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Preface

We are pleased to present in this LNCS volume the proceedings of the Scientific and
Technical papers of EuroVR 2018, the 15th annual EuroVR conference, which took
place at the Savoy Place in London (UK) during October 22–23, 2018.

Previous EuroVR conferences were held in Bremen; Germany (2014), Lecco, Italy
(2015), Athens, Greece (2016), and Laval, France (2017). This series was initiated in
2004 by the INTUITION Network of Excellence in Virtual and Augmented Reality,
supported by the European Commission until 2008, and included in the Joint Virtual
Reality Conferences (JVRC) from 2009 to 2013. The focus of the EuroVR conferences
is to present, each year, novel virtual reality (VR) to mixed reality (MR) technologies,
including software systems, display technologies, interaction devices, and applications,
to foster engagement between industry, academia, and the public sector, and to promote
the development and deployment of VR/AR technologies in new, emerging, and
existing fields.

This annual event of the EuroVR association (https://www.eurovr-association.org/)
provides a unique platform for exchange between researchers, technology providers,
and end users around commercial or research applications. Along with the scientific
and technical sessions representing the research papers of this LNCS volume, two
keynote speakers were invited to EuroVR 2018, namely: Prof. Robert W. Lindeman
(HIT Lab New Zealand at the University of Canterbury), and Brian Waterfield
(National Automotive Innovation Centre at the University of Warwick). Moreover
industry-oriented sessions were also organized to report on a number of applications of
VR/AR technologies in multiple fields (automotive, medical, etc.), while poster and
demo sessions allowed discussions to be held around several works in progress.

Since 2017, EuroVR has been collaborating with Springer to publish the papers
of the scientific and technical track of our annual conference. To increase the excel-
lence of this applied research conference, which is basically oriented toward new uses
of VR and AR technologies, we have formed a set of committees including an Inter-
national Program Committee (IPC).

This IPC selected 15 papers for the scientific/technical track of EuroVR 2018, which
are gathered in this LNCS volume. Nine full papers and six short papers were selected
from 39 submissions, resulting in an acceptance rate of 38%. Each paper was reviewed
by three members of the IPC with the help of some external expert reviewers. From the
review reports, the final decision was taken by the IPC chairs. The selected papers are
organized in this volume according to five topical parts: Vision-Based Motion
Tracking, 3D Acquisition and 3D Reconstruction, Haptics and 3D Audio, Perception
and Cognition, and Interactive Techniques and Use-Case Studies.

Additionally, several submissions to the scientific/technical track were redirected to
the industrial, poster, or demo tracks of the conference, based on the recommendation
of the reviewers. The abstracts of these other tracks are not included in this LNCS
volume.

https://www.eurovr-association.org/
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Structure-Aware 3D Hand Pose
Regression from a Single Depth Image

Jameel Malik1,2(B), Ahmed Elhayek1(B), and Didier Stricker1(B)

1 Department Augmented Vision, DFKI Kaiserslautern, Kaiserslautern, Germany
{jameel.malik,ahmed.elhayek,didier.stricker}@dfki.de

2 NUST-SEECS, Islamabad, Pakistan

Abstract. Hand pose tracking in 3D is an essential task for many virtual
reality (VR) applications such as games and manipulating virtual objects
with bare hands. CNN-based learning methods achieve the state-of-the-
art accuracy by directly regressing 3D pose from a single depth image.
However, the 3D pose estimated by these methods is coarse and kine-
matically unstable due to independent learning of sparse joint positions.
In this paper, we propose a novel structure-aware CNN-based algorithm
which learns to automatically segment the hand from a raw depth image
and estimate 3D hand pose jointly with new structural constraints. The
constraints include fingers lengths, distances of joints along the kine-
matic chain and fingers inter-distances. Learning these constraints help
to maintain a structural relation between the estimated joint keypoints.
Also, we convert sparse representation of hand skeleton to dense by per-
forming n-points interpolation between the pairs of parent and child
joints. By comprehensive evaluation, we show the effectiveness of our
approach and demonstrate competitive performance to the state-of-the-
art methods on the public NYU hand pose dataset.

Keywords: Hand pose · Depth image
Convolutional Neural Network (CNN)

1 Introduction

Markerless 3D hand pose estimation is a fundamental challenge for many inter-
esting applications of virtual reality (VR) and augmented reality (AR) such as
handling of objects in VR environment, games and interactive control. This task
has been extensively studied in the past few years and great progress has been
achieved. This is primarily due to the arrival of low cost depth sensors and rapid
advancements in deep learning. However, estimating 3D hand pose from a single
depth image is still challenging due to self similarities, occlusions, wide range of
articulations and varying hand shapes.

Hand pose estimation methods are classified into three main catagories
namely learning based methods (discriminative), model-based methods (gener-
ative) and combination of the discriminative and generative methods (hybrid).
c© Springer Nature Switzerland AG 2018
P. Bourdot et al. (Eds.): EuroVR 2018, LNCS 11162, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-030-01790-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01790-3_1&domain=pdf
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Among these methods, CNN-based discriminative methods have shown the high-
est accuracy on the public benchmarks. Despite of the fact that these methods
achieve higher accuracy, they do not well exploit the structural information of
hands during the learning process [11,34,35]. Specifically, independent learning
of sparse joint positions with no consideration to joint connection structure and
hand skeleton constraints leads to coarse predictions. This is the main reason
these methods still generalize poorly on unseen hand shapes [34] and conse-
quently, not directly usable in practical VR applications.

Therefore, our main contribution for this paper is a novel structure-aware
CNN-based discriminative approach which incorporates the structural con-
straints of hand skeleton and enhances the loss function for better learning of 3D
hand pose. Our main idea is to jointly learn the 3D joint keypoints and the hand
structure parameters. Thereby, facilitating the CNN to maintain a structural
relation between the estimated joint keypoints. Our method is simple, efficient
and effective. It optimizes a combined loss function of 3D joint positions and
simple structural constraints of the hand skeleton. The constraints comprise of
fingers lengths, fingers inter-distances and distances of joints in the kinematic
chain of the hand skeleton (kinematic distances). These constraints are easy to
learn and guide the optimization process to estimate more refined and accurate
3D hand pose. Another contribution which helps to improve the accuracy is to
convert the sparse joints keypoints to dense representation. To this end, we per-
form n-points interpolation between the pairs of parent and child ground truth
joint positions along the kinematic chain of hand skeleton. These simple strate-
gies can be easily used to improve the accuracy of any CNN-based discriminative
method without additional cost.

Existing hand pose estimation methods assume already segmented hand
region from a raw depth image as input to their algorithms. The hand seg-
mentation approaches are mainly based on heuristics or ground truth annota-
tion which make them difficult to use in practical applications. The problem
of hand segmentation is not well addressed in the existing works. Hence, our
second contribution is a new CNN-based hand segmentation method to extract
the hand region from a raw depth frame. For training over images with varying
backgrounds and camera noise, we combine several existing hand pose datasets
including a new dataset which we capture to include more variation in hand
shapes. The combined dataset will be public.

By performing exhaustive evaluation of our algorithm, we show the effective-
ness of our hand segmentation algorithm, n-points interpolation strategy and
learning the structural constraints jointly with the 3D hand pose. Experiments
show that our method performs better than several state-of-the-art hand pose
estimation on the NYU public benchmark. The main contributions for this paper
are:

1. A novel structure-aware CNN-based algorithm for 3D hand pose estimation
including the structural constraints of hand skeleton; see Sect. 4.2.

2. A novel CNN-based algorithm to effectively segment the hand region from a
raw depth image; see Sect. 4.1.



Structure-Aware 3D Hand Pose Regression from a Single Depth Image 5

3. A simple and effective interpolation strategy for improved hand pose estima-
tion; see Sect. 4.2.

2 Related Work

3D hand pose estimation using a depth sensor has been widely studied in the
past few years. For detailed overview, we refer the reader to the survey papers
[24,34]. Here we limit our discussion to the most related works.

Depth-Based Hand Segmentation Methods: Tompson et al. [27] intro-
duce a per-pixel classification of the hand region using random decision forest
(RDF) based method. However, the per-pixel manual labeling of large number of
training frames is cumbersome. Oberweger et al. [16] apply depth-thresholding
thereby, computing the center of mass of hand region. Then, crop the hand using
the center of mass. Recently, [15] propose a CNN-based refinement network to
further refine the segmented hand depth image by [16] to achieve better local-
ization. In contrast, we convert the raw depth image to RGB by applying simple
JET colormap and use a CNN to predict the 2D position of the hand palm cen-
ter. Then, using the predicted palm center, depth value can easily be obtained
from input depth frame. The proposed approach is simple and effective.

Discriminative Methods: RDF-based discriminative works [10,20,23,30,32]
are lagging behind recent CNN-based methods such as [1,5,6,12,19,31] in accu-
racy of the estimated hand pose. Some works have employed either RGB or
RGB-D data to estimate 3D joint positions [13,18,21,36]. In [5], Ge et al. effec-
tively regress 3D pose using a single 3D-CNN. Recently, [12] propose a voxel-to-
voxel pose predictor which takes voxelised input depth image and outputs 3D
joint heatmaps. [6,31] introduce a region ensemble (REN) strategy which con-
catenates features from multiple networks to regress the 3D pose. Chen et al. [1]
extend [31] by an iterative pose-guided REN strategy. All of the above methods
optimize only for the 3D pose without incorporating any structural relations
between the joint positions. In contrast, we extend the loss function defined on
the joint positions only by including several hand structural constraints. Thereby,
improving the accuracy of the estimated pose.

Hybrid Methods: [27] predict 2D heatmaps using a single CNN. After that
they use inverse kinematics to recover the 3D pose. Ge et al. [4] use a 3D-CNN
for 2D heatmaps estimation and then recover 3D joint positions. Oberweger
et al. [17] train a complex feedback loop to regress 3D joint positions. Wan
et al. [28] learn a shared latent space, between an encoder and a decoder, to
reconstruct the depth image using generative adversarial network(GAN) and
refine the 3D pose. The above mentioned works optimize only for the joints
positions and do not explicitly account for the hand geometric constraints. Dibra
et al. [3] propose a complex end-to-end framework to indirectly recover the 3D
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pose from reconstructed depth image. Zhou et al. [35] implement a forward
kinematics layer inside the CNN and train an end-to-end pipeline. Malik et al.
[11] extend this work to generalize over varying hand shapes. However, these
methods suffer from low accuracy because regressing joint angles (for rotation
matrices) is cumbersome.

3 Method Overview

The goal of our pipeline is to estimate more stable and accurate 3D joint positions
J , given a raw depth input Do. To this end, we simultaneously optimize for J ,
fingers lengths FL, fingers inter-distance FD and kinematics distances KD to
facilitate the learning of 3D joint positions in a structured manner. Our pipeline
is shown in Fig. 1. Do is resized and then colorized (using the JET colormap) by
a function g. The output RGB image Di is of size 227 × 227× 3. Di is passed
as input to the PalmCNN to directly regress hand palm center (u,v) in image
coordinates. Then, a cropping function f is applied to segment the 3D hand
region Ds from the raw depth frame Do. The colorization step is simple and
helps to improve the accuracy; see Sect. 5.2. Finally, the PoseCNN takes Ds

as input and estimates 3D joint positions J , fingers lengths FL, fingers inter-
distance FD and kinematics distances KD. The PoseCNN comprises of a CNN
and a regressor; see Sect. 4.2 for details. The PalmCNN and the PoseCNN are
trained separately.

Fig. 1. Our pipeline for hand segmentation and pose estimation. The raw depth frame
Do is given as input to a function g which resizes Do to 227 × 227 × 3 dimension and
colorizes it using the JET colormap. The output of g (Di) is fed to the PalmCNN to
regress 2D hand palm center (u,v). LPC is the loss for the PalmCNN. The function f
crops the hand region Ds given (u,v). Ds is fed to PoseCNN which outputs 3D joint
positions J, fingers lengths FL, fingers inter-distances FD, and kinematic distances KD.

4 Hand Segmentation and Pose Estimation

In this section, we explain the individual components of the pipeline shown in
Fig. 1. The function g, the PalmCNN and the crop function f are described in
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Sect. 4.1. In Sect. 4.2, we explain the main component of our pipeline i.e. the
PoseCNN.

4.1 CNN-Based Hand Segmentation

The function g simply resizes and colorizes Do to be fed as input to the Palm-
CNN. The output Di of g is an RGB image of size 227 × 227× 3. The task of the
PalmCNN is to estimate the pixel coordinates of the center of the hand region
i.e. palm center (u,v). The CNN architecture of the PalmCNN is similar to the
AlexNet [9] except that the final fully connected layer regresses the palm center.
The softmax loss layer is replaced by euclidean loss layer. The euclidean 2D palm
center loss is given as:

LPC =
1
2
‖PC − PCGT ‖2 (1)

where LPC is the palm center loss and PCGT is the ground truth palm center.
To train the PalmCNN, we combine four of the publicly available hand pose
datasets (i.e. NYU [27], ICVL [26], MSRA-2015 [23] and Dexter-1 [22]) with a
new dataset which we captured using creative senz3D camera [2]. This additional
small scale dataset is captured because the public datasets lack in hand shape
variation [11]. To obtain the ground truth palm center, we employ the generative
method proposed by [25]. We captured depth images from five different subjects.
Our dataset contains 8000 original depth images. Notably, the variation in hand
position should cover the whole image space. Therefore, we create around 10
augmented copies of every depth frame in the combined dataset by translating
it around the whole image using the ground truth hand palm center position. The
total number of training and testing frames are 4.55M and 200K respectively.
We fine-tune the AlexNet (pre-trained on ImageNet dataset) with the combined
dataset. The crop function f takes the estimated (u,v) and Do as inputs and
segments the 3D hand region; see Sect. 5.1 for details about f. The resultant
image Ds is of size 224 × 224.

4.2 Structure-Aware 3D Hand Pose Estimation

In our pipeline, the PoseCNN aims to jointly estimate the hand joint keypoints
J and additional constraints (i.e. fingers lengths FL, fingers inter-distance FD,
kinematic distances FD). During training, these constraints help to maintain
a structural relation between the joints positions. The ground truth for the
constraints can easily be obtained from the ground truth joint positions. The
euclidean 3D joint positions loss LJ is given as:

LJ =
1
2
‖J − JGT ‖2 (2)

where JGT ∈ R
Px3 is a vector of 3D ground truth joint positions. P is the number

of joint keypoints. The constraints are explained as follows:
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Fig. 2. The left figure shows the graphical representation of two of the structural
constraints i.e. Fingers lengths and Fingers inter-distances. The hand skeleton on the
right shows the interpolated points (n = 2) between the sparse ground truth joint
positions.

Fingers Lengths: We first calculate J-1 hand bone-lengths from the ground
truth joint positions using the standard 3D euclidean distance formula. To obtain
a finger’s length fl, we add the bone-lengths from the base joint (mcp) to the
finger-tip joint (tip) as shown in Fig. 2. The equation for fl can be written as:

fl = blmcp−pip + blpip−dip + bldip−tip (3)

where blx−y is the bone-length from a parent joint x to a child joint y. Therefore,
a set FLGT is represented as:

FLGT = {flpinky, f lring, f lmiddle, f lindex, f lthumb} (4)

The euclidean fingers lengths loss LFL is:

LFL =
1
2
‖FL − FLGT ‖2 (5)

where FL is the vector of estimated fingers lengths.

Fingers Inter-distances: The distances between the mcp joints of consecutive
fingers for a particular hand mostly remain fixed. However, the distances between
pip, dip and tip joints between fingers can vary depending on the pose of the
hand. The inter-distances between neighboring fingers can easily be obtained by
calculating 3D euclidean distances between respective joints of the fingers; see
Fig. 2. For example, the inter-distances between index and middle fingers are
evaluated as:

fd(index,middle) = {d(mcpindex,mcpmiddle), d(pipindex, pipmiddle),
d(dipindex, dipmiddle), d(tipindex, tipmiddle)} (6)
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where fd(.) is a set of inter-distances between the joints of two adjacent
fingers and d(.) represents 3D euclidean distance between two joints. Like-
wise, inter-distances for remaining finger pairs i.e. (middle, ring), (ring, pinky)
and (thumb, index) can be obtained using Eq. 6. Hence, a set FDGT can be
expressed as:

FDGT = {fd(index,middle), fd(middle, ring),
fd(ring, pinky), fd(thumb, index)} (7)

The fingers inter-distances loss LFD can be written as:

LFD =
1
2
‖FD − FDGT ‖2 (8)

where FD is the vector of estimated fingers inter-distances.

Kinematic Distances: Hand skeleton bears an inherent kinematic structure
which should not be ignored in the pose estimation task. Otherwise, the resultant
pose could be kinematically unstable [11,35]. In this work, we add a much needed
loss function which incorporates kinematic distances of all the joints in the hand
skeleton. Given the set of parents joints Spj

of a joint pj in JGT , the kinematic
distance kdj from the root joint to pj can be calculated as:

kdj =
M−1∑

i=0

d(JGT i
, JGT i+1) (9)

where i ∈ Spj
and M is the size of the set Spj

. Using Eq. 9, the kinematic
distances of each joint in JGT can be obtained. Hence, the loss LKD can be
written as:

LKD =
1
2
‖KD − KDGT ‖2 (10)

where KD and KDGT are the vectors of estimated and ground truth kinematic
distances.

Total Loss: Including the additional constraints (mentioned above) help to
improve the accuracy of hand pose estimation task and maintain the structure
of the hand skeleton; see Sect. 5.2. The final loss equation for the PoseCNN can
be written as:

LT = LJ + LFL + LFD + LKD. (11)

Interpolation: In order to get a dense representation of hand skeleton, we
linearly interpolate n joints between each pair of parent and child joints in the
kinematic hierarchy of the hand skeleton; see Fig. 2. We try different number of
interpolated points n and study their effects on the accuracy of the estimated
pose; see Sect. 5.2. As an example, the formulas for interpolating two 3D points
P1 and P2 between two 3D points Pa and Pb are:

P1 = 0.7 ∗ Pa + 0.3 ∗ Pb, P2 = 0.3 ∗ Pa + 0.7 ∗ Pb (12)
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Architecture and Iterative Regression : The architecture of CNN in the
PoseCNN is similar to the ResNet-50 [7] except that final fully connected (FC)
layer which outputs the features ϕ ∈ R

1024. The features ϕ are concatenated
with an initial estimate of E = {J , FD, FL and KD} i.e. φ = {ϕ,E}. Initial
estimate of E is obtained using the mean values of {J , FD, FL and KD}
from the NYU ground truth annotations. This estimate is kept fixed during the
training and the testing. φ is fed to a regressor which comprises of two FC layers
with 1024 neurons each. Both the FC layers use dropout layers with ratio of 0.3.
The last FC layer contains M neurons. Where M = 2P (n + 1) + 10n + 21. The
regressor aims to refine E in an iterative feedback manner i.e. Et+1 = Et + δEt.
In our implementation, we use at least three iterations. Directly regressing E is
challenging therefore, we observe that inclusion of the regressor is beneficial.

5 Experiments

In this section, we provide the implementation details, evaluation of our frame-
work and comparison with the state-of-the-art hand pose estimation methods.
The evaluation metrics are 3D joint location error and number of frames within
certain thresholds. All the error metrics are reported in mm.

5.1 Implementation Details

We use Caffe [8], an open-source deep learning framework, to train the PalmCNN
and the PoseCNN in our pipeline (see Fig. 1). The networks run on a desktop
using Nvidia Geforce GTX 1080 Ti GPU. The PalmCNN is trained on the com-
bined dataset; see Sect. 4.1. The learning rate is set to 0.0001 with a batch size of
256 and 0.9 SGD momentum. One forward pass in the PalmCNN takes 4.5ms.
We train the PoseCNN on the NYU hand pose dataset [27]. The NYU dataset
has 72,757 images for training and 8252 frames for testing. In order to segment
the hand region from the raw depth input Do, we use the estimated palm center
from the PalmCNN. Given (u,v) and Do, the hand region is cropped in 3D using
a bounding box of size 300 and the camera focal length. The pre-processed image
is of size 224 × 224 and the depth values are normalized to [−1, 1]. The 3D joints
annotations JGT in camera coordinates are also normalized to range [−1, 1]. We
obtain FLGT , FDGT and KDGT from the normalized JGT . For training the
PoseCNN, we use 0.001 learning rate with 0.9 SGD momentum and a batch size
of 128. The forward pass for the PoseCNN takes 35 ms.

5.2 Method Evaluation

In this subsection, we comprehensively evaluate the PoseCNN and the Palm-
CNN. We first observe the effects of the proposed structural constraints on the
accuracy of the estimated joint positions J . Second is to study the effects of
interpolating n-points between the sparse joint positions.
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Table 1. We evaluate five different implementations of our PoseCNN on the NYU
hand pose dataset. The PoseCNN(J) is the baseline which is trained for estimating
joint positions only. The PoseCNN(J ∪ FL ∪ FD ∪ KD) performs the best and shows
an error improvement of 15.13% on the estimated J over the baseline.

Method implementations 3D joint location error

J

PoseCNN(J) 15.2 mm

PoseCNN(J ∪ FL) 14.7 mm

PoseCNN(J ∪ FD) 13.6 mm

PoseCNN(J ∪ KD) 13.9 mm

PoseCNN(J ∪ FL ∪ FD ∪ KD) 12.9mm

Table 2. We observe the effects of n-points interpolation between the pairs of parent
and child joints in the kinematic hierarchy of the hand skeleton. The value of n varies
from 1 to 5. 5-point interpolation shows 5.5% improvement in accuracy. For n > 5, we
do not observe notable error improvement.

n-points interpolation 3D joint location error

J

PoseCNN(1-point Interp.) 12.80 mm

PoseCNN(2-point Interp.) 12.63 mm

PoseCNN(3-point Interp.) 12.38 mm

PoseCNN(4-point Interp.) 12.17 mm

PoseCNN(5-point Interp.) 11.9mm

Fig. 3. Qualitative evaluation of our PoseCNN. The top row shows the predicted hand
joint positions overlaid on the preprocessed NYU depth images from our baseline imple-
mentation (i.e. PoseCNN(J)). The bottom row shows the corresponding images with
corrected joint positions from our PoseCNN(all) implementation.
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Structural Constraints: To this end, we train the following implementations
of the PoseCNN on the NYU hand pose dataset which learns:

1. Joint positions J only.
2. Fingers lengths FL with J (i.e. J ∪ FL).
3. Fingers inter-distances FD with J (i.e. J ∪ FD).
4. Kinematic distances KD with J (i.e. J ∪ KD).
5. KD, FD and FL with J (i.e. J ∪ FL ∪ FD ∪ KD).

Table 3. Influence of hand segmentation: Our hand segmentation method without
colorization (wo/colorization) improves the joints prediction error by more than 1 mm
over center of hand mass (CoM) calculation method. Our method with colorization
(w/colorization) further improves the accuracy by 19.75% over CoM.

Methods 3D joint loc. error 3D palm center loc. error

CoM 14.83 mm 28.1 mm

Ours (wo/colorization) 13.05 mm 15.1 mm

Ours (w/colorization) 11.9mm 10.2mm

Table 1 shows the quantitative results of the these implementations. In sim-
plest form, the PoseCNN is trained to estimate 3D joint keypoints J only, we
call this implementation as our baseline (PoseCNN(J)). On top of the base-
line, we include the structural constraints one by one to observe the effects on
the accuracy of estimated joints J . By including fingers lengths FL with J (i.e.
PoseCNN(J ∪ FL)), we observe a small increase (3.28%) in accuracy of J . Inclu-
sion of fingers inter-distances FD (PoseCNN(J ∪ FD)) and kinematic distances
KD (PoseCNN(J ∪ KD)) improves the accuracy of the estimated J by 10.5%
and 8.55% over the baseline, respectively. The best accuracy is achieved by the
architecture which includes all the constraints (PoseCNN(J ∪ FL ∪ FD ∪ KD).
It shows 15.13% improvement over the baseline.

Dense Hand Pose Representation: We further experiment on the
PoseCNN(J ∪ FL ∪ FD ∪ KD) by interpolating n-points between the pairs
of parent and child joints in the kinematic hierarchy of the hand skeleton.
Thereby, converting the sparse hand skeleton to dense representation. This leads
to increase in number of joint positions depending on the value of n. Conse-
quently, the size of the vectors FD and KD also increases. The quantitative
results are summarized in Table 2. Our model (PoseCNN(J ∪ FL ∪ FD ∪ KD))
with 5-points interpolation performs the best among the others. The results show
improvement in accuracy of the estimated J using the interpolation strategy.
Therefore, dense hand skeleton representation is useful for improved hand pose
regression. For notational simplicity, we call this model as PoseCNN(all). This
model improves the accuracy over the baseline by 21.71%.
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Fig. 4. Quantitative comparison on the NYU test set [27]. The right figure shows
the fraction of frames within thresholds in mm. The left one shows the mean errors
(mm) on individual joints of the NYU hand pose dataset. Our method PoseCNN(all)
shows the average error of 11.9 mm which is better than several state-of-the-art
methods.

The qualitative comparison of our baseline and PoseCNN(all) on the NYU
dataset is shown in Fig. 3. The estimated joint positions J are displayed on the
sample preprocessed depth images. The predicted hand skeleton from our base-
line architecture (PoseCNN(J)) can be of incorrect size (i.e. shorter or longer)
due to independent learning of joint keypoints. Whereas, PoseCNN(all) which
incorporates all the constraints along-with interpolated points produces more
stable and reliable results. These results clearly show the effectiveness of our

Table 4. Comparison with the state-of-the-art on the NYU test set [27]: Our
proposed model (PoseCNN(all)) exceeds in accuracy over the state-of-the-art hand
pose estimation methods.

Methods 3D joint location error

DeepPrior [16] 20.75 mm

DeepPrior-Refine [16] 19.72 mm

Crossing Nets [28] 15.5 mm

Neverova et al. [14] 14.9 mm

Feedback [17] 15.9 mm

DeepModel [35] 17.0 mm

Lie-X [32] 14.5 mm

GuoBaseline [6] 14.6 mm

3DCNN [5] 14.11 mm

REN [6] 13.3 mm

DeepPrior++ [15] 12.3 mm

PoseCNN(all) [Ours] 11.9mm
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novel strategies, namely, structural constraints and the dense hand pose repre-
sentation.

Hand Segmentation: We evaluate our hand segmentation method (see
Sect. 4.1) on the NYU dataset by studying the impact of colorization and com-
paring with the depth-thresholding followed by center of mass (CoM) compu-
tation method. The goal is to observe the effects of hand segmentation on the
final 3D pose estimation accuracy. We train two different implementations of the
PalmCNN. First, with colorized depth input (Ours(w/colorization)) and second,
without colorization (Ours(wo/colorization)). Therefore, we get two different 3D
palm centers for cropping the NYU depth images. Also, we obtain 3D palm cen-
ters from center of hand mass (CoM) calculation method; see Sect. 2. Using
these three different palm centers, we obtain three distinct sets of pre-processed
NYU training and testing frames. The PoseCNN(all) is trained for each of the
three training sets. The effects on the accuracy of estimated J from the three
PoseCNN(all) models are reported in Table 3. The best results are achieved by
Ours(w/colorization) model. It shows an error improvement of 19.75% and 8.81%
over the CoM and Ours(wo/colorization) methods; respectively.

Real-Time Demonstration: We test our complete framework in real-time
using a single creative Senz3D depth camera [2]. The camera is placed on top of
the display screen. Our framework tracks the hand movements with challenging
poses as shown in Fig. 5. For better generalization, we train our PoseCNN(all)
architecture on the HandSet dataset [11]. This dataset combines several public
hand pose datasets (e.g. ICVL, NYU and MSRA-2015) in a single unified for-
mat. The PalmCNN successfully estimates the hand palm center. Thereafter,
the PoseCNN reliably estimates the joint positions. The predicted hand skeleton
is displayed on the input depth frame. The run-time of the pipeline is 42 ms.

Fig. 5. Real-time demonstration: We test our complete pipeline in real-time using
the creative Senz3D depth camera [2]. The camera is mounted on top of the display
screen. The predicted hand skeleton (yellow) is overlaid on the depth image. Our system
successfully tracks various challenging hand poses from frontal camera view. (Color
figure online)
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5.3 Comparison with the State-of-the-Art

The state-of-the-art methods use either the ground truth palm center or the CoM
localization approach to segment the hand region from a raw depth image. How-
ever, these approaches are not feasible for practical applications. In contrast, our
CNN-based hand segmentation method automatically segments the hand region
from a raw depth image and outperforms the commonly used CoM method (see
Table 3). We compare our best performing model, PoseCNN(all), with the state-
of-the-art hand pose estimation methods i.e. DeepModel [35], DeepPrior [16],
DeepPriorRefine [16], Crossing Nets [28], Feedback [17], LieX [32], GuoBaseline
[6], 3DCNN [5] and REN [6]. The quantitative results are shown in Table 4 and
Fig. 4. Our algorithm exceeds in accuracy over these methods. The results clearly
indicate the benefits of our hand segmentation approach, the interpolation strat-
egy and simultaneous learning of the hand structural constraints with the joint
positions.

6 Conclusion

In this paper, we present a novel structure-aware 3D hand pose regression
pipeline from a single raw depth image. We propose two strategies which can be
easily used to improve the hand pose estimation accuracy of any CNN-based dis-
criminative method. To this end, a novel CNN-based hand segmentation method
regresses the hand palm center which is used to segment the hand region from
a raw depth image. Thereafter, a new CNN-based regression network simul-
taneously estimates the 3D hand pose and its structural constraints. Thereby,
enforcing the hand pose structure during the training process. The proposed
constraints help to maintain a structural relation between the estimated joint
positions. Moreover, we study the effects of n-points interpolation between the
pairs of parent and child joints in the kinematic chain of the hand skeleton.
By performing extensive evaluations, we show the effectiveness of our approach.
Experiments demonstrate competitive performance to the state-of-the-art hand
pose estimation methods.
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25. Tagliasacchi, A., Schröder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.:
Robust articulated-icp for real-time hand tracking. In: Computer Graphics Forum,
vol. 34, pp. 101–114. Wiley Online Library (2015)

26. Tang, D., Jin Chang, H., Tejani, A., Kim, T.K.: Latent regression forest: structured
estimation of 3D articulated hand posture. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3786–3793 (2014)

27. Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery
of human hands using convolutional networks. ACM Trans. Graph. (ToG) 33(5),
169 (2014)

28. Wan, C., Probst, T., Van Gool, L., Yao, A.: Crossing nets: combining GANs and
VAEs with a shared latent space for hand pose estimation. In: 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

29. Wan, C., Probst, T., Van Gool, L., Yao, A.: Dense 3D regression for hand pose
estimation. arXiv preprint arXiv:1711.08996 (2017)

30. Wan, C., Yao, A., Van Gool, L.: Hand pose estimation from local surface nor-
mals. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9907, pp. 554–569. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46487-9 34

31. Wang, G., Chen, X., Guo, H., Zhang, C.: Region ensemble network: towards good
practices for deep 3D hand pose estimation. J. Vis. Commun. Image Represent.
(2018)

32. Xu, C., Govindarajan, L.N., Zhang, Y., Cheng, L.: Lie-x: depth image based artic-
ulated object pose estimation, tracking, and action recognition on lie groups. Int.
J. Comput. Vis. 123, 454–478 (2017)

33. Ye, Q., Yuan, S., Kim, T.-K.: Spatial attention deep net with partial PSO for hier-
archical hybrid hand pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9912, pp. 346–361. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46484-8 21

34. Yuan, S., et al.: Depth-based 3D hand pose estimation: from current achievements
to future goals. In: IEEE CVPR (2018)

35. Zhou, X., Wan, Q., Zhang, W., Xue, X., Wei, Y.: Model-based deep hand pose
estimation. In: IJCAI (2016)

36. Zimmermann, C., Brox, T.: Learning to estimate 3D hand pose from single RGB
images. In: International Conference on Computer Vision (2017)

http://arxiv.org/abs/1711.08996
https://doi.org/10.1007/978-3-319-46487-9_34
https://doi.org/10.1007/978-3-319-46487-9_34
https://doi.org/10.1007/978-3-319-46484-8_21
https://doi.org/10.1007/978-3-319-46484-8_21


Universal Web-Based Tracking
for Augmented Reality Applications

Yannic Bonenberger, Jason Rambach(B), Alain Pagani, and Didier Stricker

German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
Jason.Rambach@dfki.de

Abstract. Augmented Reality (AR) is a growing technology which
begins to reach its maturity and address a broad spectrum of areas. How-
ever, current augmented reality applications still tend to be confined to
a single use case or a single set of devices. In this paper, we explore web-
based augmented reality systems using a single cross-platform binary to
address a wide range of devices, which can dramatically decrease the
developmental effort to create applications and therefore help to satisfy
the growing demand for them. To this extent, we discuss the implemen-
tation of a feature tracking system using WebAssembly and evaluate its
real-time capabilities on a wide range of devices and operating systems.
Additionally, we also demonstrate a simple AR application making use
of our tracker.

Keywords: Augmented Reality · Web-based · 6DoF Pose Tracking

1 Introduction

Augmented Reality (AR) is an emerging technology combining virtual scenes
with the real world [5]. With the progress in mobile computing devices like
smartphones or tablets in recent years, there is a growing demand in AR appli-
cations in various consumer-oriented fields like entertainment or education, and
also in other areas like industrial construction and maintenance or medicine and
rehabilitation [8,10,11,26].

The main enabling technology for an AR system is a 6 Degree of Freedom
(6DoF) pose estimation and tracking system. Knowledge of the camera pose
allows for correct placement of virtual augmentations in the real world [23].
Model-based tracking approaches use a predefined target model for localization
[25] while Simultaneous Localization and Mapping (SLAM)-based approaches
operate without prior knowledge of the environment meaning that it also needs
to be uncovered in parallel to the localization [20]. An advantage of model-based
systems is the reduced complexity and the ability to create AR content that
is specific to the tracked model, while SLAM systems can provide localization
out-of-the-box without any user involvement.

There is a large number of devices like smartphones or tablets with at least
one camera and sufficient computing power which are capable of running AR
c© Springer Nature Switzerland AG 2018
P. Bourdot et al. (Eds.): EuroVR 2018, LNCS 11162, pp. 18–27, 2018.
https://doi.org/10.1007/978-3-030-01790-3_2
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Fig. 1. Our application running on a smartphone.

software. These devices have one major issue: They run many different operating
systems and therefore have their own ecosystem, most of them not compatible
with other ones. An example thereof is ARKit [9] which is developed by Apple
and only supports the latest generation of iOS devices. Users with older devices
will not be able to run applications using these features, even though lots of
these devices have sufficient computation power to run them. Smartphones and
tablets from other brands are also excluded from running these applications. For
users with Android devices, there is ARCore [13] which only supports the latest
generations of Android smartphones from vendors like Samsung or Google. It
is even more complicated if developers want to bring their applications to the
desktop. There is, however, one ecosystem that all of the mentioned devices
support: And this is the WorldWideWeb. The WorldWideWeb was developed
by Berners-Lee and Cailliau at CERN in 1990 [6,7] and grew from a platform to
access static HTML files to a platform with support for large applications which
can do most of what native applications can [14].

A significant milestone was the recent addition of WebAssembly, “a binary
instruction format for a stack-based virtual machine” [3,17] which aims to exe-
cute at native speed on a wide range of platforms. It is available in all major
browsers including Google Chrome, Microsoft Edge, Mozilla Firefox and Apple
Safari [4]. With these technologies, it is possible to write fully functional AR
applications which can replace native applications on the desktop and mobile
devices. This has the potential of reducing the amount of work and therefore the
costs to develop an augmented reality application, which is eventually necessary
to satisfy the growing demand.
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In this paper, we investigated whether it is possible to develop augmented
reality applications using only technologies provided by the modern web platform
without additional plugins or usage of particular browsers with built-in support
for AR [15,16,22]. To demonstrate this, we developed a simple model based AR
application using traditional web languages like HTML5 and ECMAScript as
well as compiled languages like C, which could traditionally only be used to
create native applications, and compile them to WebAssembly using Emscripten
(Fig. 1). To evaluate whether the performance of such applications is sufficient
for use in AR, we compared the performance of our implementation if we compile
to a native binary to the performance of our implementation if we compile to a
WebAssembly binary.

2 Related Work

Building AR systems using web technologies has traditionally been very chal-
lenging because browsers did not provide sufficient speed to run these computa-
tionally heavy applications. To our knowledge, this is the first paper presenting
a purely web-based approach running in standard browsers without additional
plugins. However, some approaches for applications using a browser to display
their interface have been presented. In [31], a prototype of an AR system with a
web-based client was presented. To use this application, users use the front-end
to capture images of the scene which are then uploaded to a server, processed,
and the augmented result is sent back to the client. While this approach can pro-
vide high-quality augmentations, it has the disadvantage that only images can
be processed and, due to possibly slow network connections, real-time processing
is impossible.

Previous research also investigated whether it is possible to use browser plu-
gins like Flash which have more computational power than ECMAScript for AR
systems [21,29]. While this approach is similar to ours, it has the disadvantage
that it is not available in all browsers across all platforms and that users must
install plugins before they can use the application.

Another highly interesting concept are browsers with built-in support for
AR [15,16,22]. However, these approaches require that users install dedicated
applications on their devices to be able to use such systems. To our knowledge,
none of these applications are available for download and must be compiled from
source which makes them unusable for arbitrary users. It is also very likely that
these dedicated browsers will be abandoned once browsers add native support
for AR [19].

Other research in the field of AR and the web investigated how web-based
systems can be utilized to create content for native augmented reality applica-
tions [12,30] or whether it is possible to embed web technologies into native AR
systems to create interactive augmentations [18]. Researchers have also investi-
gated how web-based AR systems can protect the privacy of their users [24].



Universal Web-Based Tracking for Augmented Reality Applications 21

Fig. 2. Architecture of our system, split into UI-thread (left) and Web-Worker (right).
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3 Implementation

In this section, we will discuss the architecture and implementation of our appli-
cation and the difficulties we encountered. For our implementation we used a
combination of well-established web technologies like HTML5 or ECMAScript
and technologies more recently added to the web platform like WebRTC, which
provides access to the camera, or WebAssembly, which is a platform independent
binary instruction format that aims to achieve native-like execution speed.

The content of this section is divided into these three parts: First, we will
present the overall architecture of our system and discuss the challenges of build-
ing AR systems in the browser. Then, we will present the point tracking system
we used in our application, and in the end, we will briefly discuss the details of
our simple web-based AR system.

3.1 System Architecture

The main challenges to building web-based AR are tight constraints of com-
putational power available in the browser and the unique concurrency model
of ECMAScript. ECMAScript’s concurrency is based on a queue-based model
often called event-loop. This means that the runtime “contains a message queue
which stores a list of messages to be processed and their associated callback
functions. These messages are queued in response to external events (. . . ) given
a callback function has been provided” [27]. With the more recent addition of
Promises, which are so-called microtasks and have entirely different semantics
than regular tasks in the event-loop, ECMAScript’s execution model got even
more convoluted. To complicate things further, the main thread is also used by
the browser to parse pages from HTML into a DOM tree or to calculate the
layout of a website. In order to be able to implement AR systems on a platform
using this concurrency model, we split our application into multiple independent
subsystems which can run completely independently and executed them on two
different threads: A UI-thread, which is also the default thread browsers use
to execute code and render the page on, and a background thread we created
using the WebWorker API [2]. As it can be seen in Fig. 2, we reduced the num-
ber of computations on the UI-thread to a minimum and only executed what is
directly related to the user-interface of our application. All computations related
to tracking objects between frames are executed in a dedicated WebWorker which
communicates with the other thread asynchronously.

After the browser finished downloading the initial website, we ask the user for
their permission to use their camera. Since this is mandatory for our application,
we do not proceed further if this permission is denied. When our application has
the permission to use the camera, a dedicated WebWorker is created and the
browser downloads and executes our separate worker script. Additionally, we
immediately send an initialization message to the newly created worker which
then downloads the external WebAssembly module. When the worker is fully
initialized, it sends a message back to the UI-thread to indicate that it is ready
to receive frames. When this message is received by the UI-thread, we start
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capturing frames from the camera and send them to the worker thread for pro-
cessing. For convenience, we use a fixed frame rate, augment the message to
the worker with the current timestamp and drop the frame in the worker if it
is older than a predefined amount of time. All other frames are used to track
features and then send back to the UI-thread. If too many features are lost, or
if there was no previous frame, the current frame is also used to search for new
features. Every time the UI-thread receives a processed frame, the user interface
is updated and the image is shown to the user. With this architecture, we were
able to achieve sufficient computational power and have an interface which is
responsive to interactions with the user.

3.2 Tracking

We decided to use the well known Kanade-Lucas-Tomasi (KLT) algorithm [28]
for our tracker. We use KLT tracking to follow image patches between consec-
utive frames by performing a local search to minimize the photometric error
between the patch in the previous image and its match in the current one (see
Fig. 3). Initial evaluations revealed that processing a single image is sufficiently
fast and we do not need to split the algorithm into independent parts which
can be executed asynchronously to use KLT in our applications. However, exist-
ing implementations such as the one from OpenCV could not be ported easily,
thus we decided to make our own implementation. To be able to perform a fair
evaluation of the performance of our system, we ensured that the implementa-
tion of our tracker does not make any assumptions about the architecture it is
executed on.

Fig. 3. KLT feature tracker, from the first frame on the left to the last frame on the
right.

3.3 Application

The architecture of our application is based on the tracker architecture presented
in Fig. 2. As a marker for pose estimation, a 2D image rich in texture is used.
Thus, the estimated pose is given with respect to a coordinate system defined
by this marker. The use of an image with natural features allows to have a
registration step where a user can select his own image to be used for tracking.
The tracking application follows the principles of other systems such as [25]. A set
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of Oriented FAST and rotated BRIEF (ORB) features are stored along with their
3D positions in order to register the tracking target. To start the application, we
initialize the camera and ask the user for their permission. If the user grants us
permission to use the camera, we periodically capture a frame, extract features
from this frame and match them to registered ORB features of our marker. Once
the number of matches is above a certain threshold, we compute a homography
between the marker and the picture, project the boundaries of the marker into
the frame, and filter outliers which are outside this projection, as it can be seen
in Fig. 4. Having estimated an initial pose once enough inliers are found, we use
KLT to track them from frame to frame which ensures a fast update of the pose.
The tracked pose can be used to render virtual augmentations on the marker.
As an example, we draw a virtual cube over the marker as can be seen in Fig. 4.

Fig. 4. On the left, projection of the boundaries of the marker into the scene and an
example of a virtual cube rendered on top of our marker on the right.

4 Evaluation

In this section, we present and discuss the results of our runtime evaluation of the
proposed KLT tracker. To get a comprehensive overview of the performance of
our application, we executed our tests on various common devices and operating
systems and across all popular browsers available on these platforms. Primarily,
we used a MacBook Pro (Mid 2015) with an Intel Core i7 processor at 2.8 GHz
and 16 GB RAM, running macOS 10.13, a desktop PC with an Intel Xeon E5
processor at 2.6 GHz running Windows 10 respectively Ubuntu 16.04, an iPhone
X running iOS 11 and a Samsung Galaxy S8 running Android 7 to run the tests.
We also tested our application on various other devices, including low-end mobile
devices, which showed results comparable to the results we observed during our
runtime evaluation.
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Table 1. Runtime performance across different browsers and operating systems.

The runtime performance was evaluated using a single test binary, once com-
piled to a native binary and once to a WebAssembly module. Both binaries were
produced using the highest optimization level available. To account for differ-
ences in the architectures of the underlying platforms, we used a fixed set of test
images which were inlined into the binary.

Analysis of the raw data we collected during our tests revealed that the time
required to track features in the first frame is roughly double the time required
to track features in all subsequent frames. Investigations revealed that this is
caused by the fact that we compute the gradient image for both pictures for the
first image, and only for one picture in all other images. Due to this, we decided
to exclude the first image from our analysis.

In Table 1, we present the average time in ms to perform the computations
to track points from one image to another, which is the central part of our
application. We observe that the runtime of the native binary is 36.9% lower
than the runtime in browsers. However, the average time of 13.4 ms required
for the tracking in the browser indicates that a frame rate of 74 fps can be
achieved. This high frame rate leaves sufficient time for the rendering of quality
augmentations and other application content.

Further investigations revealed that roughly 80% of the time we need to pro-
cess a frame is spent computing the gradient image for the KLT. Given that we
currently run these computations on the CPU, we expect that the frame rate
will further increase when we can use OffscreenCanvas [1] to accelerate this on
a GPU. It is also worth mentioning that getting precise timestamps in browsers
requires several switches in the execution context and the operation is therefore
slightly more expensive than its native equivalent. To mitigate the effects of the
recently published processor exploits spectre and meltdown, browser vendors
also reduced the maximum precision of timestamps in the browser. However,
investigations of the impact of these changes revealed that we were still able
to compute time differences with sub-millisecond precision. Given that our mea-
surements showed a runtime that was a lot higher than that, we think that these
changes did not affect our evaluation.
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5 Conclusion

In this paper, we investigated the possibility to develop a universal cross-device,
cross-browser based AR application using only web development tools. Our pro-
posed system is built using WebAssembly, and implements a marker based KLT
tracker for AR without using common computer vision libraries that are still
unavailable or partially functional for Web Assembly. A runtime evaluation per-
formed a selection of commonly used devices for AR, based on different operat-
ing systems proved the general feasibility of the approach. Future work includes
dealing with the rendering of more complex virtual models for more demanding
AR applications, and the improvement of tracking and user experience by fur-
ther optimization, addition of camera intrinsics self-calibration and usage of 3D
objects as tracking targets instead of 2D marker images.
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Education and Research of the Federal Republic of Germany as part of the research
projects PROWILAN and BeGreifen (Grant numbers 16KIS0243K and 16SV7525K).
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Abstract. Fully automatic tracking of articulated motion in real-time
with monocular RGB camera is a challenging problem which is essential
for many virtual reality (VR) applications. In this paper, we propose a
novel temporally stable solution for this problem which can be directly
employed in VR practical applications. Our algorithm automatically esti-
mates the number of persons in the scene, generates their corresponding
person specific 3D skeletons, and estimates their initial 3D locations. For
every frame, it fits each 3D skeleton to the corresponding 2D body-parts
locations which are estimated with one of the existing CNN-based 2D
pose estimation methods. The 3D pose of every person is estimated by
maximizing an objective function that combines a skeleton fitting term
with motion and pose priors. Our algorithm detects persons who enter
or leave the scene, and dynamically generates or deletes their 3D skele-
tons. This makes our algorithm the first monocular RGB method usable
in real-time applications such as dynamically including multiple persons
in a virtual environment using the camera of the VR-headset. We show
that our algorithm is applicable for tracking multiple persons in outdoor
scenes, community videos and low quality videos captured with mobile-
phone cameras.

Keywords: Human motion capture · Convolutional neural network
Anthropometric data

1 Introduction

Human motion capture has applications in many fields such as VR, augmented
reality (AR), 3D character animation (i.e. for movies and games), human-
computer interaction, and sports. The last decade have witnessed significant
progress in marker-less human motion capture approaches which work directly
on real-world video streams [38,43,48]. Although, many marker-less algorithms
have achieved high accuracy under challenging conditions, most commercial VR
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systems still use marker-based algorithms that require to place markers on the
human body. One of the main reasons is that marker-less algorithms require
several manual initialization steps (e.g. 3D human model generation and initial
pose estimation) which are cumbersome, require a lot of experience and time
consuming.

Monocular RGB cameras are very common in many VR-headsets, laptops,
and smartphones. Thus, developing a fully automatic real-time multi-person
marker-less human motion capture algorithm that works with such monocular
cameras is essential for many VR applications. An example of these applications
is to include and animate multiple 3D characters in a VR environment using
the camera of a VR-headset. Furthermore, this algorithm allows to interface
PCs, laptops, or smartphones with their cameras (e.g. play games). However,
developing such algorithm is challenging and requires (1) automatic estimation
of number of persons in the scene (2) automatic generation of their 3D skeletons
(3) automatic estimation of their initial 3D location (4) dynamical generation or
deletion of 3D skeletons for persons entering or leaving the scene; respectively
(5) real-time multi-person fitting energy function.

Fig. 1. Our algorithm recovers 3D skeletons poses in real-time. It captures complex
motions of 8 persons in a community video (left), 3 persons in a video from the Mar-
coni [19] datasets (middle) and 3 persons in a video captured with our mobile-phone
RGB camera (right). Top row shows overlaid 2D skeletons and bottom row shows 3D
visualizations of the captured skeletons.

Most of marker-less approaches estimate the articulated joint angles of mov-
ing subjects from multi-view video recordings [19–21,50]. These algorithms
require manual estimation of persons number, their 3D models, and their ini-
tial poses. Moreover, they fail to reliably track articulated motion in general
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scenes with single RGB camera. While many recent algorithms have managed
to estimate accurate human motion from monocular depth cameras [5,16,56],
only few algorithms work accurately with monocular RGB cameras [36,37,57].
Although some of these algorithms achieve better accuracy than our algorithm,
they do not succeed under our challenging multi-person tracking conditions. For
instance, [37] does not succeed with multi-person and assumes an initial human
pose to be given. Moreover, it’s skeleton initialization requires given 2D body
parts detections from several frames and height of the person. In addition to these
limitations, other monocular algorithms such as [36,57] are offline and exhibits
jitter over time due to per frame estimation. To the best of our knowledge, our
algorithm is the first that performs automatic personalized skeleton generation
and initial pose localization of varying number of persons in real-time. Moreover,
it reconstructs the motion of multi-person in real-time using a single off-the-shelf
RGB camera.

Our algorithm allows to overcome the limitations of RGB-D cameras which
fail in general outdoor scenes due to sunlight interference. These cameras have
lower resolution, limited range, higher power consumption, and are not widely
available as RGB cameras. Our algorithm is able to track multiple persons mov-
ing in front of cluttered and non-static backgrounds with moving low quality
camera which suffers from high distortion. It also succeeds in case of strong
illumination changes. It works with any mobile-phone cameras, webcams, and
community videos (e.g. YouTube videos). Our novel algorithmic contributions
that enable this, are:

1. Real-time, simple and automatic multi-person human 3D skeletons genera-
tion; see Sect. 4.1.

2. Automatic initial 3D location estimation of each person in the scene; see
Sect. 4.2.

3. Automatic detection of the change in number of persons and generating or
deleting the corresponding 3D skeletons on the fly while tracking; see Sect. 4.3.

4. Novel algorithm which tracks full articulated joint angles of multiple persons
at high accuracy and temporal stability in real-time, given 2D body-part
locations; see Sect. 4.3.

The estimated multi-person motions can be used in many fields such as VR,
AR, motion-driven 3D game character control, and human computer interaction.
Furthermore, our algorithm can be optimized for smartphones and driving assis-
tance applications. In our experiments, we show that our algorithm can capture
even complex and fast body motion of multi-person in real-time; see Fig. 1. We
managed to capture complex motions of multiple persons in outdoor scenes with
a moving mobile phone camera, a spherical camera in a car, and a webcam in
an office.

2 Related Work

Video-based human motion capture has seen great advances in recent years.
We refer the reader to the surveys [38,43,48] for an overview. We focus the
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discussion in this section on two categories: methods based on multi-view input
and methods that rely on a monocular RGB camera.

Multi-view: Most multi-view marker-less motion capture setups employ a
human 3D model whose pose parameters are computed by optimizing an over-
lap measure between the projected 3D model and the input images. They attain
high accuracy by tracking the human model over the image sequence with offline
computation [9,10,49]. In [23], the pose is estimated from silhouette and color
information. The approaches presented in [7,29,32] use training data to learn a
motion model or a mapping from image features to the 3D pose. Tracking without
silhouette information is also possible by combining model-guided segmentation
and pose estimation. Earlier methods, such as [42], attempted to capture human
skeletal motion from stereo footage, but did not achieve the same accuracy as
methods using dense camera setups.

Amin et al. [3] propose a multi-view pictorial structures model that incor-
porates evidence across multiple viewpoints to allow robust 3D pose estimation.
Belagiannis et al. [6] extend [3] for 3D pose estimation of multiple humans. How-
ever, a common problem with these approaches is jitter due to missing temporal
information at each time step. The approach by [50] introduced an analytic
formulation for calculating the model-to-image similarity based on a Sums-of-
Gaussians model. Other works extend multi-view motion capture approaches
towards tracking with moving or unsynchronized cameras [20,21,24,47]. These
methods need separate initialization (e.g. using [8,45] at the beginning of each
sequence and after loss of track in local minima of their non-convex fitting
functions). Robustness can be increased with a combination of generative and
discriminative estimation [19,44]. An accurate manually initialized human 3D
model is essential for these methods. We propose an approach for automatic mul-
tiple skeletons generation which avoids using human model projection to speed
up estimation. This allows to utilize generative tracking components and ensure
temporal stability.

Monocular RGB: Depth-based motion capture methods [16,56] have achieved
robust real-time results. However, in this section, we focus on RGB-based meth-
ods. These methods can be divided into generative and discriminative methods.
The generative motion capture problem is fundamentally under-constrained in
case of monocular input. Thus, it is only successful for motion capture from
short clips and when combined with strong motion priors [53]. Manual anno-
tation and correction of frames is suitable for some applications such as actor
reshaping in movies [27] and garment replacement in videos [46]. These gener-
ative algorithms preclude live applications because of manual interaction and
expensive optimization.

Recently, many monocular discriminative human pose estimation methods
have been introduced. Some of them discriminatively learned mapping from the
image directly to human joint locations [1,26,28]. CNN based 2D and 3D human
pose estimation approaches achieve state-of-the-art accuracy. For instance,
[17,33,35,51] estimate human 3D pose directly from monocular image or video.
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Chen et al. [15] automatically synthesize training images with ground truth pose
annotations and train CNNs with these synthetic images for 3D pose estimation.

Other approaches estimate 3D human pose from 2D body parts locations
in a monocular image [2,22,30,31,54]. Many of these works have been realized
by assuming manually labeled 2D body part locations. Recently, many CNN-
based 2D pose estimation methods were proposed [11,13,14,25,52,55]. All these
methods provide 2D body parts locations which can be used for 3D human pose
estimation. For example, Cao et al. [13] managed to efficiently detect the 2D
poses of multiple persons in an image using a nonparametric representation,
which allows to learn associations between body parts of each individual in
the image. Bogo et al. [8] used 2D body parts locations detected by [41] to
automatically estimate the 3D pose and shape of the human body from a single
unconstrained image. However, this method is not real-time and works for single
person only.

Most closely related to the present paper are approaches for real-time recov-
ery of 3D human pose with monocular RGB camera. Only a few methods target
this problem for temporally stable results which is directly usable in practical
applications. The top performing single RGB 3D pose estimation methods are
based on CNNs [34,36,37,40,57]. Mehta et al. [36] use a 100-layer CNN archi-
tecture to predict 2D and 3D joint positions simultaneously. However, [36] is
unsuitable for real-time execution due to the additional preprocessing steps such
as bounding box extraction. Mehta et al. [37] propose a 3D pose estimation
approach that uses CNN to detect 2D and 3D pose jointly. Then, an optimiza-
tion based skeletal fitting method is applied to estimate 3D poses in real-time.
All these methods, however, work for single person only. On the other hand,
we propose a multi-person 3D pose estimation approach which automatically
estimates person-specific 3D skeleton and initial 3D location for each person in

Fig. 2. Overview. We generate multiple person-specific 3D skeletons based on anthro-
pometric data, and estimate the initial location of each person in an initialization phase
(bottom, Sect. 4.1). In the tracking phase, we estimate 2D body-parts positions from
the input video streams. These 2D positions are used to estimate global 3D poses by
skeleton fitting (top, Sect. 4.3). The Dynamic Scene Update step generates or deletes
3D skeletons for persons who enter or leave the scene.
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the scene. Thereafter, the pose of every person is estimated by means of opti-
mizing an energy function for multi-person skeleton fitting.

3 Overview

Input to our approach can be either the live stream of a monocular RGB camera
(e.g. webcam or VR-headset), YouTube video, or video captured with a mobile-
phone camera. Any of these inputs yield a single frame Ii at discrete points
in time i = {1, 2, 3, ...}. For frame Ii, the final output is X = {X1, ...,Xprsn}
where prsn is the number of persons in the scene . Xj is the 3D skeletal pose
parameters of the person with index j. This output is temporally consistent
and in global 3D space which makes it perfect for applications such as virtual
reality and character control. Our algorithm works with any camera (i.e. moving,
static, webcam, or spherical camera with strong distortion) and general scenes
(i.e. indoors or outdoors with strong illumination changes).

An outline of the processing pipeline is given in Fig. 2. Many human motion
capture algorithms such as [19,20,50] assume given person-specific 3D skeletons
and initial pose parameters Xinit. This number of skeletons is fixed over the
whole sequence. In contrast to these algorithms, we automatically estimate the
number of persons in the scene. Then, we automatically generate person-specific
3D skeletons and estimate the initial location of each person in the scene. All
these automatic steps are done in real-time at the beginning of each sequence
which we refer to as initialization phase. The basic idea of our automatic
skeleton generation approach is to adapt a default human skeleton to the length
of each bone of each person. To this end, anthropometric data tables are used
to define the length of each bone as a function of the height of each person; see
Sect. 4.2 for details.

Given the person-specific 3D skeletons, it is still not possible to start the
tracking process without defining the initial pose of each person. Existing human
motion capture algorithms either estimate the initial pose manually or use com-
putationally expensive methods such as [8]. In this paper, we automatically
estimate the 3D root location of each person in the scene which resolves this
limitation; see Sect. 4.2 for details.

In the tracking phase, we start with a CNN-based approach [11,13] to esti-
mate the 2D locations of the body-parts for each person in the scene. The output
of this step is the matrix J = [J1, ..., Jprsn] where Ji contains body-parts loca-
tions of person i. However, the order and number of the persons in J may vary
from frame to frame. Therefore, we use Eq. 4 to find the 2D body-parts positions
Ji corresponding to specific 3D skeleton. Thereafter, we dynamically generate
3D skeletons for persons who enter the scene and delete the skeletons of those
who left; see Sect. 4.3 for details.

The pose parameters X = {X1, ...,Xprsn} are optimized given the 2D body-
parts positions with the following energy function at each time frame Ii:

E(X,J) = EFIT (X,J) − wLEL(X) − wAEA(X) (1)
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where EFIT (X,J) is the skeletons fitting term (Sect. 4.3). EL(X) enforces joint
limits, and EA(X) is a smoothness term penalizing strong accelerations; see
[50] for details. The weights wl = 0.1 and wa = 0.05 were found experimentally
and are kept constant in all experiments. This energy function is smooth and
analytically differentiable. Thus, it can be optimized efficiently using standard
gradient ascent initialized with the initial pose estimated in Sect. 4.2.

4 Real-Time Multi-person 3D Human Pose Estimation

In this section, we describe in detail the components of our fully automatic
algorithm which captures articulated skeleton motion of several subjects in gen-
eral scenes from monocular RGB input. The initialization phase is discussed in
Sects. 4.1 and 4.2, while the tracking phase is explained in Sect. 4.3.

4.1 Automatic 3D Skeletons Generation

Human motion capture algorithms require human 3D model with properly per-
sonalized skeleton and/or body shape and appearance to successfully track a
single person. Many algorithms consider model personalization as a different
problem and use manual or semi-automatic model generation approach, which
greatly reduces their applicability. In this section, we propose a novel automatic
approach that generates a skeleton specific to each person.

In [45], an automatic algorithm that jointly creates skeleton and body model
of a single person is presented. However, this algorithm requires many RGB cam-
eras to estimate the body model. In [19,20], the skeleton and the body model of
each person is generated in a semi-automatic way from a set of calibration poses
prior to motion recording. Nonetheless, in case of no control over the footage
and person motion, their method fails. Therefore, developing a simple, efficient,
and automatic human 3D skeleton estimation approach is very important as
it enables our solution to be adopted in more practical applications where the
manual model generation is not feasible. We propose the first skeleton generation
approach to automatically estimate skeletons for many persons in real-time.

In our approach, we generate a default skeleton for every person. The ini-
tial number of persons is automatically estimated given the 2D detections of
the first frame. Then, we adapt the bone length of each skeleton to match the
corresponding person. Our default skeleton consists of 25 bones and 26 joints.
Each joint is defined by an offset to its parent joint and a rotation represented in
axis-angle form. In total, the model consists of 73 parameters (70 rotational and
3 translational); see [19] for details. The anthropomorphic data tables [12] allow
to define the length of each bone in the skeleton as a function of the height of the
person. Figure 3 shows part of the anthropomorphic data table which defines the
relation between the length of the upper arm bone and the height of the person.
With these tables, the skeleton generation task is simplified to the estimation
of a single parameter (i.e. the height of the person). Inspired by [17,39], the
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height of each person can be estimated from monocular RGB camera by back-
projecting 2D features of an object into the 3D scene space. The output of this
step is a person-specific human 3D skeleton for every person in the scene.

4.2 Multi-person Skeleton Localization

Given the personalized skeleton, the motion capture process can not start with-
out initial 3D pose of each person. This essential initialization is, unfortunately,
neglected by many methods and solved with manual initialization step, or with
a different computationally expensive approach such as [8]. As our algorithm is
stable even with inaccurate initial poses, we simplify the initial pose estimation
problem to the estimation of the initial root position (i.e. 3D point between
hips) of each person. To this end, we use the heights H3D

i of each person i, their
2D body-part detections in the first frame Ji , and the monocular camera focal
length f . The individual heights H3D

i can be estimated as in Sect. 4.1, while the
2D body-parts detections Ji are estimated using the CNN-based algorithm; see
Sect. 4.3 for details. As the upper body is usually more visible than the lower
body, we use the height of the torso H3D

trs,i ≈ 0.3 ∗ H3D
i for estimating the root

depth. The 2D height of the torso H2D
trs,i is the distance between the neck jnck,j

and the root jrt,i = (jlhip,i + jrhip,i)/2. With this, the depth of the root is
calculated by:

z3Di =
H3D

trs,i ∗ f

H2D
trs,i

. (2)

Fig. 3. Part of the anthropometric data tables which is used for person-specific 3D
human skeletons generation: height data table (left), the corresponding table of upper
arm length [12] (right).
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Then, the 3D root position is calculated by:

{x3D
i , y3D

i , z3Di } = Φ−1(jxrt,i ∗ z3Di , jyrt,i ∗ z3Di , z3Di ) (3)

where Φ is the projection operator. Thereafter, each skeleton is automatically
moved such that its root position matches the root location of the corresponding
person in 3D space.

4.3 Skeleton Fitting for Dynamic Number of Persons

In the initialization phase, personalized skeletons and their initial 3D locations
are estimated in real-time once at the beginning of the tracking process. On the
other hand, the tracking phase is repeated for every frame. The first step of the
tracking phase is the estimation of the 2D body-parts positions. Recently, many
CNN based methods managed to accurately estimate these 2D body-parts posi-
tions [11,13,25]. Although, any of these methods can be used in our framework,
we used both [13] and [11] in our experiments. As [13] achieves state-of-the art
accuracy with multi-person, the majority of our results are based on this algo-
rithm. Therefore, in this section, we assume, without loss of generality, that 2D
body-part positions are estimated with [13].

The 2D body-part detection algorithm does not have any temporal relation
between consecutive frames. Thus, the order of the resulting 2D body-part detec-
tions in J = [J1, ..., Jprsn] for one frame can be different the previous frame. This
means that the body-parts positions Jm may correspond to a different person
in each frame. For this reason, the next step in our tracking phase is to asso-
ciate each existing 3D skeleton with the corresponding 2D detections Jm in each
frame. To this end, we define a similarity measure between the skeleton defined
by pose parameters Xk and Jm = [jm,1, ...jm,prt] where prt is the number of 2D
body part detections of one person. This is done by first projecting the 3D joint
positions defined by Xk into the 2D image plane using the projection operator Φ.
Thereafter, the distance between each projected 3D joint and the corresponding
2D detection is calculated. The final similarity between skeleton with index k
and detections in Jm is defined as follows:

SIMk,m =
nprt∑

l=1

‖Φ(fk,l(Xk)) − jm,l‖ (4)

where fk,l is the 3D joint position corresponding to the 2D body part jm,l. At
the end of this step, each skeleton with index k will be associated with the 2D
detection Ji where i = arg minx SIMk,x.

For tracking varying number of persons, we need to generate a new 3D skele-
ton for each person who enters the scene and remove the skeleton of those who
leave the scene. After associating each 3D skeleton with the corresponding 2D
detections Ji, some items of J may be left without a corresponding 3D skeleton.
These items correspond to either persons who just entered the scene or false
positive detection of a human. To distinguish between these two cases, we use
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the confidence of each body part detection in Ji which is an additional output
of the CNN-based approach. This confidence allows to compute a score for each
Ji which corresponds to probability of a new person entering the scene. For each
new Ji with score above the threshold α = 0.5, we generate 3D skeleton for the
corresponding person and estimate the respective initial 3D location. On the
other hand, in case of a person leaving the scene or largely occluded, Ji cor-
responding to an existing skeleton will either have very low score or disappear
from J. In both cases, we remove that skeleton.

Our multi-person skeleton fitting term measures the similarities between a
given skeleton pose Xn corresponding to one of the persons and 2D body-parts
positions Jn of that person. Similar to Eq. 4, we project each 3D joint position
and calculate the distance to the corresponding 2D detection jn,l. The final
fitting term is defined as:

EFIT (X, J) =
nprsn∑

n=1

nprt∑

l=1

w(jn,l) exp

(
−‖Φ(fn,l(Xn)) − jn,l‖2

σ2

)
(5)

where w(jn,l) is the confidence of the 2D body-parts detection jn,l. This confi-
dence is estimated by the CNN body-parts estimation method.

Applying per-frame pose estimation techniques on a video does not ensure
temporal consistency of motion. Thus, small pose inaccuracies lead to tempo-
ral jitter. Therefore, we combine our multi-person skeletons fitting energy with
temporal filtering and smoothing in a joint optimization framework to obtain an
accurate, temporally stable and robust result; see Eq. 1.

5 Experiments and Results

We demonstrate the effectiveness of our algorithm through experimental
evaluations of more than 20 challenging real world sequences. Some of these
sequences were acquired from community videos including varying number of
persons performing complex and fast motions. We also captured many outdoor
and indoor sequences with mobile-phone and spherical camera. One of the out-
door sequences was recorded in car with spherical camera to illustrate the use-
fulness of our algorithm for applications such as driving assistance system. We
performed live tracking of multiple persons at around 23Hz with low quality
webcam. In addition to that, we used many sequences from the Human3.6M
[26] and the Marconi [19] datasets. These sequences vary in numbers and iden-
tities of persons, complexity and speed of the motion, the lighting conditions,
cameras types (e.g. mobile-phone, GoPro, spherical cameras, and webcams), the
frame resolutions, and the frame rates. Our algorithm is the first multi-person
monocular human motion capture method which does not require any manual
work for 3D human model and initial pose adaptation. It automatically gen-
erates 3D skeletons and estimates initial poses for multiple person. It operates
with input images without the need of bounding box cropping. As a result of
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Fig. 4. Sample results with overlaid 2D skeletons estimated with Implementation 1
(top) and respective 3D reconstructions (bottom) which show successful multi-person
tracking in challenging scenarios. (a) shows multi-person pose results over YouTube
videos playing table tennis and fencing sports. (b) shows results over selected difficult
sequences from Marconi dataset. (c) shows pose estimation results inside a car and
outdoor scene recorded using a spherical RGB camera. (d) shows tracking results with
strong illumination changes in outdoor scene captured using mobile phone camera
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this, our experimental setup is very simple. Given the input images and the focal
length of a single RGB camera, we produce high quality reconstruction results.
Qualitative results can be viewed in accompanying supplementary video. The
run-time of our algorithm depends on the number of persons in the scene, the
complexity of the motion and the resolution of the input frames. Our compu-
tations are performed on a 8-core Xeon CPU and a GeForce GTX 1080 GPU.
Although our algorithm’s implementation is not yet well optimized for improved
run-time performance, average processing time of a single frame from a single
person sequence (e.g. the Greeting sequence from the Human3.6M dataset [26])
is 44 ms. The 2D body parts detection [13] takes 32 ms while the 3D skeleton
fitting takes 12 ms. Given the body parts detections of the first frame and the
height of each person, the initialization phase takes around 0.01 ms.

Our algorithm is not restricted to use a particular 2D body-parts detection
method. Hence, we show results of our algorithm with two different body parts
detection methods. The first implementation Implementation 1 uses [13] for
2D body-parts detections. This implementation is discussed in details in Sect. 4.
Notably, in contrast to other 2D body part detection methods, [13] does not
require cropping to track multi-person sequences. On the other hand, our second
implementation Implementation 2, which is based on [11], requires cropping
of every person. However, our algorithm can perform cropping automatically

Fig. 5. Sample images from the H3.6M dataset (left column) and the Marconi dataset
(right column) with overlaid 2D Skeleton along-with respective 3D pose recovery using
Implementation 2 .
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and without significant change to our original pipeline in Fig. 2. To this end,
the rough pose of each person is estimated by extrapolating his pose from the
previous frame. The bounding box of each person is estimated by projecting each
3D skeleton to the camera view. This allows to crop and scale each person. With
this additional automatic step, [11] can be used instead of [13] in our pipeline
for 2D body part detections.

Qualitative Results: We used our first implementation Implementation 1
to track mroe than 15 sequences. Sample frames from the tracked sequences are
shown in Figs. 1 and 4. Please, see the supplementary video for more detailed
tracking results. Our algorithm successfully estimated the pose parameters of
multiple persons in challenging outdoor and indoor sequences with monocu-
lar RGB camera. This shows the ability of our algorithm to successfully track
sequences with many (i.e. up to eight) persons performing complex and fast
motions under strong lighting variations and strong distortion. Previous monoc-
ular methods such as [36,37,57] fail to track these sequences in real-time. We also
tracked a sequence captured in car and several sequences captured with mobile-
phone. This shows that our approach is suitable for practical applications in dif-
ferent fields including VR. In Fig. 5, we show the 3D pose reconstruction results
based on our second implementation Implementation 2. Two sequences from
the public datasets the Human3.6M and the Marconi are successfully tracked.

To demonstrate the usefulness of our algorithm for real-time applications
(e.g. dynamically including multiple persons in a virtual environment using the
camera of the VR-headset), we tracked the motion of multiple persons from
live stream of webcam. Figure 6 shows that our real-time 3D pose estimation
provides a natural motion interface in challenging scenarios. Furthermore, we
capture sequence with a mobile-phone camera where several people enter and
leave the scene. Our algorithm succeed in automatically detecting the change in
number of persons and generating or deleting the corresponding 3D skeletons on
the fly while tracking; see the supplementary video.

Comparison: In Fig. 7, we compare the accuracy of our algorithm with the
accuracy of [18,37] on two challenging sequences. Our algorithm managed to
accurately track all the persons in two sequences; see the supplementary video
for more detailed tracking results. While [18] work only offline, [37] achieved
lower tracking accuracy for only one of the two persons in the scene.

System Components Evaluation: We quantitatively evaluate the importance
of the components of our algorithm by creating different alternatives of it. The
first alternative is constructed by removing the skeleton generation step. This
means that the default skeleton is used without adaptation to the tracked person.
The second alternative is constructed by removing the initial pose localization
step where the initial pose parameters are set to zero or to random values. We
evaluated these alternatives by tracking the Walking sequence from Human3.6M
dataset [26] which captures Subject S9. The Mean Per Joint Position Error
(MPJPE) with our complete algorithm is 90 mm while it is 460 mm without
the first alternative. The second alternative fails completely because the energy
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Fig. 6. The real-time 3D pose estimation with Implementation 1 (Top) and Imple-
mentation 2 (Bottom). Our algorithm provides a natural motion interface on images
from live webcam video.

Fig. 7. Side-by-side comparison of our method against the monocular single-person
human pose estimation methods of Mehta et al. [37] (top right) and the offline method
of Elhayek et al. [18] (bottom right) which tracks two persons with three cameras. Our
approach succeeds in accurately tracking all persons in the scene (left column).
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Fig. 8. Sample images from H3.6M sequences used for quantitative evaluations. Top
row shows overlaid 2D Skeletons and bottom row shows 3D visualizations of the cap-
tured skeletons. From left to right, we show tracking results of Directions, Posing and
Waiting sequences for Subject S9 whose Mean Per Joint Position Error is 153mm,
158 mm and 167 mm respectively.

function is non-convex which leads to stuck in a local maxima; see Fig. 9 and
the supplementary video.

Quantitative Evaluation: We quantitatively evaluate our algorithm using the
Directions, Posing and Waiting sequences from Human3.6M dataset [26] which
capture Subject S9. Figure 8 shows sample images with overlaid 2D skeletons
and respective 3D reconstructions from these sequences. The average error of
all frames of these three sequences is 159.33mm. [37] achieves lower error with
monocular RGB camera. However, the CNN body-parts detector of [37] is trained
on images from the test dataset (i.e. the Human3.6M dataset [26]). On the other
hand, the CNN body-parts detectors which we use, are trained on different
datasets such as the MPII Human Pose dataset [4].

Fig. 9. Importance of algorithmic components. Left: tracking result of our algorithm;
MPJPE 90 mm. Middle: an alternative of our algorithm constructed by removing the
skeleton generation step (i.e. using the default skeleton); MPJPE 460 mm. Right: second
alternative constructed by removing initial pose localization step which fails completely.
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Discussion: Our approach is subject to a few limitations. Currently, the depth
estimation of our algorithm is not very accurate, especially in case of occlusion
of wrists and ankles. This causes relatively higher 3D joint position errors in
comparison to other methods. However, this is also a common problem with
approaches relying on a monocular camera setup as depth estimation is severely
ill posed. Thus, a slight inaccuracy in the 2D body-parts estimation leads to big
error in the depth estimation. Unlike other methods, our approach is still able
to recover from the tracking failures, even after long occlusion of many body-
parts; see the supplementary video. Our tracking results of many sequences show
that our algorithm succeeds in challenging multi-person scenarios where all other
human motion tracking methods based on single RGB camera fail. Moreover, we
achieve high temporal stability and reasonable accuracy. This accuracy can also
be improved by using 2D body part detector which is more stable to occlusions.

6 Conclusion and Future Work

We have presented the first fully automatic method to estimate 3D kinematic
poses of multiple persons in temporally stable manner directly from a single RGB
camera. Our approach automatically detects the number of persons in the scene
and generates corresponding person-specific 3D skeletons based on anthropomet-
ric data tables. It also automatically estimates the initial 3D location of each
person which allows to define their coarse initial poses. In the tracking phase,
it fits each 3D skeleton to the corresponding 2D body-parts detections. These
detections can be estimated using any 2D body-part estimation method which
allows to easily upgrade our algorithm with any progress in 2D pose estimation.
Our algorithm dynamically generates 3D skeletons for persons who enter the
scene and delete the skeletons of those who leave. In contrast to previous works,
our fully automatic algorithm can operate with multiple persons in real-time
without the need of bounding boxes. This makes our algorithm optimal for VR
application. We have demonstrated the effectiveness of our system by tracking
many sequences with strong distortion in videos, strong illumination changes,
and multiple persons performing complex motions. Moreover, we have shown
results in real-time scenarios, including live streaming from a webcam. As future
work, we are going to investigate the problem of depth estimation uncertainty
which could be reduced with domain specific knowledge. Furthermore, in order
to improve the run-time of our algorithm, we intend to employ more advanced
optimization algorithms.
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Abstract. Monocular dense 3D reconstruction of deformable objects is
a hard ill-posed problem in computer vision. Current techniques either
require dense correspondences and rely on motion and deformation cues,
or assume a highly accurate reconstruction (referred to as a template)
of at least a single frame given in advance and operate in the manner
of non-rigid tracking. Accurate computation of dense point tracks often
requires multiple frames and might be computationally expensive. Avail-
ability of a template is a very strong prior which restricts system opera-
tion to a pre-defined environment and scenarios. In this work, we propose
a new hybrid approach for monocular non-rigid reconstruction which we
call Hybrid Deformation Model Network (HDM-Net). In our approach,
a deformation model is learned by a deep neural network, with a com-
bination of domain-specific loss functions. We train the network with
multiple states of a non-rigidly deforming structure with a known shape
at rest. HDM-Net learns different reconstruction cues including texture-
dependent surface deformations, shading and contours. We show gener-
alisability of HDM-Net to states not presented in the training dataset,
with unseen textures and under new illumination conditions. Experi-
ments with noisy data and a comparison with other methods demon-
strate the robustness and accuracy of the proposed approach and sug-
gest possible application scenarios of the new technique in interventional
diagnostics and augmented reality.

Keywords: Monocular non-rigid reconstruction
Hybrid deformation model · Deep neural network

1 Introduction

The objective of monocular non-rigid 3D reconstruction (MNR) is the recovery of
a time-varying geometry observed by a single moving camera. In the general case,
none of the states is observed from multiple views, and at the same time, both
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the object and the camera move rigidly. This problem is highly ill-posed in the
sense of Hadamard since multiple states can cause similar 2D observations. To
obtain a reasonable solution, multiple additional priors about the scene, types of
motions and deformations as well as camera trajectory are required. Application
domains of MNR are numerous and include robotics, medical applications and
visual communication systems. MNR also has a long history in augmented reality
(AR), and multiple applications have been proposed over the last twenty years
ranging from medical systems to communication and entertainment [15,38].

Fig. 1. Reconstruction of an endoscopically textured surface with the proposed HDM-
Net. The network is trained on a textured synthetic image sequence with ground truth
geometry and accurately reconstructs unseen views in a small fraction of a second
(∼5 ms). Our architecture is potentially suitable for real-time augmented reality appli-
cations.

All approaches to MNR can be divided into two main model-based classes—
non-rigid structure from motion (NRSfM) and template-based reconstruction
(TBR). NRSfM relies on motion and deformation cues and requires dense point
correspondences over multiple frames [26,31]. Most accurate methods for dense
correspondences operate on multiple frames and are prohibitively slow for real-
time applications [66]. Moreover, their accuracy is volatile and influenced by
changing illumination and shading effects in the scene. TBR, per definition,
assumes a known template of the scene or an object, i.e., a highly accurate
reconstruction for at least one frame of the scene [55,80]. Sometimes, the tem-
plate also needs to be accurately positioned, with a minimal initial reprojection
error to the reference frame. In this context, TBR can also be comprehended
as non-rigid tracking [62]. Obtaining a template is beyond the scope of TBR,
though joint solutions were demonstrated in the literature. In some cases, a
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template is obtained under the rigidity assumption, which might not always be
fulfiled in practical applications [80].

Apart from the main classes, methods for monocular scene flow (MSF) and
hybrid NRSfM can be named. MSF jointly reconstructs non-rigid geometry and
3D displacement fields [48]. In some cases, it relies on a known camera trajectory
or proxy geometry (an initial coarse geometry estimate) [7]. In hybrid NRSfM, a
scene-specific shape prior is obtained on-the-fly under non-rigidity, and the input
is a sequence of point tracks [31]. Geometry estimation is then conditioned upon
the shape prior.

MNR has only recently entered the realm of dense reconstructions [7,58,80].
The dense setting brings additional challenges for augmented reality applications
such as scalability with the number of points and increased computational and
memory complexity.

1.1 Contributions

The scope of this paper is general-purpose MNR, i.e., the reconstruction scenar-
ios are not known in advance. We propose deep neural network (DNN) based
deformation model for MNR. We train DNN with a new synthetically generated
dataset covering the variety of smooth and isometric deformations occurring in
the real world (e.g., clothes deformations, waving flags, bending paper and, to
some extent, biological soft tissues). The proposed DNN architecture combines
supervised learning with domain-specific loss functions. Our approach with a
learned deformation model—Hybrid Deformation Model Network (HDM-Net)—
surpasses performances of the evaluated state-of-the-art NRSfM and template-
based methods by a considerable margin. We do not require dense point tracks or
a well-positioned template. Our initialisation-free solution supports large defor-
mations and copes well with several textures and illuminations. At the same
time, it is robust to self-occlusions and noise. In contrast to existing DNN archi-
tectures for 3D, we directly regress 3D point clouds (surfaces) and depart from
depth maps or volumetric representations.

In the context of MNR methods, our solution can be seen as a TBR with
considerably relaxed initial conditions and a broader applicability range per
single learned deformation model. Thus, it constitutes a new class of methods—
instead of a template, we rather work with a weak shape prior and a shape at
rest for a known scenario class.

We generate a new dataset which fills a gap for training DNNs for non-rigid
scenes1 and perform series of extensive tests and comparisons with state-of-the-
art MNR methods. Figure 1 provides an overview of the proposed approach—
after training the network, we accurately infer 3D geometry of a deforming sur-
face. Figure 2 provides a high-level overview of the proposed architecture.

The rest of the paper is partitioned in Related Work (Sect. 2), Architecture
of HDM-Net (Sect. 3), Geometry Regression and Comparisons (Sect. 5) and
Concluding Remarks (Sect. 6) Sections.

1 The dataset is available upon request.
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2 Related Work

In this section, we review several algorithm classes and position the proposed
HDM-Net among them.

2.1 Non-rigid Structure from Motion

NRSfM requires coordinates of tracked points throughout an image sequence.
The seminal work of Bregler et al. [10] marks the origin of batch NRSfM. It
constrained surfaces to lie in a linear subspace of several unknown basis shapes.
This idea was pursued by several successor methods [9,51,73]. Since the basis
shapes, as well as their number, are unknown, this subclass is sensitive to noise
and parameter choice. Furthermore, an optimal number of basis shapes allow-
ing to express all observed deformation modes does not necessarily always exist
[73]. Along with that, multiple further priors were proposed for NRSfM includ-
ing temporal smoothness [34,82], basis [79], inextensibility [13,22,75] and shape
prior [12,31,67], among others. The inextensibility constraint penalises devia-
tions from configurations increasing the total surface area. In other words, non-
dilatable states are preferred. Several methods investigate a dual trajectory basis
and considerably reduce the number of unknowns [5], whereas the other ones
explicitly model deformations using physical laws [4]. Multiple general-purpose
unsupervised learning techniques were successfully applied to NRSfM including
non-linear dimensionality reduction [67] (diffusion maps), [34,37] (kernel trick)
and expectation-maximisation [3,43]. A milestone in NRSfM was accompanied
by a further decrease in the number of unknowns and required prior knowledge
for reconstruction. Thus, some of the methods perform a low-rank approxima-
tion of a stacked shape matrix [18,26]. A further milestone is associated with
the ability to perform dense reconstructions [3,6,26,31,33].

Several methods allow sequential processing [1,52,82]. Starting from an initial
estimate obtained on several first frames of a sequence, they perform reconstruc-
tions upon arrival of every new frame in an incremental manner. The accuracy
of sequential methods is consistently lower than those of the batch counterparts.
While still relying on point tracks, they can enable lowest latencies in real-time
and interactive applications. Several methods learn and update an elastic model
of the observed scene on-the-fly [2] (similarly to the sequential methods, point
tracks over the complete sequence are not required). Solving the underlying
equations might be slow, and the solution was demonstrated only for sparse
settings.

2.2 Template-Based Reconstruction

Approaches of this class assume a known template, i.e., an accurate reconstruc-
tion of at least one frame of the sequence. Most methods operate on a short
window of frames or single frames. Some TBR methods are known as non-rigid
trackers [62]. Early physics-based techniques formalised 3D reconstruction with
elastic models and modal analysis [15,47]. They assumed that some material
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properties (such as the elastic modulus) of the surface are known and could
handle small non-linear deformations.

Multiple priors developed for NRSfM proved their effectiveness for TBR
including isometry [11,49,55,60], statistical priors [59], temporal smoothness
[61,80], inextensibility priors [11,55] and mechanical priors in an improved form
[38,46]. Moreover, modelling image formation process by decomposing observed
intensities into lighting, shading and albedo components was also shown to
improve tracking accuracy [24,25,45,49,77].

2.3 Monocular Scene Flow

A somewhat exotic class of approaches developed in parallel to NRSfM and TBR
is monocular scene flow (MSF). Birkbeck etal.’s approach can handle non-rigid
scenes relying on a known constant camera motion [7]. While camera trajectory
can be sometimes available in AR systems, there is no guarantee of its linearity.
In [48], a variational solution to rigid multi-body scenes was proposed. Recently,
Xiao et al. proposed an energy-based method for rigid MSF in the context of
automotive scenarios. Their approach is based on a temporal velocity constancy
constraint [78].

In general, MSF methods are restricted in the handling of non-rigid surfaces.
One exception—NRSfM-Flow of Golyanik et al. [32]—takes advantage of known
2D-3D correspondences and relies on batch NRSfM techniques for an accurate
scene flow estimation of non-rigid scenes. It inherits the properties of NRSfM
and does not assume a known camera trajectory or proxy geometry.

2.4 Specialised Models for Faces and Bodies

For completeness, we provide a concise overview of specialised approaches. Com-
pared to TBR, they are dedicated to the reconstruction of single object classes
like human faces [8,28,63,65] or human bodies [35,76]. They do not use a single
prior state (a template), but a whole space of states with feasible deformations
and variations. The models et al. are learned from extensive data collections
showing a wide variety of forms, expressions (poses) and textures. In almost
all cases, reconstruction with these methods means projection into the space
of known shapes. To obtain accurate results, post-processing steps are required
(e.g., for transferring subtle details to the initial coarse estimates). In many
applications, solutions with predefined models might be a right choice, and their
accuracy and speed may be sufficient.

2.5 DNN-Based 3D Reconstruction

In the recent three years, several promising approaches for inferring 2.5D
and 3D geometry have been developed. Most of them regress depth maps
[20,27,30,44,68] or use volumetric representations [14,57] akin to sign distance
fields [17]. Currently, the balance of DNN-based methods for 3D reconstruction
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is perhaps in favour of face regressors [19,40,63,69]. The alternatives to sparse
NRSfM of Tome et al. and Zhou et al. work exclusively for human poses [72,81].
The 3D-R2N2 network generates 3D reconstructions from single and multiple
views and requires large data collections for training [14]. In contrast to several
other methods, it does not require image annotations. Point set generation net-
work of Fan et al. [21] is trained for a single view reconstruction of rigid objects
and directly outputs point sets. More and more methods combine supervised
learning and model-based losses thus imposing additional problem-specific con-
straints [21,27,69]. Also, this has often the side effect of decreasing the volume
requirements on the datasets [30,69]. The work of Pumarola et al. [56] is most
closely related to ours. The architecture is separated into three sub-networks
which have different roles—creating heat-map of 2D images, depth estimation
and 3D geometry inference. Those sub-networks are jointly trained. Our archi-
tecture is relatively simple. Encoder and decoder are employed and the output is
penalized with three kinds of losses which have different geometrical properties—
3D geometry, smooth surface and contour information after projection onto a
2D plane.

2.6 Attributes of HDM-Net

In this section, we position the proposed approach among the vast body of the
literature on MNR. HDM-Net bears a resemblance to DNN-based regressors
which use encoder-decoder architecture [69]. In contrast to many DNN-based
3D regressors [14,21,69], our network does not include fully connected layers as
they impede generalisability (lead to overfitting) as applied to MNR. As most
3D reconstruction approaches, it contains a 3D loss.

In many cases, isometry is an effective and realistic constraint for TBR, as
shown in [13,55]. In HDM-Net, isometry is imposed through training data. The
network learns the notion of isometry from the opposite, i.e., by not observing
other deformation modes. Another strong constraint in TBR is contour informa-
tion which, however, has not found wide use in MSR, with only a few exceptions
[36,74]. In HDM-Net, we explicitly impose contour constraints by comparing
projections of the learned and ground truth surfaces.

Under isometry, the solution space for a given contour is much better con-
strained compared to the extensible cases. The combined isometry and contour
cues enable efficient occlusion handling in HDM-Net. Moreover, contours enable
texture invariance up to a certain degree, as a contour remains unchanged irre-
spective of the texture. Next, through variation of light source positions, we train
the network for the notion of shading. Since for every light source configuration,
the underlying geometry is the same, HDM-Net acquires awareness of varying
illumination. Besides, contours and shading in combination enable reconstruc-
tion of texture-less surfaces. To summarise, our framework has unique properties
among MSR methods which are rarely found in other MNR techniques, espe-
cially when combined.
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Fig. 4. Our contour loss penalises deviations between reprojections of the regressed
geometry and reprojections of the ground truth.

3 Architecture of HDM-Net

We propose a DNN architecture with encoder and decoder depicted in Fig. 2
(a general overview). The network takes as an input an image of dimensions
224 × 224 with three channels. Initially, the encoder extracts contour, shading
and texture deformation cues and generates a compact latent space representa-
tion of dimensions 28 × 28 × 128. Next, the decoder applies a series of deconvo-
lutions and outputs a 3D surface of dimensions 73 × 73 × 3 (a point cloud). It
lifts the dimensionality of the latent space until the dimensionality of activation
becomes identical to the dimensionality of ground truth. The transition from the
implicit representation into 3D occurs on the later stage of decoder through a
deconvolution. Figure 3 provides a detailed clarification about the structures of
encoder and decoder.

As can be seen in Figs. 2 and 3, we skip some connections in HDM-Net to
avoid vanishing gradients, similar to resnet [39]. Due to the nature of convolu-
tions, our deep network might potentially lose some important information in the
forward path which might be advantageous in the deeper layers. Thus, connec-
tion skipping compensates for this side effect—for each convolution layer—which
results in the increased performance. Moreover, in the backward path, short-
cut connections help to overcome the vanishing gradient problem, i.e., a series
of numerically unstable gradient multiplications leading to vanishing gradients.
Thus, the gradients are successfully passed to the shallow layers.

Fully connected (FC) layers are often used in classification tasks [42]. They
have more parameters than convolution layers and are known as a frequent cause
of overfitting. We have tried FC layers in HDM-Net and observed overfitting
on the training dataset. Thus, FC layers reduce generalisation ability of our
network. Furthermore, spatial information is destroyed as the data in the decoder
is concatenated before being passed to the FC layer. In our task, needless to say,
spatial cues are essential for 3D regression. In the end, we omit FC layers and
successfully show generalisation ability of 3D reconstruction on the test data.

3.1 Loss Functions

Let S = {Sf}, f ∈ {1, . . . , F} denote predicted 3D states, and SGT = {SGT
f } is

the ground truth geometry; F is the total number of frames and N is the number
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of points in the 3D surface. In HDM-Net, contour similarity and the isometry
constraint are the key innovations and we apply three types of loss functions
summarised into the loss energy:

E(S,SGT ) = E3D(S,SGT ) + Eiso(S) + Econt.(S,SGT ). (1)

3D Error: The 3D loss is the main loss in 3D regression. It penalises the differ-
ences between predicted and ground truth 3D states and is common in training
for 3D data:

E3D(S,SGT ) =
1
F

F∑

f=1

‖SGT
f − Sf‖2F , (2)

where ‖·‖F denotes the Frobenius norm. Note that we take an average of the
squared Frobenius norms of the differences between the learned and ground truth
geometries.

Isometry Prior: To additionally constrain the regression space, we embed
isometry loss which enforces the neighbouring vertices to be located close to
each other. Several versions of inextensibility and isometry constraints can be
found in MSR—a common one is based on differences between Euclidean and
geodesic distances. For our DNN architecture, we choose a differentiable loss
which performs Gaussian smoothing of Sf and penalises the difference between
the unembellished and smoothed version Ŝi:

Eiso(S) =
1
F

F∑

f=1

‖Ŝf − Sf‖F , (3)

with

Ŝf =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
∗ Sf , (4)

where ∗ denotes a convolution operator and σ2 is the variance of Gaussian.

Fig. 5. Camera poses used for the dataset generation (a); different textures applied to
the dataset: endoscopy, graffiti, clothes and carpet (b-top) and different illuminations
(b-bottom).

Contour Loss: If the output of the network and the ground truth coordinates
are similar, the contour shapes after projection onto a 2D plane have to be
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similar as well. The main idea of the reprojection loss is visualised in Fig. 4-(a).
After the inference of the 3D coordinates by the network, we project them onto
the 2D plane and compute the difference between the two projected contours.
If focal lengths fx, fy as well as the principal point (cx, cy) of the camera are
known (the K used for the dataset generation is provided in Sect. 4), observed
3D points p = (px, py, pz) are projected to the image plane by the projection
operator π : R3 → R

2:

p′(u, v) = π(p) =

(
fx

px

pz
+ cx, fy

py

pz
+ cy

)T

, (5)

where p′ is the 2D projection of p with 2D coordinates u and v. Otherwise, we
apply an orthographic camera model.

A näıve shadow casting of a 3D point cloud onto a 2D plane is not differen-
tiable, i.e., the network cannot backpropagate gradients to update the network
parameters. The reason is twofold. In particular, the cause for indifferentiability
is the transition from point intensities to binary shadow indicators with an ordi-
nary step function (the numerical reason) using point coordinates as indexes on
the image grid (the framework-related reason).

Figure 4-(b) shows how we circumvent this problem. The first step of the
procedure is the projection of 3D coordinates onto a 2D plane using either a
perspective or an orthographic projection. As a result of this step, we obtain
a set of 2D points. We generate K = 732 translation matrices Tj =

(
1 0 u
0 1 v

)

using 2D points and a flow field tensor of dimension K × 99 × 99 × 2 (the
size of each binary image is 99 × 99). Next, we apply bilinear interpolation
[41] with generated flow fields on the replicated basis matrix B K times and
obtain K translation indicators. B99×99 is a sparse matrix with only a single
central non-zero element which equals to 1. Finally, we sum up all translation
indicators and softly threshold positive values in the sums to ≈ 1, i.e., our shadow
indicator. Note that to avoid indifferentiability in the last step, the thresholding
is performed by a combination of a rectified linear unit (ReLU) and tanh function
(see Fig. 4-(b)):

τ(I (sf (n))) = max(tanh(2Sf (n)), 0), (6)
where n ∈ {1, . . . , N} denotes the point index, sf (n) denotes a reprojected point
Sf (n) in frame f , and I (·) fetches intensity of a given point. We denote the
differentiable projection operator and differentiable soft thresholding operator
by the symbols π†(·) and τ(·) respectively. Finally, the contour loss reads

Econt.(S,SGT ) =
1
F

F∑

f=1

‖τ
(
π†(Sf

)) − τ
(
π†(SGT

f

))‖2F . (7)

Note that object contours correspond to 0–1 transitions.

4 Dataset and Training

For our study, we generated a dataset with a non-rigidly deforming object
using Blender [23]. In total, there are 4648 different temporally smooth 3D
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deformation states with structure bendings, smooth foldings and wavings, ren-
dered under Cook-Torrance illumination model [16] (see Fig. 1 for the exem-
plary frames from our dataset). We have applied five different camera poses,
five different light source positions and four different textures corresponding to
the scenarios we are interested in—endoscopy, graffiti (it resembles a waving
flag) clothes and carpet (an example of an arbitrary texture). The endoscopic
texture is taken from [29]. Illuminations are generated based on the scheme in
Fig. 5-(a), the textures and illuminations are shown in Fig. 5-(b). We project
the generated 3D scene by a virtual camera onto a 2D plane upon Eq. (5), with
K =

(
280 0 128
0 497.7 128
0 0 1

)
. The background in every image is of the same opaque colour.

We split the data into training and test subsets in a repetitive manner, see Fig. 6
for the pattern. We train HDM-Net jointly on several textures and illuminations,
with the purpose of illumination-invariant and texture-invariant regression. One
illumination and one texture are reserved for the test dataset exclusively. Our
images are of the dimensions 256 × 256. They reside in 15.2 Gb of memory, and
the ground truth geometry requires 1.2 Gb (in total, 16.4 Gb). The hardware
configuration consists of two six-core processors Intel(R) Xeon(R) CPU E5-1650
v4 running at 3.60 GHz, 16 GB RAM and a GEFORCE GTX 1080Ti GPU with
11 GB of global memory. In total, we train for 95 epochs, and the training takes
two days in pytorch [53,54]. The evolution of the loss energy is visualised in
Fig. 11-(a). The inference of one state takes ca. 5 ms.

Fig. 6. The pattern of the training and test datasets.

5 Geometry Regression and Comparisons

We compare our method with the template-based reconstruction of Yu et al.
[80], variational NRSfM approach (VA) of Garg et al. [26] and NRSfM method
of Golyanik et al. [33]—Accelerated Metric Projections (AMP). We use an opti-
mised heterogeneous CPU-GPU version of VA written in C++ and CUDA C
[50]. AMP is a C++ CPU version which relies on an efficient solution of a semi-
definite programming problem and is currently one of the fastest batch NRSfM
methods. For VA and AMP, we compute required dense point tracks. Follow-
ing the standard praxis in NRSfM, we project the ground truth shapes onto a
virtual image plane by a slowly moving virtual camera. Camera rotations are
parametrised by Euler angles around the x-, y- and z-axes. We rotate for up to
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20◦ around each axis, with five degrees per frame. This variety in motion yields
minimal depth changes required for an accurate initialisation in NRSfM. We
report runtimes, 3D error

e3D =
1
F

F∑

f=1

‖SGT
f − Sf‖F
‖SGT

f ‖F (8)

and standard deviation σ of e3D. Before computing e3D, we align Sf and the
corresponding SGT

f with Procrustes analysis.
Runtimes, e3D and σ for all three methods are summarised in Table 1. AMP

achieves around 30 fps and can execute only for 100 frames per batch at a
time. However, this estimate does not include often prohibitive computation
time of dense correspondences with multi-frame optical flow methods such as
[66]. Note that runtime of batch NRSfM depends on the batch size, and the
batch size influences the accuracy and ability to reconstruct. VA takes advantage
of a GPU and executes with 2.5 fps. Yu et al. [80] achieves around 0.3 fps. In
contrast, HDM-Net processes one frame in only 5 ms. This is by far faster than
the compared methods. Thus, HDM-Net can compete in runtime with rigid
structure from motion [71]. The runtime of the latter method is still considered
as the lower runtime bound for NRSfM2.

At the same time, the accuracy of HDM-Net is the highest among all tested
methods. Selected results with complex deformations are shown in Fig. 7. We see
that Yu et al. [80] copes well with rather small deformations, and our approach
accurately resolves even challenging cases not exposed during the training. In
the case of Yu et al. [80], the high e3D is explained by a weak handling of self-
occlusions and large deformations. In the case of NRSfM methods, the reason
for the high e3D is an inaccurate initialisation. Moreover, VA does not handle
foldings and large deformations well.

Table 3 summarises e3D for our method under different illumination condi-
tions. We notice that our network copes well with all generated illuminations—
the difference in e3D is under 3%. Table 2 shows e3D comparison for different
textures. Here, the accuracy of HDM-Net drops on the previously unseen tex-
ture by the factor of three, which still corresponds to reasonable reconstructions
with the captured main deformation mode. Another quantitative comparison is
shown in Fig. 9. In this example, all methods execute on the first 100 frames of
the sequence. AMP [33] captures the main deformation mode with e3D = 0.1564
but struggles to perform a fine-grained distinction (in Table 1, e3D is reported
over the sequence of 400 frames, hence the differing metrics). VA suffers under an
inaccurate initialisation under rigidity assumption and Yu et al. [80], by contrast,
does not recognise the variations in the structure. All in all, HDM-Net copes well
with self-occlusions. Graphs of e3D as functions of the state index under vary-
ing illuminations and textures can be found in Fig. 11-(b,c). Table 4 shows the

2 When executed in a batch of 100 frames with 732 points each, a C++ version of [71]
takes 1.47 ms per frame on our hardware; for 400 frames long batch, it requires 5.27
ms per frame.



64 V. Golyanik et al.

F
ig
.
7
.
S
el

ec
te

d
re

co
n
st

ru
ct

io
n

re
su

lt
s

o
n

en
d
o
sc

o
p
ic

a
ll
y

te
x
tu

re
d

su
rf

a
ce

s
fo

r
H

D
M

-N
et

(o
u
r

m
et

h
o
d
)

a
n
d

Y
u

et
a
l.

[8
0
].



HDM-Net: Monocular Non-rigid 3D Reconstruction 65

Table 1. Per-frame runtime t in sec-
onds, e3D and σ comparisons of Yu et al.
[80], AMP [33] and HDM-Net (proposed
method).

Yu et al. [80] AMP [33] VA [26] HDM-Net

t, s 3.305 0.035 0.39 0.005

e3D 1.3258 1.6189 0.46 0.0251

σ 0.0077 1.23 0.0334 0.03

Table 2. Comparison of 3D error for
different textures and the same illumi-
nation (number 1).

endoscopy graffiti clothes carpet

e3D 0.0485 0.0499 0.0489 0.1442

σ 0.01356 0.022 0.02648 0.02694

Table 3. Comparison of 3D error for
different illuminations.

illum. 1 illum. 2 illum. 3 illum. 4 illum. 5

e3D 0.07952 0.0801 0.07942 0.07845 0.07827

σ 0.0525 0.0742 0.0888 0.1009 0.1123

Table 4. Comparison of effects of loss func-
tions.

3D 3D + Con. 3D + Iso. 3D + Con. + Iso.

e3D 0.0698 0.0688 0.0784 0.0773

σ 0.0761 0.0736 0.0784 0.0789

Fig. 8. Comparison of 3D reconstruc-
tion with 3D error (top row) and 3D
error + isometry prior (bottom row)

Fig. 9. Qualitative comparisons of
ground truth (a), HDM-Net (proposed
method) (b), AMP [33] (c), VA [26] (d)
and Yu et al. [80] (e) on several frames
of our test sequence from the first 100
frames (each column corresponds to one
frame).

comparison of e3D using networks trained with various combinations of loss func-
tions. 3D + Con. shows the lowest e3D and applying isometry prior increases
e3D. Since isometry prior is smoothing loss, the 3D grid becomes smaller in
comparison to the outputs without isometry prior hence higher e3D. However,
as shown in Fig. 8, isometry prior allows the network to generate smoother 3D
geometries preserving deformation states.

Next, we evaluate the performance of HDM-Net on noisy input images.
Therefore, we augment the dataset with increasing amounts of uniform
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Fig. 10. Exemplary reconstructions from real images obtained by HDM-Net (music
notes, a fabric, surgery and an air balloon)

Fig. 11. Graphs of e3D for varying illuminations (for endoscopy texture), varying tex-
tures (for illumination 1) as well as six states under increasing amount of noise. Note
that in b/ and c/, only the errors obtained on the test data are plotted. For c/,
HDM-Net was trained on a subset of training states (three main textures and one
illumination).
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salt-pepper noise. Figure 11-(d) shows the evolution of the e3D as a function
of the amount of noise, for several exemplary frames corresponding to different
input difficulties for the network. We observe that HDM-Net is well-posed w.r.t
noise—starting from the respective values obtained for the noiseless images, the
e3D increases gradually.

We tested HDM-Net on several challenging real images. Figure 10 shows the
tested images and our reconstructions. We recorded a music note image for an
evaluation of our network in real-world scenario. Despite different origin of the
inputs (music notes, a fabric [70], an endoscopic view during a surgery [29] and
an air balloon [64]), HDM-Net produces realistic and plausible results. Note how
different are the regressed geometries which suggests the generalisation ability
of the proposed solution.

In many real-world cases, HDM-Net produces acceptable results. However,
if the observed states differ a lot from the states in the training data, HDM-
Net might fail to recognise and regress the state. This can be addressed by an
extension or tailoring of the data set for specific cases. Adding training data
originating from motion and geometry capture of real objects might also be an
option.

6 Concluding Remarks

We have presented a new monocular surface recovery method with a deforma-
tion model replaced by a DNN—HDM-Net. The new method reconstructs time-
varying geometry from a single image and is robust to self-occlusions, changing
illumination and varying texture. Our DNN architecture consists of an encoder,
a latent space and a decoder, and is furnished with three domain-specific losses.
Apart from the conventional 3D data loss, we propose isometry and reprojec-
tion losses. We train HDM-Net with a newly generated dataset with ca. four
an a half thousands states, four different illuminations, five different camera
poses and three different textures. Experimental results show the validity of our
approach and its suitability for reconstruction of small and moderate isometric
deformations under self-occlusions. Comparisons with one template-based and
two template-free methods have demonstrated a higher accuracy in favour of
HDM-Net. Since HDM-Net is one of the first approach of the new kind, there
are multiple avenues for investigations and improvements. One apparent direc-
tion is the further augmentation of the test dataset with different backgrounds,
textures and illuminations. Next, we are going to test more advanced architec-
tures such as generative adversarial networks and recurrent connections for the
enhanced temporal smoothness. Currently, we are also investigating the rele-
vance of HDM-Net for medical applications with augmentation of soft biological
tissues.
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DYMANICS (01IW15003) of the German Federal Ministry of Education and Research
(BMBF). The authors thank NVIDIA Corporation for the hardware donations.



68 V. Golyanik et al.

References

1. Agudo, A., Agapito, L., Calvo, B., Montiel, J.M.M.: Good vibrations: a modal
analysis approach for sequential non-rigid structure from motion. In: Computer
Vision and Pattern Recognition (CVPR), pp. 1558–1565 (2014)

2. Agudo, A., Moreno-Noguer, F.: Force-based representation for non-rigid shape and
elastic model estimation. Trans. Pattern Anal. Mach. Intell. (TPAMI) 40(9), 2137–
2150 (2018)

3. Agudo, A., Moreno-Noguer, F.: A scalable, efficient, and accurate solution to non-
rigid structure from motion. Comput. Vis. Image Underst. (CVIU), 167, 121–133
(2018)

4. Agudo, A., Moreno-Noguer, F., Calvo, B., Montiel, J.M.M.: Sequential non-rigid
structure from motion using physical priors. Trans. Pattern Anal. Mach. Intell.
(TPAMI) 38, 979–994 (2016)

5. Akhter, I., Sheikh, Y., Khan, S., Kanade, T.: Trajectory space: a dual repre-
sentation for nonrigid structure from motion. Trans. Pattern Anal. Mach. Intell.
(TPAMI) 33(7), 1442–1456 (2011)

6. Ansari, M., Golyanik, V., Stricker, D.: Scalable dense monocular surface recon-
struction. In: International Conference on 3D Vision (3DV) (2017)
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Abstract. We present a system that enables a novice user to acquire a
large indoor scene in minutes as a collection of images sufficient for five
degrees-of-freedom virtual navigation by image morphing. The user walks
through the scene wearing an augmented reality head-mounted display
(AR HMD) enhanced with a panoramic video camera. The AR HMD
shows a 2D grid of a dynamically generated floor plan, which guides
the user to acquire a panorama from each grid cell. After acquisition,
panoramas are preliminarily registered using the AR HMD tracking data,
corresponding features are detected in pairs of neighboring panoramas,
and the correspondences are used to refine panorama registration. The
registered panoramas and their correspondences support rendering the
scene interactively with any view direction and from any viewpoint on the
acquisition plane. An HMD VR interface guides the user who optimizes
visualization fidelity interactively, by aligning the viewpoint with one of
the hundreds of acquisition locations evenly sampling the floor plane.

Keywords: Augmented reality · 3D acquisition
Image-based rendering

1 Introduction

Applications such as virtual tourism, real estate advertisement, or cultural her-
itage preservation require rendering real world scenes convincingly at interac-
tive rates. However, efficient photorealistic acquisition of real world scenes is a
challenging problem. Traditional texture mapped geometric models are difficult
to acquire to a level of completeness necessary for high-fidelity rendering. The
alternative approach of image-based modeling and rendering (IBMR) has been
proposed over twenty years ago. The scene is captured with a database of rays,
which is queried at run time to show the scene from the desired view. Assem-
bling the output image is fast, and good results are obtained as long as the
image-based model covers densely the entire viewing volume.

However, efficient image-based modeling of a large indoor space remains
an open problem. Practical image-based modeling approaches acquire 2D ray
databases, i.e., panoramas, which confine the user to the acquisition location.
Image-based modeling that enables virtual scene navigation with more degrees
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Fig. 1. AR-guided acquisition (a), acquisition map visualization (b), guided VR visu-
alization frame from viewpoint at acquisition location (c) at barycenter of acquisition
location triplet (d), and at midpoint of acquisition path segment (e). (Color figure
online)

of freedom have the disadvantages of expensive acquisition devices, of long acqui-
sition times, and of reliance on operator expertise. Another challenge is the lack
of immediate feedback during acquisition, which makes it difficult for the user to
capture the scene reliably from all necessary viewpoints. Returning to the scene
long after initial acquisition to acquire additional viewpoints is impractical.

After acquisition, the panoramas are processed offline with a pipeline that
preregisters the panoramas using the AR HMD tracking data, triangulates acqui-
sition locations, refines panorama registration using corresponding features in
panorama through a RANSAC approach, enriches the set of correspondences
using the scene geometry proxy acquired by the AR HMD, and builds panorama
3D morphing meshes by triangulating correspondences.

The resulting 3D morphing meshes supports interactive five degree of free-
dom (5-DOF) visualization through a virtual reality (VR) HMD, with correct
depth perception. The desired image is rendered by morphing and blending the
three panoramas that define the acquisition location triangle that contains the
viewpoint. We do not focus on the difficult task of reconstructing a high-fidelity
6-DOF 3D mesh; instead, we recognize that most reasonable views of the scene
will be on the 2D plane near head height and five degrees of freedom sufficiently
describes the scene.
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Like any image-based model, our model caters to the set of all possible output
views with non-uniform fidelity. We allow the user to take advantage of the
highest fidelity provided by our model by displaying through the VR HMD a
visualization map with the current viewpoint position and the nearby panorama
acquisition locations. Therefore, the VR HMD does not only show the scene
to the user, but also guides the user who can optimize visualization quality
interactively by easily aligning their viewpoint with the acquisition viewpoints.

The frame in Fig. 1c has a viewpoint that is near one of the acquisition
locations, where the morph converges to the identity function, and artifact-
free frames are rendered by resampling the acquisition panorama. The frame in
Fig. 1d has a viewpoint (yellow dot at visualization map center) that is between
its neighboring acquisition locations (white dots on map). Parts of the scene rich
with correspondences, such as the book shelves, doors, walls, and floors, are visu-
alized with high quality. Parts of the scene where correspondences are sparse,
such as the nearby geometry in the bottom left corner of the frame and the near
row of ceiling spotlights, exhibit ghosting artifacts. The visualization map can
also show the acquisition path (gray line segments in Fig. 1e). When the user
translates the viewpoint along a segment of the acquisition path, a high-fidelity
visualization is provided by morphing between two consecutive panoramas saved
with higher density along the acquisition path (green circles in Fig. 1e). Lever-
aging the high density of the acquisition and the visualization of the acquisition
locations, the user achieves a high-quality interactive visualization of the scene,
with brief transitions between acquisition locations, and with photorealistic pan-
tilt sequences from viewpoints aligned with acquisition locations.

In summary, our paper contributes a complete image based modeling and
rendering system, with an AR HMD interface that guides a novice user to achieve
a complete inside-looking-out acquisition of a large indoor space in minutes, and
with a VR HMD interface that guides the user to optimize visualization fidelity.

2 Prior Work

We first discuss prior image-based modeling and rendering techniques relevant
to our approach, and then we discuss prior work on guided scene acquisition.

2.1 Image-Based Modeling and Rendering

Aliaga and Carlbom presented a plenoptic stitching method that acquired image
based models of indoor environments by moving an omnidirectional camera
through a room in a regular pattern [2]. Synthetic views were generated by
interpolating images captured from surrounding views. However, their approach
did not provide interactive guidance on how to efficiently traverse the interior of
the environment, so pre-planning was required. The visualization method also
required a virtual camera location to be surrounded by a closed loop of acquired
images, which leads to tedious acquisition paths when the environment is clut-
tered. In contrast, our approach gives guidance during acquisition, and the user
only needs to visit each acquisition location a single time.
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Bradley et al. presented a system for virtual navigation through a real-world
scene by switching the view between densely sampled panoramas along a series of
corridors [3]. Zhang and Zhu similarly built virtual tours from spherical panora-
mas acquired at regular intervals on a tabletop [30]. The sampling was dense
but lacked morphing, so the user perceives discontinuities during translation.
Such acquisition was also limited to a pre-defined path planned by consulting
an existing map of the scene.

Some prior work examines the question of interpolation between panoramas
for image-based navigation. Chiang et al. presented a method for image-based
interpolation between cylindrical panoramas, but the method required manual
input for determining adjacency between neighboring images [4]. Several meth-
ods achieve panorama interpolation, but only in one dimension along the path
of acquisition [14,17,31], which results in a 4-DOF visualization. Kawai et al.
extended such works to support navigation in two dimensions by bilinear interpo-
lation of panoramas, but without automatically finding correspondences between
panoramas [16]. Kawai later reformulated the problem as a sparse light field
supporting transitions between panoramas but at the cost of highly noticeable
artifacts [15]. Xiao and Shah’s tri-view morphing method allows for novel view-
points of a scene by grouping triples of neighboring cameras; however, it only
makes use of conventional images and not panoramas, and correspondences must
be enriched manually [28].

Shi presented a method for interpolation of cubemap panoramas for image-
based navigation [25]. However, without a method to guide the user to capture
such imagery at a minimum density, there is no guarantee of coverage or of
minimum quality as a user navigates through the scene. Davis et al.’s work on
unstructured light fields offers some visual feedback during image-based acqui-
sition of a target object, but their work focuses on outside-looking-in object
acquisition, while we focus on inside-looking-out scene acquisition [6].

RGB-D depth maps have been used to achieve visually impressive results
for scene capture and reconstruction. Hedman et al. presented a recent work for
high-quality image-based modeling and rendering of indoor scenes by combining
RGB color images from traditional cameras with RGB-D depth-enhanced images
[11]. Dai et al. created a method for globally consistent 3D reconstruction using
a hand-held depth sensor [5]. Compared to their work, our models are much
farther to the image end of the geometry-image continuum, with the benefits of
a simpler acquisition device and of a simpler acquisition procedure.

Recent work by Huang et al. uses panoramic video camera footage to create
6-DOF VR videos, where a user can view the captured environment with depth
cues and head orientation and translation [13]. However, this work targets a
single fixed viewing location with some ability to move the head within a small
viewing volume, whereas we capture floor spaces of hundreds of square meters.
This prior work focuses on leveraging existing video footage to build an image-
based model, as opposed to our goal of guidance during acquisition to capture
the best set of images.
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2.2 Guided Scene Acquisition

Several prior acquisition systems attempt to guide the user to acquire imagery
of scenes from as-yet-uncaptured viewpoints. Tuite et al. illustrated sparsely-
sampled regions in a 3D reconstruction of a building facade as markers on a
smartphone map, prompting users to take pictures from the necessary view-
points [26,27]. However, their approach targets reconstruction of outdoor build-
ing facades, while our approach focuses on acquiring indoor environments. The
indoor environments we target lack precise GPS tracking, which requires more
active tracking such as in an AR HMD. Also, because many indoor environments
are more likely to rapidly change appearance than outdoor buildings, the prior
work’s emphasis on multi-user capture over long periods of time is less suitable.
Instead, we focus on providing guidance for a single user to rapidly capture an
indoor environment, all in a single scanning session.

Rusinkiewicz et al. introduced an interactive method for capturing 3D mod-
els of hand-held objects while showing the in-progress model to the user [23].
Such approaches provide implicit guidance from a single viewpoint, but further
manipulation of the object is required to uncover missing regions of the model.
The equivalent action in our use case (acquiring large indoor environments)
would be to physically traverse the environment, and so we provide additional
guidance in the form of a top-down map that reduces the redundant physical
traversal needed by the user. Diverdi et al. presented a method for interactively
constructing an environment map; however, the output of a single environment
map only provides a rough approximation of scene geometry [7]. Ahn et al. cre-
ated a method to plan the placement of 3D scanning equipment in the context of
digital heritage [1]. Given a top-down map and user-selected regions of interest,
they automatically determined locations to place a 3D scanner to achieve a high-
quality scan with sufficient coverage; however, it is not suited for casual scanning
or acquisition of areas without a prior map or manual direction. Pan et al. pre-
sented an AR interface for acquiring texture imagery of a hand-held object by
indicating rotations for the user to perform to reveal unscanned areas to a cam-
era [21]. However, this particular interface is suitable only for small manipulable
objects, rather than inside-out capture of a room. Pankratz and Klinker used a
video pass-through AR HMD to visualize room-scale marker calibration during
iterative refinement, but did not focus on capturing scenes [22].

2.3 Additional Prior Work

Recently, guided acquisition of room-sized scenes has been explored in fully-
autonomous contexts, where a robot utilizes next-best-view (NBV) analysis of
scene geometry to determine efficient trajectories for geometric capture [9,29].
In contrast, our work focuses on providing guidance to a human user in a casual
context where robotic acquisition is infeasible, such as in cluttered environments
that are difficult for robots to navigate but easy for humans to walk through.

A recent work presented a method for acquiring textured 3D models of indoor
scenes using an AR HMD [8]. However, the purpose of that work was to create a
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fixed-memory texture atlas during acquisition to color the AR HMD’s on-board
3D geometry capture. The resulting mesh typically contains holes that cannot
be filled in after acquisition due to discarding of unused color data. Guidance is
not provided to the user during acquisition.

3 System Overview

Figure 2 gives an overview of the architecture of our system. The user acquires
scene panoramas with interactive AR guidance (Sect. 4), the panoramas are pre-
pared offline for morphing (Sect. 5), and the panoramas are then morphed in a
guided VR interactive visualization of the scene (Sect. 6).

Fig. 2. System pipeline overview.

4 AR Guided Acquisition

The goal of the acquisition stage is to capture a complete and dense set of scene
images as quickly as possible, without the prerequisite of user expertise. We
achieve this goal with an acquisition device that not only captures images of the
scene, but also guides the user for efficient and reliable acquisition.

4.1 Acquisition Device

Our acquisition device consists of an AR HMD enhanced with a panoramic video
camera (Fig. 1a). The panoramic camera’s pose is calibrated with respect to the
AR HMD. Our approach relies on and assumes that the AR HMD provides
inside-out tracking and some generation of rough geometric data. As the user
walks through the scene, the AR HMD tracks the user’s position and orientation,
it builds a map of the scene, and it overlays onto the user’s field of view the
locations from where the scene is yet to be acquired.

The AR HMD does have a built in video camera, which, in principle, could
be used to acquire the images needed to build the image-based model of the
scene. However, the AR HMD camera has a small field of view, which makes
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it unsuitable for our purpose. To support free view rotation during the interac-
tive visualization, the scene must be acquired in all view directions from each
acquisition location. Covering all view directions with a small field of view cam-
era leads to long acquisition times and blurry images from head rotation. Also,
when the user pans and tilts their head to cover all view directions from a given
acquisition location, it is difficult to enforce a single viewpoint constraint, which
reduces the quality of the interactive visualization that has to cover the residual
translation by morphing.

To improve acquisition efficiency, we capture the scene with a 360◦ panoramic
video camera that is rigidly attached to the AR HMD. Each frame is a complete
spherical pinhole panorama, which can be trivially resampled to a high-quality
output image when the desired viewpoint matches an acquisition location. The
resulting image-based model captures the scene with very high fidelity from the
hundreds of viewpoints from where panoramas are acquired. The camera records
continuously during acquisition as a panoramic video stored to the camera’s
flash memory. After acquisition, the panoramic video is processed offline into an
image-based model of the scene as described in Sect. 5.

4.2 AR Interface

Our system relies on an AR interface to guide the user towards a fast, dense,
and complete acquisition. To support 5-DOF interactive virtual navigation, i.e.,
two translations and three rotations, the user acquires panoramas on a horizontal
plane at the user’s head height, which will also be the height from where the scene
is rendered during visualization. Acquisition density and coverage is controlled by
partitioning the acquisition plane with a uniform 2D grid (e.g., with 0.5m×0.5m
cells for Fig. 1b).

The 2D grid is shown as a 2D map floating in front of the user (Fig. 1b).
The map rotates as the user changes direction to maintain an intuitive user
perspective orientation. The map shows the parts of the grid that are yet to
be discovered (empty dark cells), the parts that are inaccessible due to floor
obstacles such as furniture (white), the parts that have already been traversed
during acquisition (green), as well as the user’s current position and orientation
(yellow, at the center of the map). The floor obstacles are computed from the
coarse geometric scene model acquired by the AR HMD through active depth
sensing. The scene does not have to be acquired from inaccessible cells since
during a typical virtual navigation, the user does not want, and is prevented
from, assuming inaccessible positions (e.g., inside a book shelf or above a desk).
Acquisition is complete once all accessible grid cells are traversed (Fig. 3).

As we were designing the interface, we found that relying on a first person
visualization is inefficient. We initially rendered markers in the scene to illustrate
target locations. This was difficult for the user to align their head with the
marker, because the marker grows larger as the user approaches it. We had
also tried rendering the 2D grid over the scene floor; acquisition suffered from
excessive downwards head tilting needed to consult the grid visualization. In
both cases, the AR HMD’s low field of view meant that indicators anchored to
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world locations were often hidden to the user and thus could not communicate
guidance. Instead we found that adding an additional perspective in the form
of a virtual map was most suitable for our use case and has proven to be an
efficient way of guiding the user, who can intuitively turn left and right to guide
the yellow dot through the grid cells that are yet to be traversed.

Fig. 3. Acquisition result. The acquisition path (blue line) has traversed all accessible
grid cells (green). A panorama is selected for each grid cell (red dots). (Color figure
online)

5 Panorama Morphing Setup

In this section, we describe our offline processing of the acquired data to trans-
form it into a set of 3D morphing meshes suitable for interactive visualization.

5.1 Preliminary Registration

Once scanning is complete (usually about 5 to 10 min), the AR HMD has
acquired (1) a video sequence of spherical panoramas along a path that inter-
sects all empty grid cells on the floor plan, (2) a video sequence acquired by the
AR HMD on-board video camera, (3) pose tracking data for the frames of the
on-board video camera, and (4) a coarse geometric of the scene captured by the
active depth camera built into the AR HMD. At the beginning of the scanning
session we synchronize the frame sequences of the panoramic and of the on-board
cameras by flashing a light. After synchronization, the pose tracking data for the
on-board camera frames is transferred to the panoramic frames.

5.2 Panorama Selection

We select two sets of panoramas from the spherical panoramic video sequence to
be incorporated into the image-based model of the scene: grid cell panoramas,
for scene visualization from anywhere on the acquisition plane; and acquisition
path panoramas, for quality visualization from anywhere on the acquisition path.
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The grid cell panoramas are selected by finding the best panorama for each
accessible 2D grid cell (Fig. 3). The best panorama is the one that has an acqui-
sition location closest to the cell center, based on the tracked pose data. We
exclude panoramas with high panning angular velocity since they are blurry. The
angular velocity is estimated based on the tracked pose data. The acquisition
viewpoints of the panoramas in the grid cell set are 2D Delaunay triangulated
on the acquisition plane. This triangulation defines a panorama triplet for every
output visualization viewpoint (Fig. 4, left). Panorama triplets may occasionally
cross unvisited grid cells. This is not a problem when cells are unvisited due
to containing low obstacles (desks, chairs) below head height. However, if an
unvisited cell contains a wall, some morphing results could incorporate views
from both sites of the wall, leading to unwanted artifacts. In practice, we cast
rays against the AR HMD’s coarse geometry along the triangulation edges, and
discard triplets that would cross head-height obstacles.

The acquisition path panoramas are chosen from the panoramic video
sequence at equal distance intervals, leveraging the tracked posed data again.
The distance is smaller than the grid cell size (e.g., 0.25 m vs 0.5 m) to provide
a higher quality visualization when the output viewpoint is on the acquisition
path, as compared to when it is in the middle of a panorama triplet. As before,
frames with high panning rotational velocity are avoided. Figure 4, right, shows
in detail the triangulated grid cell panorama locations and the path panorama
locations.

Fig. 4. Detail view of acquisition area. Left: Grid cell panoramas (red dots) triangulated
in panorama triplets (red lines). Right: Acquisition path (blue line), and acquisition
path panoramas (green dots). (Color figure online)

5.3 Registration Refinement

The poses provided by our AR HMD are only accurate to about 2 cm in trans-
lation and about 2◦ in rotation. Also, drift can accumulate in the AR HMD’s
pose estimation; while the HMD can internally correct itself using loop clo-
sure techniques, the raw pose data we capture during acquisition is not auto-
matically corrected. Using estimated poses directly in the construction of our
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image-based model would result in reduced visualization quality from image
instability along smooth visualization paths, and from ghosting when transi-
tioning between panoramas. We refine panorama registration (1) by detecting
panorama features, (2) by estimating feature correspondences between neighbor-
ing panoramas, (3) by removing outlier correspondences, and (4) by performing
a global pose graph optimization of all panorama poses. Throughout our regis-
tration refinement pipeline we work with the original spherical panorama images
gathered during acquisition, without resampling to a cube map.

(1) For each panorama, we compute image features using SPHORB [32], an
ORB feature generalization that operates directly in the spherical domain.

(2) We define correspondences between features of panorama pairs, based on
the SPHORB feature distance. Rather than computing a full pairwise set of
correspondences between all panoramas, which would be computationally
expensive, we only find correspondences between adjacent panoramas based
on AR HMD provided poses. First, we find correspondences between panora-
mas that are connected by an edge of a panorama triplet (determined by
the AR HMD’s estimated poses). Second, we find correspondences between
consecutive acquisition path panoramas. Third, we find correspondences
between each acquisition path panorama pa and the grid cell panorama
pb with the closest acquisition location to that of pa. These additional cor-
respondences ensure that the two sets of panoramas are correctly registered
together.

(3) The resulting set of correspondences contains many outliers unsuitable for
registration refinement, so we find inliers with an iterative RANSAC app-
roach [10] on each pair of neighboring panoramas (p1, p2) for which corre-
spondences were found. Each iteration selects a subset of correspondences,
uses the subset to estimate the essential matrix E of (p1, p2), and computes
the subset’s reprojection error. Correspondences are marked as inliers or out-
liers by comparing reprojection error against a threshold. We work directly
in the spherical domain and follow the approach of Pagani and Stricker [20]
in approximating the geodesic reprojection error εp with the projected dis-
tance of a ray to the epipolar plane, according to Eq. 1, where (f1, f2) are a
pair of corresponding features mapped onto the unit sphere that belong to
two neighboring panoramas.

εp =
|fT

2 Ef1|
‖f2‖‖Ef1‖

(1)

(4) The final step of panorama registration refinement performs a global non-
linear least squares optimization of panorama poses based on the inlier cor-
respondences validated by the previous step. This optimization determines
poses for all panoramas that are globally consistent. Although pairwise rel-
ative poses have been implicitly computed in the previous outlier removal
step, the essential matrix determined between a pair of panoramas is sensi-
tive to noise and to the RANSAC parameters. To ensure that relative poses
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are consistent when moving between multiple panorama triplets, it is impor-
tant to do a global optimization. Each panorama pose is represented with
6 parameters, i.e., 3 translations and 3 rotations. To limit the change in
panorama acquisition location, we constrain translation to be within 0.1 m
of the estimated translation. The rotations are unconstrained. The error
targeted by the optimization is the sum of squares of correspondence pair
errors. The error for a pair of corresponding features (f1, f2) is computed
based on an approach described by Pagani et al. [19]. The essential matrix E
of the panoramas (p1, p2) is computed based on current pose estimates of the
two panoramas. f1 and f2 are mapped to 3D points on the unit sphere and
the error is computed as a locally projected measure of the geodesic distance
from the epipolar line. Minimizing fT

2 Ef1, which would be appropriate for
Euclidean space correspondences, would minimize the sine of the geodesic
distance in our context of spherical panorama correspondences. Instead, we
minimize the value det defined in Eq. 2.

det = tan
(
arcsin(fT

2 Ef1)
)

=
fT
2 Ef1√

1 − (fT
2 Ef1)2

(2)

Both εp and det are valid approximations of the geodesic reprojection error,
with εp yielding slightly better registration refinement given noisy features [20].
However, we found that optimizing over εp during registration refinement was
much slower to converge, and so we favor εp during our inlier selection to ensure
only high-quality matches are selected, and use det during the computationally
expensive registration refinement step.

After registration refinement, we re-triangulate the grid cell panorama
viewpoints to account for any shift in these viewpoints during optimization.
Since the translation degrees of freedom are constrained, the viewpoints shift

Fig. 5. Morphing mesh computed as 3D convex hull of feature point projections on
unit sphere (left). Morphing mesh enriched with points (red dots) from the coarse 3D
scene model acquired by the AR HMD (right). (Color figure online)



84 D. Andersen and V. Popescu

little, which preserves the uniform acquisition property of the grid cell panorama
set.

5.4 Morphing Mesh Construction

When the viewpoint is located at one of the panorama acquisition locations, the
scene can be visualized with high quality in any view direction by resampling the
panorama to the output image. To support translations between the panorama
acquisition locations, we triangulate panorama correspondences to construct a
morphing mesh. We build morphing meshes for each grid cell panorama triplet,
and for each acquisition path panorama pair.

A morphing mesh is built in three stages: (1) the mesh is triangulated from
image features, (2) the mesh is enhanced using the coarse 3D geometry acquired
by AR HMD’s active sensors, and (3) the mesh is modified to ensure topological
consistency over the panorama triplet or the panorama path segment pair.

(1) We define mesh vertices from correspondences between neighboring panora-
mas detected during the registration refinement stage. Given a panorama
triplet (p1, p2, p3), we compute the transitive closure S of correspondence
pairs. A three-way correspondence (f1, f2, f3) is included in S iff the two-
way correspondences (f1, f2), (f2, f3), and (f3, f1) exist between panoramas
(p1, p2), (p2, p3), and (p3, p1), respectively. For each three-way correspon-
dence (f1, f2, f3), we define a 3D scene feature point as the point closest
to the three panorama rays through f1, f2, and f3. The feature 3D points
are projected on a unit sphere centered at the panorama triplet barycenter,
and their projections are triangulated by computing their 3D convex hull.
An example morphing mesh constructed from feature points is visualized in
Fig. 5, left, on the unit sphere, and in Fig. 6, left.

(2) The feature-based morphing mesh is sparse in featureless regions (Fig. 5,
left, Fig. 6, left). We increase the fidelity of the morphing mesh in a second
stage by adding vertices based on the coarse geometric model acquired by
the AR HMD with its built-in active depth camera (Fig. 5, right, Fig. 6, bot-
tom). This geometric model is neither complete nor precise, so it could not
be used alone. However, when combined with the panorama features, the
coarse geometry increases the fidelity of the transitions between panorama
viewpoints. 3D points from the coarse geometry are iteratively added to the
morphing mesh only in regions where the morphing mesh is sparse. Morph-
ing mesh triangles that are above a threshold size are subdivided by adding
a vertex at the triangle center. The 3D position of the new vertex is defined
by intersecting the ray from the barycenter of the panorama triplet with the
coarse geometry. If the ray fails to intersect the incomplete coarse geometric
model, a random point is selected inside the triangle to be subdivided. The
process continues until all triangles in the morphing mesh are sufficiently
small, or until no further intersections with the coarse geometry are possible.

(3) Even though we compute connectivity by computing the 3D convex hull,
triangulation is performed in the 2D domain of the surface of the unit sphere.
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This requires topological consistency anywhere within the panorama triplet;
no mesh triangle should flip orientation as the viewpoint translates away
from the barycenter. We enforce morphing mesh topological consistency with
an iterative approach [31], which eliminates triangles that yield inconsistent
orientation.

Fig. 6. Morphing mesh computed from features (left) and enriched with geometry
points, shown as red dots (right). (Color figure online)

We have described the construction of the morphing mesh in the context of a
panorama triplet. For panorama pairs defined by acquisition path segments, the
process is similar and simpler. No three-way correspondences are needed dur-
ing the feature-based morphing construction, and the two-way correspondences
between the two panoramas are used directly. The barycenter of the panorama
triplet is replaced with the midpoint of the path segment. Finally, topological
consistency is achieved by checking triangle orientation at the midpoint and two
endpoints of the path segment.

6 VR-Guided Interactive Visualization

Like all image-based models, our model captures the scene with non-uniform
fidelity. Based on the user desired viewpoint, our model has three levels of fidelity.
The first level is when the user viewpoint is inside a panorama triplet. In this
case, the output image is rendered by projectively texture mapping the morphing
mesh with a blend of the three triplet panoramas. The blending weights are
defined by the user’s viewpoint barycentric coordinates inside the triplet triangle.
The user can look in any direction from within the triangle triple, leveraging the
complete 360◦ textures and meshes. In the case where the user is not within any
panorama triplet, we can either display nothing to the user or we can use the
most recently visited panorama triplet at the cost of additional distortion.

The second level of fidelity is when the user viewpoint is near an acquisition
path segment. In this case, we switch to a morph between the two panoramas
of the segment endpoints. The segment is shorter than the triplet triangle edge,
and only two panoramas are blended, so the quality of the output image is higher
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than in the inside the triplet case. Again, the user can look in any direction from
anywhere along the acquisition path segment.

The third and highest level of fidelity of our image-based model is when the
user viewpoint is near one of the panorama acquisition locations. In this case
the output image is rendered by texturing the morphing mesh with a single
panorama, which approaches a resampling of the panoramic frame and there-
fore has high fidelity in any view direction. Note that we only clamp blending
weights for texture color and not for 3D viewpoint position, so that tracked
HMD navigation in VR is natural and does not “stick”.

We have designed a VR visualization interface that allows the user to take
advantage intuitively of the highest model fidelity available in the proximity of
their viewpoint. The interface shows a map of panorama acquisition locations
in the bottom right corner of the frame (Fig. 1, c and d). The map shows the
acquisition path segments (Fig. 1, e) and the current user location. As during
acquisition, the user can easily align their visualization location with one of the
panorama acquisition locations. There are hundreds of acquisition locations and
so there is always one nearby. The typical navigation pattern is to translate
the viewpoint to an acquisition location, to pan and tilt the viewpoint while
remaining at the acquisition location to take advantage of the highest fidelity of
our image-based model, and then to move to the next acquisition location, either
along an acquisition path segment, or through a panorama triplet triangle.

7 Results and Discussion

Our AR acquisition device uses a Microsoft HoloLens [18] AR HMD coupled with
a Samsung Gear 360 panoramic camera [24]. The camera captures 3,840× 1,920
panoramic frames at 30fps. We visualize our image-based models interactively
and immersively using an HTC Vive HMD [12]. Our image-based models are
also suitable for visualization on conventional displays.

7.1 AR Guided Acquisition

To demonstrate our system, we acquired several indoor environments (one envi-
ronment at multiple resolutions), and we conducted a user study in which ten
novice participants acquired a reference environment. The acquisition cell size is
0.5m × 0.5m, and the path segment length is 0.25 m, unless otherwise specified.

Test Scenes. Table 1 gives acquisition details for our four test environments.
All were acquired with hundreds of evenly distributed panoramas in 8 min or
less.

We acquired the Office scene at multiple spatial resolutions (Table 2). As the
length of the grid cell is halved, the grid cell area is quartered, so the number of
grid cell panoramas will quadruple, assuming the scene is an open floor area. For
floor areas with obstacles, this factor varies: from Table 2, the number of grid cell
panoramas grows by a factor of 2.82 and of 3.55 as grid cell length shrinks from
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0.5 m to 0.25 m to 0.125 m. Since the panoramic video camera records continu-
ously as the user moves along the acquisition path, we expect acquisition time
to double (not quadruple) when the grid cell’s length is halved; direct movement
between two locations requires the same path regardless of grid cell size. Once
floor obstacles are included, this factor is affected by the user’s ability to visit
all accessible parts of the floor non-redundantly. From Table 2, acquisition times
grow by a factor of 1.29 and 2.18, respectively.

Fig. 7. Results for Lab (top row), Lobby (middle row), and Home (bottom row) envi-
ronments, with viewpoint between acquisition locations (left), and near an acquisition
location (right).

Table 1. Acquisition performance for four indoor environments.

Environment
(Figures)

Floor
space
[m]× [m]

Path length
[m]

Capture
time [s]

Grid cell
panoramas

Path segm.
panoramas

Lab (Figs. 1(c, d) and 7 top) 10 × 13 172 307 244 688

Home (Figs. 1e and 7 btm) 7 × 10 105 284 157 420

Lobby (Fig. 7 mid) 9 × 9 131 248 215 524

Office (Fig. 8) 2.5 × 4 31 86 35 124
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Fig. 8. Top row: Paths during acquisition of the Office scene at varying grid cell sizes:
0.5 m (left), 0.25 m (middle), and 0.125 m (right). Bottom row: Corresponding visual-
ization frames, rendered from a panorama triplet barycenter.

Table 2. Acquisition performance for Office environment as a function of grid cell size.

Grid size [m] × [m] Path length [m] Time [s] Grid cell
panoramas

Path segm. panoramas

.5 × .5 31 86 35 62

.25 × .25 39 111 99 154

.125 × .125 81 242 352 648

The actual acquisition paths corresponding to Table 2 are shown in Fig. 8.
For grid cell length of 0.5 m and 0.25 m, the acquisition path tends to have long
straight portions, but in the case of a grid cell length of 0.125 m, the trajectory
tends to be made up of small imprecise loops. Limitations in comfortable head
and neck motion leads to gradual rather than sharp turns which would be needed
to efficiently sample the space at such a high resolution.

Acquisition User Study. An important goal of our work is to develop an
acquisition system that allows novice users to acquire a complex indoor envi-
ronment in minutes. We have gathered initial evidence for reaching this goal
in a user study with ten first-time users of our system who acquired the same
large indoor environment (i.e., the Lab). The users, who had general experience
with AR/VR HMDs, were asked to traverse every accessible grid cell in the
room that they felt they could reasonably reach. The users were briefed in five
minutes or less on how to use the acquisition system. The briefing did not include
a suggested scanning strategy so as not to bias participants.
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The users acquired the 10 m x 13 m scene in an average time of 7 min 5 s (min:
4 min 57 s, max: 11 min 1 s), using a grid cell size of 0.5m × 0.5m. On average,
268 grid cell panoramas were acquired (min: 217, max: 365). Average distance
traveled was 196 m (min: 144 m, max: 232 m). Figure 9 shows the acquisition
paths for the ten users. There is great variability in the acquisition paths: some
users cover the floor space with large cycles around the perimeter then fill in
missing interior regions, while others cover the floor space progressively with
paths reminiscent of space-filling curves. Users also had different completeness
criteria; because the environment was a complex scene with many floor obstacles,
users differed in their willingness to move into hard-to-reach areas to achieve
greater coverage. In all cases, acquisition resulted in hundreds of evenly-spaced
panoramas that allow for quality interactive visualization of the environment.

Fig. 9. Acquisition paths (blue lines) and explored grid cells (green) for first-time users
of our system (grid cell of 0.5 m × 0.5 m). (Color figure online)

7.2 Panorama Morphing Setup

The acquired data is processed offline to prepare for interactive visualization. For
our largest environment, i.e., the Lab, the entire offline processing took 227 min.
Referring back to our system pipeline (Fig. 2), for the typical panorama shown
in Figs. 5 and 6, the Registration Refinement stage finds 1,369 pairwise feature
matches, 775 of which are inliers used during registration refinement. Registra-
tion refinement reduces the average feature reprojection error from 9.5 pixels
to 1.3 pixels, which is a small error relative to the high panorama resolution of
3,840×1,920. For a typical panorama triplet, the Feature-Based Morphing Mesh
Construction stage results in a morphing mesh with 1,126 points and 1,858 tri-
angles, which is then refined in the Geometry-Based Morphing Mesh Enrichment
stage to a final morphing mesh with 1,276 points and 2,158 triangles.

7.3 VR Guided Visualization

Our image-based models visualize the captured environments in the VR HMD
at 90 fps in stereo, by rendering the current low-polygonal-count 3D morphing
mesh with projective texture mapping. High fidelity is achieved near one of the
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hundreds of panorama acquisition locations that sample the floor space uni-
formly, where the visualization converges to a resampling of the high-resolution
spherical panorama acquired (e.g., Figs. 1c and 7, top right). Moderately high
fidelity is achieved along the acquisition path, where the two segment endpoint
panoramas are merged (e.g., Fig. 1e). The lowest level of fidelity is found at the
center of the panorama triplet, when undersampled geometry can lead to ghost-
ing artifacts (e.g., ceiling lights in Fig. 1d, vertical black lines on the far wall in
Fig. 7, top left, or the far end of the long hallway in Fig. 7, middle right). Using
the visualization map, the user can align their viewpoint with an acquisition
location or segment where visualization fidelity is highest. Movement through
the visualization is orientation-preserving and non-disorienting.

Figure 8 shows visualization frames rendered from the center of panorama
triplets for the three image-based models of the Office scene with decreasing
acquisition grid cell size. As expected, the quality of the visualization increases,
as a smaller grid cell size reduces the distance from the output viewpoint to the
closest acquisition location, which reduces ghosting.

7.4 Limitations

The accuracy of geometry points in the morphing meshes is limited by the coarse-
ness of the geometric model that our AR HMD acquires, and by the quality of
the panorama registration. We also enforce topological consistency of the mor-
phing mesh across the panorama triplet, which caps the maximum fidelity of
the morphing mesh. Future work could explore a general, and not unit sphere-
based, 3D triangulation of feature and geometry points, that allows for folds as
the viewpoint translates within a panorama triplet.

Our selection of neighboring panoramas from which to find correspondences
and feature points implies small baselines for optimization and triangulation.
Another challenge is the registration of panoramas from adjacent rooms con-
nected by a open door. Such panoramas do not share many common features as
the panorama from room A sees only a small part of room B, and vice versa.
Therefore, with the current implementation, multi room environments require
assembling the overall image-based model from individual room models.

Our panoramic camera is mounted above the wearer’s head, which results
in a visualization that appears taller than the acquiring user’s height. Since the
morphing meshes are rendered in 3D, we do currently provide limited support
for vertical viewpoint translation, as needed for example to cover the small range
of vertical translation when walking with the VR HMD. Future prototypes could
place the cameras at a lower height to better match a typical user height.
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8 Conclusions and Future Work

We have presented a system for fast image-based modeling and rendering of
indoor spaces, which guides the user with an AR interface towards complete and
dense acquisition. A VR interface enables the user to optimize output image
quality. The results of our pilot study are promising; however, we plan to conduct
additional and more formal user studies to validate the effectiveness of the AR
interface and the acceptability of the resulting VR visualization.

We currently only support static scenes; future work could support dynamic
scenes by injecting moving geometry captured with RGB-D sensors into a cap-
tured scene. Automatic detection and removal of dynamic regions of the image-
based model would also help deal with accidental intruders that interfere with
acquisition, opening up the possibility of acquiring busy, in-use spaces. We are
also interested in real-time use of image-based features for saliency or view-
dependency during acquisition, which could allow our system to prioritize regions
that would be of greater complexity or of greater interest to a viewer.

We believe our work demonstrates that image-based modeling and rendering
of inside-looking-out indoor spaces can efficiently produce quality models that
are ready to be integrated into applications.

Acknowledgments. We thank the ART research group at Purdue University for their
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Abstract. In this paper, we introduce the KinesTouch, a novel approach
for tactile screen enhancement providing four types of haptic feedback
with a single force-feedback device: compliance, friction, fine roughness,
and shape. We present the design and implementation of a corresponding
set of haptic effects as well as a proof-of-concept setup. Regarding friction
in particular, we propose a novel effect based on large lateral motion that
increases or diminishes the sliding velocity between the finger and the
screen. A user study was conducted on this effect to confirm its ability
to produce distinct sliding sensations. Visual cues were confirmed to
influence sliding judgments, but further studies would help clarifying the
role of tactile cues. Finally, we showcase several use cases illustrating the
possibilities offered by the KinesTouch to enhance 2D and 3D interactions
on tactile screens in various contexts.

Keywords: Touchscreen · Surface haptics · Sliding · Force feedback

1 Introduction

Touchscreens have become ubiquitous in human-computer interaction. They
enable freehand direct interaction with 2D and 3D content and they are effec-
tively used in numerous applications. They can be found everywhere, from public
ticket machines to mobile phones and laptops.

Despite their intrinsic qualities, as for today, touchscreens still often lack tac-
tile sensations. Irrespective of the visual content, they feel flat, rigid, smooth and
static under the finger. Although touchscreens take advantage of finger dexterity,
they do not exploit finger sensitivity.

The haptic enhancement of touchscreens is a relatively young and active
research field known as “surface haptics” [7]. An impressive amount of work has
already been done to conceive and develop such technologies in the last decade [3,
19,23,35,36]. Most efforts have been concentrated on generating various types of
vibration that can alter the physics of the finger sliding on the screen, providing
friction and even small relief sensations [17,36]. However, such approaches do not
allow to display other haptic properties such as stiffness or large-scale shapes.
c© Springer Nature Switzerland AG 2018
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A few solutions have proposed a touchscreen with kinesthetic feedback, i.e.,
able to move in space rather than vibrate, in order to involve spatial propri-
oception. Some approaches used parallel platforms for co-localized inclination
rendering [16,20], eventually combined with variable friction [10], but they kept
a focus on rendering geometric features rather than material properties like stiff-
ness, slipperiness or roughness. Sinclair et al. have proposed a remarkable solu-
tion combining 1-DoF kinesthetic and force feedback [28,29], showcasing many
interesting perceptual and interaction possibilities. Yet, besides its limitation
to one axis, their device remains cumbersome and complex to spread out. The
work of Takanaka et al. [30] is the only one, to our knowledge, to provide a
touchscreen with lateral motion to evoke haptic properties. Interestingly, they
chose to keep a non-slipping contact with the screen and simulated inertia and
stiffness rather than sliding the screen against the finger to simulate friction
or slipperiness. Although many innovative technologies have been developed to
provide co-localized friction effects, the potential of the lateral motion of the
screen under the finger has not been investigated yet.

(a) The KinesTouch concept. (b) The six dimensions of surface haptics,
adapted from Okamoto et al. [24].

Fig. 1. The KinesTouch approach provides four different types of haptic feedback to a
touchscreen.

In this paper, we propose to use a single force-feedback device to provide four
different types of haptic feedback to a tactile tablet: Shape, Stiffness, Roughness,
and Sliding (see Fig. 1). In particular, our Sliding effect alters the sliding velocity
of the finger on the screen through large lateral movements, which constitute a
novel approach in friction rendering.

In the remainder of this paper, we first present related work on surface haptics
in the light of haptic perception of surfaces. Then, the KinesTouch concept is
introduced together with our set of haptic effects. The technical feasibility of our
approach is then demonstrated with a proof-of-concept prototype. The results of
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a user study focused on the Sliding effect are presented and discussed. Finally,
several use cases of our system are exposed.

2 Related Work

2.1 Dimensionality of Surface Haptics

The dimensionality of real and artificial textures perception has been investi-
gated in manifold studies. In a survey paper synthesizing over forty years of
research, Okamoto et al. proposed five psychophysical dimensions that synthe-
size state of the art results: (1) compliance (hardness), (2) friction, (3) fine
roughness, (4) macro roughness, and (5) warmness [24] (see Fig. 1b).

Yem and Kajimoto [39] suggested a correspondence between these five dimen-
sions and the different types of tactile receptors in the skin. The four types
of mechanoreceptors are known to be especially receptive to a specific stimuli:
static pressure for SA-1, local deformation of the skin for SA-II, rapid lateral skin
stretch for FA-I and high frequency vibrations for FA-II [14]. In addition, ther-
moreceptors are responsible for temperature gradient sensing [9]. Like Okamoto
et al., they did not consider the kinesthetic sense, that is the perception of one’s
body movements, which is crucial to perceive large scale shapes.

The division between fine and macro roughness, was confirmed by several
studies [4,11,12] many decades after it was hypothesized by Katz [15] under the
famous name of “duplex theory”. This theory states that fine and coarse asper-
ities are mediated by two distinct perceptual mechanisms, the first one relying
on contact vibrations and the second one involving pressure spatial distribution.
It was notably found that contact vibrations are necessary to perceive asperities
under 0.1 mm, indicating a perceptual shift around this scale [12]. It is noticeable
that these two properties are spontaneously explored with two distinct strategies,
namely lateral motion and static contact. These two “exploratory movements”,
identified by Lederman and Klatsky decades ago [18], are appropriate ways to
elicit the most relevant stimulus, namely static pressure distribution or rubbing
vibrations.

Another exploratory movement named “contour following” [18], aims at
inspecting the global shape or volume of an object with large movements. In
this case the kinesthesia (or proprioception) is likely to be predominant in the
perceptual process. Therefore, there should be a perceptual shift from macro
roughness to shape similar to the one from fine to macro roughness. The loca-
tion of this shift is obviously in the vicinity of a finger width, although it would
be reasonable to expect some overlap, similarly to fine and macro roughness.
In the remainder of this paper, we will call this sixth dimension the “shape”
dimension.

2.2 Surface Haptics Systems

Vibrators and vibrotactile feedback have been early embedded in commercial
touchscreen products and can be used for fine roughness simulation. But many
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researchers have proposed original ways to enrich touchscreens with an additional
vibrator placed either on the nail [2], between several fingers and the screen [6],
on the device [5,38,41] or both on the device and on haptic gloves [13]. In partic-
ular, Romano and Kuchenbecker used a high-quality one-dimensional vibration
to display compelling texture details through an actuated stylus, according to
normal contact force and lateral speed [25].

Several variable friction devices have been developed, either using ultrasonic
vibration [19,23] or electrovibration [3,21]. In both approaches, friction can be
modulated to produce texture effects and even 3D pattern features [17,36]. Some
researchers also chose to instrument the finger, either with vibrators [2,6] or with
a lateral-force proxy [26,27,37]. Several solutions producing mechanical planar
vibrations [33] or short-range movements [22] were also proposed. However all
these approaches had no force or motion abilities in the normal direction, and
thus could not provide compliance and large shapes sensations.

Parallel platforms were used for co-localized curvature feedback [16], notably
the “SurfTics” [10] and the “ForceTab” [20] devices. Another approach presented
in [30] consists in a touchscreen with planar force feedback and large translation
and rotation abilities. These approaches were focused on shape rendering and
did not address other dimensions of haptic perception.

The “TouchMover” device [28] is a touchscreen actuated and moved using
force feedback in the normal direction, showcasing interesting applications
notably in volumetric data manipulation. The second version [29] includes vibra-
tors that render fine shape details at contact point. The normal force-feedback
allows for stiffness or inertia simulation and shape rendering, but no lateral fric-
tion sensations. Besides its limitation to one axis and two psychophysical dimen-
sions, the TouchMover remains rather cumbersome and complex to spread out,
involving custom and expensive mechanics and electronics.

There are actually rather few systems aiming at simulating a wider range
of haptic sensations. The device designed by Yem and Kajimoto [39] is able to
simulate up to four psychophysical dimensions of texture perception: compli-
ance, friction, fine and macro roughness. But this system is finger-mounted and
not touchscreen-based, and it does not co-localize visual and haptic displays.
Culbertson and Kuchenbecker [8] combined a pen-shaped force-feedback render-
ing stickiness through tangential forces with an high-quality vibrator rendering
hardness through tapping transients and fine roughness through vibrations.

Table 1 provides an overview of previous contributions in surface haptics, with
the type of haptic sensation they have addressed. Interestingly enough, these
previous systems are able to simulate only one or two psychophysical dimensions.
Temperature and macro roughness were not taken into account here, as we could
not find representative examples of touchscreen enhancement involving one of
them combined with another dimension.

3 The KinesTouch Approach

The KinesTouch approach enriches touchscreen interactions with a set of tactile
and kinesthetic effects in both normal and lateral directions. When the user
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Table 1. Main previous approaches in surface haptics. Most of them address only one
or two psychophysical dimensions.

Addressed psychophysical dimensions

Approach References Compliance Friction Shape Fine Roughness

Normal force feedback
[28] Stiffness - Shape -

[29] Inertia - Shape -

Normal kinesthetic feedback [20] - - Shape -

Lateral force feedback

[22] -
Static & reduced

friction
Smooth bumps -

[26] - - Bumps -

[27] - - Bumps Increased roughness

[30] Lateral stiffness - Lateral inertia -

Lateral force feedback +
vibrations

[8] Tapping transients Increased friction - Increased roughness

Rotational kinesthetic feedback

[40] - - Curvature -

[16] - - Curvature -

[10] - - Curvature, Edges -

Ultrasonic friction reduction

[34] - - - Reduced roughness

[36] - Reduced friction
Edges, smooth

bumps
-

[23] - Reduced friction - -

Electrostatic friction amplification
[3] - Increased friction - -

[17] - - Bumps -

Finger-mounted vibrations
[2] - - Edges, bumps -

[6] - - Edges, bumps -

Electrotactile [1] - - - Increased roughness

KinesTouch: 3D force and kinesthetic feedback Stiffness
Increased sliding,
reduced sliding

Shape, bumps, edges Increased roughness

touches an object or an image displayed on the touchscreen, the screen is given
forces or motion simulating various haptic properties: it can resist more or less
to pressure to render material stiffness, move up and down according to object’s
shape, vibrate during a stroke to evoke texture roughness, or slide laterally to
change the slipperiness sensations.

In the following sections, we present our set of four co-localized haptic effects.
We will focus on the case of using a 3-DOF impedance device for the control
law. But the KinesTouch approach is scalable and could be used with higher
end 6-DoF haptic interfaces that could allow for even more effects than what we
propose hereafter.

3.1 Notations

In the remainder of this paper, vectors and matrices will be expressed in the
fixed reference frame with positive z upwards. The screen is considered to be
horizontal, parallel to the xy plan. Also: X0 will refer to the 3D center position
of the workspace, Xt will refer to the 3D screen position with respect to X0,
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f will refer to the 2D finger position on the screen, I3 will refer to the identity
matrix, ez will refer to the vertical unit vector, Kmax will refer to a high stiffness
value, depending on hardware performance, used for position control1 (1 N/mm
in our setup).

3.2 Stiffness Effect

The Stiffness effect allows the user to feel a resistance to deformation when they
push an object on the screen. It simulates the elasticity of a material, and address
the compliance perceptual dimension. The effect consists in a normal opposing
force that increases with penalty, as shown in Fig. 2. The two other directions of
the touchscreen are locked in position.

Fig. 2. Stiffness effect: the screen provides an elastic force under pressure.

Using an elastic deformation model, the control law of our Stiffness effect is:

F stiffness =

⎡
⎣

Kmax 0 0
0 Kmax 0
0 0 kmat

⎤
⎦ (X0 − Xt) (1)

with kmat the simulated stiffness.

3.3 Shape Effect

The Shape effect allows the user to feel the 3D shape of an object. It reproduces
reliefs that are larger than a finger and need active exploration to be perceived.
The effect consists in a normal displacement corresponding to the change in
vertical projection of the 2D finger position on the object’s 3D shape, as shown
in Fig. 3. The two other directions of the touchscreen are locked in position (i.e.,
there is no lateral motion).
1 Impedance force-feedback devices provide forces to their end-effector, while measur-

ing its position. Although they can’t act directly on position, they can still be used
for pseudo position control with a high stiffness force linking the measured position
to the desired one.
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Fig. 3. Shape effect: the vertical displacement during stroke reproduces reliefs.

The control law of our Shape effect is:

F shape = Kmax I3 (X0 + h(f) ez − Xt) (2)

with h(x, y) the vertical projection of the finger position onto the 3D shape.
The shape is accessed “from the top”: only its visible upper part, relatively

to the horizontal plane, can be explored. However, a simple rotation of the shape
in the virtual space allows to access its bottom part.

3.4 Roughness Effect

The Roughness effect allows the user to feel vibrations evoking a periodic grating
when they stroke an object on the screen. It renders the fine roughness property,
modeled by a small spatial period. The effect consists in an oscillating force
taking into account both the simulated spatial period and the finger exploration
velocity, as shown in Fig. 4a. The touchscreen is otherwise locked in position.

F roughness = δ sin(2πλ||ḟ ||) ez + Kmax I3 (X0 − Xt) (3)

with δ the grating depth, λ the grating spatial period.

3.5 Sliding Effect

The Sliding effect provides various sliding sensations to the user when they stroke
an object on the screen. As it modifies the sliding phenomenon between the
screen and the finger, it addresses the friction perceptual dimension. It consists
in a tangential movement of the screen meant to increase or diminish the relative
sliding, that is the velocity difference, with the finger. We expect two different
sensations corresponding to the two possible sliding directions: a “Follow effect”
and a “Reverse effect” which are described hereafter. The touchscreen motion is
locked here in position in the normal direction.
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(a) Roughness effect. (b) Follow effect. (c) Reverse effect.

Fig. 4. Roughness effect: the screen vibrates during stroke to simulate roughness (a).
Sliding effect: the screen moves laterally to cancel (b) or increase (c) relative sliding.

The “Follow effect”, illustrated in Fig. 4b, consists in moving the screen the
same way the finger moves on the screen, so that relative sliding is decreased
or even kept close to zero. In this case, while the finger moves in the reference
frame, its position on the screen remains almost static.

The “Reverse effect”, illustrated in Fig. 4c, consists in moving the screen in
the opposite direction to finger’s movement, so that relative sliding is increased.

The Sliding effect is achieved with the combination of two forces: a “moving
force” proportional to finger’s tangential velocity, and a damping force in the
binormal direction:

F slipperiness = α ḟ − ν ḟ ∧ ez + Kmax (X0 · ez − Xt · ez) (4)

with α ∈ [−1, 1] the slipperiness coefficient and ν the damping coefficient.

3.6 Idle Behavior

When the screen is not touched, it should stay still or move back to the center
of the workspace, so that the force-feedback device remains close to its neutral
position. This is done by applying a simple centering force instead of one of the
previous effects:

F idle = Kmax I3 (X0 − Xt) (5)

4 The KinesTouch Prototype

In this section, we describe the design and implementation of our prototype
using a standard tablet and Novint Falcon haptic device. We designed a custom
end-effector in order to be able to attach the tablet on the haptic device handle,
and a prediction-correction algorithm to compensate the touch tracking latency.
We also present the handling of synchronization between visual and haptic loops,
and the control law for the haptic rendering.
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4.1 Hardware

The Falcon is a standard 3-DoF impedance haptic device, initially designed
for the gaming industry. We combined it with a Galaxy Tab SM-T810, which
exhibits rather high resolution (2048× 1536), comfortable size (9.7”) and an
acceptable weight (389g).

Assembly of Tablet and Force-Feedback Device. The Falcon’s grip has
several buttons and is removable, but a security mechanism deactivates the
device when the grip is removed, detecting the electrical contact with the grip.
This problem was overcome by unmounting the default grip and keeping only
the coupling part and electronic circuit. A tablet adapter, shown in Fig. 5a, that
reproduced the interlock while offering a flat shape to affix the tablet, was 3D-
printed. As the precise relative positioning of the tablet was not of importance
for the haptic effects presented in this paper, it was affixed to the adapter with
a simple velcro grip. The Falcon was then rotated by 90 degrees and positioned
sideways so that it “pushed forward” the tablet vertically, as shown in Fig. 5b.

(a) 3D printed adapter. (b) Global setup.

Fig. 5. KinesTouch prototype.

4.2 Software

Handling Latency Issues. Besides the visual display, the tablet application
is also responsible for touch tracking and filtering. In practice, the built-in touch
tracking of the Galaxy Tab SM-T810 has a latency of a few dozens of ms, and
the Unity application has a refresh rate of 60 Hz. This results in a delay in the
position measurement up to 2 cm in usual slide movements, which is problematic
for real-time haptic rendering. Furthermore, despite the high resolution of the
screen, instantaneous touch velocity estimation suffers from spikes due to pixel
quantization. For these reasons, touch position and velocity were computed and
filtered before being sent and used in the haptic rendering loop, according to the
following prediction algorithm, inspired from [31].
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First, measured touch position fmes is converted in real-world meter coordi-
nates. Then, a simple linear prediction is applied to measured touched position:

fpred = fmes + kpred ∗ (fmes − fprev
mes ) (6)

where fprev
mes is the previous measured touch position and kpred the filter param-

eter.
Finally, an exponential smoothing filter is applied to get the corrected posi-

tion:
f = α ∗ fpred(1 − α) ∗ fprev

pred (7)

where fprev
pred is the previous predicted position and α the filter parameter.

The parameters were set after testings to: kpred = 8 and α = 0.15.
Instantaneous touch velocity is smoothed with an exponential smoothing

filter with α = 0.45.

Visual and Haptic Loops Synchronization. The haptic rendering is com-
puted by a dedicated application running on a laptop and using the CHAI3D
framework2. On the tablet, a Unity application is used for the visual render-
ing and the touch tracking. The two applications communicate with each other
using the Open Sound Control (OSC) protocol3. As applications run at different
rates, this communication is asynchronous. On both sides, incoming messages
are treated in a specific thread and update global variable values which are then
used in the main thread. A network connection is emulated through the USB
cable connecting the tablet and the laptop, so that OSC communication latency
is kept under 1ms.

The haptic rendering is mostly located in a haptic thread running at about
1000 Hz inside the CHAI3D application. An additional 60 Hz thread is meant to
send the Falcon position to the tablet application. The synchronization of the two
loops is illustrated in Fig. 6. In the Unity application, a main loop updates touch
information, sends them to the CHAI3D application, and updates the visual
display. This visual display compensates the Falcon movements so that when
the tablet is moving, displayed objects remain immobile in the user’s reference
frame.

Transparency. In the previous descriptions of our haptic effects, the system
is supposed to be perfectly transparent, with no inertia. However the weight of
the touchscreen and effector are not negligible compared to the other involved
forces, and have to be compensated by adding a constant opposite force in the
control law.

2 http://chai3d.org/download/license.
3 http://opensoundcontrol.org/introduction-osc.

http://chai3d.org/download/license
http://opensoundcontrol.org/introduction-osc


KinesTouch: 3D Force-Feedback Rendering for Tactile Surfaces 107

Fig. 6. Software architecture

4.3 Control Law

The final haptic rendering was obtained using a single control law that merged
all our haptic effects:

F total = (mg + δ sin(2πλ||ḟ ||))ez + αḟ − νḟ ∧ ez

+K (X0 + hez − Xt)
(8)

with K the stabilization matrix, given in Table 2.

Table 2. Stabilization matrix values for the different effects.

Effect Idle, shape, roughness Stiffness Sliding

K Kmax I3

⎡
⎢⎣
Kmax 0 0

0 Kmax 0

0 0 kmat

⎤
⎥⎦

⎡
⎢⎣

0 0 0

0 0 0

0 0 Kmax

⎤
⎥⎦

The Falcon was found to produce forces proportional, but not equal, to
the forces requested through the CHAI3D API. This problem was overcome
by applying a gain factor that was empirically found to of about 4.5 on two
different Falcon devices to get the right forces. This is consistent with another
study, although they found the gain to be equal to 3 [32]. This difference of value
might be explained by the difference of CHAI3D version.
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5 User Study

5.1 Introduction

We conducted a user study to evaluate the sensations produced by the
KinesTouch prototype. Due to the large variety of our haptic effects, we have
focused on our most innovative effect: the Sliding effect. Our choice was moti-
vated by the fact that equivalents of Stiffness, Shape and Roughness effects have
already been largely studied in the haptic literature. In contrast, the Sliding
effect had never been explored in the literature and there are no clear assump-
tions on what the user’s perception will be. Thus, we conducted a user study
to answer the following question: are users able to consistently and efficiently
discriminate different Sliding effects?

We compared three sliding sensations: the Reverse effect (REVERSE, see
Fig. 4), the Follow effect (FOLLOW, see Fig. 4), and a control stimulus in which
the tablet stays static (STATIC). Three hypotheses were tested:

– H1: different stimuli would produce different sensations.
– H2: seeing the moving screen contributes to distinguish between stimuli, i.e.,

visual cues increase the discrimination accuracy.
– H3: the smoothness of the screen diminishes the sensations produced, i.e., a

tactile cues increase the discrimination accuracy.

5.2 Materials and Methods

Procedure. 18 volunteer unpaid subjects (16 male, age 31.2 ± 12.1) took part
in the experiment which consisted in two sessions of about 45mn on different
days. All of them were right-handed or ambidextrous.

After reading and signing a consent form, subjects were asked to seat with
the right arm resting besides the tablet screen. For each trial, a narrow white
area was displayed on the screen, and the subject was invited to slide their finger
inside this area.

Each trial was composed of the active exploration of two stimuli, followed
by a forced-choice question to designate on which one the subject felt the more
sliding. Each stimuli lasted 3.5 s from the moment the screen was touched, then
the screen turned to black and waited for the touch release to pass to the sec-
ond stimulus or the question. The subject provided the answer to the question
directly on the screen.

At the beginning of each session, two practice trials were first performed to
ensure that subject understood the procedure. During these introductory trials,
a moving target was displayed to suggest a back and forth movement at 0.5 Hz.
Subjects were informed that the stimuli would be optimally felt within this range
of velocities but were left free in their inspection otherwise.
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Experimental Design. The experiment had three independent variables: the
stimulus, the visual cues (i.e., seeing the tablet moving) and the tactile cues (i.e.,
screen roughness). Three pairwise comparisons were considered: REVERSE vs.
FOLLOW, REVERSE vs. STATIC and FOLLOW vs. STATIC. To avoid order
effects, the inverse comparisons were also considered.

In order to evaluate the importance of visual cues, half of the trials were
performed with the whole mechanism being visible (V1, see Fig. 7a), and half
with a black cover hiding the mechanism and its movements (V0, see Fig. 7b).
In order to evaluate the importance of tactile cues, half of the trials were per-
formed with a window privacy film applied on the screen (F1) and half without
(F0). This transparent and electro-statically adhesive film had small but clearly
perceptible reliefs that produced quite strong vibrations under the finger when
being stroked. Affixed to the screen, there was no decrease in brightness but
a tiny pixel diffraction on each relief. Trials were split in four condition blocks
corresponding to the visual and tactile crossed conditions: V0F0, V0F1, V1F0,
V1F1. In order to avoid order effects, the order of the blocks was given by the
Latin-square method. In each of the two sessions, two condition blocks of 60
trials (10 repetitions for each of the 6 pairwise combinations) were performed.

(a) The V1F0 condition (without cover). (b) The V0F0 condition (with cover).

Fig. 7. General setup without and with cover.

Collected Data and Scoring. For each trial, the answer as well as the response
time were recorded. In addition, a discrimination score for each subject was
computed for each combination and factor (3 comparisons x 2 visual conditions
x 2 tactile conditions). The discrimination score was computed as follows. First,
each trial was counted as +1 or −1 according to stimulus chosen as the “more
sliding” (the pair order being taken into account). For example, in a REVERSE
vs. STATIC comparison, +1 will mean that REVERSE is considered to be more
sliding that STATIC and vice-versa. Second, the data for each combination was
normalized between [−1,1], showing the preference between the two stimuli.
Finally, as we observed that subjects had different interpretations of the question,
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but were consistent in the stimulus they chose as “more sliding”, we considered
the absolute value of the discrimination score [0,1].

Thus, as indicated in Table 3, a discrimination score of 0 indicated that the
subject had no preference between the two stimuli and answered randomly (with
a 50% accuracy), whereas a discrimination score of 1 indicated that the subject
consistently chose one stimulus over the other (with a 100% accuracy).

Table 3. Correspondence between preference rate and discrimination score.

Preference rate 50% 60% 75% 80% 90% 95% 100%

Discrimination score 0 0.2 0.5 0.6 0.8 0.9 1

5.3 Results

Figure 8 show the distributions of the discrimination scores grouped according to
the independent variables. On each figure, the red dot indicates the mean value,
in addition to the median value and quartiles indicated by the box. An Anderson
Darling normality test revealed that the data distribution were not normal, so we
performed an aligned rank transform in order to enable a full factorial analysis
using ANOVA. The three-way ANOVA comparison, visual and tactile cues vs.
the discrimination score revealed a significant main effect on the visual condition
(F1,17 = 9.56, p < 0.01). Post-hoc tests showed that this effect was significant
(p < 0.05), V1 had a higher discrimination score (M = 0.71; SD= 0.3) compared
with V0 (M = 0.59; SD= 0.33). These results support H2. In contrast, no main
effect was found on the tactile condition (F1,17 = 3.64, p = 0.073). Yet, the results
seems to suggest that there is an impact of the screen roughness: F0 (M = 0.61;

SD= 0.34) compared to F1 (M = 0.69; SD= 0.30). Nevertheless the results do not
support H3. Regarding the different comparisons, the ANOVA did not show a
significant effect (F2,17 = 3.00, p = 0.063). Again, the results are close to the
significance threshold. Post-hoc tests seems to suggest that subjects were less
accurate for the REVERSE vs. STATIC comparison (p = 0.053). Finally, the
ANOVA did not show any interaction effect.

Figure 8a shows the score distributions according the visual condition. Scores
were significantly higher in the V1 condition, that is with the mechanism visible,
than in the V0 condition, that is with a cover hiding it. Scores were also higher,
but not significantly, in the F1 condition than in the F0 condition, i.e., with the
textured film on the tablet rather than without. The distributions of the crossed
visuo-tactile conditions are consistent with the results of the non-crossed condi-
tions (Fig. 8a): scores were significantly higher with the mechanism visible, and
not significantly higher with the textured film on the tablet rather than without.
The highest average score is achieved, as expected, in the V1F1 condition, with
half of the subjects having a score above 0.9.

Figure 8b shows that the scores were different regarding which stimuli were
compared. When the Reverse and the Follow effects were compared, the scores
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Fig. 8. Score distributions across visuo-tactile conditions and stimuli pairs. (Color
figure online)

are distributed quite uniformly between 0 and 1. In contrast, for the comparison
between the Follow effect and the control condition, half of the subjects have a
discrimination score above 0.8 and a few have a score close to zero.

5.4 Discussion

Our results suggest that our Sliding effect is well and consistently discriminated
by a great majority of subjects. Indeed, even in the least favorable condition,
V0F0, half of the subjects had a score above 0.6, which means they were con-
sistent in at least 80% of their answers. In the most favorable condition, V1F1,
half of the subjects had a score of 0.9 or higher, indicating 95% of their answers
were consistent. It is noticeable that in most conditions, score distributions were
very large, ranging from 0 to 1, meaning that some subjects answered randomly
and some subjects answered with a perfect consistency. The mean values, how-
ever, are above 0.5 in all conditions, which means that in average, whatever the
condition, the subjects were consistent in their classification on at least 75% of
the trials. Moreover, in almost all conditions this mean value is slightly lower
than the median value, which indicates that it is worn down by a few values
close to 0.

These results demonstrate that the subjects’ ability to discriminate between
the three stimuli were generally well above the random threshold with or with-
out visual and/or tactile cues. As expected, visual cues had significant positive
impact on discrimination. More surprisingly, the rough textured film on the
screen had only a minor effect. We were expecting it to make the difference
between stimuli very clear, as it produces strong vibrations according to slid-
ing speed, in contrast with the very smooth screen that does not provide much
sliding sensations.
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However, an unexpected side effect was that the textured film was much less
sticky than the screen, so that although the tactile sensations were stronger,
it was much easier to stroke it fast. We think that this could have biased the
answer about the “sliding” sensation, and could explain why subjects had dif-
ferent strategies to rank the stimuli. During the experiment, we noticed that
most users had a clear ranking for a given visuo-tactile condition, but it was not
necessary the same when the visual or tactile condition changed.

While the subjects were clearly able to discriminate the three stimuli, their
ranking in terms of sliding was different among subjects and conditions. This
might simply reflect the polysemy of the “sliding” term, and the very blurred
vocabulary we have when it comes to describe tactile experiences. Further studies
could disambiguate the sensations produced by the lateral sliding of the screen
during stroke. For instance, asking the subjects about both roughness and sliding
sensation could help to identify the dependence or independence of these two
parameters. Also, a comparison with real material samples rather than between
haptic effects might help avoiding misinterpretations and keep a low inter-subject
variability.

6 Use Cases

The KinesTouch approach allows for various haptic effects based on force feed-
back and movements of the touchscreen in the 3D space. In this section we pro-
vide several illustrative use cases, illustrated Fig. 9 and in the accompany video,
that we have been developed in order to show the potential of our approach.

Interacting with 3D Objects: In our first use case, the user can explore and
interact with virtual 3D objects. This use case relies mainly on the Shape effect.
In our implementation, the user can feel the shape of several objects such as a
vase or rocks.

Perceiving the Texture of 2D Images and Pictures: In our second use case,
KinesTouch is used to interact with a 2D image in order to feel its texture. This
use case relies mainly on the Stiffness, Sliding, and Roughness effects. Thanks
to these effects, the user can feel the changes in: local elasticity, friction, and
relief in the picture. In our implementation, a picture of a plant landscape is
used, associated with several “haptic maps”, similarly to the normal maps used
for textures in 3D engines (here: “stiffness map”, “friction map” and “roughness
map”).

Augmenting Graphical User Interface and Haptic Widgets: In our third
use case, KinesTouch is used to enhance interaction with a Graphical User Inter-
face made of several buttons. This simple use case relies on the Stiffness effect.
In our implementation, the buttons need to be pushed at a certain depth, but
have different levels of stiffness, which makes them easy or hard to validate.

Exploring Interactive Maps: In our fourth use case, the user can explore
the interactive map of a building. This use case relies on the Shape, Sliding,
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(a) Interaction with a 3D object. (b) Texture of a 2D image.

(c) GUI and haptic buttons. (d) Interactive map.

Fig. 9. Illustrations of our four use cases

and Roughness effects. In our implementation, the 2D map (in top-view) of a
big mall with three floors is used. The user can explore the layout of the shops
using the finger. When stroking over stairs the user can move up or down to a
different floor. The user can be attracted or repulsed from specific points/areas
of interest. A vibration can also be added in presence of a targeted item.

7 Conclusion and Future Work

In this paper we have presented KinesTouch: a novel approach to enhance touch-
screen interactions using kinesthetic and force feedback. With a single device,
the KinesTouch provides four different types of haptics sensations: compliance,
shape, fine roughness and friction. Moreover, we address a novel way of deal-
ing with friction rendering: lateral kinesthetic feedback. We designed a proof-
of-concept prototype based on the combination of a standard tablet and a
consumer-grade impedance haptic device, in order to illustrate several use cases
including: interacting with 3D objects or haptic widgets, exploring an interactive
map, or perceiving the texture of a 2D image. We also conducted a user study on
the Sliding effect to confirm that it could well induce different sliding sensations.

Creating rich haptic effects that combine the different psychophysical dimen-
sions is probably the most promising, but also challenging following of this work.
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Except for vibrations that can be easily “added” to a force or kinesthetic render-
ing without much interferences, the compliance, shape, and friction dimensions
are not trivial to associate, at least with a Falcon device that is limited in terms
of dynamics and workspace. Beyond the device technical limitations, there are
also conceptual limitations to combine force and position control. The proper
algorithms and hardware able to tackle this issue should be explored in future.
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Abstract. This paper describes the use of SMA (Shape Memory Alloys) wires
to develop wearable tactile interfaces. In this early work, the wearable interface
consists of a nylon glove with thin SMA wires stitched on it. The SMA wires
provide a tunable pressure sensation when they are electrically actuated
appropriately. Each wire is anchored to the fingernail-shaped support via screw
clamps to ensure both the electrical continuity of the connections and to effi-
ciently transmit the contraction force on the fingertip. A suitable actuation
system of SMA wires has been designed and implemented on an Arduino Uno
microcontroller to prevent their overheating. The knowledge of SMA wires
mechanical, thermal and electrical properties allowed the implementation of a
proper actuation strategy. The interface was characterized in terms of response
time and force felt on the fingertip. Ten subjects have positively evaluated the
interface in terms of wearability, comfort and tactile sensations. This work paves
the way for the development of highly wearable tactile interfaces to be inte-
grated in Virtual Reality (VR) and Augmented Reality (AR) environments.

Keywords: Tactile interfaces � Shape Memory Alloy � Haptics
Augmented Reality

1 Introduction

Haptic interfaces are computer-controlled electro-mechanical devices to allow the user
to manually interact with remote or virtual environments. When applied to virtual
environments, they allow manual exploration and manipulation of virtual objects
making the scene more realistic and even more immersive [1–3].

Haptic devices can be divided in two groups: kinesthetic interfaces that provide
sensation of force to the user, and tactile interfaces that provide sensation of contact,
heat, pressure and texture. Furthermore, such devices can be also classified as grounded
or ungrounded devices. The former are fixed into the real environment and the user can
interact with the virtual objects by manipulating a pen or a mouse integrated in the
interface (PHANTOM SensAble Technologies), while the latter is worn by the user
(such as a hand-glove, a thimble, etc.). Ungrounded devices are more mobile and can
operate over larger workspaces compared to grounded devices. However, currently
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available ungrounded devices present technological drawbacks [4] as described in the
following.

The sensation of contact can be recreated using various technologies. Vibro-tactile
actuators are among the most widely used in this field with various commercial
applications due to their low cost and reduced size [5]. CyberTouch [6] is a com-
mercially available system to simulate vibrations (e.g. when the user’s finger touches
an object in VR). The system employs vibro-tactile actuators mounted on the back of
the fingers of a glove. The position of the actuators is not optimal since the contact
usually happens at the fingertips. Vibro-tactile actuators are used in many research
studies. For instance, Sziebig et al. [7] developed a vibro-tactile glove for VR appli-
cations composed of six vibro-tactile actuators, five on the fingertips and one on the
palm. While Martinez et al. [8] presented a vibrotactile glove with twelve vibro-tactile
actuators for the identification of virtual 3D objects. The main drawback of vibro-tactile
actuation is due to the unrealistic sensation in case of contact stimuluses. Moreover, the
mechanoreceptors of the fingers that detect vibrations have a wide receptive field that
does not allow an accurate localization of the stimulus. Finally, this kind of interfaces,
wrapping the entire fingertip with rigid and bulky devices, can be employed only in
cases of VR application.

Pressure actuators intrinsically provide a more realistic sensation of contact.
Minamizawa et al. [9] developed a wearable interface integrating two DC motors to

press a belt in contact with the user’s fingertip giving a sensation of pressure. Bianchi
et al. [10] developed a device with a similar design but with a lifting mechanism that
can independently regulate the pressure. Such kind of devices are suitable for VR
application and also for AR tactile applications. In [11] the Bianchi et al. [10] device
was employed to virtually reproduce arterial pulse in a surgical simulator that includes
a realistic arterial replica.

Aoky et al. [12] proposed a fingertip interface using thin wires pulled by a small
coil and demonstrated that the absolute threshold to feel a pressure is lower using a wire
contact than using a belt contact.

Scheibe et al. [13] investigated the use of SMA (Shape Memory Alloys) wires to
generate tactile sensation to the fingertips. Specifically, they developed a thimble with
SMA wires looped around it that provide an impression of contact when they are
electrically actuated. Their interface has successfully been used in immersive VR
applications. The bulkiness of the thimble is a critical point for its application in AR
environment in which it is necessary to manipulate real as well as virtual objects, and
furthermore the thimble occludes the view of the real environment.

Toyoura et al. [14] proposed a tactile interface with wires of BioMetal SMA
material (by Toky Corporation) integrated in a glove. Their glove does not alter the
grasp and does not occlude the view but the slow response time (about 0.5 s) of
BioMetal causes a perceptible lag in VR and AR applications.

The aim of this work is to evaluate if different SMA materials, actuated with a
proper strategy, can be suitable for the development of glove-based tactile interfaces in
terms of response time, pressure sensation, lightweight, bulkiness, comfort and free-
dom of movements.
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2 Materials and Methods

The following sections describe the properties of Nitinol SMA materials, an early glove
design, the actuation strategy for the SMA wires, the quantitative and qualitative
evaluation of our interface.

2.1 Flexinol® Wire Properties

Nickel titanium (Nitinol) SMA materials assume a different crystalline structure at
different temperatures. At low temperature, the Nitinol SMA material is in martensitic
phase: it can be easily stretched by a minor force. When Nitinol SMA material is heated
to its transition temperature it changes to austenitic phase: the material is high strength
and not easily deformed and it returns to its pre-deformed shape.

We employed thin pre-trained SMA wires: the Nitinol wires FLEXINOL® (from
Dynalloy, Inc.) [15]. Specifically, the FLEXINOL® wires contract when heated typi-
cally up to 2% to 5% of their length as showed in Fig. 1.

FLEXINOL® wire is commercially available in a variety of diameters, from 0.025
up to 0.51 mm and in 2 transition temperatures: low temperature (LT) at 70 °C and
high temperature (HT) at 90 °C.

We employed 0.15 mm diameter LT FLEXINOL® wires and we electrically
heated them.

2.2 Design of an Early Wearable Tactile Interface

Our early interface consists of a nylon glove whit three thin SMA wires stitched on the
index’s fingertip. The wires are anchored to a fingernail-shaped support via screw
clamps as depicted in Fig. 2. The fingernail-shaped support has a twofold function: to
ensure the electrical continuity of the connections and to efficiently transmit the con-
traction force on the fingertip. Its shape and weight of about 1 g should ensure comfort
and freedom of movements.

Fig. 1. Typical temperature vs. strain characteristics for the employed LT FLEXINOL® wires
(70 °C).
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We set the length of the SMA wires to 50 mm to wrap the entire fingertip of users
with large fingers. The three SMA wires are equally spaced of 4 mm; this distance is
larger than two-point discrimination threshold on fingertip which is 2 mm [16]. In this
way, by contracting a single wire the contact point should be discriminated.

Each SMA wire is connected to an Arduino Uno microcontroller board through a
pair of electric wires. In this early design, the electric wires are positioned on the back
of the hand (Fig. 2).

Specifically, we electrically heat the Nitinol wires by an appropriate current to
obtain the contraction as described in the following paragraph (“Actuation strategy of
SMA wires”).

2.3 Actuation Strategy for the SMA Wires

An undesirable effect related to the electrical activation of Nitinol wires by a constant
current is overheating, which could determine the degradation in the material shape
memory effect and the discomfort up to pain for the user.

A direct measure of the temperature through temperature sensors is difficult due to
the small surface of the wires. For this reason, we prevent wire overheating predicting
the temperature and properly adjusting the heating current.

To this end, we employed the thermal model to predict SMA thermal behaviour
proposed by Velázquez and Pissaloux [17]. Specifically, we can assume that the
behaviour of SMA wire is linear and thus without hysteresis; this approximation is
valid for fast wire heating. The simplified thermal model depends on both the SMA
wire geometry and the material properties specified in data sheet. The following
Eq. (1), describes the simplified thermal model of SMA wire:

qCV
dT
dt

¼ i2R� hS T � Tsð Þ ð1Þ

Fig. 2. (a) Early prototype of a tactile glove. (b) Detail of fingernail-shaped support with the
electric wires. (c) Detail of the SMA wires stitched on the glove.
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Where q is the density of the SMA, C is its specific heat, V is the volume of the
SMA material, T is the temperature of the SMA at a time t, R is the electrical resistance
of a 50 mm wire, h is the heat-exchange coefficient between the SMA and the sur-
rounding mediums, S is the surface area of the SMA and Ts is the surrounding
temperature.

Table 1 reports the physical parameters of our specific thermal model. R is cal-
culated starting from the FLEXINOL® conductivity and the wire geometry, while Ts
has been set to the typical skin temperature. The other parameters are obtained from the
FLEXINOL® datasheet.

We incorporated the obtained thermal model into a simulated control system of the
temperature. The simulated control system employs a proportional-integral (PI) con-
troller in order to achieve the reference temperature with a fast response time avoiding
overheating.

A classical feedback scheme has been used (Fig. 3): the estimated real-time tem-
perature (T) is compared with the reference temperature (Tr); the error e (T − Tr) is the
input of the PI controller. The output of the PI controller was set to a maximum value
of 300 mA to prevent the degradation of material performances as suggested in the
FLEXINOL® datasheet. The PI parameters were empirically set as a compromise to
obtain a fast rising time and a reduced risk of overeating (Table 2).

Table 1. Physical parameters of the employed SMA wires.

Property Value Unit

Density q 6450 kg � m−3

Specific heat C 320 J � kg−1 � K−1

Volume V 8 � 10−10 m3

Resistance R 2.75 X

Heat-exchange coefficient h 94.96 W � m−2 � K−1

Surface S 2 � 10−5 m2

Surrounding temperature Ts 36 °C

Fig. 3. Simulated feedback control system of the temperature to estimate the current actuation
strategy.
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Figure 4 shows the results of the simulations which were implemented in
MATLAB/Simulink. The reference temperature has been set at 85 °C, this is a good
temperature to achieve optimal contraction without degrading the material. The sim-
ulations highlight how, through an adequate control of the material, it is possible to
obtain the desired performance.

The synthesized controller was discretized and implemented in the Arduino Uno
microcontroller. The sampling time was set to 2 ms to achieve a good resolution of the
transient. Since Arduino Uno microcontroller is not able to supply the required current,
it was coupled with an amplification circuit based on a TIP 120 transistor. The entire
system was powered by a 9 V power supply (Fig. 5).

Table 2. Gains of the PI controller.

Constant gains Value

Proportional KP 0.06
Integral KI 0.067

Fig. 4. Step response of close loop system.

Fig. 5. Scheme of actuation system for SMA wire.
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The microcontroller cyclically performs the following routines: first it estimates the
temperature of the wire through the thermal model implemented; then it calculates the
current required using the PI controller; finally it drives the amplification circuit in
order to obtain the required current through a pulse width modulated (PWM). In this
way, every time the wire actuation is required, the optimal current profile is generated
starting from the estimated wire initial temperature.

2.4 Performance Evaluation

Quantitative tests were carried out to estimate three parameters: the contraction time,
the relaxation time of SMA wires and the force imposed on the fingertip. The exper-
imental setup included a simplified version of our tactile interface comprising the
fingernail-shaped support with an only nitinol wire and a force sensing resistor
(FSR) 400 sensor (by Interlink Electronics) as shown in Fig. 6. During the test, a
volunteer has worn the simplified version of our tactile interface on the right index
finger and the force sensor was placed between the user’s finger and the SMA wire.

The SMA wire was activated and the output of the FSR sensor was measured. FSR
sensor was connected to a measuring resistor RM in a voltage divider configuration, as
illustrated in Fig. 7.

The contraction time was estimated as the rising time between the starting of the
activation and the sensor’s response up to 70% of the maximum contraction. The same
for the relaxation time.

Instead, the contraction force was directly measured from the FSR sensor output
using the relationships defined in [18], reported in (2) and (3), which allow an esti-
mation of the force magnitude:

CFSR ¼ 106x VOUT
� ��

Vþ � VOUTð Þx RMð Þ ð2Þ

FFSR ¼ CFSR=80 ðCFSR\1000Þ
CFSR � 1000ð Þð Þ=30 ðCFSR [ 1000Þ

�
ð3Þ

Fig. 6. Setup for the evaluation of SMA wire performances.
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where, CFSR is the conductance of the sensor, VOUT is the output voltage of FSR
sensor, V+ is the in voltage of 5 V, RM is a 10 KX resistance and FFSR is the estimation
of force magnitude in Newton.

Preliminary qualitative tests were carried out to evaluate both the wearability and
the ability of our tactile interface to provide tactile sensation. A total of ten subjects
participated in this study. They wore the tactile interface and performed some move-
ments to evaluate the wearability. During the tests, the tactile interface conveyed a
pulse feedback on user’s fingertip. The activation of the wires took place both
simultaneously and individually. In the second modality, a pair of contiguous wires
was activated in sequence in order to evaluate the ability to perceive distinct areas of
contact. At the end of the test, each subject was asked to complete a structured
questionnaire based on five-point Likert scale (1 = strongly disagree to 5 strongly
agree).

3 Results

The estimated contraction time is about 50 ms which is the same time of thimble of
Scheibe [13]; this result is adequate for VR and AR applications. The relaxation time is
about 1 s, not acceptable in case of application requiring higher activations rate.

The measured contact force with our setup is about 1 N, that is over the absolute
threshold evaluated by Aoky for the detection of the induced pressure by a wire on a
finger (40 mN) [12].

The questionnaire results are illustrated in Table 3. The central tendencies of
responses to a single Likert item are summarized by using median, with dispersion
measured by interquartile range. Ten subjects positively evaluated the tactile interface,
both in terms of wearability and in terms of the ability to generate a sensation of
contact. The glove has been considered comfortable to wear and easy to adapt to the
individual finger. Furthermore, the glove allows free movement of the fingers. All
subjects were able to recognize the activation of the contraction and to discriminate the
area of contact; moreover, this sensation was considered suitable to simulate contact
with an object. The wires have been heated at 85 °C for 2 s and only a small percentage
of the subjects perceived a very weak and painless temperature increasing. This is due

Fig. 7. Reading circuit of the FSR sensor.
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to the low specific heat of the FLEXINOL® wires and the restricted activation time.
Since the contact sensation in humans is greater in the instant of the contact and then
tends to disappear, due to the adaptation behaviour of the mechanoreceptors, there are
no reasons to still to be maintained the wires contracted for longer time. However,
further studies need to be conducted to confirm qualitative results in a larger cohort of
subjects.

4 Conclusions and Discussion

In this paper, we motivated and evaluated the feasibility of wearable tactile interfaces
based on SMA wires to present tactile sensations on the fingertip. Our early interface
consists of a nylon glove with three thin SMA wires connected through fingernail-
shaped support. In addition, a suitable actuation system of SMA wires has been
designed and implemented on an Arduino Uno microcontroller, to avoid their over-
heating. Ten subjects positively evaluated the tactile interface, both in terms of
wearability and in terms of the ability both to generate a sensation of contact and to
discriminate the different contact areas. The latter can be the starting point to simulate
different perceptions such as gliding by activating the wires sequentially. The greatest
strength of such kind of interface is the wearability. In literature, there are tactile
interfaces capable of generating even more complex and specific tactile sensations but,
due to their weight and size, they are suitable for use in VR environment but not in AR
environment in which it is necessary to manipulate real as well as virtual objects. Our
interface instead, does not alter the grasp of the hand and does not increase the
occlusion of the real environment, thus allowing a truthful interaction of the user with
both real and virtual objects.

The experimental results demonstrate that the contraction time and the force exerted
by the wire are adequate for our purpose. The drawback of Nitinol wires is the slow
relaxation time. SMA wires can be contracted in less than 50 ms but need about 1 s to
restore the initial condition.

Further studies could be carried out on glove materials to improve thermal dissi-
pation in order to avoid any heating sensation by the user and to speed up the relaxation

Table 3. Questionnaire results. The central tendency of responses is summarized by using
median with dispersion measured by IQR (25°; 75°).

Questionnaire items Median (IQR)

A tactile sensation is felt on the fingertip 5 (5–5)
The activation in sequence of two contiguous wires makes it possible to
identify their relative position

4 (3–4)

The glove is comfortable to wear and easy to adapt to the individual
finger

4 (4–5)

The glove allows free movement of the fingers and hand. 4 (4–5)
The eventual heat feel during the test is bearable. 4 (3–5)
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time. Another approach to increase the activation rate could be to add other close wires
in parallel and activating them alternately.

In a more advanced version of the glove, we would like to simulate the grasp. To
this end, we will need to increase the area of contact using more wires and to extend the
actuation strategy up all the five fingers. In addition, the cabling could be simplified
connecting together the electric wires on the same pole and encapsulating them within
the glove.

In our view, this work paves for the development of highly wearable tactile
interfaces to be integrated in VR and AR environments.
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Marc O. Rüdel, Johannes Ganser, Rene Weller(B), and Gabriel Zachmann

University of Bremen, Bremen, Germany
weller@informatik.uni-bremen.de

http://cgvr.informatik.uni-bremen.de/

Abstract. We present UnrealHaptics, a novel set of plugins that
enable both 3-DOF and 6-DOF haptic rendering in the Unreal Engine
4. The core is the combination of the integration of a state-of-the-art
collision detection library with support for very fast and stable force and
torque computations and a general haptics library for the communica-
tion with different haptic hardware devices. Our modular and lightweight
architecture makes it easy for other researchers to adapt our plugins to
their own requirements. As a use case we have tested our plugin in a new
asymmetric collaborative multiplayer game for blind and sighted people.
The results show that our plugin easily meets the requirements for haptic
rendering even in complex scenes.

1 Introduction

With the rise of affordable consumer devices such as the Oculus Rift or the HTC
Vive there has been a large increase in interest and development in the area of
virtual reality (VR). The new display and tracking technologies of these devices
enable high fidelity graphics rendering and natural interaction with the virtual
environments. Modern game engines like Unreal or Unity have simplified the
development of VR applications dramatically. They almost hide the technological
background from the content creation process so that today, everyone can click
their way to their own VR application in a few minutes. However, consumer VR
devices are primarily focused on outputting information to the two main human
senses: seeing and hearing. Also game engines are mainly limited to visual and
audio output. The sense of touch is widely neglected. This lack of haptic feedback
can disturb the immersion in virtual environments significantly. Moreover, the
concentration on visual feedback excludes a large number of people from the
content created with the game engines: those who cannot see this content, i.e.
blind and visually impaired people.

The main reasons why the sense of touch is widely neglected in the context
of games are that haptic devices are still comparatively bulky and expensive.
Moreover, haptic rendering is computationally and algorithmically very chal-
lenging. Although many game engines have a built-in physics engine, they are
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most usually limited to simple convex shapes and they are relatively slow: for
the visual rendering loop it is sufficient to provide 60–120 frames per second
(FPS) to guarantee a smooth visual feedback. Our sense of touch is much more
sensitive with respect to the temporal resolution. Here, a frequency of preferably
1000 Hz is required to provide an acceptable force feedback. This requirement for
haptic rendering requires a decoupling of the physically-based simulation from
the visual rendering path.

In this paper, we present UnrealHaptics to enable high-fidelity haptic ren-
dering in a modern game engine. Following the idea of decoupling the simulation
part from the core game engine, UnrealHaptics consists of three individual
plugins:

– A plugin that we call Haptico: it realizes the communication with the haptic
hardware.

– The computational bottleneck during the physically-based simulation is the
collision detection. Our plugin called Collette builds a bridge to an external
collision detection library that is fast enough for haptic rendering.

– Finally, FForceComp computes the appropriate forces and torques from the
collision information.

This modular structure of UnrealHaptics allows other researchers to eas-
ily replace individual parts, e.g. the force computation or the collision detec-
tion, to fit their individual needs. We have integrated UnrealHaptics into the
Unreal Engine 4 (UE4). We use a fast, lightweight and highly maintainable and
adjustable event system to handle the communication in UnrealHaptics.

As a use case we present a novel asymmetric collaborative multiplayer game
for sighted and blind players. In our implementation, Haptico integrates the
CHAI3D library that offers support for a wide variety of available haptic devices.
For the collision detection we use the state-of-the-art collision detection library
CollDet [27] that supports complexity independent volumetric collision detection
at haptic rates. Our force calculation relies on a penalty-based approach with
both 3- and 6-degree-of-freedom (DOF) force and torque computations. Our
results show that UnrealHaptics is able to compute stable forces and torques
for different 3- and 6-DOF devices in Unreal at haptic rates.

2 Related Work

Game engines enable the rapid development with high end graphics and the
easy extension to VR to a broad pool of developers. Hence, they are usually the
first choice when designing demanding 3D virtual environments. Obviously, this
is also true for haptic applications. Consequently, there exist many (research)
projects that already integrated haptics into such game engines, e.g. [2],[15], [14]
to name but a few. However, they usually have spent a lot of time in developing
single use approaches which are hardly generalizable and thus, not applicable to
other programs.
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Actually, there exist only a very few approaches that provide comfortable
interfaces for the integration of haptics into modern game engines. We only
found [11] and [22] that provide plugins for UE4 that serve as interfaces to the 3D
Systems Touch (formerly SensAble PHANToM Omni) [16] via the OpenHaptics
library [1]. OpenHaptics is a proprietary library that is specific to 3D Systems’
devices, which means that other devices cannot be used with these plugins.
Furthermore, the plugins are not actively maintained and seem to not be working
with the current version of UE4 (version 4.18 at the time of writing). Another
example is a plugin for the PHANToM device presented in [20], also based on
the OpenHaptics library. Like the other plugins, it is no longer maintained and
was even removed from Unity’s asset store [21]. During our research, we could
not find any actively maintained plugin for a commonly used game engine that
supports 3- or 6-DOF force feedback.

Outside the context of game engines, there are a number of libraries that
provide force calculations for haptic devices. A general overview is given in [10].
One example is the CHAI3D library [4]. It is an open-source library written in
C++ that supports a variety of devices by different vendors. It offers a com-
mon interface for all devices that can be extended to implement custom device
support. For its haptic rendering, CHAI3D accelerates the collision detection
with mesh objects by using an axis-aligned bounding box (AABB) hierarchy.
The force rendering is based on a finger-proxy algorithm. The device position
is proxied by a second, virtual position that tries to track the device position.
When the device position enters a mesh the proxy will stay on the meshes sur-
face. The proxy tries to minimize the distance to the device position locally by
sliding along the surface. Finally, the forces are computed by exerting a spring
force between the two points [3]. Due to this method’s simplicity, it only returns
3-DOF force feedback, even though the library generally allows for also passing
torques and grip forces to devices. Nevertheless we are using CHAI3D in our use
case, but only for the communication with haptic devices.

A comparable, slightly older library is the H3DAPI library [7]. Same as
CHAI3D, it is extensible in both the device and algorithm domain. However
by default H3DAPI supports less devices and likewise does not provide 6-DOF
force feedback.

A general haptic toolkit with a focus on web development was presented by
Ruffaldi et al. [18]. It is based on the eXtreme Virtual Reality (XVR) engine,
utilising the CHAI3D library, in order to allow rapid application development
independent from the specific haptic interface. Unfortunately, the toolkit has not
been further developed and there is no documentation to be found, since their
homepage went down.

All approaches mentioned above are limited to 3-DOF haptic rendering.
Sagardia et al. [19] present an extension to the Bullet physics engine for faster col-
lision detection and force computation. Their algorithm is based on the Voxmap-
Pointshell algorithm [12]. Objects are encoded both in a voxmap that stores
distances to the closest points of the object as well as point-shells on the object
surface that are clustured to generate optimally wrapped sphere trees. The
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penetration depth from the voxmap is then used to calculate the forces and
torques. In contrast to Bullet’s build-in algorithms this approach offers full 6-
DOF haptic rendering for complex scenes. However, the Voxmap-Pointshell algo-
rithm is known to be very memory intensive and susceptible to noise [23].

Fig. 1. A typical haptic integration without UnrealHaptics. Left: different haptic
devices available with their libraries. Right: Scheme of UE4, which we want to integrate
the devices with.

3 UNREALHAPTICS

The goal of our work was to develop an easy-to-use and simultaneously adjustable
and generalizable system for haptic rendering in modern game engines. This can
be used in games, research or business related contexts, either as whole or in
parts. We decided to use the Unreal Engine for development because of several
reasons:

– it is one of the most popular game engines with a large community, regular
updates and a good documentation,

– it is free to use in most cases, especially in a research context where it is
already heavily used [13,17],

– it is fully open-source, thus can be examined and adapted,
– it offers programmers access on the source code level while game designers can

use a comfortable graphical editor in combination with a graphical scripting
system called Blueprints. Thus, it combines the advantages of open class
libraries and extensible IDEs
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– it is extendable via plugins,
– and finally, it is build on C++, which makes it easy to integrate external

C++-libraries. This is convenient because C++ is still the first choice for
high-performance haptic rendering libraries.

Our goals directly imply a modular design for our system. The main challenges
when including haptics into programs are fast collision detection, stable force
computation and communication with hardware devices. Figure 1 presents the
previous state before our plugins: on the one side, there are different haptic
devices available with their libraries. On the other side, there is UE4 in which
we want to integrate the devices. Consequently, our system consists of three
individual plugins that realizes one of these tasks. In detail these are:

– A plugin called Haptico, which realizes the communication with haptic hard-
ware, i.e. it initializes haptic devices and during runtime receives positions
and orientations and sends forces and torques back to the hardware.

– A plugin called Collette that communicates with an (external) collision
detection library. Initially, it passes geometric objects from Unreal to the col-
lision library (to enable it to potentially compute acceleration data structures
etc.). During runtime, it updates the transformation matrices of the objects
and collects collision information.

– ForceComp, a force rendering plugin which receives collision information
and computes forces and torques that are finally send to Haptico. The
force calculation is closely related to the collision detection method because
it depends on the provided collision information. However, we decided to
separate the force and torque computation from the actual collision detec-
tion into separate plugins because this allows an easy replacement, e.g. if the
simulation is switched from penalty-based to impulse-based.

The list of plugins already suggest that communication plays an important role
in the design of our plugin system. Hence, we will start with a short description
on this topic before we detail the implementations of the individual plugins.

3.1 Unreal Engine Recap

UE4 is a game engine that comprises the engine itself as well as a 3D editor to
create applications using the engine. We will start with a short recap of UE4’s
basic concepts.

UE4 follows the component-based entity system design. Every object in
the scene (3D objects, lights, cameras, etc.) is at its core a data-, logic-less
entity (in the case of UE4 called actors). The different behavior between the
objects stems from components that can be attached to these actors. For exam-
ple, a StaticMeshActor (which represents a 3D object) has a mesh component
attached, while a light source will have different components attached. These
components contain the data used by UE4’s internal systems to implement the
behavior of the composed objects (e.g. the rendering system will use the mesh
components, the physics system will use the physics components etc.).
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UE4 allows its users to attach new components to actors in the scene graph
which allows extending objects with new behavior. Furthermore, if a new class is
created using UE4’s C++-dialect, variables of that class can be exposed to the
editor. By doing so, users have the ability to easily change values of an instance
of the class from within the editor itself, which minimizes programming effort.

UE4 not only provides a C++ interface, but also a visual programming lan-
guage called Blueprints. Blueprints abstract functions and classes from the C++
interface and present them as “building blocks” that can be connected by exe-
cution lines. It serves as straightforward way to minimize programming effort
and even allows people without programming experience to create game logic
for their project.

When extending the UE4 with custom classes, the general idea is noted in [6]:
programmers extend the existing systems by exposing the changes via blueprints.
These can be used by other users to create game behavior. Our plugin system
follows this ideas.

Furthermore, UE4 allows developers to bundle their code as plugins in order
to make the code more reusable and easier to distribute [5]. Plugins can be man-
aged easily within the editor. All classes and blueprints are directly accessible
for usage in the editor (Fig. 2). We implemented our system as a set of three
plugins to make the distribution effortless and allow the users to choose which
features they need for their projects.

Finally, UE4 programs can be linked against external libraries at compile
time, or dynamically loaded at runtime, similar to regular C++ applications.
We are using this technique to base our plugins on already existing libraries.
This ensures a time-tested and actively maintained base for our plugins.

3.2 Design of the Plugin Communication

As described above, our system consists of three individual plugins that exchange
data. Hence, communication between the plugins plays an important role. Fol-
lowing our goal of flexibility, this communication has to meet two major require-
ments.

– The plugins need to communicate with each other without knowledge about
the others’ implementation because users of our plugins should be able to use
them individually or combined. They could even be replaced by the users’
own implementations. Thus, the communication has to run on an independent
layer.

– Users of the plugins should be able to access the data produced by the plugins
for their individual needs. This means that it must be possible to pass data
outside of the plugins.

To fulfill both these requirements, we implemented a messaging approach
based on delegates. A delegator is an object that represents an event in the
system. The delegator can define a certain function signature by specifying
parameter types. Delegates are functions of said signature that are bound to
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the delegator. The delegator can issue a broadcast which will call all bound del-
egates. Effectively, the delegates are functions reacting to the event represented
by the delegator. A delegator can pass data to its delegates when broadcasting,
completing the messaging system.

Fig. 2. Unreal’s editor view of the game. On the left side, you see the Phantom
player in the virtual environment. In front of him are the virtual tool (pen) and a
ColletteStaticMeshActor to be recognized (crown). On the right, the scene graph is
displayed with our custom classes.

The setup of the delegates between the plugins can be handled for example
in a custom controller class within the users’ projects. We describe the imple-
mentation details for such a controller in Sect. 3.6.

Our Light Delegate System. UE4 provides the possibility to declare different
kinds of delegates out of the box. However, these delegates have a few drawbacks.
Only Unreal Objects (declared with the UOBJECT macro etc.) can be passed with
such delegates, limiting their use for more general C++ applications. They also
introduce several layers of calls in the call stack since they are implemented
around UE4’s reflection system. This may influence performance when many
delegates are used. Finally, we experienced problems at runtime: UE4-delegators
temporarily forgot their bound functions which led to crashes when trying to
access the addresses of these functions.
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To overcome these problems we implemented our own lightweight Delegator
class. It is a pure C++ class that can take a variable number of template argu-
ments which represent the parameter types of its delegates. A so called callable
can be bound with the addDelegate(...) function. Our solution supports all
common C++-callables (free functions, member functions, lambdas etc.). The
delegates can be executed with the broadcast() function which will execute del-
egates one after another with just a single additional step in the call stack. The
data is always passed around as references internally, preventing any additional
copies.

3.3 HAPTICO Plugin – Haptic Device Interface

Haptico enables game developers to use haptic devices directly from UE4 with-
out implementing a connection to the device manually. It automatically detects
a connected haptic device and allows full control via either Blueprints or C++
Code. This includes the retrieval of positions and orientations from the device
and the sending of forces and torques to the device, thanks to the underlying
CHAI3D library.

Haptico consists of mainly three parts: The haptic manager, the haptic
thread and the haptic device interface. The haptic manager is the only user
interface and represented as an UE4 actor in the scene. It provides functions to
apply forces and torques to the device and to get informations such as position
and rotation of the end effector. To be used for haptic rendering the execution
loop of the plugin must be separated from UE4’s game thread which runs at
a low frequency. The plugin uses its own haptic thread internally. The haptic
thread reads the positional and rotational data from the device, provides it for
the haptic manager and applies the new force and torques retrieved from the
haptic manager to the device in every tick. When new haptic data is available
a delegator-event OnTransform is broadcasted, which passes the device data
to the haptic manager in every tick. Users of the plugin can easily hook their
own functions to this event, allowing to react to the moved device. A second
delegator-event ForceOnHapticTick is broadcasted, which allows users to hook
force calculation functions into the haptic thread. Our own ForceComp plugin
uses this mechanism, which is further described in Sect. 3.6.

3.4 COLLETTE – Collision Detection Plugin

The physics module included in UE4 has two drawbacks that makes it unsuitable
for haptic rendering:

1. It runs on the main game thread, which means it is capped at 120 FPS.
2. Objects are approximated by simple bounding volumes, which is very efficient

for game scenarios but too imprecise to compute the collision data needed for
haptic rendering.

This leads to the realization that for haptic rendering, UE4’s physics module
has to be bypassed.
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Fig. 3. The basic structure of our plugin system with three threads. Right: The UE4
game thread that is responsible for the visual feedback and runs with up to 120 Hz.
Left: The haptic rendering thread and the collision detection thread. The haptic ren-
dering that included the Haptico and the ForceComp plugin runs at 1000 Hz for a
stable haptic feedback. We decided to put the collision detection in its own thread in
order to not disturb the haptic rendering e.g. in case of deep collisions that require
more computation time than 1 ms. The collidable objects in the Unreal scenegraph
are represented as ColletteStaticMeshActors that are derived from Unreal’s built in
StaticMeshActors.

Our Collette plugin does exactly that. We do not implement a collision
detection in this plugin, but provide a flexible wrapper to bind external libraries.
In our use case we show an example how to integrate the CollDet library (see
Sect. 4.2). Like Haptico, Collette can run in its own thread. Thus, the fre-
quency needed for haptic rendering can be achieved.

The plugin uses a ColletteStaticMeshActor to represent collidable objects.
This is an extension to UE4’s StaticMeshActor. It supports loading additional
pre-computed acceleration data structures to the actor’s mesh component when
the 3D asset is loaded. For instance, in our use case we load a pre-generated
sphere tree asset from the hard drive which is used for internal representation
of the underlying algorithm.

The collision pipeline is represented by a ColletteVolume, which extends
the UE4 VolumeActor. We decided to use a volume actor because it allows
to restrict collision detection checks to defined areas in the level. This is
especially useful for asymmetric multiplayer scenarios as described in Sect. 4.
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To register collidable objects with the pipeline, they can be registered with
an AddCollisionWatcher(...) blueprint function to the collision detection
pipeline. The function takes references to the ColletteVolume as well as two
ColletteStaticMeshActors.

Fig. 4. A simplified sequence diagram of the communication of ForceComp,
Collette and Haptico in case of a collision: Haptico receives the current posi-
tion and orientation from the device and informs ForceComp via a OnTransform

event. ColletteVolume in Collette evokes an OnCollision event and passes the col-
lision data to ForceComp. ForceComp computes appropriate forces and torques and
passes them back to Haptico that finally, applies them to the device. Please note, due
to space constrains, we did not include transformations that are send from Haptico to
the respective ColletteStaticMeshActors. Moreover, we omitted the EventHandler in
this example.

During runtime, the collision thread checks registered pairs with their
current positions and orientations. If a collision is determined, the class
ColletteCallback broadcasts an OnCollision delegator-event. Users of the
plugin can easily hook their own functions to this event, allowing reactions to
the collision. Blueprint events cannot be used here as they are also executed
on the game thread and thus run at a low frequency. The event also transmits
references to the pair of ColletteStaticMeshActors involved in the collision,
as well as the collision data generated by the underlying algorithm. This data
can then be used for example to compute collision response forces.

3.5 FORCECOMP Plugin

The force calculation is implemented as a free standing function which accepts
the data from two ForceComponents that can be attached especially to
ColletteStaticMeshActors and depends on the current transform of the
ColletteStaticMeshActor. The ForceComponent provides UE4 editor prop-
erties needed for the physical simulation of the forces: For instance the mass of
the objects, a scaling factor or a damper (see Sect. 4.2). We have separated the
force data from the collision detection. This allows users to use the Collette
plugin without the force computation.

3.6 Controlling Data Flow via Events

We already mentioned that we use a delegate-based event system to organize
the data flow between the three plugins. In order to mange the events we use an
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EventHandler actor. This guarantees a maximum of flexibility and avoids that
the plugins depend on the specific implementation. Basically, the EventHandler
has references to all involved components and game objects like actors and
events. Our EventHandler supports drag-and-drop in the Unreal editor window,
hence, there is no coding required to establish these references. For instance, if
we want to attach an mesh to the haptic device to use it as a virtual tool. In
this case, we simply have to drag a ColletteStaticMeshActor instance on the
EventHandler instance in the editor window.

In addition, the EventHandler implements various functions that it binds
to the events of the plugins during initialization. For example, it provides func-
tions for the two most important events: the OnTransform event sent by the
haptic thread and for the OnCollision event of the ColletteVolume actor.
The OnTransform event broadcasts the position and orientation data to the vir-
tual tool automatically. This has the same effect as if the virtual tool would be
updated directly in the haptic thread. Moreover, the OnTransform event also
evokes a second delegate function from ForceComp that computes the colli-
sion forces based on this data. When finished, it passes the forces back to the
HapticManager, which applies them to the associated haptic device (see Fig. 4
for a simplified example).

The OnCollision delegator event of the ColletteVolume actor sends the
collision data to the attached function of the EventHandler and finally stores it
in shared variables. By doing this, the haptic thread will execute the delegate
after it has updated the virtual tool’s transform. The delegate itself reads the
data from the shared variables and

With this solution however, we keep the concrete implementations of the
plugins separate from each other. Figure 5 shows and example for the event
handling between ForceComp and Haptico.

Overall, a typical setup with our plugin system consists of three threads:
one for the main game loop including the visual rendering in Unreal, one for
the haptic rendering, that covers Haptico and ForceComp and one for the
collision detection. We decided to run collision detection independently in it’s
own thread in order to guarantee stable haptic rendering rates even in the case
of deep interpenetrations where the collision detection could exceed the 1ms
time frame. Figure 3 shows this three-thread scenario. However, it is easy to use
Collette also in the haptic rendering thread (or to even spend a fourth thread
for ForceComp) by simply adjusting the configuration in the EventHandler.

This modular and customizable approach guarantees a very flexible data flow
between the different plugins that can be easily defined by the user within the
editor.

4 Use Case

We applied the UnrealHaptics to a real-world application with support for
haptic rendering. This example shows how actual collision detection libraries,
force rendering and communication libraries can be integrated into our plu-
gin system. Our use case is an asymmetric virtual reality multiplayer game [9]
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Fig. 5. A simplified sequence diagram of the communication of ForceComp, Haptico
and our textttEventHandler that also shows the flexibility of our system. Initially,
Haptico reads the configuration from the haptic library and evokes an OnTransform

event. This is passed to the EventHandler that calls the callable HandleTransform

function that has initially registered for this event. It is easy to register more than one
functions for the same event, e.g. to toggle friction or virtual coupling. The results are
finally transferred back to Haptico via the EventHandler.

where a visually impaired and a seeing player can interact collaboratively in the
same virtual environment. While the seeing person uses a head mounted display
(HMD) and tracked controllers like the HTC Vive hand controllers, the blind
person operates a haptic force feedback device, like the PHANToM Omni.

4.1 Game Idea

An extensive research involving interviews with visually impaired people was
done to understand their perspective for a good game before going into develop-
ment phase. It turned out that most people we interviewed attach great impor-
tance to a captivating storyline and ambiance. Therefore we included believable
recordings and realistic sound effects to achieve an exciting experience.

The game takes place in a museum owned by a dubious relics collector. A
team of two professional thieves, Phantom and Vive, attempt to break into
the museum in order to steal various valuable artifacts. The blind player takes
control over Phantom, a technician, particularly skilled in compromising security
systems and an expert for forgeries. Vive is played by the sighted player using
an HMD. He is a professional pickpocket and a master of deceiving people.
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(a) Half-section of the crown (b) Half-section of the bunny

Fig. 6. Objects from our game application and their inner sphere representations: A
crown and a model of the Stanford bunny that has to be detected by the Phantom
player.

For every exhibit in the museum, there are several fake artifacts that look
exactly the same as the real ones. Since Vive is incapable of differentiating
between real and fake artifacts, it is the job of Phantom to apply his skills here.
Also, several guards patrol in the premises for possible intruders (see Fig. 7). Vive
has to be careful not to get spotted or make too much noise as these guards are
highly sensitive to sounds. Vive’s job is to break the displays, collect the arti-
facts while distracting the guards and bring them to Phantom. Phantom’s job
on the other hand is to recognize the right artifact using his shape recognition
expertise. The goal of the game is to steal and identify all the specified artifacts
before the time runs out.

In order to identify objects and the differences between fake and real objects
in the game, the Phantom player uses a haptic force feedback device to sweep
over the virtual collected objects. As soon as the virtual representation of the
haptic device collides with an object, UnrealHaptics detects these collisions
and renders the resulting forces back to the haptic device. It is therefore possible
for visually impaired people to perceive the object similarly to how they would
in real life. Adding realistic sounds to this sampling could further improve this
experience.

Even if the gameplay is in the foreground in our current use case, it is obvious
that almost the same setup can be easily extended to perform complex object
recognition tasks or to combine HMD and haptic interaction for the sighted
player.
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Fig. 7. In-game screenshot of our implemented game. The Phantom player sits at the
table recognizing objects. A guard (right) is patrolling the room.

4.2 Implementation Details

The concept behind UnrealHaptics is explained in Sect. 3. The following sec-
tions will give an insight into our concrete implementations for the individual
plugins.

Device Communication via CHAI3D. The basis for Haptico is the
CHAI3D library. As already mentioned in Sect. 2, this library supports a wide
variety of haptic devices, including the PHANToM and the Haption Virtuose [8]
which we used for testing. CHAI3D is linked by Haptico as a third-party library
at compile time. We primarily use CHAI3D’s Devices module as an interface to
the hardware devices, especially to set and retrieve positions and rotations. We
did not use CHAI3D’s force rendering algorithms as they do not support 6-DOF
force calculation.

Collision Detection with CollDet. CollDet is a collision detection library
written in C++ that implements a complete collision detection pipeline with
several layers of filtering [27]. This includes broad-phase collision detection algo-
rithms like a uniform grid or convex hull pre-filtering as well as several nar-
row phase algorithms like a memory optimized version of an AABB-tree, called
Boxtree [25], and DOP-trees [26]. For haptic rendering, the Inner Sphere Trees
data structure fits best. Unlike other methods, ISTs define hierarchical bounding
volumes of spheres inside the object based on a polydisperse sphere packing (see
Fig. 6). This approach is independent of the object’s triangle count and it has
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shown to be applicable to haptic rendering. The main advantage, beyond the per-
formance, is the collision information provided by the ISTs: they do not simply
deliver a list of overlapping triangles but give an approximation of the objects’
overlap volume. This guarantees stable and continuous forces and torques [23].
The source code is available under an academic-free license.

Collette’s ColletteVolume is, at its core, a wrapper around CollDet’s
pipeline class. Instead of adding CollDet objects to the pipeline, the plugin
abstract this process by registering the ColletteStaticMeshActors with the
volume. Internally, a ColletteStaticMeshActor is assigned a ColID from the
CollDet pipeline through its ColletteStaticMeshComponent, so that each actor
represents a unique object in the pipeline. When the volume moves the objects
and checks for collisions in the pipeline, it passes the IDs of the respective
actors to the CollDet functions which implement the collision checking. Like
with CHAI3D, Collette links to the CollDet library at compile time.

Force Calculation. Force and torque computations for haptics usually rely on
penalty-based approaches because of their performance. The actual force com-
putation method is closely related to the collision information that is delivered
from Collette. In case of the ISTs this is a list of overlapping inner spheres for
a pair of objects. In our implementation we apply a slightly modified volumetric
collision response scheme as reported by [24]:

Fig. 8. In order to evaluate the performance of our plugins, we used a complex test
scene where the user controls a gemstone with the Phantom device to touch the 3D
Stanford bunny.
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For an object A colliding with an object B we compute the restitution force
FA by

FA =
∑

j∩i�=∅

FAi

=
∑

j∩i�=∅

ni,j · max
(

voli,j ·
(

εc − veli,j · εd
Voltotal

)
, 0

)
(1)

where (i, j) is a pair of colliding spheres, ni,j is the collision normal, voli,j is
the overlap volume of the sphere pair, V oltotal is the total overlap volume of all
colliding spheres, veli,j is the magnitude of the relative velocity at the collision
center in direction of ni,j . Additionally, we added an empirically determined
scaling factor εc for the forces and applied some damping with εd to prevent
unwanted increases of forces in the system.

Only positive forces are considered to prevent an increase in the overlapping
volume of the objects. The total restitution force is then computed simply by
summing up the restitution forces of all colliding sphere pairs.

Torques for full 6-DOF force feedback can be computed by

τA =
∑

j∩i�=∅

(Ci,j − Am) × FAi
(2)

where Ci,j is the center of collision for sphere pair (i, j) and Am is the center of
mass of the object A. Again, the total torques of one object are computed by
summing the torques of all colliding sphere pairs [24].

4.3 Performance

We have evaluated the performance of our implementation in the game on an
Intel Core i7-6700K (4 Cores) with 64 GB of main memory and a NVIDIA
GeForce GTX 1080 Ti running Microsoft Windows 10 Enterprise.

We used a typical test scene from our game: the user explores the surface of
an object (in our example, the Stanford bunny) with a Phantom device. In our
example, we represented the end effector by a gemstone (see Fig. 8).

We achieved almost always a frequency of 500-1K Hz for the force rendering
and haptic communication thread. It only dropped slightly in case of situations
with a lot of intersecting pairs of spheres. The same appears for the collision
detection that slightly dropped to 500 Hz in situations of heavy interpenetrations.
This is similar to the results reported in [23] where a simple OpenGL test scene
was used and it shows that our architecture does not add significant processing
overhead (see Fig. 9).
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Fig. 9. Performance of our plugins in a typical exploration scene of about 35 seconds
total duration in our game. We achieved haptic frame rates even in situations with
large penetrations.

5 Conclusions and Future Work

We have presented a new plugin system for integrating haptics into modern
plugin-orientated game engines. Our system consists of three individual plugins
that cover the complete requirements for haptic rendering: communication with
different hardware devices, collision detection and force rendering. Intentionally
we used an abstract design of our plugins. This abstract and modular setup
makes it easy for other developers to exchange parts of our system to adjust it
to their individual needs. In our use case, a collaborative multiplayer VR game
for blind and sighted people, we have demonstrated the simplicity of integrating
external C++-libraries with our plugins, namely CHAI3D for the communication
with the hardware and the collision detection library CollDet. Our results show
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that our plugin system works stably and the performance is well suited for haptic
rendering even for complex non-convex objects.

With our plugin system, future projects have an easy way to provide hap-
tic force feedback in haptic enabled games, serious games, and business related
applications. Even though other developers may decide to use different libraries
for their work, we are confident that our experiences reported here in combina-
tion with our high-level UE4 plugin system will simplify their integration effort
enormously. Moreover, our system is not limited to haptic rendering but it can
be also used to integrate general physically-based simulations.

However, our system, and the current CHAI3D and CollDet-based implemen-
tation also have some limitations that we want to solve in future developments:
currently, our system is restricted to rigid body interaction. Further work may
entail the inclusion of deformable objects. In this case, a rework of the interfaces
is necessary because the amount of data to be exchanged between the plugins will
increase significantly; instead of transferring simple matrices that represent the
translation and orientation of an object we have to augment complete meshes.
Direct access to UE4s mesh memory could be helpful to solve this challenge.

Also, our use case offers interesting avenues for future works. Currently, we
plan a user study with blind video game players to test their acceptance of
haptic devices in 3D multiplayer environments. Moreover, we want to investigate
different haptic object recognition tasks, for instance with respect to the influence
of the degrees of freedom of the haptic device or with bi-manual vs single-handed
interaction. Finally, other haptic interaction metaphors could also be interesting,
e.g. the use of the haptic devices as a virtual cane to enable orientation in 3D
environments for blind people.
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Abstract. By convolving an audio stream with a given pair of impulse
responses between a source position and the two ears, virtual sound
scenes can be created over headphones. Typically, the set of these filters
for an ensemble of spatial positions, termed the Head-Related Impulse
Response (HRIR) is used to render position information of a sound
object to a listener. However, HRIRs are measured in free-field condi-
tions, ignoring room reflections. In the real world, multiple reflections
and reverberation exist, producing complex rich sound spaces. Including
room reflections and reverberation with the HRIR results in a binaural
room impulse response (BRIR). The length of a given BRIR depend on
the shape and volume of the room, with BRIRs having typical duration
of several seconds, resulting in computationally long processing. When
the virtual environment is updated in response to head/body movement,
BRIRs need to be updated according to the relative direction of a sound
object within the perceptual detection threshold of system latency. This
poses complications for mobile devices where processing power is limited,
such as the case of augmented reality. In this paper, the architecture of a
new signal processing method by distributed computers is proposed for
convolution of BRIRs applicable to such conditions.

Keywords: Three-dimensional sound rendering
Binaural room impulse responses · Distributed signal processing
Real-time rendering

1 Introduction

Virtual sound spaces can be rendered over headphones/loudspeakers, provid-
ing a high sense of presence in virtual and augmented reality situations. Such
audio rendering is termed virtual auditory display (VAD), which provides three-
dimensional acoustic information to a listener’s ears [11]. VAD can be con-
structed as a binaural rendering system through the use of headphones. In bin-
aural rendering, the system is portable, with hardware costs being lower and
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installation simpler than with spatial audio loudspeaker array systems [3,9,15].
The virtual sound space is synthesized by convolution of an audio stream with
a pair of impulse responses (IRs) between a sound source’s position and both
ears. Usually, IRs used in VAD are Head-Related Impulse Responses (HRIRs),
or their frequency domain transfer function equivalent (HRTF) [4]. HRIRs can
be used to render a sound object at a precise and determined position in space
around the listener. HRIRs are defined in a free-field, therefore, any reflections or
room reverberation are not included. In such a context, HRIRs have a duration
on the order of a dozen milliseconds, for which HRIRs can easily be rendered
with the current computation power of a common PC or mobile device.

In the real world, however, reflections and room reverberation exist. Such
additional information provides a more complex, rich sound space and offers
a more immersive feeling to the listener. Therefore, it is advantageous if we
can render sound spaces including reflections and room reverberation. Including
such information in the HRIR results in the binaural room impulse response
(BRIR). The duration of a BRIR depends on the volume and shape of the virtual
room, and can often have a duration of several seconds. As a result, additional
computational power is required to render virtual spaces via BRIR than a simple
sound via HRIR convolution.

Moreover, VAD systems which are responsive to head movement
(VAD/RHM) can improve the accuracy of sound localization and the realism
of the presented virtual acoustic space [6,7]. In a VAD/RHM system, IRs should
be updated/swapped according to changes of relative sound position to the lis-
tener. An additional system latency is then present due to the update of the new
position due to changing IRs. Yairi et al. [20] estimated detection threshold (DT)
of system latency of VAD/RHM to be around 75 ms. Stitt et al. [18] showed that
the latency detection threshold increased by 10 ms when comparing simple vs.
complex sound scenes. To avoid perceptual artifacts, the total system latency in
VAD/RHM systems should be shorter than DT. In current mobile devices, many
sensors can be available, such as camera, microphone, compass, gyroscope, etc.,
some of which are available for sensing head movement. Therefore, these mobile
devices are suitable for VAD/RHM. However, they have limited computation
power and, in consequence complex, real-time rendering of sound fields such as
via convolution with BRIRs cannot be realized.

Various projects in the past have attempted to provide real-time audio scene
rendering [1,5,17], with some of them gearing towards mobility conditions with
headphones. Warusfel and Eckel [19] employed a solely remote architecture with
computed binaural transmitted over tracked wireless headphones to listeners.
Mariette et al. [14] proposed a distributed rendering architecture using the
remote computing of Ambisonic audio which was then streamed to client mini-
PCs which performed the Ambisonic to binaural conversion locally using local
head-tracking data. Finally, Katz et al. [12] proposed a purely local binaural
rendering using a lightweight mobile PC in a backpack to perform binaural ren-
dering using GPS and head-tracking data.
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To take advantage of the combined computational power of modern mobile
devices and larger remote machines, we have developed a VAD system (VAD-NR)
responsive to listener head movements, where elements of the acoustic rendering
are performed on a remote server and transmitted via the computer network
while time-critical elements of the rendering are performed locally [10].

From the evaluation of the system in the network in our laboratory, the
system latency for HRIR rendering was about 100 ms. The latency was slightly
longer than the detection threshold. On the other hand, this latency includes
buffering time in a client (android OS), transfer time of relative position from
the client, and transfer time of rendered sound from a server. These times are
just waiting times for the client computer, and they are useless. Therefore, the
client may contribute to signal processing during these times.

In this paper, we propose a new rendering method for real-time sound scenes
which can employ BRIRs within the latency detection threshold. We anticipate
a maximum duration of BRIRs to be about 3 s (44.1 kHz sampling frequency),
which is longer than the reverberation time of typical concert halls [2]. In our
method, the convolution of BRIRs is realized by collaborative signal processing
of distributed PCs. In the following sections, we describe the proposed algorithm
and it’s architecture, an example of implementation, and latency evaluation of
the method.

2 Fast Convolution Method by Distributed Signal
Processing

In this section, we describe the proposed method, which is realized by rendering
long-duration impulse responses by distributed convolution via a computer net-
work. Some conventional methods related to the proposed method are explained
in Sects. 2.1–2.3. The proposed method is further described in 2.4.

2.1 Linear Convolution with FFT/IFFT

When an input signal x(n) is rendered with an impulse response h(n), the output
signal y(n) can be obtained from Eq. 1,

y(n) = x(n) ∗ h(n), (1)

where ∗ indicates linear convolution. The signal length Ny can be expressed by

Ny = Nx + Nir − 1, (2)

where Nx and Nir express the length of x(n) and ir(n), respectively. When Nx

and Nir are the same number N , we can obtain the same result of Eq. (1) using
Eq. 3:

y(n) = IFFT (X(k)IR(k)) , (3)

where X(k) and IR(k) are the Fourier transforms of x(n) and h(n), respectively.
To prevent circular convolution, zeros of length N are added to both x(n) and
h(n). By using Eq. 3, therefore, we can obtain the results faster than via Eq. 1,
when N is large. The length of the result in Eq. 3 is 2N .
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2.2 Overlap-Add Method (OA)

In actual implementation, a long input signal x(n) is divided into blocks of a
fixed length, and the results of partial convolutions are appropriately added to
their corresponding time positions in buffers. This is generally known as the
overlap-add method [16]. In this case, y(n) in Eq. 1 can be expressed as

y(n) =
Min−1∑

i=0

yi(n − iNx), (4)

where

yi(n) = xi(n) ∗ h(n), (5)

where xi(n) is the i-th block of the input signal, Nx is a fixed length of one
block, Min is the number of blocks of the input signal, and yi(n) is the partial
convolution result of xi(n) and h(n).

2.3 Double Overlap-Add Method (DOA)

When h(n) in Eq. 4 has a long duration, it may take a excessive time to obtain the
early output signals because of the need to compute the whole impulse response
convolution. In such a case, the impulse response h(n) can also be divided into
blocks, and the output signal y(n) can be expressed by Eq. 6:

y(n) =
Min−1∑

i=0

Mir−1∑

j=0

yi,j(n − iNx − jNirb), (6)

where yi,j(n) = xi(n) ∗ hj(n), where hj(n), Nirb , Mir, yi,j(n) indicate the j-
th block of impulse response, length of the partial block of impulse response,
number of blocks in the impulse response, and partial convolution result of i-th
block of input and j-th block of impulse response, respectively. In such case, the
length of the entire impulse response Nir = Mir × Nirb . From Eq. 6, we obtain
output signals when results of partial convolution yi,j(n) are added to buffers.
This method is known as double overlap-add method [8].

2.4 Distributed Double Overlap-Add Method (DDOA)

In this subsection, we explain our proposed method. In actual implementation
of Eq. 6, we need a lot of partial convolutions among blocks. Therefore, sufficient
computation power is required. When using a low performance device, such as
a mobile phone, to render a virtual sound space, computation power may be
insufficient. Furthermore, a VAD/RHM system requires rapid swapping of IRs
in the convolution buffer, according to head movements, achievable within the
detection threshold of system latency.
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It is necessary to calculate the partial convolution of the early part of the
IR earlier than that of late response. Therefore, we distribute the set of par-
tial convolutions between the client and server. On the client side, the partial
convolution of the early blocks of the IRs are calculated. The remaining partial
convolutions of the late blocks of the IRs are calculated on the server and trans-
ferred to the client while the early portions are being rendered as audio. In this
case, the block size may be different between the server and client. The impulse
response is divided into blocks, such that the early part of IR has length Ncl
and late responses have a fixed length of Nsv. We can rewrite Eq. 6 as

y(n) =
Min−1∑

i=0

ycl,i(n − iNx)
︸ ︷︷ ︸
Calc. on Client

+
Min−1∑

i=0

Mir−1∑

j=0

ysv,i,j(n − iNx − Ncl − jNsv)︸ ︷︷ ︸
Calc. on Server

, (7)

where

ycl,i(n) = xi(n) ∗ hearly(n), (8)
ysv,i,j(n) = xi(n) ∗ hlate,j(n), (9)

where hearly(n) and hlate,j(n) are the early portion of IR of length Ncl and the
j-th late portion of IR of length Nsv, respectively. In this case, the length of the
entire impulse response is expressed by Nir = Ncl +Mir ×Nsv. Eqs. 8 and 9 are
calculated on the client and server, respectively. Results of the partial convolu-
tions of Eq. 9 are transferred from the server to the client. Finally, all partial
convolutions are added to the audio buffer based on Eq. 7. Rendered sound of
both ears are calculated simultaneously and delivered to a listener. This method
is hereinafter referred to as the distributed double overlap-add method (DDOA).
The architecture of the DDOA method is shown in Fig. 1.

In the DDOA method, convolution output signals of early portions of the IRs
can be obtained rapidly on the client without any communication with the server.
On the other hand, output signals of the later blocks are calculated on the server
while the early portions are being rendered as audio to the listener. This type of
collaborative processing between server and client is currently drawing attention
in the field of IoT (Internet of Things) under the term ‘Edge-computing’. Linear
convolutions of partial data can be performed with different data sizes between
client and server. Therefore, it is possible to calculation times on the server,
when a larger FFT block is used.

3 Implementation Example of DDOA Method

In this section, we present an implementation example of the proposed method.
Common PCs were used to confirm proper behavior of the method via a
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Fig. 1. Overview of the processing architecture of the distributed double overlap-add
method (DDOA).

wired network. Two PCs were used for the system: the server (Microsoft Win-
dows 10 Pro, Intel(R) Core(TM) i7-6770HQ CPU, 32 GB memory), and client
(Microsoft Windows 10 Pro, Inter(R) Core(TM) i5-3210M CPU, 8 GB memory).
They were connected with a wired network through a switching HUB (1 Gbps).
Implementation was carried out using Microsoft Visual Studio 2015. A USB
audio interface (Steinberg: UR 22) was connected to the client and was con-
trolled through a low latency ASIO driver.

Several different threads were used to transfer data between PCs as follows:

– 1 thread to transfer position data from the client to the server,
– 1 thread to transfer original sound data from the server to the client, and
– Mir threads to transfer rendered sound data blocks of the late portions of the

BRIRs from the server to the client,

where Mir is the number of partial convolutions on the server. All partial con-
volutions between input signal blocks and IR blocks were performed as multipli-
cations in the frequency domain followed by an inverse-Fast Fourier Transform.
Sampling frequency, fs, was set to 44.1 kHz. The partial convolutions that could
not be received “in time” on the client were discarded, i.e. if the partial convo-
lution was not added to the convolution buffer in time, the client emitted the
sound without the partial convolution contribution from the server.

3.1 Confirmation of Completion of Convolution

In this subsection, we investigate the success in completing the full convolution
for the following IR conditions:
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1. First-1 Cond.: First sample of the IR = 1, remaining samples = 0. This case
confirms if the input stream can be convolved on the client,

2. Last-1 Cond.: Last sample of the IR = 1, remaining samples = 0. Confirms if
the last data of IR can be convolved and transferred from the server.

Other parameters, such as Ncl, Nsv, and Mir, were set to confirm distributed
signal processing was adequately adjusted (see Table 1). Table 1 summarizes the
results of this evaluation for the different conditions. For two of the four case
configurations, both First-1 and Last-1 conditions resulted in satisfactory audio
output of processing results without delay artifacts. From these results, it can
be concluded that the system is capable of performing convolutions of BRIRs
of 3 s (case 2). While BRIRs of the same length could not be convolved using
4 (instead of 8) threads (case 3). In Case 3, because the convolution block Nsv
on the server side was too large, computation time of the partial convolutions
became too large and they could not be convolved in time. It therefore appears
necessary to correctly choose processing parameters between client and server in
order to properly perform convolutions.

Table 1. Test case parameters and results summary to confirm system behavior of
DDOA fs = 44.1 kHz for First-1 and Last-1 conditions. � indicates successful pro-
cessing, × indicates failure to process in real-time.

Case ID Client block
length

Server block
length

# of threads IR length First-1 Last-1

Ncl Nsv Mir Nir

Case 1 2048 pt 16384 pt 4 67584 pt � �
46.4 ms 371 ms 1.53 s

Case 2 2048 pt 16384 pt 8 133120 pt � �
46.4 ms 371 ms 3.02 s

Case 3 2048 pt 32768 pt 4 133120 pt � ×
46.4 ms 743 ms 3.02 s

Case 4 2048 pt 32768 pt 8 264192 pt × ×
46.4 ms 743 ms 5.99 s

3.2 Evaluation of System Latency When Changing IRs

We evaluated system latency in changing IRs according to relative position
caused by head movement. However, there were no position sensors to capture
head movement on the client PC in the current system. We measured system
latency by following procedures.

Two IRs were prepared, h1(n) and h2(n), in which only the first data point
was 1 and 0.5, respectively. The rest were zeros. Both IRs were used for both
channels of headphones. Sinusoidal wave of one-minute-duration was used as an
original sound. As a result, when IRs was changed, the amplitude of emitted
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sinusoidal wave varied. On the other hand, when the new position was trans-
ferred from the client to the server, current data on buffer was set to zero by the
next new position on the right channel. We measured the time between begin-
ning of zeros on the right channel to amplitude changing time of left channel as
a system latency. An example of measurement was shown in Fig. 2. Length of
all IRs was 133,120 pt (sampling frequency of 44.1 kHz), resulting in a duration
of IRs of approximately 3 s. The system latency was measured for 60 repetitions.
The average observed system latency was 32.7 ms. The maximum, minimum,
and standard deviation of the latency measurements were: 57.0 ms, 4.0 ms, and
14.8 ms, respectively. Using the detection threshold of system latency reported
in [20] of 75 ms, it can be confirmed that the system latency of the tested con-
figuration was significantly less than the DT.

Fig. 2. Example of system latency measurement.

4 Summary

In order to present listeners with an immersive virtual sound space responsive
to head movements and presenting a high sense of presence, a fast convolution
and switching method for rendering spatial scenes via convolution with binaural
impulse responses comprising significant room reverberation decays is needed.
In this paper, we have proposed a new distributed convolution method utilizing
collaborative computation between a client and a server base employing the con-
cept of edge-computing [13]. In the presented method, the early and late portions
of convolution impulse responses are rendered seperately on distributed comput-
ers. The system was validated as capable of real-time rendering with BRIRs on
the order of 3 s with an observed average system latency for IR swapping of
32.7 ms. This latency is shorter than reported latency detection thresholds [20].
In consequence, the proposed method would appear useful for the construction
of high definition VAD systems.

In future works, the system will be extended by implementing the client side
of the architecture on a mobile device. This step of using a lower capacity proces-
sor, as well as moving from a wired-network to wireless WiFi network communi-
cations will likely result in differences in treatment of sound buffers and commu-
nication latencies when compared to the currently present system architecture.
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We fully anticipate being able to address these problems. The proposed archi-
tecture requires a high-speed network. In the current preliminary evaluation, a
wired network was used. However, in the mobile scenario, will likely be a WiFi
network. For example, in Case 2 in Table 1, at least 9 × 1.4 Mbps = 12.7 Mbps
data are exchanged between the client and server. These data exchange rates are
easily achievable with current WiFi networks. The processing capability of the
mobile device is a key point of the system. A short impulse response filter such
as an HRIR can be processed in real-time on the client. Therefore, we should
investigate whether data exchange and the addition of the partial convolution
would be possible or not on the mobile device. Realizable BRIR lengths may
need to be reduced compared to the current example for real-time convolution
of the impulse response, due to reduced processing power of the mobile client
device.

In addition to processing power, the system requires a set of BRIR according
to each source and listening pair position combination. These data sets may be
very large as it is necessary to consider various head directions for a given sound
source position. To synthesize a fully interactive environment, a large RAM
space may be required, which may cause issues, albeit on the server side where
such limitations are not difficult to address. When high-resolution BRIR based
on physical measurement are available, the proposed method can render these
virtual sound fields with higher physical accuracy than conventional methods,
such as ambisonic-based systems, to listeners.

The ability to provide immersive interactive spatially detailed 3D sound fields
can be expected to develop in the following mobile applications: (1) auditory
augmented reality art projects or museum visits, (2) multi-user shared VAR
environments or game-play within interior spaces, and (3) architectural space
navigation training and echolocation training for visually impaired people.
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Abstract. Visual design elements influence the spaciousness of a room.
Although wallpaper and stencil patterns are widely used in interior design, there
is a lack of research on how these surface treatments affect people’s perception
of the space. We examined whether the dominant scale of a wallpaper pattern
(i) impacts subjective spaciousness judgments, or (ii) alters action-based mea-
sures of a room’s size. We found that both were true: participants reported lower
subjective ratings of spaciousness in rooms covered with bolder (larger scale)
texture patterns, and they also judged these rooms to be smaller than
equivalently-sized rooms covered with finer-scaled patterns in action-based
estimates of their egocentric distance from the opposing wall of the room. This
research reinforces the utility of VR as a supporting technology for architecture
and design, as the information we gathered from these experiments can help
designers and consumers make better informed decisions about interior surface
treatments.

Keywords: Virtual environments � Wallpaper patterns
Spaciousness perception � Egocentric distance judgments � Interior design

1 Introduction

As increasing research emerges on the interaction between architectural design and the
perceptual human experience, interior designers and architects have begun to consider
the visual attributes that affect user perception of architectural quality. Studies show
that, among these attributes, spaciousness is an important quality on which people base
their descriptions and assessments of the environment [5]. Ozdemir’s research [12] also
indicates a positive correlation between people’s satisfaction and their sense of spa-
ciousness of the environment. Therefore, a knowledge of architectural attributes that
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cause a perception of increased spaciousness will contribute to the future efforts of
architects and interior designers.

There has been extensive research on how the presence of various architectural
attributes, such as windows and lighting, can affect the perception of spaciousness.
However, there have been very few studies on the subject of wallpaper patterns, which
is a crucial element of interior design. A lack of knowledge in this area may cause
inaccurate judgement in interior environment quality due to professional bias or the
absence of user input in design selection [4]. Such judgment can lead to negative
interior experience and thus affect people’s everyday life.

To assist architects to design pleasing interior environments and to establish a basis
for further research in this area, we investigated the potential relationship between the
scale of a wallpaper pattern and people’s perception of the environment’s spaciousness.
By using immersive virtual reality technology, we were able to easily manipulate the
main factors of metric room size and wallpaper pattern scale and at the same time fully
control for other features that could potentially affect the sense of spaciousness of the
room, such as lighting, ceiling height, windows, etc.

2 Previous Work

There are many previous studies that suggest that certain architectural and design
features impact our visual perception of a space. In examining how the physical
characteristics of a room affect its perceived spaciousness, researchers have found a
positive correlation between the horizontal area and/or ceiling height of a room and its
perceived spaciousness [15]. Changing the aspect ratio of a room can also lead to an
altered perception of spaciousness even though the total floor area remains constant.
Experiments have found that elongated rooms – spaces with a higher ratio of length to
width – are judged as less spacious than square rooms of equivalent size [14]. The
manipulation of furnishing within a room can also affect the visual perception of
spaciousness; the more objects that take up a room, the more crowded and cramped a
room can feel, which results in a decrease in perceived room spaciousness [1]. It has
also been found that rooms with lighter-colored walls appear bigger, and that lighter-
colored ceilings feel taller, which in turn increases people’s spaciousness ratings of a
space, while the luminance of the floor doesn’t appear to affect spaciousness judgments
[11, 12]. Designers have also opined that certain stripes and patterns can subjectively
widen or narrow a space [6].

From the aforementioned previous work, we have learned that an abundance of
architectural design elements can influence our perceived sense of the spaciousness of a
room. However, quantitative studies regarding whether wallpaper patterns impact our
judgment of room proportions – particularly in an immersive virtual environment –
have yet to be thoroughly explored and performed. We were able to use immersive
virtual reality to control for many other variables that would be almost impossible to do
in real physical rooms and look at how the scale of the elements in wallpaper pattern
affects the sense of a room’s spaciousness and size.

It is important to also acknowledge that there is an abundance of research in the
virtual reality and psychology fields showing that people tend to systematically
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underestimate egocentric distances when viewing virtual environments using head-
mounted displays [9] and the root cause of this problem is still not well-understood
[13]. While researchers are actively investigating potential methods for facilitating
more veridical spatial judgments in VR [7], and we cannot yet assume that spa-
ciousness judgments made in VR will exactly match spaciousness judgments made in
the real world, we nevertheless feel that virtual reality can provide a robust platform for
studying potential differences in subjective and objective measures of room size and
spaciousness caused by differences in surface treatments [3].

3 Experiment

Our experiment consisted of two parts. In the first part, we asked participants to provide
subjective ratings of spaciousness in seven differently-sized rooms, each with five
different interior surface treatments (four differently-scaled texture patterns and a solid
color that represented the average intensity of the texture). In the second part, we asked
participants to make action-based estimates [8] of their egocentric distance from the
opposing wall in four differently-sized rooms, each with four differently-scaled texture
patterns.

Our hypotheses were that (1) the scale of the wallpaper texture would affect peo-
ple’s perceived sense of spaciousness in a room, but that (2) their action-based judg-
ments of the metric size of the room would not be affected.

3.1 Participants

A total of 14 participants from our local community completed the study (7 m., 7f.,
ages 19–30, l = 21.3 ± 2.7). We had recruited 15 overall, but one participant expe-
rienced cybersickness halfway through the second block of trials and was unable to
continue; their data was not included in the analysis. Two of the participants were
members of our lab, though they were not involved in the design or implementation of
the experiment. However, they did have some prior knowledge about the hypotheses
being tested. We recruited by word of mouth among personal contacts and students
from other Research Experience for Undergraduates (REU) programs. All participants
who were not lab members were compensated with a $10 Amazon gift card; partici-
pants who were members of our lab were not compensated, to avoid conflict of interest.
The experiment was approved by the Institutional Review Board at the University of
Minnesota, and all participants gave written informed consent.

3.2 Materials

We created a set of nine different sized square-shaped rooms, the largest and smallest of
which were only shown once and used to anchor participants’ spaciousness judgments.
We chose to use seven room sizes for testing so that the participants couldn’t easily
store the size of each room in their short term memory. The room sizes were:
4.00 m � 4.00 m, 4.33 m � 4.33 m, 4.67 m � 4.67 m, 5.00 m � 5.00 m, 5.33 m
5.33 m, 5.67 m � 5.67 m and 6.00 m � 6.00 m. All rooms had a ceiling height of
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2.743 m. The range was chosen to be wide enough that participants could easily
differentiate between the largest and smallest sizes, but with small enough increments
that the difference between rooms adjacent in size could potentially be mistaken. Each
room had a textureless white ceiling and neutral grey floor. We applied five different
types of surface treatments to the four walls of each room: a wallpaper texture featuring
small (11.60 cm), medium (15.55 cm), large (23.30 cm), or extra large (46.65 cm)
diamond-shaped elements, or a solid grey color representing the average of all pixel
colors in the wallpaper used. This resulted in a total of 35 different rooms. Figure 1
shows the nine different room sizes rendered with the solid color and Fig. 2 shows
what each of the different wallpaper patterns looked like on the same-sized room.

We built the rooms in Google SketchUp and then imported them into the Unreal
Engine to apply the textures, wall colors, and lighting. The wallpaper texture was
inspired by an example from Pinterest1, recreated using Powerpoint and Photoshop,
then proportionally scaled in the Unreal Engine to achieve the four different sizes used.
We chose a design featuring oblique elements in order to avoid any inadvertent visual
synchrony between the wallpaper pattern and the horizontal and vertical lines formed
by the edges between the walls, ceiling, and floor. The individual elements were offset
from each other to ensure that smaller elements did not visually group when viewed
from far away to form larger elements, such as dominant lines going through the
pattern. The diamond shape was chosen because there is no scale intrinsically

Fig. 1. Top row: 3.67 m, 4.00 m, 4.33 m; Middle row: 4.67 m, 5.00 m, 5.33 m; Bottom row:
5.67 m, 6.00 m, 6.33 m.

1 https://ar.pinterest.com/pin/366269382190103454/.
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associated with that element (e.g. unlike a rectangle, which might be intuitively
associated with a standard sized brick) and because when grouped together they do not
evoke any horizontal or vertical lines. The lighting was done as emissive lighting in the
Unreal Engine, meaning that there was no direct light source, although there was some
darkening in the corners achieved via ambient occlusion. This was done in order to
ensure that the lighting was consistent in all of the differently-sized rooms. We chose a
black-and-white color scheme to achieve maximum pattern contrast.

Participants were immersed in the virtual environment using an HTC Vive head-
mounted display and their viewpoint was tracked using the Valve’s Lighthouse
Tracking system. The HTC Vive head-mounted display weighs about one pound and
offers a 110° field of view. It has two OLED displays, each with a resolution of
1080 � 1200 pixels.

This study took place in our lab space of approximately 8.83 m � 9.14 m.
The HTC Vive automatically shows a boundary square on the ground when one nears
the edge of what the system has predetermined to be the edge of the tracked space. In
reality, the Valve’s Lighthouse Tracking system provides accurate tracking beyond this
space, and in the second part of the experiment, participants often walked beyond these
bounds.

3.3 Procedure

Participants were scheduled individually by appointment so that no participant was
exposed to the any activity of any other participant. Each participant was welcomed
into the lab by the same experimenter and screened for adequate visual acuity, defined
by the ability to successfully read lines of letters corresponding to 20/70 or above on a

Fig. 2. The four differently-scaled wallpaper patterns applied to the 4 m room.
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wall-mounted eye chart from a distance of 20’. Next, participants were screened for
stereo vision by asking them to describe the contents of two different random dot
stereograms presented on the HTC Vive. The ability to pass both of these screenings
determined a participant’s eligibility to participate in the experiment. All participants
passed both the visual and stereo acuity tests. After they passed the screenings, par-
ticipants were asked to sign an informed consent form and were given written
instructions for the first half of the experiment. Written instructions for the second half
of the experiment were provided after participants had completed the first part.

For the first half of the experiment, participants were asked to stand at a predefined
location in the real-world environment that was marked by a piece of tape on the floor.
For each trial, the Unreal engine set the virtual camera to be at a random coordinate in
the horizonal direction between two-sevenths and five-sevenths of the room’s width
while maintaining a constant 0.95 m distance from the wall at their back. We chose
0.95 m so that participants could have a fairly wide view of the virtual room in front of
them while not being able to touch the walls of the real lab space behind them. At the
start of the experiment, participants were shown two rooms to anchor their spacious-
ness ratings. They were shown a 3.67 m � 3.67 m room (smaller than any other room
in the experiment) and told that they should consider this room to be a 1 on the
spaciousness scale, and a 6.33 m � 6.33 m room (bigger than any other room in the
experiment) and told that they should consider this to be a 10 on the spaciousness scale.
Both of these rooms had solid colored walls, the same grey that was the average of all
the pixels in the wallpaper used in the experiment. Next, the 35 different rooms were
shown to the participant in a randomized order that was unique for each participant. For
each room, the participant was asked to verbally rate the room’s spaciousness on the
scale of 1–10. Each room was faded in from black, the participant gave a spaciousness
rating, and then the room was faded out to black and after a very brief delay the next
room was faded in. The purpose of this transition was to discourage participants from
making comparative judgments. When each room faded in, the participant found
themselves at a slightly different spot in the room but always the same distance from
the wall. Figure 3 shows the leftmost and rightmost extents of the interval across which
the viewpoint was randomly distributed. The rating process took about 10–15 min in
total for the 35 rooms. After finishing the first block of trials, participants were given a
five minute break during which they had to take off the headset. The same process was
then repeated for a second time. The participants then removed the headset after this
second block of trials and took a ten minute break before beginning the second half of
the experiment.

Fig. 3. These images illustrate the maximum extent of the random sideways shift that was
applied to the participant’s position in the room between each trial.
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In the second half of the experiment, the participants were asked to make action-
based judgments of egocentric distance in a subset of the original 35 rooms. This subset
consisted of the rooms that were 4.00 m � 4.00 m, 4.67 m � 4.67 m, 5.33 m
5.33 m and 6.00 m � 6.00 m, each with all of the different sized wallpapers (not
including the solid-colored condition) for a total of 16 rooms. We chose to limit the
number of trials to 16 in this part of the experiment so as to not exhaust the participant.
During this part of the experiment, the participants wore noise cancelling headphones
to block out ambient sounds that might otherwise have provided audio cues to their
location in the physical world. Each room faded in with the participant standing at a
point where two-thirds of the room’s width was in front of them and the walls on each
side were equidistant. We chose this configuration so as to keep the participant within
the tracked space during the course of each trial. For each trial, the participant was told
that they should close their eyes, after which time the walls of the room would be
removed, and that they should then walk through the room until they feel that their
body is at the exact location where the opposite wall used to be. The experimenter
pressed a key to record the starting position of the participant when the room as faded
in, and when the participant had stopped walking the experimenter pressed another key
to record their ending position. To ensure that the participant could not see where they
were in relation to the room, the visuals were turned to black when the participant
indicated that they were ready to walk. We recorded their starting and ending coor-
dinates using the Valve’s Lighthouse Tracking system to calculate the distance they
walked. To avoid allowing the participants to familiarize themselves with the space, we
verbally guided them on a random, circuitous path back to the starting position. The
experiment ended after the participant had completed these 16 trials.

4 Results

The first result from our first experiment is the observation that people’s spaciousness
judgments increased linearly with the room size. A two-way ANOVA (7 room
sizes � 5 texture scales) found a significant main effect of room size on spaciousness
judgments {F(6, 455) = 205.15, p < 0.001}, and all pairwise differences were found to
be significant at a = 0.05 according to the Tukey HSD test, except between the two
largest rooms. The number of degrees-of-freedom reflects the fact that each partici-
pant’s repeated ratings (between the first and second blocks of trials) were averaged to
a single value before performing the statistical analysis. Figure 4 shows these results.
This finding, while expected, provides a robust sanity check on the overall validity of
the experimental procedure.

Since each participant made spaciousness ratings for each room twice, we were able
to assess the consistency of their ratings. We found that two participants had a median
difference of 3 in their ratings between the blocks of trials, and a maximum difference
of 9, meaning that on at least one occasion they had rated the same room as having a
spaciousness of 1 in one block and a spaciousness of 10 in the other block. Two
additional participants had a median inter-block difference of 2 in their subjective
spaciousness ratings, and maximum differences of 7 and 8. Each of the remaining 10
participants had a median difference of 1 in their spaciousness ratings between blocks
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and a maximum difference of between 3–5. Overall, while some rating inconsistencies
did occur, they do not appear to have significantly affected the outcome of the
experiment.

The most interesting finding from our first experiment is that participants’ spa-
ciousness ratings are inversely related to the scale of the wallpaper texture. The same
two-way ANOVA also found a significant main effect of texture scale on room spa-
ciousness judgments {F(4, 455) = 32.30, p < 0.001}. The Tukey HSD test found that
the rooms with the largest-size texture elements (XL) were judged to be significantly
less spacious than equivalently-sized rooms textured with the small (S) and medium
sized (M) elements as well as the solid colored room (p < 0.01), and the rooms with the
next-to-largest texture elements (L) were judged to be significantly less spacious than
rooms with the finest-scale texture elements (S) (p < 0.05). These results support the
first part of our hypothesis that as the wallpaper texture scale increases, people’s
subjective perception of the spaciousness of the room decreases. Figure 5 shows a plot
of these findings.

The two-way ANOVA did not find any significant interaction between room size
and texture scale {F(24, 455) = 0.711, p = 0.842}.

The first result from the second part of our experiment is the finding that people
walked longer distances when the wall was farther away from them. A two-way
ANOVA (4 room sizes � 4 texture scales) found a statistically significant main effect
of room size on distance walked {F(3, 208) = 49.14, p < 0.001}, and Tukey HSD

Fig. 4. Participants’ spaciousness ratings, averaged over all surface treatments for each room
size presented. The error bars represent ±1 standard error.
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post-hoc tests found that all pairwise differences were also significant at p < 0.05. This
result provides a reassuring sanity check on the validity of the experimental process.

Figure 6 shows a scatter plot of each individual distance judgment, with a bold line
showing the linear trend. As can be seen from this figure, most people walked sig-
nificantly shorter than the actual distance of the virtual wall. The overall average
amount of distance underestimation, computed across all participants, all rooms, and all
textures, was 29.7%. This finding is consistent with classical reports of systematic
distance underestimation in virtual environments [13].

The most interesting finding from our second experiment is that, on average, people
tended to physically underestimate distances more as the scale of the wallpaper pattern
increased. The same two-way ANOVA found a significant main effect of texture scale
on distance walked {F(3, 208) = 8.21, p < 0.01}, and Tukey HSD post-hoc tests found
that people walked significantly shorter in the rooms with the two largest scale wall-
paper textures (L, XL) than in the room with the finest scale pattern (S), with p < 0.05
and p < 0.01, respectively. Figure 7 shows these results.

The two-way ANOVA did not find a significant interaction between room size and
texture scale {F(9,208) = 1.694, p = 0.092}. However we observed a slight trend
towards the texture scale having a stronger effect on distance walked as the rooms
became larger.

Fig. 5. Participants’ spaciousness ratings, averaged over all room sizes for each texture scale.
The error bars represent ±1 standard error.
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In a separate statistical test, we verified that there was no significant difference {F
(3, 220) = 0.038, p = 0.99} in the overall average distance shown (from the observer to
the far wall of the room) between texture conditions, as might have potentially occurred
because participants did not stand exactly on the starting line at the start of each trial.

The results from our second experiment refute the second part of our hypothesis
that the size of the wallpaper texture would not affect people’s action-based egocentric
judgement of the size of the room. Rather, they extend our first hypothesis – that
people’s perception of the spaciousness of a room will decrease as the scale of the
wallpaper pattern increases – to an effect on metric size judgments as well.

Fig. 6. A scatter plot showing each distance judgment made by each participant. The slight
variation in the distances shown is due to participants not starting exactly at the prescribed
starting location used to define the initial relationship between the viewer and the room in our
software. The bold trendline plots the linear trend in the data; the light grey line shows where
ideal performance would lie.
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5 Discussion

Our findings – that the dominant scale of a wallpaper texture pattern can have a
significant impact both on people’s subjective feeling of the spaciousness of a room
and on their action-based judgments of the actual locations of the walls of the room –

make sense in the context of our everyday experience of the statistics of built envi-
ronments. In 2003, Torralba and Oliva [16] showed that in a collection of hundreds of
images, the characteristics of the dominant spatial frequencies varied systematically
with the distance of the camera from the imaged scene, on a scale ranging from less
than one meter to a kilometer or more. In indoor or external views of man-made
environments, they found that images taken from closer views tended to be dominated
by lower spatial frequency content, and that as camera distances increased, the images’
spectral signatures reflected a greater presence of higher spatial frequencies, particu-
larly in the horizontal and vertical directions. It may be that people have developed an
intuitive sense of the typical range of spatial frequencies associated with their expe-
rience of being in close-in versus larger spaces, and that texture patterns with “un-
naturally” bold features may feel somehow enlarged, evoking an impression that they
are closer than they really are.

Fig. 7. A plot of the average distance walked by all participants, averaged over all room sizes,
for each texture scale. The error bars represent ±1 standard error.
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It could also be that as the dominant features in the wallpaper pattern get larger,
they become more individually noticeable and thereby create a greater sense of clutter
that could also make a room feel less spacious. We deliberately chose to use a starkly
contrasting pattern in our present study to allow the texture’s scale to be readily
apparent across a wide range of distances. It might be interesting to explore a wider
range of pattern contrasts in future work, as lower-contrast patterns might have less
impact on people’s sense of the spaciousness of a room regardless of the dominant
scale of the texture.

It is important to note that the pattern of the smallest scale texture appeared slightly
blurry when viewed through the head-mounted display. Particularly, the lines making
up each of the elements of the smallest patterned wallpaper were notably less distinct
on the opposite side of the room than on the more nearby walls. This effect is due to the
limited resolution of the OLED displays on the current HTC Vive, as only 1200 pixels
are available to subtend 110° of visual angle in the vertical direction, while the naked
eye can resolve two points of light separated by a visual angle of one arc minute
(1/60°), a difference of 5.5�. The phenomenon of decreasing clarity with increasing
distance is a hallmark of atmospheric attenuation, a recognized cue to depth [2]. It is
therefore possible that the greater apparent blurriness of smaller texture features could
evoke a heightened impression that those surfaces are located farther away than
comparable surfaces on which the texture features appear more distinct.

In Fig. 5, it may be noted that the solid-colored rooms appear to have been rated, on
average, as slightly less spacious than the rooms featuring the finest wallpaper pattern.
This suggests the possible potential of using very finely-textured wallpaper to enhance
the sense of spaciousness in a room. However, we must emphasize that our experiment
did not find these differences to be statistically significant, and further studies with
more participants would be necessary to support any claim that a room’s sense of
spaciousness might have the potential to be enhanced, rather than diminished, by the
application of an appropriately chosen wallpaper pattern.

Finally, we acknowledge the possibility that some participants may have disre-
garded the written instructions provided to them. We observed one participant in
particular verbally counting steps during the second half of the experiment, even
though the written instructions (which can be seen in the appendices to this paper) had
explicitly requested that they avoid doing so and warned that using such artificial
strategies would interfere with the research goals of the study. It is additionally possible
that other participants could have been counting steps non-verbally, without our being
aware of it. We did not debrief participants to find out what strategies they had used to
reach the target because our written instructions had so clearly specified the process we
wanted them to use that we did not anticipate non-compliance. Also, even though
participants were explicitly told to keep their eyes closed at all times during the second
part of the experiment except when viewing the room at the very beginning of each
trial, the possibility remains that some participants might have opened their eyes as they
walked. In such an event, they might have been able to see the bounding line of the
Vive’s tracking space, which would appear as a dark grey square on the ground
whenever the participant traveled farther than 2.79 m beyond the designated starting
position. However, our data do not show any evidence of a change in error rates at
longer distances; the proportion of distance underestimation in the largest rooms is
similar to that in the smaller ones where the grid would not have been active.

172 G. Simpson et al.



6 Conclusions and Future Work

This study provides potentially useful insights to architects and interior designers by
showing that the scale of a wallpaper pattern can not only affect people’s subjective
impression of spaciousness in a room, which is primarily an emotional sensation [5],
but that it can also affect their action-based judgments of how far away from them the
walls of a room are located. This understanding of how the dominant scale of a
wallpaper pattern impacts spatial judgments can be deployed when designing spaces to
make them seem more spacious or, alternatively, more cozy. In addition to wall
treatments, there are many other features of a room’s design that can affect its perceived
spaciousness, and we plan to continue our efforts to use virtual reality technology to
explore other design-related hypotheses and to better support an informed design
process overall.
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Appendix A: Written Instructions (Part 1)

You will be asked to perform two simple tasks multiple times for this experiment.
Please try to perform each task at a natural and consistent pace. To make things easier
to remember, we will give you the instructions for each task separately.

Preparation: If you look at the carpet in our lab, you will see a red colored tape mark.
Please stand on top of the tape so that your heels align with the back edge of the tape
mark. (Note, you will not see this tape in the virtual reality environment). Once you are
in the correct position, we will ask you to put on a head mounted display (HTC Vive).
Please take some time to adjust the straps on the device so that it fits your head
comfortably. We will then ask you to go through a brief calibration procedure to
optimize the visuals for your individual head shape.

Task: We will show you a series of virtual rooms and will ask you to rate how
spacious they feel to you using a scale from 1 to 10. We will start out by showing you
two rooms that you can use to help anchor this scale; you can consider the first room to
be an example of a place that has a spaciousness of “1” and the second room to be an
example of a place that has a spaciousness of “10”. We will then show you, one at a
time, a series of 35 different rooms. As each room becomes visible, please briefly look
around (without taking any steps) and then verbally tell us the number that best
corresponds to how spacious the room feels to you. After we record your rating, the
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screen will briefly turn black and then a different virtual room will become visible.
Please note that you will be seeing each room from a slightly different position. After
you have provided a verbal rating for each of the 35 rooms we will ask you to take off
the head-mounted display and have a short break. Following this break, we will show
you a different set of 35 rooms and will ask you to provide another set of spaciousness
ratings. If at any point, during any of the trials, you start to feel tired, distracted,
impatient, or otherwise uncomfortable or unhappy, please let us know and we will
pause the experiment to let you rest.

It is important for us to stress that there are no right or wrong answers in any part of
this task. We are just very interested to know how each room makes you feel. What is
important to the integrity of our experiment is that you treat each judgment indepen-
dently and devote the same level of attention and care to all of the judgments you make.
We expect that this portion of the experiment will take about 20–30 min in total, and
after this part is completed we will give you a long break.

Please remember that you are always free to discontinue your participation in this
experiment at any time, for any reason. In that event you would still be compensated
with a gift card of value proportional to the time you spent.

Thank you in advance for your participation. Please ask us if you have any
questions at any time.

Appendix B: Written Instructions (Part 2)

Task: In this part of the experiment, we will ask you to wear a set of headphones
(playing an ambient sound track) in addition to wearing the head-mounted display.
Please start out by standing at the same red tape mark as before. After you have put on
the head-mounted display, we will show you a series of 16 different virtual rooms. In
each room, we will ask you to take visual aim at the opposite wall of the room (located
directly in front of you), then close your eyes. After you have closed your eyes, please
say “ready” and we will remove the walls of the room. We then ask that you keep your
eyes closed and physically walk through the room that you remember until you feel that
you have reached the exact location of where the wall used to be. Please stop walking
when you feel that your head and eyes would be exactly inside of the wall, if the wall
were still there. When you believe you have reached the target location, please keep
your eyes closed and wait a few moments for us to record your position. We will then
verbally direct you to walk, with your eyes still closed, in a circuitous path back to a
different starting point for the next trial. Please be sure to keep your eyes closed for the
entire time until we explicitly tell you to open them again.
In each trial, as you walk from your starting point to the wall, please try to imagine
what the virtual room would look like as you move through it. It is very important to
the integrity of our experiment that you do not use any artificial strategies to reach the
wall, such as numerically estimating the distance from the starting point and then
counting steps, or referring back to your memory of a previous room and abstractly pre-
deciding to just take more or fewer steps than you did before, as that would invalidate
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our research. We need to stress that our goal in this experiment is not to “judge” the
task performance of any individual against any sort of benchmark. Our goal is to better
understand how the human brain interprets 3D space as people physically walk around
with their eyes closed in virtual reality, and we cannot do that properly unless the
described protocol is carefully followed. What is most important to us is that you let
your intuition guide you, on each trial independently, in knowing when you have
reached the wall of each virtual room. We expect that this portion of the experiment
will take about 30–40 min.

End: All data will be de-identified before it is analyzed, so we will not be able to share
your individual results with you, as we will have no way to know them ourselves. But
we will be happy to share our overall findings with you after the experiment has been
completed. If you would like to receive a copy of any eventual publication on this
experiment, please let us know.

Within two weeks from the completion date of the experiment, we will ask the
Department of Computer Science to order a $10 Amazon gift card for you, in com-
pensation for your participation. The email containing the gift certificate will come
directly from amazon.com and will be sent to the email address you provided on the
consent form. The gift card will not expire. If for any reason you fail to receive the
email with the gift card, or you inadvertently lose the email before having a chance to
use the gift card, you can always contact us to have the gift card re-issued, even after a
delay of many months or years.

Please remember that you are always free to discontinue your participation in the
experiment at any time, for any reason. In that event you would still be compensated
with a gift card of value proportional to the time you spent.

Thank you in advance for your participation. Please ask us if you have any
questions at any time.
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Abstract. Context-dependency effects on memory exist, whereby people’s
context influences their ability to recall items from memory. This effect was not
previously studied when considering VR as an environmental context. We show
that adverse effects on memory exist when changing between virtual and real
environments. The effect was not present when memorizing and recall were both
done in VR; it appears caused by the change of environmental context. This
previously unknown result challenges how we use VR in education and training.
It undermines the paradigm that VR can be effectively used for learning
information whereby later recall of that information in a real environment is
important. In a memory-recall experiment (n = 51) participants that underwent a
context change involving VR after memorizing performed significantly worse
on 24-hour later item recall than those who did not change context (17% lower
accuracy, p < 0.001). In particular memorizing in VR as opposed to a real
environment lowers accuracy of recall in a real environment (24% lower,
p = 0.001).

Keywords: Virtual reality � Memory � Context-dependency

1 Introduction

It is possible that you have had to memorize words for learning a secondary language.
Sitting at home you memorize the given words until you are able to recall them well.
The next day at school, you are quizzed on your ability to recall the words and you find
yourself forgetting a portion of the words. Is it because you have started studying too
late? Is it because you did not study hard enough? However, upon your return home,
when sitting behind your desk again, somehow you can recall most of the “forgotten”
words. How is that possible?

This could be caused by an effect known as context-dependent memory, wherein
your context influences the ability to recall items from your memory. For example, in
1975 Godden and Baddeley [1] let two groups of divers memorize words in different
contexts, namely under water and on land. Later, all participants were asked to recall
the words while being in either the same or the other context. It was found that subjects
asked to recall in the other context than the one in which they had memorized the items
did so significantly worse than those who were asked to recall them in the same
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context. Apparently a change in context negatively affected the ability to recall items
learned. This effect was later found to exist for other context changes also.

The relation of context-dependent memory and virtual reality is an interesting topic
to research as the role of VR has become more prevalent in society. For example,
consider search-and-rescue workers who learned the position of potential victims in a
virtual environment. Will they recall these positions in reality as well as in training, or
will the change of context from VR to reality affect their recall ability? An analogous
case could be argued in light of increasing use of VR in education. Our study aims to
uncover knowledge about context-dependent memory and its relation to VR.

To uncover whether the change of context from VR to real environment and vice-
versa affects our ability to recall items memorized, we hypothesize that such a change
negatively affects our ability to recall when compared to an unchanged context,
analogous to effects shown in prior studies. To test our hypothesis, we constructed and
realized an empirical study (n = 51), based on methods and findings from prior studies.
Our analyses take into account potential effects caused by the use of VR as a context
and focus on the effects of context change.

We firstly explore the most relevant related work done to-date, specifically in
relation to memory, context-dependency, and VR. Based on the review of prior studies
we construct the experiment, of which all choices are described in Sect. 3. Analyses of
the results are presented and discussed in light of our hypothesis and potential impli-
cations of our findings.

2 Related Work

Here we concisely sketch an overview of prior results that are of interest to our
hypothesis. For sake of brevity, selected prior research is mentioned, not aiming to be
exhaustive.

2.1 Memory and Context

In a famous study of 1969, Goodwin et al. performed an experiment [2] whereby
participants performed four different memory tasks while being sober or being under
the influence of alcohol. After twenty-four hours, the participants were tested under
both the conditions. Results showed that participants were better in recalling memo-
rized items when being tested in the same state they learned in. Their ability to rec-
ognize had not been altered by the different states; thus, not all sub-forms of memory
were affected. The memorization and recall tasks applied by Goodwin et al. form the
basis of our own experimental design, as is explained in a further section.

As mentioned in our Introduction, Godden and Baddeley [1] showed that the
context-dependency effect on memory extends to the external environment also, i.c.
under water versus on land. From this it was concluded that the disruption in moving
from one environment to another negatively influences the ability to recall memory
learned in the first environment.

This outcome firmly underlies our own study, as we also study potential context-
dependency effects on memory caused by moving from one environment to another.
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Specifically we consider disruption caused by moving from a real to a similar but
virtual environment, and vice-versa.

Other prior results include an outcome that no context-dependency was found in a
memory-recall task that considered different tastes as contexts – one context being
created by chewing mint-flavored gum, the other by chewing flavorless gum [3]. Also a
change of mood (happy/sad) was found to adversely affect ability to recall memorized
items [4], as opposed to when mood was unchanged. When given a task that relies less
on contextual information, but more on introspective thought for example, then
context-dependency effects on memory-recall tasks are less strong [5].

2.2 Memory and Virtual Reality

The validity of using VR to assess learning and memory skills in brain-injured and
healthy individuals was studied by Matheis et al. [6]. The authors found a significant
correspondence between their VR-based assessment of memory and a standard neu-
ropsychological measure. From this they conclude that VR “provides a viable medium
for measuring learning and memory”.

A study that compared potential effects on memory between active and passive
participation in a virtual environment [7], found that participants with active partici-
pation tested as having a better memory for spatial layouts while participants who
passively participated tested higher in object recall.

Naturally, how realistic a virtual environment is, is an interesting aspect to consider
in relation to memory recall tasks. This was studied by Dinh et al. [8] by way of a
multi-modal experience wherein subjects could smell, feel and hear a virtual envi-
ronment. Results showed that by offering tactile input, the quality of presence in VR
was enhanced, making it easier for the participants to remember objects in the virtual
environment. Auditory and olfactory stimuli only increased the feeling of being present
in the virtual world, but had no effect on memorization.

Perhaps less related to our work are studies in which personal demographics (e.g.
age [9]), medical conditions (e.g. non-progressive brain injury [10]) or mental
parameters (e.g. depression [11]) act as different contexts for memorization and spatial
recall tasks in VR.

2.3 Virtual Reality and Context-Dependent Memory, an Unexplored
Area

We have shown that prior studies have compared VR and real environments with
respect to their effects on memory. Moreover, VR was shown to be suitable for
memory-recall assessment within the VR environment itself. However, no prior study
was done to uncover possible context-dependency effects on memory when changing
between virtual and real environmental contexts. It is exactly that knowledge gap
which our study aims to fill.
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3 Method

Our experimental design considers four randomly assigned groups of participants who
must memorize and recall items in either the same or a different context. Twenty-four
hours after memorizing, participants are assessed on their ability to recall the memo-
rized items (cf. [2] and other studies). Since in practice, assessing all participants after
exactly twenty-four hours may be difficult, the exact memorizing and recall times are
noted and used to check for possible confounding effects of retention duration.

3.1 Real and Virtual Environments

We aim to make the real and virtual environments, which form the contexts for our
study into context-dependent memory, as similar in experience as possible. By doing so
we focus on uncovering potential effects of a change between a real and similar virtual
environment, as opposed to effects caused by unnecessary large discrepancies between
both environments. Naturally, in the hypothetical case that the virtual environment is
indistinguishable from the real environment, we would not expect such effects to exist.
To be relevant with regards to the current state of VR technology, we create a likeness
between real and virtual environments that is exemplary of said current state.

As the scenario that forms the context of our memory-recall study, participants are
seated in an office chair behind a desk. A book is placed centered on the desk in front of
them. A potted plant stands on the left side of the desk surface. Wooden divider boards
surround the desk’s left, right and opposing ends. A poster is hung on the right divider
board, at eye’s height. The plant and office chair are the same in both the real and
virtual scenarios and the divider boards and poster as similar as possible. In both the
real and virtual contexts participants are seated in front of the real desk on the real
office chair (Fig. 1).

Fig. 1. Photograph of a participant in the real experimental setting (left) and overview from an
observer’s point-of-view of the virtual experimental environment created in Unity (right). (Color
figure online)
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In the virtual context, participants are outfitted with an HTC Vive headset and a
single HTC Vive controller, enabling them to look around and interact with the virtual
book on the desk. Turning a page of the virtual book is done by moving the virtual
hand towards the top right corner of the book, clicking and holding the trigger on the
controller and making an overturning movement to thereafter release the trigger. In VR,
the test persons can see their own avatar’s arm that is dressed in a blue sleeve and has
light toned skin (as we expected most test participants to have light toned skin).

Participants are asked to have the same interaction with the real environment as in
the virtual world. Both in the real and virtual environments they are only allowed to
look around and turn over pages of the book in front of them. The experiment is
executed in two different locations, namely in the office environment of a sports retail
company in the city of Leiden and in an educational environment within a building of
the Rotterdam University of Applied Sciences. Both memorizing and recall occur at the
same experimental location for each participant.

3.2 Language and Demographics

Participants are given two language options from which they can choose to perform the
experiment in: Dutch and English. We provide both language options because during a
small pilot study some Dutch participants were observed to have difficulties performing
the experiment in English. Since a lack of fluency in a language could affect memory
recall, participants can only participate in the experiment when they are fluent in Dutch
or English, as assessment that is made by participants themselves.

Several demographic variables are collected via self-report from participants,
namely gender, age, prior experience with VR, and education level. Demographic
questions are formulated by the standards of the PGA Group [12], questions about
education are formulated by the European Qualifications Framework [13].

3.3 Orientation Task

After being introduced to their given context (real or VR), participants are verbally
instructed to execute a simple orientation task within the given context. It is intended to
make participants familiar with the given context and to ensure that the participant is
proficient enough technologically to participate in the experiment. The orientation task
consists of (1) looking around at different objects (plant, poster, and book) and
(2) executing an example task wherein the participant interacts with the book on the
table by turning one page, either in reality or VR. On the day of recall, participants
were asked to do the same orientation task as on the day of memorizing.

The orientation task is considered successfully completed if the participant is able
to perform the requested interactions. If not, then the supervisor will try to help the
participant to master the interactions. If the participant is then not able to master the
interactions, then s/he is excluded from the experiment.
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3.4 Rote-Learning Task

After the introduction and orientation task, participants must complete three tasks
which were based on studies by Goodwin et al. [2] and Marks et al. [14]. These tasks
are a rote-learning task, an association task and a recognition task. The resulting recall
scores from the three tasks are averaged to form an overall “recall score” per partici-
pant. Here we start with describing the rote-learning task.

Memorizing. The rote-learning task consists of saying four 5-word sentences/lists
(Table 1) with varying meaningfulness out loud, repeatedly, for the duration of two
minutes (cf. [3]). Participants are asked to remember the sentences as they will be
assessed on their ability to recall them after twenty-four hours.

There are four types of sentences/lists: a normal sentence (arbitrarily obtained from
a magazine), an anomalous sentence (obtained from a paper by Chomsky [15]), an
anagram list (obtained from online anagram generator litscape.com), and a word list
(obtained from online tool textfixer.com). All were translated from English to Dutch,
except for the anagram list (obtained from Dutch online tool mijnwoordenboek.nl). The
sentences are provided in the real or virtual book.

Recall. Participants were asked to recall the sentences/lists learned within two minutes
(cf. [1]). Participants must say the sentences out loud while their voice is being
recorded. Participants are prohibited to ask the supervisor for hints regarding the
memorized sentences.

Assessment. Recall performance is measured in terms of the number of sequence and
omission errors. It is possible that participants recall a sentence or list differently than
learned, but the meaning is nearly the same. We applied an online tool (provided by
explosion.ai) that gives scores based on assessed similarity. E.g. comparing “I walk to
the station” and “I walked to the station” results in a similarity score of 0.97. For the
word list and anagram list we use the fraction of correct answers. If a participant recalls
a word that is close to the learned word, then we asses this differently. E.g. if a
participant recalls the word list (Table 1) as “Flat, Iron, Harbor, Crab, Thief”, we asses
“Flat” as a semi-correct recall, resulting for this recall sequence in a score 0.9. It is also
possible that a participant might say the recalled sentence with slight variance several

Table 1. Four English and Dutch five-word sentences/lists used in the rote-learning task.

Type English Dutch

Normal
sentence

I walk to the station Ik loop naar het station

Anomalous
sentence

Colourless green ideas sleep
furiously

Kleurloze groene ideeën slapen
woedend

Anagram list Drawer, Redraw, Reward,
Warder, Warred

Mentors, Stormen, Stromen, `n
Stomer, `t Morsen

Word list Flatness, Iron, Harbor, Crab,
Thief

Vlakheid, IJzer, Haven, Krab, Dief
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times. We decided to only assess the last verbal submission to prevent lucky guesses.
Every recalled sentence/list yields a score between zero and one. The final score for the
rote-learning task is the average of the scores for all four memorized sentences/lists.

3.5 Association Task

Memorizing. Participants are asked to say out loud the first word that comes to mind
in reaction to each of ten given low-association words (obtained from a study by Burke
et al. [16]). For Dutch speaking participants, these words were translated to Dutch
(Table 2).

Recall. Given the same stimulus words as provided during memorizing, participants
must recall the self-associated word and say them out loud.

Assessment. Only the final submission for each given stimulus word is assessed –

previous submissions are not assessed. Scoring is done conform the assessment pro-
cedure for the rote-learning task.

3.6 Recognition Task

Memorizing. Participants are asked to memorize twenty different pictures, displayed
in randomized order each on an individual page of the book. Ten pictures have
emotional content (5 female and 5 male cover models from erotically themed
magazines) and ten pictures have neutral content (5 female and 5 male mail-order
catalog models), cf. the study by Goodwin et al. [2]. Participants are allowed to browse
the images for a maximum duration of five minutes.

Recall. Participants are asked to select maximally twenty memorized pictures from
forty pictures shown in the book, after browsing through the pictures for maximally ten
minutes. The twenty newly added pictures are of similar nature and distribution as the
memorized pictures.

Assessment. The recognition task is scored as the fraction of memorized pictures
correctly recalled. If participants change their mind during the recall period, then their
last submission is considered the final submission.

Table 2. Ten English and Dutch low-association words used in the association task.

English (from [16]) Dutch (translated from English)

Chance, cruel, lazy, melt, narrow, money, now,
size, time, tall

Kans, wreed, lui, smelten, smal, geld, nu,
maat, tijd, lang
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4 Results

Within seven weeks (Spring 2018) 57 participants voluntarily did the memorizing
tasks, of which 51 also returned for the recall tasks. The six non-returning subjects (two
memorized in VR, four in the real environment) were not contacted and no reason for
their absence is known. Their data was discarded and not expected to introduce
selection bias. All participants opted for the Dutch language tasks, and all successfully
completed the orientation tasks before both memorizing and recall.

Table 3 compares the mean recall scores1 across various demographic sub-samples
of the total sample (n = 51). From the resulting p-values we conclude that participant
gender, experimental testing location, occupational status and prior experience with VR
did not significantly affect the mean recall score.

Not all participants could perform the recall tasks exactly twenty-four hours
(1440 min) after the memorizing tasks. Figure 2 illustrates the correlation between
retention duration in minutes (mean = 1455, SD = 104, normally distributed) before
recall and recall score (mean = 0.650, SD = 0.134, normally distributed). No evidence
of significant correlation was found, leading us to conclude that variation in retention
duration as found in our sample does not affect recall score.

As mentioned earlier participants were randomly assigned to one of four context
conditions: R+R when both memorizing and recalling in the real context, V+R when
memorizing in the virtual context and recalling in the real context, etcetera. By joining
groups R+R with V+V and groups R+V with V+R we obtain two new groups of
participants: one for whom the contexts during memorizing and recall were the same,
and one for whom the context changed.

Table 3. Outcomes (p-values) of multiple independent samples Student’s T-tests, comparing
recall scores across various demographic sub-samples.

Sub-group n Normally distr. Mean (SD) recall score p

Females 21 Yes 0.635 (0.146) 0.516
Males 30 Yes 0.660 (0.126)
Tested at retail offices 19 Yes 0.638 (0.157) 0.641
Tested at education location 32 Yes 0.657 (0.121)
Students 41 Yes 0.646 (0.128) 0.722
Waged staff 10 Yes 0.664 (0.163)
Prior VR experience 27 Yes 0.647 (0.130) 0.839
No VR experience 24 Yes 0.653 (0.142)

1 Throughout this paper statistical significance is defined as p < 0.05 and indicated with *. Student’s
T-tests are all two-tailed and assume equal variances. Normality is assessed through Shapiro-Wilk
testing with p < 0.05 indicating deviation from normality.
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Figure 3 and Table 4 compare mean recall scores across combinations of these
groups. Participants whose environmental context changed score on average signifi-
cantly lower (p < 0.001) than those for whom the context did not change; 17% lower in
fact. This result confirms our main hypothesis that context-dependency effects as found
in prior research exist for environments of real and virtual nature also.

When comparing recall scores for context-conditions R+R and V+R the relative
decrease in recall accuracy is 24% when memorizing in the virtual as opposed to the
real environment. This result is particularly striking in face of current interests in VR as
a learning environment. This difference is statistically significant (Student’s T-test
p = 0.001, not included in Table 4).

Fig. 3. Boxplots of recall scores for different context groups (detailed values in Table 4).

Fig. 2. Scatter plot correlating retention duration (in minutes) and recall score of all participants
(n = 51, Pearson’s r = −0.037, p = 0.797). Note that 24 h equals 1440 min.
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Through an additional ANOVA test we compared recall scores using the memo-
rizing and recall contexts as fixed factors. Outcomes (Table 5) tell us that the contexts
in which memorizing and recall are done do not by themselves affect the recall score in
a statically significant manner. However, the interaction between both factors is sta-
tistically significant, supporting our hypothesis that recall scores are affected by context
change and not by the memorizing or recall context itself.

When we consider the separate memory tasks (Table 6), then we observe that a
context change negatively affects all mean task-specific recall scores. However, sta-
tistical significance of this outcome is found for the rote-learning task and the recog-
nition task, but not for the association task. Deviation from normality of the recognition
scores was visually scrutinized and found to be caused by their tendency to be on
average near the maximum score, yet with substantial variance.

Table 4. Outcomes (p-values) of multiple independent samples Student’s T-tests, comparing
recall scores across various memorizing and recall context-conditions. Normality of distribution
is indicated under column “Norm.”

Memorizing context Recall context n Norm. Mean (SD) recall score p

Real Real 12 Yes 0.708 (0.094) 0.901
Virtual Virtual 13 Yes 0.713 (0.109)
Real Virtual 13 Yes 0.642 (0.133) 0.058
Virtual Real 13 Yes 0.540 (0.128)
Same context 25 Yes 0.711 (0.100) <0.001*
Changed context 26 Yes 0.591 (0.138)

Table 5. Outcomes (p-values) of two-way ANOVA test using memorizing and recall context-
conditions as factors.

Tested factor p

Memorizing context 0.148
Recall context 0.111
Interaction between memorizing and recall contexts <0.001*

Table 6. Comparison (independent samples Student’s T-test p-values) of mean recall scores for
separate memory tasks, per context-changed and -unchanged group. Normality of distribution is
indicated under column “Norm.”

Same context Changed context
Task n Norm. Mean (SD) recall n Norm. Mean (SD) recall p

Rote-learning 25 Yes 0.473 (0.221) 26 Yes 0.294 (0.225) 0.006*
Association 25 Yes 0.792 (0.144) 26 Yes 0.715 (0.185) 0.106
Recognition 25 No* 0.868 (0.104) 26 No* 0.763 (0.214) 0.032*
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5 Discussion

This study investigates the previously unexplored area of context-dependency effects
on memory when changing between virtual and real environments. The outcomes of
our experiment clearly show that significant and substantial adverse effects on memory
exist. Reviewing the results, we conclude that they are valid to base conclusions on.
Memory recall scores do not appear to be influenced by demographic factors in our
sample and prior experience with VR. All participants were native Dutch speakers,
meaning that no language effects are expected.

Our hypothesis that a change in environmental context between VR and real
environment has an adverse effect on the ability to recall after twenty-four hours is
supported by a highly significant (p < 0.001) difference in recall scores between groups
with and without a change of environmental context. The group with a context change
scored 17% lower on item recall accuracy. This main result is novel, yet corresponds
with prior research findings regarding other environmental contexts (e.g. under water
and on land [1]) and mental states (e.g. under the influence of alcohol and sober [2]).

Another highly significant result is that the ability to accurately recall items in a real
environment is 24% lower when these items were memorized in VR when compared to
memorization in a real environment (p = 0.001). This previously unknown result
challenges how we use VR in education and training. It undermines the generally
accepted paradigm that VR can be effectively used for learning when accurate recall of
that information in a real environment is important. One could conjecture that mem-
orizing in VR is more difficult than memorizing in the real environment. Excitement for
or novelty of VR might make it more difficult for participants to memorize in the VR
context. However, if this conjecture were to hold, then one would hypothesize the V+V
context group to score lower than the R+R group, which was not the case. Moreover,
two-way ANOVA testing showed that memorizing and recall contexts separately do
not significantly affect recall scores, but that their interaction does (p < 0.001). As such
the alternative explanation for the findings, posed in this paragraph, is unsupported and
the low recall performance under V+R condition is attributed to content-change.

We provided an example in our introduction of search-and-rescue workers who
must learn the position of potential victims. Do the uncovered effects imply that it is
unwanted to use VR for this task? We cannot answer this question with certainty.
However, our findings do mean that we are less certain that VR can be effectively used
for memorizing information whereby recall in reality is important.

Recall scores of the rote-learning task and the recognition task were significantly
affected by a change in environmental context, while the negative effect of context
change on the association task recall was not strong enough to be significant. In the
association task, participants create self-generated content which must be memorized.
Perhaps the association task recall is influenced less by a context change because it is
more focused on generating content than on learning given content. It is possible that
self-generated memory is less susceptive to a context-dependency effect, a finding that
may relate to effects of introspective thought found by Smith et al. [5]. We can
conclude that not all sub-forms of memory are equally sensitive to the effect (con-
firming prior finding, e.g. [2]).
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A final matter worthy of further attention is that in this work we only considered
short-term context-dependency effects on memory – we did not take long-term effects
into account, which is something that further research could explore. Also context-
dependency effects caused by changing graphic and immersive qualities of the VR
environment remain open for investigation. One could hypothesize that as VR
immersion and realism approach that of the real world, that context-dependent memory
effects become less dominant, if not absent.
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Abstract. One of the major challenges of Augmented Reality (AR) is
the registration of virtual and real contents. When errors occur during
the registration process, inconsistencies between real and virtual contents
arise and can alter user interaction. In this paper, we assess the impact of
registration errors on the user performance and behaviour during an AR
pick-and-place task in a Virtual Reality (VR) simulation. The VR simula-
tion ensured the repeatability and control over experimental conditions.
The paper describes the VR simulation framework used and three exper-
iments studying how registration errors (e.g., rotational errors, positional
errors, shaking) and visualization modalities (e.g., transparency, occlu-
sion) modify the user behaviour while performing a pick-and-place task.
Our results show that users kept a constant behavior during the task,
i.e., the interaction was driven either by the VR or the AR content,
except if the registration errors did not enable to efficiently perform the
task. Furthermore, users showed preference towards an half-transparent
AR in which correct depth sorting is provided between AR and VR con-
tents. Taken together, our results open perspectives for the design and
evaluation of AR applications through VR simulation frameworks.

Keywords: Registration errors · Augmented Reality
VR simulation · Interaction

1 Introduction

Current advances in Augmented Reality (AR) technology (e.g., Microsoft
HoloLens or Meta 2 glasses) as well as in tracking capabilities [5] (with e.g.,
the release of Apple’s ARKit and Google’s ARCode SDKs) are showing the
potential of AR applications in consumer grade applications (e.g., entertain-
ment, education or maintenance). However, despite these recent advances, AR is
c© Springer Nature Switzerland AG 2018
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still confronted to a number of challenges such as occlusion management between
virtual and real objects, limitations in the field-of-view of AR devices or, as it is
the main focus in this paper, registration errors. Registration is generally referred
to as the process of finding in real-time the position and orientation of virtual
objects so that they can be integrated in a plausible way in the real world. When
errors occur during this process, inconsistencies between real and virtual objects
can arise. Such inconsistencies can be constant (e.g., fixed errors on position and
orientation) or irregular (e.g., shakiness of the virtual content), and can poten-
tially hinder user interaction or alter users’ behavior. Furthermore, as mentioned
by Azuma and Bishop [2] “The human visual system is very good at detecting
even small misregistrations [...]. Errors of just a few pixels are noticeable”. As
of today, most AR applications or SDKs still face many of these inconsistencies,
especially when the user modifies the scene through direct interaction with real
or virtual objects.

Studying how registration issues affect users when interacting with AR is
of great importance but remains difficult to achieve. Indeed, since AR is typ-
ically presented on hand-held devices (tablets, phones) or Head-Mounted Dis-
plays (HMDs), it generally remains complex to propose repeatable and controlled
user studies in AR environments. To that purpose, Virtual Reality (VR) pro-
vides a promising tool to evaluate, not only AR interfaces, but also to explore
how current limitations of AR systems influence users’ behaviors and interac-
tion capabilities [12]. Carrying out controlled VR experiments enables to explore
a particular subset of limitations while perfectly simulating other AR features
(e.g., ensuring a perfect tracking).

In this paper, we explore, through a VR simulation of AR, how user behavior
and performance is altered when registration errors occur. Indeed, while it has
been shown that the perception of the co-existence of virtual and real objects can
be altered by registration accuracy (e.g., misregistration distorts spatial relation-
ships [15]), little is known of their impact on the interaction process. Through
three different experiments participants were confronted with different degrees of
registration errors and AR visualizations in a VR simulation environment while
performing a pick-and-place task (a common manipulation task). The main goal
of the experiments were (1) to explore how the intensity of registration errors
alters the behavior of users, in particular, whether real or augmented content
drive their interactions, and (2) to measure how irregular registration errors
impact users’ accuracy.

The remainder of the paper is structured as follows: Sect. 2 provides an
overview on registration errors in AR as well as on how VR simulation is used to
study AR systems. Then, Sect. 3 presents the VR simulation platform we used in
our experiments. Sections 4, 5 and 6 detail three different experiments aiming to
analyze the impact of registration errors on users’ behaviors and performance.
Finally, Sect. 7 presents a global discussion and Sect. 8 concludes the paper.
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2 Related Work

2.1 Categorization of Registration Errors in AR

A critical issue in AR applications is when virtual information is misaligned with
the real environment [3]. This misalignment is also called registration errors [10].
From the users’ viewpoint, registration errors can be seen as if the AR informa-
tion floats and can break the illusion that real and virtual objects co-exist [15].

Registration should be stable both spatially (virtual objects must be col-
located in rotation and position with real objects) and temporally (motion of
virtual and real objects should be synchronous). In the literature, several clas-
sifications of registration errors have been presented [3,9]. Holloway [9] gives
a precise definition of registration errors by decomposing them into four main
metrics: linear, lateral, angular and depth registration errors. In contrast, the
classification proposed by Azuma [3] focused on whether or not AR objects or
the user’s viewpoint were static (static) or in motion (dynamic). The remain-
der of this section is structured following the taxonomy of Azuma [3] where
static errors represent a spatial incoherence between AR and real content while
dynamic errors represent a temporal incoherence.

Static Errors. Static errors are visible even if the user does not move his/her
viewpoint (or the hand-held device) or when the real environment remains immo-
bile. From the user’s viewpoint, the AR content seems to be floating near its real
position. Static registration errors are due to either optical distortions, tracking
errors, mechanical misalignments or incorrect viewing parameters (i.e., field of
view, tracker-to-eye position and orientation, inter-pupillary distance) [3]. Most
of the time users perceive static errors as a constant gap between the desired and
the actual position/orientation of the AR information even if the AR content
has a perfect shape (see Fig. 3 for examples of static errors).

There are several ways to reduce static errors: improve calibration [1] or
improve tracking techniques [11]. Nevertheless, the huge variability of environ-
ments (e.g., indoor, outdoor) and behaviors of tracked objects (e.g., static, in
motion, slow, fast) makes it complex to provide error-prone solutions [19].

Dynamic Errors. On the other hand, dynamic errors are only visible when
the user’s viewpoint or when objects are moving. Dynamic errors are mainly
due to the latency of the system when there is a motion [3]. This delay (or
latency) is the time between the moment when the tracking system computes
the new position and rotation of the viewpoint and the moment when the virtual
information is rendered at this position. This delay implies that virtual objects
are not displayed with the right position and orientation at the right time. In
order to reduce dynamic errors, four methods exist [3]: reduce system lag, reduce
apparent lag, match temporal streams and predictive methods. Another charac-
teristic of registration errors is that they are hard to predict. Such uncertainty
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introduces a strong bias when evaluating AR systems as replicability is compro-
mised. In order to overcome such limitations, VR has been proposed to simulate
AR systems and thus evaluating them.

2.2 Simulating AR in VR

Virtual reality is a powerful tool to evaluate AR systems as it allows to simulate
in a controlled way many AR features, enabling repeatable user studies. Several
studies conducted in VR environments simulate AR systems in order to evaluate
features such as latency [15,16], field of view [17,18] or visual realism [14].

Regarding latency, Lee et al. [13] replicated an AR study [6] in a VR sim-
ulation context. Their results showed that users’ performance when moving a
virtual ring along a virtual path was comparable between the simulated AR and
the real AR studies. The VR simulator provided the feeling that the AR content
was real thanks to a restricted transparent window in which the AR simulated
content was displayed. Moreover, on top of the internal latency of the simulator
due to tracker latency, computation time, render time and display time, Lee
et al. [12] proposed to include “artificial latencies” between virtual objects and
the real world. This enabled to add controlled latency to the simulated AR con-
tent and to analyze its effect. Other studies also linked latency with interaction
performance showing a degradation of performance as latency increases [15].
Finally, Ragan et al. [16] studied the impact of jitter (visual shakiness of AR
content) and showed that it is predominant over visual latency.

The Field of View (FOV) is a distinctive feature of HMDs that has also
been evaluated in VR simulations. While comparing different AR HMDs with
different FOV is prone to bias due to confounding factors (e.g., other HMDs
characteristics) VR simulations enable to only alter the FOV parameter while
minimizing confounding factors. For example, Ren et al. [17] showed that a wider
FOV is better because it allows to display more information (2D annotations in
their case) and to explore it more quickly. Moreover, a wider FOV also reduces
users’ head movements in the search task. Another important factor related to
FOV corresponds to where guidance information regarding objects of interest is
displayed (e.g., within the FOV, outside of the FOV, on the object, etc.). Users
better focus during a manipulation task if AR guidance is drawn as a line con-
necting the hand of the user to the center of the searched object [18]. In another
study, Baričević et al. [4] proposed to use VR to simulate user perspective ren-
dering in AR (the view is rendered according to the user’s point of view) in order
to study its benefits over the classical device perspective (the view is rendered
according to the point of view of the device’s camera) for AR applications.

Furthermore, visual realism is also an important factor that simulated AR
has to deal with. Lee conducted a study [14] about the impact of the realism
of the VR environment (photo-realistic, etc.) on a user task. Results did not
show relevant effects and the necessity to design a realistic VR environment has
not been proved in this case. Finally, AR content presentation (transparency of
the virtual content or occlusion management) has also been shown to impact
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interaction with AR systems [7,8]. In order to study its impact, we integrated
those conditions into our experiments.

As a conclusion, although registration is a major challenge of AR, there is
still a lack of studies on its impact in the interaction process. Such studies are
complex to perform using existing AR systems since it is nearly impossible to
ensure experimental conditions comparable across participants (e.g., registration
errors will be hardly reproducible). To this end, inspired by existing works, we
propose to study the impact of registration errors in a VR simulation of an AR
interaction task.

3 Experimental Platform: VR Simulation of AR

As mentioned above, in order to be able to carry out repeatable and fully con-
trolled user experiments, we chose to simulate our AR environments in VR.
Our VR environment was designed to replicate a pick-and-place task of an AR
application where the user has to position a cube (10× 10× 10 cm) precisely
onto a target. The cube and the target were lying on a table and both could be
augmented (see Fig. 1, bottom).

In our VR simulation, some virtual objects played the role of real objects
in while others represented AR objects (i.e. virtual objects inserted into a real
scene). As a consequence the virtual environment consisted of a set of “real
objects”, or simulated Real (sReal) objects, and AR objects, or simulated AR
(sAR) objects. The sReal objects could also be augmented by sAR objects.

Additionally, we could also manipulate the virtual AR FOV in the simula-
tion. This allowed the simulation of both a device-based and of an HMD-based
AR environment by adapting the size of a virtual window with a slightly dif-
ferent color. In our experiments, the virtual AR FOV covered ∼90% of the VR
HMD’s FOV. We chose this value so that users would not be disturbed in their
interaction with the sAR content. Figure 1 (bottom) shows two first person views
of the virtual environment were sAR and sReal objects co-exist.

The following subsections detail the different simulated conditions in terms of
registration errors and AR content presentation. Only sAR objects were affected
by registration errors (see Fig. 2) and sAR visualization conditions (see Fig. 3).

3.1 Registration Errors

In order to study how registration errors would affect user interaction and per-
formance in an AR pick-and-place task, we propose to simulate two different
kinds of registration errors (see Fig. 2): constant and irregular. For ours experi-
ments, we make the choice to focus the analysis on errors with only a rotation
of the sAR content with respect of the sReal content around the Y-axis. Those
errors are called rotational errors. The choice is motivated by the simplicity of
the error that has only one degree of freedom. Translation errors are not in the
scope of our study.
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Fig. 1. Depiction of the different simulated objects (Top - cube; Bottom - target). The
depiction is either sReal (Left) or sAR (Right). When the cube is sReal and the target
is sAR, colored dots are painted on the sReal cube to indicate the orientation of the
cube. When there is a sReal cube with its sAR cube and a sReal target, the sReal cube
has no colored dot. The orientation is given by the sAR cube. The sAR objects have
different conditions of visualization (transparency condition and opacity condition).
(Color figure online)

Constant registration errors introduce a constant misalignment between
sAR and sReal objects (either in position or orientation). In this condition, no
matter how the user manipulates the sReal cube, its sAR counterpart is always
misaligned by the same amount either in position or rotation. We do not use
the term “Static” registration errors proposed by Azuma [3] (that only happen
when the user’s viewpoint does not move) since in VR we can simulate a constant
error even with a dynamic environment (objects in motion or user’s changing
his/her viewpoint). For simplicity, and due to the nature of the pick-and-place
task, in order to avoid inter-penetrations we only considered rotation errors on

Fig. 2. Simulation of AR rotational errors. A black solid square (resp. red dotted)
represents a sReal (resp. sAR) object. Top-Left: no rotational error. sAR and sReal
objects are perfectly aligned. Bottom-Left: constant error. The angle between sReal and
sAR objects is constant over time. Right: two states, intermittent vibrations (rotational
vibration that occurs from time to time, Top-Right) and jitter (rotational vibration
around a position that constantly occurs, Bottom-Right). (Color figure online)
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the vertical axis (Y-axis). sAR content is rotated on its own Y-axis with respect
to the sReal object.

Irregular registration errors are dynamic and variable over time. There
are two kinds of such errors that we chose to name jitter and intermittent vibra-
tions. Here again we chose not to use the term “Dynamic” [3] since the registra-
tion errors we simulate are not due to latency or delay but we rather wanted to
study the effect on a non-constant registration error in a dynamic environment.

Intermittent vibrations are defined as discrete vibrations of the sAR object.
More specifically, a pulse is generated on the sAR object’s Y-axis for a certain
amount of time (e.g., for 0.1s every 1s). The pulse follows a noise function f (see
Eq. 1) with x1, x2 being two real values ∈ [0, 1], and k a real positive constant
which determines the maximum absolute rotation error (in radians).

f(x1, x2) =
sin(2πx2) ∗ √−2 log (x1)

3k
(1)

On the other hand, “jitter” refers to a continuous vibration of the sAR object
around it’s Y-axis. The “jitter” is generated continuously for a certain amount
of time and follows the same function f as intermittent vibrations.

3.2 AR Content Presentation

The second aspect of the simulation we wanted to evaluate was the presenta-
tion of the AR content. Although numerous rendering styles could have been
considered, we decided to focus on transparency of the AR content and occlu-
sion management (whether or not AR objects were correctly occluded by real
objects) of sAR objects, as illustrated in Fig. 3. In particular the two considered
conditions were:

1. “Transparency” of the sAR content. A transparency of 100% makes the sAR
object invisible while a transparency of 0% makes it completely opaque.

2. “Occlusion” management. This allows us to control whether the sAR content
was properly (Occlusion ON) or not (Occlusion OFF) occluded by the sReal
content.

4 Experiment 1: Analyzing the Effect of Constant
Registration Errors in User Behaviour

The goal of the first experiment was to explore how registration errors influence
the perception of co-existing sAR and sReal objects. In particular, the experi-
ment aimed at determining which object is used as a reference (sAR or sReal) or
in other words, which content drives the users’ actions. Furthermore, as differ-
ent AR visualizations might play an important role on users’ behaviour, different
sAR visualizations were evaluated.
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4.1 Apparatus and Participants

Experiments were performed using an HMD (HTC Vive) and users were able
to interact with the environment through a controller (an HTC Controller).
During the experiment, the users were comfortably seated in an office chair. The
experiment was conducted using the platform described in Sect. 3 which was
implemented in Unity (5.6).

Twelve right-handed users (1 female, 11 males) participated in this exper-
iment (age: M = 22.83;SD = 2.66). All participants had previous experience
with AR and/or VR.

4.2 Experimental Protocol

Upon arrival participants read and signed a consent form which briefly described
the experiment and their rights. The consent form did not provide any informa-
tion that could bias the users during the experiment. At the end of the exper-
iment additional information was provided regarding the real purpose of the
experiment. Users were told that they should consider the VR environment as
their reality (i.e. with sReal objects) and that the AR content (i.e. sAR objects)
which is displayed in the brown window is the AR. In addition, users had to fill
out a pre-experiment questionnaire to gather background information (e.g. age,
VR and AR experience, headset experience, laterality, visual impairment). Once
users fully understood the experimental task, the experimenter equipped them
with the HMD and they were immersed in the virtual experimentation room.

The experimental task was a pick-and-place. Users had to pick a sReal cube
augmented with an sAR cube (see Fig. 4) and place it at the center of a colored
target (also a sReal object). Users had to orient the cube to match the color code,
(e.g. the blue face of the sAR cube should face the blue marker on the target,
etc., see Fig. 4). The field of view of the AR window was enough to ensure that
all cubes fit the AR display. Participants were asked to be as precise as possible
and no indication was given regarding which cube (sAR or sReal) had to be
aligned on the target. Users performed several trials grouped in four blocks (see
Sect. 4.3).

The users’ virtual hand was represented as a green sphere to let them focus on
the manipulation and not on their appearance. The green sphere was controlled
with the HTC Vive controller (the trigger enabled to grab the sReal cube). Once
users were pleased with the location of the cube, they had to signal the end of the
trial by pressing the touchpad of the Vive controller. Basic physical simulation
capabilities were enabled (gravity and collision detection with the virtual table).
At the end of each block, participants had to fill out a questionnaire to gather
their subjective impressions.

4.3 Experimental Design

In order to assess the effect of registration errors, we artificially considered a
different range of constant registration errors. In particular, we considered seven
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rotational mismatches {15, 10, 5, 0,−5,−10,−15}◦. In addition, we also consid-
ered four different visualizations for sAR objects. The visualization was by two
independent variables (transparency and occlusion) with two levels each (see
Fig. 3) in order to analyze whether they biased the relationship between sAR
and sReal content. The transparency of the sAR content was set to either 0% or
50%. Occlusion of the sAR content also had two options: ON (the sAR content is
always visible) or OFF (the sAR content is correctly occluded by sReal objects
depending on which object is closer to the user’s viewpoint). To sum up, the
experiment had a 7× 2× 2 factorial design with 4 repetitions for each condition,
resulting in a total of 112 trials. The four combinations of transparency and
occlusion were split into four blocks and counterbalanced using a Latin-Square
design. For each block (28 trials), the order of the registration mismatch was
randomized.

Fig. 3. AR presentation conditions. Each row corresponds to a transparency condition
(50% and 0%). Each column corresponds to an occlusion condition (precise depth
sorting vs. sAR always on top).

Fig. 4. Depiction of the first experiment’s task. The user, using a virtual hand metaphor
(see Sect. 4.2) had to pick and place the sAR/sReal cube on a target. Only the sAR
cube was displayed in the AR overlay. (Color figure online)

The dependent variables were the task-completion time (s), the position accu-
racy (cm) and the rotational accuracy (degrees). The task-completion time was
measured from the moment the user grabs the cube until he/she validates the
placement. The position accuracy was computed as the distance between the
center of the sReal cube (sReal and sAR cubes shared the same center position)
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Fig. 5. Depiction of how rotational error θe is calculated. The blue, orange and red
cross is the target. The textured square is the sReal cube. The green dotted line square
is the sAR cube. In this example, the error is the angle between the sReal cube and
the sReal target and not between the sAR cube and the sReal target because the angle
of the error between the two sReal objects is the lowest.

with respect to the center of the perfect placement position. The rotation accu-
racy was computed as the minimum angle between the sReal and sAR cubes
with respect to the perfect placement rotation (see Fig. 5). Participants had no
explicit instruction whether hey have to align the sReal or the sAR cube, consid-
ering the minimum provides a more insightful result. Positional and rotational
accuracies are measured for each trial upon user validation of the placement.

Regarding subjective information, participants had to fill out a questionnaire
after each block and at the end of the experiment. The aim of the after-block
questionnaires was to observe the progression of the state of the participants
(i.e., tiredness, visual discomfort and task difficulty). A 7-point Likert scale was
used where 1 meant “not at all” and 7 “meant completely”. The final question-
naire was designed to understand the behaviour of the participants and their
impression on their performance. Therefore, the participants answered which
reference they chose and if they placed the cube in relation to the sAR content
or in relation to the sReal content. Then participants quantified the variability
of the choice about the picked reference. Additionally, the participants evalu-
ated on a scale of one (never) to seven (always) how often their choice changed.
Finally, participants ranked the 4 conditions from their most preferred to their
least preferred one. In the final questionnaire, we use the term “AR cube” to
refer to the sAR cube and the term “real cube” to refer to the sReal one. Given
this experimental design, we hypothesized that:

H1.1 Smaller registration errors will result in lower rotation accuracy. The
bigger is the mismatch the lower will be the ambiguity.
H1.2 When the sAR content is semitransparent (i.e. Transparency 50%) the
task completion time will be higher. Seeing sAR and sReal contents at the
same time can be distracting.
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H1.3 When the sAR content is displayed on top (i.e. Occlusion ON) it will
result in lower task completion times due to the same reasoning as H1.2.
H1.4 As only rotational accuracy is considered and the sReal and sAR cubes
share the same center position, no significant difference in positional accuracy
is expected.

4.4 Results

Regarding the objective measures, the analysis of the data (ANOVA analysis
with post-hoc Tukey tests (α > 0.05)) showed that the different independent
variables had no impact on the dependent variables. All comparisons were not-
significant. For the sake of simplicity we only report the two-way ANOVA anal-
ysis for the factors Transparency and Occlusion, pooling the data from the dif-
ferent levels of rotation mismatch. Anderson Darling tests were performed to
ensure the normal distribution of the data.

Rotation Accuracy. No significant main effect was found for Trans-
parency (F1,11 = 0.77, p = 0.399, η2

p = 0.06) nor for Occlusion (F1,11 = 0.83, p = 0.382,

η2
p = 0.07). In overall, participants were extremely precise M = −0.12◦;SD =

0.93◦ no matter the reference and the condition. In addition, as previously stated,
the amount of registration mismatch did not influenced rotation accuracy. Thus,
results do not support H1.1.

Task-Completion Time. No significant main effect was found for Trans-
parency (F1,11 = 1.27, p = 0.284, η2

p = 0.10) nor for Occlusion (F1,11 = 2.83, p = 0.121,

η2
p = 0.20). In overall, participants required M = 10.086 s; SD = 5.927 s to

complete the task. Although the mean task completion time was considerably
high considering the nature of the task, we have to note that participants were
requested to perform the task as accurately as possible. Thus, we cannot accept
neither H1.2 nor H1.3.

Position Accuracy. No significant main effect was found for Trans-
parency (F1,11 = 2.31, p = 0.156, η2

p = 0.17) nor for Occlusion (F1,11 = 0.36, p = 0.560,

η2
p = 0.03). In overall, participants were extremely accurate M = 0.15 cm; SD =

0.07 cm no matter the visual condition. These results support H1.4. Yet, if any
difference exists, considering the level of accuracy, it would be non-relevant.

4.5 Reference Cube

After analyzing users’ behaviors, we observed that the majority of participants
had a different yet consistent behaviour during the entire experiment. In partic-
ular, we computed the object (sAR or sReal cube) that was considered as the
reference by the user. The reference cube is the cube (sAR or sReal) that min-
imizes the error to the target orientation at the moment the user validates the
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Fig. 6. Bar plot showing the number of trials in which for each participant the sReal
cube was calculated as the reference object.

trial. Figure 6 shows the amount of time the sReal cube was chosen as reference
for each user and for each condition. Cases in which the rotation mismatch was
0 were not considered as they do not provide any information. Six out of twelve
users considered the sReal cube as the main reference (users 2, 3, 5, 7, 8, and
12), three users considered the sAR cube as the main reference (users 1, 4 and
6), one user (user 10) did the task considering that both cubes were the reference
(minimizing the error between both cubes) and two users (9 and 11) changed
reference in the middle of the experiment.

4.6 Subjective Questionnaires

After-Block Questionnaires. Concerning the task difficulty, users considered
the task relatively easy M = 2.54;SD = 1.18 no matter the visual condition.
Interestingly, small misalignments (e.g., ±5◦) were reported to increase the dif-
ficulty of the task. Three users reported that “With small misalignments it was
harder”. Moreover, some users felt confused about the task: “I had the impression
of making wrong choices” or “I was confused and a little bit disturbed because
of misalignments”. Concerning visual discomfort, it remained constant during
the entire experiment m = 2.90;SD = 1.43, which shows that the task and the
set-up do not cause strong visual discomforts. Finally regarding tiredness, the
mean value is almost constant and below 3 M = 2.85;SD = 0.92.

Post-Experiment Questionnaire Nine users (75%) stated that they picked
a reference and kept it during all the experiment, whereas three users (25%)
reported to change their reference. Six users out of twelve (50%) chose the sReal
cube, three chose the sAR cube and the others changed during the manipulation.
Only one user picked all the time an imaginary cube placed at the mid-position
between the sAR cube and the sReal cube. These results confirm results from the
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previous section. Globally users pick a reference and keep it during all the task.
According to users, the choice of the reference was made because the task seems
easier for them with their choice of reference: “With AR it was more practical”.
Finally, regarding user preferences on sAR visualization, the condition in which
the sAR content was always visible and opaque was the less preferred one. Seven
out of twelve participants (58.33%) answered that it was their less preferred
choice. Yet, results do not show a clear user preference.

4.7 Discussion

The main outcome of this experiment is that constant registration errors did
not alter the way users performed the task nor their performance. The analysis
of users’ behaviors as well as questionnaires showed that participants have a
strong preference when choosing the main reference (either sReal or sAR) no
matter the registration mismatch nor the visualization. Interestingly, while we
hypothesized that the occlusion would have an influence on users’ behavior, it
was not the case, nor any other visualization condition. One explanation could
be that users did not need to change their reference (there was no significant
effect on accuracy) since in all cases they were able to accurately place the chosen
cube.

Another interesting finding is that there was no significant difference in task-
completion time for the different sAR visualization conditions. As users were
requested to be as accurate as possible, there was a moderate user variabil-
ity. This could have decreased the power of the analysis. Nevertheless, we were
expecting strong differences and it was not the case. Finally, the condition that
we hypothesized to be the less optimal (no transparency and no occlusion) was
the condition users preferred less.

5 Experiment 2: Analyzing the Effect of Irregular
Registration Errors in User Behaviour

The results of the previous experiment shown that when constant registration
errors occur, they do not have a strong influence on users’ behavior, as the
reference chosen by users rarely changed during the experiment. In order to
explore in depth users’ behavior, we performed a follow up experiment in which
we explored the effects of irregular registration errors. The goal of this second
experiment was to analyze the tolerance to irregular registration errors and mea-
sure if there was a threshold that triggers a shift in the selected reference. The
experimental protocol and the apparatus of the experiment were the same as
the first experiment. Upon their arrival, participants read and signed a consent
form which briefly described the experiment and their rights. After users fully
understand the experimental task, the experimenter equipped them with the
HMD.
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5.1 Participants

Twelve right-handed users (2 females, 10 males) participated in this follow up
experiment (M = 23.25;SD = 2.22). Seven never had any experience with VR,
five never had any experience with AR and six never used a HMD before.

5.2 Experimental Design

Participants had to perform the same pick-and-place as in the first experiment
task while varying the intensity of the registration error. We considered five
different levels of intensity, defined by the amplitude of the vibration (the k
parameter of Eq. 1) and the time (discrete vs. continuous). The registration
errors were presented by increasing intensity:

L1. No Error: Perfect registration between sAR and sReal objects.
L2. Low intensity intermittent vibration: a pulse of 0.11 s is generated every
1 s with k = 0.3 rad.
L3. High intensity intermittent vibration: a pulse of 0.11 s is generated every
0.5 s with k = 0.3 rad.
L4. Low intensity jitter: a continuous vibration is generated with k = 0.05 rad.
L5. High intensity jitter: a continuous vibration is generated with k = 0.3 rad.

Only one sAR visualization was considered which corresponded with the
most preferred condition of the first experiment (50% transparency and Occlu-
sion OFF). For each intensity level, participants performed 5 repetitions of the
pick-and-place task. To better account for users’ choice of reference, constant
registration errors were also introduced for each intensity level (four repetitions
randomly chosen between {−10, 10}◦ and one repetition had no constant regis-
tration error). The target is a sReal object once again. We were only interested
in measuring the reference chosen for each trial, which we determined following
the same approach as in the first experiment, choosing the object (sReal or sAR)
which minimized the placement accuracy. We hypothesized that:

H2.1 As the intensity of the irregular registration error increases the users
will have the tendency to shift their reference towards the sReal object.

5.3 Results

Similar to the first experiment, the ANOVA analysis did not show any signif-
icant differences among, participants were extremely precise in the placement
task (position accuracy: M = 1.65 mm; SD = 0.9 mm and rotation accuracy:
M = 0.86◦;SD = 0.95◦). Also, participants followed a similar behavior: once
participants chose the reference (typically in the first few trials), they tend to
keep it during the entire experiment (see Fig. 7 right). Six users had a clear ten-
dency towards choosing the sAR cube as reference while the remaining six users
chose the sReal cube as reference.
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Fig. 7. Choice of reference during the second experiment. (Left) Bar plot showing the
choice of reference for each participant. (Right) Bar plot showing the choice for each
condition.

Regarding the strength of registration errors (see Fig. 7), we observed a
change in behaviour for some users who chose the sAR reference in the L5 con-
dition. Seven out of twelve users (58.33%) explained that they picked a reference
and kept it during all the experiment. Four users (33.33%) said they changed
their reference, explicitly mentioning that the change occurred at the beginning
of the last condition (L5, high intensity jitter). Thus, in the presence of strong
registration errors, and due to the inability to perform the task, the reference
object was changed to the more reliable reference.

5.4 Discussion

Results of the second experiment tend to reinforce the fact that users make
a strong reference choice at the beginning of the experience. Even with the
addition of irregular registration errors, participants are reluctant to change
their reference. However, if the error can discourage the completion of the task,
they have the tendency to shift towards a more stable reference. In conclusion,
H2.1 is validated only in the presence of high intensity of jitter.

6 Experiment 3: Analyzing the Effects of Irregular
Registration Errors on User Performance

One common element of the first two experiments is that sAR content aug-
mented sReal objects (i.e. a sAR cube was displayed on top of a sReal cube).
However, in AR applications pure virtual objects (i.e. without any relation to
real objects) are commonly used. In such situations, the pure virtual object will
always be considered as the reference as there is no ambiguity. This third exper-
iment explores the impact of irregular registration errors on user performance
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when the task is driven just by AR content. Can users perform effectively and
efficiently in presence of irregular registration errors in such context? The partic-
ipants in this experiment were the same group which participated in the second
experiment.

6.1 Experimental Protocol

Upon their arrival, participants read and signed a consent form which briefly
described the experiment and their rights. After users fully understand the exper-
imental task, the experimenter equipped them with the HMD. The task was a
variation of the pick-and-place task of the first experiment. In this case, the sReal
cube was not augmented, and the target location was a sAR object. Users had
to pick the sReal cube and place it at the location indicated by the sAR target.
sReal colored stickers were placed on the sReal cube to display the correspon-
dence with the sAR target (see Fig. 8). At the end of the experiment participants
had to fill out a questionnaire to gather their subjective impressions.

Fig. 8. Task description of the third experiment. The user had to place the sReal cube
onto the sAR target by aligning the colored stickers placed on the sReal cube with the
sAR target’s colors. (Color figure online)

6.2 Experimental Design

The experiment had two independent variables which defined the intensity of
the irregular registration error and the sAR visualization. Only the sAR tar-
get is affected by vibrations. Regarding registration errors, we considered (and
simulated) the following five different levels of intensity (sorted by increasing
intensity):

L1. No Error is applied to the target.
L2. Low intensity intermittent vibration: a pulse of 0.11 s is generated every
2 s with k = 0.33 rad.
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L3. Medium intensity intermittent vibration: a pulse of 0.11 s is generated
every 1 s with k = 0.33 rad.
L4. High intensity intermittent vibration: a pulse of 0.11 s is generated every
0.5 s with k = 0.33 rad.
L5. High intensity jitter: a continuous vibration is generated with k =
0.33 rad.

Regarding the sAR visualization, we only considered the occlusion condi-
tion with two levels, either the sAR content is occluded (Occlusion ON) or not
(Occlusion OFF) by the real content. For both conditions the sAR target was
displayed with a 50% transparency. The experiment had a 5× 2 factorial design,
each combination being repeated six times (60 trials per participant). To avoid
ordering effects, the experiment was divided in four blocks in which the order of
the sAR visualization was counterbalanced. For each block order the intensity
level was randomized. The dependent variables were the task-completion time,
the position accuracy and the rotation accuracy.

According to this experimental design, our hypotheses were that:
H3.1 Occlusion OFF will have a negative impact on task-completion time.
H3.2 Occlusion OFF will have a negative impact on position accuracy.
H3.3 Occlusion OFF will have a negative impact onrotation accuracy.
H3.4 as the intensity of the error increases task-completion time will increase.
H3.5 as the intensity of the error increases position accuracy will decrease.
H3.6 as the intensity of the error increases rotation accuracy will decrease.

6.3 Results

Two-way ANOVA analysis were performed to determine the significance of reg-
istration errors and Occlusion conditions for each dependent variable. When
needed, post-hoc Tukey tests were performed (α > 0.05). Anderson-Darling
tests were performed to ensure normal distribution of the data.

Task-Completion Time. The ANOVA analysis showed a main effect on Inten-
sity (F4,44 = 5.34, p < 0.001, η2

p = 0.33), but there was no effect on Visualization
(F1,11 = 0.49, p = 0.498, η2

p = 0.04) nor on interaction effect (F4,44 = 0.76, p = 0.557,

η2
p = 0.06). Post-hoc tests showed that participants significantly required more

time to perform the task for L5 than for the other conditions (see Fig. 9, left).
These results do not support H3.1 and only partially support H3.4.

Position Accuracy. The ANOVA analysis showed a main effect on Inten-
sity (F4,44 = 47.66, p < 0.001, η2

p = 0.82) and in Visualization (F1,11 = 15.16, p < 0.01,

η2
p = 0.59). No interaction effect was found. Post-hoc tests showed that the inten-

sity level L5 resulted in significantly lower accuracy compared to the other
four intensities (see Fig. 9, center), and that when the sAR content is not
occluded by the sReal content (M = 1.97mm; SD = 1.05mm) significantly
(although slightly) decreased position accuracy compared to the opposite con-
dition (M = 1.57mm; SD = 1.04mm). These results support H3.2 and only
partially support H3.5.
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Rotational Accuracy. The ANOVA analysis showed only a main effect
for Intensity (F4,44 = 9.18, p < 0.001, η2

p = 0.46). No main effect for Visualiza-
tion (F1,11 = 0.34, p = 0.572, η2

p = 0.03) and no interaction effects were found
(F4,44 = 1.39, p = 0.300, η2

p = 0.10). Post-hoc tests showed that for the Intensity
variable, the L5 level induced significantly lower rotation accuracy than the other
levels (see Fig. 9, right). These results do not support H3.3 and only partially
support H3.6.

Fig. 9. Confidence intervals (95%) of the mean for each dependent variable. Left: task-
completion time. Center: position accuracy. Right: rotation accuracy.

6.4 Subjective Questionnaires

Eleven users out of twelve (91.66%) preferred when the sAR content was occluded
by sReal objects (i.e. the Occlusion ON condition). Most of the users felt per-
turbed when the occlusion was not computed correctly: “it was easier to see edges
and borders of the cube when the AR target did not hide the real cube” and
“when objects that should be behind everything appear in the foreground, it is
not natural”. Regarding the amount of jitter, as in the second experiment, users
only complained when the registration error did not allowed them to perform
the task efficiently (i.e., the L5 level).

6.5 Discussion

Results of this experiment show that low to moderate levels of irregular (see
Sec. 3.1) registration errors (L1 to L4) do not have a noticeable impact on user
performance and accuracy. Surprisingly, no significant effects were found between
levels L1 to L4. Indeed, this result shows a relatively strong tolerance of users
towards registration errors. Furthermore, in terms of user preferences of the
sAR visualization, although the objective results did not present any significant
differences, the visualization minimizing the perceptual conflicts (i.e., correct
occlusion management) was preferred.
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7 General Discussion

In this paper, we have presented three experiments focusing on the impact on
registration errors in an AR pick-and-place task. In order to ensure controlled
and repeatable experimental conditions, the AR environment was simulated in
VR. Data analysis has mainly focused on user behavior (how registration errors
alter the way users interact) and user performance (how users can account for
registration errors).

The first two experiments shown that participants chose a reference (the sAR
content or the sReal content) from the very beginning and they were reluctant to
change it afterwards. This choice of reference impacted their performance since
it drove their actions (e.g., they either align the sReal or the sAR cube on the
target). What was more interesting is that even in the presence of irregular reg-
istration errors, participants kept the chosen reference. Only when the task was
compromised (e.g., when unable to perform the task) some users shifted their
reference from the sAR content to the sReal content. Nevertheless, several users
still kept the sAR content as reference when the task was compromised (L5 con-
dition). These results show that an AR interface designer should unambiguously
define which objects serve as reference to ensure that all users exhibit the same
behavior.

In contrast, the third experiment focused on the impact of irregular regis-
tration errors on user performance, and more importantly on how users tolerate
them. Results showed that, for the tested errors, the tolerance was high, and
that errors of low to medium intensity did not significantly altered users’ per-
formance. These results show that users had a strong adaptation to adverse
situations.

Along the different experiments, a secondary goal was to assess the impact
of how AR content is presented. Simulating AR in VR enabled us to test a
wide range of visualizations which were difficult or almost impossible to achieve
with current AR systems. The preference results are not ground-breaking: users
prefer a perceptually-correct integration (e.g., correct occlusion management) as
they provide a non-ambiguous layout. Yet, when occlusion management cannot
be achieved (e.g., due to technical limitations) semi-transparent visualizations
should be considered as they minimize perceptual conflicts. Regarding the impact
on performance, interestingly, we did not find any significant difference between
visualizations (i.e., transparency and occlusion). This result shows that for all
conditions users were able to recover enough information from the sAR and sReal
contents to successfully perform the task (e.g., a fully visible edge or corner of
the cube).

8 Conclusion

Although registration algorithms are continuously being perfected, inconsisten-
cies between sReal and sAR contents are still a major issue in AR applications.
Results obtained our three user studies show that visual inconsistencies gener-
ated by registration errors can alter users’ behavior as they require a subjective
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interpretation. According to their interpretation, the outcome of the interaction
task might vary. This effect is clearly visible in the first and second experiments
as the reference chosen (the sReal cube or sAR cube) determines the outcome of
the task. In the same direction, visualization strategies should minimize incon-
sistencies between the AR and the real contents. However, if this is not possible,
the interface designer must ensure that the visualization provides enough infor-
mation to perform the task effectively.

The presented studies highlight the potential of evaluating registration errors
in controlled VR simulations. Nevertheless, this paper has only focused on a
particular subset of registration errors. Further studies should be conducted to
evaluate other types of registration errors such as depth or lateral errors. This
knowledge is paramount to better design AR applications and ensure they enable
users to interact effectively and efficiently.
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Abstract. Augmented Reality (AR) experiences generally function well
indoors, inside buildings, where, typically, lighting conditions are stable,
the scale of the environment is small and fixed, and markers can be easily
placed. This is not the case for outdoor AR experiences. In this paper, we
present practical solutions for an AR application that virtually restores
Sheffield’s medieval castle to the Castlegate area in Sheffield city centre
where it once stood. A simplified 3D model of the area, together with
sensor fusion, is used to support a user alignment process and subsequent
orientation tracking. Rendering realism is improved by using directional
lighting matching that of the sun, a virtual ground plane and depth
masking based on the same model used in the alignment stage. The
depth masking ensures the castle sits correctly in front of or behind
real buildings, as necessary, thus addressing the occlusion problem. The
Unity game engine is used for development and the resulting app runs
in real-time on recent high-spec Android mobile phones.

Keywords: Augmented Reality · Outdoor augmented reality
Mobile augmented reality · Location-based augmented reality
Smartphones · Occlusion culling · Cultural heritage

1 Introduction

Sheffield’s medieval castle is long gone, destroyed during the English Civil War
in the mid-seventeenth century. However, the legacy of the castle endures in
the landscape of the city: the location of the castle, Castlegate, was developed
for industry and then for various markets. It now lies abandoned, after Castle
Market was relocated in 2013, and awaits redevelopment. This paper presents
research on using Augmented Reality (AR) to visualise a 3D model of medieval
Sheffield Castle embedded in the Castlegate site.
c© Springer Nature Switzerland AG 2018
P. Bourdot et al. (Eds.): EuroVR 2018, LNCS 11162, pp. 213–229, 2018.
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Outdoor AR experiences which attempt to embed 3D content into an environ-
ment are more complex than AR experiences inside buildings. Potential solutions
are complicated by real world complexities such as dynamic environments (e.g.
people and traffic movement and lighting changes) and solving the occlusion
problem, i.e. showing a 3D model with some parts in front of and some parts
behind different buildings. Specialist hardware, with depth cameras, can help,
as can remote server power, but real-time SLAM (simultaneous localisation and
mapping) is beyond consumer mobile phones for outdoor AR.

This paper presents a set of practical solutions to the challenges of producing
an outdoor AR experience in a city centre site. The scale of the problem is
constrained by using prior knowledge of the site, a user-controlled alignment
process and the fusion of a range of sensor data. GPS is used to locate the
user at one of a few set viewing points, which helps to optimise subsequent
rendering speed for the 3D castle model. A virtual model of the 3D area is then
overlaid on the mobile phone’s video feed and the user aligns the model with
the real world, giving a solid fix on position and orientation, before the virtual
castle is displayed. The 3D model of the area is also used to address the occlusion
problem. This knowledge-based depth masking process means that the castle sits
in front of and behind different buildings, accordingly, based on user position.
The mobile phone’s sensors (GPS, gyroscope and accelerometers) are used to
deal with continuous viewing changes; the compass sensor is also used as part
of initial orientation setting. In addition, the sun’s approximate position is used
to change the lighting for the virtual castle, thus better integrating it into the
real world environment. Whilst previous solutions have dealt with the occlusion
problem for AR, our research work uses a virtual object (the castle) that is much
bigger than its surrounding buildings, and, at the same time, deals with partial
occlusion by those buildings in real-time on a consumer smartphone.

The remainder of this paper is organised as follows. Section 2 will consider
related work, looking at the range of issues that affect outdoor AR experiences.
Section 3 will present the system, covering the data required (models of the castle
and the relevant area of the city and photographs of landmark buildings), the
user processes (alignment and viewing) and rendering, including the approach for
solving the occlusion problem. Section 4 will present the results and discussion.
Finally, Sect. 5 presents conclusions.

2 Related Work

AR works best indoors, with various toolkits available to support the creation of
indoor AR experiences: ARToolKit1, ARKit and ARKit 2 2 [2], ARCore3, Vufo-
ria4, and Wikitude5. Both marker-based and markerless tracking are supported,

1 https://www.hitl.washington.edu/artoolkit/.
2 https://developer.apple.com/arkit/.
3 https://developers.google.com/ar/.
4 https://www.vuforia.com/.
5 https://www.wikitude.com/.

https://www.hitl.washington.edu/artoolkit/
https://developer.apple.com/arkit/
https://developers.google.com/ar/
https://www.vuforia.com/
https://www.wikitude.com/
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with ground plane detection being a key part of markerless solutions [15]. How-
ever, markerless tracking is difficult to achieve on outside scales, as the ground
is often uneven and may have obstacles in the way which frustrate the detection
process. Nonetheless, there has been successful outdoor AR work. Verykokou
et al. [16] use a tablet PC in their computer-vision based work, but they only
detect a specific almost-planar object in the scene before augmentation. Seo
et al. [14] use an image registration technique but further work is needed for the
method to be applicable to smartphones. The ideal solution for outdoor track-
ing is a process known as simultaneous localisation and mapping (SLAM) [4].
This family of methods uses computer vision to build a virtual map of the sur-
roundings, in which features are detected and tracked to position and orientate
the user. The approach is commonly used in robotics, but only works well with
specialist hardware such as depth sensors and also requires complex computer
vision processing, which would be too slow on a consumer grade mobile device.

Practical AR applications can be produced on consumer mobile devices,
albeit with compromises. Perhaps the best known example of this is Pokémon
GO6, which became wildly popular across the UK and in many other countries
after its release in 2016 [13]. This takes advantage of a multiscale approach,
where the map view only uses GPS to roughly locate the user and then marker-
less detection is used to place a virtual Pokémon on the ground level in front of
the user. As the locations are controlled and the Pokémon only appear near to
the user, it is (reasonably) certain that the ground plane will be easy to detect
and that there isn’t much integration required to make the Pokémon appear as
part of the scene.

Cirulis and Brigmanis [3] also make use of a phone’s GPS. They compute the
relative position of virtual buildings and display them based on the GPS location,
however, with GPS results being relatively inaccurate this could easily cause
alignment issues and jittering. Huang et al. [8] use a virtual model of an area
with dedicated hardware to perform outdoor registration, but they compromise
on precise tracking, instead focusing on information display. Vlahakis et al. [17]
also use GPS, and enhance this with a Differential GPS beacon located at a
known position to improve accuracy. CityViewAR [11] uses GPS for geolocation
of city buildings. This works outdoors but is constrained by not dealing with
anything in front of the virtual building.

Marker based techniques have been used in outdoor applications [10,12].
For example, Kim et al. [10] use the Vuforia AR plugin7 for Unity8 to provide
information about three Korean cultural heritage sites. All of the sites have good
features for marker based detection, although they are focusing on information
display rather than augmenting the sites themselves. As such they only need to
detect whether one of the sites is visible, rather than obtain any solid tracking
information.

6 https://www.pokemongo.com/.
7 https://unity3d.com/partners/vuforia.
8 https://unity3d.com/.

https://www.pokemongo.com/
https://unity3d.com/partners/vuforia
https://unity3d.com/
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An issue common to many AR experiences is producing correct occlusion
of virtual objects. Without depth information, even if a virtual object should
appear behind a real world object, it will still appear in front of it. Techniques
for obtaining depth information either rely on stereo/depth cameras, or using
prior knowledge of the scene combined with location of the user in a virtual
environment. At present, depth cameras have insubstantial range for outdoor use,
and produce low resolution data. This requires further processing to construct
an environment mesh from point cloud data. This can be done using traditional
mesh reconstruction algorithms, although more recently neural network based
approaches are being experimented with and producing promising results [7]. In
outdoor applications, the prior knowledge approach is more commonly used [5,9].
We also use prior information, which is a 3D model of the environment that the
virtual object is embedded into. The virtual object is a castle displayed at real
scale. Occlusion with surrounding, smaller, real buildings is also addressed.

3 Data and Methods

Figure 1 shows the various components of our AR application and the data
required for each stage. Stage 1 provides instructions to the user, including a
map of the area and recommended viewing points. Stage 2 includes the align-
ment process where, after an initial coarse check on viewing position and direc-
tion using the GPS and compass sensors on the smartphone, the user aligns a
virtual 3D model of the area containing various ‘landmark buildings’ with the
real world view. Stage 3 is the viewing stage, where the castle is seen in situ using
AR, correctly aligned and positioned relative to the user. Thereafter, tracking of
orientation is done using the smartphone’s gyroscope and accelerometer sensors.
The app is developed using the Unity game engine and built for Android. The
phone used for development and testing was a Motorola Moto Z (Snapdragon 820
processor, 1.8 GHz Quad-core CPU, Adreno 530 integrated GPU). The following
subsections will describe the components of the system.

3.1 Data

The data required for the application consists of a model of the Castlegate area,
photographs of the front of specific landmark buildings, and a model of the castle.
The 3D model of the Castlegate area was produced by MArch students at The
University of Sheffield’s School of Architecture and is illustrated in Fig. 2 using
SketchUp9. The model is made up of approx. 55,000 triangles. This relatively
small memory footprint lessens the burden on the smartphone’s processor and is
sufficient to support the user alignment process and the depth masking aspects
of the AR application. The initial model is untextured – it is the geometry that is
important for the depth masking stage. However, to support the user alignment
process (see later), photographs of the fronts of ‘landmark buildings’ (buildings
that are easily distinguishable within the Castlegate area) are added to relevant
parts of the model as texture maps, as illustrated in Figs. 3 and 4.
9 https://www.sketchup.com/.

https://www.sketchup.com/
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Program Flow

(User Processes)

Data/Hardware Requirements

App Start

(Press Continue)
– User Interface Icons

Alignment Screen

(User lines up virtual landmark
buildings with real world scene)
(Press Aligned)

– GPS location
– Landmark building photos
– Known locations for landmark buildings
– Gyroscope data
– Accelerometer data

Landmark buildings hidden, castle
displayed

(UI options)

– Castle model
– Gyroscope data
– Accelerometer data

Fig. 1. An overview of the components of the system.

The model of Sheffield Castle (Fig. 5) was created by Human10, a Sheffield-
based creative agency. It is based on archaeological and historical evidence for
what the castle was like, drawn from research on the unpublished archives from
mid-twentieth-century excavations, with inspiration also drawn from surviving
castles of similar type (Richmond, Helmsley and Barnard), for the architectural
details. The castle is modelled as a set of distinct pieces as shown in Fig. 6 so as
to support only rendering those that are visible during rendering. Each of the
pieces is hidden or shown depending on the viewing location. The complete model

Fig. 2. The model of the Castlegate area
viewed in Sketchup. Castlegate, which is
where the castle was situated, is oulined
in red. (Color figure online)

Fig. 3. Texture map of a landmark build-
ing in the scene.

10 http://humanstudio.com/.

http://humanstudio.com/
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Fig. 4. The various landmark buildings and their locations. Map data c©2018 Google.

consists of 3100 triangles and uses 69 textures, 50 with resolution 2048×2048, 16
with resolution 1024×1024 and 3 with resolution 512×512. Figure 7 shows how
the castle sits in the Castlegate model from Fig. 2. A key part of this stage is to
make sure the ground level of the two models is aligned – this is important for
later stages. The ground heights of each of the area and castle models follows the
current land height for the Castlegate area, although the castle model includes
a moat.

3.2 Alignment Processes

This section focusses on stage 2 in Fig. 1. An initial viewpoint is established
using GPS, followed by a user alignment process between the model and the real
world view. Orientation tracking is also required.

GPS for standard smartphones is only accurate to approx. 5–8.5 m in good
conditions [19]. In an urban environment, particularly when the scene is being
viewed from pavement level, tall buildings may be close to the user and lead
to even worse performance. We solve this issue by defining specific viewpoints
where the user should stand. The active viewpoint is chosen by selecting the view-
point with the minimum Euclidean distance to the reported GPS location. This
selection process takes place when the app is started, and every 10 s thereafter –
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Fig. 5. The textured, full resolution
model of the castle. The model includes a
surrounding landscape and moat (in grey
in this image).

Fig. 6. An exploded view of the separate
parts of the castle.

Fig. 7. The model of Sheffield Castle positioned at its historic location in the Castlegate
model.

a continuous update would use unnecessary resources, both computationally and
in terms of battery power on the user’s device. A time of 10 s is considerably
shorter than it would take to walk between any of the defined viewpoints, ensur-
ing that when the user reaches such a point, the app will have updated their
location.

Having established a viewpoint, the next step is a user alignment process.
This involves detecting view orientation and the direction the user is facing. In
theory, the compass could be used to detect the direction the user is facing.
However, mobile device compasses are not particularly accurate, and are also
affected by surrounding magnetic fields. During testing, the reported angle was
often found to be up to twenty or thirty degrees away from the true angle. Thus
an accurate bearing could not be found. However, it gave an initial guess for
the orientation, which roughly aligns the viewpoint direction with the Castle-
gate model so that relevant landmark buildings are in view. Using this initial
information, the landmark buildings can then be used to refine the alignment.

Figure 3 illustrates one of the landmark buildings, as described in Sect. 3.1.
From the user’s position, the landmark buildings are displayed in their correct
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position relative to the virtual Castlegate model – the white Castlegate area
model is not visible, only the landmark buildings. The user can swipe on the
screen to rotate the scene until the relevant virtual landmark buildings line up
with the real ones, based on the current viewpoint position. The Castlegate
model is now aligned with the real world from the user’s viewpoint. However,
other processes are happening in parallel – user orientation and perspective
correction – which must be considered before the alignment process is complete.

The user’s orientation is tracked so that the correct view of the castle model
can be presented in relation to the real world view. The smartphone’s gyroscope
and accelerometer sensors are used for this. The gyroscope sensors give a very
accurate reading for the angular velocity of the device around each of the main
axes. By integrating this we can determine the total angle the device has moved
through. An issue, however, is that error accumulation in the integration causes
drift. Initial experiments used a Kalman filter [18] to mitigate this. This worked
well for correcting pitch measurements, but absolute heading values from the
compass were incorrect and, since the Kalman filter used these to update its
state, the results were poor, converging to the wrong angle and producing jittery
behaviour. Instead, a complementary filter [6] was used with a small timestep in
the Euler integrator. Since only minor drift corrections were required, this worked
well. In addition, the complementary filter has a lower performance impact than
a Kalman filter requiring only a simple multiplication and addition, rather than
an iterative matrix solve or approximation. This was two orders of magnitude
faster in testing.

Camera perspective must also be considered. From the defined viewpoints
process, the user’s location is known. The roll, pitch and yaw of the smartphone
are tracked by the user orientation process. The roll and pitch can be determined
purely from the accelerometer and gyroscope data, whilst the user has completed
the alignment process to ensure the correct yaw. These transformation values
are applied to the Unity camera. With the real and virtual cameras’ positions
matching, the fields of view must be matched to ensure the same view is seen by
both cameras. To match the field of view, the device camera’s field of view and
aspect ratio are queried. This combined with the aspect ratio of the screen is
sufficient information to produce the correct perspective matrix. As the screen
and camera aspect ratios do not match, the actual camera image is cropped
which affects the field of view. For a screen of wider aspect ratio than camera,
the updated field of view can be computed according to the following formula:

θc
(Wc/Ws)
(Hc/Hs)

(1)

where θc is the reported vertical camera field of view, Wc is the width of the
image returned from the camera, Ws is the width of the screen, Hc is the height
of the image returned from the camera and Hs is the height of the screen. For
our test smartphone, the screen is 16:9, whilst the camera is 4:3, or 16:12. As
such the vertical component is scaled by three quarters to match the 16:9 screen
aspect. This also reduces the effective vertical field of view by 3/4. The device
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camera reports a 50◦ vertical field of view, so three quarters of this, 37.5, is used
for the vertical field of view of the Unity camera.

Figure 8 shows the alignment process in progress. For the building on the right
in Fig. 8a, both the virtual landmark building and its real counterpart are visible.
The user then swipes to rotate the virtual scene until it matches the real scene as
seen in Fig. 8b. The user is free to look around during this process to also compare
other buildings for alignment. When the user is happy with the alignment, a tap
on the smartphone screen reveals the virtual castle model correctly augmented
into the real world scene. One final part of the alignment process worth noting
is the slowest part of the whole process was using Unity ’s WebCamTexture class
to handle the video feed. Performance was improved significantly by using code
to natively access the camera.

(a) pre-alignment (b) post-alignment

Fig. 8. User alignment with the frontages of the Market Tavern and the building to its
right.

3.3 Rendering

After user alignment, the virtual castle model is displayed. This involves three
aspects. First, to give a real sense that the castle is augmenting the real world,
real buildings that are behind the castle should not be seen, and real buildings in
front of the castle should obscure the virtual model. Second, the ground planes
of the virtual model and the real world should be aligned. Third, the lighting of
the virtual model should consider the position of the sun in the real world, so as
to better match the lighting of the surrounding real world buildings.

Correctly embedding the virtual 3D model into the real world required a
process to detect what should be in front of, rather than behind, the virtual
object. Standard smartphone cameras do not report any depth information.
Our solution for the occlusion problem makes use of the user’s location and
orientation and knowing what the user’s view should be in the real world, based
on the earlier user alignment process between the virtual Castlegate model’s
landmark buildings and the real world. Since we have the full virtual Castlegate
model aligned with the real world, and we know the castle’s position within the
Castlegate model, we can use the Castlegate model to create a depth mask to
stop portions of the virtual castle from being drawn, making it appear hidden
by buildings in the foreground. We call this location knowledge-based depth
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masking. It is similar in concept to the approach used in [5,9], but is extended
to use 3D models. They are only interested in occluding small, ground height
markers, however, for an object the size of a castle, only portions of it may be
occluded, and it is larger than the occluding objects, so their ray based approach
is not sufficient. Our method allows occlusion of only parts of objects.

Fig. 9. The Castlegate model buildings
outlined in orange will act as a mask for
the castle.

Fig. 10. The castle masked by the Castle-
gate model buildings.

A multi-pass rendering approach is used. Initially, the depth and colour
buffers are cleared. In the first pass, the video feed is rendered full screen. This
ensures that a full background is available. In the second pass, occluding build-
ings are rendered using a shader which writes only to the depth buffer. This
masks out regions where the castle should not be drawn because buildings are
present in front of it, as illustrated in Fig. 9, and the actual buildings will be
displayed in the correct location in the video feed assuming the alignment pro-
cess was carried out correctly. In the final pass, the castle is rendered, with any
masked portions failing the depth test, essentially cutting a hole in the castle
model, as illustrated in Fig. 10. Thus the castle will appear to be behind real
foreground buildings.

Making AR objects appear as though they are correctly integrated with the
ground is challenging. For small objects, a simple shadow surrounding it may be
sufficient, but for a large object this is very difficult as correctly computing how
the shadow should appear on the video feed is non-trivial. In addition, without
proper depth information, even portions of the castle model that might be under
the ground are rendered on top. To solve this, we use a virtual ground plane.
The ground is modelled to match the layout of the real land. This approach
means inclusion of the moat is trivial.

To further integrate the castle into the real world, the sun’s position must be
considered so that the lighting of the castle appears to better match that of the
surrounding buildings. The sun’s position can be computed from the date, time
of day and longitude and latitude of the area. This calculation involves using
astronomical formulae, based on those found in the Astronomical Almanac11.
Initially, the date is converted to Julian days and centuries. From these, side-
real time is computed. Solar coordinates are determined from the results of the
11 http://astro.ukho.gov.uk/nao/publicat/asa.html.

http://astro.ukho.gov.uk/nao/publicat/asa.html
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previous calculations, and these are used to calculate the right ascension and dec-
lination. Finally, these are transformed to Alt/Az coordinates. A more detailed
explanation can be found in the Appendix.

The final aspect of rendering to consider is performance, since a mobile device
has limited processing power. The castle is composed of individual pieces (Fig. 6)
to help increase performance. Only those parts that are visible from the defined
viewpoints in the application need to be rendered; those pieces that are entirely
blocked by others do not need to be rendered. In addition, mipmapping and level
of detail techniques are used to further reduce the rendering time.

4 Results and Discussion

Figures 11 and 12 show the view when the user is aligning the Old Town Hall
landmark building texture with its real world counterpart. Once this is aligned,
the virtual castle model is then displayed, as shown in Fig. 13. Note how the
real old town hall building is seen beyond the virtual castle. The user can then
rotate her mobile device to show other parts of the scene. Figure 14 shows the
scene once the viewpoint is rotated to the right along the castle wall to show the
main gate. The real Market Tavern (also one of the landmark buildings in the
Castlegate model) is shown in front of the castle demonstrating the effect of the
depth masking process. Figure 15 shows the occlusion when the camera is angled
upwards. Another example of the alignment process is given in Figs. 16 and 17.
Here, the Metropolitan hotel is used as the landmark building in the alignment
process, and the user must then rotate her camera to see the castle (Fig. 18).
Figures 19 and 20 demonstrate the dynamic lighting in the app. Variation is
particularly noticeable on the buttresses supporting the wall, and on the tops of
the crenellations.

Fig. 11. The view of the old town hall
during the alignment process.

Fig. 12. The view of the old town hall
after alignment. The row of shops on the
left is also a landmark texture.

Over time, with continuous changes in orientation, some calculation drift can
occur, since this is based on integration of gyroscope data. The virtual model
and the real world can become slightly misaligned. In general, a misalignment of
a few degrees is not an issue at this scale as the castle sits well within the area of



224 M. Leach et al.

Fig. 13. The virtual castle viewed with
the real old town hall in the background.

Fig. 14. The depth masking technique
cuts a hole in the castle, leaving the image
of the real Market Tavern showing from
the video feed.

Fig. 15. Occlusion masking shows the castle appearing behind the Market Tavern.

Fig. 16. The Metropolitan
hotel before alignment.

Fig. 17. The Metropolitan
hotel after alignment.

Fig. 18. After user align-
ment with the Metropolitan
hotel, the camera view is
rotated to show the castle.
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Fig. 19. A view of the castle from the
north side taken in the morning. The sun
is to the east (the left of the figure). The
front face of the buttress supporting the
wall is not receiving direct sunlight and
appears ‘flat’.

Fig. 20. A view of the castle from the
north side taken shortly after midday. The
sun is high in the sky. The front face of the
buttress supporting the wall is brighter
than in Fig. 19, as are the angled upper
surfaces of the crenellated battlements.

Fig. 21. Over time, with continuous
changes in orientation, calculation drift
can occur, producing a slight misalign-
ment between the virtual model and the
real world, which affects the depth mask-
ing process.

Fig. 22. An enlarged view of the old town
hall in Fig. 12

land – a small difference in location won’t be noticed. The drift does, however,
create some problems in conjunction with the depth masking. The cutout in the
castle model for a foreground building requires a good alignment, or the wrong
portion of the video feed can be displayed in the hole (Fig. 21). When this occurs,
user alignment must be redone.

Figure 22 shows an enlarged portion of Fig. 12. As can be seen, representing
landmark buildings as textured planes works well for the flat frontage of the
building. However, the tower of the old town hall is set back from the building
face and, as such, appears in the wrong place for alignment, since it has been
projected forwards into the textured plane. An alternative solution could use
multiple textured planes, but it is unclear if this extra complication would be
of benefit, since the current alignment process, based on the building frontage,
seems to work well.
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5 Conclusions

A practical, working, outdoor AR system that runs on android phones with
appropriate sensors has been presented. A user alignment process, together with
the fusion of a range of sensors, produces a system that is stable and easy to
use. The 3D model of the area is used both in the user alignment process and
also as part of a depth masking process so that the 3D virtual castle is properly
placed in the real world view. There are some drift issues over time, although
these can be rectified by user re-alignment. Further work could consider how to
retain the alignment for longer, perhaps using a lightweight version of SLAM,
as well as how to remove the initial user alignment step.

Initial experiments have been done to add links to social media tools within
the application, with the aim of allowing the general public to share their
thoughts on the restored castle model (thus producing a reconstruction AR
application, using Bekele’s categorisation [1]). Also, since the Castlegate area
will undergo redevelopment in the future, our intention is to be able to display
the future 3D plans for the area as an alternative user option. We could also offer
an option to display a model of the remaining underground chambers on the site
which preserve some of the archaeological heritage. Both of these would be rel-
atively straightforward since the models would be geolocated in the Castlegate
model in the same way that the castle model was. This would give local people
a chance to use an AR application to be involved in redevelopment of the site,
and make their views known on both the future building plans and the site’s
cultural heritage.
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Appendix

All trigonometric functions listed operate in radians. Angles should be corrected
to a range between 0 and 2π throughout unless otherwise noted.

Compute the number of Julian days and Julian centuries since J2000:

dj = 367y −
⌊

7
4
(y + �(m + 9)/12)�

⌋
+

⌊
275m

9

⌋
+ d − 730531.5

Cj =
dj

36525

where dj is the Julian day, y is the year, m is the month in numerical form, d is
the day in numerical form and Cj is the Julian century.
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Compute the sidereal time:

Sh = 6.6974 + 2400.0513Cj

Sut = Sh +
366.2422
365.2422

h

S = 15Sut + Lo

where Sh is the sidereal time in hours at midnight, Sut is the sidereal time
in hours including the current time, S is the local sidereal time and Lo is the
longitude.

Update to fractional (including time of day) Julian days and centuries:

dj = dj +
h

24
cj =

dj

36525
Compute solar coordinates:

GMeanLong =
2π

360
(280.466 + 36000.77Cj)

GMeanAnom =
2π

360
(357.529 + 35999.05Cj))

Ecen =
2π

360
((1.915 − 0.005Cj) sin(GMeanAnom) + 0.02 sin(2 ∗ GMeanAnom))

Leliptic = GMeanLong + Ecen

O =
2π

360
(23.439 − 0.013Cj)

where GMeanLong is the mean solar longitude, GMeanAnom is the mean solar
anomaly, E + cen is the equation of center, Leliptic is the eliptical longitude and
O is the obliquity.

Compute right ascension and declination:

R = atan2(cos(O) sin(Leliptic), cos(Leliptic))
D = arcsin(sin(R) sin(O))

where R is the right ascension and D is the declination.
Compute horizontal coordinates. The hour angle, H, should be brought into

the range −π to π.

H =
2π

360
S − R

Alt. = arcsin(sin(
2π

360
La) sin(D) + cos(

2π

360
La) cos(D) cos(H))

where H is the hour angle and Alt. is the altitude.
Compute the azimuth angle:

Az. = arctan
( − sin(H)

tan(D) cos( 2π
360La) − sin( 2π

360La) cos(H)

)

where Az. is the azimuth angle.
Finally, adjust the azimuth angle to the correct quadrant.



228 M. Leach et al.

References

1. Bekele, M.K., Pierdicca, R., Frontoni, E., Malinverni, E.S., Gain, J.: A survey of
augmented, virtual, and mixed reality for cultural heritage. J. Comput. Cult. Herit.
11(2), 7:1–7:36 (2018). https://doi.org/10.1145/3145534

2. Buerli, M., Misslinger, S.: Introducing ARKit-augmented reality for iOS. In: Apple
Worldwide Developers Conference (WWDC 2017), pp. 1–187 (2017)

3. Cirulis, A., Brigmanis, K.B.: 3D outdoor augmented reality for architecture and
urban planning. Procedia Comput. Sci. 25, 71–79 (2013). https://doi.org/10.1016/
j.procs.2013.11.009

4. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I.
IEEE Robot. Autom. Mag. 13(2), 99–110 (2006). https://doi.org/10.1109/MRA.
2006.1638022

5. Galatis, P., Gavalas, D., Kasapakis, V., Pantziou, G., Zaroliagis, C.: Mobile aug-
mented reality guides in cultural heritage. In: Proceedings of the 8th EAI Inter-
national Conference on Mobile Computing, Applications and Services, pp. 11–19
(2016). https://doi.org/10.4108/eai.30-11-2016.2266954

6. Higgins, W.T.: A comparison of complementary and Kalman filtering. IEEE Trans.
Aerosp. Electron. Syst. 3, 321–325 (1975). https://doi.org/10.1109/TAES.1975.
308081
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Abstract. 3D stereoscopic based virtual reality reaches a good level
of maturity. Many applications are proposed in many areas including
professional tasks. Anyhow, whenever a new device appears, its added
value remains an issue. In this article a CAVE with a desktop size is
under focus. A manufactured product design task was selected to assess
the added value of this new configuration. A panel of users were expected
to achieve the task on a usual 2D desktop and within the CAVE. The
experience demonstrates that the selected task takes a real advantage of
the CAVE configuration.

Keywords: 3D CAVE · Stereoscopy · Virtual reality · Design task

1 Introduction

Virtual Reality is a research and development issue from many years now. The
introduction of low cost head mounted displays (HMD) has boosted VR experi-
ences in many area but still face some maturity issues (resolution, latency, etc.)
and intrinsic bottlenecks (very closed vergence, dissociation between gaze per-
ception and internal hear, etc.). These issues may lead to discomfort up to nausea
for some individuals. The conditions of deployment of the HMD technology in
professional applications remains unclear.

On the other hand, CAVES are the main second solution to experience
3D immersion. Due to its intrinsic size the distance from eye to the display
is much higher than in HMDs. With Ultra High Resolution displays pixel size
was recently improved and the size of the equipment allows to take advantage of
a cluster of computers to reduce latency. But indeed the equipment size usually
expects to invest in the building to install such an infrastructure. Its overall cost,
including maintenance is also a brake to its deployment.

Observing these two issues, the G-SCOP laboratory specified and developed
(with the support of BARCO and Immersion), a five faces CAVE at a desktop
scale. It is called the Mihriad cave. The overall system is just two centimetres
less than a standard office height (2.5 m) and has a 9 m2 footprint. Even using
only full HD projectors it leads to a 0.3 mm pixel. The main objective is to create

c© Springer Nature Switzerland AG 2018
P. Bourdot et al. (Eds.): EuroVR 2018, LNCS 11162, pp. 230–239, 2018.
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an environment that should be easily deployed in industry even within SMEs
design office.

This type of CAVE is viewed as a specific component of the design office
of the future. In this office many applications will still use monoscopic displays
but specific tasks could take advantage of a 3D stereoscopic vision. This paper
summarises an experience to assess the advantage of the CAVE beyond a usual
2D monoscopic display. It almost demonstrates that for very specific tasks the
CAVE provides a real added value and opens a multi-modality vision of the
design office where multiple devices and interaction tools are selected depending
on the expected tasks.

2 Use Case Description

The experience is based on a use case selection. Many applications are consider-
ing VR to support gesture training [1–3] in various expertise task. Maintenance,
assembly/disassembly task are often mentioned in papers [4–7]. The main idea
is usually to repeat in a safe virtual word complex real activities. Here we are
considering actions that could be rapidly applied with a direct added value in a
design office. As early mentioned by Krueger [8], “users want to focus on their
tasks rather than on operating the computer”. We could have selected a disassem-
bly training process but we selected the process which prepares the disassembly
instructions. That means that we do not directly support the end-user who will
operate the process but the designer who explains the process he has in mind.
Then the task should be a specific task along the design process and should be
directly connected to usual tasks.

First rank industry already invested in 3D CAVEs but this infrastructure
remains quite unique and must be planned in the industrial processes to let time
for CAVE preparation but also because usage demand comes from many different
services. The infrastructure must be shared. The Mihriad CAVE is expected to
be a proximity device available for rapid usage. Design mainly uses CAD tools
which are (up to now!) still based on traditional 2D graphic user interface. It is
a real bottleneck also for these tools to identify the tasks performance respect to
the rendering and interaction device. It may be more efficient to use traditional
CAD graphic user interface than a 3D environment to sharply position a part
with constraints: just select two faces, axes and constrain them for alignment.
With disassembly the final position does not matter so much. Then the CAVE
with gesture tracking may offer a more obvious added value.

While 3D interaction seems to be very natural, it was demonstrated risks of
full 3D interaction [9]. 3D virtual free gestures may be tiresome and should be
avoided for long term activities. It was also demonstrated the benefits of tangible
interaction [10] which is less obvious with a mouse interaction.

Then we promote a design office organisation where various device may be
seamless used depending on the expected task and the use case is used to assess
the added value of a specific CAVE configuration and to analyse its potential
integration within design offices. The use case considers the disassembly of a
turning manufacturing machine as shown in Fig. 2.
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3 Study Design

Then the goal of this study is to compare the performances of users for the
same task between the Mihriad CAVE and a 2D computer screen. The results
of the study will give a baseline for future work in the CAVE, by highlighting
strengths or weaknesses over classic working environment. The study is based
on two assumptions:

H1: Efficiency hypothesis: for a similar simple 3D object manipulation task,
people will be more efficient and feel more comfortable using the CAVE than
using a 2D screen.

H2: Operational hypothesis: in the CAVE, the subjects will be able to per-
form the task in a shorter time, and should report the task as easier than on the
2D screen.

3.1 Working Environment

The Mihriad CAVE is composed of five 70” screens; three walls (front, left,
right), one “roof” (top), and one at desk level (bottom). The immersion and
interaction in the virtual environment are done with tracked glasses and con-
troller. The tracking depends on ten Optitrack cameras (Fig. 1) and reflective
markers on tracked items. The Mihriad cave may be seen as an extension of a
3D workbench [8] with more immersion capacity due to extra displays.

The study protocol asked subjects to work both in virtual reality in the
CAVE, and in 2D on a classic computer screen. Those environments will be
named “CAVE condition” and “2D condition”. The virtual prototype used in
the study is a turning machine (See Fig. 2). No mechanical knowledge of the
machine is necessary to perform the study.

Fig. 1. Aparatus, from the left: Mihriad CAVE, Optitrack camera, tracked glasses and
controller

3.2 Procedure

Upon arrival, subjects were asked to fill a consent form and a demographic
questionnaire. The researcher conducting the study then presents the research
project, the equipment, and the virtual prototype used during the study. Then,
subjects perform a same task on the virtual prototype, both in CAVE condition
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and 2D condition. The order of the condition is rotated between subjects to
avoid impact of learning effects on the observations.

The task expects the manipulation of parts composing the virtual prototype.
Their positions can be saved on demand. Subjects are guided by the researcher’s
instructions during the task. The subject is asked to dismantle several parts of
the virtual prototype by removing them from their support, and to discard them
by placing them on plane surfaces of the 3D model. The parts associated with
the task are the work holding device (a 3-jaw chuck) and the tool post as shown
in Fig. 2.

As soon as the task is achieved under a given condition, subjects fill a ques-
tionnaire concerning their subjective feelings about this experience. At the end
of the study, subjects fill a last questionnaire, asking for their global feeling on
the study. This create a first subjective feedback; the next section complete this
feedback with objective observations.

Fig. 2. Right: The turning machine virtual prototype. Left: Manipulated pieces: The
holding device (green box) and the tool post (red box) (Color figure online)

3.3 Collected Data

Measurements. During the study, several sub-activity times were recorded in
each condition: the total time to achieve the condition, the part manipulation
task duration, and the point of view manipulation task duration. The total time
is split into part manipulation sub-activities, point of view manipulation sub-
activities and pauses. We also counted the occasions where the subject cancelled
an object’s manipulation which is considered as a number of manipulation errors.

A technical tracking issue appeared which was not solved before the experi-
ence. In the CAVE, it creates image skips. Those skips are counted in order to
control their impact on the results about the CAVE condition. The subjects are
not given strong precision constraints regarding the position of the parts after
disassembly.

Questionnaires. The consent form explained the context of the study and clarified
the anonymity of the collected data, the known risks of VR (motion sickness)
and the volunteer status of the subjects. The demographic form gathers data
that may have an impact on the performances of subjects. Those data are the
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age of subjects, their guiding hand, and whether or not they had a previous
experience with CAD software, HMD based virtual reality or CAVE systems.

The after task subjective questionnaire was composed of two main parts.
First, the subjects filled a NASA-TLX [11] standard questionnaire, used to esti-
mate the effort required to complete a given task: the subjects estimate their
feeling for six items on a given scale (mental, physical and temporal exigence,
effort, performance, and frustration). The addition of scores for these items gives
the estimated workload score. In the second part of the subjective questionnaire,
six affirmations are proposed to the subject (See Fig. 4), who indicates his level
of approbation on a 7 level Likert [12] scale (From 1: “Completely disagree” to
7: “Fully agree”).

Finally, the post-study questionnaire directly asks subjects the condition they
preferred, and whether or not they felt discomfort linked to the image skips in the
CAVE condition, i.e.: the CAVE (See Fig. 6. The question concerning subjects
preferences is doubled in order to check for answer’s consistency and to avoid
influencing subjects in a direction or the other.

4 Study Results

4.1 Participants

A panel of 19 participants (13 men and 6 females) volunteered to take part in
the study. The subjects were aged from 20 to 62 (mean = 30 ± 12). All but one
were right-handed, and all had normal or corrected to normal vision (the CAVE’s
glasses were wide enough to be worn on top of eyeglasses without consequent
hindrance). 13 already had an experience with CAD softwares, 7 with HMD
based virtual reality, and 3 with CAVE systems. 10 subjects started with the 2D
modality, and 9 with the CAVE modality.

4.2 Data Analysis

Most of our collected data presents a non-normal distribution. Furthermore, the
same subjects are measured over both conditions during the study, observations
therefore are not independent. Thus, we mostly used Wilcoxon non-parametric
tests to study our data. We chose a statistical level significance of 5%. All sta-
tistical tests were made using R (https://www.r-project.org/).

Manipulation Times. Figure 3 compares subjects’ manipulation times between
CAVE and 2D conditions. Normality of distribution and independence of obser-
vation being rejected, we used Wilcoxon tests.

– For total condition time: p− value = 0.014
– For pieces manipulation time: p− value = 0.005
– For point of view manipulation time: p− value = 6.554e− 07

https://www.r-project.org/


Added Value of a 3D CAVE Within Design Activities 235

Fig. 3. Comparison of manipulation times

Then for the three measured times, Wilcoxon tests demonstrated the differences
are significant. Times are longer in the 2D condition than in the CAVE.

Since a same subject tested the two conditions of work, we also checked the
effect of subjects’ condition order. Wilcoxon tests were also conducted leading
to the following results:

– For total condition time: p− value = 0.007
– For parts manipulation time: p− value = 0.027
– For point of view manipulation time: p− value = 0.954

Here Wilcoxon tests showed that measures are significant (despite the sub-
jects’ condition order) for total condition time and for parts manipulation time
but are not significant for the point of view manipulation time.

To complete these tests, we conducted two ways ANOVA explaining manipu-
lation times by the condition and order. Like said before, the ANOVA’s assump-
tions (normal distribution, independence of observation) are not respected. How-
ever the ANOVA is considered robust to rejection of its assumptions, and is the
only test able to check for interactions between factors. The results (See Table 1)
of these ANOVA is thus used as a complement for the Wilcoxon tests.

Table 1. Results of two-way ANOVA on manipulation times explained by the condition
and the order (‘*’= significant difference)

p-values Condition Order Cond:Order

Total condition time 0.007 * 0.008 * 0.026 *

Parts manipulation time 0.001 * 0.039 * 0.119

Point of view manipulation time 0 * 0.391 0.093

Subjective Feelings. Figure 4 shows subjects’ answers to the subjective ques-
tionnaire in both conditions. Once again, normal distribution is rejected.
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We conducted Wilcoxon tests between answers for 2D and CAVE conditions.
Apart from the question 6 concerning visual tiredness (p − value = 0.51), all
tests showed answers’ differences to be statistically significant.

Fig. 4. Comparison of answers to the subjective questionnaire

Fig. 5. Comparison of answers to the NASA-TLX

Figure 5 shows the estimated workload score of subjects between conditions.
The 6 items of the NASA-TLX are rated by the subject on a 10 points scale,
giving a workload score on 60. Mean score for CAVE condition is 18.89, and 28.10
for 2D condition, with for both condition a standard deviation close to 7.60. This
difference is confirmed significant by a Wilcoxon test (p− value = 0.001).

Errors. Mean number of errors in 2D condition is 1.10, and 0.21 in CAVE condi-
tion. A Wilcoxon test proved this difference statistically significant (p− value =
0.014). The order of conditions did not create a significant difference in error
number (Wilcoxon test, p− value = 0.477).

Post-study Questionnaire. Figure 6 presents the subjects’ answers to the post-
study questionnaire. The difference between the two questions concerning pref-
erences is large enough to be considered significant without statistical tests.
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Most subjects felt a nuisance linked to image skips in the CAVE (mean answer=
4.05 ± 1.72). This result is completed by the actual number of counted image
skips during the study’s CAVE condition: 4.84 ± 3.11.

Fig. 6. Answers to the post-study questionnaire

Demographic Data. No link could be made between the demographic data of
the subjects (age, guiding hand, experience) and their performances and feelings
during the study (times, questionnaires).

4.3 Study Conclusion

The results of the study showed that users were faster performing the task in the
CAVE condition than in the 2D condition. It is clearly highlighted by both the
total task duration and the object manipulation time. The time to manipulate
the parts, is not affected as much by the order than the total condition time;
for both, interactions between order and condition are rejected. Point of view
manipulation time is not even affected by the order of the condition. The time
differences between CAVE and 2D conditions is therefore not just an effect of the
order. Also, the subjects also made significantly more errors in the 2D condition;
they cancelled action significantly more often than in the CAVE. Then the CAVE
condition appears to reach higher performance for this activity.

The subjective questionnaire shows that subject were more comfortable at
perceiving the third dimension of the prototype in the CAVE than in 2D (The
contrary would have been an issue !). In the CAVE, they also better understood
how to manipulate the environment, and found it easier to practice afterwards.
Finally, subjects didn’t feel a significantly higher visual tiredness in the CAVE
condition. This question is not sharp enough to conclude about visual tiredness,
but it can be claimed that the users did not fill major inconvenience for a short
time usage.

The NASA-TLX shows that subjects felt a significantly less important work-
load in the CAVE condition than in 2D. Also the final questionnaire shows
that subjects unanimously preferred working in the CAVE than in 2D. This
result is to handle with care; indeed most subjects never had an experience with
CAVE systems (16/19), or even with virtual reality (12/19). Their answer is thus
hardly separated from the enthusiasm of using a novel technology. Nonetheless
this result shows that subjects felt more comfortable in the CAVE than in 2D.
Moreover, subjects considered image skips in the CAVE as a nuisance: their
preference for the CAVE, as well as their better performances, are significant
despite this additional nuisance.



238 J. Basset and F. Noël

Those results confirm the veracity of our operational hypothesis: H2: In the
CAVE, the subjects will be able to perform the task in a shorter time, and will
report the task as easier. Thus we can confirm that people are more efficient
and feel more comfortable using the CAVE than a 2D screen for a disassembly
sequence creation task (H1). This result is only valid for the expected task but it
demonstrates that a CAVE provides a real added value, almost for well selected
tasks.

5 Discussion and Conclusion

Added Value of the CAVE: The study showed that subjects are more efficient
objectively (faster, fewer errors) and subjectively (better comprehension, lower
felt workload, preference) in the CAVE system than in 2D to perform the given
virtual prototype manipulation task. The task concerned the use-case described
in part 2, i.e. the design of a disassembly sequence by an operator. The results of
the study highlighted the strong potential of the Mihriad CAVE for this use-case,
and therefore for its usage in future design offices.

More deeply, the study focused on basic 3D objects manipulation. The good
results of the subjects showed the CAVE’s potential over a 2D screen concern-
ing the manipulation of virtual prototypes. This promising result suggests that
further work on the CAVE will be likely to extend our use-case to other design
tasks concerning virtual prototyping. This study can then be considered a first
step toward the integration of the Mihriad like CAVE in future design office.

Points of Attention and Perspectives: The technical solution should be
also upgraded. It will improve the CAVE experience. Some extra features should
enhance the ergonomics and precision of the system: collision detection between
objects, “magnet” function [4], etc. Work is still in progress to enhance its usabil-
ity. More important the duration of the task was rather short (<5 min in aver-
age). Our measurements of subjects tiredness (through the NASA-TLX) might
thus be underestimated, as suggested by Bérard et al. [9]. Currently the CAVE
must be promoted as a complementary tool within the design office for short
session usage.

At last, this study was not built to draw any conclusion from the demo-
graphic data of the subjects. Subjects were recruited with no restriction within
the students and staff of the university. Further study should be designed to
check the effect of demographic data such as age, guiding hand, or experience
with virtual reality.
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Excellence (French labex) and participates to the Authoring Augmented Reality
research action where this study takes place.
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Abstract. This paper presents a novel multiperspective visualization
(MPV) approach designed to improve navigation efficiency in Virtual
Reality applications. The MPV is continuous and non-redundant, it
shows the near part of the scene with a conventional, first-person visual-
ization to anchor the user, and it is controlled with user head translations
and rotations reminiscent of natural motion. Three types of anchored
MPV are introduced, one that provides a lateral disocclusion effect,
allowing the user to see around occluders and through side portals, one
that provides a vertical disocclusion effect, allowing the user to see over
and on top of occluders, and one that provides teleportation, allowing the
user to relocate. The VR navigation efficiency benefits of the anchored
MPV have been analyzed in a user study. Significant improvements were
achieved in the metrics of number of teleportations and total distance
traveled. In these metrics, large or greater Cohen’s d effect sizes were
observed at p-values below 0.05 in a first VR scene, while medium effect
sizes at p-values of 0.1 or better were observed in a second VR scene.

Keywords: Virtual Reality · Visualization techniques · Rendering

1 Introduction

In Virtual Reality (VR) applications, a head-mounted display (HMD) tracked
with six degrees of freedom supports using real walking for natural navigation,
where there is an identity mapping between the user’s physical and virtual
motion. The user selects the desired view intuitively, by walking to translate
the viewpoint, and by rotating their head to change view direction. However,
real walking navigation presents several challenges. One challenge is the fact
that the real world space hosting the VR application is typically smaller and
of a different shape compared to the virtual space, which can prevent the user
from reaching some desired viewpoints. For example, a desired viewpoint might
coincide with real-world furniture, it might be beyond the walls of the real world
room, or it might be high up, on a higher level of a multistory virtual world that
is hard to reach.

Another challenge is that in complex virtual world scenes occlusions limit
how much the user can see from any given viewpoint. Comprehensive exploration
c© Springer Nature Switzerland AG 2018
P. Bourdot et al. (Eds.): EuroVR 2018, LNCS 11162, pp. 240–259, 2018.
https://doi.org/10.1007/978-3-030-01790-3_15
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Fig. 1. Top: lateral disocclusion effect. The side corridor is occluded in a conventional
visualization (left), and visible in our anchored multiperspective visualization (MPV)
(right). The disocclusion effect was deployed by the user with a small left translation
of their head. The MPV shows the near part of the scene conventionally, anchoring the
user. Bottom: vertical disocclusion effect. A conventional visualization does not show
on top of the ledge (left), whereas our anchored MPV does (right). The disocclusion
effect was deployed by the user with a small upward translation of their head achieved
by getting up on their tiptoes. The MPV shows the ledge and the walls in front of the
ledge conventionally, anchoring the user.

requires translating the viewpoint to circumvent occluders and to gain line of
sight to all potential regions of interest (ROIs). When a potential ROI turns out
to be of no interest, the user has to retrace their path and to explore the next
one. Such sequential scene exploration is inefficient. Furthermore, when scene
understanding depends on seeing several ROIs simultaneously, or on visualizing
dynamic, possibly evading targets, sequential scene exploration is ineffective.

Another reason why real walking might not always be desirable is based on
ergonomics considerations. For some applications, the user might prefer not to
expend the energy needed to navigate the VR world by always walking and
rotating their head in the real world. In other words, for applications where
the experience of actual physical locomotion is not essential, users might prefer
navigation interface constructs that allow them to see more with less physical
effort in a shorter amount of time.

Many approaches have been investigated for overcoming these challenges of
using real walking for navigation in VR. One promising approach is based on mul-
tiperspective visualization (MPV), which relies on images that integrate samples
captured from multiple viewpoints. Consider a virtual scene with two corridors
intersecting at a right angle. Using a conventional visualization, a user has to
translate the viewpoint up to the intersection to examine the side corridors in
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search of an ROI. If, on the other hand, an MPV shows not only the main cor-
ridor but also the side corridors, the user can examine the side corridors from
their current location, which avoids the unnecessary navigation to the intersec-
tion when the side corridors turn out to be empty. Similarly, MPV can let the
user see distant parts of the scene, without having to move beyond the walls of
the real world space hosting the VR application. An MPV can also let the user
examine two potential ROIs simultaneously, in parallel, even when no conven-
tional visualization can show both ROIs at the same time.

Harvesting these potential advantages of MPV in the context of VR naviga-
tion requires solving two problems: (1) to design an MPV that is effective, i.e.
that has the high information payload needed for navigation efficiency, but that
remains easy to interpret by the user, and that does not induce user disorien-
tation or motion sickness; (2) to devise navigation interface elements that allow
the user to invoke their MPV superpower intuitively, in order to benefit from
the additional perspective quickly and to the fullest extent.

In this paper we present anchored multiperspective visualization, a novel
multiperspective visualization method designed to improve VR navigation effi-
ciency. Our method was designed based on the following principles: (1) the MPV
image should be continuous and non-redundant; (2) the MPV should show the
near part of the scene with a conventional first-person visualization controlled
through natural motion, anchoring the user; and (3) the MPV effect should be
controlled with user motions reminiscent of natural motion, by tethering the
secondary perspective selection to the user’s head rotations and translations.

We have designed three types of anchored MPV. The first type allows the
user to achieve a lateral disocclusion effect (Fig. 1, top) The user cannot see down
the right side corridor with a conventional visualization (left). The MPV (right)
integrates a secondary perspective into the main user’s perspective, allowing the
user to see down the right side corridor. The secondary perspective is controlled
by the user translating their head to the left as if to look around a corner.
The small head translation is amplified and applied to a secondary viewpoint
that swings into place to reveal the side corridor. The user view change is used
directly, without amplification, to render the nearby geometry, which remains in
agreement with the user’s proprioception to anchor the user.

The second type of anchored MPV allows the user to achieve a vertical dis-
occlusion effect (Fig. 1, bottom). The user cannot see on top of the ledge in
a conventional visualization (left). The MPV (right) integrates an additional
perspective, with a high up viewpoint, to reveal the object on the ledge. The
secondary perspective is controlled by the user by getting up on their tiptoes
as if to examine a tall shelf above eye level. The small vertical user viewpoint
translation is amplified and applied to a secondary viewpoint that translates up
the necessary amount to see on top of the ledge.

The third type of anchored MPV allows the user to teleport from one location
to another. MPV disoccludes parts of the scene not visible from the main user
viewpoint, but it does not and should not produce a visualization that shows
the entire scene. Consequently, the need to quickly move directly to a distant
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location of the scene remains even in MPV navigation. We have designed an
anchored MPV teleportation method that proceeds in two stages, evocative of
how a caterpillar moves (Fig. 2). First, the secondary viewpoint moves forward,
getting closer to the far part of the scene, translating from the origin to the
destination, while the primary viewpoint doesn’t move, remaining at the origin.
Second, the primary viewpoint moves forward to the secondary viewpoint, while
the secondary viewpoint doesn’t move.

We have conducted a user study to detect and quantify any VR navigation
efficiency benefits brought by our anchored MPV method. 16 participants were
divided evenly in a control group, who used conventional visualization, and an
experiment group, who used our anchored MPV. Each participant performed a
searching task and a matching task in each of two virtual environments: a single-
story area of connected rooms, and a larger room with walkways suspended from
the periphery walls, high above the room floor. For the first environment the
experiment group participants had available our lateral disocclusion anchored
MPV, and for the second environment they had available our vertical disocclu-
sion anchored MPV. In all cases, all participants had the ability to teleport to
any scene location to which they had line of sight. The experiment group used
our MPV teleportation. The experiment group performed significantly better
than the control group in the first virtual environment, achieving improvements
in the metrics of distance traveled and number of teleportations. Cohen’s d effect
size of large and greater was observed with p-values below 0.05. In the more com-
plex second virtual environment, the experiment group achieved improvements
of medium Cohen’s d effect size at p-values of 0.1 and less. Experiment group
participants also reported improvements in spatial awareness and perceived nav-
igation efficiency.

In summary, our paper makes the following contributions: (1) a set of prin-
ciples for designing VR navigation methods based on multiperspective visual-
ization, (2) three anchored multiperspective visualization based on our design
principles, one for lateral disocclusion, one for vertical disocclusion, and one for
teleportation, and (3) a user study confirming the potential of our anchored
MPV to improve VR navigation efficiency.

2 Prior Work

In VR, a preferred scene navigation modality is actual user locomotion in the
physical space, which is translated to matching view changes in the virtual world.
However, the physical space typically differs considerably from the virtual space.
Due to this mismatch, some virtual viewpoints become inaccessible. In Sect. 2.1,
we discuss this challenge and prior work aimed at alleviating it. Another chal-
lenge arises from the reduction in visualization efficiency due to occlusions of
ROIs by scene geometry, forcing the user to search for an unobstructed line
of sight through extensive viewpoint navigation. In Sect. 2.2 we review prior
work for improving VR navigation efficiency using the multiperspective occlu-
sion management approach.



244 M.-L. Wu and V. Popescu

Fig. 2. Two-stage MPV teleportation concept. In the first stage (top two images), the
primary perspective stays locked on the origin, anchoring the user, while the secondary
perspective translates to the destination. In the second half (bottom two images), the
secondary perspective stays fixed, anchoring the user, while the primary perspective
moves to assume the secondary perspective.

2.1 VR Navigation Challenges

The most intuitive VR navigation is an identity mapping between physical and
virtual motion [20,25]. One common problem is that the physical space is con-
siderably different than the virtual space. Usually the physical space is more
restricted than the virtual world.
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To fully explore the virtual world, the real and virtual locomotion must
purposefully diverge to allow sufficient virtual motion while limiting physical
motion. One approach is teleportation, which allows the user to designate a des-
tination in the virtual world, and then to instantly relocate to that destination
[1]. The visualization is discontinuous as the user changes location instanta-
neously, without any indication of the position of the destination relative to the
origin. Therefore, the user needs some time to reorient themselves after arriving
at the destination. A technique to reduce this discontinuity is to translate the
user from the origin to the destination along a straight path [9]. However, a slow
translation might cause nausea, as the user’s viewpoint changes without any
perceived acceleration, while a fast translation does not resolve the visualization
discontinuity issue. In practice, a visual “blink”, i.e. fade-out followed by fade-in,
is applied as the viewpoint translates, to minimize nausea while providing some
visual connection between the origin and the destination [4].

Another approach is artificial, or free, locomotion, where the user relies on
input devices such as joysticks or keyboards to navigate the view beyond the
tracked head pose. The divergence between virtual and physical motion is thus
directly controlled by user input. This method preserves visualization continu-
ity, so spatial awareness is not compromised. However, due to the detachment of
the user’s virtual movement from their physical movement, the artificial locomo-
tion method induces more motion sickness compared with teleportation-based
methods [5]. Specifically, the visual and physical senses of acceleration are out of
sync. One technique for alleviating nausea is to limit the user to discrete artificial
locomotion steps, which are enacted abruptly to break the sensation of artificial
acceleration. However, larger steps impact spatial awareness, while smaller steps
incur frequent visual discontinuity [4].

Other approaches hide the mismatch between the physical and the virtual
worlds by deviating from the tracking data, for example by making the user
cover long straight lines in the virtual world by walking in circles in the physical
world [18,19], by resetting user pose [27], and by modifying input gain [17,30].
Another approach is to distort the virtual world to pack it tightly in the limited
confines of the physical world [24]. An approach that blends physical and artificial
locomotion is the treadmill approach, or the smart platform approach, where
the user actually walks, but without covering large distances in the physical
world [23]. The shortcomings of the approach are confusing motion divergences,
tethering the user, and reliance on expensive and bulky hardware.

2.2 Multiperspective Visualization in VR

MPV is a class of visualization techniques that integrate multiple perspectives
into the main user perspective. MPV originated in the visual arts, e.g. Picasso’s
Cubism, and is applied to achieving comprehensive visualization, such as a ski
trail map showing simultaneously trails not all visible from a single viewpoint.

Earlier research work focused on relaxing the single center of projection con-
straint, but the sampling rays remain linear [6,16,31]. More recent work intro-
duced piecewise linear or even curved sampling rays that provide the flexibility
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needed to go around occluders to reach distant ROIs [3,11,15]. While relax-
ation of the constraints opened up more degrees of freedom in the camera model
used to render the visualization, the camera model generalization also created
the need for automatic and interactive constructors that provide the application
with the desired disocclusion effect [28].

In VR occlusion management, MPV is also found to be an effective tech-
nique [29], while conventional desktop occlusion management techniques such as
transparency and explosion visualizations face various challenges. Transparency
techniques introduce visual clutter that scale with scene complexity [7], whereas
the MPV approach does not introduce additional geometry and does not violate
pictorial depth cues. Explosion techniques disturb scene geometry [10], which
impact the user’s spatial awareness in VR, whereas the MPV approach does not
disturb surface connectivity.

Portal-based visualization is a technique closely related to MPV. It compos-
ites additional views of the scene within the main view in a picture-in-picture
fashion [8]. In VR applications, it supports teleportation navigation where the
user teleports to destinations revealed through the portal [14]. However, the tele-
portation destination, as viewed through the portal, is beyond the vista space
[13]. The user is therefore unable to trace the path of teleportation.

Our MPV method increases scene exploration efficiency by giving the user
a preview of ROIs that are occluded in a conventional visualization. Compared
with portal-based visualization, our MPV incorporates disoccluded ROIs into
the vista space, avoiding disorientation due to untraceable teleportation [26].
Compared with the prior work in MPV navigation [29], our MPV supports both
lateral and vertical disocclusion. It provides more versatile and at the same time
more intuitive ways of controlling the additional perspectives, and it allows the
user to assume seamlessly any additional perspective revealed by MPV using tele-
portation. The user’s spatial awareness is further increased by visually anchoring
the user in the scene as the additional perspectives are deployed and retracted,
and during teleportation.

3 Anchored Multiperspective Visualization

In this section, we first discuss in more detail our three principles for the design of
effective multiperspective visualization for VR navigation, and then we present
our three methods for anchored MPV.

3.1 Design Principles for Effective Multiperspective Visualization
in VR

(1) MPV image continuity and non-redundancy
This first principle encapsulates general concerns for achieving effective MPV,
irrespective of the VR context. An MPV has to be continuous, i.e. points that are
close in 3D should project to nearby image locations. This concern disqualifies
MPVs obtained through a discontinuous collage of individual perspectives, or
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through parallel visualization with multiple disconnected rectangular images.
An MPV also has to be non-redundant, i.e. it should not show a part of the
scene multiple times. Continuity and non-redundancy are necessary conditions
for obtaining an MPV that can be parsed by the user without the disadvantage of
a significant cognitive load, which is particularly important in the VR navigation
context.
(2) Primary perspective MPV anchoring
This second principle ensures that, as the conventional visualization morphs
into an MPV, and as the MPV parameters are changed interactively, there is
always a significant part of the image that is unaffected by the MPV effect,
and that the unaffected part of the image corresponds to the space surrounding
the user. The user’s visual system relies on this primary visualization of nearby
geometry, in sync with their own primary perspective, to remain in agreement
with the motion perceived by the user, and to dissociate from the distant parts
of the scene that move incongruently with the perceived motion, both of which
contribute to preventing disorientation and motion sickness.
(3) Natural secondary perspective navigation
An MPV has a significantly higher number of degrees of freedom than a con-
ventional visualization, with each additional perspective introducing six more
extrinsic parameters. This third principle prohibits complex navigation inter-
faces that ask the user to manipulate a high number of degrees of freedom
individually, and mandates allowing the user to control the secondary perspec-
tives with natural motions similar to the ones used to control the main user
perspective in conventional VR.

3.2 Anchored MPV for Lateral Disocclusion

A frequently needed disocclusion effect is to see around an occluder, e.g. to see
around a tree, or to see through a side opening, e.g. through a window in a

Fig. 3. Lateral disocclusion through anchored MPV. A conventional visualization from
viewpoint u0 does not show the side corridor (left). A small left translation of the head
from u0 to u1 deploys a disocclusion effect that shows inside the side corridor (right).
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house facade. Such a lateral disocclusion effect can be provided by integrating a
secondary perspective from a viewpoint that has line of sight around the tree or
through the window. We provide a lateral disocclusion effect as follows.

Given a virtual scene, we define a set of vertical rectangles in the scene to
serve as portals to guide the lateral disocclusion effect. The portals are defined
where the user is likely to benefit from disocclusion, e.g. at the doorways that
connect various sections of the scene, or between an occluder and nearby walls,
such as a column in a middle of a room. The portals are not rendered, but when
a user exploring the scene with a VR HMD sees the geometry spanned by a
portal, the geometry changes color to indicate the availability of a disocclusion
effect. The user activates the disocclusion effect with a controller button. The
activation itself does not change the visualization to an MPV. After activation,
lateral translations of the user’s head as recorded by the HMD will deploy a
secondary perspective that sees through the portal.

In Fig. 3 the user’s initial viewpoint is u0, looking at portal ab. In the con-
ventional visualization (left), the user cannot see deep inside the portal from u0.
Once the user activates the disocclusion effect of the portal, a subsequent left
translation of the user viewpoint rotates the geometry behind the portal plane
about the pivot point p, which is the center of the portal rectangle. The rotation
gives the user line of sight perpendicularly through the portal, e.g. swinging the
side corridor wall vertices c0, d0 to c1, d1, respectively (right). The rotation angle
is proportional to the user’s lateral head translation, and the gain is tuned such
that a small amount of translation u1u0 (e.g. 20 cm) is sufficient to see down
the portal. The small translation wouldn’t have been sufficient to see down the
portal with a conventional visualization, i.e. the user would see only marginally
more inside the portal from u1 as compared to u0 (left). The small translation
is amplified by our lateral MPV disocclusion effect to introduce the necessary
second perspective on the geometry beyond the portal plane.

The rotation angle is capped to the value needed to the see down the portal.
Any geometry vertices or fragments that cross the portal plane when rotated
are discarded (i.e. they are not drawn), which does not create artifacts as this
geometry wouldn’t have been visible anyway due to the side corridor walls. Ver-
tex projection is continuous and non-redundant, which enforces the first design
principle. Nearby geometry, i.e. the part of the eb wall seen by the user, is drawn
conventionally, from the primary perspective, which anchors the user, enforcing
the second principle. The additional perspective is deployed by the user trans-
lating their head to the left, and by slightly panning the view to the right in
order to keep the portal in the center of the image, which is the natural motion
the user would make if they were close to point b and wanted to look inside the
portal, so the interface is in agreement with the third principle.

3.3 Anchored MPV for Vertical Disocclusion

In addition to lateral disocclusion, an explorer of a 3D virtual scene might also
want to be able to see on top of horizontal surfaces that are suspended above
the user’s eye sight. Given a virtual scene, we define a set of ledge edges. Like in
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the case of portals, when a VR explorer has a predefined ledge edge into view, a
highlight alerts them to the availability of a vertical disocclusion effect, and the
user can activate the effect with a controller button.

Fig. 4. Vertical disocclusion through anchored MPV. A conventional visualization does
not show on top of the ledge (left). The user tiptoes to generate a small upward head
translation from u0 to u1 that deploys a disocclusion effect that shows on top of the
ledge (right).

Figure 4 shows the conventional visualization of a scene with a ledge (left)
and the same scene with our vertical disocclusion MPV effect (right). The initial
user viewpoint u0 is too low to see on the ledge. A small vertical translation of the
user viewpoint to u1 brings in an additional perspective that sees on the ledge.
The disocclusion effect is implemented as a rotation of the geometry beyond
and above the ledge, such that the new viewpoint u1 is above the ledge plane,
disoccluding the ledge. The viewpoint u1 wouldn’t have been high enough to
disocclude the ledge in a conventional visualization (left). The small translation
u0u1 is amplified to achieve the vertical disocclusion effect.

Like in the case of lateral disocclusion, the vertex projection is continuous and
non-redundant, and the user’s view of the floor and of the ledge edge doesn’t
change, anchoring the user. Finally, the vertical up and down translation is
controlled by the user’s tracked HMD, who gets up on their tiptoes up to see
atop the ledge, and back down to revert to a conventional visualization.

3.4 Anchored MPV for Teleportation

We allow the user to teleport between an origin and a destination viewpoint,
as needed to change floors, rooms, and, in general, to overcome the constraints
of the real world and of the tracking system. Teleportation is a rapid transition
between the two viewpoints, which can induce user motion sickness because the
user moves, i.e. “flies”, without actually engaging in locomotion. Prior work
suggests that the safest teleportation is a very abrupt one, but that is also the
teleportation that disorients the user the most.
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We have developed a teleportation that aims to alleviate these disadvantages.
The user selects the destination with the cursor, which is always placed at the
intersection between the view direction and the scene geometry. Therefore, the
destination is selected with the HMD by changing view direction. The destination
viewpoint is the point on the vertical through the cursor that is at the user’s
height above the ground. If this initial destination viewpoint is too close to a
wall, the destination viewpoint is pulled back away from the wall to provide a
meaningful view once teleportation is complete. The user triggers teleportation
with a controller button.

Fig. 5. Anchored MPV teleportation. The viewpoint moves from o to d in two phases:
first the part of the scene beyond the cutting plane is brought down, anchoring the
user with the near part of the scene (green, from left to middle), and then the cutting
plane is brought down, anchoring the user with the far part of the scene (red, from
middle to right) (Color figure online)

Our anchored teleportation method is illustrated in Fig. 5. The origin and
destination viewpoints are o and d. During the first phase (i.e. transition from
left to middle in Fig. 5), the far perspective is brought closer, by translating the
scene geometry beyond the cutting plane with vector od. The cutting plane is
positioned between the two viewpoints, splitting the distance between them at
a fixed ratio. This first phase brings the far part of the scene closer, to be as
close as it will be when the viewpoint is at d, but without pushing away the near
part of the scene. The visualization of the near part of the scene (green) remains
unchanged, which anchors the first phase of the teleportation. During the second
phase, the cut plane is translated along the vector do, which makes the nearby
geometry disappear from view. The visualization of the far part of the scene
(red) remains unchanged in this second phase, which maintains uninterrupted
anchoring.

Figure 5 illustrates teleportation along a straight line, but the same procedure
is followed if the user chooses to teleport using a lateral or vertical disocclusion
MPV. The only difference is that once the second phase is complete, any residual
distortion of geometry is gradually eliminated. Geometry is distorted only close
to the portal or ledge planes, and typically the user desires to teleport deeply
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through the portal or beyond the ledge, so the geometry is undistorted off screen.
Figure 2, left, shows frames from a “straight line” teleportation. Figure 2, right,
illustrates teleportation into a side corridor, starting from the lateral disocclusion
effect.

4 User Study

In order to evaluate the effect of our multiperspective visualization technique
on VR navigation efficiency, we conducted a randomized user study, with the
approval of our Institutional Review Board. Each participant performed three
tasks in VR, and their actions were logged for subsequent analysis. After task
completion, the users responded to a questionnaire that provided their subjective
evaluation of task performance.

The participant wore a VR HMD (i.e. Windows Mixed Reality headset [12]).
The VR HMD performs six degree of freedom SLAM-based tracking of the pose
of the participant’s head. In addition, the participant used a motion-tracked
hand-held controller to enable interactions with the virtual world through actions
such as pointing and clicking buttons. The HMD displays stereoscopic image
pairs rendered from viewpoints offset by the interpupillary distance to provide
stereoscopic depth perception.

4.1 Participants

A total of 16 participants (14 male) completed our study. The participants were
graduate students of ages between 23 and 37. They were randomly assigned
to experiment and control groups of 8 participants each. Participants in the
control group performed all tasks using only conventional, single-perspective
visualization, while the participants in the experiment group performed all tasks
using our anchored MPV.

The between-group design was chosen over the within-subject design to avoid
any learning effect when repeating tasks from one condition to the next. Another
reason is to mitigate the fatigue factor that can affect performance in extended
task performance in VR environments–with the between-group design a partic-
ipant’s involvement time is reduced in half. However, the effect of prolonged
usage of MPV navigation is an important avenue for future research, which is
discussed further in Sect. 5.

4.2 Tasks and Evaluation

The participants performed tasks that required extensive virtual locomotion in
two VR scenes using environments adapted from the Quake 3 Arena [22]. The
first VR scene (Scene 1) is a single-story indoors area consisting of a set of rooms
connected by corridors (Fig. 6, left). Two of the rooms contain cylindrical pillars
in the center, which partially occlude the interior of the rooms regardless of the
participant’s current viewpoint. The second VR scene (Scene 2) is a large 3-story
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Fig. 6. VR scenes used in the user study. Left: Scene 1 is a set of rooms connected by
corridors. Right: Scene 2 is a 3-story building with multi-level walkways.

building where the center is an inaccessible tower, while the levels are connected
by walkways attached to the perimeter walls (Fig. 6, right).

Each participant was required to perform 3 tasks: two search tasks, each in a
different VR scene, and one pair matching task. Before beginning each task, the
participant completed a short warm-up exercise which is similar to the actual
task, but differs in content and is much shorter. This warm-up period ensured
that the participant correctly operated the HMD and the hand-held controller,
and that the test procedures were clear. Participants received no other training
beyond this warm-up period.

The participant’s performance was evaluated from recorded data using objec-
tive metrics, which were unknown to the participants. During the performance of
each task, the participant’s tracked physical HMD pose was logged, along with
any interaction events such as initiating teleportation, acquiring a target object,
or matching a pair of target objects. The logs were processed to extract metrics of
interest. Additionally, each participant was asked to respond to a questionnaire
after completion of the tasks. The questionnaire recorded subjective evaluation
of performance and comfort.

4.3 User Interface for Locomotion and Anchored MPV

In both Scene 1 and Scene 2, the user was free to employ real walking by mov-
ing within a 2 m by 2 m physical space. To navigate beyond the limits of the
physical space, the user employed teleportation. The user pointed the hand-held
controller at the intended destination, and then clicked the controller button to
initiate the teleportation. (Fig. 7, left). In Scene 2, the user could additionally
access higher floor walkways by designating the walkway edges as a teleportation
destination. As the user points the hand-held controller at a walkway edge, the
edge is highlighted to indicate that the edge is a valid destination (Fig. 7, right).
The user can also select any visible lower floor surface. As the controller button
is clicked, the virtual viewpoint is teleported to the destination. The teleporta-
tion is not completed instantly, but the virtual viewpoint is translated to the
destination at a fast 40 m/s straight line velocity. During the translation, par-
ticipants in the control group experienced the conventional “blink” visual effect,
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Fig. 7. The user selects the teleportation destination using a hand-held controller. Left:
In both VR scenes, the user teleports by pointing a “laser” beam at the destination
and clicking using the controller. Right: In the second VR scene, the walkway edges
that are eligible as teleportation destinations are highlighted in blue when swiped with
the laser beam.

whereas participants in the experiment group experienced the anchored MPV
teleportation described in Sect. 3.4.

Our lateral disocclusion anchored MPV (Fig. 1, top) was accessible to exper-
iment group participants performing tasks in Scene 1. The anchored MPV is
activated automatically as the user gazes at virtual portals defined by corridor
archways or connecting cylindrical pillars to side walls. The available archways
and pillars in Scene 1 are predetermined prior to the study. Once the MPV is
activated, the user moves laterally in small amounts to rotate the secondary
perspective horizontally.

Our vertical disocclusion anchored MPV (Fig. 1, bottom) was accessible to
experiment group participants performing tasks in Scene 2. The vertical disocclu-
sion anchored MPV is manually activated. First, the user designates a walkway
edge on a different floor by pointing with the hand-held controller and holding
down the button. Then, with the button held, the user tiptoes or crouches a
small amount to raise or lower the secondary viewpoint. Due to the need to
hold down the button for activating the anchored MPV, the user of the MPV is
required to double-click the controller button in order to initiate teleportation in
Scene 2. Any new area revealed by the anchored MPV is also a valid destination
for teleportation.

Search Tasks (Search 1 and Search 2). The search tasks Search 1 and Search 2
were performed in Scene 1 and Scene 2 respectively. In both search tasks, the
participant was asked to find target objects in the form of gold coins placed in the
VR scene. There were 6 coins that appeared one after another. Their locations
were unknown to the participant, but were identical for all participants. A coin
disappeared once it was found and collected by the participant by getting within
1m of the coin, either through real walking or through teleportation. An audio
cue was triggered at the collection of a coin to notify the participant. The task
was complete when all coins are collected.

Pair Matching Tasks (Match). The pair matching task (Match) was performed
in Scene 1. In this task, the participant was asked to identify target objects in the
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form of colorful mushrooms, of identical color pattern. There were 8 objects in 4
distinct color patterns, whose placement was identical for all participants. The
participant first pointed to one visible target object and selected it by clicking a
button. When the participant clicked on the second object of identical pattern,
the pair was considered matched and it disappeared from the scene, with an
audio cue. The task was complete when no targets remained.

Post-performance Questionnaire. Each participant was asked to respond to a
questionnaire after completing the three tasks. The purpose of the question-
naire was to evaluate the participant’s perception of their own performance and
of our MPV technique. The participant responded to each of three statements
“You always felt present in the virtual world”, “Your spatial awareness was main-
tained while moving around”, and “You could reach any intended destination
efficiently”, by choosing an answer on a 1 to 5 scale, with 1 meaning “Not at
all” and 5 points meaning “Very much”.

4.4 Results and Discussion

We analyzed each participant’s recorded logs to measure performance along sev-
eral metrics. The most relevant metrics for this study are the metrics for naviga-
tion efficiency: (1) the number of times the participant initiated teleportation, (2)
the accumulated teleportation distance, and (3) the time required to complete
a task. These metrics were not revealed to the participants.

These metrics are evaluated for their effect sizes using Cohen’s d [2], where
qualifiers “small”, “medium”, and “large” are applied to cases where d > 0.2,
d > 0.5, and d > 0.8, respectively. The qualifiers are extended to include “very
small”, “very large”, and “huge” for d < 0.01, d > 1.2, and d > 2.0, respectively
[21]. Statistical significance is evaluated using the two-sample t-test. We report
the p-value to identify measurements that were due to chance.

Finally, we report the aggregate results of the questionnaire responses for
discussion of subjective metrics which cannot be extracted from the task logs.

Number of Teleportations. Each teleportation incurs a discontinuity in the
user’s mental localization in the virtual world, after which the user must re-orient
themselves. Therefore, it is desirable to minimize the number of teleportations.
Furthermore, the ill-effects of teleportation can be reduced by improving visual-
ization during teleportation.

Table 1. Average number of teleportations per participant.

Task Control Experiment Diff. p d Effect size

Search 1 83.4 ± 48.9 21.6 ± 18.5 61.8 <0.01 1.7 Very large

Match 51.8 ± 24.8 27.6 ± 22.7 24.1 0.03 1.0 Large

Search 2 98.3 ± 71.5 50.3 ± 31.5 48.0 0.06 0.9 Medium
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We expect our anchored MPV to reduce the number of teleportations for two
reasons. First, our MPV disoccludes ROIs and allows the user to plan their path
more efficiently. Therefore, the user is able to avoid teleportating to destination
only to find that it is not of interest. The second reason is that our anchored
MPV extends the set of possible teleportation destinations to those areas newly
disoccluded by the visualization. As the user is not limited to teleporting only
to destinations with a line of sight, they are able to traverse at once a path that
might require multiple teleportations using conventional visualization. Table 1
shows the result for the metric of number of teleportations. In Search 1 and
Match tasks, which are both performed in the single-floor Scene 1, our anchored
MPV significantly reduced the number of teleportations required to complete
the tasks, with the p-value well below 0.05. The effect sizes are very large and
large for tasks Search 1 and Match respectively. In the Search 2 task, which is
performed in the more complex 3-story Scene 2, the results are positive with a
medium effect, although with a higher p-value of 0.06.

Table 2. Average distance traveled per participant, in meters.

Task Control Experiment Diff. p d Effect size

Search 1 464 ± 135 222 ± 90 242 <0.01 2.1 Huge

Match 326 ± 103 228 ± 86 99 0.03 1.0 Large

Search 2 677 ± 306 527 ± 236 150 0.1 0.5 Medium

Accumulated Teleportation Distance. We analyze the accumulated telepor-
tation distance because the majority of locomotion that is conducted in our VR
scenes is through teleportation, therefore it is representative of the total amount
of virtual viewpoint travel. We expect users of our anchored MPV to accumulate
less traveled distance. This is due to the increased path planning efficiency as
discussed in Sect. 4.4. Table 2 lists the average per participant distance traveled
for each task. Significant improvements of huge and large Cohen d’s effect sizes
were observed for both Search 1 and Match tasks performed in Scene 1. This
is in line with our expectation that the user is able to explore maps effectively
with less required virtual locomotion. The result for task Search 2 performed
in the more complex Scene 2 also shows an improvement of medium effect size.
The statistical significance at p = 0.1 is not as strong as with tasks performed
in Scene 1. However, the positive effect size suggests a more significant result is
possible with more user study participants.

Task Completion Time. Table 3 reports the time our participants took to
complete the three tasks. The experiment group had a statistically significant
advantage for the first task. For the second task, the experiment group was
faster, but the advantage was not statistically significant. For the third task,
the average completion time for the experiment group was longer than for the
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control group. From our observation of the participants during the experiment,
we explain this based on a longer time the participant needed to engage the
MPV interface. As shown in Table 1, the number of jumps is significantly lower
for the experiment group even for the third task, indicating that the MPV is
effective, except that using it takes longer. A direction of immediate future work
is to improve the time effectiveness in which the vertical disocclusion MPV is
used, by suggesting to the user the availability of the effect in a more salient
way during training (the blue highlight is sometimes easy to miss), and then by
suggesting the tiptoeing mechanism that actually implements the MPV.

Table 3. Task completion time, in seconds.

Task Control Experiment Diff. p d Effect size

Search 1 113 ± 45 56 ± 29 57 <0.01 1.5 Very large

Match 89 ± 25 78 ± 25 11 0.2 0.4 Small

Search 2 157 ± 71 175 ± 88 (18) 0.7 0.2 Small

Questionnaire Responses. The final metric we used to compare the two par-
ticipant groups was a compilation of the self-evaluation questionnaire responses
(Table 4). The experiment group self-reported higher spatial awareness and
higher navigation efficiency, while they reported a lower sense of actual pres-
ence in the virtual environment. It comes as no surprise that the experiment
group had better spatial awareness than the control group as the MPV essen-
tially provides a preview of the scene, without as much disorienting backtracking
as required by the sequential exploration with a conventional visualization. Fur-
thermore, our MPV was designed to anchor the user at all times, so the additional
information presented did not come at the cost of confusing the user. Similarly,
the improvement of navigation efficiency is a reasonable hypothesis based on the
same arguments. We explain the decreased sense of presence by the fact that,
like any MPV, our method upgrades the user from an uninterrupted immersive
first-person view of the scene to an occasional second or even third-person mon-
itoring of the scene. The user shifts fluidly viewpoint and their association with
a specific location in the scene, and the consequent decrease in sense of presence
is a reasonable trade-off towards gaining navigation efficiency.

Table 4. Overall subjective evaluation.

Control Experiment Diff. d Effect size

Spatial awareness 3.3 ± 1.3 4.3 ± 1.0 1.0 0.7 Medium

Efficiency 4.1 ± 1.5 4.6 ± 0.5 0.5 0.4 Small

Presence 4.0 ± 1.1 3.5 ± 1.1 (0.5) 0.4 Small
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5 Conclusions and Future Work

We have presented a novel method for multiperspective visualization for Virtual
Reality that promises to improve navigation efficiency. Our method visualizes
the scene with images that show more than what is visible from a single view-
point, by integrating additional perspective continuously and non-redundantly.
Another goal of our MPV is to always anchor the user by showing part of the
scene geometry conventionally, from the user’s first-person view. Finally, MPV
navigation should remain as intuitive as possible, by allowing the user to control
the additional perspectives through the tracked HMD. We describe anchored
MPV techniques for lateral disocclusion, for vertical disocclusion, and for tele-
portation. The MPV benefits have been confirmed in a user study.

Additional user studies should be conducted to explore in depth the subjec-
tive effects of MPV navigation. Our post-performance questionnaire provided
preliminary insights to the users’ perceptions, but the study is not tailored to
measure subjective effects such as visual quality, cognitive effort, and user com-
fort. Especially, tasks which require prolonged usage of MPV navigation should
be designed to examine any cumulative effect of simulator sickness, even though
no test participant expressed discomfort at any point during the study. At the
same time, these longer tasks allow examination of any training effects as par-
ticipants become familiar with the user interface.

One direction of future work is to find automatically the places in the scene
where disocclusion effects are useful. This is in view of the limitation that the
virtual portals needed to be manually marked in Scene 1 of our user study. One
option is to preprocess the scene, and another option is to decide on the potential
for disocclusion on the fly, based on the current frame.

Another direction of future work is to investigate the anchored MPV bene-
fits in the context of dynamic, and even evading targets, which place even more
stringent requirements on the quality of the disocclusion effect and on the intu-
itiveness of the interface for deploying it. These requirements are particularly
relevant to gaming applications, where targets could follow complex strategies,
or they could be other humans. Furthermore, there is interplay between lever-
aging visualization to facilitate navigation, and designing visualization for game
mechanics. It is worth studying how to optimize for both sets of goals in the
design space for VR visualization. As VR interfaces strive to become main-
stream and to move beyond entertainment and into day to day use, a scenario
that requires special attention is the sit at desk scenario, for which multiper-
spective visualization might be particularly well suited.
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