
Real-Time Excavation Detection at
Construction Sites using Deep Learning

Bas van Boven1(B), Peter van der Putten1, Anders Åström2, Hakim Khalafi3,
and Aske Plaat1

1 LIACS, Leiden University, Leiden, The Netherlands
bas@basvanboven.nl, {p.w.h.van.der.putten, a.plaat}@liacs.leidenuniv.nl

2 Accenture, Singapore, Singapore
anders.astrom@accenture.com
3 Amsterdam, The Netherlands

hakimkse@gmail.com

Abstract. In this paper we present a robust approach to real world,
real time action classification. It relies on a convolutional network based
object detector to extract relevant shape and motion features and uses
these features as input for an action classifier. Using a sequence of local-
ization and classification information of various objects deemed relevant
to an action, the model recognizes predefined actions in a reliable man-
ner, and can localize these actions in camera footage in real time. With-
out loss of generalization, we study our approach within the context
of a construction company that wants to prevent unauthorized exca-
vation activities happening at their construction sites. We differentiate
four excavation activities, two of which we detect on the basis of actions
because the target pattern contains temporal features, and two of which
we detect on the basis of object presence only. The system needs to
operate in real time, on basic on-site hardware and under varying image
conditions.

Keywords: Video analysis · Action classification · Convolutional
neural networks · Feature engineering

1 Introduction

The detection and classification of specific actions in video is a difficult task,
especially if computing resources and data are limited. Convolutional nets can be
a powerful tool, especially to detect concepts without having to engineer specific
features. They require a relatively large amount of labelled data though, and
more importantly, when applied end to end there is limited ability to leverage
domain knowledge to engineer features that might be useful for the task at hand.

In this paper we present a two staged approach that combines the benefits
of deep learning with the flexibility and control of feature engineering. We apply
it to a new real world problem, the detection of unwanted human or mechanical
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 340–352, 2018.
https://doi.org/10.1007/978-3-030-01768-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_28&domain=pdf


Real-Time Excavation Detection at Construction Sites using Deep Learning 341

excavation at construction sites. We approach this problem from scratch, from
gathering camera footage, labeling the data, training classifiers, integrating these
into an end to end pipeline, and deploying and running the system in the real
world. An additional constraint is that the system should monitor the site in real
time, with minimal latency, processing feeds from four cameras using a laptop
without internet connectivity. We first detect objects of interest, such as various
parts of excavators, and then use domain knowledge to enrich this information
with a variety of engineered features, and feed sequences of this data into a
subsequent more standard classifier. The experiments demonstrate the validity
and real world flexibility of the approach, which makes it a valid approach to
explore for a range of real world problems with similar needs.

This paper is structured as follows. We will first introduce the business
problem (Sect. 2) and related background (Sect. 3). Then we will describe our
methods and approach for the end to end pipeline in Sect. 4, and report on
experimental results (Sect. 5), followed by a discussion (Sect. 6) and conclusion
(Sect. 7).

2 Problem Description

A construction company is facing losses due to unauthorized excavation activities
at their building sites. Because of various reasons, such as misinterpretation
of work instructions and erroneous reading of site maps, their workers often
excavate at wrong locations. This can in turn lead to damage to important
infrastructure like sewage pipes and power lines, and repairing such accidental
damage can be expensive. In order to limit the cost of such damage, they need
a system that can automatically detect unapproved excavation events.

Using the system, one should be able to deploy four different cameras on
tripods, which are linked to the same laptop workstation by means of a wireless
connection. On this workstation, one can configure the zones in which excava-
tion is prohibited by means of a user interface. When excavation activities are
detected within this zone, a SMS alert should be sent and an on-site alarm should
be triggered. All excavation activities need to be detected before major damage
has been done. This means processing needs to happen in real time with mini-
mal latency. As internet connectivity cannot be guaranteed, all video processing
and analysis needs to happen locally on a laptop (i7-6820HK processor, 32GB
of DDR4-memory, a 512GB SSD and a NVIDIA GeForce GTX1080 GPU with
8GB of GDDR5X video memory).

The system should be designed to detect four different kinds of excavation
activities. First of all, there is mechanical excavation by digging: in this situ-
ation, a mechanical excavator with a bucket attachment at the end of its arm
is performing an action that will directly lead to it moving around ground or
retracting the arm of the excavator in order to reach into the ground. Second,
there is mechanical excavation by breaking: in this situation, a mechanical exca-
vator with a breaker attachment at the end of its arm is performing an action



342 B. van Boven et al.

that will directly lead to it putting its piercer into the surface. As in the previ-
ous digging example, this definition does not encompass riding or turning, but it
does include extending or retracting the arm in order to reach into the ground.

Third, we detect manual excavation by people who are crouching: in this
situation, a worker is using a tool to manually dig into the ground, for which it
is necessary for them to assume a crouching position. There are three reasons that
the definition is formulated as such. First is the observation that it would be very
difficult to detect all the individual tools used for manual excavation. The second
reason is that for most of these tools, assuming a crouching position is necessary.
Finally, local observations confirmed that workers are seldom crouching, if not for
excavating. Thus, crouching people are a good indicator of manual excavation
activities. Fourth, we detect manual excavation by an earth rod tool: in this
situation, a worker is using an earth rod tool to manually drill a hole into the
ground. An earth rod is a tool that consists of two parts: a long thin stick that can
be beaten into the ground, and a hammer that can be used for this. As workers
are generally not crouching when using this tool, it is necessary to detect this
type of excavation separately.

3 Related Work

Both object detection and action classification are problems of interest within
domains like surveillance, automatic video classification and video retrieval.

The objective of object detection is to identify instances of certain predefined
object classes in an image. Up until recently, solutions to this problem that pro-
duced state-of-the-art accuracy relied on machine learning methods like SVMs
to produce their results [4]. However, recent developments in the field of deep
learning have enabled more accurate object detection methods like Fast(er) R-
CNN [9,20] and R-FCN [2], which use deep convolutional neural networks as the
basis of their architecture. Even more recent architectures like You-Only-Look-
Once [18], YOLOv2 [19] and the Single-Shot Detector [13] are only marginally
less accurate then the current state-of-the-art, but their architectures are fast
enough to provide inference in real-time. All of these architectures rely on a con-
volutional base network to provide the first network layers: popular choices are
VGG-16 [22], Resnet-101 [26], Inception v3 [24] and Inception Resnet v2 [23].

The objective of action classification is to determine which kind of predefined
action is undertaken in a series of images. A distinction can be made between
approaches which feed hand-crafted features into a trainable classifier [5,11],
and approaches which use a trainable feature extractor [8,25] to select the most
useful features for classification [21]. Furthermore, the type of action one tries
to classify and the environment in which one tries to accomplish this are also
major factors in the success of the undertaken approach [21]. On datasets of less
controlled environments like Hollywood2 [21], trainable feature extractors (CNNs
[12]) have started to outperform hand-crafted features [6]. Recent state-of-the-art
CNN-based approaches feed their output through SVMs [8] or computationally
more expensive architectures like LSTMs [25] to produce a classification, but



Real-Time Excavation Detection at Construction Sites using Deep Learning 343

these studies were based on readily available data, not developed and tested
from scratch in a real world field setting as in our work.

4 Approach

We combine the ability of a CNN-based approach to extract features from uncon-
trolled environments with the information density hand-crafted features can pro-
vide. Our approach consists of two models: an object detector and an action
classifier. The object detector predicts which pretrained objects are are present
in the video frame, along with a location (bounding box) and a confidence value,
given a JPEG video frame as input. This bounding box data is used directly to
detect manual excavation, and is also fed into the action classifier, which pre-
dicts if mechanical excavation is taking place in a given sequence of bounding
box data. The output from both models can be thresholded to find the right
balance between sensitivity and specificity.

4.1 Data Collection and Preparation

We have constructed a dataset of video footage of excavation activities, from
which we have extracted training and test data for both our object detector
and action classifier. Most videos are shot by the project team on different days
and time of days, in different locations, with different equipment, from different
angles and by various people. We were constrained by the fact that self-captured
data is not necessarily as heterogeneous as one would like it to be. One way to
prevent overfitting [1] on domain-specific variables is to augment the dataset
with videos from external sources, which we have done for the object detector
ground truth. The videos were also randomly split between a training set (80%
of videos) and a test set (20% of videos).

Both actions and objects have to be labeled. In our case, the process of
gathering and labeling real-world data has proven to be very time consuming.
On average, a person could label around 300 images per hour for the object
detector, or 20 min of video for the action classifier. In our case, this has resulted
in around 50 h of continuous labeling for both models combined, on top of the
time it took to capture the footage.

The ground truth for the object detector consists of the set of bounding boxes
of all predefined objects within a set of JPEG-frames; we have targeted objects
that support both manual and mechanical excavation detection. For manual
excavation detection, we detect workers who are either crouching or have an
earth rod in their hands. For mechanical excavation detection, we detect various
parts of the excavator, the underlying assumption being that the positions and
movements of excavator parts are good indicators of said activities. We have
defined eight predefined objects: “cabin” (the part of an excavator that contains
the driver), “upper arm” (the arm section of an excavator directly connected to
the cabin), “forearm” (the arm section of an excavator that can be connected to
an attachment), “wheelbase” (the caterpillar wheels of an excavator), “bucket”



344 B. van Boven et al.

Table 1. Overview of ground
truth data for the object
detector.

Total Filtered Training Test

Videos 230 n/a 184 46

Frames 8,629 6,251 4,939 1,312

cabin 6,436 4,579 3,563 1,016

upper arm 6,182 4,373 3,368 1,005

forearm 6,190 4,368 3,407 961

wheelbase 6,603 4,750 3,708 1,042

bucket 5,163 3,512 2,860 652

breaker 1,284 1,029 688 341

crouching 1,751 1,324 1,109 215

earth rod 1,698 1,267 1,026 241

Table 2. Overview of ground truth
data for the action classifier for various
window sizes.

Total Training Test

Videos 117 95 22

Frames: exc. 9,703 7,977 1,726

Frames: no exc. 7,574 5,892 1,682

Window 3: exc. 3,218 2,432 786

Window 3: no exc. 2,488 2,003 485

Window 5: exc. 1,929 1,595 334

Window 5: no exc. 1,475 1,185 290

Window 7: exc. 1,388 1,142 246

Window 7: no exc. 1,010 821 189

Window 9: exc. 1,072 818 254

Window 9: no exc. 774 618 156

Window 11: exc. 890 726 164

Window 11: no exc. 607 509 98

(the scooping attachment of an excavator), “breaker” (the drilling attachment of
an excavator), “crouching” (a worker who is crouching to excavate) and “earth
rod” (a worker who is excavating with an earth rod).

Some videos were captured by a camera man walking around the construction
site, thus enlarging the intra video variety by capturing the same scene from
different viewpoints. From 230 recorded videos, we have extracted frames at a
rate of one frame per two seconds, which resulted in a pool of 8,629 frames. All
of the occurrences of the eight objects listed above were then manually labeled
by seven different people, although each frame was labeled by one person only.
The generated ground truth was then filtered: first, frames that were very similar
to the previous video frame (when all of the labeled bounding boxes overlap for
at least 80% with a bounding box of the same object in the previous frame)
were removed. Besides that, we have limited the number of extracted frames per
video to 50, and took a random subset when this threshold was exceeded. Also,
we manually removed frames that were heavily distorted by video artefacts such
as ghosting or synchronization jitter [17]. Table 1 provides an overview of the
ground truth data used for training and testing our object detector.

The ground truth for the action classifier consists of a classification (“mechan-
ical excavation”, “no mechanical excavation” or “unusable”) for each second of
video, and was generated from 117 videos of variable length (between 16 and
753 s each, with a total running time of 6 h and 35 min) but filmed from a fixed
point-of-view, which is relevant because the temporal aspect of actions is com-
bined with the assumption that cameras for the production system are always



Real-Time Excavation Detection at Construction Sites using Deep Learning 345

Fig. 1. Sample output from the object detector model, detections with highest confi-
dence of each object are shown.

mounted on tripods. Besides this classification, each second of video is associ-
ated with a list of detections from an extracted video frame, as provided by the
object detector. The videos were then split into non-overlapping windows of a
length of an odd number of frames, and sequences which contained at least one
“unusable” classification were removed from the window creation process. The
remaining windows got assigned a target classification based on a majority vote
over the contained frames. Finally, we have balanced the number of “excavation”
and “no excavation” samples to be exactly the same, by randomly discarding
some of the “excavation” windows. Table 2 provides an overview of the ground
truth data used for training and testing our action classifier.

4.2 Design of the Object Detector

We select the SSD-512 architecture for the object detector, mainly for its speed
[13]: our solution needs to process frames of four different cameras, and it is
not the only software that should run on the production system: we also have
to reserve resources for the action classifier, an orchestration service and some
rule-based logic. The SSD-architecture is based on the traditional feed-forward
Convolutional Neural Network [12], where the first layers of the network are ini-
tialized from a pretrained base network (in our case VGG-16 [23]): the benefit of
this being that such a base network is able to extract higher-level features from
images, which reduces training time. After this base network, five additional sets
of feature map layers are defined, which are all implemented as a convolutional
layer and responsible for object detections on a different scale. Finally, all detec-
tions of feature maps are concatenated in the network output layer, from which
all detections with a confidence lower than 1% are filtered out. After that, the
non-maximum suppression algorithm [15] is applied in order to merge different
overlapping detections of the same object into one. Finally, for each processed
frame we store the 200 detections with the highest associated confidence. See
Fig. 1 for an example of the object detector applied to a public domain image.

Our training function is taken from the original SSD-512 implementation [13],
which in turn is based on minimizing the MultiBox loss function [3], although



346 B. van Boven et al.

this loss function is adapted slightly to handle detections of multiple different
classes [20].

We also deploy a method to augment our training set, analog to the orig-
inal SSD-512 implementation [13]. First of all, a sub sample is selected from
the original image, out of one of the following three options: the original input
image, a sub sample covering at least 10%, 30%, 50%, 70% or 90% of the orig-
inal input image, or a sub sample of random size. Now, on this sub sample,
three translations are applied: a 50% chance of a horizontal flip, a 50% chance
of the image canvas being randomly expanded with a maximum of 400%, and
a 50% chance of hue, saturation, brightness and contrast adjustments, respec-
tively. Furthermore, the balance between positive and negative examples can be
significantly unbalanced in favor of the negative ones. Therefore, we pick at most
three times as many negative as positive examples, selecting the ones with the
highest associated confidence loss, as per the original SSD-512 implementation
[13].

4.3 Design of the Action Classifier

The action classifier is mainly based on AdaBoost [7], which combines a boosting
algorithm with a multitude of decision trees to arrive at a prediction. We use
500 estimators and the SAMME.R real boosting algorithm [27].

In order to make the action classifier as robust to real-life variety as pos-
sible, we have experimented with generating 10 permutations for each training
set sample, on which a number of translations are applied. Analogue to the
object detector, permutations have a 50% chance of getting flipped horizontally.
Furthermore, all detections are scaled to a random size between 70% and 130%,
keeping the aspect ration intact and preventing detections to move outside image
bounds. Finally, all detections are moved to a random place on the image canvas,
again keeping the distance between all detections intact.

Input features are based on object detections, which we limit to the strongest
detection of each of the six mechanical excavator parts per frame, if any. All of the
input features are normalized between 1 and −1. For each of the six parts, we first
distinguish five base features, namely the x- and y-coordinate of the center of the
predicted bounding box, the bounding box width and height and the confidence
of the prediction. Because this representation of the features is not necessarily the
most useful representation for discerning excavation actions from non-excavation
actions, we augment these features with a set of engineered features, which are
all different representations of these base features. In order to express movement
of parts, we define the difference between each set of consecutive frames for
each of the five attributes for each of the six excavator parts. Also, we calculate
a motility score for each object over the whole window, based on the relative
movements of the center point of the corresponding bounding box. Besides that,
we define relative arm motility, representing the motility of both arm parts
compared to the motility of the cabin and wheelbase objects in order to detect
rotation. Besides input features related to movement, we also define features
related to distance. For each object except for the cabin object in each frame,



Real-Time Excavation Detection at Construction Sites using Deep Learning 347

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

105

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training Iterations

A
ve
ra
ge

P
re
ci
si
on

mean cabin
forearm upper arm

wheelbase bucket
breaker crouching
earth rod

Fig. 2. Accuracy of the object detector in
AP after training for a certain number of
iterations. The thick red line denotes the
mean accuracy over all the classes. After
90,000 iterations the mAP reaches 0.80.

Table 3. Average Precision (AP) accu-
racy on the test set of excavator pictures
from various websites.

Class Average Precision Samples

Cabin 0.99 49
Forearm 0.92 49
Upper Arm 0.89 49
Wheelbase 0.99 49
Bucket 0.83 41

we supply the horizontal, vertical and Pythagorean distance between that object
and the cabin. In order to determine which type of excavator is pictured, we also
supply the difference in confidence between the two types of attachments in
each frame, along with the difference in horizontal, vertical and Pythagorean
distance between both attachments and the forearm object. Finally, we define
features related to object size. We calculate the total width, height and surface
area of each object over all frames, the relative size of arm boxes compared to
cabin boxes as an indicator for the camera angle and the cumulative horizontal,
vertical and Pythagorean change in size of each object over all frames as an
additional indicator of rotation.

5 Results

Our experiments are performed on the object detector and action classifier sep-
arately.

5.1 Object Detector

The accuracy of the object detector over a number of training iterations is dis-
played in Fig. 2. Each iteration, a batch of 8 training examples is passed both
forwards and backwards. We have used a SGD-solver combined with a multistep
learning rate policy and an initial learning rate of 1×10−6 [13]. Compared to the
other objects, the accuracy of the cabin and wheelbase object detection does not
improve as much with more iterations. A likely reason is that the base network
VGG-16 is trained on an object that is visually similar to these objects: a car
[22]. Furthermore, we have observed that the model incorrectly classifies certain



348 B. van Boven et al.

3 5 7 9 11
0.5

0.6

0.7

0.8

0.9

Window Size

A
re
a
U
nd

er
C
ur
ve

augmentation
no augmentation

Fig. 3. The influence of data augmenta-
tion with AdaBoost on the AUC-score of
the action classifier.

3 5 7 9 11
0.5

0.6

0.7

0.8

0.9

Window Size

A
re
a
U
nd

er
C
ur
ve

Gaussian Naive Bayes
Multilayer Perceptron

Support Vector Machine
Random Forest

AdaBoost

Fig. 4. The influence of window size and
classifier choice on the AUC-score of the
action classifier.

Table 4. Action classifier confusion
matrix. Ground truth in rows, predictions
in columns.

Excavation No excavation

Excavation 224 57
No excavation 48 369

Table 5. Action classifier confusion
matrix (1 frame-per-window version).

Excavation No excavation

Excavation 1,017 451
No excavation 391 1,703

patches of dirt as a bucket, probably because the color is similar and there is
often dirt attached to the bucket attachment in our training set.

We have also constructed a small dataset consisting of excavator images
crawled from the web in order to determine if our object detector could also
be useful outside the boundaries of our testing environment. This dataset was
manually labeled using the same approach as we used for constructing our train
and test sets. The results of running the model on this test set are given in Table
3. We can see that our model was able to generalize well to these different types
of excavators.

5.2 Action Classifier

The optimal parameters to fit our use case are determined experimentally, two
of which are window size and classifier type. We have established the influence of
these parameters by training 25 different models: 5 different classifiers combined
with 5 different window sizes. After training these 25 models, we compare them
on the basis of their AUC-score [10]. The results of these experiments are plotted
in Fig. 4. Top performers are AdaBoost on a window size of 5/7 and Random
Forest on a window size of 3/5, resulting in an AUC-score of 0.84-0.85.

We have also tested our data augmentation routine on a variety of window
sizes. The results of this experiment can be found in Fig. 3. Overall, data aug-
mentation does not improve the accuracy of the action classifier, indicating that
either the amount of ground truth data we feed to the model initially is already



Real-Time Excavation Detection at Construction Sites using Deep Learning 349

Table 6. The 10 most important features, ranked on information gain.

Attachment closest to forearm 1.6%

Motility of cabin 1.4%

Motility of upper arm 1.2%

Cumulative horizontal distance between cabin and upper arm 1.2%

Difference in vertical location of bucket, frame 1–2 1.2%

Difference in vertical location of bucket, frame 3–4 1.2%

Difference in vertical location of upper arm, frame 3–4 1.2%

Horizontal location of forearm, frame 5 1.2%

Difference in horizontal location of cabin, frame 3–4 1.0%

Difference in vertical location of upper arm, frame 2–3 1.0%

sufficient, or that the variety the data augmentation is providing is not mean-
ingful.

Eventually we have implemented an AdaBoost classifier and a window size
of 5 in our production model, with data augmentation turned off. See Table 4
for the confusion matrix belonging to this action classifier. The corresponding
AUC-score is 0.84. 85% of the samples are classified correctly.

A benefit of our action classifier is that we are able to take not only shape
information, but also motion information into account. In order to prove the
usefulness of this approach, we have constructed a variant of our action classifier
where windows consist of one frame only, thus eliminating all motion information
from training data. As can be derived from Table 5, such a model classifies 76%
of the samples correctly. This is 9% less then the accuracy our 5 frames-per-
window version achieves on the same data set. The corresponding AUC-score
decreased to 0.75.

In order to further understand the characteristics of mechanical excavation,
we also determine the features the model considers most important to make
a distinction between excavating and non-excavating actions on the basis of
information gain. The 10 features associated with the highest information gain
are listed in Table 6. With the exception of the horizontal location of the forearm
and the confidence of the cabin detection, all of the 15 most important features
are engineered features, highlighting the importance of feature engineering.

6 Discussion

Our two stage approach provides a good balance between more assumption free,
data driven learning at a lower level and using domain knowledge at a higher
level, for improved results and better control. In the first object detection step
we leave the task of figuring out the best features to the convolutional net,
though we already guide it to learn the right concepts by specifying specific
object classes. The subsequent action classification step then allows for a lot of



350 B. van Boven et al.

flexibility to engineer use case specific features based on detected objects, and the
experiments have demonstrated that these are most predictive. The experiments
confirmed as well that using sequences as input, i.e. more than one frame, gave
superior results, providing further support for a sequence based approach. From
an application perspective, the production pilot lived up to the expectations
of the construction company, and the intent is to keep using the system for a
prolonged period of time. Also, a range of other companies have shown interest
in the pilot, further demonstrating the relevancy of this problem.

In terms of future work, there are various methods in which our approach
could be improved further. First of all, one could incorporate object tracking
into the object detector model, to provide more reliable detection results to the
action classifier [14]. Also, pose estimation could be used in order to differentiate
various angles of the same action, as the mechanical excavation action looks
very different viewed from different angles [16]. Another possible improvement
is the incorporation of online learning methods, as we have already implemented
collection methods for incorrectly classified alerts.

7 Conclusion

We have demonstrated an approach to real time action classification based on
object detection, under difficult real world conditions and with limited hardware.
We have applied this approach to the practical problem of detecting unauthorized
excavation activities on construction sites. Our system is capable of classifying
actions in real-time on a laptop workstation: we are able to analyze the output
of four different cameras simultaneously without performance issues. To best
balance assumption free learning with application of problem domain knowl-
edge, we use a neural network based object detector to extract relevant shape
and motion features, and then use these features as well as problem specific,
engineered features derived from this as input for an action classifier. A major
benefit of this approach is that it is insensitive to stray objects and movements,
and thus is able to function in uncontrolled environments. A second benefit is
that we can use localization information originating from the object detector to
localize actions within a video frame.

References

1. Babyak, M.A.: What you see may not be what you get: a brief, nontechnical intro-
duction to overfitting in regression-type models. Psychosom. Med. 66(3), 411–421
(2004)

2. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully
convolutional networks. Advances in Neural Information Processing Systems, pp.
379–387 (2016). http://arxiv.org/abs/1605.06409

3. Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using
deep neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2155–2162 (2014)

http://arxiv.org/abs/1605.06409


Real-Time Excavation Detection at Construction Sites using Deep Learning 351

4. Felzenszwalb, P.F., Girshick, R.B., Mcallester, D., Ramanan, D.: Object detection
with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach.
Intell. 32(9), 1–20 (2009)

5. Fernando, B., Gavves, E., José Oramas, M., Ghodrati, A., Tuytelaars, T.: Modeling
video evolution for action recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5378–5387 (2015)

6. Fernando, B., Gavves, E., Oramas, J., Ghodrati, A., Tuytelaars, T.: Rank pool-
ing for action recognition. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1–14
(2016)

7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learn-
ing and an application to boosting. In: Vitányi, P. (ed.) Computational Learning
Theory, pp. 23–37. Springer, Berlin Heidelberg, Berlin, Heidelberg (1995)

8. Girdhar, R., Ramanan, D., Gupta, A., Sivic, J., Russell, B.: ActionVLAD: learning
spatio-temporal aggregation for action classification. In: CVPR, vol. 2, p. 3 (2017)

9. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition, pp. 1440–1448 (2015)

10. Hanley, A., McNeil, J.: The meaning and use of the area under a receiver operating
characteristic (ROC) Curve. Radiology 143, 29–36 (1982)

11. Hoai, M., Zisserman, A.: Improving human action recognition using score distri-
bution and ranking. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV
2014. LNCS, vol. 9007, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16814-2 1

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Advances In Neural Information Processing Systems,
pp. 1–9 (2012)

13. Liu, W., et al.: SSD: single shot multibox detector. In: European Conference on
Computer Vision, pp. 21–37 (2016)

14. Milan, A., Leal-Taixe, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for
multi-object tracking. arXiv preprint arXiv:1603.00831, pp. 1–12 (2016). http://
arxiv.org/abs/1603.00831

15. Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. Proc. Int. Conf.
Pattern Recognit. 3, 850–855 (2006)

16. Poirson, P., Ammirato, P., Fu, C.Y., Liu, W., Kosecka, J., Berg, A.C.: Fast single
shot detection and pose estimation. In: 2016 Fourth International Conference on
3D Vision (3DV), pp. 676–684

17. Punchihewa, A., Bailey, D.G.: Artefacts in image and video systems: classification
and mitigation. In: Proceedings of Image and Vision Computing New Zealand, pp.
197–202 (2002)

18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. CVPR 2016, 779–788 (2016). https://doi.org/10.1016/
j.nima.2015.05.028

19. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. arXiv preprint
arXiv:1612.08242 (2016). http://arxiv.org/abs/1612.08242

20. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: NIPS, pp. 1–10 (2015)

21. Sargano, A., Angelov, P., Habib, Z.: A comprehensive review on handcrafted and
learning-based action representation approaches for human activity recognition.
Appl. Sci. 7(1), 110 (2017)

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(ICRL), pp. 1–14 (2015)

https://doi.org/10.1007/978-3-319-16814-2_1
https://doi.org/10.1007/978-3-319-16814-2_1
http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831
https://doi.org/10.1016/j.nima.2015.05.028
https://doi.org/10.1016/j.nima.2015.05.028
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242


352 B. van Boven et al.

23. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, Inception-ResNet and the
impact of residual connections on learning. In: AAAI, pp. 4278–4284 (2017)

24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–
2826 (2016)

25. Torabi, A., Sigal, L.: Action classification and highlighting in videos. arXiv preprint
arXiv:1708.09522 (2017)

26. Wu, S., Zhong, S., Liu, Y.: Deep residual learning for image steganalysis. Multi-
media Tools and Applications, pp. 1–9 (2017)

27. Zhu, J., Rosset, S., Zou, H., Hastie, T.: Multi-class Adaboost. Ann. Arbor
1001(48109), 1612 (2006)

http://arxiv.org/abs/1708.09522

	Real-Time Excavation Detection at Construction Sites using Deep Learning
	1 Introduction
	2 Problem Description
	3 Related Work
	4 Approach
	4.1 Data Collection and Preparation
	4.2 Design of the Object Detector
	4.3 Design of the Action Classifier

	5 Results
	5.1 Object Detector
	5.2 Action Classifier

	6 Discussion
	7 Conclusion
	References




