
Finding Probabilistic Rule Lists using the
Minimum Description Length Principle

John O. R. Aoga1(B) , Tias Guns2,3, Siegfried Nijssen1, and Pierre Schaus1

1 ICTEAM, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
{john.aoga,siegfried.nijssen,pierre.schaus}@uclouvain.be

2 VUB, Brussels, Belgium
3 KU Leuven, Leuven, Belgium

tias.guns@vub.ac.be, tias.guns@cs.kuleuven.be

Abstract. An important task in data mining is that of rule discovery in
supervised data. Well-known examples include rule-based classification
and subgroup discovery. Motivated by the need to succinctly describe an
entire labeled dataset, rather than accurately classify the label, we pro-
pose an MDL-based supervised rule discovery task. The task concerns
the discovery of a small rule list where each rule captures the proba-
bility of the Boolean target attribute being true. Our approach is built
on a novel combination of two main building blocks: (i) the use of the
Minimum Description Length (MDL) principle to characterize good-and-
small sets of probabilistic rules, (ii) the use of branch-and-bound with
a best-first search strategy to find better-than-greedy and optimal solu-
tions for the proposed task. We experimentally show the effectiveness
of our approach, by providing a comparison with other supervised rule
learning algorithms on real-life datasets.

1 Introduction

Rule learning in supervised data is a well-established problem in data mining
and machine learning. Compared to many other methods, a clear benefit of rule-
based methods is that the rule format is more easy to interpret, and hence is
useful in knowledge discovery. Well-known examples of rule learning are

Rule-based classification, in which the aim is to find a set of rules that pre-
dicts the class of examples well;

Subgroup discovery, in which the aim is to find a set of rules that describes
subgroups of examples in the data; in these subgroups, the distribution of the
target attribute is different from the overall population.

The main difference between subgroup discovery and rule-based classification is
that rule-based classification aims to find a set of rules that can be applied on

J.O.R. Aoga—This author is supported by the FRIA-FNRS (Fonds pour la Forma-
tion à la Recherche dans l’Industrie et dans l’Agriculture, Belgium).

c© Springer Nature Switzerland AG 2018
L. Soldatova et al. (Eds.): DS 2018, LNAI 11198, pp. 66–82, 2018.
https://doi.org/10.1007/978-3-030-01771-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01771-2_5&domain=pdf
http://orcid.org/0000-0002-7213-146X

Finding Probabilistic Rule Lists using MDL 67

Table 1. Probabilistic rule lists example

(a) From door opening data

Rule list Probability

IF WEDNESDAY and MORNING 0.879

ELSE IF HOLIDAY and THURSDAY 0.011

ELSE IF THURSDAY and AFTERNOON 0.987

ELSE IF SUNDAY 0.001

ELSE (Default rule) 0.101

(b) From mushroom dataset

Rule list Probability

IF Gill-spacing is closed and No odor 0.95

ELSE IF Gill-spacing is closed and

Stalk-shape is tapering

0.0

ELSE IF Stalk-color-above-ring is white and

Gill-size is broad

1.0

ELSE IF Gill-spacing is closed 0.0

ELSE (Default rule) 0.56

any example to obtain a prediction for that example. Subgroup discovery aims
to characterize subgroups of examples, but not necessarily all examples.

Similar to rule-based classification, in this work we are also interested in find-
ing a set of rules that describe a target attribute fully and in an interpretable
manner. However, we make a specific assumption that is not common in rule-
based classification: we assume that the class attribute has a skewed distribution,
and that exact prediction is certainly not possible. The following example illus-
trates a problem that has these characteristics.

Example 1. Assume that we characterize every minute in a year in terms of
the following attributes: the part of the day the minute belongs to (morning,
afternoon), the day the minute belongs to (Sunday, Monday, . . .), the month the
minute belongs to (January, . . .) and the minute of the day (1, 2, . . ., 24 × 60);
furthermore, over a year we use a sensor to monitor when an individual opens a
specific door in his house. Can we use rules to characterize when this individual
opens her door?

In this example, the event of “opening a door” is expected to be a rare event;
if we use a classification algorithm on the above dataset, we will notice that
the class attribute is very unbalanced. Most classification algorithms will either
prefer to always predict the default label (the door is closed), or will construct
many very specific rules to cover the small number of examples that are the
exception. The reason for this is that many rule-based classifiers find lists of
rules; a rule that makes an error in its prediction, cannot be corrected by a later
rule. Hence, most classification rule learning algorithms favor rules with lower
recall but high precision.

In this paper, we propose a new algorithm for finding rule lists, designed
to work well in this specific setting. It identifies simple probabilistic rule lists,
such as in Table 1. Hence, the rule mining setting studied in this work can be
characterized by these properties:

– it learns rules with probabilities in the head; these probabilities represent the
class distribution for the examples covered by the rule, and should not be
understood as class prediction;

– the list of rules is intended to characterize the class distribution over the
entire data, in contrast to subgroup discovery;

– it favors smaller rule lists to ease interpretation.

68 J. O. R. Aoga et al.

Finding lists of rules that satisfy these requirements is not a straightforward task.
To address these challenges, this paper proposes the following contributions.

1. We propose a new optimization criterion based on the Minimum Description
Length (MDL) principle; this criterion aims to find rule lists that are small,
yet characterize the target distribution well.

2. We propose a new search algorithm based on branch-and-bound search; this
search algorithm aims to find the global optimum for the proposed optimiza-
tion criterion under given constraints.

The approach that we take in this work is a pattern set mining approach. We
first use itemset mining algorithms to find a candidate set of itemsets. From this
set, we select a subset that describes the target attribute well. From the pattern
set mining perspective, we propose a new supervised optimization criterion for
selecting a set of free patterns, and a new search algorithm for finding a set of
patterns that optimizes the criterion.

In the remainder of the paper, we first present related work in Sect. 2.
In Sect. 3 we present the problem of finding probabilistic rule lists. Then, we
describe our Minimum Descripition Length (MDL)-based approach in terms of
the formalization and algorithms for solving it. Finally, we show experiments in
Sect. 5 before concluding.

2 Related Work

This work builds on a number of areas in the literature.

Rule-based classification. There is a large literature on rule-based classifica-
tion; a good overview of these algorithms, including classic algorithms such as
CN2 and RIPPER, can be found in a textbook by Fürnkranz et al. [4]. Two
types of rule-based classifiers can be distinguished: classifiers based on rule sets
and on rule lists. In set-based classifiers, all rules that match an example are
used to obtain a prediction for that example. In list-based classifiers, the first
matching rule is used; we build on this class of methods.

Covering algorithms are the most popular type of rule learning algorithm.
These algorithms iteratively search for a rule to add to a rule set or list. Most
often, in each iteration a greedy search algorithm is used, which constructs a
rule by iteratively adding the condition that improves the quality of the rule the
most.

The main challenge faced by pure covering algorithms is that later rules
cannot correct errors made by earlier rules in a rule list. Such algorithms hence
need to favor precision over recall to obtain accurate classifiers. As a result rule
lists may become unnecessarily long. One way to solve this is using pruning: the
rule set is reduced in a post-processing step.

Pattern-based classification. Compared to traditional rule learning algo-
rithms, pattern-based classifiers use pattern mining algorithms, such as frequent

Finding Probabilistic Rule Lists using MDL 69

itemset mining algorithms, to identify candidate rules [12]. These frequent item-
sets are post-processed to construct rule sets or rule lists. Most of these post-
processing approaches use heuristic search algorithms, although the use of exact
search has also been studied [6].

Pattern set mining. From a pattern mining perspective, selecting a small set
of patterns from a larger set of patterns can be seen as a pattern set mining
problem [12]. In contrast to unsupervised methods, supervised methods aim to
find a balance between pattern sets that are non-redundant and that are accu-
rate. One popular approach for evaluating the quality of a pattern set is based
on the Minimum Description Length principe, as pioneered in the unsupervised
setting by the KRIMP algorithm [10]. Exact methods for pattern set mining
were studied by Guns et al. [6], among others, but these studies did not consider
scoring functions based on MDL or did not exploit freeness, as we do.

Subgroup discovery. Strongly related to both pattern mining and rule-based
classification is subgroup discovery. Subgroup discovery differs from classification
in that it does not aim to build a predictive model; rather, subgroup discovery
algorithms are intended to return small and interpretable sets of local patterns;
subgroups are not necessarily ordered in a specific manner. For this reason,
traditional subgroup discovery algorithms were modifications of covering based
rule-learning algorithms to explicitly allow for overlap between patterns [7].

Bayesian rule lists. Most related to this work is recent work by Yang et al.
[11] on probabilistic rule lists. This work also finds ordered lists of probabilistic
rules. Contrary to our work, however, the aim of the work of Yang et al. is
to identify accurate classifiers, and not to identify as small and interpretable
representations of the class distribution as possible. Furthermore, Yang et al.
use a sampling based algorithm to identify good sets of patterns. We propose an
alternative, exact algorithm in this work.

3 The Probabilistic Rule List Mining Problem

This work is motivated by the creation of a probabilistic rule list that summa-
rizes labeled data well. In order to be easily interpretable, the rule list and the
individual rules should be concise.

We assume the data is described by a set of discrete attributes. These
attributes can be represented as a set of Boolean properties using a one-hot
encoding. These properties are referred to as items in the following, in line with
the itemset mining literature.

More formally, let I = {1, · · · ,m} represent a set of m possible items and
let F ⊆ 2I be a set of itemsets built on those items. A probabilistic rule list
(PRL) built on F is a sequence of rules of the form R =

〈
(I(1), p(1)), (I(2), p(2)),

· · · , (I(k), p(k))
〉

with pi being a probability and Ii ∈ F ,∀i = 1, . . . , k − 1 and
Ik = ∅. This latter is the default rule. The sequence of itemsets in the rule list can
be expressed as membership to the regular language: 〈I1, . . . , Ik〉 ∈ L(F∗ ·∅) with

70 J. O. R. Aoga et al.

F∗ the Kleene operator on F . Table 1 shows two example rule lists (generated
from different data).

The rule list has a sequential interpretation, in that the set of data instances
that match the first rule I1 are assumed to have a positive label with probability
p1. The other data instances, those that do not match I1, but do match I2 have
a probability of p2 to be positive, etc. The final empty set Ik = ∅ hence captures
all instances not matched by the other rules.

We now formalize the problem of creating the probabilistic rule list based on
F and a dataset D.

Definition 1. As input we receive a set of itemsets F that can be used to com-
pose the rule list, and a database D of instances, with for each a Boolean target
attribute: D = {(t, It, at) | t ∈ T , It ⊆ I, at ∈ {+,−}}, where the set T contains
the instance or transaction identifiers T = {1, . . . , n}. The database can be split
into a positive D+ and negative D− database, based on the target attribute value
(+ or −).

The problem of finding a probabilistic rule list is formalized as:
argminR score(R,F ,D) where R =

〈
(I(1), p(1)), (I(2), p(2)), · · · , (I(k), p(k))

〉
is

a probabilistic rule list such that 〈I(1), . . . , I(k)〉 ∈ L(F∗ · ∅) and score is an
optimization criterion. Various optimization criteria can be defined, including
criteria inspired by classification rule learning, subgroup discovery and pattern
set mining. Our aim in this work is to develop an optimization criterion that
explicitly favors smaller rule lists that describe the entire target distribution
well. For this purpose, we will use the Minimum Description Length principle,
discussed in the next section.

4 Discovering Probabilistic Rule Lists

4.1 Coverage and Probability of a Rule List

To evaluate the quality of a rule set on a given dataset, we will use a number of
concepts taken from the itemset mining literature [1].

Definition 2 (Coverage and support of an itemset). The set of trans-
actions in a database D containing an itemset I is called the cover: ϕ(D, I) =
{(t, It, at) ∈ D | I ⊆ It}. The size of the cover is called the support ψ(D, I) =
|ϕ(D, I)|.

Example 2. An example itemset database is given in Fig. 1a. I = {A,C} is an
example itemset; ϕ(D, I) contains transaction identifiers {1, 2, 5}, so ψ(D, I) = 3.
The set of frequent itemsets with support at least 4 is {∅, {A}, {B}, {C}, {E},
{B,E}} (Fig. 1b).

In the remainder of this paper, for the sake of simplicity we denote ϕ(D, I) as
ϕ(I) when no ambiguity regarding D is possible. Similarly, we will use ϕ+(I) to

Finding Probabilistic Rule Lists using MDL 71

A B C E

1 1 1 1 1 +

2 1 1 1 1 −
3 1 1 0 1 +

4 0 1 1 1 −
5 1 0 1 0 −

D Itemset Database

(a)

{
φ
}
: 5

{
A

}
: 4

{
B

}
: 4

{
C

}
: 4

{
E

}
: 4

{
A, B

}
: 3

{
A, C

}
: 3

{
A, E

}
: 3

{
B, C

}
: 3

{
B, E

}
: 4

{
C, E

}
: 3

{
A, B, C

}
: 2

{
A, B, E

}
: 3

{
A, C, E

}
: 2

{
B, C, E

}
: 3

{
A, B, C, E

}
: 2

Frequent Closed Free Equivalence Class Subset relation Shared cover

(b)

Fig. 1. (a) Itemset Database with positive/negative classes; (b) Powerset lattice of D
with equivalence classes.

denote ϕ(D+, I) where D+ = {(t, It, at) ∈ D | at = +} and likewise for ϕ−(I)
with at = −.

We are interested in finding a list of rules. Each itemset in the list has a cover
that is defined as follows.

Definition 3 (Coverage of an itemset in a sequence). Assume the sequence
of itemsets 〈I(1), . . . , I(k)〉, the coverage of an itemset I(j) over D is its cover in
the database of transactions not covered by the previous itemsets I(1), I(2), . . . ,
I(j−1):

Φ(D, 〈I(1), . . . , I(k)〉, j) = ϕ
(
D \

(
ϕ(I(1)) ∪ ϕ(I(2)) ∪ · · · ∪ ϕ(I(j−1))

)
, I(j)

)
(1)

with Φ(D, 〈I(1), . . . , I(k)〉, 1) = ϕ(D, I(1)).

Note that in a rule list R, the last itemset is always I(k) = ∅, which is the
default rule or final else-case. This empty set inherently covers all instances not
covered by any of the k − 1 previous rules since ϕ(D, ∅) = {(t, It, at) ∈ D | ∅ ⊆
It} = D for any D.

Given a rule list R =
〈
(I(1), p(1)), (I(2), p(2)), · · · , (I(k), p(k))

〉
we will denote

by Φ(D,R, j) the cover of the jth itemset in the rule list’s sequence of itemsets.
If no ambiguity is possible we simply write Φj . Similarly Φ+

j = Φ(D+,R, j) and
Φ−

j = Φ(D−,R, j).
When creating a rule list R from a dataset D given F , we define the proba-

bility p(j) of a rule I(j) as p(j) = P
(
at = +|(t, It, at) ∈ Φ(D,R, j)

)
=

|Φ+
j |

|Φ+
j |+|Φ−

j | .

Example 3. Assume the running example database (Fig. 1a) and a rule list with
corresponding sequence of itemsets

〈
{A,B,C}, {C}, ∅

〉
. The coverage of I(2) =

{C} over D is Φ2 = {4, 5}, instead of {1, 2, 4, 5}, as the transactions 1 and
2 were already covered by I(1) = {A,B,C}. Its probability is hence p(2) =

72 J. O. R. Aoga et al.

|Φ+
2 |

|Φ+
2 |+|Φ−

2 | = 0
0+2 = 0, which indicates that no positive transaction was observed

with the condition of the rule, after observing the previous rules.

At this stage, an open question is how to evaluate the quality of a probabilistic
rule list R. In this work, we propose to evaluate how well the rule list allows to
compress the values for the class attribute observed in a training dataset. For
this, we will use the Minimum Description Length (MDL) principle.

4.2 Minimum Description Length Encoding of Rule Lists

The Minimum Description Length (MDL) principle [5,8] is a general method
for inductive inference, based on the idea that ‘the more we can compress the
data, the more there are regularities in it and the more we learn from it ’ [5].
MDL allows making a trade-off between the complexity of rules and their ability
to capture the distribution of the class attribute. To do this, we use a two-part
code that minimizes the number of bits needed to encode the data with a model,
as well as the number of bits to encode the model itself. As stated earlier, the
focus in this work is on a code that favors simplicity.

Let M = M1,M2, . . . be a list of model candidates. In two-part MDL, the
best model M ∈ M to capture information in a given database D is the one which
minimizes the code length L(M) = Lmodel(M)+Ldata(D|M), where Lmodel(M)
is the length, in bits, of the description of the model itself and Ldata(D|M) the
length of the data, in bits, when it is encoded with this model.

In our case, models correspond to rule lists of the form R =
〈
(I(1), p(1)),

(I(2), p(2)), · · · , (I(k), p(k))
〉

with I(j) ∈ F ,∀j ∈ 1, . . . , k − 1, I(k) = ∅ and p(j) =
|Φ+

j |
|Φ+

j |+|Φ−
j | . We thus need to define an encoding with Lmodel(R) an encoding of

the rule list, and Ldata(·|R) such that Ldata(D|R) can be interpreted as the
coding length of the distribution of +/−’s in D when it is encoded with R. The
best rule list is then the one that minimizes the total length L(R):

R∗ = argmin
R∈L(F∗·∅)

Ldata(D|R) + Lmodel(R), (2)

where we identified R by its sequence of itemsets to ease notation; each itemset
has a probability p(j) as defined earlier.

We now first discuss how we encode R when k ≤ 2 (i.e. R =
〈
(∅, p(1)

〉
or

R =
〈
(I(1), p(1)), (∅, p(2))

〉
) and then generalize to the case k > 2.

Case k = 2: To understand the computation of the coding length of R, we first
show how we can encode a target attribute if we have an itemset I and then a
default rule. Given a rule (I(1), p(1)), we assume that the positive and negative
labels in ϕ(D, I(1)) follow a Bernoulli distribution, with a probability p(1) for the
class label. The probability density of the labels according to I is hence (omitting
D from the notation):

Pr

(
at = + | ϕ(I)

)
= (p(1))|ϕ+(I)|(1 − p(1))|ϕ−(I)|. (3)

Finding Probabilistic Rule Lists using MDL 73

Theorem 1 (Local Coding length of data). Using Shannons Noiseless
Channel Coding Theorem [3] the number of bits needed to encode the class labels
of D using I is at least the logarithm1 of the probability density of the class labels
in D given I: Llocal data(D|I) = − log Pr

(
at = + | ϕ(D, I)

)
. Using (3) we can

hence encode each positive label at a cost of

Llocal data(D|I) = Q(ϕ+(I), ϕ−(I)) + Q(ϕ−(I), ϕ+(I)), (4)

with Q(a, b) = −a log a
a+b .

We will use this bound, which can be approximated closely using arithmetic
coding, as the coding length for the class labels. Based on the above theorem
and assuming a rule list is R =

〈
(I(1), p(1)), (∅, p(2))

〉
, the coding length of Φ is

Ldata(D|R) = Llocal data(D|I(1)) + Llocal data(D \ ϕ(I(1))|∅) (5)

Example 4. Assume the rule list is R =
〈
({A,B,C}, 0.50), (∅, 0.33)

〉
and

that our database D (Fig. 1a) is duplicated 256 times. Llocal data(D|{A,B,C})
= −256 log 0.5 − 256 log(1 − 0.5) = 512bits and Llocal data(D \ ϕ(I1)|∅) =
−256 log 0.33 − 512 log(1 − 0.33) = 705bits; then Ldata(D|R) = 1217bits.

When we encode the class label using this model, we do not only need to
encode the data, but also the model itself.

Definition 4 (Length of the model). Assume a rule list R =〈
(I(1), p(1)), (∅, p(2))

〉
, we represent (I(1), p(1)) as a string “m1 I

(1)
1 . . . I

(1)
m1 n+

1 ”
where, m1 = |I(1)| is the number of items in I(1), followed by the identifiers of
each item in I(1) and finally the number of positive labels in D: n+

1 = |ϕ+(I(1))|.
The length, in bits, to encode this string is:

Llocal model(I(1)) = log m
︸ ︷︷ ︸
|I(1)|

+ |I(1)| log m
︸ ︷︷ ︸
I
(1)
1 ... I

(1)

|I(1)|

+ log n
︸︷︷︸

n+
1

, (6)

where log m bits are required to represent m1, as m1 ≤ m = |I|, and also log m
bits for each item identifier plus log n bits to encode n+

1 . Coding n−
1 is unneces-

sary as it can be retrieved from the data using the itemset: n−
1 = |ϕ(D, I(1))|−n+

1 .
From there, assuming that the itemset database D and the set of items I are
known, one can easily retrieve the coverage of I(1) and then compute the proba-
bility p(1) using the number of positive labels n+

1 . The coding length of the model
R is Lmodel(R) = Llocal model(I(1)) + Llocal model(∅).

Example 5. We continue on Example 4. To encode the model, the string
“3 A B C 256” is encoded: Llocal model({A,B,C}) = log 4 + 3 log 4 + log 1280 =
19bits similarly Llocal model(∅) = log 4 + 0 log 4 + log 1280 = 13bits2 then
Lmodel(R) = 32bits. Together with Ldata(D|R) = 1217bits computed in Exam-
ple 4, the total coding length of R is L(R) = 1217 + 32 = 1249bits.
1 All logarithms are to base 2 and by convention, we use 0 log 0 = 0.
2 Note that by convention the size of the default rule is m2 = 0.

74 J. O. R. Aoga et al.

Case k > 2: Assuming now a rule list R =
〈
(I(1), p(1)), (I(2), p(2)), · · · , (I(k),

p(k))
〉

with k > 2. For k > 1 we need to modify the definition of Llocal data such
that it does not consider parts of the data covered by a previous itemset in the
sequence. Hence,

Llocal data(D|I(j)) = Q(Φ+
j , Φ−

j) + Q(Φ−
j , Φ+

j) (7)

and the total coding length is the summation of local lengths:

Ldata(D|R) =
k∑

j=1

Llocal data(D|I(j)); (8)

the coding length of the model is:

Lmodel(R) = log n +
k−1∑

j=1

(
log m + mj log m + log n

)
(9)

To encode the size of R itself, we need log n bits. Because all rule list include
the default rule, we omit these log m + log n bits.

Example 6. Fig. 2 shows example rule lists with coding lengths.

4.3 Coding Length Related to Likelihood and Quality of Rule Lists

The coding length of the class labels given a model R is the number of bits
needed to encode the class labels with R. As a consequence of our choice to use
Shannon’s theorem, this coding length corresponds to the (-log) likelihood of the
class labels according to the model. In the other words, if we would minimize
the coding length of the data only, we would maximize the likelihood of the data
under the model. However, as stated earlier, in this work our aim is also to find
small and interpretable rule lists. We choose our code such that a relatively large
weight is given to the complexity of the model.

Assuming the database of Example 4, the size of the original data is 5 ×
256 = 1280. Encoding this data with R1 =

〈
({A,B,C}, 0.50), (∅, 0.33)

〉
we

obtained Ldata(D|R1) = 1217bits, Lmodel(R1) = 32bits and in total L(R1) =
1249bits. Instead, when we encode this data with R2 =

〈
(∅, 0.40)

〉
we obtain

Ldata(D|R2) = 1243bits, Lmodel(R2) = 6bits and in total L(R2) = 1249bits.
Looking at likelihoods only, one can see that R1 is a better model for representing
this data, as it captures more information than R2. However, in total, it is not
preferable over R2, since it is more complex to encode. The model coding length
penalizes the likelihood and ensures a simple model is preferred.

For our example, the only way to improve R1 is to add (if possible)
a new rule that reduces the error made by R1 by assuming that the part
not covered by {A,B,C} is for the default rule. Thus, by adding the item-
set {C} to R1, which covers all 0s still present, we obtain the best model
R =

〈
({A,B,C}, 1

2), ({C}, 0
2), (φ, 1

1)
〉

with L(R) = 546bits since the default
rule now covers only remaining 1s.

Finding Probabilistic Rule Lists using MDL 75

4.4 A Greedy Algorithm

The probabilistic rule list that minimizes the MDL score (2) can be constructed
greedily, extending the list by one rule at each step. Greedy algorithms are known
to be efficient and approximate optimal solutions well in other rule learning tasks.

Algorithm 1 shows a greedy algorithm that starts with empty rule list R, and
then iteratively finds within a given set of patterns the rule that minimizes the
coding length. The local best rule is obtained by considering at each iteration
the sub-problem of finding the optimal rule list with k ≤ 2 on the remaining
data. This corresponds to finding the itemset I(1) such that the coding length is
smallest (Line 3). Once the local best rule is selected the rule list is updated in
Line 6 and in Line 7; its coverage is removed from D. The process is then run
again until D is empty or the default rule is selected.

Example 7. Assuming our running example, at the first iteration of the greedy
algorithm, the minimum code-length L(〈{A,B}, ∅〉) = 722bits and then it is the
greedy solution (See Fig. 2).

〈
(φ, 2

5)
〉

1243bits

〈
({A}, 2

4), (φ, 0
1)

〉

1039 + 0bits

〈
({A, B, C}, 1

2), (φ, 1
3)

〉

531 + 706bits

〈
({C}, 1

4), (φ, 1
1)

〉

846 + 0bits

〈
({B, C}, 1

3), (φ, 1
2)

〉

722 + 512bits

〈
({B}, 2

4), (φ, 0
1)

〉

1039 + 0bits

〈
({A, B}, 2

3), (φ, 0
2)

〉

722 + 0bits

〈
({A, C}, 1

3), (φ, 1
2)

〉

722 + 512bits

〈
({A, B, C}, 1

2), ({A}, 1
2), (φ, 0

1)
〉

531 + 527 + 0bits

〈
({A, B, C}, 1

2), ({C}, 0
2), (φ, 1

1)
〉

531 + 15 + 0bits

〈
({A, B, C}, 1

2), ({E}, 1
2), (φ, 0

1)
〉

531 + 527 + 0bits

Greedy Solution

Optimal Solution

Fig. 2. Finding greedy and optimal solution base on the example of Fig. 1.

The greedy algorithm may be sub-optimal. For instance it fails to discover
the L(〈{A,B,C}, {C}, ∅〉) = 546bits on our example.

4.5 Branch-and-Bound Algorithm

For finding solutions that are better than the greedy solution, we propose a best-
first branch-and-bound algorithm that can prune away candidates based on a
lower-bound on the MDL value. Each node in the search tree is a partial rule
list, consisting of a sequence of rules without the default rule. The children of
each node correspond to appending one additional rule from F to the partial
rule list.

Algorithm 2 shows the pseudo-code of this branch-and-bound expansion
search. For clarity we omit the probabilities in the rule list representation. The
algorithm receives as input a list of rule candidates F and database D. A priority
queue is used to store the set of rule lists not yet expanded, ordered by the code-
length obtained when extending the partial rule with the default rule (best-first

76 J. O. R. Aoga et al.

strategy). The initial best rule is the default rule (Line 2) and the empty rule list
is added as initial search node. As long as the queue is not empty, the priority
queue is dequeued and the returned partial rule list is expanded (Line 6). Each
new partial rule list is evaluated as if it was completed with the default rule (∅)
and checked whether it is better than the current best rule list (Lines 7, 8).

Before adding the new partial rule list to the queue, a lower-bound on the
code length is computed, that is, an optimistic estimate of the code length achiev-
able (see next section). Only if the lower-bound is better than the current best
value, the rule list is added to the queue (Lines 9, 10). If not, this part of the
search tree is effectively pruned.

Algorithm 1: Greedy(F ,D)

1 R ← 〈〉
2 do
3 I∗ ← argmin

I∈F∗
L(〈(I, p(1)), (∅, p(2))〉)

4 if L(〈(I, p(1)), (∅, p(2))〉) ≥ L(〈(∅, p(1))〉) then
5 I∗ ← ∅
6 R ← R ∪ (I∗, p(1)) � Add this rule to the rule list
7 D ← D \ ϕ(I∗)
8 while I∗ �= ∅;
9 return R

Algorithm 2: Branch-and-bound (F ,D)

1 PQ : PriorityQueue � Partial rule lists ordered by code-length when
adding default rule

2 bestR ← 〈∅〉, best ← L(bestR)
3 PQ.enqueue-with-priority(〈〉, L(〈∅〉))
4 while R ← PQ.dequeue() do
5 for each I ∈ F \ R do
6 R′ ← 〈R, I〉
7 if L(〈R′, ∅〉) < best then
8 bestR = 〈R′, ∅〉, best ← L(bestR)

9 if lower-bound(R′) < best then
10 PQ.enqueue-with-priority(R′, L(〈R′, ∅〉))

11 return bestR

Lower-bound on a partial rule list A good lower-bound is difficult to com-
pute since there is an exponential number of rules that can be added to the list.
Because the rule list itself is already evaluated in the algorithm, we are seeking a
lower-bound on any expansion of the rule list. The coding length is determined
by L(R) = Lmodel(R) + Ldata(D|R) according to (8) and (9).

The most optimistic expansion is hence achieved with the smallest pos-
sible expansion of the rule list yielding the greatest reduction of the coding

Finding Probabilistic Rule Lists using MDL 77

length for the data. In the best case, this is a rule of length one (|I(j+1)| = 1)
that perfectly separates the positives from the negatives. In this case, the
additional code length of the rule list corresponds to a rule of length one:
Llocal model(Ij+1) = log m+1 log m+log n and the addition to the code length of
the data is: Llocal data(D|Ij+1) = Q(|Φ+

j+1|, 0) + Q(0, |Φ−
j+1|) = 0 with the data

coding length of the default rule also being 0.
While such a rule expansion may not exist, the resulting value is a valid

lower-bound on the code length achievable by any expansion of the partial rule
list. This is because any expansion has to be greater than or equal in size to 1,
and any expansion will achieve at best a data compression of 0.

Implementation details Choice of F . The complexity of Algorithm 2 is
O(|F|d) where d is the depth in the best-first search tree. The efficiency of
the algorithm strongly depends on |F| since in the worst case the number of
nodes is in O(|F||F|).

To control the size of F one can consider all frequent itemsets with a given
minimum frequency threshold. Because we are interested in a small coding
length, we propose to further restrict the set of patterns to the set of frequent
free itemsets [9]. Known also as generators, a free itemset is the smallest itemset
(in size) that does not contain a subset with the same cover: if I is free, �J ⊂ I
s.t. ϕ(I) = ϕ(J). In fact, there may be multiple free itemsets with the same
cover and for our purposes just a single one of them is sufficient. In Fig. 1, all
the itemsets in a double bordered rectangle are free.

Set representation as bitvectors. Each candidate itemset in F is represented
by the tuple (set of items, set of covered transactions). Operations on sets such as
union, intersection, count, ... being at the core of our implementation, they must
be implemented very effectively. For this, we represent each set by bitvectors
and all the cover computation are bitwise operations on bitvectors. A rule list
is represented by an array of itemset indices into F . From the index, one can
identify the itemset and its coverage. During the search process at each iteration,
a new itemset I is added to the partial rule list (Line 6 of Algorithm 2). This
operation involves updating the cover of the rule list computed using (1) which
depends on all the transactions already covered. To do this effectively, we keep
the transactions already covered in a single bitvector T

(j)
covered = ϕ(I(1))∪ϕ(I(2))∪

· · · ∪ ϕ(I(j)). The coverage after the addition of a new itemset I(j+1) is then

Φ(D,R ∪ I(j+1), j + 1) = ¬T
(j)
covered ∩ ϕ(I(j+1)).

5 Experiments

We evaluate our approach from three perspectives: (i) the quality of obtained
solutions: how expressive and concise are the rule lists; what is the log-likelihood
of the data given the lists; (ii) the accuracy and sensibility of our method under
various parameters, evaluated using area under ROC curves (AUC), (iii) the
predictive power of our method, using AUC as well.

78 J. O. R. Aoga et al.

Table 2. Benchmark features

Table 3. Total code lengths for several datasets (θ is the minimum support for F)

Note that we add a comparison with other classification methods to properly
position our work; our aim is not to build a classification model that is more
accurate on commonly used datasets.

Datasets. We use nine annotated datasets publicly available from the CP4IM 3

and UCI4 repositories. We also used the door dataset as described in the intro-
duction (Example 1). Furthermore, we used the Gallup dataset [2], from a project
with the same name on migratory intentions. This data set is not publicly avail-
able, but can be purchased. Our objective here is to understand the migratory
intentions between two countries by considering the socio-parameters of educa-
tion, health, security and age. All these datasets have been preprocessed and
their characteristics are given in Table 2.

Algorithms. We compare with popular tree-based classification methods such
as Random Forests (RF) and decision trees (CART) from the scikit-learn library,
as well as the rule-learning methods JRIP (Weka version of RIPPER) and SBRL
[11] available in R CRAN (see Sect. 2). We run SBRL with the default setting
(number of iterations set to 30.000, number of chains 10 and a lambda parameter
of 10).

Protocols. All experiments were run in the JVM with maximum memory set
to 8GB on PCs with Intel Core i5 64bits processor (2.7GHz) and 16GB of RAM
running MAC OS 10.13.3. Our approach is called PRL (for probabilistic rule
lists) and is implemented in Scala. The candidate itemsets F are the frequent
free itemsets. PRL name can be followed by g for greedy or c for complete branch-
and-bound. Evaluation of AUC is done using stratified 10-fold cross-validation.
For the reproducibility of results, all our implementations are open source and
available online5.
3 https://dtai.cs.kuleuven.be/CP4IM/datasets/.
4 http://archive.ics.uci.edu/ml/datasets.html.
5 https://projetsJOHN@bitbucket.org/projetsJOHN/mdlrulesets.

https://dtai.cs.kuleuven.be/CP4IM/datasets/
http://archive.ics.uci.edu/ml/datasets.html
https://projetsJOHN%40bitbucket.org/projetsJOHN/mdlrulesets

Finding Probabilistic Rule Lists using MDL 79

Compression power of PRL. Table 3 gives the total code length obtained
for the greedy PRLg and the complete branch-and-bound PRLc approaches. As
can be observed, the compression ratio (total code length/size of the datasets)
is substantial. For instance, it is 10% for the dermatology dataset. For 8/11
instances PRLc discovers a probabilistic rule list compressing better than the
one obtained with PRLg. The gain obtained with PRLc is sometimes substantial,
for instance on the krvskp and mushroom data sets.

Impact of the parameters. The set of possible itemsets F to create the rule
list is composed of the frequent free itemsets generated with a minimum support
threshold θ. Fig. 3a reports the compression ratio for decreasing values of θ.
As expected the compression ratio becomes smaller whenever θ decreases. The
reason is that the set F is growing monotonically, allowing more flexibility to
discover a probabilistic rule list that compresses well.

Both the greedy and the complete branch-and-bound algorithms can easily
limit the size of the probabilistic rule list they produce. This is done by stopping
the expansion of the list beyond a given size limit k. Figure 3b reports the
compression ratio for increasing values of k. As expected the compression ratio
becomes smaller whenever k increases for PRLc and stabilizes at some point when
the limit k becomes larger than the length of the optimal rule list. Surprisingly
this is not necessarily the case for the greedy approach that is not able to take
advantage of longer rule lists on this benchmark.

Regarding the execution time according to the size of the rules, as shown in
Fig. 3c, with a time limit of 10 min, we can see that the greedy approach is more
scalable. PRLc and SBRL execution time evolves exponentially, PRLc being
faster than SBRL though. Note that as soon as the optimal solution is found, in
the case of PRLc, the execution time does not increase so much anymore. The
reason is that most of the branches are cut-off by the branch-and-bound tree
exploration beyond that depth limit.

335

340

345

350

10203040
Minimum support θ (%)

C
od

in
g−

le
ng

th
 (

bi
ts

)

Methods PRLc PRLg

(a) Soybean

1200

1500

1800

2100

1 2 3 4 5 6 7 8 9 10
Size of all rulej in rule−list

C
od

in
g−

le
ng

th
 (

bi
ts

)

Methods PRLc PRLg

(b) Mushroom (θ = 20%)

0

200

400

1 2 3 4 5 6 7 8 9 10
Size of all rulej in rule−list

T
im

e
(s

)

Methods PRLc PRLg SBRL

(c) Mushroom (θ = 20%)

Fig. 3. Sensibility of PRL for several settings using mushroom and soybean datasets

Comparison of PRL with existing rule learning algorithms. We compare
the rule list produced by our approaches (PRLg and PRLc) and by SBRL [11].
Figure 4a gives the code length for the model and for the data (class labels) for

80 J. O. R. Aoga et al.

various datasets for the different approaches. Note that the code length for the
data corresponds to the log-likelihood of the class labels under the rule list. From
the rule lists obtained using the training set, the probability (to be positive) of
each transaction in the test set is predicted and the coding lengths are computed
using the (8) and (9). The reported values are averaged over 10 folds. The model
coding length represents the size of the encoding of the initial rule list.

One can see that the PRL approaches are competitive with SBRL. On Fig. 4a,
it often obtains the smallest data coding length except for the mushroom dataset.
The reason is that the test set of mushroom is classified perfectly by SBRL. The
rule lists produced are arguably shorter with PRLg and PRLc than with SBRL.

The mushroom dataset is investigated further in Fig. 4b and 4c. The data
coding length and the area under the ROC curve are computed for increasing
prefixes of the lists. As we can see, at equal prefix size (k < 5) our approach
obtains better likelihood and is more accurate than SBRL. Then beyond k ≥ 5
SBRL continues to improve on accuracy while PRLg and PRLc stagnates. The
lists indeed have reached their optimal length at k = 5. This evolution is a clear

Ann. Derm. Gall. mush. pr−tu.

PRLc
PRLg

SBRL
PRLc

PRLg
SBRL

PRLc
PRLg

SBRL
PRLc

PRLg
SBRL

PRLc
PRLg

SBRL300

200

100

0

1200

1000

800

600

400

200

Methods

C
od

in
g−

le
ng

th
 (

bi
ts

)

Coding−length of: data model

(a)

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10
Size of Rule−lists

C
od

in
g−

Le
ng

th
 o

f d
at

a
(b

its
)

Methods PRLc PRLg SBRL

(b)

0.900

0.925

0.950

0.975

1.000

1 2 3 4 5 6 7 8 9 10
Size of Rule−lists

A
re

a
un

de
r

R
O

C

Methods PRLc PRLg SBRL

(c)

Fig. 4. (a) Comparison of coding length in average among PRL (g,c) and SBRL for
different test datasets and (b and c) evolution of the coding length of data only (top)
and the AUC (bottom) for several rule lists size, for mushroom dataset, for all 10-folds
(θ = 10%, |I| = 2).

Finding Probabilistic Rule Lists using MDL 81

Fig. 5. Comparison of Area under ROC among different methods and four datasets,
for all 10-folds (θ = 10%, |I| = 1).

illustration of the difference between the type of rule lists produced by SBRL
and our approach. While SBRL lists are more focused on classification, MDL-
based lists are a trade-off between the data-coding length (classification) and
the complexity of lists (model code length).

Prediction power of PRL and other supervised learning approaches.
Although our approach is not designed to generate the best rule list for classifi-
cation, we evaluate its prediction power in the light of well-known classification
methods: CART, RF, SBRL and JRIP using 10-fold cross-validation and default
settings. For PRL the classification is done by associating with each transaction
the probability that its label is positive. This probability is that of the first rule of
the rule list (obtaining from the training set) that matches with this transaction.
The results are shown in Fig. 5.

In general, the AUC of our methods are greater than 0.6 and the optimal
solution always has a greater or equal accuracy compared to the greedy approach.
The difference becomes significant on databases like Krvskp where the difference
in compression ratio is also high (Fig. 3).

State-of-the-art methods are often more accurate, except in unbalanced
datasets (Gallup, primary-tu.) where our approaches are very competitive. One
can see that rule based methods do better on very unbalanced databases like
Gallup.

6 Conclusion

This work proposed a supervised rule discovery task focused at finding proba-
bilistic rule lists that can concisely summarize a boolean target attribute, rather
than accurately classify it. Our method is in particular applicable when the target
attribute corresponds to rare events. Our approach is based on two ingredients,
namely, the Minimum Description Length (MDL) principle, and a branch-and-
bound search strategy. We have experimentally shown that obtained rule lists are
compact and expressive. Future work will investigate the support of multivariate
target attributes (> 2 classes) and new types of patterns, such as sequences.

82 J. O. R. Aoga et al.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. Int. Conf. Manag. Data (SIGMOD) 22(2), 207–216 (1993)

2. Esipova, N., Ray, J., Pugliese, A.: Number of potential migrants worldwide tops
700 million. Gallup, USA (2018)

3. Fano, R.M.: The transmission of information. Massachusetts Institute of Technol-
ogy, Research Laboratory of Electronics Cambridge, Cambridge (1949)

4. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer
Publishing Company, Incorporated (2014)

5. Grünwald, P.D.: The minimum description length principle. MIT press, Cambridge
(2007)

6. Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints. IEEE
Trans. Knowl. Data Eng. 25(2), 402–418 (2013)

7. Lavrac, N., Kavsek, B., Flach, P.A., Todorovski, L.: Subgroup discovery with CN2-
SD. J. Mach. Learn. Res. 5, 153–188 (2004)

8. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

9. Szathmary, L., Napoli, A., Kuznetsov, S.O.: ZART: a multifunctional itemset min-
ing algorithm. In: Eklund, P.W., Diatta, J., Liquiere, M. (eds.) Proceedings of the
5th International Conference on Concept Lattices and Their Applications, CLA
2007. vol. 331 (2007)

10. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Min. Knowl. Discov. 23(1), 169–214 (2011)

11. Yang, H., Rudin, C., Seltzer, M.: Scalable bayesian rule lists. In: Precup, D., Teh,
Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learn-
ing, ICML’17. Proceedings of Machine Learning Research, vol. 70, pp. 3921–3930.
PMLR (2017)

12. Zimmermann, A., Nijssen, S.: Supervised pattern mining and applications to classi-
fication. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 425–442.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07821-2 17

https://doi.org/10.1007/978-3-319-07821-2_17

	Finding Probabilistic Rule Lists using the Minimum Description Length Principle
	1 Introduction
	2 Related Work
	3 The Probabilistic Rule List Mining Problem
	4 Discovering Probabilistic Rule Lists
	4.1 Coverage and Probability of a Rule List
	4.2 Minimum Description Length Encoding of Rule Lists
	4.3 Coding Length Related to Likelihood and Quality of Rule Lists
	4.4 A Greedy Algorithm
	4.5 Branch-and-Bound Algorithm

	5 Experiments
	6 Conclusion
	References

