
Reduction Stumps for Multi-class
Classification

Felix Mohr, Marcel Wever(B), and Eyke Hüllermeier

Heinz Nixdorf Institute, Department of Computer Science, Paderborn University,
Paderborn, Germany

marcel.wever@uni-paderborn.de

Abstract. Multi-class classification problems are often solved via reduc-
tion, i.e., by breaking the original problem into a set of presumably sim-
pler subproblems (and aggregating the solutions of these problems later
on). Typical examples of this approach include decomposition schemes
such as one-vs-rest, all-pairs, and nested dichotomies. While all these
techniques produce reductions to purely binary subproblems, which is
reasonable when only binary classifiers ought to be used, we argue that
reductions to other multi-class problems can be interesting, too. In this
paper, we examine a new type of (meta-)classifier called reduction stump.
A reduction stump creates a binary split among the given classes, thereby
creating two subproblems, each of which is solved by a multi-class classi-
fier in turn. On top, the two groups of classes are separated by a binary
(or multi-class) classifier. In addition to simple reduction stumps, we
consider ensembles of such models. Empirically, we show that this kind
of reduction, in spite of its simplicity, can often lead to significant per-
formance gains.

Keywords: Multi-class classification · Reduction · Ensembles
Automated machine learning

1 Introduction

Reduction of a multi-class classification problem means breaking down the orig-
inal problem into other presumably simpler subproblems. Typical examples
include one-vs-rest and all-pairs decomposition [6], as well as nested dichotomies
[5]. One-vs-rest creates one binary problem for each class, in which the class is
separated from the rest, whereas all-pairs creates a binary problem for each pair
of classes. Nested dichotomies reduce the given problem by recursively splitting
the set of classes, which yields a binary tree structure where each leaf has one
class and each inner node is meant to separate the classes occurring under the
left child from the classes occurring under the right child. In general, the sub-
problems created by reduction are all binary. Thus, reduction makes multi-class
problems amenable to binary classifiers, which can be seen as their main merit.

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 225–237, 2018.
https://doi.org/10.1007/978-3-030-01768-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_19&domain=pdf

226 F. Mohr et al.

Fig. 1. A multi-class problem with five classes.

While a complete reduction to binary problems is necessary when only binary
classifiers can be used, reductions to other multi-class problems might be inter-
esting as well. A priori, one cannot exclude that modifying an underlying multi-
class problem by reducing it to other multi-class problems (on less but possibly
more than two classes) is beneficial for a learner, even if the latter is principally
able to solve multi-class problems right away. For example, one may suspect that
a multi-class learner like a random forest or a neural network could benefit from
an explicit reduction of the problem shown in Fig. 1.

An interesting area of research where such reductions can be important is
automated machine learning (AutoML). AutoML aims at automatically find-
ing a machine learning “pipeline” (including methods for data preprocessing,
model induction, etc.) that optimizes a performance measure of interest for a
given learning task (typically specified by a dataset). A couple of approaches
to AutoML have been proposed [4,10–12] in the recent past. Currently, how-
ever, reduction is hardly considered by these approaches, although its potential
benefit is completely unclear.

In this paper, we examine a new classifier that we call reduction stumps.
Reduction stumps split the given set of classes into two subsets and then solve
the resulting problems with a multi-class classifier. Separating instances of the
two subsets is achieved by a third (and possibly binary) classifier. The motiva-
tion for looking at this type of classifier is that it offers a middle-ground solution
between native multi-class classifiers and a complete reduction to binary prob-
lems as in nested dichotomies. Therefore, reduction stumps achieve a reasonable
compromise between simplification and complexity.

Due to this property, reduction stumps offer an interesting means to achieve
performance gains in AutoML. However, the effort to determine such reductions
needs to be moderate, as AutoML tools must consider many different machine
learning pipelines and cannot spend too much time on a single decision, such as
whether or not reduction should be used. Besides, each of the reduced problems
gives rise to a new AutoML problem itself, so again for reasons of complexity,
one should avoid creating too many of them.

Reduction Stumps for Multi-class Classification 227

Empirically, we show that (ensembles of) reduction stumps indeed lead to
significant performance gains over many other classification algorithms in a sig-
nificant number of cases. More precisely, we compare reduction stumps against
several standard classification algorithms, including multi-class logistic regres-
sion, neural networks, nearest neighbors, support vector machines via all-pairs
reduction, decision tress, and random forests. We find that reduction stumps or
ensembles of them are better than any of the other algorithms in more than
half of the 21 examined datasets from the UCI repository [1]. Even though the
improvement over the best non-reduction-based classifier is often only small,
we thus provide a strong justification for the consideration of reduction stumps
when solving multi-class classification problems.

2 Background: Nested Dichotomies

Nested dichotomies (NDs) reduce a multi-class classification problem to a set
of (presumably easier to solve) binary problems. To this end, the original set of
classes (as long as comprising more than one element) is recursively split into
two nonempty subsets. Thus, an ND defines a binary tree, in which every node is
labeled with a set of classes, such that every leaf is labeled with a distinct class,
and every inner node with the union of labels of its children. Figure 2 shows two
example dichotomies for the case of four classes.

To each inner node of an ND, a classifier is attached and fitted for the task
of discriminating the two sets of classes (meta-classes) assigned to its children.
These classifiers are trained using a base learner, which is typically supposed
to produce probabilistic predictions. For a given instance, the class with the
highest probability is predicted, where the probability for a leaf is obtained by
multiplying the probabilities predicted by the base learners along the path from
the root to the respective leaf node.

Of course, the performance of an ND critically depends on the structure of the
binary tree, as it determines the complexity of the induced binary classification
problems, as well as the type of classifier attached to the inner nodes. Usually,
the type of classifier is fixed, and one is interested in finding the most beneficial
structure [9]. The criterion that is commonly optimized is the overall predictive
accuracy (percentage of correct classifications), which depends on the quality of
the binary classifiers, and therefore on the structure of the ND. Approaches to
finding suitable dichotomies are based on random sampling [5,9], greedy error
minimization [8], clustering [3], and evolutionary optimization [13].

A partial nested dichotomy is an ND in which the leaf nodes may be labeled
with more than only one class. Therefore, partial NDs need to be equipped with
multi-class classifiers in their leaf nodes. Of course, other reduction techniques
such as one-vs-rest or all-pairs [6] could be used here as well. To our knowl-
edge, partial dichotomies have only occurred during the construction process of
complete nested dichotomies, but have never been used as classifiers themselves.

228 F. Mohr et al.

A,B,C,D,E

A,D B,C,E

C,EB

C E

A D

A,B,C,D,E

A,B,D

C

C,E

EBA D

Fig. 2. A partial (left) and a complete (right) nested dichotomy for five classes.

3 Reduction Stumps and Reduction Stump Ensembles

In this paper, we focus on partial NDs of depth 1, which we refer to as reduction
stumps. Reduction stump have exactly one inner node, which is the root, and
two child nodes with an arbitrary number of classes. Of course, just like NDs,
reduction stumps are multi-class classifiers.

3.1 Motivation and Overview

The main goal of classical reduction techniques is to make multi-class problems
amenable to binary classification. Therefore, techniques such as one-vs-rest, all-
pairs [6], ECOC [7], and nested dichotomies [2,5] reduce the original problem
in such a way that all induced subproblems are binary. As opposed to this, the
distinguishing feature of reduction stumps is their partiality. In fact, reduction
stumps have a different use case and aim at distributing smaller and presumably
easier subproblems among two multi-class classifiers. For instance, this can be
advantageous because the multi-class classifier, despite being principally able
to treat an arbitrary number of classes, does not scale well for larger numbers
of classes. Furthermore, it might be interesting to consider different types of
base learners at the inner nodes, as one classifier might be able to separate one
group of classes well, while another one may prove beneficial for separating the
remaining classes.

In contrast to previous approaches, we allow different classifiers to be used
as base learners in reduction stumps. The flexibility of adopting different clas-
sifiers for (different parts of) the same problem is precisely one of the supposed
strengths of reduction stumps. We call reduction stumps with different classi-
fiers heterogeneous. Analogously, reduction stumps with the same classifier for all
subproblems are called homogeneous. One reason for considering homogeneous
reduction stumps may be that only one classification algorithm is available; for
example, in medical data analysis, often only decision trees are accepted for
reasons of interpretability.

In addition to single reduction stumps, we also consider ensembles. It has
been observed that ensembling often improves predictive accuracy, provided
there is a reasonable variety among the classifiers within the ensemble. For
reduction stumps, there are two sources of variety, which makes them especially

Reduction Stumps for Multi-class Classification 229

suitable for being used in an ensemble. First, there is randomness in the choice
of the splits of a reduction stump, which can be averaged out using ensembles;
for the same reason, it is common to consider ensembles of nested dichotomies
instead of only single dichotomies [5,8]. Second, the topology of a reduction
stump strongly depends on the choice of the base learner. Hence, the ensemble
effect might even be amplified when heterogeneous reduction stumps are used.

3.2 Training a Reduction Stump and Obtaining Predictions

Training a reduction stump requires two decisions. First, one must choose a split
of the set of classes, i.e., decide which classes belong to the left and which to
the right child of the root node. Second, one must choose the classifiers for (i)
the binary split and (ii) the rest problems associated with the left and the right
child, respectively. Obviously, there is an interaction between these two choices.

Even though the number of reduction stumps is much smaller than the num-
ber of nested dichotomies, it is still infeasible to enumerate all possible reduction
stumps. Given a problem with n classes, there are 2n−1 − 1 different splits. We
may enumerate these candidates for small n, but we cannot reasonably build a
general algorithm on this basis. However, there is reason to believe that near-
optimal splits can be found without extensive search. First, a number of heuris-
tics for finding good splits has been proposed [8]. Second, it has been shown that
even randomly sampling a relatively small number of splits and taking the best
of them often yields at least as good results [9].

Moreover, it is possible to conduct a grid-search over the possible classifiers
for the binary problem and the two child nodes, i.e., to enumerate all options for
the second choice. A full nested dichotomy has n− 1 inner nodes, where n is the
number of classes. If m classification algorithms are eligible, this leads to mn−1

possible combinations of classifiers over the inner nodes, which is generally not
feasible. For the reduction stump, however, we have at most m3 many combi-
nations1. For example, we shall consider m = 23 classifiers, which leads to over
1012 combinations in a full nested dichotomy for a 10-class problem, whereas we
only have 12,167 possible combinations for a reduction stump.

As a consequence, we design the reduction stump as a meta-classifier that can
be parametrized with a set of base classifiers. Given such a set C of classifiers,
it iterates over all active classifier combinations R ⊆ C3, where R = C3 in
the heterogeneous case and R = {(c, c, c) | c ∈ C} in the homogeneous case.
For each classifier combination r ∈ R, depending on the split technique, one
or more splits are identified and evaluated. The algorithm then associates the
classifier combination r with the best determined split s(r) and the respective
validation score t(r). The stump eventually selects argminr∈R t(r) as the classifier
combination and uses s(r) as the split.

The split is computed by drawing splits (uniformly) at random and evaluating
them against a validation set. To this end, the set of classes is organized in a

1 If the split separates a single class from the rest, then we even have only m2 many
combinations.

230 F. Mohr et al.

shuffled list, and a position within that list is drawn uniformly at random. We
draw k such splits and, for each of them, we also split the given training data
into a reduced training set and a validation set. The reduced training set is used
to train the reduction stump, and the validation set is used to validate it. We
do neither conduct cross-validation nor a holdout method here, but only use
single evaluations. First, conducting a sophisticated evaluation would be costly
and further reduce the data available for training the stump. Second, since the
sampling routine itself considers different splits of both data and classes, an
averaging effect over different data is still achieved.

We also experimented with another interesting split technique called random
pairs. The random-pair selection heuristic (RPND) was proposed by Leathart
et al. [8] for the construction of nested dichotomies and suggests to build the
two subsets by randomly choosing two classes as “seeds”, training a classifier to
separate them, and adding each of the other classes to the seed to which most of
its instances are assigned by the trained classifier. Our experiments showed that
RPND does not perform significantly better than the above best-of-k random
sampling, so we do not include it in the experiments for space reasons; this also
conforms to the observations of [9]. However, the results are available with the
implementation.

The inference for reduction stumps is straight forward. Given a new instance,
the root classifier decides whether the instance should belong to the first or the
second subset of classes. Based on this decision, the respective classifier for the
subproblem is used to make a final decision for the class of the instance. For
probabilistic predictions, each of the three classifiers computes a probability for
the instance to belong to its covered classes. The class distribution for an instance
is computed by multiplying the class probabilities produced by the base learners
at the child nodes with the probability for the respective child as obtained from
the root node’s base learner.

3.3 Ensembles of Reduction Stumps

As already said, in addition to single reduction stumps, we are interested in
ensembles of such models. Yet, in this paper, we only consider ensembles of homo-
geneous reduction stumps. Although we conjecture that heterogeneous ensembles
can be much more powerful, a training procedure needs to make more decisions
and would have to be more sophisticated than the straight forward approach as
described below. To reduce the computational cost, an effective heuristic would
be required. Since this work is more concerned with the fundamental question
of whether a reduction is beneficial at all, designing such a heuristic is left for
future work.

For ensembles of homogeneous reduction stumps, the training method is quite
straight forward. Given a set C of available base classifiers, the algorithm iterates
over all c ∈ C, using c as the base learner at each inner node. The algorithm
constructs an ensemble of a given size by creating the structure of the reduction
stumps at random. Furthermore, instead of performing a best-of-k selection for
each ensemble member, we apply the best-of-k heuristic to the entire ensemble.

Reduction Stumps for Multi-class Classification 231

That is, we build k ensembles of reduction stumps and select the ensemble with
the best score. For computing the score, the training data is again split into
a reduced training set and a validation set, and the ensemble is trained on the
former and evaluated on the latter. This evaluation procedure is repeated several
times to obtain a stable estimate for the ensemble (which is not changed over
the iterations), resulting in a holdout validation of the ensembles. After having
selected all |C| ensembles, the algorithm chooses the one with the best score to
be used for future predictions and trains it on the entire training data.

The prediction routine for ensembles is implemented as a majority vote. Each
reduction stump votes for a class, and the prediction of the ensemble is the class
that collects the highest number of votes.

4 Experimental Evaluation

In our experimental evaluation, we compare the proposed (ensembles of) reduc-
tion stumps to (ensembles of) single classifiers to analyze the potential benefit of
reducing the original problem to a set of simpler problems (with fewer classes).
Recalling our motivation of reduction as a possible means to improve automated
machine learning, note that, as part of an AutoML toolbox, reduction stumps
would serve as an option rather than a default choice. Correspondingly, includ-
ing them in the toolbox seems warranted if they provide the best choice in a
sufficient portion—but not necessarily the majority—of the cases.

We subdivide our analysis into two main aspects. First, we carry out a
detailed analysis of (ensembles of) homogeneous reduction stumps, comparing
them to the single classifier and a bagged ensemble of the latter. Second, we
additionally consider heterogeneous reduction stumps, comparing the best mod-
els using any classifier as a base learner.

4.1 Experimental Setup

In total, we evaluate the four methods on 21 datasets (as shown in Table 1)
from different domains, including image recognition, biology, and audio. To
estimate the predictive accuracy of each method, we used a 20-holdout (also
known as Monte-Carlo cross-validation), splitting the data into 70% training
data and 30% test data. As learning algorithms, which were also used as base
learners for the reduction stumps, we considered BayesNet (BN), NaiveBayes
(NB), NaiveBayesMultinomial (NBM), Logistic (L), MultilayerPerceptron (MP),
SimpleLogistic (SL), SMO (SMO), IBk (IB), KStar (KS), JRip (JR), PART
(PART), DecisionStump (DS), J48 (J48), LMT (LMT), RandomForest (RF),
and RandomTree (RT).

To build ensembles of reduction stumps, we used the Best-of-k strategy. To
this end, we used another internal stratified split of 70% data for building the
reduction stumps and 30% validation data for selection, and set k = 10.

We have implemented both reduction stumps and ensembles as WEKA clas-
sifiers. The code, the data used to conduct the experiments, and the database

232 F. Mohr et al.

Table 1. Datasets used in the evaluation

Dataset #instances #attributes #classes

audiology 226 69 24

autoUnivau6750 750 40 8

car 1728 6 4

cnae9 1080 856 9

fbis.wc 2463 2000 17

kropt 28056 6 18

letter 20000 16 26

mfeat-factors 2000 216 10

mfeat-fourier 2000 76 10

mfeat-karhunen 2000 64 10

mfeat-pixel 2000 240 10

optdigits 5620 64 10

pendigits 10992 16 10

page-blocks 5473 10 5

segment 2310 19 7

semeion 1593 256 10

vowel 990 13 11

waveform 5000 40 3

winequality 4898 11 11

yeast 1484 8 10

zoo 101 17 7

with the presented results are publicly available2. The computations were exe-
cuted on (up to) 150 Linux machines in parallel, each of which with a resource
limitation of 2 cores (Intel Xeon E5-2670, 2.6 Ghz) and 16 GB memory. The total
run-time was over 30 k CPU hours (more than 3 years).

4.2 Analysis of Homogeneous Reduction Stumps

Table 2 shows the error rate averaged over 20 train/test splits of single classi-
fiers (SC), homogeneous reduction stumps (RS), bagged ensembles of classifiers
(BA), and majority vote ensembles of homogeneous reduction stumps (EN) for
different classifiers and datasets. In the last column of the table, a statistic of
wins/ties/losses (W/T/L) is provided comparing RS to SC and EN to BA. Miss-
ing values indicate that the respective algorithm was either not applicable to the
problem or that it did not finish in a given timeout of 1h.

2 https://github.com/fmohr/ML-Plan/tree/ida2018.

https://github.com/fmohr/ML-Plan/tree/ida2018

Reduction Stumps for Multi-class Classification 233

Considering the results for RS, we can indeed see that the performance
of every classifier can sometimes be increased when wrapped into a reduction
stump. Although RS is not an overall dominating strategy, except for SL and
LMT, there are at least 3 datasets for each classifier where a reduction stump
performs better than the single classifier. This indicates that reduction in prin-
ciple can be beneficial in terms of performance improvement.

Comparing BA to EN, for some datasets, the overall picture is quite similar
to the comparison of RS and SC. Neglecting the classifiers BN and NBM, there
are at least 8 datasets for which EN yields a better performance. In particular,
EN seems to yield improved results for DS, LMT, RT, and RF rather frequently.
For 13 of 16 classifiers, EN wins more often than it loses against BA. We conclude
that reduction stumps might be more suitable for being used in ensembles.

4.3 Analysis of Heterogeneous Reduction Stumps

In the second part of our evaluation, we consider heterogeneous reduction
stumps. Since we cannot compare heterogeneous stumps in the context of a
single base classifier, we now consider the overall best performance achieved
with any classifier of the respective class. From the perspective of AutoML, this
is the most interesting part of the evaluation, because it answers the questions
whether (ensembles of) reduction stumps can be superior to any other classifi-
cation algorithm (either by itself or used within a (bagging) ensemble).

The results are summarized in Table 3, where we now distinguish between
RS-hom for homogeneous and RS-het for heterogeneous reduction stumps. Note
that with EN we still only refer to ensembles of homogeneous reduction stumps.
Significant differences are determined using a t-test with p = 0.05. While sig-
nificant improvements of reduction stumps over the baseline (single classifier
respectively bagged ensemble) are indicated by •, significant degradations are
indicated by ◦. Best performances within one row are highlighted in bold. Results
that are not significantly worse than the best result are underlined.

Regarding RS-hom, in this table, it becomes even clearer that homogeneous
reduction stumps do not perform that strong and in this context never achieve
the best performance for any of the datasets. Nevertheless, if used in an ensem-
ble, the homogeneous reduction stumps yield the best result in 5 cases. Further-
more, compared to BA, EN achieves 9 significant improvements. A significant
degradation, in turn, is observed only once.

However, the most remarkable observations are made for heterogeneous
reduction stumps that clearly outperform the other approaches. RS-het yields
6 significant improvements over SC while being significantly worse in only two
cases. Furthermore, it turns out to achieve the best performance in 15 of 21 cases.
From these results, we conclude that reduction stumps represent an interesting
approach for decomposing multi-class classification problems to a set of simpler
subproblems.

The results also motivate the investigation of ensembles of heterogeneous
reduction stumps. On one hand, it would be interesting to design a heuristic for
building such ensembles as a standalone classifier. On the other hand, instead

234 F. Mohr et al.

Table 2. Mean error rate of base learners on 21 UCI datasets. (see Footnote 2)

Reduction Stumps for Multi-class Classification 235

Table 3. Averaged error rate (mean±standard deviation) using best base learners.

Dataset SC RS-hom RS-het BA EN

audiology 16.38±3.01 19.31±3.99 14.22±0.75 19.31±1.86 19.68±0.96

autoUnivau6750 73.4±2.77 74.02±2.17 70.05±0.24 • 73.54±1.75 72.72±0.38

car 1.13±0.58 3.84±0.75 ◦ 0.10±0.10 • 1.75±0.70 0.42±0.12 •
cnae9 5.90±1.16 5.80±1.20 4.60±0.16 • 6.83±1.46 5.61±0.53 •
fbis.wc 18.19±1.05 18.23±1.93 19.99±1.19 15.13±1.25 15.62±0.40

kropt 29.74±0.38 29.77±0.59 30.17±0.11 ◦ 32.22±0.46 29.36±0.43 •
letter 4.22±0.28 4.35±0.19 4.13±0.07 4.80±0.22 3.84±0.07 •
mfeat-factors 2.41±0.50 2.60±0.62 1.95±0.42 2.20±0.28 2.09±0.20

mfeat-fourier 15.88±1.21 16.84±1.42 15.76±0.51 16.93±1.11 16.48±0.52

mfeat-karhunen 3.76±0.34 3.81±0.42 2.97±0.25 3.61±0.57 3.46±0.24

mfeat-pixel 2.59±0.47 2.88±0.39 2.46±0.25 2.58±0.48 2.48±0.11

optdigits 1.51±0.26 1.50±0.35 1.11±0.15 1.50±0.26 1.38±0.08

page-blocks 2.51±0.38 2.44±0.25 2.00±0.15 • 2.37±0.31 2.45±0.09

pendigits 0.77±0.13 0.75±0.12 0.73±0.18 0.84±0.16 0.70±0.03 •
segment 2.16±0.49 2.58±0.48 ◦ 2.04±0.44 2.76±0.65 2.19±0.19 •
semeion 6.65±0.96 6.52±0.92 6.77±0.10 6.61±0.64 5.92±0.28 •
vowel 1.78±0.98 2.20±1.23 1.05±0.55 4.69±2.23 2.02±0.23 •
waveform 13.04±0.78 14.82±0.56 ◦ 13.08±0.17 13.01±0.58 14.75±0.31 ◦
winequality 32.29±1.48 32.54±1.09 31.12±0.71 33.53±1.12 32.49±0.30 •
yeast 39.58±2.09 39.79±2.75 36.46±0.81 • 38.38±2.25 38.51±0.63

zoo 3.48±2.61 4.35±4.86 0.00±0.00 • 4.35±3.37 3.67±0.68

of only choosing classifiers from a portfolio, the results motivate to actively
decompose multi-class problems in the context of AutoML, and further tailoring
the base learners to the respective subproblems. From an AutoML perspective,
homogeneous reduction stumps are less attractive, as they seem to never achieve
globally the best performance; thus, the effort for considering them would not
be justifiable. In contrast to this, it is worth considering ensembles of reduction
stumps, which in some cases perform best, especially since the effort for building
them is relatively low.

5 Conclusion

In this paper, we proposed a meta-classifier called reduction stump, which can
be seen as the simplest reduction scheme for multi-class classification problems:
the original problem is decomposed into three subproblems of smaller size, two
multi-class problems on subsets of the original set of classes, and one binary
problem on the two respective meta-classes. In spite of their simplicity, reduc-
tion stumps show promising performance in our experiments, especially in their
heterogeneous version.

Our main motivation for analyzing reduction stumps originates from the field
of automated machine learning. For the reasons already explained, reduction can

236 F. Mohr et al.

be useful in AutoML, but should be applied with caution, in order to keep the
complexity manageable. Encouraged by the results of this paper, our next step
is to incorporate reduction stumps into the toolbox of AutoML. An additional
interesting research question that arises from the observation that some datasets
are more amenable to reduction than others is whether one can predict the
benefit of applying reduction based on the properties of a dataset.

Acknowledgements. This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Center “On-The-Fly Comput-
ing” (SFB 901).

References

1. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

2. Dong, Lin, Frank, Eibe, Kramer, Stefan: Ensembles of balanced nested dichotomies
for multi-class problems. In: Jorge, Aĺıpio Mário, Torgo, Lúıs, Brazdil, Pavel,
Camacho, Rui, Gama, João (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 84–
95. Springer, Heidelberg (2005). https://doi.org/10.1007/11564126 13

3. Duarte-Villaseñor, Miriam Mónica, Carrasco-Ochoa, Jesús Ariel, Mart́ınez-
Trinidad, José Francisco, Flores-Garrido, Marisol: Nested dichotomies based on
clustering. In: Alvarez, Luis, Mejail, Marta, Gomez, Luis, Jacobo, Julio (eds.)
CIARP 2012. LNCS, vol. 7441, pp. 162–169. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33275-3 20

4. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Advances in Neural Informa-
tion Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, Montreal, Quebec, Canada, 7–12 December 2015, pp. 2962–2970
(2015)

5. Frank, E., Kramer, S.: Ensembles of nested dichotomies for multi-class problems.
In: Proceedings ICML, 21st International Conference on Machine Learning. Banff,
Alberta, Canada (2004)

6. Fürnkranz, J.: Round robin classification. J. Mach. Learn. Res. 2, 721–747 (2002).
http://www.jmlr.org/papers/v2/fuernkranz02a.html

7. Kajdanowicz, T., Kazienko, P.: Multi-label classification using error correcting
output codes. Appl. Math. Comput. Sci. 22(4), 829–840 (2012). http://www.
degruyter.com/view/j/amcs.2012.22.issue-4/v10006-012-0061-2/v10006-012-
0061-2.xml

8. Leathart, Tim, Pfahringer, Bernhard, Frank, Eibe: Building Ensembles of adap-
tive nested dichotomies with random-pair selection. In: Frasconi, Paolo, Landwehr,
Niels, Manco, Giuseppe, Vreeken, Jilles (eds.) ECML PKDD 2016. LNCS (LNAI),
vol. 9852, pp. 179–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46227-1 12

9. Melnikov, V., Hüllermeier, E.: On the effectiveness of heuristics for learning nested
dichotomies: an empirical analysis. Mach. Learn. 107(8), 1537–1560 (2018)

10. Mohr, F., Wever, M., Hüllermeier, E.: Ml-Plan: automated machine learning via
hierarchical planning. Mach. Learn. 107(8), 1495–1515 (2018)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/11564126_13
https://doi.org/10.1007/978-3-642-33275-3_20
https://doi.org/10.1007/978-3-642-33275-3_20
http://www.jmlr.org/papers/v2/fuernkranz02a.html
http://www.degruyter.com/view/j/amcs.2012.22.issue-4/v10006-012-0061-2/v10006-012-0061-2.xml
http://www.degruyter.com/view/j/amcs.2012.22.issue-4/v10006-012-0061-2/v10006-012-0061-2.xml
http://www.degruyter.com/view/j/amcs.2012.22.issue-4/v10006-012-0061-2/v10006-012-0061-2.xml
https://doi.org/10.1007/978-3-319-46227-1_12
https://doi.org/10.1007/978-3-319-46227-1_12

Reduction Stumps for Multi-class Classification 237

11. Olson, R.S., Moore, J.H.: TPOT: A tree-based pipeline optimization tool for
automating machine learning. In: Proceedings of the 2016 Workshop on Automatic
Machine Learning, AutoML 2016, Co-located with 33rd International Conference
on Machine Learning (ICML 2016), New York City, NY, USA, 24 June 2016, pp.
66–74 (2016)

12. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: The
19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2013, Chicago, IL, USA, 11–14 August 2013, pp. 847–855 (2013)

13. Wever, M., Mohr, F., Hüllermeier, E.: Ensembles of evolved nested dichotomies. In:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2018, Kyoto, Germany, 15–19 July 2018 (2018)

	Reduction Stumps for Multi-class Classification
	1 Introduction
	2 Background: Nested Dichotomies
	3 Reduction Stumps and Reduction Stump Ensembles
	3.1 Motivation and Overview
	3.2 Training a Reduction Stump and Obtaining Predictions
	3.3 Ensembles of Reduction Stumps

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Analysis of Homogeneous Reduction Stumps
	4.3 Analysis of Heterogeneous Reduction Stumps

	5 Conclusion
	References

