makes our algorithm the first monocular RGB method usable
in real-time applications such as dynamically including multiple persons
in a virtual environment using the camera of the VR-headset. We show
that our algorithm is applicable for tracking multiple persons in outdoor
scenes, community videos and low quality videos captured with mobile-
phone cameras.
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1 Introduction

Human motion capture has applications in many fields such as VR, augmented
reality (AR), 3D character animation (i.e. for movies and games), human-
computer interaction, and sports. The last decade have witnessed significant
progress in marker-less human motion capture approaches which work directly
on real-world video streams [38,43,48]. Although, many marker-less algorithms
have achieved high accuracy under challenging conditions, most commercial VR
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systems still use marker-based algorithms that require to place markers on the
human body. One of the main reasons is that marker-less algorithms require
several manual initialization steps (e.g. 3D human model generation and initial
pose estimation) which are cumbersome, require a lot of experience and time
consuming.

Monocular RGB cameras are very common in many VR-headsets, laptops,
and smartphones. Thus, developing a fully automatic real-time multi-person
marker-less human motion capture algorithm that works with such monocular
cameras is essential for many VR applications. An example of these applications
is to include and animate multiple 3D characters in a VR environment using
the camera of a VR-headset. Furthermore, this algorithm allows to interface
PCs, laptops, or smartphones with their cameras (e.g. play games). However,
developing such algorithm is challenging and requires (1) automatic estimation
of number of persons in the scene (2) automatic generation of their 3D skeletons
(3) automatic estimation of their initial 3D location (4) dynamical generation or
deletion of 3D skeletons for persons entering or leaving the scene; respectively
(5) real-time multi-person fitting energy function.

Fig. 1. Our algorithm recovers 3D skeletons poses in real-time. It captures complex
motions of 8 persons in a community video (left), 3 persons in a video from the Mar-
coni [19] datasets (middle) and 3 persons in a video captured with our mobile-phone
RGB camera (right). Top row shows overlaid 2D skeletons and bottom row shows 3D
visualizations of the captured skeletons.

Most of marker-less approaches estimate the articulated joint angles of mov-
ing subjects from multi-view video recordings [19–21,50]. These algorithms
require manual estimation of persons number, their 3D models, and their ini-
tial poses. Moreover, they fail to reliably track articulated motion in general
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scenes with single RGB camera. While many recent algorithms have managed
to estimate accurate human motion from monocular depth cameras [5,16,56],
only few algorithms work accurately with monocular RGB cameras [36,37,57].
Although some of these algorithms achieve better accuracy than our algorithm,
they do not succeed under our challenging multi-person tracking conditions. For
instance, [37] does not succeed with multi-person and assumes an initial human
pose to be given. Moreover, it’s skeleton initialization requires given 2D body
parts detections from several frames and height of the person. In addition to these
limitations, other monocular algorithms such as [36,57] are offline and exhibits
jitter over time due to per frame estimation. To the best of our knowledge, our
algorithm is the first that performs automatic personalized skeleton generation
and initial pose localization of varying number of persons in real-time. Moreover,
it reconstructs the motion of multi-person in real-time using a single off-the-shelf
RGB camera.

Our algorithm allows to overcome the limitations of RGB-D cameras which
fail in general outdoor scenes due to sunlight interference. These cameras have
lower resolution, limited range, higher power consumption, and are not widely
available as RGB cameras. Our algorithm is able to track multiple persons mov-
ing in front of cluttered and non-static backgrounds with moving low quality
camera which suffers from high distortion. It also succeeds in case of strong
illumination changes. It works with any mobile-phone cameras, webcams, and
community videos (e.g. YouTube videos). Our novel algorithmic contributions
that enable this, are:

1. Real-time, simple and automatic multi-person human 3D skeletons genera-
tion; see Sect. 4.1.

2. Automatic initial 3D location estimation of each person in the scene; see
Sect. 4.2.

3. Automatic detection of the change in number of persons and generating or
deleting the corresponding 3D skeletons on the fly while tracking; see Sect. 4.3.

4. Novel algorithm which tracks full articulated joint angles of multiple persons
at high accuracy and temporal stability in real-time, given 2D body-part
locations; see Sect. 4.3.

The estimated multi-person motions can be used in many fields such as VR,
AR, motion-driven 3D game character control, and human computer interaction.
Furthermore, our algorithm can be optimized for smartphones and driving assis-
tance applications. In our experiments, we show that our algorithm can capture
even complex and fast body motion of multi-person in real-time; see Fig. 1. We
managed to capture complex motions of multiple persons in outdoor scenes with
a moving mobile phone camera, a spherical camera in a car, and a webcam in
an office.

2 Related Work

Video-based human motion capture has seen great advances in recent years.
We refer the reader to the surveys [38,43,48] for an overview. We focus the
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discussion in this section on two categories: methods based on multi-view input
and methods that rely on a monocular RGB camera.

Multi-view: Most multi-view marker-less motion capture setups employ a
human 3D model whose pose parameters are computed by optimizing an over-
lap measure between the projected 3D model and the input images. They attain
high accuracy by tracking the human model over the image sequence with offline
computation [9,10,49]. In [23], the pose is estimated from silhouette and color
information. The approaches presented in [7,29,32] use training data to learn a
motion model or a mapping from image features to the 3D pose. Tracking without
silhouette information is also possible by combining model-guided segmentation
and pose estimation. Earlier methods, such as [42], attempted to capture human
skeletal motion from stereo footage, but did not achieve the same accuracy as
methods using dense camera setups.

Amin et al. [3] propose a multi-view pictorial structures model that incor-
porates evidence across multiple viewpoints to allow robust 3D pose estimation.
Belagiannis et al. [6] extend [3] for 3D pose estimation of multiple humans. How-
ever, a common problem with these approaches is jitter due to missing temporal
information at each time step. The approach by [50] introduced an analytic
formulation for calculating the model-to-image similarity based on a Sums-of-
Gaussians model. Other works extend multi-view motion capture approaches
towards tracking with moving or unsynchronized cameras [20,21,24,47]. These
methods need separate initialization (e.g. using [8,45] at the beginning of each
sequence and after loss of track in local minima of their non-convex fitting
functions). Robustness can be increased with a combination of generative and
discriminative estimation [19,44]. An accurate manually initialized human 3D
model is essential for these methods. We propose an approach for automatic mul-
tiple skeletons generation which avoids using human model projection to speed
up estimation. This allows to utilize generative tracking components and ensure
temporal stability.

Monocular RGB: Depth-based motion capture methods [16,56] have achieved
robust real-time results. However, in this section, we focus on RGB-based meth-
ods. These methods can be divided into generative and discriminative methods.
The generative motion capture problem is fundamentally under-constrained in
case of monocular input. Thus, it is only successful for motion capture from
short clips and when combined with strong motion priors [53]. Manual anno-
tation and correction of frames is suitable for some applications such as actor
reshaping in movies [27] and garment replacement in videos [46]. These gener-
ative algorithms preclude live applications because of manual interaction and
expensive optimization.

Recently, many monocular discriminative human pose estimation methods
have been introduced. Some of them discriminatively learned mapping from the
image directly to human joint locations [1,26,28]. CNN based 2D and 3D human
pose estimation approaches achieve state-of-the-art accuracy. For instance,
[17,33,35,51] estimate human 3D pose directly from monocular image or video.
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Chen et al. [15] automatically synthesize training images with ground truth pose
annotations and train CNNs with these synthetic images for 3D pose estimation.

Other approaches estimate 3D human pose from 2D body parts locations
in a monocular image [2,22,30,31,54]. Many of these works have been realized
by assuming manually labeled 2D body part locations. Recently, many CNN-
based 2D pose estimation methods were proposed [11,13,14,25,52,55]. All these
methods provide 2D body parts locations which can be used for 3D human pose
estimation. For example, Cao et al. [13] managed to efficiently detect the 2D
poses of multiple persons in an image using a nonparametric representation,
which allows to learn associations between body parts of each individual in
the image. Bogo et al. [8] used 2D body parts locations detected by [41] to
automatically estimate the 3D pose and shape of the human body from a single
unconstrained image. However, this method is not real-time and works for single
person only.

Most closely related to the present paper are approaches for real-time recov-
ery of 3D human pose with monocular RGB camera. Only a few methods target
this problem for temporally stable results which is directly usable in practical
applications. The top performing single RGB 3D pose estimation methods are
based on CNNs [34,36,37,40,57]. Mehta et al. [36] use a 100-layer CNN archi-
tecture to predict 2D and 3D joint positions simultaneously. However, [36] is
unsuitable for real-time execution due to the additional preprocessing steps such
as bounding box extraction. Mehta et al. [37] propose a 3D pose estimation
approach that uses CNN to detect 2D and 3D pose jointly. Then, an optimiza-
tion based skeletal fitting method is applied to estimate 3D poses in real-time.
All these methods, however, work for single person only. On the other hand,
we propose a multi-person 3D pose estimation approach which automatically
estimates person-specific 3D skeleton and initial 3D location for each person in

Fig. 2. Overview. We generate multiple person-specific 3D skeletons based on anthro-
pometric data, and estimate the initial location of each person in an initialization phase
(bottom, Sect. 4.1). In the tracking phase, we estimate 2D body-parts positions from
the input video streams. These 2D positions are used to estimate global 3D poses by
skeleton fitting (top, Sect. 4.3). The Dynamic Scene Update step generates or deletes
3D skeletons for persons who enter or leave the scene.



Fully Automatic Multi-person Human Motion Capture for VR Applications 33

the scene. Thereafter, the pose of every person is estimated by means of opti-
mizing an energy function for multi-person skeleton fitting.

3 Overview

Input to our approach can be either the live stream of a monocular RGB camera
(e.g. webcam or VR-headset), YouTube video, or video captured with a mobile-
phone camera. Any of these inputs yield a single frame Ii at discrete points
in time i = {1, 2, 3, ...}. For frame Ii, the final output is X = {X1, ...,Xprsn}
where prsn is the number of persons in the scene . Xj is the 3D skeletal pose
parameters of the person with index j. This output is temporally consistent
and in global 3D space which makes it perfect for applications such as virtual
reality and character control. Our algorithm works with any camera (i.e. moving,
static, webcam, or spherical camera with strong distortion) and general scenes
(i.e. indoors or outdoors with strong illumination changes).

An outline of the processing pipeline is given in Fig. 2. Many human motion
capture algorithms such as [19,20,50] assume given person-specific 3D skeletons
and initial pose parameters Xinit. This number of skeletons is fixed over the
whole sequence. In contrast to these algorithms, we automatically estimate the
number of persons in the scene. Then, we automatically generate person-specific
3D skeletons and estimate the initial location of each person in the scene. All
these automatic steps are done in real-time at the beginning of each sequence
which we refer to as initialization phase. The basic idea of our automatic
skeleton generation approach is to adapt a default human skeleton to the length
of each bone of each person. To this end, anthropometric data tables are used
to define the length of each bone as a function of the height of each person; see
Sect. 4.2 for details.

Given the person-specific 3D skeletons, it is still not possible to start the
tracking process without defining the initial pose of each person. Existing human
motion capture algorithms either estimate the initial pose manually or use com-
putationally expensive methods such as [8]. In this paper, we automatically
estimate the 3D root location of each person in the scene which resolves this
limitation; see Sect. 4.2 for details.

In the tracking phase, we start with a CNN-based approach [11,13] to esti-
mate the 2D locations of the body-parts for each person in the scene. The output
of this step is the matrix J = [J1, ..., Jprsn] where Ji contains body-parts loca-
tions of person i. However, the order and number of the persons in J may vary
from frame to frame. Therefore, we use Eq. 4 to find the 2D body-parts positions
Ji corresponding to specific 3D skeleton. Thereafter, we dynamically generate
3D skeletons for persons who enter the scene and delete the skeletons of those
who left; see Sect. 4.3 for details.

The pose parameters X = {X1, ...,Xprsn} are optimized given the 2D body-
parts positions with the following energy function at each time frame Ii:

E(X,J) = EFIT (X,J) − wLEL(X) − wAEA(X) (1)
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where EFIT (X,J) is the skeletons fitting term (Sect. 4.3). EL(X) enforces joint
limits, and EA(X) is a smoothness term penalizing strong accelerations; see
[50] for details. The weights wl = 0.1 and wa = 0.05 were found experimentally
and are kept constant in all experiments. This energy function is smooth and
analytically differentiable. Thus, it can be optimized efficiently using standard
gradient ascent initialized with the initial pose estimated in Sect. 4.2.

4 Real-Time Multi-person 3D Human Pose Estimation

In this section, we describe in detail the components of our fully automatic
algorithm which captures articulated skeleton motion of several subjects in gen-
eral scenes from monocular RGB input. The initialization phase is discussed in
Sects. 4.1 and 4.2, while the tracking phase is explained in Sect. 4.3.

4.1 Automatic 3D Skeletons Generation

Human motion capture algorithms require human 3D model with properly per-
sonalized skeleton and/or body shape and appearance to successfully track a
single person. Many algorithms consider model personalization as a different
problem and use manual or semi-automatic model generation approach, which
greatly reduces their applicability. In this section, we propose a novel automatic
approach that generates a skeleton specific to each person.

In [45], an automatic algorithm that jointly creates skeleton and body model
of a single person is presented. However, this algorithm requires many RGB cam-
eras to estimate the body model. In [19,20], the skeleton and the body model of
each person is generated in a semi-automatic way from a set of calibration poses
prior to motion recording. Nonetheless, in case of no control over the footage
and person motion, their method fails. Therefore, developing a simple, efficient,
and automatic human 3D skeleton estimation approach is very important as
it enables our solution to be adopted in more practical applications where the
manual model generation is not feasible. We propose the first skeleton generation
approach to automatically estimate skeletons for many persons in real-time.

In our approach, we generate a default skeleton for every person. The ini-
tial number of persons is automatically estimated given the 2D detections of
the first frame. Then, we adapt the bone length of each skeleton to match the
corresponding person. Our default skeleton consists of 25 bones and 26 joints.
Each joint is defined by an offset to its parent joint and a rotation represented in
axis-angle form. In total, the model consists of 73 parameters (70 rotational and
3 translational); see [19] for details. The anthropomorphic data tables [12] allow
to define the length of each bone in the skeleton as a function of the height of the
person. Figure 3 shows part of the anthropomorphic data table which defines the
relation between the length of the upper arm bone and the height of the person.
With these tables, the skeleton generation task is simplified to the estimation
of a single parameter (i.e. the height of the person). Inspired by [17,39], the
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height of each person can be estimated from monocular RGB camera by back-
projecting 2D features of an object into the 3D scene space. The output of this
step is a person-specific human 3D skeleton for every person in the scene.

4.2 Multi-person Skeleton Localization

Given the personalized skeleton, the motion capture process can not start with-
out initial 3D pose of each person. This essential initialization is, unfortunately,
neglected by many methods and solved with manual initialization step, or with
a different computationally expensive approach such as [8]. As our algorithm is
stable even with inaccurate initial poses, we simplify the initial pose estimation
problem to the estimation of the initial root position (i.e. 3D point between
hips) of each person. To this end, we use the heights H3D

i of each person i, their
2D body-part detections in the first frame Ji , and the monocular camera focal
length f . The individual heights H3D

i can be estimated as in Sect. 4.1, while the
2D body-parts detections Ji are estimated using the CNN-based algorithm; see
Sect. 4.3 for details. As the upper body is usually more visible than the lower
body, we use the height of the torso H3D

trs,i ≈ 0.3 ∗ H3D
i for estimating the root

depth. The 2D height of the torso H2D
trs,i is the distance between the neck jnck,j

and the root jrt,i = (jlhip,i + jrhip,i)/2. With this, the depth of the root is
calculated by:

z3Di =
H3D

trs,i ∗ f

H2D
trs,i

. (2)

Fig. 3. Part of the anthropometric data tables which is used for person-specific 3D
human skeletons generation: height data table (left), the corresponding table of upper
arm length [12] (right).
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Then, the 3D root position is calculated by:

{x3D
i , y3D

i , z3Di } = Φ−1(jxrt,i ∗ z3Di , jyrt,i ∗ z3Di , z3Di ) (3)

where Φ is the projection operator. Thereafter, each skeleton is automatically
moved such that its root position matches the root location of the corresponding
person in 3D space.

4.3 Skeleton Fitting for Dynamic Number of Persons

In the initialization phase, personalized skeletons and their initial 3D locations
are estimated in real-time once at the beginning of the tracking process. On the
other hand, the tracking phase is repeated for every frame. The first step of the
tracking phase is the estimation of the 2D body-parts positions. Recently, many
CNN based methods managed to accurately estimate these 2D body-parts posi-
tions [11,13,25]. Although, any of these methods can be used in our framework,
we used both [13] and [11] in our experiments. As [13] achieves state-of-the art
accuracy with multi-person, the majority of our results are based on this algo-
rithm. Therefore, in this section, we assume, without loss of generality, that 2D
body-part positions are estimated with [13].

The 2D body-part detection algorithm does not have any temporal relation
between consecutive frames. Thus, the order of the resulting 2D body-part detec-
tions in J = [J1, ..., Jprsn] for one frame can be different the previous frame. This
means that the body-parts positions Jm may correspond to a different person
in each frame. For this reason, the next step in our tracking phase is to asso-
ciate each existing 3D skeleton with the corresponding 2D detections Jm in each
frame. To this end, we define a similarity measure between the skeleton defined
by pose parameters Xk and Jm = [jm,1, ...jm,prt] where prt is the number of 2D
body part detections of one person. This is done by first projecting the 3D joint
positions defined by Xk into the 2D image plane using the projection operator Φ.
Thereafter, the distance between each projected 3D joint and the corresponding
2D detection is calculated. The final similarity between skeleton with index k
and detections in Jm is defined as follows:

SIMk,m =
nprt∑

l=1

‖Φ(fk,l(Xk)) − jm,l‖ (4)

where fk,l is the 3D joint position corresponding to the 2D body part jm,l. At
the end of this step, each skeleton with index k will be associated with the 2D
detection Ji where i = arg minx SIMk,x.

For tracking varying number of persons, we need to generate a new 3D skele-
ton for each person who enters the scene and remove the skeleton of those who
leave the scene. After associating each 3D skeleton with the corresponding 2D
detections Ji, some items of J may be left without a corresponding 3D skeleton.
These items correspond to either persons who just entered the scene or false
positive detection of a human. To distinguish between these two cases, we use
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the confidence of each body part detection in Ji which is an additional output
of the CNN-based approach. This confidence allows to compute a score for each
Ji which corresponds to probability of a new person entering the scene. For each
new Ji with score above the threshold α = 0.5, we generate 3D skeleton for the
corresponding person and estimate the respective initial 3D location. On the
other hand, in case of a person leaving the scene or largely occluded, Ji cor-
responding to an existing skeleton will either have very low score or disappear
from J. In both cases, we remove that skeleton.

Our multi-person skeleton fitting term measures the similarities between a
given skeleton pose Xn corresponding to one of the persons and 2D body-parts
positions Jn of that person. Similar to Eq. 4, we project each 3D joint position
and calculate the distance to the corresponding 2D detection jn,l. The final
fitting term is defined as:

EFIT (X, J) =
nprsn∑

n=1

nprt∑

l=1

w(jn,l) exp

(
−‖Φ(fn,l(Xn)) − jn,l‖2

σ2

)
(5)

where w(jn,l) is the confidence of the 2D body-parts detection jn,l. This confi-
dence is estimated by the CNN body-parts estimation method.

Applying per-frame pose estimation techniques on a video does not ensure
temporal consistency of motion. Thus, small pose inaccuracies lead to tempo-
ral jitter. Therefore, we combine our multi-person skeletons fitting energy with
temporal filtering and smoothing in a joint optimization framework to obtain an
accurate, temporally stable and robust result; see Eq. 1.

5 Experiments and Results

We demonstrate the effectiveness of our algorithm through experimental
evaluations of more than 20 challenging real world sequences. Some of these
sequences were acquired from community videos including varying number of
persons performing complex and fast motions. We also captured many outdoor
and indoor sequences with mobile-phone and spherical camera. One of the out-
door sequences was recorded in car with spherical camera to illustrate the use-
fulness of our algorithm for applications such as driving assistance system. We
performed live tracking of multiple persons at around 23Hz with low quality
webcam. In addition to that, we used many sequences from the Human3.6M
[26] and the Marconi [19] datasets. These sequences vary in numbers and iden-
tities of persons, complexity and speed of the motion, the lighting conditions,
cameras types (e.g. mobile-phone, GoPro, spherical cameras, and webcams), the
frame resolutions, and the frame rates. Our algorithm is the first multi-person
monocular human motion capture method which does not require any manual
work for 3D human model and initial pose adaptation. It automatically gen-
erates 3D skeletons and estimates initial poses for multiple person. It operates
with input images without the need of bounding box cropping. As a result of
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Fig. 4. Sample results with overlaid 2D skeletons estimated with Implementation 1
(top) and respective 3D reconstructions (bottom) which show successful multi-person
tracking in challenging scenarios. (a) shows multi-person pose results over YouTube
videos playing table tennis and fencing sports. (b) shows results over selected difficult
sequences from Marconi dataset. (c) shows pose estimation results inside a car and
outdoor scene recorded using a spherical RGB camera. (d) shows tracking results with
strong illumination changes in outdoor scene captured using mobile phone camera
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this, our experimental setup is very simple. Given the input images and the focal
length of a single RGB camera, we produce high quality reconstruction results.
Qualitative results can be viewed in accompanying supplementary video. The
run-time of our algorithm depends on the number of persons in the scene, the
complexity of the motion and the resolution of the input frames. Our compu-
tations are performed on a 8-core Xeon CPU and a GeForce GTX 1080 GPU.
Although our algorithm’s implementation is not yet well optimized for improved
run-time performance, average processing time of a single frame from a single
person sequence (e.g. the Greeting sequence from the Human3.6M dataset [26])
is 44 ms. The 2D body parts detection [13] takes 32 ms while the 3D skeleton
fitting takes 12 ms. Given the body parts detections of the first frame and the
height of each person, the initialization phase takes around 0.01 ms.

Our algorithm is not restricted to use a particular 2D body-parts detection
method. Hence, we show results of our algorithm with two different body parts
detection methods. The first implementation Implementation 1 uses [13] for
2D body-parts detections. This implementation is discussed in details in Sect. 4.
Notably, in contrast to other 2D body part detection methods, [13] does not
require cropping to track multi-person sequences. On the other hand, our second
implementation Implementation 2, which is based on [11], requires cropping
of every person. However, our algorithm can perform cropping automatically

Fig. 5. Sample images from the H3.6M dataset (left column) and the Marconi dataset
(right column) with overlaid 2D Skeleton along-with respective 3D pose recovery using
Implementation 2 .
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and without significant change to our original pipeline in Fig. 2. To this end,
the rough pose of each person is estimated by extrapolating his pose from the
previous frame. The bounding box of each person is estimated by projecting each
3D skeleton to the camera view. This allows to crop and scale each person. With
this additional automatic step, [11] can be used instead of [13] in our pipeline
for 2D body part detections.

Qualitative Results: We used our first implementation Implementation 1
to track mroe than 15 sequences. Sample frames from the tracked sequences are
shown in Figs. 1 and 4. Please, see the supplementary video for more detailed
tracking results. Our algorithm successfully estimated the pose parameters of
multiple persons in challenging outdoor and indoor sequences with monocu-
lar RGB camera. This shows the ability of our algorithm to successfully track
sequences with many (i.e. up to eight) persons performing complex and fast
motions under strong lighting variations and strong distortion. Previous monoc-
ular methods such as [36,37,57] fail to track these sequences in real-time. We also
tracked a sequence captured in car and several sequences captured with mobile-
phone. This shows that our approach is suitable for practical applications in dif-
ferent fields including VR. In Fig. 5, we show the 3D pose reconstruction results
based on our second implementation Implementation 2. Two sequences from
the public datasets the Human3.6M and the Marconi are successfully tracked.

To demonstrate the usefulness of our algorithm for real-time applications
(e.g. dynamically including multiple persons in a virtual environment using the
camera of the VR-headset), we tracked the motion of multiple persons from
live stream of webcam. Figure 6 shows that our real-time 3D pose estimation
provides a natural motion interface in challenging scenarios. Furthermore, we
capture sequence with a mobile-phone camera where several people enter and
leave the scene. Our algorithm succeed in automatically detecting the change in
number of persons and generating or deleting the corresponding 3D skeletons on
the fly while tracking; see the supplementary video.

Comparison: In Fig. 7, we compare the accuracy of our algorithm with the
accuracy of [18,37] on two challenging sequences. Our algorithm managed to
accurately track all the persons in two sequences; see the supplementary video
for more detailed tracking results. While [18] work only offline, [37] achieved
lower tracking accuracy for only one of the two persons in the scene.

System Components Evaluation: We quantitatively evaluate the importance
of the components of our algorithm by creating different alternatives of it. The
first alternative is constructed by removing the skeleton generation step. This
means that the default skeleton is used without adaptation to the tracked person.
The second alternative is constructed by removing the initial pose localization
step where the initial pose parameters are set to zero or to random values. We
evaluated these alternatives by tracking the Walking sequence from Human3.6M
dataset [26] which captures Subject S9. The Mean Per Joint Position Error
(MPJPE) with our complete algorithm is 90 mm while it is 460 mm without
the first alternative. The second alternative fails completely because the energy
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Fig. 6. The real-time 3D pose estimation with Implementation 1 (Top) and Imple-
mentation 2 (Bottom). Our algorithm provides a natural motion interface on images
from live webcam video.

Fig. 7. Side-by-side comparison of our method against the monocular single-person
human pose estimation methods of Mehta et al. [37] (top right) and the offline method
of Elhayek et al. [18] (bottom right) which tracks two persons with three cameras. Our
approach succeeds in accurately tracking all persons in the scene (left column).
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Fig. 8. Sample images from H3.6M sequences used for quantitative evaluations. Top
row shows overlaid 2D Skeletons and bottom row shows 3D visualizations of the cap-
tured skeletons. From left to right, we show tracking results of Directions, Posing and
Waiting sequences for Subject S9 whose Mean Per Joint Position Error is 153mm,
158 mm and 167 mm respectively.

function is non-convex which leads to stuck in a local maxima; see Fig. 9 and
the supplementary video.

Quantitative Evaluation: We quantitatively evaluate our algorithm using the
Directions, Posing and Waiting sequences from Human3.6M dataset [26] which
capture Subject S9. Figure 8 shows sample images with overlaid 2D skeletons
and respective 3D reconstructions from these sequences. The average error of
all frames of these three sequences is 159.33mm. [37] achieves lower error with
monocular RGB camera. However, the CNN body-parts detector of [37] is trained
on images from the test dataset (i.e. the Human3.6M dataset [26]). On the other
hand, the CNN body-parts detectors which we use, are trained on different
datasets such as the MPII Human Pose dataset [4].

Fig. 9. Importance of algorithmic components. Left: tracking result of our algorithm;
MPJPE 90 mm. Middle: an alternative of our algorithm constructed by removing the
skeleton generation step (i.e. using the default skeleton); MPJPE 460 mm. Right: second
alternative constructed by removing initial pose localization step which fails completely.
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Discussion: Our approach is subject to a few limitations. Currently, the depth
estimation of our algorithm is not very accurate, especially in case of occlusion
of wrists and ankles. This causes relatively higher 3D joint position errors in
comparison to other methods. However, this is also a common problem with
approaches relying on a monocular camera setup as depth estimation is severely
ill posed. Thus, a slight inaccuracy in the 2D body-parts estimation leads to big
error in the depth estimation. Unlike other methods, our approach is still able
to recover from the tracking failures, even after long occlusion of many body-
parts; see the supplementary video. Our tracking results of many sequences show
that our algorithm succeeds in challenging multi-person scenarios where all other
human motion tracking methods based on single RGB camera fail. Moreover, we
achieve high temporal stability and reasonable accuracy. This accuracy can also
be improved by using 2D body part detector which is more stable to occlusions.

6 Conclusion and Future Work

We have presented the first fully automatic method to estimate 3D kinematic
poses of multiple persons in temporally stable manner directly from a single RGB
camera. Our approach automatically detects the number of persons in the scene
and generates corresponding person-specific 3D skeletons based on anthropomet-
ric data tables. It also automatically estimates the initial 3D location of each
person which allows to define their coarse initial poses. In the tracking phase,
it fits each 3D skeleton to the corresponding 2D body-parts detections. These
detections can be estimated using any 2D body-part estimation method which
allows to easily upgrade our algorithm with any progress in 2D pose estimation.
Our algorithm dynamically generates 3D skeletons for persons who enter the
scene and delete the skeletons of those who leave. In contrast to previous works,
our fully automatic algorithm can operate with multiple persons in real-time
without the need of bounding boxes. This makes our algorithm optimal for VR
application. We have demonstrated the effectiveness of our system by tracking
many sequences with strong distortion in videos, strong illumination changes,
and multiple persons performing complex motions. Moreover, we have shown
results in real-time scenarios, including live streaming from a webcam. As future
work, we are going to investigate the problem of depth estimation uncertainty
which could be reduced with domain specific knowledge. Furthermore, in order
to improve the run-time of our algorithm, we intend to employ more advanced
optimization algorithms.
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