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Abstract. Gradient Boosting is a popular ensemble method that com-
bines linearly diverse and weak hypotheses to build a strong classifier.
In this work, we propose a new Online Non-Linear gradient Boosting
(ONLB) algorithm where we suggest to jointly learn different combina-
tions of the same set of weak classifiers in order to learn the idiosyncrasies
of the target concept. To expand the expressiveness of the final model, our
method leverages the non linear complementarity of these combinations.
We perform an experimental study showing that ONLB (i) outperforms
most recent online boosting methods in both terms of convergence rate
and accuracy and (ii) learns diverse and useful new latent spaces.

1 Introduction

Ensemble learning aims at combining diverse hypotheses to generate a strong
classifier and has been shown to be very effective in many real life applications.
Several categories of ensemble methods have been proposed in the literature, like
bagging (e.g. random forest [1]), stacking [2], cascade generalization [3], boost-
ing [4], etc. Those state of the art methods essentially differ by the way they
generate diversity and combine the base hypotheses. In this paper, we focus on
gradient boosting [5] which - unlike many other machine learning methods - per-
forms an optimization in the function space rather than in the parameter space.
This opens the door to the use of any loss function expanding the spectrum
of applications that can be covered by this method. Moreover, the popularity
of gradient boosting has been increased by recent implementations showing the
scalability of the method even with billions of examples [6,7].

Despite these advantages, real world applications such as fraud detection,
click prediction or face recognition are often subject to uninterrupted data flow
which is completely ignored in the batch gradient boosting setting. This brings
up a major concern: How to train models over always increasing volumes of data
that need more memory and more storage? While big data centers can partially
solve the problem, training the model from scratch each time new instances
arrive remains unrealistic.
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To overcome this problem, online boosting has received much attention dur-
ing the past few years [8–14]. In these methods, the boosted model is updated
after seing each example. While they can process efficiently large amount of data,
their practical limitations include: (i) an edge assumption usually made on the
asymptotic accuracy (i.e. the edge over random guessing) of the weak learners
making some approaches hard to tune, (ii) the absence of a weighting scheme of
the weak learners that depends on their performance and (iii) for some of them a
lack of adaptiveness (despite the fact that it was a strong point of Adaboost [4]).

Moreover, all the previous online methods face another issue: they usually
perform a linear combination over a finite number of learned hypotheses which
may limit the expressiveness of the final model to reach complex target concepts.
While the batch setting would allow us to add step by step new hypotheses and
capture the complexity of the underlying problem, an online algorithm keeps
the same set of weak learners all along the process. This remark prompted us to
investigate the way to develop a non linear gradient boosting algorithm with
an enhanced expressiveness. To the best of our knowledge, there is only one
work specific to non-linear boosting [15] but only usable in a batch setting. This
is why the main contribution of this paper takes the form of a new algorithm,
called ONLB - for Online Non Linear gradient Boosting. Inspired from previous
research in domain adaptation [16], boosted-multi-task learning [17] and boost-
ing in concept drift [18], ONLB resorts to the same set of boosted weak learners,
projects their outputs in different latent spaces and takes advantage of their
complementarity to learn non linearly the idiosyncrasies of the underlying con-
cept. ONLB is illustrated in Fig. 1. At first glance, it looks similar to boosted
neural networks, as done in [19,20], where the embedding layer is learned with
boosting in order to infer more diversity. However, our method aims at learning
the weak hypotheses iteratively, the next weak learner trying to minimize the
error made by the network restricted to the previous hypotheses (see the solid
lines in Fig. 1). The other main difference comes from the back-propagation that
is performed at each step only on the parameters related to the weak learner
subject to an update (see the red lines in Fig. 1). Thanks to the non-linear func-
tion brought by the last layer to combine the different representation output,
ONLB converges much faster than the other state of the art online boosting
algorithms.

The paper is organized as follows: Sect. 2 is devoted to the presentation of
the related work. Our new non-linear online gradient boosting algorithm ONLB
is presented in Sect. 3. Section 4 is dedicated to a large experimental comparison
with the state of the art methods. We conclude the paper in Sect. 5.

2 Related Work

Online boosting methods have been developed soon after their batch counter-
part. The first one introduced in [8] uses a resampling method based on a Poisson
distribution and was applied in computer vision by [9] for feature selection. The-
oretical justifications were developed later in [10] where they notably discuss
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Fig. 1. Graphical representation of our Online Non-Linear gradient Boosting method:
the first top layer corresponds to the learned weak classifiers; the second layer represents
different linear combinations of their outputs; the bottom layer proceeds a non linear
transformation of those combinations. The thickest lines show the needed activated
path to learn a given classifier (here h2). The red lines show the update performed
only on the parameters concerned by this weak learner. The dashed lines are not taken
into account at this iteration.

the number of weak learners needed in an online boosting framework. This is
indeed a major concern since having too many of them could lead to predic-
tions dominated by redundant weak learners that perform poorly. On the other
hand, too few weak learners could make the boosting process itself irrelevant,
as the goal is still to improve upon the performance of a simple base learner.
More recently, [11] extends this previous work to propose an optimal version of
boosting in terms of the number of weak learners for classification. An adapta-
tion of this framework to multi-class online boosting was proposed in [12]. While
these methods come with a solid theory, the assumption usually made on the
asymptotic accuracy (i.e. the edge over random guessing) of the weak learners
leads to two main practical limitations. The first one is the undeniable difficulty
to estimate this edge without prior knowledge on the task at hand. The second
comes from the fact that the edge of each weak learner might be very different
depending on their own performance. And it turns out that the latter is never
taken into consideration and might impact the overall performance of boosting.

Online gradient boosting was introduced by [21] allowing one to use more
general loss functions but without any theoretical guarantees. Later, [13] and its
extension to non smooth losses [14], propose online gradient boosting algorithms
with theoretical justifications. These are the closest approaches to ours but they
do not weight the weak learners based on their own performance. Moreover, the
linear aspect of these methods limit strongly their expressiveness.
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Another series of related works is the use of boosting in neural network
methods. Recently, neural networks were used with incremental boosting [19] to
train a specific layer. In [20], the authors reused [13] to optimize and increase
the diversity of their embedding layer. Our work is related in the sense that we
boost a layer to build a new feature space. However, we do not aim at learning
a general neural network. This layer is rather used to make connections between
our different weak learners. This is why our back-propagation procedure differs
by focusing only on the parameters of the weak learner to be optimize at each
step.

Apart from online boosting methods, our work is also related to non-linear
boosting. However, as far as we know, only [15] tackled this topic by proposing
a non-linear boosting projection method where, at each iteration of boosting,
they build a new neural network only with the examples misclassified during the
previous round. They finally take the new feature space induced by the hidden
layer and feed it as the input space for the next learner. Nonetheless, it is very
expensive and unsuitable to online learning.

3 Online Non-linear Gradient Boosting

In this study, we consider a binary supervised online learning setting where at
each time step t = 1, 2, ..., T one receives a labeled example (xt, yt) ∈ X ×{−1, 1}
where X is a feature space. In this setting, the learner makes a prediction f(xt),
the true label yt is then revealed and it suffers a loss �(f(xt), yt).

Boosting aims at combining different weak hypotheses. In batch gradient
boosting, weak learners are learned sequentially while in the online setting, they
are not allowed to see all examples at once. Thus, it is not possible to simply add
new models iteratively in the combination as in batch boosting. In fact, online
boosting maintains a sequence of N weak online learning algorithms A1, ...,AN

such that each weak learner hi is updated by Ai in an online fashion. Note that
every Ai considers hypotheses from a given restricted hypothesis class H. The
final model corresponds to a weighted linear combination of the N weak learners:

F (x) =
N∑

i=1

αihi(x), (1)

where αi stands for the weight of the weak learner hi.
We now present our Online Non-Linear gradient Boosting, ONLB. As shown

in Fig. 1, our method maintains P different representations that correspond to
different combinations of the N learned weak learners, projecting their outputs
into different latent spaces. Every representation p is updated right after a weak
learner is learned. The outputs given by the p representations are then merged
together to build a strong classifier, F (x). To capture non linearities during this
process, we propose to pass the output of each representation p into a non linear
function Lp. We define the prediction of our model F (x) as follows:
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F (x) =
P∑

p=1

αpLp

( N∑

i=1

αp
i hi(x)

)
, (2)

where αp
i are the weights projecting the outputs of the weak learner hi in the

latent space p and αp the weight of this representation. Equation (2) illus-
trates clearly the difference with linear boosting formulation of Eq. (1). We
denote by Fk the classifier restricted to the first k weak learners: Fk(x) =
∑P

p=1 αpLp

( ∑k
i=1 αp

i hi(x)
)
.

Our method aims thus at combining the same set of classifiers into different
latent spaces. A key point here relies in making these classifiers diverse while
still being relevant in the final decision. To achieve this goal, we update every
weak learner hi to decrease the error of the already learned models in Fi−1 such
that:

hi = argminh

T∑

t=1

�c

( P∑

p=1

αpLp

( i−1∑

k=1

αp
khk(xt) + h(xt)

)
, yt

)
, (3)

where �c(F (x), y) is a classification loss. In other words, we look for a learner
hi that improves over the learned combination, Fi−1.

In gradient boosting [5], one way to learn the next weak learner is to approx-
imate the negative gradient (residuals) of Fi−1 by minimizing the square loss
between these residuals and the weak learner predictions. We define rt

i the resid-
ual at iteration i for the example xt as follows:

rt
i = −∂�c(Fi−1(xt), yt))

∂Fi−1(xt)
. (4)

In fact, from this functional gradient descent approach, we can define a greedy
approximation of Eq. (3) by using a regression loss �r on the residuals computed
in Eq. (4) with respect to the classification loss �c:

hi = argminh

T∑

t=1

�r(h(xt), rt
i). (5)

As stated above, when a weak learner hi is updated, we need: (i) to update
the weights αp

t associated to this learner in each representation p and (ii) update
the representation weights αp in the final decision as follows:

αp := αp − η
∂�c(Fi(xt), yt)

∂αp
; αp

i := αp
t − η

∂�c(Fi(xt), yt)
∂αp

i

.

All the steps of our ONLB training process are summarized in Algorithm1.
In practice, we instantiate our losses with the square loss for the regression

and the logistic loss for the classification as follows:

�c(f(xt), yt) = log(1 + e−ytFi(xt)); �r(f(xt), rt
i) = (rt

i − f(xt))2.
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The choice of the logistic loss is motivated by the need to have bounded
gradients in order to avoid their exponential growth with the boosting iterations,
which can happen for noisy instances for example. The square loss is the main
loss function for regression tasks and has demonstrated superior computational
and theoretical properties for the online setting [22]. Then, according to Eq. (5),
the weak classifiers are updated as follows:

hi = argminh

T∑

t=1

(h(xt) − rt
i)

2. (6)

Equation (6) suggests a fairly simple update of each weak learner: each weak
online learning algorithm Ai uses a simple stochastic gradient descent with
respect to one example at each step. The residuals can be obtained thanks to a
straight forward closed form:

rt
i =

−yt

1 + eytFi−1(xt)
.

Finally, we used a relu activation function such that L(x) =
{

x if x > 0,
0 otherwise.

The weights of the latent spaces αp
i and αp are now updated as follows:

αp
i := αp

i +η

{
ytα

phi(xt)

1+eytFi(xt)
if αp

i hi(xt) > 0,

0 otherwise
; αp := αp+η

ytLp

( ∑N
i=1 αp

i hi(xt)
)

1 + eytFi(xt)
.

At test time, our model learned using Algorithm1 predicts as follows:

F ∗(x) = sign

(
F (x)

)
= sign

( P∑

p=1

αpLp

( N∑

i=1

αp
i hi(x)

))
.

Algorithm 1 Online Non-Linear gradient Boosting (ONLB)
1: INPUT: N online weak learners, a learning rate η and P latent spaces.
2: Initialize h0 = 0
3: for t = 1 to T do
4: Receive example xt

5: Predict F0(xt) = h0 = 0
6: for i = 1 to N do
7: Reveal yt the label of example xt

8: Compute the residual rt
i =

∂�c(Fi−1(xt),yt))

∂Fi−1(x)

9: Predict hi(xt)
10: Ai suffers loss �r(r

t
i , hi(xt)) and updates the hypothesis hi

11: for p = 1 to P do
12: αp := αp − η ∂�c(Fi(xt),yt)

∂αp ; αp
i := αp

t − η ∂�c(Fi(xt),yt)

∂α
p
i

13: end for
14: end for
15: end for
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Table 1. Properties of the datasets used in the experiments.

#Examples Positives ratio #Features

Covtype 581, 012 51.2% 54

Poker 1, 025, 010 49.88% 10

MNIST 70, 000 49% 718

Abalone 4, 177 49% 8

Pima 767 34.9% 8

Adult 42, 842 23.9% 14

HIV 6, 590 13.3% 8

w8a 64000 3% 300

Shuttle 58, 000 21.4% 9

Wine 6, 497 20.64% 12

4 Experiments

In this section, we provide an experimental evaluation of our non-linear online
boosting method ONLB in terms of both quantitative and qualitative analy-
sis. First, we perform a comparative study with different state-of-the-art online
boosting algorithms on public datasets. Second, we present an analysis of the
learned representations.

4.1 Classification Results

We use 10 public datasets from the UCI repository by considering binary clas-
sification problems (multi-class datasets were converted into binary problems as
indicated in parenthesis): Poker (0 vs [1,9]), MNIST ([0,4] vs [5,9]), Wine ([3,6]
vs [7,9]), Abalone ([0,9] vs [10,29]), Covtype (2 vs all), Shuttle (1 vs all), Pima,
Adult, HIV, w8a. A summary of these datasets is presented in Table 1.

Our experimental setup is defined as follows. For every dataset, we apply
a 3-fold cross validation. For tuning the hyper-parameters, we perform in each
fold a progressive validation [23] on the training set as proposed in [11]: This
validation process uses every new example to evaluate the model and then use
it for training. Note that we simulate the online learning setting by giving the
examples according to a random order to the algorithm. We train different mod-
els in parallel with respect to their hyper-parameter values (i.e. the number of
weak learners N , the learning rate η and γ the weak learner edge) and we select
the one achieving the lowest progressive validation error. The selected model is
then evaluated on the test set.

We compare our method to different online boosting algorithms from
current state-of-the-art: the four algorithms online.BBM, Adaboost.OL,
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Adaboost.OL.W, OGB from [11,13] and streamBoost from [14]1. For all the
algorithms, we choose as a relatively weak classifier a neural network with one
hidden layer and two units that we update in an online learning fashion using
stochastic gradient descent. We report the classification error obtained for each
algorithm in Table 2.

ONLB achieves competitive results with the state of the art online boosting
methods and even outperforms them on most datasets. In some cases, such as for
MNIST or Poker, we clearly see that, while using much more weak learners (see
Fig. 2), the other methods were not able to capture the target concept as much
as ONLB did. Note that, a mandatory condition in our experiments was T > 1
such that the boosting takes part in the learning process but in some cases, the
online boosting algorithms were not able to do better than the baseline on the
test set. For example, on the Adult database, only ONLB and OGB achieved an
average error lower than the base learner.

In Table 3, we present the average number of weak learners chosen with
respect to the progressive validation process for each model. While being an
online linear boosting algorithm, online.BBM achieves its performances with a
significantly smaller number of weak learners compared to the other linear boost-
ing methods. As mentioned in [11], this algorithm is optimal in the sense that no
online linear boosting algorithm can achieve the same error rate with fewer weak
learners or examples asymptotically. That being said, ONLB algorithm achieves,
on average, better performances with more than twice less weak learners than
online.BBM.

Finally, in Fig. 2, we plot the convergence curves with respect to the increas-
ing number of examples used for two datasets: MNIST and Abalone. For all
algorithms, each curve corresponds to the evolution of the error rate accord-
ing to the progressive validation error measured during training. We observe
that ONLB still achieves the best convergence rate for both datasets. A similar
behavior has been observed for the other datasets and exhibits the nice fast con-
vergence property of our algorithm which needs less weak learners to converge
to its optimum.

4.2 Analysis of the Learned Multi-latent Representations

In this section, we present two different qualitative analyses on the latent repre-
sentations learned by our algorithm. First, we show that given a sufficiently large
number of weak base learners, the representations obtained tend to be rather
uncorrelated. This provides an evidence that ONLB can generate some diversity.
Then, we show that these representations contribute in a comparable way to the
final decision. For our study, we use the following setup. We consider a model
with 100 representations (i.e. P = 100). We use two base learners: a relatively
weak neural network with one hidden layer composed of 2 units (2-NN) and a

1 We used the implementations available in Vowpal Wabbit and re-implemented the
streamBoost and OGB algorithms.



ONLB in Multi-latent Spaces 107

Table 2. Error rate reported for different online boosting algorithms.

Dataset Base learner ONLB online.BBM Adaboost.OL Adaboost.OL.W OGB StreamBoost

Covtype 0.2401 0.2057 0.2242 0.2273 0.2313 0.2264 0.2128

Poker 0.4182 0.0497 0.2375 0.1234 0.0953 0.3880 0.2668

MNIST 0.1105 0.0561 0.1029 0.1557 0.0830 0.1139 0.0655

Abalone 0.2673 0.2523 0.2831 0.2487 0.2531 0.2669 0.2720

Pima 0.2992 0.2795 0.2913 0.2952 0.2835 0.2874 0.2953

Adult 0.1523 0.1465 0.1530 0.1530 0.1526 0.1476 0.1586

HIV 0.1986 0.1393 0.1273 0.1360 0.1291 0.1540 0.1526

Shuttle 0.0211 0.0024 0.0173 0.0061 0.0058 0.0133 0.0050

w8a 0.0189 0.0148 0.0158 0.0146 0.0167 0.0178 0.0155

Wine 0.1979 0.1687 0.1921 0.1931 0.1931 0.1743 0.1833

Table 3. Average number of weak learners (N) selected by progressive validation.

Dataset ONLB online.BBM Adaboost.OL Adaboost.OL.W OGB StreamBoost

Covtype 6 60 79 59 282 63

Poker 52 222 348 311 320 285

MNIST 14 66 147 207 431 131

Abalone 5 6 12 3 166 8

Pima 65 64 109 141 437 174

Adult 13 6 18 17 161 119

HIV 6 6 94 188 32 16

Shuttle 30 43 243 108 121 159

w8a 4 7 54 42 132 40

Wine 5 8 112 91 97 118

Average 20 49 121 116 218 111

Fig. 2. Progressive validation error with respect to the learning examples for MNIST
on the left and Abalone on the right.
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stronger learner consisting of a neural network with 500 units in its unique hid-
den layer (500-NN). All representation weights are initialized following a uniform
distribution such that the different representations are highly uncorrelated. We
consider one training file of a fold of the MNIST dataset used above for learning.

Our first analysis aims at showing that the learned representations tend to be
uncorrelated when using a weak learner. For this purpose, we compute a corre-
lation matrix C between all the representations such that Cnm = covnm√

covnn∗covmm

measures the correlation between the latent representations n and m, cov is
the covariance matrix computed with respect to the input weights {αm

i }N
i=1 and

{αn
i }N

i=1 of these representations. We show, in Fig. 3, the C matrix for the latent
space representations obtained after convergence with the 2-NN base learners.
We can see that most of the representations tend to be uncorrelated or weakly
correlated. In contrast, Fig. 4 presents the C matrix using the 500-NN base
learners. We see here that most of the representations are highly correlated.
This experiment shows that by using sufficiently weak base learners, we are able
to learn diverse and uncorrelated representations.

In our second analysis, we want to confirm that the uncorrelated latent rep-
resentations are informative enough to contribute in a comparable way to the
final strong model. We propose to compute, for each representation p, a relative
importance coefficient Ωp by taking the absolute values of the predictions of
p right before they are merged together with the other representation outputs
to form the final prediction. We average this coefficient over {xt}K

t=1 examples
taken from a validation set independent from the learning sample as follows:

Ωp =
1
K

K∑

t=1

|αpLp

( N∑

i=1

αp
i hi(xt)

)|. (7)

We expect for important representations a high Ωp (i.e. having a high impact
in the final decision) and a low Ωp for irrelevant ones (i.e. having low impact in
the final decision).

We consider then the models learned with the 2-NN and 500-NN base learners
as previously. For each model, we plot the importance coefficient Ωp (y-axis)
against the average correlation of each representation (x-axis) that we define as
Ĉp = 1

P

∑P
i=1 Cpi. This illustrates the importance of each representation in the

final decision with respect to their correlation level.
Figure 5 gives the plot for the model using the 2-NN base learners. We see

here that all the representations are involved in the final decision and that their
relative importance coefficients are rather comparable. This is in opposition to
the plot of Fig. 6 that provides the results for the model using the 500-NN base
learners. First, we see that many representations are not used in the final decision
and these correspond to the ones that are uncorrelated. In fact, representations
involved in the final decision are the ones that are all highly correlated with an
average correlation coefficient around 0.75. Clearly, since these representations
have a high correlation level, actually only one representation is really useful at
the end. But note that this representation can in fact be learned by a standard
linear gradient boosting.
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From this experiment, we see that complex models are hard to diversify in
online boosting. Moreover, tuning their hyperparameters is harder making the
probability of overfitting higher and they require a significant larger amount of
training time which makes such complex models useless for online boosting.

Fig. 3. Correlation matrix of the rep-
resentations with 2-NN learners.

Fig. 4. Correlation matrix of the rep-
resentations with the 500-NN learn-
ers.

Fig. 5. Importance of each latent rep-
resentation with the 2-NN learners.

Fig. 6. Importance of each latent rep-
resentation with the 500-NN learners.

5 Conclusion

In this paper, we presented a new Online Non-Linear Boosting algorithm. In this
method, we combine different representations of the same set of weak classifiers
to produce a non-linearly boosted model in order to learn the idiosyncrasies
of the target concept. Our experimental results showed a general improvement
over current state of the art online boosting methods. Additionally, the non-
linear architecture of the model allows the method to use less weak learners
and to obtain faster convergence in terms of examples. Our approach has also
the interesting property to produce efficiently diverse latent spaces contributing
actively to the model predictions. This property makes our model adaptive by
giving more importance to the best current representations.
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Perspectives of this work include adapting our method to the multi-class
setting, to study the impact of delayed feedback (i.e. labels arriving only after
some time delay) and to investigate possible adaptations for transfer learning
and continuous learning in the online setting.
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