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Preface

The 21st International Conference on Discovery Science (DS 2018) was held in
Limassol, Cyprus, during October 29–31, 2018. The conference was co-located with
the International Symposium on Methodologies for Intelligent Systems (ISMIS 2018),
which was already in its 24th year. This volume contains the papers presented at the
21st International Conference on Discovery Science, which received 71 international
submissions. Each submission was reviewed by at least three committee members. The
committee decided to accept 30 papers. This resulted in an acceptance rate of 42%.
Invited talks were shared between the two meetings. The invited talks for DS 2018
were “Automating Predictive Modeling and Knowledge Discovery” by Ioannis
Tsamardinos from the University of Crete, and “Emojis, Sentiment, and Stance in
Social Media” by Petra Kralj Novak from the Jožef Stefan Institute. The invited talks
for ISMIS 2018 were “Artificial Intelligence and the Industrial Knowledge Graph” by
Michael May from Siemens, Germany, “Mining Big and Complex Data” by
Sašo Džeroski from the Jozef Stefan Institute, Slovenia, and “Bridging the Gap
Between Data Diversity and Data Dependencies” by Jean-Marc Petit from INSA Lyon
and Université de Lyon, France. Abstracts of all five invited talks are included in these
proceedings.

We would like to thank all the authors of submitted papers, the Program Committee
members, and the additional reviewers for their efforts in evaluating the submitted
papers, as well as the invited speakers. We are grateful to Nathalie Japkowicz and
Jiming Liu, ISMIS program co-chairs (together with Michelangelo Ceci), for ensuring
the smooth coordination with ISMIS and myriad other organizational aspects. We
would also like to thank the members of the extended DS Steering Committee (con-
sisting of past organizers of the DS conference) for supporting the decision to organize
DS jointly with ISMIS this year, and in particular Sašo Džeroski for supporting us in
bringing this decision to life. We are grateful to the people behind EasyChair for
making the system available free of charge. It was an essential tool in the paper
submission and evaluation process, as well as in the preparation of the Springer pro-
ceedings. We thank Springer for their continuing support for Discovery Science. The
joint event DS/ISMIS 2018 was organized under the auspices of the University of
Cyprus. Financial support was generously provided by the Cyprus Tourism Organi-
zation and Austrian Airlines. Finally, we are indebted to all conference participants,
who contributed to making this momentous event a worthwhile endeavor for all
involved.

October 2018 Larisa Soldatova
Joaquin Vanschoren
Michelangelo Ceci

George Papadopoulos
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Emojis, Sentiment and Stance in Social Media

Petra Kralj Novak

Jozef Stefan Institute

Abstract. Social media are computer-based technologies that provide means of
information and idea sharing, as well as entertainment and engagement handly
available as mobile applications and websites to both private users and busi-
nesses. As social media communication is mostly informal, it is an ideal envi-
ronment for the use of emoji. We have collected Twitter data and engaged 83
human annotators to label over 1.6 million tweets in 13 European languages
with sentiment polarity (negative, neutral, or positive). About 4% of the anno-
tated tweets contain emojis. We have computed the sentiment of the emojis from
the sentiment of the tweets in which they occur. We observe no significant
differences in the emoji rankings between the 13 languages. Consequently, we
propose our Emoji Sentiment Ranking as a European language-independent
resource for automated sentiment analysis. In this talk, several emoji, sentiment
and stance analysis applications will be presented, varying in data source, topics,
language, and approaches used.



Automating Predictive Modeling
and Knowledge Discovery

Ioannis Tsamardinosi

University of Crete

Abstract. There is an enormous, constantly increasing need for data analytics
(collectively meaning machine learning, statistical modeling, pattern recogni-
tion, and data mining applications) in a vast plethora of applications and
including biological, biomedical, and business applications. The primary bot-
tleneck in the application of machine learning is the lack of human analyst
expert time and thus, a pressing need to automate machine learning, and
specifically, predictive and diagnostic modeling. In this talk, we present the
scientific and algorithmics problems arising from trying to automate this pro-
cess, such as appropriate choice of the combination of algorithms for prepro-
cessing, transformations, imputation of missing values, and predictive modeling,
tuning of the hyper-parameter values of the algorithms, and estimating the
predictive performance and producing confidence intervals. In addition, we
present the problem of feature selection and how it fits within an automated
analysis pipeline, arguing that feature selection is the main tool for knowledge
discovery in this context.



Mining Big and Complex Data

Saso Dzeroski

Jozef Stefan Institute and Jozef Stefan International Postgraduate School,
Slovenia

Abstract. Increasingly often, data mining has to learn predictive models from
big data, which may have many examples or many input/output dimensions and
may be streaming at very high rates. Contemporary predictive modeling prob-
lems may also be complex in a number of other ways: they may involve
(a) structured data, both as input and output of the prediction process, (b) in-
completely labelled data, and (c) data placed in a spatio-temporal or network
context.

The talk will first give an introduction to the different tasks encountered
when learning from big and complex data. It will then present some methods for
solving such tasks, focusing on structured-output prediction, semi-supervised
learning (from incompletely annotated data), and learning from data streams.
Finally, some illustrative applications of these methods will be described,
ranging from genomics and medicine to image annotation and space
exploration.



Artificial Intelligence and the Industrial
Knowledge Graph

Michael May

Siemens, Munich, Germany

Abstract. In the context of digitalization Siemens is leveraging various tech-
nologies from artificial intelligence and data analytics connecting the virtual and
physical world to improve the entire customer value chain. The internet of things
has made it possible to collect vast amount of data about the operation of
physical assets in real time, as well as storing them in cloud-based data lakes.
This rich set of data from heterogeneous sources allows addressing use cases
that have been impossible only a few years ago. Using data analytics e.g. for
monitoring and predictive maintenance is nowadays in wide-spread use.

We also find an increasing number of use cases based on Deep Learning,
especially for imaging applications. In my talk I will argue that these techniques
should be complemented by AI-based approaches that have originated in the
knowledge representation & reasoning communities.

Especially industrial knowledge graphs play an important role in structuring
and connecting all the data necessary to make our digital twins smarter and more
effective. The talk gives an overview of existing and planned application sce-
narios incorporating AI technologies, data analytics and knowledge graphs
within Siemens, e.g. building digital companions for product design and con-
figuration or capturing the domain knowledge of engineering experts from
service reports using Natural Language Processing.



Bridging the Gap between Data Diversity
and Data Dependencies

Jean-Marc Petit

INSA Lyon and Universit de Lyon, France

Abstract. Data dependencies are declarative statements allowing to express
constraints. They turn out to be useful in many applications, for example from
database design (functional, inclusion, multi-valued, dependencies) to data
quality (conditional functional dependencies, matching dependencies, denial
dependencies,). Their practical impacts in many commercial tools acknowledge
their importance and utility. Specific data dependencies have been proposed to
take into account data diversity encountered in practice, i.e. inconsistency,
uncertainty, heterogeneity. In this talk, I will introduce the main ingredients
required to unify most of data dependencies proposed in the literature. Two
approaches will be presented: The first one is a declarative query language,
called RQL, which is a user-friendly SQL-like query language devoted to data
dependencies. The second one is to study structural properties on data domains
to define data dependencies through a lattice point of view.
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Addressing Local Class Imbalance
in Balanced Datasets with Dynamic

Impurity Decision Trees

Andriy Mulyar and Bartosz Krawczyk(B)

Department of Computer Science, Virginia Commonwealth University,
401 West Main Street, Richmond, VA 23284, USA

{mulyaray,bkrawczyk}@vcu.edu

Abstract. Decision trees are among the most popular machine learning
algorithms, due to their simplicity, versatility, and interpretability. Their
underlying principle revolves around the recursive partitioning of the fea-
ture space into disjoint subsets, each of which should ideally contain only
a single class. This is achieved by selecting features and conditions that
allow for the most effective split of the tree structure. Traditionally, impu-
rity metrics are used to measure the effectiveness of a split, as ideally in a
given subset only instances from a single class should be present. In this
paper, we discuss the underlying shortcoming of such an assumption and
introduce the notion of local class imbalance. We show that traditional
splitting criteria induce the emergence of increasing class imbalances as
the tree structure grows. Therefore, even when dealing with initially bal-
anced datasets, class imbalance will become a problem during decision
tree induction. At the same time, we show that existing skew-insensitive
split criteria return inferior performance when data is roughly balanced.
To address this, we propose a simple, yet effective hybrid decision tree
architecture that is capable of dynamically switching between standard
and skew-insensitive splitting criterion during decision tree induction.
Our experimental study depicts that local class imbalance is embedded
in most standard classification problems and that the proposed hybrid
approach is capable of alleviating its influence.

Keywords: Machine learning · Decision trees · Splitting criteria
Class imbalance

1 Introduction

Among a plethora of existing machine learning and pattern classification algo-
rithms, decision trees have emerged as one of the most popular and widely-used.
While not being the algorithm with the highest predictive power (decision trees
are often considered weak classifiers), they offer a number of unique benefits.
They are interpretable, allowing for an explanation of the decision process that

c© Springer Nature Switzerland AG 2018
L. Soldatova et al. (Eds.): DS 2018, LNAI 11198, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-030-01771-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01771-2_1&domain=pdf
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leads to a given classification and the gleaning of valuable insights from the ana-
lyzed data [19]. They can handle various types of data, as well as missing values.
They are characterized by low computational complexity, making them a per-
fect choice for constrained or dynamic environments [12,20]. They are simple to
understand and implement in distributed environments [5], which allows them
to succeed in real-life industrial applications. Finally, they have gained extended
attention as an excellent base component in ensemble learning approaches [21].

The general idea behind decision tree induction lies in a sequential parti-
tioning of the feature space, until the best possible separation among classes is
achieved. Ideally, each final disjunct (leaf) should contain instances coming only
from a single class. This is achieved by using impurity metrics that measure how
well each potential split separates instances from distinct classes. While a perfect
separation may potentially be obtained, it may lead to the creation of small dis-
juncts (e.g., containing only a single instance) and thus to overfitting. Therefore,
stopping criteria and tree post-pruning are used to improve the generalization
capabilities of decision trees [10]. However, one must note that these mechanisms
are independent from the used splitting criterion and thus will not alleviate other
negative effects that may be produced when using standard impurity criteria.

In this paper, we focus on the issue that while each split created during deci-
sion tree induction aims at maximizing the purity of instances in a given disjunct
(i.e., ensuring they belong to the same class), the underlying class distributions
will change at each level. Therefore, we will be faced with a problem of local
class imbalance. We state that this is a challenge inherent to the learning pro-
cess. Contrary to the well-known problem of global class imbalance [14], we do
not know the class proportions a priori. They will evolve during decision tree
induction and thus global approaches to alleviate class imbalance, such as sam-
pling or cost-sensitive learning, cannot be used before tree induction. This also
prevents us from using any existing splitting criteria that are skew-insensitive
[2,7,16], as they do not work as well as standard ones when classes are roughly
balanced.

We propose to analyze in-depth the problem of local class imbalance during
decision tree induction and show that it affects most balanced datasets at some
point of classifier training. This affects the tree structure, leading to the creation
of bias in tree nodes towards the class that is better represented. In order to
show that this issue impacts the generalization capabilities of decision trees, we
propose a simple, yet effective hybrid decision tree architecture. Our proposed
classifier is capable of switching between standard and skew-insensitive splitting
metrics, based on the local class imbalance ratio in each given node. The main
contributions of this paper include:

– Analysis of the local class imbalance phenomenon that occurs during decision
tree induction.

– Critical assessment of standard and skew-insensitive splitting criteria.
– A hybrid decision tree architecture that is capable of dynamically switching

between splitting criteria based on local data characteristics.
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– A experimental study that showcases the need for analyzing emergence of
local class imbalance and its impact on the predictive power of decision trees.

2 Decision Tree Induction

In our work we adopt the following notation [3] for facilitation of discussion:
for a given node, n, in a binary decision tree there corresponds a class of splits
{s} defined on the instances in n. To keep decision tree induction tractable, this
class of splits is limited to only splits corresponding to axis-parallel hyperplanes
bi-partitioning the local decision space of n; we will discuss {s} under this restric-
tion. A goodness-of-split function, θ(s, n), is defined and the best split taken as
the s that maximizes θ(s, n). Denote the class proportions, or probabilities, (we
will use the terms interchangeably) p = (p0, p1) where p0 represents the propor-
tion of majority class instances in n and and p1 the minority - notice p0 ≥ p1
with equality when the class distribution of n is balanced. Finally, define the
local imbalance ratio nI =

p1
p0

as the proportion of minority class to majority

class instances in n. Notice, it is irrelevant what class a given instance belongs to
as we are only concerned with the distribution of classes amongst all instances
in n.

With this notation, we arrive at the characterization of a split s as sending
a proportion of instances PL to the left child resulting in class probabilities
pL = (p0,L, p1,L) and likewise a proportion of instances PR = 1 − PL to the
right child resulting in class probabilities pR = (p0,R, p1,R). This lends to the
definition [4] of goodness-of-split as:

θ(s, n) = φ (p) − PLφ (pL) − PRφ (pR)

where φ (p) is an impurity function.

Table 1. Definitions of impurity functions/criterion

Criterion Definition

Gini 1–
∑

pi∈p

p2
i

Entropy –
∑

pi∈p

pilog (pi)

Hellinger distance
1√
2

√ ∑

pi,pj∈p

(√
pi − √

pj

)2



6 A. Mulyar and B. Krawczyk

2.1 Impurity Criterion

An impurity function φ (p) : [0, 1]2 → [0, 1] measures the homogeneity of the
distribution of classes in the region defining p. When the subset of the decision
space defining p is completely homogeneous φ (p) = φ (1, 0) = φ (0, 1) = 0, and
when completely heterogeneous φ (.5, .5) = 1. φ (p) takes on all values between
these extrema and can, in the general multi-class case, be visualized as a strictly
convex function over the unit hyper-cube taking on zero’s at the vertices’s in its
range.

Common impurity functions found in decision tree learning include Gini and
Information Gain (Entropy) [4]. In recent literature, new criterion for impurity
have been formulated that exhibit properties favorable when addressing modern
challenges in Machine Learning; DKM [13] and Hellinger distance [7], in partic-
ular, have been shown to be impurity criterion highly robust to class imbalances
in p - the latter more-so than the former. Table 1 gives definitions for Gini,
Entropy, and normalized Hellinger distance but is by no measure an exhaustive
listing of impurity criterion present in literature.

3 Impurity Criteria and Class Imbalance

With the wide selection of impurity metrics present in literature, the question
arises: which metric is best? This no-free-lunch-esque query produces a response
not unlike that of the theorem - it depends. More precisely, the impurity metric
that best characterizes the homogeneity, or lack thereof, of the decision space
modeled by p is a function of the class distribution [8] of p; that is, we can use
the class imbalance statistic nI to determine the behavior of φ (p). We will now
describe a method developed in [8] for measuring the performance of various
incarnations of φ (p) under class imbalance and analyze two interesting cases:
Hellinger distance and Gini impurity.

Table 2. ROC surfaces of splitting criteria

Criterion TP node ROC surface eqn.

Gini
1 + c

tpr + c · fpr
· tpr · fpr

Hellinger
√(√

tpr − √
fpr

)2
+

(√
1 − tpr − √

1 − fpr
)2

3.1 ROC Surfaces

In [8], Flach proposes an extension to Receiver-Operator-Characteristic (ROC)
curve analysis that allows for the projection of decision tree node impurity cri-
teria into ROC space. With this tool, it is possible to directly compare the
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(a) Hellinger (b) Gini 1:1

(c) Gini 10:1 (d) Gini 20:1

Fig. 1. Skew surfaces of Hellinger distance and Gini impurity. Hellinger distance retains
a constant skew surface over all levels of class imbalance. (a) depicts a skew surface
of Hellinger distance, (b) depicts the Gini skew surface with c = 1 (completely class
balanced). (c) depicts the Gini skew surface with c = 1

10
(10:1 class imbalance). (d)

depicts the Gini skew surface with c = 1
20

. The iso-line diagonal of the above isosurfaces
corresponds to splits that result in complete class separation hence having an impurity
of zero (ie., completely pure).

theoretical performance of different impurity criteria under varying levels of
class imbalance in both an analytical and geometrical sense. Flach’s model is
constructed as follows: a given split s can be seen a sending a set of positive
predictions (true positive and false positive instances) to one child and a set
of negative predictions (true negative and false negative) instances to the other
child of a given node in a binary decision tree. In this manner, we can represent
the split with entries in a 2 × 2 contingency table (confusion matrix) and uti-
lize previously formulated methods [8] for projecting classifier evaluation metrics
into ROC space accordingly. The generalized split isosurface becomes:

m = Imp(pos, neg) − (tp + fp) · Imp

(
tp

tp + fp
,

fp

tp + fp

)

− (tn + fn) · Imp

(
tn

tn + fn
,

fn

tn + fn

)
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as derived from the definition of the goodness-of-split θ(s, n).
This model, as applied to Gini [8] and Hellinger distance [6], with normaliza-

tion yields Table 2 of functions (geometrically interpreted as surfaces in 3-space)
mapping the true positive rate (tpr), false positive rate (fpr), and class imbal-

ance c =
tn + fn

tp + fp
=

1
nI

to φ (p) for all possible splits of a decision node. We

direct the interested reader to [8] for an in-depth excursion into the geometric
interpretation of common machine learning metrics.

3.2 Gini Impurity Under Class Imbalance

The Gini impurity demonstrates a strong sensitivity to class skews when pro-
jected under Flach’s node impurity model. This can be visualized by plotting
the Gini isosurfaces for c = {1, 1

10 , 1
20}. Notice the striking difference between

Figs. 1b and c where isosurfaces for Gini are generated utilizing class imbalances
of 1 and 1

10 respectively. As class imbalance escalates, Gini isosurfaces become
flatter meaning that in a decision node that is highly homogeneous (appearing
closer to the edges of the isosurface) class skew forces the Gini criterion to give
a more biased estimate of node impurity [8].

3.3 Hellinger Distance Under Class Imbalance

The Hellinger distance, a skew insensitive impurity metric capturing the diver-
gence of the class distribution modeled by p [7], under Flach’s model produces
an identical isosurface under all values of nI . This is demonstrated analytically
by observing the corresponding equation for Hellinger distance in Table 2 is
not a function of c. Consequently, this means that the performance of Hellinger
distance as a decision tree impurity metric does not degrade in the presence of
increased class skew.

4 Local Class Imbalance in Balanced Datasets

When combating class imbalance, state-of-the-art approaches largely consider
only the global imbalance present across an entire dataset. In the context of deci-
sion trees, this a priori statistic does not take into account the new decision prob-
lems emerging during learning. During decision tree induction, a super-decision
problem is recursively bi-partitioned into sub-decision problems by means of
finding the partitions maximizing θ until a termination condition is reached.
The subsets of the decision space encapsulated by these sub-problems are not
guaranteed to have similar class distributions as that of their super-spaces in-
fact, it is easy to visualize class imbalance exacerbation in induced sub-spaces as
a consequence of the very goal of φ (p). The concept of local class imbalance, the
imbalance ratio at a given tree node captured by the statistic nI , reconciles the
discussion of class imbalance in the context of decision tree learning. In general,
a viable statistic or measure determining the difficulty of accurate tree induction
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Fig. 2. Average imbalance ratio at node depth in decision trees induced over benchmark
datasets. (a) depicts decision trees induced using Gini impurity, (b) depicts decision
trees induced using Hellinger distance.

over a dataset must take into account the ever changing class distributions at
each child node (sub-space), not only the root (entire decision space).

State-of-the-art approaches to dealing with imbalanced data would tradi-
tionally not be applied to a dataset without a global class imbalance [11]. A
consequence of the above observation concludes that, in the context of decision
tree learning, considering only global class imbalance is misguided as local class
imbalances can arise throughout the learning process.

4.1 Gini Impurity on Local Class Imbalance

It is known that splits maximizing θ when φ (p) is the Gini impurity have the
property of sending solely instances belonging to the majority class, p0, to one
child nL and all other instances to the other child nR [3]. This property, while
working towards the end goal of pure leaf nodes, drastically amplifies the class
imbalance present throughout the induction process. Breiman’s theoretical proof
of this property is shown empirically in Fig. 2a. Acknowledging scale, we observe
Gini decision trees initially induced on global class balanced datasets being forced
to calculate optimal splits on harshly local class imbalanced regions of the deci-
sion space.

4.2 Hellinger Distance on Local Class Imbalance

Decision Tree induction utilizing the Hellinger distance as φ (p) has been shown
to select splits independent from class skews in p [7]. We observe empirically in
Fig. 2b that this insensitivity to skew results in a stable local class imbalance
ratio throughout all levels of tree depth. We do note that in exchange for this
convenience, trees induced using Hellinger distance require many more levels to
arrive at pure child nodes.
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5 Hybrid Splitting Criteria for Decision Trees

In summary, it was concluded or referred that Gini impurity:

• Degrades in performance in the presence of even minor class imbalances.
• Induces large local class imbalances throughout tree induction regardless of

initial global class imbalance.
• Inclines towards large jumps in the separation of classes leading to shallower

trees but in turn causing the possible oversight of under-represented concepts.

while Hellinger distance:

• Does not degrade in performance in the presence of high levels of class imbal-
ance.

• Does not exacerbate local class imbalance throughout tree induction.
• Incorporates fine grain details of the decision space into split selection allow-

ing for the learning of under-represented concepts at the cost of deeper trees,
and intuitively speculating, the possible learning of noise and lack of gener-
alization.

We propose a hybrid decision tree that dynamically selects the impurity cri-
terion best suited for giving an earnest impurity measurement based on the
local class distribution induced by a potential split of the decision space local
to a node. By coupling the skew insensitivity and local class balancing nature
of the Hellinger distance with Gini impurities local class imbalancing but excel-
lent large-scale class separating ability, we achieve a dynamic splitting criterion
that increases classification performance over the utilization of a single impurity
metric whilst having no effect on induction complexity.

Formally, when considering a possible split s defining two prospective children
nL and nR over the decision space of a node n we define the dynamic impurity
criterion:

φD (p, α) =

{
φH (p) nc,I ≥ α

φG (p) otherwise

where nc ∈ {nL, nR}, nc,I =
pc,0

pc,1
(the proportion of majority to minority

class instances), α is the imbalance ratio threshold, and φH (p) , φG (p) are the
Hellinger distance and Gini impurity respectively. A description of the algorithm
is given below. A ready-to-apply implementation is available as a fork of the offi-
cial sci-kit learn python machine learning repository [17].

This formulation takes advantage of the Gini impurities excellent class sep-
arating ability while diminishing it’s under performance in the presence of class
skews by allowing the Hellinger distance to quantify the impurity of a region
when necessary. The parameter α is to be tuned dependent on local class imbal-
ance severity during tree induction.



Addressing Local Class Imbalance in Balanced Datasets 11

Algorithm 1 Dynamic Splitting Criterion Algorithm
1: procedure imp(p, α) � Computes impurity of decision space characterized by p
2: nI ← p0

p1
3: if nI ≥ α then
4: return φH (p)
5: else
6: return φG (p)
7: end if
8: end procedure
9:

6 Experimental Study

We designed the following experimental study in order to answer the following
two research questions posed in this manuscript:

– Does local class imbalance in balanced datasets impact the predictive power
of inducted decision trees?

– Is the proposed hybrid architecture for dynamic splitting criteria selection
capable of improving decision tree performance?

6.1 Datasets

Data benchmarks employed for empirical analysis consist of a subset of the Stan-
dard datasets found in the KEEL-dataset repository [1] . The KEEL-dataset
repository contains a well categorized collection of datasets that span over vari-
ous application domains. Table 3 comprises the data benchmarks utilized in our
empirical study of hybrid splitting criterion decision trees. The column IR refers
to the global imbalance (root imbalance) ratio of the dataset. This study con-
siders solely initially balanced datasets to demonstrate the emergence of local
class imbalances during tree induction.

6.2 Set-up

Decision trees with dynamic impurity selection are evaluated against decision
trees utilizing traditional Gini and Entropy splitting criterion. Multiple trials
with increasing α thresholds are utilized on each respective benchmark to illus-
trate the need for tuning of α based on the severity of local class imbalance intro-
duced during tree induction. Experimentation is conducted on CART Decision
Trees [4] as implemented in the scikit-learn [17] repository with the modification
of our dynamic splitting criterion. All default parameters are left unchanged as
provided in the DecisionTreeClassifier documentation. Evaluation is conducted
with use of stratified 5×2 cross validation as already performed in KEEL [1]
recording accuracy, recall (sensitivity) on the target class, F-measure, G-Mean,
and area under the ROC curve (AUC). Additionally, we conduct a Shafer post-
hoc statistical analysis over multiple datasets [9] with significance level α = 0.05.



12 A. Mulyar and B. Krawczyk

Table 3. Characteristics of benchmark datasets.

Dataset #Inst #Feat #Class IR Dataset #Inst #Feat #Class IR

ring 7400 20 2 1.01 Australian 690 14 2 1.24

banana 5,300 2 2 1.23 bupa 345 6 2 1.37

saheart 462 9 2 1.88 haberman 306 3 2 2.81

heart 270 13 2 1.25 ionosphere 351 33 2 1.80

magic 19,020 10 2 1.84 tic-tac-toe 958 9 2 1.89

pima 768 8 2 1.86 appendicitis 106 7 2 4.00

sonar 208 60 2 1.15 spambase 4,597 57 2 1.53

spectfheart 267 44 2 3.84 titanic 2,201 3 2 2.09

twonorm 7,400 20 2 1.00 wdbc 569 30 2 1.69

6.3 Results and Discussion

Table 4 presents results of evaluations across our twenty data benchmarks. The
corresponding row labeled dynamic(α) corresponds to a decision tree induced
with dynamic impurity selection using α as the imbalance threshold. An exhaus-
tive search [2 ≤ α ≤ 200] is conducted to find the α threshold that maximizes
accuracy on each respective dataset. Due to space constraints enumeration of
evaluation performance of every tree in the exhaustive search is not feasible but
we note that alpha thresholds with in the vicinity of the one showcased in Table
4 had similar, superior performance to trees induced using gini, hellinger, and
entropy. Additionally, Table 5 presents the outcomes of a post-hoc statistical
analysis of results. We give a broad summary of general performance below.

We summarize the performance of dynamic impurity selection over thresholds
[2 ≤ α ≤ 200] on our benchmarks with assistance of Figs. 3a–e. In Figs. 3a–e,
each point (α,E) on the variable curve corresponds to the mean value of the
referenced evaluation metric, E, when utilizing an imbalance ratio threshold α
over all data benchmarks. The solid and dashed constant lines correspond to the
mean value of E when utilizing Gini impurity and Hellinger distance respectively.
We conclude primarily the need for tuning of α as clearly visible from increased
average performance at certain thresholds values across all evaluation metrics
metrics. We would like to note an interesting observation concerning the average
limiting behavior (α > 100) where the predominant majority of splits are chosen
utilizing the Gini impurity - the performance of dynamic impurity selection
becomes constrained between the performance of Gini impurity and Hellinger
distance implying that it may be best to restrict a search for an optimal α
threshold to α ≤ 100.

Dynamic impurity selection featured across-the-board performance improve-
ment or matching on every benchmark except appendicitis when compared to
the widely used Gini impurity in regards to accuracy or AUC. This is due to
the fact that when using a large α threshold the majority of splits chosen will
be splits determined by the Gini impurity. It is interesting to consider datasets
such as bupa, ionosphere, magic, sonar, spectfheart, twonorm, wdbc, and tic-
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Table 4. Results obtained by examined decision tree induction approaches with respect
to five performance metrics. In the column titled Impurity, dynamic(α) corresponds
to a tree induced using dynamic impurity selection with α as the imbalance threshold
for selecting the splitting criterion to utilize at a potential split. The parameter α
showcased corresponds to the α value that maximized AUC under an internal 5x2 cross
validated search of trees induced at thresholds spanning [2 ≤ α ≤ 200]. Un-pruned trees
are grown that differ only by the splitting criterion used during induction.

Dataset Impurity Accuracy Recall F-Measure G-Mean AUC Dataset Impurity Accuracy Recall F-Measure G-Mean AUC

appendicitis australian
gini 0.8961 0.9765 0.9384 0.7288 0.7732 gini 0.8464 0.8826 0.8636 0.8406 0.8419

hellinger 0.8961 0.9765 0.9384 0.7288 0.7732 hellinger 0.8522 0.8851 0.8689 0.8472 0.8481
entropy 0.8866 0.9647 0.9324 0.7246 0.7674 entropy 0.8522 0.8852 0.8688 0.8462 0.8481

dynamic(14) 0.8771 0.9412 0.9249 0.7462 0.7806 dynamic(30) 0.8609 0.8981 0.8773 0.8549 0.8562
saheart banana

gini 0.6795 0.8111 0.7674 0.5896 0.6212 gini 0.8908 0.9196 0.9028 0.8868 0.8874
hellinger 0.6558 0.8179 0.7566 0.5329 0.5840 hellinger 0.8928 0.9224 0.9048 0.8887 0.8894
entropy 0.6687 0.8078 0.7601 0.5716 0.6070 entropy 0.8891 0.9224 0.9018 0.8843 0.8852

dynamic(68) 0.6860 0.8177 0.7725 0.5964 0.6276 dynamic(82) 0.8915 0.9189 0.9034 0.8878 0.8883
bupa haberman

gini 0.7101 0.6828 0.6640 0.7048 0.7064 gini 0.6698 0.8178 0.7833 0.4411 0.5390
hellinger 0.6957 0.6414 0.6407 0.6824 0.6882 hellinger 0.6861 0.8400 0.7965 0.4652 0.5494
entropy 0.7043 0.6621 0.6510 0.6955 0.6985 entropy 0.6861 0.8356 0.7958 0.4599 0.5534

dynamic(28) 0.7217 0.6759 0.6708 0.7126 0.7154 dynamic(26) 0.6896 0.8356 0.7980 0.4692 0.5597
heart ionosphere

gini 0.8074 0.8667 0.8336 0.7942 0.8000 gini 0.9318 0.8815 0.9028 0.9197 0.9208
hellinger 0.8074 0.8933 0.8393 0.7858 0.7967 hellinger 0.9374 0.8892 0.9108 0.9259 0.9268
entropy 0.8111 0.8667 0.8381 0.7987 0.8042 entropy 0.9345 0.8892 0.9072 0.9238 0.9246

dynamic(62) 0.8259 0.8867 0.8512 0.8121 0.8183 dynamic(44) 0.9460 0.9129 0.9242 0.9383 0.9387
magic pima

gini 0.8677 0.9411 0.9022 0.8301 0.8367 gini 0.7370 0.8760 0.8126 0.6458 0.6767
hellinger 0.8693 0.9448 0.9036 0.8305 0.8374 hellinger 0.7616 0.8680 0.8257 0.6980 0.7156
entropy 0.8686 0.9432 0.9030 0.8303 0.8370 entropy 0.7500 0.8820 0.8209 0.6654 0.6927

dynamic(118) 0.8716 0.9442 0.9051 0.8345 0.8409 dynamic(14) 0.7591 0.8820 0.8267 0.6829 0.7058
ring sonar

gini 0.9343 0.9749 0.9363 0.9338 0.9347 gini 0.8071 0.8917 0.8340 0.7899 0.8006
hellinger 0.9370 0.9599 0.9379 0.9369 0.9372 hellinger 0.8028 0.9103 0.8353 0.7762 0.7943
entropy 0.9378 0.9645 0.9389 0.9377 0.9381 entropy 0.8077 0.9008 0.8349 0.7858 0.7999

dynamic(102) 0.9374 0.9724 0.9390 0.9371 0.9378 dynamic(42) 0.8266 0.9008 0.8493 0.8111 0.8207
spambase spectfheart

gini 0.9476 0.9709 0.9573 0.9408 0.9413 gini 0.8126 0.4182 0.4852 0.6168 0.6665
hellinger 0.9484 0.9720 0.9581 0.9416 0.9421 hellinger 0.7862 0.3455 0.4135 0.5566 0.6230
entropy 0.9450 0.9752 0.9555 0.9360 0.9368 entropy 0.8275 0.4545 0.5189 0.6410 0.6892

dynamic(104) 0.9493 0.9741 0.9588 0.9421 0.9426 dynamic(26) 0.8240 0.4909 0.5303 0.6630 0.7005
titanic twonorm

gini 0.7887 0.9832 0.8631 0.6118 0.6822 gini 0.9439 0.9622 0.9450 0.9437 0.9439
hellinger 0.7887 0.9832 0.8631 0.6118 0.6822 hellinger 0.9441 0.9598 0.9450 0.9439 0.9440
entropy 0.7887 0.9832 0.8631 0.6118 0.6822 entropy 0.9427 0.9600 0.9437 0.9425 0.9427

dynamic(8) 0.7828 0.9235 0.8521 0.6708 0.7058 dynamic(84) 0.9508 0.9679 0.9517 0.9506 0.9508
wdbc tic-tac-toe

gini 0.9578 0.9832 0.9671 0.9480 0.9490 gini 0.9321 0.8310 0.8934 0.9044 0.9083
hellinger 0.9614 0.9860 0.9698 0.9523 0.9530 hellinger 0.9185 0.8431 0.8774 0.8986 0.9008
entropy 0.9508 0.9749 0.9614 0.9417 0.9427 entropy 0.9217 0.8341 0.8805 0.8984 0.9011

dynamic(12) 0.9649 0.9888 0.9725 0.9561 0.9567 dynamic(22) 0.9436 0.8583 0.9124 0.9207 0.9236

tac-toe in which the Hellinger distances performs worse or equivalent to the gini
impurity. On these benchmarks, dynamic impurity selection outperformed gini,
hellinger, and entropy in AUC. We believe this to be a manifestation of the con-
clusions summarized in Sect. 5. The Hellinger distance’s faculty to over fit regions
of the decision space resulting in low generalization performance becomes allevi-
ated when coupled with Gini impurities blissful ignorance of difficult to capture,
minority regions if combined appropriately.
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Table 5. Results of Shafer post-hoc test with p-values for proposed dynamic approach
vs. reference approaches. Symbol > stands for situation when the dynamic approach
is found to be statistically better and symbol = stands for a situation when there is no
significant differences.

Accuracy Recall F-Measure G-Mean AUC

vs. gini = (0.8931) = (0.0531) > (0.0374) > (0.0279) > (0.0185)

vs. hellinger = (0.5062) = (0.0726) > (0.0402) > (0.0400) > (0.0247)

vs. entropy = (0.9301) = (0.0519) > (0.0328) > (0.0281) > (0.0173)
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Fig. 3. Averages of evaluation metrics over all data benchmarks at given α thresholds
plotted against average evaluation metric value of Gini impurity and Hellinger distance
over all benchmarks.



Addressing Local Class Imbalance in Balanced Datasets 15

7 A Limitation of Dynamic Impurity Selection

We note the following possible limitation of dynamic impurity selection in appli-
cation. We found that dynamic impurity selection necessitates an appropriate
imbalance threshold. Depending on domain, it may be infeasible to perform
a cross-validated grid search to find the optimal α threshold due to memory
constraints. This limitation appears in any methodology that utilizes a tunable
parameter to increase classification performance. However, the low induction
complexity of decision trees compared to other learners such as Support Vector
Machines aids in the relative feasibility of any parameter search.

8 Conclusions and Future Works

In this paper, we have critically assessed existing splitting criteria for decision
tree induction and discussed the potential difficulties they may impose on the
learning process. We have showed that while the minimization of impurity seems
a viable approach, it may also result in a phenomenon we named as local class
imbalance. We stated that class imbalance must be considered as not just a
characteristic of data but as a property inherent to the learning process. This
allowed us to propose a simple, yet effective hybrid decision tree architecture. It
was based on dynamic selection of splitting criteria at each node - on local data
properties. Our approach produced results outperforming or matching state-of-
the-art decision tree performance on benchmarks of various sizes and spanning
multiple domains. Results obtained during our work encourage us to pursue this
topic further. We envision the following directions for our future research:
Using a more diverse base of splitting criteria. At this point, we alternate
between two possible splitting criteria in our hybrid approach. It seems interest-
ing to explore the unique strengths of other splitting metrics in order to further
improve the robustness of our framework.
Considering advanced data characteristics. Currently, we base the selec-
tion of splitting criteria on the class imbalance ratio in a given node. However,
disproportion between classes is not the sole indicator of the learning difficulty.
We plan to incorporate instance-level difficulty metrics [18] and analyze more
in-depth properties of minority class [15] to offer a better selection mechanism.
Extend the architecture to multi-class problems. So far, we have analyzed
only binary datasets. Their multi-class counterparts will offer even a greater chal-
lenge, as local class imbalance with multiple classes will be much more difficult
to analyze and handle in an efficient manner.
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Abstract. Classifying biased datasets with linearly non-separable fea-
tures has been a challenge in pattern recognition because traditional
classifiers, usually biased and skewed towards the majority class, often
produce sub-optimal results. However, if biased or unbalanced data is
not processed appropriately, any information extracted from such data
risks being compromised. Least Squares Support Vector Machines (LS-
SVM) is known for its computational advantage over SVM, however,
it suffers from the lack of sparsity of the support vectors: it learns the
separating hyper-plane based on the whole dataset and often produces
biased hyper-planes with imbalanced datasets. Motivated to contribute
a novel approach for the supervised classification of imbalanced datasets,
we propose Barricaded Boundary Minority Oversampling (BBMO) that
oversamples the minority samples at the boundary in the direction of the
closest majority samples to remove LS-SVM’s bias due to data imbal-
ance. Two variations of BBMO are studied: BBMO1 for the linearly
separable case which uses the Lagrange multipliers to extract boundary
samples from both classes, and the generalized BBMO2 for the non-
linear case which uses the kernel matrix to extract the closest majority
samples to each minority sample. In either case, BBMO computes the
weighted means as new synthetic minority samples and appends them to
the dataset. Experiments on different synthetic and real-world datasets
show that BBMO with LS-SVM improved on other methods in the lit-
erature and motivates follow on research.

Keywords: Biased datasets · Linearly separable features
Weighted means · Barricaded boundary minority oversampling
Kernel matrix

1 Introduction

Advancement in communication, the emergence of Internet of Things and wire-
less sensor networks have allowed the widespread collection of data from various
sources. These diverse sources of data result in noisy, unstructured and often
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biased data that make processing it difficult. Specifically, classification of large
and biased datasets is one of the leading challenges in data analytics since tradi-
tional machine learning algorithms are usually biased towards the majority class
[17]. In many real life applications such as text classification [12], handwriting
recognition [13], seismic data analysis [28], fraud detection [11], medical data
[4,42], and spam filtering [5,29] to name a few, the data is imbalanced or biased,
i.e. the important class has significantly less instances than the other class.

Motivated to contribute to the problem of classifying biased data using LS-
SVM, we propose Barricaded Boundary Minority Oversampling (BBMO), a
novel approach that adds synthetically-created data to the minority class based
on the demographic data distribution at the boundary of the two classes, in an
attempt to improve classification. While borderline-SMOTE-2 oversamples the
data at the boundary by considering the nearest majority neighbor along with
the k-nearest minority neighbors, BBMO extracts the closest majority samples
to each minority sample and computes their respective weighted means. The
calculated weighted means are then added to the minority samples as synthetic
data which form a kind of “barricade” around the minority boundary samples in
the direction of the closest majority samples. This procedure ensures the removal
of the bias and produces a better defined boundary by altering the distribution
of the minority at the boundary differently from other proposed techniques.
Experimental results on multiple datasets motivate follow on research.

The rest of the paper is organized such that Sect. 2 briefly describes existing
work. Section 3 describes the proposed variations of the BBMO formulations
in detail. Section 4 demonstrates the experimental results and evaluates the
performance on publicly available databases while Sect. 5 concludes the paper.

2 Literature Review

The numerous efforts that have aimed to learn from biased datasets can be
divided into either data, algorithmic, or kernel based. At a data level, resam-
pling methods such as minority class over-sampling by replication to balance the
class distribution and under-sampling of the majority samples which randomly
eliminates samples from the majority class [15,19,24], were proposed to resam-
ple the data prior to training. Because under-sampling methods proved to be
inefficient due to the loss of important information [2], the Synthetic Minority
Over-Sampling Technique (SMOTE) [8] added “synthetic” data to the minority
class using k-nearest neighbor. Other extensions of the SMOTE algorithm have
been developed: one based on the distance space [18], SMOTE-RSB which uses
the rough set theory [25], the Safe Level-SMOTE [6] where safe level coefficients
are computed by considering the majority class in the neighborhood, and the
Borderline-SMOTE [14] which oversamples the minority class at the border-
line by considering the nearest minority neighbors. An extension of Borderline-
SMOTE, borderline-SMOTE-2, oversamples the minority class by considering
the nearest neighbor from the majority class in addition to the k-nearest minor-
ity neighbors. Also, SPIDER [31] locally oversamples the minority class while
filtering difficult examples from the majority class.
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Extensions to Support Vector Machines (SVM) [35] are among techniques
that have been proposed at an algorithmic level to handle imbalanced datasets
[27]. Veropoulos et al. [36] assigned different error costs for each class while Tang
et al. [33] merged a cost sensitive learning approach that extracted a smaller
number of the support vectors (SV), with different error costs. Another popular
technique is the one-class SVM which estimates the probability density function
and gives a positive value for the elements in the minority class and a negative
value for everything else [26,34] as if the cost function of the majority class
samples is taken to be zero [20]. Scholkopf et al. [30] proposed matching the
data into a new feature space using a kernel function and separating the new
samples from the origin with a maximum margin. Support Vector Data Descrip-
tion (SVDD) finds a sphere that encloses the minority class while separating
the outliers. Since kernel parameters influence the size of the region, correct
tuning is essential for satisfactory accuracy [43]. zSVM modified the decision
boundary in such a way to remove the minority class’s bias towards the major-
ity class [16]. Other techniques have also been proposed to solve the problem of
biased datasets that include the combination of two or more different algorith-
mic approaches [1,2,21,23,24,37]. Kernel modification methods among which
are Class Boundary Alignment (CBA) and Kernel Boundary Alignment (KBA),
transform the kernel function to enlarge the region around the minority class in
an attempt to overcome the imbalance problem [38–40]. Wu and Chang point
out that since positive samples lie further from the ideal boundary, SVMs trained
on imbalanced data produce skewed hyper-planes.

3 BBMO

LS-SVM’s original formulation [32] introduced two major changes to SVM. First,
the error term in SVM was changed to a least square error. Second, the inequal-
ity constraint was changed into equality. Thus, the hyper-plane’s orientation is
controlled by the data instead of the SV. This leads to LS-SVM’s lack of sparsity
since all the dataset is considered to behave as SV [41]. However, it is compu-
tationally much faster when compared to quadratic programming algorithms
and can be written and solved as a system of linear equations which allows
incremental and distributed extensions. Taking LS-SVM drawbacks into consid-
eration, BBMO creates synthetic minority samples at the hyper-plane boundary
separating both classes, in the direction of the majority boundary samples to
push the hyper-plane away from the minority to remove the bias.

Two variations of BBMO are represented: BBMO1 handles the linearly sep-
arable case by adding synthetic data in the direction of all majority boundary
samples and BBMO2 handles the more general linearly non-separable case that
uses the kernel matrix values and adds synthetic data around each boundary
minority sample in the direction of all close majority boundary samples if there
are any. In this paper, we adopt the following nomenclature:

– X: Training samples
– X1: Minority class samples
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– X2: Majority class samples
– m: Number of minority samples
– n: Total number of samples
– d: Dimension of input space
– B: Boundary samples
– XB1: Boundary minority samples
– XB2: Boundary majority samples
– nB1: Number of boundary minority samples
– nB2: Number of boundary majority samples
– nz: Number of synthetic weighted means
– α: Lagrangian multipliers of LS-SVM
– αmax: Maximum Lagrangian multiplier value of the minority samples
– αmin: Minimum Lagrangian multiplier value of the majority samples
– θ1: Threshold value for the linearly separable case
– θ2: Threshold value for the linearly non-separable case
– K(., .): Kernel matrix
– γ: Weight of the weighted means
– IR: Imbalance ratio of the dataset, IR = m

n−m
– Z: Weighted mean, the “barricade”
– XBZ : Boundary samples with “barricade”

3.1 BBMO1

First, let us consider the linearly separable case. LS-SVM computes the Lagrange
multipliers of all the samples and produces positive Lagrange multipliers for all
the minority samples within the boundary points that form band B and negative
values for the majority samples (labels are taken to be 1 for the minority and -1
for the majority), as shown in Fig. 1. To find the samples closest to the boundary,
we first find the absolute maximum Lagrange multipliers of both classes, then
we select the samples based on a threshold θ1. Next, we compute the inter-
class weighted means of the selected boundary samples by considering all the
combinations, forming a “barricade” Z in front of the minority boundary samples
in the direction of the majority boundary samples. The set Z represents the
weighted means which employ a weight γ that varies between 0.5 and 1 (since
the synthetic samples are closer to the minority boundary samples). We assume
the weight varies with the imbalance ratio (IR) of the dataset according to:
γ = 0.5 + 1

2IR . Table 1 summarized the pseudo code of the proposed algorithm.
For the linearly separable case, BBMO1 uses LS-SVM Lagrange multipliers

whose computation is mainly a matrix inversion with complexity Θ(n3). The
selection of the boundary samples has a complexity of Θ(2n) while the compu-
tation of the weighted means has a complexity of Θ(4nz). The weighted means
are included in the LS-SVM formulation resulting in a larger matrix inversion
with complexity Θ((n + nz)3). The overall complexity of the BBMO1-LS-SVM
algorithm is thus: Θ(n3 +(n+nz)3 +2n+4nz) < Θ(3n3) knowing that nz << n
and n is large.
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Fig. 1. Illustrative extraction of the boundary samples of the linearly separable case
and the formation of the “barricade” Z by calculating the weighted means of all the
boundary samples.

Table 1. BBMO1 pseudo code

1. ∀x ∈ X:

Compute α using LS-SVM

2. ∀xi ∈ X1, i = 1, 2, ..., m:

αmax = max(αi)

∀xj ∈ X2, j = 1, 2, ..., n − m:

αmin = min(αj)

3. Let 0.8 ≤ θ1 ≤ 1

∀xi ∈ X1:

If αi > θ1.αmax,

Add xi to XB1

∀xj ∈ X2:

If αj < θ1.αmin,

Add xj to XB2

4. ∀xk ∈ XB1, where k = 1, 2, ..., nB1

∀xl ∈ XB2, where l = 1, 2, ..., nB2

Compute zp = γxk + (1 − γ)xl, where p − 1, 2, ..., nz

nz = nB1.nB2, zp ∈ Z, γ = 0.5 + 1
2IR

, IR = m
n−m

5. Add Z to X1 and train using LS-SVM
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Table 2. BBMO2 pseudo code

1. ∀xi ∈ X1, i = 1, 2, ..., m,

∀xj ∈ X2, j = 1, 2, ..., n − m:

Find K(xi, xj)

2. ∀xi ∈ X1:

Compute μi = maxj{K(xi, xj)}
3. Calculate M = maxi{μi}
4. Let 0.8 ≤ θ2 ≤ 1

∀xi ∈ X1,

∀xj ∈ X2:

If K(xi, Xj) > θ2.M ,

Add xi to XB1 and xj to XB2(q) where q = 1, 2, ..., nB1

5. ∀xk ∈ XB1 where k = 1, 2, ..., nB1,

∀xr ∈ XB2(q) where r = 1, 2, ..., Card(XB2(q)):

Compute zp = γxk + (1 − γ)xr where p = 1, 2, ..., Card(XB2(q)),

zp ∈ Z, γ = 0.5 + 1
2IR

, IR = m
n−m

6. Add Z to X1 and train using LS-SVM

3.2 BBMO2

When data becomes linearly non-separable, kernels are typically used in classifi-
cation problems. With BBMO2, the Lagrange multipliers were not used to choose
the boundary samples, as in BBMO1. Instead, the RBF kernel matrix is used to
extract the boundary samples because it represents the distances between the
samples in the kernel space. Therefore, we propose retaining the maximum of
these kernel values (since the higher their values, the more similar the samples
are). More specifically, we select the boundary samples of the minority class with
the corresponding closest majority boundary samples according to a threshold
θ2. For each boundary minority sample and its corresponding “near” majority
boundary samples, the weighted means are computed and added to the minority
class. The BBMO2 pseudo code in Table 2 describes the details of this algorithm.

Figure 2 shows another example with BBMO2 and the RBF kernel on a
synthetic 2D dataset. The minority sample “b” finds majority samples “1” and
“2” to be closest within the threshold value and generates two synthetic samples
in the direction of these majority samples. Sample “d” finds only sample “5” and
generates a weighted mean in that direction. Other samples are not oversampled
as there are no close majority samples at the boundary. The minority samples’
distribution is increased in the direction of the majority as indicated by the green
band. The created “barricade” around the minority boundary samples allows
a wider region for the minority samples to populate in. Other oversampling
techniques have also aimed at providing more general data distribution for the
minority such as SMOTE but assumptions vary.
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Fig. 2. BBMO2 oversamples in the direction of the closest majority for all the minority
samples at the boundary.

To understand the difference between SMOTE and BBMO, consider the toy
example in Fig. 3. SMOTE oversamples the minority samples by introducing
synthetic samples along the line joining any or all “k” minority class nearest
neighbors depending on the amount of over-sampling needed [8]. As shown in
Fig. 3(left), samples “a”, “b”, and “c” are nearest neighbors, synthetic samples
are generated along their lines. The three synthetic samples in the circle now
occupy most of this region although the region contains the majority sample “1”.
On the other hand, BBMO2 adds synthetic data around the boundary minority
samples in the direction of all near (not nearest) majority samples. Sample “a”
has two close majority samples close to it, thus two synthetic samples are added
in their direction, as shown in Fig. 3(right). Similarly, synthetic samples are
added for samples “b” and “c”. As we can observe, the circular region is not
totally occupied by the minority but only a portion of it.

The way oversampling techniques perturb the distribution of the minority
sample plays an important role in classification results, especially the samples
at the boundary. While SMOTE reserves larger areas for the minority samples
in the direction of the nearest neighbors, BBMO reserves only the regions sur-
rounding the minority samples at the boundary in the direction of the close
majority samples. Thus, BBMO leaves unknown regions unoccupied until new
samples arrive and help construct the ideal boundary.

BBMO2 uses kernel matrix values to find the boundary samples; the com-
plexity of computing the kernel matrix is Θ(n2d) [9]. The operation to select the
boundary samples has a complexity of Θ(m(n − m)). Similar to BBMO1, the
computation of the weighted means has a complexity Θ(4nz) while the weighted
means causing a larger matrix inversion in the LS-SVM formulation has a com-
plexity of Θ((n + nz)3). The overall complexity of the BBMO2-LS-SVM algo-
rithm is thus: Θ(n2d + m(n − m) + (n + nz)3 + 4nz) < Θ(3n3) with nz << n
and n is large.
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Fig. 3. Comparing how SMOTE (left) and BBMO2 (right) modify the minority class
distribution.

4 Experimental Results

4.1 Experimental Setup

Experiments were run on a Windows machine with an Intel Core i7 CPU. The
libSVM library was adopted to train SVM models [7] and the publicly avail-
able SMOTEBoost [10] implementation of the SMOTE algorithm was used to
benchmark our proposed algorithms. In all our experiments, the values of the
trade-off constant C of LS-SVM were adjusted using a grid search. A 5-fold cross
validation was performed; the test data samples were chosen carefully to include
minority and majority samples. Then, the results of the 5-folds were averaged
and reported in the tables. In the linearly non-separable cases, the RBF kernel
was adopted and a grid search was performed to obtain the values of sigma and
the penalty term C.

Multiple publicly available datasets, described in Table 3, were used to bench-
mark our proposed algorithms. They were retrieved from KEEL data repository
[3] and UCI machine learning repository [22]. These datasets were selected based
on their imbalance ratios, number of samples, number of attributes and best
reported accuracy in literature. In all the tables below, the datasets are sorted
in ascending imbalance ratio order.

To evaluate the performance of the proposed algorithms, multiple perfor-
mance metrics were considered. Since we consider imbalanced datasets, the accu-
racy of a classifier’s performance, the proportion of the total number of predic-
tions that were correctly classified as computed by (1), is a misleading measure.
A classifier might produce high overall accuracy but still misclassify most of the
important minority class due to the bias.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Instead, other measures are used to evaluate the performance of classifiers
with imbalanced datasets. For binary classification, true positive (TP), true neg-
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Table 3. Dataset description

Type Name Imbalance ratio Number of samples Number of attributes

Synthetic Clover 5 600 2

Subclass 5 600 2

Paw 5 600 2

Real world Spambase 1.54 4601 57

Ionosphere 2.02 351 34

Wisconsin Diagnostic 3.21 198 32

Segmentation 6.01 2308 19

Yeast 8.11 1484 8

Ecoli 8.19 336 7

ative (TN), false positive (FP), and false negative (FN), which combine to form
a confusion matrix shown in Table 4, provide a better idea of the classifiers per-
formance on each class. From the confusion matrix, multiple measures, suitable
for imbalanced dataset classification, can be computed. Recall or true positive
rate, computed in (2), represents the percentage of the correctly classified posi-
tive samples. It is a measure of completeness or the number of examples of the
positive class that were labeled correctly, whereas the precision, computed in (3),
defines a measure of exactness or of the examples labeled as positive, how many
are actually labeled correctly. The geometric mean (G-mean), computed in (4),
is a measure that takes the square root of the product of the precision and recall
and describes the degree of inductive bias in terms of a ratio of positive accuracy
and negative accuracy. The F-measure, computed in (5), is another metric that
relates precision and recall with a parameter β and is referred to as F1-score
when β = 1.

Table 4. Confusion matrix

Predicted class

Yes No

Actual Class Yes TP FN

No FP TN

Recall = TP − rate =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

G − mean =
√

Recall × Precision (4)

F − measure =
(1 + β)2 × Recall × Precision

β2 × Recall + Precision
(5)
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Although these metrics give an insight into the performance of the classifiers
on imbalanced datasets, they often do not describe the performance of different
classifiers over a range sample distributions [15]. On the other hand, the receiver
operating characteristic (ROC) curve analysis can provide a better understand-
ing of classifier performance and makes use of TP rate and FP rate, which
are defined in (2) and (6), respectively. Plotting TP rate versus FP rate with a
threshold value between [0,1] produces the ROC curve. The area under the ROC
curve (AUC) measure describes the performance of the classifier over a range of
sample distributions and provides a better measure for evaluating performance
of classifiers [15].

FP − rate =
FP

FP + TN
(6)

4.2 Performance Results

Table 5 reports the performance of BBMO1 on the linearly separable datasets.
We observe that BBMO1 with LS-SVM performs better than LS-SVM in all per-
formance metrics except precision. BBBMO1 trades precision to increase other
performance metric values. For example, BBMO1’s AUC increases by an aver-
age of 1% compared to LS-SVM on the three datasets. Therefore, the boundary
minority samples that were not classified correctly before have been correctly
classified with minor trade-off with the majority boundary samples. Thus, the
bias is removed safely in the linear case, for the considered datasets.

Table 5. Linearly separable case

Data Accuracy Recall Precision G-mean F-score AUC

SVM

Spambase 0.9126 0.8758 0.8996 0.8876 0.8875 0.9590

Wisconsin 0.9561 0.9339 0.9476 0.9408 0.9408 0.9796

Ionosphere 0.8690 0.7301 0.8909 0.8065 0.8025 0.9180

LS-SVM

Spambase 0.8858 0.7842 0.9131 0.8462 0.8438 0.9538

Wisconsin 0.9543 0.8860 0.9892 0.9362 0.9348 0.9741

Ionosphere 0.8578 0.6523 0.9253 0.7769 0.7652 0.9107

BBMO1+LS-SVM

Spambase 0.9127 0.8896 0.8890 0.8893 0.8893 0.9660

Wisconsin 0.9701 0.9483 0.9706 0.9594 0.9593 0.9819

Ionosphere 0.883 0 0.8005 0.8724 0.8357 0.8349 0.9207

BBMO2 performs well on most of the linearly separable and non-linearly
separable datasets with the exception of the Subclass, Ecoli, and Ionosphere
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datasets, as shown in Table 6. BBMO2 with LS-SVM outperforms LS-SVM and
records better or comparable results when compared with SVM on many of the
datasets, proving its effectiveness on non-linearly separable data.

Table 6. Linearly non-separable case

Data Algorithm Accuracy Recall Precision G-mean F-measure AUC

Paw SVM 97.160 0.930 0.903 0.917 0.916 0.992

LS-SVM 96.970 0.900 0.902 0.901 0.901 0.990

BBMO2+LSSVM 97.670 0.980 0.893 0.935 0.930 0.991

Subclass SVM 94.500 0.860 0.821 0.840 0.840 0.984

LS-SVM 94.670 0.760 0.902 0.828 0.825 0.986

BBMO2+LSSVM 93.500 0.810 0.805 0.808 0.806 0.976

Clover SVM 96.560 0.885 0.995 0.938 0.937 0.967

LS-SVM 96.940 0.900 0.871 0.885 0.885 0.962

BBMO2+LSSVM 97.650 0.938 0.889 0.913 0.908 0.976

Yeast SVM 95.350 0.881 0.798 0.838 0.837 0.939

LS-SVM 93.740 0.711 0.869 0.786 0.782 0.926

BBMO2+LSSVM 96.130 0.905 0.859 0.882 0.873 0.946

Ecoli SVM 95.210 0.807 0.884 0.845 0.844 0.948

LS-SVM 92.260 0.615 0.840 0.718 0.710 0.923

BBMO2+LSSVM 94.650 0.867 0.807 0.837 0.830 0.941

Segment SVM 99.490 0.975 0.990 0.982 0.982 0.982

LS-SVM 99.420 0.970 0.990 0.980 0.980 0.981

BBMO2+LSSVM 99.490 0.975 0.990 0.982 0.982 0.982

Ionosphere SVM 95.183 0.906 0.958 0.932 0.931 0.994

LS-SVM 93.730 0.936 0.895 0.915 0.915 0.979

BBMO2+LSSVM 94.590 0.960 0.899 0.929 0.919 0.981

Spambase SVM 91.560 0.885 0.891 0.888 0.888 0.932

LS-SVM 91.340 0.860 0.915 0.887 0.887 0.930

BBMO2+LSSVM 91.820 0.883 0.907 0.895 0.887 0.942

Wisconsin SVM 95.420 0.915 0.961 0.938 0.937 0.974

LS-SVM 94.900 0.906 0.956 0.930 0.930 0.970

BBMO2+LSSVM 95.430 0.929 0.947 0.938 0.932 0.972

Next, we consider the influence of the inducer on BBMO and compare it
to SMOTE. BBMO2 outperformed SMOTE regardless of the inducer, except on
Ecoli, as shown in Table 7. Furthermore, BBMO2 was not affected by its inducer
since it performed equally well with SVM and LS-SVM.

Figure 4 shows how the accuracy, recall and the G-mean vary with the vari-
ation of the number of boundary samples chosen. Since the RBF kernel’s sigma
parameter choice affects the kernel matrix, θ2 needs to be tuned. The threshold
θ2 defines the number of samples chosen at the boundary and hence the num-
ber of oversampled data forming the barrier. In our experiments, θ2 was chosen
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Table 7. Comparing BBMO2 and SMOTE

Data Accuracy F1-score AUC Accuracy F1-score AUC

SMOTE+SVM BBMO2+SVM

Paw 97.50 0.916 0.992 97.65 0.930 0.992

Subclass 92.40 0.821 0.957 93.35 0.806 0.962

Clover 95.06 0.933 0.962 97.65 0.908 0.975

Yeast 95.35 0.837 0.939 96.13 0.873 0.943

Ecoli 96.94 0.844 0.948 94.65 0.830 0.937

Segment 99.49 0.982 0.982 99.49 0.982 0.982

Spambase 90.75 0.881 0.932 91.52 0.887 0.936

SMOTE+LS-SVM BBMO2+LS-SVM

Paw 97.10 0.908 0.990 97.67 0.930 0.991

Subclass 91.90 0.810 0.933 93.50 0.806 0.976

Clover 95.06 0.933 0.954 97.35 0.908 0.976

Yeast 95.15 0.833 0.938 95.76 0.872 0.946

Ecoli 96.55 0.835 0.947 94.25 0.829 0.941

Segment 99.49 0.982 0.981 99.49 0.982 0.982

Spambase 90.98 0.886 0.935 91.82 0.888 0.942

Fig. 4. Accuracy, recall, and G-mean variation as the number of selected boundary
minority samples increases by varying the value of the threshold θ.

0.8 < θ2 < 1 (which can be understood as 80% of the maximum value) and
sigma was in the order of tens. This ensured the selection of the closest samples.
For the Spambase dataset, θ2 was set to 0.998 which resulted in oversampling by
approximately 300 samples. As shown in Fig. 4, when the number of synthetic
samples varied between 300 and 400 samples a slight trade-off between the dif-
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ferent metrics was produced. Furthermore, when the number of oversampling of
the minority using BBMO2 increased, accuracy and G-mean decreased while the
recall increased which means that the majority samples were being misclassified
at the expense of the minority class. Thus, θ2 needs to be tuned correctly to
select a good representative amount of boundary samples and subsequently a
representative number of oversampled minority boundary samples.

5 Conclusion

We presented in this paper a new approach of oversampling the boundary minor-
ity samples to improve the performance of the LS-SVM in the presence of bias
in data. This is particularly important when building a model to extract infor-
mation from data. BBMO adds synthetic minority samples by computing the
weighted means of selected boundary samples. BBMO2 is a generalization of
BBMO1 to linearly non-separable data. BBMO2 uses kernel matrix values of
each minority sample while BBMO1 uses Lagrange multipliers to determine
whether it is a boundary sample or not and to extract the closest majority
boundary samples based on a threshold value. The weighted means were com-
puted and added to the dataset. Experiments validated our expectations where
BBMO2 with LS-SVM removed LS-SVM’s bias and performed better than LS-
SVM and SMOTE on most of the datasets. BBMO only introduced synthetic
samples near the boundary between existing minority and majority samples
while avoiding oversampling in regions with high uncertainty in the minority
class distribution.
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LNCS (LNAI), vol. 7884, pp. 174–186. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38457-8 15

38. Wu, G., Chang, E.Y.: Adaptive feature-space conformal transformation for
imbalanced-data learning. In: International Conference on Machine Learning, pp.
816–823 (2003)

39. Wu, G., Chang, E.Y.: Class-boundary alignment for imbalanced dataset learning.
In: ICML 2003 workshop on learning from imbalanced data sets II, pp. 49–56.
Washington (2003)

40. Wu, G., Chang, E.Y.: KBA: Kernel boundary alignment considering imbalanced
data distribution. IEEE Trans. Knowl. Data Eng. 17(6), 786–795 (2005)

41. Yang, J., Bouzerdoum, A., Phung, S.L.: A training algorithm for sparse LS-
SVM using compressive sampling. In: IEEE International Conference on Acoustics
Speech and Signal Processing, pp. 2054–2057. IEEE (2010)

42. Yang, P., Xu, L., Zhou, B.B., Zhang, Z., Zomaya, A.Y.: A particle swarm based
hybrid system for imbalanced medical data sampling. BMC Genomics 10(3), S34
(2009)

43. Zhuang, L., Dai, H.: Parameter optimization of kernel-based one-class classifier on
imbalance learning. J. Comput. 1(7), 32–40 (2006)

https://doi.org/10.1007/978-3-642-38457-8_15
https://doi.org/10.1007/978-3-642-38457-8_15


Dynamic Classifier Chain with Random
Decision Trees

Moritz Kulessa and Eneldo Loza Menćıa(B)
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Abstract. Classifiers chains (CC) is an effective approach in order to
exploit label dependencies in multi-label data. However, it has the dis-
advantages that the chain is chosen at total random or relies on a pre-
specified ordering of the labels which is expensive to compute. Moreover,
the same ordering is used for every test instance, ignoring the fact that
different orderings might be best suited for different test instances. We
propose a new approach based on random decision trees (RDT) which
can choose the label ordering for each prediction dynamically depending
on the respective test instance. RDT are not adapted to a specific learn-
ing task, but in contrast allow to define a prediction objective on the fly
during test time, thus offering a perfect test bed for directly comparing
different prediction schemes. Indeed, we show that dynamically selecting
the next label improves over using a static ordering of the labels under
an otherwise unchanged RDT model and experimental environment.

Keywords: Multi-label classification · Random decision trees
Classifier chains

1 Introduction

Contrary to multi-class classification, where only one class label is expected to be
associated to an example, multi-label classification (MLC) is the task of assign-
ing a subset of all possible labels to an example. In this task, it is considered
crucial to take the dependencies between labels into account. Classifier chains
(CC) [18] and their extensions (cf. Sect. 2) have proven to be a simple but pow-
erful method for exploiting label dependencies in MLC. Similarly to the binary
relevance decomposition method these methods train a binary predictor for each
of the labels. However, they are organized in a chain so that successive classifiers
can make use of the predictions of the previous ones. This enables CC to capture
dependencies between labels.

Nevertheless, this simple technique has several shortcomings, especially
regarding the chain. Firstly, the ordering in which the labels are predicted in
the chain has to be fixed beforehand. To find a sequence which best allows
to consider dependencies between labels is a non-trivial task [12] and meth-
ods which try to explore different orderings are usually computationally much
c© Springer Nature Switzerland AG 2018
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more expensive than the often taken option of just choosing a random order-
ing. Secondly, the assumption that there is one single prediction ordering which
works best always for every possible single test instance might hold only in very
restricted scenarios. Instead, our assumption in this work is that the ordering in
which labels should be predicted in order to obtain the best performance highly
depends on the specific context, namely the test instance at hand. The question
of how to dynamically choose an appropriate ordering for individual instances
instead of the entire datasets has been little researched so far. Da Silva et al. [20]
made a first attempt by letting a nearest neighbor classifier decide which order-
ing to use for a given instance. However, the dynamic selection was restricted to
a pre-determined set of static label orderings. The approach of Nam et al. [15]
predicts the positive labels at the beginning of the chain, but the ordering in
which these are predicted is pre-determined.

In this work, we propose to use random decision trees (RDT) for the purpose
of constructing dynamic chains, since these trees have a series of convenient and
appealing properties (Sect. 3).

Foremost, the construction of the model is independent of the specific leaning
task. This has the advantage that the objective can easily be changed during pre-
diction without the need for modifying the trees. Our dynamic classifier chains
extension of RDT is strongly relying on this property. Instead of choosing the
next label to predict from the pre-determined ordering, our proposed method
predicts the label for which the RDT is most confident given the current context
(Sect. 4). Our experiments on a series of datasets confirm that it is advanta-
geous to predict the labels in such a dynamic way w.r.t. predictive performance
(Sect. 5).

Moreover, we propose to take advantage of the flexibility of RDT to build a
controlled experimental setup where not only the training hyper parameters can
be fixed, but also the respective models (Subsect. 4.1). This allows us to directly
measure the impact of certain modifications, as well as to compare conceptu-
ally different approaches on a fair basis. For instance, we use this possibility in
our experimental evaluation to analyze the specific utility of considering previ-
ous predictions, or to compare CC to our dynamic CC using the same actual
ensemble of trees.

2 Multi-label Classification and Classifier Chains

Multi-label classification is the task of learning a mapping from instances X ∈ X
to subsets Y ⊂ Y of a finite set of non-exclusive class labels Y = {y0, . . . , yn}.
For convenience, Y is often represented as binary vector Y = (y0, . . . , yn) where
yi is 1 if the label is relevant (positive), otherwise 0 for irrelevant (negative)
labels. An extensive overview over MLC is provided by Tsoumakas et al. [22].

The simplest method for solving MLC tasks is the binary relevance method
(BR) where each label is handled as a single classification task for which a
classifier is trained. Formally, we learn a function hi : X → {0, 1} for each yi.
According to this, each classification of a label is independent of the values of
the other labels.
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Another method is the label power-set method (LP) which reduces the prob-
lem of MLC to a single multi-class classification task by representing each pos-
sible combination of labels as one separate and exclusive class. This approach
naturally considers to predict labels in dependence of the remaining labels, hence
focusing on predicting correct label combinations. However, in addition to the
obvious limitations due to the exponential growth of label combinations, LP does
not allow to predict label combinations which have not been seen in the training
data.

A more flexible approach of considering label dependencies was proposed by
[18] by using classifier chains. CC enhances the idea of BR and executes the
binary classifiers in a chain which has the advantage that subsequent classifiers
can use the information of the already predicted labels. More formally, each
hi : X × {0, 1}i−1 → {0, 1} uses the real labels y1, . . . , yi−1 for training and the
corresponding predictions ŷ1, . . . , ŷi−1 produced by previous classifiers in the
chain during testing.

Further analysis revealed that the ordering of the classifiers has an effect on
the predictive performance [18,20]. Usually this ordering is chosen randomly or
different random orderings have to be evaluated to find a good chain order. A
straight-forward solution is to use ensembles of classifier chains. Nevertheless it
turned out that these ensembles are often unnecessarily large for which reason
Li and Zhou [11] proposed a method to composite the ensemble. By doing so a
subset of CC is selected while keeping or improving the predictive performance
of the ensemble.

However, creating and maintaining an ensemble of CC is not always fea-
sible [8]. Another way to handle the label ordering problem is to determine
a good chain sequence in advance. For this purpose methods such as genetic
algorithms [8], Bayesian networks [21] or double Monte Carlo optimization tech-
nique [17] have been used. On the other hand, the classification sequence can be
determined during the classification process by finding similar instances in the
training set and using the label ordering which works well on these instances [20].
However, this method is not appealing in terms of time complexity since a new
CC model has to be build on the fly.

A further improvement of CC could be achieved with probabilistic classifier
chains (PCC) [2]. While the training process of both methods is the same, PCC
modifies the classification procedure by considering the joint probability of each
possible label assignment. According to this, Bayes optimal predictions can be
created which makes PCC superior to CC [10]. However, this process has a much
higher time complexity and is only feasible for datasets with not more than 15
labels [2]. To tackle this problem beam search [10] or A* search [13] can be used
to perform the inferences which speeds up the process. In [14] an overview of
inference methods for PCC is given. Nevertheless, PCC also relies on a predefined
chain ordering for which reason ensembles of PCC have been introduced [2].

The research on CC and PCC contributed to the understanding and for-
malization of label dependencies in MLC. For instance, Dembczyński et al. [3]
found that these methods are able to exploit so called unconditional dependen-
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cies which exist globally on the whole dataset, but also conditional dependencies
which only appear locally in the instance space. Moreover, they also discovered
that certain multi-label evaluation measures can be orthogonal to each other
and optimizing them requires different approaches. For instance, methods such
as LP and CC are tailored towards finding the correct label combination, which
corresponds to the mode of the joint label distribution, whereas for correctly
predicting each label individually (measured by the Hamming loss) it might be
sufficient to use approaches such as BR.

3 Random Decision Trees for Multi-label Classification

Introduced by Fan et al. [6], the approach of RDT is an ensemble of randomly
created decision trees. More precisely, the tests at the inner nodes are chosen
completely at random. This is the major difference compared to classical decision
tree algorithms [26], but also to the well known algorithm family of Random
Forest [1], where only the subset of features which each tree learner can use
is randomly drawn. In contrast, RDT do not optimize any objective function
during training, yet they are able to achieve competitive and robust performance
[25]. Moreover, by increasing the number of trees in the ensemble the estimation
risk can be decreased [25] while we never tend to overfit [4]. Computational
complexity is another major advantage because the random selection takes no
time compared to computing information gain or similar heuristics [26].

In addition to these guarantees, the characteristics of RDT offers a wide range
of possibilities since the random construction is independent of the learning task.
For instance, Zhang et al. [26] make use of this property for large scale MLC
problems since the computational costs do not depend on the number of labels in
their formulation. Zhang et al. [25] propose to abstract RDT with hash functions
which is claimed to handle MLC problems in an even more efficient way. RDT
were also successfully applied to multi-label stream data and for handling concept
drifts with only small modifications to the original algorithm [9]. Depending on
the particular needs, RDT can flexibly be constructed before the arrival of the
training data [6,9,26] or by taking advantage of it [7,25].

In the following, we describe the general construction and prediction process
of RDT as well as the adaptations to be taken for the MLC setting. In particular,
we propose an extension to the weighting of the trees in the ensemble based on
their individual confidences computed by the Gini-index (Sect. 3).

Training. The construction of the trees for RDT is done recursively, as for most
decision tree learners, with the aforementioned difference that the features in the
inner nodes are chosen randomly. Hence, starting from the root node, inner nodes
are constructed recursively by distributing the training instances according to the
test as long as the stopping criterion of maximum depth or minimum number of
instances is not fulfilled. Discrete features are chosen without replacement in con-
trast to continuous features, for which additionally a randomly picked instance
determines the threshold [5]. In the case that no further test can be created a
leaf will be constructed in which information about the assigned instances will
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be collected. In MLC, for instance, we might track the number of instances Nθ
k

in leaf k of tree θ in relation to the number of positive values nθ
k(i) for label yi.

However, any other information could be collected depending on the learning
task at hand.

Prediction. During prediction, an instance is forwarded from the root to a leaf
node passing the respective tests in the inner nodes. In case of missing features,
the function U = q(θ,X) returns the set U = {k|k ∈ [1, T ] ⊂ N} of the leaves
indices in tree θ to which the instance has been assigned to. Following Fan et al.
[5], the posterior probability that the specific label yi is true given an instance
X and a tree θ, or an ensemble of trees Θ, respectively, can be formalized as

P (yj = 1|X, θ) =

∑
k∈q(θ,X) nθ

k(i)
∑

k∈q(θ,X) Nθ
k

, P (yi = 1|X,Θ) =
1

|Θ|
∑

θ∈Θ

P (yi = 1|X, θ)(1)

An obvious option in order to obtain multi-label predictions from the estima-
tions in Eq. 1 is to use a threshold of 50% so that ŷi = I [P (yj = 1|X,Θ) ≥ 0.5]
with I[x] = 1 if x is true and 0 otherwise, which we refer to as the probability
threshold method (or shortly probability method). However, as Quevedo et al.
[16] observed, a threshold of 50% is not always ideal. Note that the tests in the
tree are not specifically chosen to obtain a high purity of the distributions in the
leaves, and in fact many leaves might contribute only with estimates close to the
prior distribution, pulling down the average estimates. Thus, Zhang et al. [26]
proposed to estimate the average number of relevant labels

r(X, θ) =

∑
k∈q(θ,X)

∑n
j=1 nθ

k(j)
∑

k∈q(θ,X) Nθ
k

, R(X,Θ) =
1

|Θ|
∑

θ∈Θ

r(X, θ) (2)

where R(X,Θ) is rounded in order to get an integer. This value is then used to
cut the ranking of labels induced by the distribution of the marginals P (yi|X,Θ).
We refer to this method as the label threshold method or label method.

Weighting the trees. As aforementioned, the randomness make for a large
variety of distributions which are aggregated, many of them approaching the
prior label distribution. Nevertheless, previous RDT approaches for MLC use
equal weighting irrespectively. We propose to distinguish between the quality of
the collected statistics and to reward trees with higher confidences in their esti-
mates. The Gini index is often used for determining the purity of a distribution,
which we use in inverted form as follows

w(X, θ) = 1 − 4
n

∑

yi∈Y
P (yi = 1|X, θ)(1 − P (yi = 1|X, θ)) (3)

in order to weight the estimates of the individual trees, resulting in the overall
prediction

P (yi = 1|X,Θ) =
1

∑
θ∈Θ w(X, θ)

∑

θ∈Θ

P (yi = 1|X, θ)w(X, θ) (4)
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Eq. 2 can be adapted accordingly.
We observed a better performance of using the inverted Gini index in prelim-

inary experiments, so that we adopted it as the default setting for our proposed
algorithm.

4 Dynamic Predictions with Random Decision Trees

As already stated, a key disadvantage of classical CC is that their predictive per-
formance may be highly influenced by the pre-selected ordering of the labels. In
this section, we propose an extension of RDT referred to as Dynamic Classifier
Chains (DCC) where the sequence in which the values for the labels are pre-
dicted is chosen dynamically during the process of classification (Subsect. 4.3).
Moreover, RDT and their randomized construction provides a very convenient
controlled environment for experimentation (Subsect. 4.1).

4.1 Test Bed for Multi-label Classification

In Sect. 2 we reviewed some transformation methods for solving MLC tasks with
different desirable properties, respectively. The description of RDT in Sect. 3
applies to binary classification problems as well. For instance, we could use RDT
as base learner for a binary relevance decomposition, estimating P (yi|X,Θi)
instead of P (yi|X,Θ). However, both ensembles Θi and Θ are drawn from the
same tree distribution which is independently of any yi. Hence, both estimations
approach the same expected value as the number of constructed trees increases.

This key observation lead to the following advantages of RDT. Firstly, we
can collapse BR, and other MLC transformation or decomposition methods [22]
such as CC as we will see in the following, to a single RDT ensemble without
loss in predictive accuracy, therefore saving memory and computational costs.
Secondly, and more importantly, RDT can provide a controlled environment
where we can compare alternative decomposition methods, prediction methods
and other extensions isolated from any side effects since the model can be fixed
beforehand and be the same for every analyzed approach.

4.2 Static Chain Ordering

Similarly to BR, we can collapse a classifier chain to a single RDT in the follow-
ing way: Instead of augmenting the input space X by only the previous labels,
we add the whole label matrix so that X ′ ∈ X × Y. The prediction of base clas-
sifier hi for label yi (more specifically, P (yi = 1|X, ŷ1, . . . , ŷi−1, Θi)) is obtained
by setting ŷj to the previous predictions of hj , j < i, as for CC, but leaving
ŷj , j ≥ i as missing.1 Remind that when encountering a missing value at inner
nodes all branches are visited and aggregated (cf. Sect. 3). As RDT are com-
pletely randomized, we can—similarly to Subsect. 4.1—expect on average the

1 We assume, w.l.o.g., that y1, y2, . . . is the ordering of the predicted labels.
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same predictions as for a RDT with one node less. In fact, we control in our
experiments the percentage of activated label tests with a parameter σ, which
allows us to analyze the effect of using previous predictions on an otherwise
unchanged model.

yi

yj

Fig. 1. Example for the refinement of a prediction for a particular instance and decision
tree. yi and yj indicate tests on labels at the respective inner nodes.

Figure 1 visualizes the prediction process for a label on a single tree: Let us
assume that the label to be predicted is yi, which comes before yj . In this case
neither yi nor yj are known, i.e. all three colored branches are followed and the
respective leaves are used in order to produce a prediction for yi. For label yj

the previous label yi would be known, so that we would skip either the left or
right branch, obtaining a label distribution at the leaves which is different and
more refined than the previous one. Indeed, we can observe that the number
of leaves on which the prediction relies is monotonically decreasing during the
classification process. Therefore, the set of leaves to which the instance is assigned
in the first iteration will always be a superset of the leaves of the following
iterations. This leads to a refinement of the prediction through the iterations.

4.3 Dynamic Chain Ordering

In order to take advantage of the situation that predicting a label before or after
another one might be easier depending on the instance at hand, we propose to
let the RDT decide which label to predict next. Hence, instead of using the
estimated distribution in order to decide whether the i-th label is positive or
negative, we use it in order to set the label for which RDT is most confident in
its prediction. Labels, which were already predicted, are ignored.

Predicting the next label in the sequence. For convenience, we introduce
the following definitions. Let C denote the label candidates which were not yet
predicted, P+ the set of labels which were predicted as relevant, and P− the



40 M. Kulessa and E. Loza Menćıa

irrelevant labels, respectively. Accordingly, we start with P+ = P− = ∅, C = Y
in the first iteration.

In each iteration, we first decide on the next label to be predicted. We select
the label for which the RDT is most confident in the following way and remove
it from C:

yi = arg max
yj∈C

|0.5 − P (yj = 1|X,P+, P−, Θ)| (5)

In preliminary experiments we found that this approach works consistently bet-
ter than always choosing the label with the lowest or the highest probability,
respectively.

With yi chosen, we can use the probability method (cf. Sect. 3) to determine
whether to add it to P+ or P−. We note that we rely on a threshold of 50%
to classify a label as positive although this may be suboptimal regarding the
skewed distribution of the label sizes (as already pointed out in Sect. 3). However,
preliminary experiments with varying thresholds, e.g. by adapting them to the
prior distribution, revealed that choosing the optimal thresholds is non-trivial.
One particular reason is that the thresholding of a specific label is required at
different stages of the prediction chain, in contrast to using a static ordering,
introducing additional dependencies and dynamics of the right threshold. We
leave further investigations for future work.

The process of predicting the value with the label method also needs fur-
ther adaption due to the iterative prediction of the labels. The idea is to have
predicted exactly R(X,P+, P−, Θ) labels positive after the prediction sequence
is completed. Since the prediction changes during the classification process
R(X,P+, P−, Θ) has to be re-computed in every iteration. First of all, we can
only predict a label positive if the number of already predicted positive labels
|P+| is smaller than R(X,P+, P−, Θ). Moreover, we have to predict a label as
positive if we know that all the remaining labels in C need to be predicted
positive to ensure that we obtain exactly R(X,P+, P−, Θ) positive labels.

yi =

⎧
⎪⎨

⎪⎩

1, if P (yi = 1|X,P+, P−, Θ) ≥ 0.5 and |P+| < R(X,P+, P−, Θ)
1, if n − |P−| < R(X,P+, P−, Θ)
0, otherwise

(6)

Let us consider again the tree in Fig. 1. The difference to the static chain
approach is that the aggregated blue, red and green leaves would be used in
order to determine whatever label yk is most likely given the found distribution,
instead of a specific label, in the previous example label yi. Hence, the RDT
could decide to predict yj instead if they are more confident about it, or any
other label with the highest confidence. We believe that this potentially leads
to more reliable predictions, both in terms of individual labels as well as label
combinations.

In particular Fig. 2 displays an example how the quality of the predictions
could differ between a static ordering and a dynamic ordering. Let us assume we
want to identify objects in a scene. While the static ordering has to follow a pre-
defined sequence for the classification, it has to classify the label beach first. Since
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Static Ordering (Classifier Chain)

Dynamic Ordering (Dynamic Classifier Chain)

sea

yes

car

no

cliff

yes

...

...

beach

yes

beach

no

stairs

yes

bridge

yes

...

...

city

yes

Fig. 2. Example for different classifications using the static and the dynamic ordering
for a picture associated to labels beach, sea, cliff, bridge, stairs. See text for explana-
tions.

the beach is not clearly visible on the picture, the label receives a negative value
which already introduces an error for future predictions in the chain. Especially
for our example, this has the consequence that the scene is classified as a city
because stairs and bridges are more correlated with cities than with the seaside.
In contrast, the dynamic chain classifies the most obvious targets first for which
reason the label sea receives a positive classification in the first iteration. This
increases the chance to classify the label cliff as positive which provides even
more evidence for predicting the difficult label beach as positive. On other hand,
we reduce the probability to incorrectly classify the scene as a city, since we
exclude objects which are clearly not identifiable in the picture, such as a car,
in early iterations.

Computational Costs. The costs for building the trees and performing the
dynamic predictions is conceptually equal to using a static ordering. They mainly
depend on the size of the ensemble and the depth of the trees. However, the
dynamic approach potentially allows to shorten the prediction process, namely
when enough positive (or negative) labels have been already predicted, poten-
tially removing the dependencies on the label size.

5 Evaluation

A key aspect in our experimental evaluation was, of course, to demonstrate
that using dynamic, context-dependent predictions improves over using static
orderings w.r.t. predictive performance (Subsect. 5.3). A decisive role in this is
played by the influence of the previous predictions on the current prediction,
which is analyzed in Subsect. 5.2.

Another aspect, we were particularly interested in, was to verify our ideas on
the usage of RDT as controlled experimental environment for fair and specific
comparisons.
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Regarding our proposed dynamic approach, we will mainly distinguish
between the two variants using the probability and the label threshold method
for determining the value of the next label, respectively. We expected that other
hyper parameters would behave quite different with respect to different datasets,
both regarding the shapes (and densities) of the input and output spaces. In con-
trast to other hyper parameters like number of trees or minimum leaf sizes, we
decided to consider this aspect separately.

5.1 Setup

For our experiments we have used eight different multi-label datasets from the
Mulan repository [23]. An overview of these datasets is provided in Table 1.
From the text datasets we have only included Enron and Medical, which have a
relatively small vocabulary, since RDT are known to not perform well on sparse
data without further adaptations which we did not want to put in the focus for
this work.

Table 1. Dataset statistics: Total number of instances, of nominal and numeric
attributes, of labels, average number of labels per instance and distinct label com-
binations.

Name Instances Nominal Numeric Labels Cardinality Distinct

Flags 194 9 10 7 3.392 54

Emotions 593 0 72 6 1.869 27

Scene 2407 0 294 6 1.074 15

Yeast 2417 0 103 14 4.237 198

Birds 645 2 258 19 1.014 133

Medical 978 1449 0 45 1.245 94

Enron 1702 1001 0 53 3.378 753

CAL500 502 0 68 174 26.044 502

A large variety of evaluation measures exist for MLC. We focus in this work
on two of them, namely subset accuracy and micro-averaged F1 measure. Subset
accuracy is a very restrictive evaluation metric since it only measures the per-
centage of instances for which all labels have been predicted correctly. Especially
in the case of predicting a large amount of labels this measure often approaches
zero without being able to distinguish. However, the objective of classifier chains
is precisely to find exactly the correct label combination (cf. Sect. 2). Hence, we
expect the impact of our proposed extensions to be best reflected in the subset
accuracy.

Micro-averaged F1 measure is less strict since it also considers partial matches
and is therefore often used for providing a general comparison of the predic-
tive quality. However, the measure is to a certain degree orthogonal to subset
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accuracy [3]. As Dembczyński et al. [3] indicate, it is sufficient to obtain good
estimates for the individual labels in order to optimize univariate losses such as
F-measure or Hamming loss. Nevertheless, our approach may still benefit from
the dependencies captured by the chaining approach with respect to these mea-
sure, which is why we include micro-averaged F1 measure (micro F1) in our
comparisons.

Given N test instances, corresponding true labels Yj and predicted labels
Ŷj , true positives tpj = Yj ∩ Ŷj , false positives fpj = Ŷj \ Yj , false negatives
fnj = Yj \ Ŷj for the j-th test instance, we obtain the measures as follows:

subset accuracy =
1
N

N∑

j=1

I

[
Yj = Ŷj

]
micro F1 =

∑N
j=1 2 tpj

∑N
j=1 2 tpj + fpj + fnj

(7)
Unless otherwise noted we have chosen to evaluate all combinations of param-

eter settings of ensembles with 300 decision trees, a maximum depth of 30, a
minimum number of instances to create a test of {4, 6, 10} and a percentage of
label tests of {10%, 20%, 30%}. Preliminary experiments with RDT revealed rea-
sonable and stable performance for these parameter ranges also on other kind
of problems. Furthermore, we compare the results based on the averages of a
ten-fold cross validation performed on the whole dataset.

5.2 Independent Predictions vs. Exploiting Previous Predictions

In this experiment we evaluated how the prediction is influenced by the usage of
the label tests, i.e., by the usage of the previous predictions in the dynamic chain.
At this stage the flexibility of the RDT algorithm pays off since we can choose
the ratio σ of activated tests on the labels without the need for adaptations of
the model (cf. Subsect. 4.2). Hence, σ = 0 corresponds to a binary relevance
classifier using RDT (or the collapsed version, respectively). Incrementing σ
allows to directly observe utility and the effectiveness of exploiting potential
label dependencies.

Figure 3 show the benefit for some selected cases w.r.t. subset accuracy but
also for improving the univariate micro F1. For instance, we can observe on
datasets Emotions and Yeast a major influence of the label tests on the perfor-
mance for both prediction and evaluation methods. We can conclude that there
is a strong dependency between the labels in the datasets of which we can take
advantage. Similar but less pronounced effects can be seen for the remaining
datasets except Enron and CAL500. Enron shows that the usage of (possibly
wrong) previous predictions can also have a negative impact in some cases, or
no impact as for CAL500. Moreover, both datasets are also an example for the
observation that the best label prediction method is highly dataset dependent.

In general it can be seen that the values for the evaluation measures get
better the more label tests are activated. Only on the dataset CAL500 the label
tests seem not to have any influence on the predictive performance. Moreover,
on the dataset Enron it can be seen that the activation of the label tests have
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10% label-method
10% probability-method
20% label-method
20% probability-method
30% label-method
30% probability-method
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CAL500

Fig. 3. Influence of label tests on DCC. The y-axis represents the value for the measure
and the x-axis represents the percentage σ of activated label tests. The color indicates
the prediction method and the style of the line represents the percentage of label tests
per tree.

a negative impact on the micro-averaged F1 measure independently of the pre-
diction method in the case that 30% of label tests have been used in the trees.
Furthermore, on the dataset Birds only the label method benefits from the label
tests whereas on the dataset Scene only the probability method benefits from
the label tests. The values for the corresponding other prediction method stay
the same along the activation of the tests.

5.3 Static vs. Dynamic Label Orderings

In this experiment we evaluated the advantage of the dynamic chain ordering
in comparison to using a static chain ordering. Taking advantage of our con-
trolled environment, we built for both approaches the same ensemble of trees,
respectively, in this case with 20% of label tests. The only difference between the
dynamic and the static setup is the ordering of the labels during the prediction
process. We compare our proposed dynamic method to the averages over ten
different randomly-drawn but fixed orderings used for the static CC approach
in Tables 2 and 3.
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Table 2. Comparison between dynamic and static chain method for subset accuracy.
Bold entries indicate the best results.

Flags Emotions Scene Yeast Birds CAL500 Enron Medical

DCC LM 0.1959 0.2799 0.4271 0.2073 0.4930 0.0000 0.0447 0.1840

CC LM 0.1623 0.1098 0.1714 0.0215 0.3673 0.0000 0.0116 0.0034

DCC PM 0.1856 0.3339 0.3112 0.1854 0.4698 0.0000 0.0576 0.0000

CC PM 0.1835 0.1482 0.0914 0.0407 0.4583 0.0000 0.0286 0.0000

Table 3. Comparison between dynamic and static chain method for micro F1.

Flags Emotions Scene Yeast Birds CAL500 Enron Medical

DCC LM 0.7506 0.6535 0.4682 0.6459 0.4484 0.4681 0.4527 0.2696

CC LM 0.7301 0.4439 0.1935 0.4893 0.1288 0.2945 0.2669 0.0043

DCC PM 0.7448 0.6774 0.4344 0.6100 0.0708 0.3114 0.3410 0.0065

CC PM 0.7484 0.4490 0.1656 0.5204 0.0137 0.3093 0.3153 0.0000

The first and foremost observation is that the dynamic chain ordering is
clearly superior to the static chain ordering on all datasets. Moreover, the
dynamic chain ordering improved the evaluation results of the label method (LM)
on all datasets often to a great extent whereas the probability method (PM) does
not take major advantage of the dynamic chain ordering on the datasets Birds,
CAL500 and Medical.

The results suggest that the improvement of DCC over CC relies on high
confidence of the classifications in the first iterations. These classifications pro-
vide evidence to improve the classification of the difficult labels. This effect is
analyzed in more detail in the following experiment.

5.4 Analysis of the Dynamic Sequences

Our approach dynamically produces a different prediction sequence on the labels
for each given test instance. We were interested in characterizing and analyzing
these sequences, which were selected by the RDT as being most appropriate for
producing accurate predictions.

Figure 4 visualizes our results exemplarily for Yeast. The heat map on the left
shows the average accuracy (color) of predicting the i-th label in the dynamic
sequence (y-axis) for the different configurations (x-axis), whereas the right map
visualizes the number of labels (color) which were predicted as positive until a
certain iteration.

We can observe on Yeast as well as on the remaining datasets and indepen-
dent of the parameter configuration that the predictions of the first iterations
are pretty accurate in comparison to the error-prone predictions at the end. One
reason is of course that our label selection method chooses the labels where the
RDT ensemble is most confident first. On the other hand, this can be the result
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(a) Accuracy of the prediction (b) Number of positive labels

Fig. 4. Heatmaps characterizing the predicted sequences on Yeast

of the error propagation since erroneously predicted labels influence the predic-
tions of the following iterations. Furthermore, it can be observed that errors are
mostly made on positive labels after predicting almost all the negative labels.
This can be again explained by the confidences, which is higher for negative
labels due to the sparsity of the label assignments.

5.5 Comparison with Other Classifiers

In order to put the performance of RDT and the different prediction methods
in a larger context we present in this section a comparison to a couple of other
algorithms. We have evaluated the BR, the LP and the CC method with the J48
WEKA implementation of the C4.5 decision tree learner as the base classifier.
This approach represents in our comparison the family of classical decision tree
learners which address a learning task by choosing splits at the inner nodes
which optimize a certain pre-determined criterion such as the information gain.
For the J48 algorithm we have used the default parameter settings which are
0.25 for the confidence threshold for pruning and 2 for the minimum number of
instances per leaf. For the CC method we have evaluated ten different random
chain orderings and averaged the results. Moreover, we have evaluated the BR
and the LP method using RDT. For these methods we have chosen to build
ensembles with 300 decision trees, with a maximum depth of 30 and a minimum
of four instances to create a test. The dynamic chain methods share the same
settings and use 20% of label tests in their ensembles. Hence, the dynamic chain
methods use 20% less tests on the features compared to the BR and the LP
method because they are replaced by label tests. The ten-fold cross validation
results can be seen in Tables 4 and 5.

First of all, it can be seen that the label method outperforms the J48 meth-
ods on the datasets CAL500, Emotions and Yeast in terms of subset accuracy
and micro-averaged F1 measure. On the other hand, the J48 methods were able
to beat the dynamic chain methods on the datasets Scene, Enron and Medical.
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Table 4. Results for the subset accuracy

Flags Emotions Scene Yeast Birds CAL500 Enron Medical

DCC LM 0.1959 0.2799 0.4271 0.2073 0.4930 0.0000 0.0447 0.1840

DCC PM 0.1856 0.3339 0.3112 0.1854 0.4698 0.0000 0.0576 0.0000

RDT LP 0.1959 0.3929 0.4612 0.2416 0.5008 0.0000 0.1363 0.2566

RDT BR 0.1701 0.2479 0.1379 0.0852 0.4698 0.0000 0.0129 0.0000

J48 BR 0.1443 0.1686 0.3515 0.0633 0.4930 0.0000 0.0593 0.6708

J48 CC 0.2211 0.2169 0.4548 0.1327 0.4998 0.0000 0.0977 0.6906

J48 LP 0.2474 0.1939 0.4902 0.1419 0.4729 0.0000 0.0823 0.6585

Table 5. Results for the micro-averaged F1 measure

Flags Emotions Scene Yeast Birds CAL500 Enron Medical

DCC LM 0.7506 0.6535 0.4682 0.6459 0.4484 0.4681 0.4527 0.2696

DCC PM 0.7448 0.6774 0.4344 0.6100 0.0708 0.3114 0.3410 0.0065

RDT LP 0.7310 0.7168 0.4953 0.6353 0.3390 0.3349 0.3652 0.3520

RDT BR 0.7545 0.5997 0.2433 0.5598 0.1063 0.3178 0.3842 0.0000

J48 BR 0.7416 0.5791 0.5563 0.5774 0.4675 0.3553 0.5096 0.8198

J48 CC 0.7248 0.5806 0.5420 0.5516 0.4576 0.3501 0.4996 0.8225

J48 LP 0.7045 0.5668 0.5374 0.5397 0.4259 0.3309 0.3818 0.7527

Especially the results on the dataset Medical are conspicuous, where RDT gen-
erally performs very poorly. As aforementioned, sparse input data is particularly
challenging for RDT-like approaches.

Furthermore, it can be seen that the dynamic chain methods are superior
to the RDT-BR method on almost all datasets, as anticipated by the results in
Subsect. 5.2.

Of particular interest is the comparison to the RDT-LP method. In terms of
subset accuracy this method could outperform the dynamic chain methods on
almost all datasets. Especially the results on the datasets Emotions, Yeast and
Enron are much better than the results of the other methods. However, a closer
examination reveals that the results for the micro-averaged F1 measure of the
RDT-LP method are not always that good. The label method could achieve a
much higher score for micro-averaged F1 measure on the datasets Birds, CAL500
and Enron. Senge et al. [19] observed that LP can benefit from the restricted set
of label combinations it can choose from, especially when the number of distinct
combinations is relatively low, as it is the case for the used datasets. The other
approaches, instead, have to make up valid combinations by concatenating single
decisions. Whereas these single decisions might be better than for LP, as seen
in terms of micro-averaged F1 measure, the complete combination might still be
wrong especially if the cardinality is high.
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6 Conclusions and Future Work

In this paper we have proposed a new approach on multi-label classification
based on random decision trees and the idea of classifier chains. With our pro-
posed algorithm we have been able to overcome the major problem of the label
ordering by dynamically selecting the next label in the sequence depending on
the context, namely the instance at hand and the previously predicted labels for
it. In comparison to other approaches for CC, which try to pre-compute appro-
priate sequences, our approach comes at no additional cost, since the framework
of RDT allows to perform the necessary inferences completely during prediction
time.

In several experiments the dynamic label ordering has been analyzed in depth
and compared with other baseline methods. Even though we cannot achieve
state-of-the-art results with RDT in some cases and domains, they have appeal-
ing properties that allow a fundamental analysis of the advantages and dis-
advantages of certain approaches. For instance, our experiments revealed the
importance of the dynamic label ordering on different datasets, as well as the
impact of using the previous predictions. These observations could be made with
the guarantee that they were independent of any other factors like the usage of
more sophisticated methods or more powerful models.

However, to improve the predictive capabilities of RDT still remains a goal
for future work. For instance, the proposed Gini index considers the skew of the
counts, but not the number of instances these counts are based on, which could
be used as further indicator for the confidence. Efficiency could also be improved
if we consider that labels are usually sparse in MLC problems. Therefore, it could
be enough to focus on positive labels only, which would considerably reduce the
length of the prediction sequence. In addition, as we have seen, RDT have still
clear disadvantages on data which is sparse in the feature values, such as text.
New types of tests in the inner nodes, which for instance consider disjunctions
of several features, could solve this problem. Furthermore, we plan to transfer
our ideas on dynamic chains to other kinds of algorithms as well. A first step
will be to adapt predictive clustering trees [24]. The construction of these trees
does also not necessarily depend on a specific target. However, its clustering may
allow for more discriminative distributions at the leaves.
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15. Nam, J., Loza Menćıa, E., Kim, H.J., Fürnkranz, J.: Maximizing subset accuracy
with recurrent neural networks in multi-label classification. In: Advances in Neural
Information Processing Systems 30 (NIPS-17). pp. 5419–5429 (2017)

16. Quevedo, J.R., Luaces, O., Bahamonde, A.: Multilabel classifiers with a probabilis-
tic thresholding strategy. Pattern Recognit. 45(2), 876–883 (2012)

17. Read, J., Martino, L., Luengo, D.: Efficient Monte Carlo methods for multi-
dimensional learning with classifier chains. Pattern Recognit. 47(3), 1535–1546
(2014)

18. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Mach. Learn. 85(3), 333–359 (2011)
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T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS
(LNAI), vol. 8725, pp. 453–468. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44851-9 29

https://doi.org/10.1007/978-3-642-38067-9_13
https://doi.org/10.1007/978-3-319-01595-8_18
https://doi.org/10.1007/978-3-319-01595-8_18
https://doi.org/10.1007/978-3-662-44851-9_29
https://doi.org/10.1007/978-3-662-44851-9_29


50 M. Kulessa and E. Loza Menćıa
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Abstract. In this work, we address the task of feature ranking for multi-
label classification (MLC). The task of MLC is to predict which labels
from a maximal predefined label set are relevant for a given example.
We focus on the Relief family of feature ranking algorithms and empir-
ically show that the definition of the distances in the target space used
within Relief should depend on the evaluation measure used to assess
the performance of MLC algorithms. By considering different such mea-
sures, we improve over the currently available MLC Relief algorithm.
We extensively evaluate the resulting MLC ranking approaches on 24
benchmark MLC datasets, using different evaluation measures of MLC
performance. The results additionally identify the mechanisms of influ-
ence of the parameters of Relief on the quality of the rankings.

Keywords: Feature ranking · Multi-label classification · Relief

1 Introduction

Classification is a task in predictive modelling, where the goal is to learn a
model that takes as the input a vector x of descriptive variables (features) xi,
and predicts the class value y that a given example belongs to. If y can take two
different values, the task at hand is referred to as binary classification. Otherwise
(y can take more than two values), the task at hand is multi-class classification.
In both cases, every example is assigned precisely one value. For example, one can
predict whether a person has survived a shipwreck where y ∈ {yes, no} (binary),
or what is the blood type of a person where y ∈ {A, B, AB, 0} (multi-class). In
both cases, class values are mutually exclusive.

A related task is multi-label classification (MLC). As opposed to the standard
classification, a MLC predictive model predicts which labels from a predefined
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set L are relevant for a given example. For example, one can predict which of
the genres from the set L = {romance, drama, comedy} are relevant for a given
film. Clearly, a film can be drama and comedy at the same time.

There are two main approaches to MLC: problem transformation and algo-
rithm adaptation. From the problem transformation group of methods most
widely known are binary relevance and label power set. Binary relevance is a
simple method that converts a MLC task to several binary classification tasks
with y ∈ {yes, no} where we predict the relevance of each label separately. This
approach is often criticized for it cannot make use of the interactions among the
labels. In the label power set approach [24], the task of predicting a subset of L
is converted to the task of predicting an element of the power set 2L , and thus
converting a MLC task to multi-class classification task. However, the number
of classes can be as high as 2|L |, which results in a very sparse dataset.

The second group of methods are method transformation techniques where
an existing method is adapted to a new problem. A prominent member of this
group are predictive clustering trees which generalize decision trees, so that they
can handle MLC [15] and other structure output prediction tasks [12].

Another important task in machine learning is feature ranking, where the
goal is to asses the importance of every descriptive attribute (feature) by using
some scoring function. The output of a feature ranking algorithm is a list of
features that is sorted with respect to the scores.

Feature ranking is typically considered a part of data preprocessing, since it
can be used to reduce the dimensionality of the input space, so that only the
features that contain the most information about labels (or target(s) in general)
are kept in the dataset. By doing this, we decrease the computational cost of
building a predictive model, while the performance of the model is not degraded.
Another reason to compute a feature ranking is that dimensionality reduction
typically results in models that are easier to understand, which is useful when a
machine learning expert works in collaboration with a domain expert. Predictive
models, such as decision trees, are easier to interpret when a small number of
the most relevant features are used to learn them.

There is a plethora of feature ranking methods for the task of classifica-
tion [22]. A possible approach to MLC feature ranking is to adapt the binary
relevance approach from predictive modelling, where at the first stage, feature
importances are computed for every label � ∈ L separately as in the classifi-
cation case. After that, the feature importances are averaged over the different
labels and a single ranking is returned. In this work, we focus on the Relief
family of feature ranking algorithms, which are distance based approaches and
thus widely applicable. They are part of the filter methods which compute the
ranking without any additional predictive model [9]. The filters are typically fast,
i.e., linear in the number of features, but myopic at the same time, i.e., cannot
capture the feature interaction. Relief family of the feature ranking algorithms,
however, overcomes this, and can successfully discover, e.g., XOR-relation [14].

The rest of the paper is organized as follows. In Sect. 2, the overview of related
work is given. In Sect. 3, the proposed feature ranking algorithms are described
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and analyzed. In Sect. 4, the detailed description of the experimental is given. In
Sect. 5, the results of the experiments are presented. In Sect. 6, conclusions and
direction for further work are given.

2 Related Work

We start the overview of the related work with the extensions of the Relief
family to MLC setting that are presented in [20]. There, the binary relevance
and label power set approach were applied to the feature ranking scenario. More
precisely, in the case of binary relevance approach, feature ranking was computed
for every label � ∈ L separately. This was done by using the Relief algorithm
for the standard binary classification [11]. After that, the feature importances
were averaged to a single score. In the case of the label power set approach the
multi-class extension of the Relief (ReliefF) was used [14].

As mentioned before, these two approaches have some drawbacks. Binary
relevance approach does not take the label interactions into account and can
be expensive to run when the number of labels is high: we have to solve |L |
feature ranking problems which results in high time or space complexity. High
space complexity is also a drawback of label power set approach if the number
of different relevant label subsets is high. In that case, the data may also become
too sparse for the ranking to be relevant.

Both procedures were evaluated on a rather small subset of ten datasets
presented in this study (see Sect. 4.2), in a manner similar to our evaluation
procedure, which uses k nearest neighbours classifier. No statistical tests were
done and the feature rankings were not compared to any baseline.

Another data transformation approach was presented in [13] where the MLC
problem is transformed into |L |(|L | − 1)/2 binary classification problems - one
for each of the label pairs (�1, �2) where �1 �= �2. For each binary problem, only
the examples for which either �1 or �2 is relevant (but not both) are retained in
the corresponding dataset. The exclusion of the examples for which both labels
are relevant is necessary to avoid ill-defined terms in the equations for importance
update. The authors motivate this by claiming that the number of the examples
for which both labels are relevant, is small in comparison to the number of
examples for which precisely one of the two labels is relevant. However, this may
not be the case in some data sets, as observed in [18]. The main drawback of this
approach is the computational complexity, since the number of feature ranking
problems to solve grows quadratically with the number of labels.

A member of the Relief family ReliefF-ML [18] does solve the multi-label
ranking problem directly, yet its space complexity is still considerable. The algo-
rithm RReliefF-ML [18] overcomes this issue since it is an extension of the RReli-
efF version that is suitable for regression tasks [14]. In contrast to the extensions,
RReliefF(-ML) computes only one group of the nearest neighbors per example
which results in significantly smaller space complexity.

The method was empirically shown to yield relevant feature rankings [18]
since it statistically significantly outperformed the baseline. For showing statis-
tical significance, Friedman test was used. However, we need to point out that
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the very basic assumption of the independence of data samples (datasets in this
case) was not met, since 10 out of 34 are basically different versions of the same
data (Corel16k datasets). In our experiments, we also show that the seemingly
ad-hoc choice of the target distance may not lead to the best rankings if we want
to optimize for a particular evaluation measure.

Regarding pure predictive modelling setting, the authors in [4] show that
in general, different evaluation measures result in different optimal classifiers.
However, the authors also show that, e.g., Hamming Loss and Subset Accuracy
have the same optimal classifier under some rather strict conditions.

3 MLC-Relief

Relief family of feature ranking algorithms calculates the feature importance
scores by considering differences in the feature values between pairs of examples
(an example and its nearest neighbor). More specifically, if the values of features
of a pair of examples from the same class are different then the features’ impor-
tance decreases. Conversely, if the feature values are different for examples from
different classes then the features’ importance increases.

In the following, we first introduce the distance measures used within the
algorithm. Then, the algorithm is described and its computational complex-
ity (including the complexity of computing different distances) is analyzed.
Throughout the paper, F and L always denote the number of features and labels
respectively.

3.1 Distances: Why and Which

All methods of the Relief family assign feature xi a weight wi that is a measure
of feature importance in these algorithms. The expected value of the wi has a nice
probability interpretation in the case when both the target and xi are nominal
[14]: simplified to some extent, we have a relation

E[wi] =
PdiffAttr, diffTarget

PdiffTarget
− PdiffAttr − PdiffAttr, diffTarget

1 − PdiffTarget
, (1)

where we define the probabilities Pev = P (ev) and Pev1, ev2 = P (ev1∧ev2) that
base on the events diff/sameAttr (two instances have different/same value of
xi) and diff/sameTarget (two instances have different/same target value). The
probabilities from the right hand side of Eq. (1) are modeled as the distances in
the corresponding spaces: PdiffAttr is modeled by the distance di on the domain
of feature xi, PdiffTarget is modeled by the distance dL on the label set L , and
PdiffAttr, diffTarget is modeled as their product didL .

First, the distance on the whole descriptive domain X is defined via the
distances di on the domains Xi of features xi as

di(x1,x2) =

⎧
⎨

⎩

1[x1
i �= x2

i ] : Xi � R

|x1
i −x2

i |
max

x
xi−min

x
xi

: Xi ⊆ R
dX (x1,x2) =

1
F

F∑

i=1

di(x1,x2) (2)
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where 1 is the indicator function with the values 1[true] = 1 and 1[false] = 0,
and max and min go over the examples x in the training set.

For the distance dL between two sets of labels S1 and S2, we consider four
options. The use of the first (Hamming Loss) was proposed in [18].

Hamming Loss. This distance is defined as

dHamming(S1, S2) =
∣
∣S1 \ S2 ∪ S2 \ S1

∣
∣ / L. (3)

We observe that this is an analogue of dX from Eq. (2). Encoding a subset
S ⊆ L as a 0/1 vector s, where sj = 1 ⇔ �j ∈ S, we have dHamming(S1, S2) =
1
L

∑L
j=1 dj(s1, s2), where the numeric part of di in Eq. (2) applies in dj . We

believe that there are more suitable choices for the distance dL that take into
account the set structure.

Accuracy. The similarity between two sets can be also measured by their
Jaccard index |S1 ∩ S2|/|S1 ∪ S2| which is well defined when at least one of the
subsets S1,2 is not empty (this is the case in our datasets). We then define

dAccuracy(S1, S2) = 1 − |S1 ∩ S2| / |S1 ∪ S2|. (4)

F1 distance. This distance is defined as

dF1(S1, S2) = 1 − 2|S1 ∩ S2| / (|S1| + |S2|), (5)

where the second term can be seen as the harmonic mean of the precision and
recall [15]. However, these two measures are not symmetric, thus inappropriate
as the distance measures.

Subset Accuracy. This distance is defined as

dSubsetAcc(S1, S2) = 1
[
S1 �= S2

]
. (6)

It is the strictest, since it does not differentiate between, e.g., almost the same
and disjunctive pairs of subsets. This allows for a faster computation of the
distance as compared to the other options (Lemma 2).

Except for the dF1, all distances are also metrics. We named them after the
measures that they are expected to optimize (defined in Sect. 4.4), and believe
that no other standard measures (see [15,27]) allow for a direct derivation of
distance definitions.

3.2 Algorithm Description

The calculation of the weights wi = importance(xi) using the MLC extension of
RReliefF is outlined in Algorithm 1. RReliefF is an iterative procedure. For each
of the m iterations, we randomly select an example r from DTRAIN (line 4) and
find its K nearest neighbors (line 5) using the distance dX from Eq. (2). After
that, we use the neighbors to update the estimates of probabilities that appear
in the definition of the weights (1) for all attributes (lines 8–10). The estimates
of probabilities are updated with the weighted average of the distances between
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Algorithm 1 MLC-RReliefF(DTRAIN, m, K, dL )
1: P diffAttr, diffTarget, P diffAttr = zero lists of length F
2: PdiffTarget = 0.0
3: for ι = 1, 2, . . . , m do
4: r = random example from D
5: n1,n2, . . . ,nK = K nearest neighbors of r
6: for k = 1, 2, . . . , K do
7: PdiffTarget += δ(�)dL

(
r,nk

)

8: for i = 1, 2, . . . , F do
9: P diffAttr[i] += δ(�)di

(
r,nk

)

10: P diffAttr, diffTarget[i] += δ(�)di

(
r,nk

)
dL

(
r,nk

)

11: for i = 1, 2, . . . , F do

12: wi =
P diffAttr, diffTarget[i]

PdiffTarget
− P diffAttr[i]−P diffAttr, diffTarget[i]

1−PdiffTarget

r and its neighbors. Here, the distance dL from the algorithm input is used. The
weight δ(k) = 1/(mK) ensures that wi ∈ [−1, 1] when the algorithms finishes.
At the end, the weights wi are computed (line 12) by using the relation (1).

The default values of the parameters are set as follows. Typically, we iterate
over the whole dataset, i.e., m = |DTRAIN|. By doing this, the estimates of
probabilities are expected to be more accurate. The value of K is typically set
small enough to capture the local structure in the data. In that way, we implicitly
capture the interactions between features [14].

3.3 Computational Complexity

We first analyze the time complexity of a single iteration. Since the space-
partitioning data structures, such as kD trees do not perform well when the
number of features F is high, we use a brute-force method for finding the nearest
neighbors. Hence, the computation of the distances between r and the neighbour
candidates takes O(MF ) steps, where M = |DTRAIN|. In addition to this, the
current group of the nearest neighbors must be updated from time to time.

Lemma 1. The expected number of updates of the group of current nearest
neighbors of the instance r is approximately K log M .

Proof. When we iterate over the neighbors, the group of currently K nearest
neighbors is updated if, and only if, at most K − 1 better candidates have been
found so far. Let nk be the instances from DTRAIN \ {r}, sorted increasingly
by the distance to r, i.e., n1 is the nearest neighbor and nM−1 is the farthest
neighbor. Let Ek be the expected number of updates when we find the candidate
nk. Then, Ek equals the probability pk of discovering at most K − 1 of the
instances n1, . . . , nk−1 before nk. Probability pk,s of discovering precisely s of
them equals the probability that nk appears in the (s + 1)-th position in the
random permutation of the instances n1, . . . ,nk, hence pk,s = 1/k, for all s < k,
and pk,s = 0 otherwise. It follows that pk =

∑K−1
s=0 pk,s = min{k,K}/k.
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The total number of expected updates E then equals E =
∑M−1

k=1 Ek, hence
E =

∑M−1
k=1 pk = K +K

∑M−1
k=K+1

1
k = K(1+HM−1 −HK), where k-th harmonic

number Hk is defined as Hk =
∑k

s=1 1/s. Since log k < Hk < 1 + log k, the
leading term in E is indeed K log M .

The overall cost of updating the current nearest neighbours is thus
O(K log M log K) if we are using, e.g., the heap structure.

When the neighbours nk, 1 ≤ k ≤ K, are computed, the distance between
their label set and the label set of r are computed. Considering that we store
the label sets as 0/1-lists of length L, this takes O(KL) steps for the distances
dHamming , dAccuracy and dF1, since we have to iterate over all labels. In the
case of dSubsetAcc , we can do much better, knowing that the labels are typically
sparse. To be able to obtain a closed form expression, we will assume that all
labels have the same probability to be relevant and that they are independent.

Lemma 2. The expected value of the labels considered in one computation of
dSubsetAcc is 1−pL(2−p)L

(1−p)2 , where p is the probability of a label being relevant.

Proof. We know that dSubsetAcc(S1, S2) = 1 as soon as we encounter the label
�l /∈ S1 ∩ S2. Let X be the number of labels considered. The key observation
is that we can easily compute P (X ≥ k) = P (�1, . . . , �k−1 ∈ S1 ∩ S2) = (1 −
p)2(k−1). This is useful since E[X] =

∑L
x=1 P (X ≥ k). We obtained geometric

series whose sum equals E[X] = 1−pL(2−p)L

(1−p)2 .

Table 1 reveals that the dataset Delicious has L = 983 labels and label car-
dinality (average number of labels per example) �c

.= 19. Thus, p
.= 0.019 and

E[X] .= 1.04, which is considerably smaller than L.
After the distances dL are computed, the probability estimates are updated

in O(KF ) steps. After all iterations, the weights are computed in O(F ) steps,
thus the final time complexity is O(m[MF +K log M log K +KL+KF ]+F ) =
O(m[MF +KL]) (in the case of dSubsetAcc , L the term KL is replaced by E[X]).
If the number of labels is high, then the term KL may not be negligible, which
was overlooked in [18].

4 Experimental Design

Here, we give the detailed experimental design for evaluating the performance
of the proposed distances. We begin by stating the experimental questions and
summarizing the MLC datasets used in this study. Then, we present the evalu-
ation procedure and give the specific parameters instantiations of the methods.

4.1 Experimental Questions

The main experimental question is: Does the choice of the distance dL matter?
Furthermore, we investigate (i) whether the knowledge encapsulated in the

feature importances leads to better predictive performance of a model, i.e, are
the obtained feature rankings relevant, and (ii) how the quality of ranking is
influenced by the number of neighbors K and the number of iterations m.
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4.2 Datasets

We use 24 MLC benchmark problems. Table 1 presents the basic statistics of
the datasets. The number of features ranges from 72 to 52350. The features
are numeric and nominal. The label set size L ranges from 6 to 983, while the
number of training examples ranges from 322 up to 70000. The average number
of labels per example (in DTRAIN ∪ DTEST), i.e., label cardinality is also given.
With the exception of Delicious dataset, it ranges between 1.0 and 4.38.

The datasets come from different domains. Arts, Business, Computers, Edu-
cation, Entertainment, Health, Recreation, Reference, Science, Social and Society
describe the problems of finding relevant subtopics of the given main topic of a
web page. Bibtex and Bookmarks are automatic tag suggestion problems, Birds
deals with predictions of multiple bird species in a noisy environment. Corel5k
contains Corel images. Delicious contains contextual data about web pages along
with their tags. Emotions deals with emotions in music. Enron contains data
about emails. Genbase and Yeast come from biological domain. Mediamill was
introduced in a video annotation challenge. Medical comes from Medical Natu-
ral Language Processing Challenge. Scene deals with labelling of natural scenes.
TMC2007-500 is about discovering anomalies in text reports.

4.3 Evaluation Methodology

We adopted the evaluation methodology that has been previously used in MLC
context [18] and in the other types of structured output prediction [17].

We use the same train-test split of the datasets as in the Mulan repository
http://mulan.sourceforge.net/datasets-mlc.html. A ranking is computed from
the training part DTRAIN only, and evaluated on the testing part DTEST.

The quality of the ranking is assessed by using the kNN algorithm where
instead of the standard Euclidean distance, its weighted version was used. For
two input vectors x1 and x2, the distance between them is defined as

d(x1,x2) =

√
√
√
√

F∑

i=1

wid2
i (x

1
i ,x

2
i ), (7)

where di is defined by Eq. (2). The weights are set to wi =
max{importance(xi), 0}, since they need to be made non-negative to ensure that
d is well defined, and also to ignore the attributes that have smaller values for
importance than a randomly generated attribute would have.

The evaluation through a kNN predictive model was chosen because of two
main reasons. First, this is a distance based model, hence, it can easily make use
of the information contained in the feature importances in the learning phase.
The second reason is kNN’s simplicity: its only parameter is the number of neigh-
bors, which we set to 15. In the prediction stage, the neighbors’ contributions
to the predicted value are equally weighted, so we do not introduce additional
parameters that would influence the performance.

http://mulan.sourceforge.net/datasets-mlc.html
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Table 1. Data characteristics: sizes of train and test part of the dataset, number of
features F , labelset size L and label cardinality �c.

Dataset |DTRAIN| |DTEST| F L �c

Arts [26] 3712 3772 23146 26 1.65

Bibtex [10] 4880 2515 1836 159 2.40

Birds [3] 322 323 260 19 1.01

Bookmarks [10] 70000 17856 2150 208 2.04

Business [26] 5710 5504 21924 30 1.60

Computers [26] 6270 6174 34096 33 1.51

Corel5k [7] 4500 500 499 374 3.52

Delicious[25] 12920 3185 500 983 19.02

Education [26] 6030 6000 27534 33 1.46

Emotions[23] 391 202 72 6 1.87

Enron [1] 1123 579 1001 53 3.38

Entertainment [26] 6356 6374 32001 21 1.41

Genbase [6] 463 199 1185 27 1.25

Health [26] 4557 4648 30605 32 1.64

Mediamill [19] 30993 12914 120 101 4.38

Medical [16] 645 333 1449 45 1.25

Recreation [26] 6471 6357 30324 22 1.43

Reference [26] 4027 4000 39679 33 1.17

Scene [2] 1211 1196 294 6 1.07

Science [26] 3214 3214 37187 40 1.45

Social [26] 6037 6074 52350 39 1.28

Society [26] 7273 7239 31802 27 1.67

TMC2007-500 [21] 21519 7077 500 22 2.22

Yeast [8] 1500 917 103 14 4.24

The second rationale for using kNN as an evaluation model is as follows. If
a feature ranking is meaningful, then when the feature importances are used as
weights in the calculation of the distances kNN should produce better predictions
as compared to kNN without using these weights [28].

4.4 Evaluation Measures

In the following, we denote the sets of true and predicted labels for an example
x respectively by y(x) and ŷ(x). The measures Hamming Loss, Accuracy , F1

Score and Subset Accuracy can be defined in terms of the distances (3)–(6). They
are respectively the means (over DTEST) of the values dHamming(y(x), ŷ(x)),
1 − dAccuracy(y(x), ŷ(x)), 1 − dF1(y(x), ŷ(x)) and 1 − dSubsetAcc(y(x), ŷ(x)).
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Thus, Hamming Loss should be minimized while the remaining three should
be maximized. We use another four well known measures: One Error , Precision,
Recall and area under the pooled precision-recall curve (pooledAUPRC ). The
definitions can be found in [15,27].

4.5 Statistical Analysis of the Results

For comparing the algorithms, we use the Friedman test. The null hypothesis H0

is that all considered algorithms have the same performance. If H0 is rejected by
the Friedman’s test, we additionally apply Nemenyi or Bonferroni-Dunn post-
hoc test. The first is used when we investigate where the statistically significant
differences between any two algorithms occur, while the second is used when we
are interested in the differences between one particular algorithm and the others.
A detailed description of all tests is available in [5].

The results of the Nemenyi and Bonferroni-Dunn tests are presented on crit-
ical distance diagrams. Each diagram shows the average rank of the algorithm
over the considered datasets, and the critical distance, i.e., the distance for which
average ranks of two considered algorithms must differ to be considered statisti-
cally significantly different. Additionally, the groups of algorithms among which
no statistically significant differences occur are connected with a line.

Before proceeding with the statistical analysis, we round the performances to
three decimal points. In the analysis, the significance level was set to α = 0.05.

4.6 Parameter Instantiation

Since the sizes of datasets range over different orders of magnitude, the number of
iterations m is given as the proportion of the size of DTRAIN. The considered val-
ues are m ∈ {1%, 5%, 10%, 25%, 50%, 100%}. On the other hand, since the num-
ber of neighbors K controls the level of locality, it is better given in absolute val-
ues. Our choice is to consider the following values K ∈ {1, 5, 10, 15, 20, 25, 30, 40}.

5 Results

5.1 Does the Distance Matter?

To give every distance as good chance as possible, we compute and evaluate
feature rankings for all combinations of the parameters m and K and for every
dataset and distance version, the best pair (with respect to the evaluation mea-
sure at hand) is chosen.

Friedman test rejected the null hypothesis for three of the four evaluation
measures that the distance definitions are part of: Accuracy (p = 5.2 · 10−4), F1

Score (p = 3.5 · 10−4) and Subset Accuracy (p = 0.011). In the case of Hamming
Loss, the performances are not statistically significantly different (p = 0.28).
The Bonferroni-Dunn test reveals that dHamming performs statistically signifi-
cantly worse than the other three distances, for the evaluation measures Accu-
racy (Fig. 1a) and F1 Score (with qualitatively the same diagram). In the case of
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1 2 3 4

dF1

dAccuracy
dHamming

dSubsetAcc

critical distance: 0.8922
(a) Evaluation measure: Accuracy

1 2 3 4

dAccuracy
dF1

dHamming

dSubsetAcc

critical distance: 0.8922
(b) Evaluation measure: Subset Accuracy

Fig. 1. Comparison of the four distance functions in terms of (a) Accuracy , and (b)
Subset Accuracy : Critical distance diagrams from Bonferroni-Dunn test with the base-
line dHamming .

Subset Accuracy , it has still the worst performance, but it is not statistically sig-
nificantly worse than dSubsetAcc (Fig. 1b). Interestingly enough, the hypotheses
was not rejected for the Hamming Loss evaluation measure. Also in this case,
the rankings with dHamming have the worst average rank of 2.9 (as compared
to the best average rank of 2.1 that belongs to dAccuracy), which leads us to a
conclusion that the rankings with dHamming are indeed to some extent optimized
for Hamming Loss, but not sufficiently. Average ranks for this four measures are
shown on the radar plot in Fig. 2a.

The average ranks of the feature rankings with respect to the other four
measures are shown in Fig. 2b. Here, the null hypothesis H0 is rejected in the
case of Precision (p = 0.0011) and Recall (p = 3.8 · 10−4). This is not that
surprising, since optimizing for F1 Score should directly result in optimized
Precision and/or Recall , as noted after the definition of dF1 (Eq. (5)). The results
of the follow-up Bonferroni-Dunn tests are similar to those for Subset Accuracy :
rankings obtained with dHamming have the worst rank, but are not statistically
significantly worse than those obtained with dSubsetAcc . Additionally, H0 is also
rejected in the case of pooledAUPRC (p = 0.027), but in this case, no ranking is
statistically significantly different from the one that corresponds to dHamming .

(a) Distance related measures (b) Other measures

Fig. 2. Average ranks of the rankings computed with the four distance functions
(denoted by A, B, C and D), in terms of measures that (a) are, and (b) are not
directly related to any of distances.
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Since we have rejected the null hypotheses (all algorithms perform equally
well) in 6 of 8 cases, we can already claim that choosing an appropriate distance
measure does matter. Moreover, both diagrams in Fig. 2 show that our newly
proposed distance definitions result in rankings that outperform those computed
with dHamming . A reason for this may be that the latter cannot really capture
the possible interactions between the labels since it can be decomposed to the
per-label distances, as noted in Sect. 3.1. This may also be the reason why the
rankings computed with the newly proposed distances are typically closer to
each other than to the rankings computed with dHamming .

To detect the differences among the rankings, we also apply Nemenyi post-hoc
test. In addition to the relations discovered with Bonferroni-Dunn test, we now
know that there is statistically significant difference between dF1 and dSubsetAcc ,
when the quality is measured in terms of pooledAUPRC .

5.2 Are the Obtained Rankings Relevant?

To answer this question, we partially repeat the analysis from the previous
section: in addition to the evaluation of the four ranking types, also the non-
weighted 15NN algorithm is evaluated. If we reject the null hypothesis H0 with
Friedman test, the four rankings are compared to the non-weighted 15NN clas-
sifier with Bonferroni-Dunn post-hoc test. If there is a statistically significant
difference between the weighted 15NN classifier and non-weighted 15NN classi-
fier (in favour of the weighted one), we proclaim the ranking relevant.

H0 is rejected for all evaluation measures. The corresponding Bonferroni-
Dunn tests identifies the following. The distances dAccuracy and dF1 always result
in relevant rankings. The distance dSubsetAcc fails to result in relevant rankings
in the case of One Error . The distance dHamming results in relevant rankings
when the quality is measured in terms of Subset Accuracy and pooledAUPRC .

5.3 Influence of the Parameters m and K

To assess how does the number of iterations m influence the quality of ranking,
we choose one of the distance functions and a value for the number of neighbors
K. When m varies over the values specified in Sect. 4.6, six different rankings are
obtained. We compare their quality in terms of the chosen evaluation measure,
by applying the Friedman test.

H0 is rejected for all values of m and for all versions of target distance in the
case of Accuracy , F1 Score, Precision, Recall and Subset Accuracy . In the case
of Hamming Loss, it is never rejected. In the case of One Error , it is rejected for
dF1 when K ≥ 25 and for dSubsetAcc when K = 40. In the case of pooledAUPRC ,
the hypothesis is only rejected for dSubsetAcc when m = 40.

The only values of m which are always in the top performing group of algo-
rithms, are 25%, 50% and 100%. A typical critical distance diagram (for dAccuracy

and K = 20) is shown in Fig. 3a.
To assess the influence of the number of Relief neighbours K, a similar anal-

ysis is performed, now with the interchanged roles of m and K: the former is
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1 2 3 4 5 6

dAccuracy&m = 100
dAccuracy&m = 50
dAccuracy&m = 25

dAccuracy&m = 1
dAccuracy&m = 10
dAccuracy&m = 5

critical distance: 1.5392
(a) Influence of the number of Relief
iterations, for dAccuracy when K = 20.

1 2 3 4 5 6 7 8

dAccuracy&K = 30
dAccuracy&K = 25
dAccuracy&K = 40
dAccuracy&K = 20

dAccuracy&K = 1
dAccuracy&K = 5
dAccuracy&K = 10
dAccuracy&K = 15

critical distance: 2.1432
(b) Influence of the number of Relief
neighbors, for dAccuracy whenm = 25%.

Fig. 3. Critical distance diagrams from Nemenyi tests that show the influence of the
number of (a) iterations, and (b) neighbors, on the quality of the dAccuracy rankings,
measured in terms of Precision.

fixed and the latter varies. The summary of the results is as follows. Number
of neighbors seems to have a lesser influence on the quality, since we do not
reject all hypotheses for any of the evaluation measures. However, this is mostly
due to the fact that K almost never statistically significantly influence the qual-
ity of the dHamming rankings. For the other distances, the hypothesis is always
rejected when the quality is measured in terms of Accuracy , F1 Score, Precision,
Recall . This also holds for Subset Accuracy with two exceptions for dSubsetAcc :
m ∈ {1%, 100%}. Again, no hypothesis is rejected in the case of Hamming Loss.

Typically, more is better regarding the number of neighbors and the highest
values of K, i.e., K ∈ {30, 40} have often the best average rank. This can be
explained by the sparsity of the labels. To properly asses the average label space
distance in DTRAIN, one has to consider larger neighborhoods. However, the dif-
ferences among the algorithms for which K ≥ 15 are not statistically significant.
A typical situation (for dAccuracy and m = 25%) is shown in Fig. 3b.

6 Conclusions and Future Work

In this paper, we propose the use of three distance measures on the target space
within an extension of RReliefF approach to feature ranking for MLC tasks.
These are the distances that are used within the evaluation measures Accu-
racy , F1 Score and Subset Accuracy for predictive performance on MLC tasks.
We have shown that using any of these distances always results in rankings of
higher quality than the rankings computed with the distance used in the eval-
uation measure Hamming Loss [18]. Additionally, the newly proposed measures
outperform the old one in terms of Precision and Recall , since these two are
directly connected to the F1 Score. For more independent measures, such as
pooledAUPRC and One Error we did not observe any differences, so we can
conclude that the use of the proposed distance within RReliefF optimizes the
corresponding MLC evaluation measures.

We have also shown that all proposed rankings are relevant by comparing
the nearest neighbor classifier that uses feature relevance information, to the
standard nearest neighbor classifier. Additionally, we measure the influence of the
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parameters m (number of Relief iterations) and K (number of Relief neighbors)
and show that rankings computed from m = 25% of the training dataset cannot
be statistically significantly outperformed on average. The same goes for rankings
that were computed by examining the neighborhoods of size K = 15.

There are several directions for future work. We plan to find appropriate dis-
tance measures for the hierarchical version of the MLC task: hierarchical multi-
label classification. Incorporating probabilities in the distances, the Relief fam-
ily can be also extended in the direction of data with missing labels and semi-
supervised problems. Once these are solved, we also plan to develop an extension
of Relief for seemingly much harder context of unsupervised learning, where there
are no target variables and the analogous approach cannot be taken.
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Abstract. An important task in data mining is that of rule discovery in
supervised data. Well-known examples include rule-based classification
and subgroup discovery. Motivated by the need to succinctly describe an
entire labeled dataset, rather than accurately classify the label, we pro-
pose an MDL-based supervised rule discovery task. The task concerns
the discovery of a small rule list where each rule captures the proba-
bility of the Boolean target attribute being true. Our approach is built
on a novel combination of two main building blocks: (i) the use of the
Minimum Description Length (MDL) principle to characterize good-and-
small sets of probabilistic rules, (ii) the use of branch-and-bound with
a best-first search strategy to find better-than-greedy and optimal solu-
tions for the proposed task. We experimentally show the effectiveness
of our approach, by providing a comparison with other supervised rule
learning algorithms on real-life datasets.

1 Introduction

Rule learning in supervised data is a well-established problem in data mining
and machine learning. Compared to many other methods, a clear benefit of rule-
based methods is that the rule format is more easy to interpret, and hence is
useful in knowledge discovery. Well-known examples of rule learning are

Rule-based classification, in which the aim is to find a set of rules that pre-
dicts the class of examples well;

Subgroup discovery, in which the aim is to find a set of rules that describes
subgroups of examples in the data; in these subgroups, the distribution of the
target attribute is different from the overall population.

The main difference between subgroup discovery and rule-based classification is
that rule-based classification aims to find a set of rules that can be applied on
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Table 1. Probabilistic rule lists example

(a) From door opening data

Rule list Probability

IF WEDNESDAY and MORNING 0.879

ELSE IF HOLIDAY and THURSDAY 0.011

ELSE IF THURSDAY and AFTERNOON 0.987

ELSE IF SUNDAY 0.001

ELSE (Default rule) 0.101

(b) From mushroom dataset

Rule list Probability

IF Gill-spacing is closed and No odor 0.95

ELSE IF Gill-spacing is closed and

Stalk-shape is tapering

0.0

ELSE IF Stalk-color-above-ring is white and

Gill-size is broad

1.0

ELSE IF Gill-spacing is closed 0.0

ELSE (Default rule) 0.56

any example to obtain a prediction for that example. Subgroup discovery aims
to characterize subgroups of examples, but not necessarily all examples.

Similar to rule-based classification, in this work we are also interested in find-
ing a set of rules that describe a target attribute fully and in an interpretable
manner. However, we make a specific assumption that is not common in rule-
based classification: we assume that the class attribute has a skewed distribution,
and that exact prediction is certainly not possible. The following example illus-
trates a problem that has these characteristics.

Example 1. Assume that we characterize every minute in a year in terms of
the following attributes: the part of the day the minute belongs to (morning,
afternoon), the day the minute belongs to (Sunday, Monday, . . .), the month the
minute belongs to (January, . . .) and the minute of the day (1, 2, . . ., 24 × 60);
furthermore, over a year we use a sensor to monitor when an individual opens a
specific door in his house. Can we use rules to characterize when this individual
opens her door?

In this example, the event of “opening a door” is expected to be a rare event;
if we use a classification algorithm on the above dataset, we will notice that
the class attribute is very unbalanced. Most classification algorithms will either
prefer to always predict the default label (the door is closed), or will construct
many very specific rules to cover the small number of examples that are the
exception. The reason for this is that many rule-based classifiers find lists of
rules; a rule that makes an error in its prediction, cannot be corrected by a later
rule. Hence, most classification rule learning algorithms favor rules with lower
recall but high precision.

In this paper, we propose a new algorithm for finding rule lists, designed
to work well in this specific setting. It identifies simple probabilistic rule lists,
such as in Table 1. Hence, the rule mining setting studied in this work can be
characterized by these properties:

– it learns rules with probabilities in the head; these probabilities represent the
class distribution for the examples covered by the rule, and should not be
understood as class prediction;

– the list of rules is intended to characterize the class distribution over the
entire data, in contrast to subgroup discovery;

– it favors smaller rule lists to ease interpretation.
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Finding lists of rules that satisfy these requirements is not a straightforward task.
To address these challenges, this paper proposes the following contributions.

1. We propose a new optimization criterion based on the Minimum Description
Length (MDL) principle; this criterion aims to find rule lists that are small,
yet characterize the target distribution well.

2. We propose a new search algorithm based on branch-and-bound search; this
search algorithm aims to find the global optimum for the proposed optimiza-
tion criterion under given constraints.

The approach that we take in this work is a pattern set mining approach. We
first use itemset mining algorithms to find a candidate set of itemsets. From this
set, we select a subset that describes the target attribute well. From the pattern
set mining perspective, we propose a new supervised optimization criterion for
selecting a set of free patterns, and a new search algorithm for finding a set of
patterns that optimizes the criterion.

In the remainder of the paper, we first present related work in Sect. 2.
In Sect. 3 we present the problem of finding probabilistic rule lists. Then, we
describe our Minimum Descripition Length (MDL)-based approach in terms of
the formalization and algorithms for solving it. Finally, we show experiments in
Sect. 5 before concluding.

2 Related Work

This work builds on a number of areas in the literature.

Rule-based classification. There is a large literature on rule-based classifica-
tion; a good overview of these algorithms, including classic algorithms such as
CN2 and RIPPER, can be found in a textbook by Fürnkranz et al. [4]. Two
types of rule-based classifiers can be distinguished: classifiers based on rule sets
and on rule lists. In set-based classifiers, all rules that match an example are
used to obtain a prediction for that example. In list-based classifiers, the first
matching rule is used; we build on this class of methods.

Covering algorithms are the most popular type of rule learning algorithm.
These algorithms iteratively search for a rule to add to a rule set or list. Most
often, in each iteration a greedy search algorithm is used, which constructs a
rule by iteratively adding the condition that improves the quality of the rule the
most.

The main challenge faced by pure covering algorithms is that later rules
cannot correct errors made by earlier rules in a rule list. Such algorithms hence
need to favor precision over recall to obtain accurate classifiers. As a result rule
lists may become unnecessarily long. One way to solve this is using pruning: the
rule set is reduced in a post-processing step.

Pattern-based classification. Compared to traditional rule learning algo-
rithms, pattern-based classifiers use pattern mining algorithms, such as frequent
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itemset mining algorithms, to identify candidate rules [12]. These frequent item-
sets are post-processed to construct rule sets or rule lists. Most of these post-
processing approaches use heuristic search algorithms, although the use of exact
search has also been studied [6].

Pattern set mining. From a pattern mining perspective, selecting a small set
of patterns from a larger set of patterns can be seen as a pattern set mining
problem [12]. In contrast to unsupervised methods, supervised methods aim to
find a balance between pattern sets that are non-redundant and that are accu-
rate. One popular approach for evaluating the quality of a pattern set is based
on the Minimum Description Length principe, as pioneered in the unsupervised
setting by the KRIMP algorithm [10]. Exact methods for pattern set mining
were studied by Guns et al. [6], among others, but these studies did not consider
scoring functions based on MDL or did not exploit freeness, as we do.

Subgroup discovery. Strongly related to both pattern mining and rule-based
classification is subgroup discovery. Subgroup discovery differs from classification
in that it does not aim to build a predictive model; rather, subgroup discovery
algorithms are intended to return small and interpretable sets of local patterns;
subgroups are not necessarily ordered in a specific manner. For this reason,
traditional subgroup discovery algorithms were modifications of covering based
rule-learning algorithms to explicitly allow for overlap between patterns [7].

Bayesian rule lists. Most related to this work is recent work by Yang et al.
[11] on probabilistic rule lists. This work also finds ordered lists of probabilistic
rules. Contrary to our work, however, the aim of the work of Yang et al. is
to identify accurate classifiers, and not to identify as small and interpretable
representations of the class distribution as possible. Furthermore, Yang et al.
use a sampling based algorithm to identify good sets of patterns. We propose an
alternative, exact algorithm in this work.

3 The Probabilistic Rule List Mining Problem

This work is motivated by the creation of a probabilistic rule list that summa-
rizes labeled data well. In order to be easily interpretable, the rule list and the
individual rules should be concise.

We assume the data is described by a set of discrete attributes. These
attributes can be represented as a set of Boolean properties using a one-hot
encoding. These properties are referred to as items in the following, in line with
the itemset mining literature.

More formally, let I = {1, · · · ,m} represent a set of m possible items and
let F ⊆ 2I be a set of itemsets built on those items. A probabilistic rule list
(PRL) built on F is a sequence of rules of the form R =

〈
(I(1), p(1)), (I(2), p(2)),

· · · , (I(k), p(k))
〉

with pi being a probability and Ii ∈ F ,∀i = 1, . . . , k − 1 and
Ik = ∅. This latter is the default rule. The sequence of itemsets in the rule list can
be expressed as membership to the regular language: 〈I1, . . . , Ik〉 ∈ L(F∗ ·∅) with
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F∗ the Kleene operator on F . Table 1 shows two example rule lists (generated
from different data).

The rule list has a sequential interpretation, in that the set of data instances
that match the first rule I1 are assumed to have a positive label with probability
p1. The other data instances, those that do not match I1, but do match I2 have
a probability of p2 to be positive, etc. The final empty set Ik = ∅ hence captures
all instances not matched by the other rules.

We now formalize the problem of creating the probabilistic rule list based on
F and a dataset D.

Definition 1. As input we receive a set of itemsets F that can be used to com-
pose the rule list, and a database D of instances, with for each a Boolean target
attribute: D = {(t, It, at) | t ∈ T , It ⊆ I, at ∈ {+,−}}, where the set T contains
the instance or transaction identifiers T = {1, . . . , n}. The database can be split
into a positive D+ and negative D− database, based on the target attribute value
(+ or −).

The problem of finding a probabilistic rule list is formalized as:
argminR score(R,F ,D) where R =

〈
(I(1), p(1)), (I(2), p(2)), · · · , (I(k), p(k))

〉
is

a probabilistic rule list such that 〈I(1), . . . , I(k)〉 ∈ L(F∗ · ∅) and score is an
optimization criterion. Various optimization criteria can be defined, including
criteria inspired by classification rule learning, subgroup discovery and pattern
set mining. Our aim in this work is to develop an optimization criterion that
explicitly favors smaller rule lists that describe the entire target distribution
well. For this purpose, we will use the Minimum Description Length principle,
discussed in the next section.

4 Discovering Probabilistic Rule Lists

4.1 Coverage and Probability of a Rule List

To evaluate the quality of a rule set on a given dataset, we will use a number of
concepts taken from the itemset mining literature [1].

Definition 2 (Coverage and support of an itemset). The set of trans-
actions in a database D containing an itemset I is called the cover: ϕ(D, I) =
{(t, It, at) ∈ D | I ⊆ It}. The size of the cover is called the support ψ(D, I) =
|ϕ(D, I)|.

Example 2. An example itemset database is given in Fig. 1a. I = {A,C} is an
example itemset; ϕ(D, I) contains transaction identifiers {1, 2, 5}, so ψ(D, I) = 3.
The set of frequent itemsets with support at least 4 is {∅, {A}, {B}, {C}, {E},
{B,E}} (Fig. 1b).

In the remainder of this paper, for the sake of simplicity we denote ϕ(D, I) as
ϕ(I) when no ambiguity regarding D is possible. Similarly, we will use ϕ+(I) to
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Fig. 1. (a) Itemset Database with positive/negative classes; (b) Powerset lattice of D
with equivalence classes.

denote ϕ(D+, I) where D+ = {(t, It, at) ∈ D | at = +} and likewise for ϕ−(I)
with at = −.

We are interested in finding a list of rules. Each itemset in the list has a cover
that is defined as follows.

Definition 3 (Coverage of an itemset in a sequence). Assume the sequence
of itemsets 〈I(1), . . . , I(k)〉, the coverage of an itemset I(j) over D is its cover in
the database of transactions not covered by the previous itemsets I(1), I(2), . . . ,
I(j−1):

Φ(D, 〈I(1), . . . , I(k)〉, j) = ϕ
(
D \

(
ϕ(I(1)) ∪ ϕ(I(2)) ∪ · · · ∪ ϕ(I(j−1))

)
, I(j)

)
(1)

with Φ(D, 〈I(1), . . . , I(k)〉, 1) = ϕ(D, I(1)).

Note that in a rule list R, the last itemset is always I(k) = ∅, which is the
default rule or final else-case. This empty set inherently covers all instances not
covered by any of the k − 1 previous rules since ϕ(D, ∅) = {(t, It, at) ∈ D | ∅ ⊆
It} = D for any D.

Given a rule list R =
〈
(I(1), p(1)), (I(2), p(2)), · · · , (I(k), p(k))

〉
we will denote

by Φ(D,R, j) the cover of the jth itemset in the rule list’s sequence of itemsets.
If no ambiguity is possible we simply write Φj . Similarly Φ+

j = Φ(D+,R, j) and
Φ−

j = Φ(D−,R, j).
When creating a rule list R from a dataset D given F , we define the proba-

bility p(j) of a rule I(j) as p(j) = P
(
at = +|(t, It, at) ∈ Φ(D,R, j)

)
=

|Φ+
j |

|Φ+
j |+|Φ−

j | .

Example 3. Assume the running example database (Fig. 1a) and a rule list with
corresponding sequence of itemsets

〈
{A,B,C}, {C}, ∅

〉
. The coverage of I(2) =

{C} over D is Φ2 = {4, 5}, instead of {1, 2, 4, 5}, as the transactions 1 and
2 were already covered by I(1) = {A,B,C}. Its probability is hence p(2) =
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|Φ+
2 |

|Φ+
2 |+|Φ−

2 | = 0
0+2 = 0, which indicates that no positive transaction was observed

with the condition of the rule, after observing the previous rules.

At this stage, an open question is how to evaluate the quality of a probabilistic
rule list R. In this work, we propose to evaluate how well the rule list allows to
compress the values for the class attribute observed in a training dataset. For
this, we will use the Minimum Description Length (MDL) principle.

4.2 Minimum Description Length Encoding of Rule Lists

The Minimum Description Length (MDL) principle [5,8] is a general method
for inductive inference, based on the idea that ‘the more we can compress the
data, the more there are regularities in it and the more we learn from it ’ [5].
MDL allows making a trade-off between the complexity of rules and their ability
to capture the distribution of the class attribute. To do this, we use a two-part
code that minimizes the number of bits needed to encode the data with a model,
as well as the number of bits to encode the model itself. As stated earlier, the
focus in this work is on a code that favors simplicity.

Let M = M1,M2, . . . be a list of model candidates. In two-part MDL, the
best model M ∈ M to capture information in a given database D is the one which
minimizes the code length L(M) = Lmodel(M)+Ldata(D|M), where Lmodel(M)
is the length, in bits, of the description of the model itself and Ldata(D|M) the
length of the data, in bits, when it is encoded with this model.

In our case, models correspond to rule lists of the form R =
〈
(I(1), p(1)),

(I(2), p(2)), · · · , (I(k), p(k))
〉

with I(j) ∈ F ,∀j ∈ 1, . . . , k − 1, I(k) = ∅ and p(j) =
|Φ+

j |
|Φ+

j |+|Φ−
j | . We thus need to define an encoding with Lmodel(R) an encoding of

the rule list, and Ldata(·|R) such that Ldata(D|R) can be interpreted as the
coding length of the distribution of +/−’s in D when it is encoded with R. The
best rule list is then the one that minimizes the total length L(R):

R∗ = argmin
R∈L(F∗·∅)

Ldata(D|R) + Lmodel(R), (2)

where we identified R by its sequence of itemsets to ease notation; each itemset
has a probability p(j) as defined earlier.

We now first discuss how we encode R when k ≤ 2 (i.e. R =
〈
(∅, p(1)

〉
or

R =
〈
(I(1), p(1)), (∅, p(2))

〉
) and then generalize to the case k > 2.

Case k = 2: To understand the computation of the coding length of R, we first
show how we can encode a target attribute if we have an itemset I and then a
default rule. Given a rule (I(1), p(1)), we assume that the positive and negative
labels in ϕ(D, I(1)) follow a Bernoulli distribution, with a probability p(1) for the
class label. The probability density of the labels according to I is hence (omitting
D from the notation):

Pr

(
at = + | ϕ(I)

)
= (p(1))|ϕ+(I)|(1 − p(1))|ϕ−(I)|. (3)



Finding Probabilistic Rule Lists using MDL 73

Theorem 1 (Local Coding length of data). Using Shannons Noiseless
Channel Coding Theorem [3] the number of bits needed to encode the class labels
of D using I is at least the logarithm1 of the probability density of the class labels
in D given I: Llocal data(D|I) = − log Pr

(
at = + | ϕ(D, I)

)
. Using (3) we can

hence encode each positive label at a cost of

Llocal data(D|I) = Q(ϕ+(I), ϕ−(I)) + Q(ϕ−(I), ϕ+(I)), (4)

with Q(a, b) = −a log a
a+b .

We will use this bound, which can be approximated closely using arithmetic
coding, as the coding length for the class labels. Based on the above theorem
and assuming a rule list is R =

〈
(I(1), p(1)), (∅, p(2))

〉
, the coding length of Φ is

Ldata(D|R) = Llocal data(D|I(1)) + Llocal data(D \ ϕ(I(1))|∅) (5)

Example 4. Assume the rule list is R =
〈
({A,B,C}, 0.50), (∅, 0.33)

〉
and

that our database D (Fig. 1a) is duplicated 256 times. Llocal data(D|{A,B,C})
= −256 log 0.5 − 256 log(1 − 0.5) = 512bits and Llocal data(D \ ϕ(I1)|∅) =
−256 log 0.33 − 512 log(1 − 0.33) = 705bits; then Ldata(D|R) = 1217bits.

When we encode the class label using this model, we do not only need to
encode the data, but also the model itself.

Definition 4 (Length of the model). Assume a rule list R =〈
(I(1), p(1)), (∅, p(2))

〉
, we represent (I(1), p(1)) as a string “m1 I

(1)
1 . . . I

(1)
m1 n+

1 ”
where, m1 = |I(1)| is the number of items in I(1), followed by the identifiers of
each item in I(1) and finally the number of positive labels in D: n+

1 = |ϕ+(I(1))|.
The length, in bits, to encode this string is:

Llocal model(I(1)) = log m
︸ ︷︷ ︸
|I(1)|

+ |I(1)| log m
︸ ︷︷ ︸
I
(1)
1 ... I

(1)

|I(1)|

+ log n
︸︷︷︸

n+
1

, (6)

where log m bits are required to represent m1, as m1 ≤ m = |I|, and also log m
bits for each item identifier plus log n bits to encode n+

1 . Coding n−
1 is unneces-

sary as it can be retrieved from the data using the itemset: n−
1 = |ϕ(D, I(1))|−n+

1 .
From there, assuming that the itemset database D and the set of items I are
known, one can easily retrieve the coverage of I(1) and then compute the proba-
bility p(1) using the number of positive labels n+

1 . The coding length of the model
R is Lmodel(R) = Llocal model(I(1)) + Llocal model(∅).

Example 5. We continue on Example 4. To encode the model, the string
“3 A B C 256” is encoded: Llocal model({A,B,C}) = log 4 + 3 log 4 + log 1280 =
19bits similarly Llocal model(∅) = log 4 + 0 log 4 + log 1280 = 13bits2 then
Lmodel(R) = 32bits. Together with Ldata(D|R) = 1217bits computed in Exam-
ple 4, the total coding length of R is L(R) = 1217 + 32 = 1249bits.
1 All logarithms are to base 2 and by convention, we use 0 log 0 = 0.
2 Note that by convention the size of the default rule is m2 = 0.
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Case k > 2: Assuming now a rule list R =
〈
(I(1), p(1)), (I(2), p(2)), · · · , (I(k),

p(k))
〉

with k > 2. For k > 1 we need to modify the definition of Llocal data such
that it does not consider parts of the data covered by a previous itemset in the
sequence. Hence,

Llocal data(D|I(j)) = Q(Φ+
j , Φ−

j ) + Q(Φ−
j , Φ+

j ) (7)

and the total coding length is the summation of local lengths:

Ldata(D|R) =
k∑

j=1

Llocal data(D|I(j)); (8)

the coding length of the model is:

Lmodel(R) = log n +
k−1∑

j=1

(
log m + mj log m + log n

)
(9)

To encode the size of R itself, we need log n bits. Because all rule list include
the default rule, we omit these log m + log n bits.

Example 6. Fig. 2 shows example rule lists with coding lengths.

4.3 Coding Length Related to Likelihood and Quality of Rule Lists

The coding length of the class labels given a model R is the number of bits
needed to encode the class labels with R. As a consequence of our choice to use
Shannon’s theorem, this coding length corresponds to the (-log) likelihood of the
class labels according to the model. In the other words, if we would minimize
the coding length of the data only, we would maximize the likelihood of the data
under the model. However, as stated earlier, in this work our aim is also to find
small and interpretable rule lists. We choose our code such that a relatively large
weight is given to the complexity of the model.

Assuming the database of Example 4, the size of the original data is 5 ×
256 = 1280. Encoding this data with R1 =

〈
({A,B,C}, 0.50), (∅, 0.33)

〉
we

obtained Ldata(D|R1) = 1217bits, Lmodel(R1) = 32bits and in total L(R1) =
1249bits. Instead, when we encode this data with R2 =

〈
(∅, 0.40)

〉
we obtain

Ldata(D|R2) = 1243bits, Lmodel(R2) = 6bits and in total L(R2) = 1249bits.
Looking at likelihoods only, one can see that R1 is a better model for representing
this data, as it captures more information than R2. However, in total, it is not
preferable over R2, since it is more complex to encode. The model coding length
penalizes the likelihood and ensures a simple model is preferred.

For our example, the only way to improve R1 is to add (if possible)
a new rule that reduces the error made by R1 by assuming that the part
not covered by {A,B,C} is for the default rule. Thus, by adding the item-
set {C} to R1, which covers all 0s still present, we obtain the best model
R =

〈
({A,B,C}, 1

2 ), ({C}, 0
2 ), (φ, 1

1 )
〉

with L(R) = 546bits since the default
rule now covers only remaining 1s.
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4.4 A Greedy Algorithm

The probabilistic rule list that minimizes the MDL score (2) can be constructed
greedily, extending the list by one rule at each step. Greedy algorithms are known
to be efficient and approximate optimal solutions well in other rule learning tasks.

Algorithm 1 shows a greedy algorithm that starts with empty rule list R, and
then iteratively finds within a given set of patterns the rule that minimizes the
coding length. The local best rule is obtained by considering at each iteration
the sub-problem of finding the optimal rule list with k ≤ 2 on the remaining
data. This corresponds to finding the itemset I(1) such that the coding length is
smallest (Line 3). Once the local best rule is selected the rule list is updated in
Line 6 and in Line 7; its coverage is removed from D. The process is then run
again until D is empty or the default rule is selected.

Example 7. Assuming our running example, at the first iteration of the greedy
algorithm, the minimum code-length L(〈{A,B}, ∅〉) = 722bits and then it is the
greedy solution (See Fig. 2).

〈
(φ, 2

5 )
〉

1243bits

〈
({A}, 2

4 ), (φ, 0
1 )

〉

1039 + 0bits

〈
({A, B, C}, 1

2 ), (φ, 1
3 )

〉

531 + 706bits

〈
({C}, 1

4 ), (φ, 1
1 )

〉

846 + 0bits

〈
({B, C}, 1

3 ), (φ, 1
2 )

〉

722 + 512bits

〈
({B}, 2

4 ), (φ, 0
1 )

〉

1039 + 0bits

〈
({A, B}, 2

3 ), (φ, 0
2 )

〉

722 + 0bits

〈
({A, C}, 1

3 ), (φ, 1
2 )

〉

722 + 512bits

〈
({A, B, C}, 1

2 ), ({A}, 1
2 ), (φ, 0

1 )
〉

531 + 527 + 0bits

〈
({A, B, C}, 1

2 ), ({C}, 0
2 ), (φ, 1

1 )
〉

531 + 15 + 0bits

〈
({A, B, C}, 1

2 ), ({E}, 1
2 ), (φ, 0

1 )
〉

531 + 527 + 0bits

Greedy Solution

Optimal Solution

Fig. 2. Finding greedy and optimal solution base on the example of Fig. 1.

The greedy algorithm may be sub-optimal. For instance it fails to discover
the L(〈{A,B,C}, {C}, ∅〉) = 546bits on our example.

4.5 Branch-and-Bound Algorithm

For finding solutions that are better than the greedy solution, we propose a best-
first branch-and-bound algorithm that can prune away candidates based on a
lower-bound on the MDL value. Each node in the search tree is a partial rule
list, consisting of a sequence of rules without the default rule. The children of
each node correspond to appending one additional rule from F to the partial
rule list.

Algorithm 2 shows the pseudo-code of this branch-and-bound expansion
search. For clarity we omit the probabilities in the rule list representation. The
algorithm receives as input a list of rule candidates F and database D. A priority
queue is used to store the set of rule lists not yet expanded, ordered by the code-
length obtained when extending the partial rule with the default rule (best-first
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strategy). The initial best rule is the default rule (Line 2) and the empty rule list
is added as initial search node. As long as the queue is not empty, the priority
queue is dequeued and the returned partial rule list is expanded (Line 6). Each
new partial rule list is evaluated as if it was completed with the default rule (∅)
and checked whether it is better than the current best rule list (Lines 7, 8).

Before adding the new partial rule list to the queue, a lower-bound on the
code length is computed, that is, an optimistic estimate of the code length achiev-
able (see next section). Only if the lower-bound is better than the current best
value, the rule list is added to the queue (Lines 9, 10). If not, this part of the
search tree is effectively pruned.

Algorithm 1: Greedy(F ,D)

1 R ← 〈〉
2 do
3 I∗ ← argmin

I∈F∗
L(〈(I, p(1)), (∅, p(2))〉)

4 if L(〈(I, p(1)), (∅, p(2))〉) ≥ L(〈(∅, p(1))〉) then
5 I∗ ← ∅
6 R ← R ∪ (I∗, p(1)) � Add this rule to the rule list
7 D ← D \ ϕ(I∗)
8 while I∗ �= ∅;
9 return R

Algorithm 2: Branch-and-bound (F ,D)

1 PQ : PriorityQueue � Partial rule lists ordered by code-length when
adding default rule

2 bestR ← 〈∅〉, best ← L(bestR)
3 PQ.enqueue-with-priority(〈〉, L(〈∅〉))
4 while R ← PQ.dequeue() do
5 for each I ∈ F \ R do
6 R′ ← 〈R, I〉
7 if L(〈R′, ∅〉) < best then
8 bestR = 〈R′, ∅〉, best ← L(bestR)

9 if lower-bound(R′) < best then
10 PQ.enqueue-with-priority(R′, L(〈R′, ∅〉))

11 return bestR

Lower-bound on a partial rule list A good lower-bound is difficult to com-
pute since there is an exponential number of rules that can be added to the list.
Because the rule list itself is already evaluated in the algorithm, we are seeking a
lower-bound on any expansion of the rule list. The coding length is determined
by L(R) = Lmodel(R) + Ldata(D|R) according to (8) and (9).

The most optimistic expansion is hence achieved with the smallest pos-
sible expansion of the rule list yielding the greatest reduction of the coding
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length for the data. In the best case, this is a rule of length one (|I(j+1)| = 1)
that perfectly separates the positives from the negatives. In this case, the
additional code length of the rule list corresponds to a rule of length one:
Llocal model(Ij+1) = log m+1 log m+log n and the addition to the code length of
the data is: Llocal data(D|Ij+1) = Q(|Φ+

j+1|, 0) + Q(0, |Φ−
j+1|) = 0 with the data

coding length of the default rule also being 0.
While such a rule expansion may not exist, the resulting value is a valid

lower-bound on the code length achievable by any expansion of the partial rule
list. This is because any expansion has to be greater than or equal in size to 1,
and any expansion will achieve at best a data compression of 0.

Implementation details Choice of F . The complexity of Algorithm 2 is
O(|F|d) where d is the depth in the best-first search tree. The efficiency of
the algorithm strongly depends on |F| since in the worst case the number of
nodes is in O(|F||F|).

To control the size of F one can consider all frequent itemsets with a given
minimum frequency threshold. Because we are interested in a small coding
length, we propose to further restrict the set of patterns to the set of frequent
free itemsets [9]. Known also as generators, a free itemset is the smallest itemset
(in size) that does not contain a subset with the same cover: if I is free, �J ⊂ I
s.t. ϕ(I) = ϕ(J). In fact, there may be multiple free itemsets with the same
cover and for our purposes just a single one of them is sufficient. In Fig. 1, all
the itemsets in a double bordered rectangle are free.

Set representation as bitvectors. Each candidate itemset in F is represented
by the tuple (set of items, set of covered transactions). Operations on sets such as
union, intersection, count, ... being at the core of our implementation, they must
be implemented very effectively. For this, we represent each set by bitvectors
and all the cover computation are bitwise operations on bitvectors. A rule list
is represented by an array of itemset indices into F . From the index, one can
identify the itemset and its coverage. During the search process at each iteration,
a new itemset I is added to the partial rule list (Line 6 of Algorithm 2). This
operation involves updating the cover of the rule list computed using (1) which
depends on all the transactions already covered. To do this effectively, we keep
the transactions already covered in a single bitvector T

(j)
covered = ϕ(I(1))∪ϕ(I(2))∪

· · · ∪ ϕ(I(j)). The coverage after the addition of a new itemset I(j+1) is then

Φ(D,R ∪ I(j+1), j + 1) = ¬T
(j)
covered ∩ ϕ(I(j+1)).

5 Experiments

We evaluate our approach from three perspectives: (i) the quality of obtained
solutions: how expressive and concise are the rule lists; what is the log-likelihood
of the data given the lists; (ii) the accuracy and sensibility of our method under
various parameters, evaluated using area under ROC curves (AUC), (iii) the
predictive power of our method, using AUC as well.
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Table 2. Benchmark features

Table 3. Total code lengths for several datasets (θ is the minimum support for F)

Note that we add a comparison with other classification methods to properly
position our work; our aim is not to build a classification model that is more
accurate on commonly used datasets.

Datasets. We use nine annotated datasets publicly available from the CP4IM 3

and UCI4 repositories. We also used the door dataset as described in the intro-
duction (Example 1). Furthermore, we used the Gallup dataset [2], from a project
with the same name on migratory intentions. This data set is not publicly avail-
able, but can be purchased. Our objective here is to understand the migratory
intentions between two countries by considering the socio-parameters of educa-
tion, health, security and age. All these datasets have been preprocessed and
their characteristics are given in Table 2.

Algorithms. We compare with popular tree-based classification methods such
as Random Forests (RF ) and decision trees (CART ) from the scikit-learn library,
as well as the rule-learning methods JRIP (Weka version of RIPPER) and SBRL
[11] available in R CRAN (see Sect. 2). We run SBRL with the default setting
(number of iterations set to 30.000, number of chains 10 and a lambda parameter
of 10).

Protocols. All experiments were run in the JVM with maximum memory set
to 8GB on PCs with Intel Core i5 64bits processor (2.7GHz) and 16GB of RAM
running MAC OS 10.13.3. Our approach is called PRL (for probabilistic rule
lists) and is implemented in Scala. The candidate itemsets F are the frequent
free itemsets. PRL name can be followed by g for greedy or c for complete branch-
and-bound. Evaluation of AUC is done using stratified 10-fold cross-validation.
For the reproducibility of results, all our implementations are open source and
available online5.
3 https://dtai.cs.kuleuven.be/CP4IM/datasets/.
4 http://archive.ics.uci.edu/ml/datasets.html.
5 https://projetsJOHN@bitbucket.org/projetsJOHN/mdlrulesets.

https://dtai.cs.kuleuven.be/CP4IM/datasets/
http://archive.ics.uci.edu/ml/datasets.html
https://projetsJOHN%40bitbucket.org/projetsJOHN/mdlrulesets
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Compression power of PRL. Table 3 gives the total code length obtained
for the greedy PRLg and the complete branch-and-bound PRLc approaches. As
can be observed, the compression ratio (total code length/size of the datasets)
is substantial. For instance, it is 10% for the dermatology dataset. For 8/11
instances PRLc discovers a probabilistic rule list compressing better than the
one obtained with PRLg. The gain obtained with PRLc is sometimes substantial,
for instance on the krvskp and mushroom data sets.

Impact of the parameters. The set of possible itemsets F to create the rule
list is composed of the frequent free itemsets generated with a minimum support
threshold θ. Fig. 3a reports the compression ratio for decreasing values of θ.
As expected the compression ratio becomes smaller whenever θ decreases. The
reason is that the set F is growing monotonically, allowing more flexibility to
discover a probabilistic rule list that compresses well.

Both the greedy and the complete branch-and-bound algorithms can easily
limit the size of the probabilistic rule list they produce. This is done by stopping
the expansion of the list beyond a given size limit k. Figure 3b reports the
compression ratio for increasing values of k. As expected the compression ratio
becomes smaller whenever k increases for PRLc and stabilizes at some point when
the limit k becomes larger than the length of the optimal rule list. Surprisingly
this is not necessarily the case for the greedy approach that is not able to take
advantage of longer rule lists on this benchmark.

Regarding the execution time according to the size of the rules, as shown in
Fig. 3c, with a time limit of 10 min, we can see that the greedy approach is more
scalable. PRLc and SBRL execution time evolves exponentially, PRLc being
faster than SBRL though. Note that as soon as the optimal solution is found, in
the case of PRLc, the execution time does not increase so much anymore. The
reason is that most of the branches are cut-off by the branch-and-bound tree
exploration beyond that depth limit.
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Fig. 3. Sensibility of PRL for several settings using mushroom and soybean datasets

Comparison of PRL with existing rule learning algorithms. We compare
the rule list produced by our approaches (PRLg and PRLc) and by SBRL [11].
Figure 4a gives the code length for the model and for the data (class labels) for
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various datasets for the different approaches. Note that the code length for the
data corresponds to the log-likelihood of the class labels under the rule list. From
the rule lists obtained using the training set, the probability (to be positive) of
each transaction in the test set is predicted and the coding lengths are computed
using the (8) and (9). The reported values are averaged over 10 folds. The model
coding length represents the size of the encoding of the initial rule list.

One can see that the PRL approaches are competitive with SBRL. On Fig. 4a,
it often obtains the smallest data coding length except for the mushroom dataset.
The reason is that the test set of mushroom is classified perfectly by SBRL. The
rule lists produced are arguably shorter with PRLg and PRLc than with SBRL.

The mushroom dataset is investigated further in Fig. 4b and 4c. The data
coding length and the area under the ROC curve are computed for increasing
prefixes of the lists. As we can see, at equal prefix size (k < 5) our approach
obtains better likelihood and is more accurate than SBRL. Then beyond k ≥ 5
SBRL continues to improve on accuracy while PRLg and PRLc stagnates. The
lists indeed have reached their optimal length at k = 5. This evolution is a clear
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Fig. 4. (a) Comparison of coding length in average among PRL (g,c) and SBRL for
different test datasets and (b and c) evolution of the coding length of data only (top)
and the AUC (bottom) for several rule lists size, for mushroom dataset, for all 10-folds
(θ = 10%, |I| = 2).
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Fig. 5. Comparison of Area under ROC among different methods and four datasets,
for all 10-folds (θ = 10%, |I| = 1).

illustration of the difference between the type of rule lists produced by SBRL
and our approach. While SBRL lists are more focused on classification, MDL-
based lists are a trade-off between the data-coding length (classification) and
the complexity of lists (model code length).

Prediction power of PRL and other supervised learning approaches.
Although our approach is not designed to generate the best rule list for classifi-
cation, we evaluate its prediction power in the light of well-known classification
methods: CART, RF, SBRL and JRIP using 10-fold cross-validation and default
settings. For PRL the classification is done by associating with each transaction
the probability that its label is positive. This probability is that of the first rule of
the rule list (obtaining from the training set) that matches with this transaction.
The results are shown in Fig. 5.

In general, the AUC of our methods are greater than 0.6 and the optimal
solution always has a greater or equal accuracy compared to the greedy approach.
The difference becomes significant on databases like Krvskp where the difference
in compression ratio is also high (Fig. 3).

State-of-the-art methods are often more accurate, except in unbalanced
datasets (Gallup, primary-tu.) where our approaches are very competitive. One
can see that rule based methods do better on very unbalanced databases like
Gallup.

6 Conclusion

This work proposed a supervised rule discovery task focused at finding proba-
bilistic rule lists that can concisely summarize a boolean target attribute, rather
than accurately classify it. Our method is in particular applicable when the target
attribute corresponds to rare events. Our approach is based on two ingredients,
namely, the Minimum Description Length (MDL) principle, and a branch-and-
bound search strategy. We have experimentally shown that obtained rule lists are
compact and expressive. Future work will investigate the support of multivariate
target attributes (> 2 classes) and new types of patterns, such as sequences.
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Abstract. Multi-instance learning deals with the problem of classify-
ing bags of instances, when only the labels of the bags are known for
learning, and the instances themselves have no labels. In this work, we
propose a method that trains autoencoders for the instances in each class,
and recodes each instance into a representation that captures the repro-
duction error for this instance. The idea behind this approach is that an
autoencoder trained on only instances of a single class is unable to repro-
duce examples from another class properly, which is then reflected in the
encoding. The transformed instances are then piped into a propositional
classifier that decides the latent instance label. In a second classification
layer, the bag label is decided based on the output of the propositional
classifier on all the instances in the bag. We show that this reproduction-
error encoding creates an advantage compared to the classification of
non-encoded data, and that further research into this direction could be
beneficial for the cause of multi-instance learning.

Keywords: Multi-instance learning · Denoising autoencoder
Bag classification · Reproduction-error representation

1 Introduction

Multi-instance learning deals with the problem of classifying bags of instances,
when only the labels of bags are known for learning, and the instances themselves
have no labels. However, it is not known which of the instances are responsible
for the bag label, which makes this both an interesting and difficult problem.
Dietterich et al. [5] initially mentioned the multi-instance (MI) problem in con-
junction with the detection of drug activity based on the molecular structure of
proteins. Proteins can rapidly change their shape, so their approach is to gather
multiple observed shapes of a protein as a set of observations, and classify this
so-called bag instead. In their case, a bag receives a positive label when one or
more of its instances exhibit the desired behavior. However, this original assump-
tion was later expanded, such that the label can be based on a more generalized
composure of the instances in the bag.
c© Springer Nature Switzerland AG 2018
L. Soldatova et al. (Eds.): DS 2018, LNAI 11198, pp. 83–95, 2018.
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While MI-learning was initially mainly applied on the drug activity problem,
it later became relevant for image and text classification. Although the domains
of image and text classification have seen an increased application of deep neural
networks, MI-learning still remains relevant, especially in the medical domain, as,
e.g., shown in [11,19]. Another example is the domain of image annotation, where
labels can be retrieved via a modern search engine, but they may be noisy [18].
Our own motivation for tackling multi-instance problems derives from predictive
maintenance scenarios as described in [9,12], where one is often confronted with
a not necessarily sequential set of observations, for which no precise label for
any observation is given, but it is clear that the set of observations represents a
certain state of a machine. Through their non-sequential nature, these bags of
observations pose an ideal application for multi-instance classification methods.
In general, scenarios with weakly labeled data or potentially noisy input can be
considered as multi-instance problems.

There are essentially two ways to approach multi-instance problems: (i)
reduce the bags to a single representative instance and classify that instance,
and (ii) classify the bag via the distribution of the instances inside the bag. Both
techniques have their respective advantages and disadvantages. In this paper, we
propose a representation change of the instances and show that it can be benefi-
cial for both approaches. In particular, we aim to create a new representation for
instances that captures how well an instance corresponds to the class label of its
bag. To that end, we train autoencoders for the individual classes, and encode
instances based on their reproduction error. This transformation is simple and
efficient to compute, which is ideal for our application. Our results confirm that
such a reproduction-error representation improves the results of instance-level
and bag-level multi-instance learning.

In Sect. 2 we will give an introduction to multi-instance learning and related
work, followed by our definition of the reproduction-error representation in
Sect. 3. Section 4 introduces the datasets we have used. Section 5 describes
the experiments and the general setup, followed by the results in Sect. 6. We
conclude our findings in Sect. 7.

2 Multi-instance Classification

Multi-instance learning is a supervised learning problem, with the goal to predict
classes for bags of instances. In the learning phase, a set of bags B is given. Each
bag b ∈ B has a class cb ∈ C and contains a set of instances Xb. The instances
xb,i ∈ Xb do not have specific labels themselves.

2.1 Multi-instance Assumptions

In the original multi-instance problem formulation by Dietterich [5], it is assumed
that for a bag to be positive, it must contain one or more positive instances. This
strict assumption was later generalized by other works to cover more complex
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scenarios [7,17]. For example, Weidman et al. [17] introduced more general-
ized problem formulations that cover various scenarios. By their definition, the
original MI-assumption is the so called presence-based MI concept. In addition,
they present the threshold-based and the count-based concept definition. In the
threshold-based setting, a minimum number or percentage of positive instances
in a bag has to be present in order to define a bag as positive. Even more general,
in the count-based setting there can be both a lower and an upper limit to the
amount of positive instances. They proposed their very own method, TLC [17],
in order to solve these generalized versions of the multi-instance problem.

Whereas Dietterichs and Weidmanns approaches call for methods that deter-
mine key instances in the bag and isolate them from the non-key instances,
researchers such as Andrews et al. [2] have re-considered this assumption and
propose an approach that is based on equal contributions of the instances inside
a bag.

2.2 Paradigms of Multi-instance Classification

In general, there are three paradigms w.r.t. handling multi-instance classification
[1]: (i) the instance-space paradigm, (ii) the bag-space paradigm, and (iii) the
embedded paradigm.

In (i), the main idea is to infer an instance-based classifier first, and make a
bag-level prediction based on a meta-decision over the instance-level responses.
This is especially difficult, since there are no labels available for the instances at
training time. Methods belonging to this category hence have to deal with the
problem of how to infer proper labels for the instances. One popular approach,
MiWrapper, is given by Frank et al. [8], where instances in a bag are considered
equally important and therefore will all be assigned the bag label weights pro-
portionate to bag size. For the bag classification, the predicted instance labels
are then combined via averaging the class probabilities. In [6], the authors apply
an instance-level transformation into a sparse representation via kernels, which
helps solve ambiguities between instances. Another example would be the axis-
parallel rectangles as proposed by [5], as well as the Mi-SVMmethod [2].

While the instance-space paradigm is concerned with the properties of single
instances, the bag-space paradigm (ii) tries to leverage the bag as a whole, and
the learning process itself acts in bag-space. This increases the computational
complexity, as a bag is not a vector and a comparison between bags must be
made. One solution to this problem is to compute a distance function for bags,
and use a regular distance-based classifier such as K-NN or a SVM. An example
for this is Citation K-NN [15], which is a modified version of K-NN. Another
method that belongs to this category is miGraph [20], which maps the instances
inside a bag into a graph structure, so the dependencies of the instances to each
other can be leveraged. This is different to other learners, where independence
between instances is assumed. The miGraph mapping can be considered as rep-
resentation transformation on the bag-level.

The final prevalent paradigm is the embedded-space paradigm (iii), where the
main idea is to convert a bag into a vectoral form first, and classify afterwards.
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One way of doing this is in analyzing statistical properties of bags or their
instances, such as the SimpleMi method. SimpleMi maps the content of a bag
into a single instance by calculating the attribute-wise average instance from
the bag. This works remarkably well in some scenarios, as we will later show
in the experiments (Sect. 6). Extensions thereof, e.g. using max and min in
addition to the mean have also been researched [3]. A different approach to
the embedded-space paradigm are so called vocabulary-based methods, which
first apply some sort of clustering or mapping that can be calculated from the
instances in an unsupervised way. In a second layer, a classification decision is
then generated based on the distribution of the instances and the clusters. The
TLC method [17] is an example of such a technique, since it maps the bag into
a meta-instance via determining the distribution of its instances in certain parts
of the instance-space. The meta-instance can then be classified by a standard
propositional classifier.

In our work, we will propose a variant of our method for paradigm (i) and (iii).
The main novelty of our approach is the use of an autoencoder to transfer the
instances into a different representation, which we will show gives the classifiers
built on top of it an advantage compared to their counterpart which does not
use that representation. Our approach works very similar to the aforementioned
SimpleMi, TLC , and MiWrapper, hence we will build our evaluation based on
the comparison with these methods.

3 Reproduction-Error Representations

In this section we will describe our approach and the variants that it incorporates.
The general idea of the approaches is to leverage the underlying capabilities of
autoencoders. This means we are going to use two features thereof: First, the
capability of encoding an instance into a lower-dimensional representation and
second, the fact, that an autoencoder can only encode well what it has learned
during its training phase. The latter is most important in our case, since we
are going to train autoencoders only with a single class of bags, respectively the
instances in that bag. We assume the following: an autoencoder trained only on
a single class will reproduce instances of bags from other classes worse than the
instances from bags of its own class. This is based on the fact that it has seen
less or none of those during training time. Especially the instances that differ
drastically from the own class might reproduce poorly, which might be exactly
the information that is relevant for the classification.

3.1 Autoencoders for Representations

Autoencoders are feed-forward neural networks that are trained to reproduce
the input values they are given. While this may sound trivial, it is usually made
more complex by adding a constraining hidden layer that has fewer units than
the input/output layers, as schematically displayed in Fig. 1. This way, the
autoencoder network must be fitted such that it finds a dimension-reduced rep-
resentation (encoding) of the instance, which it can then decode again to the
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Fig. 1. Example of a deep autoencoder – the central layer provides the encoded repre-
sentation

initial values. Autoencoders may have one or more hidden layers, and there-
fore become deep autoencoders as well. We will be using both deep and shallow
autoencoders for our experiments. Researchers have found that autoencoders are
useful when the task is to detect implicit concepts [14], or even for dimension-
ality reduction [16], which is in line with our assumption that the label-relevant
instances in a bag are different or incorporate a different concept.

3.2 The Reproduction-Error Representation

We first train a set of autoencoders A = {Ac}, one for each class c ∈ C, based
on the instances in all training-bags belonging to that respective class.

The attribute-wise reproduction error of an instance x is defined as rc(x) =
Ac(x)−x, and has the same dimensionality as x. Usually, the reproduction error
is calculated as a scalar ec(x) by calculating the mean error over all attributes.

Our assumption is, that autoencoders can only reproduce well what they have
seen during their training. This means, that the reproduction error ej(x), j ∈ C
should be lower for instances in bags with class j as opposed to instances from
a different bag k ∈ C.

We will use the attribute-wise reproduction errors rc to form the reproduction
error representation (RER) of an instance. Since we have |C| autoencoders, we
can concatenate the respective rc values to a combined vector R(x) = r0(x) ⊕
r1(x) ⊕ ...rn−1(x) ⊕ rn(x), n ∈ C, which contains all reproductions for x.

Our assumption is that a conversion of the instances to the reproduction-
error representation will later aid the instance-level classifiers to distinguish
between instances of different classes more easily. For testing this assumption,
we have implemented four variants of the technique, which use the RER as an
enhancement to methods that operate in embedded space as well as methods that
operate in instance space. The approaches are briefly summarized in Table 1 and
explained in detail in the following two sections.
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Table 1. MiAEC variants in both instance- and embedded-space

Method Transformation Instance classification Bag classification

Instance-Space Variants

MiAECi RER Propos. classifier Propos. classifier

MiENC Encoding only Propos. classifier Propos. classifier

NoEncode — Propos. classifier Propos. classifier

Embedded-space variant

MiAECe Mean of RER — Propos. classifier

3.3 The Instance-Space Paradigm Variants

In the instance-space paradigm, the goal is to create a classifier for the individual
instances, and make a meta-decision over all instances of a bag. We have tested
three variants of this scheme, which we now introduce and explain the ideas
behind.

MiAECi : This algorithm is similar to the MiWrapper -approach. We first per-
form the RER-transformation, converting the instances into the reproduction-
error representation. Based on the RER, we train a propositional classifier for
instance classification. In order to do so, we must assign class labels to the
instances for training, which we do according to the procedure in [8]: Each
instance gets the label of the bag it is in. Although this is not optimal w.r.t.
the different multi-instance assumptions that exist, Frank et al. [8] bring forth
the argument that they assume all instances in a bag are equally relevant for
the bag label. However, this leads to the problem that bags with varying num-
bers of instances will be treated differently. Frank et al. solve this issue by
putting a weight on their instances, so that every bag has a combined weight
of one. We will also employ this method, and in addition have a meta-layer
decide the bag label based upon the frequency of predicted instance labels.
This is a simple logistic regression classifier, that is trained on the output of
the instance-level classifier.

MiENC : In this variant, instead of the RER, we use the encoded form of the
instance data as can be retrieved from the autoencoders bottleneck layer.
This puts the instances into a lower-dimensional representation. Depending
on the data, this representation can be even more useful than the RER, as
we will see later in the experiments. Except for the representation, MiENC
uses the same two-level classification approach as MiAECi.

NoEncode: For comparison, we added a third variant that directly works in
instance-space: The NoEncode-method works exactly like MiENC, but it does
not use any type of instance transformation, and uses the raw instances
instead. Technically, this is very similar to MiWrapper, but with the second
layer of classification instead of a probabilistic decision.
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3.4 The Embedded-Space Paradigm Variant

In addition to the instance-space variants, we investigated a MiAEC variant
that operates in embedded-space.

MiAECe is similar to SimpleMi, which aggregates the instances inside a bag
via averaging to one single instance with the bag label. Instead of
using the bare attributes of the instance, we will be using the RER-
converted instances. Unlike MiAECi and MiENC, this version can
not operate on the representation given by the encoder, because the
encoder layer has no semantic properties that allow averaging to be
applied on it.

4 Datasets

In order to evaluate our efforts, we rely on classical datasets from the domain of
multi-instance learning as well as two synthetic datasets that we derived from
the popular MNIST dataset of handwritten digits. An overview of the datasets
is given in Table 2.

4.1 Image Classification – Elephant, Fox and Tiger

Before being overshadowed by deep-learning techniques in recent years, multi-
instance learning was popular for tasks of content-based image classification. In
the three datasets Elephant, Fox, and Tiger [2], the task is to identify if a bag of
image segments contains a certain animal. Each bag represents an image, from
which segments have been sampled as instances. The three datasets consist of
200 bags each with an even class distribution, each containing two to 14 instances
with 230 attributes.

4.2 Drug Activity Prediction – Musk

The Musk datasets for drug activity prediction consist of bags that represent
molecules. Each instance in the bag is a so called conformation of the molecule.
Conformations of molecules are caused by rotating bonds of atoms which make
the molecule appear in different shapes, although being chemically equal. In the
Musk datasets, a feature vector describes these conformations in terms of their
surface properties. A molecule should be identified as musk, if it has at least one
conformation that represents a conformation that emits a musky smell, hence
the name. The Musk-1 dataset has 92 bags with 476 instances, whereas Musk-2
has 102 bags with 6598 instances in total. Both have 166 attributes that describe
the molecule conformations.
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Table 2. Datasets of binary multi-instance classification problems

Dataset Bags Instances Attributes % pos bags

Elephant 200 1391 230 50.0%

Fox 200 1320 230 50.0%

Tiger 200 1220 230 50.0%

Musk-1 92 476 166 51.1%

Musk-2 102 6598 166 38.2%

Mi-NIST 1500 21740 784 54.0%

Mi-NIST2 1500 21793 784 36.2%

4.3 Handwritten Digits – Mi-NIST

In addition to the well known datasets above, we have added two new multi-
instance datasets based on the MNIST1 dataset of handwritten digits, which we
call Mi-NIST.

These datasets consist of 1500 bags of randomly sampled instances from
MNIST, each bag containing from 9 to 21 instances. A bag is labeled positive,
if it contains an instance with the label “8”, and negative otherwise. We sam-
pled two datasets this way, such that two class distributions are realized. The
dataset Mi-NIST consists of 810 positive and 690 negative bags, with a total of
21740 instances. Mi-NIST2 has fewer positive bags to create a different a-priori
distribution. In our comparison these two pose the largest datasets. They are
also datasets based on image recognition like Elephant etc., but by their proper-
ties challenge the classifiers to recognize very specific instances inside the bags,
similar to Musk.

5 Experiments

For our experiments we chose a usual setup, 10 × 10-fold cross-validation, for
all the datasets and algorithms, where the autoencoders are specifically trained
only on the training data of the respective fold. We compare our approaches
MiAECi, MiAECe, and MiENC against the technically similar methods Sim-
pleMi, MiWrapper, and TLC. We used their respective implementations in the
WEKA framework, and conducted the evaluation via the WEKA experimenter
tool. All the MiAEC variants were implemented in python and undergo the very
same ten times ten-fold cross validation. As performance measurement we rely on
accuracy. In order to demonstrate the added value of the RER-transformation,
we also include the very same classification strategy as in MiAECi in NoEncode,
just without the transformation. Comparison of the results of these two variants
should clarify, if the transformation yields an advantage. Besides the compar-
isons of accuracy we will test for statistical significance via the Friedman test
with the post-hoc Nemenyi test as described in [4].
1 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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In the following, we describe the methods we evaluated, and how they were
set up.

MiAEC : We trained two type of autoencoders on each dataset. A shallow
autoencoder with only one hidden layer, which is also the bottleneck, and
a deep autoencoder with three hidden layers, where the layers before and
after the bottleneck consist of an amount of units that is halfway between the
input and the bottleneck size. We used the Adam optimizer [10], which uses
momentum for learning [13]. Additionally, we included a noise and a dropout
layer in order to help with regularization and avoid overfitting. The units in
the hidden layers were rectified linear units, whereas the units in the output
layer are linear. Since the quality of the reproduction heavily depends on the
training of the autoencoder, the parametrization was individually optimized
for each dataset: Different noise and dropout values as well as different bottle-
neck sizes were evaluated via cross-validation with both the shallow and deep
architecture, to get a good reproduction error. The autoencoder was trained
with early stopping, the stopping criterium being less than 1% relative accu-
racy improvement in the training set over the last 4 epochs.
For the classification of RER-transformed instances we are using a logistic
regression classifier, mainly because it delivers good performance and can be
used in the other multi-instance methods as well. Finally, for the classification
of bags we are also using logistic regression.

SimpleMi : For SimpleMi, two parameters can be set: the classifier and the
transformation method. For comparison reasons, we will be using logistic
regression as well, and the arithmetic average as transformation.

MiWrapper : MiWrapper : [8] has similar options available: a classifier, the
transformation method and a weighing method. Likewise, we are choosing
logistic regression, arithmetic average and a weighing method that keeps the
instance weights such that they sum up to one for each bag.

TLC : TLC [17] requires the selection of a classifier and a partition generator.
For the partition generator we selected the J48 classifier, a WEKA imple-
mentation of C4.5, as the authors did in their original paper. As a classifier,
additive logistic regression in the form of LogitBoost is used with decision
stumps as weak classifiers.

6 Results

We have applied our and the related methods to seven datasets via 10 × 10-fold
cross-validation, ranked the results and applied the Friedman test with the post-
hoc Nemenyi test for critical distances as described in [4]. The results are shown
in Table 3 and the critical distance and grouped ranks are displayed in Fig. 2.

The critical distance of the ranks is 3.4, which means that for a significance
level of 0.05, the null hypothesis can be rejected. This splits the presented algo-
rithms in two overlapping groups. Essentially, only two algorithms, MiENC and
MiAECi, are significantly different to SimpleMi (Fig. 2).
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Table 3. Experimental results on seven datasets — Accuracy (standard deviation)

Dataset SimpleMi MiWrapper TLC MiAECi MiAECe MiENC NoEncode

Elephant 73.6 (13.2) 84.3 (8.3) 82.5 (8.5) 85.3 (8.1) 81.9 (8.6) 85.8 (7.5) 83.7 (7.8)

Fox 55.0 (9.5) 59.3 (9.4) 62.7 (9.6) 59.3 (10.7) 57.8 (10.1) 60.6 (10.4) 58.1 (9.8)

Tiger 76.6 (9.0) 78.6 (8.9) 75.2 (11.2) 82.1 (8.1) 75.2 (9.7) 80.4 (8.5) 79.5 (8.4)

Musk-1 72.9 (13.0) 79.6 (12.6) 85.2 (12.4) 85.1 (11.5) 86.7 (10.2) 83.8 (12.1) 83.1 (11.4)

Musk-2 72.3 (13.2) 81.7 (12.7) 78.8 (11.9) 84.8 (10.3) 82.2 (10.9) 85.5 (10.5) 83.3 (12.1)

Mi-NIST 56.3 (3.9) 57.5 (2.3) 71.5 (4.4) 56.7 (3.7) 71.7 (2.9) 56.2 (3.6) 54.7 (3.4)

Mi-NIST2 58.1 (4.1) 63.8 (0.3) 76.2 (3.9) 71.3 (4.1) 71.0 (3.7) 77.9 (3.5) 67.7 (3.5)

Avg. Acc. 66.4 72.1 76.0 74.9 75.2 75.7 72.8

Avg. Rank 6.43 4.29 3.50 2.71 4.07 2.43 4.57

However, the look at the actual results (Table 3) gives some interesting insights.
For a better comparison, we group the results w.r.t. the paradigm that the
algorithms were intended for. This means, on the one hand, SimpleMi , TLC and
MiAECe, which operate in embedded-space, and on the other hand, MiWrapper,
MiAECi, MiENC , and NoEncode for the instance-space paradigm.

6.1 Embedded Space Results

In this group we look at SimpleMi , TLC and MiAECe. These algorithms group
bags of instances together into one bag-representing instance. SimpleMi does this
via calculating an arithmetically mean instance over all bag instances, whereas
MiAECe does the same, but applies the RER-transformation before calculating
the mean. As we can see in the results, this leads to advantages in the Elephant,
both Musk and both Mi-NIST scenarios, while Fox and Tiger yield similar
results. TLC works differently, but shows similar results to MiAECe with only
a small advantage. Apparently, the RER-transformation is advantageous toward
the type of classifier that MiAECe and SimpleMi resemble. We assume the cause
is, that features which are relevant for distinguishing the classes get alleviated
by the transformation, and this remains somewhat intact when the instance-
averaging has taken place. The more sophisticated clustering mechanism that
TLC provides creates a small performance advantage and a better average rank
(3.5 vs. 4.07) compared to MiAECe.

6.2 Instance Space Results

In the second group we look at the results of MiWrapper, MiAECi, MiENC ,
and NoEncode. The best average rank is reached by MiENC, but none of the
five has a statistically significant advantage regarding the rank. There is also
no method that shows an outstanding performance in a specific dataset, either.
Since MiWrapper and NoEncode are practically the same algorithm with only
minor differences, we expect the results to be very close to each other. This can
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Fig. 2. Comparison of average ranks. The critical distance (CD) is 3.4.

be seen in the results over all the datasets. Both show very similar accuracy, and
reach an almost identical average rank (4.29 vs. 4.57).

MiAECi uses RER-transformed instances instead of no encoding. Between
MiAECi and NoEncode, we see consistent small improvements over all datasets.
On average, the advantage is greater than 2%. MiENC can improve this even
further, with a total advantage of 2.9% compared to NoEncode. One value stands
out: On Mi-NIST2 the improvement of MiENC is 6.6% over MiAECi. Appar-
ently, in this dataset the encoding has a high impact. This can be explained:
in the Mi-NIST-datasets we are dealing with hand-written digits in a pixel rep-
resentation. Since image recognition is one of the main task of neural networks
nowadays, the autoencoder can leverage the complex feature-detection abilities
that a neural network provides. We suppose a convolutional autoencoder would
improve the result even further.

7 Conclusion

In this paper we have presented a method that leverages a special representa-
tion of multi-instance data in such a way that classification performance can
be enhanced. We have shown that the RER-transformation yields a small but
consistent advantage. Learning an autoencoder required to produce this type of
representation is a very specific task for each dataset, and can be computation-
ally challenging and time-consuming. However, in case of MiENC the dimension-
reduced output benefits the wrapper algorithm. It has to deal with fewer features,
in our case a bottleneck layer only 10% of the original size was beneficial. Also,
the encoding may enhance certain important aspects of a dataset compared to
the original instances, especially when dealing with image-like data. This makes
it easier for the wrapper to achieve proper classification.

Therefore, in future work we will look into the area of natural language pro-
cessing and deep learning in general, where embeddings combined with deep
networks are currently proving to be the state-of-the art for some learning prob-
lems. For the sake of completeness we would also like to mention that there
are other multi-instance classification methods out there, that perform better
on the given and other datasets, for example some graph-based or SVM-based
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MI-classifiers. Another caveat of our method is, that when all bags contain all
types of instances, but with different distributions, we expect the representation
error to be generally low. This could decrease the expressiveness of the RER-
transformation and hence lower the performance of MiAECi and MiAECe.

However, our point is to convey the advantages of having an intermediate
instance representation, and show that it affects the performance w.r.t. a given
classifier. It remains to be seen whether such methods may also benefit from an
error-based representation change.
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Abstract. The use of Transfer Learning algorithms for enhancing the
performance of machine learning algorithms has gained attention over the
last decade. In this paper we introduce an extension and evaluation of
our novel approach Similarity Based Instance Transfer Learning (SBIT).
The extended version is denoted Class Balanced SBIT (or CB-SBIT for
short) because it ensures the dataset resulting after instance transfer does
not contain class imbalance. We compare the performance of CB-SBIT
against the original SBIT algorithm. In addition, we compare its per-
formance against that of the classical Synthetic Minority Over-sampling
Technique (SMOTE) using network traffic data. We also compare the
performance of CB-SBIT against the performance of the open source
transfer learning algorithm TransferBoost using text data. Our results
show that CB-SBIT outperforms the original SBIT and SMOTE using
varying sizes of network traffic data but falls short when compared to
TransferBoost using text data.

Keywords: Similarity-based transfer learning · Botnet detection
SMOTE · TransferBoost

1 Introduction

Transfer learning is one of the active research areas in machine learning [14].
Common machine learning algorithms deal with tasks individually [17], meaning
several tasks can only be learnt separately. Transfer learning attempts to learn
from one or more tasks (known as source tasks) and use the knowledge learnt
to enhance learning in another task (known as the target task). The target and
source tasks must be related in one way or another.

Transfer learning is typically employed when there is a limited amount of
labelled data in one task (the target task), and sufficient data in another related
task (the source task). The idea here is that using only the target data can
lead to obtaining models with poor performance since there is insufficient data.
c© Springer Nature Switzerland AG 2018
L. Soldatova et al. (Eds.): DS 2018, LNAI 11198, pp. 99–113, 2018.
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Whereas, by transferring knowledge from the source task(s), model quality can
be improved.

Transfer learning in network traffic classification was introduced in [19] where
feature transfer learning was used, as opposed to our method which is based on
instance transfer. The technique is based on projecting the source and target
data into a common latent shared feature space and then using this new feature
space for model building and making predictions. The technique attempts to
preserve the distribution of the data. Although the reported results seem to be
reasonably good, there is no freely available tool or code to use for comparison.
As this technique is iterative, it can be computationally heavy. The approach we
propose in this work is more efficient in terms of speed as it performs instance
transfer by performing only one pass over the target as well as source data.

A recent work that applies transfer learning for classification of network
traffic can be found in [16]. This work does not propose a new transfer learning
method, rather, it only evaluates the performance of an existing open source
transfer learning algorithm called TrAdaBoost [5]. Although the results show
performance improvement when compared against the base classifier without
transfer (referred to as NoTL in the publication), it is noteworthy to mention that
TrAdaBoost was extended and enhanced by the introduction of TransferBoost [7]
- which is the algorithm that we compare our results against as explained in more
detail in [2].

Instance transfer learning has been applied in multiple areas. For example,
the recent work in [13] reports an attempt that employs Multiple Instance Learn-
ing (MIL) in text classification. This is a two stage method where, in the first
stage, the algorithm decides whether the source and target tasks are similar
enough to perform transfer which leads to the second stage where transfer is
performed.

In this paper, we extend our novel algorithm Similarity Based Instance Trans-
fer Learning (SBIT) and evaluate the performance of the extended version. More
detailed explanation of how SBIT works and an evaluation of its performance
can be found in our previous work in [2]. We will refer to the extension presented
in this work as Class Balanced SBIT (or CB-SBIT) because it ensures that the
dataset resulting after instance transfer is class balanced (see Sect. 2 for more
details). Our implementation is freely available on Github1.

The main contributions of this paper are as follows: (1) We introduce an
extension to our previous Similarity Based Instance Transfer approach [2] that
guarantees class balance in the resulting dataset (avoiding over-fitting) (2) We
compare the performance of the extended version of our algorithm against the
original version (3) We compare the performance of the extended version of our
algorithm against two classical and well known algorithms (4) We show where
our algorithm works well and where it does not.

The remainder of this paper is organised as follows: Sect. 2 introduces the
SBIT algorithm, highlights one of its current shortcomings, explains the class
imbalance problem and provides an overview of the new algorithm CB-SBIT.

1 https://github.com/alothman/CB-SBIT.

https://github.com/alothman/CB-SBIT
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Section 3 provides a detailed explanation of experimental setups and results for
comparing the performance of CB-SBIT against SBIT, SMOTE and Transfer-
Boost using two different types of data. The paper then ends with the conclusions
and future work in Sect. 4.

2 Similarity Based Instance Transfer

This section provides a short overview of the original SBIT algorithm [2], class
imbalance problem and then introduces the extended version of SBIT (i.e. the
CB-SBIT).

2.1 The SBIT Algorithm and its Class Imbalance Problem

The SBIT algorithm is an instance transfer algorithm that scans source datasets
one at a time and tries to find similar instances in these datasets to instances
in the target dataset. If any similar instance is found, it is transferred to the
target dataset which is used later to build a learning model. The pseudo-code
of SBIT is provided in Algorithm 1. It is important to bear in mind that SBIT
assumes the input target dataset is class balanced (i.e. it contains approximately
an equal percentage of classes).

Algorithm 1: The Proposed Transfer Learning Method Algorithm:
Similarity-Based Instance Transfer (SBIT)
Input : Source Datasets S1, S2, . . . Sn

Input : Target Dataset T
Input : Selected = [ ]
Input : thr1, thr2, . . . thrk
Output: New Dataset that is the result of Concatenate(T, Selected)

1 for S ∈ [S1, S2 . . . Sn]: do
2 for Is ∈ S: do
3 for IT ∈ T : do
4 Sim1 = ComputeSimilarity1(Is, IT );
5 Sim2 = ComputeSimilarity2(Is, IT );
6 . . . ;
7 Simk = ComputeSimilarityk(Is, IT );
8 if Sim1 > thr1&Sim2 > thr2 . . .&Simk > thrk then
9 Add Is to Selected ;

10

11 TNEW = Concatenate(T, Selected);
12 Return TNEW ;

Careful inspection of Algorithm 1 reveals that SBIT copies an instance from
the source data to the target data as soon as it satisfies the similarity criteria
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(lines 8 and 9). It performs this step without paying attention to the class of
that instance. This means it is very possible for instances transferred by SBIT
to belong to one class only (or at least for the majority of them to belong to the
same class) which leads to creating a new target dataset that is class imbalanced.

2.2 The Class Imbalance Problem

One of the main reasons that cause overfitting is class imbalance [10]. Class
imbalance refers to the problem when a classification dataset contains more than
one class and number of instances in each class is not approximately the same.
For example, there might be a two-class classification dataset that contains 100
instances where the number of instances for one of the classes is 90 and for the
other is 10. This dataset is said to be imbalanced as the ratio of first class to
second class instances is 90:10 (or 9:1). One might train a model that yields 90%
accuracy but in reality it could be that the model is predicting the same class
for the vast majority of testing data. It is worth mentioning here that evaluation
methods such as f1-score, area under the curve, or precision/recall rates provide
provide better insight regarding classifier performance when using imbalanced
datasets. However, our work focuses on ensuring class balance so an easy to
interpret metric such as accuracy can be used.

There are several ways to combat class imbalance [3]. One of these methods
is to down sample the majority class (this is sometimes referred to as under
sampling). In other words, to randomly select a subset of the instances that
belong to the majority class so that the number of instances in each class in
the resulting dataset is approximately the same. Another method is to over
sample the minority class; which means to randomly duplicate instances from
the minority class so the dataset becomes class balanced.

One common technique that falls under this category is the SMOTE algo-
rithm (or the Synthetic Minority Over-sampling Technique [4]) which generates
synthetic instances that belong to the minority class rather than generating
duplicates.

2.3 The Class Balanced SBIT Algorithm (CB-SBIT)

To avoid class imbalance, the SBIT [2] algorithm discussed in Sect. 2.1 can be
modified to ensure the resulting dataset is class balanced.

Recall SBIT assumes that the target dataset is class balanced, the modi-
fied version of SBIT makes sure that the new dataset (resulting after selecting
instances from source datasets) remains class balanced by using a strict criterion
as illustrated in Algorithm 2. This can be achieved in more than one way. For
example, it can be done on the fly by keeping track of the ratio of classes of
instances transferred from the source datasets and ensuring that whenever an
instance is added, the ratio remains almost the same. In other words, it guaran-
tees that approximately the same number of instances from different classes is
transferred to the target dataset. Another method is to perform a post-processing
step and sub-sample the instances selected for transfer in such a way that the
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classes are balanced. In our implementation we have both methods although we
elected to include the latter in Algorithm 2 (lines 10 and 11).

Algorithm 2: Class Balanced Similarity-Based Instance Transfer
(CB-SBIT)
Input : Source Datasets S1, S2, . . . Sn

Input : Target Dataset T
Input : Selected = [ ]
Input : thr1, thr2, . . . thrk
Output: New Dataset that is the result of Concatenate(T, Selected)

1 for S ∈ [S1, S2 . . . Sn]: do
2 for Is ∈ S: do
3 for IT ∈ T : do
4 Sim1 = ComputeSimilarity1(Is, IT );
5 Sim2 = ComputeSimilarity2(Is, IT );
6 . . . ;
7 Simk = ComputeSimilarityk(Is, IT );
8 if Sim1 > thr1&Sim2 > thr2 . . .&Simk > thrk then
9 Add Is to Selected ;

10

11 ClassBalancedSelected = SubSample(Selected);
12 TNEW = Concatenate(T,ClassBalancedSelected);
13 Return TNEW ;

The SubSample function in Algorithm 2 counts the number of instances in
each class in the input dataset and randomly removes instances from the majority
class(s) until the dataset is class balanced.

3 Experiments and Discussion

In this section we provide a detailed explanation of our experimental setups and
discuss the results. We are going to evaluate the performance of some commonly
used classifiers on Botnet network traffic data, compare CB-SBIT against the
original SBIT and then against two algorithms using data from two different
fields.

3.1 Evaluation of Classical Classifiers on Network Traffic Data

In this section we evaluate the performance of several classical classifiers on
botnet network traffic data (we use data for the following five botnets: RBot,
Smoke bot, Sogou, TBot and Zeus. In the plot in Fig. 1 these are shown in
the x-axis as numbers from one to five. The y-axis in Fig. 1 is the Accuracy.



104 B. Alothman et al.

Fig. 1. Performance of classical classifiers on network traffic data

The main purpose of these experiments is to select the best performing algorithm
so it can be used for comparison and as the base classifier for SBIT and CB-SBIT.

Figure 1 shows the average accuracy after running a ten-fold cross validation
using WEKA’s Decision Tree (J48), NaiveBayes, RanfomForest and SMO. It
can be noticed that RandomForest scored the highest accuracy in more datasets
than any other classifier.

After performing the previous experiments, it becomes clear that Random-
Forest should be selected as the base classifier for the transfer learning algorithm
developed as part of this work. This is because it performs better than other clas-
sifiers on network traffic data.

3.2 CB-SBIT vs SBIT (Using Network Traffic Data)

As explained in Sect. 2, SBIT and its extension CB-SBIT work by selecting
instances from source datasets and transferring those instances to the target
dataset. Currently the difference between the two algorithms is that CB-SBIT
makes sure the new target dataset contains equal percentage of classes. In order
to compare the two algorithms against each other, we have created varying
sizes of small network traffic datasets. The reason we selected to work on small
datasets is that transfer learning is normally applied when data is scarce. These
datasets are the same datasets used in [2] (i.e. network traffic data that belong
to the following five botnets: Zeus, TBot, Sogou, RBot and Smoke bot). As
explained in detail in [2], each of these botnets has a target dataset and a testing
dataset. Datasets that contain network traffic from Menti, Murlo and Neris
botnets were used as source datasets.

The contents of these datasets are derived from the freely available raw Bot-
net network traffic data which can be found in [15]. As this dataset is in raw
format, we used FlowMeter [6] to generate several features that include statistical
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(a) Dataset 1× 1 (b) Dataset 2× 2

(c) Dataset 3× 3 (d) Dataset 4× 4

(e) Dataset 5× 5

Fig. 2. Accuracy values for CB-SBIT and SBIT

values as well as information such as Source Port, Destination Port and Protocol.
Several steps were performed to transform this data into a suitable format for
machine learning. The data is in packet capture (PCAP) format and contains
traffic data for multiple Botnets as well as Normal traffic. we used FlowMeter
to transform it into CSV format. We then followed guidelines provided by the
data publisher to assign labels to instances and replaced missing values in each
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feature by the median of that feature. After this step we used one-hot encoding
to represent source port, destination port and protocol fields in binary format,
removed highly correlated features and detected and removed Outliers. After
the pre-processing steps were completed, we split the data into smaller datasets
according to label (each Botnet has a separate dataset) and used these datasets
in our experiments. All of these steps are explained in detail in [1].

To perform experiments, we varied the size of each target dataset in such
a way that each time the target dataset contains two, four, six, eight and ten
instances (we made sure each dataset contains the same number of botnet and
normal traffic to guarantee class balance). Then we ran SBIT and CB-SBIT
on each of these datasets and evaluated their performance by computing the
accuracy using the corresponding test dataset for each botnet. The accuracy
values are illustrated in Fig. 2. A description of the target datasets is provided
in the first column in Table 1 in Sect. 3.3.

It is important to observe that although there are several metrics that can
be used to evaluate the performance of classifiers [11], we have only used the
accuracy (accuracy is the percentage of predictions that a model gets right).
The reason is that our test datasets are class balanced.

Figure 2 illustrates the results of comparing the performance of CB-SBIT
against that of SBIT using the experiment’s datasets. It shows that CB-SBIT
performs better than SBIT in general. Out of the 25 target datasets we used,
CB-SBIT outperforms SBIT in 16 of them. However, SBIT still outperformed
CB-SBIT in 6 datasets and they performed equally on three datasets.

3.3 CB-SBIT vs SMOTE (Using Network Traffic Data)

The way SBIT and CB-SBIT work means new real data is being added to the
target dataset. By real data we mean the data is not synthetically generated but
rather it is collected from its original source. A common algorithm that is used
to generate synthetic data is the SMOTE algorithm (or the Synthetic Minority
Over-sampling Technique [4]) which generates synthetic instances for a particular
class in a dataset. This section compares and evaluates the performance of CB-
SBIT and SMOTE. The datasets in Sect. 3.2 were used in this evaluation and
their full description is provided in Table 1.

We varied the size of each target dataset so that each time the target dataset
contains two, four, six, eight and ten instances - we ensured that each dataset
contains the same number of botnet and normal traffic to guarantee class bal-
ance. Then we ran CB-SBIT on each of these datasets and saved the resulting
target dataset - which now contains the original instances and instances added
from source datasets. Using the number of instances of each class in all the result-
ing datasets, we ran SMOTE to generate new datasets of similar sizes using the
original target datasets as the base datasets.

The first column of Table 1 shows the botnet name and the size of the
baseline target dataset used (the 1 × 1 means this dataset contains only two
instances, one botnet and one normal, the same concept applies for other sizes).
The second column contains the size of the dataset after applying CB-SBIT
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Table 1. Datasets resulting after CB-SBIT and SMOTE

Dataset name (size) Size of dataset generated by CB-SBIT Size of dataset generated by SMOTE

Zeus 1 (1 × 1) 32 × 32 -

Zeus 2 (2 × 2) 106 × 106 106 × 106

Zeus 3 (3 × 3) 108 × 108 108 × 108

Zeus 4 (4 × 4) 138 × 138 138 × 138

Zeus 5 (5 × 5) 156 × 156 156 × 156

TBot 1 (1 × 1) 42 × 42 -

TBot 2 (2 × 2) 161 × 161 161 × 161

TBot 3 (3 × 3) 211 × 211 211 × 211

TBot 4 (4 × 4) 274 × 274 274 × 274

TBot 5 (5 × 5) 360 × 360 360 × 360

Sogou 1 (1 × 1) 44 × 44 -

Sogou 2 (2 × 2) 67 × 67 67 × 67

Sogou 3 (3 × 3) 147 × 147 147 × 147

Sogou 4 (4 × 4) 170 × 170 170 × 170

Sogou 5 (5 × 5) 252 × 252 252 × 252

RBot 1 (1 × 1) 17 × 17 -

RBot 2 (2 × 2) 34 × 34 34 × 34

RBot 3 (3 × 3) 38 × 38 38 × 38

RBot 4 (4 × 4) 186 × 186 186 × 186

RBot 5 (5 × 5) 212 × 212 212 × 212

Smoke bot 1 (1 × 1) 1 × 1 -

Smoke bot 2 (2 × 2) 52 × 52 52 × 52

Smoke bot 3 (3 × 3) 58 × 58 58 × 58

Smoke bot 4 (4 × 4) 77 × 77 77 × 77

Smoke bot 5 (5 × 5) 96 × 96 96 × 96

using each target dataset as explained above (number of botnet instances ×
number of normal instances). The third column contains the size of the dataset
after applying SMOTE using each target dataset. Observe that the cells cor-
responding to target dataset of size 1 × 1 is empty. This is because SMOTE
requires at least two instances of each class to work. Therefore, because SBIT
(and CB-SBIT) works normally even when the target dataset contains only one
instance of one or more classes, we believe it is fair to conclude that CB-SBIT
has a clear advantage over SMOTE when this is the case. In real life there may
be cases where only one instance is present for a botnet family - especially when
a botnet family is newly discovered.

We have evaluated the performance of RandomForest using each one of them.
We have run RandomForest on each dataset and computed the accuracy using
the corresponding test dataset for each botnet. The accuracy values are illus-
trated in Fig. 3.

Inspecting Fig. 3 reveals interesting results. Because SMOTE does not work
when the number of instances for any of the classes in the data is less than
two, CB-SBIT has a clear advantage in this case. Figure 3a shows a similar
behaviour that CB-SBIT performs better when the dataset size is small but
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(a) Dataset 2× 2 (b) Dataset 3× 3

(c) Dataset 4× 4 (d) Dataset 5× 5

Fig. 3. Accuracy values for CB-SBIT and SMOTE

greater than two. When the dataset size is increased gradually, the performance
of SMOTE improves and it can be said that it performs equally to CB-SBIT.
After using the 25 datasets described in Table 1, CB-SBIT performs better than
SMOTE in 17 cases, SMOTE performs better than CB-SBIT in 7 cases and
the two of them perform equally in one case. Recall that CB-SBIT (and SBIT)
are proposed specifically to address the problem of scarcity of instances in the
datasets. Clearly in this scenario CB-SBIT is a better choice than the classical
SMOTE.

3.4 CB-SBIT vs TransferBoost (Using Text Data)

For this comparison the popular 20 news groups dataset [12] was used to compare
the performance of CB-SBIT against TransferBoost [7] and RandomForest. This
dataset consists of 20,000 messages from 20 different netnews newgroups where
1000 messages were collected from each newsgroup. According to the guidelines
provided in [12] the 20 groups can be generally categorised into the following
six high level categories: computer (contains five sub-categories), miscellaneous
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(contains only one sub-category), recordings (contains four sub-categories), sci-
ence (contains four sub-categories), talk (contains three sub-categories) and reli-
gion (contains three sub-categories). In order to perform our experiments we
have chosen the following six datasets (one from each category): misc.forsale,
comp.graphics, alt.atheism, sci.electronics, rec.autos and talk.politics.misc.

In order to obtain data suitable for machine learning, we used techniques
popular in text mining [8]. Text mining involves using several techniques to
process (usually unstructured) textual information and generate structured data
which can be used to create predictive models and/or to gain some insight into
the original textual information. The structured data is usually extracted by
analysing the words in the documents and deriving numerical summaries about
them.

To be able to use the text documents belonging to the six categories, we
created a dataset that has two columns: the first column is the text contained
in each document and the second column is the class of that document (which
is one of the six categories). After that, we applied the TextToWordVector filter
in WEKA [9] with Term Frequency and Inverse Document Frequency [18] (TF-
IDF). TF-IDF is a widely used transformation in text mining where terms (or
words) in a document are given importance scores based on the frequency of
their appearance across documents. A word is important and is assigned a high
score if it appears multiple times in a document. However, it is assigned a low
score (meaning it is less important) if it appears in several documents.

We used WEKA’s default parameters for this filter except for the number of
words to keep. This parameter is 1000 by default, and we changed it to 10000.
In addition to the TextToWordVector, we also used WEKA’s NGramTokenizer
(with NGramMinSize and NGramMaxSize set to two and three respectively).
Not only this, but we also removed Stop Words using a freely available set
of stop words. The resulting dataset contained as many as 10530 features and
several thousand instances (belonging to the six classes).

The next step was to make sure datasets contained positive and negative
examples. We have achieved this by choosing one of the six categories to be
our negative class (we randomly chose misc.forsale data). After this, we split
the large dataset into smaller datasets according to class and randomly selected
a subset of 194 instances from each dataset (except the misc.forsale dataset).
Then we randomly selected (without replacement) samples from the misc.forsale
dataset and appended them to the other datasets. This was done to ensure that
each dataset contains positive and negative instances. At the end of this step we
had five datasets as follows: comp.graphics, alt.atheism, sci.electronics, rec.autos
and talk.politics.misc (to clarify, the comp.graphics dataset now contains 388
instances, 194 of which are of the comp.graphics class and the remaining 194 are
of the misc.forsale class, the same concept applies for the other four datasets).

Since transfer learning requires source and target datasets, we have ran-
domly selected two of the five datasets to be our source datasets (these
were the rec.autos and sci.electronics datasets). The remaining three datasets
(comp.graphics, alt.atheism and talk.politics.misc) were our target datasets. We
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have randomly split each of these three datasets into smaller datasets (a target
and testing datasets). Each target dataset contained 10 instances (five positive
and five negative) and the remaining data was used as our testing datasets.
Observe that we made sure we randomly select non-overlapping subsets in all
previous steps. Details of these datasets are provided in Table 2.

Table 2. Text dataset details

Dataset name No of instances Dataset usage

rec.autos 388 (194 × 194) Source dataset

sci.elecronics 388 (194 × 194) Source dataset

alt.atheism Target 10 (5 × 5) Target dataset

alt.atheism Test 378 (189 × 189) Test dataset

comp.graphics Target 10 (5 × 5) Target dataset

comp.graphics Test 378 (189 × 189) Test dataset

talk.politics.misc Target 10 (5 × 5) Target dataset

talk.politics.misc Test 378 (189 × 189) Test dataset

With this setup we have run experiments using RandomForest, TransferBoost
and CB-SBIT. When using RandomForest, we have trained it using only the
target datasets one at a time. This is because RandomForest only requires one
dataset as its input. TransferBoost and CB-SBIT require one Target dataset
and one or more Source Datasets, therefore we fixed the source datasets as
shown in Table 2 and changed the Target dataset using the Target datasets we
have selected. To evaluate, we computed the accuracy of each model using the
corresponding test dataset. Our results are illustrated in Table 3.

Table 3. Results using text datasets

Dataset name CB-SBIT TransferBoost RandomForest

alt.atheism 51.06% 89.68% 50.53%

comp.graphics 50.00% 78.84% 50.00%

talk.politics.misc 50.26% 87.56% 52.12%

It is clear from Table 3 that when using textual data, TransferBoost outper-
forms RandomForest and CB-SBIT. This could be attributed to the nature of
the data and how each algorithm works. It can be noticed that the performance
of CB-SBIT and RandomForest are almost identical. This is because CB-SBIT
uses RandomForest as its base learner and the fact that similarity values between
instances in source and target datasets were found to be too small (when com-
pared to the similarity values obtained when using network traffic data).
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Table 4 shows computed percentage of similarity values that are greater than
0.5 for two example text and network traffic datasets. The first column of the
table shows the two pairs used, while columns two to six show the percentage of
similarity results that are greater than 0.5 for the five different types of similarity
computation techniques we have used in our work: Tanimoto, Ellenberg, Gleason,
Ruzicka and BrayCurtis. Note that the total number of similarity values is the
product of the sizes of the pair of families/categories used. Further details on
the similarity computation techniques can be found in [2].

Table 4. Percentage of similarity values that are > 0.5 using text and network traffic
data

Similarity between Tanimoto Ellenberg Gleason Ruzicka BrayCurtis

Graphics - Autos 0.0093% 0.0093% 0.0193% 0.0093% 0.0193%

Politics - Electronics 0.0086% 0.0080% 0.0173% 0.0080% 0.0173%

Zeus - Sogou 12.6311% 91.2733% 97.3485% 7.9254% 14.1463%

TBot - Menti 2.9381% 85.6801% 99.8750% 2.0438% 3.0313%

It is evident that there is much higher similarity in network traffic data
than in text data. This means that CB-SBIT could hardly find any instances to
transfer from the source to any of the target datasets when using text data. This
is an interesting observation especially when it is compared to how CB-SBIT
was able to transfer several instances when used with the network traffic data.

4 Conclusions and Future Work

This paper has introduced an extension to a novel transfer learning algorithm
that is based on the similarity between instances from the target and source
datasets (the SBIT algorithm). The extended version of the algorithm is aware
of the percentage of classes in the resulting dataset (resulting after instance
transfer) in the sense that it makes sure the classes are balanced. This helps in
avoiding several problems such as overfitting and misinterpretation. The paper
also included experimental evaluation of the new algorithm (i.e. the CB-SBIT
algorithm) against the original SBIT algorithm as well as against two open source
commonly used algorithms; the SMOTE and TransferBoost algorithm.

Experimental results show that CB-SBIT outperforms SBIT in majority of
the tests; which means CB-SBIT is an improvement over SBIT. When comparing
CB-SBIT against SMOTE, several network traffic datasets of various sizes were
used and it was evident that CB-SBIT outperforms SMOTE in small datasets
(CB-SBIT seems to perform better than SMOTE as the dataset gets smaller). An
interesting case was when the dataset contains only one instance of one or more
classes. SMOTE does not work in this case whereas CB-SBIT functions normally.
On the other hand, text data from the publicly available 20 news groups dataset
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was used to compare the performance of CB-SBIT against TransferBoost. It
was interesting to discover that, even though SBIT outperforms TransferBoost
when using network traffic data as it was shown in the original SBIT paper,
TransferBoost performs much better than CB-SBIT on text data. This could
be due to the nature of the data and the transformations performed in pre-
processing it. One interesting observation was made by CB-SBIT is that the
similarity values between instances from different topics was very small. This
accounts for the poorer performance of CB-SBIT on the text data. Similarity
values were observed to be much higher in the network data where CB-SBIT
performed very well.
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Abstract. The algorithm selection problem refers to the ability to pre-
dict the best algorithms for a new problem. This task has been often
addressed by Metalearning, which looks for a function able to map prob-
lem characteristics to the performance of a set of algorithms. In the con-
text of Collaborative Filtering, a few studies have proposed and validated
the merits of different types of problem characteristics for this problem
(i.e. dataset-based approach): using systematic metafeatures and perfor-
mance estimations obtained by subsampling landmarkers. More recently,
the problem was tackled using Collaborative Filtering models in a novel
framework named CF4CF. This framework leverages the performance
estimations as ratings in order to select the best algorithms without using
any data characteristics (i.e algorithm-based approach). Given the good
results obtained independently using each approach, this paper starts
with the hypothesis that the integration of both approaches in a unified
algorithm selection framework can improve the predictive performance.
Hence, this work introduces CF4CF-META, an hybrid framework which
leverages both data and algorithm ratings within a modified Label Rank-
ing model. Furthermore, it takes advantage of CF4CF’s internal mech-
anism to use samples of data at prediction time, which has proven to
be effective. This work starts by explaining and formalizing state of the
art Collaborative Filtering algorithm selection frameworks (Metalearn-
ing, CF4CF and CF4CF-META) and assess their performance via an
empirical study. The results show CF4CF-META is able to consistently
outperform all other frameworks with statistically significant differences
in terms of meta-accuracy and requires fewer landmarkers to do so.

1 Introduction

The task of choosing the best algorithms for a new given problem, the algo-
rithm selection problem, is widely studied in the Machine Learning (ML) liter-
ature [4,23,25]. One of the most popular approaches to deal with this problem,
Metalearning (MtL), looks for a function able to map characteristics extracted
from a problem, named metafeatures, to the performance of a group of algo-
rithms, named metatarget [3]. This function which is learned via a Machine
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Learning algorithm, named metamodel, can be used later to recommend the
best algorithms for new datasets.

MtL has been successfully used to recommend the best algorithm for
many tasks [3,15]. This paper is concerned with the use of MtL to rec-
ommend the best Collaborative Filtering (CF) for a new recommendation
dataset. Several approaches for this task has been proposed by different research
groups [1,11,12,17]. Metafeatures proposed in previous studies resulted in a col-
lection of metafeatures for CF recommendation. Two recent studies extended
this collection with a set of systematically generated metafeatures [6] and sub-
sampling landmarkers [7], which are performance estimations on samples of the
data. More recently, a new strategy named CF4CF was proposed, which, instead
of standard MtL approaches, uses CF algorithms to predict rankings of CF algo-
rithms [5]. Instead of metafeatures, algorithm performances are used as training
data by CF algorithms to create the metamodel. Using ratings obtained from
subsampling landmarkers, CF4CF obtains a predictive performance similar to
MtL.

Given the similar predictive performance in MtL and CF4CF, we propose an
hybrid approach which combines both: CF4CF-META. The procedure describes
each dataset through a combination of problem characteristics and ratings. Then,
each dataset will be labeled with the CF algorithms ranked according to their
performance. Next, meta-algorithms will be used to train a metamodel. Different
from previous MtL-based studies, this work also uses CF4CF’s ability to provide
recommendations with partial data in a modified Label Ranking approach. To do
so, a sampling and regularization procedure is included at prediction time. The
predictive performance analysis has shown that this makes the procedure more
effective. This work presents several contributions to CF algorithm selection:

– Frameworks: this work presents a detailed explanation and formal concep-
tualization of the state of the art CF algorithm selection frameworks. This
is done in order to understand current contributions and frame the proposed
CF4CF-META approach.

– CF4CF-META: a novel algorithm selection framework is proposed. It lever-
ages simultaneously problem characteristics and rating data as the indepen-
dent variables of the problem. Furthermore it modifies the standard Label
Ranking MtL procedure to deal with partial rankings at prediction time. As
far as the authors know, this work is the first of its kind.

– Empirical comparison: this work presents an exhaustive experimental
study of metalevel and baselevel performance of the existing frameworks. To
do so, several combinations of metafeatures for MtL-based algorithm selec-
tion frameworks are considered. The goal is to show that despite using the
same data and methods as the related work, CF4CF-META performs better
than its competitors.

This document is organized as follows: Sect. 2 introduces CF and MtL and
describes related work on CF algorithm selection; Sect. 3 presents and formalizes
the CF algorithm selection frameworks and introduces CF4CF-META; Sect. 4
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describes the experimental setup used, while Sect. 5 presents and discusses the
results obtained; Sect. 6 presents the main conclusions and the directions for
future work.

2 Related Work

2.1 Collaborative Filtering

CF recommendations are based on the premise that a user will probably like
the items favored by a similar user. For such, CF employs the feedback from
each individual user to recommend items to similar users [27]. The feedback is a
numeric value, proportional to the user’s appreciation of an item. Most feedback
is based on a rating scale, although other variants, such as like/dislike actions
and clickstream, are also suitable. The data structure used in CF, named rating
matrix R, is usually described as RU×I , where U is the set of users and I is the
set of items. Each element of R is the feedback provided by users to items.

Since R is usually sparse, CF attempts to predict the rating of promising
items that were not previously rated by the users. To do so, CF algorithms are
used. These algorithms can be organized in memory-based and model-based [2].
Memory-based algorithms apply heuristics to R to produce recommendations,
whereas model-based algorithms induce a model from R. While most memory-
based algorithms adopt Nearest Neighbor strategies, model-based are usually
based on Matrix Factorization [27]. CF algorithms are discussed in [27].

The evaluation is usually performed by procedures that split the dataset
into training and test subsets (using sampling strategies, such as k-fold cross-
validation [13]) and assesses the performance of the induced model on the test
dataset. Different evaluation metrics exist [16]: for rating accuracy, error mea-
sures like Root Mean Squared Error (RMSE) and Normalized Mean Absolute
Error (NMAE); for classification accuracy, Precision/Recall or Area Under the
Curve (AUC) are used; for ranking accuracy, one of the common measure is
Normalized Discounted Cumulative Gain (NDCG).

2.2 Metalearning

Metalearning (MtL) attempts to model algorithm performance in terms of prob-
lem characteristics [25]. One of the main tasks approached with MtL is the algo-
rithm selection problem, which was first conceptualized by Rice [20]. He defined
the following search spaces: problem, feature, algorithm and performance, rep-
resented by sets P , F , A and Y . The problem is then described as: for a given
instance x ∈ P , with features f(x) ∈ F , find the mapping S(f(x)) into A, such
that the selected algorithm α ∈ A maximizes y(α(x)) ∈ Y [20].

The metadataset in algorithm selection is comprised of several meta-
examples, each represented by a dataset. For each meta-example, the predictive
features, named metafeatures, are extracted from the corresponding dataset.
Each meta-example is associated with the respective target algorithm perfor-
mance (often, the best algorithm or ranking of algorithms, according to their
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performance) [3]. Next, a ML algorithm is applied to the metadataset to induce
a predictive metamodel, which can be used to recommend the best algorithm(s)
for a new dataset. When a new problem arises, one needs just to extract and
process the corresponding metafeatures from the new dataset and process them
via the MtL model to obtain the predicted best algorithm(s). Thus, MtL has
two levels: the baselevel (a conventional ML task applying ML algorithms to
problem-related datasets) and the metalevel (apply ML algorithms to meta-
datasets).

One of the main challenges in MtL is to define metafeatures able to effectively
describe how strongly a dataset matches the bias of ML algorithms [3]. The lit-
erature identifies three main groups [3,18,22,25]: statistical and/or information-
theoretical (obtain data descriptors using standard formulae); landmarkers (fast
estimates of algorithm performance on datasets) and model-based (extraction
of properties from fast/simplified models). It is then up to the MtL practitioner
to propose, implement and validate suitable characteristics which hopefully will
have informative value to the algorithm selection problem.

Since the procedure of designing metafeatures is complex, it is important
to highlight recent efforts to help organize and systemically explore the search
space. A systematic metafeature framework proposed in [19] leverages on generic
elements: object o, function f and post-function pf . To derive a metafeature, the
framework applies a function to an object and a post-function to the outcome.
Thus, any metafeature can be represented using the notation {o.f.pf}.

2.3 Collaborative Filtering Algorithm Selection

CF algorithm selection was first addressed using MtL [1,11,12,17]. An overview
of their positive and negative aspects can be seen in [9]. These approaches
assessed the impact of several statistical and information-theoretical metafea-
tures on the MtL performance. The characteristics mostly described the user,
although a few characteristics related to items and ratings were already available.
However, these studies failed in terms of representativity of the broad CF algo-
rithm selection problem, since the experimental setup and nature and diversity
of metafeatures were very limited. To address this problem, in [6] the authors
proposed systematic metafeatures (which include the metafeatures used in the
earlier studies) as well as the use of an extensive experimental setup. In [8], this
work was extended to investigate the impact of systematic metafeatures when
the goal is to select the best ranking of algorithms, instead of just the best
algorithm. For such, the problem was modelled using Label Ranking [14,26].

The algorithm selection problem was also approached using subsampling
landmarkers [7], which are metafeatures related to the performance estimation
on small samples from the original datasets. Although the problem was modeled
in different ways, the authors were unable to find a representation that could
be better than the previous systematic metafeatures [6]. In spite of this, these
metafeatures were very important for the next CF algorithm selection proposal:
CF4CF [5], where the problem of recommending CF algorithms is approached
using CF algorithms. Despite the obvious motivation for using recommendation



118 T. Cunha et al.

algorithms in a recommendation task, another goal was to provide an alternative
to the traditional metafeatures. CF4CF leverages the algorithm performance to
create a rating matrix and subsampling landmarkers as initial ratings for pre-
diction. Experimental results showed its ability to be an alternative to standard
MtL approaches and the importance of subsampling landmarkers as ratings.

3 Hybrid Algorithm Selection Framework

This work proposes a hybrid framework for the CF algorithm selection problem:
CF4CF-META. To explain how it works, we first present and formalize both
MtL and CF4CF approaches separately. Table 1 presents the notation used in
this document with regards to Rice’s framework. Notice that F = F ′ ∪ F ′′,
meaning that we use metafeatures from both dataset and algorithm approaches.

Table 1. Mapping between Rice’s framework and the CF algorithm selection problem.

Sets Description Our setup Notation

P Instances CF datasets di, i ∈ {1, . . . , |P |}
A Algorithms CF algorithms aj , j ∈ {1, . . . , |A|}
Y Performance CF evaluation measures yk, k ∈ {1, . . . , |Y |}
F ′ Dataset characteristics Systematic metafeatures mf l, l ∈ {1, . . . , |F ′|}
F ′′ Algorithm characteristics Subsampling landmarkers slm,m ∈ {1, . . . , |A| × |Y |}

3.1 Metalearning

An overview of the current state of the art MtL for CF approach [8] is pre-
sented in Fig. 1. The process combines the systematic metafeatures [6] with
standard Label Ranking. Combined, rankings of algorithms can be predicted
for new datasets. The problem requires datasets di, metafeatures mfl and algo-
rithms aj .

Fig. 1. Metalearning process overview. Organized into training and prediction stages
(top, bottom) and independent and dependent variables (left, right).
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The first step in the training stage is to create the metadataset. For such, all
datasets di are submitted to a systematic characterization process, which yields
the metafeatures ω = mf(di). These are now the independent variables of the
predictive task. Alternatively, we can use problem characteristics from feature
space F ′′ or even combinations of metafeatures from both feature spaces F ′ and
F ′′. We will analyse the merits of several approaches in the experimental study.

To create the dependent variables, each dataset di is associated with the
respective ranking of algorithms π, based on the performance values for a specific
evaluation measure yk. This ranking considers a static ordering of the algorithms
aj (using for instance an alphabetical order) and is composed by a permutation
of values {1, ..., |A|}. These values indicate, for each corresponding position l in
the algorithm ordering, the respective ranking position. Modelling the problem
this way enables to use Label Ranking algorithms to induce a metamodel. The
metamodel can be applied to metafeatures ω̂ = mf(dα) extracted from a new
dataset dα to predict the best ranking of algorithms π̂ for this dataset.

3.2 CF4CF

CF4CF [5], illustrated in Fig. 2, is an alternative algorithm selection methodol-
ogy that uses CF algorithms to predict rankings of CF algorithms. This figure
shows the main difference regarding MtL: no metafeatures from F ′ are used to
train the metamodel. Instead, CF4CF uses subsampling landmarkers slm.

Fig. 2. CF4CF process overview organized into training and prediction (top, bottom).
The prediction stage shows the subsampling landmarkers εsl and predicted ratings ε̂.

To create the metadatabase, which in this case is simply a rating matrix,
the rankings of algorithms π for every dataset di are used. The rankings are
converted into ratings by a custom linear transformation rat. The reason is two-
fold: to allow any evaluation measure yk and to enable the usage of any CF
algorithm as metamodel. Thus, every dataset di is now described as a ratings
vector ε =

(
rat(πn)

)|A|
n=1

. The aggregation of all ratings produces the CF4CF’s
rating matrix. Next, a CF algorithm is used to train the metamodel.

The prediction stage requires initial ratings to be provided to the CF model.
However, it is reasonable to assume that, initially, no performance estimations
exist for any algorithm at prediction time. Hence, CF4CF leverages subsampling
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landmarkers, a performance-based metafeature to obtain initial data. To that
end, CF4CF is able to work by providing N subsampling landmarkers and allow
CF to predict the remaining |A| − N ratings. Hence, a subset of landmarkers
(slm)N

m=1 for dataset dα are converted into the partial ranking π′. Such ranking
is posteriorly converted into ratings also using the linear transformation rat.
Thus, the initial ratings are now given by ε̂sl =

(
rat(π′

n)
)N

n=1
. Providing these

ε̂sl ratings, the CF metamodel is able to predict the missing ε̂ ratings for the
remaining algorithms. Considering now the entire set of ratings r(dα) = ε̂sl ∪
ε̂, the final predicted ranking π̂ is created by decreasingly sorting r(dα) and
assigning the ranking positions to the respective algorithms aj .

3.3 CF4CF-META

The main contribution from this paper is the hybrid framework CF4CF-META,
described in Fig. 3. It shows all datasets di represented by a union of both types
of metafeatures (systematic mfl and subsampling landmarkers as ratings slm)
and associated with rankings of algorithms aj . The process is modeled as a Label
Ranking task, similarly to MtL. However, the prediction stage is modified to fit
CF4CF’s ability to deal with incomplete data. As we will see in the experimental
study, this change has great impact on predictive performance.

Fig. 3. CF4CF-META process overview. Organized into training and prediction stages
(top, bottom) and independent and dependent variables (left, right).

To build the new metadatabase, every dataset di is submitted to a metafea-
ture extraction process, yielding a vector of metafeatures ω = mf(di). Next, the
subsampling landmarkers slm are converted into ratings and leveraged as the
remaining metafeatures. Notice, however, that although this characterization is
similar to CF4CF’s, there is a major difference: while in CF4CF the ratings
from the original performance were used as training data, here we are bound
to use ratings from subsampling landmarkers. Otherwise, we would be using
ratings created from the original algorithm performance to predict the rank-
ings also obtained from the original algorithm performance, which would be an
invalid procedure. Thus, the ratings definition consider the ranking of algorithms
π′ created from all available slm to obtain the ratings ε =

(
rat(π′

n)
)|A|
n=1

. The
independent variables of the algorithm selection problem are now represented
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as F = ω ∪ ε. To create the dependent variables, each dataset di is associated
with the respective ranking of algorithms π, similarly to MtL. A standard Label
Ranking algorithm is then used to train the metamodel.

In the prediction stage, the new dataset dα is first submitted to the metafea-
ture extraction process, yielding metafeatures ω̂ = mf(dα). Next, like in CF4CF,
N subsampling landmarkers are used to create the initial data. Although
CF4CF-META allows to use all subsampling landmarkers, it is important to
provide a procedure that allows to calculate fewer landmarkers. This is mostly
due to the significant cost in calculating this type of metafeatures, which we aim
to reduce without compromising CF4CF-META’s predictive performance. How-
ever, since we are working with partial rating data like in CF4CF, this means
that the metadata is not exactly the same as it would be if we would use sys-
tematic and subsampling landmarkers as metafeatures. This small change, as we
will see posteriorly, will greatly influence the predictive performance.

Formally, consider a set of landmarkers (slm)N
m=1 for dataset dα and its

respective partial ranking π′. With it, we are able to obtain the initial ratings
ε̂sl =

(
rat(π′

n)
)N

n=1
. Unlike in CF4CF, no ratings are predicted for the missing

values. However, this is not a problem, since CF4CF-META is able to work
with missing values (these are represented in Fig. 3 by ∅). Aggregating now the
metafeatures mf(dα) = ω ∪ ε ∪ ∅, we are able to predict π̂.

4 Experimental Setup

4.1 Baselevel

The baselevel is concerned with the CF problem and consider the following
dimensions: datasets, algorithms and evaluation. Table 2 presents all 38 CF
datasets used in this work with their main characteristics. For the interested
reader, the references for the datasets’ origins used can be found in [8].

The CF algorithms used are organized into two CF tasks: Item Recommen-
dation and Rating Prediction. For Item Recommendation, the algorithms used
are: BPRMF, WBPRMF, SMRMF, WRMF and the baseline Most Popular.
For Rating Prediction, the algorithms used are: MF, BMF, LFLLM, SVD++,
three asymmetric algorithms SIAFM, SUAFM and SCAFM; UIB and three
baselines: GlobalAverage, ItemAverage and UserAverage. Item Recommenda-
tion algorithms are evaluated using NDCG and AUC, while for Rating Predic-
tion NMAE and RMSE measures are used. The experiments are performed using
10-fold cross-validation. No parameter optimization was performed in order to
prevent bias towards any algorithm.

4.2 Metalevel

The metalevel has three CF algorithm selection frameworks: MtL [8], CF4CF [5]
and CF4CF-META. The metafeatures used in MtL follow several methodologies:
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Table 2. Datasets used in the experiments. Values within square brackets indicate
lower and upper bounds (k and M stand for thousands and millions, respectively).

Domain Dataset(s) #Users #Items #Ratings

Amazon App, Auto, Baby, Beauty, CD,

Clothes, Food, Game, Garden,

Health, Home, Instrument, Kindle,

Movie, Music, Office, Pet, Phone,

Sport, Tool, Toy, Video

[7k - 311k] [2k - 267k] [11k - 574k]

Bookcrossing Bookcrossing 8k 29k 40k

Flixter Flixter 15k 22k 813k

Jester Jester1, Jester2, Jester3 [2.3k - 2.5k] [96 - 100] [61k - 182k]

Movielens 100k, 1m, 10m, 20m, latest [94 - 23k] [1k - 17k] [10k - 2M]

MovieTweetings RecSys2014, latest [2.5k - 3.7k] [4.8k - 7.4k] [21k - 39k]

Tripadvisor Tripadvisor 78k 11k 151k

Yahoo! Movies, Music [613 - 764] [4k - 4.6k] [22k - 31k]

Yelp Yelp 55k 46k 212k

– MtL-MF: a set of systematic metafeatures [6], which consider a combina-
torial assignment to a set of objects o (rating matrix R, and its rows U and
columns I), a set of functions f (original ratings, number of ratings, mean
rating value and sum of ratings) and a set of post-functions pf (maximum,
minimum, mean, median, mode, entropy, Gini, skewness and kurtosis).

– MtL-SL: a collection of subsampling landmarkers [8]. To calculate these
metafeatures, random samples of 10% of each CF dataset are extracted. Next,
all CF algorithms are trained on the samples and their performance is assessed
using all evaluation measures.

– MtL-MF+SL: This strategy combines both systematic metafeatures and
subsampling landmarkers in an unified set of metafeatures.

The metatarget is created based on all baselevel evaluation measures (NDCG,
AUC, NMAE and RMSE) separately. Since only one evaluation measure can be
used at a time, 4 different algorithm selection problems are studied.

Regarding algorithms, this work uses variations of the same algorithm: Near-
est Neighbours (i.e. kNN). The goal is to compare in the fairest possible way all
frameworks. Hence, both MtL and CF4CF-META are represented by KNN [24],
while CF4CF uses user-based CF [21]. The baseline is Average Rankings.

The evaluation in algorithm selection occurs in two tasks: meta-accuracy and
impact on the baselevel performance. While the first aims to assess how similar
are the predicted and real rankings of algorithms, the second investigates how
the algorithms recommended by the metamodels actually perform on average for
all datasets. To evaluate the meta-accuracy, this work adopts the Kendall’s Tau
ranking accuracy measure and leave-one-out cross-validation. The impact on the
baselevel is assessed by the average performance for different threshold values,
t. These thresholds refer to the number of algorithms used in the predicted
ranking. Hence, if t = 1, only the first recommended algorithm is used. On the
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other hand, if t = 2, the first and second algorithms are used. In this situation,
the performance is the best of both recommended algorithms. All metamodels
have their hyperparameters optimized using grid-search.

5 Experimental Results

5.1 Meta-Accuracy

The meta-accuracy regarding Kendall’s Tau for all algorithm selection frame-
works are presented next: Figs. 4 and 5 present the performance for the Item
Recommendation and Rating Prediction scopes, respectively. The results are
presented for different N , referring to the amount of landmarkers used as ini-
tial ratings (expected to affect only CF4CF and CF4CF-META’s performances).
The landmarkers are randomly selected and the process repeated 100 times.

NDCG AUC
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Fig. 4. Ranking accuracy for the item recommendation scope.

The results show CF4CF-META consistently outperforms all other frame-
works. They also show its performance increases with N , thus the amount of
subsampling landmarkers provided has a positive impact on the framework. It
can also be observed that even a single landmarker is enough for CF4CF-META
to perform better than the second best framework. Regarding other frameworks,
one observes MtL-MF and MtL-MF+SL are always better than AVG, while MtL-
SL is always worse. Furthermore, CF4CF is better than AVG only for N = 3.
However, for N = 4 it even surpasses all MtL variations. Also, notice that
although MtL-MF and MtL-MF+SL always outperform the baseline, MtL-SL is
unable to do the same regardless of the metatarget used.

The results for Rating Prediction are very similar: both CF4CF and CF4CF-
META’s performances increase with N , MtL-MF and MtL-MF+SL always out-
perform the baseline, MtL-SL still is worse than the baseline and CF4CF-META
performs better than other frameworks for most thresholds. This shows the sta-
bility in all CF algorithm selection frameworks, regardless of the evaluation
measure used to create the metatarget. However, notice that CF4CF performs
better here: it is able to beat the baseline for N = 4, which means it needs only
50% of all available landmarkers in Rating Prediction, while it needed 75% in
Item Recommendation. Also, for N = 8, it is even able to beat CF4CF-META.
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RMSE NMAE

2 4 6 8 2 4 6 8
0.2

0.4

0.6

0.8

Sampled

Ke
nd

al
l's

 T
au

Algorithm
AVG
CF4CF
CF4CF−META
MtL−MF
MtL−MF+SL
MtL−SL

Fig. 5. Ranking accuracy for the rating prediction scope.

In order to validate the observations, we use Critical Difference (CD) dia-
grams [10]. We represent every framework by the Kendall’s Tau performance
of the best performing metamodels across all metatargets. Then, we use this
technique which applies Friedman test. The resulting diagram represents each
framework by its respective ranking position and draws the CD interval. Any
two frameworks which are considered statistically equivalent are connected by
a line. When two elements are not connected by a line, they can be considered
different. Figure 6 presents the CD diagram for this problem.
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CF4CF−META
CF4CF

MtL−MF+SL

MtL−MF
AVG
MtL−SL

Fig. 6. Critical difference diagram.

These results effectively show that CF4CF-META is better than the remain-
ing frameworks with statistical significance. Furthermore, it presents three frame-
works which are better than the baseline, but that hold no statistically signifi-
cant differences among themselves: CF4CF, MtL-MF and MtL-MF+SL. Lastly,
it shows that there is also no statistical significant difference between the baseline
and MtL-SL, which has proven to be the worst framework.

5.2 Impact on the Baselevel Performance

Since the algorithm selection task associated with this problem is the prediction
of rankings of algorithms, it is important to assess the impact on the baselevel
performance considering the rankings predicted by each framework. For such,
the frameworks are evaluated considering how many of the first t algorithms
in the predicted rankings are used. The goal is to obtain the best performance
possible for lower values of t. The results for this analysis, for both the Item
Recommendation and Rating Prediction scopes, are presented in Figs. 7 and 8,



CF4CF-META: Hybrid Collaborative Filtering 125

respectively. This analysis presents the average baselevel performance for CF4CF
and CF4CF-META for all N subsampling landmarkers used.
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Fig. 7. Impact on the baselevel performance in the item recommendation scope.

According to the results in the Item Recommendation scope, MtL-MF+SL
is the best framework in NDCG (for N ≤ 3), closely followed by CF4CF-META.
In AUC, CF4CF-META achieves the best performance (for N ≤ 2), closely
followed by MtL-MF and MtL-MF+SL. Notice that both CF4CF and MtL-SL
perform better than the baseline in NDCG, but fail to do the same in AUC.
This points out the poor stability of CF4CF’s predictions.

NMAE RMSE
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Fig. 8. Impact on the baselevel performance in the rating prediction scope.

In the Rating Prediction scope, CF4CF is consistently better than the
remaining frameworks for the vast majority of thresholds. CF4CF-META is able
to behave better than the remaining competitors in NDCG (N ≤ 5), although
no significant differences can be observed in RMSE. It is still important to notice
that CF4CF-META is able to beat AVG t ≤ 6 in NMAE and t ≤ 5 in RMSE.
Thus, it is a suitable solution for both metatargets in the remaining thresholds.
In this scope all MtL-based frameworks perform quite similarly to the baseline
although usually ranked slightly better.
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In summary, although CF4CF-META does not outperform all other frame-
works consistently, it is nevertheless the most robust since it is able to always
rank at least in second place for all metatargets considered. This stability, which
cannot be achieved by CF4CF, allied with the better performances in meta-
accuracy, prove that it is an important contribution to CF algorithm selection.

5.3 Metafeature Importance

Since there is no standard approach to perform metafeature importance in Label
Ranking, we have replicated the approach used in the related work [8]. It uses a
simple heuristic: to rank the frequency of metafeatures on tree-based metamod-
els for all metatargets. The top 10 metafeatures for all metatargets are shown in
Table 3. It can be seen that some metafeatures refer to the systematic metafea-
tures (namely those represented by notation {o.f.pf} ans sparsity and nusers),
while others refer to ratings (identified by the specific algorithm).

Table 3. Top ranking metafeatures per metatarget in CF4CF-META.

Rank NDCG AUC RMSE NMAE

1 Most popular I.count.kurtosis I.count.kurtosis I.count.kurtosis

2 WBPRMF Most Popular I.mean.entropy I.mean.entropy

3 I.count.kurtosis Sparsity R.ratings.kurtosis Sparsity

4 I.mean.entropy I.mean.entropy U.sum.kurtosis U.sum.kurtosis

5 U.sum.entropy R.ratings.kurtosis I.sum.max R.ratings.kurtosis

6 BPRMF I.sum.max Sparsity R.ratings.sd

7 U.mean.min WBPRMF Nusers Nusers

8 Nusers WRMF R.ratings.sd I.sum.max

9 U.sum.kurtosis Nusers BMF LFLLM

10 R.ratings.kurtosis R.ratings.sd U.sum.entropy U.mean.skewness

The results show the vast majority of metafeatures available in the top-10 for
all metatargets belonging to the systematic category. Only 8 out of 40 are rat-
ings. In fact, looking to the Rating Prediction scope, it is possible to observe how
superior is its informativeness: when considering the set of top-8 metafeatures
for both RMSE and NMAE metatargets, the sets are exactly the same, although
the order shifts. This shows how important are systematic metafeatures for CF
algorithm selection in general, and to Rating Prediction in particular. The most
important metafeatures of this category are: I.count.kurtosis (best metafeature
in 3 metatargets) and I.mean.entropy (top-4 for all metatargets). The results
also show ratings can be very effective, when looking, for instance, to the NDCG
metatarget: the top-2 metafeatures belong to the ratings category. In fact there
is a pattern when it comes to the effectiveness of ratings against systematic
metafeatures: in Item Recommendation there are more (and better ranked) rat-
ings in the top-10 metafeatures than in Rating Prediction. The most important
metafeatures of this type are ratings for Most Popular and WBPRMF.
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6 Conclusions

This work introduced a novel Collaborative Filtering algorithm selection frame-
work. This framework is able to leverage systematic metafeatures and ratings
obtained from subsampling landmarkers: CF4CF-META. Based on traditional
Metalearning and Collaborative Filtering for algorithm selection (i.e. CF4CF),
it incorporates both data and algorithmic approaches to model the problem.
The procedure takes advantage of Label Ranking techniques to learn a map-
ping between both types of metafeatures and the ranking of algorithms, but it
introduces a modification at prediction time which is inspired on CF4CF. Sev-
eral CF algorithm selection frameworks were effectively described and formalized
in order to properly present the main contribution from this work. An exten-
sive experimental procedure evaluated all frameworks regarding meta-accuracy
and impact on the baselevel performance. The results show that CF4CF-META
performs better than the remaining frameworks, with statistically significant
differences. Furthermore, CF4CF-META solves a critical problem in CF4CF,
by performing better than the remaining frameworks for a reduced amount of
subsampling landmarkers used at prediction time. Regarding impact on the base-
level performance, CF4CF-META achieves to be always ranked within the top-2
frameworks for the first positions in the performance ranking for all metatar-
gets. Metafeature importance analysis shows that the data used in this hybrid
approach has different impact depending on the CF task addressed: rating data
is more important to Item Recommendation, while systematic metafeatures per-
form better in Rating Prediction. In summary, all of these conclusions allow to
understand that CF4CF-META is an important contribution to CF algorithm
selection. Directions for future work include the proposal of new metafeatures,
to study the impact of context-aware recommendations, to extend the experi-
mental procedure, to study the impact of different algorithms and to assess the
CF4CF-META’s merits in other domains beyond Collaborative Filtering.
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Abstract. Several important real world problems of predictive analyt-
ics involve handling different costs of the predictions of the learned mod-
els. The research community has developed multiple techniques to deal
with these tasks. The utility-based learning framework is a generalization
of cost-sensitive tasks that takes into account both costs of errors and
benefits of accurate predictions. This framework has important advan-
tages such as allowing to represent more complex settings reflecting the
domain knowledge in a more complete and precise way. Most existing
work addresses classification tasks with only a few proposals tackling
regression problems. In this paper we propose a new method, MetaUtil,
for solving utility-based regression problems. The MetaUtil algorithm is
versatile allowing the conversion of any out-of-the-box regression algo-
rithm into a utility-based method. We show the advantage of our pro-
posal in a large set of experiments on a diverse set of domains.

1 Introduction

Cost-sensitive learning is important for several practical domains. These meth-
ods have been explored thoroughly for classification problems. The study of real
world problems and the interest in applications involving the prediction of rare
and important phenomena has revealed that these tasks are frequently cost-
sensitive [1]. These applications often assume non-uniform costs and benefits
that, if disregarded, may result in sub-optimal models and misleading conclu-
sions.

One of the main difficulties associated with these tasks is related with the
definition of costs and benefits for the applications, which requires the interven-
tion of domain experts or, at least, need to be provided in an informal way. This
happens, for instance, when dealing with tasks known as imbalanced domains
where the most important cases are poorly represented. In this setting, we have
non-uniform costs and benefits but frequently they are not precisely quantified.

The utility-based learning framework is an extension of cost-sensitive learning
that considers both positive benefits for accurate predictions and costs (negative
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benefits) for misclassifications. It is a more intuitive framework providing infor-
mation that is easier to understand, and less prone to errors [1,2]. The goal of
utility-based learning is the maximization of the predictions’ utility, as opposed
to cost-sensitive tasks which aim at minimizing the costs.

Although being an important problem with a diversity of applications, most
of the research in utility-based learning is still focused on classification. However,
many real word applications involve the consideration of costs and benefits in
regression tasks. Examples of such applications include the prediction of the con-
centration of certain particles in the air or forecasting stock returns. In these sce-
narios we have a continuous target variable with a non-uniform importance over
the domain and therefore it is necessary to use utility-based learning solutions.
The lack of solutions for tackling utility-based regression problems motivated our
work. The main goal of this paper is to propose a new method, MetaUtil, for
maximizing the utility of a regression tasks. This new method is inspired by the
well-known MetaCost algorithm proposed for cost-sensitive classification tasks.
Similarly to MetaCost, the MetaUtil algorithm works as a wrapper method that
transforms any standard regression algorithm into a utility-sensitive learner.

This paper is organized as follows. In Sect. 2 the problem definition is pre-
sented. Section 3 provides an overview of the related work. Our MetaUtil algo-
rithm is described in Sect. 4 and the results of an extensive experimental evalu-
ation are discussed in Sect. 5. Finally, Sect. 6 presents the main conclusions.

2 Problem Definition

Utility-based learning is framed within predictive tasks, where the goal is to
derive a model g that approximates an unknown function Y = f(x). Function f
maps a set of p feature variables onto the target variable values. When the target
variable is nominal we face a classification task, and when it is numeric we have
a regression problem. Model g is obtained using a training set D = {〈xi, yi〉}Ni=1

with N examples. This model can be used to obtain target variable estimates ŷ
on new data points.

On standard predictive tasks the algorithms are focused on obtaining a model
that minimizes a loss function that assigns a uniform importance to all cases,
and neither costs nor benefits are taken into account. Still, several real world
problems exhibit a non-uniform importance across the domain of the target
variable, thus making standard approaches inadequate. Utility-based learning
considers a setting where accurate predictions have positive benefits and costs
(negative benefits) are assigned to prediction errors. Therefore, it is necessary to
adopt a strategy that is able to deal with the information concerning the utility
of the predictions. The research community has been mostly concentrated in
solving this problem for classification tasks. In this paper we will focus on the
less explored problem of utility-based regression.

Utility-based regression assumes the existence of domain knowledge that
expresses the benefits and costs for different prediction settings. In classification
tasks, this information is typically provided in the form of a cost or cost/benefit
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(utility) matrix. Torgo and Ribeiro [3] have proposed the concept of utility sur-
face for regression as a continuous version of a utility matrix used in classification
tasks. Fully specifying this surface would be too difficult for the end-user given
the potentially infinite domain of the continuous target variables. In this con-
text, two alternatives have been put forward to obtain this utility information
for regression tasks. The first, and more generally applicable approach, involves
using interpolation methods to derive the utility surface using a few user sup-
plied points of this surface. The second alternative, proposed by Ribeiro [1],
involves automatically deriving the surface based on some assumptions of the
user preferences. More specifically, this automatic method can be used if it is
correct to assume that the user preferences involve having accurate predictions
for rare extreme values of the target variable. This is a subset of the general prob-
lem of utility-based regression. Still, this is an important subset as frequently
utility-based regression tasks involve this objective of forecasting rare extreme
values. For the data sets used in the experiments carried out in this paper we
will assume this goal and thus will use this automatic method of deriving the
utility surface. This method is based on the concept of relevance function. This
function expresses the importance assigned by the user to the different values of
the target value.

Definition 1 (Relevance Function). A relevance function, which we will
denote by φ(), is a function that maps the target variable into a scale of rel-
evance in [0, 1]:

φ(y) : Y → [0, 1] (1)

where 0 represents minimum relevance and 1 represents maximum relevance.

For tasks where the goal is to forecast rare extreme values, Ribeiro [1] has
proposed a method to automatically obtain this function using some sampling
distribution properties of the target variable in the training set.

Based on this concept of relevance function Torgo and Ribeiro [1,3] have
proposed to defined the utility surface as a function of the numeric loss associated
with the prediction of ŷ for a true value of y, and the respective relevance of
these values:

U : Y × Y −→ [−1, 1]
(y, ŷ) �−→ U(y, ŷ) = g(L(y, ŷ), φ(y), φ(ŷ))

(2)

where L() is a loss function and φ() is the relevance function defined for the
target variable.

The definition of the utility surface proposed by Torgo and Ribeiro [3] and
Ribeiro [1] allows the user to specify which type of errors should be more costly:
“false positives” or “false negatives”. This is achieved through a parameter
p ∈ [0, 1]. Using this parameter it is possible to assign more weight either to
false negatives (a relevant case was predicted as non relevant) or to false posi-
tives (a non relevant case was predicted as relevant). When p > 0.5 the former
are considered more serious than the latter, i.e., missing a relevant prediction is
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considered to have an higher cost than predicting a non relevant case as rele-
vant. On the other hand, when p < 0.5 the reverse happens: false negatives are
less penalized than false positives. Setting p to 0.5 represents assigning the same
cost to both types of errors. Figures 1 and 2 show two utility surfaces obtained
automatically for data set accel1 with parameter p set to 0.2 and 0.8, respec-
tively. We can observe that in Fig. 1 the false positive are more costly than false
negative, while in Fig. 2 the false negatives have a higher cost.

5

10

15

20

25

30

5

10

15

20

25

30

−1.0

−0.5

0.0

0.5

1.0

Uφ
0.2  Utility Surface

Y
Ŷ
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The goal of utility-based learning is to obtain a model that maximizes the
expected utility. In this context, the use of error-based metrics such as the mean
squared error or mean absolute deviation is misleading because the user pref-
erences are not taken into account. To evaluate the performance of models in
utility-based regression tasks, Ribeiro [1] proposed the use of the normalized
mean utility (NMU) measure (cf. Eq. 3). The NMU metric is a normalized version
of the mean utility that provides scores in [0, 1], where 1 represents the maximum
achievable utility by a model and 0 represents the minimum utility correspond-
ing to the less useful model. We use the NMU metric in our experiments described
in Sect. 5.

NMU =
∑N

i=1 U(yi, ŷi) + N

2N
(3)

3 Related Work

As we have mentioned, the research in cost-sensitive and utility-based learning
has been mostly focused in classification tasks. In these contexts, a large amount
1 Data set properties described in Sect. 5.
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of methods was proposed to tackle these problems that can be categorized into
direct methods or meta learning methods [4]. Direct methods change the selected
learner internally for making it cost/utility sensitive. Meta learning methods use
standard learners and act by changing the data or the used decision threshold.
The work presented in this paper was inspired by the seminal work of Domin-
gos [5] where the MetaCost algorithm was proposed for addressing cost-sensitive
classification problems.

MetaCost algorithm acts by changing the given training set. An ensemble is
generated by applying a classifier to samples with replacement of the training set.
The class probabilities of each case are estimated using the votes of the ensemble
members. Finally, each training case is relabeled with the Bayes optimal class,
i.e., the class that minimizes the conditional risk [6],

R(i|x) =
∑

j

P (j|x)C(j, i) (4)

where, P (j|x) is the conditional probability of class j for the example x, and
C(j, i) represents the cost of predicting class i when j is the true class.

The new relabeled training set is then simply used to train a new model using
a standard classifier.

For utility-based regression only a few works exist in the literature. Some
proposals consider special types of utility settings, as it is the case of works that
consider different costs for over- and under-predictions (e.g. [7–9]). However,
these methods are limited to this particular utility settings. A different app-
roach was recently proposed for maximizing the utility [10] given an arbitrary
utility surface. This method adapts the conditional risk minimization defined for
classification (cf. Eq. 4), to regression and utility. In this method, the optimal
prediction y∗ for a case x is given by an approximation of the following equation:

y∗ = argmax
z∈Y

∫

fY |X(y|X = x).U(y, z) dy (5)

where fY |X(y|X = x) represents the conditional probability density function,
and U(y, z) is the utility value of predicting z for a true target variable value of
y, as defined by some utility surface.

The proposed method works by approximating the conditional probability
density function and then using this to obtain the optimal prediction for each
case according to Eq. 5. To obtain an approximation of fY |X(y|X = x) the
authors use the method presented in [11,12] that uses ordinal classification to
achieve this goal. This utility optimization method has shown significant advan-
tage in a diversity of utility settings and domains.

It is also important to mention that recently, pre-processing solutions have
been proposed for the problem of imbalanced regression (e.g. [13]). These pre-
processing methods were developed specifically for imbalanced regression tasks
which are a sub-problem of utility-based regression where the end-user is more
interested in the performance of cases that are scarcely represented in the avail-
able data. We must highlight that, although being related, these two problems
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are different. An extensive review on imbalanced domain learning can be found
in [14].

The existing methods for dealing with utility in regression tasks were either
developed for specific scenarios, and therefore are not generally applicable, or
are based on the minimization of the conditional risk which allows to obtain
solutions that are not interpretable. Our proposal allows to address any utility-
based regression problem while providing models more interpretable.

4 The MetaUtil Algorithm

In this section we describe our proposal for maximizing utility in regression
tasks, the MetaUtil algorithm. Our method is inspired by the MetaCost algo-
rithm by Domingos [5], modifying it to be applicable to regression tasks with
non-uniform preferences specified through a utility surface. As MetaCost, our
method uses a number m of samples with replacement to obtain different models.
In MetaUtil these models are used to obtain m approximations (Mi) of the condi-
tional probability density function, fY |X(y|X = x), through the same procedure
described in [10]. These approximations are averaged to obtain the final esti-
mate of fY |X(y|X = x) that is used in Eq. 5 to obtain the optimal y value for a
given case. These optimal y values are calculated for each original training case
and replace the original value in the training set, as it is done in the MetaCost
algorithm. In summary, as MetaCost our method uses a sampling procedure to
obtain an optimal target variable value for each training case, according to the
preference biases of the user. These preference biases in MetaCost are expressed
through a cost matrix, and the optimal values calculated using the conditional
risk (Eq. 4). In our method the user preferences are described by a utility surface
and the optimal values calculated using Eq. 5. In our implementation we also
use a parameter ε that sets the used granularity for computing all the required
approximations. Both MetaCost and our proposed MetaUtil have as outcome
a new, modified training set, where the target variable values were changed in
accordance with the user preference biases. Our proposal is fully described in
Algorithm 1.

An important advantage of MetaUtil (and also MetaCost) lies on the fact
that it allows to obtain more interpretable models. This happens because the
original data set is changed in a way that is more related with the user pref-
erences, and therefore, the learned model will be obtained in a standard way
but will also reflect the user preferences as expressed through the utility sur-
face. Interpretability of the models is a key feature in several real world domains
where good predictive performance is not sufficient to convince end-users that a
model is reliable (e.g. [15,16]).
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Algorithm 1. MetaUtil.
1: function MetaUtil(D, L, U , m, n, ε)
2: //D - training set
3: //A - regression learning algorithm
4: //U - utility surface
5: //m - number of samples to generate
6: //n - number of examples in each sample
7: //ε - granularity parameter
8:
9: for i = 1 to m do

10: Si ← sample with replacement of D with size n
11: Mi ← { ˜fY |X}x∈D using Si and the method in [11,12] with parameter ε
12: end for
13: for each example 〈x, y〉 ∈ D do
14: M ′(x) ← average of Mi(x)
15: y ← argmaxz∈Y

∫

M ′(x).U(y, z) dy approximated with a granularity of ε
16: end for
17: M ← model obtained from applying A to the new modified training set
18: return M
19: end function

5 Experimental Evaluation

In this section we describe the experimental evaluation conducted for assessing
the effectiveness of the MetaUtil algorithm in maximizing the utility. The main
results obtained are presented and discussed. To ensure the easy replication of
our work, all code, used data sets and main results are available in https://
github.com/paobranco/MetaUtil. All experiments were carried out using the
free open source R environment [17].

5.1 Evaluation of MetaUtil Algorithm

The main goal of our experiments is to assess the effectiveness of MetaUtil algo-
rithm in the task of maximizing the utility of predictions. We selected 14 regres-
sion data sets from different domains whose main characteristics are described
in Table 1. For each of these data sets we have obtained a relevance function
through the automatic method [1] we have described before. This method assigns
higher relevance to high and low extreme values of the target variable using the
quartiles and the inter-quartile range of the target variable sample distribution2.
Ideally the relevance function should be provided by domain experts. However,
given that this information is not available, we used the described automatic
method that is suitable for common real world settings where the most impor-
tant cases are rare and are located at the extremes of the target variable values.
In order to test the MetaUtil algorithm in different utility settings, we obtained 3

2 Further details available in [1].

https://github.com/paobranco/MetaUtil
https://github.com/paobranco/MetaUtil
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utility surfaces for each data set by using the automatic method proposed by [1]
and changing the parameter p described in Sect. 2. As we have mentioned, p
allows to assign a different penalization to different types of errors (see examples
of different utility surfaces obtained by changing the value of parameter p in
Figs. 1 and 2). We used the following values for parameter p: {0.2, 0.5, 0.8}.

Table 1. Characteristics of the 14 used data sets. (N : Nr of cases; pred: Nr of predictors;
nom: Nr of nominal predictors; num: Nr numeric predictors; nRare: nr. cases with
φ(Y ) > 0.8; %Rare: 100 × nRare/N).

Data Set N pred nom num nRare % Rare

servo 167 4 2 2 34 20.4

a6 198 11 3 8 33 16.7

Abalone 4177 8 1 7 679 16.3

a3 198 11 3 8 32 16.2

a4 198 11 3 8 31 15.7

a1 198 11 3 8 28 14.1

a7 198 11 3 8 27 13.6

boston 506 13 0 13 65 12.8

a2 198 11 3 8 22 11.1

a5 198 11 3 8 21 10.6

fuelCons 1764 37 12 25 164 9.3

bank8FM 4499 8 0 8 288 6.4

Accel 1732 14 3 11 89 5.1

airfoild 1503 5 0 5 62 4.1

We selected two base regression learners: Support Vector Machines (SVM)
and Random Forests (RF). For these learners we tested several parameter vari-
ants. The algorithms, set of tested parameters and respective used R packages,
are described in Table 2.

Table 2. Regression algorithms and their parameter values, and the respective R
packages.

Learner Parameter variants R package

Support vector machines (SVM) cost = {10, 150} e1071[18]

gamma = {0.01, 0.001}
Random forests (RF) mtry = {5, 7} randomForest[19]

ntree = {500, 750, 1500}
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We applied each of the 10 learning approaches (4 SVM + 6 RF) to each of the
42 problems (14 data sets × 3 utility surface settings). To allow a fair comparison
we tested the original regression algorithms (Orig), the MetaUtil algorithm and
the strategy for maximizing the utility (UtilOptim) proposed in [10].

The granularity parameter ε was set to 0.1. Regarding the required proba-
bilistic classifier, we selected the classification learner most closely related to the
regression algorithm being compared against. The motivation for this choice is
related with the negative impact in the observed performance when there is a
mismatch between the probability estimator and the used classifier [20]. More-
over, we will assume, as done in [5], that the user is able to select the regression
scheme that best adapts to the task that is being considered. The same described
scheme is used on both tested algorithms for estimating fY |X . In MetaUtil algo-
rithm we set the number of samples with replacement to generate (parameter m)
to 20 and the number of examples in each sample (parameter n) to the training
set size.

All the described alternatives were evaluated using the NMU measure described
in Sect. 2. We selected a normalized measure because it allows to obtain com-
parable results across different data sets. The NMU values were estimated by 2
repetitions of a 10-fold stratified cross validation process as implemented in R
package performanceEstimation [21]. In addition to reporting the NMU scores,
we also assessed the statistical significance of the observed differences using the
non-parametric Friedman F-test together with a post-hoc Nemenyi test with a
significance level of 95%.

5.2 Main Results and Discussion

The 10 learning variants were applied to the 42 regression problems (14 data
sets using 3 different utility surface settings) and 3 strategies for utility opti-
mization (Orig + UtilOptim + MetaUtil). Thus, we tested 1260 (10 × 42 × 3)
combinations. Tables 3, 4 and 5 show the mean NMU results of the variants
of each learner, obtained for each utility setting, i.e., when considering different
values for parameter p in the generation of the utility surface.

From the overall analysis of the NMU results we notice that the MetaUtil
algorithm shows a competitive performance. This method displays several times
the best average performance specially for utility surfaces with higher values
of p.

We proceeded with the application of the non-parametric Friedman F-test
for assessing the statistical significance of the results. The F-test results allowed
the rejection of the null hypothesis that all the tested approaches exhibit the
same performance. We then applied the post-hoc Nemenyi test with a signif-
icance level of 95% to verify which approaches are statistically different. The
critical difference diagrams (CD diagram) [22] with the results aggregated by
type of utility surface setting and by learner are displayed in Figs. 3 and 4. In
the CD diagrams, lower ranks indicate a better performance and when the lines
of two algorithms are connected by a bold horizontal line it means that the their
average ranks are not significantly different, i.e. their performance difference is
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Table 3. Mean NMU results of the variants of each learner by data set for the value
of parameter p set to 0.2 (sd: standard deviation).

SVM RF

Orig UtilOptim MetaUtil Orig UtilOptim MetaUtil

servo 0.4891 0.5585 0.4772 0.5712 0.5624 0.5666

a6 0.5157 0.5223 0.5203 0.5123 0.5140 0.5051

Abalone 0.5751 0.5862 0.5818 0.5786 0.5849 0.5855

a3 0.5039 0.5108 0.5085 0.5002 0.5079 0.4843

a4 0.5200 0.5307 0.5303 0.5269 0.5272 0.5275

a1 0.5335 0.5371 0.5370 0.5485 0.5498 0.5490

a7 0.4983 0.5075 0.5083 0.4735 0.5055 0.4543

boston 0.5748 0.5770 0.5738 0.5784 0.5806 0.5784

a2 0.5236 0.5294 0.5312 0.5289 0.5276 0.5260

a5 0.5226 0.5284 0.5288 0.5269 0.5250 0.5222

fuelCons 0.6138 0.6183 0.6164 0.6175 0.6257 0.6213

bank8FM 0.5694 0.5699 0.5720 0.5703 0.5690 0.5707

Accel 0.5582 0.5606 0.5593 0.5638 0.5655 0.5641

airfoild 0.4566 0.4853 0.4853 0.4599 0.4853 0.4853

Mean±sd 0.532±0.042 0.544±0.036 0.538±0.039 0.540±0.044 0.545±0.038 0.539±0.046

Table 4. Mean NMU results of the variants of each learner by data set for the value
of parameter p set to 0.5 (sd: standard deviation).

SVM RF

Orig UtilOptim MetaUtil Orig UtilOptim MetaUtil

servo 0.4875 0.5601 0.4778 0.5718 0.5655 0.5660

a6 0.5072 0.5207 0.5187 0.5140 0.5069 0.5116

Abalone 0.5705 0.5893 0.5829 0.5764 0.5884 0.5883

a3 0.4927 0.5051 0.5046 0.5048 0.4958 0.4944

a4 0.5140 0.5313 0.5336 0.5284 0.5331 0.5346

a1 0.5297 0.5394 0.5425 0.5479 0.5531 0.5533

a7 0.4859 0.4975 0.4976 0.4810 0.4840 0.4652

boston 0.5743 0.5775 0.5748 0.5782 0.5814 0.5792

a2 0.5180 0.5289 0.5309 0.5269 0.5242 0.5298

a5 0.5172 0.5282 0.5293 0.5257 0.5261 0.5269

fuelCons 0.6135 0.6194 0.6170 0.6171 0.6259 0.6222

bank8FM 0.5692 0.5702 0.5723 0.5703 0.5694 0.5710

Accel 0.5580 0.5611 0.5601 0.5638 0.5655 0.5643

airfoild 0.4508 0.4633 0.4633 0.4575 0.4635 0.4631

Mean±sd 0.528±0.044 0.542±0.041 0.536±0.043 0.540±0.043 0.542±0.045 0.541±0.046

not significantly different. The SVM results confirm that for this learner there is
no statistical significance between the performance of the UtilOptim and MetaU-
til algorithms in all tested utility settings. The UtilOptim algorithm achieves a
lower rank for the utility surface with the lower value of parameter p, while the
MetaUtil has a better rank for the most balanced utility setting.
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Table 5. Mean NMU results of the variants of each learner by data set for the value
of parameter p set to 0.8 (sd: standard deviation).

SVM RF

Orig UtilOptim MetaUtil Orig UtilOptim MetaUtil

servo 0.4859 0.5624 0.4840 0.5723 0.5661 0.5664

a6 0.4987 0.5251 0.5259 0.5156 0.5128 0.5239

Abalone 0.5660 0.5961 0.5866 0.5743 0.5955 0.5939

a3 0.4814 0.5132 0.5152 0.5093 0.4960 0.5067

a4 0.5081 0.5412 0.5481 0.5299 0.5473 0.5484

a1 0.5258 0.5490 0.5539 0.5473 0.5589 0.5612

a7 0.4735 0.4950 0.4926 0.4886 0.4728 0.4793

boston 0.5737 0.5783 0.5762 0.5780 0.5819 0.5804

a2 0.5123 0.5330 0.5352 0.5249 0.5293 0.5373

a5 0.5119 0.5326 0.5353 0.5244 0.5312 0.5353

fuelCons 0.6131 0.6207 0.6175 0.6167 0.6260 0.6233

bank8FM 0.5691 0.5708 0.5725 0.5702 0.5699 0.5713

Accel 0.5577 0.5618 0.5612 0.5637 0.5656 0.5646

airfoild 0.4450 0.4460 0.4422 0.4550 0.4509 0.4509

Mean±sd 0.523±0.047 0.545±0.044 0.539±0.046 0.541±0.042 0.543±0.048 0.546±0.045

Regarding the RF results, the better performance of UtilOptim algorithm is
also confirmed for the lower value of p in the tested utility surface settings. For
the remaining values of p, the MetaUtil algorithm has a better performance as
it provides lower ranks in the CD diagrams, although not always with statistical
significance when compared against UtilOptim algorithm.

When considering the performance of the tested learner variants we can con-
clude that: (i) using the original learning algorithm is worst with statistical sig-
nificance under all tested utility settings ; (ii) for the variants of the SVM learner
the differences between UtilOptim and MetaUtil algorithms are not statistical
significant, although UtilOptim displays a lower rank for the utility settings with
a lower value of parameter p and MetaUtil has a lower rank on the remaining
utility surfaces; (iii) for the RF learner, UtilOptim is better with statistical sig-
nificance for the lower value of p, while MetaUtil displays a lower rank on the
remaining utility surface settings, although only for the p = 0.8 this is statisti-
cally significant.

Overall, the results show that MetaUtil is very competitive with the current
state of the art in utility optimization (the algorithm UtilOptim). Although our
proposal can not be seen as providing clearly better results we should stress that
there is a significant difference between the approaches in terms of interpretabil-
ity. In effect, the MetaUtil algorithm produces models that are biased towards
the utility preferences of the user, as they are obtained with a biased training
set. This means that the user can check the model to understand why some
value was predicted, particularly if an interpretable modelling algorithm is used.
This is not true for UtilOptim and this can be a key advantage of MetaUtil for
applications were the end user requires interpretable models. In effect, UtilOp-
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Fig. 3. Critical Difference diagram of average NMU results for SVM learner.

tim produces models using the original training set and thus the models are not
biased toward the utility preferences. The UtilOptim method works as a post-
processing method by changing the predicted value using Eq. 5 to match the
preferences of the user. However, the post-processed predictions are not explain-
able by the learned models and thus the approach is less interpretable.

6 Conclusions

In this paper we propose a new algorithm named MetaUtil for tackling the prob-
lem of utility maximization in regression tasks. The proposed method changes
the value of the target variable in the training cases to the value that maximizes
the expected utility. This new training set can then be used to learn a model
using any standard regression algorithm. When compared to competing meth-
ods, the MetaUtil algorithm has the advantage of providing more interpretable
models, which is a key advantage for several real world applications.
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Fig. 4. Critical Difference diagram of average NMU results for RF learner.

A large set of experiments was carried out using two learning algorithms,
several regression data sets, and a different utility surfaces. The obtained results
highlight the advantages of our proposal, when compared to using the origi-
nal regression algorithm and also against a competing method. The advantages
of MetaUtil against the latter are not statistically significant for most of the
situations.

The key contributions of his paper are as follows: (i) a new algorithm for tack-
ling the problem of maximizing the utility in regression tasks; (ii) comparison of
the proposed approach against standard regression algorithms and a competing
method; and (iii) the analysis of the impact of different utility surface settings
in the performance of the approaches.

As future work, we plan to explore the performance of the proposed algorithm
with other regression tools. We will also study the connections between the data
or utility surfaces characteristics, and the performance achieved by the MetaUtil
algorithm.
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Abstract. The features in some machine learning datasets can natu-
rally be divided into groups. This is the case with genomic data, where
features can be grouped by chromosome. In many applications it is com-
mon for these groupings to be ignored, as interactions may exist between
features belonging to different groups. However, including a group that
does not influence a response introduces noise when fitting a model,
leading to suboptimal predictive accuracy. Here we present two general
frameworks for the generation and combination of meta-features when
feature groupings are present. We evaluated the frameworks on a genomic
rice dataset where the regression task is to predict plant phenotype. We
conclude that there are use cases for both frameworks.

Keywords: Rice · Bioinformatics · Machine learning · Meta-learning

1 Introduction

Machine learning algorithms are increasingly being adapted for the prediction
of plant phenotypes [17]. This task is most commonly regression based as most
agronomic phenotypes are quantitative. This observation is true of rice [38], the
most agronomically important crop in the world, as a significant proportion of
the global population relies on it for their dietary needs [26]. With a growing
global population, estimates suggest that we need to double rice yields over the
next few decades [34,42]. Therefore, it is crucial that we develop high yielding
varieties that are resilient to an increase in biotic and abiotic stresses caused
by climate change [39]. The predictive phenotype models built for such plant
populations are most commonly used in genomic selection (GS). In GS, these
predictive models are used to estimate the likelihood that an individual in a pop-
ulation will express a trait of interest. This likelihood is expressed as a genomic
estimated breeding value (GEBV) and is used by plant breeders to select indi-
viduals that will serve as parents for the next generation of progeny. Therefore, it
is desirable that the models used to estimate GEBVs are as accurate as possible.

c© Springer Nature Switzerland AG 2018
L. Soldatova et al. (Eds.): DS 2018, LNAI 11198, pp. 144–158, 2018.
https://doi.org/10.1007/978-3-030-01771-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01771-2_10&domain=pdf
http://orcid.org/0000-0003-1178-611X
http://orcid.org/0000-0001-7208-4387


Predicting Rice Phenotypes with Meta-learning 145

GS has only been recently adopted in rice [16], and a model which is based
on a single learning algorithm is often used for phenotype prediction, most com-
monly a variant of the best linear unbiased predictor [16,31]. In this context,
we propose the use of meta-learning, which seeks to improve overall predictive
accuracy by leveraging the predictive power of multiple learning algorithms, and
has been shown in other domains to outperform a single learning algorithm if the
goal is to optimize predictive accuracy [21]. The process can be broadly split into
two main steps, a meta-feature generation step and a meta-feature integration
step. In the former, a set of base models are built using a collection of learning
algorithms. Each base model is then used to predict meta-features, which are
predictions of a phenotype of interest. In the latter, the meta-features generated
in the previous step are combined using another learning algorithm to form the
final prediction.

A vital consideration we make is that of the nature of the attributes or
features present in the input data used in building phenotype prediction mod-
els. The input data is often genomic, with features that are representative of the
genetic diversity present in a population and are at different loci across an organ-
ism’s genome [38]. These features are themselves representative of genes which
control phenotypes and are located in different chromosomes. Therefore, the fea-
tures in such genomic data can naturally be grouped by chromosome. In typical
predictive experiments, the feature groupings by chromosome in the genomic
data are ignored when models are built. The advantage of this approach is that
potential interactions between features belonging to different chromosomes are
captured. However, this may lead to suboptimal predictive accuracy if the fea-
tures are in a chromosome with genes that are not associated with a phenotype,
which introduces noise in a built model. Therefore, it might be the case that sys-
tematically diminishing the effects of features in irrelevant chromosomes might
be more optimal. To address this problem, we propose two meta-learning frame-
works which seek to improve phenotype prediction accuracy. The first ignores
the feature groupings present in the input genomic data, and the other does not.

The remainder of this paper is as follows. In Sect. 2 we present the different
considerations in meta-feature generation and integration, and in Sect. 3, we
describe the proposed frameworks. In Sect. 4, our experimental setup is given,
detailing the learners used in our evaluation. In Sect. 5 we discuss the outcome
of evaluating the proposed frameworks, where our results show that there are
use cases for both. Lastly, we conclude in Sect. 6.

2 Background

Rather than using a single learning algorithm, we seek to improve the predictive
accuracy of models used to predict phenotype by combining the predictive power
of a set of base learners utilizing a combining/meta-level learner. For example,
assume a rice population with input genomic data (learning set) where one is
interested in predicting grain width. Furthermore, assume that the goal is to
improve predictive accuracy by combining the predictive power of random forests
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[6] (RF) and support vector regression [10] (SVR) using simple linear regression
(LR). Therefore, RF and SVR are the base learners while LR is the combining
learner.

To amalgamate the predictive power of RF and SVR, they are both indepen-
dently used to build a model to predict grain width, and the predictions made
by these models are considered as grain width meta-features. Meta-features are
typically generated by resampling the learning set using v -fold cross-validation
[5,32], where each fold serves as a validation set and the remainder as a training
set. We adopt this approach in the proposed frameworks. The first advantage
v -fold cross-validation offers is in computational expense with regards to time.
Given the advances in genotyping and sequencing technologies, the genomic
data used in phenotype prediction experiments typically have input features in
the order of a million features [1]. Therefore, building a single model takes a
substantial amount of time, so other resampling methods like the Monte-Carlo
cross-validation [44] may be infeasible. The second advantage is in the reduction
of overfitting. As stated earlier, genomic data can have the order of a million
input features; therefore there is potential for overfitting as it is often the case
that the number of features far outnumber the number of samples (p>>n). Using
our example, assume 3-fold cross-validation in the meta-feature generation step.
In this case, both RF and SVR are used to build three models each on the differ-
ent training sets and used to predict three meta-feature vectors on the validation
sets. This means that we end up with three independent meta-feature matrices
with columns corresponding with the number of base learners. Therefore, three
sets of combining weights can be learned using LR and applied to the predic-
tions made on unseen data. By doing this, we get combining weights that are
not closely fit to one set of examples. A similar approach has been applied to
positive effect in super learners [24].

The diversity of the set of base models used in generating the set of meta-
features is vital, as it is desirable for the base models to be incorrect in different
ways [7]. That is, given a set of base models, it is better for their predictions on
some test set to be wrong on different samples so that the amalgamation of their
predictions yield improved results. There are two main ways of achieving this.
The first is to use a set of different base learners, which has been alluded to in
our example, as they would make different assumptions about the nature of the
relationships between the features in the input data [12]. For example, RF might
make predictions based on nonlinear interactions amongst the features, whereas
nearest neighbour techniques [2] which consider the level of relatedness between
samples might yield a unique perspective. The second way of achieving model
diversity is by varying the input data. That is, the input data can be split into
multiple datasets which have different subsets of the features from the original.
A base learner can then be used to build models on each of these new datasets,
which are then used in the generation of meta-features. This approach is used
in the stacked interval partial least squares framework [29], where meta-features
are combined from various intervals in spectral data using partial least squares.
We generally adopt the first approach and use it in the two proposed frame-
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works. The second is used only in the framework for which feature groupings are
considered. The main difference between what we propose and the work using
partial least squares [29] is that we use an ensemble of base learners for each
input data subset.

Having generated a set of meta-features the next step is to integrate them,
creating the final prediction. Using our example, this entails integrating the
meta-feature predictions by RF and SVR. Several integration methods have been
proposed. However, most are better suited to classification rather than regression
problems [11,41]. In a regression setting, meta-feature integration is done using
weights. These weights are coefficients which determine how much each base
learner’s meta-feature will influence the final prediction. A constant or dynamic
weighting approach can be used [28]. Constant weighting in its simplest form
involves averaging the meta-feature values for each sample. If the meta-features
generated by the base models are incorrect on different samples but are all mostly
accurate, averaging the meta-features improves overall accuracy by enhancing
the incorrectly predicted samples. A more sophisticated constant weighting app-
roach is to learn the weights using a combining learner, which is LR in our
example. Note that on a test set, the learned weights are uniformly applied to
every sample. We utilize both of these constant weighting approaches in the pro-
posed procedures. In contrast to constant weighting, dynamic weighting assigns
individual weights to each sample in a test set. This is done by learning individ-
ual weights for each sample in the test set using only the most closely related
samples in the learning set [35]. This approach is computationally expensive in
terms of time, and we do not use it in the proposed procedures. However, we
conjecture that it may yield interesting results, and will be a subject of future
study.

The natural feature groupings present in the genomic data used for phenotype
prediction can also be thought of as views in multi-view learning. This assertion
is based on the fact that the groups in this context are chromosomes which
have genes that may influence a phenotype of interest. Therefore, each group
of features represents a different perspective/view in terms of gene-phenotype
associations. Several approaches have been proposed in multi-view learning [43],
and multiple kernel learning (MKL) [37] is the most closely related to the current
discourse. In typical multi-view learning problems, the views are often distinct,
with different underlying structures and distributions of the input features. In
MKL, learning algorithms that are best suited to each distinct view are used,
and their predictions are then combined [9,25]. This approach is similar to what
we propose, in that a combining learner is used to integrate the meta-features
of different learners. However, our proposal differs in that multiple learners
are used within each group or view to form a consensus on their influence on
a trait.
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3 Proposed Frameworks

In this section, we describe the proposed meta-learning frameworks. The first
is for a situation in which the feature groupings present in an input dataset
are ignored, and the second is for a situation in which feature groupings are
considered, frameworks A and B respectively.

3.1 Framework A

The motivation for this framework is the overall improvement of phenotype
prediction accuracy by leveraging the predictive power of multiple learning algo-
rithms. In this case, we assume that although the features in an input dataset
can be grouped by chromosome, these groupings are ignored when building a
predictive model. Regarding the description of the procedure, we first give a
description using an example, followed by a more formal one.

Assume a scenario where there is a learning and test genomic dataset with
the goal of predicting grain width. The test set contains samples for which we
want to predict their phenotype, and it is not used to build models. The two
base learners are RF and SVR, and the combining learner is LR. We also assume
v number of folds. For the meta-feature generation step, first split the learning
data into v folds. Using each fold as a validation set and the remainder as a
training set, build an RF and SVR model for grain width on the training set
then predict learning meta-features using the validation set and also predict the
test meta-features using the test set. At the end of this, v sets of learning and
test meta-feature matrices are generated, all with two columns which correspond
to predictions made by RF and SVR.

For the integration step, form a single test meta-feature matrix, Tavg, by
averaging the v predictions made by each base model (RF and SVR). Using LR,
learn combining weights with each of the v learning meta-feature matrices. This
produces v sets of weights. Apply each of these weights to Tavg, producing v
predictions. Finally, average these v predictions to form the final prediction for
grain width. More formally:

Assume a learning set, a test set with samples for which we want to pre-
dict their phenotype, a set of base learners, a combining learner, and v cross-
validation folds.

Step 1.

1. Split the learning set into v folds, aiming for approximately equal number of
samples in each fold.

2. For each v fold:
(a) validation set = current fold.
(b) training set = the combination of the other folds.
(c) build b base models using base learners on the training set.
(d) predict the validation response using base models, generating a meta-

feature matrix Vv ∈ IRm×b, where m is the number of samples in the vth
fold and b is number of base models.
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(e) predict the test response using base models, generating a meta-feature
matrix Tv ∈ IRn×b, where n is the number of samples in the test set and
b is number of base models.

3. Output:
(a) a set of validation meta-features V = (V1, . . . ,Vv).
(b) a set of test meta-features T = (T1, . . . ,Tv).

Step 2. Using V and T from step 1 and a combining learner φ:

1. For each base model ψ, with ψ1, . . . ψv predictions in (T1, . . . ,Tv) ∈ T ,
ψavg = 1/v

∑v
i=1 ψi. Therefore the average predictions for all base models

in T can be represented as Tavg ∈ IRn×b, where n is the number of samples
and b is number of base models.

2. Learn combining weights on each validation meta-feature set in V using
the combining learner φ. This produces v weight sets which are applied
to Tavg, producing φ1, . . . φv predictions. The final prediction is given by
φavg = 1/v

∑v
i=1 φi.

3. Output φavg.

3.2 Framework B

Like framework A, the motivation for this framework is also to improve overall
phenotype predictive accuracy by leveraging the predictive power of multiple
learning algorithms. However, in contrast to framework A, feature groupings
present in the input genomic data are considered. The rationale for this is that
for phenotype prediction, including features which are in regions that have genes
that are not associated with a trait might only serve to introduce noise in a
built model, leading to suboptimal predictive accuracy. Therefore, systematically
diminishing the influence of such features might be more optimal.

For a general genomic dataset, it is assumed that the group to which each
feature belongs is known, and all features in the dataset have been separated
into their respective groups, c. That is, for a general dataset D ∈ IRm×f , where
m is the number of samples and f is number of features, D has been separated
into c subsets, D = D1, . . . ,Dc, such that the intersection between the features
in any pair of subsets must be empty and the union of the features in all subsets
must be equal to the features in D.

The procedure for this framework can be described using the same example in
Sect. 3.1. However, we assume that both the learning and test datasets have been
split into their c subsets by chromosome. For the meta-feature generation step,
first split the learning set into v number of folds, ensuring that the same samples
are in all v splits across all c data subsets. Using each fold as a validation set and
the remainder as a training set in all c subsets, build an RF and SVR model for
grain width on each c training set and then predict the learning meta-features
using the corresponding c validation set and also predict the test meta-features
using the corresponding c test set. At the end of this, v sets of learning and
test meta-feature matrices are generated for the c subsets, all with two columns
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which correspond to predictions made by RF and SVR. Therefore, there are
v ×c meta-feature matrices for the learning and test sets. For the learning meta-
feature matrices, merge all c subsets for each v fold. This produces v learning
meta-feature sets, where each set has c pairs of RF and SVR meta-features. For
the test meta-feature matrices, first form a single test meta-feature matrix for
each c subset, Tc

avg, by averaging the v predictions made by each base model (RF
and SVR) within each c subset. These c averaged test meta-feature matrices are
then merged in the same order the learning meta-feature matrices were, forming
Tmerged.

Using LR, learn combining weights with each of the v merged learning meta-
feature matrices. This produces v sets of weights. Apply each of these weights to
Tmerged, producing v predictions. Finally, average these v predictions to form
the final prediction for grain width. More formally:

Assume a learning and a test set that have been split into their c subsets using
the chromosome to which features belong, a set of base learners, a combining
learner, and v cross-validation folds.

Step 1.

1. Split all c learning set subsets into v-folds, aiming for approximately equal
number of samples in each fold, and ensuring that the same samples are in
each fold for each subset.

2. For each v fold and in each c subset:
(a) validation set = current fold.
(b) training set = the combination of the other folds.
(c) build b base models using base learners on the training set.
(d) predict the validation response using all trained models, generating a

meta-feature matrix Vc
v ∈ IRm×b, where m is the number of samples in

the vth fold and b is number of base models.
(e) predict the test response using all trained models, generating a meta-

feature matrix Tc
v ∈ IRn×b, where n is the number of samples in the test

set and b is number of base models.
3. Generating:

(a) a set of validation meta-features for each c subset, V1, . . . ,Vc, where Vc =
(Vc

1, . . . ,V
c
v).

(b) a set of test meta-features for each c subset, T 1, . . . , T c, where T c =
(Tc

1, . . . ,T
c
v).

4. Merge V1, . . . ,Vc in order for all v validation meta-feature sets, creating v
merged validation meta-feature sets Vmerged = (V1, . . . ,Vv) ∈ IRm×p, where
p is b × c.

5. For each test meta-feature set subset T 1, . . . , T c, average the v predictions of
each base learner in Tc

1, . . . ,T
c
v. This produces the average prediction matri-

ces of all base models for all c subsets, T1
avg, . . . ,T

c
avg. Merge all c average

prediction matrices in order to form Tmerged ∈ IRn×p, where p is b × c.
6. Output:

(a) the set of v merged validation meta-feature matrices Vmerged.
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(b) the merged test meta-feature matrix Tmerged.

Step 2. Using Vmerged and Tmerged from step 1 and a combining learner φ:

1. Learn combining weights on each validation meta-feature set in Vmerged using
the combining learner φ. This produces v weight sets which are applied to
Tmerged, producing φ1, . . . φv predictions. The final prediction is given by
φavg = 1/v

∑v
i=1 φi.

2. Output φavg.

4 Experimental Setup

In this section, we discuss the dataset and methods used in our evaluation.

4.1 Dataset

We evaluated the proposed procedures using data from the 3000 rice genomes
project [1], downloaded from http://SNP-Seek.irri.org/ download.zul. For the
genotype data, we used version 0.4 of the core single nucleotide polymorphism
(SNP) subset of 3000 rice genomes, which consists of 3023 samples and 996,009
markers. It is a filtered SNP set with a fraction of missing data at <20%. Using
linkage disequilibrium in Plink [33], we pruned this dataset using a window of 50
SNPs, a step size of 5, and with an r2 value of 0.001. This generated a smaller
dataset with 12,286 features which represent the twelve rice chromosomes. The
total proportion of missing values in this dataset is approximately 7%. We con-
verted each SNP call for all varieties to numeric values; class 1 homozygotes
are represented with 1, class 2 homozygotes as −1, and heterozygotes with 0.
Missing values were imputed using column means, as it has been shown that
mean imputation is sufficient in cases where less than 20% of the data for each
marker is missing [36].

Twelve quantitative traits were considered: culm diameter, culm length, culm
number, grain length, grain width, grain weight, days to heading, ligule length,
leaf length, leaf width, panicle length, and seedling height. Only 2266 samples
in the genotype data are represented in the trait data. Of this 2266 samples in
the trait data, some of them have missing values for some traits. For each trait
experiment, we excluded samples with unavailable or missing trait data. The
raw and processed forms of the data used in our experiments are available in the
Mendeley Data Repository at http://dx.doi.org/10.17632/86ygms76pb.1.

4.2 Setup

We used v = 5 folds and split the dataset into learning (75%), and testing (25%)
sets with random sampling. Predictive accuracy was calculated as the coefficient
of determination (R2). All experiments were performed in R [20] and the code is
available at https://github.com/oghenejokpeme/DS2018. For the learners that
require parameter tuning, we performed parameter selection using a grid search

http://SNP-Seek.irri.org/_download.zul
http://dx.doi.org/10.17632/86ygms76pb.1
https://github.com/oghenejokpeme/DS2018
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and cross-validation on the training data. We opted for grid search over random
search [3] as the parameters which require tuning and the range of values we
explored for these parameters were modest. This can be seen in the provided
source code. We considered three sets of learners. Learners that take feature
groupings into account, a set of base learners which do not take groupings into
account and a set of combining learners.

4.3 Group Learners

In our evaluation, we considered learners which take feature groupings into
account. These learners are the group least absolute selection and shrinkage
operator [14] (GLASSO), group bridge-penalized regression [19] (GBRGE), and
group minimax concave penalty [4] (GMCP). The optimal value for lambda
along the regularization path was chosen using five-fold internal cross-validation
for GLASSO. For GBRIDGE and GMCP, the Akaike Information Criteria was
used as it has been shown to produce slightly better accuracies [30].

4.4 Base Learners

The base learners used are the ridge regression best linear unbiased predictor [13]
(RBLUP), random forests (RF), gradient boosted machines [15] (GBM), sup-
port vector regression [10] (SVR), k nearest neighbors [2] (KNN), and extreme
gradient boosting [8] (XGB). RBLUP is specially designed for genomic predic-
tions and has no parameters that require tuning. For RF the default of 1/3 the
total number of variables is considered at each split, five observations are used
for each terminal node, and 1000 trees were grown for each forest. For GBM we
used a shrinkage parameter of 0.1, interaction depth of 6, 15 minimum number of
observations in each node, and 1500 trees were grown. For SVR we used a radial
basis kernel, and the hyperparameters were tuned using a grid search. XGB was
also tuned with a grid search. Lastly, the optimal number of neighbors, n, used
in the KNN models were chosen using cross-validation, where 1 ≤ n ≤ 30.

4.5 Combining Learners

The combining learners used are linear regression (LR), gradient descent [23]
(GD), kernel regularized least squares [18] (KRLS), ridge regression [40] (RR),
and principal component regression [22] (PCR). The regularization parameter
for RR was selected using internal cross-validation. A radial basis kernel was
used with KRLS, and the bandwidth and regularization parameters were chosen
using a grid search. For PCR the number of components used was chosen using
internal cross-validation.
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5 Results

In this section, we first discuss the performance of the group and base learn-
ers. We then discuss the performance of the combining learners on the proposed
frameworks and then compare the performance of the base learners to the com-
bining learners.

5.1 Group and Base Learner Performance

Here we discuss the group and base learner performances which serve as a base-
line for the performance of the combining learners on the proposed frameworks.
For the twelve rice traits considered, a base learner which does not take feature
groupings into account outperforms all other learners on eleven of the twelve
traits (Table 1). In general SVM and XGB outperform all other learners, even
outperforming RBLUP, a learner designed for genomic predictions. We argue
that this is the case for two reasons, (1) the traits considered are controlled by
features with strong nonlinear interactions which RBLUP does not detect, and
(2) SVM and XGB are better able to deal with a large number of irrelevant
features. This is significant as recent advances in genotyping and sequencing
technologies mean that genomic data is now being generated with the order
of a million features, most of which are irrelevant in a built model. Therefore,
rather than using traditional methods like RBLUP for phenotype prediction,
more sophisticated methods like XGB should also be considered if one wants to
use a single learning algorithm. The best performing group learner was GLASSO,
which excludes features belonging to groups with low signal by assigning a zero
coefficient to all features in such groups. It outperforms all other learners on one
trait, seedling height, suggesting that it is indeed the case that some traits might
benefit from excluding features from certain chromosomes.

Table 1. Predictive accuracy (R2) of the group and base learners. The best performing
learner for each group is in boldface and the overall performing learner is underlined.

Trait GLASSO GBRGE GMCP RBLUP RF GBM SVR KNN XGB

Culm diameter 0.164 - - 0.163 0.155 0.100 0.179 0.097 0.171

Culm length 0.549 0.512 0.318 0.544 0.533 0.516 0.559 0.529 0.552

Culm number 0.213 - - 0.216 0.218 0.191 0.217 0.217 0.219

Grain length 0.379 0.387 0.380 0.370 0.337 0.306 0.383 0.249 0.387

Grain width 0.462 0.458 0.455 0.483 0.446 0.439 0.480 0.379 0.489

Grain weight 0.363 0.325 0.318 0.370 0.353 0.299 0.379 0.281 0.379

Days to heading 0.657 0.615 0.591 0.674 0.660 0.654 0.680 0.691 0.693

Ligule length 0.368 0.282 0.236 0.374 0.355 0.327 0.380 0.310 0.370

Leaf length 0.390 0.291 0.081 0.400 0.398 0.365 0.419 0.375 0.397

Leaf width 0.404 0.344 0.334 0.399 0.403 0.395 0.413 0.364 0.423

Panicle length 0.411 0.349 0.302 0.412 0.405 0.383 0.437 0.342 0.428

Seedling height 0.225 - - 0.221 0.188 0.173 0.207 0.168 0.199
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5.2 Combining Learner Performance

In our evaluation of the proposed frameworks, the six base learners outlined in
Sect. 4.4 were used to generate meta-features for twelve rice traits. To evaluate
the frameworks five learning algorithms were then used as combining learners to
integrate the generated meta-features. Comparing frameworks A and B based
on the performance of the combining learners showed that for LR, framework A
outperforms B on eleven of the twelve traits. For GD, framework A outperforms
B in nine of the twelve traits. For KRLS, framework A outperforms B on eight of
the twelve traits. For RR, framework A outperforms B on ten traits, they perform
equally well on one trait, and framework B outperforms A on one trait. For PCR,
framework A outperforms B on nine of the twelve traits, they perform equally
well on two traits, and framework B outperforms A on one trait. See Table 2
for the results. These results suggest that on a per learner basis, framework A,
in which feature groupings are ignored, is generally the better meta-learning
approach.

Table 2. Predictive accuracy (R2) of the combining learners on frameworks A and
B. The best performing framework for each learner is in boldface. The overall best
performing learner-framework pair is underlined.

LR GD KRLS RR PCR

Trait A B A B A B A B A B

Culm diameter 0.175 0.119 0.178 0.170 0.178 0.170 0.177 0.172 0.177 0.168

Culm length 0.561 0.552 0.561 - 0.566 0.569 0.564 0.563 0.566 0.566

Culm number 0.236 0.214 0.232 0.242 0.235 0.239 0.233 0.231 0.236 0.236

Grain length 0.391 0.378 0.378 0.348 0.397 0.388 0.398 0.388 0.402 0.383

Grain width 0.497 0.472 0.477 0.425 0.499 0.490 0.497 0.488 0.498 0.488

Grain weight 0.379 0.333 0.371 0.338 0.376 0.362 0.382 0.365 0.380 0.356

Heading date 0.692 0.703 0.692 - 0.698 0.710 0.699 0.708 0.699 0.705

Ligule length 0.380 0.374 0.381 0.383 0.381 0.382 0.381 0.375 0.380 0.372

Leaf length 0.411 0.385 0.412 0.398 0.420 0.411 0.416 0.411 0.415 0.409

Leaf width 0.419 0.389 0.416 0.401 0.419 0.420 0.419 0.416 0.419 0.409

Panicle length 0.439 0.394 0.429 0.443 0.431 0.429 0.437 0.437 0.439 0.438

Seedling height 0.219 0.168 0.218 0.193 0.218 0.214 0.215 0.210 0.217 0.210

However, evaluating the performance of the frameworks on a per trait basis
irrespective of combining learner tells a different story. In this case, framework
A and B perform best on six traits each. The results show that no particular
learner performs best on any trait-framework pair. This suggests that if the
proposed approaches are to be used, combining learners should be chosen based
on the framework of choice and the trait one is interested in predicting. One
way of making this decision might be to modify the well-known model selection
procedure used to select a single model from a set of competing models. However,
we acknowledge that this will be computationally expensive given the number
of models that are built in both frameworks.
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Furthermore, this result demonstrates that in a meta-learning setting, some
traits benefit when the feature groupings are ignored in the meta-feature genera-
tion and integration steps, while others benefit from having the feature groupings
considered. We argue that the latter case occurs for two reasons. Firstly, each
group has its own unique set of meta-features, generated by its own set of mod-
els. Therefore, noise is not introduced in these models from groups that may
not be strongly associated with a phenotype. Secondly, the meta-features for
a group represent the degree of association that group has with a phenotype.
Therefore, generating meta-features for each feature group in isolation before
learning combining weights aids a combining learner in estimating the amount
of influence each group has on a phenotype.

For each trait, we compared the best performing combining learner on both
frameworks to the best performing base learner. For framework A, we found
that the best performing combining learner performs just as well or outperforms
the best performing base learner on ten of twelve traits. For framework B, we
found that the best performing combining learner performs just as well or out-
performs the best performing base learner on nine of twelve traits. See Table 3.
These results show that it is not always the case that one of the meta-learning
approaches outperforms a single base model. However, the best performing com-
bining learner on at least one of the proposed meta-learning approaches outper-
forms the best performing single base learner on ten of the twelve traits. There-
fore, we conclude that the proposed frameworks generally increase the accuracy
by which plant phenotype can be predicted by leveraging the predictive power

Table 3. Predictive accuracy (R2) of the best performing combining learners on frame-
works A and B in comparison to the best performing base learner. The best performing
meta-learning or single model approach is in boldface.

Trait A B Base

Culm diameter 0.178 0.172 0.171

Culm length 0.566 0.569 0.559

Culm number 0.236 0.242 0.219

Grain length 0.402 0.388 0.387

Grain width 0.499 0.490 0.489

Grain weight 0.382 0.365 0.379

Heading date 0.699 0.710 0.693

Ligule length 0.381 0.383 0.380

Leaf length 0.420 0.411 0.419

Leaf width 0.419 0.420 0.423

Panicle length 0.439 0.443 0.437

Seedling height 0.219 0.214 0.221



156 O. I. Orhobor et al.

of multiple learning algorithms, in scenarios where the feature groupings present
in genomic data are considered and ignored.

6 Conclusion

In this paper, we investigated the prediction of rice phenotypes. We argued
that because rice is the most agronomically important crop in the world, the
models used by plant breeders for the selection of the parents that will produce
progeny with desirable traits should be as accurate as possible. We proposed
that meta-learning, which leverages the predictive power of multiple learning
algorithms could improve the accuracy by which rice and plant phenotypes, in
general, can be predicted. We noted that the genomic datasets often used in
predicting phenotype consists of features that can naturally be separated into
groups by chromosome and argued that including features from chromosomes
which may not influence a trait might lead to suboptimal predictive accuracy, as
it introduces noise in a built model. With this in mind, we proposed two meta-
learning frameworks, one which does not consider feature groupings (framework
A) and another which does (framework B). Our results show that framework A
generally outperforms framework B on a per learner level of analysis, but that
they perform equally well on a per trait level of analysis. But more importantly,
the results show that the best performing meta-learner on at least one of the
proposed meta-learning approaches outperforms the best performing single base
learner on ten of the twelve traits. Therefore, we conclude that these frameworks,
if adopted by plant breeders, has the potential to ensure food security for millions
of people.

In future work, we intend to apply the proposed procedures to other agronom-
ically relevant crops like wheat and barley, and possibly on human population
data. Furthermore, we intend to extend the proposed procedures by introducing
meta-feature pruning, which aids in the selection of the meta-features that will
eventually be integrated [27]. There are several methods [7] that can be used to
perform meta-feature pruning, and we conjecture that the different techniques
will perform differently on the proposed frameworks. As stated in the discussion
of considerations we made in developing the proposed frameworks (Sect. 2), we
also intend to extend the proposed frameworks by introducing dynamic weight-
ing for the integration of meta-features.
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Abstract. Preference-based reinforcement learning has recently been
introduced as a generalization of conventional reinformcement learning.
Instead of numerical rewards, which are often difficult to specify, the
former assumes weaker feedback in the form of qualitative preferences
between states or trajectories. A specific realization of preference-based
reinforcement learning is approximate policy iteration using label rank-
ing. We propose an extension of this method, in which label ranking is
replaced by so-called dyad ranking. The main advantage of this extension
is the ability of dyad ranking to learn from feature descriptions of actions,
which are often available in reinforcement learning. Several simulation
studies are conducted to confirm the usefulness of the approach.

1 Introduction

Reinforcement learning (RL) is an established machine learning methodology for
modeling and optimizing the behavior of an automous agent acting in a dynamic
environment [14]. A key component of RL is a numerical reward function that
is used to provide positive or negative (and possibly delayed) feedback signals
for the agent’s actions. This quest for numerical information impedes the use of
RL in situations where precise rewards are difficult to specify.

This observation has been the main motivation for so-called preference-based
reinforcement learning (PBRL), which has recently been introduced as a general-
ization of conventional RL [1,3]. Instead of numerical rewards, it assumes weaker
feedback in the form of qualitative preferences between states or trajectories. A
specific realization of preference-based reinforcement learning is a combination
of approximate policy iteration [4] and a preference learning method called label
ranking [16]. Roughly speaking, label ranking is used to generalize training infor-
mation of the form “in state s, taking action a appears to be better than action
a′”, so that a ranking of all available actions can be predicted for all states of
the agent’s state space.

In this paper, we propose an enhancement of this method, in which label
ranking is replaced by so-called dyad ranking [10]. The main advantage of this
extension is the ability of dyad ranking to learn from feature descriptions of
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actions, i.e., properties of the actions a, which are often available in reinforce-
ment learning. This is not possible in standard label ranking, where choice alter-
natives (labels) are merely identified by their name but not characterized in
terms of attributes. Our speculation is that exploiting feature descriptions will
improve learning by helping to generalize, not only over the state space, but also
over the action space.

The paper starts with a section about conventional RL and approximate pol-
icy iteration, followed by a section about preference-based RL and approximate
policy iteration based on label ranking. Our new approach, approximate policy
iteration based on dyad ranking, is then introduced in Sect. 4. In order to con-
firm the usefulness of the approach, several simulation studies are presented in
Sect. 5, prior to concluding the paper in Sect. 6.

2 Reinforcement Learning

Conventional reinforcement learning assumes a scenario in which an agent moves
through a (finite) state space S by repeatedly selecting actions from a set A =
{a1, . . . ,ak}. A Markovian state transition function δ : S × A −→ P(S), where
P(S) denotes the set of probability distributions over S, randomly takes the
agent to a new state, depending on the current state and the chosen action.
Occasionally, the agent receives feedback about its actions in the form of a
reward signal r : S ×A −→ R, where r(s,a) is the reward the agent receives for
performing action a in state s. The goal of the agent is to choose its actions so
as to maximize its expected total reward.

The most common task is to learn a policy π : S −→ A that prescribes the
agent how to act optimally in each situation (state). More specifically, the goal
is often defined as maximizing the expected sum of rewards (given the initial
state s), with future rewards being discounted by a factor γ ∈ [0, 1]:

V π(s) = E

[ ∞∑
t=0

γtr(st, π(st)) | s0 = s

]
(1)

where (s0, s1, s2, . . .) is a trajectory of π through the state space. With V ∗(s)
the best possible value that can be achieved for (1), a policy is called optimal
if it achieves the best value in each state s. Thus, one possibility to learn an
optimal policy is to learn an evaluation of states in the form of a value function
[13], or to learn a so-called Q-function which returns the expected reward for a
given state-action pair [18]: Qπ(s,a) = r(s,a) + γ · V π(δ(s,a)).

2.1 Approximate Policy Iteration

Instead of determining optimal actions indirectly through learning the value
function or the Q-function, one may try to learn a policy directly in the form
of a mapping from states to actions. A particularly interesting approach in this
regard is approximate policy iteration (API) with rollouts [4,8]. The key idea of
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this approach is to use a generative model of the underlying process to perform
simulations that in turn allow for approximating the value of an action a in a
given state s. To this end, the action is performed, resulting in a state s1 =
δ(s,a). The value of this state is estimated by performing so-called rollouts,
i.e., by repeatedly selecting actions following a policy π for at most T steps,
and finally accumulating the observed rewards. This is repeated several times,
and the average reward over the rollouts is returned as an approximate Q-value
Q̃π(s,a) for taking action a in state s (leading to s1) and following policy π
thereafter.

The rollouts are then used in a policy iteration loop, which iterates through
each of the sample states, simulates all actions in a state, and determines the
action a∗ that promises the highest Q-value. If a∗ is significantly better than all
alternative actions in this state, a training example (s,a∗) is added to a training
set T , suggesting that a∗ is the best action to take in state s. Eventually, T
is used for a policy generalization step, i.e., to induce a state-action mapping
S −→ A that forms the new policy π′; the underlying problem to be solved is
a standard (multi-class) classification problem. This process is repeated several
times, until some stopping criterion is met (e.g., if the policy does not improve
from one iteration to the next).

3 Preference-Based Reinforcement Learning

The key idea of preference-based reinforcement learning (PBRL) is to replace the
(quantitative) evaluation of individual actions by the (qualitative) comparison
between pairs of actions [3,5]. Comparisons of that kind are in principle enough
to make optimal decisions. Besides, they are often more natural and less difficult
to acquire, especially in applications where the environment does not provide
numerical rewards in a natural way.

The basic piece of information we consider is a pairwise preference of the
form ai �s aj or, more specifically, ai �π

s aj , suggesting that in state s, taking
action ai (and following policy π afterwards) is better than taking action aj .
Evaluating a trajectory t = (s0, s1, s2, . . .) in terms of its (expected) total reward
(1) reduces the comparison of trajectories to the comparison of real numbers;
thus, comparability is enforced and a total order on trajectories is induced.
More generally, and arguably more in line with the idea of qualitative feedback,
one may assume a partial order relation � on trajectories, which means that
trajectories t and t′ can also be incomparable. A contextual preference can then
be defined as follows:

ai �π
s aj ⇔ P

(
t(ai) � t(aj)

)
> P

(
t(aj) � t(ai)

)
, (2)

where t(ai) denotes the (random) trajectory produced by taking action ai in
state s and following π thereafter, and P(t � t′) is the probability that trajectory
t is preferred to t′. As an in-depth discussion of PBRL is beyond the scope of
this paper, we refer the reader to [5] for more technical details; see also [19] for
a recent survey of the topic.
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3.1 API with Label Ranking

In [5], preference-based reinforcement learning is realized in the form of a
preference-based variant of API, namely a variant in which, instead of a clas-
sifier S −→ A, a so-called label ranker is trained for policy generalization. In
the problem of label ranking, the goal is to learn a model that maps instances
to rankings over a finite set of predefined choice alternatives [16]. In the con-
text of PBRL, the instance space is given by the state space S, and the set of
labels corresponds to the set of actions A. Thus, the goal is to learn a mapping
S −→ Π(A), which maps states to total orders (permutations) of the available
actions A. In other words, the task is to learn a function that is able to rank all
available actions in a state according to their preference (2).

More concretely, a method called ranking by pairwise comparison (RPC) is
used for training a label ranker [7]. RPC accepts training information in the form
of binary (action) preferences (s,ak � aj), indicating that in state s, action ak

is preferred to action aj . Information of that kind can be produced thanks to
the assumption of a generative model as described in Sect. 2.1. Subsequently, we
refer to this approach as API-LR.

4 PBRL Using Dyad Ranking

In comparison to the original, classification-based approach to approximate pol-
icy iteration (Sect. 2.1), the ranking-based method outlined in Sect. 3.1 exhibits
several advantages, notably the following:

– Pairwise preferences are normally easier to elicit for training than examples
for unique optimal actions a∗. In particular, a comparison of only two actions
is less difficult than “proving” the optimality of one among a possibly large
set of actions.

– The preference-based approach allows for better exploiting the gathered train-
ing information. For example, it utilizes pairwise comparisons a � a′ between
two actions even if both of them are suboptimal. As opposed to this, the
original approach eventually only uses information about the (presumably)
optimal action a∗.

In both approaches, however, actions ai are treated as distinct elements, with no
relation to each other; indeed, neither classification nor label ranking do consider
any structure on the set of classes A (apart from the trivial discrete structure).
Yet, if classes are actions in the context of RL, A is often equipped with a non-
trivial structure, because actions can be described in terms of properties/features
and can be more or less similar to each other. For example, if an action is an
acceleration in a certain direction, like in the mountain car problem (see Sect. 5
below), then “fast to the right” is obviously more similar to “slowly to the right”
than to “fast to the left”.

Needless to say, the exploitation of feature-descriptions of actions is a possible
way to improve learning in (preference-based) RL, and to generalize, not only
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over the state space S but also over the action space A. It may allow, for example,
to predict the usefulness of actions that have never been tried before. To realize
this idea, we make use of so-called dyad ranking, a generalization of label ranking
that is able to exploit feature-descriptions of labels [11].

4.1 Dyad Ranking

Formally, a dyad is a pair of feature vectors z = (x,y) ∈ Z = X × Y, where
the feature vectors are from two (not necessarily different) domains X and Y. A
single training observation ρn (1 ≤ n ≤ N) takes the form of a dyad ranking

ρn : z1 � z2 � · · · � zMn
, Mn ≥ 2, (3)

of length Mn, which can vary between observations in the data set D = {ρn}N
n=1.

The task of a dyad ranking method is to learn a ranking function that accepts as
input any set of (new) dyads and produces as output a ranking of these dyads.

An important special case, called contextual dyad ranking, is closely related
to label ranking [10]. As already mentioned, the label ranking problem is about
learning a model that maps instances to rankings over a finite set of prede-
fined choice alternatives. In terms of dyad ranking, this means that all dyads
in an observation share the same context x, i.e., they are all of the form
zj = (x,yj); in this case, (3) can also be written as ρn : (x,y1) � (x,y2) �
· · · �

(
x,yMn

)
. Likewise, a prediction problem will typically consist of ranking

a subset {y1,y2, . . . ,yM} ⊆ Y in a given context x.

4.2 Bilinear Plackett-Luce Model

The Plackett-Luce (PL) model is a statistical model for rank data. Given a set of
alternatives o1, . . . , oK , it represents a parameterized probability distribution on
the set of all rankings over the alternatives. The model is specified by a parameter
vector v = (v1, v2, . . . vK) ∈ R

K
+ , in which vi accounts for the “strength” of the

option oi. The probability assigned by the PL model to a ranking is represented
by a permutation π, where π(i) is the index of the option put on position i, is
given by

P(π |v) =
K∏

i=1

vπ(i)

vπ(i) + vπ(i+1) + · · · + vπ(K)
. (4)

In dyad ranking, the options oi to be ranked are dyads z = (x,y). Thus, a model
suitable for dyad ranking can be obtained by specifying the PL parameters as a
function of the feature vectors x and y [10]:

v(z) = v(x,y) = exp
(
〈w, Φ(x,y)〉

)
, (5)

where Φ is a joint feature map [15]. A common choice for such a feature map is
the Kronecker product:

Φ(x,y) = x ⊗ y =
(
x1 · y1, x1 · y2, . . . , xr · yc

)
, (6)
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Algorithm 1 Approximate Policy Iteration based on Dyad Ranking
Require: sample states S, initial (random) policy π0, max. number of policy iterations

p, subroutine Evaluate Dyad Ranking for determining dyad rankings for a given
state and a set of permissible actions in that state.

1: function API-DR(S, π0, p)
2: π ← π0, i ← 0
3: repeat
4: π′ ← π, D ← ∅
5: for all s ∈ S do
6: ρs ←Evaluate Dyad Ranking (A(s), π)
7: D ← D ∪ {ρs}
8: end for
9: π ← Train Dyad Ranker (D), i ← i + 1

10: until Stopping Criterion (π, p)
11: return π
12: end function

which is a vector consisting of all pairwise products of the components of x
and y. The Eq. (6) can equivalently be rewritten as a bilinear form x�Wy with
a matrix W = (wi,j); the entry wi,j can be considered as the weight of the
interaction term xiyj . This choice of the joint-feature map yields the following
bilinear version of the PL model, which we call BilinPL:

v(z) = v(x,y) = exp
(
x�Wy

)
(7)

Given a set of training data in the form of a set of dyad rankings (3), the
learning task comes down to estimating the weight matrix W. Thanks to the
probabilistic nature of the model, this can be accomplished by leveraging the
principle of maximum likelihood; for details of this approach, we refer to [11].

Due to the bilinearity assumption, BilinPL comes with a relatively strong
bias. This may or may not turn out as an advantage, depending on whether
the assumption holds sufficiently well, but in any case requires a proper feature
engineering. As an alternative to the Kroncker product, v(x,y) in (5) can also
be represented in terms of a neural network [9]. This approach, called PLNet,
allows for learning a highly nonlinear joint-feature representation; again, we refer
to [11] for details.

4.3 API Using Dyad Ranking

We are now ready to introduce approximate policy iteration based on dyad
ranking (API-DR) as a generalization of API-LR. The former is quite similar to
the latter, except that a dyad ranker is trained instead of a label ranker. To this
end, training data is again produced by executing a number of rollouts on states,
starting with a specified action and following the current policy; see Algorithm1.

In addition to the representation of actions in terms of features, API-DR has
another important advantage. Thanks to the use of the (bilinear) PL model, it is
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not only able to predict a presumably best action in each state, but also informs
about the degree of confidence in that prediction. More specifically, it provides
a complete probability distribution over all rankings of actions in each state.
Information of this kind is useful for various purposes, as will be discussed next.

Algorithm 2 Probabilistic Rollout Procedure
Require: Initial state s0, initial action a0, policy π, discount factor γ, number of roll-

outs K, max. length(horizon) of each trajectory L, generative environment model
E

1: function Rollout(π, s0, a0, K, L)
2: for k ← 1 to K do
3: while t < L and ¬Terminal State(st−1) do
4: (st, rt) ← Simulate(E, st−1, at−1)
5: (at, pt) ← Utilize Policy(π, st)

6: ˜Qk ← ˜Qk + γtrt
7: t ← t + 1
8: end while
9: // Remaining rollouts can be skipped if pt-values are high

10: end for
11: ˜Q ← 1

k

∑k
i=1

˜Qi

12: return ˜Q
13: end function

Exploration versus Exploitation. The rollout procedure (Algorithm2) is
invoked by the subroutine Evaluate Dyad Ranking (line 6 of Algorithm 1). Here,
the PL model is used in its role as a policy, which means that it has to prescribe
a single action a∗ for each state s. The most obvious approach is to compute,
for each action a, the probability

P(a |W , s) =
exp(s�Wa)∑K
i=1 exp(s�Wa)

(8)

of being ranked first, and to choose the action maximizing this probability.
Adopting the presumably best action in each state corresponds to pure

exploitation. It is well known, however, that successful learning requires a proper
balance between exploration and exploitation. Interestingly, our approach sug-
gests a very natural way of realizing such a balance, simply by replacing the
maximization by a “soft-max” operation, i.e., by selecting each action a accord-
ing to its probability (8).

As an aside, we note that a generalization of the PL model can be used to
control the degree of exploration in a more flexible way:

P(a |W , s) =
exp(c · s�Wa)∑K
i=1 exp(c · s�Wa)

(9)
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for a constant c ≥ 0; the larger c, the stronger the strategy focuses on the best
actions.

Uncertainty Sampling. Another interesting opportunity to exploit proba-
bilistic information is for active learning via uncertainty sampling. Uncertainty
sampling is a general strategy for active learning in which those training exam-
ples are requested for which the learner appears to be maximally uncertain [12].
In binary classification, for example, these are typically the instances that are
located closest to the (current) decision boundary.

In our case, the distribution (8) informs about the certainty or uncertainty
of the learner regarding the best course of action in a given state s (or, alter-
natively, the uncertainty about the true ranking of all actions in that state).
This uncertainty can be quantified, for instance, in terms of the entropy of that
distribution, or the margin between the probability of the best and the second-
best action. Correspondingly, those states can be selected as sample states S in
Algorithm 1 for which the uncertainty is highest.

5 Experiments

In this section, we illustrate the performance of PBRL-DS by means of several
case studies, essentially following and replicating the experimental setup of [5].
Section 5.1 starts with two benchmark problems that are well-known in the field
of RL, and which could in principle also be solved using conventional RL meth-
ods. In Sect. 5.2, we tackle a problem in which preferences are indeed purely
qualitative, and states only partially comparable; this is a typical example of
applications in the realm of preference-based RL. Finally, we add another case
study, in which we illustrate the use of PBRL for the configuration of image pro-
cessing pipelines. Here, the motivation comes from the fact that comparing two
images (in terms of their quality) is often much easier for a user than evaluating
a single image. The data and code used for the experiments can be accessed
under the following URL: https://github.com/disc5/dyad-config-rl.

5.1 Standard Benchmarks

Inverted Pendulum. The inverted pendulum (also known as cart pole) prob-
lem (IP) is to balance a pendulum which is attached on top of a cart. The only
way to stabilize the pendulum is by moving the cart, which is placed on a pla-
nar ground, to the left or to the right. We adopt the experimental setting from
Lagoudakis and Parr [8], in which the position of the cart in space is not taken
into account.

In the original formulation, there are three actions possible which are
mapped, respectively, onto the forces of {−10, 0, 10} Newtons. The state space
is continuous and two-dimensional. The first dimension captures the angle θ
between the pole and the vertical axis, whereas the second dimension describes
the angle velocity θ̇. The transitions of the physical model are determined by the

https://github.com/disc5/dyad-config-rl
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nonlinear dynamics of the system; they depend on the current state s = (θ, θ̇)
and current action value a, respectively:

θ̈ =
g sin(θ) − αml(θ̇)2 sin(2θ)/2 − α cos(θ)a

4l/3 − αml cos2(θ)
,

where α = 1/(m + M) and the residual parameters are chosen as in Lagoudakis
and Parr (see Table 1).

Table 1. Inverted pendulum model parameters.

Parameter Symbol Value Unit

Gravity g 9.81 m/s2

Cart mass M 8.0 kg

Pendulum mass m 2.0 kg

Pendulum length l 0.5 m

Mountain Car. The mountain car problem (MC) consists of driving an under-
powered car out of a valley. The agent must learn a policy which takes the
momentum of the car into account when driving the car along the valley sides.
It can basically power or throttle forwards and backwards. At each time step,
the system dynamics depend on a state st = (xt, ẋt) and an action at. It is
described by the following equations:

xt+1 = b1(xt + ẋt+1)
ẋt+1 = b2(ẋt + 0.001at − 0.025 cos(3xt)),

where b1 is a function that restricts the position x to the interval [−1.2, 0.5] and
b2 restricts the velocity to the interval [−0.07, 0.07]. In case the agent reaches
xt = −1.2, an inelastic collision is simulated by setting the velocity ẋ to zero. The
gravity depends on the local slope of the mountain, which is simulated with the
term 0.025 cos(3xt). As long as the position x is less then 0.5, the agent receives
zero reward. If the car hits the right bound (x = 0.5), the goal is achieved, the
episode ends, and the agent obtains reward 1.

In both problems, the actions are simulated to be noisy, which results in non-
deterministic state transitions. Thus, the learner is required to perform multiple
rollouts. In particular, we add random noise from the intervals [−0.2, 0.2] and
[−0.01, 0.01] to the raw action signals for IP and MC, respectively.

Experiments. Our main evaluation measure is the success rate (SR), i.e., the
percentage of learned policies that are sufficient. In the case of IP, a policy
is considered sufficient when being able to balance the pendulum longer than
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1000 steps (100 s). For MC, a sufficient policy is one that needs less than 75
steps to reach the goal. More specifically, following [3,4], we plot the cumulative
distribution of success rates over a measure of complexity, i.e., the number of
actions needed throughout the API procedure for generating a policy that solves
a task successfully. The number is obtained by summing up the average numbers
of actions performed for each of the K rollouts realized on initial (state, action)
pairs1. A point (x, y) in these plots can be interpreted as the minimum number
of actions x required to reach a success rate of y.

We hypothesize that the incorporation of action features can improve the
quality of learned policies, especially in situations where data is scarce. To this
end, the quality of policies learned by API-LR2 and API-DR (implemented in the
BilinPL variant) are measured under different conditions. We chose a moderate
number of 17 actions on both environments by dividing the original number
range into 17 equally sized parts. Thus, the action spaces for IP and MC are
given, respectively, as follows:

AIP = {−10,−8.75,−7.5,−6.25, . . . , 10}
AMC = {−1,−.875,−.75,−.625, . . . , .875, 1}

Recall that, while API-DR is able to interpret the actions as numbers, and hence
to exploit the metric structure of the real numbers, API-LR merely considers all
actions as distinct alternatives.

We furthermore defined three conditions referred to as complete, partial and
duel. Under the first condition, preferences about the entire action set are avail-
able per state. In the partial condition, the learner can only learn from three
randomly drawn actions per state. In the last condition, only two actions are
drawn, leading to only one preference per state. Under all condition the number
of sampled states |S| was set to 50 for the MC task and 100 for the IP task. The
results depicted in Fig. 1 clearly confirm our expectations.

5.2 Cancer Clinical Trials Simulation

Preference-based reinforcement learning has been specifically motivated by the
example of optimal therapy design in cancer treatment [3]. The concrete scenario
is based on a mathematical model of [21] that captures the tumor growth during
a treatment, the level of toxicity (inversely related to the wellness of the patient)
due to the chemotherapy, the effect of the treatment and the interaction between
drug and tumor size. A state is described by the variables tumor size S and
toxicity X, while actions correspond to the dosage level D ∈ [0, 1] of the drug.
The model is described by a system of difference equations St+1 = St +ΔSt and
Xt+1 = Xt+ΔXt, where ΔSt = (a1 ·max(Xt,X0)−b1 ·(Dt −d1)) ·1St>0, ΔXt =
1 Note that the number of actions is not fixed per rollout and rather depends on the

quality of the current policy. This includes the case that rollouts can stop prema-
turely before the maximal trajectory length L is reached.

2 Throughout all experiments we used the RPC method in conjunction with logistic
regression.
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Fig. 1. Performance of the methods for the inverted pendulum (first row) and the
mountain car task (second row).
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Fig. 2. Results of the cancer clinical trials simulation.

a2 · max(St, S0) + b2 · (Dt − d2). The probability for a patient to die in the t-th
month follows a Bernoulli distribution with parameter p = 1− exp(−γ(t)) using
the hazard function log γ(t) = c0 + c1St + c2Xt. Following the recommendation
of [21], we fix the parameters of the difference equation as follows: a1 = 0.15,
a2 = 0.1, b1 = b2 = 1.2, d1 = d2 = 0.5 and c0 = −4, c1 = c2 = 0.5. The problem
is how to choose appropriate dosage levels during a therapy of 6 months.

To circumvent the problem of reward function specification, we propose a
preference-based comparison of policies π and π′ as follows: π is preferred to
π′ if a patient survives with policy π and dies under π′. If a patient does not
survive under either of the policies, then these are considered to be incomparable.
If a patient survives under both policies, we define the preference via Pareto
dominance as follows: π � π′ ⇔ (CX ≤ C ′

X) and (CS ≤ C ′
S), in which CX

denotes the maximal toxicity level occurred within a 6 month treatment under
policy π, and analogously C ′

X for π′. CS and C ′
S denote the tumor sizes at the

end of the therapy after corresponding to policies π and π′, respectively.
We applied API-DR (again in the BilinPL variant) with the feature rep-

resentation x = (1, S,X) and y = (1,D,D2,D3). Moreover, the experimental
protocol follows that of [3], in which virtual patients were generated by sampling
initial states independently and uniformly from the interval (0, 2). For training,
1000 patients were taken, and the quality of the learned policies was then tested
on 200 new patients. In addition to API-LR, we also included a random policy
and several constant policies also baselines. While the former selects dosages uni-
formly at random, these latter always prescribe the same dosage level regardless
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the patient’s health state: extreme (1.0), high (0.7), medium (0.4) and low (0.1).
This division of 4 dosages has also been used as the set of available actions.
Again, in contrast to API-LR which utilizes the labels extreme, high, medium
and low, API-DR is able to utilize their associated numerical values.

Since the objective is to perform strongly on all three criteria, i.e., tumor
size, toxicity level, and death rate, the performance is shown in three plots (see
Fig. 2), one for each pair of criteria. As can be seen, API-DR has advantages
in comparison to the other approaches in all aspects: final tumor size, average
toxicity level, and the death rate. In comparison with the constant approaches,
API-DR is worse than the extreme constant dosage level in terms of final tumor
size but superior in terms of death rate and toxicity levels.

5.3 Configuration of Image Processing Pipelines

Our last case study elaborates on the idea of using PBRL for the purpose of
algorithm selection and configuration [2], especially in domains where the results
produced by an algorithm might be difficult to asses numerically. As an example,
we consider the problem of configuring image processing pipelines, with the goal
to enhance the quality of an input image. The idea is that, for a human, a
comparison between two candidate pictures x,x′ is again easier than an absolute
quality assessment (here, we mimic such a comparison by applying a similarity
measure, defining preference for x in terms of proximity to some reference x∗).

An image processing pipeline is a sequence of possibly parameterized oper-
ators, where each operator takes an image as input and produces an image as
output. The quality of a pipeline in influenced by the choice of operator types,
the number of operators, their order, and of course the parameterization. We
consider the choice of an operator with certain parameters as an action, which is
taken by a policy learned with API-DR. The approach is outlined in Algorithm3
and slightly differs from the basic version of Sect. 4.3. Note that, with the judg-
ments on the quality of the pipelines, the function in line 15 extracts pairwise
preferences on state/action pairs, and all these preference pairs are added to
the training set T . The policy model is trained in a supervised way on these
preferences at the end of each round and can then be used for the next round
for further improvement.

Experimental Protocol. The policy model in this scenario is PLNet, which
is capable of learning non-linear relationships between the preferences of state-
operator configuration pairs (x,y). The input consists of a 1-of-K encoding for
the pipeline operator positions and another 1-of-K encoding for the operator-
parameter combination. Furthermore, PLNet is configured with 3 layers, includ-
ing one hidden layer with 10 neurons. All weights of the network are initial-
ized randomly between −0.1 and 0.1, and the actual training is performed via
stochastic gradient descent using 20 epochs and an initial learning rate of 0.1.

The set of image operators the learner can choose from consists of the loga-
rithmic operator [6], the γ operator, and the brightness operator. Each of those
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Algorithm 3 Pipeline Policy Training Algorithm
Require: Input D = {(xn,x∗

n)}N
n=1, max pipeline length L

1: Initialize random policy model π
2: repeat
3: Sample a number of training examples S ⊂ D
4: T = ∅
5: for n = 1 to |S| do
6: for l = 1 to L do
7: if l = 1 then x

(l)
n = xn

8: else x
(l)
n = x′(l−1)

n

9: end if
10: for i = 1 to |A| do
11: x′

ni
= apply operator(x

(l)
n ,ai)

12: x̂ni = rollout(x′
ni

, π)
13: end for
14: ρn = evaluate pipeline outputs {x̂ni}|A|

i=1 � human or machine (with x∗
n)

15: Tn = generate pairwise preferences(ρn)
16: T = T ∪ Tn

17: x′(l)
n = choose subsequent state of the best performing pipeline (ρn)

18: end for
19: end for
20: Train (π, T )
21: Evaluate policy (π, D)
22: until No policy improvements
23: return π

can be parameterized with different values (real numbers). Additionally, three
other operators are available, namely an unsharping mask filter, histogram nor-
malization, and a stop operator, which have no parameters. The stop operator
enables a policy to control the length of a pipeline; it is usually applied when
the outputs are good enough.

The images that are processed with the pipeline stem from the Fashion-
MNIST data set [20]. It consists of 60k training and 10k gray scale images, where
each image has 28x28 pixels and belongs to one of ten classes. The first hundred
images from the original training set are used to create a pipeline training data
set that consists of distorted and ground truth image pairs. A distorted image
x is generated from a ground truth image by applying the pipeline Op1(2.5) →
Op2(1.4) → Op1(1.5) → Op1(2.0) in reverse order on ground truth images x∗.
This essentially serves the purpose to examine whether or not the learner is able
to recover the distortion. A test data set is generated in the same way on the
first hundred images of the original test data set.

As for the evaluation, we make use of the structured similarity (SSIM) mea-
sure [17]. The overall quality of the policy model is measured in terms of the
mean average error (MAE) between the produced and the ground truth images.
The approach is implemented in Matlab and the results of the experiments can
be accessed under the following URL: https://github.com/disc5/dyad-config-rl.

https://github.com/disc5/dyad-config-rl
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Results. The (averaged) learning curve of the learned policies is shown in
Fig. 3. It reflects the reduction in the error with an increasing number of rounds.
The learning algorithm first enters an exploration phase, taking advantage of
the (Boltzmann) exploration strategy of PBRL-DR as described in Sect. 4.3.
The latter is also responsible for the cool-down phase and the convergence of the
policy.
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Fig. 3. (a) Learning curve of the policy model over a number of rounds. (b) Image
processing pipeline with intermediate results. ID refers to a damaged input and IGT to
the ground truth image.

6 Conclusion

We proposed a combination of preference-based reinforcement learning and
dyad ranking that is applicable in situations where qualitative instead of quan-
titative preference information on state-action trajectories is available. This
setting extends an existing preference-based variant of approximate policy itera-
tion by incorporating feature descriptions of actions and considering rankings of
dyads, i.e., state/action pairs, instead of rankings of actions given states. Thus,
it becomes possible to generalize over the state and the action space simultane-
ously. The advantages of this approach and its ability to improve performance
have been demonstrated in several case studies.

Going beyond the approach of approximate policy iteration, our next step is
to elaborate on the usefulness of dyad ranking in other approaches to preference-
based reinforcement learning.
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Abstract. Clustering is ubiquitous in data analysis, including analy-
sis of time series. It is inherently subjective: different users may prefer
different clusterings for a particular dataset. Semi-supervised clustering
addresses this by allowing the user to provide examples of instances that
should (not) be in the same cluster. This paper studies semi-supervised
clustering in the context of time series. We show that COBRAS, a state-
of-the-art active semi-supervised clustering method, can be adapted to
this setting. We refer to this approach as COBRASTS. An extensive
experimental evaluation supports the following claims: (1) COBRASTS

far outperforms the current state of the art in semi-supervised clus-
tering for time series, and thus presents a new baseline for the field;
(2) COBRASTS can identify clusters with separated components; (3)
COBRASTS can identify clusters that are characterized by small local
patterns; (4) actively querying a small amount of semi-supervision can
greatly improve clustering quality for time series; (5) the choice of the
clustering algorithm matters (contrary to earlier claims in the literature).

1 Introduction

Clustering is ubiquitous in data analysis. There is a large diversity in algorithms,
loss functions, similarity measures, etc. This is partly due to the fact that cluster-
ing is inherently subjective: in many cases, there is no single correct clustering,
and different users may prefer different clusterings, depending on their goals and
prior knowledge [17]. Depending on their preference, they should use the right
algorithm, similarity measure, loss function, hyperparameter settings, etc. This
requires a fair amount of knowledge and expertise on the user’s side.

Semi-supervised clustering methods deal with this subjectiveness in a differ-
ent manner. They allow the user to specify constraints that express their sub-
jective interests [18]. These constraints can then guide the algorithm towards
solutions that the user finds interesting. Many such systems obtain these con-
straints by asking the user to answer queries of the following type: should these
two elements be in the same cluster? A so-called must-link constraint is obtained
if the answer is yes, a cannot-link otherwise. In many situations, answering this

c© Springer Nature Switzerland AG 2018
L. Soldatova et al. (Eds.): DS 2018, LNAI 11198, pp. 179–193, 2018.
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type of questions is much easier for the user than selecting the right algorithm,
defining the similarity measure, etc. Active semi-supervised clustering methods
aim to limit the number of queries that is required to obtain a good clustering
by selecting informative pairs to query.

In the context of clustering time series, the subjectiveness of clustering is even
more prominent. In some contexts, the time scale matters, in other contexts it
does not. Similarly, the scale of the amplitude may (not) matter. One may want
to cluster time series based on certain types of qualitative behavior (monotonic,
periodic, . . . ), local patterns that occur in them, etc. Despite this variability, and
although there is a plethora of work on time series clustering, semi-supervised
clustering of time series has only very recently started receiving attention [7].

In this paper, we show that COBRAS, an existing active semi-supervised
clustering system, can be used practically “as-is” for time series clustering. The
only adaptation that is needed, is plugging in a suitable similarity measure and
a corresponding (unsupervised) clustering approach for time series. Two plug-in
methods are considered for this: spectral clustering using dynamic time warping
(DTW), and k-Shape [11]. We refer to COBRAS with one of these plugged in as
COBRASTS (COBRAS for Time Series). We perform an extensive experimental
evaluation of this approach.

The main contributions of the paper are twofold. First, it contributes a novel
approach to semi-supervised clustering of time series, and two freely download-
able, ready-to-use implementations of it. Second, the paper provides extensive
evidence for the following claims: (1) COBRASTS outperforms cDTWSS (the
current state of the art) by a large margin; (2) COBRASTS can identify clus-
ters with separated components; (3) COBRASTS can identify clusters that are
characterized by small local patterns; (4) actively querying a small amount of
supervision can greatly improve results in time series clustering; (5) the choice
of clustering algorithm matters, it is not negligible compared to the choice of
similarity. Except for claim 4, all these claims are novel, and some are at vari-
ance with the current literature. Claim 4 has been made before, but with much
weaker empirical support.

2 Related Work

Semi-supervised clustering has been studied extensively for clustering attribute-
value data, starting with COP-KMeans [18]. Most semi-supervised methods
extend unsupervised ones by adapting their clustering procedure [18], their sim-
ilarity measure [20], or both [2]. Alternatively, constraints can also be used to
select and tune an unsupervised clustering algorithm [13].

Traditional methods assume that a set of pairwise queries is given prior to
running the clustering algorithm, and in practice, pairs are often queried ran-
domly. Active semi-supervised clustering methods try to query the most infor-
mative pairs first, instead of random ones [9]. Typically, this results in better
clusterings for an equal number of queries. COBRAS [15] is a recently proposed
method that was shown to be effective for clustering attribute-value data. In this
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paper, we show that it can be used to cluster time series with little modification.
We describe COBRAS in more detail in the next section.

In contrast to the wealth of papers in the attribute-value setting, only one
method has been proposed specifically for semi-supervised time series clustering
with active querying. cDTWSS [7] uses pairwise constraints to tune the warp-
ing width parameter w in constrained DTW. We compare COBRASTS to this
method in the experiments.

In contrast to semi-supervised time series clustering, semi-supervised time
series classification has received significant attention [19]. Note that these two
settings are quite different: in semi-supervised classification, the set of classes is
known beforehand, and at least one labeled example of each class is provided. In
semi-supervised clustering, it is not known in advance how many classes (clus-
ters) there are, and a class may be identified correctly even if none of its instances
have been involved in the pairwise constraints.

3 Clustering Time Series with COBRAS

3.1 COBRAS

We describe COBRAS only to the extent necessary to follow the remainder of
the paper; for more information, see Van Craenendonck et al. [14,15].

COBRAS is based on two key ideas. The first [14] is that of super-instances:
sets of instances that are temporarily assumed to belong to the same cluster in
the unknown target clustering. In COBRAS, a clustering is a set of clusters, each
cluster is a set of super-instances, and each super-instance is a set of instances.
Super-instances make it possible to exploit constraints much more efficiently:
querying is performed at the level of super-instances, which means that each
instance does not have to be considered individually in the querying process.
The second key idea in COBRAS [15] is that of the automatic detection of the
right level at which these super-instances are constructed. For this, it uses an
iterative refinement process. COBRAS starts with a single super-instance that
contains all the examples, and a single cluster containing that super-instance.
In each iteration the largest super-instance is taken out of its cluster, split into
smaller super-instances, and the latter are reassigned to (new or existing) clus-
ters. Thus, COBRAS constructs a clustering of super-instances at an increas-
ingly fine-grained level of granularity. The clustering process stops when the
query budget is exhausted.

We illustrate this procedure using the example in Fig. 1. Panel A shows a toy
dataset that can be clustered according to several criteria. We consider differen-
tiability and monotonicity as relevant properties. Initially, all instances belong to
a single super-instance (S0), which constitutes the only cluster (C0). The second
and third rows of Fig. 1 show two iterations of COBRAS.

In the first step of iteration 1, COBRAS refines S0 into 4 new super-instances,
which are each put in their own cluster (panel B). The refinement procedure uses
k-means, and the number of super-instances in which to split is determined based
on constraints; for details, see [15]. In the second step of iteration 1, COBRAS
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Fig. 1. An illustration of the COBRAS clustering procedure.

determines the relation between new and existing clusters. To determine the
relation between two clusters, COBRAS queries the pairwise relation between
the medoids of their closest super-instances. In this example, we assume that the
user is interested in a clustering based on differentiability. The relation between
C1 = {S1} and C2 = {S2} is determined by posing the following query: should
and be in the same cluster? The user answers yes, so C1 and C2 are merged
into C5. Similarly, COBRAS determines the other pairwise relations between
clusters. It does not need to query all of them, many can be derived through
transitivity or entailment [15]. The first iteration ends once all pairwise relations
between clusters are known. This is the situation depicted in panel C. Note that
COBRAS has not produced a perfect clustering at this point, as S2 contains
both differentiable and non-differentiable instances.

In the second iteration, COBRAS again starts by refining its largest super-
instance. In this case, S2 is refined into S5 and S6, as illustrated in panel D. A new
cluster is created for each of these super-instances, and the relation between new
and existing clusters is determined by querying pairwise constraints. A must-link
between S5 and S1 results in the creation of C9 = {S1, S5}. Similarly, a must-link
between S6 and S3 results in the creation of C10 = {S3, S4, S6}. At this point, the
second iteration ends as all pairwise relations between clusters are known. The
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Fig. 2. Clusters may contain separated components when projected on a lower-
dimensional subspace.

clustering consists of two clusters, and a data granularity of 5 super-instances
was needed.

In general, COBRAS keeps repeating its two steps (refining super-instances
and querying their pairwise relations) until the query budget is exhausted.

Separated Components. A noteworthy property of COBRAS is that, by
interleaving splitting and merging, it can split off a subcluster from a cluster
and reassign it to another cluster. In this way, it can construct clusters that
contain separated components (different dense regions that are separated by a
dense region belonging to another cluster). It may, at first, seem strange to call
such a structure a “cluster”, as clusters are usually considered to be coherent
high-density areas. However, note that a coherent cluster may become incoher-
ent when projected onto a subspace. Figure 2 illustrates this. Two clusters are
clearly visible in the XY-space, yet projection on the X-axis yields a trimodal
distribution where the outer modes belong to one cluster and the middle mode
to another. In semi-supervised clustering, it is realistic that the user evaluates
similarity on the basis of more complete information than explicitly present in
the data; coherence in the user’s mind may therefore not translate to coherence
in the data space1.

The need for handling clusters with multi-modal distributions has been men-
tioned repeatedly in work on time series anomaly detection [5], on unsupervised
time series clustering [11], and on attribute-value semi-supervised constrained
clustering [12]. Note, however, a subtle difference between having a multi-modal
distribution and containing separated components: the first assumes that the
components are separated by a low-density area, whereas the second allows them
to be separated by a dense region of instances from another cluster.

3.2 COBRASDTW and COBRASk-Shape

COBRAS is not suited out-of-the-box for time series clustering, for two reasons.
First, it defines the super-instance medoids w.r.t. the Euclidean distance, which
1 Note that Fig. 2 is just an illustration; it can be difficult to express the more complete

information explicitly as an additional dimension, as is done in the figure.
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is well-known to be suboptimal for time series. Second, it uses k-means to refine
super-instances, which is known to be sub-state-of-the-art for time series clus-
tering [11]. Both of these issues can easily be resolved by plugging in distance
measures and clustering methods that are developed specifically for time series.
We refer to this approach as COBRASTS. We now present two concrete instan-
tiations of it: COBRASDTW and COBRASk-Shape. Other instantiations can be
made, but we develop these two as DTW and k-Shape represent the state of the
art in unsupervised time series clustering.

Algorithm 1 COBRASDTW

Input: A dataset, the DTW warping window width w, the γ parameter used in con-
verting distances to similarities and access to an oracle answering pairwise queries

Output: A clustering
1: Compute the full pairwise DTW distance matrix
2: Convert each distance d to an affinity a: ai,j = e−γdi,j

3: Run COBRAS, substituting k-means for splitting super-instances with spectral
clustering on the previously computed affinity matrix

COBRASDTW uses DTW as its distance measure, and spectral cluster-
ing to refine super-instances. It is described in Algorithm 1. DTW is commonly
accepted to be a competitive distance measure for time series analysis [1], and
spectral clustering is well-known to be an effective clustering method [16]. We use
the constrained variant of DTW, cDTW, which restricts the amount by which
the warping path can deviate from the diagonal in the warping matrix. cDTW
offers benefits over DTW in terms of both runtime and solution quality [7,11],
if run with an appropriate window width.

COBRASk-Shape uses the shape-based distance (SBD, [11]) as its distance
measure, and the corresponding k-Shape clustering algorithm [11] to refine super-
instances. k-Shape can be seen as a k-means variant developed specifically for
time series. It uses SBD instead of the Euclidean distance, and comes with a
method of computing cluster centroids that is tailored to time series. k-Shape
was shown to be an effective and scalable method for time series clustering in
[11]. Instead of the medoid, COBRASk-Shape uses the instance that is closest to
the SBD centroid as a super-instance representative.

4 Experiments

In our experiments we evaluate COBRASDTW and COBRASk-Shape in terms
of clustering quality and runtime, and compare them to state-of-the-art semi-
supervised (cDTWSS and COBS) and unsupervised (k-Shape and k-MS) com-
petitors. Our experiments are fully reproducible: we provide code for COBRASTS

in a public repository2, and a separate repository for our experimental setup3.
The experiments are performed on the public UCR collection [6].
2 https://bitbucket.org/toon vc/cobras ts or using pip install cobras ts.
3 https://bitbucket.org/toon vc/cobras ts experiments.

https://bitbucket.org/toon_vc/cobras_ts
https://bitbucket.org/toon_vc/cobras_ts_experiments
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Fig. 3. Sensitivity to γ and w for several datasets.

4.1 Methods

COBRASTS. COBRASk-Shape has no parameters (the number of clusters used
in k-Shape to refine super-instances is chosen based on the constraints in
COBRAS). We use a publicly available Python implementation4 to obtain the
k-Shape clusterings. COBRASDTW has two parameters: γ (used in converting
distances to affinities) and w (the warping window width). We use a publicly
available C implementation to construct the DTW distance matrices [10]. In our
experiments, γ is set to 0.5 and w to 10% of the time series length. The value
w = 10% was chosen as Dau et al. [7] report that most datasets do not require
w greater than 10%. We note that γ and w could in principle also be tuned for
COBRASDTW. There is, however, no well-defined way of doing this. We cannot
use the constraints for this, as they are actively selected during the execution
of the algorithm (which of course requires the affinity matrix to already be con-
structed). We did not do any tuning on these parameters, as this is also hard
in a practical clustering scenario, but observed that the chosen parameter val-
ues already performed very well in the experiments. We performed a parameter
sensitivity analysis, illustrated in Fig. 3, which shows that the influence of these
parameters is highly dataset-dependent: for many datasets their values do not
matter much, for some they result in large differences.

cDTWSS. cDTWSS uses pairwise constraints to tune the w parameter in
cDTW. In principle, the resulting tuned cDTW measure can be used with any
clustering algorithm. The authors in [7] use it in combination with TADPole
[4], and we do the same here. We use the code that is publicly available on the
authors’ website5. The cutoff distances used in TADPole were obtained from the
authors in personal communication.

COBS. COBS [13] uses constraints to select and tune an unsupervised clus-
tering algorithm. It was originally proposed for attribute-value data, but it
can trivially be modified to work with time series data as follows. First, the
full pairwise distance matrix is generated with cDTW using w = 10% of the
time series length. Next, COBS generates clusterings by varying the hyper-
parameters of several standard unsupervised clustering methods, and selects
4 https://github.com/Mic92/kshape.
5 https://sites.google.com/site/dtwclustering/.

https://github.com/Mic92/kshape
https://sites.google.com/site/dtwclustering/
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the resulting clustering that satisfies the most pairwise queries. We use the
active variant of COBS, as described in [13]. Note that COBS is conceptu-
ally similar to cDTWSS, as both methods use constraints for hyperparameter
selection. The important difference is that COBS uses a fixed distance mea-
sure and selects and tunes the clustering algorithm, whereas cDTWSS tunes
the similarity measure and uses a fixed clustering algorithm. We use the follow-
ing unsupervised clustering methods and corresponding hyperparameter ranges
in COBS: spectral clustering (K ∈ [max(2,Ktrue − 5),Ktrue + 5]), hierarchi-
cal clustering (K ∈ [max(2,Ktrue − 5),Ktrue + 5], with both average and
complete linkage), affinity propagation (damping ∈ [0.5, 1.0]) and DBSCAN
(ε ∈ [min pairwise dist., max. pairwise dist], min samples ∈ [2, 21]). For
the continuous parameters, clusterings were generated for 20 evenly spaced val-
ues in the specified intervals. Additionally, the γ parameter in converting dis-
tances to affinities was varied in [0, 2.0] for clustering methods that take affinities
as input, which are all of them except DBSCAN, which works with distances. We
did not vary the warping window width w for generating clusterings in COBS.
This would mean a significant further increase in computation time, both for
generating the DTW distance matrices, and for generating clusterings with all
methods and parameter settings for each value of w.

k-Shape and k-MS. Besides the three previous semi-supervised methods,
we also include k-Shape [11] and k-MultiShape (k-MS) [11] in our experiments
as unsupervised baselines. k-MS [11] is similar to k-Shape, but uses multiple
centroids, instead of one, to represent each cluster. It was found to be the most
accurate method in an extensive experimental study that compares a large num-
ber of unsupervised time series clustering methods on the UCR collection [11].
The number of centroids that k-MS uses to represent a cluster is a parameter;
following the original paper we set it to 5 for all datasets. The k-MS code was
obtained from the authors.

4.2 Data

We perform experiments on the entire UCR time series classification collection
[6], which is the largest public collection of time series datasets. It consists of
85 datasets from a wide variety of domains. The UCR datasets come with a
predefined training and test set. We use the test sets as our datasets as they are
often much bigger than the training sets. This means that whenever we refer to
a dataset in the remainder of this text, we refer to the test set of that dataset
as defined in [6]. This procedure was also followed by Dau et al. [7].

As is typically done in evaluating semi-supervised clustering methods, the
classes are assumed to represent the clusterings of interests. When computing
rankings and average ARIs, we ignored results from 21 datasets where cDTWSS

either crashed or timed out after 24 h.6

6 These datasets are listed at https://bitbucket.org/toon vc/cobras ts experiments.

https://bitbucket.org/toon_vc/cobras_ts_experiments
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4.3 Methodology

We use 10-fold cross-validation, as is common in evaluating semi-supervised clus-
tering methods [3,9]. The full dataset is clustered in each run, but the methods
can only query pairs of which both instances are in the training set. The result
of a run is evaluated by computing the Adjusted Rand Index (ARI) [8] on the
instances of the test set. The ARI measures the similarity between the generated
clusterings and the ground-truth clustering, as indicated by the class labels. It
is 0 for a random clustering, and 1 for a perfect one. The final ARI scores that
are reported are the average ARIs over the 10 folds.

We ensure that cDTWSS and COBS do not query pairs that contain instances
from the test set by simply excluding such candidates from the list of constraints
that they consider. For COBRASTS, we do this by only using training instances
to compute the super-instance representatives.

COBRASTS and COBS do not require the number of clusters as an input
parameter, whereas cDTWSS, k-Shape and k-MS do. The latter three were given
the correct number of clusters, as indicated by the class labels. Note that this is
a significant advantage for these algorithms, and that in many practical appli-
cations the number of clusters is not known beforehand.

(a) (b)

Fig. 4. (a) Average rank over all clustering tasks. Lower is better. (b) Average ARI.
Higher is better.

4.4 Results

Clustering quality. Figure 4(a) shows the average ranks of the compared meth-
ods over all datasets. Figure 4(b) shows the average ARIs. Both plots clearly show
that, on average, COBRASTS outperforms all the competitors by a large margin.
Only when the number of queries is small (roughly < 15), is it outperformed by
COBS and k-MS.

For completeness, we also include vanilla COBRAS (denoted as
COBRASkMeans) in the comparison in Fig. 4. Given enough queries (roughly
> 50), COBRASkMeans outperforms all competitors other than COBRASTS.
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This indicates that the COBRAS approach is essential. As expected, however,
COBRASDTW and COBRASkShape significantly outperform COBRASkMeans.

These observations are confirmed by Table 1, which reports the number of
times COBRASDTW wins and loses against the alternatives. The differences
with cDTWSS and k-Shape are significant for all the considered numbers of
queries (Wilcoxon test, p < 0.05). The difference between COBRASDTW and
COBS is significant for 50 and 100 queries, but not for 25. The same holds for
COBRASDTW vs. k-MS. This confirms the observation from Fig. 4(a), which
showed that the performance gap between COBRASDTW and the competi-
tors becomes larger as more queries are answered. The difference between
COBRASDTW and COBRASk-Shape is only statistically significant for 100
queries.

Table 1. Wins and losses over the 64 datasets. An asterisk indicates that the difference
is significant according to the Wilcoxon test with p < 0.05.

25 queries 50 queries 100 queries

Win Loss Win Loss Win Loss

COBRASDTW vs. COBRASk-Shape 35 29 37 27 41* 23

COBRASDTW vs. COBRASk-Means 41* 23 36 28 40* 24

COBRASDTW vs. k-MS 35 29 40* 24 47* 14

COBRASDTW vs. COBS 37 27 42* 22 45* 19

COBRASDTW vs. cDTWSS 62* 2 53* 11 55* 9

COBRASDTW vs. k-Shape 40* 24 46* 18 50* 14

Surprisingly, the unsupervised baselines outperform the semi-supervised
cDTWSS. This is inconsistent with the claim that the choice of w dwarfs any
improvements by the k-Shape algorithm [7]. To ensure that this is not an effect of
the evaluation strategy (10-fold CV using the ARI, compared to no CV and the
Rand index (RI) in [7]), we have also computed the RIs for all of the clusterings
generated by k-Shape and compared them directly to the values provided by the
authors of cDTWSS on their webpage7. In this experiment k-Shape attained an
average RI of 0.68, cDTWSS 0.67. We note that the claim in [7] was based on a
comparison on two datasets. Our experiments clearly indicate that it does not
generalize towards all datasets.

Runtime. COBRASDTW, cDTWSS and COBS require the construction of
the pairwise DTW distance matrix. This becomes infeasible for large datasets.
For example, computing one distance matrix for the ECG5000 dataset took ca.
30h in our experiments, using an optimized C implementation of DTW.

k-Shape and k-MS are much more scalable [11], as they do not require com-
puting a similarity matrix. COBRASk-Shape inherits this scalability, as it uses

7 https://sites.google.com/site/dtwclustering/.

https://sites.google.com/site/dtwclustering/
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k-Shape to refine super-instances. In our experiments, COBRASk-Shape was on
average 28 times faster than COBRASDTW.

5 Case Studies: CBF, TwoLeadECG and MoteStrain

To gain more insight into why COBRASTS outperforms its competitors, we
inspect the clusterings that are generated for three UCR datasets in more detail:
CBF, TwoLeadECG and MoteStrain. CBF and TwoLeadECG are examples for
which COBRASDTW and COBRASk-Shape significantly outperform their com-
petitors, whereas MoteStrain is one of the few datasets for which they are out-
performed by unsupervised k-Shape clustering. These three datasets illustrate
different reasons why time series clustering may be difficult: CBF because one of
the clusters comprises two separated subclusters; TwoLeadECG, because only
limited subsequences of the time series are relevant for the clustering at hand,
and the remaining parts obfuscate the distance measurements; and MoteStrain
because it is noisy.

CBF. The first column of Fig. 5 shows the “true” clusters as they are indicated
by the class labels. It is clear that the classes correspond to three distinct patterns
(horizontal, upward and downward). The next columns show the clusterings that
are produced by each of the competitors. Semi-supervised approaches are given
a budget of 50 queries. COBRASDTW and COBRASk-Shape are the only methods
that provide a near perfect solution (ARI = 0.96). cDTWSS mixes patterns of
different types in each cluster. COBS find pure clusters, but too many: the plot
only shows the largest three of 15 clusters for COBS. k-Shape and k-MS mix
horizontal and downward patterns in their third cluster. To clarify this mixing of
patterns, the figure shows the instances in the third k-Shape and k-MS clusters
again, but separated according to their true class.

Figure 6 illustrates how repeated refinement of super-instances helps
COBRASTS deal with the complexities of clustering CBF. It shows a super-
instance in the root, with its subsequent refinements as children. The super-
instance in the root, which is itself a result of a previous split, contains horizontal
and upward patterns. Clustering it into two new super-instances does not yield
a clean separation of these two types: a pure cluster with upward patterns is cre-
ated, but the other super-instance still mixes horizontal and upward patterns.
This is not a problem for COBRASTS, as it simply refines the latter super-
instance again. This time the remaining instances are split into nearly pure ones
separating horizontal from upward patterns. Note that the two super-instances
containing upward patterns correspond to two distinct subclusters: some upward
patterns drop down very close to the end of the time series, whereas the drop in
the other subcluster occurs much earlier.

The clustering process just mentioned illustrates the point made earlier, in
Sect. 3.1, about COBRAS’s ability to construct clusters with separated compo-
nents. It is clear that this ability is advantageous in the CBF dataset. Note that
being able to deal with separated components is key here; k-MS, which is able
to find multi-modal clusters, but not clusters with modes that are separated by
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Fig. 5. The first column shows the true clustering of CBF. The remaining columns
show the clusterings that are produced by all considered methods. For COBS, only
the three largest of 15 clusters are shown. All the cluster instances are plotted, the
prototypes are shown in red. For COBRASDTW, cDTWSS and COBS the prototypes
are selected as the medoids w.r.t. DTW distance. For the others the prototypes are the
medoids w.r.t. the SBD distance. (Color figure online)

Fig. 6. A super-instance that is generated while clustering CBF, and its refinements.
The green line indicates a must-link, and illustrates that these two super-instances
will be part of the same multi-modal cluster (that of upward patterns). The red lines
indicate cannot-links. The purity of a super-instance is computed as the ratio of the
occurrence of its most frequent class, over its total number of instances. (Color figure
online)

a mode from another cluster, produces a clustering that is far from perfect for
CBF.

Figure 6 also illustrates that COBRAS’s super-instance refinement step is
similar to top-down hierarchical clustering. Note, however, that COBRAS uses
constraints to guide this top-down splitting towards an appropriate level of gran-
ularity. Furthermore, this refinement is only one of COBRAS’s components; it is
interleaved with a bottom-up merging step to combine the super-instances into
actual clusters [15].
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Fig. 7. The first column shows the “true” clustering of TwoLeadECG. The second
column shows the clustering produced by COBRASDTW. The third column shows the
clustering produced by COBS, which is the best competitor for this dataset. Prototypes
are shown in red, and are the medoids w.r.t. the DTW distance. (Color figure online)

TwoLeadECG. The first column in Fig. 7 shows the “true” clusters for
TwoLeadECG. Cluster 1 is defined by a large peak before the drop, and a slight
bump in the upward curve after the drop. Instances in cluster 2 typically only
show a small peak before the drop, and no bump in the upward curve after the
drop. For the remainder of the discussion we focus on the peak as the defining
pattern, simply because it is easier to see than the more subtle bump.

The second column in Fig. 7 shows the clustering that is produced by
COBRASDTW; the one produced by COBRASk-Shape is highly similar. They
are the only methods able to recover these characteristic patterns. The last col-
umn in Fig. 7 shows the clustering that is produced by COBS, which is the best
of the competitors. This clustering has an ARI of 0.12, which is not much better
than random. From the zoomed insets in Fig. 7, it is clear that this clustering
does not recover the defining patterns: the small peak that is characteristic for
cluster 2 is hard to distinguish.

This example illustrates that by using COBRASTS for semi-supervised clus-
tering, a domain expert can discover more accurate explanatory patterns than
with competing methods. None of the alternatives is able to recover the char-
acteristic patterns in this case, potentially leaving the domain expert with an
incorrect interpretation of the data. Obtaining these patterns comes with rela-
tively little additional effort, as with a good visualizer answering 50 queries only
takes a few minutes. This time would probably be insignificant compared to the
time that was needed to collect the 1139 instances in the TwoLeadECG dataset.

MoteStrain. In our third case study we discuss an example for which
COBRASTS does not work well, as this provides insight into its limitations.
We consider the MoteStrain dataset, for which the unsupervised methods per-
form best. k-MS attains an ARI of 0.62, and k-Shape of 0.61. COBRASk-Shape

ranks third with an ARI of 0.51, and COBRASDTW fourth with an ARI of 0.48.
These results are surprising, as the COBRAS algorithms have access to more
information than the unsupervised k-Shape and k-MS. Figure 8 gives a reason
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Fig. 8. Two super-instances generated by COBRASDTW. The super-instances are
based on the location of the noise.

for this outcome; it shows that COBRASTS creates super-instances that are
based on the location of the noise. The poor performance of the COBRASTS

variants can in this case be explained by their large variance. The process of
super-instance refinement is much more flexible than the clustering procedure
of k-Shape, which has a stronger bias. For most datasets, COBRASTS’s weaker
bias led to performance improvements in our experiments, but in this case it
has a detrimental effect due to the large magnitude of the noise. In practice,
the issue could be alleviated here by simply applying a low-pass filter to remove
noise prior to clustering.

6 Conclusion

Time series arise in virtually all disciplines. Consequently, there is substantial
interest in methods that are able to obtain insights from them. One of the most
prominent ways of doing this, is by using clustering. In this paper we have pre-
sented COBRASTS, an novel approach to time series clustering. COBRASTS

is semi-supervised: it uses small amounts of supervision in the form of must-
link and cannot-link constraints. This sets it apart from the large majority of
existing methods, which are unsupervised. An extensive experimental evaluation
shows that COBRASTS is able to effectively exploit this supervision; it outper-
forms unsupervised and semi-supervised competitors by a large margin. As our
implementation is readily available, COBRASTS offers a valuable new tool for
practitioners that are interested in analyzing time series data.

Besides the contribution of the COBRASTS approach itself, we have also
provided insight into why it works well. A key factor in its success is its ability
to handle clusters with separated components.
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Abstract. Detecting significant linguistic shifts in the meaning and
usage of words has gained more attention over the last few years. Linguis-
tic shifts are especially prevalent on the Internet, where words’ meaning
can change rapidly. In this work, we describe the construction of a large
diachronic corpus that relies on the UK Web Archive and we propose a
preliminary analysis of semantic change detection exploiting a particular
technique called Temporal Random Indexing. Results of the evaluation
are promising and give us important insights for further investigations.

Keywords: Semantic change detection
Diachronic analysis of language · Time series

1 Introduction

Languages can be studied from two different and complementary viewpoints:
the diachronic perspective considers the evolution of a language over time, while
the synchronic perspective describes the language rules at a specific point of
time, without taking its history into account [8]. During the last decade, the
surge in available data spanning different epochs has inspired a new analysis of
cultural, social, and linguistic phenomena from a temporal perspective. Language
is dynamic and evolves, it varies to reflect the shift in topics we talk about, which
in turn follow cultural changes. So far, the automatic analysis of language has
largely been based on datasets that represented a snapshot of a given domain or
time period (synchronic approach). However, since the rise of big data, which has
made large corpora of data spanning several periods of time available, large-scale
diachronic analysis of language has emerged as a new approach to study linguistic
and cultural trends over time by analysing these new sources of information.
One of the largest sources of information is the Web, which has been exploited
to build corpora used in linguistics or in Natural Language Processing (NLP)
tasks. Generally, these corpora are built using a synchronic approach without
taking into account temporal information.
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In this paper, we propose to analyze the Web using a diachronic approach
by relying on the UK Web Archive project [15]. The goal of this project is to
analyse the change in language over time as reflected in the textual content of
UK websites. We focus on one specific kind of language change, namely semantic
change, aiming to develop a computational system that is able to detect which
words have changed meaning over the period of time covered by the corpus of
UK websites.

Semantic change is a very common phenomenon in language. Over time,
words can acquire new meanings or lose existing ones. For example, the original
meaning of the verb tweet, according to the Oxford English Dictionary (OED),
is transitive, defined as follows:

Of a bird: to communicate (something) with a brief
high-pitched sound or call, or a series of such sounds.

According to the OED, this meaning was first recorded in writing in 1851. On
the other hand, the OED assigns the first written usage of the related intransitive
meaning to 1856:

Of a bird: to make a brief high-pitched sound or call, or
a series of such sounds. Also in extended use.

The OED also lists two additional senses, which are much more recent. The
transitive one is defined as follows:

To post (a message, image, link, etc.) on the social
networking service Twitter. Also: to post a message
to (a particular person, organization, etc.).

This meaning was first recorded in 2006. The intransitive one is defined as:

To make a posting on Twitter. Also: to use Twitter
regularly or habitually.

and was first recorded in 2007.
Semantic change detection systems allow for large-scale analyses that identify

cultural and social trends. For example, when the contexts of the word sleep are
compared between 1960s and 1990s, it has been shown through distributional
semantics models that this word acquired more negative connotations linked to
sleep disorders [12]. Moreover, such systems have a range of applications in NLP.
For example, they can improve sentiment analysis tools because they can identify
positive or negative content expressed via newly emerged meanings, such as the
positive slang sense of sick meaning “awesome”.

The use of the Web as a source of data for diachronic semantic analysis poses
an important challenge that we aim to tackle in this paper: the massive size of
the dataset requires efficient computational approaches which are able to scale
up to process terabytes of data. In this scenario, Distributional Semantic Mod-
els (DSMs) represent a promising solution. DSMs are able to represent words
as points in a geometric space, generally called WordSpace [22,23] by simply
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analysing how words are used in a corpus. However, a WordSpace represents a
snapshot of a specific corpus and it does not take into account temporal informa-
tion. For this reason, we rely on a particular method, called Temporal Random
Indexing (TRI), that enables the analysis of the time evolution of the meaning
of a word [4,16]. TRI is able to efficiently build WordSpaces taking into account
temporal information. We exploit this methodology in order to build geometri-
cal spaces of word meanings that span over several periods of time. The TRI
framework provides all the necessary tools to build WordSpaces over different
time periods and perform such temporal linguistic analysis. The system has been
tested on several domains, such as a collection of Italian books, English scientific
papers [3], the Italian version of the Google N-gram dataset [2], and Twitter [16].

The paper is structured as follows: Sect. 2 provides details about our method-
ology, while Sect. 3 describes the dataset that we have developed and the results
of a preliminary evaluation. Related work is provided in Sects. 4, and 5 reports
final remarks and future work.

2 Method

This section provides details about the methodology adopted during our research
work. In particular, we build a diachronic corpus using data coming from the
Web. Relying on this corpus, we build a semantic distributional model that takes
into account temporal information. The last step is to build time series in order to
track how the meaning of a word change over time. These time series are created
by exploiting information extracted from the distributional semantic models. In
the following sub-sections we provide details about each of the aforementioned
steps.

2.1 Corpus Creation

The first step is to create a diachronic corpus starting from data coming from
the web. The web collection under consideration is the JISC UK Web Domain
Dataset (1996–2013) [15] which collects resources from the Internet Archive (IA)
that were hosted on domains ending in .uk, and those that are required in order
to render .uk pages.

The JISC dataset is composed of two parts: (1) the first part contains
resources from 1996 to 2010 for a total size of 32TB; (2) the second one contains
resources from 2011–2013 for a total size of 30TB. The JISC dataset cannot
be made generally available, but can be used to generate secondary datasets.
For that reason we provide the corpus in the form of co-occurrence matrices
extracted from it. The dataset contains resources crawled by the IA Web Group
for different archiving partners, the Web Wide crawls and other miscellaneous
crawls run by IA, as well as data donations from Alexa and other companies or
institutions. So it is impossible to know all the crawling configuration used by
the different partners. However the dataset contains not only HTML pages and
textual resources but also video, images and other types of files.
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The first step of the corpus creation consists in filtering the JISC dataset
in order to extract only the textual resources. For this purpose, we extract the
text from textual resources (e.g. TXT files) and parse HTML pages in order to
extract their textual content. We adopt the jsoup library1 for parsing HTML
pages.

The original dataset stores data in the ARC and WARC formats, which are
standard formats used by the Internet Archive project for storing data crawled
from the web as sequences of content blocks. The WARC format is an enhance-
ment of ARC for supporting metadata, detect duplicate events and more. We
process ARC and WARC archives in order to extract the textual content and
store data in the WET format. WET is a standard format for storing plain text
extracted from in ARC/WARC archives. We transform the original dataset in
the standard WET format which contains only textual resources. The output of
this process provides about 5TB of WET archives.

The second step consists in tokenizing the WET archives in order to produce
a tokenized version of the textual content. We exploit the StandardAnalyzer.2

provided by the Apache Lucene API3 This analyzer provides also a standard list
of English stop words. The size of the tokenized corpus is approximately 3TB.

In the third step, we create co-occurrence matrices, which store co-
occurrences information for each word token. In order to track temporal infor-
mation, we build a co-occurrence matrix for each year from 1996 to 2013. Each
matrix is stored in a compressed text format, one row per token. Each row
reports the target token and the list of tokens co-occurring with it. An example
for the word linux is reported in Fig. 1, which shows that the token swapping
co-occurs 4 times with linux, the word google 173 times, and so on. We extract
co-occurrences taking into account a window of five words to the left and to
the right of the target word. For the construction of co-occurrence matrices, we
exploit only words that occur at least 4,500 times in the dataset. We do not
apply any text processing step such us lemmatization or stemming for two rea-
sons: (1) the idea is to build a language independent tool and (2) in this first
evaluation we want to reduce the number of parameters and focus our attention
on the change point detection strategy. Finally, we obtain a vocabulary of about
one million words and the total size of compressed matrices is about 818GB.

Fig. 1. Co-occurrence matrix

1 https://jsoup.org/.
2 https://lucene.apache.org/core/7 3 1/core/index.html.
3 https://lucene.apache.org/core/.

https://jsoup.org/
https://lucene.apache.org/core/7_3_1/core/index.html
https://lucene.apache.org/core/
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The whole process is described in Fig. 2: WARC/ARC archives are converted
into WET files in order to extract the text and they are tokenized; the tokenized
text is exploited by the Matrix Builder for building the co-occurrence matrices;
matrices are the input for TRI that performs Temporal Random Indexing and
provides a WordSpace for each time period; finally WordSpaces are used to build
time series. The last part of the chart sketches the process used to detect semantic
changepoints (see Sect. 2.2) and the evaluation step described in Sect. 3.

Fig. 2. Flowchart of the whole semantic change detection process.

2.2 Semantic Change Detection

Our method for semantic change detection relies on a previous model based
on Temporal Random Indexing (TRI) [3,4]. In particular, we further develop
the TRI approach in three directions: (1) we improve the system in order to
manage very large datasets, such as the JISC UK Web Domain Dataset; (2)
we introduce a new way to weight terms in order to reduce the impact of very
frequent terms; (3) we introduce new methods for detecting semantic shift from
time series analysis techniques.
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The idea behind TRI is to build different WordSpaces for each time period
under investigation. The peculiarity of TRI is that word vectors over different
time periods are directly comparable because they are built using the same
random vectors. TRI works as follows:

1. Given a corpus C of documents and a vocabulary V of terms4 extracted from
C, the method assigns a random vector ri to each term ti ∈ V . A random
vector is a vector that has values in {−1, 0, 1} and is sparse with few non-
zero elements randomly distributed along its dimensions. The sets of random
vectors assigned to all terms in V are near-orthogonal;

2. The corpus C is split into different time periods Tk using temporal informa-
tion, for example the year of publication;

3. For each period Tk, a WordSpace WSk is built. All the terms of V occurring
in Tk are represented by a semantic vector. The semantic vector svk

i for the
i-th term in Tk is built as the sum of all the random vectors of the terms co-
occurring with ti in Tk. When computing the sum, we apply some weighting
to the random vector. In our case, to reduce the impact of very frequent
terms, we use the following weight:

√
th×Ck

#tki
, where Ck is the total number

of occurrences in Tk and #tki is the occurrences of the term ti in Tk. The
parameter th is set to 0.001.

This way, the semantic vectors across all time periods are comparable since
they are the sum of the same random vectors.

In order to track the words’ meaning change over time, for each term ti
we build a time series Γ (ti). A time series is a sequence of values, one value
for each time period, and it indicates the semantic shift of that term in the
given period. We adopt several strategies for building the time series. The first
strategy is based on term log-frequency; each value in the series is defined as:
Γk(ti) = log(#tki

Ck
).

In order to exploit the ability of our methods in computing vectors similarity
over time periods, we define two strategies for building the time series:

point-wise: Γk(ti) is defined as the cosine similarity between the semantic vec-
tor of ti in the time period k, svk

i , and the semantic vector of ti in the previous
time period, svk−1

i . This way, we aim to capture semantic change between
two time periods;

cumulative: we build a cumulative vector sv
Ck−1
i =

∑k−1
j=0 svj

i and compute
the cosine similarity of this cumulative vector and the vector svki . The idea
behind the cumulative approach is that the semantics of a word at point
k − 1 depends on the semantics of the word in all the previous time periods.
The cumulative vector is the semantic composition of all the previous word
vectors, the composition is performed through the vector sum [20].

Given a time series, we need a method for finding significant changepoints
in the series, which we interpret as indications that semantic change has taken
place. We adopt three strategies:
4 V contains the terms that we want to analyse, typically, the most n frequent terms.
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1. the Mean shift model [26], proposed in [17], defines a mean shift of a general
time series Γ pivoted at time period j as:

K(Γ ) =
1

l − j

l∑
k=j+1

Γk − 1
j

j∑
k=1

Γk (1)

In order to determine if a mean shift is relevant at time j, we adopt a boot-
strapping [10] approach, under the null hypothesis that there is no change
in the mean. In particular, a confidence level is computed by constructing
B bootstrap samples by permuting Γ (ti). Finally, we estimate changepoints
by considering the time points with a confidence value above a predefined
threshold;

2. the valley model, in which any point j that has a value lower than the previous
point j − 1 in the time series is considered a changepoint. The idea is that
if we observe a decrease in the similarity between the semantic vector of a
word at a given point in time and the semantic vector of the same word in the
previous time point, then this indicates that the word’s semantics is changing;

3. the variance model, in which the difference between the value in the time
series at a point j and the value at the point j − 1 is compared with the
variance of the time series; when the difference is higher than one, two or
four times the variance, the point is considered a changepoint.

2.3 System Output and Neighborhood Analysis

The system’s output consists of lists of candidate words which are predicted to
have undergone semantic change, together with the year in which this change is
predicted to have happened. In addition, for each candidate, we can extract its
corpus neighbours, defined as the top n words whose semantic vectors have the
highest cosine similarity with the vector of the candidate word.

To take an example, our system considered blackberry as a candidate for
semantic change, with three changepoints, in the years 1998, 2007, and 2009. The
original sense of blackberry refers to the “edible berry-like fruit of the bramble,
Rubus fruticosus”, the “The trailing plant Rubus fruticosus”, and “Any of various
other dark-coloured edible berries”, according to the OED. However, a more
recent sense emerged in 1999, defined in the OED as “A proprietary name for: a
type of pager or smartphone capable of sending and receiving email messages”.

If we look at the top 20 neighbours of blackberry in 1999 extracted by TRI
from the UK Web Archive JISC dataset 1996–2013 corpus, we see that the
majority of them are words related to original sense (highlighted in bold face
the list below), either as collocates (like pie) or as distributionally similar nouns
to blackberry (like strawberry):

cherry, berries, strawberry, blossom, pie, blueberry, blackcurrant, brierley,

pudding, beacon, red, raspberry, hill, lion, mill, green, chestnut, brick, ripe, scent
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On the other hand, the top 20 corpus neighbours of blackberry in 2003 include
some words from the domain of mobile phones, highlighted in bold face below5:

blueberry, plum, phones, cellphones, handsets, loganberry, ripe, strawberry, devices,

orange, phone, currant, gooseberry, gprs, wings, blackcurrant, damson, bluetooth,

berries, blackberries

By 2004, the majority of corpus neighbours of blackberry involve words related
to mobile phones, indicating that this has become the predominant sense of the
word in the corpus, as shown by the following list of top 20 neighbours in 2004:

handspring, handsets, tmobile, justphones, nec, handset, payg, tarriffs, lg,

cellphones, pickamobile, phonesnokia, prepay, sim, tariffs, phones, phoneid,

findaphone, mobilechooser, unlock

The system’s output lists contain several thousand candidates, a set which is
too large to assess by hand. Therefore, we devised a novel automatic evaluation
framework, outlined in the next section.

3 Evaluation

There is no general framework for evaluating the accuracy of semantic change
detection systems. Previous work has evaluated semantic change systems either
indirectly via their performance on related tasks (e.g. [11]), or via a small-scale
qualitative analysis (e.g. [13]). In order to measure how well our system achieves
the intended aim to identify words that have changed their meaning over the
time covered by the UK Web Archive JISC dataset 1996–2013, we developed
a novel evaluation framework. We evaluated our semantic change system and a
baseline system against a dictionary-based gold standard. In the baseline system,
we used a time series consisting of the frequency counts of each word form in
the corpus. The evaluation of this baseline was aimed to detect any contribution
given by the cosine similarity scores and TRI in our system.

We used the data from the Oxford English dictionary (OED) API as gold
standard. The OED contains a diachronic record of the semantics of the words
in the English lexicon. Each entry corresponds to a lemma and part-of-speech
pair, and contains the list of its senses, each with a definition, the year when
each sense was first recorded in writing, a corresponding quotation, following
optionally more dated quotations which illustrate the use of the word with that
sense at different points in time.

5 We did not highlight orange in the list because in this context it could refer to the
fruit, in which case it would be related to the fruit sense of blackberry, or to the
mobile phone company, in which case it would be related to the cellphone sense of
blackberry.
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We performed the evaluation of each system in two steps. First, we calculated
the accuracy of the semantic changepoint detection component, with the aim to
measure how well the system detected semantic change candidates at the correct
point in time. For each semantic change candidate outputted by each system, we
checked that it appeared in the OED with a first usage dated from 1995 or later6.
If this was not the case, we excluded the candidate word and the changepoint
year from the analysis, as we were not able to assess whether the word changed
meaning in the time span under consideration. We also only considered words
that had a frequency of at least 100 in the corpus. We compared the changepoint
year of semantic change according to our system with the year when the sense
was first recorded according to the OED. The candidate and its changepoint
were considered correct if the changepoint year was no earlier than the year
when it was first recorded according to the OED. For example, the OED records
the first usage of the verb follow with the transitive meaning of “To track the
activities or postings of (a person, group, etc.) by subscribing to their account
on a social media website or application.”, and dates it from 2007. Our system
suggested follow as a candidate for semantic change, with a changepoint in 2009.
According to our evaluation approach, this counted as a correct candidate.

The results of the first evaluation step are summarized in Table 1. Seman-
tic change detection is a very difficult task, especially when measured against a
highly-curated resource like the OED, which relies on an evidence basis that is
much broader in scope compared to the UK Web Archive. Therefore, it is not
surprising that the precision scores are low. Of the several tens of thousands
candidates outputted by our system or the baseline, only less than 400 were cor-
rect, in all configurations of the parameters. The precision scores range between
0.003 and 0.005. Given that the number of words in the gold standard is 462,
the recall scores range between 0.104 and 0.849, with the highest score being
associated to the point-wise and cumulative time series and the valley model
for changepoint detection. It is important to note that methods reporting the
highest recall (cumulative/valley and point-wise/valley) provide a high number
of candidates (about 77,515) but these represent only the 7.7% of the whole
dictionary exploited by our system (about one million). Overall, we can say
that the valley model for changepoint detection yields the highest recall scores
and outperforms the mean shift model and the variance model, and that the
system with cumulative and pointwise time series outperforms the system with
frequency-based time series (baseline). We are not able to provide a comparison
with methods based on word embeddings due to the difficult to scale-up these
approaches on our large corpus. We plan to perform this comparison as future
work.

For the second evaluation step, we focussed on the candidates that were con-
sidered correct according to the method explained above. For those candidates,

6 As the earliest texts in the corpus date from 1996, we allowed for a one-year buffer
between this date and the date of first usage according to the OED, under the
assumption that a sense first recorded in the OED in 1995 could be recorded with
sufficient evidence in our corpus at least one year later.
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Table 1. Summary of evaluation metrics of our systems and the baseline against the
gold standard (OED). The first column details the time series construction type; the
second column details the changepoint detection approach. The variance approach is
followed by a numeric parameter: ‘Variance 1’ means that the changepoint is identified
when the difference between the value in the time series at a point j and the value at
the point j − 1 is higher than the variance of the time series; ‘Variance 2’ means that
the changepoint is identified when the difference between the value in the time series
at a point j and the value at the point j − 1 is higher than twice the variance of the
time series.

System Changepoint # correct Candidates Precision Recall F1-score

Baseline Mean shift 76 14,176 0.005 0.165 0.010

Baseline Valley 378 77,493 0.005 0.818 0.010

Baseline Variance 1 0 145 0 0 0

Baseline Variance 2 0 52 0 0 0

Cumulative Mean shift 48 15,266 0.003 0.104 0.006

Cumulative Valley 392 77,515 0.005 0.848 0.010

Cumulative Variance 1 165 47,389 0.003 0.357 0.007

Cumulative Variance 2 56 14,452 0.004 0.121 0.008

Point-wise Mean shift 74 23,855 0.003 0.161 0.006

Point-wise Valley 392 77,515 0.005 0.848 0.010

Point-wise Variance 1 382 76,061 0.005 0.827 0.010

Point-wise Variance 2 340 69,492 0.005 0.736 0.010

we measured the accuracy of the output from the point of view of their seman-
tics. In other words, we checked that the new meanings of the correct candidate
words identified by the system corresponded to the new meanings as recorded in
the gold standard. For each semantic change candidate word (and corresponding
changepoint year) which was considered correct according to the approach illus-
trated above, we assessed how closely the new meaning of the candidate matched
the senses in the OED first recorded after 1995. We measured this by collecting
two sets of words. For the first set, we approximated the semantics of the new
meaning as detected by the system with the 100 closest corpus neighbours to the
candidate word, measuring proximity between words with the cosine distance.
For the second set, we approximated the semantics of the OED senses with a bag-
of-words approach. We pre-processed all words appearing in the definition and
quotation text of each OED sense by stemming and lower-casing them. Then,
we compared the two sets by calculating their Jaccard index, defined as the ratio
between the number of elements in the intersection between the two sets, and
the number of elements in the union of the two sets. Finally, we extracted the
rank of each sense by according to the Jaccard index with the corpus neighbours
(in decreasing order), and reported the rank of the correct candidate as an eval-
uation measure. For this evaluation, we focussed on the best-performing models
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according to the recall measure, as precision scores were low in all cases. These
models involved collecting the time series with the pointwise and cumulative
methods, and calculating the changepoint with the valley method and led to the
highest recall score of 0.848.

Let us take the example of mobile, which the system predicted changed its
meaning in 2000. Mobile has two post-1995 senses in the OED, the first is first
recorded in 1998, and the second is first recorded in 1999. Their definitions from
the OED are, respectively:

1. A person’s mobile phone number; cf. mobile phone number n.
2. As a mass noun. Mobile phone technology, networks, etc., esp. considered as

a means to access the Internet; the Internet as accessed from mobile phones,
tablet computers, and other portable wireless devices. Frequently with on,
over, via, etc.

The top 20 corpus neighbours for mobile in 2000 include the words phones,
phone, connected, devices, which are shared with the OED definition and quo-
tation of the second sense.

Table 2 shows the results of the neighbourhood-based evaluation on the
best performing models according to recall scores. Although the Jaccard indices
between the corpus neighbours of the candidates and the bag-of-words from the
OED definition and quotation texts are usually very low, with an average of only
0.008, when we matched the semantics of the candidates (as measured by their
top 100 corpus neighbours) with the OED senses first recorded after 1995, we
found that the OED senses corresponding to the model’s candidates (i.e. those
OED senses whose first usage was no later than the candidates’ changepoints)
tended to be ranked first. This indicates that the models are accurate not only at
spotting the correct changepoint for a word, but also its new semantic features.

Table 2. Results of the neighbourhood-based evaluation on the two models with high-
est recall scores. The third column shows the average rank of the matching OED senses
of the candidates. The fourth column shows the average number of OED senses included
in the ranking. The fifth column shows the average rank of the matching OED senses
excluding the cases in which there is only one OED sense for the candidates. The last
column shows the average number of OED senses included in the ranking, excluding
the cases in which there is only one OED sense for the candidates. The ranking is
based on the Jaccard index between the corpus neighbours of the candidate and the
bag-of-words of the OED definition and quotation text.

System Changepoint Av. rank Av. OED senses Av. rank (>1 sense) # OED senses (>1)

Cumulative Valley 1.206 1.336 1.811 2.324

Point-wise Valley 1.206 1.332 1.799 2.290



Exploiting the Web for Semantic Change Detection 205

In conclusion, analyzing the results we can notice that both cumulative and
point-wise methods are able to overcome the baseline even though generally the
precision is low due to the task difficulty. Evaluating semantic shift detection
approaches is an open challenge, and researchers often rely on self-created test
sets, or even simply manually inspecting the results. Moreover, our approach is
able to correctly identify the semantics of the change according to the definition
in the dictionary. We believe that this is the first work that tries to systematically
analyze the semantic aspect of the changepoint.

4 Related Work

Over the past decade, semantic change detection has been an emerging research
area within NLP, and a variety of different approaches have been developed.
Recent surveys on the current state of the art in this field have also been produced
[18,24].

A significant portion of the research in this area has focused on detecting
semantic change in diachronic corpora spanning over several centuries [9,11,12,
14,27,28]. One of the most commonly used corpora is the multilingual Google
Books N-gram Corpus [19], which covers the last five centuries and contains the
N-grams from texts of over 6% of books ever published. Other researchers have
used the 1800–1999 portion of this dataset, which consists of 8.5 ∗ 1011 tokens
[13].

A smaller set of previous studies focus on the more difficult task of detect-
ing semantic change over a shorter time period, and use corpora which cover
relatively short spans. Examples include a corpus consisting of articles from
the New York Times published between 1990 and 2016 [29], a corpus based on
the issues of the Chinese newspaper “People’s Daily” from 1946 to 2004 [25],
the British National Corpus (100 million words, 1990s) [7], and data from the
French newspaper “Le Monde” between 1997 and 2007 [6].

Concerning the methods employed, previous work includes a range of meth-
ods, from neural models to Bayesian learning [11] to various algorithms for
dynamic topic modeling [5]. A significant part of the literature employ meth-
ods based on word embeddings [9,13]. Very recently, dynamic embeddings have
been shown as an improvement over using classical static embeddings for the
task of semantic change detection [1,21]. In this method, embedding vectors are
inferred for each time period and a joint model is trained over all intervals, while
simultaneously allowing word and context vectors to drift.

All previous works based on word embeddings have in common the fact that
they build a different semantic space for each period taken into consideration;
this approach does not guarantee that each dimension bears the same semantics
in different spaces [16], especially when embedding techniques are employed. In
order to overcome this limitation, Jurgens and Stevens [16] introduced Temporal
Random Indexing technique as a means to discover semantic changes associated
to different events in a blog stream. Our methodology relies on the technique
introduced by Jurgens and Stevens, but with a different aim. While Jurgens and
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Stevens exploit TRI for the specific task of event detection, we setup a framework
for semantic change detection relying on previous studies where TRI was applied
on collection of Italian books, English scientific papers [3] and the Italian version
of the Google N-gram dataset [2]. Moreover, it is important to stress that word
embeddings techniques are based on word/context prediction that requires a
learning step. On the other hand, TRI is based on counting words in context
that is less computationally expensive and allows to scale up the method on a
large Web collection.

5 Conclusions

In this work, we proposed several methods based on Temporal Random Indexing
(TRI) for detecting semantic changepoints in the Web. We built a diachronic
corpus exploiting the JISC UK Web Archive Dataset (1996–2013) which collects
resources from the Internet Archive (IA) that were hosted on domains ending in
.uk. We extracted about 5TB of textual data and we performed a preliminary
evaluation using the Oxford English Dictionary (OED) as the gold standard.
Results show that methods based on TRI are able to overcome baselines based
on word occurrences, however, we obtain low precision due to a large number of
detected changepoints. Moreover, for the first time, we propose a systematical
approach for evaluating the semantics of detected changepoints by using both
the neighborhood and the word meaning definition extracted from the OED.
The precision of our model is low, which can be explained by several factors.
First, the evaluation was based on an external resource, the OED, which relies
on different data sources compared to web pages. This means that a semantic
change recorded by our system is likely not to be necessarily reflected in the OED.
Second, the task of semantic change detection is very hard, and our contribution
is the first one to provide an evaluation based on a dictionary, so low precision
values are not surprising. On the other hand, recall reaches a maximum value
of 84%, which we consider an encouraging result. Overall, the results we report
show that our approach is not only able to detect the correct time period, but
also it is able to capture the correct semantics associated with the changepoint.
As future work we plan to investigate other time series approaches for reducing
the number of detected changepoints with the aim of increasing the precision.
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Abstract. Ensemble models have been proven successful for batch
recommendation algorithms, however they have not been well studied
in streaming applications. Such applications typically use incremental
learning, to which standard ensemble techniques are not trivially appli-
cable. In this paper, we study the application of three variants of online
gradient boosting to top-N recommendation tasks with implicit data, in
a streaming data environment. Weak models are built using a simple
incremental matrix factorization algorithm for implicit feedback. Our
results show a significant improvement of up to 40% over the baseline
standalone model. We also show that the overhead of running multiple
weak models is easily manageable in stream-based applications.

Keywords: Recommender systems · Boosting · Online learning
Data streams

1 Introduction

The increasing amount and rate of data that is generated in modern online sys-
tems is overwhelming. The demand for techniques and algorithms that allow
the timely extraction of knowledge is clearly increasing. However some of the
most popular data analysis techniques rely on batch data processing, and are
not suitable for continuous flows of data. Ensemble learning is a popular tech-
nique to improve the accuracy of machine learning algorithms. Although valuable
contributions have been made in online ensemble learning for classification and
regression problems, there is few work available in the literature that studies
online ensembles for recommender systems. In this paper, we propose online
boosting for incremental recommendation algorithms.

We focus on a top-N recommendation task with implicit feedback streams.
The data stream consists of a continuous flow of user-item pairs (u, i) that indi-
cate a positive preference of user u for item i. The top-N recommendation task
consists of presenting a ranked list of arbitrary size N to any known user u with
the items that are more likely to match her preferences.
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Algorithms that deal with this problem setting must fulfill the following two
requirements:

– Online learning: ability to maintain models with fast incremental updates;
– Implicit data processing: ability to learn from implicit feedback;

In [21] we propose ISGD, a fast incremental matrix factorization algorithm
that we see especially well adjusted for online ensemble learning. In addition to
fulfilling the above two requirements, it is highly competitive in terms of accu-
racy and at least one order of magnitude faster than its alternatives, making it
naturally suitable for online ensemble learning. ISGD relies on stochastic gradi-
ent descent to learn a model from a stream of (u, i) pairs. This model is able
to predict a numeric score for any (u, i) pair using a regression approach. These
scores are then used to produce a personalised ranking of items for each user. In
an ensemble, scores can be aggregated across its members. The item ranking is
produced according to this aggregated score.

We evaluate if online boosting approaches designed for regression problems
are able to improve the accuracy of recommender systems in top-N recommen-
dation tasks. To our best knowledge this is the first work to use online boosting
in recommendation problems.

1.1 Boosting in Machine Learning

Boosting is a convenient ensemble method to improve the predictive ability of
machine learning algorithms. It is designed as a stagewise additive model where
each base learner – or weak learner – tries to correct for the deficiencies of the
previous one. Aggregating the contributions of all weak learners, we obtain a
strong learner.

There are fundamentally two approaches to boosting. The first is proposed
in [8] in the Adaboost algorithm. This algorithm works by re-weighting data
points according to their classification error. If an example is misclassified by a
weak learner, its weight is increased, otherwise, it is decreased. The following
weak learner will then put relatively more effort on misclassified examples, and
less effort on the correctly classified ones. Adaboost is proposed for binary clas-
sification. To use it with multi-class classification or regression, it is necessary
to recast the original problem as binary classification.

The second approach is proposed in [9] with Stochastic Gradient Boosting.
It directly tackles regression using an optimization framework. The first weak
learner tries to learn the original values of the target variable, and every sub-
sequent weak learner targets the residuals of the previous one. Predictions are
obtained by summing the predictions of all weak models. This approach is nat-
urally suitable for regression, but it can also be used for classification, e.g. using
logistic regression.
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1.2 Related Work

Bagging [4], Boosting [8] and Stacking [24] are three well-known ensemble meth-
ods used with recommendation algorithms. In the field of recommender systems
all three technique have been studied in the past. Boosting is experimented by
[7,14,18,19], bagging is studied also by [14,19], and stacking by [20]. In all of
these contributions, ensemble methods work with batch learning algorithms only.
In this paper, we aim to build a boosting model online, over a data stream, so
we need stream-based methods.

Stream-based ensemble learning has been widely studied in classification and
regression. The Random Forest algorithm [5] is a widely known ensemble model
that has been successfully used in data stream mining [10]. Several online algo-
rithms have been proposed for bagging [2,3,17] and boosting [1,3,6,13,16,17].
Two up-to-date comprehensive surveys on ensemble methods for classification
and regression over data streams are available in [12,15].

We have recently proposed online bagging for recommendation problems in
[22]. To our best knowledge, this is the only available work in the literature on
online ensemble learning for recommendation. In this paper, we use a similar
approach to study online boosting for top-N recommendation.

2 Online Boosting

An online version of Adaboost is proposed by Oza and Russel in [17]. However,
this is primarily designed for binary classification. To tackle our problem (see
Sect. 1), an approach for regression is more suitable. In [1,13], online gradi-
ent boosting algorithms for regression are proposed – respectively Algorithms 1
and 2.

Algorithm 1: OBoostH - Hu’s Online Gradient Boosting
Data: stream D = {(x1, y1), (x2, y2), . . .}
input : no. weak models M , learn rate γ

for (x, y) ∈ D do
ŷ ← 0
ỹ ← y
δ ← 0
for m ← 1 to M do

ŷ ← ŷ − γŷm

ỹ ← L(ŷ, ỹ)
Pass (x, δ + ỹ) to weak model m
δ ← δ + ỹ − ŷ

In both algorithms, we maintain the pseudo-residuals ỹ through the iterations
over the M weak models. In the first iteration the corresponding model learns
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Algorithm 2: OBoostB - Beygelzimer’s Online Gradient Boosting
Data: stream D = {(x1, y1), (x2, y2), . . .}
input : no. weak models M , learn rate γ

for m ← 1 to M do
σm ← 0

for (x, y) ∈ D do
ŷ ← 0
ỹ ← y
for m ← 1 to M do

ŷ ← (1 − σm)ŷ + γŷm

Get loss ỹ ← L(ŷ, ỹ)
Pass (x, ỹ) to weak model m with lear rate γ
Update σm with online gradient descent

the target ỹ = y, very much like a standalone model would do. In subsequent
iterations, the pseudo-residual is set to the outcome of a loss function, so the
corresponding model learns the residual of the previous one.

There are two main differences between both algorithms. Algorithm 2 option-
ally uses of a set of M dynamically updated shrinkage factors σm that force the
partial values of ŷ to follow the gradient of the loss function. Algorithm 1 keeps
track of the overall residual δ of the ensemble, and adds it to the partial residuals
ỹ at the learning step.

2.1 Online Boosting for Recommendation

Both [1,13] show that online boosting is able to outperform standalone models
in standard regression problems. However, it is impossible to extrapolate those
results to top-N recommendation problems for three main reasons.

First, recommendation is fundamentally different from regression. At most, in
our problem setting, we can look at the recommendation model as a multiplicity
of regression problems – one for each user, or one for each item, depending on
the viewpoint – that are jointly learned from a stream of user-item relations.

Second, the top-N recommendation problem involves ranking items for each
user. The accuracy of the model is not measured directly by the success in
minimizing the objective function, but rather by evaluating the actual recom-
mendation lists, which naturally adds a degree of separation.

Finally, gradient boosting models for regression are typically built using weak
models. The term weak is used because these models are only required to be bet-
ter than random guessing. In our problem, we are using an algorithm that is able
to achieve good results on its own, as shown in [21], obviously much better than
random guessing. Since it has been shown in the past that boosting applied to
strong learners is frequently non-productive or even counter-productive [23], we
need to assess whether ISGD has room for improvement in a boosting framework.

Our base algorithm is ISGD [21], a simple online matrix factorization method
for implicit positive-only data. It is designed for streams of user-item pairs (u, i)
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that indicate a positive interaction between user u and item i. Examples of
positive interactions are users buying items in an online store, streaming music
tracks from an online music streaming service, or simply visiting web pages. This
is a much more widely available form of user feedback, than for example, ratings
data, which is only available from systems in which users are allowed to rate
items (e.g. in a 5 star scale). Matrix factorization for implicit data works by
decomposing a user-item matrix R in two latent factor matrices Pu×z and Qi×z

that span u known users and i known items respectively, in z common latent
features, such that:

rui ≈ r̂ui = puqTi (1)

We assume the value rui = 1 for each positive interaction – i.e. each user-item
pair (u, i) occurring in the data – and rui = 0 otherwise. The decomposition is
obtained by minimizing the squared error between 1 and r̂ui (2) for all known
examples in a data stream D. Note that rui = 1 iff (u, i) ∈ D.

min
P.,Q.

∑

(u,i)∈D

(1 − puqTi )2 + λ(||pu||2 + ||qi||2) (2)

Algorithm 3: ISGD
Data: stream D = {(u, i)1, (u, i)2, . . .}
input : latent features z, iterations iter, regularization λ, learn rate η
output: factor matrices P and Q

for (u, i) ∈ D do
if u �∈ Rows(P ) then

pu ← Vector(size : z)
pu ∼ N (0, 0.1)

if i �∈ Rows(Q) then
qi ← Vector(size : z)
qi ∼ N (0, 0.1)

for n ← 1 to iter do
εui ← 1 − puqTi
pu ← pu + η(εuiqi − λpu)
qi ← qi + η(εuipu − λqi)

In (2), the regularization term λ(||pu||2 + ||qi||2) penalizes overly complex
models that tend to overfit. The hyperparameter λ controls the amount of reg-
ularization.

ISGD – Algorithm 3 – uses Stochastic Gradient Descent to solve (2). The
algorithm continuously updates factor matrices P and Q, correcting the model
to fit to the incoming user-item pairs. If (u, i) occurs in the stream, then the
model prediction r̂ui = puqTi should be close to 1. Top-N recommendations to
any user u is obtained by a ranking function f = |1 − r̂ui| for all items i in
ascending order, and taking the top N items.
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Applying Algorithms 1 and 2 to ISGD, we obtain Algorithms 5 and 4, respec-
tively. In both algorithms, we calculate the subgradients based on the square loss.
Note that for ISGD to work within a boosting framework, we need to allow it
to receive arbitrary target values ỹ for training, instead of a fixed value 1.

Algorithm 4: OBoostH with ISGD
Data: stream D = {(u, i)1, (u, i)2, . . .}
input : latent features z, iterations iter, regularization λ, learn rate η, no.

nodes M , boosting learn rate γ
output: set of factor matrices P 1..M and Q1..M

for (u, i) ∈ D do
ŷ ← 0, ỹ ← 1, δ ← 0
for m ← 1 to M do

if u �∈ Rows(Pm) then
pm
u ← Vector(size : z)

pm
u ∼ N (0, 0.1)

if i �∈ Rows(Qm) then
qmi ← Vector(size : z)
qmi ∼ N (0, 0.1)

ŷ ← ŷ + γpm
u (qmi )T

for n ← 1 to iter do
εui ← δ + ỹ − pm

u (qmi )T

pm
u ← pm

u + η(εuiq
m
i − λpm

u )
qmi ← qmi + η(εuip

m
u − λqmi )

δ ← δ + ỹ − ŷ
ỹ ← ỹ − ŷ

To score a new (u, i) pair in the stream, we simply aggregate the contributions
from the weak models, scaled by the boosting learn rate γ:

r̂ui = γ
M∑

m=1

pmu (qmi )T (3)

3 Evaluation

In our experimental work we wish to assess if online boosting is able to improve
over the baseline ISGD. We also wish to compare between several alternatives:

– OBoostH - Algorithm 4;
– OBoostB1 - Algorithm 5 with adaptive shrinkage factor;
– OBoostB2 - Algorithm 5 without shrinkage – i.e. σ = 0.
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Algorithm 5: OBoostB with ISGD
Data: stream D = {(u, i)1, (u, i)2, . . .}
input : latent features z, iterations iter, regularization λ, learn rate η, no.

nodes M , boosting learn rate γ
output: set of factor matrices P 1..M and Q1..M

for m ← 1 to M do
σm ← 0

for (u, i) ∈ D do
ŷ ← 0, ỹ ← 1
for m ← 1 to M do

if u �∈ Rows(Pm) then
pm
u ← Vector(size : z)

pm
u ∼ N (0, 0.1)

if i �∈ Rows(Qm) then
qmi ← Vector(size : z)
qmi ∼ N (0, 0.1)

ŷ ← (1 − σmγ)ŷ + γpm
u (qmi )T

for n ← 1 to iter do
εui ← ỹ − pm

u (qmi )T

pm
u ← pm

u + η(εuiq
m
i − λpm

u )
qmi ← qmi + η(εuip

m
u − λqmi )

ỹ ← ỹ − ŷ

σm ← σm + ỹ·ŷ√
|D|

3.1 Datasets

To simulate a streaming environment we need datasets that maintain the natural
order of the data points, as they were generated. We use 4 implicit preference
datasets with naturally ordered events, described in Table 1. ML1M is based on
the Movielens-1M movie rating dataset1. To obtain the YHM-6KU, we sample
6000 users randomly from the Yahoo! Music dataset2. LFM-50U is a subset
consisting of a random sample of 50 users taken from the Last.fm3 dataset4.
PLC-STR 5 consists of the music streaming history taken from Palco Principal6,
a portuguese social network for non-mainstream artists and fans.

All of the 4 datasets consist of a chronologically ordered sequence of positive
user-item interactions. However, ML1M and YHM-50U are obtained from ratings
datasets. To use them as positive-only data, we retain the user-item pairs for
which the rating is in the top 20% of the rating scale. This means retaining only
the rating 5 in ML1M and rating of 80 or more in the YHM-6KU dataset.

1 http://www.grouplens.org/data [Jan 2013].
2 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r [Jan 2013].
3 http://last.fm/.
4 http://ocelma.net/MusicRecommendationDataset [Jan 2013].
5 https://rdm.inesctec.pt/dataset/cs-2017-003, file: playlisted tracks.tsv.
6 http://www.palcoprincipal.com/.

http://www.grouplens.org/data
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://last.fm/
http://ocelma.net/MusicRecommendationDataset
https://rdm.inesctec.pt/dataset/cs-2017-003
http://www.palcoprincipal.com/
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Table 1. Dataset description

Dataset Events Users Items Sparsity

PLC-STR 588 851 7 580 30 092 99.74%

LFM-50U 1 121 520 50 159 208 85.91%

YHM-6KU 476 886 6 000 127 448 99.94%

ML1M 226 310 6 014 3 232 98.84%

Fig. 1. Prequential evaluation

3.2 Prequential Evaluation

We run a set of experiments using prequential evaluation [11] as described in
[21]. For each incoming observation in the stream, we make a prediction with our
current model and score that prediction matching it to the actual observation.
Then we update the model with the observation and advance to the following
example. Statistics on the scores can be maintained, for example, using a sliding
window or a fading factor. The prequential process is depicted in Fig. 1.

In our recommendation environment, each observation in the dataset consists
of a simple user-item pair (u, i) that indicates a positive interaction between user
u and item i. The following steps are performed in the prequential evaluation
process:

1. If u is a known user, use the current model to recommend a list of items to
u, otherwise go to step 3;

2. Score the recommended list given the observed item i;
3. Update the model with (u, i);
4. Proceed to the next observation

We use the Hit Ratio at cutoffs N ∈ {1, 10, 20} – denoted as HR@N . This is
obtained by recommending a list of the N best items found by the algorithm to
user u at step 1 of the prequential process. Then in step 2, we score the list with
1 if the item i is within the list, and 0 otherwise. The hit ratio is obtained by
averaging the scores. This can be done at the end of the experiment, or online,
using a moving average.
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Table 2. Average hit rate of baseline and boosted ISGD with M ∈ {2, 4, 8, 16, 32}. The
first line of each dataset shows the results for the baseline ISGD (without boosting).

Dataset M HR@1 HR@10 HR@20

OBoostHOBoostB1OBoostB2OBoostHOBoostB1OBoostB2OBoostHOBoostB1OBoostB2

PLC-STR ISGD 0.133 0.278 0.304

2 0.134 0.125 0.139 0.302 0.307 0.260 0.331 0.340 0.324

4 0.097 0.085 0.117 0.286 0.249 0.319 0.336 0.294 0.357

8 0.101 0.100 0.122 0.292 0.317 0.335 0.340 0.366 0.377

16 0.099 0.093 0.119 0.285 0.299 0.336 0.336 0.352 0.381

32 0.093 0.098 0.094 0.278 0.306 0.248 0.330 0.360 0.281

LFM-50U ISGD 0.032 0.048 0.050

2 0.035 0.035 0.035 0.053 0.054 0.052 0.055 0.057 0.054

4 0.035 0.033 0.036 0.053 0.061 0.058 0.055 0.064 0.061

8 0.035 0.032 0.038 0.053 0.062 0.064 0.055 0.066 0.067

16 0.035 0.033 0.038 0.053 0.064 0.065 0.055 0.067 0.068

32 0.035 0.035 0.033 0.053 0.065 0.060 0.055 0.068 0.063

YHM-6KUISGD 0.032 0.089 0.112

2 0.035 0.035 0.035 0.099 0.102 0.096 0.124 0.127 0.120

4 0.017 0.024 0.036 0.056 0.099 0.110 0.074 0.132 0.137

8 0.018 0.020 0.035 0.056 0.099 0.120 0.073 0.132 0.151

16 0.018 0.019 0.034 0.056 0.091 0.124 0.073 0.121 0.156

32 0.017 0.011 0.031 0.056 0.039 0.112 0.074 0.047 0.141

ML1M ISGD 0.006 0.033 0.050

2 0.006 0.007 0.007 0.037 0.038 0.035 0.057 0.059 0.054

4 0.006 0.005 0.006 0.040 0.036 0.041 0.063 0.059 0.065

8 0.006 0.005 0.006 0.040 0.040 0.043 0.064 0.065 0.070

16 0.006 0.005 0.006 0.040 0.040 0.044 0.064 0.066 0.071

32 0.006 0.006 0.005 0.040 0.042 0.034 0.064 0.069 0.053

Hyperparameters for the base algorithm were obtained using a grid search
over the first 10% of the data in each dataset using prequential evaluation. The
optimal hyperparameters found for the four datasets are presented in Table 4.

3.3 Overall Results

Table 2 presents all results from our experiments. Values in Table 2 are obtained
by averaging hit rate obtained at all prequential evaluation steps. Results that
are significantly better than standalone ISGD are highlighted in italic. To assess
the significance of the differences we use the signed McNemar test over a sliding
window with size n = 10000. Given that this is an online learning process, the
significance of the differences between algorithms can vary during the learning
process.

We also present a graphical overview of the relative improvement in HR@20
of the three variants of boosting with respect to the standalone version of ISGD
in Fig. 2 (a) through (d).

By observing the plots, the most obvious observation is that in the majority
of cases boosting substantially improves the accuracy of the top-N recommenda-
tion task, with improvements up to 40% over the baseline with the YHM-6KU
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Table 3. Average update and recommendation time of baseline and boosted ISGD
with M ∈ {2, 4, 8, 16, 32}. The first line of each dataset shows the times for the baseline
ISGD (without boosting).

Dataset M Update time (ms) Rec. time (ms)

OBoostH OBoostB1 OBoostB2 OBoostH OBoostB1 OBoostB2

PLC-STR ISGD 0.3 19

2 0.8 0.6 0.5 40 35 32

4 1.5 1.0 0.8 75 55 51

8 2.8 2.2 1.9 147 108 97

16 5.7 5.1 4.7 302 274 236

32 10.5 9.7 9.1 593 531 489

LFM-50U ISGD 2.7 84

2 7.5 6.4 6.1 231 208 200

4 16.1 13.7 12.0 428 386 360

8 28.9 25.6 23.1 808 726 689

16 54.3 58.8 52.3 1.5 s 1.5 s 1.4 s

32 104.1 110.6 104.4 2.9 s 3.1 s 2.8 s

YHM-6KU ISGD 2.7 85

2 13.8 12.1 11.3 220 200 186

4 29.2 26.6 24.5 413 379 361

8 52.5 56.4 52.0 758 740 729

16 100.4 107.7 103.2 1.4 s 1.5 s 1.5 s

32 194.0 208.3 203.2 2.8 s 3.0 s 2.9 s

ML1M ISGD 0.2 5

2 0.5 0.3 0.3 9 8 8

4 1.0 0.5 0.4 18 13 11

8 1.8 1.1 0.9 35 27 25

16 3.3 2.1 2.0 76 54 50

32 6.4 4.2 3.8 149 108 87

Table 4. Hyperparameter settings for ISGD

Dataset z iter η λ

PLC-STR 200 6 0.35 0.5

LFM-50U 160 4 0.5 0.4

YHM-6KU 200 9 0.25 0.45

ML1M 160 8 0.1 0.4

dataset. This is obtained using OBoostB2, with fixed parameters σm = 0. Shrink-
age seems to help in same cases and hurt in others. For example, comparing Fig. 2
(a) and (c), we see that shrinkage helps in the first case – with PLC-STR –, but
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(a) PLC-STR (b) LFM-50U

(c) YHM-6KU - trunkated bar value is
-54%

(d) ML1M

Fig. 2. Improvements obtained in HR@20 with respect to standalone ISGD

heavily hurts in the second, with YHM-6KU. OboostB1 and OBoostB2 yield the
best results. OBoostH has the most inconsistent outcome: it has the capability
of improving more than 10% over the baseline in PLC-STR and ML1M – Fig. 2
(a) and (d) –, however it is counter-productive with YHM-6KU – Fig. 2 (c).

Increasing the number of weak models is beneficial up to a certain point. In
several cases, we see a degradation when increasing the number of base models
from 16 to 32. However, this phenomenon is not consistent across datasets and
algorithms. OBoostH does not benefit much from a large number of models.
Increasing from M = 8 to M = 16 or M = 32 barely has noticeable impact.

Another interesting observation is that ensembles with only 2 base models
are able to outperform the standalone version by up to 10%. By continuously
doubling the number of weak models, the gain in accuracy, if any, is not pro-
portional to the additional effort of maintaining a twice as many models. This
behavior is similar to online bagging [22], but much less consistent.

The lack of consistency in results may be caused by a number of factors,
including local minima, noise and even overfitting to local phenomena, such as
concept drifts. Another possible cause is the fact that ISGD is already a strong
learner.
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In Table 3 we present the average update and recommendation times for
each algorithm in each dataset. One downside of boosting with respect to other
ensemble alternatives such as bagging, is that training cannot be trivially par-
allelized, given its stage-wise nature, where every weak model learns from the
outcome of the previous one. However, although the time overhead grows lin-
early with the number of weak models – expectedly –, update times are easily
manageable, since ISGD already has fast updates. The overhead at recommen-
dation is much more relevant and can be problematic in applications with strict
requirements.

Fig. 3. Prequential outcome of HR@20 with M = 16 over a sliding with size n = 10000.

3.4 Evolving Results

To have a better insight into the learning process, we also depict it using a
moving average of the collected hit ration over a sliding window in Fig. 3. This
visualization is useful because overall average results hide the evolution of the
process, that may considerably vary over time. In this case, the evolution of the
learning process of alternative methods is steadily consistent with the overall
results shown in Table 2.

3.5 Statistical Significance

Although differences in Figs. 2 and 3 are clearly visible, there is no guarantee
about their statistical significance. To assess this, we use the signed McNemar
test over a sliding window as described in [21].
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Fig. 4. Statistical significance with McNemar for HR@20 with M = 16 over a sliding
with size n = 10000.

Given two alternative algorithms A and B, at any data point j, we take the
HR@N in the current window and formulate the null hypothesis that there is
no significant difference between the two sequences, i.e. that the two algorithm
have equivalent performance. The test works by keeping count of two quantities:
the number of instances n10 for which the prediction of A is correct and the
prediction of B is wrong, and the number of instances n01 for which the opposite
occurs. These quantities are used to calculate the statistic:

Mcn =
(n10 − n01)2

n10 + n01
(4)

Mcn follows a χ2 distribution with one degree of freedom. For a significance
level α = 0.01, the critical value Mcn = 6.635 is used. If Mcn > 6.635 the null
hypothesis – that there is no significant difference between the two alternatives –
is rejected. In our setting, we perform pairwise tests between ISGD and all
variants of online boosting.

As a result, we obtain a sequence of values for the McNemar statistic, that
allow us to test for the significance of differences between ISGD and each of
the three boosting methods. This is illustrated in Fig. 4. In the green regions,
the corresponding algorithm is significantly better than ISGD, the gray regions
correspond to non-significant differences, and the regions where ISGD is signifi-
cantly better are plotted in red. This visualization complements the one in Fig. 3.
In this case – boosting with M = 16 and with the HR@20 metric –, the only
cases where boosting does not consistently improve ISGD are using OBoostH
and partially OBoostB1 with the YHM-6KU dataset.
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4 Conclusions

This paper proposes and evaluates online boosting methods for recommender
systems. We show that online boosting algorithms for regression can be success-
fully used together with stream-based recommendation models. In this paper
we apply online gradient boosting to ISGD, a matrix factorization algorithm
for implicit feedback streams. We evaluate three variants of boosting in a top-N
recommendation task over 4 datasets using prequential evaluation, and observe
improvements of up to 40% in accuracy over the standalone algorithm. We fur-
ther note that optimal gains are achieved with ensembles formed by a relatively
small number – between 2 and 16 – of base models. The obvious gains in accu-
racy, together with the relatively small cost of learning multiple models show
that online boosting is a viable and promising approach to improve recommen-
dations over implicit feedback streams.
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Abstract. Transformation of multivariate time series into feature
spaces are common for data mining tasks like classification. Ordinal-
ity is one important property in time series that provides a qualitative
representation of the underlying dynamic regime. In a multivariate time
series, ordinalities from multiple dimensions combine together to be dis-
criminative for the classification problem. However, existing works on
ordinality do not address the multivariate nature of the time series. For
multivariate ordinal patterns, there is a computational challenge with
an explosion of pattern combinations, while not all patterns are rele-
vant and provide novel information for the classification. In this work,
we propose a technique for the extraction and selection of relevant and
non-redundant multivariate ordinal patterns from the high-dimensional
combinatorial search space. Our proposed approach Ordinal feature
extraction (ordex), simultaneously extracts and scores the relevance and
redundancy of ordinal patterns without training a classifier. As a filter-
based approach, ordex aims to select a set of relevant patterns with
complementary information. Hence, using our scoring function based on
the principles of Chebyshev’s inequality, we maximize the relevance of
the patterns and minimize the correlation between them. Our experi-
ments on real world datasets show that ordinality in time series contains
valuable information for classification in several applications.

1 Introduction

Time series classification is predominant in several application domains such as
health, astrophysics and economics [3,4,21]. In particular, for automotive appli-
cations, the time series data is transmitted from the vehicle to a remote location.
In such cases, the transmission costs are large for lengthy and high-dimensional
time series signals. Feature-based approaches handle this problem by transform-
ing the lengthy time series into compact feature sets. The transformation of
time series can be done based on several properties, e.g., frequency and ampli-
tude properties of the time series are captured using a Fast Fourier Transform
(FFT).
c© Springer Nature Switzerland AG 2018
L. Soldatova et al. (Eds.): DS 2018, LNAI 11198, pp. 224–240, 2018.
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Fig. 1. Example of univariate ordinality and the all ordinalities of d = 3

Several time series applications need to capture the structural changes instead
of the exact values at each instant of time [16,21]. A transformation based on
the ordinality of the time series effectively captures these structural changes in a
dynamic system [1,4,16]. Let us consider a simple univariate time series X (c.f.
Fig. 1) of length l = 7, where X[t] denotes the value of X at time t. To evaluate
the ordinality at each time step t, a collection of d − 1 (where d ≥ 2), preceding
values in the time series are used [1]. For d = 3, the ordinality at t = 31 is
X(t) > X(t − 1) > X(t − 2), which is represented as 012. As shown in Fig. 1,
for a fixed d, there are at most d! unique ordinalities that exist in a time series
and we denote each of them with an unique symbol. Hence, the ordinalities of
X at t = 3, ..., 7 are denoted as (u, u, x, w, u). Given d! ordinalities, an ordinal
pattern is a subset of ordinalities, e.g., {u, x} is an univariate ordinal pattern.
Thus, there are at most 2d! patterns present in a univariate time series.

In a multivariate time series classification task, there can be co-occurrence
of patterns between multiple dimensions that are more relevant for the class
prediction than individual patterns. For example (c.f. Fig. 2), in automotive
applications, an increasing pattern (u) of engine torque and declining (z) tem-
perature combined together indicates a specific component failure. However, the
increasing torque in combination with other ordinalities (e.g., vtemp) is not rel-
evant for classification. In such cases, for m dimensions, the number of possible
multivariate pattern combinations scales up to 2(d!·m). Following the traditional
feature-based approach [3] of transforming all pattern combinations into numeric
features and performing feature selection to identify the relevant patterns is com-
putationally inefficient.

Thus, the first challenge is to efficiently extract these multivariate patterns
and estimate their relevance simultaneously. However, none of the existing works

1 As t = 1 and 2 have less than d − 1 preceding values.
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Fig. 2. Example of multivariate pattern combination

on ordinal patterns [1,4,16] consider the influence of ordinalities in multivariate
time series datasets.

Additionally, multiple patterns can have similar information (redundant) for
the class prediction. For example, for a declining engine torque pattern, the
engine speed also exhibits a declining pattern. This implies that both patterns
provide redundant information for classification. In such cases, it is necessary
to ensure that the extracted patterns have complementary information to each
other. Thus, the second challenge lies in estimating the novelty of the features
extracted using ordinal patterns. Nevertheless, existing feature-based transfor-
mation techniques [3,12,13,18] do not focus on considering both challenges: rel-
evance w.r.t. classes and redundancy of the extracted features. In this work,
we introduce Ordinal feature extraction (ordex), a feature-based approach for
multivariate time series classification using the property of ordinality in the time
series.

After conversion of the raw multivariate time series dataset into its ordi-
nal representation, we define a method to extract multivariate ordinal patterns.
To estimate the relevance of these patterns, ordex introduces a measure. This
measure estimates the recurrence of an extracted pattern in a given class and
its uniqueness w.r.t. other classes. The relevance estimation is followed by the
redundancy calculation. Given a set of relevant patterns, ordex scores the non-
redundancy of each pattern based on its correlation with other relevant patterns.
Finally, both scores are combined such that the unified score exemplifies rele-
vance and non-redundancy. Experiments on real world and synthetic datasets
show that our approach is beneficial for several application domains.

2 Related Work

We group the time series classification techniques into two categories, i.e.,
feature-based [3,12,13,18] and sequence-based [19,21]. Ordex is a feature-based
approach for multivariate time series classification.

Feature-based: The work of [13,17,18] aims to extract features based on time
series properties such as mean, variance, kurtosis, Lyapunov exponent and skew-
ness of the time series. In addition, FFT based approaches [12] capture the recur-
ring patterns in a time series which can be useful for classification. Recent works
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also apply time warping distance (DTW) [8] and symbolic aggregate approxi-
mation (SAX) [11] for transformation of time series. All aforementioned works
perform feature extraction without considering the relevance of the extracted
features. For a high-dimensional time series, this often leads to extraction of
features that are redundant and not relevant for classification. For this problem,
the recent work HCTSA [3] applies feature selection. However, the process of
feature generation and selection is computationally expensive. Ordex is efficient
by simultaneously generating and evaluating the features for its relevance and
redundancy without additional post-processing such as feature selection.

Exploiting ordinality as a property for feature extraction in time series is
yet unexplored. Ordinality was introduced as a complexity measure to com-
pare time series [1] and later extended for change detection [16] and variability
assessment in ECG signals [4]. All aforementioned works on ordinality focus on
univariate time series. On contrary, ordex introduces the novel concept of mul-
tivariate ordinal patterns and a relevance measure to estimate its relevance for
the classification task.

Sequence-based: Shapelet technique classifies new time series based on the dis-
tance between the subsequence of a time series (shapelet) and the new time series
[21]. The work was extended in MCMR [19] to extract non-redundant shapelets
for univariate time series classification. Recurrent neural network frameworks
such as Long Short-Term Memory (LSTM) are used for multivariate sequence
classification tasks [5]. However, the large training times of LSTM’s is a draw-
back. In contrast, ordex efficiently generates features based on relevant multi-
variate ordinal pattern combination by also evaluating the redundancy.

3 Problem Overview

A multivariate ordinal pattern s is a set of ordinalities from multiple dimensions,
e.g., in Fig. 2, s = {utorque, ztemp}. In a multivariate time series dataset, a large
number of pattern combinations exist and several of them are irrelevant for
classification and redundant to each other. We denote error : s �→ R as the error
function of the classifier trained using an ordial pattern s. The classification
error using a relevant pattern s1 is lower in comparison to that of an irrelevant
pattern s2, i.e., error(s1) < error(s2). On the other hand, using redundant
patterns for classification does not improve the prediction accuracy. That is, for
a set of patterns S, where si ∈ S has redundant information to other elements
in S, error(S) � error(S \ si). Irrelevant and redundant features lead to large
feature space and lower prediction quality [15]. Hence, the contributions of this
work are two-fold:
(1) Including and defining the multivariate nature of ordinal patterns for time
series classification.
(2) A novel score for evaluating the relevance and redundancy of ordinal patterns
without training a classifier.
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From a pool of large number of ordinal patterns, we aim to select a set of
o patterns S = {s1, · · · , so} that are relevant for classification and are non-
redundant w.r.t. other elements in the set. Hence, we maximize the sum of the
individual relevancies and minimize the correlation between the ordinal patterns.
This requires a scoring function that can efficiently estimate the ability of a
multivariate pattern to discriminate between different classes, i.e.,

rel : s ∈ S �→ R.

Secondly, a redundancy scoring function to ensure that the elements in S have
complementary information to contribute for the classifier, i.e.,

red : (s ∈ S, S \ s) �→ R.

Notations: As we aim to extract and evaluate ordinal patterns from mul-
tivariate time series, we begin with the conversion of raw time series into its
ordinal domain. In the work of [1], ordinality of degree d ≥ 2 | d ∈ N at each
instant of time t | (d − 1) < t ≤ l for a univariate times series X = (x1, · · · , xl)
of length l is defined as,

Od

(
X, t

)
=

(
rank(X[t]), rank(X[t − 1]), ..., rank(X[t − (d − 1)])

)
, (1)

where rank(X[t]) is the position of X[t] after sorting the values2 of
(X[t], ...,X[t − (d − 1)]). Thus, the ordinal representation of a univariate time
series X is a new series ordd(X) = (Od(X, t), · · · , Od(X, l)), where the ordinality
Od(X, t) at each instant of time t is assigned as a symbol. The resulting series
can have a maximum of d! distinct symbols and a length of l′ = l − (d − 1). For
example, in Fig. 1, ord3(X) = (u, u, x, w, u) and l′ = 7 − (3 − 1) = 5.

A m-dimensional time series sample T j = 〈X1, · · · ,Xm〉 is a m-tuple of uni-
variate time series. Finally, a multivariate time series dataset D = {T 1, · · · , Tn}
consists of n such multivariate time series samples. As a supervised app-
roach, each sample T j ∈ D is assigned a class from a set of possible classes
C = {c1, · · · , ck}. The ith dimension in the jth sample of a dataset is denoted
as T j

i . The ordinal representation of a multivariate time series dataset D is
a collection of the ordinal representations of all univariate time series, i.e.,
ordd(D) = {〈ordd(T j

1 ), ..., ordd(T j
m)〉 | j = 1, · · · , n}. For the ease of notation,

we use a fixed length l for all time series, but this is not a formal requirement.

4 Ordinal Feature Extraction (Ordex)

Ordex is a heuristic approximation algorithm that includes evaluation of rele-
vance and redundancy of ordinal patterns. A m-dimensional time series dataset
D is converted to its ordinal representation of defined degree d, i.e., ordd(D)
(c.f. Sect. 3). From the ordinal search space, ordex aims to extract multivariate
ordinal patterns. Hence, we begin with the introduction of multivariate ordinal
2 In Fig. 1, Od=3(X, t = 4) = X(t) > X(t − 1) > X(t − (3 − 1)) = 012.
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patterns. This section is followed by our relevance and non-redundancy scoring
function for ordinal patterns. Finally, we elaborate on the algorithmic component
of our approach.

4.1 Extraction of Multivariate Ordinal Patterns

As shown in Fig. 2, a multivariate ordinal pattern is a subset of ordinalities
from multiple dimensions. We introduce multivariate ordinal pattern set with
our formal definition.

Definition 1. Multivariate Ordinal Pattern set
Let I = {1, · · · ,m} be the set of dimensions and Ωi =

⋃
1≤j≤n ordd(T

j
i ) |

i ∈ I is a set of ordinalities in the ith dimension of all samples in D. Given the
search space Ω = {Ωi | ∀i ∈ I} and a subset of m′ | m′ ≤ m dimensions, i.e.,
I ′ ⊆ I | |I ′| = m′, we define a multivariate ordinal pattern set as,

s = {Πi ⊆ Ωi | ∀i ∈ I ′}.

Example 1. Assume a time series dataset D = {T 1, T 2} with three dimensions,
(i.e., I = {1, 2, 3}) and two samples (i.e., n = 2) of length l = 8.

Using Fig. 3, we show one possible multivariate ordinal pattern extracted from
D in Example 1 by applying Definition 1. As the first step, the time series data
is converted into its ordinal representation of d = 3 by assigning its ordinality at
each instant of time (c.f. Eq. 1). For a set of ordinalities Ωi in the ith dimension
of all time series samples, e.g., Ω1 =

⋃
1≤j≤2 ord3(T

j
1 ), a multivariate ordinal

pattern of size m′ = 2 is a subset of ordinalities from m′ dimensions. In our
example in Fig. 3, we select a random subset of dimensions I ′ = {1, 3}. From
each selected dimension, a subset of ordinalities are drawn to form a multivariate
ordinal pattern set, i.e., s = {Π1 ⊆ Ω1,Π3 ⊆ Ω3}. In Fig. 3 we show one possible
multivariate ordinal pattern set s, where ordinalities u and w are drawn from
Ω1. Similarly, ordinalities y and x are drawn from Ω3.

Fig. 3. Illustration of multivariate ordinal pattern set

As discussed in the Sect. 3, evaluating every possible pattern set is computa-
tionally inefficient. In this work, we handle this challenge by using the Monte-
Carlo approach [9], where a random multivariate pattern set is extracted for
each iteration.
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In order to score the relevance of the extracted multivariate ordinal pat-
tern set for classification, we transform the multivariate symbolic representation
of ordinalities into a numeric feature. As our approach uses the ordinal repre-
sentation of time series and not the actual values, it is not possible to perform
transformation based on standard operations such as mean or median. Following
the literature of probabilistic sequential mining [20], we perform transformation
based on the occurrences of a pattern set. For the extracted s, we compute its
probability in each time series sample j | j = 1, ..., n based on our definition
below.

Definition 2. Transformation function
Let T = (T [1], · · · , T [l]) be a m-dimensional time series sample of length l, i.e.,
T [t] ∈ R

m, and I ′ is a set of dimensions from which a multivariate ordinal
pattern set s is extracted. The pattern s occurs in T at time t iff ord(Ti[t]) ∈
Πi,∀i ∈ I ′. The transformation function assigns the probability of s in a time
series sample, i.e., P : (s, T ) �→ R and we define the transformation function as,

P (s, T ) =
|{t | s occurs in T at time t}|

l − (d − 1)
.

Hence, for a time series dataset with n-samples, the defined transfor-
mation function generates a n-dimensional numeric feature vector f =
(P (s, T 1), · · · , P (s, Tn)).

Example 2. Assume we apply our transformation function (c.f. Definition 2) to
transform the multivariate ordinal pattern set s in Fig. 3 into a numeric feature.

The Definition 2 transforms a multivariate pattern into a numeric feature by
evaluating the co-occurrence of ordinalities from multiple dimensions. In Fig. 3,
s occurs at t = 3, 5 in T 1, i.e., ord3(T 1

1 [3]) = w ∈ Π1, ord3(T 1
3 [3]) = x ∈ Π3 and

ord3(T 1
1 [5]) = u ∈ Π1, ord3(T 1

3 [5]) = y ∈ Π3. Thus, the occurrence of s in T 1 is
P (s, T 1) = 2

6 = 0.33. The pattern s occurs in T 2 once at t = 4, i.e., ord3(T 2
1 [4]) =

w ∈ Π1, ord3(T 2
3 [4]) = y ∈ Π3. On applying the transformation function on T 2,

we have P (s, T 2) = 1
6 = 0.16 and the generated feature vector is f = (0.33, 0.16).

Hence, for a set of o patterns S = {s1, · · · , so}, the transformation generates a
numeric feature space of size R

n×o. Thus, the defined transformation function
(c.f. Definition 2) efficiently converts the pattern set into numeric features for
datasets with large number of dimensions and samples.

4.2 Relevance and Redundancy Scoring
The transformed feature is based on the pattern set s drawn by a Monte-Carlo
iteration and its relevance for classification is necessary to be evaluated. With our
defined transformation function, a näıve solution is to convert all patterns into
numeric features and perform feature selection. As such an approach is computa-
tionally expensive, it is necessary to evaluate the relevance of an ordinal pattern
set right after the transformation. By estimating the misclassification rate of
a classifier trained for each transformed feature, it is possible to evaluate the
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feature relevance. However, we aim to efficiently score the relevance and redun-
dancy of a transformed feature without training a classifier. Hence, we estimate
the misclassification rate of a feature f by applying principles of Chebyshev’s
inequality [7]. Ordex is applicable for more than two classes. For ease of under-
standing, we assume a binary classification task with classes C = {ca, cb} and a
feature f generated using the multivariate ordinal pattern set s. From the theory
of Chebychev inequality [7], the misclassification using feature f is represented
by the variance V ar[f | c ∈ C] and expected value E[f | c ∈ C] as,

error(f) =
V ar[f |ca] + V ar[f |cb]

2 · (|E[f |ca] − E[f |cb]|)2 . (2)

The Eq. 2 has statistical properties similar to a two-sample t-test. Its detailed
proof is provided in the supplementary3 material and we explain the intuition
behind the equation with an example.

Example 3. Assume two multivariate ordinal patterns s1 and s2, where s1 is
relevant and s2 is irrelevant for the classification.

Each ordinal pattern set in Example 3 is transformed into numeric features f1
and f2 respectively (c.f. Definition 2). As a relevant pattern, s1 has a higher dis-
criminative power, i.e., it occurs in every time series of one class (e.g., ca) with
a high probability and never occurs for the other class. Therefore, the distribu-
tions of the transformed feature f1 for each class, exhibits a minimal variance,
i.e., V ar[f1 | ca] and V ar[f1 | cb]. On contrary, an irrelevant multivariate ordinal
pattern set s2, without any discriminative power to classify, occurs in different
time series randomly. Hence, the distribution of the transformed numeric feature
f2 | ca and f2 | cb has random peaks and lows. This leads to a larger variance
in the respective distributions V ar[f2 | ca] and V ar[f2 | cb]. This means, the
classification error is high when the sum of the variances are large.

In real world applications, due to factors such as noise, it is possible that
s1 (which has high occurrence for class ca) occurs in a few samples of class cb,
i.e., V ar[f1 | cb] is not exactly equal to zero. Hence, in addition to the variance,
the distance between the expected values of the distributions is estimated, i.e.,
|E[f |cb] − E[f |ca]|. As we aim to extract the most distinguishing pattern set
between two classes, the expected value of a relevant feature for each class will
have a larger difference, i.e., E[f1 | ca] >> E[f1 | cb]. This large difference in the
expected values helps the classification boundaries to be well-separated. This
means, the classification error is large if the difference between the expected
values are small.

Definition 3. Relevance scoring
For a classification task with C = {c1, · · · , ck} classes, the ability of a trans-
formed feature f to distinguish any pair of classes ca ∈ C and cb ∈ C is,

3 https://hpi.de//mueller/ordex.html.

https://hpi.de//mueller/ordex.html
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disca,cb(f) = 1 − error(f)

and we define its relevance as the lowest value of all pairwise dis scores, i.e.,
rel(f) = min{disca,cb(f) | ca �= cb}.
Assume a classification task with classes ca, cb, cc for which the disca,cb(f),
disca,cc(f) and discb,cc(f) are computed. The three values denote the accuracy
of each class. The relevance of f is defined as the minimum of the three dis scores
in Definition 3. Intuitively, it means that feature relevance is the lowest accuracy
of all pairwise scores. Hence, maximizing rel(f) implies maximizing the lowest
accuracy of all pairs of classes.

As explained in Sect. 1, there are large number of multivariate ordinal pat-
terns in a time series dataset. However, multiple pattern combinations can be
redundant to each other, i.e., they do not provide novel information for classifi-
cation. Such redundant ordinal patterns lead to low accuracy and large feature
sets. The relevance estimation does not include the effect of redundancy. This
means, two redundant patterns are scored the same based on their relevance
scores.

A transformed feature f represents the probability of a particular pattern
in each multivariate time series sample and two features are redundant if their
occurrence distribution is discriminative for the same class. Assume two redun-
dant ordinal patterns s1 and s2, such that their numeric transformations are f1
and f2 respectively (c.f. Definition 2).

Table 1. Illustrative example of ordinal pattern redundancy

j 1 2 3 4 5 6 7 8 9

f1 0.8 0.88 0.95 0.1 0.5 0.3 0.4 0.35 0.19

f2 0.2 0.12 0.05 0.9 0.5 0.7 0.6 0.65 0.81

class ca ca ca cb cb cb cc cc cc

Feature f1 signifies that the pattern s1 occurs with a higher probability for
class ca, i.e., its values can be used to differentiate class ca from {cb, cc} (c.f.
Table 1). On contrary, feature f2 signifies that the pattern s2 occurs with a low
probability for class ca and its values can also classify ca from other classes.
Hence, f1 and f2 are redundant to each other as they are discriminative for the
same class and they exhibit a monotonic relationship. To quantify the redun-
dancy between two features, we measure the monotonicity between them. In this
work, we instantiate the redundancy function with Spearmans-ρ as a measure of
monotonicity [6], i.e., red(fi, fj) = |ρ(fi, fj)|, as it does not assume the under-
lying distribution of the variable. By defining the redundancy between features
as an absolute value, our redundancy measure ranges between [0, 1]. However,
other measures of monotonicity are also applicable.
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For a set of o transformed features F = {f1, · · · , fo}, the redundancy of f ∈ F
against all elements in the set, i.e., F \f , is the maximal imposed redundancy of
f on the other features in the set. Hence, we compute the pairwise redundancy
of f against all features in F \f and use its maximum. Multiple possibilities exist
for combining the relevance and redundancy scores. For example, in the work of
[15], the relevance of a feature is penalized for its magnitude of redundancy by
computing the harmonic mean between them. Other options include subtracting
the magnitude of feature redundancy from its relevance score [2]. From experi-
mental evaluation3, we understand that both penalization techniques work well
for ordex. Hence, we choose the latter, i.e., score(f, F ) = rel(f) − red(f, F \ f),
for its simplicity. The unified score represents the relevance of f for classification
and its redundancy w.r.t. other elements in F . Finally, the unified score for a
set of features is the sum of all individual feature’s score.

score(F ) =
∑

f∈F

score(f, F \f) (3)

5 Algorithm

From a given dataset, Algorithm 1 aims to select o relevant and non-redundant
patterns by transforming them into numeric features. As mentioned in Sect. 1,
it is computationally not feasible to evaluate every ordinal pattern combination.
To address this computational challenge, we perform I Monte-Carlo iterations.
Each Monte-Carlo iteration extracts a random ordinal pattern set s which is
converted into its numeric representation using Definition 2 (c.f. Line 4). For the
first o Monte-Carlo iterations, the algorithm draws o random pattern sets which
are not scored for relevance or redundancy (c.f. Line 5). Thereon, each newly
extracted pattern replaces the worst performing pattern from the set of selected
patterns (c.f. Lines 8–13). The scoring of F in each iteration is performed using
Eq. 3.

For high-dimensional time series, this random pattern selection leads to the
inclusion of several irrelevant (for class prediction) dimensions. Hence, in Line
3, we regulate the selection process by setting the maximum number of selected
dimensions to m′, i.e., |I ′| ≤ m′ (c.f. Definition 1). The selection of s is a random
process, this leads to the selection of different pattern sets in every execution.
To avoid this and make the random process stable [9], the overall occurrence
probability of s is approximately α ∈ [0, 1]. Assuming independence between
dimensions, each Πi ∈ s is selected with an occurrence probability of α

1
|I′| . The

influence of m′ and α on the stability and prediction accuracy will be evaluated
in the experimental section. The theoretical time complexity of Algorithm1 is
presented in the supplementary material (see footnote 3).
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Algorithm 1 Ordinal feature extraction
Input: D, o, m′, α, I
1: Initialize F = ∅
2: for I do
3: Draw s = {Πi ⊆ Ωi | ∀i ∈ I′} | probability(Πi) = α

1
|I′| (c.f. Definition 1)

4: Transform s to numeric f (c.f. Definition 2)
5: if |F | < o then F = {F} ∪ {f}
6: else
7: max score = score(F ) and F best = F
8: for f ′ ∈ F do
9: if score

({F \ f ′} ∪ f
)

> max score then
10: F best = {F \ f ′} ∪ {f} and max score = score(F best)
11: end if
12: end for
13: F = F best
14: end if
15: end for
16: return F

6 Experiments

In this section we evaluate the efficiency and quality of ordex4 on multivariate
synthetic, real world datasets from the UCI repository [10] and a dataset from
our automotive domain. Following the previous works [3,13,17,21], we use accu-
racy on the test dataset as a quality measure. As a non-deterministic approach,
we execute ordex five times on each dataset and plot the mean test data accu-
racy and run times in the experimental section below. For both synthetic and
real world experiments, we use K-NN (with K = 5) classifier for the training
and testing of the transformed features. Other ordex parameters used in our
experiments are provided in the supplementary (See footnote 3) material.

For generation5 of multivariate synthetic time series datasets, we made adap-
tations to the well-known cylinder-bell-funnel time series generator [14]. Using
the data generator, we generate separate training and test datasets. As real world
datasets we use the character trajectory (3 dimensions and 20 classes), activity
recognition (6 dimensions and 7 classes), indoor user movement (4 dimensions
and 2 classes), occupancy detection (5 dimensions and 2 classes) and EMG Lower
Limb data (5 dimensions and 2 classes) from the UCI repository [10]. The EMG
data was recorded with three different experimental settings, called ‘pie’, ‘mar’
and ‘sen’, which we treat as three different data sets. For confidentiality reasons
we do not publicly provide or discuss the Bosch dataset (25 dimensions and 2
classes) we used in this work.

4 https://figshare.com/s/4023c66f7a87b59628b4.
5 https://github.com/KDD-OpenSource/data-generation.

https://figshare.com/s/4023c66f7a87b59628b4
https://github.com/KDD-OpenSource/data-generation
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As a feature-based approach, we compare ordex with the various competitor
techniques of the same paradigm. As competitors that extract features from
the time series without evaluating its relevance to the target classes, we test
Nanopoulos [13], DTW [8], SAX [11], Wang [17] and Fast Fourier Transforms.
As a competitor that evaluates the feature relevance after extraction, we consider
HCTSA [3] approach. As a multivariate neural network based approach, we test
LSTM as a competitor.

6.1 Scalability Experiments

We evaluate the scalability of ordex w.r.t. increasing dimensionality and a fixed
number of time series samples. Figure 4(a) shows the breakdown analysis of time
elapsed for each phase in ordex, i.e., conversion of training data into ordinal
representation, selection of relevant ordinal pattern sets and transformation of
relevant ordinal pattern sets into numeric features on test dataset.

Our experiments in Fig. 4(a) show that the run time of ordex scales linearly
w.r.t. increasing number of dimensions. After selection of the relevant pattern
sets from the training dataset, the time taken for transformation of the relevant
patterns into numeric features on a test dataset is negligible. This is desirable
as new samples will be transformed into static features efficiently. Scalability
of ordex w.r.t. increasing time series length (l) and samples (n) show similar
behavior and the results are available in the supplementary3 material.

6.2 Robustness

In this section we analyze the robustness of our approach against increasing
number of irrelevant dimensions. For synthetic datasets with different dimen-
sionality (m = 40, 70, 130, 160), of which only five are relevant for classification,
we aim to identify the influence of ordex on prediction accuracy.

For datasets with a large number of irrelevant features, Fig. 4(b) shows that
the random selection process has a higher probability of selecting irrelevant
ordinal patterns in the early iterations of the selection phase. This demands
several iterations (I) to reach the best accuracy. For example, a dataset with
130 dimensions required 60 iterations to reach the best accuracy and a dataset
with 40 dimensions required only 20 iterations to reach the same accuracy.

6.3 Parameter Analysis

Ordex has two major parameters, m′ and α. The parameter m′ decides the
maximum number of dimensions to include for the extraction of pattern set
s. Large values of m′ include several irrelevant dimensions and setting m′ to
very small values restrict the search space of pattern combinations to evaluate.
Thus, both cases requires a higher number of iterations to identify the best
combination. From experimental analysis (c.f. Fig. 4(c)), we observe 1 < m′ ≤ 5
to be a reasonable range to set for an optimal trade-off between quality and
runtime. All real world experiments in the forthcoming section will use m′ values
within this range.



236 A. K. Shekar et al.

Fig. 4. Synthetic data experiments, where d = 5

The α parameter decides the number of ordinalities to include from each
dimension. Setting α to a large value leads to the inclusion of several irrelevant
ordinalities for classification. Hence, large α values lead to inconsistent results
(higher standard deviation) and lower test data prediction quality. Setting α to
lower values does not largely affect the average prediction quality. However, their
standard deviation over five test runs was high. Our experiments on synthetic
data in Fig. 4(d) shows 0.3 ≤ α ≤ 0.9 range to be a reasonable α value for
datasets with different dimensionality. In addition, using EMG Lower Limb Pie
dataset, the Fig. 4(d) shows that this range of alpha value is practically applicable
for real world data.

6.4 Real World Datasets
Table 2 compares the prediction accuracy of various approaches against ordex.
Overall, we observe that considering relevance and redundancy during feature
extraction improves the prediction quality. In addition, by including the multi-
variate nature of ordinalities, ordex shows better prediction accuracy w.r.t. the
competitor approaches on several datasets. In the character dataset, ordex was
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the second best amidst competitor approaches falling behind DTW. However,
DTW approach [8] has higher run times for dataset with large number of sam-
ples, e.g., the DTW approach took more than a day for computations on our
Bosch dataset with 5722 time series samples.

Table 2. Test data accuracy in % with ordex d = 5 and m′ = 3. SAX word size and
alphabet size is 3. LSTM of maximum epochs 100 and mini-batch size 10. Experiments
that had run times more than one day are denoted as **

Dataset ordex Nanopoulos DTW SAX Wang FFT HCTSA LSTM

EMG limb sen 93.33 ± 3.1 33.3 83.3 33.3 92.3 66.7 50 50 ± 0

EMG limb pie 96.67 ± 6.6 16.7 33.3 50 66.6 33.3 50 66.6 ± 0

EMG limb mar 95 ± 3.6 83.3 66.7 95 66.6 66.7 92 63.5 ± 0

Character 75.37 ± 1.7 27.1 88.3 8.2 70 17.6 25.4 11.98 ± 5.1

Activity recognition 100± 0 44.5 100 2.8 91 100 17.4 100 ± 0

User Movement 57.98 ± 1.9 45.2 46.8 52.4 45.2 42.9 50.8 47.6 ± 0.8

Occupancy 94.1 ± 1.9 63.6 94.1 78.4 78.4 70.6 75.4 84.7 ± 8.13

Bosch 97.08 ± 1.5 37.7 ** 60.2 95.3 59.2 ** 56.6 ± 3.4

Table 3. Runtime in sec, experiments that had run times more than one day are
denoted as **

Dataset ordex Nanopoulos DTW SAX Wang FFT HCTSA LSTM

EMG limb sen 130.3 8.3 840.3 298.1 1512 8.6 9498 372

EMG limb pie 130 7.9 830.5 266.9 1087 7.9 4088 450.6

EMG limb mar 100.3 7 619.4 278.9 1232 7.1 11999 272

Character 105.3 23 852 458.3 5020 22.06 5511 263

Activity recognition 210.3 5.6 19.9 166.3 1235 5.2 797.2 1808

User Movement 155 2.1 46.8 111.61 428.4 2.8 180.15 174

Occupancy 126.7 1.2 15.6 113.4 49.38 1.1 399.4 125

Bosch 2775.7 344.3 ** 4920.4 6876 265.2 ** 7335

Table 3 compares the run times (testing and training) of the various
approaches against ordex. As discussed in Sect. 3, ordex evaluates a combinato-
rial search space. Considering the complexity of the challenge, ordex performs
reasonable w.r.t. run times in Table 3. By performing the feature extraction and
evaluation simultaneously, ordex has lower run times in comparison to HCTSA
that performs feature selection after extraction of a high-dimensional feature
space from the time series. As shown in Sect. 6.1, the major execution time of
ordex is dominated by the conversion and selection process. Considering the
improvement in the prediction quality with negligible time for transforming the
relevant and non-redundant ordinalities into numeric features (c.f. Fig. 4(a)),
ordex is a better choice than the competitor approaches.
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6.5 Redundancy Evaluation
The ground truth of feature redundancy is unknown for real world datasets.
Using redundant features does not provide novel information for classification,
i.e., redundant features do not improve the classification accuracy. Thus, follow-
ing the work of [15], we evaluate redundancy based on the classifier accuracy in
Fig. 5. For a set of o best features extracted using ordex, the top scored features
of ordex are relevant and non-redundant. Hence, the initial features have increas-
ing prediction quality in Fig. 5. For example, EMG Limb Pie dataset requires 6
features, after which the features are relevant but have redundant information
and the classifier accuracy does not improve.
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Fig. 5. Accuracy of top 10 features of ordex

7 Conclusion and Future Works

In this work we proposed a feature-based time series classification approach
ordex, that is purely based on the ordinality of the raw time series. The results
of various state-of-the-art feature-based algorithms on the synthetic and real
world datasets show that our method is suitable for multivariate time series
datasets. By scoring relevance and non-redundancy, ordex achieves better pre-
diction quality with fewer features.

As ordex operates on ordinal domain, two signals can have the same ordi-
nality at different amplitudes. Hence, as future work we aim to extend ordex to
include the effect of the signal amplitude in addition to its ordinality.
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Abstract. The widespread usage of smart devices and sensors together
with the ubiquity of the Internet access is behind the exponential growth
of data streams. Nowadays, there are hundreds of machine learning algo-
rithms able to process high-speed data streams. However, these algo-
rithms rely on human expertise to perform complex processing tasks like
hyper-parameter tuning. This paper addresses the problem of data vari-
ability modelling in data streams. Specifically, we propose and evaluate
a new parameter tuning algorithm called Self Parameter Tuning (SPT).
SPT consists of an online adaptation of the Nelder & Mead optimisation
algorithm for hyper-parameter tuning. The method explores a dynamic
size sample method to evaluate the current solution, and uses the Nelder
& Mead operators to update the current set of parameters. The main
contribution is the adaptation of the Nelder-Mead algorithm to auto-
matically tune regression hyper-parameters for data streams. Addition-
ally, whenever concept drifts occur in the data stream, it re-initiates the
search for new hyper-parameters. The proposed method has been evalu-
ated on regression scenario. Experiments with well known time-evolving
data streams show that the proposed SPT hyper-parameter optimisa-
tion outperforms the results of previous expert hyper-parameter tuning
efforts.

Keywords: Parameter tuning · Hyper-parameters · Optimisation
Nelder-Mead · Regression

1 Introduction

Due to the increasing popularity of data stream sources, e.g., crowdsourcing
platforms, social networks and smart sensors and devices, data stream or on-line
processing has become indispensable. The main goal of data stream processing
is to timely extract meaningful knowledge, e.g., to build and update the models
of the entities generating the data, from an incoming sequence of events. How-
ever, existing data stream modelling algorithms are still not fully automated,
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e.g., model hyper-parameter tuning still relies in batch or off-line processing
techniques. This work addresses this issue by proposing a novel method to tune
dynamically the model hyper-parameters according to the incoming events and,
thus, contributing to the broad topic of “Data streams, evolving data and mod-
els”.

In the literature, the hyper-parameter optimisation problem has been
addressed using grid-search [12], random-search [1] and gradient descent [19]
algorithms. However, these approaches have been applied to off-line rather than
on-line processing scenarios since they require train and validation stages. To
overcome this limitation, we argue that an on-line processing scenario such as
hyper-parameter optimisation for data stream requires some automation level.

Our Self Parameter Tuning (SPT) proposal consists of the use of a direct-
search algorithm to find optimal solutions on a search space. Specifically, we
apply the Nelder-Mead algorithm [21] to dynamic size data stream samples,
continuously searching for the optimal hyper-parameters.

The main contribution of this paper is the proposal of an algorithm that
optimises regression hyper-parameters for data streams based on the Nelder-
Mead algorithm. It not only processes successfully regression problems, but is,
to the best of our knowledge, the single one which effectively works with data
streams and reacts to the data variability. Consequently, SPT contributes to the
full automation of stream modelling algorithms.

This paper contains five sections. In Sect. 2 we describe the related auto-
matic machine learning work. In Sect. 3 we describe the proposed solution for
the identified problem. Section 4 describes the experiments and discusses the
results obtained. Finally, Sect. 5 presents the conclusions and suggests future
developments.

2 Related Work

The topic of auto machine learning is relatively new and few contributions are
found in the literature. We identified contributions addressing auto-ML tools [1,
8,27], model selection algorithms [5,6], hyper-parameter optimisation algorithms
[9,16,23] and Nelder-Mead optimisation solutions [7,14,24].

In 2012, Berdstra and Bengio developed a python library for hyper-parameter
optimisation named Hyperopt [1]. Internally, it adopts a Bayesian optimizer
and uses cross-validation evaluation to orient the search. While it can be used
together with scikit-learn to optimise models, it does not work with data streams.
In 2013, Thornton et al. presented a framework for classification problems called
Auto-Weka [27]. It allows hyper-parameter tuning, using a Bayesian optimizer
and a cross-validation evaluation mechanism. Feurer et al. proposed, in 2015, an
extension to SkLearn called Auto-SkLearn which takes into account the perfor-
mance of similar data sets, making it more data efficient [8]. More recently [17]
presented Auto Weka 2.0 for regression algorithms.

In 1995, Kohavi and John described a method to automatically select a hyper-
parameter [16]. This method relies on the minimization of the estimated error
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and applies a grid search algorithm to find local minima. The problem of this
solution is that is has an exponential complexity. Escalante et al. used, in 2009, a
particle swarm optimisation algorithm to select the best model [6]. The algorithm
is simple and the optimisation surface contains multiple optimal solutions. One
year later, the same authors proposed to build ensemble classification models
[5], using this particle swarm model selection algorithm. Nichol and Schulman
proposed in 2018 a scalable meta learning algorithm to initialise the parameters
of future tasks [23]. The algorithm uses, repeatedly, Stochastic Gradient Descent
(SGD) on the training task to tune the parameters.

Koenigstein et al. adopted, in 2011, the Nelder-Mead direct search method to
optimise more than twenty hyper-parameters of an incremental algorithm with
multiple bias [14]. Fernandes et al. proposed a batch method for estimating the
parameters and the initialisation of a PARAFAC tensor decomposition based
link predictor [7]. In 2016, Kar et al. applied an exponentially decay centrifugal
force to all vertices of the Nelder-Mead algorithm [13]. Although this approach
produces improved results, it needs more iterations to converge when compared
with the standard Nelder-Mead algorithm. Pfaffe et al. addressed the problem
of the on-line selection and tuning of algorithms [24]. The authors suggested the
adoption of an e-greedy strategy, a well known reinforcement learning technique,
to select the best algorithm and Nelder-Mead optimisation to tune the param-
eters of the chosen algorithm. Both stages are iterative, requiring, in the cases
presented, 100 iterations to ensure convergence. This can be a serious drawback
for the on-line processing of many data streams.

SPT differs from the above proposals because it automatically adjusts the
hyper-parameters of the stream modelling algorithms according to the incoming
events. Although SPT relies on Nelder-Mead to dynamically tune the stream-
based modelling algorithms under analysis, rather than being iterative, it exe-
cutes whenever significant data changes in the data stream are perceived.

3 Self Parameter Tuning Method

This paper presents the SPT algorithm which was designed to optimise a set of
hyper-parameters in vast search spaces. To make our proposal robust and easier

Fig. 1. Application of the proposed algorithm to the data stream.
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to use, we adopt a direct-search algorithm, using heuristics to avoid algorithms
which rely on hyper-parameters. Specifically, we adapt the Nelder-Mead method
[21] to work with data streams.

Figure 1 represents the application of the proposed algorithm. In particular,
to find a solution for n hyper-parameters, it requires n + 1 input models, e.g.,
to optimise two hyper-parameters, the algorithm needs three alternative input
models.

The Nelder-Mead algorithm processes dynamically each data stream sample,
using a previously saved copy of the models, until the input models converge.
Each model represents a vertex of the Nelder-Mead algorithm and is computed
in parallel to reduce the time response. The initial model vertexes are randomly
selected and the Nelder-Mead operators are applied at dynamic intervals. The
following subsections describe the implemented Nelder-Mead algorithm, includ-
ing the dynamic sample size selection.

3.1 Nelder-Mead Optimization Algorithm

This algorithm is a simplex search algorithm for multidimensional unconstrained
optimization without derivatives. The vertexes of the simplex, which define a
convex hull shape, are iteratively updated in order to sequentially discard the
vertex associated with the largest cost function value.

The Nelder-Mead algorithm relies on four simple operations: reflection,
shrinkage, contraction and expansion. Figure 2 illustrates the four correspond-
ing Nelder-Mead operators R, S, C and E. Each black bullet represents a model
containing a set of hyper-parameters. The vertexes (models under optimisation)
are ordered and named according to the root mean square error (RMSE) value:
best (B), good (G), which is the closest to the best vertex, and worst (W ). M
is a mid vertex (auxiliary model). Algorithms 1 and 2 describe the application
of the four operators.

Algorithm 1 presents the reflection and extension of a vertex and Algorithm
2 presents the contraction and shrinkage of a vertex. For each Nelder-Mead
operation, it is necessary to compute an additional set of vertexes (midpoint
M , reflection R, expansion E, contraction C and shrinkage S) and verify if the
calculated vertexes belong to the search space. First, Algorithm 1 computes the
midpoint (M) of the best face of the shape as well as the reflection point (R).
After this initial step, it determines whether to reflect or expand based on the
set of predetermined heuristics (lines 3, 4 and 8).

Algorithm 2 calculates the contraction point (C) of the worst face of the
shape – the midpoint between the worst vertex (W ) and the midpoint M – and
shrinkage point (S) – the midpoint between the best (B) and the worst (W )
vertexes. Then, it determines whether to contract or shrink based on the set of
predetermined heuristics (lines 3, 4, 8, 12 and 15).

The goal, in the case of data stream regression, is to optimise the learning
rate, the learning rate decay and the split confidence hyper-parameters. These
hyper-parameters are constrained to values between 0 and 1. The violation of
this constraint results in the adoption of the nearest lower or upper bound.
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(a) Reflection (b) Shrink

(c) Contraction (d) Expansion

Fig. 2. Nelder-Mead Operators.

Algorithm 1 Nelder-Mead - reflect (a) or expand operators (d).
1: M = (B + G)/2
2: R = 2M − W
3: if f(R) < f(G) then
4: if f(B) < f(R) then
5: W = R
6: else
7: E = 2R − M
8: if f(E) < f(B) then
9: W = E
10: else
11: W = R
12: end if
13: end if
14: end if

3.2 Dynamic Sample Size

The dynamic sample size, which is based on the RMSE metric, attempts to
identify significant changes in the streamed data. Whenever such a change is
detected, the Nelder-Mead compares the performance of the n+1 models under
analysis to choose the most promising model. The sample size Ssize is given by
Equation 1 where σ represents the standard deviation of the RMSE and M the



246 B. Veloso et al.

Algorithm 2 Nelder-Mead - contract (c) or shrink (b) operators.
1: M = (B + G)/2
2: R = 2M − W
3: if f(R) ≥ f(G) then
4: if f(R) < f(W ) then
5: W = R
6: else
7: C = (W + M)/2
8: if f(C) < f(W ) then
9: W = C
10: else
11: S = (B + W )/2
12: if f(S) < f(W ) then
13: W = S
14: end if
15: if f(M) < f(G) then
16: G = M
17: end if
18: end if
19: end if
20: end if

desired error margin. We use M = 95%.

Ssize =
4σ2

M2
(1)

However, to avoid using small samples, that imply error estimations with large
variance, we defined a lower bound of 30 samples.

3.3 Stream-Based Implementation

The adaptation of the Nelder-Mead algorithm to on-line scenarios relies exten-
sively on parallel processing. The main thread launches the n+1 model threads
and starts a continuous event processing loop. This loop dispatches the incoming
events to the model threads and, whenever it reaches the sample size interval,
assesses the running models and calculates the new sample size. The model
assessment involves the ordering of the n + 1 models by RMSE value and the
application of the Nelder-Mead algorithm to substitute the worst model. The
Nelder-Mead parallel implementation creates a dedicated thread per Nelder-
Mead operator, totalling seven threads. Each Nelder-Mead operator thread gen-
erates a new model and calculates the incremental RMSE using the instances of
the last sample size interval. The worst model is substituted by the Nelder-Mead
operator thread model with lowest RMSE.

4 Experimental Evaluation

The following subsections describe the experiments performed, including the
data sets, the evaluation metrics and protocol, the tests and the results. The
experiments were performed with an Intel Xeon CPU E5-2680 2.40 GHz Central
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Processing Unit (CPU), 32 GiB DDR3 Random Access Memory (RAM) and
1 TiB of hard drive platform running the Ubuntu 16.04.

The open-source Massive Online Analysis (MOA) framework [2] was selected
for the experiments due to the variety of implemented stream-based algorithms
as well as the respective evaluation metrics. Moreover, it allows easy benchmark-
ing with the pre-existing implementations.

The adaptive model rules regression algorithm was chosen due to the inher-
ent expressiveness of decision rules and to the fact that each rule uses the Page-
Hinkley test to detect and react to changes in data stream [4]. Since the parame-
ters with higher impact on the algorithm output are the split confidence, learning
rate and learning rate decay, the algorithm will attempt to tune the three.

The SPT approach was compared against a default hyper-parameter initial-
isation – hereafter called baseline. The baseline hyper-parameter initialisation
was 0.1 for the split confidence, 1.0 for the learning rate and 0.1 for the learn-
ing rate decay, which are the MOA framework default hyper-parameters. The
default values were used for baseline since we were unable to find previous results
regarding the tuning of adaptive model rules hyper-parameters for data streams.
The alternative would be to perform off-line hyper-parameter tuning with the
instances received so far, e.g., using grid search.

4.1 Data Sets

The evaluation was performed using only real and public data sets with a min-
imum number of 100000 instances: (i) the YearPredictionMSD [29] data set,
holding 515344 instances; (ii) the Twitter [18] data set with 583251 instances;
and (iii) the SGEMM GPU kernel performance [28] data set, containing 240600
instances.

4.2 Evaluation Protocol

The evaluation protocol defines the data ordering, partitions and distribution.
To assess the proposed method we applied two different protocols: holdout eval-
uation [15] and the predictive sequential (prequential) evaluation [11]. First, we
use the holdout evaluation protocol to find an optimal solution for the hyper-
parameters and assess the reproducibility of the algorithm with multiple exper-
iments. Then, we apply the prequential evaluation to the data as a stream. We
determine the incremental RMSE adopted by Takács et al. (2009) [26], which is
calculated incrementally after each new instance.

Figure 3 presents holdout data partition. The data is ordered temporally
and, then, partitioned in two halves: 50% to “Train” and the remaining 50% to
“Test”. First, the holdout algorithm finds an optimal solution for the selected
hyper-parameters using the train data. Then, it builds a model using the train
data and the identified optimal hyper-parameters. Finally, the holdout algorithm
updates and evaluates the created model using the test data.

In the case of the prequential protocol, the entire data is used for training
and testing. The algorithm scans the available data, and for each example the
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Fig. 3. Holdout – data splitting and processing.

current decision model makes a prediction. After, it receives the true label, and
updates the decision model.

In the case of the prequential protocol, the entire data is used for training
and testing as represented in Fig. 4. First the data is ordered temporally, then it
is used to build incrementally the model and, finally, is evaluated with a sliding
window of 1000 instances, as proposed by [10].

Fig. 4. Prequential – data splitting and processing [2].

The holdout and prequential tests were repeated 30 times to compute the
average and standard deviation of the evaluation metrics. This number of repe-
titions is a compromise between the time required to process each data set and
the number of runs required to compute the statistical values with confidence.

4.3 Significance Tests

To detect the statistical differences between the proposed and the baseline
approaches we applied three different significance tests: (i) the Wilcoxon Test
[30] to verify if the mean ranks of two samples differ; (ii) the McNemar Test
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[20] to assess if a statistically significant change occurs on a dichotomous trait
at two time points on the same population; and (iii) the critical distance (CD)
measure proposed by [3] for a graphical interpretation of the statistical results.
We define a 5% of significance level p for all tests. The goal of the Wilcoxon and
McNemar tests is to reject the null-hypothesis, i.e., that both approaches have
the same performance. We run 30 trials for each experiment. For a significance
of 5%, the critical value of McNemar Test (MTcrit) is 3.84 and the critical value
of the Wilcoxon Test (WTcrit) is 137. In the case of the McNemar, two samples
are statistically different if MTstat > MTcrit, whereas, in the case of Wilcoxon,
two samples are statistically different if the |WTstat| > WTcrit.

4.4 Regression Experiments

First, we added our hyper-parameter optimisation algorithm to the MOA frame-
work by defining a new regression task which uses the regression algorithm of
Duarte et al. (2016) [4]. When we launch the task, it initialises four identical
regression models with randomly selected values for the three hyper-parameters
and applies our algorithm.

Figure 5 illustrates the convergence of the optimisation of the three hyper-
parameters with the three regression data sets. While the four models rapidly
converge with the Twitter data set, with the YearPredictionMSD and SGEMM
GPU data set, only three of the four models converge. This means that, as the
number of degrees of freedom of the objective function increases, the algorithm
requires more instances to converge to a solution.

The holdout evaluation, after verifying the convergence of the models,
assesses the performance of the regression algorithm with both the baseline (B)
and the SPT hyper-parameters. This step was repeated thirty times with ran-
domly shuffled data variations to compute the average and standard deviation
of the prediction RMSE (see Table 1). The RMSE has a negligible decrease of
0.3% with the Twitter data set, drops 4.3% with the YearPredictionMSD data
set and shows a reduction of 34.4% with the SGEMM GPU data set.

Table 2 presents the statistical results of the Wilcoxon and McNemar tests.
The results shows that the null hypothesis is rejected for all data sets, meaning
that the results with SPT and baseline are statistically different.

Figure 6 displays the critical distance between the proposed and baseline
approaches, showing that they are statistically different. The critical distance
was calculated using the Nemenyi test [22].

Figure 7 compares prequential evaluation results of the baseline and SPT
approaches. The charts, which display log(RMSEB/RMSESPT ), indicate that
the hyper-parameters found by SPT were not the best for all stream instances.

Based on these conclusions, we decided to make our algorithm responsive to
concept drift and receive feedback from the Page-Hinkley test [25] which detects
data changes. Whenever a drift occurs, our optimisation algorithm re-initiates
the search for new hyper-parameters, i.e., takes into account the variability of
the data. Finally, we applied again the prequential evaluation protocol to assess
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(a) Twitter (b) YearPredictionMSD

(c) SGEMM GPU

Fig. 5. Regression – Model convergence

Table 1. Regression results

Dataset Approach RMSE (µ) CV (%)

YearPredictionMSD
B 0.178× 102 0.459
SPT 0.178× 102 0.344

Twitter
B 1.646× 102 0.013
SPT 1.576× 102 0.014

SGEMM GPU
B 0.090× 102 0.837
SPT 0.059× 102 0.937

the response of our algorithm to data changes. Figure 8 shows that it reacts to
concept drifts, improving our initial results.
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Table 2. Regression statistical results

Dataset Test Value p-value

YearPredictionMSD McNemar MTstat 24.3 8.244×10−7

Wilcoxon WTstat 463 5.588×10−9

Twitter McNemar MTstat 24.3 8.244×10−7

Wilcoxon WTstat 435 3.79×10−6

SGEMM GPU McNemar MTstat 28.0 1.19×10−7

Wilcoxon WTstat 465 1.86×10−6

Fig. 6. Regression – Critical Distance

Computationally, the on-line tuning of three parameters requires four threads
and, temporally, during model assessment, plus seven threads, against the single
thread of the baseline algorithm. The duration of the assessment phase depends
on the number of instances of the dynamic sample size interval.

5 Conclusions

This paper describes the SPT – Self Parameter tuning – approach, a hyper-
parameter optimisation algorithm for data streams. SPT explores the adoption
of a simplex search mechanism combined with dynamic data samples and concept
drift detection to tune and find good parameter configuration that minimise the
objective function.

The main contribution of this paper is an extension of the Nelder-Mead
optimisation algorithm which is, to the best of our knowledge, the single one
which effectively works with data streams and reacts to the data variability. The
SPT algorithm is, in terms of existing hyper-parameter optimisation algorithms,
less computationally expensive than Bayesian optimisers, stochastic gradients or
even grid search algorithms.

We applied SPT to regression data sets and concluded that the selection of
the hyper-parameters has a substantial impact in terms of accuracy. The per-
formance of our algorithm with regression problems was affected by the data
variability and, consequently, we enriched it with a concept drift detection func-
tionality.

Our algorithm is able to operate over data streams, adjusting hyper-
parameters based on the variability of the data, and does not require an iter-
ative approach to converge to an acceptable minimum. We test our approach
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(a) Twitter (b) YearPredictionMSD

(c) SGEMM GPU

Fig. 7. Regression – Prequential evaluation without concept drift detection

extensively on regression problems against baseline methods that do not per-
form automatic adjustments of hyper-parameters, and found that our approach
consistently and significantly outperforms them.

Future work will includes three key points: (i) apply the algorithm to clas-
sification and recommendation algorithms; (ii) enrich the algorithm with the
ability to select not only hyper-parameters but also models; and (iii) make a
thorough comparison with other optimisation algorithms.
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(a) Twitter (b) YearPredictionMSD

(c) SGEMM GPU

Fig. 8. Regression – Prequential evaluation with concept drift detection
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Abstract. While standard methods for detecting subgroups on plain
social networks focus on the network structure, attributed social net-
works allow compositional analysis, i. e., by exploiting attributive infor-
mation. Accordingly, this paper applies a compositional perspective
for identifying compositional subgroup patterns. In contrast to typical
approaches for community detection and graph clustering it focuses on
the dyadic structure of social interaction networks. For that, we adapt
principles of subgroup discovery – a general data mining technique for the
identification of local patterns – to the dyadic network setting. We focus
on social interaction networks, where we specifically consider properties
of those social interactions, i. e., duration and frequency. In particular,
we present novel quality functions for estimating the interestingness of
a subgroup and discuss their properties. Furthermore, we demonstrate
the efficacy of the approach using two real-world datasets on face-to-face
interactions.

1 Introduction

The identification of interesting subgroups (often also called communities) is
a prominent research direction in data mining and (social) network analysis,
e. g., [2,3,17,21,49]. Typically, a structural perspective is taken, such that spe-
cific subgraphs — in a graph representation of the network — induced by a
set of edges and/or nodes are investigated. Attributed networks, where nodes
and/or edges are labeled with additional information, allow for further dimen-
sions for detecting patterns that describe a specific subset of nodes of the graph
representation of a (social) network. However, there are different foci relating to
the specific problem and data at hand. The method of subgroup discovery, for
example, a powerful and versatile method for exploratory data mining, focuses
on detecting subgroups described by specific patterns that are interesting with
respect to some target concept and quality function. In contrast, community
detection, as a (social) network analysis method, aims at detecting subgroups
of individuals, i. e., nodes of a network, that are densely (and often cohesively)
connected by a set of links. Thus, the former stresses the compositional notion
of a pattern describing a subgroup, i. e., based on attributes/properties of nodes
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and/or edges, while the latter focuses on structural properties of a pattern, such
that specific subgraphs are investigated that induce a specific pattern.

Problem. We formalize the problem of detecting compositional patterns of
actor-dyads, i. e., edges connecting two nodes (corresponding to the actors) in a
graph representation of an attributed network. We aim to detect the subgroup
patterns that are most interesting according to a given interestingness measure.
For estimating the interestingness, we utilize a quality function which considers
the dyadic structure of the set of dyads induced by the compositional pattern.
In particular, we focus on social interaction networks, where we specifically con-
sider properties of social interactions, e. g., duration and frequency. Then, the
quality measure should consider those patterns as especially interesting which
deviate from the expected “overall” behavior given by a null-model, i. e., mod-
eling dyadic interactions due to pure chance. Then, those models should also
incorporate the properties of social interaction networks mentioned above.

Objectives. We tackle the problem of detecting compositional patterns cap-
turing subgroups of nodes that show an interesting behavior according to their
dyadic structure as estimated by a quality measure. We present novel approaches
utilizing subgroup discovery and exceptional model mining techniques [3,7,18].
Further, we discuss estimation methods for ranking interesting patterns, and
we propose two novel quality functions, that are statistically well-founded. This
provides for a comprehensive and easily interpretable approach for this problem.

Approach & Methods. For our compositional subgroup discovery approach,
we adapt principles of subgroup discovery – a general data analysis technique for
exploratory data mining – to the dyadic network setting. In particular, we present
two novel quality functions for estimating the interestingness of a subgroup and
its specific dyadic interactions and discuss their properties. Furthermore, we
demonstrate the efficacy of the approach using two real-world datasets.

Contributions. Our contribution is summarized as follows:

1. We formalize the problem of compositional subgroup discovery and present an
approach for detecting compositional subgroup patterns capturing interesting
subgroups of dyads, as estimated by a quality function.

2. Based on subgroup discovery and exceptional model mining techniques, we
propose a flexible modeling and analysis approach, and present two novel
interestingness measures for compositional analysis, i. e., quality functions for
subgroup discovery. These enable estimating the quality of subgroup patterns
in order to generate a ranking. The proposed quality functions are statistically
well-founded, and provide a statistical significance value directly, also easing
interpretation by domain specialists.

3. We demonstrate the efficacy of our proposed approach and the presented
quality measures using two real-world datasets capturing social face-to-face
interaction networks.

Structure. The rest of the paper is structured as follows: Sect. 2 discusses
related work. After that, Sect. 4 outlines the proposed approach. Next, Sect. 5
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presents results of an exploratory analysis utilizing two real-world social interac-
tion network datasets of face-to-face interactions. Finally, Sect. 6 concludes with
a discussion and interesting directions for future work.

2 Related Work

Below, we summarize related work on subgroup discovery, social interaction net-
works, and community detection, and put our proposed approach into context.

2.1 Subgroup Discovery and Exceptional Model Mining

Subgroup discovery is an exploratory data mining method for detecting inter-
esting subgroups, e. g., [3,29,50]. It aims at identifying descriptions of subsets
of a dataset that show an interesting behavior with respect to certain interest-
ingness criteria, formalized by a quality function, e. g., [50]. Here, the concept of
exceptional model mining has recently been introduced [18,34]. It can be con-
sidered as a variant of subgroup discovery enabling more complex target prop-
erties. Applications include mining characteristic patterns [8], mining subgroups
of subgraphs [45], or descriptive community mining, e. g., [7]. In contrast to the
approaches mentioned above, we adapt subgroup discovery for dyadic analysis
on social interaction networks, and propose novel interestingness measures as
quality functions on networks for that purpose.

2.2 Mining Social Interaction Networks

A general view on mining social interaction networks is given in [2], captured dur-
ing certain events, e. g., during conferences. Here, patterns on face-to-face contact
networks as well as evidence networks [40]) and their underlying mechanisms,
e. g., concerning homophily [11,39,41] are analyzed, however only concerning
specific hypotheses or single attributes [46]. Furthermore, [6,38] describe the
dynamics of communities and roles at conferences, while [28] focuses on their
evolution. This is also the focus of, e. g., [4,37] where exceptional communi-
ties/subgroups with respect to sequential transitions are detected. In contrast,
this paper targets the detection of interesting patterns describing such dyadic-
oriented subgroups in attributed networks, modeling social interactions.

Attributed (or labeled) graphs as richer graph representations enable
approaches that specifically exploit the descriptive information of the labels
assigned to nodes and/or edges of the graph, in order to detect densely connected
groups or clusters, e. g., [16]. In [7], for example, the COMODO algorithm is
presented. It applies subgroup discovery techniques for description-oriented com-
munity detection. Using additional descriptive features of the nodes contained
in the network, the task is to identify communities as sets of densely connected
nodes together with a description, i. e., a logical formula on the values of the
nodes’ descriptive features. Here, in contrast, we do not focus on the graph
structure, like approaches for community detection, e. g., [7,24,44] or exceptional
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model mining approaches, e. g., [10,12,15,26] on attributed graphs. Instead, we
apply a dyadic perspective on interactions focusing on such parameters such as
interaction frequency and duration. We propose two novel quality functions in
such dyadic interaction contexts, i. e., for reliably identifying interesting subsets
of dyads using subgroup discovery. To the best of the author’s knowledge, no
subgroup discovery approach tackling this problem has been proposed so far.

3 Background: Subgroup Discovery

Subgroup discovery [3,50] is a powerful method, e. g., for (data) exploration and
descriptive induction, i. e., to obtain an overview of the relations between a
so-called target concept and a set of explaining features. These features are rep-
resented by attribute/value assignments, i. e., they correspond to binary features
such as items known from association rule mining [1]. In its simplest case, the
target concept is often represented by a binary variable. However, more com-
plex target concepts can also be modeled, leading to exceptional model mining
which targets specifically complex target models. In this work, for subgroup dis-
covery we adopt the general scope proposed in [3,29–31,36,43,50,51], such that
subgroup discovery also subsumes exceptional model mining as a special case,
enabling more complex target concepts than just, e. g., a single dependent vari-
able. Then, subgroups are ranked using a quality function, e. g., [3,22,29,35,50].

In the context of attributed networks, we formalize the necessary notions in
the following. Formally, an edge – attribute database DB = (E,A, F ) is given
by a set of edges E and a set of attributes A. For each attribute a ∈ A, a
range dom(a) of values is defined. An attribute/value assignment a = v, where
a ∈ A, v ∈ dom(a), is called a feature. We define the feature space V to be the
(universal) set of all features. For each edge e ∈ E there is a mapping F : E → 2V

describing the set of features that are assigned to an edge. Intuitively, such
features can be given by attribute–value paris, (binary) labels such as items in
the context of association rule mining, etc.

Basic elements used in subgroup discovery are patterns and subgroups. Intu-
itively, a pattern describes a subgroup, i. e., the subgroup consists of the edges
(and the respective nodes) that are covered by the respective pattern, i. e., those
having the respective set of features. It is easy to see, that a pattern describes
a fixed set of edges (inducing a subgroup of nodes), while a subgroup can also
be described by different patterns, if there are different options for covering the
subgroup’ edges. A (subgroup) pattern P is defined as a conjunction

P = s1 ∧ s2 ∧ · · · ∧ sn ,

of (extended) features
si ⊆ V ,

which are then called selection expressions, where each si selects a subset of the
range dom(a) of an attribute a ∈ A. A selection expression s is thus a Boolean
function E → {0, 1} that is true if the value of the corresponding attribute is
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contained in the respective subset of V for the respective edge e ∈ E. The set of
all selection expressions is denoted by S.
A subgroup (extension)

EP := ext(P) := {e ∈ E|P(e) = true}

is the set of all edges which are covered by the pattern P . Using the set of edges,
it is straightforward to extract the subset of covered nodes.

The interestingness of a pattern is determined by a quality function

q : 2S → R .

It maps every pattern in the search space to a real number that reflects the
interestingness of a pattern (or the extension of the pattern, respectively). Many
quality functions for a single target feature, e. g., in the binary or numerical
case, trade-off the size n = |ext(P)| of a subgroup and the deviation tP − t0,
where tP is the average value of a given target feature in the subgroup identified
by the pattern P and t0 the average value of the target feature in the general
population. Thus, standard quality functions are of the form

qa(P) = na · (tP − t0), a ∈ [0; 1] .

For binary target concepts, this includes, for example, a simplified binomial func-
tion q0.5a for a = 0.5, or the gain quality function q0a with a = 0. However, as
we will see below, such simple formalizations (as utilized by standard subgroup
discovery approaches) do not cover the specific properties in dyadic network
analysis - that is why provide specific adaptations for that case below.

While a quality function provides a ranking of the discovered subgroup pat-
terns, often also a statistical assessment of the patterns is useful in data explo-
ration. Quality functions that directly apply a statistical test, for example, the
Chi-square quality function, e. g., [3] provide a p-value for simple interpretation.

For network data, there exist several quality measures for comparing a net-
work structure to a null-model. For a given subgroup we can, for example, adapt
common community quality measures, e. g., [7] for subgroup discovery. Also, the
quadratic assignment procedure [32] (QAP) is a standard approach applying a
graph correlation measure: For comparing two graphs G1 and G2, it estimates the
correlation of the respective adjacency matrices M1 and M2 and tests that graph
level statistic against a QAP null hypothesis [32]. QAP compares the observed
graph correlation of (G1, G2) to the distribution of the respective resulting cor-
relation scores obtained on repeated random row and column permutations of
the adjacency matrix of G2. However, this relates to the whole graph and not
to specific subgroups of dyads, i. e., a subset of edges.

As we will see below, we can apply similar mechanisms for comparing a
sub-network induced by a given subgroup pattern with a set of randomized sub-
networks given the same distributional characteristics with respect to the total
set of edges. However, in contrast to simple permutation operations, we have to
take special care with respect to the social interaction properties, as we discuss
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below in detail, in order to compare the observed number of edges covered by a
subgroup pattern with the expected number given a null-model.

Using a given subgroup discovery algorithm, the result of top-k subgroup
discovery is the set of the k patterns P1, . . . ,Pk , where Pi ∈ 2S , with the highest
interestingness according to the applied quality function. A subgroup discovery
task can now be specified by the 5-tuple: (DB , c, S, q, k) , where c indicates the
target concept; the search space 2S is defined by the set of basic patterns S.

4 Method

We first provide an overview on the proposed approach for the analysis of social
interaction networks. Next, we present two novel quality functions for that task.

4.1 Compositional Network Analysis Using Subgroup Discovery

We focus on the analysis of social interaction networks [2,42], i. e., user-related
social networks capturing social relations inherent in social interactions, social
activities and other social phenomena which act as proxies for social user-
relatedness. According to Wassermann and Faust [49, p. 37 ff.] social interac-
tion networks focus on interaction relations between people as the corresponding
actors. Then, a dyad, i. e., a link between two actors, models such a dyadic inter-
action. In a graph representation of the network, the dyad is then represented
by an edge between two nodes (corresponding to the respective actors). Given
attributed networks, also describing attributes, i. e., properties of nodes and/or
edges can be used to characterize subgroups in order to characterize or explain
a certain (observed) behavior, e. g., [21,33,49]. Here, we focus on compositional
network analysis using subgroup discovery, where subgroups are induced by (a
set of) describing attributes. Subgroup discovery enables hypotheses generation
by directly exploring a given attribute space in order to identify interesting
(compositional) subgroups according to some interestingness measure. As an
exploratory method, we can e. g., focus on the top-k subgroups. Such patterns
are then local models describing “interesting subsets” in terms of their attributes.

In the following, we focus on attributed networks, i. e., edge-attributed graphs
with respect to actor attributes, enabling compositional dyadic analysis [49].
The interestingness can be flexibly defined using a quality measure. For social
interaction networks, we distinguish between the following two properties:

1. Interaction duration: In social interaction networks, the duration of an inter-
action can be captured by a weight assigned to a specific link connecting the
interacting actors. Then, simple networks that just capture those interactions
can be represented by weighted graphs. In the unweighted case, we can just
assign a default weight w for an edge e, e. g., w(e) = 1.0.

2. Interaction frequency: The frequency of interactions is typically indicated by
multiple links between the two interacting actors, represented by a set of edges
connecting the respective nodes in a multigraph. In addition, the duration of
the interaction can also be captured as described above.
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In the scope of this work, we focus on a numeric target feature tP correspond-
ing to the observed number of edges normalized by the expectation, for pattern
P ; for the interaction duration, we consider the weighted variant, i. e., taking the
edge weights into account. Then, we rank subgroups utilizing the (normalized)
mean of that target feature tP . It is important to note, that we use the number of
all possible contacts (edges) for computing the mean of tP , i. e., including edges
with a zero weight. Therefore, we take into account all possible edges between all
nodes (actors), as discussed below, for simple graphs (for interation duration),
as well as for multigraphs where we also consider interaction frequency.

4.2 Quality Measures

For ranking a set of subgroup patterns, we propose two quality measures. Essen-
tially, we distinguish two cases: First, simple compositional networks represented
as simple attributed graphs, which can also be weighted, and second attributed
multigraphs. We propose two quality functions for estimating dyadic means of a
pattern P , corresponding to the numeric target feature tP discussed above. This
is combined with randomization approaches for estimating the significance of
the respective values. Altogether, this results in statistically well-founded qual-
ity functions, yielding intuitively interpretable values.

Simple Attributed Graphs. In the case of a simple network (without multiple
links) we can simply add up the number of (weighted) edges EP captured by a
pattern P , and normalize by the number of all possible edges nE in the node
subset induced by P , i. e., all contributing nodes that are connected by any
edge e contained in EP . That means, for example, that if we consider the mean
duration of contacts in a social interaction network as the target tP , where the
duration is indicated by the weight of a (contact) edge between two nodes (i. e.,
the involved actors), then we normalize by the number of all possible contacts
that can occur in that set of nodes. Thus, intuitively, we take contacts of length
zero into account for completeness. Thus, for a pattern P , we estimate its quality
qS(P ) as follows:

qS(P ) = Z(
1
nE

·
∑

e∈EP

w(e)) , (1)

with nE = nEP
(nEP

−1)

2 , where nEP
is the number of nodes covered by a pattern

P . Z is a function that estimates the statistical significance of the obtained value
(i. e., tP ) given a randomized model, which we discuss below in more detail.

Attributed Multigraphs. For more complex attributed networks containing
multi-links between actors, we model these as attributed multigraphs. Then, we
can additionally take the interaction frequency into account, as discussed above.
The individual set of interactions is modeled using a set of links between the
different nodes representing the respective actors of the network. Thus, for nor-
malizing the mean of target tP , we also need to take into account the multiplicity
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of edges between the individual nodes. Then, with nE = nEP
(nEP

−1)

2 indicating
the total number of (single) edges between the individual nodes captured by
pattern P , mi, i = 1 . . . nE models the number of multi-edges for an individual
edge i connecting two nodes. With that, extending Eq. 1 for a pattern P in the
multigraph case, we estimate its quality qM (P ) as follows:

qM (P ) = Z(
1

nE + mE
·

∑

e∈EP

w(e)) , (2)

with mE =
nE∑
i=1

(mi−1). It is easy to see that Eq. 2 simplifies to Eq. 1 for a simple

attributed network, as a special case.

Randomization-Based Significance Estimation. As summarized above in
Sect. 3, standard quality functions for subgroup discovery compare the mean of
a certain target concept with the mean estimated in the whole dataset. In the
dyadic analysis that we tackle in this paper, however, we also need to take edge
formation of dyadic structures into account, such that, e. g., simply calculating
the mean of the observed edges normalized by all edges for the whole dataset
is not sufficient. In addition, since we use subgroup discovery for identifying a
dyadic subgraph (i. e., a set of edges) induced by a pattern, we also aim to
confirm the impact by checking the statistical significance compared to a null-
model. For that, we propose a sampling based procedure: We draw r samples
without replacement with the same size of the respective subgroup in terms of
the number of edges, i. e., we randomly select r subsets of edges of the whole
graph. For the two cases discussed above, i. e., for the simple attributed graph
and the multigraph representation, we distinguish two cases:

1. Simple graph network representation: In the simple case, we just take into
account the

N =
n(n − 1)

2
possible edges between all nodes of the simple graph. Thus, in a sampling
vector R = (r1, r2, . . . , rN ), we fill the ri, i = 1 . . . N positions with the weights
of the corresponding edges of the graph, for which that a non-existing edge
in the given graph is assigned a weight of zero.

2. Multigraph network representation: In the multigraph case we also consider
the number of all possible edges between all the nodes, however, we also need
to take the multi-edges into account, as follows:

N =
n(n − 1)

2
+

n∑

i=1

(mi − 1) ,

where mi, i = 1, . . . , n , are the respective multi-edge counts for an individual
edge i. As above, we assign the sampling vector R accordingly, where we set
the weight entries of non-existing edges to zero.
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For selecting the random subsets, we apply sampling without replacement.
This is essentially equivalent to a shuffling based procedure, e. g., [19,23]. Then,
we determine the mean of the target feature tR (e. g., mean duration) in those
induced r subsets of edges. In that way, we build a distribution of “false dis-
coveries” [19] using the r samples. Using the mean tP in the original subgroup
and the set of r sample means, we can construct a z-score which directly leads
to statistical assessment for computing a p-Value. This is modeled using the
function Z(tP ), Z : R → R which is then used for estimating the statistical sig-
nificance of the target tP of pattern P . In order to ensure that the r samples are
approximately normally distributed, we can apply a normality test, for example,
the Shapiro-Wilk-test [48]. If normality is rejected, a possible alternative is to
compute the empirical p-value of a subgroup [23]. However, in practice often
the distribution of the sampled means is approximately normally distributed, so
that a p-value can be directly computed from the obtained z-score.

Table 1. Statistics/properties of the real-world datasets: Number of participants |V |,
unique contacts |U |, total contacts |C| average degree, diameter d, density, count of
F2F contacts (C), cf. [27] for details.

Network |V | |U | |C| ∅Degree d Density |C|
LWA 2010 77 1004 5154 26.08 3 0.34 5154

HT 2011 69 550 1902 15.94 4 0.23 1902

5 Results

Below, we describe the utilized two real-world datasets on social face-to-face
interaction networks and experimental results of applying the presented app-
roach.

5.1 Datasets

We applied social interaction networks captured at two scientific conferences,
i. e., at the LWA 2010 conference in Kassel, Germany, and the Hypertext (HT)
2011 conference in Eindhoven, The Netherlands. Using the Conferator sys-
tem [5], we invited conference participants1 to wear active RFID proximity tags.2

When the tags are worn on the chest, tag-to-tag proximity is a proxy for a (close-
range) face-to-face (F2F) contact, since the range of the signals is approximately
1.5 m if not blocked by the human body, cf. [14] for details. We record a F2F
contact when the length of a contact is at least 20 s. A contact ends when the
proximity tags do not detect each other for more than 60 s. This results in time-
resolved networks of F2F contacts. Table 1 provides summary statistics of the
collected datasets; see [27] for a detailed description.
1 Study participants also gave their informed consent for the use of their data (includ-

ing their profile) in scientific studies.
2 http://www.sociopatterns.org.

http://www.sociopatterns.org
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In addition to the F2F contacts of the participants, we obtained further
(socio-demographic) information from their Conferator online profile. In partic-
ular, we utilize information on the participants’ (1) gender, (2) country of origin,
(3) (university) affiliation, (4) academic status – position – i. e., professor, post-
doc, PhD, student, (5) and their main conference track of interest. Note that not
all attributes are available for both conferences; e. g., country is not available for
the LWA 2010 conference since almost all participants were from Germany; here,
we refer to the (university) affiliation instead. In contrast, the country informa-
tion is very relevant for HT 2011. For those attributes given above, we created
features on the edges of the attributed (multi-)graphs in such a way, so that
an edge was labeled with “<feature>=EQ” if the respective nodes shared the
same value of the feature, e. g., gender=female for both nodes. Otherwise, the
edge was labeled with “<feature>=NEQ”. That means that, for example, the
subgroup described by the pattern gender=EQ contains the nodes, for which
the dyadic actors always agree on their attribute gender.

Table 2. Top-20 most exceptional subgroups according to the aggregated duration of
face-to-face interactions at LWA 2010 (simple attributed network): The table shows the
respective patterns, the covered number of dyads, the mean contact length in seconds
and the significance compared to the null-model (Quality (Z)).

Description Size ∅CLength Quality (Z)

track=EQ 456 182.05 19.01

affiliation=NEQ 959 245.39 18.91

position=NEQ 885 227.44 17.93

affiliation=NEQ, position=NEQ 868 220.01 17.36

affiliation=NEQ, track=EQ 428 158.18 16.22

position=NEQ, track=EQ 392 145.7 15.71

gender=NEQ 705 182.5 15.43

affiliation=NEQ, position=NEQ, track=EQ 381 139.92 15.2

gender=NEQ, track=EQ 312 123.84 14.01

affiliation=NEQ, gender=NEQ 669 160.01 13.2

gender=NEQ, position=NEQ 627 152.02 12.89

affiliation=NEQ, gender=NEQ, position=NEQ 614 145 12.1

gender=EQ 299 257.69 11.91

gender=EQ, track=EQ 144 189.02 11.75

affiliation=NEQ, gender=NEQ, track=EQ 289 102.15 11.35

affiliation=NEQ, gender=EQ, track=EQ 139 179.23 11.25

affiliation=NEQ, gender=EQ, position=NEQ, track=EQ 120 179.59 11.13

gender=EQ, position=NEQ, track=EQ 123 180.46 11.06

affiliation=NEQ, gender=EQ 290 252.35 11.01

affiliation=EQ, track=EQ 28 298.74 11
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Table 3. Top-20 most exceptional according to the non-aggregated duration of face-to-
face interactions at LWA 2010 (attributed multigraph): The table shows the respective
subgroup patterns, the covered number of dyads, the mean contact length in seconds
and the significance compared to the null-model (Quality (Z)).

Description Size Length Quality (Z)

affiliation=EQ, gender=EQ, position=EQ, track=EQ 30 239 793.96

affiliation=EQ, gender=EQ, position=NEQ, track=NEQ 7 71.29 491.59

affiliation=EQ, gender=EQ, position=EQ, track=NEQ 39 164.02 476.73

affiliation=EQ, gender=EQ, track=EQ 39 160.73 475.71

affiliation=EQ, gender=EQ, position=EQ 69 184.37 412.34

affiliation=EQ, gender=EQ, track=NEQ 46 127.68 341.41

affiliation=EQ, gender=NEQ, position=NEQ, track=NEQ 34 105.83 337.98

affiliation=EQ, gender=EQ, position=NEQ, track=EQ 9 44.63 274.97

affiliation=EQ, position=NEQ, track=NEQ 41 91.99 263.29

affiliation=EQ, gender=EQ 85 128.89 257.45

affiliation=EQ, position=EQ, track=NEQ 78 119.78 249.23

affiliation=EQ, gender=NEQ, position=EQ, track=NEQ 39 77.24 226.94

affiliation=EQ, gender=EQ, position=NEQ 16 44.93 203.45

affiliation=EQ, gender=NEQ, track=NEQ 73 86.25 182.48

affiliation=EQ, track=NEQ 119 103.35 171.08

affiliation=EQ, gender=NEQ, position=NEQ, track=EQ 98 92.89 170.31

gender=EQ, position=EQ, track=EQ 142 107.1 165.17

affiliation=NEQ, gender=EQ, position=EQ, track=NEQ 87 83.01 162.58

affiliation=EQ, gender=NEQ, position=EQ, track=EQ 228 135.41 161.12

affiliation=EQ, position=EQ, track=EQ 258 137.37 156.49

5.2 Experimental Results and Discussion

For compositional analysis, we applied subgroup discovery on the attributes
described in Sect. 5.1. We utilized the VIKAMINE [9] data mining platform
for subgroup discovery3, utilizing the SD-Map* algorithm [8], where we supplied
our novel quality functions for determining the top-20 subgroups.

For the target concept, we investigated the mean length of contacts – corre-
sponding to the duration of a social interaction in the respective subgroup. We
applied both simple attributed networks, and multigraph representations: For
the former, social interactions between respective actors were aggregated, such
that the corresponding weight is given by the sum of all interactions between
those actors. For the multigraph case, we considered the face-to-face interations
with their respective durations individually. Tables 2, 3, 4 and 5 show the results.

Overall, we notice several common patterns in those tables, both for LWA
2010 and HT 2011: We observe the relatively strong influence of homophilic
features such as gender, track, country, and affiliation in the detected patterns,

3 http://www.vikamine.org.

http://www.vikamine.org
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Table 4. Top-20 most exceptional subgroups according to the aggregated duration of
face-to-face interactions at HT 2010 (simple attributed network): The table shows the
respective patterns, the covered number of dyads, the mean contact length in seconds
and the significance compared to the null-model (Quality (Z)).

Description Size Length Quality (Z)

gender=EQ 357 114.76 15.76

gender=EQ, track=EQ 114 83.87 15.32

country=EQ, gender=EQ, track=EQ 35 111.75 14.21

country=EQ, track=EQ 42 89.74 13.89

track=EQ 185 70.4 13.73

country=EQ, gender=EQ, position=NEQ, track=EQ 18 140.52 12.98

country=EQ, gender=EQ 55 70.06 12.75

country=NEQ 470 87.76 12.61

country=EQ 80 56.51 12.59

position=NEQ 365 76.89 11.87

gender=EQ, position=EQ, track=EQ 46 68.43 11.8

country=EQ, position=NEQ, track=EQ 23 99.62 11.62

position=EQ 185 60.15 11.45

position=EQ, track=EQ 60 53.32 11.44

country=EQ, gender=EQ, position=NEQ 30 82.03 11.29

country=NEQ, gender=EQ 302 82.91 11.19

gender=EQ, position=EQ 136 61.91 10.81

gender=EQ, position=NEQ 221 71.43 10.52

gender=EQ, position=NEQ, track=EQ 68 58.42 10.13

track=NEQ 365 70.22 10.03

country=EQ, position=NEQ 50 45.89 9.86

confirming preliminary work that we presented in [11] only analyzing the indi-
vidual features and their contribution to establishing social interactions. Using
compositional subgroup discovery we can analyze those patterns at a more fine-
grained level, also taking more complex patterns, i. e., combinations of different
features into account. Thus, our results indicate more detailed findings both con-
cerning the individual durations, the influence of repeating interactions, and the
impact of complex patterns given by a combination of several features.

Furthermore, we also observe that the compositional multigraph analysis,
i. e., focusing on dyadic interactions in the multigraph case focuses on much
more specific patterns with many more contributing features, in contrast to more
general patterns in the case of the simple attributed network. That is, for the
multigraph case smaller subgroups (indicated by the size of the set of involved
actors/nodes) are detected that are more specific regarding their descriptions,
i. e., considering the length of the describing features. Then, these can provide
more detailed insights into, e. g., homophilic processes. We can assess different
specializations of competing properties, see e. g., lines #1 and #3 in Table 3.
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Table 5. Top-20 most exceptional subgroups according to the non-aggregated duration
of face-to-face interactions at HT 2011 (attributed multigraph): The table shows the
respective subgroup patterns, the covered number of dyads, the mean contact length
in seconds and the significance compared to the null-model (Quality (Z)).

Description Size Length Quality (Z)

country=EQ, gender=NEQ, position=EQ, track=EQ 13 159.57 353.49

country=EQ, gender=NEQ, position=EQ, track=NEQ 32 126.3 173.93

country=EQ, gender=NEQ, position=EQ 45 102.51 120.37

country=EQ, gender=NEQ, position=NEQ, track=EQ 15 45.74 92.91

country=EQ, gender=EQ, position=EQ, track=NEQ 17 42.27 83.02

country=EQ, gender=NEQ, track=EQ 28 49.86 74.91

country=EQ, gender=EQ, position=EQ, track=EQ 113 85.67 65.45

country=EQ, position=EQ, track=EQ 126 85.04 62.09

country=EQ, position=EQ, track=NEQ 49 52.29 61.21

country=EQ, gender=EQ, position=EQ 130 59.27 45.2

country=NEQ, gender=NEQ, position=EQ, track=EQ 32 29.08 42.28

country=EQ, gender=EQ, position=NEQ, track=NEQ 38 31.69 41.84

gender=NEQ, position=EQ, track=EQ 45 30.63 38.17

country=EQ, gender=NEQ, track=NEQ 78 41.06 38.02

country=EQ, gender=EQ, position=NEQ, track=EQ 255 72.55 36.41

country=EQ, position=EQ 175 52.37 35.98

country=NEQ, gender=EQ, position=EQ, track=EQ 166 41.72 32.72

gender=EQ, position=EQ, track=EQ 279 52.69 32.33

country=EQ, gender=EQ, track=EQ 368 66.86 30.3

country=EQ, position=NEQ, track=EQ 270 60.25 30.29

position=EQ, track=EQ 324 43.21 27.79

Also, the “specialization transition” between two patterns provides interesting
insights, e. g., considering the patterns affiliation=EQ, gender=EQ (line #10)
and affiliation=EQ, gender=EQ, track=EQ (line #4) shown in Table 3 which
indicates the strong homophilic influence of the track feature. A similar pattern
also emerges for HT 2011, regarding country=EQ, gender=NEQ, position=EQ ;
here both track=NEQ and track=EQ improve on the mean contact duration; the
latter is considerably stronger, also in line with our expectations, e. g., cf. [11].

6 Conclusions

In this paper, we formalized the problem of detecting compositional pat-
terns in attributed networks, i. e., capturing dyadic subgroups that show an
interesting behavior as estimated by a quality measure. We presented a novel
approach adapting techniques of subgroup discovery and exceptional model min-
ing [3,7,18]. Furthermore, we discussed estimation methods for ranking interest-
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ing patterns, and presented two novel quality measures for that purpose. Finally,
we demonstrated the efficacy of the approach using two real-world datasets.

Our results indicate interesting findings according to common principles
observed in social interaction networks, e. g., the influence of homophilic features
on the interactions. Furthermore, the applied quality functions allow to focus on
specific properties of interest according to the applied modeling method, e. g.,
whether a simple attributed network or a multigraph representation is applied.
Furthermore, the proposed quality functions are statistically well-founded, and
provide a statistical significance value directly, also easing their interpretation.

For future work, we aim to extend the concepts developed in this work
towards multiplex networks, also taking into account temporal network dynam-
ics. For that, we aim to consider methods for analyzing sequential patterns [4]
as well as approaches for modeling and analyzing multiplex network approaches,
e. g., [25,47]. Finally, methods for testing specific hypothesis and Bayesian esti-
mation techniques, e. g., [4,13,20] are further interesting directions to consider.

Acknowledgements. This work has been partially supported by the German
Research Foundation (DFG) project “MODUS” under grant AT 88/4-1.
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concepts. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009.
LNCS (LNAI), vol. 5722, pp. 35–44. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04125-9 7

9. Atzmueller, M., Lemmerich, F.: VIKAMINE - open-source subgroup discovery,
pattern mining, and analytics. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.)
ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 842–845. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33486-3 60

10. Atzmueller, M., Lemmerich, F.: Exploratory pattern mining on social media using
geo-references and social tagging information. IJWS 2(1/2), 80–112 (2013)

11. Atzmueller, M., Lemmerich, F.: Homophily at academic conferences. In: Proceed-
ings of WWW 2018 (Companion). IW3C2/ACM (2018)

https://doi.org/10.1007/978-3-642-33684-3_2
https://doi.org/10.1007/978-3-642-04125-9_7
https://doi.org/10.1007/978-3-642-04125-9_7
https://doi.org/10.1007/978-3-642-33486-3_60


Compositional Subgroup Discovery on Attributed Social Interaction 273

12. Atzmueller, M., Mollenhauer, D., Schmidt, A.: Big data analytics using local excep-
tionality detection. In: Enterprise Big Data Engineering, Analytics, and Manage-
ment. IGI Global, Hershey, PA, USA (2016)

13. Atzmueller, M., Schmidt, A., Kloepper, B., Arnu, D.: HypGraphs: an approach
for analysis and assessment of graph-based and sequential hypotheses. In: Appice,
A., Ceci, M., Loglisci, C., Masciari, E., Raś, Z.W. (eds.) NFMCP 2016. LNCS
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Abstract. Human olfactory perception is a complex phenomenon whose
neural mechanisms are still largely unknown and novel methods are
needed to better understand it. Methodological issues that prevent such
understanding are: (1) to be comparable, individual cerebral images have
to be transformed in order to fit a template brain, leading to a spatial
imprecision that has to be taken into account in the analysis; (2) we have
to deal with inter-individual variability of the hemodynamic signal from
fMRI images which render comparisons of individual raw data difficult.
The aim of the present paper was to overcome these issues. To this end,
we developed a methodology based on discovering exceptional attributed
subgraphs which enabled extracting invariants from fMRI data of a sam-
ple of individuals breathing different odorant molecules.Four attributed
graph models were proposed that differ in how they report the hemody-
namic activity measured in each voxel by associating varied attributes
to the vertices of the graph. An extensive empirical study is presented
that compares the ability of each modeling to uncover some brain areas
that are of interest for the neuroscientists.

1 Introduction

Olfaction is a chemical sense whose functions is to detect the presence of odorous
substances present in the environment in order to modulate appetitive, defensive
and social behaviors [6,26]. Olfactory deficits are a common symptom of neurode-
generative or psychiatric disorders and clinical research proposed that olfaction
could have great potential as an early biomarker of disease [2,25] for example
using neuroimaging to investigate the breakdown of structural connectivity pro-
file of the primary olfactory networks. On a fundamental level, whereas olfaction
has received much attention over the last decades, human olfactory perception
is a complex phenomenon whose mechanisms are still largely unknown.

Neuroscientific investigations revealed that perception of odors results from
the interaction between volatile molecules (described by multiple physicochem-
ical descriptors) and olfactory receptors located in the nasal cavity. Once the
c© Springer Nature Switzerland AG 2018
L. Soldatova et al. (Eds.): DS 2018, LNAI 11198, pp. 276–291, 2018.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01771-2_18&domain=pdf


Exceptional Attributed Subgraph Mining 277

interaction is done, a neural signal is then transmitted to central areas of the
brain to generate a percept called “odor” that is often accompanied by a strong
hedonic or emotional tone (either pleasant or unpleasant). Understanding the
link between odor (hedonic) perception and its underlying brain activity is an
important challenge in the field. Although past brain imaging studies revealed
that the brain activation in response to smells is distributed and can represent
different attributes of odor perception (from perception of irritation to intensity
or hedonic valence) [10,13,16], there is clear need to develop new brain imaging
analysis techniques in order to (i) take into account the large variability across
individuals in terms odor perception and brain activation, and (ii) refine the
network and understand for instance how different sub-parts of a given area are
involved in the processing of pleasant and unpleasant odors. This will be the
main aims of the present paper.

The most popular method to acquire brain imaging data in humans is called
functional Magnetic Resonance Imaging or fMRI. An important issue when per-
forming inter-individual analysis on fMRI data is that each individual image is
transformed in order to fit and map onto a template (so that comparison across
participants can be made on a unique model of the brain) [11]. Therefore, voxel
(i.e., 3d pixel) mapping from the individual to the template may be imprecise,
and looking for voxels that have a strong hemodynamic response for all individ-
uals can be unsuccessful. One solution to circumvent this problem is thus to take
into account this imprecision by looking for areas whose voxels – although impre-
cise – have specific hemodynamic response to some odors for a large proportions
of individuals compare to the rest of the brain. To achieve this goal, we propose
to model fMRI images as an attributed graph where the vertices are the voxels
(brain unit), the edges encode the adjacency relationship, and vertex attributes
stand for the hemodynamic response to an odor. We propose to analyze such a
graph with Cenergetics [4] which makes possible to identify brain areas with
exceptional hemodynamic response in some experimental settings.

Commonly, in order to demonstrate a functional activity of a given voxel,
neuroscientists make use of general linear model coupled with massive univariate
statistics [12] whereby the mean activity a voxel is compared in a “test condition”
(e.g. when participants are asked to breathe odors) and a “control” condition
(e.g. when participants are asked to breathe non-odorized air). The statistical
comparison is usually performed using a Student t-test. However, this type of
comparison presents some weaknesses when trying to take into account inter
individual variability. Figure 1 illustrates this issue. The distributions of the t-
values associated to the hemodynamic responses that come from the fMRI of two
individuals smelling the same odor (EUG, the Eugenol molecule that smells like
cloves) are represented. If we consider that a voxel is activated when t is greater
than 1.96, that corresponds to an error of type 1 of 5%, in one case there are
almost 5% of the voxels that are activated whereas in the other case this number
is lower than 10−2%. Thus, if we look for the invariants between individuals for
the same odor, there is a good chance that they do not exist.
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Fig. 1. Distribution of the t-test values associated to the voxels of two individuals
smelling EUG odor.

We propose different ways to evaluate the level of activation of a voxel, based
on normalized average values, ranks, t-test or pairwise comparisons. In the first
approach, the level of activation of a voxel by an odor is evaluated by the average
value of the hemodynamic response of this odor. The second proposal captures
the average, for all individuals, of the rank of the odor-related response among
all the responses of an individual when perceiving different odors. In the third
model, the odor activates the voxel if its hemodynamic response is statistically
significant according to the Student’s t-test. In the fourth model, the attributes
are pairwise comparisons of odor responses (e.g. odor1 > odor2) and their values
are the number of individuals for which this comparison holds.

Exceptional subgraphs on fMRI data are presented in Sect. 2, as well as the
attributed graphs built to model the brain activation during olfactory percep-
tion. Such patterns can be mined using Cenergetics, an algorithm designed to
discover connected subgraphs with over-represented and/or under-represented
attributes, that was developed to analyze urban data. Cenergetics is applied
on these graphs and the obtained results are compared through an extensive
empirical study in Sect. 3. Related work is reviewed in Sect. 4 and concluding
remarks are given in Sect. 5.

2 Mining Exceptional Subgraphs for Olfactory Percept
Analysis

We propose to use pattern mining techniques to identify relationships between
odor perception and brain areas. The data we analyze come from a neuroscience
experiment measuring hemodynamic responses when perceiving different odors
using fMRI. p individuals participated in the study and each of them inhaled q
different odors t times. During each olfactory trial, a brain volume is acquired.
Each image reflects the hemodynamic response in each of 3 millimeters cubed
unit of the brain, hereafter called voxel. The hemodynamic response function
is then modeled as regressors that render hemodynamic activity [23]. Let us
denote by Xk(v, i, j) the level of activity measured in the voxel v for individual
i = 1 . . . p while smelling an odor j = 1 . . . q, at time k = 1 . . . t, and Ak(v, i) the
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activity measured while individual i is breathing air. The specific activity value
of an odor perception is obtained by the average difference of X and A:

M(v, i, j) =
∑

k (Xk(v, i, j) − Ak(v, i))
t

However, the measure M is not bounded, taking positive and negative values,
with its intensity depending on the sensitivity of the participant. To be able to
compare different individuals, it is usual in neuroscience to normalize the value
M that is tranformed into a statistical Student t-value:

M ′(v, i, j) =
M(v, i, j)

σ(X−A)√
t

with σ(X − A) the standard deviation of the measures X − A over k.
In an inter-individual analysis, we are interested in voxel areas (1) that are

activated by a given odor for most of the individuals and (2) whose activation
level is much higher than that observed in other areas of the brain. To identify
such patterns, we propose to mine exceptional subgraphs in an attributed graph
which models the brain activation when the subject is stimulated by an odor.

2.1 Mining Activated Areas in the Brain

Brain activity can be modeled as a vertex attributed graph whose vertices V rep-
resent voxels and edges E connect adjacent voxels. A set of attribute value pairs
P is associated to each vertex and describes the activity of the corresponding
voxel. The attributes are denoted A and take their value x in R:

P : V → {(a, x) | a ∈ A, x ∈ R}
Our objective is to identify brain areas whose attribute value pairs distinguish
them from the rest of the brain. To this end, we propose to discover connected
subgraphs associated to exceptional attribute value pairs. An attribute value
pair is considered as exceptional for a subgraph if it has a much higher value in
its vertices than in the remaining of the graph. Hence, an exceptional attributed
subgraph is defined as a pair (S,K) with S ⊆ V , a subset of vertices that
induces the subgraph G[S], and K ⊆ A a subset of attributes whose values are
exceptional for this subgraph. This is evaluated by the weighted relative accuracy
defined as:

WRAcc(S,K) =
sum(S,A)
sum(V,A)

×
(sum(S,K)

sum(S,A)
− sum(V,K)

sum(V,A)

)

with sum(S,K) =
∑

v∈S

∑
(a,x)∈P (v), a∈K x.

Definition 1 (Exceptional attributed subgraph). Given an attributed
graph G = (V,E,A, P ) and two thresholds minV and δ, an Exceptional
attributed subgraph (S,K) is such that (1) |S| ≥ minV, (2) G[S] is connected,
(3) WRAcc(S,K) ≥ δ and (4) ∀v ∈ S,∀p ∈ K,WRAcc(v, p) > 0.
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Condition (1) ensures that patterns involve enough vertices to be of interest.
Condition (2) preserves the notion of areas and avoid discontinuity. Condition
(3) assesses the exceptionality of the attributes, while condition (4) enforces
the subgraph to be cohesive. Such patterns can be mined using the algorithm
presented in [4], originally designed to exhibit the predominant activities and
their associated urban areas in graphs that model urban areas. The algorithm,
named Cenergetics, mines exceptional subgraph in attributed graphs.

Exceptional attributed subgraph definition can be extended to also catch
attributes whose values are exceptionally lower for the subgraph than for the
rest of the graph. Cenergetics enables the possibility of discovering subgraphs
with both exceptionally over- or under-represented attributes. In this section,
we consider over-represented attribute values. The case of under-represented
attributes is discussed in the empirical study.

Several attributed graphs can be constructed based on fMRI data. They
differ by the attribute value pairs associated to the vertices, that is to say, by
the attribute and by the value associated to them.

2.2 Attributed Graphs that Model Olfactory Perception

The attribute value pairs P of the graph reflects the strength of the hemodynamic
response of the corresponding voxel when perceiving the odors. The attributes
A can be the odor names, but also another characteristics such as chemical
properties or the feelings felt during the perception (for instance their pleasant
or unpleasant character). We denote by π the characteristic used to describe the
odor (i.e. an injective function from odors to a set of labels). The attributes of
A can also be pairs of odors to characterize voxels with pairwise inequalities.

The value of each attribute results of the aggregation of the measurements
M obtained for different individuals. Since these measurements may contains
errors, which may come from the material used, but also from the brain activity
of the participant during the experiment (stress, thoughts), we consider below
different ways of aggregating the data. These different approaches attempt to
overcome this problem and will be experimentally compared.
Mean of the values: A voxel activation can be characterized by the mean of
the values:

(π[j], x) ∈ P (v) with x =
∑

i M ′(v, i, j)
p

To limit the effect of high inter-individual variability it can be preferable not
to consider the measure M ′ as an interval scale, but to downgrade the type of
measurement scale and only consider the ranks.
Average rank: The voxel activation is evaluated by the average rank of the
odor in the individual perceptions:

(π[j], x) ∈ P (v) with x =
∑

i rank(v, i, j)
p

with rank(v, i, j) = |{� = 1 . . . q | M ′(v, i, �) ≤ M ′(v, i, j)}|.
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t-test based approach: We can also downgrade the measure to consider it
as a nominal variable. The discretization can be obtained thanks to a t-test
assesses whether a voxel is activated or not. For a voxel v, an individual i and
an odor j, if M ′(v, i, j) is greater than the critical value with df = t − 1 of the
student distribution (given the confidence level α = 0.05), then the hemodynamic
response is considered to be different from the one observed while breathing air
and the voxel is esteemed activated:

(π[j], x) ∈ P (v) with x = |{i = 1 . . . p | (T0.05 < M ′(v, i, j))}|

Approach based on pairwise inequality: We propose another setting based
on the pairwise comparison of the hemodynamic responses. The vertex attributes
are pairs of odors (o1, o2) and their value is the number of individuals who have
a higher value while smelling o1 than when smelling o2. Thereby, q × (q − 1)
attributes (the number of pairs of odors) are associated to each vertex v of the
graph and their values are:

((π[o1], π[o2]), x) ∈ P (v) with x = |{i = 1 . . . p | M ′(v, i, o1) > M ′(v, i, o2)}|

3 Empirical Study

In this section, we report our experimental results. These experiments aim to
compare the different ways to build an attributed graph that are described in
the previous section. Especially, we want to identify which ones are the most
promising to identify exceptional subgraphs and how the related patterns make
sense. To this end, we study the main characteristics of the discovered patterns
for each modeling. In our experiments, 14 individuals smelled 6 odorants1 10
times (p = 14, q = 6 and k = 10.).

As mentioned in the previous section, exceptional attributed subgraph defini-
tion can be extended to make possible the discovery of subgraphs whose attribute
values are lower than what observed on the rest of the graphs. For mean and
rank modelings, we just adapted the WRAcc measure to catch under-represented
attributes [4]. In the pairwise inequality based modeling, we consider all pairs of
attributes, so it is not necessary to consider under-represented attribute values.
For the t-test based method, the under-representedness is captured by the lower
tail of the t-test distribution (α = 0.05). In the following, the over-represented
attributes are called positive and the under-represented ones are named negative.

Experiments were carried out on an Intel Core i7-4770 3.40 GHz machine with
8 GB RAM. Applied on the whole brain (902629 voxels), Cenergetics takes
at most 7 min to discover the exceptional subgraphs. However, in the following,
we focus on the piriform cortex, an area made of 662 voxels known as the first
olfactory area that receives information of the olfactory bulb. Here, we aim to
understand how odors and their perceptual properties (hedonic) are processed
in this area compared to the other brain areas.

1 The odorant names are: 3Hex, ACE, DEC, EUG, HEP, MAN.
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For this study, the parameters of Cenergetics are such that the computed
exceptional subgraphs contain at least one vertex and have a WRAcc value
greater than 0.004. Extractions take at most 201 ms regardless of the considered
models. The number of patterns are as follows: 555 for Mean, 238 for Rank, 118
for t-test and 803 for pairwise modelings.

This empirical study aims to answer the following questions: (a) Are the
collections of exceptional subgraphs obtained with the 4 modelings different?
(distributions) (b) Do the different modeling capture the same phenomena?
(same attributes, similar areas) (c) What about considering odor characteris-
tics? (hedonic values) (d) Do the discovered subgraphs make sense? What kind
of insights can they provide to neuroscientists?

To this end, we first study the main characteristics of the exceptional
attributed subgraphs obtained by each modeling. We then provide a detailed
crossed-analysis of the top 3 patterns of the four collections. Finally, we consider
other attributes related to the odorants to discuss the potential of each mod-
eling. We also provide neuroscientists’ feedback on these patterns. Additional
results are provided as supplementary material2.

3.1 Comparison of Patterns Obtained from the Different Models

Figure 2 reports the distribution of the patterns according to their WRAcc value.
The distributions of the four approaches are similar. Nevertheless, t-test and
mean based modelings retrieve patterns with the highest WRAcc values. The
pairwise inequality based modeling provides patterns with lower WRAcc values.
This can be due to the total number of attributes that is larger for the pairwise
model (30) than for the other approaches (12).

Fig. 2. Distributions of patterns with respect to their WRAcc value for each approach
(left). Statistical characteristics of these distributions (right).

Similarly, we show the distribution of patterns according to the number of
vertices they contain in Fig. 3. Patterns discovered by the t-test based approach
contain less vertices than the ones retrieved by the other modelings. One possible
2 goo.gl/ppJFEX.

http://www.goo.gl/ppJFEX
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consequence of this observation is a greater risk to provide false positive patterns
to the end-user. Other methods have a smoother distribution, methods rank and
pairwise giving the biggest patterns.

Fig. 3. Distribution of patterns with respect to their number of voxels for each approach
(left). Statistical characteristics of these distributions (right).

We also study the distribution of patterns with respect to their number of
attributes. As the maximum number of attributes is different for the four mod-
elings, we normalize the observed number of attributes by dividing the observed
number of attributes by the maximal possible number of attributes in a pattern
– 15 for the pairwise based approach and 6 for the others (opposite attributes
cannot appear in a same pattern). Results are given in Fig. 4. The patterns dis-
covered with t-test based approach have, in general, a lower number of attributes
than the patterns obtained with other approaches. When normalized, the distri-
bution of the patterns discovered with the pairwise inequality based approach is
greater than the others.

Fig. 4. Distribution of patterns with respect to their number of attributes for each
approach (left). Statistical characteristics of these distributions (right).

Figure 5 reports the distributions of patterns according to the number of
the individuals that participate to the patterns. In reality, individuals do not
directly participate to a pattern, but it is the hemodynamic response measured
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by their fMRI on the voxels of the pattern (S,K) that indirectly associates an
individual to it. For the t-test modeling, an individual i satisfies a voxel v ∈ S
if ∀j ∈ K, T0.05 < M ′(v, i, j) (for positive attributes) or T0.05 > −M ′(v, i, j)
(for negative attributes). For the pairwise modeling, an individual i satisfies a
voxel v ∈ S if ∀(o1, o2) ∈ K, M ′(v, i, o1) > M ′(v, i, o2). For the mean and the
rank based approaches, an individual i is considered to satisfies a voxel v ∈ S
if ∀j ∈ K, M ′(v, i, j) is higher (for positive attributes) or lower (for negative
attributes) than the mean (resp. the mean rank) over all the vertices of the
graph. As none of the individuals satisfy all the voxels of a pattern, we consider
two cases: one where individuals participate to pattern when they satisfy at
least one of its voxels, and another one where they have to satisfy at least 20%
of the pattern voxels. Doing this, we observe that the number of individuals that
participate to the patterns is much lower for the t-test based modeling than for
the other approaches.

Fig. 5. Distribution of patterns with respect to the number of individuals that fulfill
all the attributes on at least 1 voxel of the pattern (left) and on at least 20% of the
voxels (right).

The study of the previous distributions leads to some partial conclusions. Pat-
terns discovered by the t-test based approach generally contain less vertices and
attributes and are supported by fewer individuals than the other approaches. On
the contrary, patterns discovered thanks to modelings that take into account the
ranks of the hemodynamic responses (i.e., the rank and the pairwise inequality
modelings) involve more vertices, attributes and are supported by more individ-
uals. To discover some inter-individual invariant, t-test based method seems to
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be less suited than methods that takes into account ranks. This is what it is
further investigated in the following qualitative study.

3.2 Qualitative Comparison of the Top-3 Patterns

The top 3 patterns according to the WRAcc measure discovered by the 4
approaches are reported in Table 1. Notice that these patterns are obtained after
a post-processing that ensures diversified results by constraining the overlap
between the top 3 patterns to be lower than 30% [4]. The notation “o1 < o2”
is used to say that the hemodymamic response of the odor o1 is lower that the
hemodymamic response of the odor o2. The numbers of individuals reported in
Table 1 are the numbers of individuals who participate to at least one voxel of
the patterns. Figure 7 shows, for each pattern, the distribution of the percentage
of its voxels that are satisfied by the individuals. To evaluate how these patterns
overlap each others, we compute the Jaccard similarity of their set of vertices.
Figure 6 reports these values when they are greater than 0.30. We can observe
that: (a) The best 3 patterns respectively found for the mean, rank and pair-
wise approaches match each others. They have a strong Jaccard index (between
0.42 and 0.67). Both the mean and the rank based approaches give us exactly
the same pieces of information in term attributes. The pairwise based approach
is in agreement with these patterns but it provides additional insights. For the
first pattern, for instance, three other odorants (3Hex, HEP and MAN) have
also a hemodynamic response greater than the ACE’s one. (b) The best pattern
discovered by the t-test based approach does not match any other patterns (Jac-
card index lower than 0.3). Furthermore, only 4 individuals support at least one
vertice and only 2 support at least 10% of the vertices. The second one has a
small overlap with the third patterns of both mean and rank approaches (0.35)
but concerns other odorants. The third t-test based pattern overlaps with the
first patterns of the other approaches. Even though it is not in contradiction
with the pairwise approach, it concerns different odors compared to the other
two methods. (c) The second pattern obtained thanks to the pairwise based
modeling overlaps with the third pattern of both mean and rank approaches.
It provides additional information compared to these patterns as DEC < ACE
and 3Hex < ACE relationships are also present in the pattern.

To conclude, the pairwise based approach gives more pieces of information
than the other ones and patterns are better supported by individuals.

3.3 Patterns Based on Other Odor Characteristics

The discovery of exceptional attributed subgraphs in which the attributes are
the odorants leads to the identification of areas of interest for the neuroscien-
tists. However, the odorant properties are not taken into account in the analysis
and thus their interpretation requires much effort. Neuroscientists aim to find
links between brain areas and some odorant attributes, especially their hedo-
nic perception during the fMRI measurement. During the experiment, the sub-
jects must express a hedonic judgment regarding the breathed smell and say



286 M. Moranges et al.

Table 1. Top 3 patterns for each modeling (see supplementary material for their
visualization).

Mean Rank t-test Pairwise

1 Positive attributes DEC, EUG DEC, EUG HEP ACE < 3Hex, DEC, EUG, HEP, MAN

Negative attributes ACE ACE - -

Number of voxels 138 125 104 117

Number of individuals 12 12 4 12

2 positive attributes ACE ACE 3Hex 3Hex, DEC, HEP, EUG < ACE

Negative attributes EUG, HEP EUG, HEP - -

Number of voxels 134 122 154 151

Number of individuals 7 10 4 12

3 Positive attributes ACE ACE MAN DEC < 3Hex, MAN, ACE

3Hex < ACE

Negative attributes DEC DEC - -

Number of voxels 178 173 123 119

Number of individuals 12 14 5 14

Fig. 6. Graph of the Jaccard similari-
ties between top 3 patterns.

Fig. 7. Distribution of the percentage
of voxels that are satisfied by each
individual for the top 3 patterns.

whether it is pleasant, unpleasant or neutral. In Fig. 8, the distribution of pleas-
ant/neutral/unpleasant odorants in the patterns discovered by the four methods
is reported. There is no pattern capturing only odorants that are all perceived
as pleasant (or unpleasant) by a large proportion of individuals. We then con-
sider hedonicity as an attribute and perfom new extractions with Cenergetics
considering the different modelings.

We enforce syntactic constraints to focus on patterns that are of interest for
the neuroscientists. For the mean, rank and t-test based approaches, we search
patterns verifying one of these conditions: (a) the hemodynamic response of odor-
ant perceived as neutral is higher than those perceived as pleasant and unpleas-
ant; (b) the hemodynamic response of odorant perceived as neutral is lower
than those perceived as pleasant and unpleasant; (c) the hemodynamic response
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Fig. 8. Percentage of pleasantness of the dominant odors for each number of individual
participating to the pattern.

of odorant perceived as pleasant is higher than those perceived as unpleasant;
and (d) the hemodynamic response of odorant perceived as unpleasant is higher
than those perceived as pleasant. For the pairwise approach, we look for patterns
whose attributes describe order between pleasant and unpleasant3.

Cenergetics takes less than 32 ms to extract the patterns for each approach.
The top 5 patterns w.r.t. WRAcc measure for each method are reported in
Table 2 and their brain visualization is given in Fig. 9. The patterns discovered
by the t-test based approach are too small to be analyzed (only 1 to 5 voxels)
and visualized. Patterns discovered by the different methods overlap. Those that
have a Jaccard similarity greater than 0.3 (see supplementary material for more
details) capture similar information (e.g. syntactic constraints). Some of these
patterns highlight some areas in which polarized hedonic values have a different
distribution than neutral hedonic value. This confirms neuroscientists’ priors.

Indeed, the fact that the most emotional odors (pleasant and unpleasant)
(blue, red and green patterns in Fig. 9) are more represented in the posterior part
of the piriform cortex whereas responses to neutral odors (cyan patterns in Fig. 9:
R4 and P3) are more localized anteriorly within the piriform cortex is consistent
with previous findings in Neuroscience [13,16] showing that the posterior part of
the piriform cortex represent salient perceptual experience of smells. Note that
this posterior area of the piriform cortex is at the neighborhood of another area
known to be involved in emotional processing, namely the amygdala.

The mean, rank and pairwise based modelings find similar information,
which improves the neuroscientists’ confidence in these findings. Furthermore,
the pairwise based modeling conveys more information to the neuroscientists
than the two others. This approach is promising and could be used on other
odor attributes to potentially formulating new hypotheses on the olfactory per-
cept in neuroscience.

4 Related Work

Scientists have always seen Exploratory Data Analysis (EDA) as an important
research area since its introduction [27]. Among the various EDA techniques
3 I.e., neutral > pleasant, unpleasant, or neutral < pleasant, unpleasant, or
pleasant > neutral > unpleasant, or unpleasant > neutral > pleasant.
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Table 2. Top 5 patterns with the hedonic attributes : unpleasant (U), pleasant (P)
and neutral (N).

Mean Rank t-test Pairwise

1 Positive attributes U U P N < P, U

Negative attributes P P U -

Number of voxels 134 143 5 43

2 Positive attributes P P N P < N < U

Negative attributes U U P, U -

Number of voxels 137 150 4 44

3 Positive attributes P, U U N P, U < N

Negative attributes N P P, U -

Number of voxels 58 66 1 61

4 Positive attributes P N P U < N < P

Negative attributes U P, U U -

Number of voxels 64 28 1 41

5 Positive attributes P, U P, U P N < P, U

Negative attributes N N U -

Number of voxels 25 24 1 62

Fig. 9. Upper view of the top 5 patterns satisfying the syntactic constraints for each
approach. Patterns of mean based approach (left), patterns of rank based approach
(center) and patterns of pairwise inequality based approach (right). The color red
represents the unpleasant pattern, green the pleasant pattern, cyan the pattern where
the neutral odors are higher than the pleasant and the unpleasant odors and the blue
patterns where the neutral odors are lower than the pleasant and the unpleasant odors.
(Color fIgure online)

that aim to maximize insight into datasets and uncover underlying structures,
Subgroup Discovery (SD) [18,28] is a generic data mining task concerned with
finding regions in the data that stand out with respect to a given target. Many
other data mining tasks have similar goals as SD, e.g., emerging patterns [7],
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contrast sets [3]. However, among these different tasks, SD is known as the most
generic one, especially SD is agnostic of the data and the pattern domain. For
instance, subgroups can be defined with conjunction of conditions on symbolic
[19] or numeric attributes [1,15] as well as sequences [14]. Furthermore, the single
target can be discrete or numeric [22]. Exceptional Model Mining (EMM) [21],
while sharing the same exploration space (i.e., the description space), extends
SD by offering the possibility to handle complex targets, e.g., several discrete
attributes[9,20], two numeric targets [8] and preferences [24].

Our method is rooted in the SD/EMM framework. Nevertheless, the problem
we tackle cannot be directly addressed with an instance of SD/EMM. Indeed a
target space is provided instead of explicit targets. Dynamic EMM/SD (i.e.,
EMM/SD with a non-fixed model) has been recently investigated for different
aims. Bosc et al. [5] propose a method to handle multi-label data where the
number of labels per objects is much lower than the total number of labels which
prevent the use of usual EMM model. Other dynamic EMM approaches aim to
discover exceptional attributed sub-graphs [4,17]. Notice that in these works,
exceptional subgraphs must also fulfill a structural constraint (e.g., connectivity).
In this paper, we demonstrate that exceptional attributed sub-graph discovery
is promising to provide new insights in neuroscience.

5 Conclusion

In this paper, we introduced a new way to analyze fMRI data in order to better
understand olfactory perception at the cerebral level. To this end, we modelled
fMRI data as an attributed graph whose vertices depict voxels and attributes
encode the hemodynamic response related to a series of odorant molecules. We
defined four different ways to analyze hemodynamic activity within the studied
voxels. Exceptional attributed graphs were then discovered using Cenerget-
ics algorithm. A thorough empirical study compared the different models. The
strength of such an approach lies in its ability to be more robust to spatial impre-
cision and inter-individual variability than classical fMRI analysis approaches:
here, the pairwise inequality attribute based modeling seems to be the most
promising approach. It makes possible the discovery of areas of interest sup-
ported by many individuals while conveying much more semantics than other
models. This paper is the first attempt to apply attributed graph analysis to
understand the olfactory perception and their neural underpinnings. It opens up
several avenues for further research including definition of new pattern domains
to fully take into account the brain specificity as well as prior knowledge.
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Abstract. Redescription mining is a data mining task that discovers re-
descriptions of different subsets of entities from available data. Locating
such re-descriptions is important in many scientific disciplines because it
allows detecting different types of associations including synergy of dif-
ferent attributes of interest. There exist a number of redescription mining
algorithms, however they are all restricted to use of one or maximally two
disjoint sets of attributes (views) to re-describe different subsets of enti-
ties. The main reasons for this limitation are computational complexity
and potentially large increase in number of produced patterns, in multi-
view setting, during redescription mining. In this work we present an
algorithm that allows mining redescriptions from multiple views using the
CLUS-RM algorithm. Presented algorithm efficiently solves aforemen-
tioned problems. Its computational complexity, with respect to attribute
operations, increases linearly with the increase of number of views and
we present techniques to handle large number of produced redescriptions
during redescription mining step.

1 Introduction

Redescription mining [18] discovers multiple descriptions (redescriptions) of dif-
ferent subsets of entities from the data. It is a descriptive, unsupervised task
whose main result-redescriptions are presented as tuples of logical formulas
(containing conjunction, negation and disjunction operators). Analyses using
redescription mining increase understanding of underlying data and allow detect-
ing interesting associations between different subsets of attributes. Many inter-
esting problems (e.g in biology, medicine, pharmacy, economy) involve multiple
disjoint sets of attributes. Each set provides information about different aspect
of observed entities or provides information derived from a different source.

Redescription mining [18] is related to clustering [3,6,12,22,24], since it dis-
covers groups of entities sharing different properties. It is also related to multi-
view clustering [2], multi-layer clustering [10], since it aims to use different sets
of disjoint attributes to redescribe entities and to conceptual clustering [5,14]
since it aims to describe discovered clusters using a predefined query language.
The main advantage of this methodology is its ability to find bi-directional
c© Springer Nature Switzerland AG 2018
L. Soldatova et al. (Eds.): DS 2018, LNAI 11198, pp. 292–307, 2018.
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(equivalence-like) relations between attributes which is a stricter version of asso-
ciation than found by association rule mining [1,11,26].

Due to prohibitive increase in computational complexity and a large num-
ber of patterns produced during mining, current approaches for redescription
mining [7,15,17,18,25,27] work with maximally two disjoint sets of attributes
(views). However, there are applications where more than two views are available
and where studying redescriptions created using all views provides insights not
available using other available techniques.

In this work, we describe an algorithm for multi-view redescription mining
that utilizes the CLUS-RM algorithm [15] and the generalized redescription set
construction procedure [16] to find redescriptions from arbitrary many views.
This approach finds multi-view redescriptions and its computational complexity
grows linearly with the increase of number of views. This is done by finding
redescriptions on all pairs of available views and extending these redescriptions
(adding missing formulas to their tuple) by using them as targets to guide the
search on other views. Thus, two main ideas make multi-view redescription min-
ing feasible in practice: (a) finding redescriptions on pairs of views and (b) utiliz-
ing CLUS-RMs multi-target regression (classification) capabilities to use incom-
plete redescriptions as targets to obtain redescriptions containing information
from all available views.

Required notation, generalized definitions and relevant related work are pre-
sented in Sect. 2. The proposed algorithm for multi-view redescription mining
is presented in Sect. 3. Section 4 presents computational complexity analysis of
the proposed algorithm whereas Sect. 5 describes used data. Section 6 presents
experiments, parameter setup and obtained results. Finally, Sect. 7 presents con-
clusions and future work directions.

2 Notation and Related Work

In this section we present notation and definitions used throughout this
manuscript and provide relevant related work in redescription mining.

2.1 Notation and Definitions

Dataset in multi-view redescription mining consists of a set of entities E, a
set of views {W1,W2, . . . ,Wn}, n ∈ N, and a corresponding set of variables
(attributes) {V1, V2, . . . , Vn}. Redescription is a tuple of queries (logical formulas)
R = (q1, q2, . . . , qn), where query qi uses variables from set Vi to describe entities.
Queries contain conjunction, negation and disjunction logical operators.

Redescription Rex = (q1ex , q2ex , q3ex , q4ex) was obtained on our use case
dataset describing world countries by using trading view (view 1), population
view (view 2), energy view (view 3) and country development and wealth view
(view 4). It is defined as:

q1ex : 1.05 ≤ E/I90 ≤ 1.88 ∧ 0.96 ≤ E/I14 ≤ 1.63
q2ex : −0.2 ≤ POP_GROWTH ≤ 0.5 ∧ 55.83 ≤ InternetUsers ≤
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82.35 ∧ 4.53 ≤ AdFertRate ≤ 9.52
q3ex : 142.0 ≤ ConvCrudeOilProd ≤ 5397.0 ∧ 11257.0 ≤ ElectricityTotNet-

CapPPH ≤ 48934.0
q4ex : 29850.0 ≤ GNIPerCapita ≤ 49830.0 ∧ 1330.42 ≤ RenewableInternal-

Freshwater ≤ 6524.32

Rex contains four queries (one per view). Query structure is equivalent as in two-
view case (see [15]). It re-describes 6 countries: Spain, Japan, Italy, Germany,
France and Austria.

In the continuation, we generalize all redescription evaluation measures
defined in [15]. The support set of a query qi (supp(qi)) is a set of all enti-
ties satisfying its condition. A redescription R = (q1, q2, . . . , qn) describes some
entity if this entity is contained in a support set of all redescription queries.
Redescription support set is a set of entities described by this redescription,
supp(R) = ∩n

i=1supp(qi).
Redescription accuracy is measured by Jaccard index, which is defined in

multi-view case as: J(R) = |∩n
i=1supp(qi)|

|∪n
i=1supp(qi)| .

The p-value (pval), computed from the binomial distribution is defined as:
pval(R) =

∑|E|
k=|supp(R)|

(|E|
k

)
(
∏n

i=1 pi)
k ·(1−

∏n
i=1 pi)

|E|−k. |E| equals the number
of entities in the dataset and p1, p2, . . . , pn correspond to marginal probabilities
of obtaining the query q1, q2, . . . , qn. This p-value represents a probability of
obtaining a set of size equal to or larger than supp(R) by combining n randomly
selected queries with marginal probabilities p1, p2 . . . , pn.

attr(R) denotes a set of attributes used in redescription queries and
the attribute Jaccard index of two redescriptions is: attJ(R1, R2) =
|attr(R1)∩attr(R2)|
|attr(R1)∪attr(R2)| . The average redescription attribute Jaccard index Ri is defined

as: AvgAJ(Ri) =
2·∑j �=i attJ(Ri,Rj)

n·(n−1) . The entity Jaccard index of two redescrip-

tions is defined as elemJ(R1, R2) = |supp(R1)∩supp(R2)|
|supp(R1)∪supp(R2)| and the average entity

Jaccard index of a redescription is: AvgEJ(Ri) =
2·∑j �=i elemJ(Ri,Rj)

n·(n−1) . These
measures provide information about the redundancy of a redescription with
respect to entities and attributes.

2.2 Related Work

Ramakrishnan et al. [18] introduced the field of redescription mining and
presented a first redescription mining algorithm, based on alternating CART
trees. The developed algorithm, called CARTwheels, used two views containing
Boolean attributes to create redescriptions. Similarly Greedy and MID (based
on frequent closed itemset mining) approach by Gallo et al. [9] use two views
containing Boolean attributes.

Approaches by Zaki [25] (based on lattice of closed itemsets) and Parida [17]
(based on relaxation lattice) use one view containing Boolean attributes to cre-
ate redescriptions. Greedy approach by Galbrun and Miettinen [7], Split trees
and Layered trees algorithms developed by Zinchenko [27] and the CLUS-RM
algorithm (based on Predictive Clustering trees) developed by Mihelčić et al. [15]
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use two views containing Boolean, categorical or numerical attributes to create
redescriptions. Siren [8] is a fully interactive redescription mining environment
which allows mining redescriptions and contains several visualizations of indi-
vidual redescriptions. It works on two views containing Boolean, categorical or
numerical attributes. As can be seen, all current redescription mining approaches
have a serious limitation of being able to work with maximally two views.

3 Algorithm for Multi-view Redescription Mining

In this section we present the algorithm for multi-view redescription mining
based on CLUS-RM algorithm [15] that uses generalized redescription set con-
struction procedure [16] to create a redescription set that is returned to the
user. To shorten the pseudocode of the proposed algorithm, we use notation
CLUS_RM(Wi,Wj ,C) to denote the execution of two-view CLUS-RM algorithm
as presented in [15] with given view input parameters Wi and Wj and the
redescription constraint parameters C (which include minimal Jaccard index,
maximal p-value, minimal and maximal redescription support size). The algo-
rithm returns a set of redescriptions R. GRC(R,W,n) denotes the execution of
generalized redescription set construction procedure [16] which takes a redescrip-
tion set R, a user-defined importance weight matrix W and an integer n denoting
the required size of output redescription set. The procedure returns one or more
optimized redescription sets of size equal to or smaller than n.

The proposed algorithm for multi-view redescription mining (see Algo-
rithm1) is run for a predefined number of random initializations of input dataset
(lines 3–4 in Algorithm1). The main idea is to use the CLUS-RM algorithm
to produce incomplete redescriptions on each pair of available views (lines
5–10 in Algorithm1) . These redescriptions are incomplete because they do not
contain queries from all available views. Produced, incomplete redescriptions
are used as targets to produce matching rules on the rest of the views using
multi-target regression (classification) capabilities of Predictive Clustering Trees
[13] (lines 11–16 in Algorithm1). Newly produced rules are used to complete
potentially incomplete redescriptions (line 17 in Algorithm1). To avoid blow
up in number of produced (especially incomplete) redescriptions, we add two
additional parameters to the algorithm, MaxExpansionSize and WorkSetSize.
The MaxExpansionSize parameter denotes the absolutely maximum allowed
redescription set size between algorithm iterations whereas WorkSetSize denotes
the maximum allowed number of candidates to be used for redescription set opti-
mization. These parameters are used to reduce the size of redescription set (lines
18–21 in Algorithm1). If redescription set size remains to large after reduction
of incomplete redescriptions, the size is reduced using generalized redescription
set construction procedure (lines 22–24 in Algorithm1). All redescriptions from
a set of redescription sets S are retained and the rest is discarded. Redescrip-
tion query size is reduced using query size minimization procedure introduced
in [15] (line 25 in Algorithm1). Finally, generalized redescription set construc-
tion procedure is used to create a set of reduced redescription sets (line 26 in
Algorithm1) which is returned to the user.
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The function constructTargets from line 14 in Algorithm1 works sim-
ilarly as the target construction procedure defined in [15]. Each incomplete
redescription in a set Rall constitutes one target variable in a newly constructed
multi-target regression (classification) task. Every entity re-described by some
redescription Rk ∈ Rall has a value 1.0 for the k-th target variable. If an entity
is not re-describe by redescription Rk it has a value 0.0 for this variable. Pre-
dictive clustering trees model is trained on a dataset containing attributes of a
k-th view and aforementioned target variables to construct rules which are used
to complete redescriptions.

Algorithm 1. An algorithm for multi-view redescription mining
Input: Available views MW = {W1, . . . ,Wn}, Constraints C, Settings set
Output: A set of reduced redescription sets R
1: procedure MW-RM
2: Rall ← ∅
3: for (nrand = 0; nrand<set.NRandomRestarts; nrand++) do
4: MW ′ = {W ′

1, . . . ,W
′
n} ←initializeViews()

5: for (i=0; i<|MW | − 1; i++) do
6: for (j=i+1; j<|MW |; j++) do
7: RunInd← 0
8: while (RunInd<set.maxIter) do
9: Ri,j ← CLUS_RM(W ′

i ,W ′
j ,C)

10: Rall ← Rall ∪ Ri,j

11: for (k=0; k<|MW |; k++) do
12: if (k==i || k==j) then
13: continue
14: DWk ←constructTargets(Wk,Rall)
15: Pk ←PCT(DWk)
16: extractRulesFromPCT(Pk,rk)
17: Rall ←completeRedescriptions(Rall, rk,set.Op,k)
18: if (|Rall| > set.MaxExpansionSize) then
19: removeIncomplete(Rall)
20: if (|Rall| > set.WorkSetSize) then
21: removeIncomplete(Rall)
22: if (|Rall| > set.WorkSetSize) then
23: S ← GRC(Rall,W,n)
24: Rall ← ∪R∈SR
25: minimizeQueries(Rall)
26: S ←GRC(Rall,W,n)
27: return S

The pseudocode of a procedure completeRedescriptions is presented in
Algorithm2. The procedure iterates over all incomplete redescriptions (line 2 in
Algorithm2) and attempts to complete them with some rule from rule set r (line
3 in Algorithm2). If adding new query to some existing incomplete redescrip-
tion R satisfies accuracy restraints, a new redescription is created (lines 4–5 in
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Algorithm2). If the refinement procedure is used (thoroughly explained in [16])
redescription is added to the set of redescriptions only if there is no redescription
with equal support and maximal accuracy (lines 8–9 in Algorithm2) (since in
this case it makes no sense to refine the newly created redescription because key
attribute from maximally accurate redescription would be transferred to the new
redescription).

Algorithm 2. Complete redescriptions
Input: Redescription set R, Rule set r, Operator set op, Settings set, View Wi

Output: A set of redescriptions R
1: procedure completeRedescriptions
2: for (R ∈ R, R.qi = ∅) do
3: for (rj ∈ r) do
4: if (JS(supp(R)∩supp(rj),∪qi∈Rsupp(qi)∪supp(rj))≥ set.minJS) then
5: Rnew ← R.insertQuery(rj ,Wi)
6: if (set.UseRefinement) then
7: for (R ∈ R) do
8: if (supp(R) = supp(Rnew) ∧ JS(R) = 1.0) then
9: break

10: if (supp(Rnew) ⊆ supp(R)) then
11: Rnew ← (Rnew.q1 ∧ R.q1, . . . , Rnew.qn ∧ R.qn)

12: if (supp(Rnew) ∈ [set.minSupp, set.maxSupp] ∧
JS(Rnew) ≥ set.minJS) then

13: R ← R ∪ Rnew

14: else
15: if (supp(Rnew) ∈ [set.minSupp, set.maxSupp] ∧

JS(Rnew) ≥ set.minJS) then
16: R ← R ∪ Rnew

17: if (set.useNeg ∧JS(supp(R)∩supp(¬rj),∪qi∈Rsupp(qi)∪supp(¬rj)) ≥
set.minJS) then

18: Rnew ← R.insertQuery(¬rj ,Wi)

19: if set.useDisj then
20: for (R ∈ R) do
21: indMax ← −1, maxJS ← 0, indMax1 ← −1, maxJS1 ← 0
22: for (rj ∈ r) do
23: disjJS ← (JS(∩qk∈R,k �=isupp(qk) \ supp(R), supp(rj))
24: disjJS1 ← (JS(∩qk∈R,k �=isupp(qk) \ supp(R), supp(¬rj))
25: if (disjJS>maxJS) then
26: maxJS←disjJS, indMax← j

27: if (disjJS1>maxJS1) then
28: maxJS1←disjJS1, indMax1← j

29: if (maxJS>0) then
30: R.qWi ← R.qWi ∨ rindMax

31: if (maxJS1>0) then
32: R.qWi ← R.qWi ∨ ¬rindMax1

33: return R
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Otherwise, the newly created redescription is refined with redescriptions whose
support set is equal or superset of its support set (lines 10–11 in Algorithm2). If
newly created redescription has required accuracy and support set size character-
istics it is added to the set of all redescriptions (lines 12–13 in Algorithm2). Since
it is possible to extend the same redescription with multiple different queries
(potentially resulting in redescriptions of different support), this step and equiv-
alent step when negated query is used (lines 17–18 in Algorithm2) can cause
significant growth of number of produced (potentially incomplete) redescrip-
tions. Using disjunction operator is described in lines 19–32 of Algorithm2. The
main idea is to compute how much entities (described by all queries except that
corresponding to the selected view) enter redescription support set if a selected
rule is combined with the existing query of a redescription (for a selected view)
using disjunction operator. Finally, extended set of redescriptions is returned in
line 33 of Algorithm2.

The high level overview of the algorithm for multi-view redescription mining
can be seen in Fig. 1.

Fig. 1. The algorithm uses CLUS-RM algorithm [15] to create two-view redescrip-
tions on all pairs of views. Views are combined as denoted by numbers (W1,W2) first,
(W1,W3) second, (Wn−1,Wn) last. Produced redescriptions are used as targets used to
construct PCT model [13] and corresponding rules on other views. The final redescrip-
tion set Tn is used to create a set of redescription sets S using generalized redescription
set construction procedure (GRSC) [16].
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4 Computational Complexity

In this section we analyse the computational complexity of the proposed algo-
rithm for multi-view redescription mining.

The computational complexity of a Predictive Clustering tree model is
O(z ·m · |E|2) (see [19]), where z denotes the number of nodes in the tree, m the
number of attributes and |E| the number of entities contained in the data. As
previously demonstrated, the average time complexity of a CLUS-RM algorithm
is O(z · (|V1|+ |V2|) · |E|2 + z2 · |E|), where |Vi| denotes the number of attributes
in the i-th view. The worst time complexity (given inadequate hashing func-
tion) equals O(z · |E|2 · (|V1|+ |V2|+ z)) (for more detailed description see [15]).
We can see that the time complexity of CLUS-RM dominates the complexity of
PCT. It can also be seen that in between CLUS-RM executions, maximal size
of redescription set is constrained and can be considered a constant. Because
of this, computational complexity of generalized redescription set construction
procedure equals O(|E|). Thus, the average time complexity of the algorithm for
multi-view redescription mining is O(

∑n−1
i=1

∑n
j=i+1(z ·(|Vi|+|Vj |)·|E|2+z2 ·|E|))

which equals O((n− 1) · z · (
∑n

i=1 |Vi|) · |E|2 + n·(n−1)
2 · z2 · |E|), where n denotes

the number of views. Since n << min|Vi|, |E|, i ≤ n and n2 << |E| in most real
applications it can be considered a constant. Thus, the average time complexity
of the algorithm is O(z · (

∑n
i=1 |Vi|) · |E|2 + z2 · |E|). Similarly, the worst time

complexity of the algorithm equals: O(z · |E|2 · (
∑n

i=1 |Vi| + z)).

5 Data Description

We use two different use case dataset to evaluate the proposed methodology
for multi-view redescription mining: (a) Country dataset and (b) River water
quality dataset.

(a) The Country dataset contains 141 entities (world countries) which are
described with 4 different views. All data reflect values for countries in
year 2012. The first view describes country trade using 309 numerical
attributes (percentage of export or import a commodity takes in total coun-
try export/import and the ratio export to import of these values). The data
was obtained from the UNCTAD database [21]. The second view contains a
set of 21 numerical attributes describing population of these countries (per-
centage of rural population, mortality, fertility, migration, education etc.).
Part of these data was obtained from the World bank database [23] and a
part of the data was obtained from the UN database [20]. The third view
contains a set of 47 numerical attributes describing energy production and
consumption of these countries (bitumen, oil, gas, coal etc.). The fourth view
contains a set of 33 numerical attributes describing different aspects of coun-
try development and wealth (agricultural value, workers remittance, GDP
growth, GNI, GNIPPP, inflation, improved water source, CO2 emission etc.).
The data contained in the third and fourth view was obtained from the UN
database [20]. All views contain missing values.
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(b) The River water quality dataset [4] contains 3 views describing 1061 water
samples taken from Slovenian rivers by the Hydrometeorological Institute
of Slovenia. The first view contains physical and chemical measurements
(16 numerical attributes) such as biological oxygen demand, chlorine con-
centration, CO2 concentration etc. The second view contains the frequency
of occurrence of 7 different plant species whereas the third view contains
the frequency of occurrence of 7 different animal species. Frequencies are
coded as: 0-not present, 1-incidental occurrence, 3-frequently occurring and
5-abundantly occurring.

6 Experiments and Results

We evaluate the proposed multi-view redescription mining algorithm on two
previously described use case datasets: Country dataset and River water quality
dataset.

On the Country dataset we create three different redescription sets. The first
set is constructed using trade and population view, the second set is constructed
using trade, population and energy view whereas the fourth dataset is created
using all available views. The goal of this experiment was to see what addi-
tional information can be gained by adding additional views on top of trade and
population view (which were already studied in previous work [10,15]).

On the River water quality dataset we also create three different redescrip-
tion sets. The first set is constructed using view containing physical and chemi-
cal measurements of water and occurrence frequencies of selected plant species,
the second set is created using view containing physical and chemical measure-
ment of water and occurrence frequencies of selected animal species. The third
redescription set is created using all available views. In this experiment we aim
to determine if there is any connection between water quality and occurrence of
different animal and plant species and if there are some specific water environ-
ments that benefit or diminish joined animal and plant abundance. The main
parameters used to construct all redescription sets are provided in Table 1.

Table 1. Algorithm parameters used to create redescription set on a Country dataset
(C) and a River water quality dataset (W).

D min J max p support |qi| Rand.
rest.

Iter. Lang. Trees |Rred| |Rmax| |Rwork|

C 0.6 0.01 [5, 100] 8 15 10 all 1 ≤200 10000 3000

W 0.3 0.01 [5, 800] 8 10 10 Conj,
disj

1 ≤200 10000 3000

The Conjunctive refinement procedure [16] with minAddJS parameter was
used to increase the number of accurate redescriptions and overall accuracy.
minAddJS=0.3 was used for the Country dataset and minAddJS=0.2 for the River
water quality dataset (minAddJS≤ minJ used to increase diversity and accuracy).
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We analyse the structure of each obtained redescription set and compare the
characteristics of obtained redescriptions. We also compute the number of pro-
duced incomplete redescriptions and present the running time of the algorithm
for each constructed redescription set.

Table 2. Basic statistics for all redescription sets produced on the Country (C) and
River water quality (W) datasets.

R |R| E. Coverage A. Coverage |Rinc| Exec. time (minutes)

RC2w 200 0.96 0.66 0 14.73

RC3w 200 1.0 0.59 13834 97.82

RC4w 72 0.99 0.37 209624 807.65

RWw12 200 0.99 0.92 0 13.73

RWw13 200 1.0 0.92 0 12.35

RWw123 104 0.96 0.97 3035 62.63

The execution time of our algorithm (see Table 2) increases as the number
of views increases. It also depends on the number of attributes in each view
and the predefined size of maximum (|Rmax|) and work (|Rwork|) redescription
set. Using smaller maximum and working set size will reduce the execution time
of the algorithm but will also potentially degrade the quality of the resulting
redescription set. The |Rinc| in Table 2 denotes the total number of incomplete
redescriptions produced during redescription mining with a predefined number of
views. Majority of these redescriptions are discarded in some algorithm iteration.
As can be seen, this number rises significantly as the number of views increases.

The distributions of Jaccard index, normalized support size, log p-value and
redescription average entity and attribute Jaccard index for the Country dataset
are presented in Fig. 2.

It can be seen from Fig. 2 that redescriptions contained in RC3w and RC4w

have generally smaller p-values then redescriptions in RC2w . This is one of the
advantages of using multiple views. Using knowledge contained in multiple views
(since it needs to describe equal subset of entities) significantly increases prob-
ability that the obtained redescriptions are significant and that the obtained
knowledge is meaningful (this also follows from the definition of theoretical p-
value). Redescriptions obtained using all views on the River quality dataset have
significantly higher p-values when using all views than only two views. The rea-
son for this is that all obtained redescriptions have very large support (larger
than 25%), at the same time they mostly have relatively low accuracy (smaller
than 0.5). Due to smaller accuracy, at least one redescription query (but usually
all) has larger support set size than the corresponding redescription (whose sup-
port set size is already very large), thus marginal probabilities of redescription
queries are high. This results in high theoretical redescription p-values.

We have found many interesting redescriptions on the Country dataset.
Highly developed countries detected in our earlier work [10,15] have been again
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Fig. 2. Comparative boxplots showing various redescription quality measures for
redescriptions contained in sets RC2w , RC3w and RC4w constructed on a Country
dataset and redescription sets RWw12 ,RWw13 and RWw123 constructed on the River
quality dataset.

discovered and redescribed using trade, population, energy and wealth and
progress indicators. Attributes and their values in all views indicate high country
development. For example, high export to import ratio of specialised machinery,
high percentage of population older than 65 (>17%), high percentage of Inter-
net users (>80%), moderate to high net solar capacity, low to moderate charcoal
final consumption, high value value added in services such as wholesale and retail
trade, education, healthcare, imputed bank service charges etc.Additional indi-
cator of development and wealth is relatively high percentage of agricultural
land.

We present one redescription example from each redescription set obtained
on the Country dataset (R1 ∈ RC2w , R2 ∈ RC3w , R3 ∈ RC4w) in Table 3. The
corresponding redescription support set of these redescriptions are depicted in
Fig. 3.

Redescriptions presented in Table 3, with the exception of Malaysia (which is
highly developed country in Asia), mostly described highly developed European
countries. All countries described by R1 have noticeable import of coffee, tea,
cocoa and spices, and part of these countries has high export of manufactured
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Fig. 3. Redescription support sets of R1, R2 and R3.

Table 3. Example redescriptions obtained on the Country dataset.

R1 : (q11 , q21)
q11 : (0.0 ≤ 34 ≤ 2.0 ∧ 0.35 ≤ 83 ≤ 4.31 ∧ 0.0 ≤ 45 ≤ 0.0 ∧

0.38 ≤ 6 ≤ 3.1 ∧ 0.0 ≤ 93 ≤ 2.0 ∧ 1.0 ≤ 37 ≤ 1.0 ∧
0.22 ≤ 15 ≤ 1.56) ∨ (0.0 ≤ 93 ≤ 2.0 ∧ 0.38 ≤ 6 ≤ 3.1 ∧
21.0 ≤ 23 ≤ 70.0 ∧ 1.0 ≤ 37 ≤ 1.0 ∧ 0.0 ≤ 34 ≤ 2.0 ∧
0.35 ≤ 83 ≤ 3.1 ∧ 0.0 ≤ 45 ≤ 0.0)

q21 : 12.46 ≤ ≤ 40.42 ∧ 2.9 ≤ ≤ 8.5∧
64.28 ≤ ≤ 68.19
J(R1) = 1.0, p(R1) = 9.2 · 10−12, |supp(R1)| = 15

R2 : (q12 , q22 , q23)
q12 : 0.73 ≤ 80 ≤ 1.27 ∧ 0.72 ≤ 83 ≤ 2.79
q22 : −140001.0 ≤ ≤ 272626.0 ∧ 2.9 ≤ ≤ 4.0 ∧

14.8 ≤ ≤ 24.95
q32 : 1249.0 ≤ ≤ 2910.0 ∧

2438.0 ≤ ≤ 4602.0
J(R2) = 0.83, p(R2) = 2.2 · 10−16, |supp(R2)| = 5

R3 : (q13 , q23 , q33 , q43)
q13 : 13.0 ≤ 1 ≤ 36.0 ∧ 0.94 ≤ 7 ≤ 3.2 ∧ 0.72 ≤ 83 ≤ 2.79
q23 : −140001.0 ≤ ≤ 272626.0 ∧ 2.9 ≤ ≤ 4.2 ∧

14.8 ≤ ≤ 40.42
q33 : (121.0 ≤ ≤ 380.0 ∧ 6295.0 ≤

≤ 9564.0) ∨ (121.0 ≤ ≤ 546.0
∧ 158.0 ≤ ≤ 386.0)

q43 : 1.93 · 1011 ≤ ≤ 5.59 · 1011 ∧ 31.63 ≤
≤ 43.95

J(R3) = 1.0, p(R3) = 0, |supp(R3)| = 7
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goods. Countries described by R1, R2 and R3 have high percentage of popu-
lation living in large cities (larger than 1 million), relatively small mortality of
children under 5 years. Countries described by R2 have relatively low energy
supply by hard coal and moderate consumption of motor gasoline. Part of the
countries described by R3 have relatively high electricity total net capacity, very
high GNIAtlas (which indicates high development) and high value of Revenue
excluding grants (which is characteristic to many European countries).

On the River water quality dataset, we obtained several redescriptions that
describe water quality parameters in samples that contain high frequency of
some animal or plant species from our selected subset. However, we were unable
to locate samples that contain high frequency of both some animal and plant
species with predefined accuracy. Redescriptions created using all views on this

Table 4. Example redescriptions obtained on the River water quality dataset.

Rw1 : (q1w1 , q2w1)
q1w1 : 0.43 ≤ 3 ≤ 18.81 ∧ 0.24 ≤ 4 ≤ 19.1 ∧ 0.24 ≤ 2 ≤ 6.48 ∧

0.36 ≤ ≤ 5.95
q2w1 : 0.0 ≤ ≤ 3.0 ∧ 3.0 ≤ ≤ 5.0

J(Rw1) = 0.41, p(Rw1) = 1.7 · 10−12, |supp(Rw1)| = 241

Rw2 : (q1w2 , q2w2)
q1w2 : 0.18 ≤ 4 ≤ 0.28 ∧ 0.25 ≤ 4 ≤ 0.39 ∧ 0.06 ≤ 4 ≤ 0.11 ∧

1.69 ≤ 3 ≤ 2.95 ∧ 4.2 ≤ ≤ 5.8 ∧ 4.1 ≤ 2 ≤ 4.9
q2w2 : 0.0 ≤ ≤ 0.0 ∧ 0.0 ≤ ≤ 1.0 ∧

1.0 ≤ ≤ 3.0 ∧ 0.0 ≤
≤ 0.0 ∧ 3.0 ≤ ≤ 5.0 ∧ 3.0 ≤

≤ 5.0
J(Rw2) = 0.44, p(Rw2) = 1.1 · 10−16, |supp(Rw2)| = 12

Rw3 : (q1w3 , q2w3 , q3w3)
q1w3 : 0.06 ≤ ≤ 0.37 ∧ 0.0 ≤ 4 ≤ 0.61
q2w3 : 0.0 ≤ ≤ 0.0 ∧ 0.0 ≤ ≤ 1.0
q3w3 : 0.0 ≤ ≤ 1.0 ∧ 0.0 ≤ ≤ 0.0

J(Rw3) = 0.42, p(Rw3) = 0.0, |supp(Rw3)| = 362

Rw4 : (q1w4 , q2w4 , q3w4)
q1w4 : (0.01 ≤ 4 ≤ 0.26 ∧ 3.4 ≤ 2 ≤ 10.58 ∧ 3.19 ≤ 2 ≤ 8.49 ∧

0.97 ≤ ≤ 4.74) ∨ (0.01 ≤ 4 ≤ 0.37 ∧ 0.0 ≤ 2 ≤ 0.82 ∧
1.85 ≤ ≤ 5.64)

q2w4 : 0.0 ≤ ≤ 1.0 ∧ 0.0 ≤ ≤ 3.0
q3w4 : (0.0 ≤ ≤ 1.0 ∧ 0.0 ≤ ≤ 1.0 ∧

0.0 ≤ ≤ 0.0) ∨ (0.0 ≤ ≤ 3.0 ∧
0.0 ≤ ≤ 0.0) ∨ (1.0 ≤ ≤ 5.0 ∧
1.0 ≤ ≤ 5.0)
J(Rw4) = 0.76, p(Rw4) = 5.7 · 10−8, |supp(Rw4)| = 783
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dataset mostly describe samples for which some plant and some animal species
do not occur or have very low (incidental) occurrence frequency.

Redescription Rw1 discovered using view containing physical and chemical
measurements of water samples and occurrence frequency of plant species in
these samples (presented in Table 4) describes water samples containing frequent
and abundant occurrence of Nitzchia palea. This species is found in samples con-
taining wide range of NO3, KMnO4, SiO2 and Cl concentration, with slightly
elevated concentration of Cl. Since Nitzchia palea is used as indicator of moder-
ately polluted to polluted water [4], higher presence of Chlorine may be expected
as means to reduce pollution.

We have located 12 samples with frequent and abundant occurrence of ani-
mal species Baetis rhodani and Gammarus fosarum (described by redescription
Rw2 in Table 4). The discovered samples contain elevated levels of NO3 and have
higher hardness. Redescription Rw3 describes 362 water samples with no or inci-
dental occurrence of plant species Nitzchia palea and animal species Erpobdella
octoculata. These samples do not contain plant species Stigeoclonium tenue and
animal species Oligochaeta tubifex. Redescriptions such as Rw4 constructed using
all three views are more complicated and contain mixed occurrence of plant, ani-
mal species and more complex query describing water characteristics.

7 Conclusion and Future Work

We have presented an algorithm for multi-view redescription mining and demon-
strated its use on two use case datasets presenting knowledge (via discovered
multi-view redescriptions) not obtainable using previously developed tools in the
field. Presented technique allows simultaneously exploring trade, demographic,
ecological and energy production/consumption information for different world
countries and detecting, understanding and relating characteristics of water sam-
ples to habitation of both animal and plant species. Performed experiments con-
firmed that the increase in number of views significantly increases the number
of incomplete produced redescriptions, however it is harder to obtain complete
redescriptions. This is to be expected since redescriptions created on larger num-
ber of views have to satisfy larger set of constraints. Though, such redescriptions
have higher significance then redescriptions with equal accuracy and support set
size constructed on smaller number of views because information from multiple
views reinforce the confidence in obtained redescription.

Future work should involve: (a) reduction of PCT calls and number of tests
in the algorithm, (b) utilizing multi-threaded execution to improve execution
time.
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Abstract. Three key aspects of online discussion venues are the multi-
tude of participants, the underlying trends of content, and the structure
of the venue. However, most models are unable to take into account all
three of these. In hierarchically organized message forums, authors may
participate differently at multiple levels of sections, with different inter-
ests and contributions across the hierarchy. Well-designed probabilistic
models of online discussion are applicable to many tasks such as pre-
diction of future content or authorship attribution. However, traditional
models such as Hierarchical Dirichlet Processes (HDPs) do not fully take
into account authors, and are further unable to fully take into account
deep hierarchical venues where documents can arise at all tree nodes.
We introduce the Author Tree-structured Hierarchical Dirichlet Process
(ATHDP), allowing Dirichlet process based topic modeling of both text
content and authors over a given tree structure of arbitrary size and
height. Experiments on six hierarchical discussion data sets demonstrate
better performance of ATHDP compared to traditional HDP based alter-
natives in terms of perplexity and authorship attribution accuracy.

Keywords: Hierarchical Dirichlet Processes · Topic Modeling
Message Forum

1 Introduction

Online forums (message boards) are popular social media platforms for infor-
mation exchange and knowledge sharing, where users ask questions or start dis-
cussions by creating a thread, and other users post answers or comments. While
some forums are specialized, general-interest forums cover a broad range of inter-
ests such as politics, health, beauty, cooking, product reviews, and so on. To
help users navigate and participate, forums such as “Suomi24” (www.suomi24.
fi) are organized into hierarchical sections. Hierarchical organization also occurs
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Fig. 1. Hierarchical document organization in a branch of the Amazon product hier-
archy.

in online reviews for instance in retailer websites such as Amazon.com, where
reviews follow the hierarchy of the products; we use Amazon reviews as a case
study and point out dedicated review sites such as Yelp also feature hierarchical
organization.

Three crucial aspects of online discussion are the huge diversity of interests
being discussed, the huge pool of participants that contribute to the discussions,
and the huge but still often structured diversity of online discussion areas where
the discussion happens. The key question is how to take all three aspects into
account in probabilistic modeling and machine learning of online discussion.
In particular, the organization of online discussion areas and the identities of
participants are at least partly observed data which can be taken into account
for modeling the third aspect, diversity of the underlying topics of discussion.

The three aspects have different characteristics. The interests are expressed
in a latent way through the observed text content, the authors are typically
observed through author usernames but the pool of authors is unordered,
whereas the venue is often both observed and structured: in particular, online dis-
cussion often occurs in venues having a prominent hierarchical organization for
user-generated text content. Hierarchical structure of online forums is designed
to cover a subset of prototypical user interests. However, user interests need not
match the structure. For example, for an issue touching on multiple interests
(say social security and mental health) there might be no dedicated section, and
such issues might instead be discussed in multiple sections that each cover one
of the interests. Discussion content is typically not regulated to strictly follow
their section, hence users may start threads or write replies that deviate from
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the section theme, and threads commented by multiple users follow a mixture
of their interests. Successful modeling of all three aspects of online discussions is
important for studies of human online discussion behavior, for tracking trends of
ideas and consumer interests, for recommender systems of discussion content or
external content like targeted advertising, and for intelligent interfaces to browse
and participate in discussions.

The content of the discussions is text data, and probabilistic modeling of text
data is often done by generative topic models such as Latent Dirichlet Allocation
[5] and Dirichlet Processes [15]. Such models represent text content of documents
in an unstructured way as a bag of words arising out of a mixture of latent
topics; the latent topics are fitted to a collection of documents and represent
themes of discussion occurring over the collection. Basic topic models represent
text content alone, whereas recent work on text mining ([14,18] and others) has
attempted author modeling for text analysis, however, most such works are not
applicable to documents with observed authors in a deep hierarchical tree such
as Fig. 1, where documents (with yellow icons) can appear under any section
(with blue icon) at any hierarchy level. The column at left denotes the pool of
authors A1, . . . , An, where multiple authors can contribute to each thread and
each author can contribute to threads at different nodes across all hierarchy
levels (illustrative examples shown as purple arrows). We review related work in
Sect. 2.

We give a solution for the challenge of effectively taking hierarchical structure
of data collections and author information into account in such modeling. We
introduce the Author Tree-structured Hierarchical Dirichlet Process (ATHDP),
a new model which identifies latent topics of each section in a hierarchy and
their association with authors. ATHDP is a generative model for the documents
and their authors, which can model documents with multiple authors occurring
at all nodes of a multi-level hierarchy. Our contributions are as follows: 1. We
develop a new nonparametric hierarchical topic model to model forum threads
where multiple authors can contribute to documents, and documents and their
authors can occur at any position of the section hierarchy. 2. We develop a
Gibbs sampling algorithm that extracts topics and their usage across threads
and hierarchical sections. 3. In experiments, our model outperforms the nearest
state-of-the-art baseline models in terms of perplexity of held-out documents
and in terms of accuracy in an author prediction task.

We point out that the latter task we consider, author prediction based on
text content and section of the venue, can have many uses in online discussion
venues. Authors who usually post while logged in may sometimes post with
a guest username for convenience; author prediction can help associate such
posts to the correct author. Moreover, when authors use different accounts on
different forums, author prediction can help associate posts from the other forum
to authors in the forum of interest. Author prediction models could also be
applied to author similarity modeling: if posts of a known author match well
(having a high classification probability) to another author, such two authors
are similar and could for example be recommended as followers of each other,
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or could be served similar ads or other content. Such tasks assume the correct
author is available in the set of candidates; in principle documents that do not
match any author well could be detected simply from poor perplexity scores for
all author candidates, but in this paper we do not consider such outlier detection
scenarios.

The rest of the paper is structured as follows. In Sect. 2 we discuss related
previous work. In Sect. 3 we introduce our new model, and in Sect. 4 we derive
Gibbs sampling based Bayesian inference equations for the model. In Sect. 5 we
carry out experiments on six data sets arising from two kinds of data, online
forum data and online reviews data. Lastly, in Sect. 6 we draw conclusions.

2 Related Work

A topic model [5] is a parametric Bayesian model for count data such as bag-
of-words representations of text documents. Several variations expand the basic
topic model setting. One of the pioneering works is the Author Topic Model
(ATM) [14], which explores relationships between authors, documents, topics
and words. Jiang et al. [8] recommend points of interest using ATM. However,
ATM models documents arising from a uniform mixture of a group of authors,
and cannot model different proportions of authors, and cannot take into account
hierarchical organization of documents in a venue. Yang et al. [17] proposed a
model that explores asker-answerer networks between users topics for question
answering applications, however no hierarchical organization of documents is
considered. Another model variant considers modeling sentiment with topics
jointly [3]. Author-aware Aspect Topic Sentiment Model (AATSM) [13] explores
relationship between authors and sentiment to retrieve supporting opinions from
reviews; again no hierarchical document organization is considered. In Link-LDA
[6] occurrences of words and entities (such as authors) are not paired. It only
models that the document contains a set words and a set of entities, but not
which word associated with which entity. The Entity topic model (ETM) [9]
models the influence of entities on word content of topics, but does not model
the influence of entities on which topics are active in the first place. Thus, it
cannot not model influence of sections on active topics. Moreover, all the above
models are parametric models and require the number of topics to be predefined.

Teh et al. [15] proposed the Hierarchical Dirichlet Process, a nonparametric
model where the number of topics does not need to be pre-specified. However,
HDP does not consider author information in the model. There are several para-
metric/nonparametric models that consider author information. HDPauthor [18]
generates documents by a group of authors, and Junyu et al. [16] proposed an
infinite author topic model based on mixed Gamma-Negative Binomial Process.
However, in these models it is not known which words come from which authors.
Moreover, each author always has the same topic distribution regardless of where
the topics occur. The only thing that then differentiates the topic proportions
of different documents is the proportions of participating authors. Thus, such
models cannot properly model the influence of discussion venue sections on doc-
ument content, and furthermore, these models are not readily applicable to a
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scenario where documents could arise at any node in a deep hierarchy of sec-
tions (as shown in Fig. 1), where not only modeling the influence of sections is
important, but also modeling the relationships of content among sections.

Ahmed et al. [2] create a time-dependent topic cluster model based on a
recurrent Chinese restaurant process, so that content is grouped at three levels
of organization such as high-level topics, individual stories, and entities over
time. In PAM [11], a document is modeled as a distribution over the topics at
the leaves of the topic hierarchy. In the nested Chinese restaurant process [4], a
document is modeled as a distribution over a single path from the root to the
leaf node. In TS-SB [1], a document is modeled by a single node of the tree. In
the recursive Chinese restaurant process [10], a document has a distribution over
all of the nodes of the hierarchy. In the above models, HDP is used to learn a
tree structure; the difference is that in ATHDP we do not need to perform any
learning on the structure of the data, our model is based on a known hierarchy
which is fixed during inference. Instead we focus on modeling authors and the
given hierarchy as the model structure, where documents can occur under any
node in the hierarchy.

3 Author Tree-Structured Hierarchical Dirichlet Process

ATHDP is a generative model for documents arising from multiple authors at
different nodes of a multilevel hierarchy of sections. Each document is represented
as a bag of (word, author) tuples, arising out of a latent mixture of topics. Topic
mixtures in the model are drawn from Dirichlet process priors: the Dirichlet
process is a nonparametric prior over topic distributions that requires only a base
distribution and a concentration parameter, and does not require pre-specifying
the number of topics; the inference of the resulting ATHDP model will learn
the number of topics from the data of documents and their authors over the
hierarchy.

In the following, we describe ATHDP first as a top-down generative pro-
cess from its associated graphical model shown in Fig. 2. We then intro-
duce a restaurant-related metaphor called Fine Chocolates Banquet (FCB) for
the model which provides useful terminology and intuition; such food-related
metaphors are commonly used in Dirichlet process based modeling, as the Dirich-
let process itself is often also described as a Chinese restaurant process. The FCB
metaphor will be used in the next section to describe inference for ATHDP.

Generative process. Consider a given tree hierarchy which, in a top-down fash-
ion, can be described as a root node (root section) connected to a set of child
nodes, those in turn connected to grandchild nodes, and so on. Documents can
be observed under any node, not only under leaf nodes. ATHDP is a nonpara-
metric topic model that generates a Dirichlet process prior into each node of
the tree and into each document. From that prior the topic distribution of the
document is drawn, and each topic generates (word, author) tuples as content
for the documents.

The generative process first draws a global distribution G0
root from a Dirich-

let process with base distribution H and concentration parameter α0 for the
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Fig. 2. Graphical model of the Author Tree-structured Hierarchical Dirichlet Process

root node of a given tree, denoted as G0
root ∼ DP (H,α0). A node can contain

child nodes and/or documents. We index a node with v and a document with
j. Therefore, for each child section v of the root node in the tree, a discrete dis-
tribution G1

v is generated from a Dirichlet process with base distribution G0
root

and concentration parameter α1, denoted as G1
v ∼ DP (G0

root, α
1). The process

is repeated recursively for every child node to generate its grandchild sections,
so that a node v at level l in the hierarchy (l steps down from the root) is gener-
ated a discrete distribution Gl

v by drawing it from a Dirichlet process with base
distribution Gl−1

pa(v) and concentration parameter αl, where pa(v) is the parent

node of v, denoted as Gl
v ∼ DP (Gl−1

pa(v), α
l). The Dirichlet process priors describe

which topics are active in each node; in order to generate topic content which are
(word, author) tuples, for each topic z two distributions are drawn, a distribu-
tion φz over the vocabulary V of possible words from a Dirichlet prior, denoted
as φz ∼ Dirichlet(β), and a distribution ϑz over the pool of possible authors A
from another Dirichlet prior, denoted as ϑz ∼ Dirichlet(γ), where β and γ are
hyperparameters.

A document, or several documents, can arise under any node. Therefore, to
generate a document j under a node v at level l, the model draws Gj from a
Dirichlet process with base distribution Gl

v and concentration parameter αl+1,
denoted as Gj ∼ DP (Gl

v, α
l+1). From Gj , a topic index zji is drawn. Based

on the topic index the model samples a word xji and an author aji from the
distribution of words in that topic and the distribution of authors in that topic,
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respectively. Figure 2 shows the plate representation graphical model of ATHDP.
In summary, the full generative process of the ATHDP model is as follows:

– For each topic z = 1, 2, . . . ,
1. Sample a distribution over words, φz ∼ Dirichlet(β).
2. Sample a distribution over authors, ϑz ∼ Dirichlet(γ).

– For the root, G0
root ∼ DP (α0,H).

– For each section v at level l from the root, Gl
v ∼ DP (αl, Gl−1

pa(v)).
– For each document j in section v, Gj ∼ DP (αl+1, Gl

v).
– For each word xji and author aji in a document j, zji ∼ Gj , xji ∼ φz, aji ∼

ϑz

Food-based metaphor. The formal generative process above can also be described
implicitly as an iterative process where documents are filled one observed
(word, author) tuple at a time. We describe the process by the FCB metaphor;
the mathematical details are then provided in the next section as Gibbs sampling
based inference equations.

In the FCB metaphor, a chocolate-tasting banquet, where dishes are assort-
ment boxes of fine chocolates prepared by famous chocolatiers, is arranged in
a multilevel palace: each level has several food-delivery stations, each of which
serves several restaurants (dining rooms) at that level. Each topic in ATHDP
is a dish, that is, a chocolate-assortment box containing a particular mixture
of chocolate candies (words) created by a team of chocolatiers (authors). A
customer chooses which assortment they want to eat from, and then takes a
chocolate from the assortment box: each chocolate is provided in a wrapper
signed by the chocolatier, thus when a customer takes a chocolate from the
box they will observe a tuple of the candy itself (word) and the identity of the
chocolatier (author). Attendees (i.e., customers) visit the chocolate restaurants
to eat from popular dishes (popular chocolate assortments): each restaurant has
tables for customers, and there is a responsible waiter at every table who brings
a dish (chocolate-assortment box) to the table, fetching it from a table in a
food-delivery station. At food-delivery stations, each table contains a pile of a
particular dish (boxes of a particular chocolate-assortment), and each table also
has a responsible waiter who brings the dish to the table from an upper-level
delivery station, recursively. At the topmost level there is a kitchen where the
chocolatiers work to create the different types of dishes (assortments). Each
time a customer/waiter chooses a table, they prefer popular tables that other
customers/waiters have also picked, but can also pick a new table; this prop-
erty enables the FCB to make available as many dishes as are needed without
specifying the number beforehand. In practice, although a potentially infinite
number of dishes are available, inference yields a finite number of dishes suitable
for modeling the data set.

We illustrate FCB in Fig. 3. Yellow boxes are restaurants (documents),
and orange circles denote customers that each pick a chocolate representing a
(word, author) tuple (x, a) from their table. Each table serves a dish (chocolate
assortment box) which represents a topic, having a distribution φ over words
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Fig. 3. An illustration of a Fine Chocolates Banquet.

and a distribution ϑ over authors. Each dish is brought to the table by a waiter
from an upper-level delivery station (blue boxes), where each waiter chooses
one table in the delivery station. Ultimately the dishes are created in the upper-
most level (kitchen) which hosts an infinite menu of chocolate-assortment dishes.
The content of the available dishes and their prevalences across restaurants and
delivery stations are not observed, and will be inferred from the observed data
as described in Sect. 4.

4 Inference

We introduce a Gibbs sampling scheme for ATHDP, derived based on the FCB
representation. We sample tables, pointers to ancestor tables, and dishes for
tables. Let f

−xji,aji

k (xji, aji) denote the conditional density or likelihood of (xji,
aji) given all data items except (xji, aji), where k is the dish at the table of
(xji, aji). We have for a pre-existing dish and for a brand-new dish

f
−xji,aji

k (xji, aji) ∝ n−ji
kw

n−ji
k.

× n−ji
ka

n−ji
k.

and f
−xji,aji

knew
(xji, aji) ∝ 1

V × A

respectively, where w is the word index of xji, a is the author index of aji, n−ji
kw

is the number of occurrences of w from dish k (other than xji), n−ji
ka is the

number of occurrences of a from dish k (other than aji), and n−ji
k· is the sum

over different word indices; note that since words and authors occur in tuples,
the sum over word indices is the same as the sum of n−ji

ka over author indices.
We denote

f
−xjt,ajt

k (xjt, ajt) =

∏
w(β + nkw − 1)...(β + n−jt

kw )

(V β + nkw − 1)...(V β + n−jt
k. )

∏
a(γ + nka − 1)...(γ + n−jt

ka )

(Aγ + nka − 1)...(Aγ + n−jt
k. )

as the conditional density of (xjt, ajt) given all data items associated with mix-
ture component k leaving out (xjt, ajt), where β and γ are hyperparameters.
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Part 1. Sampling table t for a customer xji at a restaurant: For an
individual customer the likelihood for a new table tji = tnew can be calculated
by integrating out the possible values of the new dish kjtnew :

p(xji, aji|t−ji, tji = tnew;k) =

K∑

k=1

Qkf
−xji,aji

kjt
(xji, aji) + Qknewf

−xji,aji

knew
jt

(xji, aji)

where t−ji denotes table choices of all words other than tji and k denotes dish
choices of all tables, and Qk or Qknew denote dish probabilities that are computed
recursively, traveling from a leaf node to all the way up to the root node by
summing the number of tables in each node that are assigned to a topic.

Qk(v) =
mv

.k

mv.. + αl
+

αl

mv.. + αl
Qk(pa(v)) ,

where mv
.k is the number of tables assigned to topic k in node v, and mv

.. is
the number of tables in node v, and l is the level of the node. Therefore, at a
restaurant the conditional distribution of tji is:

p(tji = t) ∝ n−ji
jt. × f

−xji,aji

k (xji, aji)

p(tji = tnew) ∝ αl+1p(xji, aji|t−ji, tji = tnew;k)
(1)

Part 2. Sampling a table t from delivery-station v for a new waiter
with first customer xji: The likelihood for tjt = tnew can be calculated as
follows:

p(tjt|t−jt, tjt = tnew;k) =
K∑

k=1

cvt.
cv.. + αl

f
−xji,aji

kjt
(xji, aji)

+
αl

cv.. + αl
f

−xji,aji

knew
jt

(xji, aji)

where cv.k is the number of tables assigned to k in node v, cvt. is the number of
tables point to table t in node v and cv.. is the number of tables point to tables
in node v. Therefore, the conditional distribution of tjt (with a customer at a
restaurant) is

p(tjt = t) ∝ c−jt
vt.

cv.. + αj
f

−xji,aji

ktj
(xji, aji)

p(tjt = tnew) ∝ αj

cv.. + αj
p(tjt|t−jt, tjt = tnew;k)

(2)

Part 3. Sampling a delivery-station table t for a waiter with several
existing customers: The likelihood for tjt = tnew for many customers in a table
can be calculated as follows:

p(tjt|t−jt, tjt = tnew;k) =
K∑

k=1

cvt.
cv.. + αl

f
−xjt,ajt

k (xjt,ajt)

+
αl

cv.. + αl
f

−xjt,ajt

knew
(xjt,ajt)
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Algorithm 1 Gibbs Sampling for ATHDP
Input: words w in documents d, # topics K, # iterations I
Output: Topic assignments z
1 for i in I do
2 for w in d do
3 SampleTable(node)
4 for t in d do
5 SampleParentTable(node)

6 Procedure SampleTable(node) 16 Procedure SampleParentTable(node)

7 if node == document then 17 if node.parent == root.node then

8 table ← Sample a table by Eq.(1) 18 topic ← Sample a topic by Eq. (3)

9 else 19 else

10 table ← Sample a table using Eq. (2) 20 node ← node.parent

11 if table == tnew then 21 table ← Sample a table by Eq. (3)

12 if node.parent == root.node then 22 if table == tnew then

13 topic ← Sample a topic by Eq. (3) 23 node← node.parent

14 else 24 SampleParentTable(node)

15 SampleTable(node.parent)

Therefore, the conditional distribution of tjt, given all customers in the table, is

p(tjt = t) ∝ c−jt
vt.

cv.. + αl
f

−xjt,ajt

k (xjt,ajt) , (3)

p(tjt = tnew) ∝ αl

cv.. + αl
p(tjt|t−jt, tjt = tnew;k)

If the upper level is the root level, a dish or topic is sampled from the kitchen
instead of a table pointer, and the dish is propagated to all descendants of the
waiter.

We summarize the Gibbs sampling algorithm for ATHDP inference in Algo-
rithm 1. We sample a table assignment for each (word, author) tuple in a docu-
ment with a recursive procedure in line 3. For a (word, author) tuple, we sample
a table using Eq. (1), and we sample a parent table using Eq. (2) from delivery
stations. If it’s a new table, then we move to the parent node to sample a table
from the parent node in line 15. The process is repeated until a parent table is
selected or the root node is reached. If the root node is reached a topic selected
using Eq. (3). After that, we update the topic of all tables in the descendant’s
nodes of the table in the root. We maintain a data structure to keep track of
topics of all tables. For simplicity, we do not include them in the algorithm.
Similarly, for each table (i.e., a group of words associated with a table) in a
document, we sample a parent table, i.e., a table from the parent using Eq. (3).
We repeat the process until the root is reached and eventually sample a topic
for the root table using Eq. (3).
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Table 1. Data sets. Total document counts at different levels from the root given in
the 4th column.

Thre-

shold

#

Authors

# nodes #docs at different level of the tree # Train

docs

# Test

docs

Amazon Sports

50

97 599 100, 57, 434, 1655, 3775, 645, 8

5965 709

Amazon Food 100 26 40 3166, 2, 56, 42, 22

2948 340

Amazon Home 100 37 567 25, 85, 227, 2015, 2179, 394, 80

4489 516

Amazon Health 100 67 484 107, 137, 550, 5501, 2912, 209

8444 972

S24 Relationship 100 50 25 0, 12148 13425 1514

S24 Health

20

71 64 0, 464, 1882

2509 661

5 Experimental Results

We evaluate ATHDP’s performance by two performance measures: (1) held-
out perplexity, representing ability to model unseen documents and (2) author
prediction of unseen documents. Since the methods described in the related
work are all not directly applicable to our case, we take the Hierarchical Dirichlet
Process [15] as a baseline that would be readily available to the practitioner, and
we use it in two ways to take author information into account, as described in
the Quantitative comparison paragraph below. We used Gibbs sampling to train
the models and took a sample at 100th iterations. We first describe the data sets,
summarized in Table 1. We begin by a qualitative analysis of ATHDP results,
and then present quantitative comparisons between ATHDP and comparison
methods.

We used two different data sources, Suomi24 (s24) and Amazon for our
experiments. S24 has in total 2434 sections in the hierarchy. The data source
1 is publicly available in original and lemmatized forms. From this source, we
created several datasets by taking thematic branches of the hierarchy, such as s24
relationship, s24 health for our experiments. The second data source is reviews
on Amazon.com, one of the top shopping sites in the world with hundreds of
shopping sections. We select thematic branches corresponding to several top
categories (or department) such as Sports and Outdoors (Sports), Home and
Kitchen (Home), Health and Personal Care (Health), Clothing Shoes and Jewelry
(Clothes), Grocery and Gourmet Food (Food). Under each top category the site
contains many sections. For example, there are 1933 sections under sports [7].
We select reviewers that have more than 50 or 100 reviews in each category.
For each reviewer we randomly select 90% reviews for training and 10% reviews
for testing. The numbers of train and test reviews for each category along with
the number of reviews in different levels of the hierarchy are given Table 1. In
Amazon data sets each product is considered as a document, and in s24 data sets

1 https://www.kielipankki.fi/corpora/.

https://www.kielipankki.fi/corpora/
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Table 2. Sample ATHDP topic proportion for three sections in the food data set

Section id Section name Top 3 topic proportions for each section

44 Peanut Butter 66:0.46, 86:0.31, 37:0.23

3 Coffee Substitutes 9:0.247, 28:0.24, 37:0.24

292 Jams & Preserves Gifts 22:0.62, 9:0.36, 48:0.002

Table 3. ATHDP topics for Amazon food data set, sections where they are active, and
top words

Topic Top 3 author ids Stemmed top words of the topic

9 10, 19, 7 Cup recommend good coffe flavor tast drink pack highli brew keurig

energi tea brewer make bold free star larg

22 18, 20, 23 Make enjoy tast nice flavor bit good eat work meal ad cup star love

give lot packag mix protein morn

28 23, 0, 1 Coffe tast flavor great recommend highli make cup love chocol tea

good stuff bit year product buy thing amaz awesom

37 14, 1, 0 Good tast coffe flavor great love make product sweet tea time chocol

stuff perfect snack work cup soup free chicken

48 7, 5, 24 Clean top cook grape flavor work nice red kit simpl week conveni

good great allergi bag expect sodium basic water

66 17, 7, 19 Sugar calori product protein flavor ingredi bar tast fiber fat high oil

organ food wheat natur time sweet make raisin

86 24, 17, 10 Bar protein tast flavor calori bit eat snack fiber good meal cinnamon

sugar textur fill chocol nice ingredi diet raisin

each thread is considered as a document. A document consists of many reviews
or comments from many authors.

Qualitative analysis of ATHDP results. We examine how ATHDP topics cov-
ered themes within and across sections. For brevity we present the analysis of
the food dataset only. We present latent topics and their proportions for three
sample section, as described in Table 2. We see that sections are mixed of latent
topics with different proportions. For example, the top 3 topics of the Peanut
Butter section are 66, 86, and 37. The top words of each latent topic of the
sample sections are presented in Table 3. We observe that extracted latent top-
ics covered many themes including section themes. For example, top words of
topics 66, 86, and 37 include many words related to peanut butter including fat,
oil, protein, sugar, calori and so on. We observe that topic 66 is directly related
to peanut butters and can be regarded as discussion of bread spreads. There is
some overlap between top words of topics 66 and 86. By looking at distinct words
we observed that people are discussing diet, snack, meal, cinnamon, chocolate
etc. in the peanut butter section, which refers to how good peanut butter is as a
diet. Topic 37 is about having coffee or tea, which is an occasion where peanut
butter based breads might also be enjoyed, hence it is a discussion of a use
scenario of peanut butter. Table 3 also shows top 3 author ids for each topic.
Overall, ATHDP extracts reasonable meaningful word-topic, section-topic and
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Fig. 4. Perplexity on held-out data sets with different alpha values. Smaller values are
better; ATHDP outperforms author-HDP and author-sect-HDP.

topic-author distributions. We also verified that the results regarding datasets
other than food were similar.

Quantitative comparison. We compare ATHDP to two baseline models in two
tasks, modeling of previously unseen documents and in author prediction. We
use HDP as a baseline, which takes the hierarchy into account in two simple
ways – model all documents belonging to the same author (author-HDP), and
all documents belonging to the same author-section pair (author-sect-HDP). In
author-HDP, for example, the sports dataset consists of 97 authors, therefore
we train 97 HDP models. In author-sect-HDP we train as many HDP models
as there are author-section pairs. For ATHDP, we train a single model for each
dataset. We run ATHDP and the author-HDP and author-sect-HDP baselines
for all data sets with different values of the concentration hyperparameter alpha.
We use the two HDP-based baselines as we found no related work that could
fully take into account author information and the hierarchical structure of our
data where documents arise in multiple places in the hierarchy, and the aim is to
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Fig. 5. Author prediction accuracy in different data sets with different alpha values.
Larger values are better; ATHDP outperforms author-HDP and author-sect-HDP.

take the known document hierarchy into account. The baselines thus represent a
natural way to run the existing HDP model with known divisions of data based
on authors or based on authors and sections.

Modeling of previously unseen documents. We evaluate the ability of the pro-
posed model to represent new incoming documents, by computing perplexity of
held-out documents, a standard metric in information retrieval literature. We
compute perplexity on held-out test documents as described in Table 1 as fol-
lows: perplexity(Dtest) = 1

M

∑M
d=1 exp

(
− logP (wd)

Nd

)
. We compute perplexity

for different α values. We use the same alpha values for all levels in ATHDP.
The results are shown in Fig. 4. Lower perplexity indicates the better model. We
observe that ATHDP outperforms author-HDP and author-sect-HDP in perplex-
ity for all the data sets and alpha values. The overall difference between ATHDP
and the author-HDP, and between ATHDP and author-sect-HDP, is statistically
significant at the p = 0.05 level: for both comparisons we have p = 0.03125 from
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the exact binomial test over the six data sets. Note that since ATHDP outper-
forms the alternatives regardless of alpha value, the choice of alpha value used
to represent each method does not affect the result of the test.

Author prediction. We compare the ability of different models to predict the
author of a previously unseen document, that is, to classify new documents
to correct authors. To predict the author for each test document, we compute
perplexity for the test document under the model for each author, and assign
the document to the author that yields the lowest perplexity. We report the
author prediction accuracy results in Fig. 5. We observe that ATHDP outper-
forms author-HDP and author-sect-HDP by a large margin. The overall differ-
ence between ATHDP and the author-HDP, and between ATHDP and author-
sect-HDP, is again statistically significant at the p = 0.05 level: for both com-
parisons we have p = 0.03125 from the exact binomial test over the six data sets.
As ATHDP outperforms the alternatives regardless of alpha value, the choice of
alpha value used to represent each method again does not affect the result of
the test.

The author prediction accuracies achieved by ATHDP are good, especially
considering the large number of potential candidate authors. ATHDP accuracy
results are up to about 50% accuracy, which although not a flawless score is
practically usable for attribution (note that when there are numerous potential
authors random guessing yields far worse accuracies than 50%). In contrast, the
alternative systems perform poorly; a possible explanation is that the author-
HDP model is unable to take hierarchical section-based variation of the authors’
interests properly into account, whereas the author-sect-HDP model does not
make full use of the hierarchical relationships between sections and hence has too
little data per author-section combination to learn good models of authors’ inter-
ests in each section. In contrast, ATHDP learns the topics and their variation
across the hierarchy together, allowing successful modeling of author interests.

6 Conclusions

We introduced the Author Tree-structured Hierarchical Dirichlet process
(ATHDP), a nonparametric probabilistic model of documents and their authors
in a deep tree-structured hierarchical discussion venue where documents can
arise at any tree node. ATHDP can to extract topics across the documents
and sections in the hierarchy, and automatically computes the number of topics
required to model the authors and text content across the hierarchical sections.
ATHDP does not restrict content of topics to strictly match predefined sections,
but infers them in a data driven way to describe users’ interests. In experi-
ments, ATHDP outperformed HDP based alternative models in modeling unseen
documents (measured by perplexity), and author prediction of unseen documents
(measured by accuracy).

In this first work ATHDP already proved a very well-performing and flexible
model. In future work, its performance could be evaluated by a larger set of dif-
ferent measures, and the flexibility of the model could be further increased by,
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for example, modeling within-topic correlations between authors and word con-
tent, or by other such extensions. We also plan to integrate ATHDP in systems
that can make use of the topic models, i.e., utilizing ATHDP topics in different
applications such as recommendation [8,19], and interactive exploratory search
[12].
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Abstract. Word embeddings are increasingly attracting the attention of
researchers dealing with semantic similarity and analogy tasks. However,
finding the optimal hyper-parameters remains an important challenge
due to the resulting impact on the revealed analogies mainly for domain-
specific corpora. While analogies are highly used for hypotheses synthe-
sis, it is crucial to optimise word embedding hyper-parameters for precise
hypothesis synthesis. Therefore, we propose, in this paper, a methodolog-
ical approach for tuning word embedding hyper-parameters by using the
stability of k-nearest neighbors of word vectors within scientific corpora
and more specifically Computer Science corpora with Machine learning
adopted as a case study. This approach is tested on a dataset created
from NIPS (Conference on Neural Information Processing Systems) pub-
lications, and evaluated with a curated ACM hierarchy and Wikipedia
Machine Learning outline as the gold standard. Our quantitative and
qualitative analysis indicate that our approach not only reliably cap-
tures interesting patterns like “unsupervised learning is to kmeans as
supervised learning is to knn”, but also captures the analogical hierarchy
structure of Machine Learning and consistently outperforms the 61%
sate-of-the-art embeddings on syntactic accuracy with 68%.

Keywords: Word embedding · Word2vec · Skip-gram
Hyper-parameters · k-NN stability · ACM hierarchy
Wikipedia outline · NIPS

1 Introduction

Word embeddings (WEs) are a class of natural language processing techniques
that represent individual words as real-valued vectors in a predefined vector
space. They were first introduced in the 1990s using statistical approaches [2,
8] with vectors computed as rows of lexical co-occurrence [8] through matrix
factorization [2].

However, interest in WEs has recently skyrocketed and has found many appli-
cations. The surge in interest is due both to popularity of neural networks [1]
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which exploit WEs for NLP tasks, and the success of low-dimensional embed-
dings like word2vec [12] and GloVe [16]. Due to their ability to detect semantics
and meanings of words, WEs have been used as features in a variety of applica-
tions, such as document clustering [5] and classification [22], Linear Discriminant
Analysis (LDA) [17], information retrieval [10], named entity recognition [20],
sentiment analysis [19], and semantic discovery [21].

Typically, the reported research work that used WEs as features computed
their vector representations with a default or arbitrary choice of embedding
hyper-parameters. Examples of these hyper-parameters include vocabulary size
and type (single words or phrases), vector dimensionality, that is, the length
of the vector representations of words, and context size which is the span of
words in the text that is taken into account - both backwards and forwards -
when iterating through the words during model training. However, as this paper
will show, these hyper-parameters of word embedding vectors are crucial to the
prediction performance as they directly affect the accuracy of the generated
analogies. Given that analogies can be used in hypotheses synthesis, consequently
an accurate analogy will led to a precise hypothesis. For example, “decision tree”
is a component of “ensemble” and “decision tree” is a “classifier”. So, by analogy
any classifier should be a component of ensemble.

This work concerns then hyper-parametrisation of WEs in a domain-specific
context with varying vocabulary sizes, and represents a gap in knowledge on
present practice of WEs. The considered topic is a key practical issue while
learning WEs, and is so chosen because not only is the literature on learning
embedding hyper-parameters rather limited [6,14], it does not offer a method
to efficiently set these hyper-parameter values. Stimulated by this shortcoming,
the work we present in this paper lies within the context of word embedding
hyper-parametrisation for domain-specific use. The studied problem domain is
scientific literature and more specifically Machine Learning literature, which is a
subcategory of literature on Computer Science. The choice of a scientific domain
is motivated by an increasing interest in knowledge extraction from scholarly
data and scientific text to understand research dynamics and forecast research
trends. Since WEs have proved their ability to capture relational similarities and
identify relationships in textual data without any prior domain knowledge, this
work does not need to justify the use of WEs for knowledge extraction from
scientific literature; instead, the presented work is a methodical approach to
setting the hyper-parameters of WEs for scientific knowledge extraction.

The motivation here is to deeply understand the embedding behavior within
scientific corpora which is quite different to other corpora in terms of word
distributions and contexts. For instance, the term “learning” appears obviously
in the context of education in newspapers corpora; however, “learning” appears
in a completely different context within Computer science. Therefore, WEs for
scientific text are worth investigating.

There have been some efforts to integrate WEs in the scientific domain [3,7,
22]; however, these efforts do not study learning the hyper-parameters suitable
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for a scientific text, and instead use either arbitrary or default settings (Mikolov’s
settings [11]).

In this research work, we aim to fill this gap. We hypothesise that by devis-
ing an approach for setting hyper-parameters of WEs in the scientific domain,
this study adds a deep understanding of the sensitivity of embeddings to hyper-
parametrisation. To make our point, we propose using the stability of k-nearest
neighbors of word vectors as a measure to set the hyper-parameters – mainly vec-
tor dimensionality and context size – of word vector embeddings; moreover, we
propose using common-sense knowledge from the ACM hierarchy1 and Wikipedia
outline of Machine learning2. As a result, this work adds breadth to the debate
on the strengths of using WEs for knowledge extraction from scientific text. To
the best of our knowledge, the proposed work represents the first attempt to
methodically set WEs hyper-parameters in a scientific domain.

We list the major contributions of this work as follows: (i) we propose the
stability of k-nearest neighbors of word vectors as an objective to measure while
learning word2vec hyper-parameters, (ii) we enhance the standard skip-gram
model by bigrams using word2phrase – that attempts to learn phrases by pro-
gressively joining adjacent pairs of words with a ‘ ’ character – as a method for
corpus augmentation, (iii) we create an analogy dataset for the Machine Learn-
ing by manually curating ACM hierarchy and Wikipedia outline of Machine
Learning, and (iv) we evaluate our work quantitatively and qualitatively on a
dataset comprising of abstracts published in the NIPS conference. Our embed-
ding detected interesting semantic relations in Machine Learning such as “unsu-
pervised learning is to kmeans as supervised learning is to knn”. The obtained
results are therefore both promising and insightful.

The rest of the paper is organised as follows. Section 2 summarises the exist-
ing approaches on word embedding hyper-parametrisation and gives an overview
on work that attempted to integrate word embedding in scientific domains.
Section 3 presents our methodology and how we employ stability of k-nearest
neighbors to optimise word2vec hyper-parameters. Section 4 describes the NIPS
dataset we have used, the analogy dataset we have created from ACM hierarchy
and Wikipedia as gold standard, presents and discusses results. Finally, in Sect. 5
we conclude and draw future directions.

2 Related Work

Word embedding methods depend on several hyper-parameters that have crucial
impact on the quality of embeddings. For this reason, Mikolov et al. [12,13] and
Pennington et al. [16] –the inventors of the popular low-dimensional embedding
word2vec and GloVe, respectively – have deeply studied the optimisation of the
embedding parameters, mainly the vector dimension and the context size. The
performance of the embeddings has been measured based on word similarity that

1 https://dl.acm.org/ccs/ccs flat.cfm.
2 https://en.wikipedia.org/wiki/Outline of machine learning.

https://dl.acm.org/ccs/ccs_flat.cfm
https://en.wikipedia.org/wiki/Outline_of_machine_learning
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uses cosine distance between pairs of word vectors to evaluate the intrinsic qual-
ity of such word representations, and word analogies that capture fine-grained
semantic and syntactic regularities using vector arithmetic. The optimal param-
eters have been obtained through training on large Wikipedia and Google News
corpora. But, no evidence was given for generalisation of these parameters to
any other corpus with a general or specific topic and guarantee the performance
of embeddings. However, most of the work using WEs relies on these parameters
as the default ones.

Unlike work that uses default settings, literature on learning embedding
hyper-parameters is relatively short [6,14]. Levy and Goldberg [6] followed
Mikolov et al. [11,12] and Pennington et al. [16] and trained their embeddings on
general topic using Wikipedia corpus. They basically tested their model with dif-
ferent vector dimensions and different window sizes aiming to study the impact
of syntactic contexts – that are derived from automatically produced depen-
dency parse-trees – on detecting functional similarities of cohyponym nature.
While Miñarro-Giménez et al. [14] trained their word embeddings on a domain-
specific corpus of medical data in order to study the ability of word embeddings
(word2vec) to capture linguistic regularities on the medical corpora. Similar to
the previous work, Miñarro-Giménez et al. trained their word2vec embeddings
with different parameter settings, i.e., dimensionality of vector space, context
size, and different model architectures, i.e., continuous bag-of-words (CBOW)
and Skip-gram (SG) [11], and simultaneously compared the relationships iden-
tified by word2vec with manually curated information from National Drug File
– Reference Terminology ontology as a gold standard using word similarity and
word analogies in order to evaluate the effectiveness of word2vec in identifying
properties of pharmaceuticals and medical relationships. The obtained results
(49% accuracy) revealed the unsuitability of word2vec for applications requiring
high precision like medical applications. While this research work seems inter-
esting mainly with its appeal to setting hyper-parameters for domain-specific
word embeddings, it does not bring a defined method to efficiently set these
parameters.

Leading on from the aforementioned observation, the work we present in
this paper lies within the context of word embedding hyper-parametrisation for
domain-specific use. The proposed domain to investigate is the scientific domain
and more specifically Computer Science with M achine learning, as a case study.

There have been some efforts to integrate word embeddings in the scientific
domain [3,7,22] for clustering scientific documents based on their functional
structures [7] or for identifying problem-solving patterns in scientific text [3] or
for paper-reviewer recommendation [22]. All the previous research work inte-
grated word embeddings as features for their learning algorithms using either
arbitrary or default settings (Mikolov’s settings [11]). However, none of them
has focused on training the embeddings and methodologically setting the hyper-
parameters suitable for scientific text.
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To the best of our knowledge, the proposed work represents the first attempt
to methodologically set word embeddings hyper-parameters in the scientific
domain.

3 Methodology

This study focuses on word2vec hyper-parameter optimisation applied to scien-
tific publications, i.e., how to tune the hyper-parameters that have the largest
impact in the prediction performance and what are the adoptable techniques to
test the potential of word embeddings for identifying relationships from unstruc-
tured scientific text. Accordingly, the k-NN algorithmic stability is adopted to
investigate the marginal importance of hyper-parameters of Skip-Gram architec-
ture in a scientific setting. This allows us to identify three hyper-parameters,
namely vocabulary subsampling, vector dimensionality and context size which
can significantly affect the embedding performance. In this study, we use the
popular variant word2vec architecture Skip-Gram as it is consistently yielded
superior results comparing to CBOW architecture [11].

3.1 The Skip-Gram model

Previous results reported in the literature have shown that Skip-Gram [11] model
does not only produce useful word representations, but it is also efficient to train.
For this reason, we focus on it to build our embeddings for scientific text in this
study. The main idea of Skip-Gram is to predict the context c given a word w.
Note that the context is a window around w of maximum size L. More formally,
each word w ∈ W and each context c ∈ C are represented as vectors −→w ∈ R

d

and −→c ∈ R
d respectively, where W = {w1, · · · , wV } is the words vocabulary, C

is the context vocabulary, and d is the embedding dimensionality. Recall that the
vectors parameters are latent and need to be learned by maximising a function
of products −→w · −→c .

More specifically, given the word sequence W resulted from the scientific
corpus, the objective of Skip-Gram model is to maximise the average log prob-
ability: L(W ) = 1

V

∑V
i=1

∑
−l≤c≤l,c �=0 logProb(wi+c|wi) where l is the context

size of a target word. Skip-Gram formulates the probability Prob(wc|wi) using
a softmax function as follows: Prob(wc|wi) = exp(−→wc·−→wi)∑

wi∈W exp(−→wc·−→wi)
where −→wi and

−→wc are respectively the vector representations of target word wi and context
word wc, and W is the word vocabulary. In order to make the model efficient
for learning, the hierarchical softmax and negative sampling techniques are used
following Mikolov et al. [11].

Word embedding vectors learned with Skip-Gram can be used for computing
word similarities. The similarity of two words wi and wj can simply be measured
with the inner product of their word vectors, namely similarity(wi, wj) = −→wi·−→wj .
Recall that cosine distance is the measure used to calculate the similarity between
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embedding vectors −→wi and −→wj as following:

similarity(wi, wj) = cosineDistance(−→wi,
−→wj) =

−→wi · −→wj

‖−→wi‖ · ‖−→wj‖ (1)

As discussed in the Introduction section, we aim to evaluate the representa-
tion capability of WEs within scientific text using word similarities as a pivot to
stabilise the embedding hyper-parameters.

Skip-Gram model uses a target word w to predict the surrounding win-
dow of context words. It weights nearby context words more heavily than
more distant context words [11,12]. Results of word2vec training are sensi-
tive to parametrisation. To this end, the aim of hyper-parameter optimisation
is to find a tuple of hyper-parameters that yields an optimal model minimis-
ing the loss function for negative samples (w, c̄) where c̄ does not necessar-
ily appear in the context of w. This loss function L is defined as follows:
L = −log(σ(−→w ·−→c ))−∑n

k=1 log(σ(−−→w ·−→̄ck)) where σ is the sigmoid function. For
each pair (w, c), the Skip-Gram model forms n negative pairs (w, c̄k)k∈{1,··· ,n} by
sampling words that are more frequent than some threshold θ with a probability:
Prob(c) = freq(c)−θ

freq(c) −
√

θ
freq(c) where freq(c) represents the frequency of the

word c.
word2vec has different hyper-parameters, but sub-sampling that automat-

ically affects the corpus size, vector dimensionality and context window are
described by the developers of word2vec [11,12] as the most important ones
for achieving good results. Consequently, in this study we focus of these hyper-
parameters to produce a distributed representation of words in scientific text
and evaluate the quality of embeddings in a domain-specific vocabulary.

Sub-sampling: vocabulary size. It has been proved in the literature [11,12,
16] that word2vec embedding quality increases as the corpus size increases. This
is expected as longer corpus typically produce better statistics. Following on
from this premise, we aim to investigate the role of vocabulary size in generating
accurate embeddings for scientific text.

Unlike previous work that intuitively increments the vocabulary size by com-
bining corpus, we propose to use the same corpus trained in two different ways
that led to different vocabulary sizes. First, we train word2vec with unigrams.
Second, we train the model with bigrams by using word2phrase – defined by
Mikolov et al. [12] – that learns phrases by progressively joining adjacent pairs
of words with an ‘ ’ character. Additionally, we sub-sample the frequent words
on two steps which result into two different vocabulary sizes. Firstly, we remove
all stop words and highly frequent academic words appearing in all publications.
Secondly, we restrict the vocabulary to words that occur at least 10 times in
the scientific corpus. According to Mikolov et al. [11], this sampling has proved
to work well in practice. It accelerates learning and significantly improves the
accuracy of the learnt embedding vectors, as it will be shown in Sect. 4.

Vector dimensionality and context window. The optimisation of vector
dimensionality and context window parameters is supposed to be very crucial
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to achieve accurate results. The quality of embeddings increases with higher
dimensionality under the assumption that it increases together with the amount
of training data. But after reaching some point, the marginal gain will dimin-
ish [11].

The window size hyper-parameter corresponds to the span of words in the
text that is taken into account, backwards and forwards when iterating through
the words during model training. Similarly to the vector dimensionality hyper-
parameter, the larger window size results in more topicality. Nevertheless, after
a certain point, the marginal gain decreases.

Due to the sensitivity of these hyper-parameters and since hyper- parametri-
sation is generally known to be data and task dependent [4], we expect opti-
mal hyper-parameter setting to be different for scientific text. Thus, we propose
to study the marginal importance of word2vec hyper-parameters defined above
using the stability of k-nearest neighbors of word vectors based on word similar-
ities computed with cosine distance (Equation (1)) between embedding vectors.

k-NN stability for word2vec hyper-parametrisation. Stability is an
important aspect of a learning algorithm. It has been widely used in cluster-
ing problems [18] to assess the quality of a clustering algorithm. Also, it has
been applied in high-dimensional regression [15] for training parameter selection.
Analogously and considering that word embedding presents high-dimensional
word representations that led to word clusters, we propose to apply the k-
nearest neighbors to tune the hyper-parameters of word2vec. k-NN is used to
cluster similar words based on their cosine similarities.

The basic idea of word embedding stability is the following: embedding qual-
ity inevitably depends on tuning hyper-parameters defined previously, namely
vector dimensionality and context window. If we choose accurate values of the
tuning hyper-parameters, then we expect that the k similar words to a target
word w from different embeddings should be similar. Specifically, we propose
to fix one hyper-parameter, tune the second one by trying different values and
training the model for each value. After each training, word similarities are com-
puted and k-nearest neighbors words are defined. The k-NN stability is defined
as a simple overlap rate of similar words resulted from two embeddings with
different settings.

stability =
Sw

Eh
∩ Sw

Eh′

k
× 100 (2)

where SEh
and SEh′ are two sets of similar words to a target word w resulted

respectively from two embeddings Eh and Eh′ with different hyper-parameter
values. k is the number of nearest neighbors to w given by the cosine similarity.
In this study, k is set to 5. This choice is motivated by our aim to keep the
word similarities as fine-grained as possible in order to evaluate the quality of
word2vec within scientific text.
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3.2 Scientific Linguistic Regularities and Analogies

word2vec embeddings gain their success from their ability to capture syntactic
and semantic language regularities. Surprisingly, they characterise each relation-
ship by a relation-specific vector offset [13]. For example, the famous analogy
“king is to queen as man is to woman” is encoded in the vector space by the
vector arithmetic “king - man + woman = queen”. More specifically, the word
analogy task aims at answering the question “man is to woman as king is to — ?”
given the two pairs of words that share a relation (“man:woman”, “king:queen”)
where the identity of the fourth word (“queen”) is hidden.

Motivated by this ability of word2vec to identify relationships and capture
analogies in textual data without any prior domain knowledge, we evaluate this
ability in a domain-specific corpus, namely, scientific publications. Our aim is to
assess as to what extent word2vec is able to correctly answer analogical questions
in scientific text given the complexity of scientific language comparing to natural
language.

The scientific word analogy we adopt is to query for scientific regularities
captured in the vector model through simple vector subtraction and addition.
More formally, given two pairs of words (a : b′) and (b : b′), our aim is to answer
the question ( a is to a’ as b is to —?). Thus, the vector of the hidden word
b′ will be the vector (a′ − a + b), suggesting that the analogy question can be
solved by optimising:

arg max
b′∈W

(similarity(b′, a′ − a + b)) (3)

where W is the vocabulary and similarity is the cosine similarity measure defined
in Equation (1).

This task is challenging for scientific language as no gold standard is avail-
able to evaluate the efficiency of word2vec in identifying linguistic regularities
on unstructured scientific text, unlike existing work that use either the gold
standard defined by Mikolov et al. [13] for general natural language tasks or pre-
defined ontologies like NDF-RT ontology3 for medical domain. To overcome this
problem, we manually curate relationships related to machine learning research
area from the ACM hierarchy and the Wikipedia Machine Learning outline, and
we define a test set of analogy questions as semantic questions following the rela-
tion described above. The semantic questions are formed based on the hierarchi-
cal tree structure of both the ACM and Wikipedia outline that led to different
“Parents-Children” relationships. For example, “supervised learning” and “unsu-
pervised learning” are considered two parents for the two children “classification”
and “clustering” respectively. Accordingly, the analogical question should be
“classification to supervised learning is as clustering to —?” To correctly answer
the question, the model should identify the missing term with a correspondence
counted as a correct match by finding the word “unsupervised learning” whose
vector representation is closest to the vector (“supervised learning” - “classifi-
cation” + “clustering”) according to the cosine similarity. Recall that for the
3 National Drug File -Reference Terminology.
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specificity and complexity of scientific language and respecting the interchange-
ability of scientific terms, instead of using the exact correspondence as the cor-
rect match, we adopt an approximate correspondence that considers an answer
as correct if it belongs to the 10 nearest words given by cosine similarity in
order to guarantee the applicability of our embeddings in scientific text. This is
applied only for semantic questions. However, for syntactic questions, we adopt
an exact correspondence. For example, the syntactic question “classifier to clas-
sifiers is as forest to —?” is considered correctly answered if and only if the
word “forests” is the closest to the vector (“classifiers” - “classifier” + “forest”)
according to the cosine similarity.

In addition to the semantic questions manually curated from ACM and
Wikipedia, we define syntactic questions which are typically analogies about
verb tenses/forms and singular/plural forms of nouns, in order to test the abil-
ity of word2vec to capture the syntactic regularities of scientific language.

4 Experimental Evaluation

4.1 NIPS Dataset: Description and Vocabulary Setup

To evaluate word embedding for scientific language, we used a subset of 2789
papers in the area of Machine Learning, published in NIPS (Neural Information
Processing Systems) between 2012 and 2017. The dataset is publicly available
on Kaggle4 and contains information about papers, authors and the relation
papers-authors. We used the papers database that defines six features for each
paper: the id, the title, the event type, i.e., poster, oral or spotlight presentation,
the PDF name, the abstract and the paper text.

The dataset needs to be pre-processed before being used for training the
embedding model, since word2vec is very sensitive to vocabulary granularities
like punctuation, lowercase, stop words, etc. which have a direct impact on the
quality of generated word embeddings. After removing all punctuations and
lowercasing the corpus, the pre-processing has the following steps:

(i) We removed stop-words using Stanford NLP stop word list5 enriched by a
list of 170 academic stop words that we defined from common academic vocab-
ulary like “introduction, abstract, table, figure, etc.”, (ii) We constructed bag
of words where words are either unigrams used for standard word2vec train-
ing or bigrams used for word2phrase learning. The two settings resulted into
different vocabulary sizes |Wunigrams| = 35k and |Wbigrams| = 96.7k, and (iii)
We discarded less frequent words that appear less than 10 times in the vocab-
ulary in order to accelerate learning. This led to a different vocabulary size
|Wdownsampled| = 57k.

4 https://www.kaggle.com/benhamner/nips-papers/data.
5 http://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/

patterns/surface/stopwords.txt.

https://www.kaggle.com/benhamner/nips-papers/data
http://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns /surface/stopwords.txt
http://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns /surface/stopwords.txt
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4.2 word2vec Training Details: Hyper-Parameters Optimisation

As described in Sect. 3, k-NN stability was used to optimise the word2vec hyper-
parameters, namely, vector dimensionality and context window size.

Vector dimensionality. k-NN stability, with k = 5, was used to evaluate
the influence of the vector dimensionality hyper-parameter using vector models
generated with 20, 30, 50, 100, 150, 200, 300 and 500 dimensions, skip-gram
architecture and three different vocabulary sizes as described in Sect. 4.1.

In Table 1, we show the results of k-NN stability values that vary vector length
and vocabulary size. word2vec model was initially learned with 20-vector dimen-
sion. This trained model was used as a seed setting to start computing k-NN
stability. More specifically, k-NN stability at 30-vector dimension was computed
based on the 20-vector dimension following Equation (3) and respectively each
k-NN stability value is computed based on the results generated by the previous
dimensionality setting. The reported results correspond to the stability average
of the top 100 frequent words (unigrams and bigrams) in the vocabulary.

It has been clearly seen from the three vocabulary sizes that the stabil-
ity increases considerably as the dimensionality increases. But after reaching
some point, it diminishes or becomes slightly invariant. For instance, for the
unigram vocabulary, k-NN stability reached 67% with 100-dimension vector per-
forming good results comparing to 30 and 50 dimensions. However, it remains
basically steady with a slight increase of 1% at 200-dimension. This increase
is not remarkable enough to consider 200-dimension better than 100-dimension
since a higher dimension of the vectors implies a bigger size of the resulting vec-
tor model and more training time. Then, we notice that the stability decreases
with larger dimensions (300 and 500). Consequently, these results suggest that
100-dimension vector consistently yielded better stability with unigrams vocab-
ulary.

Table 1. k-NN stability for vector dimensionality optimisation

D30 D50 D100 D150 D200 D300 D500

Unigrams 42% 53% 67% 67% 68% 66% 65%

Bigrams 51% 47% 56% 64% 68% 70% 71%

Downsampled bigrams 58% 61% 65% 73% 81% n/a n/a

Similarly, bigrams vocabulary shows a substantial improvement in k-NN sta-
bility from 30-dimension to 200-dimension with 68%. Then, it increases slightly
with 300 and 500 dimensions with a 1% gain. Hence, for this vocabulary, we can
fix the optimal dimensionality value to 200. Interestingly, the stability results
of the unigram vocabulary and the bigram vocabulary confirm the hypothesis
that vector dimensionality and the amount of training data should be increased
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together to have better results. As a matter of fact, 100 has shown to be the
better vector length for unigram vocabulary of 35k size, while 200 is better for
bigram vocabulary of 96.7k size. On the other hand, by looking at the stabil-
ity values at high dimensions (300 and 500), we noticed the excess in stability
of bigrams vocabulary comparing with unigrams vocabulary. This is comprehen-
sibly justified by three facts: (i) this confirms the hypothesis that word2vec
model quality increases as corpus size increases [14], (ii) this proves that n-gram
enhanced skip-gram model performed better than regular skip-gram based only
on unigrams, (iii) this confirms the specificity of scientific language and mainly
the Computer Science area that contains an important number of bigrams like
“machine-learning”, “artificial-intelligence”, etc.

Based on these findings, mainly (i) and (ii), we ignored the 300 and 500
dimensions for training the downsampled vocabulary which is resulted from down-
sampling the bigram vocabulary as the vocabulary size is obviously smaller (57k).
It is worthy to note that this downsampling improved the training speed and
most importantly made the k-NN stability values more important with 81% at
200-dimension while it was 68% with bigram vocabulary at the same dimension.
This was expected as downsampling makes the word representations significantly
more accurate [12].

Overall, the k-NN stability results obtained through vector dimensionality
optimisation show that bigram enhanced skip-gram model performs better with
scientific language, 200 is the optimal vector length for the used dataset and the
downsampled bigram vocabulary significantly outperforms the two other vocabu-
laries in term of k-NN stability and computation time. Note that for all word2vec
training rounds with different vocabularies and different vector dimensionalities,
the hyper-parameter window context was set to 5, the default window size value
provided by gensim6.

Window context. Similarly to the setting followed to optimise vector- dimen-
sionality, k-NN stability was adopted to find the optimal window size for the
used scientific corpus in this study. Building on previous results, the trained
vocabulary used is the downsampled vocabulary and the vector dimensionality
is 200. word2vec embeddings were generated with skip-gram model and 7 dif-
ferent window sizes ranging from 2 to 8. word2vec was initially trained with a
context window of size 2 as a starting point. Then k-NN stability was computed
respectively based on the previous embedding results. Figure 1 presents the val-
ues of k-NN stability that vary context window size. It is clearly seen from the
figure that the optimal window size is 6 with a stability of 70% for the used
scientific corpus. Our results confirm the fact that larger window size results in
more topicality and accordingly better accuracy of word representations. How-
ever, the marginal gain decreases after a certain point. Overall, our findings
show that the combination of 200-vector dimension with context window of size
6 and downsampled bigram vocabulary proved to be the best configuration of
skip-gram word2vec model. Additionally, the proposed k-NN stability – based on
6 https://radimrehurek.com/gensim/.

https://radimrehurek.com/gensim/
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word similarity as embedding properties, that we adopted in this study to opti-
mise the word2vec hyper-parameters for scientific text – confirms all hypotheses
related to word embeddings supported in the literature and even goes beyond
them by giving a standard way to be sure about the stability of results.

Fig. 1. k-NN stability for context window size optimisation

4.3 Analogy Evaluation

As described in Sect. 3.2, the word analogy task attempts to query for scien-
tific regularities captured in the embedding model – trained with the previously
optimised hyper-parameters – through simple vector subtraction and addition.

The analogy dataset we created contains 1991 analogical questions, divided
into 1871semantic questions and 120 syntactic questions. The semantic questions
were manually curated from ACM hierarchy (406 questions) and Wikipedia out-
line of Machine Learning (1465 question). The number of relationships generated
from Wikipedia are by far greater than the ACM counterpart. This justified by
the fact that ACM is more coarse-grained as it covers all the Computer Science
area, while the Wikipedia outline is a fine-grained hierarchy generated specif-
ically for Machine Learning with very detailed algorithms and applications of
the area. We remove from the analogy dataset all questions that contain words
that do not exist in our vocabulary in order to fairly evaluate embedding analo-
gies. This resulted into 1573 questions (322 ACM questions and 1251 Wikipedia
questions). Similarly to semantic questions, syntactic questions were a manually
generated subset that we created from the scientific text using typical analogies
about verb tenses/forms and singular/plural forms of nouns, in order to test the
ability of word2vec to capture the syntactic regularities of scientific language.
The number of questions is relatively small due to our aim to only preliminarily
test the word2vec ability to cover syntactic scientific regularities that do not
differ from natural language, while the semantic questions do. That is why we
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focus more on these latter. Our analogy dataset is available online for more
reproducibility and any further use by researchers7.

For evaluating our embeddings in capturing linguistic regularities and analo-
gies, we performed both quantitative and qualitative analysis.

Quantitative analysis. In this analysis, we empirically evaluate our proposed
bigram-enhanced word2vec model trained with hyper-parameters experimen-
tally tuned. Our goal of these experiments is two-fold. First, we aim to evaluate
whether our hyper-parametrisation method of word2vec is useful for resulting
embeddings able to cover linguistic regularities and analogies within scientific
text. Second, we aim to assess whether word embeddings are worth using in
domain-specific vocabularies such as the scientific one.

To do so, we computed the accuracy of word embeddings to answer the seman-
tic and syntactic questions following the methodology detailed in Sect. 3.2. For
semantic questions, 50 out of 322 ACM questions were correctly answered with
an accuracy of 15.52% while 75 Wikipedia questions were correct out of a sub-
set of 413 questions from the 1251 questions in the dataset, with an accuracy
of 18%. The difference in accuracy between ACM and Wikipedia questions was
expected as Wikipedia relationships were more detailed and covered Machine
Learning names of algorithms and applications that widely occur in the vocab-
ulary, while ACM was more coarse-grained. Although, the accuracy of both of
them is very low. This could be justified by three different reasons. First, the
corpus size we used is relatively small with only 57k while it has been shown
that word2vec quality increases as corpus size increases. For instance, Mikolov
et al. [12] trained their model on a corpus of 1B and obtained a semantic accu-
racy of 61%. Second, the used NIPS dataset is about very recent publications
(between 2012 and 2017). So that, the vocabulary is more probably about recent
topics and accordingly recent Machine Learning vocabulary, i.e., names of algo-
rithms and applications might gain more frequencies in the text than the old
ones, which in turn would highly affect the word representations, at the time
when ACM hierarchy or Wikipedia outline are time-independent and contain
generic Machine Learning vocabulary. Third, the scientific language is complex
and does not contain explicit and accurate relationships as natural languages
does. For instance, ‘accuracy’ and ‘error rate’ in the machine learning literature
are used in similar contexts, despite having opposite semantics.

For all these reasons, the semantic accuracy of word embedding within the
used scientific corpus is considered modest. But, it is promising as it is inter-
pretable and improvable on one hand. On the other hand, it reveals challenges
about scientific word embedding. More specifically, it is worth investigating the
convergence and divergence of some Machine Learning algorithms and applica-
tions over time which consistently affects the word representations. Interestingly,
it is challenging to find a suitable way to train and evaluate word embeddings
in such dynamic vocabularies.

7 https://github.com/AmnaKRDB/Machine-Learning-Analogies.

https://github.com/AmnaKRDB/Machine-Learning-Analogies
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(a) r1 vector offset (b) r2 vector offset

Fig. 2. Vector offsets examples of Machine Learning semantic relationships

For syntactic questions, we computed the accuracy across the 120 questions
we defined. Interestingly, we found 82 questions out of 120 correctly answered
with an accuracy of 68%. This result is interesting despite the small size of our
vocabulary. It outperforms the syntactic accuracies of Mikolov etal. [12] which
reached 61% with 1B vocabulary and 300-dimension vector.

Qualitative analysis. The embedding we learned revealed interesting patterns
in Machine Learning vocabulary through relation-specific vector offsets. For
instance, it captured different semantic relationships mapping Machine Learning
techniques and related algorithms such as r1“unsupervised learning is to kmeans
as supervised learning is to knn”, and r1“classification is to knn as regression is
to linear regression”. We illustrate these patterns by plotting word vector rep-
resentations with t-distributed stochastic neighbor embedding (t-SNE) [9] as a
qualitative way to evaluate our embeddings following Yao et al. [21]. Figure 2a
and Fig. 2b show the t-SNE representations of r1 and r2 respectively.

In addition to the t-SNE visualisation used to qualitatively evaluate the
accuracy of our embeddings to detect interesting patterns in the scientific
text, we suggested to evaluate the capability of our model to capture the
hierarchy structure “Parent-Children”. To do so, we computed and compared
similarities between every word “parent” and the corresponding words “chil-
dren”. The model is considered accurate if the distances are approximately
equal. For instance, the distances between the parent “supervised learning”
and its children {“classification”, “regression”, “ranking”, “cost sensitive”}
are approximately equal with slight differences as presented here respectively
(0.369; 0.241; 0.173; 0.223) similarly to the parent “unsupervised learning”
and its children {“clustering”, “dimensionality reduction”, “topic modeling”,
“anomaly detection”, “mixture modeling”, “source separation”} with approxi-
mately similar distances (0.259; 0.307; 0.237; 0.145; 0.145; 0.135; 0.253).
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Similarly, we followed the same reasoning to compare the average distances
between “Parents-Children”. The model is accurate if the average distance
between every parent and its children is similar to others parents’ average dis-
tances. With respect to the example above, we computed the average distance
of the parents “supervised learning” and “unsupervised learning” with their cor-
responding children. And interestingly, we found that the average distances are
respectively equal to 0.25 and 0.22 which proves the accuracy of our embedding
to detect granularities of scientific text, not only the semantic relationships but
also the hierarchical structure.

5 Conclusions and Future Work

Despite their popularity in overwhelming state of the art performance in seman-
tic similarity and analogy tasks, word embeddings are still treated as black
boxes and uniformly use the hyper-parameters without a methodological setting.
From this perspective and aiming to provide a precise hypotheses synthesis, this
work addressed word embedding hyper-parametrisation for domain-specific use,
namely the scientific domain. By proposing the stability of k-nearest neighbors
of word vectors, we were able to methodologically set the hyper-parameters suit-
able for scientific text. Our method has been validated quantitatively and qual-
itatively on semantic and syntactic analogies curated from ACM and Wikipedia
as gold standard and has proved its effectiveness.

As a short term objective, we plan to apply our method on larger scien-
tific vocabulary, then generalise it on different research areas. For long term
objectives, we plan to investigate more settings for word embeddings within
the scientific area, aiming to detect trendy and evolving patterns by performing
time-aware vocabulary augmentation and sliding windows.
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Abstract. Linking an expert to his knowledge areas is still a challenging
research problem. The task is usually divided into two steps: identify-
ing the knowledge areas/topics in the text corpus and assign them to
the experts. Common approaches for the expert profiling task are based
on the Latent Dirichlet Allocation (LDA) algorithm. As a result, they
require pre-defining the number of topics to be identified which is not
ideal in most cases. Furthermore, LDA generates a list of independent
topics without any kind of relationship between them. Expert profiles
created using this kind of flat topic lists have been reported as highly
redundant and many times either too specific or too general.

In this paper we propose a methodology that addresses these limita-
tions by creating hierarchical expert profiles, where the knowledge areas
of a researcher are mapped along different granularity levels, from broad
areas to more specific ones. For the purpose, we explore the rich struc-
ture and semantics of Heterogeneous Information Networks (HINs). Our
strategy is divided into two parts. First, we introduce a novel algorithm
that can fully use the rich content of an HIN to create a topical hier-
archy, by discovering overlapping communities and ranking the nodes
inside each community. We then present a strategy to map the knowl-
edge areas of an expert along all the levels of the hierarchy, exploiting the
information we have about the expert to obtain an hierarchical profile of
topics.

To test our proposed methodology, we used a computer science bibli-
ographical dataset to create a star-schema HIN containing publications
as star-nodes and authors, keywords and ISI fields as attribute-nodes.
We use heterogeneous pointwise mutual information to demonstrate the
quality and coherence of our created hierarchies. Furthermore, we use
manually labelled data to serve as ground truth to evaluate our hierar-
chical expert profiles, showcasing how our strategy is capable of building
accurate profiles.
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1 Introduction

With the current exponential growth in web-documents, the problem of link-
ing persons to knowledge areas and vice-versa has gained a lot of attention.
This problem is known as expertise retrieval [1] and it is divided into two sub-
problems: expert profiling and expert finding. The former identifies the areas
of expertise of a person, while the latter finds experts in a certain topic. In lit-
erature, the expert finding task has been receiving considerably more attention
than the expert profiling one. In this paper we focus on the expert profiling task.
Creating accurate knowledge profiles of a person has several important appli-
cations such as [2]: categorizing personal according to their skills, identifying
possible collaborations, and tracking individual or group evolution of expertise.
Furthermore, the profiles generated could be used as sources of information in
the expertise finding task [6,11].

In most cases, the expert profiling problem does not have a pre-defined set of
knowledge areas for the persons. Instead, they are identified in a data-driven fash-
ion using a topic modelling approach. The Latent Dirichlet Allocation (LDA) [3]
model is the most widely used strategy to define the knowledge areas/topics
in text. Due to its potential, the LDA algorithm was adapted to output the
distribution of authors over the discovered topics [15]. This discovery fostered
the development of a group of algorithms named Author-Topic models that, not
only identify topics in documents, but also profile the author’s expertise. Since
then, several other Author-Topic models have been proposed [7,10,12].

The core of the Author-Topic models is the LDA algorithm and despite it
being widely used, there are some known flaws in it [8]: lacks an intrinsic method-
ology to choose the number of topics, contains several hyper-parameters that can
cause overfitting, and it is incompatible with properties of text such as Zipf’s
law for the frequency of words. In order to avoid these flaws, we propose a dif-
ferent strategy to the topic modelling part. The vast number of Author-Topic
models that exist in literature, indicate that adding external sources of infor-
mation besides text, improves the quality of expert profiles. Therefore, we use
documents’ meta-data to model their inter-relations in a Heterogeneous Infor-
mation Network (HIN), and we uncover hidden structures in the linked data
that represent topics/knowledge areas which can be used to categorize a per-
son’s knowledge. An advantage of this process when compared to LDA is that
it does not require defining the number of topics to be discovered.

With respect to the expert profiling task, experts have reported that the
profiles assigned to them are redundant, and either too general or too specific [2].
This occurs because the expert profiles are generated from a flat list of topics
without any relation between them. A solution to the problem is to create an
hierarchy of topics with “sub-topic of” relations. Unfortunately, automatically
creating these structures and mapping experts into them is not trivial [16,21].
In this work, we take advantage of the HIN to organize the topics discovered in
an hierarchy and to map the experts into the topics. As a result, we are capable
of creating hierarchical profiles that on top represent broad knowledge areas and
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on the bottom more specific ones. Figure 1 illustrates the differences between a
flat and an hierarchical profile.

Fig. 1. Example of flat versus hierarchical organization of topics of expert profiling.

This paper is structured as follows. In Sect. 2 we discuss the related word
for the topic modelling and expert profiling tasks. In Sect. 3 we formalize the
task of creating an hierarchical expert profile from an heterogeneous information
network. In Sect. 4 we describe our model and in Sect. 5 we evaluate the topic
modelling and the expert profiles constructed. Finally, in Sect. 6 we present the
conclusions and address future work.

2 Related Work

In the expert profiling domain, the Author-Topic models are widely used for the
task. These models are inspired by the Latent Dirichlet Allocation (LDA) algo-
rithm [3] which represents topics as a multinomial mixture over words, and doc-
uments as a multinomial distribution over topics. In 2004, Rosen-Zvi et al. [15]
added the authors distribution of documents to the LDA model, thus creat-
ing the first Author-Topic model and fostering the motivation to several other
ones. Tang et al. [20] unveiled the importance of adding the conference distribu-
tion to the author-topic models. Later, Wang et al. [22] proposed the Author-
Conference-Topic-Connection model which besides adding the conference distri-
bution, also adds the subjects of the conferences. In 2012, Daud [5] added the
documents timestamps and proposed the Temporal-Author-Topic which models
the topic distribution of an author over time. Later, Jeong et al. [10] proposed
the Author-Topic-Flow which allows each author to directly have a temporal
pattern of expertise. Duan et al. [7] explored the community information in
networks, and proposed the Mutual Enhanced Infinite Community-Topic model
which finds communities and the topics they discuss in text-augmented social
networks. This work was the pioneer in simultaneously integrating community
discovery with topic modelling, while considering communities and topics as
different latent variables (i.e. a community may be interested in several topics).
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There are some works in literature that rely on information networks to
avoid the problems of the LDA model. Gerlach et al. [8] represented a word-
document matrix as a bipartite network, and reformulated the problem of topic
modelling as the task of finding communities in such network. The authors pro-
posed the hierarchical Stochastic Block Model (hSBM) which is a probabilistic
inference approach that is capable of handling the possibility of higher-order
structures. Consequently, the algorithm is capable of generating an hierarchy of
topics. Some different approaches that focus on topic modelling using HINs have
been proposed. Rankclus [18] was a pioneer algorithm that simultaneous clusters
and ranks nodes in a HIN using a generative model that operates on bipartite
topologies. Netclus [19] emerged later with the intent to extend the Rankclus to
HINs with a star-topology. More recently, CATHYHIN [21] extended the pre-
vious algorithms to support the following features: ranked list of attributes for
each type along with a ranked list of phrases, any HIN topology, soft-clustering
of all the nodes, and developing an hierarchy of topics. With respect to this
work, CATHYHIN produces a similar output to our algorithm (i.e. an hierar-
chy of topics where each topic consists of multiple node types, see Fig. 2 for
an illustration.). However there are two main differences in our work. To start
CATHYHIN uses a generative model to discover the communities while we use
modularity optimization. Additionally, CATHYHIN focus on discovering topics
in an HIN. We extend this goal and we define strategies to map the experts into
the discovered topics to create their hierarchical expert profile.

Fig. 2. Sample of the hierarchy of topics obtained from our algorithm.

In literature, there are a few works that create a expertise profile with hier-
archical properties. Bin et al. [9] uses explicit feedback from persons and their
bookmarks information to extract keywords that reflect their expertise. After-
wards, these keywords are mapped into a pre-defined ontology. Thus constructing
an hierarchical profile. Rybak et al. [16] uses publication’s meta-data to maps
authors into the ACM computation classification system.1 Since this is organized

1 https://www.acm.org/publications/class-2012.

https://www.acm.org/publications/class-2012
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in hierarchies, the expert profile is also hierarchical. An important aspect of both
strategies is the fact that they use a manually created hierarchy which requires a
lot of human effort. Moreover, these structures are dynamic. As a result this is not
a one time task [21]. Additionally, there is the problem of mapping the expert’s
knowledge into the hierarchy. In [9] the authors have to restrict the keywords to
the ones that are on the ontology. On the other hand, Rybak [16] restricts the
author’s publication to the ones published in ACM conferences. Both strategies
potentially leave out details that may be relevant to characterize the experts’
knowledge. In this work we automatically create the topological hierarchy, and
since our topics consist of multiple entities, we are capable of mapping experts
directly (the author is part of the topics) and indirectly (author is represented
by other meta-data attributes) into the hierarchy.

3 Problem Description

We formalize the problem of creating hierarchical profiles for experts as the task
of receiving an HIN, generating a topical hierarchy and the mapping expert’s
knowledge into that structure.

Definition 1. An information network is defined as a directed graph G = (N,L)
with an object type mapping ψ : N → A and a link type mapping ϕ : L → R.
Each node n ∈ N belongs to an object type a : ψ(n) ∈ A. Furthermore, each link
l ∈ L belongs to a relation type r : ϕ(l) ∈ R. If two links share the same relation
type, they both start at a node with type a′ and end at a node with type a′′.

An HIN is a type of information network where |A| > 1 and/or |R| > 1. For
a better understanding of the object types and relations, HINs have a meta-level
description named network-schema [17].

Definition 2. We define a topical hierarchy as a tree T where each node is a
topic. Each topic t contains |A′| lists of ranked attributes where A′ ⊆ A and A
is the set of object types in the HIN.

Definition 3. An hierarchical expert profile P is a tree such that P ⊂ T . Each
t ∈ P contains a q indicating the percentage of knowledge of the expert on that
topic. Additionally, ∀l ∈ L,

∑

t∈Pl

tq = 1, where L is the number of levels in the

tree and Pl is the set of topics at level l.

Our proposed model is divided into two parts. The first consists in defining
a function θ such that θ(G) = T . Then, we introduce two strategies to create a
function λ such that λ(T, e) = Pe, where e is an expert and Pe his hierarchical
expert profile. We address the construction of both functions in the next section.
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4 Hierarchical Expert Profile

4.1 Network Construction

The model proposed in this work can be applied to any HIN. However, to ease
understanding we present the discussion and evaluation of its components in the
context of bibliographic databases. More concretely, we use data from Authen-
ticus2 which is a bibliographic database for the Portuguese researchers. To con-
struct the HIN we select a set of publications and, for each one, we query the
database for the following meta-data: authors, keywords and ISI fields3. Then,
the HIN is constructed following a star-schema topology where publications are
the star-nodes, and authors, keywords and ISI fields are the attribute-nodes (see
Fig. 3 for an illustration). There are three different types of relations: publication-
author, publication-keyword and publication-ISI field. Each relation has a differ-
ent Wx that represents the importance of objects of type x in the network. The
Wx values are normalized with respect to the number of attributes x connected
to the star-nodes (in this case publications). For example, considering that Wa

is the publication-author’s weight, all the n authors of a certain publication p
have a link weight of 1

nWa.

Fig. 3. Network scheme of our proposed bibliographic HIN.

4.2 Topic Modelling

Once we have an HIN we apply a modularity optimization algorithm to unveil
communities on the network structure. We assume that the communities rep-
resent topics/knowledge areas for the expert profiling task. Given a network
community c, modularity [14] estimates the fraction of links within c minus the
expected fraction if links were randomly distributed. The value of modularity
ranges between −1 and 1. Positive values indicate that the number of links in c,
exceeds the number of expected ones at random. A modularity based community
detection algorithm aims to maximize the global modularity of the communities
in the network. However, due to the time complexity of the task, algorithms
2 https://www.authenticus.pt.
3 Research areas created by the Institute for Scientific Information.

https://www.authenticus.pt
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must use some heuristics in order to decrease its computational cost. In this
work we use Louvain algorithm [4] which is a greedy optimization method with
expected runtime O(n log(n)), where n is the number of nodes in the network.

With respect to our overall goal of topic modelling in HINs, using Louvain
algorithm presents some drawbacks: does not account for nodes and links het-
erogeneity, ignores network-schema, and produces non-overlapping communities.
The first two points lead to a loss of information in the HIN. The latter pro-
duces the undesired effect of hard-clustering attribute-nodes (by intuition, some
authors/keywords should be part of more than one community). In order to
tackle these problems, before applying the Louvain algorithm to detect commu-
nities we adapt our HIN to a similarity graph of star-nodes G′ = (N ′, L′). In
case of our bibliographic HIN, all the nodes in G′ are publications and the links
represent how related two publications are.

The process to construct G′ starts with the selection of all the star-nodes
from the HIN. Each one represents a different node in G′. The edge weights
between every pair of nodes (p1, p2) ∈ L′ are defined by the following formula:

lp1,p2 ∈ L′ =
∑

n∈K

lp1,n +
∑

n∈K

lp2,n (1)

where K is the set of nodes that are adjacent to p1 and p2 in the HIN, and lx1,x2
is the edge weight between nodes x1 and x2.

After the construction of the similarity graph we apply the Louvain algorithm
which returns a community partition C that maps nodes into their respective
community. Extrapolating C to the HIN, we obtain the community membership
of all the star-nodes. On the next step, we expand these communities in the
HIN to assign community membership to the attribute-nodes. Due to our star-
schema topology, every attribute-node a is connected to at least one star-node
p, that belongs to a community cj ∈ C. Therefore, we estimate the community
membership of attribute-nodes as the fraction of their link weights connected to
different communities. For example, if ai is linked to star-nodes p1, p2 and p3,
and p1 and p2 are members of community c1 and p3 is member of community
c2, then the community membership of a is 67% in c1 and 33% in c2.4

Fig. 4. Topic modelling in HINs using modularity-based community detection.

4 For simplicity consider that the links have the same weight.
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In the end of the whole process, all the nodes in the HIN are assigned to one
or more communities. In the context of the bibliographic data of this work, we
aim that our topics consist of three ranked lists of attributes: authors, keywords
and ISI fields.5 Therefore, to rank the attributes within a community, we remove
the star-nodes on the network and generate a new HIN with a different network-
schema. Figure 4 illustrates the different phases of topic modelling in a HIN.

4.3 Ranking Attributes Within a Topic

With respect to the information network, a topic consists of a sub-network of
nodes of three attributes types. In order to better understand the topics discov-
ered, we rank the nodes within each topic according to their importance and
type. For the purpose we used several network centrality metrics: node’s degree,
PageRank, betweenness, closeness and eigenvector. Through experimentation we
determined that PageRank seems to be the best metric for our purposes. In this
work we use the node’s ranking within a topic, to facilitate human interpreta-
tion of what a topic represents. However, in the case of extending our expertise
profiles to other tasks such as the expert finding one, the rankings could be used
to determine who is the best expert in a certain domain.

4.4 Hierarchical Topics

The topic modelling strategy presented in Sect. 4.2 creates a flat list of topics for
a HIN. In this section we summarize the steps necessary to create an hierarchy
of topics with a pre-defined number of l levels:

1. Start with HIN G = (N,L)
2. Convert the HIN into a similarity graph G′ of star-nodes.
3. Apply the Louvain community detection algorithm such that Louvain(G′) =

C where C = C1, C2, ..., Ck and each Ci represents a community of star-nodes.
4. Transfer the communities information into the HIN and estimate the com-

munity membership of all the attribute nodes.
5. For each Ci ∈ C:

(a) Create subgraph GCi = (N ′, L′) where N ′ is the set of the nodes in
community Ci and L′ the links between those nodes in G.

(b) Rank all the attribute nodes according to their importance and object
type.

(c) If the current level is lower than l, set G = GCi and go back to step 1.

4.5 Mapping Experts into the Hierarchical Topics

One of the problems of using an hierarchy of topics on the expert profiling task
is that most of the times, mapping the experts into the hierarchy is either not
trivial, or it requires discarding information [9,16]. In our strategy, we generate

5 As illustrated by Fig. 2.
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topics that consist of multiple attributes. As a result we can use them to map the
experts into the topical hierarchy and create expertise profiles. In cases where
the expert is represented by a node in the HIN, there is a direct mapping into
the hierarchy. Otherwise, the expert can be mapped indirectly using attributes
that characterize his expertise and are represented in the HIN.

Fig. 5. Example of an hierarchical expert profile.

To create the expert profile of an expert e that is part of the HIN, we trans-
verse the topical hierarchy T and consider all the topics he is part of. For example,
let us consider that e at the lowest level of T is 40% in topic“5-2-2-1”, 40% in
“5-2-3-1”, and 20% in “5-2-3-4”.6 Then, its expert profile pe considering the
complete hierarchy, would be:

– 1st level: 1.0 in topic “5”
– 2nd level: 1.0 in topic “5-2”
– 3rd level: 0.4 and 0.6 in topics “5-2-2” and “5-2-3”
– 4th level: 0.4, 0.4 and 0.2 in topics “5-2-2-1”, “5-2-3-1” and “5-2-3-4”

Figure 5 illustrates e’s expert profile. In cases where e is not represented in
T , we obtain his profile by considering the set of keywords K that he has used
in his publications. For each ki ∈ K we match it with a keyword node in the
HIN by selecting the one with highest Word2Vec similarity [13] to ki, and obtain
its topical profile ri (similar to the one illustrated in Fig. 5.) Then, we sum all
the topical profiles into a single one, considering the times the expert used each
keyword. For each topic in the merged profile Mp, we estimate its value (Vt)
using the following formula:

Vt =
∑

k∈K

χ(ri, t) (2)

where χ is a function that given a topical profile ri, extracts the value asso-
ciated to topic t. On the final step, we normalize the topics’ values per hierarchy
level in order to make them comparable to profiles extracted directly from T .
In this work we are interested in expert profiles, however using the indirect
mapping we are capable of creating knowledge profiles for other entities. For
example, we can create the profile for a research institution using its authors, or
for a conference using the keywords used in it.
6 For clarification, an ’-’ symbol refers to a different level on the hierarchy.
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5 Experimental Evaluation

In this section we test the efficiency of the discovered topics and the quality of the
profiles created using them. For the purpose, we constructed a dataset using all
the computer science related publications from the Authenticus database. Our
dataset consists of 8587 publications, 2715 authors, 19662 keywords and 120 ISI
fields. With this data, we constructed 8 Heterogeneous Information Networks
(HIN) changing the weights assigned to each type of relation. For each HIN we
applied our model to create a topical hierarchy setting the number of levels to 4.7

Table 1 shows the relational weights used and the number of topics discovered
per hierarchical level.

Table 1. Relational weights and number of topics discovered for the constructed HINs.
P-K: publication-keyword. P-A: publication-author and P-I: publication-ISI field.

HIN Relation weights uniform? Number of topics per level

P-K P-A P-I level 0 Level 1 Level 2 Level 3 Total

CS 1 Yes 1.0 1.0 1.0 4 9 10 10 33

CS 2 No 1.0 1.0 1.0 4 55 122 200 381

CS 3 No 2.0 1.0 0.5 4 85 352 684 1125

CS 4 No 2.0 0.5 1.0 4 72 253 479 808

CS 5 No 1.0 2.0 0.5 4 51 235 563 853

CS 6 No 0.5 2.0 1.0 4 22 54 94 174

CS 7 No 1.0 0.5 2.0 4 14 30 49 97

CS 8 No 0.5 1.0 2.0 4 9 19 21 53

To evaluate the importance of normalizing the relation weights per publi-
cation, we constructed a HIN (CS 1) where the weights are uniform. From the
results we observe that the relational weights have a huge impact on the number
of topics discovered. Increasing the importance of the publication-keyword rela-
tion generates the most topics. On the other hand, decreasing this relation while
increasing the publication-ISI field one, generates the least among the HINs with
no uniform weights. The uniform HIN generated the fewest number of topics by
a high margin.

5.1 Topic Evaluation

In literature, there are several metrics to evaluate the quality of topics modelled.
However, they assume that the topics consists only of words, and that they were
obtained using statistical inference on text. Our task of constructing an hierarchy

7 Through experimentation we determined that 4 was the number of levels that
achieved the most comprehensible topical hierarchy.
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of topics, where each topic consists of multiple attributes has only been evaluated
by the work of Wang et al. [21]. Therefore, we used the heterogeneous pointwise
mutual information (HPMI) metric proposed by the authors to evaluate our
topics. HPMI is an extension of the point mutual information metric which is
commonly used in topic modelling. For each discovered topic, HPMI calculates
the average relatedness of each pair of attributes ranked at top-k:

HMPI(vx, vy) =

⎧
⎨

⎩

2
k(k−1)

∑
1≤i<j≤k log(

p(vx
i ,v

y
j )

p(vx
i )p(v

y
j )

) x = y

1
k2

∑
1≤i,j≤k log(

p(vx
i ,v

y
j )

p(vx
i )p(v

y
j )

) x �= y

⎫
⎬

⎭
(3)

where vx is a node of type x, ranked among the top-k attributes of type x in
a certain topic. The higher the HPMI is, the more coherent the topics are. We
calculated the HPMI for the 8 constructed HINs using k = 20 and k = 40.8

Table 2. HPMI results for all the HINS. K: keywords. A: authors and I: ISI fields.
Highlighted values indicate the highest score for each k.

HIN #Topic K-K K-A K-I A-A A-I I-I Overall

k = 20

CS 1 33 −1.847 −0.960 −0.726 −1.910 −0.764 −1.056 −1.211

CS 2 381 0.204 1.420 0.222 3.164 0.439 0.057 0.918

CS 3 1125 1.392 2.355 0.467 5.780 0.692 0.223 1.818

CS 4 808 0.855 1.932 0.347 4.807 0.559 0.144 1.441

CS 5 853 1.025 1.425 0.263 2.735 0.425 0.032 0.984

CS 6 174 0.557 0.479 −0.030 −0.382 0.009 −0.209 0.071

CS 7 97 −1.040 0.492 −0.218 −0.955 −0.135 −0.270 −0.354

CS 8 53 −1.816 −0.946 −0.645 −1.899 −0.671 −0.561 −1.090

k = 40

CS 1 33 −1.791 −0.966 −0.755 −1.912 −0.757 −1.056 −1.206

CS 2 381 0.289 1.395 0.213 3.171 0.435 0.057 0.927

CS 3 1125 1.443 2.349 0.467 5.777 0.691 0.223 1.825

CS 4 808 0.902 1.938 0.345 4.808 0.559 0.144 1.449

CS 5 853 1.082 1.423 0.269 2.739 0.422 0.032 0.995

CS 6 174 0.588 0.479 −0.018 −0.394 0.003 −0.209 0.075

CS 7 97 −0.972 0.472 −0.205 −0.969 −0.130 −0.270 −0.346

CS 8 53 −1.730 −0.944 −0.636 −1.922 −0.645 −0.561 −1.073

Table 2 shows the scores obtained. Each column represents the average relat-
edness of a pair of object types (x, y) for all the topics discovered. The Overall
8 Following the idea of [21], we setted k = 5 for ISI fields since there are only 120 of

them in the HIN. In these cases, the part 1
k2 of the formula changes to 1

5k
.
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column is the average of the values of the 6 possible relations. The results demon-
strated that the scores are very similar for k=20 and k=40. Additionally, in 5 out
of 8 HINs our strategy was capable of obtaining a positive overall HPMI. Focus-
ing on the best result (CS 3), the topics are highly coherent, specially on the
author-author and keyword-author relations. With respect to the HIN construc-
tion we observed the importance of using normalization in the relation weights.
The only HIN with uniform weights (CS 1) scored the worst. Regarding the non-
uniform HINs, CS 7 and CS 8, the only two that assign higher importance to the
publication-ISI field relation, are the only ones that achieved an overall negative
HPMI. In general we discovered that in order to generate more coherent topics,
we must assign an higher importance to the publication-keywords relation. The
best results were obtained when doubling the importance of this relation while
decreasing the weight of the publication-ISI field one (CS 3).

5.2 Profiles Evaluation

To evaluate the expert profiles created, we selected 12 authors that are computer
science professors at the University of Porto. For each one, we crawled their
Google Scholar page9 and collected the research interests that they manually
assigned to themselves. In this test, we assume that the research interests of an
author reflect his knowledge areas. Table 3 summarizes the name of the authors,
the number of publications they have (in the Authenticus database) and their
research interests.

Table 3. Author’s number of publications and google scholar interests.

Name #Pubs Google Scholar Interests

Alipio Jorge 133 Data mining; machine learning; text mining; recommender sys-

tems; artificial intelligence machine learning

Antonio Porto 30 Logic programming; coordination; artificial intelligence

Fernando Silva 91 Parallel and distributed computing; logic programming; informa-

tion mining; algorithms; complex networks

Luis Torgo 90 Data mining; machine learning

Nelma Moreira 89 Automata theory; descriptional complexity; formal verification of

software

Pedro Ribeiro 37 Complex networks; algorithms and data structures; parallel and

distributed computing; computer science education; artificial int

Pedro Brandao 31 Communication networks; body area networks; ehealth; dis-

tributed systems

Ricardo Rocha 90 Logic programming; tabling; parallelism; language implementa-

tion

Rita Ribeiro 25 Data mining; machine learning

Rogerio Reis 81 Formal languages; automata theory; combinatorics

Sergio Crisostomo 16 Computer networks; communications; computer science

Veronica Orvalho 40 Computer graphics

9 https://scholar.google.com/.

https://scholar.google.com/
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For each author we created his hierarchical expert profile using the HIN
CS 3 which was the one that yielded the best HPMI results. Then, we compared
the profiles against each other to obtain their similarity per hierarchy level. To
compute the similarity between authors a1 and a2 at a certain level l, we obtain
the topical distribution of each authors at l and we sum the topical intersection.
The similarity value ranges from 0.0 to 1.0, where 1.0 indicates a perfect match,
while 0.0 describes no match between the authors. The total similarity represents
the sum of the similarities obtained for all the hierarchy levels.

The aim of this test is to use research interests as evidence to evaluate whether
two authors should have high or low similarity profiles. In total we have 132
comparisons. In order to filter some cases on this analysis we divided the results
into two groups considering the total similarity between authors. On the first
group the total similarity is higher or equal to 2.0, while it is lower or equal to
1.0 on the second one. Tables 4 and 5 show the similarity values and the number
of topics shared for both groups.

Table 4. Comparison results for total similarity ≥2.0

Author 1 Author 2 Level 0 Level 1 Level 2 Level 3 Total

Sim #To Sim #To Sim #To Sim #To Sim #To

Nelma Moreira Rogerio Reis 1.00 2 1.00 3 1.00 4 1.00 4 4.00 13

Fernando Silva Pedro Ribeiro 0.73 3 0.73 3 0.60 3 0.60 3 2.66 12

Pedro Brandao Sergio Crisos-

tomo

0.66 2 0.66 2 0.66 2 0.66 2 2.64 8

Alipio Jorge Luis Torgo 0.85 3 0.59 4 0.56 4 0.56 4 2.56 15

Fernando Silva Ricardo Rocha 0.77 3 0.62 4 0.56 4 0.28 3 2.23 14

Pedro Ribeiro Ricardo Rocha 0.76 3 0.57 3 0.42 3 0.26 2 2.01 11

Luis Torgo Rita Ribeiro 0.67 2 0.67 2 0.34 2 0.32 2 2.01 8

Only 7 out of 132 comparisons scored a total similarity equal or higher than
2.00. This is expected due to the fact that we have a broad range of interests from
the Google scholar, and the lower hierarchical levels refer to very specific topics.
Thus, making it more difficult to find similar researchers at those levels. The
highest similarity score (Nelma Moreira and Rogerio Reis) represent a perfect
profile match at all hierarchical levels. Although their Google scholar interests
are very similar, we further looked into this case due to the fact that it represents
a wide gap score wise to the other cases. A co-authorship analysis on the network
revealed that the two authors are co-authors in 66 publications (81.5% of Roge-
rio Reis’s publications). Therefore, the perfect match is expected. Regarding the
other cases, we observe high similarity between pairs of knowledge areas such as:
machine learning (Alipio Jorge, Luis Torgo, and Rita Ribeiro), parallel program-
ming (Fernando Silva, Pedro Ribeiro and Ricardo Rocha), and communication
networks (Pedro Brandao and Sergio Crisostomo).

An interesting fact is to note that two authors, Veronica Orvalho and Antonio
Porto, are not similar enough with any other author. In the case of Veronica
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Orvalho, this is anticipated due to the fact that her interest on computer graphics
is not shared by any other author. However, in the case of Antonio Porto, since
his interests refer to areas shared by other authors an higher comparison was
expected. A further look into his profile revealed that it is scattered by several
topics. As a result, his intersections with other authors are not significant enough.

Table 5. Comparison results for total similarity ≤ 1.0

Author 1 Author 2 Level 0 Level 1 Level 2 Level 3 Total

Sim #To Sim #To Sim #To Sim #To Sim #To

Nelma Moreira Veronica Orvalho 0.25 1 0.25 1 0.25 1 0.25 1 1.00 4

Rogerio Reis Veronica Orvalho 0.25 1 0.25 1 0.25 1 0.25 1 1.00 4

Antonio Porto Pedro Ribeiro 0.66 2 0.33 1 0.00 1 0.00 1 0.99 5

Antonio Porto Pedro Brandao 0.66 2 0.33 1 0.00 1 0.00 1 0.99 5

Fernando Silva Luis Torgo 0.37 2 0.37 2 0.17 1 0.00 1 0.91 6

Nelma Moreira Pedro Ribeiro 0.33 1 0.33 1 0.25 1 0.00 1 0.91 4

Nelma Moreira Pedro Brandao 0.58 2 0.33 1 0.00 1 0.00 1 0.91 5

Nelma Moreira Sergio Crisostomo 0.58 2 0.33 1 0.00 1 0.00 1 0.91 5

Pedro Ribeiro Rogerio Reis 0.33 1 0.33 1 0.25 1 0.00 1 0.91 4

Pedro Brandao Rogerio Reis 0.58 2 0.33 1 0.00 1 0.00 1 0.91 5

Rogerio Reis Sergio Crisostomo 0.58 2 0.33 1 0.00 1 0.00 1 0.91 5

Alipio Jorge Pedro Brandao 0.61 3 0.28 2 0.00 1 0.00 1 0.89 7

Alipio Jorge Antonio Porto 0.64 2 0.14 1 0.00 1 0.00 1 0.78 5

Fernando Silva Sergio Crisostomo 0.33 1 0.33 1 0.00 1 0.00 1 0.66 4

Pedro Ribeiro Sergio Crisostomo 0.33 1 0.33 1 0.00 1 0.00 1 0.66 4

Rita Ribeiro Sergio Crisostomo 0.33 1 0.33 1 0.00 1 0.00 1 0.66 4

Ricardo Rocha Sergio Crisostomo 0.47 2 0.14 1 0.00 1 0.00 1 0.61 5

Luis Torgo Sergio Crisostomo 0.34 2 0.17 1 0.00 1 0.00 1 0.51 5

Alipio Jorge Sergio Crisostomo 0.28 2 0.14 1 0.00 1 0.00 1 0.42 5

Antonio Porto Sergio Crisostomo 0.33 1 0.00 1 0.00 1 0.00 1 0.33 4

Sergio Crisostomo Veronica Orvalho 0.25 1 0.00 1 0.00 1 0.00 1 0.25 4

With respect to the least similar results, in general they complement the
observations from the top results that some areas (machine learning, parallel
programming and communication networks) do not merge into highly similar
profiles. In most of the cases we observe that there is a similarity in the level 0 of
the hierarchy (i.e. on the broader topics), however as the topics get more specific
the intersections between authors fade. An interesting case to highlight is the
author Sergio Crisostomo, that matches on the first two levels with almost every
other author, but with none (exception to Pedro Brandao, who shares a high
similar profile with him) on the last two levels of the hierarchy. This indicates
that from the level 2 of the topical hierarchy, there is a clear distinction of the
communication network topics (his most specific google scholar interests).

Another case worth to note is the fact that although Veronica’s interests are
further away in comparison to the others, she still has some comparisons with
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total similarity higher than 1.0. A further look into her profile revealed that she
is scattered through several topics however she is never a highly ranked author
of the topic. In our dataset, the computer graphics area does not have as many
publications as other areas such as machine learning and parallel programming.
As a result, our strategy fails to model the topic correctly and scatters its infor-
mation among other more predominant topics.

6 Conclusions

In this paper we addressed the problems of topic modelling and expert profil-
ing. We avoided the problems of the LDA-based approaches by using modularity
optimization in HINs to discover multi-typed topics. Additionally, we proposed
a strategy to use the modelled topics to profile experts whether they are rep-
resented in the HIN or not. In order to tackle the current literature problems
of constructing profiles that are redundant and either too specific or too broad,
we organized the topics into an hierarchy. As a result, we create an hierarchical
profile which starts with describing the expert’s most broad areas, and it moves
to the most specific ones. We evaluated our model with respect to the topics dis-
covered using a state of the art metric (HPMI). This test revealed that the topics
generated are coherent. Furthermore, in order to maximize topic coherency we
have to assign the highest importance to the publication-keyword relation in the
HIN. In another test, we used Google scholar data to evaluate the quality of the
hierarchical profiles constructed. Our test revealed that we are capable of gen-
erating high similarity profiles for experts that have common research interests,
while generating low similarity profiles for the ones that do not. This test also
demonstrated that we need to improve our strategy to model topics that are
under represented in the data.

Regarding future work, in the domain of topic discovery, we plan to test other
community detection algorithms, specially the ones that not require transforming
the HIN into a similarity graph. In the domain of the expert profiling, we aim
to take a further look into the rankings of the nodes inside a topic and how
they can be used in the profiling step. We also aim at creating an automatic
summarization of the topics in such a way that we can construct a visualization
of the expert’s profile. Furthermore, we will look into considering the timestamps
of the expert’s meta-data in order to create time-sensible profiles.

Acknowledgements. This work is funded by the ERDF through the COMPETE
2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds
through the FCT as part of project UID/EEA/50014/2013. Jorge Silva is also sup-
ported by a FCT/MAP-i PhD research grant (PD/BD/128157/2016).



Hierarchical Expert Profiling Using HINs 359

References

1. Balog, K., Fang, Y., de Rijke, M., Serdyukov, P., Si, L.: Expertise retrieval. Found.
Trends R© Inf. Retriev. 6(2–3), 127–256 (2012)

2. Berendsen, R., Rijke, M., Balog, K., Bogers, T., Bosch, A.: On the assessment of
expertise profiles. J. Assoc. Inf. Sci. Technol. 64(10), 2024–2044 (2013)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of machine
Learn. Res. 3(Jan), 993–1022 (2003)

4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008
(2008)

5. Daud, A.: Using time topic modeling for semantics-based dynamic research interest
finding. Knowl.Based Syst. 26, 154–163 (2012)

6. De Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: Committee-based profiles
for politician finding. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 25(Suppl.
2), 21–36 (2017)

7. Duan, D., Li, Y., Li, R., Lu, Z., Wen, A.: Mei: Mutual enhanced infinite community-
topic model for analyzing text-augmented social networks. Comput. J. 56(3), 336–
354 (2012)

8. Gerlach, M., Peixoto, T.P., Altmann, E.G.: A network approach to topic models.
arXiv preprint arXiv:1708.01677 (2017)

9. bin Jamaludin, N.A., Annamalai, M., Jamil, N., Bakar, Z.A.: A model for keyword
profile creation using extracted keywords and terminological ontology. In: 2013
IEEE Conference on e-Learning, e-Management and e-Services (IC3e), pp. 136–
141. IEEE (2013)

10. Jeong, Y.S., Lee, S.H., Gweon, G.: Discovery of research interests of authors over
time using a topic model. In: 2016 International Conference on Big Data and Smart
Computing (BigComp), pp. 24–31. IEEE (2016)

11. Karimzadehgan, M., White, R.W., Richardson, M.: Enhancing expert finding using
organizational hierarchies. In: European Conference on Information Retrieval, pp.
177–188. Springer (2009)

12. Li, C., Cheung, W.K., Ye, Y., Zhang, X., Chu, D., Li, X.: The author-topic-
community model for author interest profiling and community discovery. Knowl.
Inf. Syst. 44(2), 359–383 (2015)

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

14. Newman, M.E.: Modularity and community structure in networks. Proc. Natl
Acad. Sci. 103(23), 8577–8582 (2006)

15. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for
authors and documents. In: Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence, pp. 487–494. AUAI Press (2004)

16. Rybak, Jan, Balog, Krisztian, Nørv̊ag, Kjetil: Temporal expertise profiling. In:
de Rijke, Maarten, Kenter, Tom, de Vries, Arjen P., Zhai, ChengXiang, de Jong,
Franciska, Radinsky, Kira, Hofmann, Katja (eds.) ECIR 2014. LNCS, vol. 8416, pp.
540–546. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06028-6 54

17. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous infor-
mation network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017)

18. Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: Rankclus: integrating
clustering with ranking for heterogeneous information network analysis. In: Pro-
ceedings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology, pp. 565–576. ACM (2009)

http://arxiv.org/abs/1708.01677
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-3-319-06028-6_54


360 J. Silva et al.

19. Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information
networks with star network schema. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 797–806.
ACM (2009)

20. Tang, J., Jin, R., Zhang, J.: A topic modeling approach and its integration into
the random walk framework for academic search. In: Eighth IEEE International
Conference on Data Mining, 2008 ICDM 2008, pp. 1055–1060. IEEE (2008)

21. Wang, C., Liu, J., Desai, N., Danilevsky, M., Han, J.: Constructing topical hier-
archies in heterogeneous information networks. Knowl. Inf. Syst. 44(3), 529–558
(2015)

22. Wang, J., Hu, X., Tu, X., He, T.: Author-conference topic-connection model for
academic network search. In: Proceedings of the 21st ACM International Confer-
ence on Information and Knowledge Management, pp. 2179–2183. ACM (2012)



Filtering Documents for Plagiarism
Detection

Kensuke Baba(B)

Fujitsu Laboratories, Kawasaki 211-8581, Japan
baba.kensuke@fujitsu.com

Abstract. Efficient methods are required for plagiarism detection. This
paper proposes a fast and scalable method for detecting “copy and
paste”-type plagiarism in documents. Implementing detection methods
for this type of plagiarism requires a long processing time or a large
database for comprehensive matching of ordered word occurrences. The
author improved the scalability of an existing fast method based on fast
Fourier transform using the idea of the frequency domain filtering. He
evaluated the effect of the improvement on accuracy of the plagiarism
detection method, and achieved an effective trade-off between the accu-
racy and the required size of database.

Keywords: Plagiarism detection · Text processing
Vector representation of words · Fast Fourier transform · Filtering

1 Introduction

Efficient methods are required for plagiarism detection. A huge amount of doc-
uments became available on-line, which encourages plagiarism from copyrighted
contents and academic documents. Our objective is to develop a fast and scal-
able method of plagiarism detection. An action “plagiarism” of humans can be
formalized using features of documents in a variety of ways. In this paper, we
treat “copy and paste” which can simply formalize a kind of straightforward
plagiarism rather than plagiarism of ideas or rough structures of documents.

A difficulty in implementing fast detection methods for “copy and paste”-
type plagiarism is the scalability. The comprehensive matching of ordered word
occurrences in documents requires a long processing time or a large database. We
model a plagiarism as a contiguous sequence which is approximately common in
two documents, and address the problem to detect plagiarisms in a suspicious
document (called a query document) and N documents which can be a source
(called object documents), where the length of each document is n. The naive
method needs O(Nn2) comparisons of words. An approach is using similarity
based on a vector representation of documents. Similar documents on a vector
space can be found in O(log N) time using a suitable data structure. The bag-
of-words model [16] is an example of the methods on this approach. A number of
plagiarism detection methods based on the vector space model exist [15,18,19].
c© Springer Nature Switzerland AG 2018
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https://doi.org/10.1007/978-3-030-01771-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01771-2_23&domain=pdf
http://orcid.org/0000-0002-8118-0175


362 K. Baba

However, this approach does not take account of the order of word occurrences,
which decreases accuracy of plagiarism detection. If we use a method on this app-
roach as a screening, then O(n2) computations are still required after the screen-
ing. Although a number of plagiarism detection methods [13,21] take accounts
of the order using the edit distance [20,22], the processing time is O(n2).

We improved the scalability of an existing method of fast plagiarism detec-
tion. Baba [8] proposed a fast plagiarism detection method based on the score
vector [12] between documents. The score vector between two sequences is the
numbers of matches between the elements aligned with every possible gap of
starting positions of the sequences. If each element of the sequences is a num-
ber, the vector is computed in O(n log n) time for the length n of each sequence
using fast Fourier transform (FFT) [11], such as the Cooley–Tukey type algo-
rithm [9]. In the plagiarism detection method, each document was converted into
numerical matrix using a function from words to numerical vectors for the use
of FFT. Although the method detects plagiarisms fast by storing the frequency
components of object documents, the size of the data is large. We reduced the
data size using an idea which corresponds to the frequency domain filtering for
time series data or images; we deleted parts of the frequency components for
each object document instead of reducing the number of object documents by a
typical “filtering” in document processing.

We evaluated the effect of our improvement on accuracy of the FFT-based
plagiarism detection method. We investigated the relation between the accuracy
and the size of the frequency components of object documents required for the
implementation. We applied the improved method to a data set of documents
that contain randomly generated “copy and paste”-type plagiarisms. As a result
of the evaluation, we achieved a better trade-off between the accuracy and the
size of the data than that obtained by the original method.

The rest of this paper is organized as follows. Section 2 describes the main idea
of our improvement. Section 3 introduces the FFT-based plagiarism detection
method and our improvement to the method, and describes the experimental
methods to evaluate the improvement. Section 4 reports the experimental results.
Section 5 gives considerations on the results and future directions of our study.

2 Main Idea

This section describes the main idea of our improvement on the size of the data
stored for the FFT-based plagiarism detection method.

Our idea is to find plagiarisms in documents using only their “frequency
components” in a restricted range. The idea corresponds to the fact that a rough
shape of a wave form or an image consists of its frequency components in a
certain range. The “frequency components” of documents are obtained using a
vector representation of words, a function from words to numerical vectors. A
straightforward method is using binary vectors whose elements correspond to
words. A number of vector representations of words with a small dimensionality
that can represent a word similarity are obtained from actual document data
using statistical computations, such as the recent study [17] in neural networks.
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Position 0 1 2 3 4 5 6 7
Document to be or not to be
Document not to be

not to be
· · ·

not to be
not to be

not to be
Score vector 0 2 0 0 0 3 0 0

Fig. 1. The score vector between two documents “to be or not to be” and “not to be”.

to
be
or
not
to
be

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

not
to
be

(
0 0 0 1
1 0 0 0
0 1 0 0

)
=⇒

column-wise
convolutions

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒
row-wise
additions

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2
0
0
0
3
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. An example of the numerical representations of documents “to be or not to be”
and “not to be”, and the computation of the score vector.

The occurrences of common word sequences in two documents can be com-
puted fast if we convert documents into numerical matrices. The score vector
between documents computes the comprehensive occurrences. Figure 1 shows an
example of the score vector of two documents. The comparisons for the possi-
ble combinations of words correspond to the computation of the convolution of
two vectors. Therefore, using the convolution theorem [10] and FFT, the score
vector for two sequences of length n is computed in O(n log n) time instead
of O(n2) time. To apply the technique for numerical vectors to documents, we
need to convert documents to numerical matrices using a function from words to
numerical vectors. Figure 2 shows an example of the numerical representations
of documents and the computation of the score vector from them, where the
strict definition of the convolutions will be defined in Sect. 3. Figure 3 shows the
outline of this method to compute the score vector between two documents in
the situation that a document of length n is converted to an n × d matrix using
a vector representation of words of dimensionality d.

Baba [8] proposed a fast but not scalable plagiarism detection method based
on the score vector. This method detects an occurrence of “copy and paste”-type
plagiarism as a peak in the score vector. The left part of Fig. 4 shows examples
of the score vectors between two documents with and without plagiarism. The
method repeats the computation of the score vector for every object documents.
The upper part of Fig. 5 illustrates the outline of this method. A third of the FFT
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Fig. 3. Outline of the computation of the score vector between two documents using
the convolution theorem and an FFT, where n is the size of each document.

Fig. 4. Examples of the score vectors between two documents that contain a plagiarism
and no plagiarism, and their filtered wave forms using high- and low-pass filters.

computations (1 in the figure) is completed before the input of a query document.
Another third (2) is reduced to one Nth by using the same vector representation
of words for any score vector. The other third (3) can be reduced to one dth [4], or
completely omitted for rough detection [6,7]. The problem is that the size of the
data stored for matching is large; the size of the data, the frequency components
of object documents, is approximately 4d-fold of that of the original documents
for the dimensionality d of a vector representation of words [8]. For computing
the exact score vectors, d needs to be at least the vocabulary size minus 1 [3]
which is usually not practical. Although d can be reduced by an approximation
of score vectors using a random vector representation of words [5], the size is still
large. In the experiment conducted in [8], the vocabulary size of 4,000 abstracts of
scholarly papers is approximately 42,000, and the dimensionality of the random
vector representation of words that could keep plagiarism detection accuracy is
several tens.

We reduced the size of the stored data using the idea of the frequency domain
filtering. We masked several rows of the matrix obtained as the frequency com-
ponents from each object document by FFT with 0’s. The lower part of Fig. 5
illustrates the idea of our improvement. Although the output vector is approxi-
mated by this modification, the peak of the score vector remains dimly. Masking
the frequency components corresponds to the process of the high- or low-pass



Filtering Documents for Plagiarism Detection 365

Fig. 5. Outline of the plagiarism detection method based on the score vector between
documents (upper) and an improvement on the size of the data stored for detection
(lower), where n is the size of each document and N is the number of object documents.

filter in image processing [14]. The middle and right parts of Fig. 4 show exam-
ples of filtered wave forms, where we used the 6.25% rows for each filter. As
shown in Fig. 5, the masking is applied to the result of (the inverse of) FFT
for (the matrix representation of) the score vector. Therefore, the approximated
score vector is a filtered wave form of the exact score vector which is expected
to represent the presence of plagiarism using fewer data.

3 Methods

This section introduces the FFT-based algorithm that computes the score vector
and a plagiarism detection method based on the algorithm. This section also
proposes an improvement to the method and describes how the effects of the
improvement were evaluated.

3.1 Preliminaries

Let W be a set of words, called a vocabulary, and σ the vocabulary size |W |. A
document is a list of words. For an integer n > 0, Wn is the set of the documents
of length n over W . For a document p of length n, pi for 0 ≤ i < n is the ith
word of p. For documents p and q, pq is the document obtained by concatenating
p and q. For a word w and an integer n > 0, wn is the document of n w’s. Let
x /∈ W be the never-match word and δ a function from (W ∪ {x}) × (W ∪ {x})
to {0, 1} such that δ(w, v) is 1 if w, v ∈ W and w = v, and 0 otherwise.
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We regard an n-dimensional vector as the n × 1 matrix. For any matrix M ,
MT denotes the transposed matrix of M , and Mi,j the (i, j)-element of M for
0 ≤ i, j. For an m × n matrix M , Mc is the m-dimensional vector whose ith
element is

∑n−1
j=0 Mi,j for 0 ≤ i < m.

Let Fn be the matrix of discrete Fourier transform (DFT) with n sample
points, that is, the (j, k)-element of Fn is ωjk

n for 0 ≤ j, k < n, where ωn =
e−2πi/n for the imaginary unit i. An FFT computes the result of Fnv for any
n-dimensional vector v in O(n log n) time.

The circular convolution u ∗ v of n-dimensional vectors u and v is the n-
dimensional vector whose ith element for 0 ≤ i < n is

n−1∑
j=0

uj · vi−j , (1)

where ui = ui+n and vi = vi+n for any i. Using the convolution theorem [10]
with DFT,

u ∗ v = F−1
n (Fnu ◦ Fnv) , (2)

where ◦ is the operator of the Hadamard product. Therefore, u ∗ v is computed
in O(n log n) time using three O(n log n) computations of FFT and O(n) multi-
plications.

3.2 The FFT-Based Algorithm

We introduce an algorithm that computes the score vector between two docu-
ments of length n over W in O(σn log n) time. This algorithm can be extended
to documents of different lengths by dividing the longer document in the same
way as the technique used in [2].

The score vector C(p, q) between p ∈ Wm and q ∈ Wn is defined to be the
(m + n − 1)-dimensional vector whose ith element for 0 ≤ i < m + n − 1 is

ci =
m−1∑
j=0

δ(pj , q
′
i+j), (3)

where q′ = xm−1qxm−1.
First, we extend the idea of the circular convolution of vectors to matrices.

For two n×d matrices M and N , M ∗N is defined to be the n×d matrix whose
(i, j)-element for 0 ≤ i < n and 0 ≤ j < d is

(M ∗ N)i,j =
n−1∑
k=0

Mk,j · Ni−k,j , (4)

where Mi,j = Mi+n,j and Ni,j = Ni+n,j for any i and j. Then, using Eq. 2,

M ∗ N = F−1
n (FnM ◦ FnN) . (5)
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Therefore, M ∗N is computed from M and N in O(dn log n) time using an FFT.
The O(σn log n) algorithm is obtained from the fact that the score vector

between two documents in Wn is

C(p, q) = (P ∗ Q)c , (6)

where P and Q are (2n − 1) × σ matrices

P =

⎛
⎜⎜⎜⎜⎜⎝

φ(pn−1)T

φ(pn−2)T

...
φ(p0)T

O

⎞
⎟⎟⎟⎟⎟⎠

and Q =

⎛
⎜⎜⎜⎜⎜⎝

φ(q0)T

φ(q1)T

...
φ(qn−1)T

O

⎞
⎟⎟⎟⎟⎟⎠

(7)

for φ : W → {0, 1}σ such that the ith element of φ(w) for 0 ≤ i < σ and w ∈ W
is 1 if ϕ(w) = i, and 0 otherwise, for a bijection ϕ : W → {0, 1, . . . , σ − 1}. A
precise proof is described in [4].

The algorithm is summarized as follows:

1. Convert p and q to P and Q using Eq. 7,
2. Compute P ∗ Q from P and Q using Eq. 5,
3. Compute C(p, q) from P ∗ Q using Eq. 6.

The processing time is O(σn log n): the first process requires O(σn) time even
by a naive method; the second process requires O(σn log n); and the last process
consists of O(σn) additions. More precisely, the score vector can be computed
using the set Wp,q of the words that appear in both p and q instead of the total
vocabulary W . In this case, the processing time is bound by O(σ′n log n) for
σ′ = |Wp,q|.

3.3 Plagiarism Detection Method

We introduce the plagiarism detection method proposed in [8] which uses the
FFT-based algorithm introduced in Sect. 3.2 for a query document and N object
documents.

Plagiarism detection is to predict either “positive” or “negative” for instances
of plagiarism between a pair of documents. The accuracy of a plagiarism detec-
tion method is defined to be the ratio of the number of correct predictions to
the number of total predictions.

The plagiarism detection method in this paper repeats the following process
for every object documents. For input documents,

1. Calculate the score vector using the FFT-based algorithm, and
2. Predict “positive” or “negative” using the obtained vector and a threshold.

In the first process, we used a random vector representation φr of words
instead of φ used in Sect. 3.2, which approximates the score vector using vectors
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of a small dimensionality for representing words. Let φr be a function from
W ∪ {x} to {−1, 0, 1}d such that φr(x) is the d-dimensional zero-vector and
φr(w) for w ∈ W is a vector chosen randomly from {−1, 1}d. In the second
process, we determined the threshold from training data by applying a support
vector machine with a linear kernel to 3-tuples of

– The peak value of the score vector, where the peak value of a vector v is the
minimum element in v′′ and v′

i = (vv)i+1 − vi for 0 ≤ i < |v|,
– The average of the elements in the score vector, and
– The length of the shorter document

for the pairs in the training data. The computation for detecting the peak value
of an n-dimensional vector needs O(n) time; therefore, the resulting processing
time of the method is mainly due to the O(dn log n) computation for the score
vector.

Most of the O(dn log n) computations in the method can be completed before
the input of a query document. Using Eqs. 5, 6, and 7, the score vector is com-
puted as

C(p, q) =
(
F−1

� (F�P ◦ F�Q)
)
c

(8)

for � = 2n − 1. On the assumption that the object documents are given in
advance, we can compute and store the frequency components F�P ’s of the N
object documents p’s. The number of FFT computations in this process is one
third of the total number required in the method, and another third is reduced
to a Nth by using φr for any conversion (Fig. 5).

3.4 Improvement

We proposed an improvement to the plagiarism detection method introduced in
Sect. 3.3.

The problem is that the size of the frequency components F�P ’s for the object
documents p’s is large. For this problem, we used an approximated score vector
defined to be

C ′(p, q) =
(
F−1

� (Ax,k(F�P ) ◦ F�Q)
)
c

(9)

for x ∈ {h, l} and 0 ≤ k ≤ �, where Ax,k is an � × � matrix such that

Ah,k =
(

Ek O
O O

)
and Al,k =

(
O O
O Ek

)
(10)

for the identity matrix Ek of size k. Applying Ax,k to F�P ’s is masking of the
F�P ’s which is the modification from the upper part to the lower part of Fig. 5.

The size of practical data for storing Ax,kM for an �×d matrix M is approx-
imately k/� of that for M . We call ρ = k/� the reduction rate of applying Ax,k

to M .
Additionally, we modified the definition of the peak value of a vector v used

for detecting plagiarisms to be the minimum element in v′′ and v′
i = (vv)i+w −vi

for w = 1/ρ and 0 ≤ i < |v|.
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3.5 Evaluation

We applied the plagiarism detection method introduced in Sect. 3.3 with the
improvement proposed in Sect. 3.4 to a dataset and investigated the accuracy
and the data size required for the implementation.

The dataset used for our experiment was a set of document pairs with
randomly generated plagiarisms. We used 5,000 pairs of abstracts of articles
published in Nature [1] from 1975 to 2017. The pairs were chosen from 28,146
abstracts so that

– An abstract of each pair is the nearest neighbor of the other abstract based
on the similarity of the bag-of-words model in the total set, and

– The length of each abstract is longer than 100 words and shorter than 300
words.

We generated plagiarisms for 2,500 pairs chosen randomly from the 5,000 pairs
by inserting a word sequence in an abstract into the other on the condition that

– The word sequence is chosen randomly from the first abstract,
– The word sequence is inserted into a randomly chosen position of the second

abstract, and
– The word sequence is longer than 10% of the second abstract.

The positive and negative pairs were divided equally into 4,000 pairs for training
and 1,000 pairs for test in validation.

We aimed to clarify the relation between the accuracy and the size of the data
used in the plagiarism detection method, which is affected by the dimensionality
d of φr and the reduction rate ρ of Ax,k’s. We investigated

– The accuracy of the original method against d = 2i for 1 ≤ i ≤ 5 and
– The accuracy of the improved method against ρ = 2−j for 0 ≤ j ≤ i and for

2 ≤ i ≤ 5.

4 Results

Figure 6 shows the relation between the accuracy of the plagiarism detection
method and the data size required for storing the frequency components of the
objective documents. In each graph, the horizontal axis means the ratio of the
data size to that of the method with no filtering in the case where the dimen-
sionality of the vector representation φr is d = 1. The dotted line represents the
accuracy of the method with no filtering in which the data size was changed
by d. The other lines represent the accuracy generated using high-pass Ah,k or
low-pass Al,k filtering in which the data size was changed by the reduction rate
ρ. In the right graph, the accuracy of the method with the low-pass filtering
were better than the dotted line. The data size could be reduced to a half in
exchange for a slight decrease of the accuracy.
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Fig. 6. Accuracy of the plagiarism detection algorithm against the data size with (left)
high- and (right) low-pass filtering.

The base plagiarism detection method is more scalable and accurate than
straightforward methods. The accuracy of the method with the exact score vec-
tors was 0.997 which is approximately equal to that 0.999 in the case of no
filtering with d = 32. However, the total vocabulary size was σ = 75336 which
needs a large data size. The accuracy of another plagiarism detection using the
Jaccard index of the word sets and an optimized threshold was 0.823 for the
training and test data.

5 Discussion

5.1 Major Conclusion

We achieved a fast and scalable method of plagiarism detection. As shown in
Fig. 6, our improvement could reduce the size of the data required for detection
in exchange for a slight decrease of the accuracy. In the experiment, we could
reduce the size by half with a small decrease of the accuracy in some conditions,
which means that we can implement the fast plagiarism detection method using
a smaller space than the original method.

5.2 Key Findings

As shown in Fig. 6, the accuracy of the plagiarism detection method with the
low-pass filter was better than that with the high-pass filter. One of the reasons
is supposed that the wave forms modified by the high- and the low-pass filters
represent global and local changes of the original wave form, respectively, and the
computation for finding a peak defined in Sect. 3.4 was suitable for the low-pass
filter.

5.3 Future Directions

We are interested in what a filtered document is as a document. In this paper,
we treated the filtering for matrix representations of documents. The filtered
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“documents” can be defined formally by using the inverse of the vector repre-
sentation of words. However, we could find no meaning in the filtered documents
like sharpening and blurring for the high- and low-pass filter in image process-
ing. We expect that there exists vector representation of words which can give
a meaning to filtered documents.

6 Conclusion

We proposed a fast and scalable method for plagiarism detection. We improved
the scalability of an existing method of fast plagiarism detection; we reduced
the size of data prepared for the method by applying the idea of the frequency
domain filtering into documents. We evaluated the effect of the improvement
by conducting experiments with document data that included plagiarisms. As a
result, we achieved an effective trade-off between the accuracy and the required
size of the data. In the experiment, we could reduce the size to less than a half
with a small loss of the accuracy. Thus, we can implement the fast plagiarism
detection method using a small space.
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Abstract. Automatic keyphrase extraction attempts to capture key-
words that accurately and extensively describe the document while being
comprehensive at the same time. Unsupervised algorithms for extractive
keyphrase extraction, i.e. those that filter the keyphrases from the text
without external knowledge, generally suffer from low precision and low
recall. In this paper, we propose a scoring of the extracted keyphrases
as post-processing to rerank the list of extracted phrases in order to
improve precision and recall particularly for the top phrases. The app-
roach is based on the tf-idf score of the keyphrases and is agnostic of
the underlying method used for the initial extraction of the keyphrases.
Experiments show an increase of up to 14% at 5 keyphrases in the F1-
metric on the most difficult corpus out of 4 corpora. We also show that
this increase is mostly due to an increase on documents with very low
F1-scores. Thus, our scoring and aggregation approach seems to be a
promising way for robust, unsupervised keyphrase extraction with a spe-
cial focus on the most important keyphrases.

1 Introduction

Automatic text summarization is applied in Natural Language Processing and
Information Retrieval to provide a quick overview of longer texts. More specif-
ically, automatic keyphrase extraction methods are employed to allow human
readers to quickly assess relevant concepts in the text. As was pointed out by
Miller on average people can hold 7 (±2) items in their short-term memory [19].
This indicates that people who read keyphrase lists that exceed 5 to 9 keyphrases
forget the first items of the list as they reach the end. Thus 5 keyphrases per
document is an optimal number regarding human perception and it is worth
optimizing keyphrase extraction methods towards this threshold. In this paper,
we investigate a method-agnostic approach that enhances the important first
part of a keyphrase list. That is, given a long (e.g. 20 keyphrases) ranked list

c© Springer Nature Switzerland AG 2018
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01771-2_24&domain=pdf


374 N. Witt et al.

of keyphrases extracted by some keyphrase extraction method, our tf-idf-based
approach reorganizes that list such that more suitable keywords are at the top
of the list. The tf-idf value has been shown to be an informative feature for
keywords [9]. Thus, we apply tf-idf-based scoring on extracted keyphrases a-
posteriori, assuming that words with a high tf-idf value are more likely to be
high quality keywords or part of high quality keyphrases (i.e. a short sequence
of words)1. Concretely, the contributions of this paper are the following:

1. We propose a tf-idf-based scoring and re-ranking of keyphrases which is agnos-
tic to the underlying keyphrase extraction method.

2. In experiments on four different corpora, we show that tf-idf-based scoring
can enhance the precision and recall of well-known keyphrase extraction algo-
rithms.

The source code and the data that were used to conduct the experiments are pub-
licly available2. After reviewing related work we explain the details on keyphrase
scoring. Then we report on the experimental setup (Sect. 4) and results (Sect. 5).
Finally, we discuss and conclude our work in Sect. 6.

2 Related Work

Due to the rapid growth of available information, the ability to automatically
generate summarized short texts has become a valuable tool for many Natu-
ral Language Processing tasks. Summarization approaches aim to generate sen-
tences, keyphrases or keywords that condense the information provided by a doc-
ument. Summaries that are extracted directly from the document and abstrac-
tive summaries that are created based on the content of the document with
words not necessarily appearing in the document, are two main concepts of these
approaches [15]. This paper focuses on extractive summaries and in particular
Rake [21] and TextRank [18]. TextRank similarly to Wan and Xiao [24] and Liu
et al. [11] searches for POS tag combinations in the document to identify possible
keyphrase candidates. Other systems use different NLP methods and heuristics
such as the removal of stop words [14], finding matching n-grams in Wikipedia
articles [7] or extracting n-grams with specific syntactic patterns [10,16,26].
As these methods often produce too many and poor candidates for long doc-
uments, a second step is required to separate those candidates that are more
likely keyphrases. Previous approaches [6,22,26] applied supervised binary clas-
sification techniques to select the keyphrases from the candidates. Binary classifi-
cation, however, yields the problem that a candidate is simply deemed as either
worthy or not worthy and their relative importance is not compared to the
other candidates. As a result, other approaches adapted a ranking based system
such as the unsupervised graph-based approach implemented by TextRank, Col-
labRank [23] and TopicRank [2]. Here, each candidate is represented as a node in
1 Throughout the document we will use the unifying term keyphrase to refer to key-

words as well as keyphrases as defined in the Introduction.
2 https://doi.org/10.5281/zenodo.1435518.

https://doi.org/10.5281/zenodo.1435518
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a graph and its importance is recursively computed based on the number of con-
nections the node has and how important the connected candidates are. Among
these systems TextRank has established itself as the most popular graph-based
ranking system and was also adapted in topic-based clustering concepts such as
TopicalPageRank [13] and CommunityCluster [7]. Both systems apply TextRank
multiple times (once for each topic in the document) and add to the importance
of the topic to the computation. More recently, topic-based keyphrase extrac-
tion was done using topic modeling to find clusters of co-occurring words, which
were used to construct candidate keyphrases [5]. Those candidates were then
ranked according to several different properties, with the best-performing one
being purity which prefers keyphrases consisting of words that are frequent in
a given topic and rare in other topics. Sequence-to-sequence models based on
recurrent neural networks have shown to perform very well not just on the task
of keyphrase extraction but also on the more challenging task of keyphrase pre-
diction, which includes finding keyphrases that do not appear in the text [17].
Similar results were achieved using convolutional neural networks [27], but due
to the concurrent nature of convolutional neural networks the training time could
be reduced by a factor of 5–6.

For our experiments we focus on fast, unsupervised methods with solid imple-
mentations as they are not constrained to extract only those keyphrases they
saw during training. Since these algorithms do not rely on training data, they
also have a larger domain of application. We also include the tf-idf baseline as
still it is still a comparative baseline, despite its simplicity. Textrank remains a
very important method and is still used by the community [8,12,17]. Rake was
chosen as is it was able to outperform Textrank while scaling much better on
longer documents (see Fig. 1.7 in [21]).

3 Approach

In this section, we explain how we assign scores to keyphrases irrespective of the
algorithm that extracted it. An overview of the approach is shown in Fig. 1.

3.1 Keyphrase Scoring

We follow the idea described in Sect. 1 to create ranked keyphrase lists per
document. The keyphrases in those lists can come from one or more keyphrase
extracting algorithms. The lists are supposed to have the property that, on
average, the highest ranked keyphrases are the ”best” keyphrases, followed by
the second highest ranked keyphrase, etc. Moreover, we act on the assumption
that the gold standard keyphrases are ”good”, which allows us to formulate our
expectations towards the ranked lists more formally: For any given document,
the probability of a higher ranked keyphrase of being in the set of gold standard
keyphrases is higher than the probability of a keyphrase with a lower rank:

rank(kp) ∝ P (kp ∈ GS), (1)
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Keyphrase
Scoring

Keyphrase 
Extraction 
Algorithm

Corpus

list of phrases
+ score

list of 
phrases Evaluation

Fig. 1. Overview of keyphrase scoring approach and its evaluation. Standard evaluation
measures precision, recall and F1-measure are compared before and after scoring and
reranking.

where P (kp ∈ GS) is the probability of keyphrase kp being in the set of gold
standard keyphrases GS and rank(kp) is the rank of the keyphrase. Since tf-
idf offers only scores for single words rather than phrases we need a mechanism by
which the score of a phrase can be computed in order to rank a set of keyphrases.
We use a simple weighting approach:

score(kp) =

⎛
⎝

| t |∑
i=1

tsi

⎞
⎠ · (1 − α · | t |), (2)

where | t | is the number of tokens in the keyphrase and tsi is the token score
(i.e. the tf-idf value of the token) of the token at position i. The parameter
α determines how long phrases are penalized. In our experiments, we set α =
1
10 meaning that keyphrases with 10 tokens are always assigned a keyphrase
score of 0.0 and keyphrases with more than 10 tokens get a negative score.
This property might seem undesirable, but is reasonable as most gold standard
keyphrases in the corpora used have less than 6 words (see Table 1). Therefore
it is reasonable to penalize long extracted keyphrases in this scenario. Different
keyphrase extraction algorithms can be used to extract keyphrases for a corpus.
The quality of those extractions can be evaluated using gold standard keyphrases
GS obtaining precision, recall and F1. For keyphrase scoring the score values (in
our case tf-idf) are calculated on the corpus and used to rank or rerank the
output of the keyphrase extraction step. The reranked lists are then evaluated
in a similar fashion against the gold standard GS.

3.2 Keyphrase Extraction Ensembles

The introduced keyphrase scoring provides a unified, comparable score for all
phrases, independent of the respective extraction algorithm. Thus, this score
can be used to combine the output from different keyphrases extraction methods
(as depicted in Fig. 2), similarly to the idea of bagging in machine learning [3].
Therefore we also measure the performance of multiple keyphrase extraction
methods combined to see whether the overall performance can be enhanced
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Fig. 2. Overview of the ensemble approach and its evaluation. Multiple keyphrase
extraction methods combined using our keyphrase scoring approach.

in comparison to the individual methods. The keyphrase extraction ensemble
works as follows: Given a document, k different keyphrase extraction methods
can be applied, resulting in k result lists. Each of the keyphrases in the list
might or might not have an algorithm-specific score, depending on the extraction
method used. We remove duplicates from those lists, score each of the keyphrases
as described in the previous section and create a unified result list containing
keyphrases ordered by descending score.

4 Experimental Setup

In this section, we describe the data sets and the base keyphrase algorithms as
well as the evaluation methodology for the experiments.

4.1 Data Sets

To evaluate our approach we used four corpora containing abstracts of sci-
entific publications. Although the datasets are homogeneous as they all con-
tain abstracts of scientific publications, the corresponding keyphrases exhibit
vastly different characteristics. They not only differ in the average number of
keyphrases per document but also in the average number of words per keyphrase
(see Table 1). SemEval for example contains keyphrases that are as long as a
whole sentence (e.g. controllable size reduction with high resolution towards the
observation of size- and quantum effects), also there are unsuitable keywords
(e.g. defense simulation platform is discussed in) which makes this corpus very
challenging. The Scopus corpus is challenging for another reason. There are doc-
uments whose keyphrases mostly or only consist of abbreviations (e.g. ARPA,
CSPs, ERP, IaaS, NIST, PaaS, SaaS ) that are not mentioned in the text, lead-
ing to zero scores on all performance metrics for that document. KP20k stands
out as it contains much more abstracts than the other corpora of which we only
used 100,000 randomly sampled documents due to computational constraints.
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Table 1. Data Set Overview. The abbreviation KP refers to keyphrases. |KP|denotes
the number of words in a keyphrase, σ the standard deviation.

Corpus Type # Docs # KP ∅ KP/doc [σ] ∅ |KP|[σ]

Inspec [10] Abstracts 2000 19275 9.64 [4.80] 2.3 [0.44]

SemEval2017 [1] Abstracts 493 5846 11.90 [7.44] 3.03 [1.31]

Scopusa Abstracts 745 3385 4.54 [1.34] 2.16 [0.65]

KP20k [17] Abstracts 570,809 3,017,637 5.29 [3.77] 2.05 [0.63]
ahttps://www.kaggle.com/neelshah18/scopusjournal/data

4.2 Keyphrase Extraction Algorithms

In this section we briefly describe the three keyphrase extraction algorithms that
are used for our experiments.

The tf-idf keyphrase extraction is based on POS tags, following Wen and
Xiao [25]. We determined the 12 most common POS tags in gold standard
keyphrases among all corpora using the NLTK POS tagger3. In order to generate
candidate keyphrases we determine the POS tag of each word in a given text
and extract word sequences where all POS tags are “good”. A sequence like [bad,
good, bad, good, good, bad] generates two keyphrase candidates. One of length 1
corresponding to the word at position two and one of length 2 corresponding to
the words at positions three and four. Finally, the candidates are ranked by the
mean of their tf-idf values of the individual words.
Rake is based on the observation that keyphrases rarely contain stop words
and punctuation. Therefore all sequences in a text not containing stop words or
punctuation are identified and treated as candidate keyphrases. Then a matrix
is constructed where the co-occurrence of words within a keyphrase is counted.
Finally each keyphrase is scored based on the co-occurrence scores of its indi-
vidual words. The phrases with the highest scores are the keyphrases of the
document. We used the stopword list introduced in [20] and the implementation
provided by NLTK4.
Textrank builds a graph of lexical units (e.g. words). Only words passing a
syntactic filter (e.g. nouns and adjectives only) are added to the graph. These
words are connected based on co-occurrence in a sliding window. Once the graph
is built PageRank [4] is used to determine the importance of each node in the
graph. In a post-processing step sequences of adjacent keywords are merged into
keyphrases and their scores are added for the final ranking. We used the stop-
word list introduced in [20] and the jgtextrank5.

3 https://www.nltk.org/.
4 https://pypi.org/project/rake-nltk/.
5 https://github.com/jerrygaoLondon/jgtextrank.

https://www.kaggle.com/neelshah18/scopusjournal/data
https://www.nltk.org/
https://pypi.org/project/rake-nltk/
https://github.com/jerrygaoLondon/jgtextrank
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Table 2. The effect of keyphrase scoring on one example. The top cell contains an
original abstract. The cell below contains the expert-assigned ground-truth keyphrases.
The bottom row contains the extracted keyphrases from multiple algorithms. Entries
written in italic indicate a match to a ground-truth keyphrase. Note: This example was
chosen as it clearly shows the positive effect of our scoring approach. But there are also
examples where the scoring has no effect.

Abstract
A comparison theorem for the iterative method with the preconditioner (I + S/sub max/)
A.D. Gunawardena et al. (1991) have reported the modified Gauss-Seidel method with a
preconditioner (I + S). In this article, we propose to use a preconditioner (I + S/sub max/) instead
of (I + S). Here, S/sub max/ is constructed by only the largest element at each row of the upper
triangular part of A. By using the lemma established by M. Neumann and R.J. Plemmons (1987),
we get the comparison theorem for the proposed method. Simple numerical examples are also given.

Ground-truth keyphrases
iterative method, preconditioner, modified Gauss-Seidel method, comparison theorem

Extracted keyphrases
Rake Rakes Textrank Textranks

1. upper triangular part 1. preconditioner 1. iterative method 1. preconditioner
2. simple numerical 2. comparison theorem 2. modified Gauss- 2. comparison theorem

examples 3. iterative method Seidel method 3. iterative method
3. Seidel method 4. upper triangular part 3. method 4. modified Gauss-Seidel
4. proposed method 5. lemma established 4. R.J. Plemmons method

trapralugnairtreppu.5nnamueN.M.5ssuaGdefiidom.5

4.3 Evaluation Method

In user-facing applications the quality of the complete keyphrase list is more
important than the quality of the individual keyphrases. Therefore, we evaluate
the quality of keyphrase lists, similar to evaluations in previous work [9]. To
simplify further discussion, we introduce the term n-sublist, which is a list of the
first n elements of a larger list. For example the 2-sublist of the list (1, 2, 3) is
(1, 2). We expected that the 1-sublists exhibit the highest precision scores at a low
recall score (because in scenarios where multiple gold standard keyphrases are
given, single keyphrases cannot reach high recall scores). When assessing longer
keyphrase sublists (e.g. the 2-sublists, 3-sublists etc.) the precision is expected
to decline, due to the lower precision of lower ranked keyphrases, while the recall
increases, as more extracted keyphrases match the gold standard keyphrases. For
each document and each algorithm, we then compute precision, recall and F1
for each n-sublist (n ∈ [1, 20] in the experiments). Measures are macro-averaged,
that means, we calculate the measure for each document and then average over
the total number of documents.

5 Results

In this section, we provide results on the influence of the keyphrase scoring and
show the effect of combining the scored output of different extraction algorithms.

Table 2 shows keyphrases extracted from an example document. We can see
that Rake initially does not find a ground-truth keyphrase, but after scoring
there are three matches. Similarly, Textrank initially finds two ground-truth
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(a) Rake on the Inspec corpus (b) Textrank on the Inspec corpus

(c) Rake on the SemEval2017 corpus (d) Textrank on the SemEval2017 corpus

Fig. 3. Precision (π), Recall (ρ) and F1-score of Textrank and Rake compared to the
tf-idf-based reranking on the Inspec and the SemEval2017 corpora.

keyphrases but after scoring it finds all four ground-truth keyphrases. Figure 3
compares precision (π), recall (ρ) and F1 for the scored and unscored versions of
Rake and TextRank on the Inspec corpus and on the SemEval2017 corpus. The
tf-idf-based scoring increases the precision of Rake significantly for up to five key-
words. The precision of Textrank is also enhanced but the effect is significantly
smaller.

For instance, for only one keyphrase on the Inspec corpus, Rake is below the
baseline (baseline 0.24 π, Rake 0.14 π) but the scored version of Rake is consid-
erably better than the baseline (Rakes 0.35 π). The already better-than-baseline
performance (0.36 π) of Textrank is enhanced (0.43 π). At 5 keyphrases the situ-
ation is similar. But here the performance of Rake is above the baseline and the
performance gain due to the scoring is smaller (Rake +0.04 π, Textrank +0.02
π). Figure 4 shows the ranked F1-scores on the Inspec and SemEval2017. There
we can see that our method increases the performance mostly on documents
with mediocre to low scores. The performance on documents where to score is
already good is not affected as much.
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(a) F1@3 Keywords on Inspec (b) F1@5 Keywords on Inspec

(c) F1@3 Keywords on SemEval2017 (d) F1@5 Keywords on SemEval2017

Fig. 4. Individual results ordered by F1-scores.

In general we can say that as the number of keyphrases increases the pos-
itive effect of the reranking diminishes due to the fact that scoring the list of
keywords has no influence anymore if the whole list is used. This behaviour is
also observable for the other corpora. Figures are omitted here due to space con-
straints, but the snapshots of performance curves at 1, 5, 10 and 20 keyphrases
are provided in Table 3. In this table, it can also be seen, that Textrank always
outperforms Rake.

Table 3 also shows the performance of the ensemble method. Performance of
the ensemble is consistently better than Rakes but worse than Textranks. This
means the ensemble method is not able to incorporate the additional keyphrases
provided by Rake to enhance the performance of Textrank. Figure 5 depicts the
performance of the ensemble versus the best performing algorithm Textranks

on the Inspec corpus.
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Fig. 5. Precision (π), Recall (ρ) and F1-score of textrank compared to an ensemble of
Rake and Textrank on the Inspec corpus.

6 Discussion

The results show that the reranking approach has a significant effect on the pre-
cision of Textrank and Rake in the range of 1 to 5 keyphrases. In general, the
effect size is strongest when only a single keyphrase is extracted and declines as
the number of extracted keyphrases increases. Similarly, recall benefits from the
reranking but the absolute effect size is much smaller. The experiments also show
that the ensemble is not able to retain the performance of the strongest individ-
ual algorithm. Instead it consistently performs better than the weaker algorithm
(Rake) and worse than the stronger algorithm (Textrank). Also it must be noted
that from these results one cannot conclude that in general keyphrases with a
higher tf-idf value are better keyphrases than keyphrases with lower tf-idf val-
ues. Instead, one can only state that the probability of being a gold standard
keyphrase is proportional to tf-idf value. Moreover, the way keyphrase-function
may differ depends on the scenario. We chose a simple linear method (as shown
in Eq. 2) which favors keyphrases with 2–5 tokens. Preferences for longer or
shorter keyphrases can be steered with the parameter α in Eq. 2, which was set
to α = 1

10 in our experiments. However, its influence on the quality of the result
list would need to be investigated with a parameter study in the future.

7 Summary

We presented a framework that allows to rank a list or a set of keyphrases
based on the tf-idf values of their individual tokens. Moreover, the framework
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Table 3. Performance of base keyphrase extraction algorithms, their scored version
and the ensemble-based keyphrase extractor.

Algo 1 phrase 5 phrases 10 phrase 20 phrases

π ρ F1 π ρ F1 π ρ F1 π ρ F1

Inspec tf-idf 0.24 0.04 0.06 0.15 0.11 0.12 0.12 0.17 0.13 0.09 0.22 0.12

RK 0.14 0.03 0.04 0.23 0.19 0.19 0.23 0.36 0.27 0.20 0.53 0.27

TR 0.36 0.06 0.10 0.33 0.27 0.27 0.31 0.45 0.34 0.26 0.65 0.36

RKs 0.35 0.06 0.10 0.27 0.21 0.22 0.24 0.35 0.26 0.19 0.51 0.26

TRs 0.43 0.07 0.12 0.35 0.28 0.29 0.31 0.45 0.34 0.25 0.63 0.34

ENSs 0.37 0.06 0.10 0.28 0.23 0.23 0.25 0.39 0.29 0.21 0.58 0.29

SemEval17 tf-idf 0.24 0.02 0.04 0.16 0.08 0.10 0.12 0.12 0.11 0.08 0.17 0.10

RK 0.05 0.01 0.01 0.09 0.05 0.06 0.11 0.14 0.11 0.11 0.25 0.14

TR 0.23 0.02 0.04 0.22 0.11 0.14 0.21 0.23 0.20 0.18 0.38 0.23

RKs 0.20 0.02 0.04 0.18 0.10 0.12 0.17 0.18 0.16 0.14 0.29 0.17

TRs 0.27 0.03 0.05 0.24 0.13 0.16 0.21 0.23 0.20 0.17 0.36 0.22

ENSs 0.24 0.03 0.04 0.19 0.10 0.13 0.18 0.20 0.17 0.15 0.32 0.19

Scopus tf-idf 0.11 0.04 0.06 0.05 0.09 0.06 0.03 0.13 0.05 0.02 0.16 0.04

RK 0.02 0.01 0.01 0.04 0.08 0.05 0.05 0.20 0.07 0.05 0.36 0.08

TR 0.08 0.03 0.04 0.09 0.18 0.11 0.08 0.33 0.13 0.07 0.49 0.11

RKs 0.10 0.04 0.06 0.09 0.17 0.11 0.07 0.26 0.10 0.05 0.36 0.08

TRs 0.15 0.06 0.08 0.11 0.22 0.14 0.08 0.32 0.13 0.06 0.44 0.10

ENSs 0.11 0.05 0.06 0.09 0.18 0.11 0.07 0.27 0.11 0.05 0.39 0.09

KP20k tf-idf 0.10 0.04 0.05 0.05 0.09 0.06 0.03 0.12 0.05 0.02 0.15 0.04

RK 0.01 0.01 0.01 0.03 0.07 0.04 0.04 0.17 0.06 0.04 0.31 0.07

TR 0.09 0.04 0.05 0.08 0.17 0.10 0.07 0.29 0.11 0.06 0.43 0.10

RKs 0.09 0.04 0.05 0.08 0.16 0.10 0.06 0.24 0.09 0.05 0.33 0.08

TRs 0.12 0.05 0.07 0.10 0.20 0.12 0.08 0.30 0.12 0.06 0.41 0.10

ENSs 0.10 0.04 0.06 0.08 0.16 0.10 0.06 0.26 0.10 0.05 0.37 0.08

is agnostic to the method applied to extract the keyphrases. In fact, it is also
able to deal with keyphrases extracted by multiple methods, regardless whether
these methods rank the keyphrases they extract or not. This property provides a
normalized, common score for all keyphrases and thus allows to combine results
from different algorithms. For two keyphrase extraction algorithms, we showed
that the keyphrases with high tf-idf values are more likely to be gold standard
keyphrases. Thus, they are – on average – more informative keyphrases for end
users. The results could be reproduced on four different corpora. We also showed
a method to merge multiple keyphrase extraction algorithms into a single one,
although it failed to achieve the top performance of the best individual method.
Future work includes finding and investigating other keyphrase scoring functions
and more extensive experiments with more keyphrase extraction algorithms to
aggregate.
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Abstract. The goal of Aspect-Based Sentiment Analysis is to iden-
tify opinions regarding specific targets and the corresponding sentiment
polarity in a document. The proposed approach is designed for real-world
scenarios, where the amount of available information and annotated data
is often too limited to train supervised models. We focus on the two core
tasks of Aspect-Based Sentiment Analysis: aspect and sentiment polar-
ity classification. The first task – which consists in the identification of
the opinion targets in a document – is tackled by means of a weakly-
supervised technique based on Non-negative Matrix Factorization. This
strategy allows users to easily embed some a priori domain knowledge
by means of short seed terms lists. Experimental results on publicly
available data sets related to online reviews suggest that the proposed
approach is very flexible and can be easily adapted to different languages
and domains.

Keywords: Aspect-based sentiment analysis
Non-negative matrix factorization · Text mining
Weakly-supervised learning

1 Introduction

Sentiment Analysis (SA) [11] is a growing area of research in Natural Language
Processing. While SA aims at inferring the overall opinion of the writer in a
document, Aspect-Based Sentiment Analysis (ABSA) is concerned with fine-
grained polarity analysis, and its purpose is two-fold:

1. extracting relevant aspects - For instance, in a context of on-line reviews on
restaurants, relevant aspects could be food, service, location, etc;

2. evaluating the sentiment polarity of each aspect separately.

In the context of real-world applications, there is a clear need for ABSA solu-
tions that are interpretable and flexible, ie. that can be adapted to different
c© Springer Nature Switzerland AG 2018
L. Soldatova et al. (Eds.): DS 2018, LNAI 11198, pp. 386–401, 2018.
https://doi.org/10.1007/978-3-030-01771-2_25
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languages and domains. For example, ABSA is particularly suitable for Business
to Consumer (B2C) companies to improve and develop their products, services
or marketing strategies based on the feedback provided by customers in the
form of online reviews; however, such online reviews may come from different
countries and may be related to different product categories (e.g. laptops and
smartphones), making ABSA a difficult task. Moreover, we remark that data
annotation in this situation is time consuming and expensive, also because the
subjectivity of this task is generally tackled by employing a panel of human anno-
tators; thus, unsupervised or weakly-supervised approaches are often preferred
to supervised ones. Furthermore, some domain knowledge is generally available,
even if limited and partial. For instance some keywords used to describe aspects
are generally known in advance and the same holds true for opinion words. We
remark that the sentiment associated with opinion words is aspect-specific; for
example, the opinion word ‘cheap’ conveys a positive sentiment with respect to
a ‘value for money’ aspect in online reviews, while it conveys a negative sen-
timent on a ‘quality’ and an ‘appearance’ in case these aspects are considered
in the ABSA task. With this scenario in mind, we propose Weakly-Supervised
Approach for ABSA (WS4ABSA), a technique that is able to accomplish the
core tasks of ABSA, and can be easily adapted to deal with different domains
and languages. WS4ABSA tackles ABSA in two steps: (i) aspect classification
and (ii) sentiment polarity classification. As for (i), we present a novel approach
based on a well-known Topic Modeling technique, called Non-negative Matrix
Factorization (NMF). The proposed approach allows the user to include some
domain knowledge – in a weakly-supervised way – in order to link each topic
discovered by NMF to the aspects which are referred to in a document. Indeed,
WS4ABSA allows the user to embed a list of seed words to guide the algorithm
towards more significant topic definitions. Regarding (ii), WS4ABSA employs
another weakly-supervised framework based on the definition of a positive and
a negative seed list with a few sentiment terms for each topic. These lists are
then extended using Word2Vec [13] and used to assign a polarity to each aspect
identified in step (i). Our system distinguishes itself from the ones in literature
(detailed in Sect. 2) because it does not rely on any auxiliary resources or anno-
tated data sets, but only on the aforementioned lists and some simple grammar
rules to deal with negations. Therefore, WS4ABSA can be applied easily for the
analysis of documents from any domain and in any language with the advantages
of being easily interpretable and implementable. Moreover, WS4ABSA allows the
user to include his prior knowledge on the problem and to iteratively improve
the results thanks to the reformulation of the NMF problem objective function
proposed here. This additional information can be used to steer the classification
in a precise and predictable manner. The rest of the paper is organized as follows:
WS4ABSA is presented in Sects. 3.1 and 3.2, by illustrating the procedure for
aspect extraction and sentiment polarity classification, respectively. In Sect. 4,
we test this approach on publicly available data sets, while final remarks and
future research directions are reported in Sect. 5.
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2 Related Work

Available approaches to ABSA can be divided into supervised [18], semi-
supervised [23], weakly-supervised [5] or unsupervised [2] techniques. Support
Vector Machines [12], Naive Bayes classifiers [20] and Maximum Entropy classi-
fiers [26] are the most common approaches among the supervised machine learn-
ing methods to detect the aspects in a sentence or for sentiment classification.
In the realm of supervised approaches, Neural Networks (NN) have also received
an increasing interest in recent years. Convolutional NN, for example, have been
successfully applied to ABSA such as in [18]. Unfortunately, supervised meth-
ods – particularly neural networks – require large annotated corpora to perform
well. As said, this is an issue, especially for low-resource languages and specific
application domains. Thus, unsupervised approaches are frequently adopted. In
general, this type of techniques need labeled data only to test and validate the
model. Most of the approaches that fall under this category use topic models
to extract aspect and sentiment terms. The most adopted topic modeling tech-
niques are Latent Dirichlet Allocation (LDA) [1] and NMF [14], mainly because
their results are easy to interpret thanks to positivity constraints. NMF has two
main advantages when compared to LDA: first, it allows for an easier tuning
and manipulation of its internal parameters [22]; second, there are efficient and
completely deterministic algorithms for computing a reliable approximate solu-
tion. W2VLDA [5] uses LDA to detect aspects and extracts the corresponding
polarity based on very simple lists of seed words in input. The main drawback
of W2VLDA is that it requires a language model trained on a large specific
domain corpus to embed domain knowledge in aspect classification. Another
topic modeling-based approach is UTOPIAN [3] that provides an interactive
topic modeling system based on NMF that allows users to steer the results by
embedding their domain knowledge. Finally, also [10] uses NMF to identify gen-
eral sentiment linguistic indicators from one domain and then gauge sentiment
around documents in a new target domain. Another example of the versatility of
NMF can be seen in [24], where the authors attempt to learn topics from short
documents using term correlation data rather than the usual high-dimensional
and sparse term occurrence information in documents.

3 Weakly-Supervised Approach for ABSA (WS4ABSA)

Given a collection of documents, WS4ABSA tackles ABSA in two steps:

(i) based on a list of seed words for each aspect, WS4ABSA performs aspect
extraction by means of NMF;

(ii) using a set of sentiment seed words for each aspect, for each document
WS4ABSA assigns a sentiment polarity to each of the detected aspects.

3.1 Aspect Classification

In WS4ABSA, aspect classification is achieved by means of NMF. This tech-
nique aims at solving the following problem: given a non-negative m × n matrix



WS4ABSA 389

A (i.e. a matrix where each element Aij ≥ 0,∀i, j), find non-negative matrix fac-
tors W ∈ R

m×k
+ (term-topic matrix ) and H ∈ R

k×n
+ (topic-document matrix ),

for a given number of aspects k ∈ N+, such that A ≈ WH. In our formula-
tion of the problem, A represents the collection of n documents we want to
analyze, for example using the Term Frequency-Inverse Document Frequency
(TF-IDF) weighting scheme [17] with respect to the m distinct terms contained
in the collection. W represents the associations between the terms contained in
the collection and the k considered aspects, and H represents the associations
between the aspects and each document in the indexed collection. Among the
different problem formulations for NMF [8], here we consider the factorization
problem based on the Frobenius Norm:

min
W≥0,H≥0

f(W,H) = ||A − WH||2F , (1)

where, with W,H ≥ 0 we impose the constraint on each element of the matrices
to be non-negative, and with || · ||F we indicate the Frobenius norm. Although
NMF is an NP-hard problem [21], one can still hope to find a local minimum as
an approximation. In this work we will focus on the Block Coordinate Descent
(BCD) method that is an algorithmic framework to optimize the above objec-
tive function. BCD divides variables into several disjoint subgroups and iter-
atively minimizes the objective function with respect to the variables of each
subgroup at a time. Under mild assumptions, it is possible to prove that BCD
converges to stationary points [7]. Multiplicative Updating (MU) is another pop-
ular framework for solving NMF [9], however it has slow convergence and may
lead to inferior quality solutions [7]. In Sect. 3.1 we introduce a novel NMF prob-
lem formulation that is particularly suitable to embed domain knowledge, while
Sects. 3.1 and 3.1 provide additional implementation details.

Proposed NMF Resolution Method. To solve the NMF problem with the
BCD approach, we referred to a method called Hierarchical Alternating Least
Squares (HALS) [4]. Let us partition the matrices W and H into 2k blocks (k
blocks each that are respectively the columns of W and the rows of H), in this
case we can see the problem in the objective function in Eq. (1) as

||A − WH||2F = ||A −
∑k

i=1
w·ihi·||2F . (2)

To minimize each block of the matrices we solve

min
w·i≥0

‖hT
i·w

T
·i − RT

i ‖2F , min
hi·≥0

‖w·ihi· − Ri‖2F , (3)

where Ri = A − ∑k
ĩ=1, ĩ�=i w·̃ihĩ·. The promising aspect of this 2k-block parti-

tioning is that each subproblem in (3) has a closed-form solution using Theorem
2 from [7]. The convergence of the algorithm is guaranteed if the blocks of W
and H remain nonzero throughout all the iterations and the minima of (3) are
attained at each step [7]. Finally, we include in Eq. 1 a regularization factor for
H to induce sparse solutions, so that each document is modeled as a mixture of
just a few topics. At the same time, we also add a regularization term on W to
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prevent its entries from growing too much, and add a prior to exploit available
knowledge of the user. In particular, for each of the topics, s/he can identify
some terms as relevant, or decide to exclude others. As a result, we obtain the
following expression:

min
W,H≥0

||A − WH||2F + φ(αp,W, P ) + ψ(H), (4)

where ψ(H) = β
∑n

i=1 ||hi·||21 and φ(αp,W, P ) =
∑m

i=1

∑k
j=1 αpij(wij − pij)2 +

α||W ||2F . The notation hi· is used to represent the i-th row of H, the l1 term
promotes sparsity on the rows of H, while the Frobenius norm, (equivalent to l2
regularization on the columns of W ) prevents values in W from growing too large.
The prior term P is an m×k matrix in which entries are either 1 for terms that,
according to the available domain knowledge, should be assigned to a certain
aspect and 0 otherwise. For example, if the prior terms list of the aspect Food
contains the terms ‘curry’ and ‘chicken’, the values in the columns corresponding
to that aspect in the rows corresponding to these terms are set to 1. Since these
seed lists are expected to be very short, matrix P will be a sparse matrix. The
values in αp serve as normalizing factors for the element-wise difference between
W and P and to activate/deactivate the prior on a specific term for any of the k
aspects. In other words, for what concerns matrix P , if pij = 1 we are suggesting
to assign i-th term to aspect j. On the contrary, if pij = 0 we want the i-th term
not to be assigned that aspect. This allows us, by manipulating the values in αp

and P , to choose to what extent we want to influence the link between certain
topics and the seed terms. To the best of our knowledge, the regularization term
based on P is novel and distinguishes our approach from other similar techniques
such as [3]. In the same vein as [6], the new update formula for matrices W and
H can be obtained in closed form as

w·k ← [ν]+
αp·k + (HHT )kk

, hT
i· ← [

hT
i· + ξ

]
+
,

ν = (AHT )·k − (WHHT )·k + W·k(HHT )kkαp·k � P·k − 0.5α1m,

ξ =
(ATW )·i − HT ((WTW )·i + β1k)

(WTW )ii + β
.

(5)

Here, � indicates an element-wise product, [x]+ = max(0, x), 1t indicates a
vector of ones of length t and the division in the fraction is element-wise. After we
performed the factorization of matrix A into the factors W and H, we normalize
each column of matrix H, then, in order to identify the set of relevant topics
in a document, we set an Aspect Detection Threshold (ADT) to an appropriate
value – according to the total number of considered topics in the data set. Finally,
we associate a document to a topic if the corresponding weight in matrix H is
greater or equal to the chosen threshold.

Indexing of the Collection. The initialization of the term-document matrix
A is a crucial aspect that is often overlooked in the related literature on NMF.
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Whenever prior knowledge on the topics is available, we should make sure that
all relevant elements with respect to these topics appear in A. Hence, we propose
a novel method based on short seed lists of terms, the same used by the user to
influence the aspect classification task. In particular, we select the set of terms
D used to index the collection by means of three steps:

1. We add all seed words that appear at least once in our collection to D;
2. Since we do not assume to have complete domain knowledge, the seed lists

are extended automatically by means of Word2Vec and included in D;
3. We compute the TF-IDF weight for each term in the collection and add the

top few hundreds to D.

As for the Word2Vec model used in the second step, no additional source of
information is used because the model is trained on the same data set that has
to be analyzed. Even if the latter is not very rich, it turns out that Word2Vec is
still capable of mapping seed words close to other words coming from the same
topic. More details are provided in Sect. 4.1.

W and H Matrices Initialization. There are different approaches to initial-
ize the matrices W and/or H in the BCD framework and their initialization
deeply impacts on the achieved solution. In the context of topic modeling, since
we assume that we have some a priori knowledge on which terms should be
associated to a specific topic/aspect in the form of words lists, we initialize the
matrices according to this knowledge. We begin by extending these lists using
a Word2Vec model trained on the same collection of documents that we have
to analyze. Specifically, for each term in each list, we add the two closest terms
in the Word2Vec model. Then, we perform a search of the few terms from the
extended lists corresponding to each topic in each sentence of the collection, and
set the corresponding elements of matrix H to 1 or 0 if the sentence contains one
of them or not, respectively. We apply the same procedure for the term-topic
matrix W . The only pre-processing step involved prior to the training of the
Word2Vec model is stopwords removal.

3.2 Sentiment Polarity Classification

After the identification of the relevant aspects in each sentence, we compute the
polarity for each of them, classifying the corresponding opinions as positive or
negative. Again, we propose a weakly-supervised approach articulated as follows:

– we manually compile two lists of seed terms, one for the positive and one for
the negative sentiment terms for each aspect;

– we extend the previously created lists using a Word2Vec model, as we did for
document indexing (see Sect. 3.1);

– for each document in our data set, we run a pre-processing step that involves
stemming and stopwords removal1 and we do the same on each extended
sentiment terms list;

1 In this work we employed the stopwords and stemmers provided in Python nltk
3.2.5, https://www.nltk.org.

https://www.nltk.org
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– finally, we look for these sentiment terms in each document, considering only
the sentiment terms relative to the most relevant topics identified in it.

In order to compute the polarity for each aspect, we average over the number of
positive and negative terms found in relation to that topic, weighting 1 the posi-
tive terms and −1 the negative ones. The final label assigned to the opinion will
depend on the sign of this score. We found this approach to be the best perform-
ing to extend the seed lists available. We also implemented a simple negation
detection system that employs a short manually compiled list of negation terms
that can flip the polarity of a word2. If we detect one of these terms in a range of
3 tokens before a sentiment term, we flip its polarity. For other languages which
follow similar strategies to indicate a negation, this rule can be easily modified
to comply with the new structure. In [25], it is shown that the use of negation
in these terms can be easily transferred to other languages.

4 Experimental Results

We evaluate WS4ABSA on public data sets3:

– 2016 Track 5 Subtask 1 [15], training data set of Restaurant reviews, in
English [Rest-EN] (1152 documents, 18779 tokens, 1.18 labels on average
for each document);

– 2016 Track 5 Subtask 1 [15], training data set of Restaurant reviews in Spanish
[Rest-ES] (1047 documents, 21552 tokens, 1.35 labels on average for each
document);

– 2015 Track 12 [16], test data set of Hotel reviews in English [Hotels] (86
documents, 1316 tokens, 1.10 labels on average for each document).

For the aspect classification task, we focused firstly on Restaurant reviews
[Rest-EN, Rest-ES] and considered the following aspects:

– Ambiance: the atmosphere or the environment of the restaurant’s interior or
exterior space;

– Food: the food in general or specific dishes;
– Service: the customer/kitchen/counter service or the promptness and quality

of the restaurant’s service in general.

The corresponding entities in SemEval data sets are shown in Table 1.

2 In this work we will consider corpora in English and Spanish (see Sect. 4); the lists
of negation terms for English (16 terms) and Spanish (12 terms) are included in our
code repository https://gitlab.dei.unipd.it/dl dei/ws4absa.

3 The code for deploying and evaluating WS4ABSA is available on https://gitlab.dei.
unipd.it/dl dei/ws4absa.

https://gitlab.dei.unipd.it/dl_dei/ws4absa
https://gitlab.dei.unipd.it/dl_dei/ws4absa
https://gitlab.dei.unipd.it/dl_dei/ws4absa
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Table 1. Aspects definitions for the aspect classification task.

Data Aspect Labels in SemEval data sets

Rest. Ambiance AMBIENCE#GENERAL

Food FOOD#PRICES, FOOD#QUALITY, FOOD#STYLE

Service SERVICE#GENERAL

Hotel Ambiance FACILITIES#DESIGN FEATURES,
ROOMS#DESIGN FEATURES,
HOTEL#DESIGN FEATURES

Food FOOD DRINKS#PRICES, FOOD DRINKS#QUALITY,
FOOD DRINKS#STYLE OPTIONS

Service SERVICE#GENERAL

4.1 Training of the Word2Vec Model

Before diving into the experimental results, we report here how we use the avail-
able prior knowledge. The word lists provided in input by a user are extended
employing a Word2Vec model trained on the data set we are currently analyz-
ing. Even if this model is not an accurate representation of the relations between
terms in the considered language in general, we found it good enough for our
goal of adding terms related or used in the same context of the available seed
terms. We employ these extended lists of terms for document indexing – together
with the features selected with TF-IDF – and document classification, with the
assumption that words used in the same context are relevant for the same aspect.
An example of the resulting word lists obtained with this technique is reported
in Table 2. The model has been trained4 on each collection using the Continu-
ous Bag-Of-Words (CBOW) training algorithm for 10 epochs, generating word
embeddings of size 300.

4.2 Evaluation of Aspect Classification

Initially we tackle aspect classification for English reviews. The hyperparameters
used in the NMF optimization are listed in Table 3, while the seed lists used to
perform aspect classification on the [Rest-EN] data set are reported in Table 4.

Since LDA-based methods are the main alternative to NMF-based ones for
the unsupervised document classification task, we choose to compare our app-
roach to two other weakly-supervised methods, LocLDA [2] and ME-LDA [26].
These were developed under the assumption that each sentence is assigned to a
single aspect. Thus, we compare WS4ABSA with them on the subset of [Rest-
EN] sentences with a single aspect label (972 sentences). The comparison is
reported in Table 5. While LocLDA and ME-LDA outperform WS4ABSA in
most of the cases, we remark that, differently from WS4ABSA, these approaches

4 Word2Vec implementation from https://radimrehurek.com/gensim/models/
word2vec.html.

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
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Table 2. [Rest-EN]: A few of the terms obtained by extending the English seed lists
for aspect classification (from Table 4) with Word2Vec.

Aspect Seeds included with Word2Vec

Ambiance Cheap, classic, clean, describe, interesting, Italy, looks

Food Drip, dumplings, oil, pay, perfect, price, sausages, starter, vegetarian

Service Happy, help, hookah, hours, personality, professional, recommend, service

Table 3. Hyperparameters used in NMF for the aspect classification task, the ADT,
and the number of terms selected with TF-IDF weights for the document indexing
(TDI), for each of the considered test data sets. These parameters have been obtained
with a grid search over a portion of the dataset, used for validation.

Data set α β αp ADT TDI

[Rest-EN] 1.00 0.10 1.00 0.13 200

[Rest-ES] 0.01 1−16 0.10 0.16 300

[Hotels] 1−3 1.00 1.00 0.19 200

Table 4. Seed lists employed for the aspect classification task in the [Rest-EN] and
[Hotels] data sets.

Aspect Seeds

Ambiance Bad, beautiful, big, ceilings, chic, concept, cool, cozy, cramped, dark,
decor, elegant, expensive, interior, lightning, loud, modern, nice, noisy,
setting, trendy, uninspired, vibe, wall

Food Beef, chewy, chicken, crispy, curry, drenched, dry, egg, groat, moist,
onions, over-cooked, pizza, pork, red, roasted, seared, shrimp, smoked,
soggy, sushi, tender, tuna, undercooked

Service Attentive, chefs, efficient, employees, helpful, hostess, inattentive,
knowledgeable, making, manager, owner, packed, polite, prompt, rude,
staff, unfriendly, wearing, workers

heavily rely on additional resources and can be used only in a single-label con-
text. In particular, in [2] and [26] the authors compute a topic model with 14
topics first, then they examine each of them manually and assign a label to them
according to the aspects provided in input. Thus, whenever a new dataset is con-
sidered, human inspection of the topic modeling results is required to choose the
correct number of topics to use. In addition, in LocLDA and ME-LDA, the dis-
covered topics have to be manually linked to the aspects under examination,
while this is not necessary in WS4ABSA, where seed words define the aspects.
Moreover, the methods in [2] and [26] both employ some language-dependent
resources such as Part-Of-Speech (POS) taggers to identify adjectives in sen-
tences and improve the identification of aspects. Furthermore, in ME-LDA, the
authors also employ an annotated dataset to train a Maximum Entropy (ME)
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classifier. On the contrary, WS4ABSA requires no additional resources beyond
the dataset but a list of seed words based on available domain knowledge. More-
over, it is also suitable to deal with the more general multi-label assumption for
aspect extraction (indeed, as mentioned above, the average number of labels per
sentence is always greater that one in our dataset).

4.3 Evaluation of Sentiment Polarity Classification

For the sentiment polarity classification task, we first perform our experiments
on [Rest-EN] data set. We formalize sentiment polarity classification as a single-
label multi-class classification problem and used the seed words listed in Table 7.
Table 8 describes the results of the sentiment polarity classification task, obtained
on the Restaurants data sets. We computed these results considering only the
opinions which were classified correctly in the previous aspect classification stage.
Our performance results in this task are aligned with other state of the art
approaches [16] but stand out for the independence from external resources and
for the high language flexibility. As expected, negative polarity is the most chal-
lenging to detect. However, we highlight that the we rely on extremely simple
rules, described in Sect. 3.2, that may be further enriched to achieve better per-
formance.

Table 5. Aspect classification performance on [Rest-EN] data set, considering the
documents with a single relevant aspect in the performance evaluation. We remark
that the amount of resources used in our approach is lower than the other methods
included in the comparison. Indeed, we only required a short list of seed words defining
aspects, while the other two methods are based on language-specific POS tagging,
additional annotated data sets and manual topic inspection to retrieve aspects.

WS4ABSA LocLDA ME-LDA

Ambiance: Precision 0.21 0.60 0.77

Recall 0.79 0.68 0.56

F1 score 0.33 0.64 0.65

Food: Precision 0.79 0.90 0.87

Recall 0.53 0.65 0.79

F1 score 0.64 0.75 0.83

Service: Precision 0.88 0.80 0.78

Recall 0.39 0.59 0.54

F1 score 0.54 0.68 0.64

Overall: Precision 0.74 0.77 0.81

Recall 0.52 0.64 0.63

F1 score 0.56 0.69 0.70
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Table 6. Terms not present in the seed lists assigned by NMF to the chosen aspects
from the Hotels data set.

Term Ambiance Food Service

Curtain 1 ≈0 ≈0

Pool 1 ≈0 ≈0

Breakfast ≈0 1 ≈0

Buffet 0.03 0.93 0.03

Response ≈0 ≈0 1

Management ≈0 ≈0 1

4.4 Domain Flexibility Evaluation

To assess the flexibility of WS4ABSA, we use the seed lists defined on Restau-
rants to perform aspect classification on another data set with similar topics
coming from a different domain, i.e. Hotels. The results, shown in Table 9, sug-
gest that WS4ABSA is able to generalize the information provided by seed words
to similar aspects from different domains. In this case we consider aspect classi-
fication as a multi-label classification problem [19]. This is a more general and
challenging scenario. Thus, we measure accuracy in this task by means of the
Jaccard index J = 1

N

∑N
i=1

|ŷi∧yi|
|ŷi∨yi| , where N is the total number of samples that

have been evaluated (in order to compute the average), ŷi is a binary vector
that is 1 only in the positions corresponding to the aspects predicted for the
i-th sample and yi is another binary vector that is 1 only in the positions corre-
sponding to the true aspects to associate to the i-th sample. These results may
be explained by the fact that the method is able to leverage partial prior infor-
mation, i.e. the seeds play a key role in defining final topics, but they can also
be extended automatically to other terms in the collection, if this improves the
quality of the factorization. Indeed, recall that we have an active penalization
term on Wij , related to the prior, only if domain knowledge suggests that term
i is relevant for topic j. Then, we induce a penalization policy that only acts
on a subset of the entries of W , denoted by S :=

{
(i, j) | i ∈ Ī , j ∈ J̄

}
for Ī and

J̄ defined based on prior knowledge on topics. No penalization is imposed for
entries {Wi,j | (i, j) /∈ S}. This approach differs from the penalization strategy
adopted by methods, such as Utopian [3], that allows the user to include domain
knowledge, but embed it in the form of a distribution over all the available terms.
If we assume to set equal to zero all the elements of P corresponding to positions
(i, j) /∈ S, and we impose a topic-wise penalization, such as in Utopian, i.e.

H,W = argmin
H≥0,W≥0

||A − WH||2F + ||(W − P )D||2F ,

with D diagonal matrix of weights, we force the algorithm towards solutions
which do not assign new words to a topic for which seed words were already
provided. In fact, the results of this test led to achieve an accuracy of just 0.30
on the [Rest-EN] data set. Therefore, we infer that WS4ABSA can work well
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Table 7. Seed lists employed for the sentiment polarity classification task in the [Rest-
EN] and [Hotels] data sets.

Aspect Polarity Seeds

Ambiance Positive beautiful, chic, cool, cozy, elegant, modern, nice, trendy, winner

Negative bad, beaten, big, cramped, dark, expensive, loud, noisy, uninspired

Food Positive crispy, groat, moist, red, roasted, seared, smoked, tender, winner

Negative beaten, chewy, drenched, dry, over-cooked, soggy, undercooked

Service Positive attentive, efficient, helpful, knowledgeable, polite, prompt, winner

Negative beaten, inattentive, making, packed, rude, unfriendly, wearing

Table 8. Performance results in the sentiment classification task on the Restaurants
data set for the Positive and Negative polarities.

[Rest-EN] [Rest-ES]

Accuracy 0.85 0.57

Precision (Pos.) 0.86 0.96

Recall (Pos.) 0.89 0.48

Precision (Neg.) 0.84 0.31

Recall (Neg.) 0.80 0.92

Table 9. Aspect classification performance in multi-label classification.

[Rest-EN] [Rest-ES] [Hotels]

Accuracy 0.58 0.52 0.60

Average precision 0.52 0.48 0.58

Average recall 0.74 0.55 0.67

F1 score 0.61 0.51 0.62

with much weaker supervision than Utopian. In this regards, in Table 6, which
shows a few rows of the term-topic matrix W , we can see that the algorithm
includes some terms that were absent from the initial seed lists. Thus, the pro-
posed classification generalizes well the initial information that was provided in
the seed lists.

4.5 Language Flexibility

To assess the flexibility of WS4ABSA with regard to different languages, we
considered [Rest-ES] data set and used as seed lists the same words used for the
English data set, – see Tables 4 and 7 – translated when necessary with Google
Translate. The resulting seed words are shown in in Tables 10 and 11. The results,
described in Tables 8 and 9, suggest that our approach can be straightforwardly
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adapted to different domains and languages by translating the terms in the seed
lists with a machine translation system. This is a simple method to leverage the
same prior knowledge for cross-domain and cross-languages applications. As for
aspect classification task, the performance on [Rest-ES] is very close to what we
obtained on [Rest-EN]. As it might be expected, we notice a decrease in the aver-
age recall in this case, since some terms that might be very frequently used in a
language in a specific context might not be used as frequently in other languages.
We see the same effect on the recall of the positive class in Table 8. The impact
of the machine translation of seed terms is lower on the recall of the negative
class in the same table because we employ a set of terms to recognize negations
which was compiled manually based on basic Spanish grammar rules. In fact,
these terms would not have been easy to obtain by automatically translating
the ones in the list we employed for the datasets in English. We expect that fine
tuning of seed words and negation rules could further improve the performance
of WS4ABSA. Yet, experiments suggest that an almost automatic adaptation
to a different language achieves acceptable performance.

Table 10. Seed lists employed for the aspect classification task in the [Rest-ES] data
set. These have been obtained by translating the ones in Table 4.

Aspect Seeds

Ambiance Acogedor, ambiente, apretado, bonito, caro, chic, concepto, decoración,
elegante, escenario, fuerte, genial, grande, hermoso, interior, malo,
moderno, no inspirado, oscuro, pared, relámpago, ruidoso, techos

Food Ahumado, atún, camarón, carne de res, cauterizado, cebolla, cocido,
crujiente, curry, empapado, groat, huevo, húmedo, masticable, mojado,
pizza, pollo, puerco, rojo, seco, sobre cocinado, sushi, tierno, tostado

Service Anfitriona, antipático, atento, cocineros, conocedor, cortés, eficiente,
embalado, empleados, falta de atención, gerente, grosero, personal,
propietario, rápido, servicial, trabajadores, usar

4.6 Impact of Initialization Policy

We also analyzed how the initialization of matrices W and H affects the results of
aspect classification. In particular, we compared the policy described in Sect. 3.1
with 50 random initializations of the matrices W and H in order to evaluate the
improvement of our initialization strategy in the classification task on the [Rest-
EN] data set. With a random initialization, we obtained an average accuracy in
the multi-label classification problem of 0.36, while the proposed initialization
approach leads to an accuracy of 0.58, with an improvement of 38%5 compared
to a random initialization of the matrices on average. Furthermore, we also tested
our method for feature extraction, i.e. for the document indexing process and

5 The difference was computed as: difference ÷ other value ∗ 100.
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Table 11. Seed lists employed for the sentiment polarity classification task in the
[Rest-ES] data set. These have been obtained by translating the ones in Table 7.

Aspect Polarity Seeds

Ambiance Positive Acogedor, agradable, chic, de moda, elegante, ganador, genial, hermoso,

moderno

Negative apretado, caro, fuerte, golpeado, grande, malo, oscuro, ruidoso, sin

inspiración

Food Positive Ahumado, cauterizado, crujiente, ganador, groat, húmedo, rojo, tierno,

tostado

Negative batido, demasiado cocido, masticable, mojado, poco cocido, seco

Service Positive Atento, conocedor, educado, eficiente, ganador, rápido, útil

Negative Antipático, desgastado, embalado, fabricación, falta de atención, golpeado,

grosero

the creation of the A matrix. In particular, we compared the results obtained
by following the initialization procedure described in Sect. 3.1 with simple TF-
IDF initialization on the same [Rest-EN] data set. As a result, we obtained
an accuracy of 0.38. Hence noticing a performance improvement with our new
feature selection approach of 34%.

5 Conclusions and Future Directions

We propose Weakly-Supervised Approach for ABSA (WS4ABSA), a weakly-
supervised approach for ABSA based on NMF that allows users to include
domain knowledge in a straightforward fashion by means of short seed lists.
Thus, we address one of the drawbacks of most of the available topic mod-
eling strategies, i.e. the fact that the beneficiary of the results is not able to
improve them. WS4ABSA can be easily adapted to other domains or languages,
as suggested by tests performed on publicly available data sets, and achieves per-
formance comparable with other weakly and semi-supervised approaches in the
literature, even though it relies on less external resources. Future research direc-
tions include deeper investigations on the effect of the prior on W and possibly
H, and also the release of simple rules to deal with negations more effectively
in different languages. It might also be useful to implement an on-line version
of the NMF classification algorithm, so that it can receive a feedback from the
user, and recompute the output on-the-fly more efficiently, i.e. without running
again from scratch.
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Abstract. Social networks (SNs) have become an integral part of contemporary
life, as they are increasingly used as a basic means for communication with
friends, sharing of opinions and staying up to date with news and current events.
The general increase in the usage and popularity of social media has led to an
explosion of available data, which creates opportunities for various kinds of
utilization, such as predicting, finding or even creating trends. We are thus
interested in exploring the following questions: (a) Which are the most
influential - popular internet publications posted in SNs, for a specific topic?
(b) Which members of SNs are experts or influential regarding a specific topic?
Our approach towards answering the above questions is based on the func-
tionality of hashtags, which we use as topic indicators for posts, and on the
assumption that a specific topic is represented by multiple hashtags. We present
a neighborhood-based recommender system, which we have implemented using
collaborative filtering algorithms in order to (a) identify hashtags, urls and users
related with a specific topic, and (b) combine them with SN-based metrics in
order to address the aforementioned questions in Twitter. The recommender
system is built on top of Apache Spark framework in order to achieve optimal
scaling and efficiency. For the verification of our system we have used data sets
mined from Twitter and tested the extracted results for influential users and urls
concerning specific topics in comparison with the influence scores produced by
a state of the art influence estimation tool for SNs. Finally, we present and
discuss the results regarding two distinct topics and also discuss the offered and
potential utility of our system.

Keywords: Influence � Social networks � Recommender systems

1 Introduction

E-communities necessitate mechanisms for the identification of credible entities which
can be trusted and used in a particular context. Various reputation systems have been
proposed to effectively address this need [19], based on the evaluation of individual
transactions. In social networks (SNs), where there is an abundance of information, rich
social activity of many people and dynamic relationships and interactions of various
forms, apart from the need to find credible entities, new requirements and new pos-
sibilities arise, which are related to the identification of influential entities, i.e. entities
which attract the interest of users and can provoke actions [20]. A vast amount of
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research works have focused in the exploration of the concept of influence in social
networks, its estimation and its use [1–3, 14]. These works are usually based on the
various relationships and social actions of entities and focus on different aspects such as
identification of influential entities and content [1, 14] influence propagation [27],
influence maximization [7], combination of influence and trust [25]. Collaborative
filtering mechanisms have also been widely studied and used to identify similarities and
to produce recommendations in SN-based applications [9, 15, 26].

SN applications include also the useful “hashtag” functionality, i.e. the possibility
to tag content using hashtags, which is a way of mapping content to specific topics.
This functionality, when combined with the vast amount of social network activity
information, creates the opportunity to explore influence in a more specialized context.
Useful examples of specialized influence estimation include finding influential news
and influential users regarding the specific topic. In this paper we present our work
towards answering the following questions: (a) Which are the most influential - popular
internet publications posted in SNs for a specific topic? (b) Which members of SNs are
experts or influential regarding a specific topic? Answers to these questions are vital in
various areas such as marketing, politics, social media analysis, and generally in all
fields which need to quickly understand and respond to current trends.

Our approach towards answering the aforementioned questions combines influence
estimation techniques and collaborative filtering mechanisms. More specifically, it is
based on (a) the hashtag functionality and the assumption that a topic is represented by
one or more hashtags, (b) collaborative filtering techniques for finding similar hashtags
based on their common usage and the links assigned to them, and (c) analysis of social
network-based actions. The contribution of this work is thus a solution for finding
topic-specific trends both for content and for users: collaborative filtering is used for
identifying a set of similar hashtags which represent a topic, which are then used for
filtering user activity in order to find the topic-specific influential users and content.
This solution is, to the best of our knowledge, novel with respect to related works
which examine influence from different perspectives.

In the following section we present related work which focuses on influence esti-
mation in SNs. This is followed by an overview of our approach and a description of its
steps. In the fourth section we present the implemented system and its evaluation using
various scenarios and in relation to a benchmark influence estimation tool and we
discuss the produced results. Our conclusive remarks follow in the last section.

2 Related Work

Various works have focused on estimating influence of entities and content in social
networks. Influence is dealt with in various ways: e.g. as an indirect reputation concept
[1, 14], i.e. an indication of how much trust or popularity can be assigned to an entity or
content based on indirect information rather than on direct ratings, or as an indication
of action propagation [11], or from a social analysis perspective [25], etc.. The various
approaches use data related with the social activity in the SN, i.e. the actions of users
towards other users or content in the SN. Most specifically, these approaches use
algorithms which combine (a) entity-centered characteristics related with social actions,
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e.g. the number of likes of a post or the number of followers of a user [6, 11] and
(b) social action-related characteristics of entity pairs, e.g. the number of likes user A
assigns to posts of user B [25]. Trust relationships between two entities are also
incorporated in the latter case, while a usual representation of a SN in the context of
influence estimation is a graph, where the nodes represent individual entities and the
edges represent the links between two entities, accompanied with one or more weights
(each one for different kinds or relationships).

Along with the different kinds of information used, related works differentiate
according to: (a) influence estimation technique and (b) requirements stemming from
the kind of social network where influence is estimated. Various influence estimation
techniques are found in the literature, such as probabilistic [2], deterministic [14],
graph-based [6, 25], and machine-learning-based techniques (for influence prediction)
[11]. According to the specific kind of social network, different requirements for
influence estimation occur. For example, in microblogging SNs, such as Twitter [24],
influence is related with a number of factors, such as recognition and preference [1, 14],
which are attributed to social network activity of users (numbers of shares, likes,
followers, the followers social activity, etc.). In other works, such as in review SNs, e.g.
Epinions [10] or [8], a combination of social activity information with trust relation-
ships is used [25].

In the following, we briefly present some works related with influence estimation in
SNs with a focus on the influence estimation technique and the data they use. Agarwal
et al. [1] deal with estimating the influence of bloggers in individual blogs. Four factors
are considered as vital for defining influence: recognition, activity generation, novelty
and eloquence. These properties are defined according to specific post characteristics
and the social activities of bloggers, and are then combined for assessing the user’s
influence. Anger et al. [3] measure influence of both users and content in Twitter. They
take into consideration various Twitter statistics, such as the numbers of followers,
tweets, retweets and comments, and they estimate two measures on the content and on
the action logs. Similarly to this, the work in [14] presents an influence estimation
system both for hashtags and users in Twitter, based on various social activity-based
data. Further performance indicators for Twitter are presented in [3], whereas [18]
analyzes Twitter influence tools, including Klout [13], which had been a widely
accepted influence estimation tool for SNs until May 2018. A distinct approach for
finding the most important urls regarding a specific topic in Twitter is proposed by
Yazdanfar et al. [26], who reason about the importance of url recommendation in
Twitter and implement such recommendations using collaborative filtering techniques
and a three-dimensional matrix of users, urls and hashtags.

Ahmed et al. [2] integrate the concept of trust in their approach for estimating
influence probabilities. Their suggested algorithm discovers the influential nodes based
on trust relationships and action logs of users. Varlamis et al. [25] integrate also trust
relationships in their influence estimation mechanism, which uses both social network
analysis metrics and collaborative rating scores, where the latter take into account both
the direct and the indirect relationships and actions between two users. In [11] various
influence models are constructed for a number of different time models and various

Finding Topic-Specific Trends and Influential 407



algorithms used in the literature are analyzed and discussed. Bento [6] implements
various social network analysis algorithms for finding influential nodes in location-
based SNs and in static SNs.

Our approach focuses on topic-specific influence, but unlike topic-specific rec-
ommendation systems for SNs, such as [6], it is not restricted to collaborative filtering
techniques. Furthermore, it is not restricted to SN activity–based influence estimation,
which is adapted in [1, 2, 14]. It comprises rather a specialized influence estimation
which combines the user activity characteristics responsible for influence estimation
with collaborative filtering techniques for the topic-specific filtering of posts.

3 Estimating Influence on a Specific Topic

The goal of the proposed approach is to estimate influence of users and urls regarding a
specific topic, and to find the most influential ones among them. The idea is that we
first choose a hashtag which is representative of the topic of interest and then find a set
of hashtags which are similar to the initial hashtag. We then aggregate social network
metrics for the tweets which have used these hashtags in order to estimate influence
scores for the users which have posted these tweets and for the urls which have been
used in them.

For the purposes of this paper we focused on micro blogging systems like Twitter
[24]; however, the proposed approach can be generalized due to the fact that its
elements (e.g. hashtags, numbers of likes and followers) are common to most social
networks.

Here is a step-by-step description of the approach we follow:

• Step 1: Given a specific hashtag hi, we first find the N-top similar hashtags based on
collaborative filtering techniques which take into consideration the level of usage of
hashtags by users and the usage of common urls together with hashtags, as
explained in Sect. 3.1. We define H as the set containing hi and the most similar
hashtags to hi.

• Step 2: We collect the sets of tweets, users and urls which have used at least one
hashtag belonging to H, as analytically presented in Sect. 3.2.

• Step 3: Based on the above sets, we find the most influential users. The criteria for
estimating a user’s influence are based on social activity-based metrics related to
tweets which contain the specific url. This step is presented in Sect. 3.3.

• Step 4: In a similar way, we use the above sets to find the most influential urls, using
various social activity-based criteria, as described in Sect. 3.4.

3.1 Finding Similar Hashtags for Topic Representation

In order to identify a set of hashtags which represent a topic, we use an initial hashtag
“h” and try to find hashtags which are similar to h, using two criteria for assessing
similarity: (a) the number of common links that two distinct hashtags have (if two
hashtags have the same number of references to a link, this link is related to the same
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level to these hashtags) and (b) the level of their usage by users who have used them in
common (if two users have used them with similar frequency this means that these
hashtags are of the same level of interest for the users, and are considered similar in this
context). We thus define two similarity measures for hashtags according to the two
criteria and combine them in one. Specifically, we use the similarity measures (1) and
(2) that appear below, in order to estimate the Euclidean distance of two hashtags
regarding the two criteria.

simeuclidean hi; hj
� �

url¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

l¼1
rhi;l � rhi;l
� �2r !

ð1Þ

where

• hi, hj are two distinct hashtags,
• L is the set of the links (urls) which have been used in at least one tweet of each of

the hashtags hi, hj
• l is a url belonging to L,
• rhi,l, rhj,l are the numbers of tweets which have used the link l and have also used the

hashtag hi and hj, and
• simeuclidean hi; hj

� �
urlis the similarity of hashtags hi, hj regarding their usage of

common links.

simeuclidean hi; hj
� �

user¼ 1= 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXU

u¼1
rhi;u � rhi;u
� �2r !

ð2Þ

where

• hi, hj are two distinct hashtags,
• U is the set of the users which have used the two hashtags in their tweets,
• u is a user belonging in U,
• rhi,u, rhj,u are the numbers of tweets of user u which have used the hastag hi and hj,

and
• simeuclidean hi; hj

� �
useris the similarity of hashtags hi, hj regarding their common

usage by users.

We also use the cosine similarity measure presented in (3) to estimate the similarity
between two hashtags according to the criteria of the level of interest and the number of
commonly used urls (simcosine (hi,hj)user, and simcosine (hi,hj)urlr accordingly):

simcosine hi; hj
� �

url=user¼
Pn

k¼1ðrikÞ � ðrjkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1 rikð Þ2

h ir
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1 rjk
� �2h ir ð3Þ
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where

• simcosine hi; hj
� �

url is the cosine similarity of hashtags hi, hj regarding their common
urls,

• simcosine hi; hj
� �

user is the cosine similarity of hashtags hi, hj regarding their common
usage by users,

• hi, hj are two distinct hashtags,
• n is the number of users which have both used the two hashtags (when

simcosine hi; hj
� �

user is estimated) or the number of the common urls used by the two
hashtags (when simcosine hi; hj

� �
url is estimated),

• k is a user (when simcosine hi; hj
� �

user is estimated) or a url (when simcosine hi; hj
� �

url is
estimated),

• rik, rjk are the numbers of times a user k has used the hashtags hi, hj respectivley
(when simcosine hi; hj

� �
user is estimated) or the numbers of times a url k has been used

in hashtags hi and hj respectively (when simcosine hi; hj
� �

url is estimated)

We use either one of the above similarity measures (Cosine or Euclidean distance-
based similarity), or average measures to define final similarity metrics for user-based
similarity (sim(hi,hj)user) and url-based similarity (sim(hi,hj)url). We then combine the
two similarity measures using a weighted average to estimate the similarity between
two hashtags.

sim hi; hj
� � ¼ wsimuser � sim hi; hj

� �
user þwsimurl � sim hi; hj

� �
url ð4Þ

where

• wsimuser; wsimurl are the weights we use for the two kinds of similarity, and
• wsimuser þwsimurl ¼ 1

We thus find a list of top-N hashtags which have the highest similarity with the
original hashtag hi. We define as H, the set which contains hi and the N hashtags of this
list. The original set of hashtags which are examined for the extraction of H can be
obtained by various ways e.g. Twitter Streaming API [17], Twitter Rest API [23]
Twitter widgets [22]. The selection of the original hashtag hi from the available
hashtags can be done either based on personalized criteria, e.g. one can select a hashtag
which she believes as representative of a topic, or by searching available hashtags with
text similarity criteria.

3.2 Collection of Data

Having acquired the set H of hashtags which represent a topic, we collect the following
data, which are needed for finding the influential users and urls in the context of a
specific topic:
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1. The set TH of all the tweets which have at least one hashtag belonging to the set H.
2. The set UH of all users which have tweeted at least one tweet belonging to the set

TH, i.e. users which have used hashtags belonging to H.
3. The set LH of all urls which have been attributed to one or more tweets belonging to

the set TH (or equivalently to one or more hashtags belonging to the set H).

In the following sections we describe the ways we use to extract lists of influential
users and influential urls regarding a specific topic.

3.3 Finding Influential Users on a Specific Topic

For each one of the users belonging to in UH we estimate her influence score regarding
each hashtag belonging to H, based on the triple: (weighted number of likes of related
tweets, weighted number of retweets of related tweets, absolute number of user’s
followers). The triple is used to represent a number of criteria which we consider as
important for determining influence. These criteria are presented in the rest of this
section, along with the related metrics – formulae used for the estimation of a user’s
influence regarding a hashtag.

Estimating a User’s Influence on a Specific Hashtag. The criteria for estimating a
user’s influence regarding a specific hashtag are described below, together with the
metrics which represent them.

Adaptation: The total number of retweets a user has got for a specific topic (hashtag)
shows the interest of other users to adapt or share the user’s posts. We are interested in
the adaptation level of ui’s tweets containing hi, compared to the general level of
adaptation that tweets containing hi generate. We thus use the following adaptation
metric:

A ui; hið Þ = the ratio of the number of retweets of the posts of a specific user ui
containing a specific hashtag hi, to the total number of retweets which contain hi. This
metric shows the relative interest of users to share ui’s tweets compared to the total
amount of interest that related tweets generate.

A ui; hið Þ ¼ number of retweets of uii
0
s tweets which contain hi

number of retweets of all tweets containing hi

Preference: A user’s influence can be measured by the number of her followers; the
more friends a user has got, the more she is trusted / preferred.

P uið Þ ¼ number of followers of ui

Endorsement: (concerning a specific topic expressed by a hashtag hi): In today’s social
networks every post of a user can be endorsed by other users. In Facebook you can
endorse the post of a user by reacting to it (like, Wow, etc.), in Twitter you can declare
you like it. The more users endorse a post, the more influence this post has over users.
This gives us an insight of how valuable is the user’s opinion on some topic. We are

Finding Topic-Specific Trends and Influential 411



interested in the value of the user’s opinion is on a topic, in relation to the value of
other users’ opinions on that topic. For the endorsement metric we have thus used the
following formula:

E ui; hið Þ = the ratio of the number of favorites that ui’s tweets containing a hashtag
hi have been assigned, to the total number of favorites assigned to tweets which contain
hi. This metric shows the relative endorsement in user’s tweets compared to the total
endorsement for tweets containing hi.

E ui; hið Þ ¼ number of favorites of uii
0
s tweets containing hi

number of favorites of all tweets containing hi

We are using a weighted mean to estimate the influence score of a user ui con-
cerning a specific hashtag hj, as a combination of the result scores of the above three
influence factors:

InfUserHashtag ui; hj
� � ¼ wA � A ui; hj

� �þwE � E ui; hj
� �þwP � P uið Þ ð5Þ

where

• wA, wP, wF are the weights we assign to the factors described above, and
• wA þwP þwF ¼ 1.

The choise of the values of these weights should be done according to the
importance we want to give to each criterion. Machine learning methods can also been
used to find the most appropriate values for the weights.

Estimating a User’s Influence on a Topic. Having estimated the individual influence
score of users regarding each (Top-N similar) hashtag of the hashtag set H which is
representative of a topic, according to the previous section, we estimate the total
influence score of every user using the following formula:

Inf uið Þ ¼
XN

j¼1
wj � InfUserHashtag ui; hj

� � ð6Þ

where

• Inf uið Þ is the influence score of a user ui,
• InfUserHashtag ui; hj

� �
is the influence score of a user ui concerning a specific

hashtag hj, where hj belongs to the set of the top N similar hashtags H and has the jth

order in similarity with the initial hashtatg), and
• wj is the weight assigned to the score of each hashtag hj,

We have adjusted the values of weighs wj which we assign to the various
InfUserHashtag scores, depending on the similarity of the specific hashtag to the initial
hashtag according to (4). Specifically, considering that InfUserHashtag ui; h1ð Þ,
InfUserHashtag ui; h2ð Þ, …, InfUserHashtag ui; hNð Þ are ordered according to their
similarity with the initial hashtag, then the first score will refer to the initial hashtag
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itself (h1) and its weight w1will be estimated according to (7) and will be used as
reference for estimating the other weights, in a way that wiþ 1 ¼ wi=2ð Þ.

w1 ¼ 1=ð1þ
Xk
i¼1

1
2i
Þ ð7Þ

where k: 2k<= N * 2 and 2kþ 1 [N � 2
Using this way of weight estimation, we achieve

PN
i¼1 wi � 1 1and we give higher

weights to the influence scores of the most similar hashtags.
We finally extract the most influential users regarding the topic based on the

estimated influence of users, according to formula (6).

3.4 Finding Influential Urls on a Specific Topic

As explained in Sect. 3.2, for each one of the hashtags belonging to the set H of similar
hashtags, we find the links which have been used with them (set LH) and the related
tweets (set TH). Then, for each link l of LH we find the subset Tl of T, which contain
the tweets of T which have used this link. We also find the numbers of likes and
retweets of the tweets belonging in Tl.

We extract thus a list with recommended links, i.e. the ones with the highest
influence score, which depends on the number of likes and retweets (of the relative
tweets that contain them) and the number of tweets that contain these links, according
to formula (8).

Inf lð Þ ¼ wlikes � TlNoLikes
TlNoTweets

� �
þwretweets � TlNoRetweets

TlNoTweets

� �
ð8Þ

where

• TlNoLikes is the number of likes on tweets belonging to Tl,
• TlNoRetweets is the number of retweets of tweets belonging to Tl,
• TlNoTweets is the number of tweets belonging to Tl

• wlikes, wretweets are the weights of the numbers of likes and retweets respectively,
related to the total number of topic-related tweets.

We consider these links as the most influential ones for a specific topic, since they
are the ones which are mapped to the most related hashtags to the topic and also are
attributed to the highest social activity.

1 When 2 � N ¼ 2k for an integer number k, then
PN

i¼1 wi ¼ 1 .
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4 Implementation of the Proposed System

We have developed a system that implements the proposed approach, as a data analysis
platform for Twitter, which features three core functionalities in Twitter:

• Finding the most similar topics (hashtags) using collaborative filtering techniques
based on the posts gathered from a social network.

• Finding the most influential links in terms of popular internet publications, using the
information extracted from the above step.

• Finding the most influential users for a specific toping, exploiting the set of similar
topics from the first step.

In the following subsections we present the technology used, the collection of real
social network data and the evaluation tests.

4.1 Technology and Datasets

For the implementation of this big data analysis platform we have created an application
that leverages the possibilities provided by the Apache Spark framework [4], as well as
the Java programming language. Apache Spark is used in order to achieve optimal
scaling and the possibility to process large volumes of data faster and more efficiently.

For the purposes of this paper we used the Twitter Rest API [23] in order to collect
the last 1–3.300 tweets for different groups of Twitter users. The first group consisted
of the most followed Twitter accounts. The second one had all the users that are
considered the most influential ones for the Twitter platform according to [21] and the
third one consisted of random Twitter users with a count of total users equal to 52. We
used users from these three selected groups for our tests in order to have a wide range
of users with different levels of popularity and influence in the social network. The
tweets collected where filtered in order to contain at least one hashtag and were stored
in the following format:

• UserId|TweetId|CreatedDate|Lang|text|FavCount|ShareCount|#|…|#|url|…|url|
For each one of the aforementioned users, we stored the following data concerning
them

• UserId|FollowersCount|FriendsCount|StatusesCount

We note that we intend to expand our experimental evaluation in larger datasets,
leveraging the scalability possibilities offered by Apache Spark, in order (a) to extract
results for influential urls and users in various scenarios involving different topics and
user groups, and (b) to evaluate the performance of the system, e.g. running times in
big data volumes.

4.2 Finding Topic-Specific Hashtags and Influential Users and Urls

From the 72.029 collected tweets we were able to extract 40.924 pairs of hashtags that
(a) were used by at least two users in their tweets and (b) had at least one url in
common. For each pair we were then able to define their similarity scores according to
the formulae (1)–(4).
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For estimating the total similarity between two hashtags, we chose the Cosine
similarity metric, and used formula (4), with the following weight values: wsimuser = 0.4
and wsimurl = 0.6, considering that the similarity score of two hashtags regarding their
common urls of greater importance than their similarity concerning their common level
of usage by users. We note that the reason we chose to use the Cosine similarity metric
for estimating both similarity components, is its suitability when we are interested in
the cosine of the rating vectors [5], i.e. the similarity between their trends (in our case
the trends of the url rating vectors and the trends of the user rating vectors).

Influential Users based on a Specific Topic. We have examined the influence scores
of users for various topics and have compared our results with the scores provided by
the user influence estimation tool InfluenceTracker [13] for the same users. We have
chosen InfluenceTracker as a benchmark for our comparison, as it is included in the
state of the art of influencer discovery and Twitter [18]. In the rest of this section we
present preliminary evaluation results for the topics “marketing” and “bigdata” con-
sidering they are represented by the initial hashtags #marketing and #bigdata respec-
tively. We have thus first extracted from our dataset the top most similar hashtags for
#marketing and present them in Fig. 1, along with their similarity scores based on (4).

Figure 2 presents the influence scores of the top ten most influential users regarding
the topic “marketing”, considering this topic is represented by the hashtag #marketing
and its most similar hashtags presented above. For the same users we have also esti-
mated the scores produced by InfluenceTracker [16, 12] and present them in Fig. 3.
The InfluenceTracker score combines the numbers of a user’s followers, followees and
tweets. Its lowest value is “0”, while the highest has no upper limit. The higher this
value is, the more impact has an account on the social network [12].

0.986 
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0.99 

0.992 
0.994 
0.996 
0.998 

1 
1.002 

Similarity Scores of Top Similar Hashtags to #marketing

Fig. 1 10 Most similar hashtags with #marketing
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Figures 2 and 3 give different insights on the users, as InfluenceTracker takes into
consideration all the tweets of a user, whereas the proposed systems is based on topic-
related tweets. Differences are also due to the different time periods of the tweets that
were used in the two metrics, as InfluenceTracker takes into consideration the last 100
tweets of a user, whereas our metric is based on the collected dataset.

Influential Links based on a Specific Topic. In order to extract the most influential
links for a specific topic we have implemented the algorithm described in Sect. 3.4. We
have used as an example the topic “marketing” and the urls with the highest influence
scores are shown in Fig. 4. These urls redirect to articles written about marketing, and
content marketing in social media. We have used as a second example the hashtag
#bigdata assigning to the topic “big data”. We searched for hashtags similar to #bigdata
and have identified the similar hashtags which are shown in Fig. 5. We have then
estimated the influence scores of the users identified in the previous example as the
most influential users regarding the topic “marketing”. The results of these users’
influence scores are presented in Fig. 6. It is evident that influence scores of the users
differ according to the topic examined. We can see that for the “big data” topic the
same users which were first examined for the topic “marketing” have different influ-
encer scores. For example user uid1 that was the most influencing user in the marketing
topic now has one of the lowest scores. Furthermore, users uid3, uid5 and uid7 have
zero influence score in this specific topic, whereas they were considerably influencing
regarding the topic “marketing”. We also found and present in Fig. 7 the most
influential urls regarding “big data”. These urls redirect to articles related to the
hashtags (#smartcities, #healthtech, etc.) that our platform identified as mostly related
with the used topic.
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5 Concluding Summary

In this paper we describe the design and implementation of a recommendation system
for influential urls and influential users based on specific topics in Social Networks
(SNs). For the purposes of our work, we use the hashtag functionality of SNs and,
based on the assumption that the hashtags represent specific topics, we use collabo-
rative techniques for identifying a pool of similar hashtags that correspond to a specific
topic. We then use social activity based metrics for estimating the influence of urls and
users by taking into consideration the identified hashtags, so as to achieve special-
ization on topics. For the implementation, the Apache Spark framework was used for
achieving scalable searches and data processing. Results for specific topics based on
the datasets we have extracted from Twitter were presented and analyzed. The
benchmark influence estimation tools InfluenceTracker [12, 16] was used for a com-
parison of our results with the influence values this system estimates for the most
influential users. Based on the preliminary evaluation of our results and the study of
related work, we consider that our system comprises an innovative approach towards
topic-specific influence estimation, and specifically towards revealing topic-specific
trends in content (as the most influential urls) and topic-specific influencers. We note
that further tests are included in our future plans for (a) examining more use cases with
bigger data sets and evaluating the performance of the proposed system, (b) fine tuning
the various weights and components of our system, and (c) comparing the results and
the performance of the proposed system with other influence tools for SNs and with
topic specialization in mind.
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Abstract. Modeling cheese fabrication process helps experts to check
their assumption on the domain such as finding which parameters
(denoted as control parameters) can explain the final products and
its properties. This modeling is however complex as it involves vari-
ous parameters and a reasoning over different steps. Our previous work
presents a method to learn a probabilistic relational model in order to
check a user’s (an expert on the considered domain) assumption on a
transformation process domain, using a knowledge base of this domain
and his expert knowledge. However this method did not include tempo-
ral information, and thus the learned model is not enough to reason on
the cheese fabrication process. In this article we present an extension of
our previous work that allows a user to integrate causal and temporal
information represented by precedence constraints in order to model a
cheese fabrication process. This allows the user to check his assumption
to identify the transformation process control parameters.

Keywords: Ontology · Probabilistic relational model · Temporality

1 Introduction

Cheese processing is a complex domain involving many different variables. Their
combination leads to final products that can differ in quality which can be
assessed by different criteria (i.e. sensory, nutritional). Parameters that are
enough to explain all these criteria are denoted as control parameters. In
order to help experts assess and check their assumptions (e.g. identifying con-
trol parameters), tools and methods are needed to analyze data. In a previous
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work [7], we have defined a method helping an expert to check an assumption
about possible causal relations between variables by combining a knowledge base
and a probabilistic relational model. However cheese processing being composed
of a succession of different steps also includes temporal information, that was
not considered in our method. In this article, we therefore propose a generalized
version including temporality.

This work has been applied on a real application about cheese processing
using data from the TrueFood project. The goal of the TrueFood project is to
investigate to what extent the impact of some combinations of thermophile lactic
bacteria (i.e. Streptococcus thermophilus, Lactobacillus helveticus LH with 2
distinct levels and Lactobacillus delbrueckii LD with 2 distinct levels) on the
characteristics of hard cooked cheese is affected by the use of milks with various
compositions and by the use of different technological conditions (such as distinct
temperature for the heating of the milk in the vat). Our study focuses on 24
hard cooked cheese of 10kg each manufactured during three weeks in January
2008, and made using 100 liters vats. Three kinds of milk, differing in their
protein content and their production conditions, were used for the cheese making.
During the cheese making, three different temperatures (53 ◦C, 55 ◦C and 57 ◦C)
were applied for the milk heating. During this study various parameters were
monitored, such as different measures of proteolysis. In particular, the potentially
bioactive peptides content of the cheeses were measured at several steps of the
cheese ripening. Their sensory properties were also assessed at the end of the
ripening step: texture and flavor were evaluated by 11 panelists on a 10 points
scale.

The influence of milk heating and of combination of lactic bacteria during
cheese manufacture on the formation of peptides has already been observed
in the literature [12]. Moreover the impact of the type of milk used for the
cheese manufacture (especially the influence of the cows feeding system) on the
organoleptic properties of hard cheeses has been shown in [9].

In our study, the experts make the assumption that the three factors of
variation of the experiments (i.e. type of milk used for the cheese making, com-
bination of thermophile lactic bacteria added to it, and the milk temperature)
are the control parameters for the potentially bioactive peptide content of the
cheese and its sensory properties. Our aim is to check this assumption using our
method extended to take into account both causal and temporal informations.

This paper is structured as follows. Sect. 2 presents the background on proba-
bilistic relational models and related works. Section 3 presents the state of the art
on dealing with temporal information in probabilistic models. Section 4 presents
our improved method to help the experts check their assumption using causal
and temporal constraints. Section 5 presents our study on the data of the True-
Food project. Section 6 concludes this article.



Identifying Control Parameters in Cheese Fabrication 423

2 Background

2.1 BNs and PRMs

Probabilistic relational models (PRMs) extend Bayesian networks (BNs) with
the notion of class of relational databases. A BN is the representation of a joint
probability over a set of random variables that uses a Directed Acyclic Graph
(DAG) to encode probabilistic relations between variables. However, in the case
of numerous random variables with repetitive patterns, it cannot efficiently rep-
resent every probabilistic relations.

PRMs extend the BN representation with a relational structure between
potentially repeated fragments of BN called classes [14]. They define the high-
level, qualitative description of the structure of the domain and the quan-
titative information given by the probability distribution over the different
attributes [3], where the attributes represent the different possible values for
the variables. In the following, we consider attributes as the objects we want to
reason with: we want to assess whether a specific attribute’s value can explain
another attribute’s value. A class is defined as a DAG over a set of attributes.
These can be inner attributes or attributes from other classes referenced by so-
called reference slots. The high level structure of a PRM (i.e. its relational
schema) describes a set of classes C, associated with attributes A(C) and ref-
erence slots R(C). A slot chain is defined as a sequence of reference slots that
allows one to put in relation attributes of objects that are indirectly related. The
probabilistic models are defined on the low level structure (i.e. at the class level)
over the set of inner attributes, conditionally to the set of outer attributes and
represent generic probabilistic relations inside the classes. This is the relational
model of the PRM. Classes can be instantiated for each specific situation. A
system of a PRM provides a probability distribution over a set of instances of
a relational schema [15] and, once instantiated, is equivalent to a BN.

2.2 Essential Graph

An instantiated system of a PRM is equivalent to a BN. As a consequence,
alongside the construction of the PRM, we also learn an Essential Graph (EG).
An EG is a semi-directed graph associated to a BN and composed of edges and
oriented arcs. They both share the same skeleton, but the orientation of the
EG’s edges can vary. If the orientation of an edge is the same for all the Markov
equivalent graphs of the BN, this edge is also oriented in the EG; if not, the edge
remains unoriented. All directed edges in the EG are called essential arcs [5]. An
example of a EG and its two possible interpretations is given by Fig. 1.

The EG expresses whether the orientation of an arc between two nodes can
be reversed without modifying the probabilistic relations encoded in the graph.
It is useful when presenting results to the user as it can help him visualizing the
causal relations learned: when a model has been learned with causal constraints,
if an edge is oriented in the EG, it could mean that there is a causal dependence.
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Fig. 1. Example of an essential graph (a) and two BNs (a) and (b) representing
possible interpretations.

2.3 Causal Relation Discovery Driven by an Ontology

In a previous work, we have proposed a method to learn a PRM to discover
causal relations in a knowledge base KB relying on a user’s assumption, the
user being an expert of the studied domain. We consider, in the following, a
knowledge base KB = (O, F) where the ontology O is represented in OWL1

and the data F in RDF2. The user’s assumption about possible causal relations
between data is of the form “E1, ..., En have a causal influence on C1, ..., Cp”,
with Ei attributes the user has determined as explaining and Cj attributes the
user has determined as consequence. From the assumption and the knowledge
base KB, a database B is created and, afterwards used for the learning. It is
composed of the explaining and consequence attributes as well as other inferred
attributes as presented in [7].

Given the distinction between explaining and consequence attributes, we
introduce some constraints in the learning. In particular, explaining attributes
may have an influence over consequence attributes but the inverse is not pos-
sible. As a result, if during the learning a relation is found between explaining
and consequence attributes, then it has to be oriented from explaining to con-
sequence. These causal constraints guide the probabilistic model construction:
indeed, learning using constraints that reflect causality results in a model includ-
ing causal information and allows the validation of the user’s assumption.

Our method gives the user the possibility to check his assumption about
possible causal relations between data of a knowledge base. The integration of
explaining and consequence attributes helps him express his own knowledge of
the domain, and guide the learning towards a coherent causal model. This model
however does not take into account possible temporal relations between data and
the fact that explaining attributes at one time step can become consequence
attributes at the next time step. We denote by event a group of attributes that
happen at the same time. When dealing with temporal information, it is possible
that the consequence attributes of an event et at time t become the explaining
ones of another attribute of another event et+1 at time t + 1, which would
be hardly represented by our previous explaining and consequence attributes.
1 https://www.w3.org/OWL/.
2 https://www.w3.org/RDF/.

https://www.w3.org/OWL/
https://www.w3.org/RDF/
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Moreover, we can suppose that all the attributes from an event can have an
influence over all the attributes of the following events.

We propose, in this paper, an extension of our method dealing with both
causality and temporality constraints.

3 State of the Art

Both causality and temporality impose a direction to the relation between
attributes. For this reason, we have to consider how to take into account con-
straints while learning PRMs. We first study works on precedence constraints
and then how the temporality have been addressed in previous works.

3.1 Learning Under Constraints

Related works have established that using constraints while learning BNs brings
more efficient and accurate results. Parameters learning can be improved by
allowing users to specify their knowledge through constraints estimations and
priors [10]. In [2] an exact structure learning algorithm that uses data and
expert’s knowledge constraint is presented by defining two types of constraints.
In particular one of those identifies where arcs may or may not be included. In
[4] it is argued that combining analogical generalization and structure mapping
with statistical machine learning methods allows state-of-the-art performances
on standards tasks.

In the K2 algorithm [1], a complete ordering of the attributes is required
before learning a BN. In this way, the authors introduce precedence con-
straints between the attributes. If, in this order, an attribute A is before an
attribute B, then a precedence constraints is applied between those two from A
to B, meaning that during the learning we do not consider the possibility of a
relation from B to A. If a relation is found between A and B, then the direction
of this relation has to be from A to B. However K2 requires a complete knowl-
edge over all the different attributes precedences (since all attributes have to
be sorted), which is not always the case as we generally don’t know everything
about the domain. In this paper we present a method to learn with only partial
constraints.

3.2 Integrating Temporality

Temporality has been expressed in Markov models such as Markov chains (MCs,
[11]) or Hidden Markov models (HMMs, [11]). MC is a stochastic model describ-
ing a sequence of possible events in which the probability of each depends only
on the state of the previous one. HMM is a MC with unobserved states, mean-
ing that some attributes’ values can vary with an unknown attribute. Temporal
information can be gained from both of them: following the flow of time, we can
deduce that if an event happens at time t, then it can have an influence over all
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events that happen at time t + i. Moreover we can also deduce subjective inde-
pendence information between events: if an event only depends on the previous
one, then there is no relation between two events which are not consecutive.

However MC and HMM are limited in our case as they cannot handle our
need to represent numerous attributes and their relations in time. Both can be
extended by dynamic BNs (DBNs, [11]). Widely used to model sequential data,
in particular time-series, DBNs introduce the notion of relation between variables
over adjacent time steps. For instance, in [6] DBNs are used to model a long-term
simulation of clinical complications in type 1 diabetes. They define two models,
one Data-Driven only, and another designed with expert inputs. However, DBNs
impose to look at the same attributes and their evolution through time, which
is not our aim.

Moreover, we want to consider that every event can have an influence on the
attributes of the events that happen after it. This would allow us to better study
the possible influence of all attributes on the following ones, which is useful in
our problem where we want to assess the relations between attributes of different
events (and not only between attributes of consecutive events). This leads us to
define a new kind of model, we call it stack model as presented below.

4 Stack Model

4.1 Determining Precedence Constraints

Using [7] where we defined explaining and consequence attributes, we propose to
decompose the precedence constraints into two sub-constraints: the causal con-
straints and the temporal constraints. Causal constraints are information on
the relations between attributes of the type “The attribute A is a possible cause
for the attribute B”. Temporal constraint are information on the relations
between attributes of the type “The attribute A happens before the attribute B”.
These causal and temporal constraints both imply two things: (1) the value of
B can be explained by A (but it doesn’t have to); (2) B can never explain the
value of A.

Causal and temporal constraints are differentiated by their nature: tempo-
rality is immediate and objective (i.e. the past can influence the future and not
the contrary), while causality usually needs a supply of expert knowledge.

Temporal constraints. When possible, the temporal information is pro-
vided in the knowledge base through the time ontology3 that helps anchoring its
events in time. In some cases it is also possible to introduce temporal informa-
tion from other ways (e.g. directly from experts). In all cases we suppose that
attributes can be attached to a specific event in time, and as a consequence they
also contain temporal information.

Causal constraints. Causal information can be brought by experts or by the
ontology itself. In certain cases it is also possible to use statistical independence

3 https://www.w3.org/TR/owl-time/.

https://www.w3.org/TR/owl-time/
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tests such as χ2 test used for the construction of causal BNs in order to guess
some possible causal relations [13].

4.2 Description

The main idea of our stack model is that it is built in order to graphically
represent the two kinds of precedence constraints we defined in Sect. 4.1. If an
attribute is put higher in the stack then it has precedence constraint on all
attributes below it; if two attributes are on the same level then they do not have
precedence constraints.

It is also possible to encounter parallel events. In this case, we suppose we
have enough information from the knowledge base to differentiate the events, in
order to know which attribute correspond to which event. In this case, we define
paths for each parallel events. Events on the same path all have parenthood
links: temporal constraints can be established between them. On the contrary,
events that do not share the same parent events are on two separated paths, and
we suppose they cannot influence each other. As a consequence, there cannot be
precedence constraints between them, neither causal nor temporal.

Starting from a user’s assumption, the model construction is based on the
two operations described below4.

1. Defining temporal constraints. Groups of attributes that happen at
the same time are put at the same level. If they are from a same event, they are
put in a same stack; on the contrary if they are from parallel event we create
different paths, each with a stack, for each parallel event.

2. Defining causal constraints. Inside a stack some attributes might have
a causal influence over others. In order to express those causal constraints, we
sort the attributes such as higher attributes can explain lower attributes and
that attributes at the same level share no causal influence between each other.

An example of this construction is given in Fig. 2. We consider here four
events: one at time t1, two parallel at time t2 and one at time t3 (a). When
constructing the model we first only consider temporal constraints (b): two paths
are created with on one side a stack with the group of attributes A and on another
side two stacks with respectively the group of attributes B and C, the first being
above the second. Finally, a fourth stack is created below all the others, including
the group of attributes D. Temporal constraints are defined between the different
stacks: since the group B is not on the same path as A, no temporal constraint
is drawn between them. In the end, if needed, causal constraints are defined (c).
In our example, we suppose that our expert distinguishes between explaining
and consequence attributes in the group A, respectively subgroups A1 and A2.

In order to lighten the figure, arrows between groups of attributes inside
different stacks are not represented: however, if two stacks are linked, then it

4 For convenience and in order to ease the readability of the presentation we use
in this article a top-down construction (from temporality to causality). However
nothing prevents us to use the opposite bottom-up construction (from causality to
temporality).
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Fig. 2. (a) Example for a system with parallel events. (b) Definition of the temporal
constraints. (c) Definition of the causal constraints.

means that each attribute on the higher stack have a temporal constraint over
the lower.

4.3 From Stack Models to PRMs

The final model is used to construct a PRM’s relational schema, which defines the
classes and their attributes of the PRM. Each subgroup of attributes becomes
a class, which are linked together with reference slots following the different
precedence constraints. For instance in the model in Fig. 2 (c), it would lead to
five classes and six reference slots.

Once the relational schema is defined, the PRM can be learned using the
database B extracted from the knowledge base [8]. This PRM can then be instan-
tiated in order to obtain a BN representing our learned model. It will include
causal information as it was learned under precedence constraints; however, it is
not a complete causal BN considering that the learning of dependencies between
attributes inside the same group is dealt like a classical BN. In order to deal
with causal information, the EG is used: if an arc is oriented in it (meaning that
its orientation cannot be changed without changing the likelihood of the BN)
then it can mean that there is a causal relation.



Identifying Control Parameters in Cheese Fabrication 429

5 Experiment

5.1 Data Description

Considering the TrueFood project, the experts would like to model the different
relations between the attributes in order to explain the products at the end and
infer its characteristics. More particularly they want to check the formulated
assumption: “The temperature, ferments and type of milk have a causal influ-
ence on the potentially bioactive peptide content of the cheese and its sensory
properties”. Following the approach presented in [7] temperature, ferments and
type of milk are the only explaining attributes of the problem, while the other
are consequences. Since those three are fixed at the beginning, they correspond
to the control parameters.

The dataset is composed of data from three different steps that are part of a
cheese fabrication and tasting process: Step in the vat, Ripening and Mastication.

– Step in the vat: is described by three processing control parameters (Tem-
perature, Starters and Type of milk), and two measured (hardening and clot-
ting times).

– Ripening: is described by the measured value of five different concentrations
in cheese: butyric acid, propionic acid, acetic acid, free amino acids and free
amino groups.

– Mastication: In this step, a panel of 11 judges has evaluated each cheese
sample on 45 different criteria (e.g. spice aroma, sugar or fat perception).
Those sensory notes can be divided into two categories, texture of the cheese
(10 attributes) and flavor (35 attributes). The scores ranged from 0 to 10.

The times measured during the step in the vat are a pre-requisite to study
bioactive peptide contents, even if they do not represent their quantities. On
another hand the attributes measured during the ripening and the mastication
steps are useful to evaluate the cheese sensory properties.

5.2 Model Construction

A first descriptive analysis over the notes attributes during the mastication step
shows that some have a variance σ < 0.25. Given the standard variation cal-
culated by

√
σ, it means that for these attributes the variation over the whole

samples is less than ±0.5 points. We consider it to be too low to observe mean-
ingful variations among the different samples, and remove them from the studied
set, leaving 39 attributes (9 texture attributes and 30 flavor attributes).

In order to apply our method to this dataset, we first separate the attributes
per steps. We order them in stacks, following the temporal order: first Step in the
vat, then Ripening and then Mastication. Temporal constraints are then drawn.
Once this has been done, the only causal constraints that need to be introduced
are taken into account in order to separate the control attributes from the rest.
Temperature, Ferments and Type of Milk are stacked above the Hardening and
clotting times inside the same step.
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Type of milk

Hardening time
Clotting time

Concentrations (×5)

Scores (×39)

Fig. 3. Model constructed from the expert assumption.

The obtained model is presented in Fig. 3, where the different steps are under-
lined by the dashed squares and ×i denotes the number of attributes of the given
type.

5.3 Analysis

While analyzing the PRM we focus on two types of relations: the intra-step and
the inter-step relations. While the analysis of the intra-step relations in general
has already been tackled in our previous work (leading to causal information
analysis), the inter-step gives a whole new reading of the model. It indeed helps
us generate new information about the temporal aspect, in particular discovering
if some steps can explain all the other attributes, or, on the contrary, if a step
has no influence on the process. In our case, we would like to see in what extent
the control parameters are able to explain (in)directly the other attributes. As
a consequence we extend our study on inter-step relations, also including the
inter-subgroup relations between the control parameters and the two attributes
Solidifying time and Clotting time.

In order to illustrate our results, we consider three attributes A, B and C
with A a control parameter in a step, and B and C two attributes of the step
after (Fig. 4). When checking whether A can explain C, two cases are possible:

1. A has a complete or partial control over C. In the first case (Fig. 4
(a)) there exists a inter-step relation directly from A to C: it means that
knowing the state of A will give the maximum possible information on C.
In the second case (Fig. 4 (b)) the inter-step relation between A and C is
intercepted by other attributes, B in our example. Since there is no direct
relation between A and C, then knowing A will only give partial information
on C. Moreover, knowing B makes the knowledge of A obsolete, as B alone
is enough to have a complete information on C.
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2. A has no control over C. There are also two possible cases. The first (Fig. 4
(c)) is straight-forward: since there are no inter-step relations between A and
B nor C, then A has no control over C. In the second (Fig. 4 (d)) a v-structure
A → B ← C makes A and C independent: A and C are d-separated by B,
meaning that controlling A cannot influence C, however fixing B gives partial
information on both A and C.

A

B

C

(a)

A

B

C

(b)

A

B

C

(c)

A

B

C

(d)

Fig. 4. Possible cases encountered during the results analysis of the assumption “A
has an influence over C”.

It is important to note that we assume the direction of the relation between
A and B, C because we previously defined A as a control parameter. However,
since B and C are not control parameters, there is no precedence constraint
that indicates whether B has an influence on C or otherwise. In order to do this
analysis we, therefore, use the EG, that indicates whether the direction of the
relation is sure (i.e. changing this relation direction would modify the likelihood
of the learned BN). If a relation is oriented in the EG, we can suppose that this
orientation is due to the precedence constraints used during the learning that
brought causal information and, therefore, this relation orientation might be
causal. This is not however automatic, and relations orientation in the EG can
sometimes reflect other problem such as learning artifact or missing attributes.
If, finally, a relation is not oriented in the EG then we cannot assume causal
information from it. For the following we assume that, when talking about rela-
tions orientation, we are using the EG informations.

5.4 Results

The vast majority of the observed inter-steps relations found confirms the
experts assumption: “The temperature, ferments and type of milk have a
causal influence on the potentially bioactive peptide content of the cheese and
its sensory properties”. Some of them are directly explained, while others are
linked to attributes of the same group that are explained by the control param-
eters. Only three sensory notes are not linked at all to any parameter. Those
results and the number of found relations are summarized by Fig. 5.

While the study of the times during processing and concentrations is pretty
straight-forward, all being completely or partially explained by the control



432 M. Munch et al.

Temperature
Starters
Type of milk

Control parameters

Hardening time
Clotting time

Concentrations (×5)

Scores (×36) Notes (×3)

5

5

6

1

4

1

6

40

Fig. 5. Summary of the number of observed inter and intra step relations.

parameters, an interesting trend in the sensory notes attributes can be observed
while looking at the EG. Indeed we can notice that a large group of 21 flavor
attributes (over the 30) is d-separated from the control parameters by another
sensory attribute, meaning that this part is in fact equally independent from the
control parameters despite being part of the network. More generally we observe
in the EG a difference between flavor and texture attributes. Figure 6 shows an
excerpt of the learned EG where texture attributes are denoted by Ti (i ∈ [1, 9])
and flavor attributes are separated into two groups denoted by Fj (i ∈ [1, 30]).
This choice has been made in order to ease the reading: however one must keep
in mind that two relations between Fj and different Ti do not involve the same
attribute of Fj .

Flavor attributes in F1 are d-separated from the control parameters, and the
other in F2 are partially explained by them. Moreover when looking at F1 we
observe a large number of intra-step relations between them. This leads us to
assume that (1) they are highly correlated with each other and (2) their relations
are not causal due to the high number of attributes learned together without any
precedence constraints. On the contrary texture attributes are mostly directly
explained by the control parameters (especially the type of milk), and some are
partially explained by them. Most of them do not have intra-step relations with
each other as seen in Fig. 6. The two texture attributes not represented in the
network are related to time and concentration attributes and not directly linked
to the control parameters. These observations are validated by the experts: con-
sidering the milk differences in terms of production conditions and composition,
milk on the cheese texture was expected. In addition, flavor attributes are indeed
more likely to be correlated with each other.

Since nearly all flavor attributes are linked together, it could be interesting
to profile the cheeses with their different flavor values. This way, instead of
reasoning with all the numerous flavor attributes, we could directly check the
influence of the control parameter on the cheese type.
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T1

T2T8

T3 T4

T5

T6

T7

F1

F2

Fig. 6. Excerpt of the EG learned with Ti texture attributes and Fi groups of flavor
attributes. Grey attributes d-separates F1 from the control parameters.

6 Conclusion

In this article we present a new method able to help experts to study a domain
represented by a knowledge base. Our aim is to provide to the experts a method
to check the assumptions they can formulate on that domain by learning a
PRM that presents the different probabilistic relations between its attributes.
In order to guide this learning we also allow the experts to integrate causal
and temporal informations by defining precedence constraints. Considering the
TrueFood project we use our method to check the following assumption: “The
temperature, ferments and type of milk have a causal influence on the potentially
bioactive peptide content of the cheese and its sensory properties”.

To integrate precedence constraints, we extend our previous work, that
already included causal information, in order to include temporal information.
To do so, we define a new model, denoted by the stack model, where attributes
are organized so that higher ones can have a precedence constraint over the ones
below (i.e. they can be their cause). Using this model, we learn a PRM which,
once instantiated, gives us a BN we can use to check the assumption.

The learned BN gives us two ways of analysis. First, using its EG (a graph
that shows arcs whose direction is sure considering the BN structure), we can
check the assumption. Considering that our control parameters are fixed at the
beginning of the process, if a relation is found between them and an attribute,
then we can conclude that the parameters may control this attribute. Second,
once the model has been validated by the experts, it can be used to predict
results. For instance if we want to control the cheese texture scoresin order to
keep them in a certain range, we identify the control parameters we have to act
on.

In future work we want to study in more detail the validation and introspec-
tion of the learned model in order to improve our help to the user.
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Abstract. We analyse keystroke hold times from typing logs to detect
early signs of Parkinson’s disease. We develop a feature that captures the
dynamic variation between consecutive keystrokes and demonstrate that
it can be be used in a univariate model to perform classification with
AUC = 0.85 from only a few hundred keystrokes. This is a substantial
improvement on the current baseline. We argue that previously proposed
methods are based on overcomplicated models—our simpler method is
not only more elegant and transparent but also more effective.

1 Introduction

After Alzheimer’s, Parkinson’s disease (PD) is the world’s second most preva-
lent neurodegenerative disease [1]. Currently, diagnosis is based on a specialist’s
interpretation of neurological tests completed by the patient at a clinic [2]. This
procedure is time-consuming, expensive, subjective, and rather inaccurate (espe-
cially for identifying early stages of PD) [3].

Giancardo et al. [4] suggest that early PD can be detected through the anal-
ysis of typing logs, studying data obtained from 85 subjects (42 Parkinson’s,
43 control) each transcribing text for around 15 min. Subsequent analysis of the
keystroke dynamics focusses on the length of time between pressing and releas-
ing each key (hold time), a measure believed to be outside a subject’s conscious
control and independent of typing skills. The so-called neuroQWERTY index
(nQi) method is developed to classify a typing session as that of a Parkinson’s
sufferer or a control subject.

We regard this as a valuable line of research that demonstrates promising
results for detecting early PD. In this paper, however, we present results indi-
cating that the analysis presented in Ref. [4] is opaque and overly complicated
for the problem at hand. Following the philosophy that ‘less is more’, we find
that the classification performance of nQi can be equalled, and even surpassed,
by a far simpler and more easily reproducible methodology.

We begin in Sect. 2 by outlining the nQi formalism and results. This is
followed by an exploration of the basic features of the hold time data (Sect. 3),
c© Springer Nature Switzerland AG 2018
L. Soldatova et al. (Eds.): DS 2018, LNAI 11198, pp. 435–446, 2018.
https://doi.org/10.1007/978-3-030-01771-2_28
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and a demonstration that a univariate model can be used to straightforwardly
achieve classification performance equal to nQi (Sect. 4). In Sects. 5 and 6,
we develop more sophisticated dynamic features of the data that can be used,
again in a univariate model, to substantially outperform nQi. Section 7 discusses
a recent contribution to the literature [5], which also suffers from significant
overengineering and, more importantly, reports results we believe to be invalid.

2 Classification with neuroQWERTY Index

Let us briefly describe nQi and the datasets involved. These are labelled early
PD (those within five years of confirmed diagnosis: 18 Parkinson’s, 13 control)
and de novo PD (newly diagnosed and untreated: 24 Parkinson’s, 30 control).
Each dataset consists of a set of typing sessions. We use hn to denote the hold
time of the nth keystroke during a typing session, which has N keystrokes in
total. Both nQi and our proposed classification methods are concerned with the
one-dimensional time series h.

Reference [4] begins by partitioning each time series into non-overlapping
windows of length 90 s. We write h ≡ (h1,h2, . . . ,hI) to indicate this parti-
tioning, where I gives the total number of windows. Any hi with fewer than
30 elements is removed. Then, for each window i, a 7-dimensional feature vec-
tor xi is calculated for hi. Let qij be the jth quartile of the elements of hi, and
denote the interquartile range as Δqi ≡ qi3−qi1. Then xi consists of the following
features:

– The proportion of elements that are outliers, defined as hi
n < qi1 − 3

2Δqi or
hi
n > qi3 + 3

2Δqi.
– The skewness, given by (qi2 − qi1)/Δqi.
– The flight time between consecutive keystrokes.1

– The proportion of elements in hi that are in each of four equally-spaced bins
between 0 and 500ms.

Training is performed with an ensemble of 200 Linear ε-Support Vector
Regression models, where hyperparameters are selected using a grid search app-
roach on an external dataset. During testing, a value of nQi for each xi is calcu-
lated by applying all 200 regression models to xi and then finding the median
score, nQii. To arrive at a single nQi score for the typing session, these median
scores are then averaged over the I windows: nQi = 1

I

∑I
i=1 nQii.

To evaluate nQi, Giancardo et al. [4] perform cross-validation by training on
the early PD dataset and testing on the de novo PD dataset, and then vice-versa.
This yields a single prediction of nQi for each of the 85 subjects in the combined

1 As given, this will yield a number for each keystroke; it is not explained in Ref. [4] how
this measure is then aggregated over the window. Moreover, we note that, contrary
to the principles promoted by Giancardo et al., this measure appears to use more
than purely hold time data.
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dataset.2 Area under the Receiving Operating Characteristic curve (AUC) is
used to evaluate the binary classification of each subject as either Parkinson’s
sufferer or control subject.

In our work, we follow precisely the same evaluation strategy, so that our
classification results can be directly compared with those given in Ref. [4]. We
are able to reproduce AUC = 0.81 reported by Giancardo et al. for classification
using nQi.

Fig. 1. The distribution of hold times for each of the two datasets used, distinguishing
Parkinson’s sufferers from control subjects. Each half of the violins are normalised to
the same area. Dashed lines indicate the position of the lower quartile, median and
upper quartile. Hold times above 300ms are not shown here (corresponding to about
0.85% of the total data, and overwhelmingly from Parkinson’s sufferers).

3 Exploratory Analysis

We begin by performing initial analysis of the early PD and de novo PD datasets,
something that has not previously been presented in the literature. Figure 1
shows the distribution of all the hold times in each dataset, split between Parkin-
son’s and control subjects. Unsurprisingly, there is a clear shift towards longer
2 In fact, each subject in the early PD dataset produced two typing sessions. While

training or testing, each typing session is handled independently. If a subject has
produced multiple typing sessions then the average nQi is computed to produce a
single score.
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hold times for Parkinson’s sufferers, especially for the early PD dataset. The
plots also suggest that there is a greater variance in hold time for Parkinson’s
sufferers compared to control.

However, we are interested in classifying individual subjects rather than
groups as a whole. To probe the difference in distributions suggested by Fig. 1,
we calculate the hold time mean 〈h〉 ≡ 1

N

∑N
n=1 hn and standard deviation

σ(h) ≡ √〈h2〉 − 〈h〉2 for each subject. Figure 2 suggests that these statistics
could be used to classify at the level of individual subjects. There is a clear
trend towards Parkinson’s sufferers having higher keystroke hold time mean and
standard deviation. In particular, standard deviation appears to be a promising
candidate for a discriminatory statistic.

Fig. 2. The mean hold time 〈h〉 and standard deviation σ(h) for all users in the study.
Data from the early PD and de novo PD datasets are shown the same way. The average
(std) of σ(h) is 47 (18) for Parkinson’s and 29 (9) for control, suggesting the power of
this statistic as a discriminatory feature.
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4 Classification with Elementary Statistics

One might well wonder whether these basic statistics alone are sufficient to effec-
tively discriminate between Parkinson’s and control subjects. We perform Logis-
tic Regression using the features 〈h〉 and σ(h) for each subject using scikit-learn’s
default parameters [6] and immediately obtain a classification performance com-
parable to nQi. In fact, we obtain AUC = 0.82 using standard deviation alone
as a single feature (compared to AUC = 0.81 for nQi).3 Figure 3 and Table 1
show the performance of this univariate method with standard deviation fea-
ture, which we refer to as the Stdev model, along with the performance of nQi
and two other models which will be discussed in later sections. The classification
performance achieved using a single elementary statistical feature is very similar
to that obtained using nQi.

It is for this reason that we believe nQi is a contrived method for performing
the classification task. Let us highlight the differences between nQi and our Stdev
model:

– nQi splits the time series h for each user into several windows, calculates
features for each window separately, and then recombines statistics at the
end; we use a feature that uses the time series as a whole.

– nQi uses seven features that capture, in various ways, properties of the dis-
tribution of hold times;4 we use one feature. Furthermore, standard deviation
is an extremely well-known and transparent statistic.

– nQi uses an ensemble of 200 classifiers, with hyperparameters optimised using
an external dataset; we use a single Logistic Regression algorithm with no
optimisation of hyperparameters required.

Clearly the seven features of nQI capture more of the typing behaviour,
and these features could be used to paint a more complete picture of a sub-
ject. However, for the purposes of classification on the datasets provided, there
is no evidence to suggest that nQi outperforms the considerably simpler and
more elegant Stdev method. One can achieve strong classification performance
without the need to engineer particular statistical features, use anything beyond
hold times, or perform carefully optimised ensemble models. We emphasise that
the method we propose here has been evaluated using exactly the same cross-
validation strategy on the same data as nQi (as are all models discussed in this
paper).

Of course, this is not to say that performing a Logistic Regression with default
hyperparameters on a single feature is the best possible method. Indeed, we will
later formulate a method which substantially outperforms both the Stdev model
and nQi. We present the Stdev model in order to show that one may immediately

3 This classification performance is very similar to that obtained using using both 〈h〉
and σ(h) as features, whilst the performance using just 〈h〉 as a feature is substan-
tially lower.

4 We note again that, unlike the Stdev method, nQi actually appears to use informa-
tion about the flight time in addition to purely hold time data.
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and very straightforwardly obtain a baseline classification performance that is
comparable to the convoluted methods of nQi. We note that in a related paper on
smartphone typing data [7], a univariate model using an elementary statistical
feature (sum of covariances) was in fact found to outperform all of the more
complicated multivariate methods studied.

Fig. 3. The ROC curves for all the models evaluated in this paper. nQi values are taken
from Ref. [4] (and reproduced by us). The other three methods use a Logistic Regres-
sion algorithm with different features. Stdev and MACD correspond to the univariate
models with features σ(h) and 〈|Δ|〉 respectively. FRESH refers to the multivariate
model with the five most relevant time series features automatically extracted from
each training set. All models were evaluated using the same cross-validation strategy
as that used in Ref. [4] (training on the early PD dataset and testing on the de novo
PD dataset, and then vice-versa).

5 Feature Extraction

We now consider what features might be the most relevant for detecting early
PD. We have already seen that using a univariate method based on the standard
deviation yields strong classification performance, but can we do better by using
more sophisticated features and a multivariate model?

Recall that the data we are working with is a one-dimensional set h, whose
elements hn (n = 1, 2, . . . , N) are ordered according to the order of keystrokes
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Table 1. The performance of all the models evaluated in this paper, labelled as in
Fig. 3. We follow the same evaluation strategy as Ref. [4] by reporting values of the
confusion matrix and accuracy at the cut-off point determined by maximising Youden’s
J Statistic [8].

Model TP FN TN FP Accuracy AUC

nQi 30 12 36 7 0.76 0.81

Stdev 27 15 37 6 0.75 0.82

FRESH 36 6 26 17 0.73 0.80

MACD 34 8 35 8 0.81 0.85

recorded. Simple statistical measures such as standard deviation discard infor-
mation encoded in the ordering of the elements hn; typing behaviour might be
captured more effectively by measures that take into account the actual dynam-
ics of h.

There are countless features that one could extract from a time series, but not
all will be relevant for identifying discriminatory behaviour. We use the Feature
Extraction based on Scalable Hypothesis (FRESH) algorithm and associated
library tsfresh [9,10]. This characterises time series using a comprehensive set
of well-established features, including those that are ‘static’ (e.g. standard devi-
ation) and truly ‘dynamic’ (e.g. Fourier transform coefficients). The relevance of
each feature is evaluated by quantifying its significance for predicting the target
label (for us, Parkinson’s or control).

We perform a classification of the time series data with FRESH using the
following procedure. The training data is analysed to find the m most rele-
vant features for predicting whether the user has PD. These m features are
then extracted on the test data and used to perform classification using Logistic
Regression. Features are standardised by scaling to vanishing mean and unit
variance. By running this model on m = 1, 2, . . . , 10, we find that the best per-
formance is achieved by m = 5. The AUC for this is again comparable to nQi
and our univariate standard deviation method (see Fig. 3 for the ROC curve
and Table 1 for evaluation metrics).

Let us look at the features extracted by FRESH on the time series h. We
perform cross-validation based on two datasets (early PD and de novo PD), and
hence two different sets of m = 5 features are found as being the most relevant
during training. These are given in full in Table 2.

For both the early PD and the de novo PD datasets, FRESH finds that several
features given by the function change quantiles are highly relevant. This func-
tion aggregates consecutive differences between elements of h. More precisely,
we fix a corridor set by the quantiles ql and qh and take only those elements
for which both ql ≤ hn ≤ qh and ql ≤ hn+1 ≤ qh. Define Δn ≡ hn+1 − hn;
then the feature found by change quantiles is given by the aggregator func-
tion f agg applied to the set of all Δn (|Δn| when isabs is set). In other words,
we are analysing (a subset of) the differences in hold time between consecu-
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Table 2. The five most relevant features found by FRESH on the early PD and de
novo PD datasets. Features are given by the functions and parameters used to calculate
them with the tsfresh package [10].

Early PD

change quantiles(ql=0.8,qh=1.0,isabs=True,f agg=mean)

change quantiles(ql=0.0,qh=1.0,isabs=True,f agg=var)

spkt welch density(coeff=5)

variance

standard deviation

De novo PD

change quantiles(ql=0.6,qh=0.8,isabs=True,f agg=var)

change quantiles(ql=0.4,qh=1.0,isabs=True,f agg=mean)

change quantiles(ql=0.6,qh=1.0,isabs=True,f agg=mean)

change quantiles(ql=0.6,qh=0.8,isabs=False,f agg=var)

max langevin fixed point(r=30, m=3)

tive keystrokes. This captures a more complex element of variance that ‘static’
measures such as standard deviation do not (although it is worth noting that
standard deviation is in fact identified as a highly relevant feature for at least
the early PD dataset).

Given the thoroughness of the FRESH algorithm, which extracts several hun-
dred features, it is perhaps at first surprising that this multivariate method does
not significantly outperform the univariate method using standard deviation.
However, note that none of the most relevant features are common between
the two datasets. We are effectively suffering from overfitting: FRESH identi-
fies some rather obscure features that fit the training data very well but do
not generalise to the test data. Take, for example, the feature discovered using
spkt welch density, which is present in the early PD but not the de novo PD
dataset. This corresponds to the cross power spectral density at a particular fre-
quency after h has been transformed to the frequency domain. This is a feature
that happens to correlate strongly with the binary classification targets on the
early PD data, but that should clearly not be taken as a feature that truly cap-
tures a genuine difference between the typing behaviours of Parkinson’s sufferers
compared to control subjects.

6 Classification with Mean Absolute Consecutive
Difference

Using the analysis produced by FRESH, we believe that features based on
change quantiles are suitable for capturing the intricate dynamic behaviour of
our time series without overfitting. In particular, we take ql = 0.6 and qh = 1.0
to mark the corridor of hold times, i.e. we take only the elements of h for which
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both hn and hn+1 are in the 60th percentile. We then take the mean of the
absolute difference in hold time between these consecutive keystrokes to give the
feature 〈|Δ|〉 ≡ 1

N

∑N
n=1 |Δn|, where we recall that Δn ≡ hn+1 − hn. We refer

to this as the mean absolute consecutive difference (MACD).
Reference [4] notes that in order to identify Parkinson’s sufferers effectively,

it is necessary to capture transient bradykinesia effects that prevent the sub-
ject from lifting their fingers from keys in a consistent manner. However, static
features that describe the distribution of hold times do not yield such informa-
tion. In contrast, MACD captures precisely the dynamic variation in hold time
between one keystroke and the next. We restrict MACD to analysing hold times
in the 60th percentile as typing patterns involving longer hold times appear to
be particularly discriminatory.

Using MACD as a univariate feature and classifying with Logistic Regression,
we obtain the ROC curve and evaluation scores shown in Fig. 3 and Table 1. Cru-
cially, we find AUC = 0.85, significantly outperforming all the models previously
considered. In fact, using MACD, one can obtain effective classification without
needing to analyse every element of the hold time series h. In Fig. 4 we demon-
strate how classification performance depends on the number of keystrokes anal-
ysed. We truncate h after a certain number of elements and perform classification
according to the same scheme outlined above, using the MACD model. Figure 4
demonstrates that one may achieve very good performance (AUC > 0.80) from
analysing only 200 keystrokes in a typing session.

Fig. 4. The dependence of classification performance on the number of keystrokes
analysed. The x axis gives the length of the truncated time series h. In red (left y
axis) we show the AUC achieved by the MACD model operating on the truncated time
series; in blue (right y axis) we show the total number of keystrokes that are analysed
across all typing sessions in the whole dataset of 85 users.
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7 Tappy Study

Finally, we make some important remarks regarding the ‘Tappy’ dataset and
associated analysis performed in a recent study by Adams [5]. Some concern
peculiarities with the data; some concern the methods used during the anal-
ysis; and some concern the validity of the results. Although we believe that
Adams’ work should be of considerable interest to researchers, we were not able
to replicate the perfect evaluation results claimed. Other researchers have sim-
ilarly struggled to achieve the performance claimed by Adams [11]. Here we
suggest where there may be flaws in the analysis presented in Ref. [5]. Moreover,
we see once again the use of severely overcomplicated methods.

Fig. 5. Hold times for every keystroke used in the Tappy study, with a bin size of 1 ms,
indicating a peculiar form of noise affecting the data. Hold times greater than 300 ms
are not shown (corresponding to about 0.25% of the data). The inset plot zooms in on
hold times between 90ms and 100ms.

Again, we begin by simply plotting the distribution of hold times analysed
in the study (Fig. 5). As with the datasets associated with Ref. [4], keystroke
timing is recorded to an accuracy of 3ms. However, there appears to be some
artefact affecting the recorded times, so that certain hold times are very much
more likely than others. For example, a hold time of precisely 78.1ms accounts
for 9.5% of all the hold times recorded; overall, the 13 most common hold times
recorded account for more than 50% of the data. Adams uses features that should
not be unduly affected by the unnatural spikiness of the hold time distribution;
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we highlight these peculiarities for two reasons: firstly, to demonstrate the value
of performing data exploration, and secondly, as a caution to researchers that
future studies on similar problems may benefit from smoothing the data prior
to analysis.

Reference [5] performs the classification task of distinguishing Parkinson’s
sufferers from control based on both hold time and latency (the interval between
pressing one key and the next). These are analysed using elementary statistical
features describing the distributions, e.g. mean, standard deviation, skewness
and kurtosis, giving a total of 9 features for hold time and 18 for latency. As
Adams notes, given the dataset of 53 subjects (20 Parkinson’s, 33 control), this
large selection of features could easily lead to overfitting. As such, Linear Dis-
criminant Analysis (LDA) is performed on each set of features as a means of
dimensionality reduction to produce a single combined feature for hold time
and a single combined feature for latency. Each single combined feature is then
classified using an ensemble of eight separate models (Support Vector Machine,
Decision Tree Classifier, K-Nearest Neighbours, etc.), the results of which are
aggregated using a weighted average to produce an overall classification predic-
tion.

We believe that, much like Ref. [4], this is an overengineered approach. The
space produced by LDA is limited to one dimension (as constrained by the
rank of the between-classes scatter matrix in a binary classification problem).
Therefore the optimal decision criterion requires a single threshold value to be
established. The use of ensemble techniques to perform such a task is unnecessary
and overcomplicated.

Most importantly, however, we believe that the classification results of the
study are not reproducible. Adams reports a perfect cross-validated performance,
with every subject correctly classified as Parkinson’s or control (AUC = 1.00).
Based on our efforts to replicate the results, we find this to be wholly implausible
and suspect it is an error resulting from flaws in the data acquisition or analysis.
In particular, we speculate that the claimed perfect performance is the result of
erroneously performing the supervised dimensionality reduction method of LDA
on both the training and test data. This flaw is suggested by the description of
the pre-processing stage given in Ref. [5]. If this is indeed the case then it would
lead to gross overfitting of the data and hence an exaggerated AUC score for the
classification task.

8 Conclusion

We have presented a critical analysis of methods proposed in Refs. [4,5] for
detecting early signs of Parkinson’s disease from typing data. Whilst we believe
that such work offers exciting possibilities for improved healthcare, we find the
proposed methods to be overengineered and opaque. Moreover, the complexity
of the neuroQWERTY index model [4] is demonstrably unnecessary: we achieve
equal classification performance (AUC = 0.82) using the standard deviation as
the single feature in a Logistic Regression. By performing a thorough investi-
gation of more sophisticated time series features, we formulate the concept of
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mean absolute consecutive difference (MACD), which can be used as a single
feature to classify the data with AUC = 0.85. Importantly, we demonstrate that
such performance can be obtained from only a few hundred keystrokes, thereby
achieving state of the art results while using significantly fewer samples than pre-
vious techniques. We select relevant features from a huge range of complicated
time series features and find that multivariate models using up to such 10 fea-
tures do not outperform the univariate model using MACD by itself—sometimes
the simplest method is indeed the best.
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Abstract. We present SkyWriter, an intelligent smartphone gesture tracking and
recognition framework for free-form gestures. The design leverages anthropo-
morphic kinematics and device orientation to estimate the trajectory of complex
gestures instead of employing traditional acceleration based techniques. Orien-
tation data are transformed, using the kinematic model, to a 3D positional data
stream, which is flattened, scaled down, and curve fitted to produce a gesture trace
and a set of accompanying features for a support vector machine (SVM) classifier.
SVM is the main classifier we adopted but for the sake of comparison, we couple
our resultswith the hiddenMarkovmodels (HMM). In this experiment, a dataset of
size 1200 is collected from15participants that performed 5 instances for each of 16
distinct custom developed gestures after being instructed on how to handle the
device. User-dependent, user-independent, and hybrid/mixed learning scenarios
are used to evaluate the proposed design. This custom developed gesture set
achieved using SVM96.55%, 96.1%, and 97.75%average recognition rates across
all users for the respective learning scenarios.

Keywords: Support vector machines � Gesture recognition
Forward kinematics � Inverse kinematics
Hidden Markov models � Machine learning

1 Introduction

Gesture control [GestureTek] uses sensors that require line of sight operation which
pose challenges including computational complexity, energy requirements, robust
segmentation, sensitivity to light conditions, object occlusion, and line of sight (Prigge
2004) to name a few. With current smart phones typically equipped with a bevy of both
hardware (accelerometer, gyroscope, proximity) and software/virtual sensors (orienta-
tion), vision-based gesture detection and motion tracking challenges could be cir-
cumvented by employing inertial sensors instead. Coupled with machine learning
(ML), these sensors can enable more complex and meaningful motion control in mobile
platforms beyond tilts and shakes.

Gesture recognition leveraging ML techniques such as hidden Markov models
(HMM), finite state machines, dynamic time warping (DTW), data-driven template
matching, or feature based statistical classifiers have reported recognition rates above
90% on average in literature as reviewed in the Sect. 2. Though the most popular,
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HMM requires some knowledge of the dataset (specifically gesture complexity) to
configure the model with adequate states (Kauppila et al. 2007). Additionally, to create
more accurate probability distributions, HMM demands a higher number of training
samples per gesture (Kauppila et al. 2007; Pylvänäinen 2005; Kallio et al. 2003;
Khanna et al. 2015). Thus, we propose to use support vector machines (SVM) with
‘Sky Writer’, a smartphone gesture recognition system. Like (Zhang et al. 2011), our
framework leverages a fusion of inertial sensors which allows for user arm-pose
estimation when coupled with our proposed kinematics anthropomorphic model that
are also partly documented in our US patent application (Mitri 2016). This is presented
as an alternative to the conventional use of depth sensors for human pose estimation
e.g. (Zhang et al. 2011). Additionally, we designate the end effector of the kinematic
model as a virtual pen and employ Bezier curve fitting to extract control points as
features like (Chan et al. 2014). This unique combination of techniques (Fujioka et al.
2006) allows us to store a parametric version of a gesture that can be used for visual
feedback.

The rest of this manuscript is structured as follows: Sect. 2 exposes work related to
Sky Writer while Sect. 3 details Sky Writer framework. Section 4 elaborates on the
adopted methods and Sect. 5 presents the evaluation results. Finally, Sect. 6 concludes
the manuscript with follow on remarks.

2 Related Work

While there is no standard library of gestures for mobile platforms, there is common
ground with respect to the ML techniques employed with HMM being the most
popular and DTW a close second.

The work in Kauppila et al. (2007); Pylvänäinen (2005), Kallio (2003), Awad et al.
(2015), Zhang et al. (2011), Chan et al. (2014), Fujioka et al. (2006), N. Mitri et al.
(2016), Amma et al. (2012), Raffa et al. (2010), S. Choi et al. (2006), Liu et al. (2009),
Kratz et al. (2013), He et al. (2010), Wu et al. (2009), E. S. Choi et al. (2005), Fuccella
et al. (2015), Wobbrock et al. (2007) ignores trajectory estimation. The classifiers apply
their learning techniques on either raw or processed sensor data. Very few offer a
reconstructed visualization of the user-made gesture as in Cho et al. (2004) due to the
prevalence of accelerometer usage and accumulated drifting errors. Cho et al. (2004)
presented a gesture input device, Magic Wand, for free form gestures recorded using
inertial sensors. Acceleration and angular velocity were recorded and a trajectory
estimation algorithm was employed to project the gesture onto a 2D plane. Zero
velocity compensation was used to account for the error growth caused by double
integration. A Bayesian network (BN) was used with a stroke model for recognition
over predefined gesture classes and it achieved an average of 99.2 % writer indepen-
dent recognition rate using a database of 15 writers, 13 gestures, and 24 samples per
gesture.

Thus, gesture recognition on mobile/handheld devices has achieved good results
when simple gesture sets are employed. However, the choice of motion data is tradi-
tionally acceleration. Due to the associated drifting errors, most related work avoided
preprocessing and used raw sensor data for classification of gestures, making
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reconstruction of performed gestures infeasible. Compensation techniques that allow
for reconstruction as in Cho et al. (2004) exist but it is unclear how robust they are to
the variability in the scale of gestures and the time required for performing them.
Additionally, acceleration based tracking requires that the user be stationary since the
device is tracked with respect to a non-moving reference frame. Otherwise, tracked
trajectories would have to be processed to estimate and filter out secondary motion, a
process that is computationally expensive and error prone.

In this work, we explore the use of orientation data coupled with a constraint
system for motion tracking. We propose Sky Writer as a framework that leverages a
handheld device’s orientation and combines it with a constraint model based on human
kinematics to achieve “soft” trajectory estimation and gesture recognition. The
framework exploits the enhanced precision in orientation sensors to account for various
scales and times of gesturing. It allows the user to move while performing gestures
since the device is tracked with respect to the user’s shoulder, thus positioning itself
better in the field of portable on-the-go human-computer interaction (HCI).

3 System Overview

With Sky Writer, components of the pipeline are designed to extract meaningful
information from the orientation data of the device in such a way as to acquire a good
estimate of the device’s 3D position and consequently a reconstructed trajectory that
can be provided to the user as visual feedback. A block diagram of the system and its
components is shown in Fig. 1. The front end of the process is handled by a smart-
phone (Samsung S2) which is responsible for acquiring data and transferring it to a
backend server using WIFI. Sky Writer has two phases: Gesture Tracing Processing
and Gesture Classification.

3.1 Gesture Tracing Processing

Data Acquisition. For gesture recognition, Skywriter leverages device orientation,
specifically the rotation vector of the phone. On the Android platforms, the associated
sensor is software based and is implemented using a preconfigured extended Kalman
filter that fuses data from the accelerometer, gyroscope, and magnetometer sensors. The
rotation vector represents the world orientation of the phone and is a combination of the
axis of rotation represented by the unit vector K̂ = kx; ky; kz

� �
and the angle through

which the device was rotated around the axis, h. The three elements of the rotation
vector recorded at each sample are:

kxsinðh2Þ; kysinð
h
2
Þ; kzsinðh2Þ ð1Þ

Our android application collects the rotation vector values from the rotation sensor
sampled at approximately 90 Hz. With respect to the tracing and learning algorithms
and manual gesture recording, the user is prompted to touch and hold the display to
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record the data. On release, the collected data are sent via transmission control protocol
(TCP) to a server. Upon receiving the data packet, the data matrix is subsampled.
Sample counts of 100–200 provided fast processing while retaining enough informa-
tion. Next, the axis of rotation K̂ is obtained by normalizing each rotation vector
sample and is then converted to a rotation matrix using (2). We use the A

BR notation
here to represent the matrix describing the relative rotation of a coordinate system ‘B’
with respect to a coordinate frame ‘A’. Thus, worldphoneR describes the rotation of the phone
w.r.t the world frame.

K̂ ¼
kx
ky
kz

2
4

3
5 ! RbK hð Þ ¼ world

phoneR

¼
kx � kx � vhþ ch kx � ky � vh� kz � sh kz � kx � vhþ ky � sh

kx � ky � vhþ kz � sh ky � ky � vhþ ch kz � ky � vh� kx � sh
kx � kz � vh� ky � sh ky � kz � vhþ kx � sh kz � kz � vhþ ch

2
4

3
5 ð2Þ

where ch ¼ cosh; sh ¼ sinh, and vh ¼ 1� cosh.

Kinematic Constraint Model. Orientation data alone do not provide sufficient
information to allow for unique mapping to 3D position. When the object is considered
as an end effector to a joint chain, a correlation that is dependent on the degrees of
freedom (DOFs) associated with the chain is created. With this knowledge and the fact
that the device in motion is hand-held, we propose a method for extracting positional
data from orientation using a robotic model inspired by an anthropomorphic arm/joint
chain with limited degrees of freedom.

Theoretical Background. A manipulator is defined in our context as a chain of joints
connected by rigid links; akin to joints and bones in a skeletal frame (Fig. 3). We
follow the Denavit-Hartenberg notation (Craig 2004) where every link of the chain is
assigned four quantities. Two describe the link itself, while the other two describe its
relation to the neighboring links. These relational parameters are also dependent on the
choice of standard procedure followed in assigning frames to every joint of the
mechanism. As a rule, the z-axis of the frame is aligned with the axis of the joint. The

Fig. 1. System block diagram.
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latter axis is defined by the joint type. In our proposed model, this is the axis of
rotation. The x-axis is placed along the perpendicular line connecting two consecutive
joints. The y-axis is the result of the cross product of the two. Various intricacies are
involved in assigning frames and the assignment is not always unique. See Craig
(2004) for more details. Here, we provide a brief definition of the link parameters and
how they apply to our system. Let:

• ai = distance from Zi to Zi+1 measured along Xi;
• ai = angle from Zi to Zi+1 measured about Xi;
• di = distance from Xi − 1 to Xi measured along Zi;
• hi = angle from Xi-1 to Xi measured about Zi;

where i is the location of the joint in the chain starting with i = 0 being the root.
Defining these parameters for every link of a mechanism allows us to determine the
transformation matrix relating two consecutive joints i − 1 and i as:

i� 1
i
T ¼

chi �shi
shicai�1 chicai�1

0 ai�1

�sai�1 �sai�1di
shisai�1 chisai�1

0 0
cai�1 cai�1di
0 1

2
64

3
75 ð3Þ

and, the transformation matrix between any two joints of the hierarchy by multiplying
the individual transformations e.g. 0

NT ¼ 0
1T

1
2T

2
3T. . .

N�1
N T. This allows us to define the

relative position and orientation of any joint w.r.t any other joint.

Forward kinematics (FK) is the static geometrical problem of computing the
position and orientation of an end-effector given the parameters of all preceding joints
and links. Inverse kinematics (IK) is the problem of calculating all possible sets of link

Fig. 2. Attached rigid links with their corresponding frames and parameters.
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parameters that can be used to achieve a given position and orientation of an end-
effector (Craig 2004). We employ both notions in tandem here to estimate a smart
phone’s location in a user space given its orientation (Fig. 2).

Proposed model description. To manipulate a hand-held device in space, a user does
not need to engage all possible degrees of freedom (DOF). In fact, as few as 3 DOFs
can be used. The Sky Writer model is based on 4 DOFs (three in the shoulder, one in
the elbow) as shown in Fig. 4 with the associated link parameters listed in Table 1. In
Fig. 3, link lengths are not visualized accurately for clarity of representation. In
actuality, frames 0–3 have coinciding origins. Since non-uniqueness of solution is a
common challenge in IK, this restriction in movement (due to limited DOFs) allows us
to reduce the solution space for position estimation. The fewer the DOFs employed, the
fewer heuristics need to be enforced in order to retain a single unique solution.

Implementation. To extract positional information from the device’s orientation,
additional information is necessary. The readily available device’s orientation with
respect to the world frame is converted into the rotation matrix world

phoneR in Eq. (2);
signifying the rotation of “phone” in the “world” frame. To solve the trajectory esti-
mation problem, we propose attaching the device to the end effector of a joint chain

rooted at the user’s shoulder as depicted in Fig. 4. This applies the same constraints to
the phone that the hand abides by and therefore provides information for localization.
To that end, we place the phone in the frame of the root/shoulder frame (frame 0) and
use the compound effect of rotational transformations shown in Eq. (3):

0
phone

R ¼ 0
word

R � world
phoneR ð4Þ

Fig. 3. Illustrative kinematic model.

Table 1 Link Parameters.

i ai�1 ai�1 di�1 hi�1

1 0 0 0 h1
2 −90� 0 0 90�+h2
3 90� 0 0 h3
4 0 L1 0 h4
5 0 L2 0 -
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Equation (4) means the rotation of the phone with respect to the shoulder/root frame
is the compound rotation of the world frame’s rotation w.r.t to the root and the rotation
of the phone w.r.t. to the world frame. The latter piece of information is already

available while
0

word
R can be obtained from its transpose

word
0
R which relates to the

users facing direction w.r.t to North. This is of course hidden to us.
To surmount this challenge, we propose defining a fixed way to handle the device

in hand. The holding pose is depicted in Fig. 4. The device’s pointing direction can
now be used as a rough estimate of the user’s facing direction. With an initial
assumption of the two being perfectly aligned, an adaptive re-orientation is then per-
formed based on a continuity metric to achieve a better estimate. If the distance
between two consecutive estimated positions exceeds a pre-defined threshold, the

initial assumption is deemed false and modified. This resolves the missing
0

word
R: The

fixed handling reveals the rotation of the phone w.r.t the wrist
5

phone
R and subse-

quently w.r.t the elbow
4

phone
R if wrist rotations are disallowed. With that, all the

necessary information to derive the needed constraints for the mapping strategy
become available:

4
phone

R
0 1 0
�1 0 0
0 0 1

2
4

3
5 ð5Þ

0
4
R ¼ 0

phone
R � 4

phone
RT ¼

r11 r12 r13
r21 r22 r23
r31 r32 r33

2
4

3
5 ð6Þ

0
4
T ¼

0
4
R

t14
t24
t34

0 0 0 1

2
64

3
75 ð7Þ

r11 ¼ �c1s2c3c4 � s1s3c4 þ c1s2s3s4 � s1s4c3 ð8Þ

r12 ¼ c1s2c3s4 þ s1s3s4 þ c1s2s3c4 � s1c4c3 ð9Þ

r13 ¼ c1c2 ð10Þ

r21 ¼ �s1s2c3c4 þ c1s3c4 þ s1s2s3s4 þ c1s4c3 ð11Þ
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r22 ¼ s1s2c3c4 � c1s3s4 þ s1s2s3c4 þ c1c4c3 ð12Þ
r23 ¼ s1c2 ð13Þ
r31 ¼ �c2c3c4 þ c2s3s4 ¼ �c2c3þ 4 ð14Þ

r32 ¼ c2c2s4 þ c2s3c4 ¼ c2s3þ 4 ð15Þ

r33 ¼ �s2 ð16Þ

t14 ¼ �c1s2c3L1 � s1s3L1 ð17Þ

t24 ¼ �s1s2c3L1 þ c1s3L1 ð18Þ

t34 ¼ �c1c3L1 ð19Þ

where ci=si ¼ cosðhiÞ= sin hið Þ and t stands for translation. The next step is to use the
available information to make two passes along the joint hierarchy. The first IK pass
reveals the set of joint angles necessary to produce the recorded orientation of the
phone. From the previous equations, we can derive the following:

h1 ¼ arctanðr23; r13Þ ð20Þ

h2 ¼ arctan �r33;
r13
c1

� �
ð21Þ

h3 þ h4 ¼ arctanðr32
c2

;
�r31
c2

Þ ð22Þ

The final step in the IK pass is to solve for joints 3 and 4 whose rotation axes are
parallel and therefore act as a deterrent to a unique solution to the system at hand. For
that purpose, we propose forcing a coupling relation between the joints (i.e.
h4 ¼ wch3). wc acts as a coupling weight determining the proportional relation between
the joints. Any choice of wcis an assumption about the degree to which a user prefers
engaging his/her elbow to his/her shoulder while making a gesture. The system is
tolerant to a selection of weights since the end trace is warped uniformly and preserves

Fig. 4. Phone holding pose.
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its shape. Values of 1 and higher are noted to be more aligned with the principles of
natural motion. The system’s tolerance to a range of possible configurations extends to
the choices of L1 and L2, corresponding to the lengths of the upper arm and the
forearm respectively. This ties back to the implementation of motion tracking that we
refer to as “soft” trajectory estimation. Unlike systems like Kinect and Wii, Skywriter
does not demand point to point accuracy in device tracking. Instead, it is sufficient that
the general shape and readability of the gesture being performed be preserved (i.e. mild
warping due to non-optimal choices are tolerated). Thus, parameters like L1 and L2 can
be chosen generically instead of requiring the user to perform a laborious tuning phase
to derive system parameters after specific motions are done.

Next, the FK pass allows us to use the obtained angles to position the phone with
respect to the base frame attached to the shoulder. We require the translational com-
ponents of the transformation matrices. Up to this point, we had utilized 0

4Tfor all
derivations. Since the phone and the wrist are assumed to coincide in space, all that is
needed is to translate the elbow frame L2 units along its x-axis according to (23).

x
y
z

2
4

3
5 ¼

t14
t24
t34

2
4

3
5þ

r11
r21
r31

2
4

3
5 � L2 ð23Þ

Projection. Since most gestures are both visualized and used in 2D space, principal
component analysis (PCA) is used to project the trace along the axis of least variance.
PCA performs orthogonal transformations from a set of interrelated variables into a
new set of linearly uncorrelated Principal Components (PCs) ordered so that the first
PC accounts for the most variability in the data. The last PC is responsible for the least
variance and is therefore a good candidate for a projection axis. Since using all 3 PCs to
reframe the trace adds undesired rotations, we derive from the PC of least variance an
azimuth angle about z0 and rotate the trace accordingly before discarding its y-

dimension. This has the effect of flattening the gesture with respect to the virtual
vertical 2D drawing plane. Figure 5 shows an example of the projection method.

A less computationally expensive approach, better suited when the phone becomes
responsible for all necessary computations, is to take advantage of the phone’s pointing

Fig. 5. (a) 3D trace extracted from orientation data with 3rd PC/projection vector shown. (b) 2D
projection of trace using PCA for dimensionality reduction.
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direction. With the holding pose suggested, the user handles the phone much like s/he
would a pointing device with the pointing direction being that of the y-axis of the
phone (x-axis of the wrist/frame 5). The advantage here is that averaging the directional
vector over all collected samples provides an excellent estimate of a projection vector.
Also, since this vector is already computed as part of 0

4R, it is much less resource
intensive.

Feature Extraction. With the 3D gesture trajectory projected onto a planar surface,
the obtained 2D trace is processed for distinctive features. This places Sky Writer
between traditional gesture recognition techniques and handwritten character recog-
nition (HWR) techniques. We opt for a geometric feature extraction, which shies away
from standard global features extraction commonly used in HWR. We resort to a
parameterized Bezier curve fitting approach and make use of the obtained control
points. To achieve this fit, the 2D trace obtained after projection is first scaled and
centered in a square 64 � 64 pixel frame. This injects pseudo scale invariability into
the system, which is crucial for the generalization and accuracy of the learning algo-
rithm and the gesture prediction.

A Bezier curve can be used to model smooth scalable curves, commonly referred to
as paths in image editing. Although it has varying polynomial degrees, m, a Bezier
curve is typically cubic and generated using (24) as seen in Khan (2007):

q tið Þ ¼
Xm

k¼0

m
k

� �
Pkð1� tiÞm�ktki ; 0� ti � 1 ð24Þ

where m = 3 for cubic, q tið Þ is the interpolated point at parameter value ti, and Pk is the
kth control points. The advantage of utilizing Bezier curves is that they fit a data curve
with a smooth path defined by a small set of control points. The quality of the fit is
defined by its deviation from the original curve. We calculate this deviation using least
square error (Khan 2007).

Since cubic Bezier curves can only model 4-dimensional data vectors, segmenta-
tion is used to model larger data vectors. In Khan (2007), this is achieved by seg-
menting the input data using an initial set of breakpoints and defining an error ceiling.
If the error between the original points and the modeled curve is exceeded, the input
data are further segmented, thus producing more connected cubic curves. We opt for a
reversed implementation where the number of segments is fixed and the error ceiling is
set to infinity. This allows us to model gestures using a fixed number of control points
and therefore a fixed length feature vector, which is necessary for the learning algo-
rithm of SVM. Since the gesture set consists of relatively simple gestures, fixing
empirically the segmentation count to a small number provides us with a close fit and a
feature vector with manageable size to reduce unnecessary computations. Figure 6
shows an example of a gesture fitted using 10 segments. For our scenario, the fit retains
the integrity of the original shape while producing a 62-dimensional feature vector
made up of the x and y coordinates of the control points (31 in total) defining the cubic
segments.
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3.2 Kernel-Based SVM Gesture Classifier

Since Sky Writer is designed to classify for multiple gestures, we chose the one-
against-one multiclass SVM (OAO-MCSVM), a pair-wise classification method that
builds c(c-1)/2 binary SVM, each of which is used to discriminate two of the c classes.
OAO requires the evaluation of (c-1) SVM classifiers.

Our selection for SVM classifier is multifold. SVM offers a principled approach to
ML problems because of its mathematical foundation in statistical learning theory.
A SVM seeks to find the optimal parameters for a hyper-plane that acts as a separator
between different classes in a multi-dimensional feature space. Due to the formulation
of the objective function being solved, this hyper-plane is defined by a few support
vectors (SV) in such a way as to provide strong generalization for the classifier while
minimizing classification errors. SVM uses the kernel trick to map the data into a
higher-dimensional space before solving the ML machine learning task as a convex
optimization problem in which optima are found analytically. Of course, selection and
settings of the kernel function are crucial for SVM optimality (Awad 2015; Saab 2014).

4 Evaluation Methods

4.1 Gesture Set

To evaluate our recognition system, we aim for a gesture set that is universal with
functional gestures that are quite sophisticated. However, it is difficult to find among
relevant literature such a universal gesture set. Although some attempts have been
made in literature like (Ruiz et al. 2011), they still failed by design to meet our
criterion. We therefore elect to use our own gesture set while maintaining a design that
allows users to customize the system and supplement it with their own gestures. For our
gesture set, the rule of thumb is to adopt a gesture set that is concise enough for the user
to remember, and one that consists of gestures that intuitively fit the application
(meaningful gestures). Figure 7 shows the proposed gesture set consisting of 10 digits
and 6 additional shapes. This set enables features that range from speed dialing to
simple browser control (e.g. star for favorite, arrows for navigation, ‘S’ for auto-scroll)
to simplified kinect-like game control and others. Additionally, the inclusion of digits
allows us to compare against other works that utilized a digit only set.

Fig. 6. Bezier curve fit using 10 segments.
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4.2 A. Performance Evaluation of Sky Writer

Despite most smartphones being equipped with sufficient processing power to handle
relatively intensive tasks, maintaining low computational demands is still necessary to
conserve a device’s battery life or shift Sky Writer to computationally less powerful
devices such as smartwatches. In this direction, evaluating latency is important as it
affects the choice of hardware and the sampling rate, which is related to the accuracy of
the results obtained. To achieve that, we measure the number of operations of Sky
Writer’s major stages. The main stages are as follows: OrientToPosition maps the 3D
orientation of the device to 3D position. ProjectTrace converts the captured gesture
from 3D to 2D. Pixelize creates the 64 � 64 pixel frame on which the 2D gesture trace
is rendered. The last preprocessing stage is Bezier curve fitting for feature extraction.
Instead of detailing the number of operations required during OrientToPosition and
Bezier fitting, we measure runtime in milliseconds, calculated as a function of the
number of available samples as shown in Sect. 5.A.

4.3 Data Collection

Participants. Fifteen participants (all students among which are four males, with
average age 25.67 and a standard deviation of 7.02) were asked to supply gesture
samples. Because this project aims first at providing a proof of concept that such a
system is promising, we tapped into the resources available on campus.

Procedure. Participants were given a few minutes to get acquainted with how to start
recording their gestures as well as get familiar with the handling limitations. Due to the
device’s learning curve, not all user attempts resulted in the expected shape being
traced. The samples were therefore categorized as “hits” and “misses”. Misses were
gestures that were either significantly clipped at the start or at the end or gestures that,
due to the user’s lack of experience with the device, turned out drastically misshapen to
the point of affecting readability. Users were therefore asked to make as many gestures
as necessary to acquire 5 hits. The 5 hits were collected into one data set while all
attempts were binned in another. Specifically, a dataset of size 1200 was collected from
15 participants that performed 5 hits for each of 16 unique gestures. Finally, the miss
rate associated with every user was recorded as well for further analysis.

Fig. 7. Gesture set for digits and six gesture codes for shapes
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Learning Scenarios. For Sky Writer’s evaluation, we adopt multiple learning sce-
narios. While most of the literature considers either user-dependent or user-independent
learning, we include both and offer a hybrid third option that combines both. In all
scenarios, the same data set is used, but is partitioned and treated uniquely. We rely on
k fold cross validation (CV) as it is widely used for system evaluation in the ML
communities. To classify the gesture, a trace is compared to the contents of a training
database since it is supervised learning and analyzed by the learning module of SVM
before a label is assigned to the gesture. The performance of the system is calculated as
the resultant error between the predicted gesture label and its true one.

User-dependent. The user is asked to provide sample gestures to train the learning
model. For evaluation, each user set is partitioned to create training and testing sets and
validated using 5-fold cross-validation. Sky Writer is trained on 4 samples of each
gesture class and tested on the 5th. This is repeated 5 times so that each sample is used
for testing once.

User-independent. In user-independent learning, the user is not expected to train the
system before it can be used. The system is trained using data from 14 users and then
tested it on the 15th user. Training data here are referred to as community data.

Mixed. The mixed scenario is a combination of both user-dependent and user-
independent learning. Here, the user is expected to provide training data for the system
to learn from. For evaluation, user data are partitioned using 5-fold cross validation.
The resulting training partitions are supplemented by data collected from other users,
community data. Testing is then performed using the user’s testing folds.

4.4 Classifiers Used

SVM is used as the main classifier for its superior generalization ability. Additionally,
we offer a glimpse into the performance of HMM. For that purpose, a 13 state HMM
was coupled with an added encoding scheme. For the latter, the tangential direction of
gesture segments was discretized as described in Elmezain et al. (2008) and used to
create a feature vector that fed into the HMMmodel. Both number of states and number
of discrete directions were chosen via a rough grid search. Similarly, the SVM models
were optimized using a grid search for basis function and regularization parameters.

5 Evaluation Results

5.1 A. Computational Performance

For today’s mobile processors, the computational demand of Skywriter is a non-issue
especially when considering system on chips (SoCs) in flag ship phones. As for
smartwatches, we present the Apple Watch as an example with its S1 processor running
at 520 MHz and its PowerVR SGX543 GPU (Voica 2014), a combination of low
power hardware with processing power rivaling phones only a few generations old.
Table 2 shows estimates of the number of operations required by Sky Writer’s major
stages where N stands for the number of samples used.
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OrientToPosition is by far the most demanding of the major processing stages.
Measured against current hardware, nonetheless, it does not pose a challenge to user
experience. When tested on a galaxy S2, negligible time was observed between
releasing the phone at the end of the gesture and the gesture being drawn on screen. The
latency in play here involves all three processing stages. A similarly low latency was
noted for recognition. This is promising to consider the hardware used in this prototype.

As for the last preprocessing stage, i.e. the Bezier curve fitting, Fig. 8 shows the run
time analysis for the function using a 2.0 GHz i7 PC with 16 GB of RAM. For
comparison purposes, the run-time plot of the OrientToPosition function is plotted,
verifying its linear growth. While the curve fitting algorithm is of order O(N), the graph
reveals a constant run-time. The reason is the fact that the Pixelize function reframes
the trace in a square pixel grid uses interpolation to fill the trace. This over-samples the
trace to a number of points that does not vary significantly for the same gesture. Thus,
the recorded times do not obey the expected growth of the algorithm. Hyper-sampling
improves classification accuracy by providing the curve fitting procedure with enough
points to produce break points that are quasi-uniformly spaced.

5.2 Example User Data

Figure 9 shows examples of samples provided by one of the users as plotted at the
server side. This user was selected because his resulting trajectories are smooth and
highly legible. Figure 10 shows an example of more complex traces (complete names)
that Skywriter can generate as seen on the client side (phone screenshot).

Table 2 Computational demand per selected function

Function Total operations

OrientToPosition 1200N+73
ProjectTrace 64+8N
Pixelize 54+22N

Fig. 8. Runtime (in milliseconds) vs. number of samples used.

Fig. 9. Samples of gestures traced by one user.
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On the other hand,when the testing device ismishandled, some of the generated traces
were clipped drastically at both ends. In more problematic cases where the phone’s pose
limitationswere not respected, significant warping of the gestureswas observed as seen in
Fig. 11. Such data are treated as outliers and not included into the data set.

5.3 Learning Results

Accuracy results and standard deviation of using the proposed gesture set and a digit-
only version of SVM for 15 users are reported for the different learning scenarios
(Figs. 12, 13 14). The average over all users of the entire gesture set and of the digit-
only set for SVM is referred to as “AVE” in the figures and similarly the average over
all users for HMM is referred to as “HMM” in the aforementioned figures. Moreover,
in Figs. 12 and 13 the accuracy results are compared to the results of digit-only gesture
set of S. Choi et al. (2006) (referred to in the figures as “S. Choi”).

User-dependent. Figure 12 summarizes the results for user-dependent learning. For
the entire set, accuracies above 93.75% are recorded for all users with rates as high as
99.25% for users 13 and 14. With digits only, the lowest accuracy is 90% while the
highest is 100%. On average, the 2 sets (gesture and digits-only sets) achieved accuracy
rates of 96.55±0.33% and 96.56±0.95% respectively. As for HMM, the entire gesture
set achieved an average rate of 71.66±2.58% with a minimum of 61% and a maximum
of 83% while the digit-only set scored higher with 76.53±3.57% with a minimum of
65.2% and a maximum of 90.4%. Our results are shy of some of the results noted in
relevant work. Namely, S. Choi et al. (2006) claimed a rate of 100% for the user-
dependent case using HMM with velocity and acceleration data. We attribute this to the
fact that their digit only dataset consisted of shapes that were more distinguishable than
ours. This is especially relevant to our HMM results since the combination of more
complex gestures and a limited training data set lead to subpar performance.

Fig. 10. Examples of full names generated by Skywriter.

Fig. 11. Samples of gestures categorized as “misses”.
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User-independent. Using SVM under the user-independent setup, accuracy rates
ranging between 88.75% and 100% were recorded for all gestures and between 93.6%
and 100% for the digit only set as seen in Fig. 13. On average, the two sets achieved
accuracy rates of 96.4±0.31% and 97.46±0.51% respectively. This is a minor drop of
0.15% for the entire set but an increase of 0.90% for digits. Both are significantly
higher than the 90.2% achieved by S. Choi et al. (2006) for this scenario using DTW.

HMM benefits from the larger training data set. The entire gesture set achieved an
average rate of 90.26±1.85% with a minimum of 74.75% and a maximum of 96.5%
while the digit-only set achieved 90.82±2.39% with a minimum of 81.6% and a
maximum of 97.2%. Both results are significantly better than the user dependent
scenario with a margin of 20+%.

While not the expected result, the rates achieved here for the independent case are
very promising. With sufficiently diverse independent training in the back-end, the user
is not required to perform any training for the system to perform well.

Mixed/Hybrid. Figure 14 shows per user accuracy rates with the mixed strategy. With
overall average rates of 97.75% and 97.66% with SVM and 93.83% and 94.66% with
HMM for the entire gesture set and the digit set respectively, it’s clear that this strategy
provides the best performance even though some users took a minor hit in accuracy
rates. This is especially true for our HMM model which achieved an increase of
22.17% and 18.3% for the respective sets in comparison to the user dependent case.

Fig. 12. Accuracy results (a) and standard deviation (b) for the user-dependent case. Results are
shown per user for both full set and digits-only. A user average is compared to the results of [S.
Choi et al. 2006].

Fig. 13. Accuracy results (a) and standard deviation (b) for the user-independent case, for both
full set and digits-only. A user average is compared to the results of [S. Choi et al. 2006].
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Combining both “community” data and “self” data had an interesting effect here.
For some users, the classifier could perform better with more information provided by
the community. That information aided the classifier in creating a better model for the
gesture classes. Specifically, we consider user 9 for whom accuracy took a sharp dip for
the independent scenario. Despite the “community” data strongly biasing the learning
model, a few training samples from the users were enough to disambiguate some
problematic gestures, namely decreasing the misclassifications of ‘S’ and ‘6’. For other
users, the former information acted as a minor hindrance: the user’s own data did not
coincide with the community norm enough. Including gestural data from others seemed
to have biased the model away from the user’s own data.

6 Conclusion

Sky Writer uses a novel combination of device orientation and kinematic inspired
constraints to estimate the trajectory of the device in a virtual 2D drawing plane

With promising results proving the applicability orientation data for gesture tracing
in mobile platforms, future work needs to focus on refining the workflow to ensure
great user experience. This is especially important given the wide array of applications
Skywriter can evolve into and inspire like digital signature generation and cursive letter
tracing and recognition. The suggested workflow could also be even adapted to study
its applicability to fall detection which is an active research area. A switch to a
smartwatch form factor to improve usability accompanied by a comprehensive per-
formance analysis that addresses cost, latency, power consumption, and availability of
minimum hardware requirements in modern smart-devices will be the target of follow
up work; especially that smartwatchs, according to recent specs (SmartWatchr 2015),
are becoming more powerful in terms of performance and functionality (1.2 GHz CPU,
8 GB storage and several sophisticated sensors).
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Abstract. Parkinson’s disease is a neurodegenerative disease affecting
people worldwide. Since the reasons for Parkinson’s disease are still
unknown and currently there is no cure for the disease, the manage-
ment of the disease is directed towards handling of the underlying symp-
toms with antiparkinson medications. In this paper, we present a method
for visualization of the patients’ overall status and their antiparkinson
medications therapy. The purpose of the proposed visualization method
is multi-fold: understanding the clinicians’ decisions for therapy modi-
fications, identification of the underlying guidelines for management of
Parkinson’s disease, as well as identifying treatment differences between
groups of patients. The resulting patterns of disease progression show
that there are differences between male and female patients.

Keywords: Data mining · Parkinson’s disease · Disease progression
Therapy modifications · Visualization

1 Introduction

Parkinson’s disease is the second most common neurodegenerative disease after
Alzheimer’s disease. It is connected to the decreased levels of dopamine and
it affects the central nervous system. Symptoms mostly associated with Parkin-
son’s disease include bradykinesia, tremor, rigidity, and instability. In addition to
the motor symptoms, patients also experience sleeping, behavioral, and mental
problems. These symptoms significantly affect the quality of life of the patients
and of their families.

The cause of Parkinson’s disease is still unknown. Currently, there is no cure
for the disease and the treatment of Parkinson’s disease patients is directed
towards management of the symptoms using antiparkinson medications. These
medications can be grouped into three groups: levodopa, dopamine agonists,
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and MAO-B inhibitors. Their role is to help regulate the patients’ dopamine
levels. The prolonged use of antiparkinson medications can result in side effects,
prompting the clinicians to try and find a personalized balance of different
antiparkinson medications for each patient, which will offer a good trade-off
between controlling the Parkinson’s disease symptoms and avoiding the possible
side effects.

Recent data mining research has addressed the issue of both disease progres-
sion and changes in antiparkinson medications therapies. Valmarska et al. [22]
use clustering and analysis of short time series to determine patterns of disease
progression and patterns of medications change. This work is followed by ana-
lyzing the symptoms’ influence on disease progression and by analyzing how the
patients’ antiparkinson medications therapy changes as a result of the status of
the analyzed symptoms [21].

Visual representations of medical data can come in various shapes and forms.
Kosara and Miksch [8] reviewed visualization techniques from the perspective of
the application: visualizing measured data, visualizing events or incidents, and
planning actions (therapeutic steps). Medical measurements of patients condi-
tion and symptoms occurrence carry important information for finding disease
causes and preparing therapies. A simple representation of the recorded mea-
sured data, named a time line [20], is by drawing a line during the occurrence
of the symptom.

LifeLines [12] is an approach that develops this idea by drawing lines for dif-
ferent types of symptoms and incidents in order to visualize the patients’ personal
health histories. To the best of our knowledge, no research has been performed
in the Parkinson’s disease domain, that would allow to visualize and analyze the
changes of the overall patient’s disease status in relation with the actions the
clinicians take to keep the patient’s status stable as long as possible. In this work
we combine the LifeLines method for visualization with additional visualization
shapes in order to visualize patterns of disease progression and therapy modi-
fications of Parkinson’s disease patients. For comprehensibility reasons, due to
the vast number of symptoms associated with Parkinson’s disease, we decided
to include only information about patients’ overall status.

We address this problem by presenting a method for visualization of the
changes of the patients’ overall status and the corresponding therapy modifi-
cations. This study builds upon our previous research [22] where the overall
status of the patients is represented by their assignment to clusters. We combine
the LifeLines method for visualization with the building block information from
[22] in order to showcase how the overall status of Parkinson’s disease patients
change. The proposed visualization can provide comprehensible insights into the
clinicians’ decisions for therapy modifications. The graphical representation of
both the patients’ status and their therapy with antiparkinson medications can
reveal the causal nature of the patient’s status and the changes in the prescribed
medications therapy. The analysis of the potential causal interaction between the
patients’ condition and their therapy modifications may reveal the underlying
guidelines for treatment of Parkinson’s disease. However, a deeper analysis of the
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antiparkinson medications therapies can reveal other regularities or phenomena,
given that the clinicians base their decision for patient’s treatment both on the
existing medical guidelines as well as on the patient’s preferences, given that
some patients actually request an immediate treatment of the symptoms while
others are not necessarily very bothered by them. To this end, our study explic-
itly reveals some differences between the treatment of male and female patients,
which were previously not explicitly known.

The visualization of patients’ Parkinson’s disease progression and the cor-
responding antiparkinson medications treatment has been appreciated by the
clinicians, as it offers them the opportunity to visually examine how the status
of a particular patient has changed in previous visits and allows them to easily
find out which treatments have been suitable or unsuccessful for the stabilization
of the patient’s status. The later can be used to assist the clinicians when consid-
ering future therapy modifications. In future work, we will include the possibility
for the users to show the severity of the chosen symptoms, thus offering even
deeper insights into the patients’ status.

The paper is structured as follows. In Sect. 2 we give a short overview of
the research closely related to our work. Section 3 outlines the data used in
the analysis. In Sect. 4 we present the proposed visualization methodology and
the visualization results through an illustrative use case. Section 5 presents the
analysis of disease progression patterns of male and female patients. We conclude
by presenting the plans for further work in Sect. 6.

2 Background

Parkinson’s disease is a neurodegenerative disease. The status of the patients will
change as the disease progresses. The progression of the disease and the actual
overall status of the patients through time is mostly dependent on the natural
progression of the disease and the therapy with antiparkinson medications.

The issue of Parkinson’s disease progression in the data mining domain is only
partially explored. The exception is the work of Tsanas et al. [15–19] addressing
the Parkinson’s disease progression in terms of the patients’ motor and overall
UPDRS (Unified Parkinson’s Disease Rating Scale) score. Their evaluation of
Parkinson’s disease progression is performed on data from non-invasive speech
tests for a six months period, during which all of the patients were off their
antiparkinson medications.

To the best of our knowledge, the problem of Parkinson’s disease progression
over a longer period of time in combination with the patients’ antiparkinson
medications therapy was addressed only in our own past research [22,23] that
investigates the progression of Parkinson’s disease by analyzing short time series
data, where the patients’ overall status is determined by data clustering. Clus-
tering is performed on the so-called merged data set that consists of sums of
symptoms severity scores assessing different aspects of the patients’ life. In this
research, it was shown that the patients can be divided into three patient groups,
which can be ordered according to the severity of the patients’ motor status. The
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overall status of the patients will change over time. In [22] this change is reflected
by assignment of patients to clusters and the patterns of disease progression are
determined by using skip-grams [7].

The issue of dosage modifications of antiparkinson medications is addressed in
our past work [21,22]: in [21] we used predictive clustering trees [1,14] to uncover
how particular symptoms affect the therapy modifications for Parkinson’s disease
patients, while in [22] we explored the aggregate medications dosage changes that
lead to improvement or worsening of the patients’ overall status.

3 Parkinson’s Disease Data Set

In this study, we use the PPMI data collection [9] gathered in the observational
clinical study to verify progression markers in Parkinson’s disease. The PPMI
data collection consists of data sets describing different aspects of the patients’
daily life. Below we describe the selection of PPMI data used in this study.

3.1 Symptoms Data

The severity of patients’ symptoms and the overall quality of life of Parkinson’s
disease patients is determined through several standardized questionnaires. The
most widely used questionnaire is the Movement Disorder Society (MDS) spon-
sored revision of Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [6].
It is a four-part questionnaire addressing ‘non-motor experiences of daily liv-
ing’ (Part I, subpart 1 and subpart 2), ‘motor experiences of daily living’ (Part
II), ’motor examination’ (Part III), and ’motor complications’ (Part IV). The
MDS-UPDRS questionnaire consists of 65 questions, each addressing a particu-
lar symptom. Each question is anchored with five responses that are linked to
commonly accepted clinical terms: 0 = normal (patient’s condition is normal,
symptom is not present), 1 = slight (symptom is present and has a slight influ-
ence on the patient’s quality of life), 2 = mild, 3 = moderate, and 4 = severe
(symptom is present and severely affects the normal and independent functioning
of the patient, i.e. her quality of life is significantly decreased).

The Montreal Cognitive Assessment (MoCA) [2] is a rapid screening instru-
ment for mild cognitive dysfunction. It consists of 11 questions, designed to assess
different cognitive domains: attention and concentration, executive functions,
memory, language, visuoconstructional skills, conceptual thinking, calculations,
and orientation.

Scales for Outcomes in Parkinson’s disease – Autonomic (SCOPA-AUT) is
a specific scale to assess autonomic dysfunction in Parkinson’s disease patients
[24]. Physical Activity Scale for the Elderly (PASE) [25] is a questionnaire which
is a practical and widely used approach for physical activity assessment in epi-
demiologic investigations.

The above data sets are periodically updated to allow the clinicians to moni-
tor patients’ disease development over time. Answers to the questions from each
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questionnaire form the vectors of attribute values. All of the considered ques-
tions have ordered values, and—with the exception of questions from MoCA and
PASE—increased values suggest higher symptom severity and decreased quality
of life.

The symptoms data used in this study are represented in a single data table
and constructed by using the sums of values of attributes of the following data
sets: MDS-UPDRS Part I (subpart 1 and subpart 2), Part II, Part III, MoCA,
PASE, and SCOPA-AUT. Goetz et al. [5] use sums of symptoms values as an
overall severity measure of a given aspect of Parkinson’s disease. Similarly, we
use sums of attribute values from different data sets to present the overall status
of patients concerning respective aspects of their everyday living. Table 1 gives
a short description of the attributes used for determining the overall status of
the patients.

Table 1. Characteristics of the attributes used to determine the patients’ overall status.

Attribute Questionnaire Value range

NP1SUM MDS-UPDRS Part I 0–24

NP1PSUM MDS-UPDRS Part Ip 0–28

NP2PSUM MDS-UPDRS Part II 0–52

NP3SUM MDS-UPDRS Part III 0–140

MCATOT MoCA 0–30

PASESUM PASE 7–14

SCOPASUM SCOPA-AUT 0–63

The overall status of the patients is determined using clustering on the
merged data set. Description of the merged data set and the process of deter-
mining the overall status of the patients can be found in [22].

3.2 Medications Data

The PPMI data collection offers information about all of the concomitant medi-
cations that the patients used during their involvement in the study. The medi-
cations data in the concomitant medications log are described by their name, the
medical condition they are prescribed for, as well as the time when the patient
started and (if) ended the medications therapy. In our research, we concentrate
only on the patients’ therapy with antiparkinson medications. The main fami-
lies of drugs used for treating the symptoms of Parkinson’s disease are levodopa,
dopamine agonists, and MAO-B inhibitors [10]. Dosages of PD medications are
translated into a common Levodopa Equivalent Daily Dosage (LEDD) which
allows for comparison of different therapies (different medications with person-
alized daily plans of intake). We visualize the medications data by their World
Health Organization (WHO) name, the group they belong to, the dosage in
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LEDD, the date when the therapy was introduced, and the date when the ther-
apy has stopped. In addition to the regular visits, clinicians do phone call-ups
to patients in order to stay informed of their status. If necessary, they modify
the therapy between visits in order to control and stabilize the status of the
patients. The concomitant medications log contains medications data with the
appropriate LEDD values for 380 patients.

Fig. 1. Methodology for PPMI patients’ overall status and medications therapy visu-
alization.

4 Visualization: Methodology and Use Case

The proposed visualization methodology builds on the Parkinson’s disease
patients overall status corresponding to one of the three disease severity groups
[22], which is used for automated visualization of the status and the antiparkin-
son medications therapies of 380 patients from the PPMI study. The visualization
method is implemented in Python using the ReportLab toolkit.1

4.1 Methodology

The proposed methodology for visualizing the patients’ status and their medi-
cations therapy is outlined in Fig. 1. The methodology is based on the patients’
1 The visualization method is closely related to the PPMI data and the cluster label

results from [22]. As the permission to use the PPMI data can be obtained only
from www.ppmi-info.org/data, we cannot share the complete solution but the code
is available upon request to the first author of the paper.

www.ppmi-info.org/data
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overall status data from [22], graphically presented in the upper part of the
figure. The procedure consists of clustering of patients into groups with simi-
lar symptoms based on PPMI data and describing the characteristics of these
groups by applying classification rule learning algorithms. The ultimate cluster
validation and ordering are done by the experts.

For each patient, the patient’s overall status on a particular visit to the clin-
ician is determined by the patient’s assignment to one of the three clusters. The
patients belonging to cluster 0 are considered to have a good overall status. The
rules used to describe the clusters indicated that cluster 0 is mostly composed
of patients whose sum of motor symptoms severity (sum of symptoms sever-
ity from MDS-UPDRS Part III) is under 22. Cluster 2 corresponds to patients
whose sum of motor symptoms severity exceeded 42, indicating a very bad over-
all status of the patients. The status of patients assigned to cluster 1 is worse
than the status of patients assigned to cluster 0 and better than the overall
status of the patients assigned to cluster 2. The cluster crossing between two
consecutive visits is indicated by colored arrows—red indicating that the status
of the patients has worsened, green suggesting an improvement of the patient’s
overall status, and blue arrows implying that the overall status of the patient
between the corresponding consecutive visits has stayed unchanged.

For each patient, we also draw the antiparkinson medications that the patient
is taking during the recorded visits. In the PPMI concomitant medications log,
the patients’ medications therapies are described with the date when the patient
has started the therapy, the date the particular therapy has ended, the medi-
cation’s WHO name, and the corresponding LEDD value. The medications are
arranged according to the antiparkinson medications group they belong to. In our
visualization, the medications groups are indicated by color—in red we present
the levodopa based medications, dopamine agonists are presented in green, while
we present the MAO-B inhibitors using blue lines. The LEDD values are pre-
sented with the thickness of the lines. The start and the end of a particular
therapy are indicated by the start and the end of the corresponding line. We
look at whether there are differences in the disease progression patterns of male
and female patients. For this purpose, we adopted the skip-gram approach pre-
sented in detail in [22].

4.2 Use Case

The visualization of patients’ status and their corresponding antiparkinson med-
ication therapies was performed for all 380 patients. Due to space restrictions
and more comprehensible presentation of the visualization results, we showcase
the progression of the disease and the medications therapy of a single patient.

Figure 2 presents a time line of overall status change for a particular patient.
It is a male patient who was 65 years old at the time of his involvement in the
PPMI study (baseline visit). The data shows that less than a year has passed
between the patient’s time of diagnosis and the baseline visit. The visits for
which we have data for the patient’s overall status are presented on the time
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line axis. As an additional information, we also include the actual time when the
visit has occurred (month and year).

Patient: 
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y

Gender: male
Age on BL: 65
Years from diagnosis: 0.92

Levodopa
Dopamine agonists
MAO-B

Time line

Visit's
date

NP3SUM

Patient's
status

22

Cluster 0
(good status)

Cluster 0

V04

Mar-12

41

Cluster 1
(worse status)

Cluster 1

V06

May-13

36

Cluster 1
(worse status)

Cluster 1

V08

Apr-14

37

Cluster 1
(worse status)

Cluster 1

V10

Apr-15

Selegiline (100)Selegiline (50)

Rotigotine (121.2)
Rotigotine (181.8)

Sinemet (300)

Rotigotine (60.6)

VYYA

Fig. 2. Inspection of a cluster change time line of a single patient. Points on the time
line present the patient’s visits to the clinician. The patient’s medications therapy is
presented in the upper part of the figure, showing the antiparkinson medications the
patient has received during his involvement in the PPMI study. The lower part of the
figure shows the patient’s overall status as indicated by his cluster assignment on each
visit.

The patient’s medications therapy is presented in the upper part of Fig. 2.
The patient’s medications therapy is presented by the groups of antiparkin-
son medications the patient has received during his involvement in the PPMI
study. The color of medications therapy determines the group of antiparkinson
medications—MAO-B inhibitors are presented with a green line, dopamine ago-
nists with a blue line, and levodopa based medications with a red line on the top.
The line width indicates the value of LEDD, i.e. the thicker the line the higher
the value of LEDD. The line endpoints indicate the beginning and the end of
treatment with a particular medication. The line endpoints are placed propor-
tionally, according to the actual date when the therapy has started/ended. For
comprehensibility reasons, we also included the WHO names of the medications.
The corresponding LEDD values are written in parenthesis.

Below the visit time line we visualize what has happened to the patient’s
overall status as indicated by his cluster assignment on each visit. The user can
also choose whether to show the sum of the patient’s motor symptoms severity
(NP3SUM). Higher values of NP3SUM indicate a decreased quality of life and
more severe motor symptoms. The arrows between clusters indicate the change of
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the patient’s status: a red arrow indicates that the patient’s status has worsened
between the two consecutive visits, the green arrow denotes the improvement of
the status, and the blue arrow indicates that the patient’s overall status remained
unchanged.

Figure 2 presents a patient whose initial overall status—on visit 4—was good
and the sum of motor symptoms severity was 22. NP3SUM on V04 was on the
border between indicating a good and worse status. At that visit the patient’s
clinician started the treatment with antiparkinson medications and did so by
introducing MAO-B inhibitors (in this particular case, Selegiline). The clinician
experimented with two dosages of Selegiline (LEDD = 50 and LEDD = 100).
The MAO-B inhibitor dosage was quickly fixed and the patient continued taking
this therapy over a longer period of time (even after V10). Between V4 and
V6 the status of the patient degraded, as indicated by the cluster assignment
and the corresponding NP3SUM values. The patient started experiencing more
severe motor symptoms thus prompting the clinician to start the therapy by
introducing dopamine agonist (Rotigotine) after V06. Similarly to the patient’s
MAO-B therapy, the clinician experimented with the dosages, finally setting on
LEDD = 181.8. The patient took this therapy until some time before V10.

The introduction of dopamine agonists seems to have caused a slight,
although insufficient improvement of the patient’s overall status—between V6
and V8, the patient was assigned to the same cluster and the value of NP3SUM
dropped slightly from 41 to 36. This trend continued in V10. Figure 2 shows that
there are no signs of improvement of the patient’s status between V6 and V8,
and V8 and V10. This can be interpreted as that the introduction of dopamine
agonists did not have the desired effect on decreasing the severity of the motor
symptoms, thus prompting the clinician to introduce levodopa between V8 and
V10. As evident from Fig. 2, the updated medications therapy again did not
influence the change of the patient’s overall status (cluster 1, NP3SUM=37 in
V10). It is expected that after V10 the clinician would increase the dosage of
levodopa.

5 Analysis of Disease Progression Patterns for Different
Patient Groups: A Case for Male and Female Patients

The PPMI study includes data for patients from different gender, geographi-
cal locations, age groups, etc. The clinicians’ decisions for how they treat their
patients are based on official guidelines for treatment of Parkinson’s disease
patients [3,4,11,13]. These decisions are always made in the context of the
patient and their quality of life. According to our consulting clinicians, the clini-
cian will take into account the patient’s family and employment status. If it is an
older patient who is not employed and has family members to support him/her
during the disease, the clinician will not be very forceful with the introduction
of antiparkinson medications therapy. However, for example, if the patient is a
working professional, who finds that some symptoms are impeding him/her in
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their working environment, the clinician will be inclined towards more rigorous
control of symptoms with medications.

As the clinician’s therapy partly depends on the context, i.e. the patient’s
preferences, gender, employment, geographical location, etc., it is interesting to
research whether there are differences in the therapies and patterns of disease
progression based on the context. In this study, we have focused on gender
analysis.

Table 2. List of most influential symptoms for female and male patients from PPMI
according to our previous study [21].

Female patients Male patients

Rigidity Toe tapping

Sleep problems (night) Daytime sleepiness

Finger tapping Finger tapping

Bradykinesia Hand movement

Toe tapping Bradykinesia

Hand pronation/supination Hand pronation/supination

Facial expression Facial expression

Hand movement Sleep problems (night)

Leg agility Rigidity

Constancy of rest Constancy of rest

Table 3. List of most influential symptoms for female and male patients from PPMI
according to our previous study [21].

Patients First cluster assignment (%c0, %c1, %c2) Last cluster assignment (%c0, %c1, %c2)

Females (47.14%, 39.29%,13.57%) (45.71%, 37.14%, 17.14%)

Males (39.25%, 47.55%, 13.21%) (30.19%, 40.38%, 29.43%)

Table 2 presents a list of 10 attributes that change most frequently as the
overall status of the patients changes for both male and female patients. These
indicators were obtained by adapting the method for detection of influential
symptoms in [21]. The symptoms listed in Table 2 identify differences between
the symptoms that most frequently change their severity as the overall status
of female or male patients change. The symptoms that change most frequently
as the overall status of female patients change are rigidity and problems with
sleeping at night. On the other hand, the most influential symptoms to the overall
status of male patients are problems with toe-tapping and daytime sleepiness.

Table 3 presents the patients’ cluster assignment distribution on the first
(V04) and their last recorded visit. Results show that on their first recorded
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visit, most of the females were assigned to cluster 0 (47.14%), while most of the
male patients already had worsened overall status, and were assigned to cluster
1. On the last recorded visit, females tended to stay in the initially assigned
cluster, while the status of the male patients significantly worsened (cluster 2,
29.43%). The average number of recorded visits for male patients is 3.36 and for
female patients is 3.23.

The difference between the lists of most influential symptoms for male and
female patients indicate possible differences in the patterns of disease progression
of male and female patients. We looked into what are the patterns of disease
progression for male and female patients. Details of using skip-gram analysis for
determining patterns of disease progression can be found in [22].2

Fig. 3. Cluster crossings for male PPMI patients.

Figure 3 presents patterns of cluster sequences for male patients. The results
show that the status of the patients is mostly stable. In most cases, the patients
stayed in the clusters they were initially assigned to: cluster 0 and cluster 1.
Additionally, in many cases, the patients’ status became or was very uncomfort-
able (cluster 2, cluster crossings ‘12’ and ‘22’).

Figure 4 presents patterns of cluster crossings for female patients. Similarly
to the male patients, the status of the female patients is mostly stable and the
patients stayed in the clusters they were initially assigned to, cluster 0 and
cluster 1. The status of the female patients mostly switched between these two
2 A skip gram, e.g., a d-skip-n-gram, is a sequence of n items (disease progression

phases, in our case), which are not necessarily consecutive, but gaps of up to d
intermediate items are tolerated. The advantage of skip-grams over ordinary n-grams
is that they are more noise tolerant and offer stronger statistical support for possibly
interrupted sequence patterns.



Visualization and Analysis of PD Status and Therapy Patterns 477

clusters, and only on rare occasions the patients overall status significantly wors-
ened and the patients were assigned to cluster 2.

Further data analysis and consultations with medical professionals is required
to determine the reason for the different patterns of disease progression between
male and female patients. We will look into the differences of the periods of
patients’ diagnosis and their introduction to the PPMI study, the period between
their first symptoms and their diagnosis, as well as the differences in their med-
ications treatment.

Fig. 4. Cluster crossings for female PPMI patients.

6 Conclusions

This work presents a methodology for visualization and analysis of Parkinson’s
disease patients’ status and medications therapy patterns. The visualization
method builds on previously detected data representing the patients’ overall
status. The simultaneous visualization of patients’ overall status and their med-
ications therapy can be a step further towards personalized treatment of Parkin-
son’s disease patients. It can keep doctors in the loop and allows them to more
readily understand why the medications therapy of a certain patient needs to be
changed.

The analysis of the patients’ status between consecutive visits revealed dif-
ferences in the patterns of disease progression for male and female patients. The
analysis reveals that male patients are more likely than female patients to expe-
rience severe overall motor status, while female patients are more likely to stay
and switch between clusters indicating good or intermediate status.

In future work, we aim to analyze the potential differences in medication
patterns for patients from different countries, different age groups, etc. The
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PPMI study collects data from patients from several countries, including the
United States, Israel, and Italy. Although the clinicians follow the official guide-
lines for treatment of Parkinson’s disease, their decisions are also highly influ-
enced by their previous experiences and the context, including the patients’ own
demand for treatment of particular symptoms. An interesting research avenue is
to explore how the treatment of PPMI patients adheres to the official guidelines
for treating Parkinson’s disease patients. The knowledge from the official guide-
lines is available in the form of text. This knowledge can be transformed into
more structured inputs that can be compared to the patterns extracted from the
PPMI data using the described methodology.
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