
Wouter Duivesteijn
Arno Siebes
Antti Ukkonen (Eds.)

 123

LN
CS

 1
11

91

17th International Symposium, IDA 2018
’s-Hertogenbosch, The Netherlands, October 24–26, 2018
Proceedings

Advances in
Intelligent Data Analysis XVII

Lecture Notes in Computer Science 11191
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Wouter Duivesteijn • Arno Siebes
Antti Ukkonen (Eds.)

Advances in
Intelligent Data Analysis XVII
17th International Symposium, IDA 2018
’s-Hertogenbosch, The Netherlands, October 24–26, 2018
Proceedings

123

Editors
Wouter Duivesteijn
Eindhoven University of Technology
Eindhoven
The Netherlands

Arno Siebes
Department of Information
and Computing Sciences

University Utrecht
Utrecht
The Netherlands

Antti Ukkonen
University of Helsinki
Helsinki
Finland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-01767-5 ISBN 978-3-030-01768-2 (eBook)
https://doi.org/10.1007/978-3-030-01768-2

Library of Congress Control Number: 2018956595

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-6060-1746

Preface

We are proud to present the proceedings of the 17th International Symposium on
Intelligent Data Analysis (IDA 2018), which was held during October 24–28, 2018, in
’s-Hertogenbosch, The Netherlands. The series started in 1995 and was held biannually
until 2009. In 2010 the symposium refocused to support papers that go beyond
established technology and offer genuinely novel and potentially game-changing ideas
in the field of data analysis. The call for papers for this 2018 conference was formulated
as follows:

“Complementary to other mainstream conferences in data science, IDA's mission is
to promote ideas over performance: A solid motivation can be as convincing as
exhaustive empirical evaluation. To this end, IDA creates an open atmosphere that
encourages discussion and promotes innovative ideas in data analysis novel and
game-changing ideas.”

But, clearly, not all novel ideas are good ideas. To ensure the quality of all accepted
papers, standard rigorous, single-blind peer evaluation of all papers was performed by
the Program Committee (PC) consisting of established researchers in the field who
evaluated the papers against the requirements set out in the call for papers. As in
previous editions, this process was complemented by the PC advisors, a select set of
senior researchers with a multi-year involvement in the IDA conference series.
Whenever a PC advisor flagged a paper as both good and presenting an interesting,
novel, idea with an informed, thoughtful, positive review, the paper was accepted
irrespective of the other reviews.

As in previous installments, this somewhat special focus of IDA has resulted in the
submission and acceptance of a number of highly innovative papers that would have
had a hard time in the mainstream conferences. In fact, we are pleased and proud to
have put together a very strong program. We received 65 paper submissions out of
which 29 could be accepted. Every submission was reviewed by at least two PC
members, and the majority of submissions had at least three reviews. Each accepted
paper was offered a slot for oral presentation and, new this year, also offered a poster at
a specially organized poster session to foster deeper discussions than the brief Q&A
minutes often offered right after the presentation.

We were honored that the regular program was complemented by three distin-
guished invited speakers who fulfilled IDA's quest for novel, game-changing ideas:

– Tuuli Toivonen (University of Helsinki) talked about how modern data science and
machine learning methods can be used for analyzing and understanding human
accessibility and mobility in urban and natural environments.

– Luc de Raedt (KU Leuven) talked about his ERC project to automate data science.
More specifically, he discussed how automated data wrangling approaches can be
used for pre-processing and how both predictive and descriptive models can in
principle be combined to automatically complete spreadsheets and relational
databases.

– Johannes Fürnkranz (TU Darmstadt) talked about the need for interpretability
biases. Ever since the start of the field, interpretability has been one of the holy
grails. Usually this notion is operationalized as simplicity. In this talk, he questioned
this assumption, in particular with respect to commonly used rule learning heuristics
that aim at learning rules that are as simple as possible.

We also invited all keynote speakers to submit a paper on the topic of their pre-
sentation. Professors de Raedt and Fürnkranz decided to take this opportunity. These
invited papers appear in a separate Invited Papers section in the beginning of the
proceedings. Also, the first selected contribution is a slightly shorter position paper by
Leo Lahti about the importance of tools to facilitate open data science.

Finally, the program was completed by the traditional IDA PhD poster session in
which PhD students get the opportunity to promote their work.

The conference was held in the former chapel of the Jheronimus Academy of Data
Science, and we are grateful for their willingness to host the conference. We wish to
express our gratitude to all authors of all submitted papers, for their intellectual con-
tributions; to the PC members and additional reviewers for their efforts in reviewing,
discussing, and commenting on all submitted papers; to the program chair advisors for
their active involvement; and to the IDA council for their ongoing guidance and
support, in particular Elizabeth Bradley, Jaakko Hollmén, and Matthijs van Leeuwen.
Also, the program chairs wish to thank the general chair of IDA 2017, David Weston,
for his help with practical matters related to preparing the conference proceedings.
Finally, we are grateful to our sponsors and supporters: KNIME, which funded the IDA
Frontier Prize for the most visionary contribution, as well as The Netherlands Research
School for Information and Knowledge Systems (SIKS), the Artificial Intelligence
journal, and Springer.

August 2018 Wouter Duivesteijn
Arno Siebes

Antti Ukkonen

VI Preface

Organization

General Chair

Wouter Duivesteijn Eindhoven University of Technology, The Netherlands

Program Chairs

Arno Siebes Utrecht University, The Netherlands
Antti Ukkonen University of Helsinki, Finland

Local Chair

Arjan Haring Jheronimus Academy of Data Science, The Netherlands

Frontier Prize Chair

Michael Berthold University of Konstanz, Germany

Advisory Chairs

Allan Tucker Brunel University London, UK
Jaakko Hollmén Aalto University, Finland
Matthijs van Leeuwen Leiden University, The Netherlands

Organizing Committee

Arjan van den Born Jheronimus Academy of Data Science, The Netherlands
Arjan Haring Jheronimus Academy of Data Science, The Netherlands
Laura Niemeijer Jheronimus Academy of Data Science, The Netherlands

Web and Social Media Chair

Simon van der Zon Eindhoven University of Technology, The Netherlands

Program Committee Advisors

Michael Berthold University of Konstanz, Germany
Hendrik Blockeel Katholieke Universiteit Leuven, Belgium
Elizabeth Bradley University of Colorado, USA
Tijl De Bie Ghent University, Data Science Lab, Belgium
Elisa Fromont Université de Rennes 1, France
Jaakko Hollmén Aalto University, Finland

Frank Klawonn Ostfalia University of Applied Sciences, Germany
Nada Lavrač Jozef Stefan Institute, Slovenia
Matthijs van Leeuwen Leiden University, The Netherlands
Panagiotis Papapetrou Stockholm University, Sweden
Stephen Swift Brunel University London, UK
Hannu Toivonen University of Helsinki, Finland
Allan Tucker Brunel University London, UK

Program Committee

Ana Aguiar University of Porto, Portugal
Fabrizio Angiulli DEIS, University of Calabria, Italy
Mahir Arzoky Brunel University London, UK
Martin Atzmueller Tilburg University, The Netherlands
José Luis Balcázar Universitat Politècnica de Catalunya, Spain
Gustavo Batista University of São Paulo, Brazil
Maria Bielikova Slovak University of Technology in Bratislava, Slovakia
Christian Borgelt Otto von Guericke University Magdeburg, Germany
Ulf Brefeld Leuphana Universität Lüneburg, Germany
Paula Brito University of Porto, Portugal
Ricardo Cachucho Leiden University, The Netherlands
Loïc Cerf Universidade Federal de Minas Gerais, Brazil
Edward Cohen Imperial College London, UK
Paulo Cortez University of Minho, Portugal
Bruno Cremilleux Université de Caen, France
Andre de Carvalho University of São Paulo, Brazil
José Del Campo-Ávila Universidad de Málaga, Spain
Anton Dries Katholieke Universiteit Leuven, Belgium
Brett Drury SciCrop, Brazil
Nuno Escudeiro Instituto Superior de Engenharia do Porto, Portugal
Ad Feelders Utrecht University, The Netherlands
Peter Flach University of Bristol, UK
Johannes Fürnkranz TU Darmstadt, Germany
Tias Guns Vrije Universiteit Brussel, Belgium
Andreas Henelius Aalto University, Finland
Pedro Henriques Abreu FCTUC-DEI/CISUC, Portugal
Frank Höppner Ostfalia University of Applied Sciences, Germany
Ulf Johansson Jönköping University, Sweden
Alipio M. Jorge University of Porto, Portugal
Arno Knobbe Leiden University, The Netherlands
Irena Koprinska University of Sydney, Australia
Petra Kralj Novak Jozef Stefan Institute, Slovenia
Rudolf Kruse University of Magdeburg, Germany
Niklas Lavesson Jönköping University, Sweden
Jose A. Lozano University of the Basque Country, Spain
Ling Luo CSIRO, Australia

VIII Organization

George Magoulas Birkbeck College, Knowledge Lab, University of London,
UK

Vera Migueis University of Porto, Portugal
Mohamed Nadif Paris Descartes University, France
Andreas Nuernberger Otto von Guericke University Magdeburg, Germany
Kaustubh Raosaheb

Patil
Massachusetts Institute of Technology, USA

Mykola Pechenizkiy Eindhoven University of Technology, The Netherlands
Ruggero G. Pensa University of Torino, Italy
Marc Plantevit LIRIS - Université Claude Bernard Lyon 1, France
Lubos Popelinsky Masaryk University, Czech Republic
Alexandra Poulovassilis Birkbeck College, University of London, UK
Miguel A. Prada Universidad de Leon, France
Ronaldo Prati Universidade Federal do ABC - UFABC, Brazil
Antonio Salmeron University of Almería, Spain
Vítor Santos Costa University of Porto, Portugal
Roberta Siciliano University of Naples Federico II, Italy
Myra Spiliopoulou Otto von Guericke University Magdeburg, Germany
Frank Takes University of Amsterdam and Leiden University,

The Netherlands
Melissa Turcotte Los Alamos National Laboratory, USA
Peter van der Putten Leiden University and Pegasystems, The Netherlands
Jan N. van Rijn Leiden University, The Netherlands
Veronica Vinciotti Brunel University London, UK
Jilles Vreeken Max Planck Institute for Informatics and Saarland

University, Germany
Leishi Zhang Middlesex University, UK
Albrecht Zimmermann Université Caen Normandie, France
Indre Zliobaite University of Helsinki, Finland

Organization IX

Contents

Invited Papers

Elements of an Automatic Data Scientist . 3
Luc De Raedt, Hendrik Blockeel, Samuel Kolb, Stefano Teso,
and Gust Verbruggen

The Need for Interpretability Biases . 15
Johannes Fürnkranz and Tomáš Kliegr

Selected Contributions

Open Data Science . 31
Leo Lahti

Automatic POI Matching Using an Outlier Detection Based Approach. 40
Alexandre Almeida, Ana Alves, and Rui Gomes

Fact Checking from Natural Text with Probabilistic Soft Logic. 52
Nouf Bindris, Saatviga Sudhahar, and Nello Cristianini

ConvoMap: Using Convolution to Order Boolean Data 62
Thomas Bollen, Guillaume Leurquin, and Siegfried Nijssen

Training Neural Networks to Distinguish Craving Smokers, Non-craving
Smokers, and Non-smokers . 75

Christoph Doell, Sarah Donohue, Cedrik Pätz, and Christan Borgelt

Missing Data Imputation via Denoising Autoencoders: The Untold Story 87
Adriana Fonseca Costa, Miriam Seoane Santos, Jastin Pompeu Soares,
and Pedro Henriques Abreu

Online Non-linear Gradient Boosting in Multi-latent Spaces 99
Jordan Frery, Amaury Habrard, Marc Sebban, Olivier Caelen,
and Liyun He-Guelton

MDP-based Itinerary Recommendation using Geo-Tagged Social Media 111
Radhika Gaonkar, Maryam Tavakol, and Ulf Brefeld

Multiview Learning of Weighted Majority Vote by Bregman Divergence
Minimization . 124

Anil Goyal, Emilie Morvant, and Massih-Reza Amini

Non-negative Local Sparse Coding for Subspace Clustering 137
Babak Hosseini and Barbara Hammer

Pushing the Envelope in Overlapping Communities Detection 151
Said Jabbour, Nizar Mhadhbi, Badran Raddaoui, and Lakhdar Sais

Right for the Right Reason: Training Agnostic Networks 164
Sen Jia, Thomas Lansdall-Welfare, and Nello Cristianini

Link Prediction in Multi-layer Networks and Its Application
to Drug Design . 175

Maksim Koptelov, Albrecht Zimmermann, and Bruno Crémilleux

A Hierarchical Ornstein-Uhlenbeck Model for Stochastic Time Series
Analysis. 188

Ville Laitinen and Leo Lahti

Analysing the Footprint of Classifiers in Overlapped and Imbalanced
Contexts . 200

Marta Mercier, Miriam S. Santos, Pedro H. Abreu, Carlos Soares,
Jastin P. Soares, and João Santos

Tree-Based Cost Sensitive Methods for Fraud Detection in Imbalanced
Data . 213

Guillaume Metzler, Xavier Badiche, Brahim Belkasmi, Elisa Fromont,
Amaury Habrard, and Marc Sebban

Reduction Stumps for Multi-class Classification . 225
Felix Mohr, Marcel Wever, and Eyke Hüllermeier

Decomposition of Quantitative Gaifman Graphs as a Data Analysis Tool 238
José Luis Balcázar, Marie Ely Piceno, and Laura Rodríguez-Navas

Exploring the Effects of Data Distribution in Missing Data Imputation 251
Jastin Pompeu Soares, Miriam Seoane Santos, Pedro Henriques Abreu,
Hélder Araújo, and João Santos

Communication-Free Widened Learning of Bayesian Network Classifiers
Using Hashed Fiedler Vectors. 264

Oliver R. Sampson, Christian Borgelt, and Michael R. Berthold

Expert Finding in Citizen Science Platform for Biodiversity Monitoring via
Weighted PageRank Algorithm . 278

Zakaria Saoud and Colin Fontaine

XII Contents

Random Forests with Latent Variables to Foster Feature Selection in the
Context of Highly Correlated Variables. Illustration with a Bioinformatics
Application. 290

Christine Sinoquet and Kamel Mekhnacha

Don’t Rule Out Simple Models Prematurely: A Large Scale Benchmark
Comparing Linear and Non-linear Classifiers in OpenML 303

Benjamin Strang, Peter van der Putten, Jan N. van Rijn,
and Frank Hutter

Detecting Shifts in Public Opinion: A Big Data Study of Global News
Content . 316

Saatviga Sudhahar and Nello Cristianini

Biased Embeddings from Wild Data: Measuring, Understanding
and Removing . 328

Adam Sutton, Thomas Lansdall-Welfare, and Nello Cristianini

Real-Time Excavation Detection at Construction Sites using
Deep Learning . 340

Bas van Boven, Peter van der Putten, Anders Åström, Hakim Khalafi,
and Aske Plaat

COBRAS: Interactive Clustering with Pairwise Queries 353
Toon Van Craenendonck, Sebastijan Dumančić, Elia Van Wolputte,
and Hendrik Blockeel

Automatically Wrangling Spreadsheets into Machine Learning Data
Formats . 367

Gust Verbruggen and Luc De Raedt

Learned Feature Generation for Molecules . 380
Patrick Winter, Christian Borgelt, and Michael R. Berthold

Author Index . 393

Contents XIII

Invited Papers

Elements of an Automatic Data Scientist

Luc De Raedt(B), Hendrik Blockeel, Samuel Kolb, Stefano Teso,
and Gust Verbruggen

Department of Computer Science, KU Leuven, Leuven, Belgium
{luc.deraedt,hendrik.blockeel,samuel.kolb,stefano.teso,

gust.verbruggen}@cs.kuleuven.be

Abstract. A simple but non-trivial setting for automating data science
is introduced. Given are a set of worksheets in a spreadsheet and the
goal is to automatically complete some values. We also outline elements
of the Synth framework that tackles this task: Synth-a-Sizer, an auto-
mated data wrangling system for automatically transforming the prob-
lem into attribute-value format; TacLe, an inductive constraint learning
system for inducing formulas in spreadsheets; Mercs, a versatile pre-
dictive learning system; as well as the autocompletion component that
integrates these systems.

Keywords: Automated data science · Autocompletion
Data wrangling · Learning constraints · Versatile models

1 Introduction

The field of artificial intelligence (AI) can be viewed as the endeavor to auto-
mate all tasks that require intelligence when performed by humans [16,18]. As
scientific activities do require intelligence, artificial intelligence researchers [14]
have been developing robot scientists. While robot scientists typically target the
natural sciences, this paper focuses on the automation of data science. Given
the abundance of data, the needs to analyse data and the challenges in hiring
data scientists, even partial automation of data science would make a radical
impact on business. Indeed, automated data analysts are viewed as potentially
the second most impactful AI-powered technology by business executives [1].

Automated data science is not really new as there have been many approaches
to automating different aspects of data science, machine learning and data min-
ing. However, these approaches are typically embedded in existing tools and
workbenches that offer a multitude of operations, learning algorithms and param-
eter settings as well as graphical user interfaces visualizing particular workflows
[20]. When the user specifies the task of interest (e.g., predicting a particular
field), the intelligent data analysis assistant will then suggest a particular work-
flow (or sequence of algorithms) to use on the basis of built-in expert knowledge,
past cases, meta-learning or using ontological knowledge for planning purposes.
Work in the AutoML community [12] has focused on automatically selecting

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 3–14, 2018.
https://doi.org/10.1007/978-3-030-01768-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_1&domain=pdf

4 L. De Raedt et al.

an adequate learning algorithm and setting appropriate hyperparameters for
learning a given task. AutoML is based on the Programming by Optimisation
paradigm [11], which employs algorithm selection and portfolio optimisation.
Another fascinating approach is provided by the automated statistician [22],
which starts from a data set, automatically fits a statistical model and then
generates an explanation of the model in a paper written in natural language.

Characteristic for the existing approaches is that they assume that (1) the
learning task is given, and (2) the data is already in the right format for the
analysis. However, this is assuming that the most important problem has already
been solved. Indeed, since the inception of the field of data mining, people like
Usama Fayyad have argued that pre-processing (including the identification of
the right targets for predictive modeling) typically takes 80 per cent of the effort
in knowledge discovery and the actual data mining step (that is, finding the
right model with a system) only requires 20 per cent. The Synth

1 approach
advocated in the present paper aims at supporting all steps of the data analysis
problem, including pre-processing and feature selection, identifying the learn-
ing task and synthesizing a model for the dataset. As this is clearly a (very)
ambitious task, we identify a simple but highly non-trivial setting for studying
automated data science in which one is given a set of tables (e.g., worksheets
in a spreadsheet) and the task is to automatically complete some of the missing
entries. Furthermore, we introduce some elements of an automated data scientist
for tackling this task: automated data wrangling, flexible prediction, constraint
learning and autocompletion.

2 Autocompletion in Spreadsheets

Let us introduce the problem studied in this paper using the example provided
in Fig. 1. It is a typical (very simplified) business example of the use of a spread-
sheet. It contains information about the sales of particular flavors of ice-cream
in different countries and months, as well as information about the production
time taken to produce one unit of ice-cream. Assuming that decisions need to
be made about which flavors of ice-cream to retain in which countries, based
on the total sales, costs and profitability. However, the left table is incomplete,
as the values for August are not yet available, which would be problematic for
the decision making process. However, human data analysts could produce reli-
able estimates for these missing values in order to facilitate the decision making
process.

The question tackled in this paper is how to automatically complete such
cells under the assumption, of course, that there are underlying regularities in
the data and the data has been entered in the tables in a systematic manner.

Solving this problem requires a number of different steps: (1) discover the
equation T stating that the column Total is equal to the sum of the columns
June, July and August; (2) find a predictive model A for the column August
1
Synth stands for Synthesising Inductive Data Models, and it is the topic of the ERC
AdG project no. 694980; cf. https://synth.cs.kuleuven.be/.

https://synth.cs.kuleuven.be/

Elements of an Automatic Data Scientist 5

using the available data; (3) find a predictive model P for the column Profit
using the available data; (4) infer the missing values for August using A; (5)
infer the missing values for Total using the equation T ; and (6) infer the missing
values for Profit using P .

Notice that this autocompletion setting is simple, yet challenging as in general
it is not specified which steps need to be taken, that is, the different learning
tasks are not given and the only assumption on the data format is that it is in
a set of worksheets.

To address these different tasks, our Automic Data Scientist Synth uses a
number of different components: Synth-a-Sizer [25] is an automatic data wran-
gling system that transforms a dataset into a traditional attribute-value learning
format so that standard machine learning systems can be applied (cf. Sect. 3),
Mercs [26] induces versatile predictive models (cf. Sect. 4), TacLe [15] induces
constraints and formulas in spreadsheets (cf. Sect. 5), and the autocompletion
component ties learning and inference together in a probabilistic framework. We
now discuss each of these elements in turn.

Fig. 1. Two tables in a spreadsheet

3 Data Wrangling

The focus in the Synth setting is on working with spreadsheets while imposing
as few assumptions on the user as possible. While it is assumed that the user is
systematic, and that there exist regularities in the data that can be exploited
by data analysis techniques, it not assumed that the user is able to put the
spreadsheet in one of the formats required by standard data analysis and machine
learning software. Rather the user should be able to work with the format of the
spreadsheet that she created and the required data transformations should be
hidden to the user.

6 L. De Raedt et al.

That is where automated data wrangling steps in. Automated data wrangling
integrates ideas from program synthesis with data science.

Our Synth-a-Sizer tackles the following task [25]. Given a dataset S and
a machine learning algorithm M , find a transformed dataset D = t(S) so that
(1) D is in the format required by M , and (2) the unknown target model h
can be learned (or approximated) by algorithm M on D. The transformation t
is a program written in a domain specific language and consists of a sequence
of simple data transformations. So far, we have made the assumption that the
target format is in attribute-value form.

Automated data wrangling has received quite some attention recently. Some
data wrangling tools focus on the layout of the data: Trifacta’s Wrangler

system provides a graphical interface to transform spreadsheets without writing
code and FlashRelate [2] allows for data extraction programs to be synthesised
from input-output examples. Other tools focus on transforming the data itself
to a standardised format [13,21]. Common to these approaches is the need for
user-guidance, either in the form of examples or of intent. In return, they allow
for a large variety of output formats. Within the Synth framework, however,
it is clear that the transformed data will be used as input to a particular data
analysis suite (so far assumed to be in attribute-value format). This imposes
strong constraints on the format of transformed data and can be used to minimize
the required user interaction. On the other hand, spreadsheets are notorious for
being semi-structured. They exhibit some structure as all data is aligned in a
grid, but there are no rules on how exactly the structure should be laid out. The
same dataset has many representations in spreadsheet format and it is up to the
data wrangler to discover and exploit the structure.

To illustrate the Synth-a-Sizer setting, consider Fig. 2a which contains a
small car dealership interested in deciding when to offer discounts. There is also
a separate table containing information about the employees pitching the sales.
Running any machine learning algorithm on this data requires conversion into
an appropriate format, such as attribute-value pairs. The following sequence of
transformations (see [24,25] for details of the transformation) yields the desired
representation in Fig. 2b: Split(Sales, 1), Fill(Sales, 1), Delete(Sales,
2), Join(Sales, Employees, 3, 1). Any attribute-value learning system can
be applied on the resulting dataset, e.g., to learn a predictive model h for the last
column. This model can then be applied to predict the target value of interest,
which in our illustration is indicated by the question mark, and the resulting
prediction can be mapped back to the spreadsheet in the original format to hide
the details of the transformation and the learning from the end-user. Ideally,
the only required input would be for the user to select the question mark. After
marking the target value, the system has to figure out an appropriate target
representation and synthesize an adequate program.

The main technique employed in our Synth-a-Sizer is predictive synthesis,
meaning that we predict and evaluate the output of the synthesised program
while searching for a solution. The search process is guided by heuristics that are
based on two ideas. First, in an attribute-value format, the rows correspond to

Elements of an Automatic Data Scientist 7

Fig. 2. Car dealership data.

the examples. Secondly, the attributes or the columns contain values belonging to
the same domain. To exploit the first property, we allow the user to mark which
cells belong together in the worksheets, that is, belong to the same example. The
second property also provides a strong constraint on the target transformation,
if the domains are given; [24] shows how this constraint can be exploited. In our
more recent work [25], however, we heuristically evaluate the degree to which the
values in a particular column belong to the same domain. Essentially, the cells in
each column are checked for syntactic similarity against a reference cell selected
by the user. The syntactic similarity is an edit distance metric on character level,
meaning that replacing a digit by another digit is free. The combination of these
two properties shows already promising results.

It should be mention that other types transformations could be used as well,
for instance, after finding a suitable set of database dependencies, a set of tables
could be mapped into a single table using standard database operations such as
joins.

We are currently working on reducing the dependency on selecting a full
example. By first discovering the domains in the data, syntactically as well as
semantically, we can reduce this dependency of the heuristic on the user-input.
In addition to changing the layout of the spreadsheets, automated wrangling
approaches for data standardisation [21] are also to be incorporated. This step
can be facilitated by domain detection [6] and will ultimately be performed
without the need for examples—the output format will depend on the domains
and on the machine learning algorithm targeted.

8 L. De Raedt et al.

4 Versatile Models and Mercs

Autocompletion of tables requires the use of predictive models that are learned
from data. Concerning the learning phase, an important difference with the
standard setting of supervised learning is that, in the standard setting, the input
space and output space are fixed in advance: whether one learns a random forest,
a neural network, or any other predictive model, the learning algorithm needs
to know which variables are the inputs, and which ones the outputs, before it
starts learning.

In the Synth setting, the user may not know in advance which variables can
most easily be predicted from which other variables. Ideally, a model is learned
that in principle is able to predict any variable from any other variables; we call
this type of predictive models versatile models. Once such a versatile model is
available, it can be analyzed to determine which fields can be predicted from
which other fields. This can be used by an intelligent or automatic user interface
to reason about autocompletion of the data.

Synth will use a recently proposed approach to learning versatile models,
called Mercs. Mercs stands for multidirectional ensembles of regression and
classification trees. The basic idea behind it is simple. Mercs learns an ensemble
of decision trees, where each tree may have a different set of target attributes (as
opposed to classical ensembles, where a single target variable is given in advance
and all trees try to predict that value); see Fig. 3 for an illustration. In its most
basic version, Mercs could simply learn a classic ensemble for each variable
separately. When there are k trees in an ensemble, and m variables in total,
this requires learning mk trees. This number can go down by learning trees that
predict multiple variables at the same time, so-called multi-target trees. If each
tree in the multidirectional ensemble predicted v variables, then the number of
trees required to have each variable predicted by k trees can be divided by v.
Several authors [19,23] have shown that (ensembles of) multi-target trees often
achieve accuracies comparable to that of their single-target counterparts, while
being smaller, faster to learn, and faster at prediction time; they achieve state-
of-the-art accuracy in a variety of domains.

Another type of models that could be used as versatile predictive models
are probabilistic graphical models (PGMs), such as Bayesian networks, Markov
networks, etc. The main difference between PGMs and Mercs is that PGMs
model a joint probability distribution, whereas Mercs merely model a set of
functions. While the latter is implicitly defined by the former, exact probabilistic
inference using PGMs is NP-hard, and even approximate inference is NP-hard
if guarantees are asked about the quality of the approximation [17].

In the Synth context, Mercs is supposed to predict the correct outcome, in
those cases where it can be predicted. We do not necessarily want to know the
probability of each possible value when there is uncertainty. This is an inher-
ently simpler problem than probabilistic inference, and it may have simpler solu-
tions. That this is indeed the case was shown by Van Wolputte et al. [26], who
implemented and evaluated a first version of Mercs. In a comparison with a
state-of-the-art Bayesian network learner, Mercs learned models with compa-

Elements of an Automatic Data Scientist 9

Fig. 3. Schematic illustration of multidirectional ensembles. Each tree (T1, T2, T3) takes
a different set of input and output variables. In this example, each variable is predicted
at least once; X1 is predicted by two trees. Having trees simultaneously predict multiple
outputs reduces the total number of trees needed to cover each potential target variable
with a sufficient number of trees.

rable accuracy and training times, but with inference times that were orders
of magnitude faster. In the context of Synth, this version of Mercs can be
straightforwardly deployed for filling in values in a single table.

Apart from the automatic filling of tables, Mercs can also be used to detect
errors. Indeed, any versatile model can be used for detecting anomalies by
comparing predicted values with observed values; when both differ, this is an
anomaly. Anomalies do not necessary indicate errors (there may be other reasons
why a value is anomalous, apart from an entry error), but in many application
contexts an entry error may indeed be the most likely cause of an anomaly.

When multiple tables are available, the spreadsheet is essentially a relational
database, and predictions in one table may require information from different
tables. That is, a relational learner may be required. To this aim, we are cur-
rently doing research on a relational version of Mercs, which will use first-order
decision trees as learned by the relational learning system Tilde [5].

From a wider machine learning perspective, the Mercs approach leads to a
variety of research questions, which are yet to be addressed. For instance:

– The variation in target sets introduces more variation among trees predicting
one particular variable. Normally, variation is introduced through training
set resampling and, in the case of random forests, randomness in the input
attributes considered at each node. In Mercs, the co-targets of a given vari-
able vary among trees, introducing additional variation that may, for instance,
render resampling unnecessary.

– A given target variable’s value is predicted by combining trees. Some of these
trees may test attributes that are missing. In a standard ensemble, those
attributes’ value must be imputed, or the tree must deal with missing values
in some other manner. In a Mercs model, the missing values can be predicted
using other trees that have these attributes as targets. Different possible pro-
cedures are currently being explored regarding how this can be done. Synth’s

10 L. De Raedt et al.

autocompletion setting goes even further in that it wants to combine the pre-
dictions made by versatile models with inference based on other types of
theories, such as TacLe’s constraint theories that are discussed next.

5 Learning Constraints and TacLe

The goal of TacLe [15] is to discover formulas and constraints in a spreadsheet.
It is this component that could induce the equation T in the example for Fig. 1.
An illustration of TacLe is given in Figs. 4 and 5, where the constraints shown
in Fig. 5 are automatically induced from the three tables in Fig. 4.

To this end, TacLe has a set of constraint templates to specify which types
of formulas it should look for. Every constraint template is made up of three
parts: syntax, signature and definition. An example of a constraint template is
column-wise sum, whose syntax is B2 = SUMcol(B1), where B2 is a column
and B1 a set of consecutive columns, i.e., a matrix. By filling in ranges of cell
addresses for arguments B1 and B2, we obtain an actual constraint that tells us
that the i-th cell assigned to B2 is equal to the sum of the i-th column of the
cells assigned to B1. Discovering column-wise sum constraints is thus the task of
finding assignments of cell ranges to constraint template arguments such that the
assignment satisfies the constraint template. Checking whether an assignment
satisfies a constraint template is done using the signature and definition of that
template. The signature checks necessary conditions on the properties of the
ranges, e.g., do they contain the right type of values (numeric for sum) and are
the sizes of the ranges compatible, while the definition can be used to look up
the actual values of the cells in those ranges, to compute their sums and to verify
whether the results match.

The main challenges for learning constraints are dealing with the vast amount
of possible assignments to every constraint template and avoiding the discovery
of spurious constraints. To deal with these problems, TacLe includes a prepro-
cessing step to convert spreadsheets to a more structured representation and
subsequently tries to prune impossible sets of assignments from its search.

Internally, TacLe reasons over tables of equally-sized rows and/or columns,
blocks which are continuous ranges of rows or columns with the same type (e.g.,
numeric or textual) and finally individual vectors (a row or a column) of type-
consistent cells. Tables in a spreadsheet are detected either automatically or
using a visual selection tool and can be automatically split into a minimal number
of type-consistent blocks. Blocks group together neighboring vectors of the same
type and vectors form the minimal level of granularity, i.e., constraints must
always reason about entire vectors. For this initial step, there is clearly room for
cross-fertilization between Tacle’s pre-processing steps and Synth-a-Sizer’s
automatic transformation process.

TacLe employs a couple of strategies to prune impossible assignments.
First, when finding valid assignments for a constraint template, it considers

two levels of granularity: reasoning over entire type-consistent blocks as detected

Elements of an Automatic Data Scientist 11

in the previous phase (input blocks) and then reasoning over assignments of sub-
sets of input blocks (subblocks and vectors). After precomputing the properties
of every input block, it uses a constraint satisfaction solver to find assignments
of input blocks to constraint template arguments that are compatible with the
constraint template signature. Compatibility means that subsets of the input
blocks could potentially satisfy the signature. This step eliminates whole sets
of assignments that are incompatible. For every valid input block assignment
TacLe generates all assignments of subblocks and tests if they fulfil the signa-
ture and definition.

Secondly, TacLe also considers dependencies between constraint templates.
If a constraint template s2 requires a constraint of type s1 to hold on a subset Ad

of its arguments A, then the search for valid assignments to s2 is bootstrapped.
Instead of generating all possible assignments to A, the values for Ad are pre-
populated with valid assignments to s2.

Fig. 4. Example spreadsheet. For illustration purposes (not present in the spreadsheet),
gray coloring is used to show detected blocks (light gray for blocks with numeric data
and darker gray for blocks with textual data) and block names and notations are
provided in italic.

TacLe is one example of a system that learn constraints from examples.
While constraints are ubiquitous in artificial intelligence, the learning of con-
straint theories has not received a lot of attention, but see [8] for an overview of
the state-of-the-art and [3,4] for particular approaches coming from the field of
constraint programming. TacLe and Synth-a-Sizer are also inspired on the
program synthesis line of work originated in FlashFill [10].

12 L. De Raedt et al.

Fig. 5. Constraints extracted by TaCLe for the above tables.

6 Putting Everything Together

As mentioned in the introduction, we are given an (incomplete) dataset in the
form of a set of tables or worksheets and the task is to automatically complete
some of the missing entries. After pre-processing the dataset into an appropri-
ate format and training predictive models and constraints on the latter, the
remaining step is to aggregate the obtained predictions into a coherent, consis-
tent completion of the data. Computing such an autocompletion, presenting it
to the user of the system, and reacting to the user’s actions are keystones of the
Synth framework. We consider these tasks in turn.

The aggregation task is far from trivial. Indeed, a cell may hold arbitrary val-
ues (currencies, dates, names, phone numbers, etc.) and may depend on other
cells (in the same or different tables) in complex ways, depending on the genera-
tive process behind it. For these reasons, different predictors, based on different
cues and rationales, may output different and possibly inconsistent predictions
for the cell’s value. Choosing the “best” alternative requires one to take into
consideration several factors, first and foremost the observed confidence in the
predictors. In addition to the predictions themselves, the constraints (e.g., Excel
formulas) output by the constraint learning must be taken into account as to
avoid autocompleting the cell with infeasible values. Inferring the best autocom-
pletion therefore involves reasoning over both confidences and constraints.

We introduce a new probabilistic reasoning layer—the Synth layer—that
sits on top of the predictors and constraints and aggregates their outputs. The
Synth layer independently estimates the confidence in the predictors, e.g., by
cross-validation or by using historical performance information. Given this infor-
mation, as well as the input predictions and constraints, the Synth layer solves
the following inference problem: given an incomplete spreadsheet and a set of
(possibly inconsistent) predictions for all the empty cells, find a completion of
the spreadsheet that is both maximally likely and consistent. This can be cast as
a probabilistic inference problem in a probabilistic programming language such
as ProbLog [7,9].

The Synth layer is designed to integrate with and to complement existing
spreadsheet software. The idea is to provide a real-time, mixed-initiative auto-
completion interface whereby the user and the system collaborate to complete
one or more spreadsheets. The autocompletion loop involves both a user, who is
filling out one or more spreadsheets, and the Synth system, which continuously

Elements of an Automatic Data Scientist 13

suggests potential values to be filled into the cells, rows, or columns that the user
is currently working on. The suggestions are presented in a sidebar, so that the
user can accept or reject them without being interrupted while working on the
spreadsheet. The user can also select a range of cells and request to autocomplete
them. Whenever the user updates the values of any cells or rejects a proposed
values, the Synth system updates the relevant predictors and re-evaluates its
confidence. The idea is that in this way Synth learns from the user feedback.

7 Conclusions

We have defined the Synth challenge for automated data science and described
some elements of an initial attempts to tackle it. Essential for solving the auto-
completion task is the ability to learn constraints and versatile predictive models,
ways to deal with the data wrangling aspects, as well as techniques for deciding
what to learn and how to perform inference with the resulting models.

Acknowledgments. This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No [694980] Synth: Synthesising Inductive Data Models)
and the Research Foundation, Flanders.

References

1. Bot.me: How artificial intelligence is pushing man and machine closer together.
Technical Report, PwC (2017)

2. Barowy, D.W., Gulwani, S., Hart, T., Zorn, B.: Flashrelate: extracting relational
data from semi-structured spreadsheets using examples. SIGPLAN Not. 50(6),
218–228 (2015)

3. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models
from positive examples. In: Proceedings 18th International Conference on Princi-
ples and Practice of Constraint Programming. Lecture Notes in Computer Science,
vol. 7514, pp. 141–157 (2012)

4. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif.
Intell. 244, 315–342 (2017)

5. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1–2), 285–297 (1998)

6. Contreras-Ochando, L., Mart́ınez-Plumed, F., Ferri, C., Hernández-Orallo, J.,
Ramı́rez-Quintana, M.J., Katayama, S.: Domain specific induction for data wran-
gling automation (demo). AutoML @ ICML 2017 (2017)

7. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its
application in link discovery. In: Proceedings 20th International Joint Conference
on Artificial Intelligence (2007)

8. De Raedt, L., Passerini, A., Teso, S.: Learning constraints from examples. In:
Proceedings 32nd AAAI Conference on Artificial Intelligence (2018)

9. Fierens, D., et al.: Inference and learning in probabilistic logic programs using
weighted boolean formulas. Theory Pract. Log. Prog. 15(3), 358–401 (2015)

14 L. De Raedt et al.

10. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: ACM SIGPLAN-SIGACT, POPL, pp. 317–330 (2011)

11. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
12. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): AutoML: methods, systems, chal-

lenges (2018). Draft available from: https://www.ml4aad.org/book/
13. Jin, Z., Cafarella, M., Jagadish, H., Kandel, S., Minar, M.: Unifacta: profiling-

driven string pattern standardization. arXiv preprint arXiv:1803.00701 (2018)
14. King, R.D., et al.: Functional genomic hypothesis generation and experimentation

by a robot scientist. Nature 427, 247–252 (2004)
15. Kolb, S., Paramonov, S., Guns, T., De Raedt, L.: Learning constraints in spread-

sheets and tabular data. Mach. Learn. 106(9–10), 1441–1468 (2017)
16. Kurzweil, R.: The Age of Intelligent Machines. MIT press, Cambridge (1990)
17. Kwisthout, J.: Approximate inference in bayesian networks: parameterized com-

plexity results. Int. J. Approx. Reason. 93, 119–131 (2018)
18. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-

tice Hall, Upper Saddle River (2010)
19. Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., Dzeroski, S.: Predicting

gene function using hierarchical multi-label decision tree ensembles. BMC Bioin-
form. 11(2) (2010)

20. Serban, F., Vanschoren, J., Kietz, J.U., Bernstein, A.: A survey of intelligent assis-
tants for data analysis. ACM Comput. Surv. (CSUR) 45(3) (2013)

21. Singh, R., Gulwani, S.: Transforming spreadsheet data types using examples. SIG-
PLAN Not. 51(1), 343–356 (2016)

22. Steinruecken, C., Smith, E., Janz, D., Lloyd, J., Ghahramani, Z.: The automated
statistician (2018). Draft available from: https://www.ml4aad.org/book/

23. Vens, C., Struyf, J., Schietgat, L., Dzeroski, S., Blockeel, H.: Decision trees for
hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)

24. Verbruggen, G., De Raedt, L.: Towards automated relational data wrangling. In:
Proceedings of AutoML 2017@ ECML-PKDD: automatic selection, configuration
and composition of machine learning algorithms, pp. 18–26 (2017)

25. Verbruggen, G., De Raedt, L.: Automatically wrangling spreadsheets into machine
learning data formats. In: Duivesteijn, W., et al. (eds.) IDA 2018. LNCS, vol.
11191, pp. 367–379. Springer, Cham (2018)

26. Wolputte, E.V., Korneva, E., Blockeel, H.: MERCS: multi-directional ensembles
of regression and classification trees. In: Proceedings 32nd AAAI Conference on
Artificial Intelligence (2018)

https://www.ml4aad.org/book/
http://arxiv.org/abs/1803.00701
https://www.ml4aad.org/book/

The Need for Interpretability Biases

Johannes Fürnkranz1(B) and Tomáš Kliegr2

1 Department of Computer Science, Knowledge Engineering Group,
TU Darmstadt, Darmstadt, Germany
fuernkranz@ke.tu-darmstadt.de

2 Department of Information and Knowledge Engineering,

University of Economics, Prague, Czech Republic

Abstract. In his seminal paper, Mitchell has defined bias as “any basis
for choosing one generalization over another, other than strict consis-
tency with the observed training instances”, such as the choice of the
hypothesis language or any form of preference relation between its ele-
ments. The most commonly used form is a simplicity bias, which prefers
simpler hypotheses over more complex ones, even in cases when the lat-
ter provide a better fit to the data. Such a bias not only helps to avoid
overfitting, but is also commonly considered to foster interpretability. In
this talk, we will question this assumption, in particular with respect to
commonly used rule learning heuristics that aim at learning rules that
are as simple as possible. We will, in contrary, argue that in many cases,
short rules are not desirable from the point of view of interpretability,
and present some evidence from crowdsourcing experiments that support
this hypothesis. To understand interpretability, we must relate machine
learning biases to cognitive biases, which let humans prefer certain expla-
nations over others, even in cases when such a preference cannot be ratio-
nally justified. Only then can we develop suitable interpretability biases
for machine learning.

1 Biases in Machine Learning

In his ground-breaking technical report “The need for biases in learning gener-
alizations”, Mitchell (1980) has established that generalization from examples
is not possible without giving the learning algorithm some sort of direction in
the form of a so-called bias. He defines bias as “any basis for choosing one gen-
eralization over another, other than strict consistency with the instances”, and
has later been generalized to include “any factor (including consistency with the
instances) that influences the definition or selection of inductive hypotheses”
(Gordon and desJardins, 1995). Bias-free learning can only lead to an enumera-
tion of the version space of all possible models that are complete and consistent
with the training data (Mitchell, 1977). This is in general infeasible, and would
also be futile because, as Mitchell has argued, knowing the complete version

Much of the material in this paper is based on Fürnkranz et al. (2018).

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 15–27, 2018.
https://doi.org/10.1007/978-3-030-01768-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_2&domain=pdf
http://orcid.org/0000-0002-1207-0159

16 J. Fürnkranz and T. Kliegr

space does not allow any classification beyond a mere lookup of the seen train-
ing examples. For making an inductive leap, some of the theories within the
version space must be preferred over others.

Mitchell (1980) listed several factors that may bias the learner, including con-
straints resulting from domain knowledge about possible valid theories, knowl-
edge about the intended use of a theory such as misclassification costs, knowledge
about the source of the data, or a preference for simple and more general the-
ories. In particular the latter point is predominant in machine learning, where
principles like Occam’s Razor (Blumer et al., 1987) or Minimum Description
Length (MDL) (Rissanen, 1978) are commonly used heuristics for model selec-
tion and pruning or regularization techniques are considered to be necessary
ingredients for learning algorithms to fight the danger of overfitting (Schaffer,
1993). Maybe somewhat surprisingly, a preference for comprehensible or inter-
pretable of models is not among the considered biases. Nevertheless, the need
for learning comprehensible models also has been recognized early in machine
learning and data mining.

2 Interpretability

Michalski (1983) formulated a comprehensibility postulate, which states that the
“results of computer induction should be symbolic descriptions of given entities,
semantically and structurally similar to those a human expert might produce
observing the same entities. Components of these descriptions should be com-
prehensible as single chunks of information, directly interpretable in natural
language”. Muggleton et al. (2018) refer to Michie (1988) who discerns between
weak learning, which focuses only on prediction, strong learning, which finds
symbolic descriptions of the learned predictive theories, and ultra-strong learn-
ing, which is able to increase the performance of a human who has access to these
theories. Kodratoff (1994) has observed that interpretability is an ill-defined con-
cept, and has called upon several communities from both academia and industry
to tackle this problem, to “find objective definitions of what comprehensibility
is”, and to open “the hunt for probably approximate comprehensible learning”.
For a good review of work on interpretability, we refer the reader to Freitas
(2013) who surveys various aspects of interpretability, compares several classifier
types with respect to their comprehensibility, and points out several drawbacks
of model size as a single measure of interpretability.

3 Complexity Biases

Interpretability is often considered to correlate with model simplicity. It is con-
ventional wisdom in machine learning and data mining that logical models such
as rule sets are more interpretable than other models, and that among such rule-
based models, simpler models are more interpretable than more complex ones.
There are many plausible reasons why simpler models should be preferred over
more complex models. Obviously, a shorter model can be interpreted with less

The Need for Interpretability Biases 17

effort than a more complex model of the same kind, in much the same way as
reading one paragraph is quicker than reading one page. Nevertheless, a page of
elaborate explanations may be more comprehensible than a single dense para-
graph that provides the same information (as we all know from reading research
papers). However, there have also been several results that throw doubt on this
claim. In this section, we briefly discuss this issue in some depth, by first dis-
cussing the use of a simplicity bias in machine learning (Sect. 3.1), then taking
the alternative point of view and recapitulating works where more complex theo-
ries are preferred (Sect. 3.2), and then summarizing the conflicting past evidence
for either of the two views (Sect. 3.3).

3.1 The Bias for Simplicity

Michalski (1983) already states that inductive learning algorithms need to incor-
porate a preference criterion for selecting hypotheses to address the problem of
the possibly unlimited number of hypotheses, and that this criterion is typically
simplicity, referring to philosophical works on simplicity of scientific theories by
Kemeny (1953) and Post (1960), which refine the initial postulate attributed to
Ockham. Occam’s Razor, “Entia non sunt multiplicanda sine necessitate”.1 This
statement, attributed to English philosopher and theologian William of Ockham
(c. 1287–1347), has been put forward as support for a principle of parsimony in
the philosophy of science (Hahn, 1930). In machine learning, this principle is gen-
erally interpreted as “given two explanations of the data, all other things being
equal, the simpler explanation is preferable” (Blumer et al., 1987), or simply
“choose the shortest explanation for the observed data” (Mitchell, 1997). While
it is well-known that striving for simplicity often yields better predictive results—
mostly because pruning or regularization techniques help to avoid overfitting—
the exact formulation of the principle is still subject to debate (Domingos, 1999),
and several cases have been observed where more complex theories perform bet-
ter (Bensusan, 1998; Murphy and Pazzani, 1994; Webb, 1996).

Much of this debate focuses on the aspect of predictive accuracy. When it
comes to understandability, the idea that simpler rules are more comprehensible
is typically unchallenged. A nice counter example is due to Munroe (2013),
who observed that route directions like “take every left that doesn’t put you
on a prime-numbered highway or street named for a president” could be most
compressive but considerably less comprehensive. Although Domingos (1999)
argues in his critical review that it is theoretically and empirically false to favor
the simpler of two models with the same training-set error on the grounds that
this would lead to lower generalization error, he concludes that Occam’s Razor
is nevertheless relevant for machine learning but should be interpreted as a
preference for more comprehensible (rather than simple) model.

A particular implementation of Occam’s razor in machine learning is the
minimum description length (MDL; Rissanen 1978) or minimum message length
(MML2; Wallace and Boulton 1968) principle, which is an information-theoretic
1 Entities should not be multiplied beyond necessity.
2 The differences between the two views are irrelevant for our argumentation.

18 J. Fürnkranz and T. Kliegr

formulation of the principle that smaller models should be preferred (Grünwald,
2007). The description length that should be minimized is the sum of the com-
plexity of the model plus the complexity of the data encoded given the model.
In this way, both the complexity and the accuracy of a model can be traded off:
the description length of an empty model consists only of the data part, and it
can be compared to the description length of a perfect model, which does not
need additional information to encode the data. The theoretical foundation of
this principle is based on the Kolmogorov complexity (Li and Vitányi, 1993),
the essentially uncomputable length of the smallest model of the data. In prac-
tice, different coding schemes have been developed for encoding models and data
and have, e.g., been used as pruning criterion (Cohen, 1995; Mehta et al., 1995;
Quinlan, 1990) or for pattern evaluation (Vreeken et al., 2011). However, we are
not aware of any work that relates MDL to interpretability.

3.2 The Bias for Complexity

Even though most systems have a bias toward simpler theories for the sake of
overfitting avoidance and increased accuracy, some rule learning algorithms strive
for more complex rules, and have good reasons for doing so. Already Michalski
(1983) has noted that there are two different kinds of rules, discriminative and
characteristic. Discriminative rules can quickly discriminate an object of one
category from objects of other categories. A simple example is the rule

elephant :- trunk.

which states that an animal with a trunk is an elephant. This implication pro-
vides a simple but effective rule for recognizing elephants among all animals.
However, it does not provide a very clear picture on properties of the elements
of the target class. For example, from the above rule, we do not understand that
elephants are also very large and heavy animals with a thick grey skin, tusks
and big ears.

Characteristic rules, on the other hand, try to capture all properties that are
common to the objects of the target class. A rule for characterizing elephants
could be

heavy, large, grey, bigEars, tusks, trunk :- elephant.

Note that here the implication sign is reversed: we list all properties that are
implied by the target class, i.e., by an animal being an elephant. From the point
of understandability, characteristic rules are often preferable to discriminative
rules. For example, in a customer profiling application, we might prefer to not
only list a few characteristics that discriminate one customer group from the
other, but are interested in all characteristics of each customer group.

Characteristic rules are very much related to formal concept analysis (Ganter
and Wille, 1999; Wille, 1982). Informally, a concept is defined by its intent (the
description of the concept, i.e., the conditions of its defining rule) and its extent
(the instances that are covered by these conditions). A formal concept is then a

The Need for Interpretability Biases 19

Fig. 1. Top three rules learned for the class poisonous in the Mushroom dataset.

concept where the extension and the intension are Pareto-maximal, i.e., a con-
cept where no conditions can be added without reducing the number of covered
examples. In Michalski’s terminology, a formal concept is both discriminative
and characteristic, i.e., a rule where the head is equivalent to the body.

It is well-known that formal concepts correspond to closed itemsets in asso-
ciation rule mining, i.e., to maximally specific itemsets (Stumme et al., 2002).
Closed itemsets have been mined primarily because they are a unique and com-
pact representative of equivalence classes of itemsets, which all cover the same
instances (Zaki and Hsiao, 2002). However, while all itemsets in such an equiva-
lence class are equivalent with respect to their support, they may not be equiv-
alent with respect to their understandability or interestingness.

Consider, e.g., the infamous {diapers, beer} itemset that is commonly used
as an example for a surprising finding in market based analysis. A possible
explanation for this finding is that this rule captures the behavior of young
family fathers who are sent to shop for their youngster and have to reward
themselves with a six-pack. However, if we consider that a young family may
not only need beer and diapers, the closed itemset of this particular combination
may also include baby lotion, milk, porridge, bread, fruits, vegetables,
cheese, sausages, soda, etc. In this extended context, diapers and beer appear
to be considerably less surprising. Conversely, an association rule

beer :- diapers (1)

with an assumed confidence of 80%, which at first sight appears interesting
because of the unexpectedly strong correlation between buying two seemingly
unrelated items, becomes considerably less interesting if we learn that 80% of
all customers buy beer, irrespective of whether they have bought diapers or not.
In other words, the association rule 1 is considerably less plausible than the
association rule

beer:- diapers, baby lotion, milk, porridge, bread,
fruits, vegetables, cheese, sausages, soda.

(2)

20 J. Fürnkranz and T. Kliegr

even if both rules may have very similar properties in terms of support and
confidence.

Stecher et al. (2014) introduced so-called inverted heuristics for inductive
rule learning. The key idea behind them is a rather technical observation based
on a visualization of the behavior of rule learning heuristics in coverage space
(Fürnkranz and Flach, 2005), namely that the evaluation of rule refinements
is based on a bottom-up point of view, whereas the refinement process pro-
ceeds top-down, in a general-to-specific fashion. As a remedy, it was proposed
to “invert” the point of view, resulting in heuristics that pay more attention
to maintaining high coverage on the positive examples, whereas conventional
heuristics focus more on quickly excluding negative examples. Somewhat unex-
pectedly, it turned out that this results in longer rules, which resemble char-
acteristic rules instead of the conventionally learned discriminative rules. For
example, Fig. 1 shows the two decision lists that have been found for the UCI
Mushroom dataset3 with the conventional Laplace heuristic hLap (top) and its
inverted counterpart 4Lap (bottom). Although fewer rules are learned with 4Lap,
and thus the individual rules are more general on average, they are also con-
siderably longer. Intuitively, these rules also look more convincing, because the
first set of rules often only uses a single criterion (e.g., odor) to discriminate
between edible and poisonous mushrooms. Stecher et al. (2016) and Valmarska
et al. (2017) investigated the suitability of such rules for subgroup discovery,
with somewhat inconclusive results.

3.3 Conflicting Evidence

There are many plausible reasons why simpler models should be preferred over
more complex models. Obviously, a shorter model can be interpreted with less
effort than a more complex model of the same kind, in much the same way as
reading one paragraph is quicker than reading one page. Nevertheless, a page of
elaborate explanations may be more comprehensible than a single dense para-
graph that provides the same information (as we all know from reading research
papers). Other reasons for preferring simpler models include that they are easier
to falsify, that there are fewer simpler theories than complex theories, so the
a priori chances that a simple theory fits the data are lower, or that simpler
rules tend to be more general, cover more examples and their quality estimates
are therefore statistically more reliable. However, even in cases where a simpler
and a more complex rule covers the same number of examples, shorter rules are
not necessarily more understandable. There are a few isolated empirical studies
that add to this picture. However, the results on the relation between the size
of representation and comprehensibility are limited and conflicting.

Larger Models are Less Comprehensible. Huysmans et al. (2011) were among
the first that actually tried to empirically validate the often implicitly made
claim that smaller models are more comprehensible. In particular, they related

3 https://archive.ics.uci.edu/ml/datasets.html.

https://archive.ics.uci.edu/ml/datasets.html

The Need for Interpretability Biases 21

increased complexity to measurable events such as a decrease in answer accu-
racy, an increase in answer time, and a decrease in confidence. From this, they
concluded that smaller models tend to be more comprehensible, proposing that
there is a certain complexity threshold that limits the practical utility of a model.
However, they also noted that in parts of their study, the correlation of model
complexity with utility was less pronounced. The study also does not report on
the domain knowledge the participants of their study had relating to the data
used, so that it cannot be ruled out that the obtained result were caused by
lack of domain knowledge. A similar study was later conducted by Piltaver et al.
(2016), who found a clear relationship between model complexity and compre-
hensibility in decision trees.

Larger Models are More Comprehensible. A direct evaluation of the perceived
understandability of classification models has been performed by Allahyari and
Lavesson (2011). They elicited preferences on pairs of models which were gener-
ated from two UCI datasets: Labor and Contact Lenses. What is unique to this
study is that the analysis took into account the estimated domain knowledge of
the participants on each of the datasets. On Labor, participants were expected
to have good domain knowledge but not so for Contact Lenses. The study was
performed with 100 student subjects and involved several decision tree induc-
tion algorithms (J48, RIDOR, ID3) as well as rule learners (PRISM, Rep, JRip).
It was found that larger models were considered as more comprehensible than
smaller models on the Labor dataset whereas the users showed the opposite pref-
erence for Contact Lenses. Allahyari and Lavesson (2011) explain the discrepancy
with the lack of prior knowledge for Contact Lenses, which makes it harder to
understand complex models, whereas in the case of Labor, “. . . the larger or more
complex classifiers did not diminish the understanding of the decision process,
but may have even increased it through providing more steps and including more
attributes for each decision step.” In an earlier study, Kononenko (1993) found
that medical experts rejected rules learned by a decision tree algorithm because
they found them to be too short. Instead, they preferred explanations that were
derived from a Näıve Bayes classifier, which essentially showed weights for all
attributes, structured into confirming and rejecting attributes.

4 The Need for Interpretability Biases

A lot of work in interpretability has focused on the mere syntactic comprehensi-
bility of a concept. For example, Muggleton et al. (2018) provide an operational
definition of comprehensibility, which essentially captures how quickly a learned
concept can be utilized in solving the problems from the same task domain,
typically classifying new examples. In Fürnkranz et al. (2018), we have advo-
cated the view that there is more to interpretability than the mere ability to
syntactically parse and understand a given concept.

Consider, e.g., Fig. 2, which shows several possible explanations for why a city
has a high quality of living, derived by the Explain-a-LOD system, which uses

22 J. Fürnkranz and T. Kliegr

Fig. 2. Good discriminative rules for the quality of living of a city (Paulheim, 2012)

Linked Open Data as background knowledge for explaining statistics (Paulheim
and Fürnkranz, 2012). Clearly, all rules are comprehensible, and can be easily
applied in practice. Even though all of them are good discriminators on the
provided data and can be equally well applied by an automated system, the
first three appear to be more convincing to a human user. However, currently
available rule learning systems would not be able to express a preference for the
rules in Fig. 2(a) over those in Fig. 2(b). For doing so, one needs to capture not
only the comprehensibility of a rule, but also its plausibility.

5 Cognitive Biases

In order to work towards interpretability biases for machine learning, it is useful
to consider work in psychology on cognitive biases. Tversky and Kahneman
(1974) defined a cognitive bias as a “ systematic error in judgment and decision-
making common to all human beings which can be due to cognitive limitations,
motivational factors, and/or adaptations to natural environments. ”

The presumably most famous example is the so-called conjunctive fallacy,
exemplified by the Linda problem (cf. Fig. 3). In this problem, subjects are asked
whether they consider it more plausible that a person Linda is more likely to be
(a) a bank teller or (b) a feminist bank teller. Tversky and Kahneman (1983)
report that based on the provided characteristics of Linda, 85% of the partici-
pants indicate (b) as the more probable option. This was essentially confirmed
by various independent studies, even though the actual proportions may vary.
However, of course, hypothesis (a) is more likely to be correct because a conjunc-
tion will never cover more cases than each of its constituents. For our purposes,
this example reiterates the point that shorter explanations are not necessarily
preferred by human subjects, and that a bias for interpretability should take
other factors into account.

The conjunctive fallacy has received considerable attention in the psycho-
logical literature, and many possible explanations for this and related phenom-
ena have been proposed (cf. Pohl 2017, for a survey). The results are predomi-
nantly attributed to the representative heuristic (Tversky and Kahneman, 1974),

The Need for Interpretability Biases 23

Fig. 3. The Linda problem (Tversky and Kahneman, 1983).

according to which people tend to confuse probability with similarity, i.e., Linda
is more similar to our mental image of a feminist bank teller than to a generic
bank teller. Another potentially relevant explanation is given by Hertwig et al.
(2008), who hypothesizes that the humans tend to misunderstand conjunctions.
They discussed that “and” in natural language can express several relationships,
including temporal order, causal relationship, and most importantly, can also
indicate a union of sets instead of their intersection. For example, the sentence
“He invited friends and colleagues to the party” does not mean that all people
at the party were both colleagues and friends. Moreover, while the conjunctive
fallacy is possibly the best-documented result of the representativeness heuristic,
there is a number of other cognitive biases and heuristics that can be important
for interpretation of rule learning results. A survey of cognitive biases can be
found in (Pohl, 2017), and a discussion of their relevance for machine learning
in (Kliegr et al., 2018).

6 First Experimental Results

In previous work (Fürnkranz et al., 2018), we have evaluated a selection of cog-
nitive biases in the very specific context of whether minimizing the complexity
or length of a rule will also lead to increased interpretability, which is often taken
for granted in machine learning research. More concretely, we reported on five
crowd-sourcing experiments conducted in order to gain first insights into differ-
ences in the plausibility of rule learning results. Users were confronted with pairs
of learned rules with approximately the same discriminative power (as measured
by conventional heuristics such as support and confidence), and were asked to
indicate which one seemed more plausible. The experiments were performed in
four domains, which were selected so that respondents can be expected to be
able to comprehend the given explanations (rules), but not to reliably judge their
validity without obtaining additional information. In this way, users were guided
to give an intuitive assessment of the plausibility of the provided explanation.

24 J. Fürnkranz and T. Kliegr

A first experiment explored the hypothesis whether the Occam’s razor prin-
ciple holds for the plausibility of rules, by investigating whether people consider
shorter rules to be more plausible than longer rules. The results obtained for
four different domains showed that this is not the case, in fact we observed
statistically significant preference for longer rules on two datasets. In another
experiment, we found support for the hypothesis that the elevated preference
for longer rules is partly due to the misunderstanding of “and” that connects
conditions in the presented rules: some people erroneously find rules with more
conditions as more general. A third experiment show that when both confi-
dence and support are explicitly stated, confidence positively affects plausibil-
ity and support is largely ignored. This confirms a prediction following from
previous psychological research studying the insensitivity to sample size effect
(Tversky and Kahneman, 1971). Other experiments investigated the relevance
of attributes and literals used in the conditions of a rule. The results indicated
that rule plausibility is affected already if a single condition is considered to
be more relevant.4 In order to investigate the effects of the recognition heuris-
tic (Goldstein and Gigerenzer, 1999), we attempted to use PageRank computed
from the Wikipedia knowledge graph as a proxy for how well a given condition
is recognized. The results were inconclusive, on one of the datasets we observed
plausibility being affected when all conditions in one rule were recognized com-
paratively more than in the alternative rule.

7 Conclusion

The main goal of this paper was to motivate that interpretability of rules is an
important topic, which is more than a simple syntactic readability of the pre-
sented models. In particular, we believe that plausibility is an important aspect
of interpretability, which, to our knowledge, has received too little attention in
the literature. Learners can often find a large variety of rules with the same or
similar discriminatory power as measured on hold-out data, but with large differ-
ence in their perceived credibility. Machine learning systems need interpretability
biases in order to cope with such situations.

In our view, a research program that aims at a thorough investigation of
interpretability in machine learning needs to resort to results in the psychological
literature, in particular to cognitive biases and fallacies. We summarized some
of these hypotheses, such as the conjunctive fallacy, and started to investigate to
what extent these can serve as explanations for human preferences over different
learned hypotheses. Moreover, it needs to be considered how cognitive biases can
be incorporated into machine learning algorithms. Unlike loss functions, which
can be evaluated on data, it seems necessary that interpretability is evaluated in
user studies. Thus, we need to establish appropriate evaluation procedures for

4 Since our experiments were based on subjective comparisons of pairs of rules, a more
precise formulation would be, “comparatively more relevant than the most relevant
condition in an alternative rule”.

The Need for Interpretability Biases 25

interpretability, and develop appropriate heuristic surrogate functions that can
be quickly evaluated and optimized in learning algorithms.

Acknowledgements. We would like to thank Frederik Janssen and Julius Stecher for
providing us with their code, Eyke Hüllermeier, Frank Jäkel, Niklas Lavesson, Nada
Lavrač and Kai-Ming Ting for interesting discussions and pointers to related work, and
Jilles Vreeken for pointing us to Munroe (2013). We are also grateful for the insightful
comments of the reviewers of (Fürnkranz et al., 2018), which helped us considerably to
focus our paper. TK was supported by grant IGA 33/2018 of the Faculty of Informatics
and Statistics, University of Economics, Prague.

References

Allahyari, H., Lavesson, N.: User-oriented assessment of classification model under-
standability. In: Kofod-Petersen, A., Heintz, F., Langseth, H. (eds.) Proceedings of
the 11th Scandinavian Conference on Artificial Intelligence (SCAI-11), pp. 11–19
(2011)

Bensusan, H.: God doesn’t always shave with Occam’s Razor — learning when and
how to prune. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398,
pp. 119–124. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026680

Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Inf. Pro-
cess. Lett. 24, 377–380 (1987)

Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Pro-
ceedings of the 12th International Conference on Machine Learning (ML-95), pp.
115–123. Morgan Kaufmann, Lake Tahoe (1995)

Domingos, P.: The role of Occam’s Razor in knowledge discovery. Data Min. Knowl.
Discov. 3(4), 409–425 (1999)

Freitas, A.A.: Comprehensible classification models: a position paper. SIGKDD Explor.
15(1), 1–10 (2013)

Fürnkranz, J., Flach, P.A.: ROC ‘n’ rule learning - towards a better understanding of
covering algorithms. Mach. Learn. 58(1), 39–77 (2005)

Fürnkranz, J., Kliegr, T., Paulheim, H.: On cognitive preferences and the interpretabil-
ity of rule-based models. arXiv preprint arXiv:1803.01316 (2018)

Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). https://
doi.org/10.1007/978-3-642-59830-2

Goldstein, D.G., Gigerenzer, G.: The recognition heuristic: how ignorance makes us
smart. Simple Heuristics That Make Us Smart, pp. 37–58. Oxford (1999)

Gordon, D.F., DesJardins, M.: Evaluation and selection of biases in machine learning.
Mach. Learn. 20(1–2), 5–22 (1995)

Grünwald, P.D.: The Minimum Description Length Principle. MIT Press, Cambridge
(2007)

Hahn, H.: Überflüssige Wesenheiten: Occams Rasiermesser. Veröffentlichungen des
Vereines Ernst Mach, Wien (1930)

Hertwig, R., Benz, B., Krauss, S.: The conjunction fallacy and the many meanings of
and. Cognition 108(3), 740–753 (2008)

Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical eval-
uation of the comprehensibility of decision table, tree and rule based predictive
models. Decis. Support Syst. 51(1), 141–154 (2011)

Kemeny, J.G.: The use of simplicity in induction. Philos. Rev. 62(3), 391–408 (1953)

https://doi.org/10.1007/BFb0026680
http://arxiv.org/abs/1803.01316
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-59830-2

26 J. Fürnkranz and T. Kliegr

Kliegr, T., Bahńık, Š., Fürnkranz, J.: A review of possible effects of cognitive
biases on interpretation of rule-based machine learning models. arXiv preprint
arXiv:1804.02969 (2018)

Kodratoff, Y.: The comprehensibility manifesto. KDD Nuggets, 94(9) (1994)
Kononenko, I.: Inductive and Bayesian learning in medical diagnosis. Appl. Artif. Intell.

7, 317–337 (1993)
Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications.

TCS. Springer, New York (2008). https://doi.org/10.1007/978-0-387-49820-1
Mehta, M., Rissanen, J., Agrawal, R.: MDL-based decision tree pruning. In: Fayyad, U.,

Uthurusamy, R. (eds.) Proceedings of the 1st International Conference on Knowledge
Discovery and Data Mining, pp. 216–221. AAAI Press (1995)

Michalski, R.S.: A theory and methodology of inductive learning. Artif. Intell. 20(2),
111–162 (1983)

Michie, D.: Machine learning in the next five years. In: Proceedings of the 3rd European
Working Session on Learning (EWSL-88), pp. 107–122. Pitman (1988)

Mitchell, T.M., The need for biases in learning generalizations. Technical report, Com-
puter Science Department, Rutgers University, New Brunswick (1980)

Mitchell, T.M.: Version spaces: a candidate elimination approach to rule learning. In:
Reddy, R. (ed.) Proceedings of the 5th International Joint Conference on Artificial
Intelligence (IJCAI-77), pp. 305–310. William Kaufmann (1977)

Mitchell, T.M.: Machine Learning. McGraw Hill, New York (1997)
Muggleton, S.H., Schmid, U., Zeller, C., Tamaddoni-Nezhad, A., Besold, T.: Ultra-

strong machine learning: comprehensibility of programs learned with ILP. Mach.
Learn. 1–22 (2018)

Munroe, R. Kolmogorov directions. www.xkcd.com, A webcomic of romance, sarcasm,
math, and language (2013)

Murphy, P.M., Pazzani, M.J.: Exploring the decision forest: an empirical investigation
of Occam’s Razor in decision tree induction. J. Artif. Intell. Res. 1, 257–275 (1994)

Paulheim, H.: Generating possible interpretations for statistics from linked open data.
In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC
2012. LNCS, vol. 7295, pp. 560–574. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30284-8 44

Paulheim, H., Fürnkranz, J.: Unsupervised generation of data mining features from
linked open data. In: Proceedings of the International Conference on Web Intelligence
and Semantics (WIMS’12) (2012)

Piltaver, R., Luštrek, M., Gams, M., Martinčić-Ipšić, S.: What makes classification
trees comprehensible? Expert Syst. Appl. 62, 333–346 (2016)

Pohl, R.: Cognitive Illusions: A Handbook on Fallacies and Biases in Thinking, Judge-
ment and Memory, 2nd edn. Psychology Press, London (2017)

Post, H.: Simplicity in scientific theories. Br. J. Philos. Sci. 11(41), 32–41 (1960)
Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266

(1990)
Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)
Schaffer, C.: Overfitting avoidance as bias. Mach. Learn. 10, 153–178 (1993)
Stecher, J., Janssen, F., Fürnkranz, J.: Separating rule refinement and rule selection

heuristics in inductive rule learning. In: Calders, T., Esposito, F., Hüllermeier, E.,
Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8726, pp. 114–129. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44845-8 8

Stecher, J., Janssen, F., Fürnkranz, J.: Shorter rules are better, aren’t they? In: Calders,
T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 279–294.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0 18

http://arxiv.org/abs/1804.02969
https://doi.org/10.1007/978-0-387-49820-1
www.xkcd.com
https://doi.org/10.1007/978-3-642-30284-8_44
https://doi.org/10.1007/978-3-642-30284-8_44
https://doi.org/10.1007/978-3-662-44845-8_8
https://doi.org/10.1007/978-3-319-46307-0_18

The Need for Interpretability Biases 27

Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with Titanic. Data Knowl. Eng. 42(2), 189–222 (2002)

Tversky, A., Kahneman, D.: Belief in the law of small numbers. Psychol. Bull. 76(2),
105–110 (1971)

Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases. Science
185(4157), 1124–1131 (1974)

Tversky, A., Kahneman, D.: Extensional versus intuitive reasoning: the conjunction
fallacy in probability judgment. Psychol. Rev. 90(4), 293–315 (1983)

Valmarska, A., Lavrač, N., Fürnkranz, J., Robnik-Sikonja, M.: Refinement and selection
heuristics in subgroup discovery and classification rule learning. Expert Syst. Appl.
81, 147–162 (2017)

Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data
Min. Knowl. Discov. 23(1), 169–214 (2011)

Wallace, C.S., Boulton, D.M.: An information measure for classification. Comput. J.
11, 185–194 (1968)

Webb, G.I.: Further experimental evidence against the utility of Occam’s razor. J.
Artif. Intell. Res. 4, 397–417 (1996)

Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts.
In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)

Zaki, M.J., Hsiao, C.-J.: CHARM: An efficient algorithm for closed itemset mining. In:
Grossman, R.L., Han, J., Kumar, V., Mannila, H., Motwani, R. (eds.) Proceedings
of the 2nd SIAM International Conference on Data Mining (SDM-02), Arlington
(2002)

Selected Contributions

Open Data Science

Leo Lahti(B)

University of Turku, Turku, Finland
leo.lahti@iki.fi

http://www.iki.fi/Leo.Lahti

Abstract. The increasing openness of data, methods, and collaboration
networks has created new opportunities for research, citizen science, and
industry. Whereas openly licensed scientific, governmental, and institu-
tional data sets can now be accessed through programmatic interfaces,
compressed archives, and downloadable spreadsheets, realizing the full
potential of open data streams depends critically on the availability of
targeted data analytical methods, and on user communities that can
derive value from these digital resources. Interoperable software libraries
have become a central element in modern statistical data analysis, bridg-
ing the gap between theory and practice, while open developer communi-
ties have emerged as a powerful driver of research software development.
Drawing insights from a decade of community engagement, I propose the
concept of open data science, which refers to the new forms of research
enabled by open data, open methods, and open collaboration.

Keywords: Algorithmic data analysis · Open data science
Open collaboration · Open research software

1 Introduction

Openly licensed data sets from scientific, governmental, institutional, and other
sources are now increasingly accessible online and can be used to support aca-
demic research. Deriving value from data depends critically on the availability of
appropriate data analytical methods, and on research communities that are capa-
ble of taking advantage of these emerging opportunities in the overall research
workflow.

Research software plays an essential role in bridging the gap between data,
theoretical models and application expertise. Access to open data on vari-
ous areas ranging from biomedical measurements and geospatial information
to demographics, government activities, and historical records has opened new
opportunities for research but there is a persisting shortage of algorithmic tools
to access, process and analyse open data resources. Domain-specific tools are
often missing, and researchers can put remarkable effort on building custom
scripts that never become widely distributed, utilized, and verified despite their
broader research potential. Thriving virtual research communities have formed

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 31–39, 2018.
https://doi.org/10.1007/978-3-030-01768-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_3&domain=pdf
http://orcid.org/0000-0001-5537-637X

32 L. Lahti

around statistical programming environments, such as R, Python, or Julia, to
address these needs. These rapidly growing ecosystems of research software and
algorithms have provided the means to standardize many routine tasks in data
analysis that can be used as building blocks in complex data science workflows.

The role of community is fundamental to academic research. In the context of
data science, developer communities can provide social and technical incentives
to promote long-term development and maintenance of open research software
and collaboration networks when immediate academic incentives are lacking.
This helps to avoid duplicated effort and channel resources to collective quality
control. The open development model has emerged as a predominant mode for
research algorithm development in natural sciences during the past decade, and
is now rapidly gaining ground in the social sciences and humanities. The research
potential of collective initiatives exceeds far beyond the capacities of any single
research group or institution. Virtual and often informal research networks have
emerged as powerful drivers of open research. Open collaboration platforms such
as the rOpenSci1 and Bioconductor [5] are further helping to expand the scope of
these efforts towards increased standardization and domain-specific algorithms.

The field of open data science, proposed in this perspective article, refers to
the new forms of research and research quality enabled by open data, algorithms,
and collaboration networks. In many practical situations, these components of
research are open only partially. Open data science emphasizes the possibilities
of open research practices, hence being a field that is both taking advantage of
and furthering the development towards more open and collaborative research
through standardization and collective verification of common analysis tasks.

Fig. 1. Role of research software in the open data science workflow. Open research
software mediates the community efforts and interaction based on shared data, meth-
ods, and hypotheses defined by the research community at each stage of an open data
science project. Open collaboration facilitates standardization and reproducibility, and
the overall quality of research.

1 https://ropensci.org.

https://ropensci.org

Open Data Science 33

2 Elements of Open Data Science

The three pillars of open data science include open data, open algorithms, and
open collaboration (Fig. 1). Research software has a central role in mediating the
interaction between these elements, helping to simplify, standardize, and auto-
mate research. Open collaboration networks can play a key role by providing
peer support, collective quality control, and collaborative development opportu-
nities [2,4]. Techniques from the machine learning and artificial intelligence can
support various steps of algorithmic data analysis from raw data access through
analysis to final reporting [15]. Open data science emphasizes data and methods
sharing through open infrastructures and virtual collaboration networks that
have been enabled by digitalization and the push towards openness in govern-
ment and academia.

2.1 Open Data

A number of data repositories have been opened by academic, governmental,
and industrial parties, and have been integrated with data analytical workflows
in research and commercial applications. Eurostat, the statistical office of the
European Union, is one example of the many institutions that are sharing vast
open data resources online2. The Eurostat database contains thousands of con-
temporary and longitudinal data sets on demography, economics, health, infras-
tructure, traffic and other topics at the European level, often with fine spatial
and temporal resolution spanning several years or decades. Open data sharing
differs from more traditional data services that provide access only to limited
subsets of the data, and limit data analysis options on tools that are readily
implemented in the query interface rather than letting the researcher decide
which tools and analyses to execute. Such limitations form severe bottlenecks
for research that relies on access to the full raw data.

The research use of open data, on the other hand, has been limited by the
shortage of efficient tools to access, process, and integrate such data sets. The
data sources and formats are scattered, and the methods for handling such data
are heterogeneous, requiring a multitude of expertise and skills due to vari-
ability in data formats and interfaces. Research communities can benefit from
shared programmatic tools that can seamlessly integrate initial data retrieval
with downstream algorithms for statistical analysis and reporting. Standardized
software libraries have been developed to facilitate fluent retrieval of open data
from within statistical programming environments such as R, Python, or Julia.
Collaborative development and automation of the open data retrieval is a central
element in open data science.

For instance, the eurostat R package [6] is specifically tailored to retrieve data
in the R environment from Eurostat open data portal. The package includes
custom tools to query, download, manipulate, and visualize these data sets in a

2 http://ec.europa.eu/eurostat/data/database.

http://ec.europa.eu/eurostat/data/database

34 L. Lahti

smooth, automated and reproducible manner. Standard features, such as com-
pliance with tidy data principles [18], support the integration with other tools of
open data science. Significant portions of the package documentation have been
published as open and reproducible case studies based on the Eurostat open
data, providing concrete examples of possible research use, and a straightfor-
ward starting point for further adjustments. In the case of eurostat, also many
generic database packages, such as datamart [17], quandl [12], pdfetch [13], and
rsdmx [1], could be used to retrieve the open data sets. However, these more
generic database packages are not dedicated to Eurostat data access, and do
not therefore fully support the full spectrum of Eurostat open data services and
their research use. This highlights the need to complement generic database tools
with targeted algorithms that are specifically tailored to access particular data
sources, and facilitate their integration with other data sets and statistical tools
(Fig. 2).

Community projects, such as rOpenSci3 and our own project, the rOpenGov
[10]4, have emerged to provide various algorithmic tools and software packages
for accessing open data portals. Many such packages are now distributed by
open data science initiatives such as Bioconductor, CRAN, and rOpenSci. Such
tools are typically created by the user communities, and facilitate data access
independently of the original data provider.

Fig. 2. Migration to (red) and from (blue) Finland in 2011 according to data from
Statistics Finland as retrieved with the pxweb R package. The visualization relies on
openly developed custom methods in the R statistical programming environment, from
raw data access to harmonization, statistical analysis, and visualization (color figure
online).

3 https://ropensci.org.
4 http://ropengov.github.io.

https://ropensci.org
http://ropengov.github.io

Open Data Science 35

2.2 Open Algorithms

The increased availability of open data has potential to support and renew
research but the methodological basis of open data science is still shaping up.
Open data retrieval tools need to complemented by statistical data exploration,
analysis, and modeling algorithms (Fig. 3). Statistical programming environ-
ments provide access to a vast body of advanced techniques for data analysis,
including techniques such as (generalized) linear models, machine learning, prob-
abilistic programming [3,14], and visualization [19].

Many research projects rely on rich combinations of spatio-temporal, tex-
tual, personal, demographic, and other types of data that may require remark-
able amounts of dedicated custom processing before reliable statistical analysis
becomes possible. Hence, general-purpose methods need to be complemented by
targeted data processing and analysis algorithms. Most methods for advanced
statistical analysis assume that data is readily available in a clean or tidy for-
mat. This does not hold in most real research situations. Hence, data cleaning
and harmonization often forms a major component in research projects. Projects
such as the tidyverse [20] have emerged to harmonize and organize research data
before and during various stages of statistical analysis. Such general-purpose
data wrangling methods can be complemented by domain-specific tools for data
subsetting and manipulation (see e.g. [11]). Our experience is in line with the
frequently encountered statement that the majority of the effort in data science
projects is spent on organizing and harmonizing data before it is amenable for
research use. In practice, data cleaning and harmonization often rely on combi-
nations of automation and manual work. Intelligent algorithms for data analysis
can greatly benefit from domain-specific tools for data wrangling, subsetting and
visualization.

Our recent work on the historical development of print press provides an
example [7], where we developed algorithmic tools to clean up bibliographic
metadata collections in a scalable manner. This is now allowing a quantitative
analysis of historical book production across Europe. In order to estimate paper
consumption, for instance, we extracted information on books heights, widths,
and page counts. This included converting various standard book formats into
the SI system, summing up information on cover pages, special pages, and so
forth. Furthemore, we could augment the data and analyses with open data on
name-gender mappings, author metadata, and other sources of public informa-
tion. The open algorithms can be verified and further improved when potential
inconsistencies are observed, and the data sets can be gradually refined over time
when new information arrives. Replacing manual curation by supervised machine
learning techniques is now helping to scale up this research to cover millions of
print products. We anticipate that the demand for such open and customized
analysis methods and workflows will increase rapidly in this field when research
libraries start to share these data resources more openly [7]. Open availability
of methods and collaboration networks can potentially help to facilitate shifts
towards increased data availability.

36 L. Lahti

Finally, data harmonization and statistical analysis need to be complemented
with high-quality visualization and reporting. Published visualizations often rely
on geospatial maps or demographic data that are available from multiple govern-
mental and international institutions. The eurostat package, for instance, can be
used to download custom administrative boundaries by EuroGeographics, thus
supporting seamless data visualization on the European map. Similar geospatial
tools are also available for specific countries and cities5.

Collaboratively developed tools to access, harmonize, integrate, and anal-
yse large data collections are needed to pool scarce resources and increase the
efficiency of data-intensive research. Open collaboration networks can gradually
accumulate and refine collections of targeted algorithms in open statistical pro-
gramming environments, as demonstrated by Bioconductor, rOpenSci, and other
open data science projects. Hence, intelligent data analysis is often critically
dependent on the overall data analytical infrastructures that provide the funda-
mental context for the application of state-of-the-art analysis algorithms. More-
over, in our experience academic teaching can also benefit from well-documented
and reproducible workflows and reproducible notebooks as interactive learning
tools.

Fig. 3. Tradeoffs in open data science. The emphasis in methods development is shift-
ing from standard data management towards intelligent algorithms for data analysis
and modeling (horizontal axis). At the same, general-purpose tools are increasingly
complemented by targeted domain-specific algorithms (vertical axis). Open data sci-
ence aims at standardization but this is contrasted with the constant tendency to drift
towards vast flexibility in the development of alternative methods and innovative com-
binations of the shared data and software components. Increasing openness of data
and algorithm is bringing up new opportunities for research and collaborative methods
development.

5 The gisfin and helsinki packages; see http://ropengov.github.io.

http://ropengov.github.io

Open Data Science 37

2.3 Open Collaboration

Whereas open data science emphasizes the role of collaborative methods devel-
opment and refinement [2,9], the efforts to standardize data analytical methods
are balanced by a constant drift towards flexibility and custom methods (Fig. 3).
Open and institutional community projects have emerged to balance these needs
based on R, Python, and other programming languages, resulting in vast net-
works of developers and users of open research software from natural sciences to
humanities. Related examples include the The OpenML [16] that provides tools
to bring together data, algorithms and analysis results for open evaluation, and
Project Open Data6, which promotes the development and use of tools on open
government data. We have made many such tools available within the rOpen-
Gov project for computational social science and digital humanities. This is an
example of a community-driven open data analytical ecosystem, which is now
facilitating research use of many open institutional data resources based on a
collection of over 20 R packages in varying stages of development. The euro-
stat package, for instance, evolved gradually from the earlier work by the same
authors. Over time, multiple contributors joined in, and the package was exten-
sively being developed and tested by various users before its eventual release.
Open developer communities can also organize software review, promote data
and software citation best practices, develop improved methods for authorship
determination, and gain additional visibility for the projects. Moreover, open
access to research publications in the form of pre-prints, post-prints, and openly
licensed peer-reviewed literature can also be viewed as a component of open
collaboration, as it facilitates the collective research efforts.

3 Conclusion

This brief perspective introduced the concept of open data science. This new
paradigm is emerging at the intersection of open data, methods, and collab-
oration networks. Open research practices are now transforming the way we
understand and share research outputs [8,9]. Open developer communities can
provide social and technical incentives to promote open, collaborative work when
academic incentives are lacking. Social aspects remain among the greatest chal-
lenges towards further development of open data science, as balancing the col-
laborative need for long-term development and maintenance with the prevailing
authorship and incentive structures in academia remains a constant challenge.
Given the enormous significance of high-quality open source software in modern
data-intensive research, academic institutions and funding bodies should con-
tinue to develop and experiment with new ways to support sustainable develop-
ment of open data science for instance by providing funding and recognition for
the developers, maintainers and contributors of open research software, which is
a key mediator between the key elements of open data science.

6 https://project-open-data.cio.gov.

https://project-open-data.cio.gov

38 L. Lahti

Statistical programming environments facilitate open participation, and
allow full flexibility in constructing custom workflows in order to harness the
full potential of modern data analysis and visualization arsenal. Open methods
can be used and further tested and refined by the user communities, contributing
to the growing open source ecosystems in natural sciences, social sciences, and
digital humanities. Emphasis on open research practices will help the research
communities to avoid replication and pool scarce research resources, and find
improved methods for collective analysis and verification of research hypotheses.

Acknowledgements. I am grateful to the rOpenGov contributors, in particular
Joona Lehtomäki, Markus Kainu, and Juuso Parkkinen, and our close collaborator
Mikko Tolonen. The work has been partially funded by Academy of Finland (decisions
295741, 307127).

References

1. Blondel, E.: rsdmx: Tools for Reading SDMX Data and Metadata (2018). https://
doi.org/10.5281/zenodo.1173229 (R package)

2. Boettiger, C., Chamberlain, S., Hart, E., Ram, K.: Building software, building
community: lessons from the rOpenSci project. J. Open Res. Softw. 3 (2015).
https://doi.org/10.5334/jors.bu

3. Carpenter, B., et al.: Stan: a probabilistic programming language. J. Stat. Softw.
76 (2017). https://doi.org/10.18637/jss.v076.i01

4. Gandrud, C.: Reproducible research with R and R Studio. Chapman & Hall/CRC,
Boca Raton (2013)

5. Huber, W., et al.: Orchestrating high-throughput genomic analysis with Biocon-
ductor. Nat. Methods 12, 115–121 (2015). https://doi.org/10.1038/nmeth.3252

6. Lahti, L., Huovari, J., Kainu, M., Biecek, P.: Retrieval and analysis of eurostat
open data with the eurostat package. R J. 9, 385–392 (2017). https://journal.r-
project.org/archive/2017/RJ-2017-019/index.html

7. Lahti, L., Ilomäki, N., Tolonen, M.: A quantitative study of history in the english
short-title catalogue (ESTC) 1470–1800. LIBER Q. 25, 87–116 (2015). https://
doi.org/10.18352/lq.10112

8. Lahti, L., da Silva, F., Laine, M.P., Lhteenoja, V., Tolonen, M.: Alchemy & algo-
rithms: perspectives on the philosophy and history of open science. RIO J. 3,
e13593 (2017). https://doi.org/10.3897/rio.3.e13593

9. Laine, H., Lahti, L., Lehto, A., Ollila, S., Miettinen, M.: Beyond open access -
the changing culture of producing and disseminating scientific knowledge. In: Pro-
ceedings of the 19th International Academic Mindtrek Conference in Tampere,
Finland, September 22–24. AcademicMindTrek’15: Proceedings of the 19th Inter-
national Academic Mindtrek Conference, ACM, ACM New York, NY, USA (2015).
http://dl.acm.org/citation.cfm?id=2818187

10. Leo, L., Juuso, P., J.L., Kainu, M.: rOpenGov: open source ecosystem for compu-
tational social sciences and digital humanities (2013). http://ropengov.github.io,
ICML/MLOSS workshop (Int’l Conf. on Machine Learning - Open Source Software
workshop)

11. McMurdie, J., Holmes, S.: phyloseq: an R package for reproducible interactive
analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
https://doi.org/10.1371/journal.pone.0061217

https://doi.org/10.5281/zenodo.1173229
https://doi.org/10.5281/zenodo.1173229
https://doi.org/10.5334/jors.bu
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1038/nmeth.3252
https://journal.r-project.org/archive/2017/RJ-2017-019/index.html
https://journal.r-project.org/archive/2017/RJ-2017-019/index.html
https://doi.org/10.18352/lq.10112
https://doi.org/10.18352/lq.10112
https://doi.org/10.3897/rio.3.e13593
http://dl.acm.org/citation.cfm?id=2818187
http://ropengov.github.io
https://doi.org/10.1371/journal.pone.0061217

Open Data Science 39

12. McTaggart, R., Daroczi, G., Leung, C.: Quandl: API wrapper for quandl.com
(2015). http://CRAN.R-project.org/package=Quandl, R package version 2.7.0

13. Reinhart, A.: pdfetch: fetch economic and financial time series data from public
sources (2015). http://CRAN.R-project.org/package=pdfetch, R package version
0.1.7

14. Salvatier, J., Wiecki, T., Fonnesbeck, C.: Probabilistic programming in Python
using PyMC3. PeerJ Comput. Sci. 2, e55 (2016). https://doi.org/10.7717/peerj-
cs.55

15. Toivonen, H., Gross, O.: Data mining and machine learning in computational cre-
ativity. Wiley Int. Rev. Data Min. Knowl. Disc. 5, 265–275 (2015). https://doi.
org/10.1002/widm.1170

16. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. SIGKDD Explor. Newsl. 15, 49–60 (2014)

17. Weinert, K.: datamart: unified access to your data sources (2014). http://CRAN.
R-project.org/package=datamart, R package version 0.5.2

18. Wickham, H.: Tidy data. J. Stat. Softw. 59 (2014). https://doi.org/10.18637/jss.
v059.i10

19. Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York
(2016). http://ggplot2.org

20. Wickham, H.: tidyverse: easily install and load the ‘Tidyverse’ (2017). https://
CRAN.R-project.org/package=tidyverse, R package

http://CRAN.R-project.org/package=Quandl
http://CRAN.R-project.org/package=pdfetch
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1002/widm.1170
https://doi.org/10.1002/widm.1170
http://CRAN.R-project.org/package=datamart
http://CRAN.R-project.org/package=datamart
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
http://ggplot2.org
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse

Automatic POI Matching Using an Outlier
Detection Based Approach

Alexandre Almeida1(&), Ana Alves1,2, and Rui Gomes1

1 Universidade de Coimbra, CISUC, Coimbra, Portugal
{acalmeida,ana,ruig}@dei.uc.pt

2 Instituto Politécnico de Coimbra, ISEC, Coimbra, Portugal

Abstract. Points of Interest (POI) are widely used in many applications
nowadays mainly due to the increasing amount of related data available online,
notably from volunteered geographic information (VGI) sources. Being able to
connect these data from different sources is useful for many things like vali-
dating, correcting and also removing duplicated data in a database. However,
there is no standard way to identify the same POIs across different sources and
doing it manually could be very expensive. Therefore, automatic POI matching
has been an attractive research topic. In our work, we propose a novel data-
driven machine learning approach based on an outlier detection algorithm to
match POIs automatically. Surprisingly, works that have been presented so far
do not use data-driven machine learning approaches. The reason for this might
be that such approaches need a training dataset to be constructed by manually
matching some POIs. To mitigate this, we have taken advantage of the Cross-
walk API, available at the time we started our project, which allowed us to
retrieve already matched POI data from different sources in US territory. We
trained and tested our model with a dataset containing Factual, Facebook and
Foursquare POIs from New York City and were able to successfully apply it to
another dataset of Facebook and Foursquare POIs from Porto, Portugal, finding
matches with an accuracy around 95%. These are encouraging results that
confirm our approach as an effective way to address the problem of automati-
cally matching POIs. They also show that such a model can be trained with data
available from multiple sources and be applied to other datasets with different
locations from those used in training. Furthermore, as a data-driven machine
learning approach, the model can be continuously improved by adding new
validated data to its training dataset.

Keywords: Machine learning � Outlier detection � Point-Of-Interest
GIS

1 Introduction

POI is a term referring to a point in a map that might represent a relevant location
depending on a specific context or interest in a geographic area. With more and more
applications using maps or any sort of geographic data, POIs have become increasingly
common to represent any potential place of interest in a map to a given user. Another

© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 40–51, 2018.
https://doi.org/10.1007/978-3-030-01768-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_4&domain=pdf

thing that contributes to the increasing utilization of POI information is the amount of
related data that has been made available from different sources, notably from VGI and
social media applications which provide application programming interfaces (API) to
access their data. Although these sources have very useful information, they lack a
standard way to identify the same POIs across different sources. Therefore, POI
matching emerges as a way to connect POI information from different datasets. This is
useful for many applications like confirming or correcting data, enriching the data by
complementing it with different information from different sources or removing
duplicated data in a database.

Our work is a part of a project called URBY. Sense which aims to study indi-
vidual’s mobility for mining non-routine mobility patterns from multiple data sources.
The city we are studying is Porto, Portugal. In the data analysis task of the project we
aimed at producing a richer knowledge to understand the choices of mobility. We
collected event data from websites that gather events in Porto city and POI data from
Facebook, Foursquare and Factual.com. When analyzing this information, one question
emerged: are all POIs and events equally important? The answer is that it may depend
on their online popularity. Most of the collected events had a link to a Facebook event
which, in turn, had a link to a Facebook place. Although this provided us with some
popularity information about the places of events, the Foursquare dataset could com-
plement this with more information about popularity as its check-in counts. We also
wanted to connect all the POIs from the three different sources in our database for
future analyses. But we needed an automatic way to do this connection.

Although an important task, POI matching is difficult, time-consuming and
expensive if done manually. Thus, research in automatic approaches of matching POIs
have increased in the last years. Contrary to other works, we approach the POI
matching problem with a novel data-driven strategy based on a machine learning
outlier detection model. By using this approach, instead of experimenting with different
weights and rules to create a POI matching algorithm, we create a model that can learn
on its own how to match POIs from available data, using previous matched data from
different sources as training data. This way, we can also keep improving the model by
feeding it with more data as soon as it becomes available. To do this, we take advantage
of data collected with the Factual Crosswalk API, an API that was available at the time
we started this work and allowed one to translate how place entities are represented
across different 3rd party APIs [1]. As the Crosswalk API was available in United
States only, we used a dataset of Factual POIs from New York City to create the
training dataset for our model. The goal was to create a model that could learn how to
match POIs of different sources independently of the country of the data it was trained
with, considering only features non-dependent of a country’s native-language. Our
strategy uses only the metadata that is commonly present in most POI datasets such as
name, website, address, category and geographic coordinates, to make it possible to use
the model with as many datasets as possible from different sources and locations.
Furthermore, it handles missing values, in case that metadata is still not present. In
addition, the model was successfully used to connect POIs from Porto in our database,
which represents not only a validation of the model but attests its ability to generalize
and match POIs of datasets from countries other than the one used to train the model.

Automatic POI Matching Using an Outlier Detection 41

We also make publicly available all the datasets and describe the model configuration
used in this work so other researchers may benefit from it. All classification tasks such
as model train and test are done using the Weka workbench tool [2].

The remainder of this paper is structured as follows. The next section gives a
review about related work from POI matching to outlier detection. Section 3 provides a
description of the datasets used in this work. Section 4, describes the model created and
its experiments. Section 5, discusses the validation of the model. Finally, Sect. 6
concludes this work and provides directions for future research.

2 Related Work

2.1 POI Matching

Users have been contributing useful information about POIs to services and social
media applications for some years. This VGI data has become increasingly appealing to
explore, but it also brings concerns about its quality and lack of standardization across
different datasets. POI matching emerges to address some of this concerns by giving
the possibility to correct, complete and enrich information of one POI across different
datasets. This makes POI matching an important task in urban studies and applications
that rely on POI information and, as a result, many approaches to this problem have
been proposed in the literature.

Scheffler et al. [3], presented an algorithm to match POIs from Qype and Facebook
Places to their counterparts in Open Street Map. The algorithm had several steps that
combined the geographic distance and string similarity of POIs, deciding whether two
POIs are a match based on some defined thresholds. They achieved an overall accuracy
of 79% for Qype and 64% for Facebook. McKenzie et al. [4], proposed three distinct
weighted POI matching models based on multiple attributes like name, category,
geographic location and descriptive text of POIs from Foursquare and Yelp, achieving
a match-accuracy of 97% in their model evaluation. They have also showed that
individually the name outperformed all other attributes. Novack et al. [5], presented a
graph-based matching of POIs from OpenStreetMap and Foursquare in the city of
London, approaching the issue of one-to-none and one-to-many matches. Their best
matching result achieved an overall accuracy of 91%. Li et al. [6] proposed an entropy-
weighted approach to POI matching by integrating heterogeneous attributes with the
allocation of suitable attribute weights via information entropy. They showed that their
best model had a F1 value between 0.8 and 0.9. Dalvi et al. [7] presented a language
model that encapsulated both domain knowledge as well as local geographical
knowledge and introduced an unsupervised learning problem to assign weights to
words in POI names to remove duplicated entries from a database of places. They were
able to achieve an accurate deduplication with a recall of 90% at a precision of 90%.
Yu et al. [8] used an approach based on semantic technologies to automate the
geospatial data conflation process for use in the emergency services response domain.
They considered only shopping center POIs and showed a conflation accuracy of 98%.

Although they may use some unsupervised or supervised learning methods to
generate attributes or weights for a model, to the best of our knowledge, there is no

42 A. Almeida et al.

study that tries to use a data-driven machine learning approach to build a decision or
classification model that can learn to automatically predict POI matches based on
training datasets with previously matched POIs.

2.2 Outlier Detection

Although there is no universally accepted definition, an outlier could be defined as an
observation outside the limits of a well characterized population. Therefore, by char-
acterizing normal observations we decide what is considered abnormal. Sometimes,
depending on the domain and approach used, authors describe their various approaches
to outlier detection as novelty detection, anomaly detection, noise detection, deviation
detection or exception mining, all being fundamentally identical [9]. Outlier detection
has thus been found to be applicable in a large number of domains like intrusion
detection, fraud detection, industrial damage detection, image processing, medical and
pharmaceutical research, among many others [9–11]. Outlier detection algorithms have
also been used for automatic verification and identifying wrong links between datasets
[12, 13] as a post-process step to entity linking systems, but to the best of our
knowledge, they have not been used as an approach to create the actual links.

Outlier detection algorithms based on machine learning need a training dataset to
build an explicit predictive model. If the training dataset has no labels we have an
unsupervised learning problem. Often, unsupervised algorithms assume that data
instances with a frequently occurring pattern or closely related are normal examples
while the remaining are considered outliers. In semi-supervised learning, only one class
of the training dataset is labeled which represents a special case of one class classifi-
cation also known as novelty detection [14]. Such techniques model only the available
class and then test if further observations can fit to the initial population. When both the
normal and abnormal classes are labeled in the training dataset we have a supervised
scenario. If both classes are balanced, we have a binary classification problem and an
accurate model can be created. But that is often not the case, which originates a highly
unbalanced classification problem. In such a scenario both one-class and binary clas-
sifiers can be used. Bellinger et al. [15], conducted experiments on various datasets to
investigate the performance of binary and one-class classifiers as the level of imbalance
and uncertainty increased by purposely decreasing the size of the outlier class. They
concluded that as the level of imbalance increases, the performance of binary classifiers
decreases, whereas one-class classifiers stay relatively stable. Despite this, they state
that their findings do not imply that binary classifiers should not be used if there is
imbalance present as, even with a decent level of imbalance, certain binary classifiers
can come up with effective decision boundaries. In the case of our work, our concern
with the outlier examples is more related with their quality rather than their quantity.
That is because we have examples of matching POIs for the target class but would have
to find a strategy to generate the outlier examples. One strategy could be to generate
random pairs of POIs and confirm that they are not matches. However, the generated
examples might not be good outlier representatives, which is important in case of
binary classification to avoid over-fitting. Therefore, using an algorithm that can use
only the matching examples to train seems a better approach to this kind of problem.

Automatic POI Matching Using an Outlier Detection 43

3 Description of the Datasets

In this section we describe the datasets created to train, test and validate our POI
matching model. For each POI we have selected five attributes: name, website, address,
category and geographic coordinates (latitude and longitude). Because we want the
model to be able to match POIs from any dataset, these attributes were chosen for being
the most commonly available attributes in a POI dataset. Since the datasets used in the
model refer to POI pairs, each attribute of the datasets will be a partial distance between
each attribute of two POIs, which results in a total of five attributes or features. The
datasets also include POI ids, for each source, which are ignored by the classifier
algorithm. This is done to track the POIs of each pair later in the validation phase. The
detailed constitution of the datasets is described in Table 1.

3.1 New York Dataset

In order to create our model’s training dataset, we have used the Factual Crosswalk API
to connect POIs from Factual with their counterparts in Facebook and Foursquare.
Using a Factual ID, the API gave us the ID of the POI in other sources, when available.
By doing so, we retrieved a sample of Factual POIs connected with Facebook and/or
Foursquare and stored that information in the crosswalk table of our database. Then we
used each source API to retrieve the necessary metadata for each POI of the table,
storing that metadata in separate tables. Finally, we create the dataset by adding pairs
from each Factual and Foursquare connection, as well as from each Factual and
Facebook connection and from each Foursquare and Facebook connection. The only
requirement for forming a pair of POIs was that both had at least a name. This resulted
in a dataset with 8004 instances, being 5798 Factual and Foursquare pairs, 1703
Factual and Facebook pairs and 503 Foursquare and Facebook pairs. These instances
represent the “target” or matching examples that will train our POI matching model.
We have also created a training dataset with no missing values by removing each

Table 1. Number of instances for each attribute in each dataset.

Attribute Training dataset
(NY)

Testing dataset (NY) Validation dataset (Porto)

All No missing

Name 8004 2473 16008 394944
Website 2547 2473 4461 19224
Address 7094 2473 14146 175938
Category 7791 2473 15562 394944
Geographic distance 7961 2473 15925 394944
Target 8004 2473 8004 –

Outlier 0 0 8004 –

Total 8004 2473 16008 394944

44 A. Almeida et al.

instance with one or more missing attributes. This resulted in a dataset with 2473
instances, with all attributes having the same number of instances.

We have also generated an equal number of non-matching POI pairs (the outlier
instances) to test the model. To do this, we opted for a simple approach of forming POI
pairs from two random POIs of the crosswalk table and then confirm if the pair was not
a match in table. This way, we generated a dataset with a total of 16008 instances, 8004
matching pairs and 8004 non-matching pairs for testing purposes.

3.2 Porto Dataset

In order to create the dataset to validate the POI matching model, we have combined
the facebook places table with the foursquare venues table of our database. The
facebook places table has 132 entries that represent the places of events in Porto city
collected for our project for a given month of study. This represents the number of
events that provided links to a Facebook Place. We used the Facebook API to obtain
the required metadata for those places. The foursquare venues table has 2992 entries
that represent venues around certain geographic coordinates of Porto city and were
collected using the foursquare API. Combining those two resulted in a dataset with
394944 POI pairs. This is the dataset used to automatically test matches between our
Facebook and Foursquare database tables and validate the trained model in Porto city.

4 Model Description

In our classification model, we use the Isolation Forest (iForest) algorithm [16]
available in Weka (3.19) with its default parameters. iForest works by assuming that
outliers are few and different and, for that reason, easier to isolate than normal
examples. It is by nature an unsupervised machine learning method as it does not
require one to label the training data. Despite this, we can use it in cases where the
training dataset only has “target” instances like we would do with a semi-supervised
method. We preferred this method for two main reasons. First, although we assume that
the crosswalk data used is correct (only has matching examples), it is possible that
some outliers exist in the dataset. We cannot confirm this as it would be extremely
costly to do so. But either if they are or not, the good thing about iForest is that it can
handle the two scenarios very well. Therefore, it is ideal for our training dataset.
Second, the iForest algorithm has demonstrated to have very good performance in
outlier detection as the results of several comparative studies showed [16–18]. Fur-
thermore, it has high computational efficiency, having a linear time complexity with a
low constant and a low memory requirement.

One drawback of iForest is that it does not handle missing values. To address this,
we use the Expectation Maximization (EM) Imputation method [19] also available in
Weka. An EM method should be better than simple methods like mean imputation
because it preserves the relationship between variables, using other variables to impute
an expected value and maximize its likelihood. EM imputation methods have also
shown good results in previous works against other imputation methods [20, 21].

Automatic POI Matching Using an Outlier Detection 45

4.1 Feature Engineering

In order to derive the partial distance between POIs, the model is based on five
dimensions: name, website, address, category and geographic coordinates. We have
computed the 2D Cartesian distance between the geographic coordinates, directly from
our PostgreSQL database to generate the geographic distance between the POIs. We
have also used and compared several string similarity methods available in different
python libraries [22–24] to compute the distances between the name, website, address
and category. To make the model language independent, we have only used string
similarity methods, avoiding phonetic algorithms like soundex or metaphone and other
methods that make use of lexic databases like wordnet. The methods used range from
classic distance measures like Levenshtein [25], Jaccard [26], Sorensen [27] and Jaro-
Winkler [28, 29] to fuzzy methods like the Ratio, Partial Ratio, Token Sort Ratio
(TSoR) and Token Set Ratio (TSeR) [30]. We use two variants of the Jaro-Winkler
method, one uses only the Jaro measure (jarowinkler_f) and the other uses the Winkler
addition with a scale of 0.1 (jarowinkler_t). Complementing our list, we have computed
the average between a case insensitive partial ratio and a sort ratio (avg partial sort ratio
or APSR) which tries to emphasize partial matches between strings without giving it
total merit and the average between the sort ratio and set ratio (avg sort set ratio) which
tries to balance this two methods as the later might be too flexible.

After computing all the above distances, we have tested them individually with the
iForest classifier, to select which distances we should use for each attribute. Although
accuracy is a common measure when evaluating supervised classification algorithms, it
might not be the best in other scenarios like outlier detection problems. In these cases,
the area under the Receiver Operating Characteristic (ROC) curve seems to be a much
more utilized and accepted measure to evaluate the performance of outlier and novelty
detection algorithms [16–18, 31]. When a model has a ROC of 0.5 it is similar to a
random guess classifier. When it achieves a ROC of 1 it means that it can clearly
distinguish between targets and outliers. Thus, to produce the best model we tried to
maximize its ROC value. In Table 2, we show the resulting best distance in terms of
ROC for each attribute. These results indicate how each attribute can contribute to the
model. As can be seen, the name attribute obtains the best results with a ROC of 0.99.
Category is the worst performing attribute which might be explained by the lack of
standardization between sources for representing POI categories. With a ROC near
0.55, the category attribute seems to be ineffective to do any meaningful decision on its
own. This also means that simple string similarity is not enough to extract relevant
information for the category attribute. The geographic distance is the second best
performing attribute. The fact that it was surpassed by the name attribute might indicate
that the geographic information contributed to these platforms often have more inac-
curacies than the POI name. This might be due to the inaccuracy of mobile devices or
inaccuracies when introducing information that later is geocoded. The address and
website attributes are the third and fourth best results respectively. Despite the good
results these two attributes have greater percentage of missing values. This means that
their contribution when combining them with other attributes might be diminished as
the model will not have their information in most cases.

46 A. Almeida et al.

After computing the best performing distances for each attribute individually, we
have created a model with them together. Although this should give good results,
selecting the attributes that individually give the best ROC might not create the model
with the best ROC. For that reason, we decided to test all possible combinations of each
distance for each attribute, choosing the combination that produced the model with the
best ROC. This way we can ensure that the resulting model uses the combination of
attributes that best maximizes its ROC value. Besides testing all combinations, we have
also tested two different training approaches for each combination. In the first
approach, we used the entire training dataset. In the second approach we use the
training dataset without instances with missing values. This means that only 2473
instances were used for training in the second approach instead of 8004, but testing was
done with the full testing dataset which has 16008 instances for both approaches.
Table 3 shows the performance of the models.

Not surprisingly, the best combination of attributes obtained by computing all
possible combinations is different from the combination using the best individual
attributes. One interesting finding is that the models trained only with instances with no
missing values performed better than the ones trained with all instances for any of the
feature combinations used. The degradation of the model’s performance when using all
instances might be due to the lack of quality resulting from artificially filling the

Table 2. Individual attribute performance.

Attribute Best distance Accuracy ROC

Name Avg partial sort ratio 0.727 0.990
Website Avg partial sort ratio 0.769 0.927
Address Partial ratio 0.892 0.953
Category Sorensen 0.516 0.545
Geographic distance 0.928 0.968

Table 3. Performance of different models.

Model Attribute distances (besides geo distance) Training
dataset

Accuracy ROC
Name Website Address Category

Each best individual
attribute
combination

APSR APSR Partial
ratio

Sorensen All 0.925 0.990
No miss 0.882 0.994

Best attribute
combination for all
instances

Token
set
ratio

Partial
ratio

Partial
ratio

Jarowinkler_f All 0.927 0.995
No miss 0.906 0.996

Best attribute
combination for no
missing instances

Token
set
ratio

Token
sort
ratio

APSR Token set
ratio

All 0.925 0.992
No miss 0.883 0.997

Automatic POI Matching Using an Outlier Detection 47

missing values with the EM imputation method or due to the lack of quality of the
remaining available values of POI examples that have missing values. Either case,
these results seem to indicate that POI examples with missing values are less reliable
than the ones with all attributes available and should be avoided in training. The model
that achieves the best ROC is the best combination of features for the training dataset
without missing values (3rd Model). Therefore, it is the model we choose to proceed
with the validation in our Porto dataset.

5 Model Validation

Once we have trained and tested our model we performed its validation using the
already described Porto dataset. By using such a different dataset from the training one
we are not only validating the model’s ability to match POIs from different sources but
also its ability to match POIs from different geographic areas from those used in
training, while using it to connect our database of POIs from the city of Porto.

The process of validation was done by manually analyzing the classification results
given by the model by verifying if two POIs where correctly predicted as match (True
Positive – TP) or outlier (True Negative – TN). The model returned 141 matches from
394944 POI pairs present in the validation dataset. Besides reviewing these matches,
we selected outliers with a geographic distance below or equal 100 meters and then
select the 1000 outliers with the higher name similarity. This resulted in a dataset with
1141 instances to review.

When manually reviewing these instances, we decided to consider 3 validation
scenarios. In the first scenario we consider to be a match only POIs that correspond
exactly to each other. In a second scenario we also consider to be a match a place that is
included in the other. In a third scenario we also consider to be a match places that are
related and nearby. Examples of the second scenario might be: a university department
matching the university to which it belongs; a bar, shop or theater matching a shopping
center that contains them. As for scenario 3 it might be: a match between a region or
street and places in that region or street; a match between a bus stop nearby a particular
place it serves.

In the Table 4 we present the results for our 3 validation scenarios. Depending on
the matching scenario, one need to consider which approach is more suitable to one’s
needs, a stricter definition of a match or a broader one. In our case, we ended up using
the broader matching results (scenario 3) as it might also be useful to connect places
that are related and nearby an event. Despite this, the best results for the model were
obtained when considering the stricter scenario 1, while the worst results were obtained
when considering the broader scenario 3. Nonetheless, all scenarios present very good
validation results for the model, as Table 4 shows.

Besides showing good overall matching results, the model also shows a natural
capacity to identity related places and POIs represented multiple times. As can be seen
in Fig. 1, when considering the validation scenario 1, we have a higher percentage of
one-to-one (1 − 1) matches and less one-to-many (1 − N) matches. When considering
scenario 2 and 3 we can observe an increase in the number of 1 − N matches being
detected but also much higher matches being falsely detected as outliers which might

48 A. Almeida et al.

explain the worse results obtained by scenario 2 and 3. Despite this, these two scenarios
obtain more true matches (TP) which in some cases is better even though we also get
more false outliers (FN).

6 Conclusions and Future Work

In this paper we presented a data-driven approach to automatically match POIs from
different sources based on an outlier detection machine learning model. To do this we
have taken advantage of the Crosswalk API available at the time we started our work
and were able to retrieve matching POIs from different sources in US territory. We
trained our model with a dataset of Factual, Facebook and Foursquare POIs from New
York and were able to successfully apply it to our dataset of Facebook and Foursquare
POIs from Porto, finding matches with an accuracy close to 95%.

We think that the results presented in this work support our approach as an effective
way to tackle the problem of automatically matching POIs. They show that such a
model can be trained with data available from different sources and be applied to other
datasets even from different locations. Furthermore, as this is a data-driven machine
learning approach, the model can be continuously improved by adding new validated
data to its training dataset. Although manual validation of POI matches could be
expensive, it is many times inevitable. Therefore, taking advantage of already validated
data to create or improve a model that can automatically match POIs seems to be a
good idea. Besides strictly matching exact or same POIs, we find that the model is very

Table 4. Validation results for the model according to the 3 validation methodologies used

Validation scenario Match Outlier Accuracy ROC
TP FP TN FN

1 85 56 995 5 0.947 0.975
2 112 29 929 71 0.912 0.848
3 122 19 919 81 0.912 0.846

Fig. 1. Validation results per matching relation one-to-one (1 − 1) and one-to-many (1 − N) for
validation scenario 1(a), scenario 2(b) and scenario 3(c).

Automatic POI Matching Using an Outlier Detection 49

good at finding related POIs when we accept matches with less certainty outputs. This
can be useful in many scenarios like, for example, POI search engines, suggesting other
relevant POIs, etc. In these cases, such a model can also produce good results.

Nevertheless, there is room for improvement to this approach. We need to take in
consideration that the data we used for training the model might have errors. As these
models rely heavily on the quality of the data used for training them, we believe that
with a reduced but hand validated dataset the results would be even better. In future
work it could be interesting to not only ensure the quality of the training data but also
add more validated data from different sources and locations to the training dataset.
Besides that, experimenting with more POI metadata and better methods to extract
relevant information from them should be very beneficial to improve the model per-
formance. Experimenting with different outlier detection algorithms should also be
considered.

Acknowledgement. The authors would like to thank the funding by URBY.SENSE project
(POCI-01-0145-FEDER-016848). URBY.SENSE is co-financed by COMPETE 2020, Portugal
2020 - Programa Operacional Competitividade e Internacionalização (POCI), Fundo Europeu de
Desenvolvimento Regional (FEDER) and Fundação para a Ciência e a Tecnologia (FCT).

References

1. Factual| Crosswalk API. https://www.factual.com/blog/crosswalk-api/
2. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA

data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)
3. Scheffler, T., Schirru, R., Lehmann, P.: Matching points of interest from different social

networking sites. In: Glimm, B., Krüger, A. (eds.) KI 2012. LNCS (LNAI), vol. 7526,
pp. 245–248. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33347-7_24

4. McKenzie, G., Janowicz, K., Adams, B.: A weighted multi-attribute method for matching
user-generated points of interest. Cartogr. Geogr. Inf. Sci. 41, 125–137 (2014)

5. Novack, T., Peters, R., Zipf, A.: Graph-based matching of points-of-interest from
collaborative geo-datasets. ISPRS Int. J. Geo-Inf. 7, 117 (2018)

6. Li, L., Xing, X., Xia, H., Huang, X.: Entropy-weighted instance matching between different
sourcing points of interest. Entropy 18, 45 (2016)

7. Dalvi, N., Olteanu, M., Raghavan, M., Bohannon, P.: Deduplicating a places database. In:
Proceedings of the 23rd International Conference on World Wide Web, WWW 2014,
pp. 409–418 (2014)

8. Yu, F., McMeekin, David A., Arnold, L., West, G.: Semantic web technologies automate
geospatial data conflation: conflating points of interest data for emergency response services.
In: Kiefer, P., Huang, H., Van de Weghe, N., Raubal, M. (eds.) LBS 2018. LNGC, pp. 111–
131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-71470-7_6

9. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22, 85–
126 (2004)

10. Chandola, V., Banerjee, A., Kumar, V.: Outlier detection: a survey (2007)
11. Beldar, Alka P., Wadne, Vinod S.: The detail survey of anomaly/outlier detection methods in

data mining. Int. J. Multidiscip. Curr. Res. (2015)

50 A. Almeida et al.

https://www.factual.com/blog/crosswalk-api/
http://dx.doi.org/10.1007/978-3-642-33347-7_24
http://dx.doi.org/10.1007/978-3-319-71470-7_6

12. Heinzerling, B., Strube, M., Lin, C.-Y.: Trust, but verify! Better entity linking through
automatic verification. In: Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Volume 1, Long Papers, pp. 828–838.
Association for Computational Linguistics, Valencia, Spain (2017)

13. Paulheim, H.: Identifying wrong links between datasets by multi-dimensional outlier
detection. In: CEUR Workshop Proceedings, vol. 1162, pp. 27–38 (2014)

14. Pimentel, M.A.F., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection.
Signal Process. 99, 215–249 (2014)

15. Bellinger, C., Sharma, S., Japkowicz, N.: One-class versus binary classification: which and
when? In: 2012 11th International Conference on Machine Learning and Applications,
pp. 102–106 (2012)

16. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation-based anomaly detection. ACM Trans. Knowl.
Discov. Data. 6, 1–39 (2012)

17. Domingues, R., Filippone, M., Michiardi, P., Zouaoui, J.: A comparative evaluation of
outlier detection algorithms: experiments and analyses. Pattern Recognit. 74, 406–421
(2018)

18. Tun, J.S.: Semi-supervised outlier detection algorithms. https://escholarship.org/uc/item/
1f03f6hb (2018)

19. Schafer, J.L.: Analysis of Incomplete Multivariate Data. CRC Press (1997)
20. Alkan, B.B., Alkan, N., Atakan, C., Terzi, Y.: Use of biplot technique for the comparison of

the missing value imputation methods. Int. J. Data Anal. Tech. Strat. 7, 217–230 (2015)
21. Ghorbani, S., Desmarais, M.C.: Performance comparison of recent imputation methods for

classification tasks over binary data. Appl. Artif. Intell. 31, 1–22 (2017)
22. Doukremt: Levenshtein and Hamming distance computation. https://github.com/doukremt/

distance
23. Ratté, J.-B.: Jaro-winkler-distance: find the Jaro Winkler distance which indicates the

similarity score between two strings. https://github.com/nap/jaro-winkler-distance
24. Fuzzywuzzy: fuzzy string matching in Python. https://github.com/seatgeek/fuzzywuzzy
25. Levenshtein, V.I.: Binary codes capable of correcting deletions. Inser. Reversals. Sov. Phys.

Dokl. 10, 707 (1966)
26. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des

Jura. Bull. del la Société Vaud. Sci. Naturelles 37, 547–579 (1901)
27. Sørensen, T.J.: A method of establishing groups of equal amplitude in plant sociology based

on similarity of species content and its application to analyses of the vegetation on Danish
commons. I kommission hos E. Munksgaard, København (1948)

28. Jaro, M.A.: Advances in record-linkage methodology as applied to matching the 1985
census of Tampa, Florida. J. Am. Stat. Assoc. 84, 414–420 (1989)

29. Winkler, W.E.: String comparator metrics and enhanced decision rules in the Fellegi-Sunter
model of record linkage (1990)

30. FuzzyWuzzy: fuzzy string matching in Python – ChairNerd. http://chairnerd.seatgeek.com/
fuzzywuzzy-fuzzy-string-matching-in-python/

31. Ratle, F., Kanevski, M., Terrettaz-Zufferey, A.-L., Esseiva, P., Ribaux, O.: A comparison of
one-class classifiers for novelty detection in forensic case data. In: Yin, H., Tino, P.,
Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 67–76.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77226-2_8

Automatic POI Matching Using an Outlier Detection 51

https://escholarship.org/uc/item/1f03f6hb
https://escholarship.org/uc/item/1f03f6hb
https://github.com/doukremt/distance
https://github.com/doukremt/distance
https://github.com/nap/jaro-winkler-distance
https://github.com/seatgeek/fuzzywuzzy
http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
http://dx.doi.org/10.1007/978-3-540-77226-2_8

Fact Checking from Natural Text with
Probabilistic Soft Logic

Nouf Bindris(B), Saatviga Sudhahar, and Nello Cristianini

Department of Computer Science, University of Bristol, Bristol, UK
{nouf.bindris,saatviga.sudhahar,nello.cristianini}@bristol.ac.uk

Abstract. We demonstrate a method to support fact-checking of state-
ments found in natural text such as online news, encyclopedias or aca-
demic repositories, by detecting if they violate knowledge that is implic-
itly present in a reference corpus. The method combines the use of infor-
mation extraction techniques with probabilistic reasoning, allowing for
inferences to be performed starting from natural text. We present two
case studies, one in the domain of verifying claims about family relations,
the other about political relations. This allows us to contrast the case
where ground truth is available about the relations and the rules that
can be applied to them (families) with the case where neither relations
nor rules are clear cut (politics).

Keywords: Fact checking · Information extraction · Probabilistic soft
logic

1 Introduction

The vast availability of information on the web, its incompleteness, inconsisten-
cies and the speed with which it spreads, have recently brought the need for
identifying fake information. Detecting if an assertion is true or false is a tall
order for an algorithm, as it may also be for a person, except for special cases
where the assertion directly contradicts a known fact. Yet we expect algorithms
to help us weed out fake news stories from online media [7,18]. Fact checking,
once the domain of journalists and editors, and now the realm of specialists,
remains a time consuming and specialised task. We are interested in the sit-
uation where assertions must be assessed by an algorithm, without requiring
an authoritative source of truth (a controversial requirement in the case of the
press).

We will focus on assertions that we consider “implausible” because they
implicitly conflict with a number of other statements present in a corpus of ref-
erence. For example, if all newspapers report various statements placing Hillary
Clinton in the “pro-choice” camp of a debate, a single news item placing her in
the “pro-life” camp would require further fact checking, and be deemed implausi-
ble, but not necessarily false. This approach allows us to handle statements that

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 52–61, 2018.
https://doi.org/10.1007/978-3-030-01768-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_5&domain=pdf

Fact Checking from Natural Text with Probabilistic Soft Logic 53

contain some degree of judgement, and not just expressions of facts, because we
focus on the compatibility or internal consistency of large numbers of claims. In
this paper we take the view that human fact checkers can benefit from a method
which flags statements that do not naturally fit with a knowledge base, a cor-
pus, or a set of rules, and are therefore implausible, or surprising. This could
provide at least some degree of protection in the news ecosystem. Note that sim-
ilar tools can be useful in many other scenarios, besides screening news in social
media, for example they can be used to help curate large projects like Wikipedia,
identifying claims in one page that conflict with claims in other pages.

The technical question of this paper is: how can we use techniques from
information extraction and probabilistic reasoning to check facts that are implicit
in a set of documents written in natural language? How can we decide if a claim
is compatible with other claims, i.e. can it be true when the others are also true?
Another way to formulate this question is: can we extract information that is
not explicitly stated, but is implicitly present, in a set of documents?

We use two case studies to demonstrate the approach: one based on state-
ments of fact and the other based on judgements. In the first case, we rely on
natural language descriptions of the British Royal Family, and on facts about
family relations, to extract the actual relations between members of the fam-
ily, and use them to fact-check claims about further family relations (e.g. Who
is whose cousin?). In the second case, we rely on news accounts of the 2012
US Elections, and general assumptions about how political relations work, to
extract or check information about the political position of certain actors (e.g.
Who supports which issue in the debate?). Technically, we make use of GATE
[4] for information extraction, and Probabilistic Soft Logic [9] for inference. The
documents are parsed, the named entities and their relations are extracted from
natural language, then they are provided to the reasoning module that uses a
knowledge base to see if a given claim is compatible with the rest.

In Sect. 2 we discuss related work in the domain of fact checking. In Sect. 3
we present Probabilistic Soft Logic (PSL) as a method of inference. In Sect. 4 we
demonstrate our approach in the case of checking Family Relations. In Sect. 5
we demonstrate the approach in the case of checking Political Relations and in
Sect. 6 we discuss limitations and future work.

2 Related Work

Several automated fact-checking systems [1,6,7,18] have been developed and
used in real-world scenarios, such as monitoring false claims during the primary
and general election debates throughout the 2016 U.S. elections. Given a claim,
it is checked by first collecting supporting or opposing evidence from knowledge
bases and the web, generate questions/queries related to the claim and a final
answer derived and presented to the user based on discrepancies between the
returned answers and the claim.

Fact checking numerical claims has also been studied in recent times. For
example, Vlachos and Riedel [16] focused on fact checking simple numerical

54 N. Bindris et al.

claims such as “population of Germany in 2015 was 80 million”. They used
distant supervision for identification and verification of claims to fact check 16
numerical properties of countries (such as population etc.). Input claims were
matched with entries in a knowledge base and verdicts were deduced. In the
follow-up work, they extended the system to include temporal expressions, so
that the temporal context of the claim could be taken into account [15].

Recent work has used Markov Logic Networks to reason about the world
under uncertainty, answering questions such as “According to sources A and B,
is Mr. Doe euro-sceptic?” [10,11]. Their algorithms support the task of extracting
information about the facts from various sources and fact checking the claims
against background data although it was not tested on real-world data. Work
by Patwari et al. [12] discusses a system to identify check-worthy statements in
political debates which needs to be fact-checked using a multi-classifier system
that models latent groupings in data. These statements may not be explicitly
mentioned in the text but they are check-worthy. From the statement, “We need
the private sectors help, because government is not innovating” they identify
a check-worthy claim such as “the U.S. government is not innovating”. Natural
language summaries of relational databases have also been fact-checked in a semi-
automatic way using probabilistic modelling that identifies erroneous claims in
articles from major newspapers [8]. The limitation in their work is that it requires
humans to check the interpretations of the system and correct it if it was wrong.

In contrast, we check claims that are not explicitly stated in the text corpus.
Using a knowledge base of extracted facts from various sources and first order
logic rules we infer information that is implicit in text. We focus on detecting
claims that can be considered as not plausible, in that they implicitly contradict
background knowledge, assumptions or other claims contained in a reference
corpus.

3 Probabilistic Soft Logic

Probabilistic soft logic (PSL) [9] is a framework that allows users to specify rich
probabilistic models over continuous-valued random variables using first-order
logic to describe features that define a Markov network similar to statistical
relational learning languages such as Markov Logic Networks (MLNs). User-
defined predicates model relationships and attributes and first-order logic rules
model dependencies or constraints on these predicates in a PSL program. A PSL
program consists of a set of predicates, weighted rules involving these predicates,
and known truth values of ground atoms derived from observed data. Inference
for the PSL program is over the remaining unknown truth values. PSL uses the
most probable explanation (MPE) inference which is to find the most probable
interpretation given evidence, that is, the most likely interpretation extending a
given partial interpretation [9]. Given a set of atoms l = {l1,ln}, we call the
mapping I : l → {0, 1}n from atoms to soft truth values an interpretation.

Soft logic is mathematically represented in PSL using the Lukasiewicz t-norm
as the relaxation of the logical AND and OR, respectively. These relaxations are

Fact Checking from Natural Text with Probabilistic Soft Logic 55

exact at points, when variables are either true(1.0) or false (0.0), and provide
a consistent interpretation for values in-between. The probability distribution
defined by a PSL program measures the overall distance to satisfaction, which
is a function of all ground rules truth values.

A PSL program containing a set of rules and ground atoms induces a distri-
bution over interpretations I given by,

f(I) =
1
Z

exp[−
∑

r∈R

λr(dr(I))p] (1)

where λr is the weight of the rule r, Z is a normalization constant and pε{1, 2}
provides a choice of two different loss functions. p = 1 refers to satisfying one
rule while p = 2 refers to satisfying all rules to some extent. These probabilistic
models are said to be instances of Hinge-loss Markov random fields [2]. In our
work, we use PSL because it’s proven to be scalable and it works with continuous
truth values which is useful for different modelling problems.

4 Fact Checking Family Relations

In this study we use a long BBC news article describing kinship of the members
in the royal family1. This includes a Royal Family tree and line of succession
beginning from Queen Elizabeth II to Prince George. We automatically extract
information from this article about family relations from the Royal Family such
as Parent and Spouse. For example we extract,

Charles is theParent of William
William is theSpouse of Kate

We build a knowledge base with the facts extracted and use logical rules
in PSL to infer relationships not mentioned in text. How we extract facts is
explained in Sect. 4.1. We then fact check claims about the Royal Family. PSL
is a system for collective inference and therefore it can collectively infer new
relationships according to logical rules specified. Eventually, we can check our
claims against the system. If the result for the claim was already inferred by
PSL the system returns the verdict, a binary value 0 (False) or 1 (True). If not
the fact from the claim is added to PSL targets and the result is inferred. In the
following sections we explain how we automatically extract facts from text, infer
new relations not mentioned in text and then fact check similar claims.

4.1 Fact Extraction

We use ANNIE, a Nearly-New IE system in GATE [4], an open source platform
for text engineering in order to extract named entities with their gender from
text. We chose to use GATE since its simple, scalable and easily customisable

1 Royal Family tree and line of succession: http://www.bbc.co.uk/news/uk-23272491.

http://www.bbc.co.uk/news/uk-23272491

56 N. Bindris et al.

with the use of JAPE grammars and Gazetteer lists. We do co-reference reso-
lution, which is the process of determining whether two expressions in natural
language refer to the same entity in the world [13]. For example, Queen Elizabeth
II and Queen refer to the same entity. The Orthomatcher module in the ANNIE
Information extraction system in GATE [13] is used to perform this task. We
resolve pronouns to their referring entity names using the Pronominal resolution
module. The system resolves pronouns such as ‘he’, ‘she’, ‘his’, ‘him’ and ‘her’
to their referring entity names. JAPE grammars are used to extract patterns of
Parent and Spouse relations. For example, the grammar shown below says if a
Person entity is followed by the word ‘child’ or ‘son’ or ‘daughter’ which is then
followed by the word ‘of’ followed by a Person entity, the first person refers to
a Parent entity. Therefore, the system annotates the relation as Parent relation.
{Tokens} refer to pronouns and stop words that could occur inbetween.

Person, {Tokens}, T oken == (“child” | “son” | “daughter”),
Token == “of”,Person

Similarly we annotate Spouse relations if a Person entity is followed by the word
‘married’ or ‘wife’ or ‘husband’ which is then followed by another Person entity.

Person, {Tokens}, T oken == (“married” | “wife” | “husband”),
{Tokens},Person

We extracted 16 female names, 12 male names, 10 Parent relations and 7
Spouse relations from the article and this information was added to our knowl-
edge base in PSL. In the next step we use logical rules to infer relations not
explicitly mentioned in text.

4.2 Inferring Relations

From the extracted family relations, we infer relations that were not explicitly
mentioned in text such as Cousins, Sisters, Brothers, Siblings, Uncle, Aunt, Niece
and Nephew. Examples of a few logical rules we used to infer relations Cousins,
Siblings, Uncle, Aunt and Nephew are shown below.

Parent(X,B) ∧ Parent(X,A) ∧ (A¬ = B) ⇒ Siblings(A,B)
Parent(X,B) ∧ Parent(Y,A) ∧ Siblings(X,Y) ⇒ Cousins(A,B)

Parent(X,B) ∧ Siblings(X,Y) ∧ Female(Y) ⇒ Aunt(Y,B)
Parent(X,B) ∧ Siblings(X,Y) ∧ Male(Y) ⇒ Uncle(Y,B)

Parent(X,B) ∧ Siblings(X,Y) ∧ Male(B) ⇒ Nephew(B, Y)

The first rule infers Siblings, saying that if X is the Parent of B and X is
also the Parent of A and A and B are different people then B and A should be
Siblings. The second rule says A and B are Cousins if X is the Parent of B, and
Y is the Parent of A, X and Y are siblings. The third rule says if X is the Parent
of B and X is the sibling of Y and Y is a Female then Y is the Aunt of B. The
fourth rule infers Uncle relation and fifth Nephew relation.

Fact Checking from Natural Text with Probabilistic Soft Logic 57

PSL uses MPE inference to infer information, which is to find the most
probable interpretation given evidence but also provides a lazy implementation
of the algorithm. We use the Lazy MPE inference in PSL which allows to specify
only the required targets for inference and uses less memory.

4.3 Fact Checking

In total the system inferred the following number of relations from text: 10
Cousins, 7 Uncles, 3 Aunts, 11 Siblings, 4 Nephews and 6 Nieces. We checked if
the inferred relations were correct by manually checking the family tree given in
the article, and all of them were correct.

When a new fact needs to be checked about family relations, it is checked
against relations that are inferred already by PSL. If it was already inferred, the
Verdict True or False is returned. Otherwise the fact is added to the target list
in PSL, which then initiates the inference process and returns a result. Following
examples show how a claim regarding Cousins and Nephew relation is converted
to a target, added to PSL and how the Verdict True or False is returned.

Claim :“ Is Prince William the Cousin of Princess Euginie”
Target : Cousin(Prince William, Princess Euginie)

Verdict : 1.0/True

Claim : “Is Prince William the Nephew of Princess Beatrice”
Target : Nephew(Prince William, Princess Beatrice)

Verdict := 0.0/False

5 Fact Checking Political Relations

In this study we infer and fact check political relations among actors in a polit-
ical network generated from 130,213 English news articles about 2012 US Elec-
tions. This involves fact checking supporting or opposing views of Political actors
towards other actors and issues. Data collection was done via extraction of news
articles using a modular media content analysis system [5] containing US and
International media and training a topic classifier to classify election articles.

5.1 Fact Extraction

We extract subject-verb-object (SVO) triplets from the election news collec-
tion via a fully automated pipeline [14] that performs named entity detection,
co-reference and anaphora resolution before the triplet extraction. In the triplets,
subjects and objects are named entities or noun phrases (issues) and the verb
expresses a positive or negative attitude between the subjects and objects in
the political discourse. The number of triplets are reduced in size after filtering
high confidence triplets and they are used to create positively and negatively
weighted relations between actors. We make use of positive and negative verb

58 N. Bindris et al.

lists to count a triplets as a vote in favour of a positive or negative attitude and
calculate a weight for the relation between actors. Verb lists denoting political
support/opposition were manually created by going through actions in triplets
that were extracted from the elections corpus and labelling then positive or
negative. When quantifying the weight of a relation between actors a and b a
confidence interval [17] around the estimate of the value is also considered. Based
on computed confidence intervals, we extract relations that are sufficiently sup-
ported by the corpus, calculate positive and negative weights and use them to
assemble a network consisting nodes representing actors/issues and edges repre-
senting the weights ranging from [−1 +1]. From this network we use structural
balance [3] rules to infer political relations among actors and between actors and
issues using PSL.

Structural balance can at most give us plausibility of a claim, as it is not
an exact relation like family relations. An inferred political relation will have a
weight corresponding to the level of support or opposition between actors in the
relation conveying how plausible it is.

5.2 Inferring Relations

In order to prove that we could infer political relations among actors from the
network, we remove a few links from it and use the remaining relations to predict
the removed links. We want to see when 5%, 10% or even 20% of the links are
removed from the network can we still infer them using the remaining observed
relations. Since we have the truth values for the removed links we also evaluate
the performance of the system. The network used for this study contains 169
nodes and 238 links with weights in the interval [−1,1]. To make this appropri-
ate for the PSL framework, weights were normalized to [0,1] interval. First, we
carefully select the number of links that should be removed from the network.
This involves the links that connect nodes with a degree greater than or equal to
2 so that we do not introduce singletons in the network when links are removed.
In total we quantify 126 links as removable.

We then remove 5% (12 links), 10% (24 links) and 20% (48 links) of the
links from the whole network randomly selected from the 126 removable links
identified and predict them using PSL. The logical rules created for predicting
links are based on the structural balance theory [3] with a binary predicate Rel
(relations between actors). A few logical rules are shown below.

Rel(A,B) ∧ Rel(B,C) ⇒ Rel(A,C)
Rel(A,B) ∧ ¬Rel(B,C) ⇒ ¬Rel(A,C)
¬Rel(A,B) ∧ Rel(B,C) ⇒ ¬Rel(A,C)
¬Rel(A,B) ∧ ¬Rel(B,C) ⇒ Rel(A,C)

The first four rules adapt to structural balance in transitive triads in the
network that state a friend of my friend is my friend, a friend of my enemy is
my enemy, an enemy of my friend is my enemy and the enemy of my enemy is
my friend. Political relations are not always transitive and therefore in future

Fact Checking from Natural Text with Probabilistic Soft Logic 59

we plan to add more rules that can better explain the relationships between
political entities. The outcome is a set of truth values assigned by PSL for links
predicted and this relies on the input relations that are highly confident. Since
we also know the truth values for the links predicted, in each case we measure
the Mean Absolute Error (MAE) over all the links predicted in 100 iterations.

Predicting 5%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

14

16

18

20

MAE (PSL logic)
normal fit
MAE (baseline)
normal fit

Predicting 10%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

14

16

18

20
MAE (PSL logic)
normal fit
MAE (baseline)
normal fit

Predicting 20%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

14

16

18

20

MAE (PSL logic)
normal fit
MAE (baseline)
normal fit

Fig. 1. MAE distribution with normal fitted curve over 100 iterations for the predic-
tions with PSL and random (baseline) when predicting 5% (left), 10% (middle) and
20% (right) of the links from the network

The MAE over all predictions is given by,

MAE =
| yi − xi |

n
(2)

where yi refers to the prediction of the ith link, xi refers to the truth value
of the ith link and n, the total number of links predicted.

We compute the MAE over 100 iterations when removing 5%, 10% and 20% of
the links from the network and predicting them with PSL. To compare this with a
baseline and prove its better than random, in each experiment we randomly pick
a value from the whole link weight distribution of the network as the prediction
and compute the MAE as before. Figure 1 shows the MAE distribution with a
normal fitted curve over 100 iterations for the predictions with PSL and random
predictions (baseline) when predicting 5%, 10% and 20% of the links from the
network. The most common MAEs lie in the range 0.19–0.27 (5%), 0.22–0.28
(10%), 0.25–0.28 (20%) for PSL predictions and 0.33–0.41 (5%), 0.33–0.39 (10%)
and 0.34–0.39 (20%) for the baseline. Therefore the test does show that PSL does
better than random in predicting relations.

5.3 Fact Checking

Now since we have proven that political relations could be inferred given a set of
political relations between actors, we can use this to check facts about political
relations.

60 N. Bindris et al.

For example given a claim/fact such as,

Claim : “Hillary Clinton opposes Abortion”.

the system adds this fact to the PSL target list and runs the inference process
to fact check the truth. The weight of this relation could be assigned to 0 since
oppose is a negative verb in the context of elections and the most negative
weights are mapped to 0 values in PSL. The target is comprised of Hillary
Clinton, Abortion and the negative weight associated with the relation.

Target : (HillaryClinton,Abortion)
ClaimWeight : 0.0

InferredWeight : 0.85
Verdict := 0.0/False

The inferred weight for the given target is 0.85 indicating that there is a reason-
ably high support for Abortion from Hillary Clinton. Comparing to the weight
of Claim (0.0) the system returns the Verdict False. It is also possible to rea-
son out this decision saying that Hillary Clinton supports Obama and Obama
supports Abortion, therefore Clinton supports Abortion violating the first log-
ical rule given to PSL which says if A supports B and B supports C, then A
supports C.

6 Conclusion and Future Work

This paper has demonstrated an automated system to detect claims that can be
considered as not plausible, in that they implicitly contradict background knowl-
edge, assumptions or other claims contained in a reference corpus. The key is
that the claim we are checking is not explicitly stated in the reference corpus,
and the necessary knowledge to verify it is potentially distributed across many
documents. We address this by combining information extraction with proba-
bilistic reasoning, to see if a claim can follow from other known facts showing
two examples, fact checking Family relations for which ground truth is available
and Political relations where neither relations nor rules are clearly available. We
check the implausibility of claims in that domain. We expect this kind of app-
roach to be useful for projects like Wikipedia, or to provide support to news fact
checkers, but always in the form of assisting the job of humans. We are planning
to deploy these tools to very large corpora combining information from multiple
sources such as those created by digital humanities and computational social
sciences as well as to applications that can lead to Q/A systems based on news
content. The main challenge lies in scaling up the probabilistic reasoning to work
with large amounts of facts while also having the ability to provide explanations
to the verdicts given by the system.

Acknowledgements. NC and SS were supported by ERC, NB was supported by a
grant from KSU, Saudi Arabia.

Fact Checking from Natural Text with Probabilistic Soft Logic 61

References

1. Ba, M.L., Berti-Equille, L., Shah, K., Hammady, H.M.: Vera: A platform for verac-
ity estimation over web data. In: Proceedings of the 25th International Confer-
ence Companion on World Wide Web, International World Wide Web Conferences
Steering Committee, pp. 159–162 (2016)

2. Bach, S., Huang, B., London, B., Getoor, L.: Hinge-loss Markov random fields:
convex inference for structured prediction. arXiv preprint arXiv:1309.6813 (2013)

3. Cartwright, D., Harary, F.: Structural balance: a generalization of Heider’s theory.
Psychol. Rev. 63(5), 277 (1956)

4. Cunningham, H., Wilks, Y., Gaizauskas, R.J.: Gate: a general architecture for text
engineering. In: Proceedings of the 16th Conference on Computational Linguistics,
vol. 2, pp. 1057–1060. Association for Computational Linguistics (1996)

5. Flaounas, I., Lansdall-Welfare, T., Antonakaki, P., Cristianini, N.: The anatomy
of a modular system for media content analysis. arXiv preprint arXiv:1402.6208
(2014)

6. Hassan, N., et al.: The quest to automate fact-checking. World (2015)
7. Hassan, N., et al.: Claimbuster: the first-ever end-to-end fact-checking system.

Proc. VLDB Endow. 10(12), 1945–1948 (2017)
8. Jo, S., Trummer, I., Yu, W., Liu, D., Mehta, N.: The factchecker: verifying text

summaries of relational data sets. arXiv preprint arXiv:1804.07686 (2018)
9. Kimmig, A., Bach, S., Broecheler, M., Huang, B., Getoor, L.: A short introduction

to probabilistic soft logic. In: Proceedings of the NIPS Workshop on Probabilistic
Programming: Foundations and Applications, pp. 1–4 (2012)

10. Leblay, J.: A declarative approach to data-driven fact checking. In: AAAI, pp.
147–153 (2017)

11. Leblay, J., Chen, W., Lynden, S.: Exploring the veracity of online claims with
backdrop. In: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pp. 2491–2494. ACM (2017)

12. Patwari, A., Goldwasser, D., Bagchi, S.: Tathya: A multi-classifier system for
detecting check-worthy statements in political debates. In: Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, pp. 2259–2262.
ACM (2017)

13. Soon, W.M., Ng, H.T., Lim, D.C.Y.: A machine learning approach to coreference
resolution of noun phrases. Comput. Linguist. 27(4), 521–544 (2001)

14. Sudhahar, S., De Fazio, G., Franzosi, R., Cristianini, N.: Network analysis of nar-
rative content in large corpora. Nat. Lang. Eng. 21(1), 81–112 (2015)

15. Thorne, J., Vlachos, A.: An extensible framework for verification of numerical
claims. In: Proceedings of the Software Demonstrations of the 15th Conference
of the European Chapter of the Association for Computational Linguistics, pp.
37–40. Association for Computational Linguistics (2017)

16. Vlachos, A., Riedel, S.: Identification and verification of simple claims about sta-
tistical properties. In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pp. 2596–2601. Association for Computational
Linguistics (2015)

17. Wilson, E.B.: Probable inference, the law of succession, and statistical inference.
J. Am. Stat. Assoc. 22(158), 209–212 (1927)

18. Wu, Y., et al.: iCheck: computationally combating lies, d-ned lies, and statistics. In:
Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data, pp. 1063–1066. ACM (2014)

http://arxiv.org/abs/1309.6813
http://arxiv.org/abs/1402.6208
http://arxiv.org/abs/1804.07686

ConvoMap: Using Convolution to Order
Boolean Data

Thomas Bollen, Guillaume Leurquin, and Siegfried Nijssen(B)

ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium
siegfried.nijssen@uclouvain.be

Abstract. Heatmaps, also called matrix visualisations, are a popular
technique for visualising boolean data. They are easy to understand,
and provide a relatively loss-free image of a given dataset. However,
they are also highly dependent on the order of rows and columns chosen.
We propose a novel technique, called ConvoMap, for ordering the rows
and columns of a matrix such that the resulting image represents data
faithfully. ConvoMap uses a novel optimisation criterion based on con-
volution to obtain a good column and row order. While in this paper we
focus on the creation of images for exploratory data analysis in binary
data, the simplicity of the ConvoMap optimisation criterion could allow
for the creation of images for many other types of data as well.

1 Introduction

Data visualisation is an important step in exploratory data analysis: informa-
tion that is provided in a visual manner can often be processed more easily.
For these reasons, there is a large literature on data visualization and related
areas, including visual analytics and visual data mining, and there is a need for
techniques that visualize data well. Popular types of visualisation include line
graphs, bar charts, pie charts, histograms, boxplots and scatter plots, often in
combination with dimensionality reduction techniques; they are used both in
the initial stages of the data mining process, to gain a better understanding in
data, and in later stages of the process to display results in an insightful man-
ner. While these popular techniques have clear benefits for many types of data
analysis, they also have drawbacks: they only provide summaries of underlying
data; they do not allow to visualize the complete data itself.

Heatmaps, also called matrix visualisations [1], are a visualisation technique
that does not have this disadvantage. They excel in showing certain types of
patterns, work well on discrete data, and provide a complete view on data. For
this reason, they are popular in many areas, including bioinformatics, ecology,
and web mining.

The key idea behind the heatmap is simple: given a data matrix M, we treat
this data matrix as an image, such that entry Mij of the data matrix directly
determines the color of the pixel at coordinate (i,j) in the image. In the boolean
case, we use black to indicate values in the matrix that are one, and white to
indicate values that are zero.
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 62–74, 2018.
https://doi.org/10.1007/978-3-030-01768-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_6&domain=pdf

ConvoMap: Using Convolution to Order Boolean Data 63

A heatmap provides a lossless image for a given dataset in the following sense:
there is a one-to-one correspondence between pixels in the image and entries in
the data matrix. The only information that may not be visible in the heatmap,
is the name of the attributes of the matrix. Hence, for a modern screen with
a resolution of ≈ 4000 × 2000, a data matrix of similar dimensions is shown
completely to the analyst, except for the names of the attributes.

Fig. 1. Two heatmaps for the same data, using different orders for the rows and the
columns

It is well-known, however, that the usefulness of a heatmap strongly depends
on the order that is chosen for visualising the rows and the columns of the data.
Figure 1 provides an example for boolean data. In this figure, two heatmaps
are shown for the same underlying dataset; the only difference between the two
figures is the ordering of the rows and the columns.

Clearly, the first image provides little information about the data; the second
image is informative and reveals that that the data has a clear triangular pattern.
Hence, a key challenge when creating heatmaps is the data seriation problem,
that is, the problem of ordering rows and columns such that the resulting order
is useful and reveals patterns.

The key contribution of this paper is a new approach for choosing a data
seriation, even if patterns in the data are not rectangular in structure and the
data has a high level of noise, as in the image above. The key novel idea in
this method is the use of convolution to evaluate the quality of a data order. A
benefit of convolution is that it is a well-known image processing technique. An
example of convolution is blurring: a blurred version of an image can be obtained
by applying a Gaussian convolution kernel to an image.

We propose to use convolution as follows. Given a data matrix, we aim to
order its rows and columns such that for the resulting matrix M the following
holds:

error(M,M ∗ K) is minimal,

where M ∗ K denotes the application of a convolution kernel, such as a blurring
kernel, on the matrix M, and error measures the distance between two matri-
ces. Hence, we are looking for an order of rows and columns, such that for the
resulting image it is the case that blurring does not change the image too much.
As we will see, such an order has a number of desirable properties.

We will refer to a matrix that optimizes this scoring function as a ConvoMap,
a heatmap obtained under optimization for a given convolution kernel. We will

64 T. Bollen et al.

argue that this scoring function can be used to select a useful order among a
given number of different orders, and to build a new algorithm for finding a good
ordering.

The work in this paper may only represent a first step in the use of convo-
lution in data seriation. In our conclusions we will point out that many possible
extensions of the ideas presented in this article are possible.

This paper is organized as follows. In Sect. 2 we discuss related work in more
detail. In Sect. 3 we will introduce the ConvoMap optimization criterion in more
detail, and we will study its properties. In Sect. 4 we provide a high-level overview
of a search algorithm. Given the NP-hard nature of the problem, this algorithm is
a local search algorithm that combines a number of heuristics introduced in this
section. In Sect. 5 we perform experiments. In Sect. 6 we conclude and provide
directions for future research.

This article skips a number of details to keep its length limited. These details
can be found in a master’s thesis available online [2].

2 Related Work

Existing methods for data seriation can be separated into two classes: methods
that aim to order columns and rows based on pairwise similarities between the
columns and rows, and methods that order rows and columns such that the
resulting image most closely resembles a desirable structure.

Distance-based Methods. The key idea in distance-based seriation methods is to
put rows (resp. columns) next to each other that are similar to each other.

Arguably the most common such techniques are based on a hierarchical
clustering of the rows and columns of a matrix. Standard implementations of
heatmaps based on hierarchical clustering are available for a number of data
analytics languages and systems, including R1, Matlab2, Python3, and KNIME;
these packages are in particular popular for the visualisation of gene expression
data in bioinformatics.

A relationship with traveling salesman problems was first identified by
Hubert in 1974 [3]. The key idea is here that we wish to order rows (or columns)
such that the sum of pairwise distances between the rows is as small as possible.

Related are also techniques based on spectral ordering [4]. Given a distance
matrix with pairwise distances (for instance, between the rows of a given matrix),
these techniques consider all pairs of rows and aim to put more similar rows closer
to each other. The same process can be used to reorder columns.

A wide range of seriation techniques based on pairwise distances is available
in the R seriation package [5]. A historical overview of seriation techniques can
be found in work by Liiv [6].

1 https://cran.r-project.org/web/packages/heatmap3/index.html.
2 https://www.mathworks.com/help/bioinfo/ref/clustergram.html.
3 http://seaborn.pydata.org/generated/seaborn.clustermap.html.

https://cran.r-project.org/web/packages/heatmap3/index.html
https://www.mathworks.com/help/bioinfo/ref/clustergram.html
http://seaborn.pydata.org/generated/seaborn.clustermap.html

ConvoMap: Using Convolution to Order Boolean Data 65

Fig. 2. (b) A 4x4 original dataset; (c) reordering of its columns and rows; (a) an
averaged, zoomed-out version for order (a); (d) a zoomed-out version of order (c)

However, the use of pairwise distances does not always yield insightful orders.
An extreme example is given in Fig. 2, where all columns and rows in Fig. 2(b) are
equidistant. Methods based on pairwise distances would have no reason to prefer
one order over another. Still, showing an arbitrary order, such as in Fig. 2(b) can
be undesirable. One argument is that this data has a strong banded structure;
the order shown in Fig. 2(c) would make this structure clear. Another argument
is that users will typically look at such images from a certain distance, which
effectively amounts to a certain level of zoom-out in which details are lost. When
averaging is used to create a zoomed-out picture, all detail is lost for an incorrect
order, as illustrated in Fig. 2(a). A proper order, such as in Fig. 2(c) would return
the structure at other levels of zoom.

While this example is an extreme case, it makes clear that methods based on
pairwise distances do not take into account more distant similarities along diag-
onals. Our method will provide an elegant solution to this problem; our method
will not only consider similarities with direct horizontal and vertical neighbors,
but also neighbors at a larger distance, including those along diagonals.

Structure-based Methods. The second class of methods aims to reorder both the
rows and columns of a matrix such that the resulting matrix has a desirable
structure. Two types of structures in particular have attracted significant atten-
tion in the data mining literature: nested structures [7] and banded structures [8].
These methods are popular in biology as well, as it is known that binary data
regarding the occurrence of species in geographic regions, has a nested structure:
some regions have less diversity than others. One can reorder data to match this
specific property. This has led to a number of different techniques that we will
perform further experimental comparisons with.

A basic technique for finding nested orders [9] is based on the observation that
a perfect nested order would have its columns and rows sorted by the number
of ones. The idea behind this method is therefore to count the number of ones
in each row (resp. column) and then reorder the rows (resp. columns) according
to those counts. We will refer to this technique as the Nested algorithm.

A simple technique for finding banded orders is the barycentric method [10].
The barycentric measure is a measure that determines the average position of
ones in a row/column, and can be used in an algorithm that iteratively optimizes
the row and column order. We will refer to this technique as the Barycentric
method.

An alternative method for finding banded orders is the bidirectional ordering
method [8], which uses an alternating method as well. First, it determines for
each row the smallest number of modifications that need to be done to obtain a

66 T. Bollen et al.

consecutive one row, i.e., a row in which all ones are consecutive. The next step
is to resolve the Sperner conflicts between rows, which leads to a new row order.
A similar process is executed for the columns. We will refer to this technique as
the Bidirectional technique.

Clearly, a disadvantage of this class of methods is that each method works
best on data that has a very specific structure; an analyst needs to have a certain
level of understanding in her data before the analysis starts, or an additional
method is required for making a choice between different possible images; our
method does not assume that such knowledge is available apriori.
Biclustering Methods and Itemset Mining Methods. Other problems distantly
related to data seriation are clustering, co-clustering and boolean matrix fac-
torisation. While these techniques could be used as a step in a data seriation
algorithm, they do not solve the problem of finding a total order for all rows and
columns in data, and do not provide a solution for the problem of identifying
the best order of rows and columns.

3 Definition of the ConvoMap Optimization Criterion

We limit our attention to boolean matrices. Hence, we assume given a boolean
m × n matrix M with M i,j ∈ D where D = {0, 1}. A kernel matrix K (also
called a convolution matrix) is a km ×kn matrix, where both km and kn are odd.
In this paper, for reasons of simplicity we assume that Ki,j ∈ [0, 1] and that∑

i,j Ki,j = 1. Furthermore, for reasons of notational simplicity, we assume that
the value of the kernel is zero whenever (i, j) �∈ {1, . . . , km} × {1, . . . , kn}.

We define the convolution of a data matrix with a kernel as follows:

(M ∗ K)i,j =
km∑

x=1

kn∑

y=1

M i+x−�km/2�,j+y−�kn/2� · Kx,y. (1)

Hence, in the convoluted matrix a pixel is replaced by a weighted average of
the neighborhood of the original pixel. The kernel defines the weights that are
used. Note that in this definition we ignore border effects; in our experiments,
we will address these by padding the data with a border that is as large as half
the kernel size. As we will see, the choice of values used to pad the image will
allow us to bias the search towards certain images.

Fig. 3. Examples of different convolution kernels

The effect of the convolution depends on the kernel that is used. The following
are a number of kernels that we will consider in this work; examples for the 3×3

ConvoMap: Using Convolution to Order Boolean Data 67

case of these kernels can be found in Fig. 3. In these formulas, we assume an
an arbitrary odd size km × kn, center of the rows crow = �km/2�, center of the
columns ccol = �kn/2� and center cmax = max(crow, ccol).

The Exponential blur kernel, defined by Kr,c = 22cmax

2|r−crow|+|c−ccol| .

The Linear blur kernel, defined using Kr,c = cmax−max(|crow−r|,[ccol−c|)+1
C ,

where C is a normalisation constant.
The Exponential Cross blur kernel, which is simar to the exponential blur

kernel, except that any value that is not on its middle row or middle column
is equal to 0.

All these kernels have the effect that they blur an image; they differ in which
neighbors are considered when calculating the blur; moreover, the size of the
kernel has an important impact on the level of blur.

The following properties are relevant for kernels. A kernel is square if its
number of rows equals its number of columns. A kernel is row symmetric if
reversing the order of the rows does not yield a different matrix. Similarly, it
is column symmetric if reversing the column order has no effect. A kernel is
symmetric if it is row and column symmetric. In this paper we will limit our
attention to symmetric kernels.

When we convolve a data matrix with a kernel, the order of rows and columns
is clearly important. For a different order of columns and rows we would find
a different corresponding convoluted matrix. The optimization problem that we
study in this paper is hence the following.

Definition 1. (ConvoMap). Given a binary data matrix M, a kernel matrix
K, an error function error between two matrices of equal size, find a permutation
of the rows and columns of M, such that if we order the columns and rows of
M according to these permutations, the resulting matrix M′ minimizes the score
error(M′,M′ ∗ K).

In this paper, we will focus on an L1-norm, i.e.,

error(M ′,M ′ ∗ K) =
m∑

x=1

n∑

y=1

|M ′
x,y − (M ′ ∗ K)x,y|, (2)

as we obtained slightly better results with an L1-norm. Other distance functions
can however also be considered, such as an L2-norm.

Intuitively, our optimisation criterion favors orders of the rows and columns
such that the resulting image is similar to its blurred version; typically, this is
the case if the image has relatively little black-white transitions, and the matrix
is clearly partitioned into black and white regions.

For a good understanding of the ConvoMap problem, we will now study some
of its properties.

First, we will observe that for symmetric kernels, we can rewrite the error as
a sum over weighted pairwise disagreements between entries in the matrix.

68 T. Bollen et al.

Definition 2. Given two entries (x, y) and (x′, y′) in ordered data matrix
M, their pairwise weight according to kernel K is wK((x, y), (x′, y′)) =
K�km/2�+x−x′,�kn/2�+y−y′ .

Note that in this definition we use our notational convention that entries outside
the range of the kernel matrix are assumed to be zero. Note furthermore that
under this definition for a symmetric kernel it holds that wK((x, y), (x′, y′)) =
wK((x′, y′), (x, y)).

Theorem 1. For given matrix M and kernel K it holds that:

error(M,M ∗ K) = 2
∑

Mx,y �=Mx′,y′

wK((x′, y′), (x, y)),

where we sum over all pairs of entries (x, y) and (x′, y′) in the data matrix
exactly once.

Hence, the convolution error score matches the intuition that it counts the
number of disagreements between entries in the matrix, where the distance
between the entries determines the weight that is given to the disagreement.

This observation has specific consequences for 3 × 3 cross kernels; arguably
these are the simplest types of kernels that can be used within our framework.
We can show that methods for solving the Traveling Salesman Problem can be
used to solve ConvoMap for 3 × 3 cross kernels.

Let us define the total number of 0–1 transitions in a boolean matrix as
follows:

τ(M) =
m∑

i=0

n∑

j=1

|M i,j − M i+1,j | +
m∑

i=1

n∑

j=0

|M i,j − M i,j+1|, (3)

where the first term counts the vertical zero-one transitions and the second term
counts the horizontal zero-one transitions.

Corollary 1. For the cross kernel it holds that

error(M,M ∗ K) = 2bτ(M),

where b is the value in the 3 × 3 cross kernel on the spokes of the cross.

As a consequence of this observation, we can solve the ConvoMap problem for
3×3 cross kernels as follows. (1) For every pair of rows, calculate their Hamming
distance, i.e. calculate the number of entries that are different between these two
rows; (2) Solve the TSP on the resulting distance matrix. (3) Repeat this process
for the columns. The correctness of this algorithm follows from Corollary 1 and
Eq. 3: the sum over j in Eq. 3 corresponds to a Hamming distance calculation; the
sum over i sums consecutive Hamming distances. Hence, the problem of finding
a ConvoMap can be seen as a generalization of the TSP approach towards data
seriation.

ConvoMap: Using Convolution to Order Boolean Data 69

A practical issue with this approach is that TSPs are well-known NP-
complete problems; however, as Hamming distances satisfy the triangle inequal-
ity, a reasonably good approximation algorithm can be used: the Christofides
algorithm has an approximation factor of 3/2 [11].

Even though we can hence reduce one specific instance of ConvoMap to a
TSP problem, an important question is whether ConvoMap is NP-hard as well.
We can proof the following, using a reduction of the Hamiltonian path problem.

Theorem 2. The ConvoMap problem with a 3 × 3 cross kernel is NP-hard.

Spectral ordering methods can be related to ConvoMap by using cross kernels
of a larger size than 3×3.

4 Algorithm

Given that our optimisation problem is NP-hard, we cannot expect an exact
algorithm to find optimal solutions within reasonable time.

We can however use our scoring function in two alternative ways:

– to select an order from a given set of orders produced by other algorithms;
– to build a heuristic algorithm for finding a good, although not necessarily

optimal, solution under our scoring function.

In this section, we provide a sketch of a local search algorithm that falls in the
second category. The aim of this algorithm is to determine whether it makes
sense to optimize the ConvoMap scoring function directly.

Our local search algorithm consists of a combination of randomized local
search and Traveling Salesman Problem solving; the integration of other types
of algorithms specific for banded and nested structures is left as future work.

Local search and TSP solving have different tasks in our optimisation algo-
rithm. The focus of the local search algorithm is to optimize data within blocks.
A block is here a set of rows (or columns) that are next to each other. The TSP
solver, on the other hand, is responsible for rearranging different blocks of data
globally. To this aim, we iteratively split the rows and the columns of the data
in different blocks, where the local search algorithm is applied to optimize each
individual block, and the TSP solver optimizes the order of the blocks.

The local search algorithm is based on moves. At random we execute one of
these moves, accepting the result if it improves our score:

Swap Given 4 row indexes a < b < c < d, this moves creates a new matrix M ′

in which the rows of matrix M occur in the following order:

M 1, . . . ,M a−1,M c, . . . ,M d−1,M b, . . .M c−1,M a, . . . ,M b−1,M d, . . .Mm,

(4)

i.e. two blocks of rows are exchanged.

70 T. Bollen et al.

Reverse Given 2 row indexes a < b, we create a new matrix M ′ in which the
order of rows a, . . . , b − 1 is reversed, i.e., we create the matrix with rows

M 1, . . . ,M a−1,M b−1, . . . ,M a,M b, . . .Mm. (5)

The advantage of these moves is that the error score can efficiently be recal-
culated for these moves. Let km be the number of rows in the kernel; then for
any row that has a distance of more than �m/2� to a, b, c or d the error will
not change due to the move, as its relevant neighborhood does not change. As
a consequence, to update the error, we only need to recalculate the error for
regions of the data around a, b, c and d.

In practice, we determined that choosing a, b, c and d uniformly at randoms
leads to slow convergence; the local search algorithm is unlikely to select moves
that lead to an improvement of the initial solution. We address this by limiting
the choice of a, b, c and d. We omit the details of these choices here.

Afterwards, the order of blocks is optimized using a TSP solver, in which we
use a distance measure between the blocks that is derived from the kernel. The
new order is followed by another round of local search, for a different block size;
this process is repeated till convergence. We skip the details here as well.

5 Experimental Evaluation

The aim of our experiments is to evaluate whether (1) our novel scoring function
indeed prefers orders that reveal hidden structure in data, for different types of
patterns; (2) the choice of convolution kernel has a large impact on the results,
(3) our new optimization algorithm is able to find an order that optimizes our
criterion well, and that reflects the imputed patterns well.

In this paper we restrict ourselves to artificial data, in which we hide 4 types
of patterns in the data: banded matrices, nested matrices, matrices with blocks
on the diagonal, and matrices with a number of blocks not necessarily on the
diagonal4. We created data as follows:

1. we generate an initial 300×300 boolean matrix that possesses a given pattern;
2. we add random noise by flipping each boolean in the matrix with a given

probability (25% in the experiments reported here, although the reports are
similar for 10% noise);

3. we shuffle the rows and columns of the matrix until the pattern is no longer
visible.

The data shown in Fig. 1(a) of the introduction is an example of data that is the
result of this process.

Different algorithms can then be used to order the rows and the columns
of the resulting matrix. Our first goal is to determine whether the ConvoMap
scoring function successfully selects an order that reveals the underlying pattern.

4 Results on real-world data can be found in [2].

ConvoMap: Using Convolution to Order Boolean Data 71

To this aim, we will first evaluate the error score that the ConvoMap scoring
function obtains for different orders created by the Bidirectional, Barycentric,
Hierarchical Clustering (abbreviated as HClus), Nested, and TSP methods dis-
cussed in the related work section. We use our own implementations of these
algorithms, except for Hierarchical Clustering, where we use the R Heatmap3
package. We use our own implementations as for the alternative methods there
are no publicly available implementations. We consider these methods to be
representative for a class of related methods.

In our experiments, we pad the right-hand border and the bottom border
with ones, and the left-hand and top border with zeros. As algorithms in the
literature are not aware of this preference, in our experiments we have flipped
the outcome of an alternative algorithm if for that orientation we obtain a lower
score for our scoring function.

The images created for the different methods, as well as the error scores for
different choices of convolution kernel, are provided in Table 1. Note that despite
the side-by-side visualisation, the original order is not necessarily the best one.

We consider two different approaches for evaluating the quality of the scoring
function: (1) the scoring function gives the lowest score to the original order of the
data, that is, the order before shuffling the data; (2) among the orders calculated
by algorithms in the literature, it selects the order that matches the intended
pattern the best.

For this purpose, we have indicated in our results for each different choice of
kernel (1) whether the original data obtains the lowest score for that kernel, and
(2) which algorithm in the literature receives the lowest score when that kernel
is used.

Considering the size of the kernel, the worst results are obtained for 3x3
kernels, which select the TSP solution: (1) the original order never scores best;
(2) in cases where the pattern is not rectangular in structure, such as banded
and nested matrices, it prefers orders that clearly do not reflect the underlying
pattern.

Larger kernel sizes perform better. The Linear 29 × 29 kernel always selects
the original order as the best one, and prefers the algorithm that yields the
desired shape. The 49 × 49 kernel has a slight preference for images that are
more blurry, but the differences between 29 × 29 and 49 × 49 kernels are small,
which makes it easy to fix the parameter.

We evaluate our local search algorithm next. Is this algorithm able to find
orders that perform better than those found using existing algorithms?

Table 2 shows the outcome of our algorithm for different kernel sizes, using the
Linear kernel. In this experiment the 49 × 49 kernel size provides better results
than the 25 × 25 kernel size. We found in further experiments that the 49 × 49
kernel size provides better results and use this kernel in our final experiment.

In Table 3 it can be observed that in all cases our local search algorithm
identifies a solution that has a better error score than that obtained by the
other algorithms. In two cases, the error scores obtained are lower than those

72 T. Bollen et al.

Table 1. Errors for a number of different datasets and kernel choices; for each kernel,
the result for the original order is indicated in bold if the kernel obtains the lowest
error for that order. The result for an algorithm is underlined if its error is the lowest,
as calculated using the indicated kernel. Bold and underlined results are highlighted.

Config Original Nested Baryc. Bidir. TSP HClus

Nested,
25% noise

L
in
ea
r 49x49 16981 17311 22242 17396 18820 18341

29x29 16898 17330 22148 17301 18387 18029
3x3 13480 13958 17294 13687 12937 13415

E
xp

. 49x49 16979 17356 22169 17366 18541 18142
29x29 15027 15494 19137 15253 15192 15270
3x3 12642 13068 15975 12812 11924 12417

C
ro
ss

49x49 13534 13906 16497 13668 13211 13360
29x29 13533 13905 16497 13667 13211 13360
3x3 11246 11585 13776 11352 10235 10754

Banded,
25% noise

L
in
ea
r 49x49 17533 21193 18969 18202 19269 18872

29x29 17229 21274 18804 17777 18708 18410
3x3 13515 17053 14892 13833 13104 13557

E
xp

. 49x49 17374 21293 18861 17914 18912 18554
29x29 15118 18968 16552 15429 15348 15454
3x3 12672 15955 13907 12935 12088 12557

C
ro
ss

49x49 13598 16978 14722 13798 13364 13523
29x29 13598 16978 14722 13798 13364 13523
3x3 11269 14126 12267 11438 10393 10891

Blocks,
25% noise

L
in
ea
r 49x49 17640 17940 18416 17655 17728 17814

29x29 17319 17975 18267 17465 17419 17450
3x3 13555 14458 14417 13670 12645 13042

E
xp
. 49x49 17415 17994 18323 17538 17540 17576

29x29 15152 15987 16057 15249 14690 14822
3x3 12708 13484 13461 12784 11663 12087

C
ro
ss

49x49 13603 14178 14251 13613 12838 13010
29x29 13603 14178 14251 13613 12838 13010
3x3 11296 11859 11867 11308 10026 10495

Banded Blocks,
25% noise

L
in
ea
r 49x49 17822 20019 18717 17831 18088 17888

29x29 17461 20144 18610 17486 17667 17515
3x3 13590 16336 14798 13579 12726 13100

E
xp

. 49x49 17569 20155 18659 17593 17806 17638
29x29 15196 18146 16427 15200 14795 14894
3x3 12733 15307 13805 12712 11743 12138

C
ro
ss

49x49 13631 16341 14571 13599 12925 13063
29x29 13631 16341 14571 13599 12925 13063
3x3 11304 13593 12149 11266 10104 10533

ConvoMap: Using Convolution to Order Boolean Data 73

Table 2. Results for our local search algorithm, for different kernel sizes

Config Original 3x3 11x11 25x25 49x49

Nested,
25% noise

Banded,
25% noise

calculated for the original order. Due to the large kernel size, the chosen orders
make a more blurred impression.

A major concern of our algorithm is its run time. In general, we found that we
need to run the local search algorithm for a significant amount of time to identify
solutions that score better than the initial solution identified by an alternative
algorithm. As a result, this algorithm is currently not applicable in settings that
require fast visualisation.

6 Conclusions

In this paper, we proposed a new approach for evaluating the quality of a data
seriation. The key idea in this approach is to compare an image before and
after the application of a blurring filter. We argued that this approach allows
to consider similarities at larger distances, as well as along diagonals; this is
beneficial in particular if we take into account that users may consider such

Table 3. Results for the local search algorithm using a 49 × 49 Linear kernel; error
scores are shown for a 49 × 49 kernel size, as well as run times for the local search
algorithm.

Nested Banded Blocks B. Blocks

Original Ordered Original Ordered Original Ordered Original Ordered

16981 17111 17533 17586 17640 16953 17822 17438
21354s 21782s 45856s 43511s

74 T. Bollen et al.

images at varying levels of zoom. Results confirmed potential benefits of our
scoring function on artificial data.

Many directions for future research remain. An important question is how we
can the performance of data seriation algorithms based on our scoring function.
Possibilities include the use of GPUs, the development of better local search algo-
rithms and the exploitation of other data seriation algorithms to jump start the
search. Other extensions of interest may include constraint-based data seriation,
data seriation for data that is not boolean, combinations of data seriation with
segmentation, approaches for visualising sparse data, a more detailed consider-
ation of the impact of zooming, learning convolution kernels, the consideration
of kernels that are not square, and the application of pipelines of kernels, e.g.,
the application of sharpening filters after blurring.

References

1. Chen, C-h, Härdle, W., Unwin, A.: Handbook of Data Visualization. Springer,
Berlin (2008). https://doi.org/10.1007/978-3-540-33037-0

2. Bollen, T., Leurquin, G.: Faithful visualization of categorical data. Master’s thesis
(2017). Université catholique de Louvain, Louvain-la-Neuve

3. Hubert, L.J.: Some applications of graph theory and related nonmetric techniques
to problems of approximate seriation: the case of symmetric proximity measures.
Br. J. Math. Stat. Psychol. 27, 133–153 (1974)

4. Atkins, J.E., Boman, E.G., Hendrickson, B.: A spectral algorithm for seriation and
the consecutive ones problem. SIAM J. Comput. 28, 297–310 (1998)

5. Hahsler, M., Hornik, K. Buchta, C.: Getting things in order: an introduction to
the R package seriation. J. Stat. Softw. Artic. 25(3) (2008)

6. Liiv, I.: Seriation and matrix reordering methods: an historical overview. Stat.
Anal. Data Min. 3(2), 70–91 (2010)

7. Kaski, P., Junttila, E.: Segmented nestedness in binary data. In: Proceedings of
the Eleventh SIAM International Conference on Data Mining, pp. 235–246 (2011)

8. Garriga, G.C., Junttila, E., Mannila, H.: Banded structure in binary matrices.
Knowl. Inf. Syst. 28(1), 197–226 (2011)

9. Junttila, E.: Patterns in permuted binary matrices. PhD thesis, University of
Helsinki (2011)

10. Mäkinen, E., Siirtola, H.: The barycenter heuristic and the reorderable matrix. Inf.
(Slov.) 29(3), 357–364 (2005)

11. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem, Report 388, Graduate School of Industrial Administration, CMU (1976)

https://doi.org/10.1007/978-3-540-33037-0

Training Neural Networks to Distinguish
Craving Smokers, Non-craving Smokers,

and Non-smokers

Christoph Doell1(B), Sarah Donohue2, Cedrik Pätz3, and Christan Borgelt1,3

1 Dept of Computer and Information Science, University of Konstanz,
Universitätsstraße 10, 78457 Konstanz, Germany

christoph.doell@uni.kn
2 Department of Behavioral Neurology, Leibnitz-Institute for Neurobiology,

Brenneckestraße 6, 39118 Magdeburg, Germany
3 Institute for Intelligent Cooperating Systems, University of Magdeburg,

Universitätsplatz 2, 39106 Magdeburg, Germany

Abstract. In the present study, we investigate the differences in brain
signals of craving smokers, non-craving smokers, and non-smokers. To
this end, we use data from resting-state EEG measurements to train pre-
dictive models to distinguish these three groups. We compare the results
obtained from three simple models – majority class prediction, random
guessing, and naive Bayes – as well as two neural network approaches.
The first of these approaches uses a channel-wise model with dense lay-
ers, the second one uses cross-channel convolution. We therefore generate
a benchmark on the given data set and show that there is a significant
difference in the EEG signals of smokers and non-smokers.

Keywords: Smoker · Craving · EEG · Neural network · Classification

1 Introduction

Substance abuse and addiction have many negative effects on the health of the
addicted individual, and society as a whole, with the resulting health care costs
alone being staggeringly high. Understanding how addiction works in the brain is
therefore of utmost importance, as it is the first step in determining the best ways
to treat addiction. Nicotine is legally used worldwide and provides an excellent
opportunity to study addiction in the brain for multiple reasons. First, nico-
tine, like other drugs, has chemical effects on the brain, which can be measured
(e.g., [10]). Second, after only few hours of abstinence, smokers start to crave
the next cigarette – a hallmark of addiction, the neural underpinnings of which
are little understood. Third, the legality and prevalence of nicotine provides an
available subject population, without the ethically and legally questionable issues
that can be present when examining addiction in illegal substance abuse. Fourth,

S. Donohue—This work was partially funded by DFG SFB 779 TP A14N.

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 75–86, 2018.
https://doi.org/10.1007/978-3-030-01768-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_7&domain=pdf

76 C. Doell et al.

the study of addiction in humans avoids the ethically questionable administra-
tion of drugs to animal models, which may or may not respond in similar ways
to the drugs as humans do.

In the present study, use neural networks to classify the data from smokers
who have just smoked (non-craving), smokers who have abstained from smoking
for four hours (craving), and non-smokers. The data format used, electroen-
cephalography (EEG), measures the millisecond-by-millisecond changes in elec-
trical potentials on the scalp, providing a measure of the neural activity over
time. We used resting-state data here, in which the participants fixated on a
cross for approximately 10 min, to determine if the patterns present in this basic
data could be detected and used to classify our subject groups.

2 Related Work

Previous research on addiction has generally used functional magnetic resonance
imaging (fMRI) to examine differences in resting-state data between craving and
sated smokers [9], or between smokers and non-smokers [17,19], with frontal,
executive-control-related regions such as the insula or dorsolateral prefrontal
cortex (DLPFC) being implicated in differences present. Previous modeling tech-
niques used machine learning to determine smoking status in fMRI data [12].
FMRI is, however, an expensive method to use, with low temporal resolution and
restrictions in subject populations due to its necessary metal-free environment.

Measuring EEG Signals

EEG is a cost-effective and non-invasive technique, which can be used to assess
changes in neural activity over time. The data are measured at various electrodes
(in the current study, 32) relative to a reference electrode, and the electrodes
cover the head in a way (see Fig. 1) to optimally pick up neural signals, pre-
sumably generated from local field potentials [11]. Each electrode measures the
signal representing one channel of the dataset.

Fp1 Fp2

F7
F3

Fz
F4

F8

FC1 FC2

T7 C3 Cz C4 T8

CP1 CP2

P7
P3

Pz
P4

P8

PO7
PO3 PO4

PO8
O9

Oz
O10

Iz

Fig. 1. EEG electrode locations.

Event Related Analysis

One more traditional way to analyze EEG
data is to conduct an event-related analy-
sis. In this form, a subject is given a task,
and every time an event is presented (e.g.,
a picture), a code signal is added to the
data, which can be used for time-locked
selective averaging. Using this method on
a partially overlapping population with the
present study, Donohue and colleagues [3]
found that when smokers were craving, they
showed generally more arousal in their neural
activity in response to all stimuli presented,
and, regardless of whether the image was nicotine-related or non-nicotine related.

Training Neural Networks to Distinguish Craving 77

It is an open question, however, if overall enhanced arousal would be present in
resting-state data, and if the differences observed in the event-related study are
great enough to be captured by a machine learning algorithm.

Resting State Analysis

For many other big-data tasks, the important patterns are known. For example
the p300 [18] shows a specific reaction to stimuli after 300 ms, which has been
widely used since its discovery. One difficulty of using resting-state signals is
that these patterns are unknown in our case. Previous studies using EEG mea-
sures disagree on the frequency bands in which significant differences occur. For
smokers, Brown [2] found reduced alpha and increased rhythmic high frequency,
Rass [13] detected reduced alpha as well, but also reduced delta and Knott [6]
reports reduced delta and increased beta.

EEG Analysis using Neural Networks

The recent developments in feature extraction using neural networks offers a
novel way to examine brain data, to find patterns, which may be highly mean-
ingful and would otherwise remain undiscovered. Schirrmeister [15] applied deep
convolutional neural networks (CNNs) on EEG data. They share connection
weights to find specific local patterns within the given data. With pictures,
CNNs have proven to be very successful for object recognition on the Imagenet
competition [7]. As objects in pictures are represented by groups of nearby pix-
els, convolutions are perfectly tailored for this task. However, it is not clear that
the patterns we are looking for in the EEG are also local.

3 Data Description and Preprocessing

The experimental methods and procedures used in this study were authorized
by the Ethics Committee at the Otto-von-Guericke University of Magdeburg.
From all participants of the study written, informed consent was given prior the
participation. All subjects were financially compensated for their time.

Initially, EEG data from 30 smokers and 9 non-smokers were measured by
32 electrodes positioned on the scalp in the frequently-used 10-20-system as
depicted in Fig. 1. Smokers were measured in two sessions: In the non-craving
session they had recently smoked a cigarette, in the craving session they had not
smoked for at least 4 h. For non-smokers, only one session was obtained. Each
recording session consists of 9.5 min resting state with a recording frequency of
508 Hz. Specifically, one measurement contains 508 Hz×60 s×9.5min ≈ 290.000
dimensions per channel.

Preprocessing

EEG electrodes not only measure signals arising from the brain, but they also
pick up various forms of noise. As a first preprocessing step, we applied a low-
pass filter at 30 Hz and a high-pass filter at 0.5 Hz. This removed high frequency
noise, including power line interference, some muscle artifacts, slow-drift related

78 C. Doell et al.

CP2
CP1
PO8
PO7
PO4
PO3
FC2
FC1
P8
P7

O10
O9
P4
P3
C4
C3
F8
F7
F4
F3
Iz
Oz
Pz
Cz
Fz

Fig. 2. Data snippet from non-
smoker

CP2
CP1
PO8
PO7
PO4
PO3
FC2
FC1
P8
P7

O10
O9
P4
P3
C4
C3
F8
F7
F4
F3
Iz
Oz
Pz
Cz
Fz

Fig. 3. Data snippet from craving
smoker

movements, respiration and sweat artifacts. Subsequently, we removed physio-
logical artifacts using Independent Component Analysis (ICA). This algorithm
uses the sensor signals and creates independent components. From these, we
manually selected and removed components containing eye blinks, eye move-
ments and heart beat. The selection of the components was conservative, as the
removal of a noise-like component also removes some brain signals, and it is not
possible to remove only the noisy parts of a component.

We verified visually that the ICA had successfully removed these artifacts,
but it had also created high frequency noise, which is why we filtered again,
keeping only the signal between 0.5 Hz and 30 Hz. To additionally exclude any
remaining physiological noise present in the data, we excluded channels Fp1 and
Fp2 (eye artifacts) and T7 and T8 (muscle artifacts) from subsequent analysis.

We had to exclude three participants: One had fallen asleep during recording,
and two more were rejected, as we could not successfully remove the artifacts
without removing most of the signal as well. For the subsequent analysis, we used
data from a final set of 27 smokers and 9 non-smokers, each with 25 channels.
Sample snippets of approximately two seconds of preprocessed data are shown
for a non-smoker in Fig. 2 and for a craving smoker in Fig. 3. We chose snippets
that can be distinguished as easy as possible. We performed the preprocessing
using the MNE framework [4].

Effects Hypothesized to be Inherent

EEG data is well known to have a bad signal-to-noise ratio, even when carefully
preprocessed. We suppose that two effects could be inherent, an effect of addic-
tion and an effect of craving. We investigate both effects by creating models for
classifying two or three classes. Considering craving smokers vs. non-smokers
should measure both effects, which, if these effects sum up, would be indicated

Training Neural Networks to Distinguish Craving 79

by a high predictability. Non-craving smokers vs. non-smokers only measures
the effect of addiction and craving vs. non-craving takes the effect of craving
into account. The most difficult problem uses data from all three classes and
tries to distinguish them all.

The measurements for craving and non-craving subjects were taken from the
same subjects. This means, for training of the models containing craving and
non-craving measurements, a problem with the assumption of test sets and train-
ing sets being independent and identically distributed (i.i.d) occurs if data from
the same subject are used in both sets simultaneously. For a detailed descrip-
tion, we refer to the work of Le Boudec [8]. Although this seems like a theoretical
problem, it is possible that our models find and learn person-specific patterns
(i.e., identifying a specific subject) [14]. These patterns could confuse the model
when a subject was in both data sets at the same time. This can cause difficulties
for the model, as it gets the opportunity to learn subject-specific patterns in the
EEG signals, which might be used to identify the person. To mitigate this prob-
lem, for all subjects both measurements (craving and non-craving) were used
either for training or for testing. In this case it is still possible that the model
learns person-specific patterns, but these will not directly affect the results.

4 Methodology

The data set contains measurements from 36 participants, which is a lot for
medical studies, as measurements are expensive, but is very small for data anal-
ysis. Therefore the general reliability of the results is low, and results should
be verified with more data, when available. This also motivates the need for a
methodology that adds as little variance as possible.

With data from only 36 participants, a classification is prone to over-fit the
training data and needs a good feature extraction, especially since our input
space has ≈ 290.000 dimensions per channel. We focus here on neural net-
work models, which are known for their ability to automatically detect features
that are relevant for the task at hand. To reduce the problem of few measure-
ments, bootstrapping methods exist, which generate more training examples by
re-sampling the data. All samples generated from one measurement have to be
considered statistically dependent on each other. This means, in order to keep
the independence assumption, they may not be used in both the training and
the testing set at the same time.

In our case we apply bootstrapping by taking time windows of fixed size from
a measurement and use these windows instead of the whole measurement. This
leads to two advantages: First, it reduces the dimensionality, second it increases
the number of training samples. But it also raises questions: Which length should
the window have and should windows be allowed to overlap?

A larger window length gives the model a longer signal to process and there-
fore more information, which might help to distinguish the classes, but it also
increases the time to process the data. On the other hand a smaller window
length makes it possible to generate more training samples.

80 C. Doell et al.

Another important topic is the validation method. With few samples it is
common to reuse data several times in independent tests in order to get an
estimate of the quality, for an unknown, unseen data set. A good overview of
cross-validation procedures was written by Arlot [1].

In the Leave-One-Out Cross-Validation (LOO-CV) one measurement is used
for validation, while all others are used for training. For 36 subjects, the number
of different splits with LOO-CV is only 36, which causes limited computational
costs, but also lacks the possibility to perform more independent runs. This
method maximizes the number of training samples but is known to return opti-
mistic results.

The random shuffle split cross-validation copes with these problems: We split
our data into training and test data at a certain arbitrarily chosen ratio. We
choose 7 out of every 9 subjects for the training data and the remaining 2 for
testing, i.e. 28 for training, 8 for testing in total. This means we randomly choose
two non-smokers and six smokers out of the 36 subjects as test set. To minimize
variance during the testing we apply stratification. This guarantees that for any
random split, those ratios hold for all classes. As the numbers of smokers and
non-smokers are multiples of 9 in all classes (27 craving, 27 non-craving and 9
non-smoker), no rounding is needed here. The random choice has the advantage
that it can easily be repeated often to generate more reliable results. In this
example, there are

(
27
6

)
possibilities to choose smokers and another

(
9
2

)
for non-

smokers, which adds up to 10.656.360 possibilities.
With 3 times as many smokers as non-smokers, our classes are unbalanced.

We handle this by balancing the class weights during the training and the vali-
dation process. To score our results, we use the class-balanced accuracy in all our
experiments. Note that this score is equivalent to the class-balanced F1-Score
[16] with micro-averaging.

5 Experimentation and Results

We performed two series of experiments. In the first one we wanted to start
simple. We focused on the problem to distinguish non-smokers (ns) from craving
smokers (c), as we expected it to be the easiest. We looked for possibly small
networks and a set of parameters that generates results better than guessing.
We performed various experiments on network structures, network parameters
as optimizers and number of epochs and we also varied the window length.

The second experimentation series was meant to check the other problems, to
improve the results, to correct possible weaknesses and to try a different network
structure. Here, we were aiming for reliable and statistically significant results,
so we needed to repeat the experiments several times.

5.1 First Series of Experiments

We found the following experiment set-up to be working. We used LOO-CV,
non-overlapping windows of length 1000, which corresponds to pieces of approx-
imately two seconds. Thus, we created 290.000/1.000 = 290 training samples per

Training Neural Networks to Distinguish Craving 81

Table 1. Network Structures of Dense Networks

Name Structure

Dense 1 (25 × 5) merge × 64 × 2

Dense 2 (25 × 10) merge × 128 × 64 × 2

Dense 3 (25 × 20) merge × 256 × 128 × 64 × 2

measurement. Using one measurement per subject, we received 10.440 samples
in 25.000 dimensions.

Our neural networks used mostly dense layers and dropout. We experimented
with three different models, which contain mainly dense layers and dropout.
Our smallest model is Dense 1. It starts with an independent dense layer with
5 neurons for each of the 25 channels. Their outputs are then merged into one
layer of 125 neurons. Next follows a dropout (rate: .2) and another dense layer
with 64 neurons. Finally, we add again dropout (rate: .1) and softmax with one
neuron per class.

All three variants are summarized in Table 1. For networks Dense 2 and
Dense 3 we increased the number of neurons in the layer before the merge and
added further dense layers (each of them accompanied by a dropout of .2) after
the merge.

Results of the First Series

Dense 1 reached 60.9%, Dense 2 59.7% and Dense 3 65,9% as average class-
weighted prediction accuracy. As random guessing would achieve 50%, these
results indicate that it is possible to find the combined effects of smoking and
craving within EEG data.

Our analysis of the first experiment series indicated that our models have a
tendency to predict the craving class. As there are three times as many craving
subjects as non-smokers, this imbalance occurs as well in the test set of the LOO-
CV and could result in overly optimistic results. Hence, in the second experiment
series, we repeat these experiments with random shuffle split cross-validation.
(Note: As we show detailed results for shuffle split, we omit the detailed results
here.)

5.2 Second Series of Experiments

In the second series of experiments we consider all four classification problems
(three 2-class problems and the 3-class problem) in order to investigate the
effects of smoking and of craving separately and in combination. We use shuffle-
split cross-validation with 100 repetitions in order to get unbiased and reliable
results. To overcome the limited number of possible samples, we now sample
random pieces with replacement permitting overlapping. In this way the num-
ber of possible pieces per measurement increases to 290.000 minus the window
length. We fix the number of samples per epoch to 10.000. We also compare

82 C. Doell et al.

our results to those of the simple models: predicting the majority class, random
guessing, and naive Bayes. Finally, we perform t-tests to show that our mod-
els perform significantly better than the simple models. As Schirrmeister [15]
recommended, we also try a convolutional network which applies a convolution
over the channels. We start with a convolutional layer with 512 filters, followed
by a max-pooling by Factor 2. Then again a convolution layer with 512 filters,
followed by a max-pooling by Factor 2. It follows a flatten and a dense layer
with 1024 neurons. The final layer uses softmax.

Results of the Second Series

Fig. 4. Majority class Fig. 5. Random guess-
ing

Fig. 6. Naive Bayes

For analyzing the results, we use violin plots of the average class-weighted
prediction accuracy. They visualize the distribution of results and therefore show
more than just mean and standard deviation. Figures 4, 5, 6 show the violin plots
when predicting the majority class, when randomly guessing, and when using a
naive Bayes predictor to distinguish craving and non-smokers. The first shows
zero variance at a mean of 0.5. Random guessing imports some variance at the
same mean value. The Bayes model has the highest variance and even a worse
mean value. It is unable to detect the relevant features.

Fig. 7. C vs NS: Dense 3 Fig. 8. C vs NS: CNN

Training Neural Networks to Distinguish Craving 83

Craving vs. Non-Smoker

In contrast to the simple models, our neural networks are able to find the
combined effects of smoking and craving. Figure 7 shows with 63.7% even bet-
ter results than the Convolutional Network in Fig. 8. Yet, the earlier 65.9% of
Dense 3 were indeed optimistic.

Craving vs. Non-Craving

Fig. 9. C vs NC: Dense 3 Fig. 10. C vs NC: CNN

The effect of craving in EEG data seems to be very small. In Fig. 9 we see
the performance of the Dense 3 network. With a median accuracy of 45% it is
worse than random guessing. The convolutional network has a median accuracy
of 52%. A t-test for different means comparing with random guessing returned a
p-value of 0.156. This means our models are unable to predict the craving effect
significantly better than guessing.

Non-craving vs. Non-smoker

The Dense model is able to detect the effect of smoking with a median accuracy
of 61.8% (Fig. 11) and outperforms the convolutional network (see Fig. 12), which
achieves only 57.8%. This shows that the effect of smoking (without craving) can
be found in EEG signals.

3-Class-Problem

For the three class problem, the convolutional network has a median accuracy of
37.6% and outperforms the dense network (Fig. 13), which reaches only 33.1% –
the level of random guessing. So compared to craving vs. non-smoker, the non-
craving data reduced the prediction ability of Dense 3. The convolutional network
shows again (Fig. 14) predictions that are significantly better than guessing (p <
0.0001).

Finally, we look at the confusion matrix for the 3-class case. The entries
contain the average normalized values and their variance as numbers and more

84 C. Doell et al.

Fig. 11. NC vs NS: Dense 3 Fig. 12. NC vs NS: CNN

Fig. 13. 3class: Dense 3 Fig. 14. 3class: Convolutional Net-
work

reddish color indicates a higher mean. Figures 15 and 16 show that both models
are good at correctly predicting the craving class, while both have a low quality
identifying non-smokers. Also both frequently predict craving, when non-craving
is correct. Therefore, this confirms that the craving effect – if existent – is difficult
to find. The CNN has higher rates for all correct predictions and is clearly the
better model. Nevertheless, it shows more variance in most of the cases.

6 Conclusion and Future Work

In this work, we created models to distinguish craving smokers, non-craving
smokers and non-smokers. Our models are able to successfully distinguish smok-
ers from non-smokers. Nevertheless, we found no model able to find a significant
effect of craving within the data. Models distinguishing all three classes showed
the same weakness.

We have shown that resting-state EEG measurements contain information
on the smoking status of a person. This is a great result, especially since EEG
data are known to have a low signal-to-noise ratio and thus a good classification

Training Neural Networks to Distinguish Craving 85

Fig. 15. Dense 3 Confusion Matrix Fig. 16. CNN Confusion Matrix

cannot be expected. This promising finding builds the basis of future research
with many implications for the study of addiction in cognitive neuroscience.

For our future work, we plan to investigate recurrent networks like the Long-
Short-Term-Memory (LSTM) [5]. These units have shown good results when
modeling multivariate time series, such as EEG signals. Further, we aim for
visualizing the network’s features in order to gain insights what are the patterns
that differ in the brains of smokers and non-smokers.

References

1. Arlot, Sylvain, Celisse, Alain: A survey of cross-validation procedures for model
selection. Stat. Surv. 4, 40–79 (2010)

2. Brown, Barbara B.: Some characteristic EEG differences between heavy smoker
and non-smoker subjects. Neuropsychologia 6(4), 381–388 (1968)

3. Donohue, S.E., Woldorff, M.G., Hopf, J.-M., Harris, J.A., Heinze, H.-J., Schoen-
feld, M.A.: An electrophysiological dissociation of craving and stimulus-dependent
attentional capture in smokers. Cogn. Affect. Behav. Neurosci. 16(6), 1114–1126
(2016)

4. Gramfort, A., et al.: MEG and EEG data analysis with MNE-Python. Front. Neu-
rosci. 7 (2013)

5. Hochreiter, Sepp, Schmidhuber, Jürgen: Long short-term memory. Neural Comput.
9(8), 1735–1780 (1997)

6. Knott, Verner, Cosgrove, Meaghan, Villeneuve, Crystal, Fisher, Derek, Millar,
Anne, McIntosh, Judy: EEG correlates of imagery-induced cigarette craving in
male and female smokers. Addict. Behav. 33(4), 616–621 (2008)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Adv. Neural Inf. Process. Syst. 1097–1105 (2012)

8. Le Boudec, Jean-Yves: Performance Evaluation of Computer and Communication
Systems. EPFL Press, Lausanne (2010)

86 C. Doell et al.

9. Lerman, C., Gu, H., Loughead, J., Ruparel, K., Yang, Y., Stein, E.A.: Large-scale
brain network coupling predicts acute nicotine abstinence effects on craving and
cognitive function. JAMA psychiatry 71(5), 523–530 (2014)

10. Logemann, H.N.A., Böcker, K.B.E., Deschamps, P.K.H., Kemner, C., Kenemans,
J.L.: The effect of the augmentation of cholinergic neurotransmission by nicotine
on EEG indices of visuospatial attention. Behav. Brain Res. 260, 67–73 (2014)

11. Luck, S.J.: An introduction to the event-related potential technique (cognitive
neuroscience). A Bradford Book (2005)

12. Pariyadath, V., Stein, E.A., Ross, T.J.: Machine learning classification of resting
state functional connectivity predicts smoking status. Front. Hum. Neurosci. 8,
425 (2014)

13. Rass, O., Ahn, W.Y., O’Donnell, B.F.: Resting-state EEG, impulsiveness, and
personality in daily and nondaily smokers. Clin. Neurophys. 127(1), 409–418 (2016)

14. Schetinin, V., Jakaite, L., Nyah, N., Novakovic, D., Krzanowski, W.: Feature
extraction with gmdh-type neural networks for EEG-based person identification.
Int. J. Neural Syst. 1750064 (2017)

15. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for
brain mapping and decoding of movement-related information from the human
EEG. arXiv preprint arXiv:1703.05051 (2017)

16. Sebastiani, Fabrizio: Machine learning in automated text categorization. ACM
Comput. Surv. (CSUR) 34(1), 1–47 (2002)

17. Stoeckel, L.E., Chai, X.J., Zhang, J., Whitfield-Gabrieli, S., Evins, A.E.: Lower
gray matter density and functional connectivity in the anterior insula in smokers
compared with never smokers. Addict. Biol. 21(4), 972–981 (2016)

18. Sutton, Samuel, Braren, Margery, Zubin, Joseph, John, E.R.: Evoked-potential
correlates of stimulus uncertainty. Science 150(3700), 1187–1188 (1965)

19. Weiland, B.J., Sabbineni, A., Calhoun, V.D., Welsh, R.C., Hutchison, K.E.:
Reduced executive and default network functional connectivity in cigarette smok-
ers. Hum. Brain Mapp. 36(3), 872–882 (2015)

http://arxiv.org/abs/1703.05051

Missing Data Imputation via Denoising
Autoencoders: The Untold Story

Adriana Fonseca Costa, Miriam Seoane Santos, Jastin Pompeu Soares,
and Pedro Henriques Abreu(B)

CISUC, Department of Informatics Engineering, University of Coimbra,
Coimbra, Portugal

{adrianaifc,miriams,jastinps}@student.dei.uc.pt, pha@dei.uc.pt

Abstract. Missing data consists in the lack of information in a dataset
and since it directly influences classification performance, neglecting it is
not a valid option. Over the years, several studies presented alternative
imputation strategies to deal with the three missing data mechanisms,
Missing Completely At Random, Missing At Random and Missing Not
At Random. However, there are no studies regarding the influence of all
these three mechanisms on the latest high-performance Artificial Intel-
ligence techniques, such as Deep Learning. The goal of this work is to
perform a comparison study between state-of-the-art imputation tech-
niques and a Stacked Denoising Autoencoders approach. To that end,
the missing data mechanisms were synthetically generated in 6 different
ways; 8 different imputation techniques were implemented; and finally, 33
complete datasets from different open source repositories were selected.
The obtained results showed that Support Vector Machines imputation
ensures the best classification performance while Multiple Imputation by
Chained Equations performs better in terms of imputation quality.

Keywords: Missing data · Missing mechanisms · Data imputation
Denoising autoencoders

1 Introduction

Missing Data is a common problem that appears in real-world datasets and is
an important issue since it affects the performance of classifiers [20]. Over the
past decades, many methods have been proposed to impute the missing val-
ues. In the research community, three main missing mechanisms are recognised
– Missing Completely At Random (MCAR), Missing At Random (MAR) and
Missing Not At Random (MNAR) – and adjusting the imputation method to
the missing mechanism is crucial, since an improper choice can bias the clas-
sification performance [23]. Deep Learning techniques are currently a hot topic
in Machine Learning literature [2], although their application for imputation
purposes remains an understudied topic.

This work analyses the appropriateness of Stacked Denoising Autoencoders
(SDAE) to impute the different data mechanisms, considering univariate and
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 87–98, 2018.
https://doi.org/10.1007/978-3-030-01768-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_8&domain=pdf

88 A. F. Costa et al.

multivariate scenarios. The performance of SDAE is then compared to the per-
formance of state-of-the-art imputation techniques. To achieve that, we selected
33 complete datasets from different open source repositories and simulated the
missing mechanisms using 6 different configurations. Then, 8 different impu-
tation techniques are evaluated in terms of F-measure and Root Mean Squared
Error (RMSE). Summing up, the contributions of this research are the following:
(i) presenting a comparative study that considers several missing data mecha-
nisms, imputation methods and missing rates (5, 10, 15, 20, 40%), (ii) proposing
an imputation approach based on SDAE and (iii) simultaneously evaluating the
quality of imputation (similarly to related work) and the benefits for classifi-
cation performance (mostly overlooked in related work). Our experiments show
that the imputation methods (and consequently the classification performance)
are influenced by missing mechanisms and configurations. Furthermore, we con-
clude that SDAE do not show a significant advantage over other standard impu-
tation algorithms: regarding the quality of imputation, Multiple Imputation by
Chained Equations (MICE) seems to be a better approach while Support Vector
Machines (SVM) provides the best imputation for the classification stage. This
document is organised as follows: Sect. 2 presents several research works that
considered different configurations to generate the missing mechanisms and stud-
ied well-know imputation techniques and some recent deep learning approaches.
Then, Sect. 3 describes the different stages of the experimental setup while Sect. 4
discusses the obtained results. Finally, Sect. 5 concludes the paper and presents
some possibilities for future work.

2 Background Knowledge and Related Work

In this section, we provide some background on missing data mechanisms and
imputation methods, also including a thorough explanation on the procedure of
SDAE. Along with some background information, we refer to previous work on
both topics, highlighting their main objectives and conclusions.

2.1 Missing Mechanisms

There are three mechanisms under which missing data can occur [15]: MCAR,
MAR and MNAR [10]. MCAR occurs when the reason why data is missing is
unrelated to any observed or unobserved value from the dataset (e.g. a survey
participant had a flat tire and misses his appointment). In the case of MAR, the
cause of the missing data is unrelated to the missing values but it is related with
observed values from the dataset (e.g. an investigator finds that women are less
likely to reveal their weight) and finally, in the case of MNAR, the probability
of a value to be missing is related to the value itself (e.g. obese subjects are less
likely to reveal their weight).

These mechanisms could be generated in various ways and several different
examples could be found in the literature [9,12,18,23,26,28]. Twala et al. [23]
investigated the robustness and accuracy of techniques for handling incomplete

Missing Data Imputation via Denoising Autoencoders: The Untold Story 89

data for different mechanisms of missing data. Three suites of data were created
corresponding to MCAR, MAR and MNAR. For each of them, univariate (one
feature only) and multivariate (several features) generation of missing data was
performed using 21 datasets. These approaches were implemented for 3 missing
rates (15, 30 and 50%). Rieger et al. [18] performed an extensive study cover-
ing both classification and regression problems and a variety of missing data
mechanisms. Four different types of MAR generation are proposed as well as a
mechanism for MCAR generation. Garciarena et al. [12] studied the interaction
between missing data mechanisms, imputation methods and supervised classifi-
cation algorithms. The authors generated missing values for the three different
mechanisms and present two different versions of MNAR. In total, 4 missing
data configurations are created for 6 different missing rates (5, 10, 20, 30, 40
and 50%) on 10 datasets from UCI Machine Learning Repository.

2.2 Imputation Algorithms

Imputation methods aim to find a plausible value to replace one that is missing
and are mainly divided into statistical-based or machine learning-based meth-
ods [11]. Statistical methods consist in substituting the missing observations
with the most similar ones among the training data, without the need of con-
structing a predictive model to evaluate their ”similarity” (e.g. Mean imputation
– Meanimp, MICE, Expectation-Maximization – EM). Machine learning-based
techniques, construct a predictive model with the complete available data to esti-
mate values for substituting those that are missing (e.g. k-Nearest Neighbours
imputation – kNNimp, SVM imputation – SVMimp, DAE imputation).

Garciarena et al. [12] compared the performance of 8 different imputation
techniques including MICE, Meanimp and EM. The classification results (eval-
uated with F-measure) showed that MICE was the best technique. Garćıa-
Laencina et al. [9] proposed an approach that achieves a balance between classifi-
cation and imputation by using Multi-Task Learning perceptrons. This approach
is compared with 4 well-known imputation methods (including kNNimp) using
classification accuracy. The results show that the proposed method outperforms
the other well-known techniques. Twala et al. [23] studied the effect of different
imputation techniques in classification accuracy of a decision tree. The authors
used 7 imputation methods including EM and Meanimp. The results show that
EM works well on small datasets, particularly for numeric attributes. Xia et
al. [26] compared their proposed algorithm with 5 imputation methods, includ-
ing Meanimp and kNNimp. They used accuracy and Area Under the ROC Curve
(AUC) as evaluation metric for the classification process (using a Random Forest
classifier).

General neural network-based methods have been increasingly used for miss-
ing data imputation; however, deep learning architectures especially designed
for missing data imputation has not yet been explored to its full potential.
Denoising Autoencoders (DAE) [24] are an example of deep architectures that
are designed to recover noisy data (x̃), which can exist due to data corrup-
tion via some additive mechanism or by missing data. DAE are a variant of

90 A. F. Costa et al.

autoencoder

denoising autoencoder

Output Layer

Hidden Layer

Input LayerInput Data

Fig. 1. Differences between autoencoder and denoising autoencoder structures.

autoencoders (AE) – Fig. 1 – which is a type of neural network that uses back-
propagation to learn a representation for a set of data. Each autoencoder is
composed by three layers (input, hidden and output layer) which can be divided
into two parts: encoder (from the input layer to the output of the hidden layer)
and decoder (from the hidden layer to the output of the output layer). The
encoder part maps an input vector x to a hidden representation y, through a
nonlinear transformation fθ(x) = s(xWT + b) where θ represents W (weight
matrix) and b (bias vector) parameters. The resulting y representation is then
mapped back to a vector z which have the same shape of x, where z is equal
to g′

θ(y) = s(W’y + b’). The train of an autoencoder consists in optimising
the model parameters (W, W’, b and b’), minimising the reconstruction error
between x and z. Vincent et al. [25] proposed a strategy to build deep networks
by stacking layers of Denoising Autoencoders – SDAE. The results have shown
that stacking DAE improves the performance over the standard DAE. In two
recent works, Gondara et al. studied the appropriateness of SDAE for multiple
imputation [13] and their application to imputation in clinical health records
(recovering loss to followup information) [14]. In these works, the proposed algo-
rithm is compared with MICE using the Predictive Mean Matching method.
In the first work, authors consider only MCAR and MNAR mechanisms. The
imputation results of both mechanisms are compared using sum of Root Mean
Squared Error (RMSEsum). Additionally, MNAR mechanism is also evaluated
in terms of classification error, using a Random Forest classifier. In the second
work, authors propose a SDAE model to handle imputation in healthcare data,
using datasets under MCAR and MNAR mechanisms. The simulation results
showed that their proposed approach surpassed the state-of-the-art methods. In
both previous works, although authors prove the advantages of SDAE for impu-
tation, a complete study under all missing mechanisms is not provided, since
in both cases, MAR generation is completely disregarded. Furthermore, they
only compare two imputation methods (MICE and SDAE) and the classification
performance is only evaluated for one mechanism (MNAR). Beaulieu et al. [4]
used SDAE to impute data in electronic health records. This approach is com-
pared with five other imputation strategies (including Meanimp and kNNimp)
and evaluated with RMSE. The results show that the proposed SDAE-based
approach outperforms MICE. Duan et al. [7,8] used SDAE for traffic data impu-
tation. In the first work [7], the proposed approach is compared with another

Missing Data Imputation via Denoising Autoencoders: The Untold Story 91

one that uses artificial neural networks with the same set of layers and nodes
as the ones used in SDAE. In the second work [8] another imputation method
is used (ARIMA – AutoRegressive Integrated Moving-Average) for comparison.
To evaluate the imputation process authors used RMSE, Mean Absolute Error
(MAE) and Mean Relative Error (MRE). Ning et al. [17] proposed an algorithm
based on SDAE for dealing with big data of quality inspection. The proposed
approach is compared with two other imputation algorithms (GBWKNN [19]
and MkNNI [16]) that are both based on the k-nearest neighbour algorithm.
The results are evaluated through d2 (the suitability between the imputed value
and the actual value) and RMSE. The above-mentioned works show that the
proposed imputation methods outperform the ones used for comparison, show-
ing that deep learning based techniques are promising in the field of imputation.
Sánchez-Morales et al. [22] proposed an imputation method that uses a SDAE.
The main goal of their work was to understand how the proposed approach
can improve the results obtained in the pre-imputation step. They used three
state of the art methods for the pre-imputation: Zero Imputation, kNNimp and
SVMimp. The results, for three datasets from UCI, are evaluated in terms of
MSE. Authors concluded that the SDAE is capable of improving the final results
for a pre-imputed dataset. To summarise, most of related work does not address
all three missing data mechanisms and mostly evaluates the results in terms
of quality of imputation rather than also evaluating the usefulness of an impu-
tation method to generate quality data for classification. Furthermore, none of
the reviewed works studies the effect of different missing data mechanisms on
imputation techniques (including DAE) for several missing rates.

3 Experiments

We start our experiments by collecting 33 publicly available real-world datasets
(UCI Machine Learning Repository, KEEL, STATLIB) to analyse the effect
of different missing mechanisms (using different configurations) on imputation
methods. Some of the original datasets were preprocessed in order to remove
instances containing small amounts of missing values. In the case of multiclass
datasets, they were modified in order to represent a binary problem. Afterwards,
we perform the missing data generation, inserting missing values at five miss-
ing rates (5, 10, 15, 20 and 40%) following 6 different scenarios (MCARuniva,
MCARunifo, MARuniva, MARunifo, MNARuniva and MNARunifo) based on
state-of-the-art generation methods. Five runs were performed for each missing
generation, per dataset and missing rate. To provide a clear explanation of all
the generation methods it is important to establish some basic notation. There-
fore, let us assume a dataset X represented by a n× p matrix, where i = 1, ..., n
patterns and j = 1, ..., p attributes. The elements of X are denoted by xij ,
each individual feature in X is denoted by xj and each pattern is referred to
as xi = [xi,1, xi,2, ..., xi,j , ..., xi,p]. For the univariate configuration, univa, the
feature that will have the missing values, xm, will always be the one most cor-
related with the class labels and the determining feature xd is the one most

92 A. F. Costa et al.

correlated with xm. Regarding multivariate configurations, unifo, there are sev-
eral alternatives to choose the missing values positions which will be detailed
later.

Missing Completely at Random. For the univariate configuration of
MCAR, MCARuniva, we consider the method proposed by Rieger et al. [18]
and Xia et al. [26]. This configuration chooses random locations in xm to be
missing, i.e., random values of xi,m are eliminated. The multivariate configura-
tion of MCAR is proposed in the work of Garciarena et al. [12]. MCARunifo

chooses random locations, xi,j , in the dataset to be missing until the desired MR
is reached.

Missing at Random. The univariate configuration of MAR is based on
ranks of xd: the probability of a pattern xi,m to be missing is computed by
dividing the rank of xi,m in the determining feature xd by the sum of all ranks
for xd – this configuration method is herein referred to as MARuniva. Then,
the patterns to have missing values are sampled according to such probability,
until the desired MR is reached [18,26]. The multivariate configuration of MAR,
MARunifo, starts by defining pairs of features which include a determining and
a missing feature {xd, xm}. This pair selection was based on high correlations
among all the features of the dataset. In the case of having an odd number of
features, the unpaired feature may be added to the pair which contains its most
correlated feature. For each pair of correlated features, the missing feature will
be the one most correlated with the labels. In the case of having a triple of
correlated features, there will be two missing features which will also be those
most correlated with the class labels. xm will be missing for the observations
that are below the MR percentile in the determining feature xd. This means
that the lowest observations of xd will be deleted on xm.

Missing Not at Random. MNARuniva was proposed by Twala et al. [23]:
for this method the feature xm itself is used as determining feature, i.e., the
MR percentile of xm is determined and values of xm lower than a cut-off value
are removed. The multivariate configuration of MNAR, MNARunifo, was also
proposed by Twala et al. [23] and is called Missingness depending on unobserved
Variables (MuOV), where each feature of the dataset has the same number of
missing values for the same observations. The missing observations are randomly
chosen.

Nine imputation methods were then applied to the incomplete data: Mean
imputation (Meanimp), imputation with kNN (kNNimp), imputation with SVM
(SVMimp), MICE, EM imputation and SDAE-based imputation. Meanimp
imputes the missing values with the mean of the complete values in the respective
feature [12,23,26], while kNNimp imputes the incomplete patterns according to
the values of their k-nearest neighbours [9,26]. For kNNimp we considered the
euclidean distance and a set of closest neighbours (1, 3 and 5). SVMimp was
implemented considering a gaussian kernel – Radial Basis Function (RBF) [11]:
the incomplete feature is used as target, while the remaining features are used
to fit the model. The search for optimal parameters C and γ of the kernel was

Missing Data Imputation via Denoising Autoencoders: The Untold Story 93

performed through a grid search for each dataset (different ranges of values
were tested: 10−2 to 1010 for C and 10−9 to 103 for γ, both ranges increas-
ing by a factor of 10). MICE is a multiple imputation technique that specifies
a separate conditional model for each feature with missing data [3]. For each
model, all other features can be used as predictors [13,14]. EM is a maximum-
likelihood-based missing data imputation method which estimates parameters
by maximising the expected log-likelihood of the complete data [6]. The above
methods were applied using open-source python implementations: scikit-learn
for SVMimp and Meanimp, fancyimpute for kNNimp and MICE and impyute for
EM.

Regarding the SDAE, we propose a model based on stacked denoising autoen-
coders, for the complete reconstruction of missing data. It was implemented using
Keras library with a Theano backend. SDAE require complete data for initial-
isation so missing patterns are pre-imputed using the well-known Mean/Mode
imputation method. We also apply z-score standardisation to the input data in
order to have a faster convergence. There are two types of representations for
an autoencoder [5]: overcomplete, where the hidden layer has more nodes than
input layer and undercomplete, where the hidden layer is smaller than the input
layer.

Our architecture is overcomplete, which means that the encoder block has
more units in consecutive hidden layers than the input layer. This architecture
of the SDAE is similar to the one proposed by Gondara et al. [13]. The model
is composed by an input layer, 5 hidden layers and an output layer which form
the encoder and the decoder (both constructed using regular densely-connected
neural network layers). The number of nodes for each hidden layer was set to
7, as it has proven to obtain good results in related work [13]. For the encod-
ing layers we chose hyperbolic tangent (tanh) as activation function due to its
greater gradients [5]. Rectified Linear Units function (reLu) was used as activa-
tion function in the decoding layers. We have performed experiments with two
different configurations for the training phase: the first one was adapted from
Gondara et al. [13] while for the second one we have decided to study a different
optimisation function – Adadelta optimisation algorithm – since it avoids the
difficulties of defining a proper learning rate [27]. At the end, we have decided
to use Adadelta since it proved to be most effective. Therefore, our final SDAE
is trained with 100 epochs using Adadelta optimisation algorithm [27] and mean
squared error as loss function. Our model has an input dropout ratio of 50%,
which means that half of the network inputs are set to zero in each training
batch. To prevent the training data from overfitting we add a regularization
function named L2 [5]. Our imputation approach based on this SDAE considers
the creation of three different models (for three different training sets), for which
three runs will be made (multiple imputation). This approach is illustrated in
Algorithm 1 and works as follows: (1) the instances of each dataset are divided
in three equal-size sets; (2) each set is used as test set, while the remaining two
are used to feed the SDAE in the training phase; (3) 3 multiple runs will be
performed for each one of these models; (4) the output mean of the three models
is used to impute the unknown values of the test set. After the imputation step

94 A. F. Costa et al.

Algorithm 1 Multiple imputation using SDAE
Input: Pre-imputed dataset X, p data partitions, k multiple imputations
1: for i = 1 → p do
2: Consider all partitions (except partition i) as training set
3: Consider partition i as test set
4: for j = 1 → k do
5: Perform dropout (50%) in training set
6: Initialise the SDAE with random weights
7: Fit the imputation model to the training set
8: Apply the trained model to test set i and save its imputed version j
9: end for

10: Reconstruct test set i by averaging over all its j versions
11: end for
12: return Complete dataset X

is concluded, we move towards the classification stage. We perform classification
with a SVM with linear kernel (considering a value of C = 1) and considered two
different metrics to evaluate two key performance requirements for imputation
techniques: their efficiency on retrieving the true values in data (quality of impu-
tation) [21] and their ability to provide quality data for classification [11]. The

quality of imputation was assessed using RMSE, given by
√

1
n

∑n
i=1 (xi − x̃i)2,

where x̃ are the imputed values of a feature, x are the corresponding original
values and n is the number of missing values. The classification performance was
assessed using F-measure which consists of an harmonic mean of precision and
recall [1], defined as F-measure = 2×precision×recall

precision+recall .

4 Results and Discussion

Our work consists of a missing value generation phase followed by imputation and
classification. Thus, we evaluate both the imputation quality and its impact on
the classification performance. The results are divided by metric (F-measure and
RMSE), missing mechanism (MCAR, MAR and MNAR), type of configuration
(univariate and multivariate) and missing rate (5, 10, 15, 20 and 40%). Table 1
presents the average results obtained for all the datasets used in this study. As
expected, the increase of missing rate leads to a decrease in the performance of
classifiers (F-measure) and the quality of imputation (RMSE).

Quality of Imputation (RMSE). For univa configurations, MICE proved
to be the best approach in most of the scenarios: for MNAR mechanism and a
higher MR (40%), SDAE seems to be the best method. For the unifo configu-
rations, MICE is the best imputation method for MCAR mechanism, regardless
of the MR. Considering MAR mechanism, MICE is also the best method in
most of scenarios, except for a higher MR (40%) – SDAE seems to be the best
approach. In the case of MNAR mechanism and for lower MRs (5 and 10 %),
MICE is also the best approach. However, for higher MRs, the SDAE-based

Missing Data Imputation via Denoising Autoencoders: The Untold Story 95

Table 1. Simulation results by imputation method: average F-measure and RMSE is
shown regarding each configuration, missing data mechanism and missing rate. The
best results for each configuration and missing mechanism are marked in bold, consid-
ering both metrics.

F-measure RMSE

Univa Unifo Univa Unifo

MR Methods MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR

5%

Mean 0.7626 (7) 0.7648 (7) 0.7628 (7) 0.7593 (6) 0.7675 (3) 0.7759 (5) 0.2202 (6) 0.2291 (6) 0.3691 (6) 0.2206 (5) 0.2613 (6) 0.3621 (5)
kNN1 0.7630 (5) 0.7671 (4) 0.7673 (3) 0.7587 (7) 0.7630 (8) 0.7535 (8) 0.2180 (4) 0.2187 (4) 0.3169 (4) 0.2339 (6) 0.2391 (4) 0.3748 (6)
kNN3 0.7642 (4) 0.7680 (2) 0.7679 (2) 0.7646 (4) 0.7672 (5) 0.7765 (2) 0.1802 (3) 0.1872 (3) 0.2932 (3) 0.1986 (3) 0.2050 (3) 0.3518 (3)
kNN5 0.7645 (3) 0.7672 (3) 0.7654 (4) 0.7671 (2) 0.7674 (4) 0.7763 (4) 0.1736 (2) 0.1813 (2) 0.2869 (2) 0.1917 (2) 0.1985 (2) 0.3451 (2)
SVM 0.7676 (1) 0.7693 (1) 0.7715 (1) 0.7686 (1) 0.7676 (2) 0.7871 (1) 0.4918 (8) 0.5857 (8) 0.5622 (8) 0.5094 (8) 0.5285 (8) 0.6300 (8)
EM 0.7591 (8) 0.7634 (8) 0.7618 (8) 0.7460 (8) 0.7648 (7) 0.7654 (7) 0.2979 (7) 0.2998 (7) 0.4064 (7) 0.2947 (7) 0.3173 (7) 0.4016 (7)
MICE 0.7656 (2) 0.7665 (5) 0.7644 (5) 0.7659 (3) 0.7692 (1) 0.7751 (6) 0.1701 (1) 0.1736 (1) 0.2805 (1) 0.1806 (1) 0.1887 (1) 0.3143 (1)
SDAE 0.7627 (6) 0.7651 (6) 0.7630 (6) 0.7595 (5) 0.7666 (6) 0.7763 (3) 0.2191 (5) 0.2245 (5) 0.3679 (5) 0.2202 (4) 0.2547 (5) 0.3605 (4)

10%

Mean 0.7618 (7) 0.7631 (7) 0.7592 (5) 0.7490 (6) 0.7676 (4) 0.7682 (3) 0.3070 (5) 0.3255 (6) 0.4997 (6) 0.3144 (4) 0.3530 (5) 0.4891 (3)
kNN1 0.7646 (5) 0.7656 (4) 0.7612 (4) 0.7494 (5) 0.7626 (7) 0.7614 (5) 0.3104 (6) 0.3155 (4) 0.4362 (4) 0.3420 (6) 0.3536 (6) 0.5268 (6)
kNN3 0.7677 (1) 0.7664 (3) 0.7615 (3) 0.7538 (4) 0.7685 (2) 0.7563 (7) 0.2565 (3) 0.2760 (3) 0.3960 (3) 0.2897 (3) 0.2859 (3) 0.4949 (5)
kNN5 0.7677 (2) 0.7674 (2) 0.7622 (1) 0.7558 (3) 0.7668 (5) 0.7602 (6) 0.2474 (2) 0.2664 (2) 0.3919 (2) 0.2795 (2) 0.2749 (2) 0.4878 (2)
SVM 0.7668 (3) 0.7702 (1) 0.7620 (2) 0.7655 (1) 0.7679 (3) 0.7801 (1) 0.6793 (8) 0.6784 (8) 0.6194 (8) 0.7005 (8) 0.5958 (8) 0.8301 (8)
EM 0.7592 (8) 0.7592 (8) 0.7589 (7) 0.7333 (8) 0.7557 (8) 0.7483 (8) 0.4165 (7) 0.4299 (7) 0.5411 (7) 0.4187 (7) 0.4285 (7) 0.5384 (7)
MICE 0.7661 (4) 0.7652 (5) 0.7583 (8) 0.7586 (2) 0.7690 (1) 0.7693 (2) 0.2435 (1) 0.2477 (1) 0.3786 (1) 0.2599 (1) 0.2631 (1) 0.4467 (1)
SDAE 0.7625 (6) 0.7646 (6) 0.7589 (6) 0.7485 (7) 0.7654 (6) 0.7676 (4) 0.3057 (4) 0.3178 (5) 0.4755 (5) 0.3144 (5) 0.3314 (4) 0.4933 (4)

15%

Mean 0.7589 (6) 0.7581 (7) 0.7597 (6) 0.7381 (5) 0.7514 (5) 0.7451 (4) 0.3934 (6) 0.3937 (6) 0.6075 (6) 0.3879 (4) 0.4381 (6) 0.5849 (3)
kNN1 0.7624 (5) 0.7635 (4) 0.7612 (3) 0.7335 (7) 0.7651 (2) 0.7205 (8) 0.3843 (4) 0.3822 (5) 0.5259 (4) 0.4365 (6) 0.4195 (5) 0.6534 (7)
kNN3 0.7655 (2) 0.7647 (2) 0.7604 (4) 0.7451 (4) 0.7531 (4) 0.7324 (6) 0.3268 (3) 0.3168 (3) 0.4802 (3) 0.3698 (3) 0.3721 (3) 0.6162 (5)
kNN5 0.7647 (3) 0.7643 (3) 0.7593 (7) 0.7503 (3) 0.7509 (6) 0.7374 (5) 0.3136 (2) 0.3074 (2) 0.4707 (2) 0.3551 (2) 0.3624 (2) 0.6088 (4)
SVM 0.7691 (1) 0.7678 (1) 0.7658 (1) 0.7672 (1) 0.7789 (1) 0.7872 (1) 0.9742 (8) 0.7884 (8) 0.8418 (8) 0.8628 (8) 0.8873 (8) 1.0848 (8)
EM 0.7548 (8) 0.7539 (8) 0.7582 (8) 0.7085 (8) 0.7332 (8) 0.7230 (7) 0.5189 (7) 0.5154 (7) 0.6584 (7) 0.5157 (7) 0.5229 (7) 0.6311 (6)
MICE 0.7630 (4) 0.7607 (5) 0.7612 (2) 0.7528 (2) 0.7504 (7) 0.7611 (3) 0.3054 (1) 0.3021 (1) 0.4502 (1) 0.3262 (1) 0.3494 (1) 0.5404 (2)
SDAE 0.7585 (7) 0.7583 (6) 0.7602 (5) 0.7378 (6) 0.7561 (3) 0.7633 (2) 0.3907 (5) 0.3802 (4) 0.5482 (5) 0.3886 (5) 0.3950 (4) 0.5305 (1)

20%

Mean 0.7587 (6) 0.7573 (7) 0.7553 (6) 0.7219 (5) 0.7335 (7) 0.7317 (4) 0.4479 (6) 0.4595 (6) 0.7067 (6) 0.4479 (4) 0.5094 (6) 0.6700 (3)
kNN1 0.7554 (7) 0.7583 (5) 0.7564 (4) 0.7185 (7) 0.7408 (4) 0.7062 (7) 0.4438 (4) 0.4386 (4) 0.5979 (4) 0.5094 (6) 0.5077 (5) 0.7541 (7)
kNN3 0.7609 (3) 0.7607 (4) 0.7570 (3) 0.7381 (3) 0.7414 (3) 0.7228 (6) 0.3717 (3) 0.3759 (3) 0.5686 (3) 0.4346 (3) 0.4359 (3) 0.7185 (6)
kNN5 0.7613 (2) 0.7620 (3) 0.7556 (5) 0.7380 (4) 0.7395 (5) 0.7296 (5) 0.3581 (2) 0.3618 (2) 0.5613 (2) 0.4189 (2) 0.4243 (2) 0.7114 (5)
SVM 0.7661 (1) 0.7714 (1) 0.7627 (1) 0.7643 (1) 0.7582 (1) 0.7896 (1) 1.1028 (8) 0.9814 (8) 0.9409 (8) 1.0050 (8) 1.5731 (8) 1.2533 (8)
EM 0.7547 (8) 0.7533 (8) 0.7536 (7) 0.6861 (8) 0.7146 (8) 0.6976 (8) 0.5966 (7) 0.5974 (7) 0.7395 (7) 0.5938 (7) 0.5950 (7) 0.7101 (4)
MICE 0.7599 (4) 0.7632 (2) 0.7515 (8) 0.7431 (2) 0.7425 (2) 0.7499 (3) 0.3484 (1) 0.3511 (1) 0.5329 (1) 0.3806 (1) 0.4009 (1) 0.6326 (2)
SDAE 0.7589 (5) 0.7577 (6) 0.7591 (2) 0.7210 (6) 0.7363 (6) 0.7515 (2) 0.4448 (5) 0.4416 (5) 0.6045 (5) 0.4484 (5) 0.4435 (4) 0.6101 (1)

40%

Mean 0.7478 (6) 0.7431 (7) 0.7448 (3) 0.6676 (3) 0.6801 (6) 0.6710 (3) 0.6387 (6) 0.6682 (6) 1.0326 (7) 0.6357 (2) 0.7553 (5) 0.9590 (3)
kNN1 0.7469 (7) 0.7441 (6) 0.7415 (7) 0.6387 (7) 0.6855 (5) 0.5867 (7) 0.6364 (5) 0.6502 (5) 0.9124 (5) 0.7798 (6) 0.7817 (6) 1.0844 (7)
kNN3 0.7512 (4) 0.7464 (4) 0.7440 (4) 0.6621 (5) 0.6973 (4) 0.5836 (8) 0.5404 (3) 0.5492 (3) 0.8883 (3) 0.6701 (5) 0.7163 (4) 1.0379 (6)
kNN5 0.7541 (2) 0.7480 (3) 0.7428 (5) 0.6581 (6) 0.6988 (3) 0.5948 (6) 0.5229 (2) 0.5302 (2) 0.8951 (4) 0.6497 (4) 0.6987 (3) 1.0274 (5)
SVM 0.7649 (1) 0.7695 (1) 0.7532 (2) 0.7618 (1) 0.7670 (1) 0.7385 (1) 1.1565 (8) 1.4194 (8) 1.8521 (8) 1.3355 (8) 3.7205 (8) 1.4128 (8)
EM 0.7407 (8) 0.7392 (8) 0.7416 (6) 0.6105 (8) 0.6585 (8) 0.5954 (5) 0.8460 (7) 0.8408 (7) 0.9938 (6) 0.8355 (7) 0.8270 (7) 0.9483 (2)
MICE 0.7526 (3) 0.7491 (2) 0.7393 (8) 0.6988 (2) 0.7025 (2) 0.6344 (4) 0.5027 (1) 0.5094 (1) 0.8396 (2) 0.5648 (1) 0.6975 (2) 0.9758 (4)
SDAE 0.7479 (5) 0.7453 (5) 0.7552 (1) 0.6652 (4) 0.6781 (7) 0.7330 (2) 0.6347 (4) 0.6256 (4) 0.7078 (1) 0.6366 (3) 0.5890 (1) 0.6687 (1)

approach guarantees a better imputation quality. Furthermore, there are some
datasets where SDAE is the top winner, especially for MR 40% (dermatology,
hcc-data-survival, hcc-data-mortality, lung-cancer, among others), although this
is not generalisable for all datasets.

Impact on classification (F-measure). The results show that SVMimp
seems to be the best imputation method in terms of classification performance,
regardless the missing mechanism and configuration considered. This is shown
in Table 1, where for the three highest MRs (15, 20 and 40%) SVMimp is the
winner approach for most of the studied scenarios, although for MNAR univa
configuration and under a MR of 40%, SDAE is the best approach. For the
lowest MRs (5 and 10%) there is no standard, suggesting that small amounts of
missing values have little influence on the quality of the dataset for classification
purposes – there is an exception for the univa configurations under 5% of MR: in
this case, SVM is the winner approach. Regarding the classification performance
of the SDAE-based approach, it belongs to the top 3 imputation approaches for
MNAR configurations under higher MRs (20 and 40%) .

We continue this section by referring to the results obtained by Gondara et
al.[13], who used a similar benchmarking of datasets (although smaller, with

96 A. F. Costa et al.

only 15 datasets) and a SDAE approach. Gondara et al.[13] proposed a SDAE
based model for imputation but only compare its results with MICE. Therefore,
we also perform this comparison, only for unifo configuration, and present the
respective results in Fig. 2. The SDAE seems to perform better than MICE for
MNAR data - this is always the case for higher missing rates (15, 20 and 40%),
regardless of the used metric.

We also performed a statistical test (Wilcoxon rank-sum) in order to verify
if there were significant differences between the results obtained by the SDAE
and the best method for the classification and imputation (MICE for RMSE
and SVMimp for F-measure). In terms of RMSE and for most of the studied
scenarios, the p-value reveals strong evidence against the null hypothesis, so we
reject it - meaning that there are significant differences between the two methods,
MICE and SDAE. For some scenarios where SDAE seems to be superior – MNAR
unifo under 15 and 20% of MR – the p-value reveals weak evidence against
the null hypothesis and therefore we can not ensure that there are significant
differences between SDAE and MICE. Regarding F-measure and for almost all
of the studied scenarios, we obtained a p-value that indicates strong evidence
against the null hypothesis, so we reject it, meaning that there are significant
differences between the two methods, SVMimp and SDAE. Since SVMimp has
a higher performance, it does not seem that using SDAE brings any advantage
in terms of classification performance.

(a) F-measure (b) RMSE

Fig. 2. Comparison between the results obtained from the SDAE-based approach and
from MICE (multivariate configuration).

Missing Data Imputation via Denoising Autoencoders: The Untold Story 97

5 Conclusions and Future Work

This work investigates the influence of different missing mechanisms on imputa-
tion methods (including a deep learning-based approach) under several missing
rates. This influence is evaluated in terms of imputation quality (RMSE) and
classification performance (F-measure). Our experiments show that MICE per-
forms well in terms of imputation quality while SVMimp seems to be the method
that guarantees the best classification results.

We also compare the behaviour of SDAE with well-established imputation
techniques included in related work: for standard datasets, such as those we have
used, SDAE does not seem to be superior to the remaining approaches, since the
obtained results do not outperform all of the state-of-the-art methods. Further-
more, the simulations become more complex with the use of deep networks due
to both computational time and space/memory required.

As future work, we will investigate the usefulness of SDAE when handling
more complex datasets (higher number of samples and dimensionality). Also, as
the advantage of SDAE seems to be more clear for higher missing rates (40%), a
smoother step of missing rates (between 20% and 40%) could bring new insights.

References

1. Abreu, P.H., Santos, M.S., Abreu, M.H., Andrade, B., Silva, D.C.: Predicting breast
cancer recurrence using machine learning techniques: a systematic review. ACM
Comput. Surv. (CSUR) 49(3), 52 (2016)

2. Amorim, J.P., Domingues, I., Abreu, P.H., Santos, J.: Interpreting deep learning
models for ordinal problems. In: 26th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine learning (ESANN), pp. 373–
378 (2018)

3. Azur, M.J., Stuart, E.A., Frangakis, C., Leaf, P.J.: Multiple imputation by chained
equations: what is it and how does it work? Int. J. Methods Psychiatr. Res. 20,
40–49 (2011)

4. Beaulieu-Jones, B.K., Moore, J.H.: Missing data imputation in the electronic health
record using deeply learned autoencoders. In: Altman, R.B., Dunker, A.K., Hunter,
L., Ritchie, M.D., Klein, T.E. (eds.) PSB, pp. 207–218 (2017)

5. Charte, D., Charte, F., Garćıa, S., del Jesus, M.J., Herrera, F.: A Practical Tutorial
on Autoencoders for Nonlinear Feature Fusion: Taxonomy, Models, Software and
Guidelines, vol. 44, pp. 78–96. Elsevier (2018)

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. 39, 1–22 (1977)

7. Duan, Y., Lv, Y., Kang, W., Zhao, Y.: A deep learning based approach for traffic
data imputation. In: ITSC, pp. 912–917. IEEE (2014)

8. Duan, Y., Lv, Y., Liu, Y.L., Wang, F.Y.: An efficient realization of deep learning
for traffic data imputation. Transp. Res. Part C: Emerg. Technol. 72, 168–181
(2016)

9. Garćıa-Laencina, P.J., Sancho-Gómez, J.L., Figueiras-Vidal, A.R.: Classifying pat-
terns with missing values using multi-task learning perceptrons. Expert Syst. Appl.
40, 1333–1341 (2013)

98 A. F. Costa et al.

10. Garćıa-Laencina, P.J., Abreu, P.H., Abreu, M.H., Afonso, N.: Missing data impu-
tation on the 5-year survival prediction of breast cancer patients with unknown
discrete values. Comput. Biol. Med. 59, 125–133 (2015)

11. Garćıa-Laencina, P.J., Sancho-Gómez, J.L., Figueiras-Vidal, A.R.: Pattern classi-
fication with missing data: a review. Neural Comput. Appl. 19, 263–282 (2009)

12. Garciarena, U., Santana, R.: An extensive analysis of the interaction between miss-
ing data types, imputation methods, and supervised classifiers. Expert Syst. Appl.
89, 52–65 (2017)

13. Gondara, L., Wang, K.: Multiple imputation using deep denoising autoencoders.
Department of Computer Science, Simon Fraser University (2017)

14. Gondara, L., Wang, K.: Recovering loss to followup information using denoising
autoencoders. Simon Fraser University (2017)

15. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, New York
(1987)

16. Man-long, Z.: MkNNI: new missing value imputation method using mutual nearest
neighbor. Mod. Comput. 31, 001 (2012)

17. Ning, X., Xu, Y., Gao, X., Li, Y.: Missing data of quality inspection imputation
algorithm base on stacked denoising auto-encoder. In: 2017 IEEE 2nd International
Conference on Big Data Analysis (ICBDA), pp. 84–88. IEEE (2017)

18. Rieger, A., Hothorn, T., Strobl, C.: Random forests with missing values in the
covariates. Department of Statistics, University of Munich (2010)

19. Sang, G., Shi, K., Liu, Z., Gao, L.: Missing data imputation based on grey system
theory. Int. J. Hybrid Inf. Technol. 27(2), 347–355 (2014)

20. Santos, M.S., Abreu, P.H., Garćıa-Laencina, P.J., Simão, A., Carvalho, A.: A new
cluster-based oversampling method for improving survival prediction of hepatocel-
lular carcinoma patients. J. Biomed. Inform. 58, 49–59 (2015)

21. Santos, M.S., Soares, J.P., Henriques Abreu, P., Araújo, H., Santos, J.: Influence
of data distribution in missing data imputation. In: ten Teije, A., Popow, C.,
Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 285–
294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59758-4 33

22. Sánchez-Morales, A., Sancho-Gómez, J.-L., Figueiras-Vidal, A.R.: Values dele-
tion to improve deep imputation processes. In: Ferrández Vicente, J.M., Álvarez-
Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC
2017. LNCS, vol. 10338, pp. 240–246. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59773-7 25

23. Twala, B.: An empirical comparison of techniques for handling incomplete data
using decision trees. Appl. Artif. Intell. 23, 373–405 (2009)

24. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and compos-
ing robust features with denoising autoencoders. In: International Conference on
Machine Learning proceedings (2008)

25. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

26. Xia, J., Zhang, S., Cai, G., Li, L., Pan, Q., Yan, J., Ning, G.: Adjusted weight
voting algorithm for random forests in handling missing values. Pattern Recognit.
69, 52–60 (2017)

27. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

28. Zhu, B., He, C., Liatsis, P.: A robust missing value imputation method for noisy
data. Appl. Intell. 36(1), 61–74 (2012)

https://doi.org/10.1007/978-3-319-59758-4_33
https://doi.org/10.1007/978-3-319-59773-7_25
https://doi.org/10.1007/978-3-319-59773-7_25
http://arxiv.org/abs/1212.5701

Online Non-linear Gradient Boosting in
Multi-latent Spaces

Jordan Frery1,2(B), Amaury Habrard1, Marc Sebban1, Olivier Caelen2,
and Liyun He-Guelton2

1 Université de Lyon, Université Saint-Étienne Jean-Monnet, UMR CNRS 5516,
Laboratoire Hubert-Curien, 42000 Saint-Étienne, France

{jordan.frery,amaury.habrard,marc.sebban}@univ-st-etienne.fr
2 Worldline, 95870 Bezons, France

{jordan.frery,olivier.caelen,liyun.he-guelton}@worldline.com

Abstract. Gradient Boosting is a popular ensemble method that com-
bines linearly diverse and weak hypotheses to build a strong classifier.
In this work, we propose a new Online Non-Linear gradient Boosting
(ONLB) algorithm where we suggest to jointly learn different combina-
tions of the same set of weak classifiers in order to learn the idiosyncrasies
of the target concept. To expand the expressiveness of the final model, our
method leverages the non linear complementarity of these combinations.
We perform an experimental study showing that ONLB (i) outperforms
most recent online boosting methods in both terms of convergence rate
and accuracy and (ii) learns diverse and useful new latent spaces.

1 Introduction

Ensemble learning aims at combining diverse hypotheses to generate a strong
classifier and has been shown to be very effective in many real life applications.
Several categories of ensemble methods have been proposed in the literature, like
bagging (e.g. random forest [1]), stacking [2], cascade generalization [3], boost-
ing [4], etc. Those state of the art methods essentially differ by the way they
generate diversity and combine the base hypotheses. In this paper, we focus on
gradient boosting [5] which - unlike many other machine learning methods - per-
forms an optimization in the function space rather than in the parameter space.
This opens the door to the use of any loss function expanding the spectrum
of applications that can be covered by this method. Moreover, the popularity
of gradient boosting has been increased by recent implementations showing the
scalability of the method even with billions of examples [6,7].

Despite these advantages, real world applications such as fraud detection,
click prediction or face recognition are often subject to uninterrupted data flow
which is completely ignored in the batch gradient boosting setting. This brings
up a major concern: How to train models over always increasing volumes of data
that need more memory and more storage? While big data centers can partially
solve the problem, training the model from scratch each time new instances
arrive remains unrealistic.
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 99–110, 2018.
https://doi.org/10.1007/978-3-030-01768-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_9&domain=pdf

100 J. Frery et al.

To overcome this problem, online boosting has received much attention dur-
ing the past few years [8–14]. In these methods, the boosted model is updated
after seing each example. While they can process efficiently large amount of data,
their practical limitations include: (i) an edge assumption usually made on the
asymptotic accuracy (i.e. the edge over random guessing) of the weak learners
making some approaches hard to tune, (ii) the absence of a weighting scheme of
the weak learners that depends on their performance and (iii) for some of them a
lack of adaptiveness (despite the fact that it was a strong point of Adaboost [4]).

Moreover, all the previous online methods face another issue: they usually
perform a linear combination over a finite number of learned hypotheses which
may limit the expressiveness of the final model to reach complex target concepts.
While the batch setting would allow us to add step by step new hypotheses and
capture the complexity of the underlying problem, an online algorithm keeps
the same set of weak learners all along the process. This remark prompted us to
investigate the way to develop a non linear gradient boosting algorithm with
an enhanced expressiveness. To the best of our knowledge, there is only one
work specific to non-linear boosting [15] but only usable in a batch setting. This
is why the main contribution of this paper takes the form of a new algorithm,
called ONLB - for Online Non Linear gradient Boosting. Inspired from previous
research in domain adaptation [16], boosted-multi-task learning [17] and boost-
ing in concept drift [18], ONLB resorts to the same set of boosted weak learners,
projects their outputs in different latent spaces and takes advantage of their
complementarity to learn non linearly the idiosyncrasies of the underlying con-
cept. ONLB is illustrated in Fig. 1. At first glance, it looks similar to boosted
neural networks, as done in [19,20], where the embedding layer is learned with
boosting in order to infer more diversity. However, our method aims at learning
the weak hypotheses iteratively, the next weak learner trying to minimize the
error made by the network restricted to the previous hypotheses (see the solid
lines in Fig. 1). The other main difference comes from the back-propagation that
is performed at each step only on the parameters related to the weak learner
subject to an update (see the red lines in Fig. 1). Thanks to the non-linear func-
tion brought by the last layer to combine the different representation output,
ONLB converges much faster than the other state of the art online boosting
algorithms.

The paper is organized as follows: Sect. 2 is devoted to the presentation of
the related work. Our new non-linear online gradient boosting algorithm ONLB
is presented in Sect. 3. Section 4 is dedicated to a large experimental comparison
with the state of the art methods. We conclude the paper in Sect. 5.

2 Related Work

Online boosting methods have been developed soon after their batch counter-
part. The first one introduced in [8] uses a resampling method based on a Poisson
distribution and was applied in computer vision by [9] for feature selection. The-
oretical justifications were developed later in [10] where they notably discuss

ONLB in Multi-latent Spaces 101

Fig. 1. Graphical representation of our Online Non-Linear gradient Boosting method:
the first top layer corresponds to the learned weak classifiers; the second layer represents
different linear combinations of their outputs; the bottom layer proceeds a non linear
transformation of those combinations. The thickest lines show the needed activated
path to learn a given classifier (here h2). The red lines show the update performed
only on the parameters concerned by this weak learner. The dashed lines are not taken
into account at this iteration.

the number of weak learners needed in an online boosting framework. This is
indeed a major concern since having too many of them could lead to predic-
tions dominated by redundant weak learners that perform poorly. On the other
hand, too few weak learners could make the boosting process itself irrelevant,
as the goal is still to improve upon the performance of a simple base learner.
More recently, [11] extends this previous work to propose an optimal version of
boosting in terms of the number of weak learners for classification. An adapta-
tion of this framework to multi-class online boosting was proposed in [12]. While
these methods come with a solid theory, the assumption usually made on the
asymptotic accuracy (i.e. the edge over random guessing) of the weak learners
leads to two main practical limitations. The first one is the undeniable difficulty
to estimate this edge without prior knowledge on the task at hand. The second
comes from the fact that the edge of each weak learner might be very different
depending on their own performance. And it turns out that the latter is never
taken into consideration and might impact the overall performance of boosting.

Online gradient boosting was introduced by [21] allowing one to use more
general loss functions but without any theoretical guarantees. Later, [13] and its
extension to non smooth losses [14], propose online gradient boosting algorithms
with theoretical justifications. These are the closest approaches to ours but they
do not weight the weak learners based on their own performance. Moreover, the
linear aspect of these methods limit strongly their expressiveness.

102 J. Frery et al.

Another series of related works is the use of boosting in neural network
methods. Recently, neural networks were used with incremental boosting [19] to
train a specific layer. In [20], the authors reused [13] to optimize and increase
the diversity of their embedding layer. Our work is related in the sense that we
boost a layer to build a new feature space. However, we do not aim at learning
a general neural network. This layer is rather used to make connections between
our different weak learners. This is why our back-propagation procedure differs
by focusing only on the parameters of the weak learner to be optimize at each
step.

Apart from online boosting methods, our work is also related to non-linear
boosting. However, as far as we know, only [15] tackled this topic by proposing
a non-linear boosting projection method where, at each iteration of boosting,
they build a new neural network only with the examples misclassified during the
previous round. They finally take the new feature space induced by the hidden
layer and feed it as the input space for the next learner. Nonetheless, it is very
expensive and unsuitable to online learning.

3 Online Non-linear Gradient Boosting

In this study, we consider a binary supervised online learning setting where at
each time step t = 1, 2, ..., T one receives a labeled example (xt, yt) ∈ X ×{−1, 1}
where X is a feature space. In this setting, the learner makes a prediction f(xt),
the true label yt is then revealed and it suffers a loss �(f(xt), yt).

Boosting aims at combining different weak hypotheses. In batch gradient
boosting, weak learners are learned sequentially while in the online setting, they
are not allowed to see all examples at once. Thus, it is not possible to simply add
new models iteratively in the combination as in batch boosting. In fact, online
boosting maintains a sequence of N weak online learning algorithms A1, ...,AN

such that each weak learner hi is updated by Ai in an online fashion. Note that
every Ai considers hypotheses from a given restricted hypothesis class H. The
final model corresponds to a weighted linear combination of the N weak learners:

F (x) =
N∑

i=1

αihi(x), (1)

where αi stands for the weight of the weak learner hi.
We now present our Online Non-Linear gradient Boosting, ONLB. As shown

in Fig. 1, our method maintains P different representations that correspond to
different combinations of the N learned weak learners, projecting their outputs
into different latent spaces. Every representation p is updated right after a weak
learner is learned. The outputs given by the p representations are then merged
together to build a strong classifier, F (x). To capture non linearities during this
process, we propose to pass the output of each representation p into a non linear
function Lp. We define the prediction of our model F (x) as follows:

ONLB in Multi-latent Spaces 103

F (x) =
P∑

p=1

αpLp

(N∑

i=1

αp
i hi(x)

)
, (2)

where αp
i are the weights projecting the outputs of the weak learner hi in the

latent space p and αp the weight of this representation. Equation (2) illus-
trates clearly the difference with linear boosting formulation of Eq. (1). We
denote by Fk the classifier restricted to the first k weak learners: Fk(x) =
∑P

p=1 αpLp

(∑k
i=1 αp

i hi(x)
)
.

Our method aims thus at combining the same set of classifiers into different
latent spaces. A key point here relies in making these classifiers diverse while
still being relevant in the final decision. To achieve this goal, we update every
weak learner hi to decrease the error of the already learned models in Fi−1 such
that:

hi = argminh

T∑

t=1

�c

(P∑

p=1

αpLp

(i−1∑

k=1

αp
khk(xt) + h(xt)

)
, yt

)
, (3)

where �c(F (x), y) is a classification loss. In other words, we look for a learner
hi that improves over the learned combination, Fi−1.

In gradient boosting [5], one way to learn the next weak learner is to approx-
imate the negative gradient (residuals) of Fi−1 by minimizing the square loss
between these residuals and the weak learner predictions. We define rt

i the resid-
ual at iteration i for the example xt as follows:

rt
i = −∂�c(Fi−1(xt), yt))

∂Fi−1(xt)
. (4)

In fact, from this functional gradient descent approach, we can define a greedy
approximation of Eq. (3) by using a regression loss �r on the residuals computed
in Eq. (4) with respect to the classification loss �c:

hi = argminh

T∑

t=1

�r(h(xt), rt
i). (5)

As stated above, when a weak learner hi is updated, we need: (i) to update
the weights αp

t associated to this learner in each representation p and (ii) update
the representation weights αp in the final decision as follows:

αp := αp − η
∂�c(Fi(xt), yt)

∂αp
; αp

i := αp
t − η

∂�c(Fi(xt), yt)
∂αp

i

.

All the steps of our ONLB training process are summarized in Algorithm1.
In practice, we instantiate our losses with the square loss for the regression

and the logistic loss for the classification as follows:

�c(f(xt), yt) = log(1 + e−ytFi(xt)); �r(f(xt), rt
i) = (rt

i − f(xt))2.

104 J. Frery et al.

The choice of the logistic loss is motivated by the need to have bounded
gradients in order to avoid their exponential growth with the boosting iterations,
which can happen for noisy instances for example. The square loss is the main
loss function for regression tasks and has demonstrated superior computational
and theoretical properties for the online setting [22]. Then, according to Eq. (5),
the weak classifiers are updated as follows:

hi = argminh

T∑

t=1

(h(xt) − rt
i)

2. (6)

Equation (6) suggests a fairly simple update of each weak learner: each weak
online learning algorithm Ai uses a simple stochastic gradient descent with
respect to one example at each step. The residuals can be obtained thanks to a
straight forward closed form:

rt
i =

−yt

1 + eytFi−1(xt)
.

Finally, we used a relu activation function such that L(x) =
{

x if x > 0,
0 otherwise.

The weights of the latent spaces αp
i and αp are now updated as follows:

αp
i := αp

i +η

{
ytα

phi(xt)

1+eytFi(xt)
if αp

i hi(xt) > 0,

0 otherwise
; αp := αp+η

ytLp

(∑N
i=1 αp

i hi(xt)
)

1 + eytFi(xt)
.

At test time, our model learned using Algorithm1 predicts as follows:

F ∗(x) = sign

(
F (x)

)
= sign

(P∑

p=1

αpLp

(N∑

i=1

αp
i hi(x)

))
.

Algorithm 1 Online Non-Linear gradient Boosting (ONLB)
1: INPUT: N online weak learners, a learning rate η and P latent spaces.
2: Initialize h0 = 0
3: for t = 1 to T do
4: Receive example xt

5: Predict F0(xt) = h0 = 0
6: for i = 1 to N do
7: Reveal yt the label of example xt

8: Compute the residual rt
i =

∂�c(Fi−1(xt),yt))

∂Fi−1(x)

9: Predict hi(xt)
10: Ai suffers loss �r(r

t
i , hi(xt)) and updates the hypothesis hi

11: for p = 1 to P do
12: αp := αp − η ∂�c(Fi(xt),yt)

∂αp ; αp
i := αp

t − η ∂�c(Fi(xt),yt)

∂α
p
i

13: end for
14: end for
15: end for

ONLB in Multi-latent Spaces 105

Table 1. Properties of the datasets used in the experiments.

#Examples Positives ratio #Features

Covtype 581, 012 51.2% 54

Poker 1, 025, 010 49.88% 10

MNIST 70, 000 49% 718

Abalone 4, 177 49% 8

Pima 767 34.9% 8

Adult 42, 842 23.9% 14

HIV 6, 590 13.3% 8

w8a 64000 3% 300

Shuttle 58, 000 21.4% 9

Wine 6, 497 20.64% 12

4 Experiments

In this section, we provide an experimental evaluation of our non-linear online
boosting method ONLB in terms of both quantitative and qualitative analy-
sis. First, we perform a comparative study with different state-of-the-art online
boosting algorithms on public datasets. Second, we present an analysis of the
learned representations.

4.1 Classification Results

We use 10 public datasets from the UCI repository by considering binary clas-
sification problems (multi-class datasets were converted into binary problems as
indicated in parenthesis): Poker (0 vs [1,9]), MNIST ([0,4] vs [5,9]), Wine ([3,6]
vs [7,9]), Abalone ([0,9] vs [10,29]), Covtype (2 vs all), Shuttle (1 vs all), Pima,
Adult, HIV, w8a. A summary of these datasets is presented in Table 1.

Our experimental setup is defined as follows. For every dataset, we apply
a 3-fold cross validation. For tuning the hyper-parameters, we perform in each
fold a progressive validation [23] on the training set as proposed in [11]: This
validation process uses every new example to evaluate the model and then use
it for training. Note that we simulate the online learning setting by giving the
examples according to a random order to the algorithm. We train different mod-
els in parallel with respect to their hyper-parameter values (i.e. the number of
weak learners N , the learning rate η and γ the weak learner edge) and we select
the one achieving the lowest progressive validation error. The selected model is
then evaluated on the test set.

We compare our method to different online boosting algorithms from
current state-of-the-art: the four algorithms online.BBM, Adaboost.OL,

106 J. Frery et al.

Adaboost.OL.W, OGB from [11,13] and streamBoost from [14]1. For all the
algorithms, we choose as a relatively weak classifier a neural network with one
hidden layer and two units that we update in an online learning fashion using
stochastic gradient descent. We report the classification error obtained for each
algorithm in Table 2.

ONLB achieves competitive results with the state of the art online boosting
methods and even outperforms them on most datasets. In some cases, such as for
MNIST or Poker, we clearly see that, while using much more weak learners (see
Fig. 2), the other methods were not able to capture the target concept as much
as ONLB did. Note that, a mandatory condition in our experiments was T > 1
such that the boosting takes part in the learning process but in some cases, the
online boosting algorithms were not able to do better than the baseline on the
test set. For example, on the Adult database, only ONLB and OGB achieved an
average error lower than the base learner.

In Table 3, we present the average number of weak learners chosen with
respect to the progressive validation process for each model. While being an
online linear boosting algorithm, online.BBM achieves its performances with a
significantly smaller number of weak learners compared to the other linear boost-
ing methods. As mentioned in [11], this algorithm is optimal in the sense that no
online linear boosting algorithm can achieve the same error rate with fewer weak
learners or examples asymptotically. That being said, ONLB algorithm achieves,
on average, better performances with more than twice less weak learners than
online.BBM.

Finally, in Fig. 2, we plot the convergence curves with respect to the increas-
ing number of examples used for two datasets: MNIST and Abalone. For all
algorithms, each curve corresponds to the evolution of the error rate accord-
ing to the progressive validation error measured during training. We observe
that ONLB still achieves the best convergence rate for both datasets. A similar
behavior has been observed for the other datasets and exhibits the nice fast con-
vergence property of our algorithm which needs less weak learners to converge
to its optimum.

4.2 Analysis of the Learned Multi-latent Representations

In this section, we present two different qualitative analyses on the latent repre-
sentations learned by our algorithm. First, we show that given a sufficiently large
number of weak base learners, the representations obtained tend to be rather
uncorrelated. This provides an evidence that ONLB can generate some diversity.
Then, we show that these representations contribute in a comparable way to the
final decision. For our study, we use the following setup. We consider a model
with 100 representations (i.e. P = 100). We use two base learners: a relatively
weak neural network with one hidden layer composed of 2 units (2-NN) and a

1 We used the implementations available in Vowpal Wabbit and re-implemented the
streamBoost and OGB algorithms.

ONLB in Multi-latent Spaces 107

Table 2. Error rate reported for different online boosting algorithms.

Dataset Base learner ONLB online.BBM Adaboost.OL Adaboost.OL.W OGB StreamBoost

Covtype 0.2401 0.2057 0.2242 0.2273 0.2313 0.2264 0.2128

Poker 0.4182 0.0497 0.2375 0.1234 0.0953 0.3880 0.2668

MNIST 0.1105 0.0561 0.1029 0.1557 0.0830 0.1139 0.0655

Abalone 0.2673 0.2523 0.2831 0.2487 0.2531 0.2669 0.2720

Pima 0.2992 0.2795 0.2913 0.2952 0.2835 0.2874 0.2953

Adult 0.1523 0.1465 0.1530 0.1530 0.1526 0.1476 0.1586

HIV 0.1986 0.1393 0.1273 0.1360 0.1291 0.1540 0.1526

Shuttle 0.0211 0.0024 0.0173 0.0061 0.0058 0.0133 0.0050

w8a 0.0189 0.0148 0.0158 0.0146 0.0167 0.0178 0.0155

Wine 0.1979 0.1687 0.1921 0.1931 0.1931 0.1743 0.1833

Table 3. Average number of weak learners (N) selected by progressive validation.

Dataset ONLB online.BBM Adaboost.OL Adaboost.OL.W OGB StreamBoost

Covtype 6 60 79 59 282 63

Poker 52 222 348 311 320 285

MNIST 14 66 147 207 431 131

Abalone 5 6 12 3 166 8

Pima 65 64 109 141 437 174

Adult 13 6 18 17 161 119

HIV 6 6 94 188 32 16

Shuttle 30 43 243 108 121 159

w8a 4 7 54 42 132 40

Wine 5 8 112 91 97 118

Average 20 49 121 116 218 111

Fig. 2. Progressive validation error with respect to the learning examples for MNIST
on the left and Abalone on the right.

108 J. Frery et al.

stronger learner consisting of a neural network with 500 units in its unique hid-
den layer (500-NN). All representation weights are initialized following a uniform
distribution such that the different representations are highly uncorrelated. We
consider one training file of a fold of the MNIST dataset used above for learning.

Our first analysis aims at showing that the learned representations tend to be
uncorrelated when using a weak learner. For this purpose, we compute a corre-
lation matrix C between all the representations such that Cnm = covnm√

covnn∗covmm

measures the correlation between the latent representations n and m, cov is
the covariance matrix computed with respect to the input weights {αm

i }N
i=1 and

{αn
i }N

i=1 of these representations. We show, in Fig. 3, the C matrix for the latent
space representations obtained after convergence with the 2-NN base learners.
We can see that most of the representations tend to be uncorrelated or weakly
correlated. In contrast, Fig. 4 presents the C matrix using the 500-NN base
learners. We see here that most of the representations are highly correlated.
This experiment shows that by using sufficiently weak base learners, we are able
to learn diverse and uncorrelated representations.

In our second analysis, we want to confirm that the uncorrelated latent rep-
resentations are informative enough to contribute in a comparable way to the
final strong model. We propose to compute, for each representation p, a relative
importance coefficient Ωp by taking the absolute values of the predictions of
p right before they are merged together with the other representation outputs
to form the final prediction. We average this coefficient over {xt}K

t=1 examples
taken from a validation set independent from the learning sample as follows:

Ωp =
1
K

K∑

t=1

|αpLp

(N∑

i=1

αp
i hi(xt)

)|. (7)

We expect for important representations a high Ωp (i.e. having a high impact
in the final decision) and a low Ωp for irrelevant ones (i.e. having low impact in
the final decision).

We consider then the models learned with the 2-NN and 500-NN base learners
as previously. For each model, we plot the importance coefficient Ωp (y-axis)
against the average correlation of each representation (x-axis) that we define as
Ĉp = 1

P

∑P
i=1 Cpi. This illustrates the importance of each representation in the

final decision with respect to their correlation level.
Figure 5 gives the plot for the model using the 2-NN base learners. We see

here that all the representations are involved in the final decision and that their
relative importance coefficients are rather comparable. This is in opposition to
the plot of Fig. 6 that provides the results for the model using the 500-NN base
learners. First, we see that many representations are not used in the final decision
and these correspond to the ones that are uncorrelated. In fact, representations
involved in the final decision are the ones that are all highly correlated with an
average correlation coefficient around 0.75. Clearly, since these representations
have a high correlation level, actually only one representation is really useful at
the end. But note that this representation can in fact be learned by a standard
linear gradient boosting.

ONLB in Multi-latent Spaces 109

From this experiment, we see that complex models are hard to diversify in
online boosting. Moreover, tuning their hyperparameters is harder making the
probability of overfitting higher and they require a significant larger amount of
training time which makes such complex models useless for online boosting.

Fig. 3. Correlation matrix of the rep-
resentations with 2-NN learners.

Fig. 4. Correlation matrix of the rep-
resentations with the 500-NN learn-
ers.

Fig. 5. Importance of each latent rep-
resentation with the 2-NN learners.

Fig. 6. Importance of each latent rep-
resentation with the 500-NN learners.

5 Conclusion

In this paper, we presented a new Online Non-Linear Boosting algorithm. In this
method, we combine different representations of the same set of weak classifiers
to produce a non-linearly boosted model in order to learn the idiosyncrasies
of the target concept. Our experimental results showed a general improvement
over current state of the art online boosting methods. Additionally, the non-
linear architecture of the model allows the method to use less weak learners
and to obtain faster convergence in terms of examples. Our approach has also
the interesting property to produce efficiently diverse latent spaces contributing
actively to the model predictions. This property makes our model adaptive by
giving more importance to the best current representations.

110 J. Frery et al.

Perspectives of this work include adapting our method to the multi-class
setting, to study the impact of delayed feedback (i.e. labels arriving only after
some time delay) and to investigate possible adaptations for transfer learning
and continuous learning in the online setting.

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
2. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)
3. Gama, J., Brazdil, P.: Cascade generalization. Mach. Learn. 41(3), 315–343 (2000)
4. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning

and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)
5. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.

Stat. 1189–1232 (2001)
6. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: SIGKDD,

pp. 785–794. ACM (2016)
7. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:

NIPS (2017)
8. Oza, N.C.: Online bagging and boosting. In: 2005 IEEE International Conference

on Systems, Man and cybernetics, vol. 3, pp. 2340–2345. IEEE (2005)
9. Grabner, H., Bischof, H.: On-line boosting and vision. In: CVPR, vol. 1, pp. 260–

267. IEEE (2006)
10. Chen, S.T., Lin, H.T., Lu, C.J.: An online boosting algorithm with theoretical

justifications. In: ICML (2012)
11. Beygelzimer, A., Kale, S., Luo, H.: Optimal and adaptive algorithms for online

boosting. In: ICML (2015)
12. Jung, Y.H., Goetz, J., Tewari, A.: Online multiclass boosting. In: Advances in

Neural Information Processing Systems, pp. 920–929 (2017)
13. Beygelzimer, A., Hazan, E., Kale, S., Luo, H.: Online gradient boosting. In:

Advances in Neural Information Processing Systems, pp. 2458–2466 (2015)
14. Hu, H., Sun, W., Venkatraman, A., Hebert, M., Bagnell, J.A.: Gradient boosting

on stochastic data streams. In: AISTATS, pp. 595–603 (2017)
15. Garćıa-Pedrajas, N., Garćıa-Osorio, C., Fyfe, C.: Nonlinear boosting projections

for ensemble construction. J. Mach. Learn. Res. 8, 1–33 (2007)
16. Becker, C.J., Christoudias, C.M., Fua, P.: Non-linear domain adaptation with

boosting. In: Advances in Neural Information Processing Systems, pp. 485–493
(2013)

17. Chapelle, O., Shivaswamy, P., Vadrevu, S., Weinberger, K., Zhang, Y., Tseng, B.:
Boosted multi-task learning. Mach. Learn. 85(1–2), 149–173 (2011)

18. Scholz, M., Klinkenberg, R.: Boosting classifiers for drifting concepts. Intell. Data
Anal. 11(1), 3–28 (2007)

19. Han, S., Meng, Z., Khan, A.S., Tong, Y.: Incremental boosting convolutional neural
network for facial action unit recognition. In: NIPS, pp. 109–117 (2016)

20. Opitz, M., Waltner, G., Possegger, H., Bischof, H.: Bier-boosting independent
embeddings robustly. In: CVPR, pp. 5189–5198 (2017)

21. Leistner, C., Saffari, A., Roth, P., Bischof, H.: On robustness of on-line boosting -
a competitive study. In: 3rd ICCV Workshop on On-line Computer Vision (2009)

22. Gao, W., Jin, R., Zhu, S., Zhou, Z.H.: One-pass AUC optimization. In: Interna-
tional Conference on Machine Learning, pp. 906–914 (2013)

23. Blum, A., Kalai, A., Langford, J.: Beating the hold-out: bounds for k-fold and
progressive cross-validation. In: COLT, pp. 203–208. ACM (1999)

MDP-based Itinerary Recommendation
using Geo-Tagged Social Media

Radhika Gaonkar1, Maryam Tavakol2(B), and Ulf Brefeld2

1 Stony Brook University, Stony Brook, NY, USA
rgaonkar@cs.stonybrook.edu

2 Leuphana Universität Lüneburg, Lüneburg, Germany
{tavakol,brefeld}@leuphana.de

Abstract. Planning vacations is a complex decision problem. Many
variables like the place(s) to visit, how many days to stay, the dura-
tion at each location, and the overall travel budget need to be controlled
and arranged by the user. Automatically recommending travel itineraries
would thus be a remedy to quickly converge to an individual trip that is
tailored to a user’s interests. While on a trip, users frequently share their
experiences on social media platforms e.g., by uploading photos of spe-
cific locations and times of day. Their uploaded data serves as an asset
when it comes to gathering information on their journey. In this paper,
we leverage social media, more explicitly photo uploads and their tags, to
reverse engineer historic user itineraries. Our solution grounds on Markov
decision processes that capture the sequential nature of itineraries. The
tags attached to the photos provide the factors to generate possible con-
figurations and prove crucial for contextualising the proposed approach.
Empirically, we observe that the predicted itineraries are more accurate
than standard path planning algorithms.

Keywords: Itinerary recommendation · MDP · Personalisation

1 Introduction

The Web has become an effective resource for travelers. In addition to an increas-
ing number of travel blogs, verticals providing reviews and recommendations of
places, restaurants and hotels, prove useful tools for planning trips and night
outs. However, common resources do not exhaustively cover a wide range of
aspects but often focus on narrow scopes to maintain a clear segregation to
other content providers. Users who seek different types of information thus need
to query various sites and aggregate the pieces of information themselves, which
requires significant amount of time and effort.

At the same time, the rise of digital photography through widespread use
of mobile devices and digital cameras has resulted in a great deal of photos
being shared on the Web. Uploaded photos are mostly tagged by users with
information snippets and key words to share the location, emotion, people, etc.
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 111–123, 2018.
https://doi.org/10.1007/978-3-030-01768-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_10&domain=pdf

112 R. Gaonkar et al.

with others. A remarkable way of understanding itineraries is to study the photo
streams of tourists in touristic zones.

In this paper, we showcase how freely available user-tagged information on
the Web can be aggregated to recover trajectories of tourists in cities. Our anal-
ysis is based on the online photo streams of users that reflect (a possibly incom-
plete) sequence of visited locations during a trip, and we assume those sequences
indicate overall trip satisfaction of users. We thus turn photo-sharing sites into
useful resources to reconstruct a user’s trips. We use Flickr1 as our main source
to acquire such photo streams. Flickr proves useful to generate candidate lists
of Points of Interest (POIs) for any city. Moreover, many photos already come
with geographic, temporal, and/or semantic annotations. Photos annotated with
geo-coordinates can be accurately placed on a map and if the user also provided
semantic tags, the content can be indexed and further processed by Natural
Language Processing techniques.

A touristic trip is considered a sequential problem. At each stage of travel,
a user chooses her next destination from a list of touristic points in the city.
Additionally, the data provides implicit feedback on the user’s preference of a
touristic site by the photographs she uploads on Flickr. This partial labeling of
the data fits well to the problem setting of Reinforcement Learning (RL)-based
approaches where the uncertainty of taking different actions and the resulting
transitions is minimised by trading off exploration and exploitation [20]. We
thus reconstruct sequences of POI visits using reverse engineering of historic
user itineraries.

In our proposed approach 2, we take into account both the sequential nature
of POI visits and the user’s overall satisfaction. We learn a model of the traveler
behavior as a Markov Decision Process (MDP) and extend it to make person-
alised travel recommendations. The system learns the optimal recommendation
policy by observing the consequences of visiting different places by the travelers
in the city and the traveler’s personal preferences. Using the MDP, the user is
recommended a place corresponding to the place category, which is nearest to
her, both in distance and personal taste, and receives an immediate reward for
taking that action. We empirically compare our approach to various path plan-
ning algorithms on data from three European touristic cities - Munich, Paris
and London.

2 Related Work

Many systems have been developed to extract user-generated multimedia con-
tent and infer meaningful information for travel planning. Crandall et al. [4] is
one of the earlier works in exploring the association of Flickr photos to physical
locations, and apply their techniques to extract landmarks at various granular-
ity levels that correspond to a geo-spatial hierarchy. Cao et al. [3] introduce a
method that uses both logistic regression and kernel canonical correlation to
1 www.flickr.com.
2 https://github.com/RGaonkar/MDP-based-Itinerary-Recommendation.

www.flickr.com
https://github.com/RGaonkar/MDP-based-Itinerary-Recommendation

MDP-based Itinerary Recommendation using Geo-Tagged Social Media 113

enrich semantic information and location information based on image content.
The tags assigned to Flickr photographs are further employed to extract place
names, coordinates, and categories as well as popularity values [15,18]. Baba
et al. [2] use co-occurrences between textual tags and geolocations to represent
places related to a tag by probability distributions.

The growing surge of travel data on social media platforms has resulted in
many recent works on touristic place recommendations. Jiang et al. [7] enhance
collaborative filtering recommendations with author topic models that consider
different types of user preferences to exploit textual metadata associated with
geo-tagged pictures on Flickr. Zhang et al. [24] present an extension of the col-
laborative retrieval model (CRM) for POI recommendation, taking temporal
information and social relations into account. Rakesh et al. [17] use Foursquare
data to build a probabilistic generative framework that recommends tours based
on user’s preference, peer circle, travel transitions and popularity of venues.
Lim [10] and Quercia et al. [16] also restrict their work to the geo-tagged points
on Flickr to find shortest routes with the highest satisfaction.

While all these models capture many different aspects of tourist movement,
they fail to address sequentiality in travel itineraries. Shani et al. [20] and Tavakol
and Brefeld [22] propose sequential approaches to recommender systems using
MDPs [21]. Accordingly, probabilistic sequential approaches are used in recom-
mending the next POI either based on location services [14,19], or social net-
works [6]. In WhereNext [12] a T-pattern decision tree is designed to classify the
trajectory patterns, and Muntean et al. [13] rank POIs using Gradient Boosted
Regression Trees and Ranking SVM. Ashbrook et al. [1] apply a Markov model
to GPS data in an attempt to model travel behavior. Kurashima et al. [8] com-
bines user preference and current location into a probabilistic behavior model by
combining topic and Markov models. Zhang et al. [23] goes one step further to
prune the search space and recommend sequential POIs considering their time
constraints. In this paper, we propose a recommendation approach which addi-
tionally encodes the history of visited POIs into the Markov model in order to
better understand the sequential patterns.

3 Data Extraction and Analysis

In order to automate the acquisition of tourist information, we make use of geo-
temporal data from Flickr. The advent of digital photography and its continually
increasing features of spatially and temporally annotated images in real time,
has enriched photographs with useful metadata. This results in augmenting the
photographs with geographical coordinates specifying the location of the picture,
as well as its date and time. Flickr consists of over 5 billion photographs, and
many of them are time stamped. In addition, photos are annotated with seman-
tic data such as tags and titles associated with them. A small fraction of the
photographs are annotated with geographical coordinates. Our system focuses
on extracting and discovering a large number of trips from Flickr metadata and
using these to deduce novel methods of itinerary recommendation.

114 R. Gaonkar et al.

3.1 Data Acquisition

Using the public API of Flickr, we collect 44051, 22970, 42104 photographs
of three popular cities, Munich, London and Paris, along with their metadata.
However, a significant portion of the photographs are without geo-coordinates.
Restricting ourselves to only the geo-referenced pictures would significantly
decrease the coverage of our approach. Therefore, we utilise the metadata asso-
ciated with photographs to infer their locations. Nonetheless, working with such
open data poses several key challenges. Most of the photographs have linguis-
tically noisy tags or tags with no location information. For instance, the tags
might only include the details of photography techniques, weather, city name, or
contains semantic ambiguities. Hence, inferring POI names requires using both,
the location coordinates and the information gleaned from the textual tags. We
propose approaches for data pre-processing which result in a significant increase
in the performance of our system.

3.2 From Coordinates to Places of Interest

In order to maintain a high quality mapping from geo-coordinates of photo to
place names, we query the free version of Google Places API and obtain a list
of POIs in each city. This is with the assumption that many touristic points are
already available on Google Maps. We furthermore collect the textual tags of
multiple photographs having the same location coordinates in the Flickr dataset.
The tags are then cleaned, of stopwords, city names and Flickr specific stopwords
such as camera and weather details. The place name and place category (e.g.,
museum, church, etc.) of the location coordinate is obtained by calling the API
with latitude, longitude, ranking criteria and search radius around the location
coordinates. To get the best place name candidate from the returned list, a fuzzy
string match using Levenshtein distance [9] is used and the place with the high-
est fuzzy matching similarity with the textual tags of the location coordinates
is assigned to that location. Despite these techniques, a small fraction of the
coordinates never get a place name from the Google Places API. We thus assign
their place name manually using the Google Maps interface.

3.3 Location Mapping with Tags

The user provided textual tags often contain event and geospatial information
which could be used for inferring the location of non-geotagged data. Since users
may define arbitrary tags, finding the relevant ones is not trivial. In addition,
there is no sequential structure that could be exploited to support possibly con-
tained geographical information using the concept of named-entity recognition
or relation extraction in the text. We exploit the co-occurrence statistics of words
in low dimensional vector space by using the Latent Semantic Analysis (LSA)
[5] similarity between tags of a target non-geotagged photograph and each of the
geo-tagged photographs. The LSA model is learned on the geo-tagged (location

MDP-based Itinerary Recommendation using Geo-Tagged Social Media 115

tags) co-occurrence matrix. Using this, each new tag of a non-geotagged photo-
graph is assigned a location from the highest similarity score, provided it is above
a certain similarity threshold. The data points without a place information in
the tags are dropped for further analysis.

3.4 Itinerary Inference

After obtaining the POI names, we use the Flickr data to emulate tourist behav-
ior. The first step is to remove all travel points falling outside the bounding box
of a city. Our model aims to recommend only single-day itineraries. Therefore,
the sequences of photographs for more than one day are split by their datetime
into single day sequences. Additionally, it is important to differentiate between
the resident and tourist in a city by checking the number of POIs covered by
her. A resident would exhibit travel movements slower than a tourist. There-
fore, we discard travel paths consisting of less than 3 unique POIs. Lastly, some
photographers on Flickr add photographs with invalid datetime value or incor-
rect format. This hampers our modeling of the recommender system and is ergo
removed. As a result, a total of 17904, 6000 and 9032 photographs are left for
Munich, London and Paris, respectively.

4 MDP-based POI Recommendation

4.1 Preliminaries

The photos are uploaded by a set of users U in different cities. Each city c
contains nc POIs where Lc = {l1, l2, l3, ..., lnc

} represents the set of POIs for
that city. The photos are characterised by a set of attributes containing the
timestamp of capture, the latitude and longitude of photo location, the title, the
textual tag and description attached to the picture. Furthermore, the category
vector catl ∈ R

m for each POI l indicates which categories are assigned to the
place, i.e., for a certain category a, catl(a) = 1 if l belongs to category a, and is
zero otherwise. Our goal is to recommend an itinerary I = (l1, l2, ..., lk) for each
user that tries to maximise her overall trip satisfaction.

An MDP is defined by a four tuple: (S,A,R, T), where S is the set of states,
A is the set of actions, R(s, a) : S ×A → R is the reward function that assigns a
real value to each (state, action) pair, and T (s, a, s′) : S × A × S → [0, 1] is the
state-transition function, which provides the probability of a transition between
every pair of states given an action from the available set. The goal of an MDP
is to obtain the optimal policy, π∗ : S → A, that gives the best action for every
state in order to maximise the sum of discounted reward.

In our problem, the states represent the history of user travels. State st is
given by the sequence of at most k places the user has visited up to time t,
st = (l1, ..., lk). The actions are all POI categories present in the city where
the user is visiting. Transition probability function models the probability of
going to another place given the current location and the recommended place

116 R. Gaonkar et al.

category. Each state that the user enters on taking a particular action, she gets
an immediate reward from the reward function. A higher reward is awarded
when the transition is present in the sequence of places in the training set.

4.2 The Predictive Model

We begin with a simple Markov chain model to estimate the state-transition
function. The transition function gives the probability of going to the next place
lk+1, for a user whose k recent POI visits are (l1, ..., lk). A maximum-likelihood
method is used to estimate this transition function based on the user travel data

N(s, s′) =
count(s′)
count(s)

, (1)

where s and s′ are (l1, l2, ..., lk) and (l1, l2, ...lk+1), respectively. The count func-
tion gives the frequency of occurrences. We expand this model to an MDP frame-
work which gives the probability of visiting a new POI lk+1 after choosing some
action a, where catlk+1(a) = 1. The visit to this new POI depends on the place
category recommended to the user at the current POI. The non-zero transitions
occur when (s, s′) occurs in the dataset and a is a place category of s′. For each
set of {s, a, s′} transition probability is defined as

T (s, a, s′) =
N(s, s′)

∑
s′′∈S′ N(s, s′′)

,
∑

s′∈S′
T (s, a, s′) = 1, (2)

where S′ signifies the set of states that can be reached from s when action a
is taken. The reward after taking action a in state s is given by the reward
function R(s, a), which is simply inferred by the number of occurrence of state-
action sequences in the training data.

R(s, a) =
count(s, a)
count(s)

. (3)

4.3 Optimisation

The resulting MDP can be optimised using reinforcement learning methods such
as value iteration. Value iteration learns the state-value function, V (s), and
converges to an optimal policy in a discounted finite MDP [21]. The policy is
defined as the category recommendation for the traveller. An optimal policy π∗

gives the highest expected utility through the traveller’s movements. The utility
of a state V (s) is defined as the expected sum of discounted rewards that the
agent obtains by starting from state s and following policy π. The standard
update rule of value iteration with discount factor γ is given by:

V (s) = maxa∈A(s)[R(s, a) + γ ×
∑

s′
T (s, a, s′)V (s′)]. (4)

MDP-based Itinerary Recommendation using Geo-Tagged Social Media 117

When the value function V (s) converges to an optimal value function V ∗(s), the
state-action values Q(s, a) is derived

Q(s, a) = R(s, a) + γ
∑

s′
T (s, a, s′)V ∗(s′). (5)

The Q-values are proportional to the probability that the user visits a POI of
place category a, given the sequence of visited POIs in s. Hence, a high Q(s, a)
indicates a higher likelihood of observing the transition from s with action a.

4.4 Multi-step Place Recommendations

We use the softmax function to approximate a probability distribution over the
place categories from the Q-values

P (A = a|s) =
exp{Q(s, a)}

∑
a′ exp{Q(s, a′)} . (6)

The action with the highest probability a∗ = arg maxa P (A = a|s), is recom-
mended at each state. However, the system must consider various places associ-
ated with this category to recommend a specific place. We include the distance
factor of POIs to predict the next place. Considering all places corresponding to
the optimal policy, the recommended place lrec is the place closest in distance to
the current state. Since each state consists of a sequence of places (l1, l2, ..., lk),
the distance from the last place lk is considered. The recommendation score is
calculated by the Euclidean distance between the last place lk and the places in
Lc corresponding to the place category of the optimal action.

lrec = arg min
lx∈Lc

catlx (a
∗)=1

dist(lk, lx), (7)

4.5 Online Personalisation

In order to personalise the recommendation model, we apply two techniques for
inferring user preferences from her travel history; duration based user interests
as introduced in [11] and frequency based user interests.

Duration Based User Preference. Each location lx in the user travel history
contains an arrival time talx and departure time tdlx . The duration-based user
preference ρduru (a), for user u ∈ U and category a, is given by the fraction of
time she spent at each of the POIs from category a in her travel history,

ρduru (a) =
∑

lx∈Lu

catlx (a)=1

(tdlx − talx), (8)

where Lu contains all the locations visited by user u. These preferences are then
normalised to [0, 1] for each user. The more time a user spends at a POI of a
place category, the more likely it is that the user is interested in that category.

118 R. Gaonkar et al.

Frequency Based User Preference. In this method, the user preferences are
inferred from the number of times a user visited POIs of a certain category
[11]

ρfrqu (a) =
∑

lx∈Lu

catlx (a)=1

count(lx),

Table 1. Variation of partial path accuracy@7 with user history

Path Length 1 2 3 4 5 6

History 1 0.041 0.041 0.042 0.042 0.041 0.034

History 2 0.098 0.090 0.096 0.106 0.100 0.103

History 3 0.097 0.090 0.093 0.105 0.090 0.087

History 4 0.089 0.084 0.083 0.094 0.077 0.060

History 5 0.074 0.071 0.058 0.072 0.070 0.058

which is also normalised for each user.
The preference values obtained from either of techniques, form a preference

vector for each user, e.g., ρu = {a1 : 0.6, a2 : 0.01, · · · , am : 0.3}. We incorporate
the individual preferences into our model at the time of recommending places
for the optimal category a∗. We assign a score to each place proportional to the
weighted sum of distance and the preference associated with its other categories,

lrec = arg max
lx∈Lc

catlx (a
∗)=1

(

(1 − α) × 1
dist(lk, lx)

+ α × (ρu · catlx)

)

,

where α is the personalisation coefficient. A place is recommended which is closer
in distance and belongs to the categories that are preferred by the user.

5 Empirical Study

In this section, we first analyse the path accuracy of our recommended path
by varying the amount of user history encoded in each state. On obtaining the
optimal length of user history, we further compare the performance across three
cities against several baselines. Moreover, we compute accuracy@k when the
recommended places are among the top-k closets places to the current POI. All
the experiments are conducted first without the effects of user preference and
then when user preferences are included.

We use a time-series leave-one-out cross-validation for tuning the parameters
of our model. For the users with multi-day itineraries, we use the last day’s
travel sequence as the test set and the remaining as training set. For users that
have only traveled on one day, the travel sequence is split into 60%-20%-20% of

MDP-based Itinerary Recommendation using Geo-Tagged Social Media 119

POIs into training, validation, and test sets. For evaluation, paths of length z are
obtained from the test set, where z ∈ {1, 2, 3, 4, 5, 6}. A path of length 1 would
contain two place locations (l1, l2) and so on. The performance criteria evaluate
how many of the recommended places are present in the test paths. The exact
match accuracy of total n paths from test set is given by

Accexact =
1
n

pathn∑

x=path1

length(x)∑

z=1

h(z)
length(x)

, (9)

Fig. 1. Variation in partial path accu-
racy with k in accuracy@k

Fig. 2. Partial path accuracy for person-
alisation techniques

where h(z) = 1 if subpath of size z from path x is predicted correctly from the
model, and is zero otherwise. The overall accuracy is given by averaging the
accuracy of all the n paths. Additionally, we compute the partial path accuracy
which assigns a score of 100% if at least one subpath of test path matches the
recommended pair

Accpartial =
1

n

pathn∑

x=path1

length(x)∑

z=1

ψ(h(z))

length(x)
, ψ(h(z)) =

{
length(x), ∃z h(z) ≥ 1

0, otherwise

5.1 Baseline Comparison

We compare our approach with standard graph search algorithms as baselines
and the non-personalised MDP policy. We start from the simplest, Breadth First
Search (BFS) and evaluate more sophisticated algorithms of Dijkstra, Heuris-
tic Search and A∗. For Dijkstra and A∗, the edge cost is given by the distance
between the locations. For each of the baseline algorithms, we look for paths
starting from lstart corresponding to the starting POI in the test set and itera-
tively choose a next POI to visit, till the last POI lend in the itinerary is found.
The heuristic used in A∗ and heuristic search is the Manhattan Distance between
the current place node and the goal node.

120 R. Gaonkar et al.

5.2 Results and Discussion

We first study the impact of path history on the prediction accuracy. Note that
history length is the number of visited POIs encoded in the state, while path
length is the number of next consecutive POIs to recommend. Path length of one
hence stands for step-by-step recommendation. Table 1 captures the relation of
path history to the performance of the system. There is a jump in performance
as we change the path history from 1 to 2. Nonetheless, the performance shows
very less improvement as the path history is increased up to length 5. This is
primarily due to the fact that many of the travel sequences do not cover places
more than three on a single day. Moreover, we observe that, as the path history
increases, the number of successors in the transition decreases.

(a) Munich (b) Paris (c) London

Fig. 3. Personalised Recommendation vs Baselines (Partial path accuracy)

In addition, we demonstrate the increase in performance by recommending
the k closest places in Fig. 1. All these places correspond to the optimal place
category obtained through value iteration. Thus, the more flexible a traveler is to
multiple recommendation options at her current POI, the higher the likelihood
to recommend the best possible place entailing her travel preferences. We also
compare the performance of the two personalisation techniques, i.e., duration-
and frequency-based user interest as shown in Fig. 2. The former consistently
outperforms its counterpart and proves more accurate w.r.t. real-life tours of
users, compared to the frequency-based personalisation. Additionally, the per-
sonalisation factor α can be varied to balance the distance from the current state
and the user personal interest. A value of α = 0.35 gave the highest partial path
accuracy during cross validation.

Furthermore, Figs. 3 and 4 show the performance compare to baselines in
terms of partial and exact accuracy, respectively. M1 denotes the personalised
itinerary recommender system and M2 its non-personalised counterpart. Partial
path accuracy@7 is used as evaluation measure. There is an average improve-
ment of 10.5% of M1 over the path planning baselines, across the three cities.
The effects of personalisation in M1 over the non-personalised recommendations
in M2 is still not very significant in our experiments. However, there is a slight

MDP-based Itinerary Recommendation using Geo-Tagged Social Media 121

improvement for the shorter tour recommendations in Paris. Note that the over-
all low accuracy is due to the limited quality data, sparsity of transitions, and
minimal manual intervention in data processing. Nevertheless, the computation-
ally inexpensive MDP-based personalised recommender system outperforms the
robust path planning algorithms and serves as a promising technique for mod-
eling user behavior for travel recommendation.

6 Conclusion

We presented an MDP-based itinerary recommendation approach which took the
sequential travel histories and preferences of users into account. Our system used
both photo-sharing sites (Flickr) as well as the large abundance of geographical
information on web-mapping services to extract supplementary knowledge. As
opposed to many existing systems proposed earlier, our model was not restricted
to the geo-tagged pictures on Flickr but tracked tourist movements from the
time-stamps extracted from data; recommended travel plans emulated the trip
plan of tourists. The empirical study showed that our proposed approach out-
performs standard path planning algorithms.

(a) Munich (b) Paris (c) London

Fig. 4. Personalised Recommendation vs Baselines (Exact path accuracy)

References

1. Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict
movement across multiple users. Pers. Ubiquitous Comput. 7(5), 275–286 (2003)

2. Baba, Y., Ishikawa, F., Honiden, S.: Extraction of places related to flickr tags. In:
Proceeding of the 2010 conference on ECAI 2010: 19th European Conference on
Artificial Intelligence, pp. 523–528. IOS Press (2010)

3. Cao, L., Yu, J., Luo, J., Huang, T.S.: Enhancing semantic and geographic anno-
tation of web images via logistic canonical correlation regression. In: Proceedings
of the 17th ACM International Conference on Multimedia, pp. 125–134. MM ’09,
ACM, New York, NY, USA (2009)

122 R. Gaonkar et al.

4. Crandall, D.J., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the
world’s photos. In: Proceedings of the 18th International Conference on World
Wide Web, pp. 761–770. WWW ’09, ACM, New York, NY, USA (2009)

5. Dumais, S.T.: Latent semantic analysis. Annu. Rev. Inf. Sci. Technol. 38(1), 188–
230 (2004)

6. Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y.M., Yuan, Q.: Personalized ranking
metric embedding for next new poi recommendation. In: IJCAI, pp. 2069–2075
(2015)

7. Jiang, S., Qian, X., Shen, J., Fu, Y., Mei, T.: Author topic model-based collabora-
tive filtering for personalized poi recommendations. IEEE Trans. Multimed. 17(6),
907–918 (2015)

8. Kurashima, T., Iwata, T., Irie, G., Fujimura, K.: Travel route recommendation
using geotags in photo sharing sites. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, pp. 579–588. CIKM ’10,
ACM, New York, NY, USA (2010)

9. Levenshtein, V.: Binary codes capable of correcting spurious insertions and dele-
tions of ones. Probl. Inf. Transm. 1(1), 8–17 (1965)

10. Lim, K.H.: Recommending and planning trip itineraries for individual travellers
and groups of tourists. In: The 26th International Conference on Automated Plan-
ning and Scheduling,p. 115 (2016)

11. Lim, K.H., Chan, J., Leckie, C., Karunasekera, S.: Personalized tour recommenda-
tion based on user interests and points of interest visit durations. In: IJCAI, pp.
1778–1784 (2015)

12. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: WhereNext: a location pre-
dictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 637–646.
ACM (2009)

13. Muntean, C.I., Nardini, F.M., Silvestri, F., Baraglia, R.: On learning prediction
models for tourists paths. ACM Trans. Intell. Syst. Technol. (TIST) 7(1), 8 (2015)

14. Noulas, A., Scellato, S., Lathia, N., Mascolo, C.: Mining user mobility features for
next place prediction in location-based services. In: 2012 IEEE 12th international
conference on Data mining (ICDM), pp. 1038–1043. IEEE (2012)

15. Popescu, A., Grefenstette, G., Moëllic, P.: Gazetiki: automatic construction of a
geographical gazetteer. In: Proceedings of JCDL (2008)

16. Quercia, D., Schifanella, R., Aiello, L.M.: The shortest path to happiness: recom-
mending beautiful, quiet, and happy routes in the city. In: Proceedings of the 25th
ACM conference on Hypertext and Social Media, pp. 116–125. ACM (2014)

17. Rakesh, V., Jadhav, N., Kotov, A., Reddy, C.K.: Probabilistic social sequential
model for tour recommendation. In: Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, pp. 631–640. WSDM ’17, ACM, New
York, NY, USA (2017)

18. Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and
place semantics from Flickr tags. In: Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 103–110. ACM (2007)

19. Sang, J., Mei, T., Sun, J.T., Xu, C., Li, S.: Probabilistic sequential POIs recom-
mendation via check-in data. In: Proceedings of the 20th International Conference
on Advances in Geographic Information Systems, pp. 402–405. ACM (2012)

20. Shani, G., Brafman, R.I., Heckerman, D.: An MDP-based recommender system. In:
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence,
pp. 453–460. Morgan Kaufmann Publishers Inc. (2002)

MDP-based Itinerary Recommendation using Geo-Tagged Social Media 123

21. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. MIT
Press, Cambridge (1998)

22. Tavakol, M., Brefeld, U.: Factored MDPs for detecting topics of user sessions. In:
Proceedings of the 8th ACM Conference on Recommender Systems, pp. 33–40.
ACM (2014)

23. Zhang, C., Liang, H., Wang, K., Sun, J.: Personalized trip recommendation with
poi availability and uncertain traveling time. In: Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, pp. 911–
920. ACM (2015)

24. Zhang, W., Wang, J.: Location and time aware social collaborative retrieval for
new successive point-of-interest recommendation. In: Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, pp.
1221–1230. ACM (2015)

Multiview Learning of Weighted Majority
Vote by Bregman Divergence

Minimization

Anil Goyal1,2(B), Emilie Morvant1, and Massih-Reza Amini2

1 Laboratoire Hubert Curien UMR 5516, Université de Lyon, UJM-St-Etienne,
CNRS, Institut d’Optique Graduate School, 42023 St-Etienne, France

anil.goyal@univ-st-etienne.fr
2 Laboratoire d’Informatique de Grenoble, AMA, Université Grenoble Alps, 38058

Grenoble, France

Abstract. We tackle the issue of classifier combinations when obser-
vations have multiple views. Our method jointly learns view-specific
weighted majority vote classifiers (i.e. for each view) over a set of base
voters, and a second weighted majority vote classifier over the set of
these view-specific weighted majority vote classifiers. We show that the
empirical risk minimization of the final majority vote given a multiview
training set can be cast as the minimization of Bregman divergences.
This allows us to derive a parallel-update optimization algorithm for
learning our multiview model. We empirically study our algorithm with
a particular focus on the impact of the training set size on the multi-
view learning results. The experiments show that our approach is able
to overcome the lack of labeled information.

Keywords: Multiview learning · Bregman divergence · Majority vote

1 Introduction

In many real-life applications, observations are produced by more than one source
and are so-called multiview [22]. For example, in multilingual regions of the
world, including many regions of Europe or in Canada, documents are available
in more than one language. The aim of multiview learning is to use this multi-
modal information by combining the predictions of each classifier (or the models
themselves) operating over each view (called view-specific classifier) in order to
improve the overall performance beyond that of predictors trained on each view
separately, or by combining directly the views [21].
Related works. The main idea here follows the conclusion of the seminal work
of Blum and Mitchell [3] which states that correlated yet not completely redun-
dant views contain valuable information for learning. Based on this idea, many
studies on multiview learning have been conducted and they can be grouped
in three main categories. These approaches exploit the redundancy in different

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 124–136, 2018.
https://doi.org/10.1007/978-3-030-01768-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_11&domain=pdf

Multiview Learning of Weighted Majority Vote by Bregman 125

representations of data, either by projecting the view-specific representations
in a common canonical space [10,25,29], or by constraining the classifiers to
have similar outputs on the same observations; for example by adding a dis-
agreement term in their objective functions [20], or lastly by exploiting diversity
in the views in order to learn the final classifier defined as the majority vote
over the set of view-specific classifiers [17,18,24]. While the two first families of
approaches were designed for learning with labeled and unlabeled training data,
the last one, were developed in the context of supervised learning. In this line,
most of the supervised multiview learning algorithms dealt with the particular
case of two view learning [9,12,28], and some recent works studied the general
case of multiview learning with more than two views under the majority vote set-
ting. Amini et al. [1] derived a generalization error bound for classifiers learned
on multiview examples and identified situations where it is more interesting to
use all views to learn a uniformly weighted majority vote classifier instead of
single view learning. Koço et al. [13] proposed a Boosting-based strategy that
maintains a different distribution of examples with respect to each view. For
a given view, the corresponding distribution is updated based on view-specific
weak classifiers from that view and all the other views with the idea of using all
the view-specific distributions to weight hard examples for the next iteration.
Peng et al. [17,18] enhanced this idea by maintaining a single weight distribu-
tion among the multiple views in order to ensure consistency between them.
Xiao et al. [24] proposed a multiview learning algorithm where they boost the
performance of view-specific classifiers by combining multiview learning with
Adaboost.
Contribution. In this work, we propose a multiview Boosting-based algorithm,
called MωMvC2, for the general case where observations are described by more
than two views. Our algorithm combines previously learned view-specific classi-
fiers as in [1] but with the difference that it jointly learns two sets of weights for,
first, combining view-specific weak classifiers; and then combining the obtained
view-specific weighted majority vote classifiers to get a final weighted majority
vote classifier. We show that the minimization of the classification error over
a multiview training set can be cast as the minimization of Bregman diver-
gences allowing the development of an efficient parallel update scheme to learn
the weights. Using a large publicly available corpus of multilingual documents
extracted from the Reuters RCV1 and RCV2 corpora as well as MNIST1 and
MNIST2 collections, we show that our approach consistently improves over other
methods, in the particular when there are only few training examples available
for learning. This is a particularly interesting setting when resources are limited,
and corresponds, for example, to the common situation of multilingual data.
Organization of the paper. In the next section, we present the double
weighted majority vote classifier for multiview learning. Section 3 shows that
the learning problem is equivalent to a Bregman-divergence minimization and
describes the Boosting-based algorithm we developed to learn the classifier. In
Sect. 4, we present experimental results obtained with our approach. Finally, in

126 A. Goyal et al.

Sect. 5 we discuss the outcomes of this study and give some pointers to further
research.

2 Notations and Setting

For any positive integer N , [N] denotes the set [N] .={1, . . . , N}. We consider
binary classification problems with V ≥2 input spaces Xv ⊂ R

dv ;∀v ∈ [V], and
an output space Y={−1,+1}. Each multiview observation x ∈ X1× · · · ×XV

is a sequence x .=(x1, · · · , xV) where each view xv provides a representation of
the same observation in a different vector space Xv (each vector space are not
necessarily of the same dimension). We further assume that we have a finite set
of weak classifiers Hv

.={hv,j : Xv → {−1,+1} | j ∈ [nv]} of size nv. We aim at
learning a two-level weighted majority vote classifier where at the first level a
weighted majority vote is built for each view v∈[V] over the associated set of
weak classifiers Hv, and the final classifier, referred to as the Multiview double
ωeighted Majority vote Classifier (MωMvC2), is a weighted majority vote over
the previous view-specific majority vote classifiers (see Fig. 1 for an illustration).
Given a training set S=(xi, yi)1≤i≤m of size m drawn i.i.d. with respect to a
fixed, yet unknown, distribution D over (X1× · · · ×XV)×Y, the learning objective
is to train the weak view-specific classifiers (Hv)1≤v≤V and to choose two sets of
weights; Π = (πv)1≤v≤V , where ∀v ∈ [V], πv=(πv,j)1≤j≤nv

, and ρ=(ρv)1≤v≤V ,
such that the ρΠ-weighted majority vote classifier BρΠ

BρΠ (x) =
V∑

v=1

ρv

nv∑

j=1

πv,j hv,j(xv) (1)

has the smallest possible generalization error on D. We follow the Empirical Risk
Minimization principle [23], and aim at minimizing the 0/1-loss over S:

L̂ 0/1
m (BρΠ ,S) =

1
m

m∑

i=1

1yiBρ Π (xi)≤0,

where 1p is equal to 1 if the predicate p is true, and 0 otherwise. As this loss
function is non-continuous and non-differentiable, it is typically replaced by an
appropriate convex and differentiable proxy. Here, we replace 1z≤0 by the logistic
upper bound a log(1+e−z), with a=(log 2)−1. The misclassification cost becomes

L̂m(BρΠ ,S) =
a

m

m∑

i=1

ln
(
1 + exp

(− yiBρΠ (xi)
))

, (2)

and the objective would be then to find the optimal combination weights Π�

and ρ� that minimize this surrogate logistic loss.

Multiview Learning of Weighted Majority Vote by Bregman 127

all views

v = 1

h1,1 h1,2 h1,3 h1,4

v = 2

h2,1 h2,2 h2,3 h2,4 h2,5

v = 3

h3,1 h3,2 h3,3

Fig. 1. Illustration of MωMvC2 with V =3. For all views v ∈ {1, 2, 3}, we have a set
of view-specific weak classifiers (Hv)1≤v≤V that are learned over a multiview training
set. The objective is then to learn the weights Π (black histograms) associated to
(Hv)1≤v≤V ; and the weights ρ (hatched histograms) associated to weighted majority
vote classifiers such that the ρΠ -weighted majority vote classifier BρΠ (Eq. 1) will
have the smallest possible generalization error.

3 An Iterative Parallel Update Algorithm to Learn
MωMvC2

In this section, we first show how the minimization of the surrogate loss of
Eq. (2) is equivalent to the minimization of a given Bregman divergence. Then,
this equivalence allows us to employ a parallel-update optimization algorithm to
learn the weights Π=(πv)1≤v≤V and ρ leading to this minimization.

3.1 Bregman-Divergence Optimization

We first recall the definition of a Bregman divergence [4,14].

Definition 1 (Bregman divergence). Let Ω ⊆ R
m and F : Ω → R be a

continuously differentiable and strictly convex real-valued function. The Bregman
divergence DF associated to F is defined for all (p,q) ∈ Ω × Ω as

DF (p||q) .= F (p) − F (q) − 〈∇F (q), (p − q)〉 , (3)

where ∇F (q) is the gradient of F estimated at q, and the operator 〈·, ·〉 is the
dot product function.

The optimization problem arising from this definition that we are interested in,
is to find a vector p� ∈ Ω—that is the closest to a given vector q0 ∈ Ω—under
the set P of V linear constraints

P .= {p ∈ Ω|∀v ∈ [V], ρvp�Mv = ρvp̃�Mv},

where p̃∈Ω is a specified vector, and Mv is a m×nv matrix with nv=|Hv| the
number of weak classifiers for view v∈[V]. Defining the Legendre transform as

LF

(
q,

V∑

v=1

ρvMvπv

)
.= arg min

p∈Ω

{
DF (p||q) +

V∑

v=1

〈ρvMvπv,p〉
}

.

128 A. Goyal et al.

the dual optimization problem can be stated as finding a vector q� in Q̄, the
closure of the set

Q .=
{
q = LF

(
q0,

V∑

v=1

ρvMvπv

)∣∣∣∣ρ ∈ R
V ;∀v,πv ∈ R

nv

}
,

for which DF (p̃||q�) is the lowest. It can be shown that both of these optimiza-
tion problems have the same unique solution [8,14], with the advantage of having
parallel-update optimization algorithms to find the solution of the dual form in
the mono-view case [6–8], making the use of the latter more appealing.

According to our multiview setting and to optimize Eq. (2) through a Breg-
man divergence, we consider the function F defined for all p∈Ω=[0, 1]m as

F (p) .=
m∑

i=1

pi ln(pi) + (1 − pi) ln(1 − pi),

which from Definition 1 and the definition of the Legendre transform, yields that
for all (p,q) ∈ Ω × Ω and r ∈ Ω

DF (p||q) =
m∑

i=1

pi ln
(

pi

qi

)
+ (1 − pi) ln

(
1 − pi

1 − qi

)
, (4)

and∀i ∈ [m], LF (q, r)i =
qie

−ri

1 − qi + qie−ri
, (5)

with ai the ith characteristic of a=(ai)1≤i≤m (a being p, q, r or LF (q, r)).
Now, let q0 = 1

21m be the vector with all its components set to 1
2 . For all

i ∈ [m], we define LF (q0,v)i = σ(vi) with σ(z) = (1 + ez)−1, ∀z ∈ R. We set
the matrix Mv as for all (i, j) ∈ [m] × [nv], (Mv)ij = yihv,j(xv

i). Then using
Eqs. (4) and (5), it comes

DF

(
0
∣∣∣
∣∣∣LF

(
q0,

V∑

v=1

ρvMvπv

))
=

m∑

i=1

ln

⎛

⎝1+exp

⎛

⎝−yi

V∑

v=1

ρv

nv∑

j=1

πv,jhv,j(xv
i)

⎞

⎠

⎞

⎠ .

(6)

As a consequence, minimizing Eq. (2) is equivalent to minimizing DF (0||q) over
q ∈ Q̄0, where for Ω = [0, 1]m

Q0 =

⎧
⎨

⎩q ∈ Ω

∣∣∣∣∣qi = σ

⎛

⎝yi

V∑

v=1

ρv

nv∑

j=1

πv,jhv,j(xv
i)

⎞

⎠ ;ρ,Π

⎫
⎬

⎭ . (7)

For a set of weak-classifiers (Hv)1≤v≤V learned over a training set S; this equiva-
lence allows us to adapt the parallel-update optimization algorithm described in
[6] to find the optimal weights Π and ρ defining MωMvC2 of Eq. (1), as described
in Algorithm 1.

Multiview Learning of Weighted Majority Vote by Bregman 129

Algorithm 1 Learning MωMvC2

Input: Training set S = (xi, yi)1≤i≤m, where ∀i,xi = (x1
i , . . . , x

V
i) and yi ∈ {−1, 1};

and a maximal number of iterations T .
Initialization: ρ(1) ← 1

V
1V and ∀v, π

(1)
v ← 1

nV
1nv

Train the weak classifiers (Hv)1≤v≤V over S
For v ∈ [V] set the m × nv matrix Mv such that ∀i ∈ [m], ∀j ∈ [nv], (Mv)ij =
yihv,j(x

v
i)

1: for t = 1, . . . , T do
2: for i = 1, . . . , m do

3: q
(t)
i = σ

(
yi

V∑
v=1

ρ(t)
v

nv∑
j=1

π
(t)
v,j hv,j(x

v
i)

)

4: for v = 1, . . . , V do
5: for j = 1, . . . , nv do
6: W

(t)+
v,j =

∑
i:sign((Mv)ij)=+1 q

(t)
i |(Mv)ij |

7: W
(t)−
v,j =

∑
i:sign((Mv)ij)=−1 q

(t)
i |(Mv)ij |

8: δ
(t)
v,j = 1

2
ln

(
W

(t)+
v,j

W
(t)−
v,j

)
9: π

(t+1)
v = π

(t)
v + δ

(t)
v

10: Set ρ(t+1), as the solution of :

minρ −
V∑

v=1

ρv

nv∑
j=1

(√
W

(t)+
v,j −

√
W

(t)−
v,j

)2

(8)

s.t.

V∑
v=1

ρv = 1, ρv ≥ 0 ∀v ∈ [V]

Return: Weights ρ(T) and Π (T).

3.2 A Multiview Parallel Update Algorithm

Once all view-specific weak classifiers (Hv)1≤v≤V have been trained, we start
from an initial point q(1) ∈ Q0 (Eq. 7) corresponding to uniform values of
weights ρ(1) = 1

V 1V and ∀v ∈ [V], π
(1)
v = 1

nv
1nv

. Then, we iteratively update
the weights such that at each iteration t, using the current parameters ρ(t),Π(t)

and q(t) ∈ Q0, we seek new parameters ρ(t+1) and δ(t)
v such that for

q(t+1) = LF (q0,

V∑

v=1

ρ(t+1)
v Mv(π(t)

v + δ(t)
v)), (9)

we get DF (0||q(t+1)) ≤ DF (0||q(t)).

130 A. Goyal et al.

Following [6, Theorem 3], it is straightforward to show that in this case, the
following inequality holds:

DF (0||q(t+1)) − DF (0||q(t)) ≤ A(t) , (10)

where A(t) = −
V∑

v=1

ρ(t+1)
v

nv∑

j=1

(
W

(t)+
v,j (e−δ

(t)
v,j − 1) − W

(t)−
v,j (eδ

(t)
v,j − 1)

)2

,

with ∀j ∈ [nv];W (t)±
v,j =

∑
i:sign((Mv)ij)=±1 q

(t)
i |(Mv)ij |.

By fixing the set of parameters ρ(t+1); the parameters δ(t)
v that minimize

A(t) are defined as ∀v ∈ [V],∀j ∈ [nv]; δ(t)v,j = 1
2 ln

(
W

(t)+
v,j

W
(t)−
v,j

)
. Plugging back these

values into the above equation gives

A(t) = −
V∑

v=1

ρ(t+1)
v

nv∑

j=1

(√
W

(t)+
v,j −

√
W

(t)−
v,j

)2

. (11)

Now by fixing the set of parameters (W (t)±
v,j)v,j , the weights ρ(t+1) are

found by minimizing Eq. (11) under the linear constraints ∀v ∈ [V], ρv ≥
0 and

∑V
v=1 ρv = 1. This alternating optimization of A(t) bears similarity with

the block-coordinate descent technique [2], where at each iteration, variables are
split into two subsets—the set of the active variables, and the set of the inactive
ones—and the objective function is minimized along active dimensions while
inactive variables are fixed at current values.
Convergence of Algorithm. The sequences of weights (Π(t))t∈N and (ρ(t))t∈N

found by Algorithm1 converge to the minimizers of the multiview classifica-
tion loss (Eq. 2), as with the resulting sequence (q(t))t∈N (Eq. 9), the sequence
(DF (0||q(t)))t∈N is decreasing and since it is lower-bounded (Eq. 6), it converges
to the minimum of Eq. (2).

3.3 A Note on the Complexity of Algorithm

For each view v, the complexity of learning decision tree classifiers is
O(dv mlog(m)). We learn the weights over the views by optimizing Eq. (11) (Step
10 of our algorithm) using SLSQP method which has time complexity of O(V 3).
Therefore, the overall complexity is O(V dv m.log(m) + T (V 3 +

∑V
v=1 mnv)).

Note that it is easy to parallelize our algorithm: by using V different machines,
we can learn the view-specific classifiers and weights over them (Steps 4 to 9).

4 Experimental Results

We present below the results of the experiments we have performed to evaluate
the efficiency of Algorithm 1 to learn the set of weights Π and ρ involved in the
definition of the ρΠ-weighted majority vote classifier BρΠ (Eq. (1)).

Multiview Learning of Weighted Majority Vote by Bregman 131

4.1 Datasets

MNIST. is a publicly available dataset consisting of 70, 000 images of handwritten
digits distributed over 10 classes [15]. For our experiments, we created 2 multi-
view collections from the initial dataset. Following [5], the first dataset (MNIST1)
was created by extracting 4 no-overlapping quarters of each image considered as
its 4 views. The second dataset (MNIST2) was made by extracting 4 overlapping
quarters from each image as its 4 views. We randomly split each collection by
keeping 10, 000 images for testing and the remaining images for training.
Reuters RCV1/RCV2. is a multilingual text classification data extracted
from Reuters RCV1 and RCV2 corpus1. It consists of more than 110, 000 docu-
ments written in five different languages (English, French, German, Italian and
Spanish) distributed over six classes. In this paper we consider each language as
a view. We reserved 30% of documents for testing and the remaining for training.

Table 1. Test classification accuracy and F1-score of different approaches averaged
over all the classes and over 20 random sets of m = 100 labeled examples per training
set. Along each column, the best result is in bold, and second one in italic. ↓ indicates
that a result is statistically significantly worse than the best result, according to a
Wilcoxon rank sum test with p < 0.02.

Strategy MNIST1 MNIST2 Reuters

Accuracy F1 Accuracy F1 Accuracy F1

Mono .7827 ± .008↓ .4355 ± .009↓ .7896 ± .008↓ .4535 ± .011↓ .7089 ± .017↓ .4439 ± .007↓

Concat .7988 ± .011↓ .4618 ± .015↓ .7982 ± .017↓ .4653 ± .021↓ .6918 ± .029↓ .4378 ± .015↓

Fusion .8167 ± .017↓ .4769 ± .018↓ .8244 ± .019↓ .4955 ± .027↓ .7086 ± .029↓ .4200 ± .021↓

MVMLsp .7221 ± .021↓ .3646 ± .019↓ .7669 ± .032↓ .4318 ± .025↓ .6037 ± .020↓ .3181 ± .022↓

MV-MV .8381 ± .009↓ .5238 ± .015↓ .8380 ± .010↓ .5307 ± .016↓ .7453 ± .023↓ .4979 ± .012↓

MVWAB .8470 ± .015↓ .5704 ± .012↓ .8331 ± .016↓ .5320 ± .011↓ .7484 ± .017↓ .5034 ± .016↓

rBoost.SH .7580 ± .011↓ .4067 ± .009↓ .8247 ± .009↓ .5148 ± .015↓ .7641 ± .014 .5093 ± .010↓

MωMvC2 .8659 ± .011 .5914 ± .015 .8474 ± .012 .5523 ± .018 .7662 ± .010 .5244 ± .012

4.2 Experimental Protocol

In our experiments, we set up binary classification tasks by using all multiview
observations from one class as positive examples and all the others as negative
examples. We reduced the imbalance between positive and negative examples
by subsampling the latter in the training sets, and used decision trees as view
specific weak classifiers. We compare our approach to the following seven algo-
rithms.

• Mono is the best performing decision tree model operating on a single view.
• Concat is an early fusion approach, where a mono-view decision tree oper-

ates over the concatenation of all views of multiview observations.
1

https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,
+Multiview+Text+Categorization+Test+collection.

https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+Test+collection.
https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+Test+collection.

132 A. Goyal et al.

• Fusion is a late fusion approach, sometimes referred to as stacking, where
view-specific classifiers are trained independently over different views using 60%
of the training examples. A final multiview model is then trained over the pre-
dictions of the view-specific classifiers using the rest of the training examples.

• MVMLsp [11] is a multiview metric learning approach, where multiview ker-
nels are learned to capture the view-specific information and relation between
the views. We kept the experimental setup of [11] with Nyström parameter 0.24.2

• MV-MV [1] is a multiview algorithm where view-specific classifiers are trained
over the views using all the training examples. The final model is the uniformly
weighted majority vote.

• MVWAB [24] is a Multiview Weighted Voting AdaBoost algorithm, where
multiview learning and ababoost techniques are combined to learn a weighted
majority vote over view-specific classifiers but without any notion of learning
weights over views.

• rBoost.SH [17,18] is a multiview boosting approach where a single distri-
bution over different views of training examples is maintained and, the distri-
bution over the views are updated using the multiarmed bandit framework. For
the tuning of parameters, we followed the experimental setup of [17].

Fusion, MV-MV, MVWAB, and rBoost.SH make decision based on some major-
ity vote strategies, as the proposed MωMvC2 classifier. The difference relies on
how the view-specific classifiers are combined. For MVWAB and rBoost.SH, we
used decision tree model to learn view-specific weak classifiers at each iteration
of algorithm and fixed the maximum number of iterations to T = 100. To learn
MωMvC2, we generated the matrix Mv by considering a set of weak decision tree
classifiers with different depths (from 1 to maxd −2, where maxd is maximum
possible depth of a decision tree). We tuned the maximum number of iterations
by cross-validation which came out to be T = 2 in most of the cases and that we
fixed throughout all of the experiments. To solve the optimization problem for
finding the weights ρ (Eq. 8), we used the Sequential Least SQuares Program-
ming (SLSQP) implementation of scikit-learn [16], that we also used to learn the
decision trees. Results are computed over the test set using the accuracy and
the standard F1-score [19], which is the harmonic average of precision and recall.
Experiments are repeated 20 times by each time splitting the training and the
test sets at random over the initial datasets.

4.3 Results

Table 1 reports the results obtained for m=100 training examples by different
methods averaged over all classes and the 20 test results obtained over 20 random
experiments3. From these results it becomes clear that late fusion and other
multiview approaches (except MVMLsp) provide consistent improvements over
training independent mono-view classifiers and with early fusion, when the size of

2 We used the Python code available from https://lives.lif.univ-mrs.fr/?page id=12.
3 We also did experiments for Mono, Concat, Fusion, MV-MV using Adaboost. The

performance of Adaboost for these baselines is similar to that of decision trees.

https://lives.lif.univ-mrs.fr/?page_id=12.

Multiview Learning of Weighted Majority Vote by Bregman 133

(a) MNIST1

(b) MNIST2

(c) Reuters

Fig. 2. Evolution of accuracy and F1-score w.r.t to the number of labeled examples in
the initial labeled training sets on MNIST1, MNIST2 and Reuters datasets.

the training set is small. Furthermore, MωMvC2 outperforms the other approaches
and compared to the second best strategy the gain in accuracy (resp. F1-score)
varies between 0.2% and 2.2% (resp. 2.2% and 3.8%) across the collections.
These results provide evidence that majority voting for multiview learning is an
effective way to overcome the lack of labeled information and that all the views
do not have the same strength (or do not bring information in the same way) as
the learning of weights, as it is done in MωMvC2, is much more effective than the
uniform combination of view-specific classifiers as it is done in MV-MV.

We also analyze the behavior of the algorithms for growing initial amounts
of labeled data. Figure 2 illustrates this by showing the evolution of the accuracy
and the F1-score with respect to the number of labeled examples in the initial
labeled training sets on MNIST1, MNIST2 and Reuters datasets. As expected,
all performance curves increase monotonically (except MVMLsp) w.r.t the addi-

134 A. Goyal et al.

tional labeled data. When there are sufficient labeled examples, the performance
increase of all algorithms actually begins to slow, suggesting that the labeled data
carries sufficient information and that the different views do not bring additional
information.

An important point here is that rBoost.SH—which takes into account both
view-consistency and diversity between views—provides the worst results on
MNIST1 where there is no overlapping between the views, while the weighted
majority vote as it is performed in MωMvC2 still provides an efficient model.
Furthermore, MVMLsp—which learns multiview kernels to capture views-specific
informations and relation between views—performs worst on all the datasets.
We believe that the superior performance of our method stands in our two-level
framework. Indeed, thanks to this trick, we are able to consider the view-specific
information by learning weights over view-specific classifiers, and to capture the
importance of each view in the final ensemble by learning weights over the views.

5 Conclusion

In this paper, we tackle the issue of classifier combination when observations
have different representations (or have multiple views). Our approach jointly
learns weighted majority vote view-specific classifiers (i.e. at the view level)
over a set of base classifiers, and a second weighted majority vote classifier over
the previous set of view specific weighted majority vote classifiers. We show that
the minimization of the multiview classification error is equivalent to the mini-
mization of Bregman divergences. This embedding allowed to derive a parallel-
update optimization boosting-like algorithm to learn the weights of the double
weighted multiview majority vote classifier. Our results show clearly that our
method allows to reach high performance in terms of accuracy and F1-score on
three datasets in the situation where few initial labeled training documents are
available. It also comes out that compared to the uniform combination of view-
specific classifiers, the learning of weights allows to better capture the strengths
of different views.

As future work, we would like to extend our algorithm to the semi-supervised
case, where one has access to an additionally unlabeled set during the training.
One possible way is to learn a view-specific classifier using pseudo-labels (for
unlabeled data) generated from the classifiers trained from other views, e.g. [27].
Moreover, the question of extending our work to the case where all the views
are not necessarily available or not complete (missing views or incomplete views,
e.g. [1,26]), is very exciting. One solution could be to adapt the definition of
the matrix Mv to allow to deal with incomplete data; this may be done by
considering a notion of diversity to complete Mv.

Acknowledgment. This work is partially funded by the French ANR project LIVES
ANR-15-CE23-0026-03 and the “Région Rhône-Alpes”.

Multiview Learning of Weighted Majority Vote by Bregman 135

References

1. Amini, M.R., Usunier, N., Goutte, C.: Learning from multiple partially observed
views - an application to multilingual text categorization. In: NIPS (2009)

2. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
3. Blum, A., Mitchell, T.M.: Combining labeled and unlabeled data with co-training.

In: COLT, pp. 92–100 (1998)
4. Bregman, L.: The relaxation method of finding the common point of convex sets

and its application to the solution of problems in convex programming. USSR
Comput. Math. Math. Phys. 7(3), 200–217 (1967)

5. Chen, M., Denoyer, L.: Multi-view generative adversarial networks. In: ECML-
PKDD, pp. 175–188 (2017)

6. Collins, M., Schapire, R.E., Singer, Y.: Logistic regression, adaboost and bregman
distances. Mach. Learn. 48(1–3), 253–285 (2002)

7. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Ann.
Math. Stat. 43, 1470–1480 (1972)

8. Della Pietra, S., Della Pietra, V., Lafferty, J.: Inducing features of random fields.
IEEE TPAMI 19(4), 380–393 (1997)

9. Farquhar, J., Hardoon, D., Meng, H., Shawe-taylor, J.S., Szedmák, S.: Two view
learning: Svm-2k, theory and practice. In: NIPS, pp. 355–362 (2006)

10. Gönen, M., Alpayd, E.: Multiple kernel learning algorithms. JMLR 12, 2211–2268
(2011)

11. Huusari, R., Kadri, H., Capponi, C.: Multi-view metric learning in vector-valued
kernel spaces. In: AISTATS (2018)

12. Janodet, J.C., Sebban, M., Suchier, H.M.: Boosting classifiers built from different
subsets of features. Fundam. Inf. 94(2009), 1–21 (2009)

13. Koço, S., Capponi, C.: A boosting approach to multiview classification with coop-
eration. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.)
ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 209–228. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23783-6 14

14. Lafferty, J.: Additive models, boosting, and inference for generalized divergences.
In: COLT, pp. 125–133 (1999)

15. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE, pp. 2278–2324 (1998)

16. Pedregosa, F., et al.: Scikit-learn: machine learning in python. JMLR 12, 2825–
2830 (2011)

17. Peng, J., Aved, A.J., Seetharaman, G., Palaniappan, K.: Multiview boosting with
information propagation for classification. IEEE Trans. Neural Netw. Learn. Syst.
99, 1–13 (2017)

18. Peng, J., Barbu, C., Seetharaman, G., Fan, W., Wu, X., Palaniappan, K.: Share-
boost: boosting for multi-view learning with performance guarantees. In: ECML-
PKDD, pp. 597–612 (2011)

19. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informed-
ness, markedness and correlation. J. Mach. Learn. Technol. 1(2), 37–63 (2011)

20. Sindhwani, V., Rosenberg, D.S.: An RKHS for multi-view learning and manifold
co-regularization. In: ICML, pp. 976–983 (2008)

21. Snoek, C., Worring, M., Smeulders, A.W.M.: Early versus late fusion in semantic
video analysis. In: ACM Multimedia, pp. 399–402 (2005)

22. Sun, S.: A survey of multi-view machine learning. Neural Comput. Appl. 23(7–8),
2031–2038 (2013)

https://doi.org/10.1007/978-3-642-23783-6_14

136 A. Goyal et al.

23. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (1999)
24. Xiao, M., Guo, Y.: Multi-view Adaboost for multilingual subjectivity analysis. In:

COLING, pp. 2851–2866 (2012)
25. Xu, C., Tao, D., Xu, C.: Large-margin multi-viewinformation bottleneck. IEEE

TPAMI 36(8), 1559–1572 (2014)
26. Xu, C., Tao, D., Xu, C.: Multi-view learning with incomplete views. IEEE Trans.

Image Process. 24(12), 5812–5825 (2015)
27. Xu, X., Li, W., Xu, D., Tsang, I.W.: Co-labeling for multi-view weakly labeled

learning. IEEE TPAMI 38(6), 1113–1125 (2016)
28. Xu, Z., Sun, S.: An algorithm on multi-view Adaboost. In: Wong, K.W., Mendis,

B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010. LNCS, vol. 6443, pp. 355–362.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17537-4 44

29. Zhang, J., Zhang, D.: A novel ensemble construction method for multi-view
data using random cross-view correlation between within-class examples. Pattern.
Recogn. 44(6), 1162–1171 (2011)

https://doi.org/10.1007/978-3-642-17537-4_44

Non-negative Local Sparse Coding
for Subspace Clustering

Babak Hosseini(B) and Barbara Hammer

CITEC centre of excellence, Bielefeld University, Bielefeld, Germany
{bhosseini,bhammer}@techfak.uni-bielefeld.de

Abstract. Subspace sparse coding (SSC) algorithms have proven to be
beneficial to the clustering problems. They provide an alternative data
representation in which the underlying structure of the clusters can be
better captured. However, most of the research in this area is mainly
focused on enhancing the sparse coding part of the problem. In contrast,
we introduce a novel objective term in our proposed SSC framework
which focuses on the separability of data points in the coding space.
We also provide mathematical insights into how this local-separability
term improves the clustering result of the SSC framework. Our proposed
non-linear local SSC algorithm (NLSSC) also benefits from the efficient
choice of its sparsity terms and constraints. The NLSSC algorithm is also
formulated in the kernel-based framework (NLKSSC) which can repre-
sent the nonlinear structure of data. In addition, we address the possi-
bility of having redundancies in sparse coding results and its negative
effect on graph-based clustering problems. We introduce the link-restore
post-processing step to improve the representation graph of non-negative
SSC algorithms such as ours. Empirical evaluations on well-known clus-
tering benchmarks show that our proposed NLSSC framework results in
better clusterings compared to the state-of-the-art baselines and demon-
strate the effectiveness of the link-restore post-processing in improving
the clustering accuracy via correcting the broken links of the represen-
tation graph.

Keywords: Machine learning · Data mining · Subspace clustering
Sparse coding

1 Introduction

Clustering is one of the challenging problems in the area of machine learning and
data analysis [24], for which unsupervised methods try to discover the hidden
structure of the data. On the other hand, sparse coding algorithms aim for
finding a latent representation of data points based on a weighted combination of

This research was supported by the Cluster of Excellence Cognitive Interaction Tech-
nology ‘CITEC’ (EXC 277) at Bielefeld University, which is funded by the German
Research Foundation (DFG).

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 137–150, 2018.
https://doi.org/10.1007/978-3-030-01768-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_12&domain=pdf

138 B. Hosseini and B. Hammer

sparsely selected base vectors [18]. Such a sparse representation has the potential
to capture the essential characteristics of the data including its hidden structure
[10]. Therefore, in recent years, several studies have tried and succeeded in using
sparse coding models for clustering purposes [14,25,27]. Calling the weighting
coefficients sparse codes, the clustering phase is applied to the learned sparse
codes using common clustering methods such as spectral clustering [26].

An important group of sparse coding methods for clustering is called sparse
subspace clustering algorithms (SSC) [6]. Assuming the data is distributed on
a union of linear subspaces, SSC methods focus on obtaining self-expressive
representations, such that each data point could be represented by using other
samples from its cluster (subspace) [5,14]. There are considerable variations
in the structure of existing SSC algorithms [7,20,27], which leads to different
optimization schemes.

From another point of view, some of the sparse coding approaches restrict
the sparse codes to non-negative values to obtain a more interpretable represen-
tation for the data, especially when the data is related to biological models [9].
Such non-negativity also often results in a better construction of the subsequent
clustering graph [23,28].

Benefiting from kernel functions, it could be possible to transfer data to a
high-dimensional space in which clusters are more separable. Hence, a subset of
SSC algorithms focused on developing kernel-based SSC methods [2,17,23] which
typically achieve higher clustering accuracies in comparison to their vectorial
versions.
Contributions: In this work, we propose a non-negative SSC algorithm with a
unique structure. The method combines nuclear-norm with a local-separability
objective term. In addition, it preserves the affine representation of data in the
latent space in accordance with an affine assumption about the underlying sub-
spaces. Accordingly, our explicit contributions are as follows:

– We introduce and add a novel objective term to the problem which focuses
on increasing local separability of data. This term is used in an unsupervised
way, and it affects the sparse representation of data to have a better cluster
separability.

– An efficient post-processing method is introduced regarding the negative
effect of sparse coding redundancies on clustering performance.

– Our algorithm is also extended to the nonlinear version via incorporating a
kernel function in its framework.

In the next section, we briefly review SSC algorithms. Afterward, we present
our proposed approaches in Sect. 3 and the optimization procedure in Sect. 4.
Then, we carry out empirical evaluations in Sect. 5, and make the conclusion in
the final section.

2 Related Works

Consider the data matrix X = [�x1, ..., �xN] ∈ R
d×N which lies in the union of n

linear subspaces ∪n
l=1Sl each with the dimension of {dl}n

l=1. Subspace clustering

Non-negative Local Sparse Coding for Subspace Clustering 139

tries to cluster the data such that each cluster i contains samples lying in one
individual subspace Si. Therefore, each data point �xi can be represented by other
data points in X as a linear combination �xi ≈ X�γi. Focusing on the sparseness
of the coding vectors �γi, subspace sparse clustering [6] can be formulated as

min
Γ

‖Γ‖0 s.t. X = XΓ, γii = 0 , ∀i (1)

where Γ is the matrix of sparse codes, γii points to diagonal elements of Γ, and
‖.‖0 denotes the cardinality norm. It is assumed each resulting �γi from Eq. 1
represents �xi using only data points from the subspace in which �xi lies as well.
In that case, computing an affinity matrix A = |Γ|� + |Γ| which represents the
pairwise similarities of data points, and using it in graph-based methods such as
spectral clustering should identify the clusters. However, the problem in Eq. 1 is
NP-hard to solve [6] in its original format. As a solution, ‖.‖0 can be relaxed into
other norms. For instance [2,6,7,17] use the l1-norm to achieve sparse Γ, while
[27] aims for the approximate solution of Eq. 1 while having ‖�γi‖0 ≤ T0. Another
group of SSC methods [14,20,23,28] focuses on shrinking the nuclear norm ‖Γ‖∗
and making Γ low-rank to better represent the global structure of data. Among
SSC algorithms, [6,17] enforced Γ to provide affine representations by using the
constraint Γ��1 = �1 based on the idea of having the data points lying on an affine
combination of subspaces. Despite continuous improvements in clustering results
of aforementioned SSC methods, there is no direct link between the quality of
the sparse coding part and the subsequent clustering goal. Consequently, they
suffer from performance variations across different datasets and high sensitivity
of their results to the choice of parameters.

On the other hand, another group of algorithms called Laplacian sparse cod-
ing encourage the sparse coefficient vectors �γi related to each cluster to be as
similar as possible [7,26]. In their SSC formulation (Eq. 2) they employ a simi-
larity matrix W in which each wij measures the pair-wise similarity between a
pair (�xi, �xj).

min
Γ

‖X − XΓ‖2F + λ‖Γ‖1 + 1
2

∑
i,j wij‖�γi − �γj‖22 s.t. γii = 0 , ∀i (2)

Nevertheless, the optimization frameworks like this suffer from two issues:

1. Columns of Γ are forced to become similar to each other while the similarity
matrix is used as the weighting coefficients. Hence, at best the sparse codes
�γi obtain a distribution similar to the neighborhoods in W. Consequently,
their performance is comparable to kernel-based clustering with direct use of
the kernel information.

2. Although Eq. 2 tries to decrease the intra-cluster distances, the inter-cluster
structure of data is ignored in such frameworks; however, typically both of
these terms have to be adopted when focusing on the separability of clusters.

Contrary to the previous works, our algorithm benefits from a clustering-based
objective term in its framework. Therefore, its resulting sparse codes are more
suitable for the clustering purpose. In addition, our post-processing technique
can contribute to non-negative SSC methods such as [13,23,28] to improve their
latent representations.

140 B. Hosseini and B. Hammer

3 Proposed Non-Negative SSC algorithm

In this section, we introduce our proposed SSC algorithms NLSSC and NKLSSC.
Although they are explained in individual subsections, NKLSSC is the kernel
extension of NLSSC which is optimized similarly to NLSSC’s optimization.

3.1 Non-Negative Local Subspace Sparse Clustering

We formulate our non-negative local SSC algorithm (NLSSC) using the following
self-representative framework:

min
Γ

‖Γ‖∗ + λ
2 ‖X − XΓ‖2F + μElsp(Γ,X)

s.t Γ��1 = �1, γij ≥ 0, γii = 0 , ∀ij
(3)

where γii = 0 prevents data points from being represented by own contributions.
The constraint Γ��1 = �1 focuses on the affine reconstruction of data points which
coincides with having the data lying in an affine union of subspaces Sl. The
nuclear norm regularization term ‖Γ‖∗ = trace(

√
Γ∗Γ) is employed to ensure the

sparse coding representations are low-rank. This helps the sparse model to better
capture the global structure of data distribution. The non-negativity constraint
on γij is employed to enforce the data combinations to happen mostly between
similar samples. The novel term Elsp(Γ,X) is a loss function which focuses on
the local separability of data points in the coding space based on values of
Γ. Accordingly, scalars λ and μ are constants which control the contribution
of the objective terms. The goal of having Elsp(Γ,X) in the SSC model is to
reduce intra-cluster distance and increase inter-cluster distance. To do so in an
unsupervised way, we define

Elsp(Γ,X) :=
1
2

∑

i,j

[
wij‖�γi − �γj‖22 + bij(�γ�

i �γj)
]

(4)

in which the binary regularization weighting matrices W and B are computed
as

wij =

{
1, if �xj ∈ N k

i

0, otherwise
, bij =

{
1, if �xj ∈ Fk

i

0, otherwise
(5)

The two sets N k
i and Fk

i refer to the k-nearest and k-farthest data points to �xi,
and are determined via computing Euclidean distance ‖�xi−�xj‖2 between each �xi

and �xj . Defining D(W,Γ) :=
∑

i,j wij‖�γi −�γj‖22 and H(B,Γ) :=
∑

i,j bij(�γ�
i �γj),

the first part reduces the distance between (�γi, �γj) if they belong to N k
i while

the latter focuses on incoherency of each pair of (�γi, �γj) if they are members of
Fk

i . The following explains the effect of Elsp on the separability of the clusters
in the coding space.

Assuming there exist the labeling scalars {li}N
i=1 ∈ R, we prefer �xi and mem-

bers of N k
i to belong to the same class while the set Fk

i to contain data from
other clusters. We define Wc and Wm such that W = Wc + Wm, and they

Non-negative Local Sparse Coding for Subspace Clustering 141

respectively denote the correct and wring assignments regarding the label infor-
mation �l. more precisely, if w(i, j) = 1 then in case li = lj we have wc(i, j) = 1,
otherwise wm(i, j) = 1. The rest of the entries in (Wc,Wm) are set to zero.

Definition 1. The neighborhoods in X are cluster representative to the order
of or, if ∃k ∈ N : ‖Wc‖0/‖Wm‖0 = or ∧ or < 1.

Definition 1 means that in the neighborhoods of data samples in X there are
more points of the same class than of different ones.

Proposition 1. Minimizing Elsp in Eq. (4) makes columns of Γ to be better
locally separable regarding the underlying classes, if the neighborhoods in X are
cluster representative with a sufficiently small or.

Proof. {sketch} Eq. 4 can be rewritten as

Elsp = D(Wc,Γ) + D(Wm,Γ) + H(B,Γ)

Therefore, Γ∗ = arg min
Γ

Elsp generally works in favor of decreasing D(Wc,Γ)

and H(B,Γ) compared to an initial Γ0.
Consequently, a small D(Wc,Γ) leads to compact same-label neighborhoods in
Γ∗, and decreasing H(B,Γ) generally increases D(B,Γ) and more provides a
more localized structure for Γ∗.
Denoting ΔD(W,Γ∗) := D(W,Γ∗) − D(W,Γ0), according to the definition 1,
ΔD(Wm,Γ∗)/ΔD(Wc,Γ∗) is a decreasing function of 1/or.
Hence, the smaller or becomes the more columns of Γ∗ can be locally separated
from data samples of the other classes (Wm) in their neighborhoods.

Proposition 1 shows the effect of minimizing the loss term Elsp on having
localized and condense neighborhoods in the sparse codes Γ by making the sparse
codes of the neighboring samples more similar (identical in ideal case) while
making those of far away points incoherent (orthogonal in ideal case). It also
provides the desired condition by which the local neighborhoods in Γ can better
respect the class labels �l and leading to a better alignment between Γ and the
underlying subspaces. Note: Here we referred to �l only to explain the reason
behind our specific model design; however, the algorithm does need the labeling
information in any of its steps.

3.2 Clustering Based on Γ

Similar to other SSC algorithms, the resulted sparse coefficients are used to
construct an adjacency matrix A = Γ + Γ� defining a a sparse representation
graph G. This undirected graph consists of weighted connections between pairs
of (�xi, �xj). Therefore, A is used as the affinity matrix in the spectral clustering
algorithm [26] to find the data clusters.

142 B. Hosseini and B. Hammer

3.3 Link-Restore

After constructing the affinity matrix based on the resulting Γ, it is desired to
have positive weights in the representation graph G between every two points of
a cluster. However, in practice, it is possible to see non-connected nodes (broken
links) even inside condense clusters. This happens due to the redundancy issue
related to sparse coding algorithms. In Eq. 3, X is used as an over-complete
dictionary for reconstruction of each �xi, therefore we can assume �xi ≈ X�γi.
Nevertheless, as a common observation in sparse coding models the solution for
the value of �γi is suboptimal because of the utilized ‖�γi‖p relaxations. Thus for
�xs as a close data point to �xi, it is possible to have �xs ≈ X�γs, but with a big
�γ�

i �γs. This means �γi and �γs are not similar in the entries. Consequently, aij can
be small resulting from dissimilar �γi and �γs, albeit �xi and �xs are very similar.
As a workaround to the mentioned issue, we propose the Link-Restore method
(Algorithm 1) as an effective step regarding these situations. It acts as a post-
processing step on the obtained Γ before application of spectral clustering. Link-
restore corrects entries of each �γ by restoring the broken connections between
�x and other points in the dataset. To do so, it first obtains the current set of
data points connected to �x as I = {i | γi �= 0}, where γi denotes i-th entry in
vector �γ. Then for each �γi that i ∈ I, the algorithm collects the indices Ī of data
points which are close to �xi but not used in the sparse code of �x (line 1). To
that aim, for each �xs ∈ Ī the criterion ‖�xi − �xs‖22/‖�xi‖22 < τ should be fulfilled,
where 0 ≤ τ ≤ 1. Then in order to incorporate members of Ī into �γ, the entry
γi is projected to Ī ∪ i based on the value of �x�

i �xs/�x
�
i �xi ∀s ∈ Ī while also

maintaining the affinity constraint on �γ (lines 2–3). It is important to point out
that the pre-assumption for the above is that γi ≥ 0 ∀i. Therefore link-restore
method can be assumed as a proper post-processing method for non-negative
subspace clustering algorithms.

3.4 Kernel Extension of NLSSC

Assume Φ : Rd → R
m is an implicit nonlinear mapping to a Reproducing Kernel

Hilbert Space (RKHS) such that m � d. Thus, there exists a kernel function
K(�xi, �xj) = Φ(�xi)�Φ(�xj). Doing so, we can benefit from the non-linear charac-
teristics of this implicit mapping to obtain better representation for the data.

Algorithm 1: Link-Restore post-processing
Input: Sparse code �γ, data matrix X, threshold τ ∈ [0, 1]
Output: Corrected �γ by restoring its connections to other data points
Initialization: I = {i | γi �= 0} (except index of �x)

Loop: {over all elements i ∈ I }
1 �̂γ = �γ, Ī := {s | (�x�

s �xs − 2�x�
i �xs) < (τ − 1)�x�

i �xi , γs = 0}
2 γ̂i = γi(�x

�
i �xi/

∑
s∈{Ī∪i} �x�

i �xs)

3 γ̂s = γ̂i(�x
�
i �xs/�x�

i �xi) , ∀s ∈ Ī

4 �γ = �̂γ, I = I\{i}

Non-negative Local Sparse Coding for Subspace Clustering 143

Accordingly, we can reformulate our NLSSC method (Eq. 3) into its kernel exten-
sion as the non-negative local kernel SSC algorithm (NLKSSC):

min
Γ

‖Γ‖∗ + λ
2 ‖Φ(X) − Φ(X)Γ‖2F + μElsp(Γ, Φ(X))

s.t Γ��1 = �1, γij ≥ 0, γii = 0 , ∀ij
(6)

Comparing to Eq. 3, the second term in the objective of Eq. 6 means a self-
representation in the feature space, and the local-separability term (Elsp) is
equivalent to the one used in Eq. 3. However, W and Wm in Elsp are computed
based on the entries K(�xi, �xj) which directly indicate the pair-wise similarity of
each data �xi to its surrounding neighborhood. The benefit of having a kernel
representation of X is that a proper kernel function facilitates the validity of the
pre-assumption for Proposition 1, which leads to the more efficient role of Elsp.
As we see in Sect. 4, we can use the same optimization regime for both NLSSC
and NLKSSC. In addition, the lines 1–3 of the link-restore algorithm can be
implemented using the above dot-product rule.

4 Optimization Scheme of Proposed Methods

Putting Eq. 4 into Eq. 3 the following optimization framework is derived

min
Γ

‖Γ‖∗ + λ
2 ‖X − XΓ‖2F + μ

2

∑
i,j

[
wij‖�γi − �γj‖22 + bij(�γ�

i �γj)
]

s.t Γ��1 = �1, γij ≥ 0, γii = 0 , ∀ij
(7)

To simplify the 3rd loss term in (7), we symmetrize W → W+W�
2 and

do the same for B. Then according to [21] we compute the Laplacian matrix
L = D − W, where D is a diagonal matrix such that dii =

∑
j wij . Then, with

simple algebric operations we can rewrite Elsp(Γ,X) = Tr(ΓLΓ�)+ 1
2Tr(ΓBΓ�),

and reformulate Eq. 7 as:

min
Γ

‖Γ‖∗ + λ
2 ‖X − XΓ‖2F + μTr(ΓL̂Γ�)

s.t Γ��1 = �1, γij ≥ 0, γii = 0 , ∀ij
(8)

where Tr(.) is the trace operator and L̂ = (L + 1
2B). The objective of Eq. 8

is sum of convex functions (trace, inner-product, and convex norms), therefore
the optimization problem is a constrained convex problem and can be solved
using the alternating direction method of multipliers (ADMM) [3] as presented
in Algorithm 2. Optimizing Eq. 8 coincides with minimizing the following aug-
mented Lagrangian which is derived by adding its constraints as penalty terms
in the objective function.

Lρ (Γ,Γ+,U, α+, αU , �α1) = ‖U‖∗ + λErep(X,Γ) + μElsp(X,Γ)
+ρ

2‖Γ − Γ+‖2F + Tr(α�
+(Γ − Γ+)) + ρ

2‖Γ − U‖2F
+Tr(α�

U (Γ − U)) + ρ
2‖Γ��1 − �1‖22 + 〈 �α1,Γ��1 − �1〉

(9)

144 B. Hosseini and B. Hammer

in which Erep := 1
2‖X − XΓ‖2F , and matrices (Γ+,U) are axillary matrices

related the non-negativity constraint and the term ‖Γ‖∗. Equation 9 contains
the Lagrangian multipliers α+, αU ∈ R

N×N and �α1 ∈ R
N , and the penalty

parameter ρ ∈ R
+. Minimizing Lρ Eq. 9 is carried out in an alternating optimiza-

tion framework, such that at each step of the optimization all of the parameters
{Γ,Γ+,U, α+, αU , �α1} are fixed except one. Therefore, the updating steps are
described as follows.
Updating Γ: At iteration t of ADMM, via fixing Γt

+,Ut, αt
+, αt

U , �αt
1, the matrix

Γt+1 is updated as the solution to this Sylvester linear system of equations [11]

[2λX�X+2ρI+�1�1�]Γt+1+Γt+1[2μL̂] = ρ[Γt
++Ut+�1�1�]−αt

U−αt
+−�1 �αt

�
1 (10)

Updating U: Updating Ut+1 which is associated with ‖Γ‖∗ can be done via
fixing other parameters and using the singular value thresholding method [4] as
Ut+1 = T1/ρ(Γ) where term T (.) is the thresholding operator from [4](Eq. 2.2).

Updating Γ+, α+, αU , �α1, ρ: The matrix Γ+ and the multipliers are updated
using the following projected gradient descent and gradient ascent steps respec-
tively

Γt+1
+ = max(Γ + 1

ρα+, 0), αt+1
+ = αt

+ + ρ(Γ − Γ+)
�αt+1

1 = �αt
1 + ρ(Γ��1 − �1), ρt+1 = min(ρt(1 + Δρ), ρmax)

(11)

in which (Δρ, ρmax) are the update step and higher bound of ρ respectively.
Convergence Criteria : The algorithm reaches its convergence point when for
a fixed ε > 0, ‖Γt − Γt−1‖∞ ≤ ε, ‖Γt

+ − Γt‖∞ ≤ ε, ‖Ut − Γt‖∞ ≤ ε, and
‖Γt��1 − �1‖∞ ≤ ε.
Optimizing NLKSSC: The kernel-based algorithm (NLKSSC) is optimized
also using Algorithm 2 while the kernel trick Φ(�xi)�Φ(�xj) = K(�xi, �xj) is applied
to replace X�X by K(X,X) in Eq. 10, and to kernelize the link-restore algorithm
as well.

Algorithm 2: Optimization Scheme of NLSSC
Input: X, λ, μ, k, Δρ = 0.1, ρmax = 106

Output: Sparse coefficient matrix Γ
Initialization: Compute W,B and L̂. Set all {Γ+,Γ,U, α+, αU , �α1} to zero
repeat

Updating Γ by solving Eq. 10
Updating U based on [4](Eq. 2.2)
Updating Γ+, α+, αU , �α1 based on Eq. 11

until Convergence Criteria is fulfilled ;

Non-negative Local Sparse Coding for Subspace Clustering 145

5 Experiments

For empirical evaluation of our proposed NNLSSC and NLKSSC algorithms, we
implement them on 4 different widely-used benchmarks of clustering datasets:

– Hopkins155 [19]: Segmentation of 156 video sequences with a setup similar to
[6].

– COIL-20 [16]: A dataset of 1440 gray-scale images of 20 different objects with
the pixel size of 32 × 32.

– Extended YaleB[8]: Contains frontal face images taken from 38 subjects with
the average of 64 samples per subject. Feature extraction is done based on
[20].

– AR-Face [15]: An image dataset including more than 4000 frontal faces of
126 different subjects. We use 2600 images from 100 subjects and use the
pre-processing procedure from [23].

The basis of evaluation is the clustering error as CE = #of miss-clustered samples
#of data samples

using the posterior labeling of the clusters and the normalized mutual informa-
tion (NMI) [1]. For each method, an average CE is calculated over 10 runs of
the algorithm. NMI measures the amount of information shared between the
clustering result and the ground-truth which lays in range of

[
0, 1

]
with the ideal

score of 1. Based on the common practice in the literature, we use average CE
along with its median value for the Hopkin155 dataset.

We compare our algorithms’ performance to baseline methods SSC [6], LRSC
[20], SSOMP [27], S3C [12], GNLMF [13], KSSC [17] KSSR [2] and RKNNLRS
[23]. These algorithms are selected from major sparse coding-based clustering
approaches, among which KSSC, KSSR, and RKNNLRS are kernel-based meth-
ods. The spectral clustering step of the baselines is performed via using the
correct number of clusters.

To compute the kernels required for kernel-based we use Histogram Intersec-
tion Kernel (HIK) as in [22] for AR dataset as it is a proper choice regarding
its frequency-based features [23]. For the implementations on the rest of the
datasets we adopted the Gaussian kernel K(x, y) = exp(−‖x−y‖2

σ), where δ is
the average of ‖�xi − �xj‖2 over all data samples.

5.1 Parameter Settings

In order to tune the parameters λ, μ, k we utilize a grid-search method. We do
the search for λ in the range of {1, 1.5, ..., 7}, for μ in the range of {0.1, 0.2, ..., 1}
and k in {3, 4, ..., 8}. We implement a similar parameter search for the baselines
to find their best settings. Although for the link-restore parameter, τ = 0.2
generally works well, one can do a separate grid-search for τ .

5.2 Clustering Results

According to the results summarized in Table 1, the proposed methods out-
performed the benchmarks regarding the clustering error. Comparing NLKSSC

146 B. Hosseini and B. Hammer

Table 1. Average clustering error (CE) and NMI for YALE, COIL20, AR datasets.
CE and its median value for Hopkins155-(2 motions and 3 motions) datasets.

Methods YALE B COIL20 AR-Face Hopkins-2m Hopkins-3m

CE NMI CE NMI CE NMI CE med. CE med.

SSC [6] 0.1734 0.8902 0.1737 0.9104 0.1065 0.9103 0.0289 0 0.0663 0.0114

LRSC [20] 0.3136 0.7340 0.2943 0.7838 0.0938 0.9037 0.0369 0.2127 0.0746 0.0245

SSOMP [27] 0.3214 0.6792 0.7652 0.5274 0.1012 0.8353 0.1432 0.0328 0.1973 0.1504

S3C [12] 0.1565 0.9104 0.1635 0.9063 0.0897 0.9117 0.0263 0 0.0527 0.0089

GNLMF [13] 0.3074 0.4172 0.3972 0.6421 0.1544 0.8769 0.1052 0.0216 0.1239 0.0841

KSSC [17] 0.1504 0.8907 0.1833 0.9039 0.0678 0.9241 0.0275 0 0.0584 0.0096

KSSR [2] 0.1598 0.8864 0.1983 0.9027 0.0742 0.8983 0.0437 0.6121 0.0756 0.0151

RKNNLRS [23] 0.1493 0.9035 0.1672 0.9126 0.0886 0.9131 0.0254 0 0.0512 0.0087

NLSSC(Proposed) 0.1242 0.9146 0.1409 0.9254 0.0832 0.9125 0.0189 0 0.0427 0.0079

NLKSSC(Proposed) 0.1107 0.9163 0.1528 0.9147 0.0542 0.9364 0.0122 0 0.0331 0.0065

to NLSSC, the kernel-based algorithm resulted in a smaller CE compared to
NLSSC (except for COIL20), which shows that the kernel-based framework was
able to better represent cluster distributions. Regarding the COIL20 dataset,
via comparing kernel-based methods to other baselines, it can be concluded that
the utilized kernel function was not strongly effective for cluster-based represen-
tation of the dataset. However, NLKSSC still outperformed other baselines due
to the effectiveness of its sparse subspace model.

Among other methods, S3C, RKNNLRS, and KSSC have comparable results,
especially for the Hopkins dataset. This means, although KSSC and RKNNLRS
benefited from kernel representation, the S3C algorithm was relatively effec-
tive regarding capturing the data structure. However, KSSR presented low per-
formance even in comparison to vectorial methods such as SSC and LRSC.
This behavior is due to lack of having any strong regularization term in its
model regarding the subspace structure of data. Among non-negative methods,
GNLMF performance is relatively below average. This may suggest that its
NMF-based structure is not suitable for grasping cluster distribution in compar-
ison to self-representative methods. On the other hand, RKNNLRS performance
shows that its non-negative model is more effective for clustering purposes com-
pared to NMF-based models. Comparing NLSSC (the proposed algorithm) to
other baselines with low-rank regularizations in their models, we can conclude
that proper combination of the locality term and the affine constraints aided
NLSSC to obtain higher performance. The same conclusion can be derived via
comparing NLSSC/NLKSSC to KSSC as an affine subspace clustering algorithm.

5.3 Effect of Link-Restore

To investigate the effect of the proposed link-restore algorithm we apply it on
GNLMF, RKNNLRS, NLSSC, and NLKSSC as a post-processing step. This
selection is based on the fact that link-restore is designed based on the non-
negativity assumption about columns of Γ. Also regarding its application on

Non-negative Local Sparse Coding for Subspace Clustering 147

Table 2. Application of the link-restore method on the non-negative approaches

Methods YALE COIL20 AR Hopkins-2m Hopkins-3m

CE NMI CE NMI CE NMI CE median CE median

GNLMF-link [13] 0.2514 0.6564 0.2674 0.7161 0.1251 0.8846 0.0793 0.0147 0.1025 0.0649

RKNNLRS-link [23] 0.1237 0.9103 0.1602 0.9137 0.0823 0.9135 0.0230 0 0.0469 0.0081

NLSSC-link 0.1027 0.9182 0.1409 0.9254 0.0776 0.9153 0.0189 0 0.0392 0.0064

NLKSSC-link 0.0842 0.9326 0.1523 0.9148 0.0482 0.9381 0.0122 0 0.0301 0.0054

Original Kernel

10 20 30 40 50

10

20

30

40

50
0

0.5

1

1.5

2

(a)

Restored Kernel

10 20 30 40 50

10

20

30

40

50
0

0.5

1

1.5

2

(b)

Fig. 1. A subset of the affinity matrix resulted by the implementation of NLKSSC on
the AR dataset: (a) Before application of link-restore. (b) After application of link-
restore

GNLMF and NLSSC, we use the kernel matrix K(X,X) related to the ker-
nel baselines. According to Table 2, the application of link-restore was effecting
regarding almost all the cases. It reduced the clustering error of all the rele-
vant methods to some extent, which demonstrates its ability to correct broken
links in the representation graph G. Nevertheless, the amount of improvements
in NLSS/NLKSSC methods vary among datasets. For the 2-motions subset of
Hopkins and for COIL20 datasets it did not add any important link to graph G
which consequently did not change the value of CE. However, for YALE and AR
datasets the amount of decreases in CE shows the effectiveness of link-restore
in correcting the missing connections in G.

Figure 1 visualizes the affinity matrix for implementation of NKLSSC on
the AR dataset. The figure is zoomed in on two of the clusters showing that
the representation graph contains more intra-cluster connections after applying
link-restore (Fig. 1-b).

5.4 Sensitivity to the Parameter Settings

Due to the space limits, we study the sensitivity of NLKSSC to the choice of
parameters only for the AR dataset considering 3 different experiments. In each
experiment, we fix two of λ, μ, k and change the other one and study the effect of

148 B. Hosseini and B. Hammer

1 2 3 4 5 6 7
4

6

8

10

12

14

16

C
lu

st
er

in
g

Er
ro

r (
%

)

(a)

0 5 10 15 20

k
4

6

8

10

12

14

16

C
lu

st
er

in
g

Er
ro

r (
%

)

(b)

0 0.2 0.4 0.6 0.8 1
4

6

8

10

12

14

16

C
lu

st
er

in
g

Er
ro

r (
%

)

(c)

Fig. 2. Sensitivity analysis of NLKSSC to parameter selection (a)λ, (b)μ and (c)k for
AR dataset

this variation on clustering error (CE). Based on Fig. 2, the algorithm sensitivity
to λ is acceptable when 2 ≤ λ ≤ 4.5. Having λ ≥ 6 does not change CE since it
makes the loss term Erep := ‖Φ(X) − Φ(X)Γ‖2F more dominant in optimization
problem of Eq. 6.

By choosing 0.25 ≤ μ ≤ 0.5, the algorithm’s performance does not change
drastically. However, NLKSSC shows a considerable sensitivity if μ goes beyond
0.6. High values of μ weaken the role of Erep (the main loss term) in the sparse
coding model.

Studying the sensitivity curve of k, its starting point has a similar CE to the
start of μ sensitivity curve, as in both cases effect of Elsp becomes zero in the
optimization. Figure 2-b shows that k ∈ {3, 4, 5} is a good choice. However, with
k ≤ 3 the objective term Elsp is not effective enough and with k ≥ 10 the CE
curve does not follow any constant pattern, but generally becomes worse because
it increases ‖Ww‖0

‖Wc‖0
and it may infringe the pre-assumption of Proposition 1. It

is important to note that even a small neighborhood radius (e.g. k = 4) could
have a wide impact on the global representation if the local neighborhoods can
have overlapping. Generally, similar sensitivity behaviors are also observed for
the other datasets.

6 Conclusion

In this work, we proposed a novel subspace sparse coding framework regarding
data clustering. Our non-negative local subspace clustering (NLSSC) benefits
from a novel locality objective in its formulation which focuses on improving the
separability of data points in the coding space. In addition, NLSSC also obtains
low-rank and affine sparse codes for the representation of the data. Implementa-
tions on real clustering benchmarks showed that this locality constraint is effec-
tive when performing a clustering based on the obtained representation graph.
In addition, the kernel extension of the algorithm (NLKSSC) is also provided
in order to benefit from kernel-based representations of data. Furthermore, we
introduced the link-restore algorithm as an effective solution to the sparse cod-
ing redundancy issue when it has negative effects on clustering performance.

Non-negative Local Sparse Coding for Subspace Clustering 149

This post-processing algorithm which is suitable for non-negative sparse repre-
sentations corrects the broken links between close data points in the represen-
tation graph. Empirical evaluations demonstrated that link-restore can act as
an effective post-processing step for different types of SSC methods which use
non-negative sparse coding models. As a future step, we are interested in com-
bining our framework with dimension reduction strategies to better deal with
multi-dimensional data types.

References

1. Ana, L., Jain, A.K.: Robust data clustering. In: IEEE Conference on Computer
Vision and Pattern Recognition. vol. 2, pp. II-128. IEEE (2003)

2. Bian, X., Li, F., Ning, X.: Kernelized sparse self-representation for clustering and
recommendation. In: SIAM International Conference on Data Mining, pp. 10–17
(2016)

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends R© Mach. Learn. 3(1), 1–122 (2011)

4. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix
completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

5. Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.S.: Learning with l1-graph for image
analysis. Trans. Img. Proc. 19(4), 858–866 (2010). Apr

6. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and appli-
cations. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

7. Gao, S., Tsang, I.W.h., Chia, L.t.: Laplacian sparse coding, hypergraph laplacian
sparse coding, and applications. IEEE TPAMI 35(1), 92–104 (2012)

8. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumi-
nation cone models for face recognition under variable lighting and pose. IEEE
Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

9. Hoyer, P.O.: Modeling receptive fields with non-negative sparse coding. Neurocom-
puting 52, 547–552 (2003)

10. Kim, T., Shakhnarovich, G., Urtasun, R.: Sparse coding for learning interpretable
spatio-temporal primitives. In: NIPS’10, pp. 1117–1125 (2010)

11. Kirrinnis, P.: Fast algorithms for the sylvester equation ax- xbt= c. Theor. Comput.
Sci. 259(1–2), 623–638 (2001)

12. Li, C.G., Vidal, R., et al.: Structured sparse subspace clustering: a unified opti-
mization framework. In: CVPR, pp. 277–286 (2015)

13. Li, X., Cui, G., Dong, Y.: Graph regularized non-negative low-rank matrix factor-
ization for image clustering. IEEE Trans. Cybern. 47(11), 3840–3853 (2017)

14. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace
structures by low-rank representation. IEEE TPAMI 35(1), 171–184 (2013)

15. Martinez, A.M.: The AR face database. CVC Technical Report 24 (1998)
16. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20)

(1996)
17. Patel, V.M., Vidal, R.: Kernel sparse subspace clustering. In: 2014 IEEE Interna-

tional Conference on Image Processing (ICIP), pp. 2849–2853. IEEE (2014)
18. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the k-svd

algorithm using batch orthogonal matching pursuit. Cs Tech. 40(8), 1–15 (2008)

150 B. Hosseini and B. Hammer

19. Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation
algorithms. In: CVPR’07, pp. 1–8. IEEE (2007)

20. Vidal, R., Favaro, P.: Low rank subspace clustering (lrsc). Pattern Recog. Lett.
43, 47–61 (2014)

21. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

22. Wu, J., Rehg, J.M.: Beyond the Euclidean distance: creating effective visual code-
books using the histogram intersection kernel. In: ICCV 2009. pp. 630–637. IEEE
(2009)

23. Xiao, S., Tan, M., Xu, D., Dong, Z.Y.: Robust kernel low-rank representation.
IEEE Trans. Neural Netw. Learn. Syst. 27(11), 2268–2281 (2016)

24. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw.
16(3), 645–678 (2005)

25. Xu, S., Chan, K.S., Zhou, T., Gao, J., Li, X., Hua, X.: A novel cluster ensemble
approach effected by subspace similarity. Intell. Data Anal. 20(3), 561–574 (2016)

26. Yang, Y., Wang, Z., Yang, J., Wang, J., Chang, S., Huang, T.S.: Data clustering
by laplacian regularized 11-graph. In: AAAI, pp. 3148–3149 (2014)

27. You, C., Robinson, D., Vidal, R.: Scalable sparse subspace clustering by orthogonal
matching pursuit. In: Computer Vision and Pattern Recognition (CVPR), pp.
3918–3927 (2016)

28. Zhuang, L., Gao, H., Lin, Z., Ma, Y., Zhang, X., Yu, N.: Non-negative low rank and
sparse graph for semi-supervised learning. In: CVPR 2012, pp. 2328–2335. IEEE
(2012)

Pushing the Envelope in Overlapping
Communities Detection

Said Jabbour1, Nizar Mhadhbi1, Badran Raddaoui2, and Lakhdar Sais1(B)

1 CRIL-CNRS UMR 8188, Université d’Artois, 62307 Lens Cedex, France
{jabbour,mhadhbi,sais}@cril.fr

2 SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, Evry, France
badran.raddaoui@telecom-sudparis.eu

Abstract. Discovering the hidden community structure is a fundamen-
tal problem in network and graph analysis. Several approaches have been
proposed to solve this challenging problem. Among them, detecting over-
lapping communities in a network is a usual way towards understanding
the features of networks. In this paper, we propose a novel approach to
identify overlapping communities in large complex networks. It makes
an original use of a new community model, called k-clique-star, to dis-
cover densely connected structures in social interactions. We show that
such model allows to ensure a minimum density on the discovered com-
munities and overcomes some weaknesses of existing cohesive structures.
Experimental results demonstrate the effectiveness and efficiency of our
overlapping community model in a variety of real graphs.

Keywords: Community detection · Overlapping community
detection · Social networks · Graph analysis

1 Introduction

One of the most important tasks when studying networks (or graphs 1) is that
of identifying network communities. Fundamentally, community detection aims
to partition a network into communities (clusters), typically thought of as a
group of nodes with more and/or better interactions amongst its members than
between its members and the remainder of the network. The problem of commu-
nity detection has been extensively studied in many fields, and many algorithms
have been proposed. Discovering communities in networks is a crucial step in
studying the structure and dynamics of social, technological, and biological sys-
tems. For example, community detection allows us to gain insights into metabolic
and protein-protein interactions (PPIs), ecological food webs, social networks,
collaboration networks, information networks of interlinked documents, and even
networks of co-purchased products, etc.

Identifying network communities can be viewed as a problem of finding dense
subgraphs, e.g., finding groups of nodes that are densely connected, where a
1 In this paper, we use network and graph interchangeably.

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 151–163, 2018.
https://doi.org/10.1007/978-3-030-01768-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_13&domain=pdf

152 S. Jabbour et al.

node can belong to multiple subgraphs at once. Therefore, different mathemat-
ical models have been studied over years as basis for extracting communities in
networks. The most intuitive model for social network analysis is the clique [12]
in which every node is adjacent to every other node. Such structure, preferably
maximal clique, is really the ideal community structure, that one would like
to find. Unfortunately, generating communities with such structural property is
computationally intractable. Additionally, the clique structure is too restrictive.
Cliques in small size are highly frequent in real-world networks, while larger
cliques are expected to be rare (e.g. [5]). Indeed, graphs that occur in many
real-world networks have instead a ”small word” topology in which nodes are
highly clustered yet the path length between them is small [22]. In other words,
a small-world network is a type of graph in which most nodes are not neighbors
of one another, but the neighbors of any given node are likely to be neighbors
of each other and most nodes can be reached from every other node by a small
number steps. Moreover, Watts and Strogatz [22] have shown that many real-
world networks such as the collaboration graph of actors in feature films and
the electrical power grid of the western United States, all have a small world
topology.

The arguments mentioned above reveal the clique is too strict to be helpful.
Consequently, other more relaxed forms of cohesive subgraphs were proposed.
Luce introduced a distance-based model called k-clique [11], and Alba proposed
a diameter-based model called k-club [2]. Generally speaking, these models relax
the reachability among vertices from 1 to k. However, they do not remove either
the problems of enumeration or computational intractability. Furthermore, other
proposals focus on the degree constraint of the clique, like k-plex [16] and k-core
[17]. The k-plex is still NP-Complete since it restricts the subgraph size, while
k-core further relaxes it to achieve the linear time complexity with respect to
the number of edges. However, the k-core method is usually not powerful enough
for uncovering the detailed community structure although it is computationally
quite efficient [15]. Recently, a new direction based on the edge triangle model,
like DN-Graph [20] and truss decomposition 2 [19], is more suitable for social
network analysis since it captures the tie strength between actors inside the
subgroup. Notice that in [18], the authors have shown that k-truss is better than
k-core from the point of view of cohesiveness.

Our paper follows this research issue. We first highlight some limitations of
the k-truss graph structure in providing meaningful communities.

To address these difficulties, we propose a new community model, called k-
clique-star, which can be roughly seen as a hybrid subgraph class combining
both cliques and star structures. In other words, the clique can be seen as the
centroid of the star structure conditionally linked to other nodes outside that
clique. From the arguments about the real-world networks and the computational
complexity issue mentioned above, the initial clique part might be of reasonable

2 For the k-truss structure, the idea is introduced independently by Saito et al. [15] (as
k-dense), Cohen [5] (as k-truss), Zhang and Parthasarathy [27] (as triangle k-core),
and Verma and Butenko [21] (as k-community).

Pushing the Envelope in Overlapping Communities Detection 153

size. Such centroid clique is incrementally augmented with nodes strongly con-
nected to that clique. In addition, we show that this new structure allows to
overcome some shortcomings of k-truss concept while maintaining a reasonable
(lower bound) density of the communities in networks. Finally, our approach
can scale community detection to large graphs and outperforms several popular
algorithms.

2 Background Information

In this paper, we focus on an undirected graph G = (V,E), where V is a set of
nodes and E ⊆ V ×V is a set of edges. We denote by n (resp. m) the number of
nodes (resp. edges) in G. For a node u ∈ V , we denote by Nu the set of neighbors
of u, i.e., Nu = {v ∈ V : (u, v) ∈ E}. The degree of a node u ∈ V , denoted du, is
equal to |Nu|. In graph theory, communities are defined as groups of nodes that
are closely knit together relative to the rest of the network. In real-world net-
works, nodes are organized into densely linked sets of nodes that are commonly
referred to as network communities, clusters or modules. Notice that in many
social and information networks, communities naturally overlap as nodes can
belong to multiple communities at once. Network overlapping community detec-
tion problem consists in dividing a network of interest into (overlapping) com-
munities for intelligent analysis. It has recently attracted significant attention in
diverse application domains. In fact, identifying the community structure is cru-
cial for understanding structural properties of the real-world networks. Various
methods have been proposed to identify the community structure of complex
networks (see [24] for an overview). These existing methods can be roughly cate-
gorized into three classes: (1) optimization-based methods: these approaches aim
to partition the network in communities by maximizing a goodness metric as
modularity, conductance, density-isolation, etc.; (2) seed set expansion methods:
starting from a seed, such methods greedily expand a community around that
seed until they reach a local optima of the community detection objective; and,
(3) cohesive subgraphs based methods: these method aim to partition the net-
work into dense subgraphs by using some cohesive graph structures. Specifically,
various definitions of communities based on different notions of dense subgraphs
have been proposed and studied. Our approach follows this third class and it is
designed for overlapping community detection based on dense subgraphs.

Let us start with some subgraph structures used to discover communities.

Definition 1 (k-clique). A graph G = (V,E) is a k-clique if G is a clique and
|V | = k.

Next, less restricted but also inspired from the clique structure, the k-core is
motivated by the property that every node has degree k − 1 in a k-clique. The
k-core also needs to satisfy the degree condition, but the restriction on subgraph
size is not required.

Definition 2 (k-core). A graph G = (V,E) is a k-core if ∀u ∈ V , d(u) ≥ k.

154 S. Jabbour et al.

Obviously, a k-clique is also a k-1-core. In the worst case, the number of k-
core subgraphs can be exponential in the size of the graph. Therefore, a maximal
k-core subgraph is defined to avoid redundancy.

Similarly to k-core, the k-dense structure defined bellow is inspired by the
fact that in a k-clique each edge is belonging to k − 2 triangles. More formally,

Definition 3 (k-dense). A graph G = (V,E) is a k-dense if ∀(u, v) ∈ E,
|Nu ∩ Nv| ≥ k − 2.

One can see that a k-clique is also k-dense, while a k-dense graph is also
k-core. Obviously, the converse does not hold. This relationships can be deduced
by relating the number of triangles sharing an edge and the degree of the nodes.

Independently, in [5], Cohen introduced a similar structure as k-dense, called
k-truss. This structure is motivated by a simple observation on social networks,
stating that if two individuals are strongly tied, it is likely that they also share
ties to others.

Definition 4 (k-truss). The k-truss of a graph G is the largest connected sub-
graph in which every edge is a part of (reinforced by) at least (k − 2) triangles
within the subgraph.

As we can observe, the difference between k-truss and k-dense is tiny. Indeed,
an edge (u, v) shares at least k − 2 triangles if and only if |Nu ∩ Nv| ≥ k − 2.
The two definitions differ only in the fact that k-truss corresponds to a con-
nected subgraph, while the k-dense may be disconnected. With this additional
condition, a k-truss subgraph is also k-dense. Obviously the converse is not true.
Note that in the experimental part of [15], the authors have explicitly mentioned
that the required communities are the connected components of the resulting k-
dense structures. To obtain more cohesive communities in networks, Huang et
al. introduced an extension of k-truss, called k-truss community [8], defined as
the maximal k-truss subgraph with an additional constraint on edge connectiv-
ity, i.e., any two edges in a community either belong to the same triangle, or
are reachable from each other through a series of adjacent triangles. Here two
triangles are defined as adjacent if they share a common edge.

3 k-Clique-Star Based Community Discovery

In this section, we first show some limitations of k-truss and k-truss community
concepts so that they are not appropriate to find meaningful communities of a
graph. Then, we propose a novel structure aiming to overcome these drawbacks.
Before proceeding further, let us consider the graphs G and G′ of Fig. 1. G
contains two cliques sharing one node v1, while G′ is obtained from G with an
additional edge (v2, v9) connecting the two cliques. By the k-truss definition, the
whole graph G is considered as a unique community for k > 2. In contrast, the
k-truss community structure allows to divide G into two communities, i.e., each
clique is a community. Indeed, there is no adjacent set of triangles allowing to
connect an edge from the first clique to the second one. Now, consider the second

Pushing the Envelope in Overlapping Communities Detection 155

graph G′. Due to the triangle adjacency condition in the k-truss community
concept, both k-truss and k-truss community allow to group the cliques of G′ in
the same community whatever the size of the cliques. This is clearly a problem,
since the two cliques do not share enough edges and nodes. So the k-truss and
k-truss community subgraphs may not correspond to a meaningful communities.
To cope with these difficulties, in the sequel, we design a novel structure which
we call k-clique-star that allows to detect more intuitive communities in a graph.

v1

v2

v3

v4

v7

v8

v5

v6

v9

v10

v11

v12

v13

v14

v15

v1

v2

v3

v4

v7

v8

v5

v6

v9

v10

v11

v12

v13

v14

v15

GG ′

v5

v1

v2v4

v6v7

v9

v8

v3

G′′

Fig. 1. Three undirected graphs

The intuition behind our structure is that a k-clique can be seen as a (k−1)-
clique with an additional node connected to all nodes of the (k − 1)-clique. By
generalizing this condition, a k-clique can be seen as two disjoints cliques n-
clique and m-clique such that n+m = k and each node of n-clique is connected
to all nodes of m-clique. Now, we can relax these conditions by considering one
clique instead of two, which gives us the definition of k-clique-star.

Definition 5 (k-clique-star). A graph G = (V,E) is called a k-clique-star
(k > 1) if there exists a subgraph G′ = (V ′, E′) of G such that G′ is a k-clique,
and ∀ u ∈ V \ V ′, ∀ v ∈ V ′, (u, v) ∈ E. G′ is called the centroid of G.

A k-clique-star G is a graph containing a centroid subgraph G′, that is, G′

is a k-clique and the remaining nodes of G are connected to each node of G′.
Specifically, a k-clique is a k-clique-star with V = V ′ and E = E′. Also, let

us mention that ∀ k′ < k, a k-clique-star subgraph is a k′-clique-star.

Example 1. Let us consider the graph G′′ depicted in Fig. 1. The subgraph
G′′(X) associated to the set of nodes X = {v1, v2, v3, v4, v5} is a 3-clique-
star whereas the subgraph G′′(Y) associated to the set of nodes Y =

156 S. Jabbour et al.

{v5, v6, v7, v8, v9} is a 2-clique-star. Note that the addition of the edge (v3, v6)
to G′′ leads to the 3-truss community G′′. Indeed, such additional edge ensures
the triangles adjacency among all the edges of G′′.

Interestingly, the requirements imposed to the k-clique-star guarantee a lower
bound on the density of the graph. In fact, for k = 2, it is straightforward
to conclude that G contains at least (2 × |V | − 3) edges and (2 × |V | − 2)
triangles. When k increases, the set of edges and triangles increases too, making
the subgraph more dense. In the following, we characterize the k-clique-star
subgraph in the light of k-truss structure and edge connectivity.

Proposition 1. If G is a k-clique-star subgraph, then G is k-truss and edge
connected.

Proof. If G = (V,E) is a k-clique-star, then G contains a k-clique G′ = (V ′, E′)
as a centroid. Let (u, v) be an edge of G. We can distinguish three cases.

1. u, v �∈ V ′: In this case, each u and v are connected to each edges of G′. As G′

contains k nodes, and the nodes of V \ V ′ are connected to all nodes of G′,
then (u, v) belongs to k triangles.

2. u, v ∈ V ′: In this case, for each w ∈ V ′ \ {u, v}, {u, v, w} forms a triangle.
Consequently, (u, v) belongs to |V ′| − 2 = k − 2 triangles.

3. u ∈ V ′ and v �∈ V ′: In this case for each w ∈ V ′ \ {u}, {u, v, w} is a triangle.
Consequently, the number of triangles sharing (u, v) is equal to |V ′|−1 = k−1.

From the three cases considered above, we deduce that G is k-truss as each
edge is reinforced by at least k − 2 triangles.

Let us now prove the edge connectivity condition. Let e = (u, v) and e′ =
(u′, v′) two edges of G. 1) If e, e′ ∈ E′, it is straightforward to conclude that
e and e′ are adjacent since G′ is a clique. 2) If e = (u, v) �∈ E′ and u ∈ V ′

and v �∈ V ′, thanks to the edges of G′, e = (u, v) is adjacent to each edge
e′ ∈ E\{e}, by definition of the k-clique-star structure. Indeed, v is connected
to each node w ∈ V ′, which is connected to each node in V \V ′. 3) Finally, let
e = (u, v) �∈ E′ and e′ = (u′, v′) �∈ E′. Let e′′ = (u′′, v′′) ∈ E′, then {u, v, u′′, v′′}
and {u′, v′, u′′, v′′} are two cliques sharing the edge e′′. Consequently, e, e′ are
edge connected.

Consequently, a k-clique-star is a k-truss community without the maximality
condition. Let us also mention that a k-truss community is not necessarily a k-
star-clique. In fact, consider the graph G′′ of Fig. 1 as a counter-example. Clearly,
G′′ with the additional doted edge (v3, v6) is 3-truss community. However, there
is no integer k making the whole graph a k-clique-star.

Given a large network and an integer k, the number of k-clique-star subgraphs
can be exponential in the original graph size in the worst case. Therefore, we
further define the maximal k-clique-star subgraph to avoid redundancy.

Definition 6 (Maximal k-clique-star). A graph G = (V,E) is a maximal
k-clique-star subgraph if there is no G′ ⊃ G such that G′ is a k-clique-star.

Pushing the Envelope in Overlapping Communities Detection 157

Example 2 Let us consider the graphs depicted in Fig. 1. For the graph G, there
are two maximal 2-clique-star, namely C1 = {v1, v2, v3, v4, v5, v6, v7, v8} and
C2 = {v1, v9, v10, v11, v12, v13, v14, v15}. For the graph G′ there are also two maxi-
mal 2-clique-star C ′

1 = {v1, v2, v3, v4, v5, v6, v7, v8} and C ′
2 = {v1, v9, v10, v11, v12,

v13, v14, v15}. Let us remark that in contrast to k-truss community, where the
whole graph G forms a unique community, our approach derives more mean-
ingful communities. More interestingly, for k > 2, the two possible maximal
communities are the two cliques for both G and G′.

Next, we describe the computation process of maximal k-clique-star sub-
graphs. This set of communities can be detected in two steps. Once the detec-
tion of the set of centroids according to the fixed value k is performed. The
simplest case is obtained when k is set to 2. In this case, the set of initial
communities is obtained by considering for each edge (u, v) the community
C(u,v) = {u, v} ∪ ⋂

x∈{u,v} Nx. When k is fixed to 3, the centroid is a trian-
gle. Then, this requires the enumeration of all triangles. Various algorithms have
been proposed to efficiently enumerate triangles in large graphs. Afterward, each
initial community is built starting from each triangle {u, v, w} and considering
Cu,v,w = {u, v, w} ∪ ⋂

x∈{u,v,w} Nx. When, k exceeds 3, the efficient algorithm
[6] for extracting k-cliques can be used. Notice that the goal of our new concept
is precisely to avoid enumerating large cliques by considering small cliques as
centroids, since for real-world networks, small cliques are more frequent contrary
to larger cliques [18]. As the worst-case complexity of our algorithm is in O(nk),
in the experimental evaluation, we perform our tests with k ∈ {2, 3}. Finally,
to obtain the final communities, we have to remove the set of redundant ones.
The following Algorithm 1 summarizes the computation process ∀k.

Algorithm 1: k-clique-star based communities detection
Input: A network G = (V,E) and k an integer
Output: A set of overlapping communities S

1 C ← k-cliques(G);
2 S ← ∅;
3 for C = (VC , EC) ∈ C do
4 S ← S ∪ (VC ∪ ⋂

u∈VC
Nu);

5 end
6 Remove-redundancy(S);
7 return S

4 Experimental Evaluation

Our experimental evaluation was conducted on five small networks and four big
networks to show the scalability of our model. These instances cover a vari-
ety of application areas. All these networks have ground-truth communities as
presented in column 3 of Table 1.

158 S. Jabbour et al.

We evaluate the performance of our approach by comparing it against the
following most prominent state-of-the-art (overlapping) community detection
algorithms: (i) Community finding using Model-based Overlapping Seed Expan-
Sion (MOSES) [14]: a local approach that search a set of seed nodes and look
for the local view of each node to expand them in order to form communities;
(ii) Clique Percolation Method (CPM) [1]: a local approach consisting of deriving
the local neighborhood of each node. In this method, each node is described by
the cliques it is a member of; (iii) Cluster Affiliation Model for Big Networks
(BIGCLAM) [25]; and (iv) Communities from Edge Structure and Node Attributes
(CESNA) [26]. For the CPM algorithm, we use the cliques of size 3. For BIGCLAM
method, user can specify the number of communities to detect, or let the pro-
gram determine the number of communities from the topology of the network.
We opt for the case where the number of communities is not fixed.

Table 1. Datasets description

Small datasets

Dataset Nodes/Edges #Truth communities Source

Dolphin 62/159 2 [13]

Karate 34/78 2 [23]

Risk map 42/83 6 [4]

Railway 301/1 224 21 [3]

Football 115/613 12 [7]

Big datasets

Dataset Nodes/Edges #Truth communities Source

Amazon 334 863/925 872 75 149 [10]

dblp 317 080/1 049 866 13 477 [10]

Youtube 1 134 890/2 987 624 8 385 [10]

Live-journal 3 997 962/34 681 189 287 512 [10]

The proposed system, referred to as K-CLIQUE-STAR, was written in C. Given
an input network as a set of edges and an integer k, our algorithm starts by gen-
erating the most dense part of each community called centroid. Such centroid
contains k interconnected nodes. The next step consists of expanding the cen-
troids by adding all nodes that are connected to all of the nodes of the centroids.
Our final communities are the maximal k-clique-star subgraphs. Notice that
each community is a one connected component.

For our experimental study, all algorithms have been run on a PC with an
Intel Core 2 Duo (2 GHz) processor and 2 GB memory. We imposed 1 h time limit
for all the methods. Missing histogram bars in Fig. 4 indicate that the algorithm
was not able to scale on the considered network under the time limit.

Pushing the Envelope in Overlapping Communities Detection 159

4.1 Size of the Centroids

As argued previously, in our k-clique-star based model, the value of k must be
set to a small value. So we run our approach on two different types of networks
from real-world data, namely small and big datasets, while varying k from 2 to 3,
and generate the communities for each value of k. Figure 2 shows some statistics
related to the communities obtained on dblp and youtube networks. What we
can see from these statistics is that starting from a small clique of size 2 or 3
our approach can find communities of large size. Also, in Fig. 2 for each of the
two networks we show the community size distribution when increasing the size
k of the clique. As can be seen, when k increases from 2 to 3 fewer communities
of small size are found for both dblp and youtube datasets.

Fig. 2. Communities size distributions

4.2 Impact of k on Quality Metrics

To further investigate the impact of the size of the centroids in our k-clique-
star based model, we look at the relationship between k and quality metrics
(see Fig. 3). We recall that, several measures have been proposed for quantifying
the quality of communities in networks. Here, we adopt two popular metrics, F1
score [25] and NMI score [9], to assess the performance of our method. Figure 3(a)
(respectively Fig. 3(b)) shows the relationship between F1 score and k (respec-
tively between NMI score and k). As Fig. 3 reveals, for some big datasets, the
best F1 scores (respectively NMI score) are obtained for k = 2. For example,
for amazon, youtube and live-journal datasets, k = 2 gives an important
improvement against k = 3. We also observe that these F1 scores are relatively
close for the dblp network. Now, these performances are relatively close for small
datasets except the karate network. More precisely, the F1 and NMI scores are
very close for dolphin, railway and football networks.

160 S. Jabbour et al.

Fig. 3. Results for k = 2 and k = 3

4.3 Experiments on Recovering Ground-Truth Communities

We evaluate the performance of K-CLIQUE-STAR for k = 2 and baselines in
terms of the agreement between the ground-truth communities and the detected
communities.

Results on Big Networks: After finding communities in big networks, we can
gauge the performance of each community that an algorithm has discovered and
whether a ground-truth community has been successfully identified. Figure 4
reports the performance comparison between our approach and the baseline
algorithms.

Experiments shows that our method outperforms every baseline for both
F1 and NMI scores. We also note that our approach shows a high margin
in performance gain against all baselines in two large networks youtube and
live-journal. MOSES is the closest one to our approach for amazon, and dblp.
Interestingly, on amazon and dblp, K-CLIQUE-STAR outperforms CESNA and
BIGCLAM with a bigger margin of F1 and NMI scores. In terms of average F1
performance, we have 0.389, 0.200, 0.065, 0.060 and 0.241 for K-CLIQUE-STAR,
CPM, BIGCLAM, CESNA and MOSES, respectively. From the average of F1 score our
approach outperforms CPM by 94.5%, BIGCLAM by 498, 46%, CESNA by 548, 33%
and MOSES by 61, 41%.

Similarly, we also observe that our approach, in terms of NMI score average,
gives an important improvement against the baselines in all the large networks.

Results on Small Networks:
Figure 5 displays the F1 and NMI based performance of the methods over all

five small networks.
Compared to baseline algorithms, our approach performs better on karate

graph and relatively close on dolphin, risk map, railway and football
datasets for both F1 and NMI metrics. On average, the F1 performance is 0.566,
0.441, 0.434, 0.532 and 0.438 for K-CLIQUE-STAR, CPM, BIGCLAM, CESNA and
MOSES, respectively. The average value of NMI over the 5 networks is 0.441,

Pushing the Envelope in Overlapping Communities Detection 161

Fig. 4. Results for big networks

0.272, 0.252, 0.391 and 0.281 for K-CLIQUE-STAR, CPM, BIGCLAM, CESNA and
MOSES, respectively. Overall, K-CLIQUE-STAR outperforms the baselines on aver-
age among the two scores.

As a summary, experimental results show that our approach outperforms the
baselines in every measure and every big network, and it achieves competitive
performance on small datasets and is able to find the ideal communities as same
as the known communities.

Fig. 5. Results on small networks

5 Conclusion

In this paper, we proposed a novel overlapping community detection model based
on the k-clique-star concept which is shown to have cohesive community struc-
ture. Such structure has a centered set of nodes forming a clique and a set of

162 S. Jabbour et al.

additional nodes connected to all the nodes of that clique. We showed that this
hybrid structure allows to avoid some k-truss limitations. Experiments on real-
world networks demonstrate the effectiveness and the efficiency of our proposed
algorithm. As a future work, detecting communities using other hybrid graph
classes is an interesting issue that we plan to further investigate.

References

1. Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: CFinder: locat-
ing cliques and overlapping modules in biological networks. Bioinformatics 22(8),
1021–1023 (2006)

2. Alba, R.D.: A graph-theoretic definition of a sociometric clique 3, 113–126 (1973)
3. Chakraborty, T., Srinivasan, S., Ganguly, N., Mukherjee, A., Bhowmick, S.: On

the permanence of vertices in network communities. In: SIGKDD, pp. 1396–1405
(2014)

4. Cheng, J., Leng, M., Li, L., Zhou, H., Chen, X.: Active semi-supervised community
detection based on must-link and cannot-link constraints. PLoS 9(10), 1–18 (2014)

5. Cohen, J.: Trusses: cohesive subgraphs for social network analysis. In: Technical
report, National Security Agency (2008)

6. Danisch, M., Balalau, O.D., Sozio, M.: Listing k-cliques in sparse real-world graphs.
In: WWW, pp. 589–598 (2018)

7. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99, 7821 (2002)

8. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community
in large and dynamic graphs. In: SIGMOD, pp. 1311–1322 (2014)

9. Lancichinetti, A., Fortunato, S., Kertesz, J.: Community detection algorithms: a
comparative analysis. New J. Phys. 11 (2009)

10. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection
(2014). http://snap.stanford.edu/data

11. Luce, R.D.: Connectivity and generalized cliques in sociometric group structure.
Psychometrika 15(2), 169–190 (1950)

12. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psy-
chometrika 14(2), 95–116 (1949)

13. Lusseau, D., Schneider, K., Boisseau, O., Haase, P., Slooten, E., Dawson, S.: The
bottlenose dolphin community of doubtful Sound features a large proportion of
long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

14. McDaid, A.F., Hurley, N.J.: Detecting highly overlapping communities with model-
based overlapping seed expansion. In: ASONAM, pp. 112–119 (2010)

15. Saito, K., Yamada, T., Kazama, K.: Extracting communities from complex net-
works by the k-dense method. IEICE Trans. 91(A11), 3304–3311 (2008)

16. Seidman, S.B.: A graph-theoretic generalization of the clique concep. J. Math.
Sociol. 5(3), 139–154 (1978)

17. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287
(1983)

18. Shao, Y., Chen, L., Cui, B.: Efficient cohesive subgraphs detection in parallel. In:
SIGMOD, pp. 613–624 (2014)

19. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–
823 (2012)

http://snap.stanford.edu/data

Pushing the Envelope in Overlapping Communities Detection 163

20. Wang, N., Zhang, J., Tan, K., Tung, A.K.H.: On triangulation-based dense neigh-
borhood graphs discovery. PVLDB 4(2), 58–68 (2010)

21. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

22. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393(6684), 440–442 (1998)

23. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33, 452–473 (1977)

24. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks:
the state-of-the-art and comparative study. ACM Comput. Surv. 45(4), 43:1–43:35
(2013)

25. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative
matrix factorization approach. In: WSDM, pp. 587–596 (2013)

26. Yang, J., McAuley, J.J., Leskovec, J.: Community detection in networks with node
attributes. CoRR abs/1401.7267 (2014)

27. Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle k-core
motifs within networks. In: ICDE, pp. 1049–1060 (2012)

Right for the Right Reason: Training
Agnostic Networks

Sen Jia, Thomas Lansdall-Welfare(B), and Nello Cristianini

Intelligent Systems Laboratory, University of Bristol, Bristol BS8 1UB, UK
{sen.jia,thomas.lansdall-welfare,nello.cristianini}@bris.ac.uk

Abstract. We consider the problem of a neural network being requested
to classify images (or other inputs) without making implicit use of a
“protected concept”, that is a concept that should not play any role in
the decision of the network. Typically these concepts include information
such as gender or race, or other contextual information such as image
backgrounds that might be implicitly reflected in unknown correlations
with other variables, making it insufficient to simply remove them from
the input features. In other words, making accurate predictions is not
good enough if those predictions rely on information that should not
be used: predictive performance is not the only important metric for
learning systems. We apply a method developed in the context of domain
adaptation to address this problem of “being right for the right reason”,
where we request a classifier to make a decision in a way that is entirely
‘agnostic’ to a given protected concept (e.g. gender, race, background
etc.), even if this could be implicitly reflected in other attributes via
unknown correlations. After defining the concept of an ‘agnostic model’,
we demonstrate how the Domain-Adversarial Neural Network can remove
unwanted information from a model using a gradient reversal layer.

Keywords: Agnostic models · Explainable AI · Fairness in AI · Trust

1 Introduction

Data-driven Artificial Intelligence (AI) is behind the new generation of success
stories in the field, and is predicated not just on a few technological break-
throughs, but on a cultural shift amongst its practitioners: namely the belief that
predictions are more important than explanations, and that correlations count
more than causations [4,8]. Powerful black-box algorithms have been developed
to sift through data and detect any possible correlation between inputs and
intended outputs, exploiting anything that can increase predictive performance.
Computer vision (CV) is one of the fields that has benefited the most from this
choice, and therefore can serve as a test bed for more general ideas in AI.

This paper targets the important problem of ensuring trust in AI systems.
Consider a case as simple as object classification. It is true that exploiting con-
textual clues can be beneficial in CV and generally in AI tasks. After all, if an
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 164–174, 2018.
https://doi.org/10.1007/978-3-030-01768-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_14&domain=pdf

Right for the Right Reason 165

algorithm thinks it is seeing an elephant (the object) in a telephone box (the
context), or Mickey Mouse driving a Ferrari, it is probably wrong. This illus-
trates that even though your classifier might have an opinion about the objects
in an image, the context around it can be used to improve your performance
(e.g. telling you that it is unlikely to be an elephant inside a telephone box), as
shown in many recent works [3,13,14].

However, making predictions based on context can also lead to problems
and creates various concerns, one of which is the use of classifiers in “out of
domain” situations, a problem that leads to research questions in domain adap-
tation [6,18]. Other concerns are also created around issues of bias, e.g. classifiers
incorporating biases that are present in the data and are not intended to be used
[2], which run the risk of reinforcing or amplifying cultural (and other) biases
[20]. Therefore, both predictive accuracy and fairness are heavily influenced by
the choices made when developing black-box machine-learning models.

Since the limiting factor in training models is often sourcing labelled data,
a common choice is to resort to reusing existing data for a new purpose, such
as using web queries to generate training data, and employing various strategies
to annotate labels, i.e. using proxy signals that are expected to be somewhat
correlated to the intended target concept [5,11]. These methods come with no
guarantees of being unbiased, or even to reflect the deployment conditions nec-
essarily, with any data collected “in the wild” [8,10] carrying with it the biases
that come from the wild.

To address these issues, a shift in thinking is needed, from the aforemen-
tioned belief that predictions are more important than explanations, to ideally
developing models that make predictions that are right for the right reason,
and consider other metrics, such as fairness, transparency and trustworthiness,
as equally important as predictive performance. This means that we want to
ensure that certain protected concepts are not used as part of making critical
decisions (e.g. decisions about jobs should not be based on gender or race) for
example, or that similarly, predictions about objects in an image should not be
based on contextual information (gender of a subject in an image should not be
based on the background).

In this direction, we demonstrate how the Domain-Adversarial Neural Net-
work (DANN) developed in the context of domain adaptation [6] can be mod-
ified to generate ‘agnostic’ feature representations that do not incorporate any
implicit contextual (correlated) information that we do not want, and is there-
fore unbiased and fair. We note that this is a far stronger requirement than
simply removing protected features from the input that might otherwise implic-
itly remain in the model due to unforeseen correlations with other features.

We present a series of experiments, showing how the relevant pixels used
to make a decision move from the contextual information to the relevant parts
of the image. This addresses the problem of relying on contextual information,
exemplified by the Husky/Wolf problem in [15], but more importantly shows a
way to de-bias classifiers in the feature engineering step, allowing it to be applied

166 S. Jia et al.

generally for different models, whether that is word embeddings, support vector
machines, or deep networks etc.

Ultimately, this ties into the current debate about how to build trust in these
tools, whether this is about their predictive performance, their being right for
the right reason, their being fair, or their decisions being explainable.

2 Agnostic Models

Methods have previously been proposed to remove biases, based on various prin-
ciples, one of which is distribution matching [20]: ensuring that the ratio between
protected attributes is the same in the training instances and in the testing
instances. However, this does not avoid using the wrong reasons in assessing
an input but simply enforces a post-hoc rescaling of scores, to ensure that the
outcome matches the desired statistical requirements of fairness.

In our case, we do not want to have an output distribution that only looks as
if it has been done without using protected concepts. We actually want a model
that cannot even represent them within its internal representations, where we
call such a model agnostic. This is a model that does not represent a protected
concept internally, and therefore cannot use it even indirectly. Of course this
kind of constraint is likely to lead to lower accuracy. However, we should keep
in mind that this reduction in accuracy is a direct result of no longer using
contextual clues and correlations that we explicitly wish to prevent.

In this direction, we consider classification tasks where X is the input space
and Y = {0, 1, . . . , L − 1} is the set of L possible labels. An agnostic model
(or feature representation) Gf : X → R

D, parameterized by θf , maps a data
example (xi,yi) into a new D-dimensional feature representation z ∈ R

D such
that for a given label p ∈ Y , there does not exist an algorithm Gy : RD → [0, 1]L

which can predict p with better than random performance.

3 Domain-Adversarial Neural Networks

One possible way to learn an agnostic model is to use a DANN [6], recently
proposed for domain adaptation, which explicitly implements the idea raised in
[1] of learning a representation that is unable to distinguish between training
and test domains. In our case, we wish for the model to be able to learn a
representation that is agnostic to a protected concept.

DANNs are a type of Convolutional Neural Network (CNN) that can achieve
an agnostic representation using three components. A feature extractor Gf (·; θf),
a label prediction output layer Gy(·; θy) and an additional protected concept
prediction layer Gp : R

D → [0, 1], parameterized by θp. During training, two
different losses are then computed: a target prediction loss for the i-th data
instance Li

y(θf , θy) = Ly(Gy(Gf (xi; θf); θy),yi) and a protected concept loss
Li

p(θf , θp) = Lp(Gp(Gf (xi; θf); θp), pi), where Ly and Lp are both given by the
cross-entropy loss and pi is the label denoting the protected concept we wish to
be unable to distinguish using the learnt representation.

Right for the Right Reason 167

Training the network then attempts to optimise

E(θf , θy, θp) = (1 − α)
1

n

n∑

i=1

Li
y(θf , θy) − α

(
1

n

n∑

i=1

Li
p(θf , θp) +

1

n′

N∑

i=n+1

Li
p(θf , θp)

)
,

(1)
where n′ = N − n and α is the hyper-parameter for the trade-off between the
two losses, finding the saddle point θ̂f , θ̂y, θ̂p such that

(θ̂f , θ̂y) = argminθf ,θy
E(θf , θy, θ̂p), (2)

θ̂p = argmaxθp
E(θ̂f , θ̂y, θp). (3)

As further detailed in [6], introducing a gradient reversal layer (GRL)
between the feature extractor Gf and the protected concept classifier Gp allows
(1) to be framed as a standard stochastic gradient descent (SGD) procedure as
commonly implemented in most deep learning libraries.

The network can therefore be learnt using a simple stochastic gradient proce-
dure, where updates to θf are made in the opposite direction of the gradient for
the maximizing parameters, and in the direction of the gradient for the minimiz-
ing parameters. Stochastic estimates of the gradient are made, both for the target
concept and for the protected concept, using the training set. We can see this as
the two parts of the neural network (target classifier Gy and protected concept
classifier Gp) are competing with each other for the control of the internal repre-
sentation. DANN will attempt to learn a model Gf that maps an example into a
representation allowing the target classifier to accurately classify instances, but
crippling the ability of the protected concept classifier to discriminate inputs by
their label for the protected concept.

4 Experiments

To test the use of DANNs for learning representations that can be used to
make predictions for the right reasons, we ran two different experiments. In
Experiment 1, we first demonstrate the issue of using contextual information to
make predictions in a cross-domain classification task, before using a DANN in
Experiment 2, showing that the network can learn an agnostic representation
that allows us to make predictions on a target concept without using information
from a correlated contextual concept (the protected concept in this case), such
as the image background.

4.1 Data Description

In this work, we combine two datasets, making use of the ‘Jaguar’ and ‘Killer
whale’ categories from the ImageNet dataset [16], as well as the ‘Forest path’
and ‘Coast’ categories from the Places dataset [21].

A two-part training set was constructed containing 2,524 images from the
‘Jaguar’ category, and the same number for the ‘Killer whale’ category from

168 S. Jia et al.

Fig. 1. Example images taken from the ‘Jaguar’, ‘Killer whale’, ‘Forest path’ and
‘Coast’ categories of the ImageNet and Places datasets respectively (left-right).

ImageNet (the target concept training set). This was further supplemented with
5,000 images from each of the two categories (‘Forest path’ and ‘Coast’) from the
Places dataset (the contextual concept training set), for a total of 15,048 images
in the combined training set. Two separate hold-out sets were also created, one
for the target concept containing 50 hold-out images from each of the ‘Jaguar’
and ‘Killer whale’ categories, and one for the contextual concept containing 50
hold-out images from each of the ‘Forest path’ and ‘Coast’ categories.

Data augmentation was performed on the training set to increase the number
of instances by creating new images that are multi-crops of 224 × 224 pixels
and horizontally flipping copies of the training set images. All images in our
experiments were also pre-processed to be 256×256 pixels by a process of multi-
cropping where each image is resized before cropping the final size from the
centre region, as in [9,12]. Example images from the training set used for the
experiments can be seen in Fig. 1.

4.2 Network Structure

The network structure used for our experiments in this paper are based upon a
simplified version of the VGG-net CNN used in [17], where the feature extraction
layers Gf consist of five convolutional layers: conv3-641, conv3-128, conv3-256,
conv3-512 and conv3-512, with ReLU activation and max-pooling layers inserted
after each convolutional layer. The output prediction classifiers Gy and Gp are
each composed of four fully connected layers, fc-1024, with ReLU and dropout
layers with a dropout of 0.5 after each fully connected layer.

1 conva-b denotes a convolutional layer consisting of b filters of size a × a.

Right for the Right Reason 169

1 2 3 4 5 6 7 8 9 10
Training epochs

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Ac

cu
ra

cy

Target concept
Contextual concept

(a) CNN trained on the target concept
training set (animals)

1 2 3 4 5 6 7 8 9 10
Training epochs

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ac
cu

ra
cy

Target concept
Contextual concept

(b) CNN trained on the contextual con-
cept training set (backgrounds)

Fig. 2. Results from Experiment 1, showing that a standard CNN model trained on
the target concept will also learn how to classify in the contextual concept and vice
versa.

4.3 Experiment 1: Cross-domain Classification

In this first experiment, we motivate our approach by demonstrating the problem
we wish to address, namely that contextual information can be used to make
classification decisions about our target concept that is not related to the target
that we actually wish to learn.

We began by training from scratch two independent CNNs with the same
network architecture, one on the target concept training set and one on contex-
tual concept training set. The layers of the network are described in Sect. 4.2
with a single output prediction classifier Gy per model, i.e. each CNN is com-
posed of five convolution layers, followed by four fully connected layers with no
shared features across the models. Each model was trained for 10 epochs using
the following model parameters: a batch size of 32, a starting learning rate of
η = 0.01 that decays every three epochs by a factor of 10, a momentum of 0.5
and a weight decay of 5e−4.

The accuracy of each model was measured on both the target and contextual
test sets after each epoch as shown in Fig. 2. As one might expect, we can see
that the model trained on the target concept achieves an accuracy of 92% on
the target test set, while the contextual concept model achieves an accuracy of
91% on the contextual test set. More problematically, we can see that the target
concept model, trained only on images of animals, also has good performance
at classifying images of forest paths and coastlines from the contextual test set,
with an accuracy of 79%. Similarly, the contextual concept model, trained only
on images of forest paths and coastlines can correctly identify animals with an
accuracy of 88%.

170 S. Jia et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

Target concept
Contextual concept

(a) Performance of Gy in the DANN
trained for the target concept (animals)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

Target concept
Contextual concept

(b) Performance of Gp in the DANN
trained for the contextual concept (back-
grounds)

Fig. 3. Accuracy of the two independent classifiers in the DANN using the shared
feature space on the test sets for different values of α.

4.4 Experiment 2: Learning with Domain-Adversarial Neural
Networks

In this next experiment, we show that with our proposed use of DANNs max-
imises its performance on the target concept whilst following the constraint that
it should not learn useful features for the protected contextual concept. We
further examine the most informative pixels (e.g. those pixels which have the
strongest response in the feature map) used for classification [7,19], showing that
the most informative pixels are no longer found in the image background.

Keeping all the model parameters, apart from a new learning rate (η =
0.001), the same as in Experiment 1, we trained a single DANN model on the
combined training set, with the network layers outlined in Sect. 4.2, with the tar-
get prediction output layers Gy predicting the target concept, and the protected
concept prediction layers predicting the contextual concept. By doing so, we
force the model to learn a shared data representation (feature space) that max-
imises performance on the target while incorporating no knowledge of features
which are useful for classifying the contextual concept images. This process was
repeated for different gradient trade-offs in the range α = [0, 0.1, . . . , 1] using a
grid-search procedure, where α = 0 represents simply training the shared feature
space on the target concept, and α = 1 represents training the shared feature
space to maximise the loss for the contextual concept. We repeated this process
10 times, reporting the average accuracy for each run, along with the standard
deviation.

In Fig. 3, we can see the accuracy of the DANN for varying gradient trade-
off values on the target and contextual concept test sets. Our results show that
as α increases and is further constrained in its use of information from the
contextual concept, the performance on the target concept decreases, suggesting

Right for the Right Reason 171

(a) Activation maps for the ‘Killer whale’
category

(b) Activation maps for the ‘Jaguar’ cat-
egory

Fig. 4. Activation maps based on the strongest response of the shared feature represen-
tation. Examples selected are those with the least correlation between the activation
maps for α = 0 and α = 0.8 as shown in the images.

that the performance on the intended target concept was indeed being helped
by the contextual background information. Our results show that once we have
removed features which are useful for predicting the contextual concept, our
target classifier achieves an accuracy of 64%, while the contextual classifier can
only maintain an accuracy close to random guessing.

We further investigated whether after applying the minimax procedure of
the DANN that the most informative pixels for prediction corresponded with
the location of the target concept in the image, or whether they were focused
on the background scene of the image. Figure 4 shows activation maps for the
feature representation shared between the independent classifiers on a set of
three images for each target concept category. Examples were selected as those
with the least correlation between the activation maps for the contrasting α
values of 0 and 0.8 shown, where α values were chosen as the two extremes in
the classification accuracy.

We can observe that for the ‘Killer whale’ category, the most informative
pixels for α = 0 are indeed found in the background of the image, while for
α = 0.8 the activation maps show that the network is focusing on the actual body
of the animal instead, as desired. For the ‘Jaguar’ category, analysis of the most
informative pixels is less clear, with activation generally being spread widely
across the image. However, we do see some evidence of a stronger activation
response to parts of the jaguar’s body overall.

172 S. Jia et al.

5 Discussion

In our experiments, we found that as the model learns the shared features
with increasingly less contextual information, accuracy of the target classifier
decreases. This is exactly what we expect and directly addresses our main
argument, that previously the classifier was relying on the protected contextual
background information that should not be used to make its predictions.

At one extreme, where α = 1, the network is using no information from the
target concept in its data representation, instead trying to maximise its loss
on the protected concept in the shared feature space Gf , while minimising its
loss in the protected classifier Gp. This tension between the two parts of the
network leads to a minimax scenario where if there is any information which
can be exploited to correctly predict in the protected concept, it is subsequently
removed from the data representation.

We note that ideally α should be set to 1 for similar experiments, given
that for any other setting the learning system would still be exploiting forbidden
information from the protected concept, and would not be satisfying the original
requirements of the task: to learn to predict without the contextual information.
However, since in this scenario the shared feature space would not rely on the
target domain at all, α needs to be slowly increased as training progresses until
reaching its maximum. In this way, the features will be guided by the target
domain as well, forming a saddle point in the exploration of the feature space as
required.

Results from investigating the most informative pixels for classification at
differing levels of α revealed that the constraint of the contextual concept appears
to have been more successful for the ‘Killer whale’ and ‘Coast’ images than for
the ‘Jaguar’ and ‘Forest path’ pairing. This can perhaps be best explained by how
closely the contextual concept training images represent the contextual concept
found in the target concept training images, i.e. the whales are always pictured
next to or in the ocean, whereas jaguars will sometimes be found outside of the
jungle with different backgrounds, and therefore the ‘Forest path’ category does
not match ‘Jaguar’ backgrounds as closely as ‘Coast’ does for the ‘Killer whale’
category.

Further theoretical and experimental analysis of additional minimax archi-
tectures is needed to explain the phenomena of the target classifier accuracy
increasing on both target and contextual test sets for values of α ≥ 0.8.

6 Conclusions

The creation of a new generation of AI systems that can be trusted to make fair
and unbiased decisions is an urgent task for researchers. As AI rapidly conquers
technical challenges related to predictive performance, we are discovering a new
dimension to the design of such systems that must be addressed: the fairness
and trust in the system’s decisions.

In this paper, we address this critical issue of trust in AI by not only proposing
a new high standard for models to meet, being agnostic to a protected concept,

Right for the Right Reason 173

but also proposing a method to achieve such models. We define a model to be
agnostic with respect to a set of concepts if we can show that it makes its deci-
sions without ever using these concepts. This is a much stronger requirement
than in distributional matching or other definitions of fairness. We focus on the
case where a small set of protected concepts should not be used in decisions, and
can be exemplified by samples of data. We have demonstrated how ideas devel-
oped in the context of domain adaptation can deliver agnostic representations
that are important to ensure fairness and therefore trust.

Our experiments demonstrate that the DANN successfully removes unwanted
contextual information, and makes decisions for the right reasons. While demon-
strated here by ignoring the physical background context of an object in an
image, the same approach can be used to ensure that other protected informa-
tion does not make its way into black-box classifiers deployed to make decisions
about people in other domains and classification tasks.

Acknowledgements. SJ, TLW and NC are support by the FP7 Ideas: European
Research Council Grant 339365 - ThinkBIG.

References

1. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.:. Analysis of representations
for domain adaptation. In: Advances in Neural Information Processing Systems,
pp. 137–144 (2007)

2. Caliskan, A., Bryson, J.J., Narayanan, A.: Semantics derived automatically from
language corpora contain human-like biases. Science 356(6334), 183–186 (2017)

3. Chu, W., Cai, D.: Deep feature based contextual model for object detection. Neu-
rocomputing 275, 1035–1042 (2018)

4. Cristianini, N.: On the current paradigm in artificial intelligence. AI Communica-
tions 27(1), 37–43 (2014)

5. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition, 2009. CVPR 2009, pp. 248–255. IEEE (2009)

6. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J.
Mach. Learn. Res. 17(1), 2030–2096 (2016)

7. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for
accurate object detection and semantic segmentation. CoRR, arXiv:abs/1311.2524
(2013)

8. Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE
Intell. Syst. 24(2), 8–12 (2009)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)

10. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
a database for studying face recognition in unconstrained environments. Technical
report, Technical Report 07–49, University of Massachusetts, Amherst (2007)

11. Jia, S., Lansdall-Welfare, T., Cristianini, N.: Gender classification by deep learning
on millions of weakly labelled images. In: 2016 IEEE 16th International Conference
on Data Mining Workshops (ICDMW), pp. 462–467. IEEE (2016)

http://arxiv.org/abs/abs/1311.2524
http://arxiv.org/abs/1512.03385

174 S. Jia et al.

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–
1105. Curran Associates Inc. (2012)

13. Li, J., Wei, Y., Liang, X., Dong, J., Tingfa, X., Feng, J., Yan, S.: Attentive contexts
for object detection. IEEE Trans. Multimed. 19(5), 944–954 (2017)

14. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

15. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM
(2016)

16. Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large
scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252
(2015)

17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Eprint Arxiv (2014)

18. Wulfmeier, M., Bewley, A., Posner, I.: Addressing appearance change in out-
door robotics with adversarial domain adaptation. arXiv preprint arXiv:1703.01461
(2017)

19. Zeiler, M.D., Fergus, R.: Visualizing and Understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

20. Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.-W.: Men also like shop-
ping: Reducing gender bias amplification using corpus-level constraints. arXiv
preprint arXiv:1707.09457 (2017)

21. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million
image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell.
(2017)

http://arxiv.org/abs/1703.01461
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/1707.09457

Link Prediction in Multi-layer Networks
and Its Application to Drug Design

Maksim Koptelov(B) , Albrecht Zimmermann , and Bruno Crémilleux

Normandie Univ, UNICAEN, ENSICAEN, CNRS - UMR GREYC, Caen, France
{maksim.koptelov, albrecht.zimmermann, bruno.cremilleux}@unicaen.fr

Abstract. Search of valid drug candidates for a given target is a vital
part of modern drug discovery. Since the problem was established, a num-
ber of approaches have been proposed that augment interaction networks
with, typically, two compound/target similarity networks. In this work
we propose a method capable of using an arbitrary number of similarity
or interaction networks. We adapt an existing method for random walks
on heterogeneous networks and show that adding additional networks
improves prediction quality.

Keywords: Chemoinformatics · Link prediction · Multi-layer graphs

1 Introduction

Predicting links between biological or chemical compounds, and targets, such as
therapeutic targets, binding sites or disease phenotypes, is an integral part of
research in biology and medicinal chemistry. While the main approach to reliably
identifying such links still depends on in vitro testing, computational methods
are employed more and more frequently to fine-tune the set of candidates to be
tested in silico, cutting down on time and money invested in real-world testing.

A number of methods have been introduced since the problem was first for-
mulated in this form. A straight-forward manner consists of formulating a clas-
sification problem: given a particular target, and a number of compounds that
have been tested against it, one decides on a representation for the compounds
and creates a binary prediction problem that can be solved using any number of
existing machine learning techniques. The problem can also be turned around,
treating a compound as the class, and targets as data instances, or learning on
both entities’ representation [13].

A problem such approaches have to overcome is sparsity: whether it is because
a target has only recently been identified, because a disease is rare (hence com-
mercially unattractive), or because the relation between certain compounds and
targets has not been evaluated for plausible biological reasons, the total space
of possible links remains largely under-explored. Concretely, this means that
negative examples are often not available, ruling certain techniques out.

A semantically similar problem setting that also faces the sparsity problem is
that of product recommendation, and recommender systems have therefore been
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 175–187, 2018.
https://doi.org/10.1007/978-3-030-01768-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_15&domain=pdf
http://orcid.org/0000-0001-9065-2827
http://orcid.org/0000-0002-8319-7456

176 M. Koptelov et al.

adapted for the problem setting [7]. A simple recommender system-like approach
implements, for instance, the reasoning that if two compounds are both linked
with several shared targets, and one of them is linked to an additional one, it
is reasonable to assume that the other one should be as well. Such an approach
has the advantage of exploiting information that is not directly linked to the
chosen target yet is still faced with a sparsity problem since, as mentioned, most
compounds do not have many links to start with. This makes some approaches
to recommendation, such as matrix factorization, difficult or impossible to use.

One relatively recent proposal to address this problem consists of using net-
work data: vertices represent entities, i.e. compounds and targets, and edges
between them their relation. While this does not solve the sparsity problem per
se, it allows to introduce additional information: chemical or genetic similar-
ity, for instance, or drug-drug/target-target interactions reported in the litera-
ture. There are two obvious question related to this idea: (1) Which information
sources should one use? (2) How can different networks be integrated?

Current solutions often limit themselves to a single similarity network for
both compounds and targets, choosing a single similarity measure such as the
Tanimoto, Cosine, Simcomp [4] similarity, or Smith-Waterman scores [11] (typi-
cally based on empirical validation). In addition, networks are not integrated as
such but typically treated separately, with the similarity networks inducing new
edges in the interaction network.

In our work, we propose to use a multi-layer network to solve this problem.
We illustrate our proposal in the context of ligand-protein interactions, ligands
being organic compounds, and proteins biological targets identified as relevant
for diseases. Instead of picking and choosing between different sources of infor-
mation, we propose to use all of them, exploiting different similarity measures
and interaction information available. Our main contribution is an improvement
on the previously introduced NRWRH method [2] that allows us to exploit multi-
layer networks assembled from an arbitrary number and type of layers. As we
show in the experimental evaluation, the algorithm effectively exploits the com-
bination of different types of incomplete data to perform drug-target prediction.

The rest of the paper is organized as follows. Section 2 provides basic nota-
tions and problem formulation. Section 3 discusses related work in the given
field. Section 4 describes how we adapt existing algorithms to the multi-layer
setting. Section 5 describes how we prepare and integrate different data sources,
the experimental setup, and presents empirical results. Finally, Sect. 6 concludes
and outlines future work.

2 Definitions and Problem Formulation

2.1 Basic Notations

The most important concept in our work is that of a graph.

Definition 1 (Labeled Graph). A labeled graph is a tuple 〈V,E, λv, λe〉, with
V a set of vertices, E ⊆ V × V a set of edges, λv : V �→ Av a labeling function

Link Prediction in Multi-layer Networks 177

mapping vertices to elements of an alphabet of possible vertex labels, and λe :
E �→ Ae a labeling function for edges. We call the degree of a vertex the number
of edges in which it is involved: deg(v) = |{(u,w) ∈ E | u = v ∨ w = v}|.

We exploit this representation in two ways: First, ligands are represented by
their molecular 2D-structure, with Av a subset of atoms, and Ae = {single cova-
lent bond, double covalent bond, triple covalent bond}. For example, Pyridin-4-
amine has chemical equation C5H6N2 and can be presented as in Fig. 1.

Fig. 1. Example of a molecule 2D representation (left) and its corresponding graph in
hydrogen suppressed form (right)

Second, the relationships between ligands, proteins, or between ligands and
proteins, are represented as networks. These include ligand-ligand (ll) and
protein-protein (pp) similarity networks, in which Av is the set of ligand/protein
identifiers, respectively, and Ae = [0, 1]. The other type of network are interac-
tion networks, both ligand-ligand/protein-protein interaction networks derived
from the literature, with Ae = {0, 1}, and ligand-protein (lp) interaction net-
works, which contain two set of vertices Vl, Vp and edges ∀(u, v) ∈ E : u ∈
Vl, v ∈ Vp, and Ae = {0, 1} or Ae = R. The former labeling is usually derived
from the latter by thresholding. An example of relationships between ligands
and/or proteins as networks is presented in Fig. 2.

Definition 2 (Connected component). Given a graph G, we call a subgraph
G′ = 〈V ′, E′, λv, λe〉, V ′ ⊆ V,E′ ⊆ E a connected component (CC) iff for
any two vertices u, v ∈ V , there exists a path {(v1, v2), . . . , (vm−1, vm)}, vi ∈
V, (vi, vi+1) ∈ E, such that v1 = u, vm = v and there is no supergraph of G′,
G′′ = 〈V ′′, E′′, λv, λe〉, V ′′ ⊃ V ′, E′′ ⊃ E′ that is a CC.

Definition 3 (Multi-layer graph). A multi-layer graph is a tuple 〈V,E,
λv, λe〉, with V a set of vertices, E a multi-set of edges, i.e. tuples (u, v), u, v ∈ V .
In a multi-layer graph, E can be decomposed into disjunct sets El ⊆ V ×V , called
layers, E =

⋃
i Eli .

As becomes clear from this definition, an arbitrary number of networks can
be aggregated into a multigraph, as long as there is overlap in their vertex sets.
Trivially, even networks with disjunct vertex sets can be aggregated but since
such vertices will not have any edges in the graphs from which they are missing,
this will probably be of little use.

178 M. Koptelov et al.

Fig. 2. An example of a multi-layer graph with 6 networks: ligand-protein network
is in deep blue (IUPHAR), ligand-ligand networks are in light blue (ligand similarity
network) and violet (DrugBank), protein-protein networks are in green (BioGrid), grey
(protein similarity network based on substrings) and brown (protein similarity network
based on motifs)

Definition 4 (Motif). Protein motifs are patterns defined using biochemical
background knowledge, often expressed in the form of regular expressions.1

Definition 5 (Tanimoto coefficient). The Tanimoto coefficient of two vectors
x,y ∈ {0, 1}d is calculated as: coeffTanimoto(x,y) = x·y

||x||2+||y ||2−x·y .

2.2 Problem Formulation

The problem setting we address in this paper is one of link prediction between
ligands (drug candidates) and proteins (biological targets).

Definition 6 (Ligand-protein activity prediction). For a given number of
ligand-protein activity networks Gi

lp = 〈Vl ∪ Vp, Ei, λv, λei〉, with u ∈ Vl labeled
with ligands identifiers, v ∈ Vp labeled with protein identifiers, ∀(u, v) ∈ E, u ∈
Vl, v ∈ Vl, and Ae = {0, 1}, ligand-ligand networks Gi

l = 〈Vl, E
i
l , λv, λeil

〉,
protein-protein networks Gi

p = 〈Vp, E
i
p, λv, λeip

〉 and a given (u, v) �∈ E, u ∈
Vl, v ∈ Vp predict, whether λe((u, v)) = 1.

We limit ourselves to the relatively easier task of predicting whether there is
activity or not, leaving the prediction of its strength as future work.

1 An open-access database is available at http://prosite.expasy.org.

http://prosite.expasy.org

Link Prediction in Multi-layer Networks 179

3 Related Work

The literature on compound-target activity prediction, even using networks, is
too vast to discuss here. We therefore present a number of works illustrating the
characteristics we discussed in the introduction. Ligand-protein activity, the use
case we explore here, has been addressed in [13], which selects a ligand and target
similarity measure each, and multiplies activity vectors of known ligands/targets
with the similarity to new ligands/targets to derive predictions. In [14], the same
group used ligand structural and pharmacological similarity, as well as genetic
protein similarity, mapped ligands and targets into a shared feature space and
predicted activity. The authors of [3] used three networks: ligand-ligand simi-
larity, target-target similarity, ligand-target activity, evaluated four ligand simi-
larity measures, settling on Tanimoto distance. The proposed method, NWNBI,
exploits similarity weights and log-values of activity measurements to perform
four-step network traversals. In [2], ligand similarity is calculated as weighted
average of two similarity measures, and combined with a target similarity, and
the interaction network into a three-layer network, which they refer to as “het-
erogeneous”. They simulate random walk with restart by matrix multiplication,
and show that only using a single similarity measure or ignoring the interaction
network deteriorates results. Three networks are also used in [7], the authors
discuss different options for similarity measures, and perform low-rank matrix
factorization on the adjacency/similarity matrices. They address sparsity by giv-
ing non-existing links a small non-negative weight. Ligand-protein activity is also
the subject of [1], which exploits the three-layer network to perform weighted
nearest-neighbor classification. Gene-disease interactions have been considered
in [12], using three layers, simulating random walk by matrix multiplication,
using different numbers of steps for the two similarity networks. Using a simi-
lar bi-random walk idea, [9] consider microRNA-disease interactions, exploiting
a three-layer network. The random walk with restart in [8] is symmetric (and
functionally the same as in [2]), with the similarity networks constructed by
averaging two similarity measures. They evaluate different parameter settings.

4 Exploring a Multi-layer Graph

As the preceding section shows, the standard setting employed consists of three
networks, and to adhere to this setting, authors either choose a single similarity
measure empirically, or combine similarity measures via user-specified weights.
Instead, we propose to combine all available networks into a multi-graph having
more than three layers. Once we have such a network, the question is how to
exploit it, however, and here we hew close to the literature.

4.1 The Random Walk Model

A long-established method for exploring a network is the random walk [10],
which proceeds roughly as follows: starting from a randomly selected node, it

180 M. Koptelov et al.

performs walks along edges of the graph at random. In every step, the edge to
follow is chosen uniformly from all outgoing links (in the case of an unweighted
graph) or proportional to link weights (in the case of a weighted graph). Node
importance is based on how frequently the walker visits the node: a node with
higher frequency is considered more important than a node with a low value
(Fig. 3). This idea can be modified in a number of ways to improve network
exploration: the walker can be constrained to perform at most max steps steps,
to not visit any of the last c vertices it encountered, or with small probability
1−β the process can be restarted at any time to avoid getting trapped by those
vertices it mustn’t visit. The product of the probabilities of edges the walker
traversed gives the cumulative probability of a path between two nodes and can
be used to predict a link between a starting node and an end node: if the path
probability is greater than a given threshold, a new edge is predicted.

Fig. 3. Nodes importance example in a graph, taken from [6]

To extend this approach to multi-layer graphs, one needs to add how to
choose the layer to walk in. We propose to select a network uniformly at random
from the set of networks, and multiply the path strength by 1

|{Gi
l}|+|{Gj

p}|+|{Gk
lp}| .

Repeat the process until a user-defined target vertex is reached or the maximum
number of steps have been performed. Due to the randomized nature, random
walks are usually repeated several times to derive more robust estimates.

4.2 Network-Based Random Walk on Multi-layer Network

Instead of explicitly random walking as described above, random walks are often
simulated via matrix multiplication of transition matrices. This is notably the
approach proposed in [2], abbreviated as NRWRH. They define a transition

matrix M =
[
Mpp Mpl

Mlp Mll

]

, in the manner described above, i.e. uniform probabili-

ties for lp/pl-transitions, proportional probabilities for similarities, with an addi-
tional user-specified parameter λ ∈ [0, 1] affecting moves from ligands to proteins

Link Prediction in Multi-layer Networks 181

and vice versa. Given a ligand li, a starting vector v0 ∈ [0, 1]|Vl|+|Vp| is initialized
with 1 at the position for v ∈ Vl, λv(v) = li, 1

|{(v,u)∈Elp}| at the positions for the
proteins linked to it, 0 otherwise. Protein entries in v0 are multiplied with 1− η,
ligand entries with η, a user-defined parameter to bias the walk towards proteins
(η < 0.5), or ligands (η > 0.5). The vector representing the probabilities that a
walker starting with li finds itself in any of the nodes is calculated iteratively as
pt+1 = (1−β)MT pt+βp0 until |pt+1−pt| < 10−10. This can be understood as the
random walker walking “in all directions at the same time”. The approach can be
considered a simplified version of Personalized PageRank [5], simplified because
edges are undirected and there is only a single starting vertex. Removing the
starting vertices from the final state vector, and ranking entries gives predicted
edges. We adapt this approach to a setting with |{Gi

l}| + |{Gj
p}| + |{Gk

lp}| ≥ 3.
While the algorithm stays essentially the same, we decompose the transition
matrix into a matrix M for within-network/layer transitions, and a matrix N
for between-network/layer transitions. We also do away with the user-dependent
λ. Explicitly creating M in the manner shown above is easy for three layers but
becomes much harder when different numbers can be involved. We hence con-

struct M =

⎡

⎣
MGp

0 0
0 MGl

0
0 0 MGlp

⎤

⎦, with MGp
=

⎡

⎢
⎣

M1
Gp

0 . . . 0
0 M2

Gp
. . . 0

0 0 . . . M
|{Gi

p}|
Gp

⎤

⎥
⎦ derived

from protein-protein similarity networks (MGl
, MGlp

accordingly). The tran-

sition matrix N =

⎡

⎢
⎢
⎣

NG1
p→G1

p
NG2

p→G1
p

. . . N
G

Gi
lp

lp →G1
p

.
N

G1
p→G

Gi
lp

lp

N
G2

p→G
Gi

lp
lp

. . . N
G

Gi
lp

lp →G
Gi

lp
lp

⎤

⎥
⎥
⎦ explicitly models

possible layer transitions, with 1s on the main diagonal of a submatrix NGj→Gi

for all nodes present in both layers, 0s otherwise. Note that this means that
transition matrixes from ligand to protein layers (and vice versa) have zeros
everywhere including the main diagonal. The initial state vector v0 has dimen-
sionality (|Vp| · |{Gpi

}| + |Vl| · |{Gli}| + |Vl ∪ Vp| · |{Glpi
}|) with entries for all

vertices in all layers. It is initialized by setting the entry for the starting ligand
and each linked protein to 1 in every network they are present. Matrices and
state vectors are column-normalized – the entries of a column must sum to 1.

Our algorithm, NEtWork-basEd Random walk on MultI-layered NEtwork
(NEWERMINE), is summarized in Algorithm 1. (MnormN)norm can be pre-
computed, giving us a matrix that is functionally equivalent to M as defined in
NRWRH, and used on every iteration of NEWERMINE to save computation
time. At the end, vfinal needs to be summarized by summing up for each vertex
all corresponding entries, leading to a vector with dimensionality |Vl ∪ Vp| from
which the edge ranking can be derived.

5 Experimental Evaluation

In order to allow reproducibility of our work, we evaluated our approach on
publicly available data. In this part we provide a description of the data used

182 M. Koptelov et al.

Algorithm 1: The NEWERMINE algorithm
Input : adjacency matrix M , transition matrix N , starting vertex,

max steps, η, β, max diff
Output: Probability scores vfinal

V0l ← initialize starting vertex
V0p ← initialize targets for which an interaction with starting vertex is known
V0 ← (1 − η) · V0lnorm + η · V0pnorm

step ← 0
repeat

step ← step + 1
Vstep ← β · (MnormN)normVstep−1 + (1 − β) · V0

until (|vstep − vstep−1| ≤ max diff) ∨ (step > max steps)
return vstep

and the details of the experimental protocol. This is followed by the results and
the discussion.

5.1 Experimental Settings

Datasets. In total we have used 4 datasets:

1. IUPHAR – an open-access database of ligands, biological targets and their
interactions. We used version 2017.5 (released on 22/08/2017). The full
dataset has 8978 ligands, 2987 proteins, and 17198 interactions (edges)
between them2. In order to satisfy the designed setting conditions, we removed
duplicate interactions (based on different affinity measures), leaving 12456
interactions in total. For existing interactions, we label an edge with 1 if the
negative logarithm of the affinity measure is ≥5, non-interacting otherwise.3

We treat all affinity measures available in the data (pKi, pIC50, pEC50, pKd,
pA2, pKB) as equivalent.

2. DrugBank (DB) – an open-access database of drug-drug interactions. We
used version 5.0.11 (released 20-12-2017). It has 658079 interactions of 3138
distinct drugs. 242922 of these interactions involve 1254 distinct ligands that
are present in IUPHAR. The database was also used as a source of 2D rep-
resentations of ligands to compute ligand similarities.

3. BioGrid (BG) – an open-access database of protein-protein interactions mined
from a corpus of biomedical literature. We used version 3.4.154 (25/10/2017).
It has 1482649 interactions of 67372 distinct proteins. Only 15410 of these
interactions involve proteins present in IUPHAR (1925 distinct proteins).

4. NCBI Protein database – The National Center for Biotechnology Information
proteins database4 was used to obtain amino acids sequences to represent tar-
gets. The data was parsed from the website of NCBI and mapped to IUPHAR

2 in ligands.csv, interactions.csv, and targets and families.csv, respectively.
3 Cutoff proposed by researchers from CERMN (http://cermn.unicaen.fr).
4 https://www.ncbi.nlm.nih.gov/protein/.

http://cermn.unicaen.fr
https://www.ncbi.nlm.nih.gov/protein/

Link Prediction in Multi-layer Networks 183

Table 1. Data set and network characteristics

Data set Entities Relations Sparsity Network

Vertices Edges Sparsity CC

IUPHAR 11965 12456 0.00017 11965 12456 0.00017 443

DrugBank 3138 658079 0.1337 1254 122808 0.15631 1

BioGrid 67372 1482649 0.00065 1898 8658 0.0048 11

Ligand similarity 6821 23259610 1 6821 23259610 1 1

NCBI 1818 1651653 1 1818 1651653 1 1

using the RefSeq attribute (human protein sequence identifier) available in
IUPHAR. The database was accessed 20/12/2017.

Ligands were mapped between networks by numerical identifiers provided by
IUPHAR as well as by INN (International Non-proprietary Name) and Common
name attributes. Proteins were mapped by IUPHAR identifiers as well as by
Human Entrez Gene attribute.5 In total we have built 6 networks:

1. a drug interaction network based on DrugBank,
2. a drug similarity network based on similarities calculated using the Tanimoto

coefficient on binary vectors constructed by frequent subgraphs,
3. the drug-target interaction network based on IUPHAR,
4. a target interaction network based on BioGrid, and
5. two target similarity networks calculated using the Tanimoto coefficient on

feature vectors constructed by frequent substrings and Prosite motifs.

Similarity networks’ edges were labeled with labels ∈ [0, 1], interaction net-
works with labels ∈ {0, 1}. Table 1 shows the characteristics of the data sets,
and of the networks we derived from them. It is noticeable how sparse the data
is, and also how this sparsity translates into disconnected parts of the network.
Sparsity might result in a low performance of the traditional recommender sys-
tems approaches, while disconnected networks are challenging for random walker
approaches.

Evaluation Protocol. To evaluate our approach, we used leave-one-out cross-
validation: for each of the 12456 edges in the IUPHAR network, we remove
it from the network, set the ligand as starting vertex, infer strengths for all
possible ligand-target paths, remove ligand-target edges contained in the training
data, and check whether the removed edge is found in the top-20 remaining
paths6 according to their strengths. If this is the case for an interacting edge,
we consider it a true positive, otherwise a false negative. For negative examples,
the relationship is inverse.

5 Global Query Cross-Database Search System gene identifiers: https://www.ncbi.
nlm.nih.gov/gene.

6 Precision at 20.

https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/gene

184 M. Koptelov et al.

Quality Measures. To evaluate our methods we use several performance mea-
sures:

– Accuracy: the ratio of true positives (TP) – drug-target links correctly clas-
sified as positives – and true negatives (TN) – drug-target links correctly
classified as negatives – over all predictions: Acc = TP+TN

TP+FP+TN+FN .
– Area under receiver operating curve (AUC): evaluates whether true positives

are usually ranked above or below false positives when sorting predictions by
confidence.

– Precision: the ratio of TP over all drug-target links classified as positives:
Prec = TP

TP+FP . Precision measures whether a model is specific enough to
mainly classify links of the positive class as positive. This gives additional
insight into the accuracy score.

– Recall: the ratio of TP over all positive links in the test data: Rec = TP
TP+FN .

Recall measures whether a model is general enough to classify a large pro-
portion of the positive class as positive.

In addition to this, we also report weighted versions of accuracy, precision, and
recall that give us a more accurate assessment for unbalanced datasets. Due to
the fact that the number of negative examples are smaller than that of the posi-
tives in our data, we assign a classification cost of 1 to positives and cost neg cost

to negatives, derived by: neg cost = |D|
2×|N | , where |D| – number of examples, |N |

– number of negative examples. We then perform evaluation based on the costs
defined: FN and TN receive score neg cost for every negative example w.r.t. its
real class, while FP and TP receives score 1 for positives.

Implementation. We implemented NEWERMINE in Python7. We used the
networkx library to model the multi-layer network, the NumPy library to per-
form all matrix computations and the sklearn library for cost-based evaluation.

5.2 Experimental Results

Using Three-Layer Graphs. We first use NEWERMINE on a number of
multigraphs aggregated from three networks each, the ligand-target network, one
ligand-ligand network, and one target-target network. This is the setting used
in the papers discussed in Sect. 3.

For the experiments we defined 6 possible combinations with IUPHAR,
only ligand-target interaction network we have: (1) DrugBank + BioGrid,
(2) DrugBank + Target similarity (TS) (substrings:str), (3) DrugBank + TS
(motifs:mot), (4) Ligand similarity (LS) + BioGrid, (5) LS + TS (str), (6) LS +
TS (mot). The basic properties of the combinations compared to the full graph
are presented in Table 2. The results of the use of NEWERMINE with param-
eters η = 0.2, β = 0.7 (taken from [2]) are presented in Fig. 4. This is a rather
conservative setting, equivalent to relatively few steps before the walker restarts.

7 https://zimmermanna.users.greyc.fr/supplementary-material.html.

https://zimmermanna.users.greyc.fr/supplementary-material.html

Link Prediction in Multi-layer Networks 185

Table 2. Basic properties of different combinations of networks

Combination Ligands Targets |V | |E| Sparsity CC

DB + BG 7025 2307 9332 143922 0.003 87

DB + TS (str) 7025 2101 9126 1786917 0.042 103

DB + TS (mot) 7025 2101 9126 1786917 0.042 103

LS + BG 8056 2307 10363 23280724 0.434 21

LS + TS (str) 8056 2101 10157 24923719 0.4832 22

LS + TS (mot) 8056 2101 10157 24923719 0.4832 22

Six layers 8137 2502 10639 26706838 0.4719 1

Fig. 4. Evaluation results of NEWERMINE for different combinations of three net-
works and the six-layer graph

The number of vertices in different networks depend on available IDs and
structural information. In any case, the networks are sparse and they are not
fully connected. Using similarity networks alleviates this situation somewhat and
combining all networks leads to a single connected component (bottom row).

Figure 4 shows that using different three-layer graphs leads to rather different
results. The arguably most notable result is that using ligand structural similar-
ity instead of DrugBank network significantly improves accuracy and recall.

Using the Full, Six-Layer Graph. The results for NEWERMINE on the full
multi-layer graph are also presented in the Fig. 4. We show additional values for
η and β: η = 0 strongly biases the walk towards targets, we also consider β = 0.8

186 M. Koptelov et al.

for η = 0.2. Using more layers decreases recall somewhat, but improves weighted
accuracy (taking the lower proportion of negative examples into account), AUC
score and precision. Different parameter values do not have a large effect on the
results but change running times: increasing β also increases the number of steps
necessary for convergence, and decreasing η decreases this number.

6 Conclusion and Perspectives

We have presented an approach for exploiting an arbitrary number of networks
combined into a multi-layer network, proposing general matrix formulations to
form intra- and inter-network transitions.

As we have demonstrated experimentally, combining different networks
improves vertex reachability and therefore interaction prediction. So far, we
have only exploited more than one protein similarity network, already achieving
very good results. In future work, we intend to also integrate different ligand
similarity semantics, and different databases indicating ligand-protein activity.
Additionally, we intend to employ our approach for different target settings, e.g.
for miRNG-disease links. Finally, we aim to move from the “active”/“inactive”
setting to one where we predict the strength of the activity.

References

1. Buza, K., Peska, L.: ALADIN: a new approach for drug–target interaction predic-
tion. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML
PKDD 2017. LNCS (LNAI), vol. 10535, pp. 322–337. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71246-8 20

2. Chen, X., Liu, M.X., Yan, G.Y.: Drug-target interaction prediction by random
walk on the heterogeneous network. Mol. BioSyst. 8(7), 1970–1978 (2012)

3. Cheng, F., Zhou, Y., Li, W., Liu, G., Tang, Y.: Prediction of chemical-protein
interactions network with weighted network-based inference method. PloS One
7(7), e41064 (2012)

4. Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical struc-
ture comparison method for integrated analysis of chemical and genomic informa-
tion in the metabolic pathways. JACS 125(39), 11853–11865 (2003)

5. Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm
for web search. TKDE 15(4), 784–796 (2003)

6. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge
University Press, Cambridge (2014)

7. Lim, H., Gray, P., Xie, L., Poleksic, A.: Improved genome-scale multi-target virtual
screening via a novel collaborative filtering approach to cold-start problem. Sci.
Rep. 6, 38860 (2016)

8. Liu, Y., Zeng, X., He, Z., Zou, Q.: Inferring microrna-disease associations by ran-
dom walk on a heterogeneous network with multiple data sources. TCBB 14(4),
905–915 (2017)

9. Luo, J., Xiao, Q.: A novel approach for predicting microrna-disease associations
by unbalanced bi-random walk on heterogeneous network. J. Biomed. Inform. 66,
194–203 (2017)

https://doi.org/10.1007/978-3-319-71246-8_20

Link Prediction in Multi-layer Networks 187

10. Pearson, K.: The problem of the random walk. Nature 72(1867), 342 (1905)
11. Smith, T., Waterman, M.: Identification of common molecular subsequences. Mol.

Biol. 147, 195–197 (1981)
12. Xie, M., Hwang, T., Kuang, R.: Prioritizing disease genes by bi-random walk. In:

Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012. LNCS (LNAI),
vol. 7302, pp. 292–303. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30220-6 25

13. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction
of drug-target interaction networks from the integration of chemical and genomic
spaces. Bioinformatics 24(13), i232–i240 (2008)

14. Yamanishi, Y., Kotera, M., Kanehisa, M., Goto, S.: Drug-target interaction predic-
tion from chemical, genomic and pharmacological data in an integrated framework.
Bioinformatics 26(12), i246–i254 (2010)

https://doi.org/10.1007/978-3-642-30220-6_25
https://doi.org/10.1007/978-3-642-30220-6_25

A Hierarchical Ornstein-Uhlenbeck Model
for Stochastic Time Series Analysis

Ville Laitinen(B) and Leo Lahti

Department of Mathematics and Statistics, University of Turku, Turku, Finland
velait@utu.fi

Abstract. Longitudinal data is ubiquitous in research, and often com-
plemented by broad collections of static background information. There
is, however, a shortage of general-purpose statistical tools for studying
the temporal dynamics of complex and stochastic dynamical systems
especially when data is scarce, and the underlying mechanisms that gen-
erate the observation are poorly understood. Contemporary microbiome
research provides a topical example, where vast cross-sectional and lon-
gitudinal collections of taxonomic profiling data from the human body
and other environments are now being collected in various research lab-
oratories world-wide. Many classical algorithms rely on long and densely
sampled time series, whereas human microbiome studies typically have
more limited sample sizes, short time spans, sparse sampling intervals,
lack of replicates and high levels of unaccounted technical and biologi-
cal variation. We demonstrate how non-parametric models can help to
quantify key properties of a dynamical system when the actual data-
generating mechanisms are largely unknown. Such properties include
the locations of stable states, resilience of the system, and the levels of
stochastic fluctuations. Moreover, we show how limited data availability
can be compensated by pooling statistical evidence across multiple indi-
viduals or studies, and by incorporating prior information in the models.
In particular, we derive and implement a hierarchical Bayesian variant of
Ornstein-Uhlenbeck driven t-processes. This can be used to characterize
universal dynamics in univariate, unimodal, and mean reversible systems
based on multiple short time series. We validate the model with simu-
lated data and investigate its applicability in characterizing temporal
dynamics of human gut microbiome.

Keywords: Longitudinal analysis · Hierarchical models ·
Ornstein-Uhlenbeck process · Resilience · Stochastic processes

1 Introduction

Many natural and social systems are complex and cannot be studied in isolation.
The underlying data-generating mechanisms are often largely unknown in such
cases, and the observed dynamics can be characterized only indirectly [8]. Non-
parametric models that focus on characterizing observed data properties, rather
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 188–199, 2018.
https://doi.org/10.1007/978-3-030-01768-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_16&domain=pdf
http://orcid.org/0000-0002-2653-1673
http://orcid.org/0000-0001-5537-637X

A Hierarchical Ornstein-Uhlenbeck Model 189

than modeling the underlying mechanisms, can provide valuable information on
the system behavior. In the context of human microbiome dynamics, for instance,
such non-parametric models have been used to describe and infer the presence
of alternative ecosystem states [13], periodicity, stochasticity, and chaos [5,6]. In
many real applications, the data is scarce, and new methods are needed in order
to derive maximal information from limited observations.

Our study is motivated by the analysis of temporal dynamics of human gut
microbiome. This refers to the totality of microbial communities living on skin,
gastrointestinal tract and other body sites. Contemporary human microbiome
research has largely focused on cross-sectional cohorts with limited follow-ups,
providing information on the composition and inter-individual variation of the
microbiome. The dynamics of these systems are yet, however, not well under-
stood despite their clinical importance [1,10]. As understanding of these systems
is accumulating, the research focus is beginning to shift from general descriptions
towards actionable clinical applications and manipulation.

In this work, we show how key dynamical properties of poorly understood
dynamical systems can be inferred from limited time series by pooling informa-
tion can across multiple individuals. In the present work, we focus specifically
on mean-reversible stochastic processes. Such dynamic behavior is frequently
observed in the human gut microbiome. Many bacterial species in the human gut
ecosystem have been reported to exhibit characteristic abundance levels around
which they tend to fluctuate over time (see e.g. [13]). It has been reported that
the average abundance levels of many gut bacteria remain relatively stable over
long time periods but on a shorter (daily) time scale the abundances can exhibit
considerable fluctuations [3]. Mean-reverting stochastic processes, in particular
the Ornstein-Uhlenbeck (OU) process, provide well-established means to char-
acterize key properties of such systems, including the location and resilience
of the potential wells, speed of mean reversion, and volatility of abundance
levels, even when the underlying mechanisms regulating those dynamics are
unknown. Stochastic processes and generative probabilistic models provide a
rigorous framework for the characterization of the observed dynamics in such
cases, with wide applicability across different application domains [9,11,16,18].

We adapt and apply these techniques to model human gut microbiome
dynamics. A key practical limitation of the existing methods in our applica-
tion is that the available implementations of the OU process depend on the
availability of long time series with dozens of time points or more. The currently
available longitudinal data sets in typical human microbiome studies have more
limited sample sizes and time series lengths, or sparse sampling intervals. Com-
bined with high levels of variation and limited knowledge of the data-generating
processes, these limitations form considerable challenges for the application of
previously established stochastic models, such as the the OU process, in con-
temporary human microbiome research. In order to address these limitations,
we derive, implement, and validate a hierarchical extension to the OU process.
This can be used to recover key information of the system dynamics from limited
data by aggregating information across short time series from multiple individ-

190 V. Laitinen and L. Lahti

uals. Further potential advantages of the probabilistic formulation include the
opportunities to model individual variation, and to incorporate of prior informa-
tion from the cross-sectional background collections in the model. We validate
the implementation with simulated data, investigate its robustness to varying
modeling assumptions including the numbers, lengths and densities of the time
series, and ranges of parameter values, and finally explore the applicability of
this model on topical human gut microbiome data sets.

In order to maximize the flexibility we have constructed the implementation
so that the number of observation per time series and the observation times do
not have to be identical. Thus, our implementation of the OU process provides
a rigorous and justified method for modeling dynamics of single potential wells.

2 Preliminaries

This section outlines the statistical model and the relevant technical derivations.

2.1 The Ornstein-Uhlenbeck Process

Many natural processes can be modeled by a combination of deterministic drift
and stochastic fluctuations. These assumptions naturally lead to stochastic dif-
ferential equations, which are commonly encountered in literature in the form:

dXt = f(X, t)dt + L(X, t)dZt.

Here, Xt is the system state at time t, Z is a stochastic process and f , and L are
called the drift and dispersion terms, respectively. The drift defines the deter-
ministic behavior, whereas dispersion characterizes the stochastic component of
the system. Unlike the solutions of ordinary differential equations, the solutions
of the stochastic counterparts are non-unique and nowhere differentiable as they
are different for different realizations of the noise term. The deterministic solu-
tion can be recovered by averaging over these solutions.

The Ornstein-Uhlenbeck (OU) process, also known as the Langevin equation
in physics and Vasicek model in finance, is a stochastic process with a wide range
of applications [12]. It is frequently used to model systems that have a steady
state, and a tendency to recover from perturbations by gradually returning, or
drifting, towards the long-term mean value. The OU process is the continuous-
time extension of autoregressive AR(1) model and is defined as the solution
to the stochastic differential equation with drift function f(X, t) = λ(μ − X)
and constant dispersion L(X, t) = σ. The parameters λ ∈ [0, 1], μ ∈ R and
σ ≥ 0 have natural interpretations as mean-reversion rate, long-term mean and
size of stochastic fluctuations, respectively. The OU process can be formulated
as a Gaussian process on the real line GP(μ, K) with a covariance function
K = Cov(Xt1 ,Xt2) = σ2

2λe−λΔt, and as all diffusion processes, is also a Markov
process [12].

A Hierarchical Ornstein-Uhlenbeck Model 191

2.2 The Ornstein-Uhlenbeck Driven t-Process

We adopt the Student’s t-process, instead of the traditionally used Wiener pro-
cess as the driving process of the OU process. This choice is more robust to
outliers and short term volatility, with little if any additional computational
cost as the critical analytical equations are available in both cases.

Although the stochastic process in OU process is often modeled as white
noise, requiring Zt to have Gaussian transition density is often a too limiting
assumption for practical purposes as it does not allow large enough fluctuations.
Thus, robustness against outliers is compromised and a more general process
would be preferred [15]. The Student’s t-process is a non-Gaussian alternative
to a prior over functions that allows more flexibility and room for outliers. Using
t-processes is a convenient choice also in the sense that the Gaussian process can
be obtained as a special case by taking the limit ν → ∞ [15]. Thus we will adopt
t-processes as the driver of dispersion of the OU process. See Fig. 1 for an example
of simulated OU process time series and corresponding parameter estimates. The
t-process has recently been studied in e.g. [14,15] and the following definition
can be found in these references.

Definition 1. A vector ȳ ∈ R
n is multivariate Student-t distributed with ν

degrees of freedom, mean parameter μ and shape matrix Σ, ȳ ∼ ST n(ν, μ,Σ), if
it has density

p(ȳ) =
Γ (ν+n

2)
((ν − 2)π)

n
2 Γ (ν

2)
|Σ|− 1

2 ×
(
1 +

(ȳ − μ̄)T Σ−1(ȳ − μ̄)
ν − 2

)− ν+n
2

(1)

Definition 2. The process f is a Student-t process, f ∼ ST (ν, μ,Σ), if any
finite set of values is multivariate t-distributed.

The covariance matrix K is related to the shape matrix via Σ = ν−2
ν K.

2.3 Hierarchical Extension

The model outlined above describes the Ornstein-Uhlenbeck driven t-process as
implemented in [9]. Our novel contribution that we present now is to equip the
model with hierarchical structure and testing the robustness of the extended
implementation. Let X = {X̄i, i ∈ {1, . . . , N}} be a set of OU process values,
with ni observations in each, each i representing e.g. a different measurement
site. We assume a hierarchical structure for the parameters λ, μ and σ,

dXj,t = λj(μj − Xj,t)dt + σjdZt,

for all j ∈ {1, . . . , ni}. As the OU process is a Markov process the generative
model for the data can be described as in 2. We have implemented the model
using the multivariate t-distribution formulation but it is possible to implement
the model using transition densities between consecutive observations.

Adding a level of hierarchy to the implementation for a single series can be
obtained by modifying the model likelihood in the extended version so that it

192 V. Laitinen and L. Lahti

−2

0

2

0 50 100 150

Time

A

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00

 λ

D
en

si
ty

0

1

2

3

4

−0.50 −0.25 0.00 0.25 0.50
 μ

0

1

2

3

0.00 0.25 0.50 0.75 1.00 1.25
 σ

B

Fig. 1. A A simulated OU driven t-process time series with ν = 7 and parameter
values λ, σ = 0.5, μ = 0. B Posterior estimates of the model parameters. Dashed lines
mark the simulation values used to generate the data.

equals the product of likelihoods of individual series. In addition priors have to be
assumed to follow some distribution. We have used normal distributions for μ and
σ and inverse gamma distribution for λ. Hyperpriors for the hyperparameters φ
were chosen to be uninformative but still strong enough to guide the parameter
estimates to practically reasonable ranges. We can now write the generative
model for the hierarchical OU process with partially pooled estimates

Xi ∼ MVTn(ν, μi,Σi)
μi ∼ N (μμ,i, σμ,i)
σi ∼ N (μσ,i, σσ,i)

λ ∼ Γ−1(αi, βi)
φ ∼ N (φμ, φσ),

(2)

where i = {1, . . . , N} and φ represents all hyperpriors.
The model can also be specified so that both the prior shape and hyper-

parameters are fixed. This version corresponds to no pooling between distinct
observations. It does not share information as it assumes that the differences
between series are too large to be modeled together. The other extreme is com-
plete pooling in which all data are assumed to be generated by identical param-
eters. Partial pooling assumes some, but not full, similarity between time series
and thus represents a compromise between the other two alternatives. These
models are compared in Subsect. 3.1 below.

A Hierarchical Ornstein-Uhlenbeck Model 193

x1 x2 xni
. . .

λ, μ, κ

φ

N

Fig. 2. Bayesian graph representation of the hierarchical OU process. Hyperparameters
are denoted with φ.

For a general and simplified treatment of the OU process we assumed that
our observations are directly generated from the OU process and use uniform
time intervals in the following simulations. The model can, however, incorpo-
rate unequal time intervals and varying numbers of observations per time series.
Alternative models of observation noise represent opportunities for further exten-
sion. In ecological studies that motivate the present work, the observation noise
is often modeled with a Gaussian or Poisson distribution, where the rate param-
eter is obtained from the OU process by exponentiation. This so called stochastic
Gompertz model is frequently used in ecological time-series analysis [4]. For OU
process implementation of the Gompertz model in the context of a single time
series, see [9].

3 Model Validation

Next, we tested the implementation with simulation experiments. The simula-
tions were motivated by recent human microbiome studies that are introduced
in more detail in Sect. 4. The data sets in these studies have considerable dif-
ferences in sample sizes and in this respect represent the scope of the currently
available human microbiome data.

In the simulations the values for λ, σ and μ were sampled separately for each
series from priors Γ−1(6, 4), N (0, 1) and N (3, 1) respectively. The degrees of
freedom in the multivariate Student’s t-distribution was set to 7. These distri-
butions and parameter values were chosen as they generate values and varia-
tion resembling those encountered in (log-transformed and centered) human gut
microbiome time series. Hyperprior distributions for the model parameters were
chosen to be vague as no prior understanding of these parameters exists in this
context. Normal distributions with relatively large variance were used.

Parameter estimates are obtained by coding the model in rstan [2]. Stan
requires the user to specify data, parameters and model in the corresponding
code blocks and uses Hamiltonian Monte Carlo and No-U-Turn Sampler tech-
niques to sample from the posterior distribution. To minimize the amount of

194 V. Laitinen and L. Lahti

divergent transitions in HMC sampling we have used a non-centered parameter-
ization for μ and σ. This is in agreement with [17] where it is mentioned that
hierarchical models often perform better with non-centered parameterizations,
especially when the sample size is limited. Non-centering λ led to additional
divergences so its parameterization was kept centered. We encountered no diver-
gences of other pathologies in the MCMC diagnostics, which yields additional
confirmation for the validity of our implementation. In principle the degrees of
freedom of the multivariate t-distribution could be estimated in addition to the
other model parameters. In our experiments we were, however, unable to reliably
recover this parameter so the implementation assumes it to be fixed and input
to the model. The source code for the Stan model is available at https://github.
com/velait/OU IDA.

3.1 Model Comparison

To demonstrate the differences between the three basic model variants available
for multiple observation units (complete, partial and no pooling) we now com-
pare the estimates they provide. We use a single simulated test set with sample
size similar to [7]: 30 time series, 30 samples each with 3 time units between
observations. The parameter values were sampled from prior distributions indi-
vidually for each series and parameter.

Maximum a posteriori (MAP) estimates for the parameter λ from each model
as well as their distance to simulation values and widths of the 50% interquartile
ranges are displayed in 3. The MAP estimates of the partially pooled model are
on average closer to the simulation values, although some individual estimates are
farther as they get shrunk towards the estimate from completely pooled model
(dashed line). The IQRs are shorter compared to the model with no pooling,
which yields additional confirmation for the models improved accuracy. Similar
results were obtained for the other parameters.

One of the advantages of a hierarchical model with partially pooled param-
eters is that the prior distributions can be estimated as well. This provides
information on the parameters’ population level variation. In Fig. 4 the simula-
tion and estimated priors are compared. Prior of μ is recovered best and lambda
on a relatively satisfactory level as well. The prior of the variation parameter σ,
however, is not very well estimated as the mode and variance are clearly different
from the target. The reason for less than ideal estimates may lie in the low num-
ber of values simulated in the first place, as only 30 values are drawn from each
distribution. Thus there is plenty of room for stochastic variation. Additional
uncertainties may arise due to possibly challenging regions in the (λ, σ) space.
As these parameters are intertwined it is possible that certain combinations (e.g.
small λ, large σ) pose challenges beyond the capabilities of our implementation.

4 Application to Human Microbiome Time Series

Next, we demonstrate the use of these models in analyzing the dynamics of
microbial ecosystems in the human body.

https://github.com/velait/OU_IDA
https://github.com/velait/OU_IDA

A Hierarchical Ornstein-Uhlenbeck Model 195

0.25

0.50

0.75

0 10 20 30

Time series ID

P
os

te
rio

r
es

tim
at

e
No pooling Partial pooling

A

−0.50

−0.25

0.00

0.25

None Partial Complete

E
rr

or

B

0.1

0.2

0.3

None Partial Complete

50
%

 IQ
R

 w
id

th

C

Fig. 3. A MAP estimates from different model variants. Dashed line marks the com-
pletely pooled estimate and solid line the simulation values, sorted in increasing order.
B Distribution of estimates error, defined as difference between MAP and simulation
value. C Distribution of 50% IQR widths.

In the first case study, two healthy volunteers were followed over a year and
provided hundreds of stool samples [3]. During the study the gut ecosystem of
one of the individuals experienced a dramatic change in composition due to a
Salmonella infection. This perturbation is beyond the capacities of the OU pro-
cess model and for this reason we have limited our analysis to the samples prior
to the infection, leaving 125 samples covering 4.5 months for a closer analysis.
The sample size in this study is large in the human gut microbiome context, con-
sisting of nearly daily samples from two individuals over several months. In total
387 different genus level taxonomic units were observed out of which we chose to
focus on the symmetric and unimodal abundance types as their observed dynam-
ics roughly corresponds to the model assumptions. For demonstration purposes,
we limit the analysis to a single genus-level taxonomic unit, Bacteroides, which
is highly abundant and prevalent in human gut at least in the Western popu-
lations. We explored the estimates given by our implementation with the first
120 samples and subsets of these to assess how many samples are required for
estimates close to the full sample size. Figure 5 A displays the MAP estimates for
various samples sizes, where values on the x-axis correspond the first n samples
of the full 120 time points. The estimates level after sufficient amounts of time

196 V. Laitinen and L. Lahti

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00

λ

D
en

si
ty

0.0

0.2

0.4

0.6

−4 −2 0 2 4
μ

0.0

0.1

0.2

0.3

0.4

0.0 2.5 5.0 7.5 10.0
σ

Fig. 4. Prior distributions used for data simulations (solid line) and posterior estimates
of these distributions (dashed line) based on MAP estimates of the hyperparameters.

points suggesting that a there is little increase in accuracy after enough samples.
We also experimented with randomly removing observations and discovered that
roughly half of the samples can be removed without significant loss of accuracy
compared to the full sample size, see B.

0.2

0.4

0.6

0.8

1.0

25 50 75 100 125

Time points (n)

P
os

te
rio

r
es

tim
at

e

A

0.2

0.4

0.6

0.8

1.0

0255075

Missing values (%)

Subject

A

B

B

Fig. 5. MAP estimates for parameter λ against length of time series A and proportion
of randomly removed samples B.

We also carried out preliminary analyses on the HITChip Atlas data set [13],
which has considerably shorter time series but from a larger number of individ-
uals. The HITChip Atlas data set consists of stool samples from 1006 healthy
western adults. Multiple (2–5) follow-up samples were available from 78 subjects
with weeks or months between samples. We performed preliminary experiments
on this data and data simulated with similar abundance, variation and sparsity
profiles but recovered only unreliable and inaccurate results. The posterior esti-
mates had high levels of uncertainty, the model inference had convergence issues,
and the results were sensitive to initialization and changes in the data, indicating
that the 2–5 sparse time points will not suffice to distinguish the effects of the
mean reversion and stochastic drift parameters in the hierarchical OU model.

A Hierarchical Ornstein-Uhlenbeck Model 197

5 Discussion

The main objective of this work has been to propose new general-purpose meth-
ods to characterize key properties of poorly understood dynamical systems based
on scarce longitudinal data, and demonstrate their applicability in the topical
research area of human microbiome studies.

We have extended the previously proposed Ornstein-Uhlenbeck (OU) driven
t-process by deriving hierarchical version, which allows the pooling of informa-
tion across multiple time series and parameter inference of the shared stochastic
process. This is specifically motivated by topical problems in human microbiome
research, where time series are often as short as 2–3 time points per individual,
but available for a potentially large number of individuals. In such case, the
traditional variants of the OU process are not applicable, and a hierarchical
extension can potentially help to aggregate information across multiple experi-
ments. We have implemented this model by adding a new level of hierarchy to
the standard OU driven t-process [9]. Importantly, we designed the model so
that the number of samples and observation times in each time series is flexible,
allowing efficient utilization of real time series where the number and timings
of the observations may differ across the available time series. This removes the
need to impute missing values, or force synchronized observation times, thus
facilitating application in many real-life scenarios. Following the work by [9],
our model takes advantage of the Student’s t-process based version of the OU
process, rather than the Wiener process which is more common in the OU pro-
cess literature, in order to increase robustness for outliers. This comes with little
additional computational cost.

In simulation experiments we have demonstrated the advantage of partially
pooling the parameters over the variants with complete and no pooling. In addi-
tion to increased accuracy the hierarchical OU process model offers information
on the population level variation of the model parameters as it learns the prior
distribution by estimating the hyperpriors. The model performance was satis-
factory when tested on a simulated data set with moderate amounts of samples
and series but failed to produce reliable estimates for very sparse and short time
series. We anticipate that this failure could be explained by the narrow width of
observation intervals compared to the simulated dynamics. Naturally observa-
tions need to be sufficiently dense and cover a large enough interval to be able
to capture dynamics at of a particular scale. We also demonstrated the use of
this model on longitudinal time series from human gut microbiome [3]. These
experiments clearly demonstrate how the model parameters converge towards
a saturation point with increasing time series lengths and densities. Regarding
technicalities of he model fitting, the MCMC sampling converged well, also sup-
porting the validity of the implementation. For a more complete view on the
robustness of parameter inference, a more extensive probing of the parameter
ranges, alternative priors, observation noise and data with uneven and sparse
sampling intervals should be undertaken. Alternative parameterizations should
be tested to see if some perform better with higher sample sizes.

198 V. Laitinen and L. Lahti

The hierarchical OU process provides several promising opportunities for
future extensions that are directly applicable to microbial ecological time series.
In particular, the standard OU process, which assumes unimodal and symmetri-
cally distributed data, could be generalized to model other abundance types [13]
of the human-associated microbial taxa abundance distributions. In particular,
the analysis of alternative community states of dynamical systems, frequently
observed the human vaginal microbiome[7], for instance, provides interesting
challenges for further research and model extensions. Our current implemen-
tation of the hierarchical OU process currently only handles time series with
unimodal density profiles. Moreover, generalizations of the hierarchical model to
the multivariate setting would be valuable. These depend on the development
of computationally more efficient implementations, for instance based on vari-
ational learning of simulation-based methods. Apart from [9] we are not aware
of applications of these models, in particular its hierarchical extension that we
develop here, in the context of human microbiome studies.

Whereas the focus in our current analysis is limited to investigating the
applicability of the model to readily available real observations from a single
taxonomic group, further studies could provide a systematic comparison of the
stochastic, mean and drift parameters across different taxonomic units in order
to characterize differences in the dynamical variation in the abundance level
of various gut bacteria. By classifying the individuals to larger groups based on
health status, life style factors, age or other meta data, clinically and biologically
interesting connection could be learned. The methodology and the challenges of
overcoming the limitations of scarce, noisy, and poorly understood observations
that these models help to solve are very generic, and the potential applications
naturally reach beyond population dynamics.

Acknowledgments. The work has been partially funded by Academy of Finland
(grants 295741, 307127).

References

1. Bashan, A., Gibson, T.E., Friedman, J.: Universality of human microbial dynamics.
Nature 534(7606), 259–262 (2016). https://doi.org/10.1038/nature18301

2. Carpenter, B., Gelman, A., Hoffman, M.D., et al.: Stan: a probabilistic program-
ming language. J. Stat. Softw. 76, 1–32 (2017). https://doi.org/10.18637/jss.v076.
i01

3. David, L.A., Materna, A.C., Friedman, J.: Host lifestyle affects human microbiota
on daily timescales. Genome Biol. 15, R89 (2014). https://doi.org/10.1186/gb-
2014-15-7-r89

4. Dennis, B., Ponciano, J.M.: Density dependent state space model for population
abundance data with unequal time intervals. Ecology 95(8), 2069–2076 (2014).
https://doi.org/10.1890/13-1486.1

5. Faust, K., Bauchinger, F., Laroche, B., de Buyl, S., Lahti, L.: Signatures of eco-
logical processes in microbial community time series. Microbiome 6, 120 (2018).
https://doi.org/10.1186/s40168-018-0496-2

https://doi.org/10.1038/nature18301
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1186/gb-2014-15-7-r89
https://doi.org/10.1186/gb-2014-15-7-r89
https://doi.org/10.1890/13-1486.1
https://doi.org/10.1186/s40168-018-0496-2

A Hierarchical Ornstein-Uhlenbeck Model 199

6. Faust, K., Lahti, L., Gonze, D., de Vos, W.M., Raes, J.: Metagenomics meets time
series analysis: unraveling microbial community dynamics. Curr. Opin. Microbiol.
25(Supplement C), 56–66 (2015). https://doi.org/10.1016/j.mib.2015.04.004

7. Gajer, P., Brotman, R.M., Bai, G., et al.: Temporal dynamics of the human vagi-
nal microbiota. Sci. Transl. Med. 4(132), 132ra52 (2012). https://doi.org/10.1126/
scitranslmed.3003605

8. Gonze, D., Coyte, K.Z., Lahti, L., Faust, K.: Microbial communities as dynamical
systems. Curr. Opin. Microbiol. 44, 41–49 (2018). https://doi.org/10.1016/j.mib.
2018.07.004

9. Goodman, A.: Fitting ornstein-uhlenbeck-type student’s t-processes in stan with
applications for population dynamics data (2018). https://doi.org/10.5281/zenodo.
1284346

10. Halfvarson, J., Brislawn, C.J., Lamendella, R.: Dynamics of the human gut micro-
biome in inflammatory bowel disease. Nat. Microbiol. 2(5), 17004 (2017). https://
doi.org/10.1038/nmicrobiol.2017.4

11. Heinonen, M., Yildiz, C., Mannerström, H., et al.: Learning unknown ODE models
with Gaussian processes, March 2018. http://arxiv.org/abs/1803.04303

12. Iacus, S.M.: Simulation and Inference for Stochastic Differential Equations: with
R Examples. Springer Series in Statistics, 1st edn. Springer, New York (2008).
https://doi.org/10.1007/978-0-387-75839-8

13. Lahti, L., Salojärvi, J., Salonen, A., Scheffer, M., de Vos, W.M.: Tipping elements
in the human intestinal ecosystem. Nat. Commun. 5, 4344 (2014). https://doi.org/
10.1038/ncomms5344

14. Shah, A., Wilson, A.G., Ghahramani, Z.: Student-t processes as alternatives to
gaussian processes. In: The Seventeenth International Conference on Artificial
Intelligence and Statistics (AISTATS) (2014)

15. Solin, A., Särkka, S.: State space methods for efficient inference in student-t pro-
cess regression. In: Proceedings of the 18th International Conference on Artificial
Intelligence and Statistics (AISTATS) 38 (2015)

16. Srokowski, T.: Multiplicative levy noise in bistable systems. Eur. Phys. J. B 85(2),
65 (2012). https://doi.org/10.1140/epjb/e2012-30003-9

17. Stan Development Team: modeling language user’s guide and reference manual,
version 2.17.0 (2017). http://mc-stan.org

18. Yildiz, C., Heinonen, M., Intosalmi, J., et al.: Learning stochastic differential equa-
tions with gaussian processes without gradient matching, July 2018. http://arxiv.
org/abs/1807.05748

https://doi.org/10.1016/j.mib.2015.04.004
https://doi.org/10.1126/scitranslmed.3003605
https://doi.org/10.1126/scitranslmed.3003605
https://doi.org/10.1016/j.mib.2018.07.004
https://doi.org/10.1016/j.mib.2018.07.004
https://doi.org/10.5281/zenodo.1284346
https://doi.org/10.5281/zenodo.1284346
https://doi.org/10.1038/nmicrobiol.2017.4
https://doi.org/10.1038/nmicrobiol.2017.4
http://arxiv.org/abs/1803.04303
https://doi.org/10.1007/978-0-387-75839-8
https://doi.org/10.1038/ncomms5344
https://doi.org/10.1038/ncomms5344
https://doi.org/10.1140/epjb/e2012-30003-9
http://mc-stan.org
http://arxiv.org/abs/1807.05748
http://arxiv.org/abs/1807.05748

Analysing the Footprint of Classifiers in
Overlapped and Imbalanced Contexts

Marta Mercier1, Miriam S. Santos1, Pedro H. Abreu1(B), Carlos Soares2,
Jastin P. Soares1, and João Santos3

1 CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra,
Portugal

{mmercier, miriams, jastinps}@student.dei.uc.pt, pha@dei.uc.pt
2 INESC TEC, Faculty of Engineering, University of Porto, Porto, Portugal

csoares@fe.up.pt
3 IPO-Porto Research Centre (CI-IPOP), Porto, Portugal

joao.santos@ipoporto.min-saude.pt

Abstract. It is recognised that the imbalanced data problem is aggra-
vated by other difficulty factors, such as class overlap. Over the years,
several research works have focused on this problematic, although pre-
senting two major hitches: the limitation of test domains and the lack of
a formulation of the overlap degree, which makes results hard to gener-
alise. This work studies the performance degradation of classifiers with
distinct learning biases in overlap and imbalanced contexts, focusing on
the characteristics of the test domains (shape, dimensionality and imbal-
ance ratio) and on to what extent our proposed overlapping measure
(degOver) is aligned with the performance results observed. Our results
show that MLP and CART classifiers are the most robust to high levels
of class overlap, even for complex domains, and that KNN and linear
SVM are the most aligned with degOver. Furthermore, we found that
the dimensionality of data also plays an important role in explaining
performance results.

Keywords: Imbalanced data · Class overlap · Machine learning
classifiers

1 Introduction

Data imbalance occurs when there is a considerable difference between the class
priors of a given problem and, for a binary classification scenario, is commonly
described by the Imbalance Ratio, IR = nmaj

nmin
, where nmaj and nmin repre-

sent the number of majority and minority examples in the domain [2]. Predic-
tion models built from imbalanced datasets are most often biased towards the

This article is a result of the project NORTE-01-0145-FEDER-000027, supported by
Norte Portugal Regional Operational Programme (NORTE 2020), under the POR-
TUGAL 2020 Partnership Agreement, through the European Regional Development
Fund (ERDF).

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 200–212, 2018.
https://doi.org/10.1007/978-3-030-01768-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_17&domain=pdf

Analysing the Footprint of Classifiers 201

majority concept [9], which is especially critical when there is a higher cost of
misclassifying the minority examples, such as diagnosing rare diseases, prevent-
ing fraud or detecting faulty systems [4,14]. However, data imbalance is not the
sole factor that affects the performance of classifiers. As stated in recent litera-
ture, there are several others that combined with data imbalance, create a rather
chaotic setting [12]. These are frequently referred to as data difficulty factors and
commonly include: class overlap, small data set size/lack of density, the presence
of small disjuncts and the existence of different types of minority examples (e.g.
safe, borderline, rare and outlier examples) [16].

The problem of class overlap in imbalanced domains has been previously dis-
cussed in related work, although not with the required depth. The main objective
of related work is to show that class imbalance is not the sole factor that affects
classification performance, and that overlap plays an important role as well.
However, authors often fail to provide some insights on how both problems act
together and affect well-established classifiers, and to what extent one problem
is more critical than the other for different learning biases. Furthermore, related
work is also limited in the following aspects:

• Definition of overlapping degree: Some authors define the overlapping
degree as a distance between minority and majority classes [3,10,13], which
is only appropriate for specific data structures/shapes, while others define it
as an intersection region of the majority and minority class, although without
presenting a clear formulae to the define the degree of overlapping [5–7]. Other
authors approximate the overlapping degree by considering the overlap of
individual features (e.g. Fisher Discriminant Ratio – F1 measure) [11] or by
identifying minority borderline examples [12,15], which may not completely
capture the overall overlapping of the domains.

• Tested domains: Most research works consider artificial domains where the
data structure is limited and unlikely to be found in real-world scenarios [5–7],
besides being limited to two to five dimensions [3,13]. Others consider more
complex shapes (e.g. linear versus non-linear shapes), however, limited to a
two-dimensional space [12,15].

• Nature of data and classifiers: In the majority of works, only one or
two/three classifiers are tested. The research of Garćıa et al. [5–7] is an
exception, where different inductive biases are discussed, and it is possible
to distinguish the behaviour of local versus global classifiers, although not
in depth. Furthermore, performance results are most often discussed from a
general perspective, rather than attending to the characteristics of the tested
domains.

We have replicated several imbalanced scenarios with different characteris-
tics found in related work and compare them altogether. These scenarios are
generated for different degrees of imbalance and overlap, and the performance
of standard classifiers is analysed. We also put an effort to fill in the gaps in
related work by defining and evaluating a measure of the overlapping degree
(degOver), considering artificial domains with different shapes and dimension-
ality (2–40 dimensions). Our experiments are focused on studying the behaviour

202 M. Mercier et al.

of classifiers with distinct learning biases to determine whether some are more
affected than others. This study is furthermore taken from different perspectives:
focusing on the properties of the tested domains (shape and dimensionality), and
focusing on to what extent the proposed overlapping measure is aligned with the
performance results of the studied classifiers.

2 Related Work

The work of Prati et al. was one of the first studies on the impact of overlap in
imbalanced domains [13]. Their domains consisted of two 5-dimensional clusters
(Fig. 1a), where the distribution of minority and majority examples, as well as
the distance between cluster centroids, could be changed (1–9 standard devia-
tions). The classification results (C4.5) showed that the influence of the degree
of imbalance becomes weaker as the distance between centroids increases.

Garćıa et al. [7] performed a similar experiment with 2-dimensional domains,
where the majority and minority classes start well-separated and, for a fixed
IR, the majority class moves towards the minority class, increasing the amount
of overlap (Fig. 1b). Similarly to Prati et al. [13], authors concluded that the
increasing overlap deteriorated the performance of classifiers. In a later work
[5], authors distinguish between typical and atypical domains (Figs. 1b/d and c,
respectively).

X1

X
2

MAJ
MIN

(a)
X1

X
2

MAJ
MIN

(b)
X1

X
2

MAJ
MIN

(c)
X1

X
2

MAJ
MIN

(d)

Fig. 1. Artificial domains generated by Prati et al. [13] (a) and Garćıa et al. [7] (b–d).

Authors found that for typical domains, classifiers with a local nature (e.g.
KNN) were more subjected to loss in performance for the majority class than
classifiers with a more global learning. Regarding atypical domains, the classifi-
cation results suggested that the recognition rate of the minority class improved
as the minority class became denser. Denil and Trappenberg [3] also studied
the joint-effect of class imbalance and overlap: they generated two-dimensional
domains where both the class overlap and class imbalance could be changed.
Their analysis was focused on the performance of SVM, showing that as the
training size increases, the influence of class imbalance is negligible and that
overlap is the main responsible for performance degradation.

The research of Luengo et al. [11] was not focused on the effects of class
imbalance and overlap, although authors found that one measure of overlap

Analysing the Footprint of Classifiers 203

between classes (F1 measure) proved to be informative of good/bad behaviour
of classifiers.

Finally, we refer to the line of research of Napierala and Stefanowski [12,15],
where class overlap is defined via the percentage of borderline minority examples.
Napierala and Stefanowski studied the influence of disturbing minority class bor-
ders in three different 2-dimensional domains with different characteristics, paw,
clover and subclus, (Fig. 2) and concluded that increasingly adding borderline
examples degraded the classification performance [12].

X1

X
2

MAJ
SAFE
BORDER

(a)
X1

X
2

MAJ
SAFE
BORDER

(b)
X1

X
2

MAJ
SAFE
BORDER

(c)

Fig. 2. Artificial domains generated according to Napierala and Stefanowski [12,15].

As stated in the Introduction, a common limitation of related work is in
the way class overlap is measured. In the research work of Prati et al. [13],
increasing the distance between cluster centroids guarantees that the overlap is
being reduced, although it is not possible to quantify the exact degree of overlap
in each configuration. In Garćıa et al. [5–7], authors generate an artificial domain
represented by a square of length 100 where both classes are defined uniformly
in a rectangle of 50 × 100 (typical domain). The IR was fixed to 4:1, while
the overlapping degree was controlled through the distance between the square
centres. Initially, the majority and minority squares start well separated by a line
orthogonal to X1 axis, and increasing amounts of class overlap are produced by
moving the majority square towards the minority square in a stepwise manner:
[0..50], [10..60], [20..70], [30..80], [40..90] and [50..100] for 0, 20, 40, 60, 80 and
100% overlap. Let us consider the example given in Fig. 1b, for a typical domain
with IR 4:1 and 40% overlap. Since no formulae is presented in the original
papers [5–7], we may assume that the calculation of the overlap degree was
performed as a fraction of the area that is overlapped (Ainter) over the total
minority area (Amin) (or majority area, since they are equal). In that way we
would obtain overlap = Ainter

Amin
= 2000

5000 = 40%. If the IR was defined arbitrarily,
then Fig. 1d, with an IR of 8:1, would also illustrate a scenario with 40% class
overlap. However, if we consider the definition of class overlap as regions in the
data space with similar priors [10], this does not seem correct, since the number
of points that occupies the same region is lower in Fig. 1d. Basing our reasoning
on the similarity of class priors, a 8:1 configuration should produce a lower degree
of overlap.

For atypical situations, the majority examples are always uniformly dis-
tributed in a square of length 100, while the minority examples are condensed in

204 M. Mercier et al.

ranges [75..100], [80..100], [85..100], [90..100] and [95..100]. If the same rationale
as above is applied to atypical domains (Fig. 1c), the percentage of overlap would
be 100%, since the minority area is completely embedded in the majority area.
In their paper [5], authors do not elaborate on the percentage of overlap present
in each configuration – no percentages or any other values are presented for the
overlapping amount. Instead, these domains are evaluated in terms of global
imbalance, local imbalance and the size of the overlapping region: the notion of
overlap gets somewhat lost, which complicated the discussion of results. Accord-
ing to the definition of class overlap as “regions in the data space with similar
priors” [3,10], we believe that the “local imbalance in the overlap region” implies
the existence of an overlap degree. For instance, since the distribution of exam-
ples is uniform, a [75..100] range of minority examples over the majority class
square means that both classes have the same number of patterns (100 points of
each class) in the overlap region, thus, there is no local imbalance in the overlap
region. In this situation, the priors of both classes are the same, and therefore the
overlap degree should be maximum. As the minority class becomes denser, the
local imbalance increases because the size of the overlapping region is decreased,
meaning that the class priors are uneven, and therefore the overlap, in fact,
is decreasing. From this perspective, we could evaluate the results as follows:
as the minority class becomes denser, the overlapping degree is decreasing and
therefore the classification performance improves.

Regarding the F1 measure used in the research of Luengo et al. [11], it mea-
sures the highest discriminative power in all the features in the data. Essentially,
F1 is measured for all the features in the dataset according to F1 = (μ1−μ2)

2

σ2
1+σ2

2
,

and the highest value among all features is returned. Therefore, F1 measures the
overlapping of individual features, not the “overall overlapping of data”. If two
domains have the same structure (features have the same range and spread), F1
assumes the same or similar value, although they might be different in classifi-
cation terms.

Finally, regarding the typology defined by Napierala and Stefanowski [12], as
only the minority class is considered, borderline examples from the majority class
(that contribute to class overlapping) are not identified. Also, as the percentage
is determined over the total minority examples, majority regions where there are
no examples from the minority class are not taken into account.

An overlapping degree should attend to regions with the same class priors
(rather than considering distances between classes or the size of overlapping
areas only), consider the overall overlap (rather than the overlap of individual
features or focusing solely on the minority class examples) and focus on the
characteristics of data space: structure and class decomposition, distribution of
examples (implying that class imbalance could affect class overlap) and data
dimensionality. In a recent work, Lee and Kim propose a hybrid classifier based
on a fuzzy support vector machine and k-nearest neighbour algorithm to address
class imbalance and overlapping simultaneously [8]: the data space is divided into
soft and hard overlap regions so that each is handled separately. Although the
focus of the work is not to analyse the joint-impact of these problems, authors

Analysing the Footprint of Classifiers 205

define overlap-sensitive costs, where each example is classified as being part of
an overlapping or a non-overlapping region, through a k neighbourhood-based
function. This approach is advantageous since it considers the factors mentioned
above and therefore we have decided to adapt it in order to formulate a degree
of overlap and analyse its behaviour when applied to several data characteristics
and imbalance ratios.

3 Experiments

All datasets contained 1500 examples and were generated with increasing levels
of imbalance, namely 1:1, 2:1, 4:1, 6:1, 8:1 and 10:1, and increasing number
of dimensions, namely 2, 3, 5, 10, 15, 20, 30 and 40D. The datasets further
considered several overlap degrees and data structures (shapes), resulting in
different levels of complexity for classifiers: clusters and garcia (less complex
shapes) and clover, paw and subclus (more complex shapes).

The clusters domains, clusters-vo (Fig. 1a) and clusters-va, consist of two
normal distributions (one for each class) where each cluster has unitary stan-
dard deviation. For clusters-vo only one of the attributes is changed and the
overlap region decreases as the separation in the X1 axis between cluster cen-
tres increases. For clusters-va, all the attributes are changed and the separation is
increased in all axis, according to the number of dimensions. The garcia domains,
garcia-va and garcia-vo (Fig. 1b), follow a rectangular shape where both class are
centred in the same point, being overlapped. The distance between the centres
is then increased in steps of 10 units until 3×radius for garcia-va or 4×radius
for garcia-vo is reached, guaranteeing no overlap. The paw, clover and subclus
scenarios (Figs. 2a, b and c, respectively) are composed by different shapes of
the minority class, and the remaining space is filled by the majority class. The
minority class is formed by two types of examples – safe (located in homoge-
neous regions of the class) and borderline (located in the boundary between both
classes). For each imbalance ratio and dimension, the ratio of safe/borderline
examples varies from 100/0 to 0/100.

We measured the degree of overlap using a neighbourhood function. For
each example xi in data (considering both classes), its 5-nearest neighbours
are found: if xi and all its 5-nearest neighbours are from the same class, then
example xi belong to a non-overlapping region; otherwise, it belongs to an over-
lapping region. The number of examples (considering both classes) that belong
to overlapping regions (nmin over and nmaj over) are then divided by the total
number of examples, n. Thus, degOver = (nmin over + nmaj over)/n measures
the percentage of examples comprised in overlapping regions. Measuring the
degree of overlap as a neighbourhood-based function has two main advantages:
it can be applied to d-dimensional data with different structures/shapes and
takes the imbalance ratio (IR) into account. Besides considering the IR as a
fraction of nmaj/nmin, we have normalised this ratio to measure the severity of
the imbalance ratio. The degree of imbalance is defined as degIR = 1 − nmin

n/2 .
The value of nmin is naturally affected by the IR, and for a particular IR

206 M. Mercier et al.

(e.g. IR = 4) and total number of examples (e.g. n = 500), is computed as
nmin = n/(IR + 1), (for IR = 4:1, nmin = 500/(4 + 1) = 100 minority examples
and degIR = 1 − 100/(500/2) = 0.6). This degree of imbalance reflects how
much a particular scenario is affected by class imbalance on a normalised scale
between 0 and 1. We analysed seven classifiers with distinct inductive biases
[1]: Classification and Regression Trees (CART), k-Nearest Neighbour (KNN),
Fisher Linear Discriminant (FLD), Naive Bayes Classifier (NB), Multilayer Per-
ceptron (MLP), Support Vector Machine with a linear kernel (SVM-linear) and
Support Vector Machine with radial basis kernel (SVM-rbf). Regarding the eval-
uation of the classification performance, similarly to previous work [5,16], we use
Sensitivity (SENS) and Specificity (SPEC).

4 Results and Discussion

We start by analysing the performance degradation of each classifier according
to the properties of the test domains (IR, structure/shape and dimensionality).
To analyse this degradation, we first tuned the parameters of all classifiers (k for
KNN, C for SVM-linear, C and γ for SVM-rbf and number of neurons and layers
for MLP) on the configuration with the least amount of overlap, for each domain,
IR and dimensionality. Then, we analysed how much the defined model is affected
by increasing levels of overlap. The Sensitivity results for the minority class are
presented in Table 1, as well as the degOver for all the presented domains (due
to space restrictions, we report only the Sensitivity, although the Specificity was
analysed as well). Overall, CART, MLP and KNN show the lowest degradation
in classification performance (considering both Sensitivity and Specificity) for
all the test domains, whereas FLD and SVM-linear suffer the most with the
increase of class overlap. These latter two classifiers also seem to be critically
affected by the IR and data structure: the Sensitivity of FLD becomes 0 for 4:1
ratios and higher (clover and subclus domains), while SVM-linear struggles with
both higher IR and higher dimensions (for clover and subclus) with Sensitivity
results of 0 for ratios higher than 4:1 in higher dimensions (15 and 40D). Thus,
linear classifiers seem to be affected by all four components of the problem (IR,
dimensionality, class overlap and data structure), where the data structure seems
to be the most prominent factor.

CART, MLP and KNN, although with different classification paradigms, are
able to “adapt” to the data structure more easily, handling data that is not
linearly separable: CART by recursively partitioning the input space, MLP by
using multiple layers with non-linear activation functions and KNN through its
neighbourhood function. These three classifiers have only achieved a poor per-
formance for clusters-va and garcia-va, when both clusters/squares are centred
at the same coordinates, respectively. These poor results are consistent with
higher values of degOver (between 0.4 and 0.97), although degOver is not capa-
ble of explaining this effect entirely: in clover and subclus domains, there are
some scenarios achieving the same overlapping values, where KNN, MLP and
CART perform well. This may be mostly due to the structure of the domain

Analysing the Footprint of Classifiers 207

T
a
b
le

1
.
S
en

si
ti

v
it
y

o
f
cl

a
ss

ifi
er

s
fo

r
d
iff

er
en

t
d
o
m

a
in

s,
ov

er
la

p
le

v
el

s,
IR

a
n
d

d
im

en
si

o
n
a
li
ty

.
d
eg

O
v
er

C
A
R
T

F
L
D

S
V
M

-l
in
e
a
r

S
V
M

-r
b
f

N
B

M
L
P

K
N
N

D
im

e
n
si
o
n
s
O
v
e
rl
a
p

1
:1

4
:1

6
:1

1
0
:1

1
:1

4
:1

6
:1

1
0
:1

1
:1

4
:1

6
:1

1
0
:1

1
:1

4
:1

6
:1

1
0
:1

1
:1

4
:1

6
:1

1
0
:1

1
:1

4
:1

6
:1

1
0
:1

1
:1

4
:1

6
:1

1
0
:1

1
:1

4
:1

6
:1

1
0
:1

cl
ov
er

S1
00

-B
0

0.
20

1
0.
22

1
0.
20

5
0.
16

2
0.
91

0.
78

0.
70

0.
66

0.
48

0.
00

0.
00

0.
00

0.
69

0.
47

0.
50

0.
46

1.
00

0.
95

0.
93

0.
88

0.
91

0.
23

0.
05

0.
00

0.
99

0.
93

0.
91

0.
79

1.
00

0.
91

0.
81

0.
66

S5
0-
B
50

0.
26

1
0.
30

1
0.
27

4
0.
21

4
0.
94

0.
73

0.
67

0.
36

0.
47

0.
00

0.
00

0.
00

0.
66

0.
31

0.
41

0.
40

1.
00

0.
92

0.
85

0.
66

0.
88

0.
18

0.
05

0.
00

0.
99

0.
91

0.
86

0.
74

1.
00

0.
79

0.
65

0.
49

2D
S0

-B
10

0
0.
29

0
0.
33

9
0.
27

7
0.
22

8
0.
94

0.
71

0.
53

0.
44

0.
48

0.
00

0.
00

0.
00

0.
68

0.
31

0.
46

0.
44

1.
00

0.
97

0.
93

0.
73

0.
88

0.
26

0.
10

0.
00

1.
00

0.
94

0.
90

0.
79

1.
00

0.
80

0.
62

0.
39

5D
S1

00
-B

0
0.
04

4
0.
04

7
0.
04

0
0.
04

2
0.
99

0.
98

0.
99

0.
94

0.
51

0.
00

0.
00

0.
00

0.
97

0.
36

0.
43

0.
15

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
91

0.
99

1.
00

1.
00

1.
00

1.
00

S5
0-
B
50

0.
04

3
0.
04

3
0.
04

6
0.
04

4
1.
00

0.
98

0.
96

0.
96

0.
52

0.
00

0.
00

0.
00

0.
93

0.
21

0.
20

0.
19

1.
00

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
99

1.
00

0.
99

1.
00

1.
00

1.
00

0.
99

S0
-B

10
0

0.
04

5
0.
04

6
0.
04

5
0.
05

2
1.
00

0.
97

0.
97

0.
93

0.
48

0.
00

0.
00

0.
00

0.
98

0.
37

0.
19

0.
39

1.
00

0.
97

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
99

1.
00

0.
98

1.
00

1.
00

1.
00

0.
99

S1
00

-B
0

0.
14

0
0.
09

5
0.
08

9
0.
08

2
1.
00

0.
99

0.
96

0.
95

0.
52

0.
00

0.
00

0.
00

1.
00

0.
06

0.
00

0.
00

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

S5
0-
B
50

0.
14

8
0.
09

0
0.
08

1
0.
07

3
1.
00

0.
98

0.
99

0.
96

0.
53

0.
00

0.
00

0.
00

1.
00

0.
05

0.
00

0.
00

1.
00

1.
00

0.
98

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

15
D

S0
-B

10
0

0.
14

0
0.
09

8
0.
08

3
0.
07

9
0.
99

0.
96

0.
96

0.
93

0.
50

0.
00

0.
00

0.
00

1.
00

0.
05

0.
00

0.
00

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

40
d

S1
00

-B
0

0.
49

9
0.
09

5
0.
08

9
0.
08

2
1.
00

1.
00

1.
00

1.
00

0.
92

0.
00

0.
00

0.
00

1.
00

0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

S5
0-
B
50

0.
49

9
0.
09

0
0.
08

1
0.
07

3
1.
00

0.
99

1.
00

0.
99

1.
00

0.
00

0.
00

0.
00

1.
00

0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

S0
-B

10
0

0.
50

0
0.
09

8
0.
08

3
0.
07

9
1.
00

0.
99

0.
99

0.
99

0.
65

0.
00

0.
00

0.
00

1.
00

0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

su
b c
lu
s

S1
00

-B
0

0.
20

2
0.
23

0
0.
20

8
0.
16

9
1.
00

0.
98

0.
97

0.
93

0.
63

0.
00

0.
00

0.
00

0.
74

0.
48

0.
38

0.
33

1.
00

0.
90

0.
78

0.
69

1.
00

0.
53

0.
27

0.
00

0.
98

0.
80

0.
88

0.
81

1.
00

0.
85

0.
79

0.
65

S5
0-
B
50

0.
34

0
0.
31

7
0.
26

6
0.
22

9
0.
98

0.
90

0.
86

0.
73

0.
65

0.
00

0.
00

0.
00

0.
72

0.
40

0.
31

0.
12

0.
00

0.
85

0.
69

0.
54

1.
00

0.
46

0.
10

0.
00

0.
97

0.
00

0.
67

0.
57

0.
98

0.
66

0.
56

0.
48

2D
S0

-B
10

0
0.
35

3
0.
34

0
0.
30

7
0.
24

8
0.
97

0.
89

0.
85

0.
70

0.
67

0.
00

0.
00

0.
00

0.
69

0.
24

0.
22

0.
00

0.
01

0.
79

0.
71

0.
36

1.
00

0.
35

0.
02

0.
00

0.
90

0.
00

0.
63

0.
49

0.
99

0.
66

0.
45

0.
35

5D
S1

00
-B

0
0.
25

1
0.
25

3
0.
23

6
0.
19

9
1.
00

0.
97

0.
96

0.
96

0.
64

0.
00

0.
00

0.
00

0.
73

0.
48

0.
48

0.
41

1.
00

0.
96

0.
92

0.
84

1.
00

1.
00

1.
00

0.
96

0.
99

0.
89

0.
88

0.
77

1.
00

0.
99

0.
96

0.
83

S5
0-
B
50

0.
30

0
0.
28

3
0.
25

9
0.
21

9
1.
00

0.
97

0.
97

0.
89

0.
64

0.
00

0.
00

0.
00

0.
72

0.
47

0.
42

0.
35

1.
00

0.
94

0.
90

0.
75

1.
00

1.
00

0.
99

0.
93

0.
98

0.
83

0.
86

0.
69

0.
99

0.
97

0.
93

0.
78

S0
-B

10
0

0.
29

5
0.
31

5
0.
30

3
0.
24

1
0.
99

0.
98

0.
96

0.
90

0.
65

0.
00

0.
00

0.
00

0.
70

0.
40

0.
49

0.
34

1.
00

0.
94

0.
89

0.
79

1.
00

1.
00

1.
00

0.
82

0.
98

0.
81

0.
75

0.
65

1.
00

0.
94

0.
83

0.
69

S1
00

-B
0

0.
49

3
0.
66

1
0.
62

5
0.
57

5
1.
00

0.
98

0.
95

0.
93

0.
64

0.
00

0.
00

0.
00

0.
72

0.
08

0.
07

0.
00

1.
00

1.
00

0.
98

1.
00

1.
00

1.
00

1.
00

1.
00

0.
99

0.
96

0.
94

0.
93

1.
00

1.
00

1.
00

1.
00

S5
0-
B
50

0.
49

5
0.
67

1
0.
65

5
0.
59

3
1.
00

0.
99

0.
96

0.
90

0.
64

0.
00

0.
00

0.
00

0.
72

0.
09

0.
08

0.
00

1.
00

0.
99

0.
97

0.
99

1.
00

1.
00

1.
00

1.
00

0.
98

0.
92

0.
96

0.
84

1.
00

1.
00

1.
00

0.
99

15
D

S0
-B

10
0

0.
49

4
0.
67

7
0.
66

1
0.
59

9
1.
00

0.
99

0.
99

0.
95

0.
63

0.
00

0.
00

0.
00

0.
73

0.
12

0.
07

0.
00

0.
90

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
98

0.
93

0.
91

0.
79

1.
00

1.
00

1.
00

0.
99

40
D

S1
00

-B
0

0.
50

0
0.
80

0
0.
85

7
0.
90

9
1.
00

0.
98

0.
96

0.
90

0.
64

0.
00

0.
00

0.
00

0.
72

0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
99

0.
99

0.
96

1.
00

1.
00

1.
00

1.
00

S5
0-
B
50

0.
50

0
0.
80

0
0.
85

7
0.
90

9
1.
00

0.
95

0.
92

0.
93

0.
64

0.
00

0.
00

0.
00

0.
71

0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
97

0.
98

0.
98

1.
00

1.
00

1.
00

1.
00

S0
-B

10
0

0.
50

0
0.
80

0
0.
85

7
0.
90

9
1.
00

0.
99

0.
98

0.
92

0.
64

0.
00

0.
00

0.
00

0.
70

0.
00

0.
00

0.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
99

0.
99

0.
96

1.
00

1.
00

1.
00

1.
00

cl
us
te
rs
-v
a

8
st
d

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
43

0.
72

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
80

0.
90

1.
00

1.
00

1.
00

1.
00

4
st
d

0.
00

7
0.
00

7
0.
00

5
0.
00

1
1.
00

0.
99

0.
99

0.
98

1.
00

0.
99

1.
00

1.
00

1.
00

0.
99

0.
99

0.
96

0.
23

0.
44

0.
00

0.
00

1.
00

0.
99

1.
00

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

0.
99

1.
00

1.
00

2D
0
st
d

0.
96

1
0.
74

1
0.
58

0
0.
42

7
0.
51

0.
18

0.
08

0.
08

0.
49

0.
00

0.
00

0.
00

0.
49

0.
00

0.
00

0.
00

0.
86

0.
00

0.
00

0.
00

0.
45

0.
00

0.
00

0.
00

0.
15

0.
01

0.
01

0.
00

0.
50

0.
20

0.
15

0.
09

5D
8
st
d

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

4
st
d

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

0.
99

0.
98

0.
98

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
97

1.
00

1.
00

0.
25

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0
st
d

0.
97

1
0.
73

1
0.
59

8
0.
44

8
0.
49

0.
17

0.
13

0.
05

0.
52

0.
00

0.
00

0.
00

0.
48

0.
00

0.
00

0.
00

0.
22

0.
00

0.
00

0.
00

0.
59

0.
00

0.
01

0.
00

0.
46

0.
02

0.
04

0.
01

0.
50

0.
17

0.
14

0.
10

8
st
d

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
70

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

4
st
d

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

0.
98

0.
99

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

15
D

0
st
d

0.
97

3
0.
73

5
0.
60

3
0.
41

6
0.
47

0.
22

0.
21

0.
11

0.
50

0.
00

0.
00

0.
00

0.
39

0.
00

0.
00

0.
00

0.
80

0.
00

0.
00

0.
00

0.
48

0.
00

0.
01

0.
02

0.
45

0.
15

0.
13

0.
09

0.
50

0.
22

0.
13

0.
07

40
D

8
st
d

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

4
st
d

0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
99

0.
99

0.
96

0.
95

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
80

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0
st
d

0.
96

1
0.
75

1
0.
60

3
0.
44

5
0.
52

0.
22

0.
16

0.
08

0.
50

0.
00

0.
00

0.
00

0.
54

0.
00

0.
00

0.
00

0.
99

0.
00

0.
00

0.
00

0.
52

0.
05

0.
02

0.
01

0.
48

0.
24

0.
14

0.
11

0.
49

0.
23

0.
12

0.
10

ga
rc
ia
-v
a

st
ep

-1
00

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
90

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

st
ep

-5
0

0.
10

6
0.
08

9
0.
08

1
0.
05

6
0.
94

0.
91

0.
91

0.
91

0.
96

0.
90

0.
87

0.
84

0.
96

0.
90

0.
87

0.
83

0.
94

0.
00

0.
00

0.
84

0.
90

0.
87

0.
86

0.
83

0.
96

0.
90

0.
89

0.
86

0.
93

0.
90

0.
90

0.
88

2d
st
ep

-0
1.
00

0
0.
88

7
0.
77

5
0.
55

5
0.
20

0.
01

0.
00

0.
00

0.
46

0.
00

0.
00

0.
00

0.
46

0.
00

0.
00

0.
00

0.
29

0.
00

0.
00

0.
00

0.
43

0.
00

0.
00

0.
00

0.
28

0.
00

0.
00

0.
00

0.
23

0.
04

0.
00

0.
00

5d
st
ep

-1
00

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
90

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

st
ep

-5
0

0.
01

1
0.
01

3
0.
00

7
0.
00

5
1.
00

0.
98

0.
99

0.
96

1.
00

1.
00

0.
99

0.
99

1.
00

1.
00

0.
99

0.
99

1.
00

0.
93

0.
47

0.
00

1.
00

1.
00

0.
99

0.
99

1.
00

0.
99

0.
99

0.
98

1.
00

0.
99

1.
00

0.
98

st
ep

-0
0.
99

9
0.
82

6
0.
69

1
0.
54

7
0.
33

0.
05

0.
02

0.
01

0.
44

0.
00

0.
00

0.
00

0.
43

0.
00

0.
00

0.
00

0.
17

0.
00

0.
00

0.
00

0.
35

0.
00

0.
00

0.
00

0.
45

0.
00

0.
01

0.
00

0.
19

0.
05

0.
03

0.
01

st
ep

-1
00

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

st
ep

-5
0

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

0.
98

0.
95

0.
95

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
14

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

15
d

st
ep

-0
0.
99

3
0.
80

0
0.
63

1
0.
50

0
0.
51

0.
14

0.
03

0.
05

0.
36

0.
00

0.
00

0.
00

0.
42

0.
00

0.
00

0.
00

0.
36

0.
00

0.
00

0.
00

0.
24

0.
00

0.
00

0.
00

0.
91

0.
55

0.
38

0.
38

0.
54

0.
12

0.
09

0.
08

40
d

st
ep

-1
00

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

st
ep

-5
0

0.
00

0
0.
00

0
0.
00

0
0.
00

0
1.
00

1.
00

0.
98

0.
96

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

st
ep

-0
0.
91

1
0.
77

5
0.
55

4
0.
39

9
0.
80

0.
50

0.
52

0.
28

0.
34

0.
00

0.
00

0.
00

0.
33

0.
00

0.
00

0.
00

0.
57

0.
00

0.
00

0.
00

0.
18

0.
00

0.
00

0.
00

0.
98

0.
62

0.
74

0.
53

0.
58

0.
20

0.
24

0.
25

208 M. Mercier et al.

and the way overlap is generated. In clover and subclus, the structure of data is
not changed (when the overlap increases, more borderline examples are added,
but the core structure of the domain remains the same – Fig. 2). In clusters-
va and garcia-va, the structure of data changes with the increase of overlap,
since the cluster/square centres become closer (Figs. 1a and b). For these par-
ticular scenarios (clusters-va and garcia-va) it is also noticeable that higher IR
ratios deteriorate the classification performance (for all dimensions), which is
not observed for the remaining domains. Therefore, it is not possible to infer
clearly what is more severe for these classifiers, since they seem to be affected
by a combination of data structure, IR and class overlap, though not as severely
by data dimensionality. Finally, although SVM-rbf seems to be more affected by
class overlap than class imbalance, where the decrease in Sensitivity results was
especially noticed in lower dimensions (2D) for most scenarios. Kernel meth-
ods are known to ease non-linear problems by mapping the input data to an
“improved” feature space, but this largely depends on data itself. Furthermore,
we also observed that this classifier has obtained poor Specificity results: it was
not possible to define a clear decision hyperplane without compromising the
classification of the majority class. On the contrary, NB suffered the most from
higher IR, which is consistent with its bias to favour the most prevalent class,
adjusting its decision threshold accordingly.

degOver

Very Low Overlap Low Overlap Average Overlap High Overlap Very High Overlap

C
la

ss
if

ic
at

io
n

Pe
rf

or
m

an
ce

Very Bad

Bad

Good

Great

Excellent

Fig. 3. Alignment between degOver and classification performance of KNN.

We now perform an analysis on the alignment of degOver and classification
performance. As previously discussed, degOver may not be able to fully charac-
terise the behaviour of all classifiers, although it may provide interesting insights
in some cases. Of note is the ability of degOver to “adapt” to different IR levels:
class overlap is not measured independently of class imbalance, and degOver
generally assumes lower values as the IR increases, as discussed in Sect. 2. An
exception occurs for the subclus domain for higher dimensions (15 and 40D),
which shows that both the shape of domain and dimensionality may impact
the results in certain scenarios. We then transformed degOver and classification
performance to categories to ease the interpretation of results: degOver values
were divided in five intervals from 0 to 1: very low overlap (VLO), low overlap
(LO), average overlap (AO), high overlap (HO) and very high overlap (VHO),

Analysing the Footprint of Classifiers 209

clusters-va
C

la
ss

if
ic

at
io

n
Pe

rf
or

m
an

ce

Bad

Good

Great

Excellent
garcia-va

V
L

O

L
O

A
O

H
O

V
H

O

V
L

O

L
O

A
O

H
O

V
H

O

degOver

(a)

scenario
clusters-va

degOver

C
la

ss
if

ic
at

io
n

Pe
rf

or
m

an
ce

Very Bad

Bad

Good

Great

Excellent
garcia-va

V
L

O

 L
O

 A
O

 H
O

V
H

O

V
L

O

L
O

A
O

H
O

V
H

O

0.000 0.333 0.600

0.714 0.778 0.818

degIR:

(b)

Fig. 4. (a) Alignment between degOver and classification performance of FLD (clusters
and garcia); (b) Lines representing different levels of degIR.

while Sensitivity and Specificity results were combined to produce also five cat-
egories of performance: very bad, bad, good, great and excellent. Figure 3 shows
the relationship between degOver and KNN, which was found to be the classifier
most aligned with degOver (as expected, since their underlying principles are the
same – they are based on neighbourhood functions). Overall, the performance of
classifiers deteriorates with higher values of degOver, although this decrease is
not linear: maximum levels of overlap do not necessarily correspond to minimum
performance results. This suggests, as previously discussed, that there are other
factors (namely, data structure) affecting the performance of classifiers, as will
be discussed in what follows.

For clusters and garcia, classification performance and degOver are aligned
for all classifiers: an example of this alignment is presented in Fig. 4a for FLD.
The slight increase in performance for higher degOver values (HO and VHO)
may be explained by the IR values (Fig. 4b): the blue line (normalised IR of
0) indicates that there is no class imbalance – in this scenario, although the
overlap is high, the performance results are also high, causing the slight increase
of performance for the high overlap levels in Fig. 4a. Again, these results suggest
that all these properties of data (IR, class overlap and data structure) should
be analysed together to better understand the performance of classifiers. For
more complex scenarios, as clover, subclus and paw, the alignment with degOver
varies for different classifiers. None of them presents the expected behaviour
(a performance decrease for higher values of degOver) for all three domains,
although KNN and SVM-linear present a better alignment than the remaining
classifiers, being KNN clearly the most aligned (Fig. 5a). Figure 5a also presents
the results for FLD and SVM-rbf, two of the classifiers that do not present a
good alignment between degOver and classification performance for complex
domains. We hypothesise that this mismatch can be related to the structure of
data, which may be influenced by data dimensionality. Some classifiers (SVM-

210 M. Mercier et al.

K
N

N
FLD

SV
M

-rbf
C
lassifiers

degOver

V
L

O

L
O

A
O

H
O

V
H

O

C
la

ss
ifi

ca
tio

n
Pe

rf
or

m
an

ce

Very Bad
Bad

Good
Great

Excellent

Very Bad
Bad

Good
Great

Excellent

Very Bad
Bad

Good
Great

Excellent

(a)

C
la

ss
ifi

ca
tio

n
Pe

rf
or

m
an

ce

Very Bad

Bad

Good

Great

Excellent

2D

degOver
Dimensionality

5D 15D 30D 40D

V
L

O

L
O

A
O

H
O

V
H

O

(b)

Fig. 5. (a) Alignment between degOver and classification performance of KNN, FLD
and SVM-rbf considering only more complex shapes (paw, clover and subclus); (b)
Dimensionality discrimination for SVM-rbf.

rbf, CART, NB and MLP) are able to classify datasets with higher overlap levels
in higher dimensions (Fig. 5b): the subclus domain is such an example (Table 1)
where high degOver values occur in 40D, and the mentioned classifiers obtain
better results than for lower dimensions (sometimes with lower degOver values
as well). These results suggest that data dimensionality is especially relevant for
more complex domains and that degOver may have to be adjusted according to
the number of dimensions and number of examples in data in order to give more
insights on properties of the domain.

5 Conclusions

Class overlap is one of the difficulty factors that deteriorates the performance
of classifiers and is even more critical in imbalanced contexts, as discussed in
related work. However, most authors study class overlap without providing a
clear formula to measure its degree: overlap is often perceived as a distance
between majority and minority concepts or as an area of intersection between
majority and minority classes, without considering the IR nor the structure of
data, which may limit the conclusions derived from such setups. From our per-
spective, a measure of the degree of overlap should take the IR and structure of
data into account. Therefore, we evaluate the usefulness of degOver to quantify
the overlapping degree and its relationship with the classification performance
of standard classifiers in several domains with different shapes, IRs and dimen-
sionality. Our results revealed that MLP and CART are less prone to suffer from
high levels of overlap and show good performance even in the presence of more
complex domains. Furthermore, in simpler scenarios, degOver is aligned with
classification performance for all classifiers, even for varying amounts of imbal-
ance. However, this alignment varies significantly in more complex domains and

Analysing the Footprint of Classifiers 211

seems to be influenced by data dimensionality. In sum, although degOver takes
the imbalance ratio into account and can be measured for any data structure
and dimensionality, it needs to be adjusted to better represent these properties
of data so that it may provide more useful insights for more complex domains.

References

1. Abreu, P.H., Santos, M.S., Abreu, M.H., Andrade, B., Silva, D.C.: Predicting breast
cancer recurrence using machine learning techniques: a systematic review. ACM
Comput. Surv. (CSUR) 49(3), 52 (2016)

2. Ali, A., Shamsuddin, S.M., Ralescu, A.L.: Classification with class imbalance prob-
lem: a review. Int. J. Adv. Soft Compu. Appl. 7(3), 176–204 (2015)

3. Denil, M., Trappenberg, T.: Overlap versus imbalance. In: Farzindar, A., Kešelj, V.
(eds.) AI 2010. LNCS (LNAI), vol. 6085, pp. 220–231. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13059-5 22

4. Domingues, I., Amorim, J.P., Abreu, P.H., Duarte, H., Santos, J.: Evaluation of
oversampling data balancing techniques in the context of ordinal classification, pp.
5691–5698 (2018)

5. Garćıa, V., Mollineda, R.A., Sánchez, J.S.: On the k-nn performance in a challeng-
ing scenario of imbalance and overlapping. Pattern Anal. Appl. 11(3–4), 269–280
(2008)

6. Garćıa, V., Mollineda, R.A., Sánchez, J.S., Alejo, R., Sotoca, J.M.: When overlap-
ping unexpectedly alters the class imbalance effects. In: Mart́ı, J., Bened́ı, J.M.,
Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 499–506.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72849-8 63

7. Garćıa, V., Sánchez, J., Mollineda, R.: An empirical study of the behavior of clas-
sifiers on imbalanced and overlapped data sets. In: Rueda, L., Mery, D., Kittler,
J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 397–406. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76725-1 42

8. Lee, H.K., Kim, S.B.: An overlap-sensitive margin classifier for imbalanced and
overlapping data. Expert Syst. Appl. 98, 72–83 (2018)

9. Longadge, R., Dongre, S.: Class imbalance problem in data mining review. arXiv
preprint arXiv:1305.1707 (2013)

10. López, V., Fernández, A., Garćıa, S., Palade, V., Herrera, F.: An insight into
classification with imbalanced data: empirical results and current trends on using
data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)

11. Luengo, J., Fernández, A., Garćıa, S., Herrera, F.: Addressing data complexity
for imbalanced data sets: analysis of smote-based oversampling and evolutionary
undersampling. Soft Comput. 15(10), 1909–1936 (2011)

12. Napiera�la, K., Stefanowski, J., Wilk, S.: Learning from imbalanced data in presence
of noisy and borderline examples. In: Szczuka, M., Kryszkiewicz, M., Ramanna,
S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 158–167.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13529-3 18

13. Prati, R.C., Batista, G.E.A.P.A., Monard, M.C.: Class imbalances versus class
overlapping: an analysis of a learning system behavior. In: Monroy, R., Arroyo-
Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol.
2972, pp. 312–321. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24694-7 32

https://doi.org/10.1007/978-3-642-13059-5_22
https://doi.org/10.1007/978-3-540-72849-8_63
https://doi.org/10.1007/978-3-540-76725-1_42
http://arxiv.org/abs/1305.1707
https://doi.org/10.1007/978-3-642-13529-3_18
https://doi.org/10.1007/978-3-540-24694-7_32
https://doi.org/10.1007/978-3-540-24694-7_32

212 M. Mercier et al.

14. Santos, M.S., Abreu, P.H., Garćıa-Laencina, P.J., Simão, A., Carvalho, A.: A new
cluster-based oversampling method for improving survival prediction of hepatocel-
lular carcinoma patients. J. Biomed. Inf. 58, 49–59 (2015)

15. Stefanowski, J.: Overlapping, rare examples and class decomposition in learning
classifiers from imbalanced data. Emerging Paradigms in Machine Learning, pp.
277–306. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-28699-5 11

16. Wojciechowski, S., Wilk, S.: Difficulty factors and preprocessing in imbalanced
data sets: an experimental study on artificial data. Found. Comput. Decis. Sci.
42(2), 149–176 (2017)

https://doi.org/10.1007/978-3-642-28699-5_11

Tree-Based Cost Sensitive Methods for
Fraud Detection in Imbalanced Data

Guillaume Metzler1,2(B), Xavier Badiche2, Brahim Belkasmi2, Elisa Fromont3,
Amaury Habrard1, and Marc Sebban1

1 Univ. Lyon, UJM-Saint-Etienne, CNRS, Institut d’Optique Graduate School,
Laboratoire Hubert Curien UMR 5516, 42023 Saint-Etienne, France

{guillaume.metzer,amaury.habrard,marc.sebban}@univ-st-etienne.fr
2 Blitz Business Service, 265 Rue Denis Papin, 38090 Villefontaine, France

{gmetzler,xbadiche,bbelkasmi}@blitzbs.com
3 Univ. Rennes 1, IRISA/Inria, 35042 Rennes Cedex, France

efromont@irisa.fr

Abstract. Bank fraud detection is a difficult classification problem
where the number of frauds is much smaller than the number of genuine
transactions. In this paper, we present cost sensitive tree-based learning
strategies applied in this context of highly imbalanced data. We first pro-
pose a cost sensitive splitting criterion for decision trees that takes into
account the cost of each transaction and we extend it with a decision
rule for classification with tree ensembles. We then propose a new cost-
sensitive loss for gradient boosting. Both methods have been shown to be
particularly relevant in the context of imbalanced data. Experiments on
a proprietary dataset of bank fraud detection in retail transactions show
that our cost sensitive algorithms allow to increase the retailer’s bene-
fits by 1,43% compared to non cost-sensitive ones and that the gradient
boosting approach outperforms all its competitors.

Keywords: Cost sensitive learning · Imbalance learning · Binary
classification

1 Introduction and Related Work

Imbalanced data are ubiquitous in many real world applications, e.g. in medi-
cal domains [13], bank transactions [2,16] or industrial processes [1]. Supervised
machine learning tasks are challenging in this context because algorithms strug-
gle to focus on the important class (e.g. fraud, disease, failure, etc.) which is
under-represented in the data. Classical approaches tend to tackle the problem
by rebalancing the data [7] or optimizing different performance measures than
the classical accuracy [15] which would otherwise lead to predict all instances
in the over-represented classes. Ensemble methods such as random forests [5]
or boosting algorithms [9,17] have been shown to be particularly successful in
this context because they can combine local decisions taken in areas where the
imbalance is (made) less prominent.
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 213–224, 2018.
https://doi.org/10.1007/978-3-030-01768-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_18&domain=pdf

214 G. Metzler et al.

In some application domains such as fraud/anomaly detection, additional
precise information can be given to favor one class from other ones in the learning
process. This can for example be done by cost-sensitive learning approaches [8]
which can take into account user preferences (in terms of the importance of the
classes or of the attributes). For example, [2] proposes a cost-sensitive decision
tree stacking algorithm to tackle a fraud detection task in a banking context.
The authors provide a cost matrix that assigns costs to each decision made
by the model and define an optimization function that takes this matrix into
account. In Decision Tree learning the splitting criterion is made according to
these costs method and not according to the usual impurity measures (such as
entropy or Gini). This allows them to better target the rare classes. [17] presents
a cost-sensitive version of the Adaboost boosting algorithm [9] and also shows
its relevance in this imbalanced scenario. [18] gives a general study of the cost-
sensitive learning methods in the context of imbalanced data. They categorise
the methods into two sets: those which fix the error costs in each class and
apply it a posteriori to make a decision, and those which tune a priori the cost
matrix depending on the local distribution of the data (this category seems more
successful). [16] tackles the problem of credit card fraud detection. The approach,
similar to [2] and to the first one we present in this paper, proposes to induce
decision trees by splitting each node according to a cost matrix associated to
each example. However, as in [16], they focus on the actual money losses losses
but not on possible benefits of better classifications and they apply their method
to ranking problems. Other methods like [13] have focused on the cost of the
attributes (here in the context of medical data). They consider that acquiring
the exact value of a given attribute is costly and try to find a good compromise
between the classification errors and the total feature acquisition costs.

In this paper, we also propose different cost sensitive tree-based learning
approaches in the highly imbalanced context of bank fraud detection. The first
approach, similar to [2] and [16] and presented in Sect. 3, uses a cost sensitive
splitting criterion for decision trees that takes into account the costs (as well
as the benefits) of each transaction. But it differs from [2] and [16] in the com-
binaison strategy for building an ensemble method. The second one presented
in Sect. 4 is a new cost-sensitive proper loss [6] for gradient boosting. Section 2
presents our notations, the gain/cost matrix we are working with and the asso-
ciated weighted miss-classification loss we want to optimize. The experiments
and results are presented in Sect. 5. We illustrate the different methods using
both the retailer margin and the F-Measure (F1) as performance measures. The
experiments are made on a proprietary dataset of the Blitz company. We finally
conclude in Sect. 6.

2 Notations and Problem Formulation

2.1 Notations

We focus in this paper on binary supervised classification problems. Let S =
(X,Y) = ((x1, y1), ...(xm, ym)) be a set of m training instances where xi ∈ R

d

Tree-Based Cost Sensitive Methods for Fraud Detection in Imbalanced Data 215

and yi ∈ {0, 1}m are their corresponding labels. The notation xj
i is used to

denote the value of the jth variable of the instance i. The label 0 will be used
for the negative or majority class (i.e. the genuine transactions) and the label 1
will be used for the positive or rare class (i.e. the fraudulent transactions). We
will further denote by S+ the set of m+ positive examples and S− the set of m−
negative examples (here m− >> m+). We will also note ŷi the label predicted
by our learned model for the instance i. We use the notation p for the predicted
probability that an example belongs to the minority class, F will be used to
design the learned model, i.e. pi = F (xi) is the probability that the transaction
is fraudulent. A threshold is then used to get its label.

2.2 Problem Formulation

Our goal is to maximize the profits of the retailers by predicting, online, with
decision trees [4] which transactions, made by a customer are genuine or not.
While training the trees offline, the company might like to introduce some costs
assigned to the training examples, according to the adequacy between the actual
label of the transaction and the predicted one (see Table 1). For instance, the
retailers will gain money by accepting a genuine transaction, i.e. cTNi

> 0,
where TN stands for True Negative or genuine transactions correctly classified.
However, if the retailers accept a fraudulent one, they will loose the amount of
the transaction cFNi

< 0, where FN stands for False Negative or fraudulent
transaction predicted as a genuine one.

Table 1. Cost Matrix associated to each example of the training set.

Predicted positive (fraud) Predicted negative (genuine)

Actual positive (fraud) cTPi
cFNi

Actual negative (genuine) cFPi
cTNi

In this paper, we use a similar approach as the one presented in [2]. However,
instead of only minimizing the money loss due to an acceptation of a fraudulent
transaction, we rather focus on maximizing the retailers profits, i.e. we aim at
maximizing the loss function L defined as follows:

L(y | ŷ) =
m∑

i=1

[yi(ŷicTPi
+ (1 − ŷi)cFNi

) + (1 − yi)(ŷicFPi
+ (1 − ŷi)cTNi

)] .

(1)
Talking about profits instead of classical “costs” is more meaningful for the

retailers. Furthermore, if we simply focus on the error made by the algorithm, a
correctly classified instance will have no influence on the learned model.

In the next section, we show how this loss function can be optimized while
learning decision trees.

216 G. Metzler et al.

3 Cost Sensitive Decision Trees

A classic decision tree induction algorithm proceeds in a top-down recursive
divide-and-conquer manner. At each step, the best (according to a given crite-
rion) attribute A is chosen as a new test (internal node) in the tree and the
set of examples is splitted according to the outcome of the attribute for each
of the instance (there is one child node v per possible outcomes for a given
attribute). Then, the same procedure is applied recursively to each new created
subset of examples Sv until reaching a given stopping criterion. Classification
trees (e.g. [4]) usually split the nodes according to an “impurity” measure. One
such measure is the Gini index of a set of m instances (xi,yi) defined as follows:
Gini = 1 − ∑C

k=1 p2k, where pk denotes the probability to belong to the class k
and C is the number of classes (C = 2 in our case). In this paper, the splitting
criterion is based on the cost matrix defined above. We do not want to minimize
an impurity but to maximize the retailer profits according to the cost matrix.

3.1 Splitting Criterion and Label Assignment

Our splitting criterion ΓS on a given set of training instances S of size m (as
defined in Sect. 2) is:

ΓS =
∑

i∈S−

(m+

m
cFPi(xi) +

m−
m

cTNi(xi)
)
+

∑

i∈S+

(m+

m
cTPi(xi) +

m−
m

cFNi(xi)
)

, (2)

where the first term corresponds to the profits due to genuine transactions and
the second to the fraudulent transactions.

Note that this quantity depends on the amount of the transaction of each
example in S through the costs c. The best attribute A is the one which maxi-
mizes the quantity:

(
1

n + ε
)

∑

v∈Children(A)

ΓSv
− ΓS .

Note that this quantity is very similar to the splitting criterion used to minimize
to minimize the Gini impurity up to the number of examples in the parent node.
We simply take the opposite of the classical gain and divide it by the number of
instances in the parent node, so that this criterion becomes convex.

The values ΓSv
are computed using Eq. (2) on each set Sv. It differs from

the splitting criterion used in [2] where the splits minimize the cost of wrongly
accepting or blocking the transactions.

Once the induction tree stopping criterion is reached (ours is defined in
Sect. 5), a class label is associated to each leaf of the tree. For the sake of clarity
we introduce the following notations:

Tree-Based Cost Sensitive Methods for Fraud Detection in Imbalanced Data 217

γ0(l): the average profit associated to the leaf l if all the instances are pre-
dicted as genuine:

γ0(l) =
1
|l|

⎛

⎝
∑

i:xi∈l∩S−

cTNi
+

∑

i:xi∈l∩S+

cFNi

⎞

⎠ ,

γ1(t): the average profit associated to the leaf l if all instances are predicted
as frauds:

γ1(l) =
1
|l|

⎛

⎝
∑

i:xi∈l∩S−

cFPi
+

∑

i:xi∈l∩S−

cTPi

⎞

⎠ ,

where |l| denotes the number of examples in the leaf l and i : xi ∈ l ∩ S
denotes the index i of the example xi both in leaf l and in the set S.

A leaf is assigned the label 1 if γ1 > γ0, i.e. all the transactions in a given
leaf are predicted fraudulent if the associated average profit is greater than one
associated when all instances are predicted genuine.

Note that this strategy can be easily extended to ensembles of trees [5]. In
this case, a standard decision rule consists in applying a majority vote over
the whole set of the T learned decision trees. However, this decision rule does
not take into account the probability score that can be associated to each tree
prediction using the class distribution of the examples in the leaf l(xi) (as in
[16]). Following this idea, we suggest here to label an instance as positive if the
average γ̄1(x) of the average profits γ1(lj(xi)) over the T trees is greater than
γ̄0(x), where lj(xi) is the leaf of the jth tree containing xi:

γ̄1(x) =
1
T

T∑

j=1

γ1(l(x)) ≥ 1
T

T∑

j=1

γ0(l(x)) = γ̄0(x).

4 Cost Sensitive Gradient Boosting

In this section, we briefly present the gradient boosting framework introduced in
[11]. Then we present a proper cost-sensitive loss function in order to implement
it in a gradient boosting algorithm in an efficient way.

4.1 Generalities about Gradient Boosting

Gradient boosting has been shown to be very efficient to deal with classification
problems, and a very good candidate to address issues due to imbalance data
[3,12]. Unlike the well known Adaboost algorithm [9], gradient boosting performs
an optimization in the function space rather than in the parameter space. At each
iteration, a weak learner ft is learned using the residuals (or the errors) obtained
by the linear combination of the previous models. The linear combination Ft at
time t is defined as follows:

Ft = Ft−1 + αtft, (3)

218 G. Metzler et al.

where Ft−1 is the linear combination of the first t−1 models and αt is the weight
given to the tth weak learner. The weak learners are trained on the residuals
ri = yi−Ft−1(xi) of the current model. These residuals are given by the negative
gradient, −gt, of the used loss function L with respect to the current prediction
Ft−1(xi):

ri = gt = −
[
∂L(y, Ft−1(xi))

∂Ft−1(xi)

]
.

Once the residuals ri are computed, the following optimization problem is solved:

(ft, αt) = argmin
α,f

m∑

i=1

(ri − αf(xi))2.

Finally, the update rule (3) is applied.

4.2 Cost Sensitive Loss for Gradient Boosting

In this section we aim to use the framework presented in [6] to give a proper
formulation of our loss function of Eq. (1) in the context of a boosting algorithm,
using the gain matrix presented in Table 1.

Using a Bayes rule for classification [8], an instance i is predicted fraudulent
if γ1 > γ0, i.e:

picTPi
+ (1 − pi)cFPi

− picFNi
− (1 − pi)cTNi

> 0,

where pi denotes the probability of the instance to be a genuine transaction. It
gives us a threshold over which the transaction is declined (or predicted fraud-
ulent):

pi >
cTNi

− cFPi

cTPi
− cFNi

+ cTNi
− cFPi

= si

Using the threshold si, our cost-weighted miss-classification loss can be
rewritten as:

L(y | p) = − 1
m

m∑

i=1

(yicTPi
+ (1 − yi)cFPi

)1pi>si
+(yicFNi

+(1−yi)cTNi
)1pi≤si

.

(4)
Then, following the framework presented in [6], L(y | p) can be rewritten as

follows:

L(y | p) =
1
m

m∑

i=1

ξi [yi(1 − si)1pi≤si
+ (1 − yi)si1pi>si

]

− 1
m

m∑

i=1

(yicTPi
+ (1 − yi)cTNi

), (5)

Tree-Based Cost Sensitive Methods for Fraud Detection in Imbalanced Data 219

where 1 is an indicator function and where we use the fact that s = s1p>s +
s1p≤s and set ξi = cTNi

− cFPi
+ cTPi

− cFNi
which is positive in our context.

In fact, cTN > cFP , we earn more if we correctly classify a genuine transaction.
Furthermore, if we accept a fraudulent transaction then we loose money and we
earn nothing if we declined it, i.e. 0 = cTP > cFN .

The first part of Eq. (5), which we will note Lsi
corresponds to the cost-

sensitive loss introduced in [6] with si ∈ [0, 1]. Each term of the sum is multiplied
by a constant ξi which depends on the data. The second term represents the
maximum that our loss can reach if the predictions were perfect. Note that this
second term does not depend on pi. Therefore, we want to minimize:

argmin
p∈[0,1]

Ey[L(y | p)] = argmin
p∈[0,1]

Ey

[
1
m

m∑

i=1

ξiLsi
(yi | pi)

]
.

However it has been shown that in the context of Boosting, it is more con-
venient to use an exponential approximation [11]. We adapt it to consider the
output of a prediction model F directly in our approach as follows 1:

�si
= (1 − si)yie

−F (xi) + si(1 − yi)eF (xi).

Solving
∂EY[�si

]
∂F (xi)

= 0, we obtain the link function ψi between pi and F̂i = F (xi):

pi = ψi(F̂i) =
1

1 +
1 − si

si
e−2F̂i

,

and its inverse ψ−1
i is given by:

eF̂i =
(

1 − si

si

)1/2 (
pi

1 − pi

)1/2

. (6)

The way to transform the output of a boosting model into a probability (the
calibration process) plays a key role in the performance of the predictive algo-
rithm. It has been shown that we can achieve at least the same performance with
well calibrated boosting model than with one which is cost sensitive [14]. How-
ever, we think that our cost sensitive approach gives us a good transformation
of the output of the model into a probability.

It is worth noticing that we can make use of Eq. (6) to provide a smooth
approximation of the indicator function, such that:

1pi>si
≤

(
1 − si

si

)1/2 (
pi

1 − pi

)1/2

= eF̂i .

1 Note that it exists a direct link between a predicted probability and the output of a
model (see Sect. 3 of [10] and Sect. 4 of [6] for further details).

220 G. Metzler et al.

Note that: pi > si ⇐⇒ ψi(F̂i) > si ⇐⇒ eF̂i > 1 ⇐⇒ F̂i > 0. So it is
enough to check the sign of the score to predict the label of each transaction.
Finally we are minimizing an upper bound L̃ of L:

L(y | p) ≤ L̃(y | F) =
1
m

m∑

i=1

(1 − si)yie
−F̂i + si(1 − yi)eF̂i .

To use it in a gradient boosting algorithm, it remains to compute the first
and second order derivative of L̃ for each instance i with respect to F̂i. They are
given by:

∂L̃

∂F̂i

= ξi

[
−(1 − si)yie

−F̂i + si(1 − yi)eF̂i

]
,

and
∂2L̃

∂F̂ 2
i

= ξi

[
(1 − si)yie

−F̂i + si(1 − yi)eF̂i

]
.

5 Experiments

In this section, we evaluate the decision rule presented in Sect. 3 and the loss
function presented in Sect. 4. We compare the results of our method on the
retailer profits compared to using a classic Random Forest (RF) algorithm based
on the Gini impurity criterion (baseline). The experiments are performed on a
private dataset own by the Blitz company which can not be entirely described
and made available for privacy reasons.

5.1 Dataset and Experiments

The Blitz dataset consists of 10 months of bank transactions of a retailer. The
first six months are used as the training set (1, 663, 009 transactions) and the
four remaining ones as test set (1, 012, 380 transactions). The data are described
by 17 features and are labeled as fraud or genuine. The Imbalance Ratio (IR) of
the dataset is equal to 0.33%.

The first series of experiments compares the random forest baseline (RF)
to the tree ensemble algorithm which uses the decision rule presented in Sect. 3
(RFX). We made different variants of the decision rule:

1. RFmaj: each leaf is labeled according to the majority class of the examples
that fall into the leaf, thus the output of each tree is in {0,1}. The voting
criterion is detailed below.

2. RFmaj−mar: each leaf is labeled to maximize the profit (also called margin)
over the set of all examples in the leaf (the label is 0 if γ0 > γ1 and 1 other-
wise). We then use a majority vote to predict the label of each transaction.

3. RFmean−mar: this model is the one described in Sect. 3

Tree-Based Cost Sensitive Methods for Fraud Detection in Imbalanced Data 221

For each tree ensemble algorithm, we have used 24 trees with the same maximum
depth. Furthermore, for the models RF,RFmaj and RFmaj−mar, the ensemble
classifies a transaction as “fraud” if at least 9 trees agree on this positive class
(this threshold is coherent with the one currently used in the Blitz company).

The second series of experiments is dedicated to the analysis of the gradi-
ent boosting approaches. We compare our approach GBmargin, presented in
Sect. 4.2, with three gradient boosting algorithms which aim to minimize the
logistic loss:

1. GBtune−Pre: the threshold has been chosen so that we have the same preci-
sion on the validation set as the model RF in the training phase.

2. GBtune−mar: the threshold has been chosen to maximize the margin on the
validation dataset.

3. GBtune−F1: the threshold has been chosen to maximize the F-Measure F1

on the validation dataset.

For each of these three experiments we needed a validation data set to choose
the optimal threshold over which a transaction is predicted as fraudulent. For
this purpose, the training set is splitted in two sets, the first one is used to
train the model and the other as a validation set, to find the best threshold
for the given criterium we want to optimize. To do so, the first four months of
transactions constitute the training set, the two remaining months are used as
the validation set. Finally these three experiments have been conducted on the
same training/validation set and the R software2.

For privacy reasons, the explicit expressions of cTPi
, cFPi

, cTNi
, cFNi

of the
cost matrix can not be given. Note that they are simple functions of the amount
M of the transaction. For example, we define cFPi

as follows cFPi
= h(M) − ζ,

where ζ is a parameter used to translate in financial terms, the dissatisfaction
of the customer whose transaction has been declined.

5.2 Results

To measure the performance of each algorithm, we measure the gap between the
maximum profits, i.e. the profits obtained if no errors are made, and the profits
given by the algorithms. We use classic performance measures that are often used
in an imbalanced setting such as the Precision, Recall and F1-Measure defined
as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
F1 =

2 Precision × Recall

Precision + Recall
.

All the experiments have been conducted with the same cost matrix where
ζ = 5. The results are presented in Table 2. We first notice that we get a reduction
of the gap of profits of 1.43%, with the gradient boosting model GBmargin

compared to the baseline RF. To give an idea to the reader, having a gap of 1%

2 https://www.r-project.org/ and using the package XGBoost.

https://www.r-project.org/

222 G. Metzler et al.

Table 2. Gap to the maximal margin of each algorithm. In this table, the value of ζ
was set to 5. The results are separated into two groups: Random Forest models and
Gradient Boosting models.

Experiments Gap max profits Precision Recall F1

RF 2.99% 68.1% 5.66% 10.5%

RFmaj 2.88% 73.8% 4.71% 8.86%

RFmaj−mar 1.81% 30.2% 10.6% 15.7%

RFmean−margin 1.87% 30.3% 9.52% 14.5%

GBtune−Pre 3.01% 61.0% 6.49% 11.7%

GBtune−mar 2.26% 19.1% 16.6% 17.8%

GBtune−F1 2.70% 45.4% 9.24% 15.4%

GBmargin 1.56% 18.8% 13.3% 15.6%

to the maximum profits represents a loss of 43, 000 euros. So, by reducing the
gap of 1.43% we increase the profits of the retailer by 60, 000 euros.

Regarding the Random Forest models, we note that the proposed approaches
are able to improve the profits of the retailer compared to the model RF. How-
ever, we note that RFmaj, which uses the number of examples and their label
to predict the class of the examples in the leaf, gives similar performance as
RF even if it is built differently. This means that the way to label the leaves
has, at least, the same importance as the way to build the trees. The models
RFmaj−mar and RFmean−mar which directly use the notion of average profits
in each leaf are the two models that give the best results, in terms of both profits,
recall and F-Measure even if the precision is reduced. This is explained by the
fact that refusing a genuine transaction will have small impact on the margin of
the retailers while accepting a fraudulent transaction will represent a loss for the
retailers that is close to the amount of the transaction. Using only our proposed
method of Random Forest algorithm, we are able to reduce the gap of 1.18.

If we focus now on gradient boosting models, we first note that the model
GBtune−Pre is the one with the highest precision. On the other hand, the other
models have a significantly smaller precision but exhibits a higher recall: by max-
imizing the margin they actually try to find the most fraudulent transactions.
As mentioned previously, our cost-sensitive approach GBmargin is the one that
achieves the best results in terms of margin. But it has also the worst precision
(18.8%) for the reason given in the previous paragraph. This model provides
also better results than GBtune−mar which emphasizes the interest of a cost-
sensitive approach compared to a simple classification model. However, we note
that the model GBtune−F1 is not the one achieving the best F-Measure at test
time. Let us also note that F1 score remains low for each presented algorithms.
We think that low values are observed because of the complexity of the data and
the problem. Frauds are rare and spread in the all data set.

In a second part, we want to analyze the effect of the parameter ζ. Indeed,
some retailers, for marketing reasons, do not want to refuse the transaction of

Tree-Based Cost Sensitive Methods for Fraud Detection in Imbalanced Data 223

good customers, i.e. they prefer to have a higher precision on their predictions.
A simple way to take this into account in our model is to artificially increase the
value of ζ. Figure 1 shows the impact of the parameter ζ on the Precision, Recall
and F1, while the Gap Margin is still evaluated with ζ = 5. Recall that some
retailers do not want to refuse the payment of the good customers, however, the
model which maximized is the one with the lowest precision (16.6%). So, it can
be interesting to propose to the retailers several models using different values of
ζ and give them the choice of the compromise between profits and precision.

We first notice that the higher the value of ζ, the higher the precision and
the smaller the recall. However, we see that it possible to reach a precision which
is twice superior than the GBmargin one by setting ζ = 20 and the gap will still
be low with a value of 1.94%.

Fig. 1. Study of the influence of the parameter ζ in the definition of the gain of false
positive CFPi . We illustrate the behaviour of the Precision, Recall and F1 according
to ζ. We also represent the gap to the maximum margin with respect to ζ, but we set
ζ = 5 to compute the gap.

6 Conclusion

We have presented different cost sensitive tree-based learning strategies to detect
frauds in imbalanced retail transaction data. The first strategy is a tree ensemble
algorithm which uses a new decision rule which tries to directly optimize the
retailer profit. The second one is a gradient boosting algorithm which optimizes
a new cost-sensitive loss function. Experiments show that our cost sensitive

224 G. Metzler et al.

algorithms allow to increase the retailer’s benefits by 1,43% compared to non
cost-sensitive ones and that the gradient boosting approach outperforms all its
competitors. We plan to focus on how to combine different types of models that
may capture different modalities of the data. Furthermore, due to our industrial
context, we also want to work on the notion of concept drift and study how the
distribution of frauds is evolving in order to take it into account in our models.
This opens the door to the development of new domain adaptation methods.

References

1. Aggarwal, C.C.: Outlier Analysis. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-14142-8 8

2. Bahnsen, A.C., Villegas, S., Aouada, D., Ottersten, B., Correa, A.M., Villegas, S.:
Fraud detection by stacking cost-sensitive decision trees. DSCS (2017)

3. Beygelzimer, A., Hazan, E., Kale, S., Luo, H.: Online gradient boosting. In:
Advances in Neural Information Processing Systems (NIPS), pp. 2458–2466 (2015)

4. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey (1984)

5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
6. Buja, A., Stuetzle, W., Shen, Y.: Loss functions for binary class probability estima-

tion and classification: structure and applications, manuscript (2005). www-stat.
wharton.upenn.edu/buja

7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)

8. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 17th
International Joint Conference on Artificial Intelligence - Volume 2, IJCAI 2001,
pp. 973–978. Morgan Kaufmann Publishers Inc., San Francisco (2001)

9. Freund, Y., Schapire, R.E.: A short introduction to boosting. In: Proceedings of
the Sixteenth IJCAI, pp. 1401–1406. Morgan Kaufmann, San Francisco (1999)

10. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. Ann. Stat. 28, 2000 (1998)

11. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29, 1189–1232 (2000)

12. Li, P., Burges, C.J.C., Wu, Q.: Mcrank: Learning to rank using multiple classifica-
tion and gradient boosting. In: Proceedings of the 20th International Conference
on Neural Information Processing Systems, NIPS 2007, pp. 897–904 (2007)

13. Ling, C., Sheng, V., Yang, Q.: Test strategies for cost-sensitive decision trees. IEEE
Trans. Knowl. Data Eng. 18(8), 1055–1067 (2006)

14. Nikolaou, N., Edakunni, N., Kull, M., Flach, P., Brown, G.: Cost-sensitive boosting
algorithms: do we really need them? Mach. Learn. 104(2), 359–384 (2016)

15. Parambath, S.P., Usunier, N., Grandvalet, Y.: Optimizing f-measures by cost-
sensitive classification. In: NIPS, pp. 2123–2131 (2014)

16. Sahin, Y., Bulkan, S., Duman, E.: A cost-sensitive decision tree approach for fraud
detection. Expert Syst. Appl. 40(15), 5916–5923 (2013)

17. Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y.: Cost-sensitive boosting for classifi-
cation of imbalanced data. Pattern Recognit. 40(12), 3358–3378 (2007)

18. Thai-Nghe, N., Gantner, Z., Schmidt-Thieme, L.: Cost-sensitive learning meth-
ods for imbalanced data. In: The 2010 International Joint Conference on Neural
Networks (IJCNN). IEEE, July 2010

https://doi.org/10.1007/978-3-319-14142-8_8
https://doi.org/10.1007/978-3-319-14142-8_8
www-stat.wharton.upenn.edu/buja
www-stat.wharton.upenn.edu/buja

Reduction Stumps for Multi-class
Classification

Felix Mohr, Marcel Wever(B), and Eyke Hüllermeier

Heinz Nixdorf Institute, Department of Computer Science, Paderborn University,
Paderborn, Germany

marcel.wever@uni-paderborn.de

Abstract. Multi-class classification problems are often solved via reduc-
tion, i.e., by breaking the original problem into a set of presumably sim-
pler subproblems (and aggregating the solutions of these problems later
on). Typical examples of this approach include decomposition schemes
such as one-vs-rest, all-pairs, and nested dichotomies. While all these
techniques produce reductions to purely binary subproblems, which is
reasonable when only binary classifiers ought to be used, we argue that
reductions to other multi-class problems can be interesting, too. In this
paper, we examine a new type of (meta-)classifier called reduction stump.
A reduction stump creates a binary split among the given classes, thereby
creating two subproblems, each of which is solved by a multi-class classi-
fier in turn. On top, the two groups of classes are separated by a binary
(or multi-class) classifier. In addition to simple reduction stumps, we
consider ensembles of such models. Empirically, we show that this kind
of reduction, in spite of its simplicity, can often lead to significant per-
formance gains.

Keywords: Multi-class classification · Reduction · Ensembles
Automated machine learning

1 Introduction

Reduction of a multi-class classification problem means breaking down the orig-
inal problem into other presumably simpler subproblems. Typical examples
include one-vs-rest and all-pairs decomposition [6], as well as nested dichotomies
[5]. One-vs-rest creates one binary problem for each class, in which the class is
separated from the rest, whereas all-pairs creates a binary problem for each pair
of classes. Nested dichotomies reduce the given problem by recursively splitting
the set of classes, which yields a binary tree structure where each leaf has one
class and each inner node is meant to separate the classes occurring under the
left child from the classes occurring under the right child. In general, the sub-
problems created by reduction are all binary. Thus, reduction makes multi-class
problems amenable to binary classifiers, which can be seen as their main merit.

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 225–237, 2018.
https://doi.org/10.1007/978-3-030-01768-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_19&domain=pdf

226 F. Mohr et al.

Fig. 1. A multi-class problem with five classes.

While a complete reduction to binary problems is necessary when only binary
classifiers can be used, reductions to other multi-class problems might be inter-
esting as well. A priori, one cannot exclude that modifying an underlying multi-
class problem by reducing it to other multi-class problems (on less but possibly
more than two classes) is beneficial for a learner, even if the latter is principally
able to solve multi-class problems right away. For example, one may suspect that
a multi-class learner like a random forest or a neural network could benefit from
an explicit reduction of the problem shown in Fig. 1.

An interesting area of research where such reductions can be important is
automated machine learning (AutoML). AutoML aims at automatically find-
ing a machine learning “pipeline” (including methods for data preprocessing,
model induction, etc.) that optimizes a performance measure of interest for a
given learning task (typically specified by a dataset). A couple of approaches
to AutoML have been proposed [4,10–12] in the recent past. Currently, how-
ever, reduction is hardly considered by these approaches, although its potential
benefit is completely unclear.

In this paper, we examine a new classifier that we call reduction stumps.
Reduction stumps split the given set of classes into two subsets and then solve
the resulting problems with a multi-class classifier. Separating instances of the
two subsets is achieved by a third (and possibly binary) classifier. The motiva-
tion for looking at this type of classifier is that it offers a middle-ground solution
between native multi-class classifiers and a complete reduction to binary prob-
lems as in nested dichotomies. Therefore, reduction stumps achieve a reasonable
compromise between simplification and complexity.

Due to this property, reduction stumps offer an interesting means to achieve
performance gains in AutoML. However, the effort to determine such reductions
needs to be moderate, as AutoML tools must consider many different machine
learning pipelines and cannot spend too much time on a single decision, such as
whether or not reduction should be used. Besides, each of the reduced problems
gives rise to a new AutoML problem itself, so again for reasons of complexity,
one should avoid creating too many of them.

Reduction Stumps for Multi-class Classification 227

Empirically, we show that (ensembles of) reduction stumps indeed lead to
significant performance gains over many other classification algorithms in a sig-
nificant number of cases. More precisely, we compare reduction stumps against
several standard classification algorithms, including multi-class logistic regres-
sion, neural networks, nearest neighbors, support vector machines via all-pairs
reduction, decision tress, and random forests. We find that reduction stumps or
ensembles of them are better than any of the other algorithms in more than
half of the 21 examined datasets from the UCI repository [1]. Even though the
improvement over the best non-reduction-based classifier is often only small,
we thus provide a strong justification for the consideration of reduction stumps
when solving multi-class classification problems.

2 Background: Nested Dichotomies

Nested dichotomies (NDs) reduce a multi-class classification problem to a set
of (presumably easier to solve) binary problems. To this end, the original set of
classes (as long as comprising more than one element) is recursively split into
two nonempty subsets. Thus, an ND defines a binary tree, in which every node is
labeled with a set of classes, such that every leaf is labeled with a distinct class,
and every inner node with the union of labels of its children. Figure 2 shows two
example dichotomies for the case of four classes.

To each inner node of an ND, a classifier is attached and fitted for the task
of discriminating the two sets of classes (meta-classes) assigned to its children.
These classifiers are trained using a base learner, which is typically supposed
to produce probabilistic predictions. For a given instance, the class with the
highest probability is predicted, where the probability for a leaf is obtained by
multiplying the probabilities predicted by the base learners along the path from
the root to the respective leaf node.

Of course, the performance of an ND critically depends on the structure of the
binary tree, as it determines the complexity of the induced binary classification
problems, as well as the type of classifier attached to the inner nodes. Usually,
the type of classifier is fixed, and one is interested in finding the most beneficial
structure [9]. The criterion that is commonly optimized is the overall predictive
accuracy (percentage of correct classifications), which depends on the quality of
the binary classifiers, and therefore on the structure of the ND. Approaches to
finding suitable dichotomies are based on random sampling [5,9], greedy error
minimization [8], clustering [3], and evolutionary optimization [13].

A partial nested dichotomy is an ND in which the leaf nodes may be labeled
with more than only one class. Therefore, partial NDs need to be equipped with
multi-class classifiers in their leaf nodes. Of course, other reduction techniques
such as one-vs-rest or all-pairs [6] could be used here as well. To our knowl-
edge, partial dichotomies have only occurred during the construction process of
complete nested dichotomies, but have never been used as classifiers themselves.

228 F. Mohr et al.

A,B,C,D,E

A,D B,C,E

C,EB

C E

A D

A,B,C,D,E

A,B,D

C

C,E

EBA D

Fig. 2. A partial (left) and a complete (right) nested dichotomy for five classes.

3 Reduction Stumps and Reduction Stump Ensembles

In this paper, we focus on partial NDs of depth 1, which we refer to as reduction
stumps. Reduction stump have exactly one inner node, which is the root, and
two child nodes with an arbitrary number of classes. Of course, just like NDs,
reduction stumps are multi-class classifiers.

3.1 Motivation and Overview

The main goal of classical reduction techniques is to make multi-class problems
amenable to binary classification. Therefore, techniques such as one-vs-rest, all-
pairs [6], ECOC [7], and nested dichotomies [2,5] reduce the original problem
in such a way that all induced subproblems are binary. As opposed to this, the
distinguishing feature of reduction stumps is their partiality. In fact, reduction
stumps have a different use case and aim at distributing smaller and presumably
easier subproblems among two multi-class classifiers. For instance, this can be
advantageous because the multi-class classifier, despite being principally able
to treat an arbitrary number of classes, does not scale well for larger numbers
of classes. Furthermore, it might be interesting to consider different types of
base learners at the inner nodes, as one classifier might be able to separate one
group of classes well, while another one may prove beneficial for separating the
remaining classes.

In contrast to previous approaches, we allow different classifiers to be used
as base learners in reduction stumps. The flexibility of adopting different clas-
sifiers for (different parts of) the same problem is precisely one of the supposed
strengths of reduction stumps. We call reduction stumps with different classi-
fiers heterogeneous. Analogously, reduction stumps with the same classifier for all
subproblems are called homogeneous. One reason for considering homogeneous
reduction stumps may be that only one classification algorithm is available; for
example, in medical data analysis, often only decision trees are accepted for
reasons of interpretability.

In addition to single reduction stumps, we also consider ensembles. It has
been observed that ensembling often improves predictive accuracy, provided
there is a reasonable variety among the classifiers within the ensemble. For
reduction stumps, there are two sources of variety, which makes them especially

Reduction Stumps for Multi-class Classification 229

suitable for being used in an ensemble. First, there is randomness in the choice
of the splits of a reduction stump, which can be averaged out using ensembles;
for the same reason, it is common to consider ensembles of nested dichotomies
instead of only single dichotomies [5,8]. Second, the topology of a reduction
stump strongly depends on the choice of the base learner. Hence, the ensemble
effect might even be amplified when heterogeneous reduction stumps are used.

3.2 Training a Reduction Stump and Obtaining Predictions

Training a reduction stump requires two decisions. First, one must choose a split
of the set of classes, i.e., decide which classes belong to the left and which to
the right child of the root node. Second, one must choose the classifiers for (i)
the binary split and (ii) the rest problems associated with the left and the right
child, respectively. Obviously, there is an interaction between these two choices.

Even though the number of reduction stumps is much smaller than the num-
ber of nested dichotomies, it is still infeasible to enumerate all possible reduction
stumps. Given a problem with n classes, there are 2n−1 − 1 different splits. We
may enumerate these candidates for small n, but we cannot reasonably build a
general algorithm on this basis. However, there is reason to believe that near-
optimal splits can be found without extensive search. First, a number of heuris-
tics for finding good splits has been proposed [8]. Second, it has been shown that
even randomly sampling a relatively small number of splits and taking the best
of them often yields at least as good results [9].

Moreover, it is possible to conduct a grid-search over the possible classifiers
for the binary problem and the two child nodes, i.e., to enumerate all options for
the second choice. A full nested dichotomy has n− 1 inner nodes, where n is the
number of classes. If m classification algorithms are eligible, this leads to mn−1

possible combinations of classifiers over the inner nodes, which is generally not
feasible. For the reduction stump, however, we have at most m3 many combi-
nations1. For example, we shall consider m = 23 classifiers, which leads to over
1012 combinations in a full nested dichotomy for a 10-class problem, whereas we
only have 12,167 possible combinations for a reduction stump.

As a consequence, we design the reduction stump as a meta-classifier that can
be parametrized with a set of base classifiers. Given such a set C of classifiers,
it iterates over all active classifier combinations R ⊆ C3, where R = C3 in
the heterogeneous case and R = {(c, c, c) | c ∈ C} in the homogeneous case.
For each classifier combination r ∈ R, depending on the split technique, one
or more splits are identified and evaluated. The algorithm then associates the
classifier combination r with the best determined split s(r) and the respective
validation score t(r). The stump eventually selects argminr∈R t(r) as the classifier
combination and uses s(r) as the split.

The split is computed by drawing splits (uniformly) at random and evaluating
them against a validation set. To this end, the set of classes is organized in a

1 If the split separates a single class from the rest, then we even have only m2 many
combinations.

230 F. Mohr et al.

shuffled list, and a position within that list is drawn uniformly at random. We
draw k such splits and, for each of them, we also split the given training data
into a reduced training set and a validation set. The reduced training set is used
to train the reduction stump, and the validation set is used to validate it. We
do neither conduct cross-validation nor a holdout method here, but only use
single evaluations. First, conducting a sophisticated evaluation would be costly
and further reduce the data available for training the stump. Second, since the
sampling routine itself considers different splits of both data and classes, an
averaging effect over different data is still achieved.

We also experimented with another interesting split technique called random
pairs. The random-pair selection heuristic (RPND) was proposed by Leathart
et al. [8] for the construction of nested dichotomies and suggests to build the
two subsets by randomly choosing two classes as “seeds”, training a classifier to
separate them, and adding each of the other classes to the seed to which most of
its instances are assigned by the trained classifier. Our experiments showed that
RPND does not perform significantly better than the above best-of-k random
sampling, so we do not include it in the experiments for space reasons; this also
conforms to the observations of [9]. However, the results are available with the
implementation.

The inference for reduction stumps is straight forward. Given a new instance,
the root classifier decides whether the instance should belong to the first or the
second subset of classes. Based on this decision, the respective classifier for the
subproblem is used to make a final decision for the class of the instance. For
probabilistic predictions, each of the three classifiers computes a probability for
the instance to belong to its covered classes. The class distribution for an instance
is computed by multiplying the class probabilities produced by the base learners
at the child nodes with the probability for the respective child as obtained from
the root node’s base learner.

3.3 Ensembles of Reduction Stumps

As already said, in addition to single reduction stumps, we are interested in
ensembles of such models. Yet, in this paper, we only consider ensembles of homo-
geneous reduction stumps. Although we conjecture that heterogeneous ensembles
can be much more powerful, a training procedure needs to make more decisions
and would have to be more sophisticated than the straight forward approach as
described below. To reduce the computational cost, an effective heuristic would
be required. Since this work is more concerned with the fundamental question
of whether a reduction is beneficial at all, designing such a heuristic is left for
future work.

For ensembles of homogeneous reduction stumps, the training method is quite
straight forward. Given a set C of available base classifiers, the algorithm iterates
over all c ∈ C, using c as the base learner at each inner node. The algorithm
constructs an ensemble of a given size by creating the structure of the reduction
stumps at random. Furthermore, instead of performing a best-of-k selection for
each ensemble member, we apply the best-of-k heuristic to the entire ensemble.

Reduction Stumps for Multi-class Classification 231

That is, we build k ensembles of reduction stumps and select the ensemble with
the best score. For computing the score, the training data is again split into
a reduced training set and a validation set, and the ensemble is trained on the
former and evaluated on the latter. This evaluation procedure is repeated several
times to obtain a stable estimate for the ensemble (which is not changed over
the iterations), resulting in a holdout validation of the ensembles. After having
selected all |C| ensembles, the algorithm chooses the one with the best score to
be used for future predictions and trains it on the entire training data.

The prediction routine for ensembles is implemented as a majority vote. Each
reduction stump votes for a class, and the prediction of the ensemble is the class
that collects the highest number of votes.

4 Experimental Evaluation

In our experimental evaluation, we compare the proposed (ensembles of) reduc-
tion stumps to (ensembles of) single classifiers to analyze the potential benefit of
reducing the original problem to a set of simpler problems (with fewer classes).
Recalling our motivation of reduction as a possible means to improve automated
machine learning, note that, as part of an AutoML toolbox, reduction stumps
would serve as an option rather than a default choice. Correspondingly, includ-
ing them in the toolbox seems warranted if they provide the best choice in a
sufficient portion—but not necessarily the majority—of the cases.

We subdivide our analysis into two main aspects. First, we carry out a
detailed analysis of (ensembles of) homogeneous reduction stumps, comparing
them to the single classifier and a bagged ensemble of the latter. Second, we
additionally consider heterogeneous reduction stumps, comparing the best mod-
els using any classifier as a base learner.

4.1 Experimental Setup

In total, we evaluate the four methods on 21 datasets (as shown in Table 1)
from different domains, including image recognition, biology, and audio. To
estimate the predictive accuracy of each method, we used a 20-holdout (also
known as Monte-Carlo cross-validation), splitting the data into 70% training
data and 30% test data. As learning algorithms, which were also used as base
learners for the reduction stumps, we considered BayesNet (BN), NaiveBayes
(NB), NaiveBayesMultinomial (NBM), Logistic (L), MultilayerPerceptron (MP),
SimpleLogistic (SL), SMO (SMO), IBk (IB), KStar (KS), JRip (JR), PART
(PART), DecisionStump (DS), J48 (J48), LMT (LMT), RandomForest (RF),
and RandomTree (RT).

To build ensembles of reduction stumps, we used the Best-of-k strategy. To
this end, we used another internal stratified split of 70% data for building the
reduction stumps and 30% validation data for selection, and set k = 10.

We have implemented both reduction stumps and ensembles as WEKA clas-
sifiers. The code, the data used to conduct the experiments, and the database

232 F. Mohr et al.

Table 1. Datasets used in the evaluation

Dataset #instances #attributes #classes

audiology 226 69 24

autoUnivau6750 750 40 8

car 1728 6 4

cnae9 1080 856 9

fbis.wc 2463 2000 17

kropt 28056 6 18

letter 20000 16 26

mfeat-factors 2000 216 10

mfeat-fourier 2000 76 10

mfeat-karhunen 2000 64 10

mfeat-pixel 2000 240 10

optdigits 5620 64 10

pendigits 10992 16 10

page-blocks 5473 10 5

segment 2310 19 7

semeion 1593 256 10

vowel 990 13 11

waveform 5000 40 3

winequality 4898 11 11

yeast 1484 8 10

zoo 101 17 7

with the presented results are publicly available2. The computations were exe-
cuted on (up to) 150 Linux machines in parallel, each of which with a resource
limitation of 2 cores (Intel Xeon E5-2670, 2.6 Ghz) and 16 GB memory. The total
run-time was over 30 k CPU hours (more than 3 years).

4.2 Analysis of Homogeneous Reduction Stumps

Table 2 shows the error rate averaged over 20 train/test splits of single classi-
fiers (SC), homogeneous reduction stumps (RS), bagged ensembles of classifiers
(BA), and majority vote ensembles of homogeneous reduction stumps (EN) for
different classifiers and datasets. In the last column of the table, a statistic of
wins/ties/losses (W/T/L) is provided comparing RS to SC and EN to BA. Miss-
ing values indicate that the respective algorithm was either not applicable to the
problem or that it did not finish in a given timeout of 1h.

2 https://github.com/fmohr/ML-Plan/tree/ida2018.

https://github.com/fmohr/ML-Plan/tree/ida2018

Reduction Stumps for Multi-class Classification 233

Considering the results for RS, we can indeed see that the performance
of every classifier can sometimes be increased when wrapped into a reduction
stump. Although RS is not an overall dominating strategy, except for SL and
LMT, there are at least 3 datasets for each classifier where a reduction stump
performs better than the single classifier. This indicates that reduction in prin-
ciple can be beneficial in terms of performance improvement.

Comparing BA to EN, for some datasets, the overall picture is quite similar
to the comparison of RS and SC. Neglecting the classifiers BN and NBM, there
are at least 8 datasets for which EN yields a better performance. In particular,
EN seems to yield improved results for DS, LMT, RT, and RF rather frequently.
For 13 of 16 classifiers, EN wins more often than it loses against BA. We conclude
that reduction stumps might be more suitable for being used in ensembles.

4.3 Analysis of Heterogeneous Reduction Stumps

In the second part of our evaluation, we consider heterogeneous reduction
stumps. Since we cannot compare heterogeneous stumps in the context of a
single base classifier, we now consider the overall best performance achieved
with any classifier of the respective class. From the perspective of AutoML, this
is the most interesting part of the evaluation, because it answers the questions
whether (ensembles of) reduction stumps can be superior to any other classifi-
cation algorithm (either by itself or used within a (bagging) ensemble).

The results are summarized in Table 3, where we now distinguish between
RS-hom for homogeneous and RS-het for heterogeneous reduction stumps. Note
that with EN we still only refer to ensembles of homogeneous reduction stumps.
Significant differences are determined using a t-test with p = 0.05. While sig-
nificant improvements of reduction stumps over the baseline (single classifier
respectively bagged ensemble) are indicated by •, significant degradations are
indicated by ◦. Best performances within one row are highlighted in bold. Results
that are not significantly worse than the best result are underlined.

Regarding RS-hom, in this table, it becomes even clearer that homogeneous
reduction stumps do not perform that strong and in this context never achieve
the best performance for any of the datasets. Nevertheless, if used in an ensem-
ble, the homogeneous reduction stumps yield the best result in 5 cases. Further-
more, compared to BA, EN achieves 9 significant improvements. A significant
degradation, in turn, is observed only once.

However, the most remarkable observations are made for heterogeneous
reduction stumps that clearly outperform the other approaches. RS-het yields
6 significant improvements over SC while being significantly worse in only two
cases. Furthermore, it turns out to achieve the best performance in 15 of 21 cases.
From these results, we conclude that reduction stumps represent an interesting
approach for decomposing multi-class classification problems to a set of simpler
subproblems.

The results also motivate the investigation of ensembles of heterogeneous
reduction stumps. On one hand, it would be interesting to design a heuristic for
building such ensembles as a standalone classifier. On the other hand, instead

234 F. Mohr et al.

Table 2. Mean error rate of base learners on 21 UCI datasets. (see Footnote 2)

Reduction Stumps for Multi-class Classification 235

Table 3. Averaged error rate (mean±standard deviation) using best base learners.

Dataset SC RS-hom RS-het BA EN

audiology 16.38±3.01 19.31±3.99 14.22±0.75 19.31±1.86 19.68±0.96

autoUnivau6750 73.4±2.77 74.02±2.17 70.05±0.24 • 73.54±1.75 72.72±0.38

car 1.13±0.58 3.84±0.75 ◦ 0.10±0.10 • 1.75±0.70 0.42±0.12 •
cnae9 5.90±1.16 5.80±1.20 4.60±0.16 • 6.83±1.46 5.61±0.53 •
fbis.wc 18.19±1.05 18.23±1.93 19.99±1.19 15.13±1.25 15.62±0.40

kropt 29.74±0.38 29.77±0.59 30.17±0.11 ◦ 32.22±0.46 29.36±0.43 •
letter 4.22±0.28 4.35±0.19 4.13±0.07 4.80±0.22 3.84±0.07 •
mfeat-factors 2.41±0.50 2.60±0.62 1.95±0.42 2.20±0.28 2.09±0.20

mfeat-fourier 15.88±1.21 16.84±1.42 15.76±0.51 16.93±1.11 16.48±0.52

mfeat-karhunen 3.76±0.34 3.81±0.42 2.97±0.25 3.61±0.57 3.46±0.24

mfeat-pixel 2.59±0.47 2.88±0.39 2.46±0.25 2.58±0.48 2.48±0.11

optdigits 1.51±0.26 1.50±0.35 1.11±0.15 1.50±0.26 1.38±0.08

page-blocks 2.51±0.38 2.44±0.25 2.00±0.15 • 2.37±0.31 2.45±0.09

pendigits 0.77±0.13 0.75±0.12 0.73±0.18 0.84±0.16 0.70±0.03 •
segment 2.16±0.49 2.58±0.48 ◦ 2.04±0.44 2.76±0.65 2.19±0.19 •
semeion 6.65±0.96 6.52±0.92 6.77±0.10 6.61±0.64 5.92±0.28 •
vowel 1.78±0.98 2.20±1.23 1.05±0.55 4.69±2.23 2.02±0.23 •
waveform 13.04±0.78 14.82±0.56 ◦ 13.08±0.17 13.01±0.58 14.75±0.31 ◦
winequality 32.29±1.48 32.54±1.09 31.12±0.71 33.53±1.12 32.49±0.30 •
yeast 39.58±2.09 39.79±2.75 36.46±0.81 • 38.38±2.25 38.51±0.63

zoo 3.48±2.61 4.35±4.86 0.00±0.00 • 4.35±3.37 3.67±0.68

of only choosing classifiers from a portfolio, the results motivate to actively
decompose multi-class problems in the context of AutoML, and further tailoring
the base learners to the respective subproblems. From an AutoML perspective,
homogeneous reduction stumps are less attractive, as they seem to never achieve
globally the best performance; thus, the effort for considering them would not
be justifiable. In contrast to this, it is worth considering ensembles of reduction
stumps, which in some cases perform best, especially since the effort for building
them is relatively low.

5 Conclusion

In this paper, we proposed a meta-classifier called reduction stump, which can
be seen as the simplest reduction scheme for multi-class classification problems:
the original problem is decomposed into three subproblems of smaller size, two
multi-class problems on subsets of the original set of classes, and one binary
problem on the two respective meta-classes. In spite of their simplicity, reduc-
tion stumps show promising performance in our experiments, especially in their
heterogeneous version.

Our main motivation for analyzing reduction stumps originates from the field
of automated machine learning. For the reasons already explained, reduction can

236 F. Mohr et al.

be useful in AutoML, but should be applied with caution, in order to keep the
complexity manageable. Encouraged by the results of this paper, our next step
is to incorporate reduction stumps into the toolbox of AutoML. An additional
interesting research question that arises from the observation that some datasets
are more amenable to reduction than others is whether one can predict the
benefit of applying reduction based on the properties of a dataset.

Acknowledgements. This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Center “On-The-Fly Comput-
ing” (SFB 901).

References

1. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

2. Dong, Lin, Frank, Eibe, Kramer, Stefan: Ensembles of balanced nested dichotomies
for multi-class problems. In: Jorge, Aĺıpio Mário, Torgo, Lúıs, Brazdil, Pavel,
Camacho, Rui, Gama, João (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 84–
95. Springer, Heidelberg (2005). https://doi.org/10.1007/11564126 13

3. Duarte-Villaseñor, Miriam Mónica, Carrasco-Ochoa, Jesús Ariel, Mart́ınez-
Trinidad, José Francisco, Flores-Garrido, Marisol: Nested dichotomies based on
clustering. In: Alvarez, Luis, Mejail, Marta, Gomez, Luis, Jacobo, Julio (eds.)
CIARP 2012. LNCS, vol. 7441, pp. 162–169. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33275-3 20

4. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Advances in Neural Informa-
tion Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, Montreal, Quebec, Canada, 7–12 December 2015, pp. 2962–2970
(2015)

5. Frank, E., Kramer, S.: Ensembles of nested dichotomies for multi-class problems.
In: Proceedings ICML, 21st International Conference on Machine Learning. Banff,
Alberta, Canada (2004)

6. Fürnkranz, J.: Round robin classification. J. Mach. Learn. Res. 2, 721–747 (2002).
http://www.jmlr.org/papers/v2/fuernkranz02a.html

7. Kajdanowicz, T., Kazienko, P.: Multi-label classification using error correcting
output codes. Appl. Math. Comput. Sci. 22(4), 829–840 (2012). http://www.
degruyter.com/view/j/amcs.2012.22.issue-4/v10006-012-0061-2/v10006-012-
0061-2.xml

8. Leathart, Tim, Pfahringer, Bernhard, Frank, Eibe: Building Ensembles of adap-
tive nested dichotomies with random-pair selection. In: Frasconi, Paolo, Landwehr,
Niels, Manco, Giuseppe, Vreeken, Jilles (eds.) ECML PKDD 2016. LNCS (LNAI),
vol. 9852, pp. 179–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46227-1 12

9. Melnikov, V., Hüllermeier, E.: On the effectiveness of heuristics for learning nested
dichotomies: an empirical analysis. Mach. Learn. 107(8), 1537–1560 (2018)

10. Mohr, F., Wever, M., Hüllermeier, E.: Ml-Plan: automated machine learning via
hierarchical planning. Mach. Learn. 107(8), 1495–1515 (2018)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/11564126_13
https://doi.org/10.1007/978-3-642-33275-3_20
https://doi.org/10.1007/978-3-642-33275-3_20
http://www.jmlr.org/papers/v2/fuernkranz02a.html
http://www.degruyter.com/view/j/amcs.2012.22.issue-4/v10006-012-0061-2/v10006-012-0061-2.xml
http://www.degruyter.com/view/j/amcs.2012.22.issue-4/v10006-012-0061-2/v10006-012-0061-2.xml
http://www.degruyter.com/view/j/amcs.2012.22.issue-4/v10006-012-0061-2/v10006-012-0061-2.xml
https://doi.org/10.1007/978-3-319-46227-1_12
https://doi.org/10.1007/978-3-319-46227-1_12

Reduction Stumps for Multi-class Classification 237

11. Olson, R.S., Moore, J.H.: TPOT: A tree-based pipeline optimization tool for
automating machine learning. In: Proceedings of the 2016 Workshop on Automatic
Machine Learning, AutoML 2016, Co-located with 33rd International Conference
on Machine Learning (ICML 2016), New York City, NY, USA, 24 June 2016, pp.
66–74 (2016)

12. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: The
19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2013, Chicago, IL, USA, 11–14 August 2013, pp. 847–855 (2013)

13. Wever, M., Mohr, F., Hüllermeier, E.: Ensembles of evolved nested dichotomies. In:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2018, Kyoto, Germany, 15–19 July 2018 (2018)

Decomposition of Quantitative Gaifman
Graphs as a Data Analysis Tool

José Luis Balcázar, Marie Ely Piceno(B), and Laura Rodŕıguez-Navas

Universitat Politècnica de Catalunya, Barcelona, Spain
mpiceno@cs.upc.edu

Abstract. We argue the usefulness of Gaifman graphs of first-order rela-
tional structures as an exploratory data analysis tool. We illustrate our
approach with cases where the modular decompositions of these graphs
reveal interesting facts about the data. Then, we introduce generalized
notions of Gaifman graphs, enhanced with quantitative information, to
which we can apply more general, existing decomposition notions via 2-
structures; thus enlarging the analytical capabilities of the scheme. The
very essence of Gaifman graphs makes this approach immediately appro-
priate for the multirelational data framework.

1 Introduction

First-order (finite) relational structures (see e.g. [9]) are the conceptual essence
of the relational database model. Gaifman graphs are a well-known, quite natural
theoretical construction that can be applied to any relational structure [9]. They
have provided very interesting progress in the theory of these logical models.

Given a first-order relational structure, or relational database, with relations
(or tables) Ri, where the values in the tuples come from a fixed universe U ,
the corresponding Gaifman graph has the elements of U as vertices; and there
is an edge (x, y), for x �= y, exactly when x and y appear together in some
tuple t ∈ Ri for some table Ri. That is, Gaifman graphs record co-occurrence
(or lack thereof) among every pair of universe items.

Hence, a clique in a Gaifman graph would group items that, pairwise, appear
together somewhere in the relational structure: co-occurrence patterns; a clique
in its complement would reveal an incompatibility pattern. Of course, finding
maximal cliques is NP-complete; but there are less demanding ways to study
graphs that identify efficiently both sorts of patterns in a recursive decomposi-
tion: namely, the modular decomposition and its generalization, the decomposi-
tion of 2-structures.

This paper proposes to employ these decompositions as avenues for
exploratory data analysis on relational data (whether single- or multi-relational):

This research was supported by grant TIN2017-89244-R from Ministerio de Econo-
mia, Industria y Competitividad, and by Conacyt (México); and we acknowledge
recognition 2017SGR-856 (MACDA) from AGAUR (Generalitat de Catalunya).

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 238–250, 2018.
https://doi.org/10.1007/978-3-030-01768-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_20&domain=pdf

Decomposition of Quantitative Gaifman Graphs as a Data Analysis Tool 239

by applying them on the Gaifman graph of a dataset, we can obtain valuable
information that would not be readily observable directly on the data.

Modular decompositions suffice to treat standard Gaifman graphs. However,
we extend the capabilities of our approach by generalizing, in very natural ways,
the notion of Gaifman graph so as to handle quantitative information (a must
in many data analysis applications). Hence, we develop our work using the more
general decomposition of 2-structures [4]: again a notion that has been very fruit-
fully developed in their theoretical form, and in a number of applications (such
as [8]), but not yet imported, to our knowledge, into data analysis frameworks.

2 Decomposing Standard Gaifman Graphs

As already mentioned, the basic notion of Gaifman graph is pretty simple: on
all items that appear along all the tuples of a single- or multi-relational dataset,
edges join pairs of items that appear together in some tuple.

Example 1. As a running example, let us consider a very small, single-relation
database on the universe {a, b, c, d, e}, with three attributes and three tuples:

t1: a b c
t2: a d e
t3: a c d

Then, the Gaifman graph is as shown in Fig. 1 (left).

Fig. 1. A Gaifman graph, its natural completion, and a labeled variant.

240 J. Luis Balcázar et al.

2.1 2-Structures and Their Decompositions

The very classical notion called “modular decomposition” [6] suffices to imple-
ment our approach on plain Gaifman graphs; this notion has been rediscov-
ered many times and described under several different names1. However, it is
insufficient to handle adequately the generalizations that we will propose below.
Therefore, we develop our approach directly on top of the more general notion
of 2-structures and their clans [4].

First, we describe some “cosmetics” on our Gaifman graphs: they will be seen
as a complete graph with two sorts of (nonreflexive) edges. One sort corresponds
to edges present in the graph (solid lines in our diagrams); the other corresponds
to absent (nonreflexive) edges (broken lines). We call this graph the “natural
completion” of the original graph. In our example, this process is illustrated in
Fig. 1 (center).

Additionally, we can label each edge with its multiplicity, that is, the number
of tuples that contain the pair of items linked by the edge. The previous example
then becomes as in Fig. 1 (right): pairs appear either zero times together (dashed
edges), once (black lines, labeled 1) or, in two cases, twice (gray lines, labeled 2).

Now, in general terms, a 2-structure is simply the complete graph on some
universe U , plus an equivalence relation E among the edges. Figure 1 (right)
serves as an example, where there are three equivalence classes of edges: the
broken edges, the black edges, and the gray edges; of course, Fig. 1 (center) is
also an example, with just two equivalence classes of edges. We will restrict
ourselves to undirected edges, and will employ the common, very graphical and
intuitive representation of coloring in the same way edges belonging to the same
equivalence class.

Observe that the type of the equivalence relation E is E ⊆ ((U×U)×(U×U))
because E tells us whether two arbitrary edges (x, y) and (u, v) are equivalent.

For a 2-structure given by the set of vertices U and the equivalence relation E
among the edges of the complete graph on U , we say that a subset C ⊆ U is a
clan, informally, if all the members of C are indistinguishable among them by
non-members. That is: whenever some x /∈ C “can distinguish” between y ∈ C
and z ∈ C, in the sense that the edge (x, y) is not equivalent to the edge (x, z),
then C is not a clan. Formally (see [4]):

Definition 1. Given U and an equivalence relation E ⊆ ((U × U) × (U × U))
on the edges of the complete graph on U , C ⊆ U is a clan when

∀x /∈ C ∀y ∈ C ∀z ∈ C ((x, y), (x, z)) ∈ E.

Note that different vertices outside the clan might see the clan differently:
for x /∈ C and x′ /∈ C, and y ∈ C, the edges (x, y) and (x′, y) may well be
nonequivalent. We only require that each fixed x does not distinguish between
the clan members.

1 See https://en.wikipedia.org/wiki/Modular decomposition for some of the alterna-
tive names that the concept has received.

https://en.wikipedia.org/wiki/Modular_decomposition

Decomposition of Quantitative Gaifman Graphs as a Data Analysis Tool 241

Basic examples of clans are the so-called trivial clans: all the singletons {x}
for x ∈ U , as well as U itself, are vacuously clans. There may be other clans.
For instance, consider the natural completion of the Gaifman graph obtained
from Example 1, depicted in Fig. 1 (center). Edges are split into two equivalence
classes (existing or nonexisting edges in the original Gaifman graph). Then, one
can see that there would be exactly one nontrivial clan, formed by {b, c, d, e}:
all vertices not in the clan (that is, vertex a, the single one not in the clan) are
connected to each vertex inside the clan through edges of the same color, namely
solid black. Any other candidate turns out not to be a clan. For instance, any set
including a and b but excluding e is not a clan, as e “distinguishes” between a
and b; then, any set including b and e must include c and d, which can distinguish
between them. All in all, any clan including a and b ends up including all the
vertices, that is, becoming a trivial clan. Analogous reasoning applies if we start
by pairing a with other vertices.

On the other hand, it is not difficult to see that the labeled, colored version
of the Gaifman graph of Example 1, as depicted in Fig. 1 (right), does not have
nontrivial clans. Equivalence is given by the same multiplicity label (that is,
edges drawn in the same “color”): the extra distinction between gray and black
edges allows for external vertices to distinguish between some vertices inside
every candidate proper subset. Further examples come later as clans are the key
tool for our proposal of a data analysis method.

2.2 Prime Clans and Tree Decompositions

It is known [4] that certain clans, called prime clans, allow us to decompose a
2-structure into a tree-like form.

Definition 2. For a fixed universe U , we say that two subsets of U overlap if
neither is a subset of the other, but they are not disjoint. That is, for S ⊆ U
and T ⊆ U , they overlap if the three sets S ∩ T , S \ T , and T \ S are all three
nonempty. Then, prime clans are those clans that do not overlap any other clan.

Of course, trivial clans are also immediately prime clans. Thus, by definition,
any two sets in the family of prime clans are either disjoint, or a subset of one
another: they provide us with a so-called “decomposable set family” [11] that
can be pictured in a tree form, by displaying every prime clan (except U itself)
as a child of the smallest prime clan that properly contains it.

There are studies that report how these decompositions look like. Specifically,
at each node of the tree we have again a 2-structure, whose vertices correspond
to the clans that fall as children of the node. In the case of our constructions
out of Gaifman graphs, it is known that all the 2-structures that appear as
nodes of such a tree decomposition are of one of two well-defined sorts: either
“complete” (all edges are equivalent) or “primitive” (only having trivial clans).
This is due to our graphs being undirected, because 2-structures on directed
graphs may exhibit a third basic component in their tree decomposition (“linear”
2-structures). Further information on this topic appears in [4]. This reference

242 J. Luis Balcázar et al.

contains, as well, often far-from-trivial proofs of theorems that ensure that things
are as we have described.

Example 2. Continuing Example 1, the tree decomposition of the 2-structure in
Fig. 1 (center) is displayed in Fig. 2 (left). Boxes correspond to clans: here, the
topmost box corresponds to the trivial clan containing all the vertices and, inside
it, each dot corresponds to a prime subclan. All along the whole decomposition,
trivial clans are indicated by a link to the vertex they consist of, represented
with an elliptic node; nontrivial ones are linked instead to a new box describing
the internal structure of the clan, in terms of the prime clans it has as proper
subsets. Then, as a set, each clan is formed by all the elements in the leaves of
the subtree rooted at it.

A “brute-force”, exhaustive search attempt was employed in [12] to identify
all prime clans. A couple of published algorithms [10,11] can be adapted for
implementing a system computing this sort of tree decompositions. However,
as we envision an analysis support system able to add Gaifman nodes in an
incremental manner, we have implemented a somewhat different, incremental
algorithm. Due to the space limit, the details of our algorithmic contributions
will be presented in a follow-up paper (or in an expanded version of this one),
together with some comparisons against other algorithms.

2.3 Limits to the Visualization of Complex Clans

Our experimentation shows that, unsurprisingly, the visualization of large Gaif-
man graphs is unadvisable. Actually, sometimes the clans lead to large primitive
2-structures, whose mathematical study gets pretty complicated [5]. We set up
some relatively arbitrary limits, trying to get understandable diagrams. Let us
consider a more realistic example to explain them.

In Fig. 2 (right) we display (a fragment of) the decomposition of the Gaif-
man graph of the well-known Zoo dataset from the UC Irvine repository [2]; it
contains 17 attributes of 100 animal species. We have preprocessed it slightly
so that the semantics of each item is clearly identifiable (e. g. predator False or
toothed True). We will return to this dataset below in Sect. 4.2.

For the time being, we just discuss the decomposition of its standard Gaifman
graph. The topmost node of this decomposition is, as always, the trivial clan with
the whole universe; in this case, it turns out to decompose as a set of many trivial
clans, set up in the form of a primitive 2-structure that we choose not to draw
complete; however, one nontrivial clan also appears: “mammal” and ‘milk True”
are indistinguishable from the perspective of all the other elements in the dataset.
That is, for every other piece of information, either it goes together with each
in some tuples (one such item could be “hair True”), or it does not go together
with any of them ever (for instance: “feathers True”).

In our diagrams, as we do here, clans containing more than a handful of
nontrivial clans are not drawn in detail: just the clan type label (“primitive” or
“complete”) is shown. Besides, if there are few nontrivial clans, but many trivial

Decomposition of Quantitative Gaifman Graphs as a Data Analysis Tool 243

Fig. 2. Decompositions of the Gaifman graphs for Example 1 and for the Zoo dataset.

ones, then the trivial clans are grouped in a single node labeled Others, sort of
a merge of them all. The reader must keep in mind that this particular node
actually represents together a number of unstructured items.

This approach of limiting the size of the substructures that become fully
spelled-out was taken also in [8], where also a “zooming” capability was intro-
duced (we may consider adding one such option to our system in the future).

2.4 Isolated Vertex Elision

As we move on, later, into quantitative generalizations of Gaifman graphs, one
case turns out to be common in our experiments. Whereas Gaifman graphs do
not have isolated vertices (except in limit, artificial cases such as relations with
a single attribute), in our generalizations this is no longer true: many datasets
will lead to 2-structures exhibiting many vertices that are endpoints only of
broken edges; that is, they are isolated vertices in the corresponding (generalized)
Gaifman graph. The set of those isolated vertices forms a sometimes quite large
clan that clutters the diagram but contributes nothing to the analysis beyond
“all these vertices are actually isolated”. We use again the label “Others” to
represent these items, all alike from the decomposition perspective, as a single
vertex, as indeed this is a particular case of the usage of the “Others” label as
per the previous Sect. 2.3.

3 Interpreting a Decomposition of a Gaifman Graph

We move on to explain another example of our analysis strategy. We present and
discuss the outcome of a tree decomposition of the Gaifman graph of a simple,
famous, and relatively small dataset often used for teaching introductory data
analysis courses. It comes from data of each of the passengers of the Titanic.
Among several existing variants of this dataset, some of them pretty complete,

244 J. Luis Balcázar et al.

we choose a reduced variant on which we illustrate the interpretation of our
decompositions. This variant we use keeps four attributes, one of them (age)
discretized. To describe the details of this dataset, we quote:

“The titanic dataset gives the values of four categorical attributes for each of
the 2201 people on board the Titanic when it struck an iceberg and sank. The
attributes are social class (first class, second class, third class, crewmember), age
(adult or child), sex, and whether or not the person survived.”

(http://www.cs.toronto.edu/∼delve/data/titanic/desc.html)
(As indicated in that website, this variant of the data was originally compiled

by Dawson [1] and converted for use in the DELVE data analysis environment
by Radford Neal.)

The decomposition via its standard Gaifman graph is depicted in Fig. 3.
Recall that broken edges represent pairs that never appear together in any tuple,
whereas solid edges are edges of the original Gaifman graph and thus join uni-
verse elements that appear together in some tuple.

The clans for sex and survival are clear and intuitive: as they are different
possible values for the same attribute, they never appear together. On the other
hand, every possibility for these attributes does appear somewhere, as does every
possible pairing with all other items in the universe, so that the top node is a
complete 2-structure consisting on all solid edges.

Likewise, one might expect a clan with the four alternative values of traveling
class, namely, 1st, 2nd, 3rd or Crew. However, that clan only has actual passenger
classes. The value Crew migrates to the parent “ages” clan, where we find some
interesting fact: a small primitive 2-structure arising from the interaction of the
ages values and the Crew value, where of course being an adult is incompatible
with being a child, and both are compatible to all the traveling classes (the top
node in the middle clan); however, being in the crew is only compatible with
being an adult. This calls our attention to the fact that the crew included, of
course, no children, a fact that we might overlook in a non-systematic analysis.
That is: even if the traveling classes and the “Crew” label are employed as values
in the same column, the data tells us, through our decomposition procedure, that
they have different semantics!

4 Generalizations of Gaifman Graphs

We move on to discuss tree decompositions based on generalized Gaifman graphs.
The aim is to keep track of quantitative information that the standard Gaifman
graph lacks. In our context, many ideas present themselves to complement Gaif-
man graphs and clan decompositions with quantitative considerations. For the
time being, we contemplate just some very simple cases: we let the number of
occurrences of each pair play a role.

http://www.cs.toronto.edu/~delve/data/titanic/desc.html

Decomposition of Quantitative Gaifman Graphs as a Data Analysis Tool 245

Fig. 3. Decomposing the standard Gaifman graph of the Titanic dataset.

4.1 Thresholded Gaifman Graphs

Our first variant is as follows.

Definition 3. For a threshold k (a nonzero natural number) a thresholded Gaif-
man graph is a completion of a Gaifman graph in which each labeled edge is
classified according to its number of occurrences, as follows. We still have two
equivalence classes of edges. If the number in the label is above the threshold k,
the edge goes into one equivalence class (represented in our diagrams by a solid
line); whereas if the number of occurrences of the edge is less than or equal to
the threshold, then the edge belongs to the other equivalence class (and a broken
line is used to represent it).

Figure 4 provides an alternative analysis of the Titanic dataset described
before. There, we decompose a thresholded Gaifman graph, aiming at uncovering
very common co-occurrences, that is, high multiplicities. We set the threshold
rather arbitrarily at the quite high value of 1000 (out of 2201 tuples). We see
at work the effect of isolated vertex elision, as many attribute values to not
reach multiplicity 1000 with any other value: the elision process, as described in
Sect. 2.4, replaces all of them by a single node, playing the same role all of them
play, that is, broken lines among themselves and to all the surviving values. The
new decomposition is interesting in that it very clearly reflects the Birkenhead
Drill: “Women and children first”.

4.2 Quantitative Gaifman Graphs

The linear colored Gaifman graph is a (completion of a) Gaifman graph in which
the equivalence classes of the edges are directly defined by the label, that is, the
number of occurrences. All pairs occurring once would lead to one class, those

246 J. Luis Balcázar et al.

Fig. 4. Titanic dataset: thresholded Gaifman graph, at 1000, and its decomposition.

occurring twice to another, and so on; up to some limit, beyond which we do
not keep the distinction. Figure 1 (right) corresponds to this case.

A natural variation is to have each color stand for some interval of values,
with linearly growing limits; the case just described would correspond to intervals
of width 1. Figure 5 shows one such case: we apply intervals of width 25 over
the Zoo dataset. Broken lines mark less than 25 occurrences, solid lines less than
50, and the gray line appearing inside one of the clans goes beyond that limit
because it gathers all birds and all fish and all insects into the oviparous clan.

Fig. 5. Decomposing the linear Gaifman graph of Zoo with 25 as interval width.

This notion can be combined naturally with the previous one: instead of
broken lines being simply the first interval, we can apply a different value as
threshold and leave as broken lines all occurrence multiplicities below it, and
then use the colors for the values at the threshold or above it, at linearly grow-
ing intervals of fixed width. Likewise, an upper threshold can be imposed. For

Decomposition of Quantitative Gaifman Graphs as a Data Analysis Tool 247

instance, on the Titanic data, we used colors by width 1 intervals up to an upper
threshold of 10: this approach is able to point out for us, with no particular user
guidance, the fact that the number of children among the first-class travelers was
surprisingly small: as it happened to Crew, the first-class node migrates from
the traveling-class clan to the age clan.

We expect usefulness also from the exponential colored Gaifman graph: while
similar in spirit to the intervals in linear graphs, here the interval width grows
exponentially: each equivalence class (or color) represents an exponentially grow-
ing interval of occurrence multiplicities. On one hand, this frees the user from
having to bet on a specific interval width. On the other, there are cases where
the Gaifman graph multiplicities turn out to be approximately Zipfian, and the
exponential coloring is likely to be adequate. Again, as with the linear case, we
can also impose a user-defined threshold below which, or over which, the occur-
rences are not considered different; then, one runs the exponential count between
them.

Even though the black-and-white printed version of this paper will not show
it, we chose to provide an example of application of the exponential graph to
the (“people” table within the) UW-CSE dataset from the Relational Dataset
Repository (http://relational.fit.cvut.cz) at threshold 3. The items have been
renamed for better understanding; also, we have manually edited out a small
part of the diagram to fit the page size and to focus on the three different colors
in the pairs of equivalent items: these colors tell us that the amount of Students
(and thus NotProfessors) is largish (specifically 216), the quantity of year zero
cases clearly smaller (namely 138) and the amount of Professors even smaller
(62 in total).

Fig. 6. UW-CSE: part of the decomposition via the exponential Gaifman graph.

5 Discussion and Subsequent Work

We have described a data analysis approach based on the prime tree decompo-
sition of variations of the Gaifman graph of a dataset. We have illustrated the
process with some relatively successful cases. Technologically, we have resorted

http://relational.fit.cvut.cz

248 J. Luis Balcázar et al.

to a relatively simple implementation in Python, https://github.com/MelyPic/
PrimeTreeDecomposition, relying on the standard graph module NetworkX
and on the graphical capabilities of the pydot interface to the Dot engine of
Graphviz [7]. We have not compared the available algorithms: there is no room
left for that study in this submission, and it will be the subject of forthcoming
write-ups.

Many possibilities of further development remain. First and foremost, we
must discuss a clear limitation. Like in so many other exploratory data analysis
frameworks, for a given dataset we may not be lucky: it may happen that a
given selection of Gaifman graph, once decomposed, has no nontrivial clans, or
decomposes into just a few quite large primitive substructures that provide little
or no insight about the data. For one, the linear Gaifman graph of the well-known
toy dataset Weather (discussed e.g. in [13]) has only trivial clans and, if fully
displayed, leads to just a large box of colored spaghetti. Useful advice to choose
properly sorts of Gaifman graphs, thresholds, and interval widths remains to be
found. After all, parameter tuning is a black art in many data mining approaches.

One natural variant consists of combining the constraints defining clans with
those of standard frequent-set mining; we explored that avenue and, unfortu-
nately, in all our attempts, we never found a single case of nontrivial clans.

Also, we can run this sort of processes on multirelational datasets or, even,
directly on graphs. For the first case, our examples so far fall into the very
common and standard “single table” perspective. However, from their earliest
inception, Gaifman graphs were a multirelational concept by essence. Applying
tree decompositions of generalized Gaifman graphs to multirelational datasets
is, therefore, conceptually immediate, and indeed our example in Fig. 6 comes
from a well-known multirelational benchmark. However, there, we have not taken
into account the foreign key phenomenon: would it be appropriate to denormalize
before computing the Gaifman graph? If so, can one compute the graph directly,
efficiently, without actually denormalizing the data?

For the second case, graphs are, so to speak, their own Gaifman graph,
so we can simply apply the tree decomposition on the given graph. A couple
of extra possibilities naturally arise. For instance, we could decompose a 2-
structure where the equivalence classes come from the lengths of the shortest
paths between vertices, or from thresholding these lengths; or from the vertex-
or edge-connectivity (equivalently, min-cuts, by Menger’s theorem), again possi-
bly thresholded. Along this line, there may be interesting connections with the
topic known as “blockmodeling” in social networks, which uses a notion similar
to that of clan, although relaxed through allowing exceptions.

The multiplicity-based generalizations we have proposed are quite basic; more
sophisticate approaches to define the equivalence relation between edges might
be advantageous. In particular, we believe now that some advances might come
from the study of the applicability of unsupervised discretization methods [3].
Indeed, the actual multiplicities appearing as labels of the edges of the Gaifman
graph form a set of integers that is to be discretized in a number of intervals in an
unsupervised manner. A few existing algorithms for unsupervised discretization

https://github.com/MelyPic/PrimeTreeDecomposition
https://github.com/MelyPic/PrimeTreeDecomposition

Decomposition of Quantitative Gaifman Graphs as a Data Analysis Tool 249

can be applied to try and automatize parts of the transformation of the labeled
Gaifman graph into the starting 2-structure.

Besides the theoretical developments, improving the software tool is also a
desirable endeavor. Initially, we found the very notion of exploratory data anal-
ysis via 2-structure decompositions of quantitative versions of Gaifman graphs
risky enough, and were not eager to compute very fast, nor in a very usable way
by other people, results that, in principle, were candidates to be fully useless.
However, we found our initial results clearly sufficient to consider that this app-
roach is worth of further effort: we did design better algorithms than the ones
initially employed [12], and we are confident that our tool will see considerable
improvements along several facets in the coming months: the exploration of alter-
native tree visualizations, the implementation of additional control like zooming,
or the possibility of importing the data directly from databases; this last exten-
sion is actually crucial in order to try our methods on the usual multirelational
benchmarks.

References

1. Dawson, R.J.M.: The ’unusual episode’ data revisited. J. Stat. Educ. 3(3) (1995)
2. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://

archive.ics.uci.edu/ml
3. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization

of continuous features. In: Prieditis, A., Russell, S.J. (eds.) Machine Learning,
Proceedings of the Twelfth International Conference on Machine Learning, Tahoe
City, California, USA, 9–12 July 1995, pp. 194–202. Morgan Kaufmann (1995)

4. Ehrenfeucht, A., Harju, T., Rozenberg, G.: The Theory of 2-Structures - A Frame-
work for Decomposition and Transformation of Graphs. World Scientific, Singapore
(1999). http://www.worldscibooks.com/mathematics/4197.html

5. Ehrenfeucht, A., Rozenberg, G.: Primitivity is hereditary for 2-structures. Theor.
Comput. Sci. 70(3), 343–358 (1990). https://doi.org/10.1016/0304-3975(90)90131-
Z

6. Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Academiae Scien-
tiarum Hungarica 18(1), 25–66 (1967). http://dx.doi.org/10.1007/BF02020961

7. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Softw. - Pract. Exp. 30(11), 1203–1233 (2000)

8. Larraz, D.: Aplicación de las 2-estructuras a las gramáticas del lenguaje humano
y representación gráfica de ambas. Graduation Project, Universidad de Zaragoza
(2010). http://zaguan.unizar.es/record/5000

9. Libkin, L.: Elements of Finite Model Theory. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Berlin (2004). https://doi.org/10.1007/978-3-
662-07003-1

10. McConnell, R.M.: An O(n2) incremental algorithm for modular decomposition of
graphs and 2-structures. Algorithmica 14(3), 229–248 (1995). https://doi.org/10.
1007/BF01206330

11. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orienta-
tion. Discrete Mathematics 201(1), 189–241 (1999). http://www.sciencedirect.
com/science/article/pii/S0012365X98003197

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.worldscibooks.com/mathematics/4197.html
https://doi.org/10.1016/0304-3975(90)90131-Z
https://doi.org/10.1016/0304-3975(90)90131-Z
http://dx.doi.org/10.1007/BF02020961
http://zaguan.unizar.es/record/5000
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/BF01206330
https://doi.org/10.1007/BF01206330
http://www.sciencedirect.com/science/article/pii/S0012365X98003197
http://www.sciencedirect.com/science/article/pii/S0012365X98003197

250 J. Luis Balcázar et al.

12. Rodŕıguez-Navas, L.: Estructures de grafs amb equivalències d’arestes aplicades a
l’anàlisi de dades relacionals. Graduation Project, FIB, UPC (2017)

13. Witten, I.H., Eibe, F., Hall, M.A.: Data Mining: Practical Machine Learning Tools
and Techniques, 3rd edn. Morgan Kaufmann, Elsevier, Burlington (2011). http://
www.worldcat.org/oclc/262433473

http://www.worldcat.org/oclc/262433473
http://www.worldcat.org/oclc/262433473

Exploring the Effects of Data Distribution
in Missing Data Imputation

Jastin Pompeu Soares1, Miriam Seoane Santos1, Pedro Henriques Abreu1(B),
Hélder Araújo2, and João Santos3

1 CISUC, Department of Informatics Engineering, University of Coimbra,
Coimbra, Portugal

{jastinps,miriams}@student.dei.uc.pt, pha@dei.uc.pt
2 ISR, Department of Electrical and Computer Engineering,

University of Coimbra, Coimbra, Portugal
helder@isr.uc.pt

3 IPO-Porto Research Centre (CI-IPOP), Porto, Portugal
joao.santos@ipoporto.min-saude.pt

Abstract. In data imputation problems, researchers typically use sev-
eral techniques, individually or in combination, in order to find the one
that presents the best performance over all the features comprised in the
dataset. This strategy, however, neglects the nature of data (data distri-
bution) and makes impractical the generalisation of the findings, since
for new datasets, a huge number of new, time consuming experiments
need to be performed. To overcome this issue, this work aims to under-
stand the relationship between data distribution and the performance of
standard imputation techniques, providing a heuristic on the choice of
proper imputation methods and avoiding the needs to test a large set of
methods. To this end, several datasets were selected considering different
sample sizes, number of features, distributions and contexts and missing
values were inserted at different percentages and scenarios. Then, differ-
ent imputation methods were evaluated in terms of predictive and distri-
butional accuracy. Our findings show that there is a relationship between
features’ distribution and algorithms’ performance, and that their per-
formance seems to be affected by the combination of missing rate and
scenario at state and also other less obvious factors such as sample size,
goodness-of-fit of features and the ratio between the number of features
and the different distributions comprised in the dataset.

Keywords: Missing data · Data imputation · Data distribution

1 Introduction

Missing data imputation refers to the process of finding plausible values to
replace those who are missing in a dataset and is a common data preprocessing
technique applied in several fields [14]. Most often, imputation is performed using
a brute force strategy, where a set of algorithms is used to impute all the features
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 251–263, 2018.
https://doi.org/10.1007/978-3-030-01768-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_21&domain=pdf

252 J. Pompeu Soares et al.

in a dataset. Then, the imputed datasets pass to the classification stage, where
the imputation performance is evaluated through the classification error (CE)
[1]. Although this is a standard approach to the missing data problem, it raises
some important hitches: first, since all techniques must be implemented for all
features, its computational cost is high; secondly, it assumes that the same tech-
nique should perform well for all or the great majority of features, which could be
an over-assumption for features with different characteristics and finally, it uses
the CE to evaluate the imputation quality, which for contexts other than classi-
fication, could be inappropriate. In general classification scenarios, the objective
is to efficiently solve a classification problem, and therefore imputation is con-
sidered a required step to produce quality data. When imputation, rather than
classification, is the focus, the use of CE is controversial. Some authors strongly
defend that “imputation is not prediction” [22], and that the imputation method
that minimises the classification error may produce biased estimates and affect
the original data distribution.

Imputation methods should ideally be able to reproduce the true values in
data – Predictive Accuracy (PAC) – and preserve the distribution of those true
values – Distributional Accuracy (DAC) [6]. However, in the majority of impu-
tation works, the nature of data (data distribution) is completely neglected and
the above-mentioned properties are disregarded in favour of CE. Taking into
account the distribution of data could be relevant to guide the choice of an
appropriate imputation method: it considers the intrinsic characteristics of data
and avoids the need to test a large set of methods for datasets where the fea-
tures’ distributions are known. Thus, studying the influence of data distribution
in imputation presents a new challenge for missing data research and may pro-
vide a heuristic on the most appropriate imputation strategy for each feature
in the study, allowing researchers to address missing data problems more easily
and effectively.

This work follows from the initial research of Santos et al. [18], where authors
showed that there was a relation between imputation methods and data distribu-
tion, when missing data is generated completely at random (MCAR mechanism).
In this work, we extend their experimental set up to consider more datasets (15
datasets) and missing not at random (MNAR) mechanism, created in 6 different
ways (scenarios T1 to T6, as will be explained in Sect. 3). Our experiments show
that regardless of the missing data generation scenario, the imputation meth-
ods are in fact influenced by data distribution, with the exception of Support
Vector Machine (SVM). Aside for SVM, that achieves the best PAC and DAC
results for the great majority of distributions, Self-Organizing Map (SOM) is
the overall winner in both metrics. However, the choice of the best imputation
method depends also on the scenario and missing rate at state, besides other less
obvious aspects as the Goodness of Fit (GoF), sample size and ratio of features
per distribution.

The remainder of this document is structured as follows: Sect. 2 discusses
related works regarding missing data imputation in several contexts. Sections

Exploring the Effects of Data Distribution in Missing Data Imputation 253

3 and 4 describe the experimental setup used in this work and report on the
achieved results, while Sect. 5 presents the conclusions and suggests some pos-
sibilities for future work.

2 Related Work

Nanni et al. [13] compared the performance of standard imputation techniques
(including MMimp and KNNimp) and their proposed imputation method for
classification purposes, by generating missing values on 5 health related datasets
at different rates (10–50%). The researchers concluded that their imputation
techniques, based on clustering and random sub-spaces, present better behaviour
than all the others (in terms of CE), achieving a satisfactory performance for
MR greater than 30%. Aisha et al. [2] studied the effects of data imputation
(including MMimp, KNNimp and SVMimp) on the classification of an incom-
plete health dataset (MR of 48%). SVMimp, along with Local Least Squares,
outperformed the remaining techniques (in terms of CE). Rahman and Davis
[15], investigated the classification performance of several imputation methods
(such as SVMimp, MMimp, DTimp) using CE metrics, on a real incomplete
medical dataset with 0–30% MR per feature. The results showed that all impu-
tation methods based on machine learning improved the sensibility (and in some
cases accuracy) of the classification task, in relation to MMimp. Garćıa-Laencina
et al. [7] studied the influence of imputation (including KNNimp and SOMimp)
on classification accuracy, using synthetic and real datasets. In this work, the
authors start by evaluating the imputation quality using PAC (Pearson’s r) and
DAC (Kolmogorov–Smirnov distance) metrics, but just applied KNNimp (with
different k values) on the first feature of synthetics datasets (MR 5–40%). How-
ever, this approach was discarded in favour of CE metrics, since the main objec-
tive of the experiments was to solve a classification problem. Rahman and Islam
[16] propose imputation techniques based on DT and compare them in terms of
PAC - coefficient of determination (R2), Mean Squared Error (MSE) and Mean
Absolute Error (MAE). DAC metrics are, however, neglected. This work used 9
real datasets from different contexts, where missing values were generated (1–
10%). The proposed imputation techniques outperformed the others. Amiri and
Jensen [3] introduced three imputation methods based on Fuzzy Rough Sets and
compared their performances with 11 standard techniques (including KNNimp
and SVMimp), in terms of RMSE (PAC analysis). In this work, the authors
used 27 complete and real datasets from different contexts and inserted missing
values varying from 5 to 30%. The simulations showed that SVMimp, KNNimp
and the three proposed techniques obtained the best results.

In the above-mentioned works, imputation techniques are frequently eval-
uated in terms of CE, and the effects they may have in data distribution are
most often ignored. Moreover, in these approaches, the same technique is used
to impute all features, without considering the possibility that different features
may be more properly imputed with different techniques. This work conducts a
study on the influence of data distribution in missing data imputation, aiming

254 J. Pompeu Soares et al.

to assess how different imputation techniques perform across different feature
distributions and missing generation types, extending the work of Santos et al.
[18].

3 Experimental Setup

Our experimental setup consisted in 4 main stages: Data Collection, Distribution
Fitting and Missing Data Generation, Data Imputation and Evaluation (Fig. 1).

Distribution
Fitting

Missing Data
Generation

Data
Imputation

Evaluation
Metrics

Data Collection

ctgbupa

redwine

letter

backpain breast

hillvalley

iris

leaf

parkinson

pen

relax

spectf

wdbc

whitewine

For each
feature

KNN

Mean

DT

SOM

SVMT6: freq-both

MR {5%,10%,
15%, 20%, 25%}

T1: pdf-outer

T2: pdf-inner

T3: pdf-both

T4: freq-outer

T5: freq-inner

T7: randomly

Fig. 1. Experimental Setup Architecture, comprising Data Collection, Distribution Fit-
ting and Missing Data Generation, Data Imputation and Evaluation.

Data Collection comprised the selection of several publicly available datasets,
from UCI Machine Learning Repository (http://archive.ics.uci.edu/ml) and
Kaggle Datasets (https://www.kaggle.com/datasets), attending to different con-
texts, sample sizes, number of features and number of different distributions
(Table 1).

After the datasets were collected, the Distribution Fitting and Missing Data
Generation follows. Each feature of each dataset is fitted against a comprehen-
sive set of distributions (beta, birnbaum-saunders, exponential, extreme value,
gamma, generalized extreme value, generalized pareto, inverse gaussian, logistic,
loglogistic, lognormal, nakagami, normal, rayleigh, rician, t location-scale and
weibull) and the Goodness of Fit (GoF) statistic is used to determine the distri-
bution that best fits the data—GoF values vary from −∞ (bad fit) to 1 (perfect
fit). Then, based on the best fitting distribution, the probability density function
(pdf) is determined and used to define several scenarios from which the missing
values are introduced at different rates (5, 10, 15, 20 and 25%). Missing values
are inserted following 7 distinct methods: the simplest method (T7) consists on
randomly selecting values to remove from each feature (MCAR mechanism); the
remaining methods follow MNAR mechanism and are based on the probability
density function (pdf -based methods: T1 to T3) and on the frequency distribu-
tion (freq-based methods: T4 to T6) of each feature. For each of these methods,

http://archive.ics.uci.edu/ml
https://www.kaggle.com/datasets

Exploring the Effects of Data Distribution in Missing Data Imputation 255

T
a
b
le

1
.
S
u
m

m
a
ry

o
f
d
a
ta

se
ts

’
ch

a
ra

ct
er

is
ti

cs
.

D
a
ta

se
t

C
o
n
te

x
t

S
a
m

p
le

si
z
e

N
o
.
o
f
fe

a
tu

re
s

N
o
.
o
f
d
is

tr
ib

u
ti

o
n
s

(n
o
.
o
f
fe

a
tu

re
s)

N
o
.
fe

a
tu

re
s/

N
o
.

d
is

tr
ib

u
ti

o
n
s2

B
a
c
k
p
a
in

D
e
te

c
t

a
b
n
o
rm

a
l
b
a
c
k

p
a
in

3
1
0

1
2

B
e
ta

(1
),

G
a
m

m
a
(2

),
G

e
n
e
ra

li
z
e
d

P
a
re

to
(5

)
N

o
rm

a
l(

1
),

N
a
k
a
g
a
m

i(
1
),

tL
o
c
a
ti

o
n
S
c
a
le

(2
)

0
.3

3
3

B
re

a
st

Id
e
n
ti

fy
b
re

a
st

c
a
rc

in
o
m

a
s

1
0
6

9
B

ir
n
b
a
u
m

-s
a
u
n
d
e
rs

(2
),

G
e
n
e
ra

li
z
e
d

E
x
tr

e
m

e
V
a
lu

e
(4

),
G

e
n
e
ra

li
z
e
d

P
a
re

to
(2

),
L
o
g
n
o
rm

a
l(

1
)

0
.5

6
3

B
u
p
a

D
e
te

c
t

a
lc

o
h
o
li
sm

p
ro

b
le

m
s

3
4
5

6
B

ir
n
b
a
u
m

-s
a
u
n
d
e
rs

(1
),

E
x
p
o
n
e
n
ti

a
l(

1
),

G
e
n
e
ra

li
z
e
d

E
x
tr

e
m

e

V
a
lu

e
(1

),
In

v
e
rs

e
G

a
u
ss

ia
n
(1

),
L
o
g
lo

g
is

ti
c
(2

)

0
.2

4
0

c
tg

D
e
te

c
t

p
a
th

o
lo

g
ic

fe
ta

l

c
a
rd

io
to

c
o
g
ra

m
s

2
1
2
6

2
1

B
ir

n
b
a
u
m

-s
a
u
n
d
e
rs

(1
),

G
a
m

m
a
(4

),
G

e
n
e
ra

li
z
e
d

E
x
tr

e
m

e
V
a
lu

e
(3

)

G
e
n
e
ra

li
z
e
d

P
a
re

to
(2

),
In

v
e
rs

e
G

a
u
ss

ia
n
(1

),
L
o
g
is

ti
c
(2

)
N

o
rm

a
l(

3
),

N
a
k
a
g
a
m

i(
1
),

tL
o
c
a
ti

o
n
sc

a
le

(2
),

W
e
ib

u
ll
(2

)

0
.2

1
0

H
il
lv

a
ll
e
y

D
e
te

c
t

h
il
ls

a
n
d

v
a
ll
e
y
s

1
2
1
2

1
0
0

B
ir

n
b
a
u
m

-s
a
u
n
d
e
rs

(9
4
),

G
e
n
e
ra

li
z
e
d

E
x
tr

e
m

e
V
a
lu

e
(6

)
2
5

Ir
is

D
is

ti
n
g
u
is

h
b
e
tw

e
e
n

d
iff

e
re

n
t

ty
p
e
s

o
f
ir

is
p
la

n
ts

1
5
0

4
E
x
tr

e
m

e
V
a
lu

e
(1

),
G

e
n
e
ra

li
z
e
d

E
x
tr

e
m

e
V
a
lu

e
(2

),
In

v
e
rs

e

G
u
a
ss

ia
n
(1

)

0
.4

4
4

L
e
a
f

D
is

ti
n
g
u
is

h
b
e
tw

e
e
n

d
iff

e
re

n
t

sp
e
c
ie

s
o
f
le

a
fs

3
4
0

1
4

B
e
ta

(3
),

B
ir

n
b
a
u
m

-s
a
u
n
d
e
rs

(1
),

G
e
n
e
ra

li
z
e
d

E
x
tr

e
m

e
V
a
lu

e
(2

)

G
e
n
e
ra

li
z
e
d

P
a
re

to
(5

),
N

a
k
a
g
a
m

i(
1
),

L
o
g
n
o
rm

a
l(

1
),

R
a
y
le

ig
h
(1

)

0
.2

8
6

L
e
a
f

Id
e
n
ti

fy
th

e
a
lp

h
a
b
e
t

le
tt

e
rs

(A
-Z

)

5
0
0
0

1
6

E
x
p
o
n
e
n
ti

a
l(

1
),

G
a
m

m
a
(9

),
G

e
n
e
ra

li
z
e
d

P
a
re

to
(2

)
N

o
rm

a
l(

2
),

R
a
y
le

ig
h
(2

)

0
.6

4
0

P
a
rk

in
so

n
D

ia
g
n
o
se

c
a
se

s
o
f
p
a
rk

in
so

n
’s

d
is

e
a
se

1
9
5

2
2

B
e
ta

(1
),

G
a
m

m
a
(1

),
G

e
n
e
ra

li
z
e
d

E
x
tr

e
m

e
V
a
lu

e
(1

4
),

G
e
n
e
ra

li
z
e
d

P
a
re

to
(2

),
In

v
e
rs

e
G

a
u
ss

ia
n
(2

),
L
o
g
lo

g
is

ti
c
(1

),
W

e
ib

u
ll
(1

)

0
.4

4
9

P
e
n

Id
e
n
ti

fy
h
a
n
d
w

ri
tt

e
n

d
ig

it
s

(0
-9

)

3
4
9
8

1
6

E
x
tr

e
m

e
V
a
lu

e
(1

),
G

a
m

m
a
(2

),
G

e
n
e
ra

li
z
e
d

E
x
tr

e
m

e
V
a
lu

e
(4

)

G
e
n
e
ra

li
z
e
d

P
a
re

to
(1

),
L
o
g
is

ti
c
(8

)

0
.6

4
0

R
e
d
w

in
e

C
la

ss
if
y

re
d

w
in

e
q
u
a
li
ty

1
5
9
9

1
1

B
ir

n
b
a
u
m

-s
a
u
n
d
e
rs

(2
),

G
e
n
e
ra

li
z
e
d

E
x
tr

e
m

e
V
a
lu

e
(4

)
L
o
g
is

ti
c
(1

),

L
o
g
lo

g
is

ti
c
(1

),
N

a
k
a
g
a
m

i(
1
),

tL
o
c
a
ti

o
n
S
c
a
le

(2
)

0
.3

0
6

R
e
la

x
D

is
ti

n
g
u
is

h
b
e
tw

e
e
n

re
la

x
e
d

st
a
te

a
n
d

m
o
to

r
im

a
g
e
ry

st
a
te

1
8
2

1
2

G
e
n
e
ra

li
z
e
d

E
x
tr

e
m

e
V
a
lu

e
(1

),
L
o
g
is

ti
c
(3

)
N

o
rm

a
l(

1
),

tL
o
c
a
ti

o
n
S
c
a
le

(7
)

0
.7

5
0

S
p
e
c
tf

D
e
te

c
t

a
b
n
o
rm

a
l
S
P
E
C

T
F

im
a
g
e
s

2
6
7

4
4

E
x
tr

e
m

e
V
a
lu

e
(3

0
),

L
o
g
is

ti
c
(3

),
W

e
ib

u
ll
(1

1
)

4
.8

8
9

W
d
b
c

D
ia

g
n
o
se

b
re

a
st

c
a
n
c
e
r

c
a
se

s
5
6
9

3
0

B
ir

n
b
a
u
m

-s
a
u
n
d
e
rs

(1
),

G
a
m

m
a
(5

),
G

e
n
e
ra

li
z
e
d

E
x
tr

e
m

e

V
a
lu

e
(1

7
),

G
e
n
e
ra

li
z
e
d

P
a
re

to
(1

),
In

v
e
rs

e
G

a
u
ss

ia
n
(1

),

L
o
g
lo

g
is

ti
c
(2

),
L
o
g
n
o
rm

a
l(

2
),

tL
o
c
a
ti

o
n
S
c
a
le

(1
)

0
.4

6
9

W
h
it

e
w

in
e

C
la

ss
if
y

w
h
it

e
w

in
e

q
u
a
li
ty

4
8
9
8

1
1

G
e
n
e
ra

li
z
e
d

E
x
tr

e
m

e
V
a
lu

e
(4

),
G

e
n
e
ra

li
z
e
d

P
a
re

to
(1

)

L
o
g
lo

g
is

ti
c
(3

),
N

a
k
a
g
a
m

i(
2
),

tL
o
c
a
ti

o
n
S
c
a
le

(1
)

0
.4

4
0

256 J. Pompeu Soares et al.

the missing values are selected considering 3 different scenarios: removing from
the inner areas, outer areas, or both. Inner and outer areas refer to high and
low values of the pdf and freq histograms, respectively. Figure 2 depicts each of
these methods and variations.

(a) T1 (b) T2 (c) T3

(d) T4 (e) T5 (f) T6

Fig. 2. Strategies for missing data generation: T1 to T3 are pdf -based methods while
T4 to T6 are freq-based methods.

The Data Imputation stage considers the top five strategies used in recent
works, attending also to different paradigms: statistical-based (Mean imputa-
tion - MMimp), tree-based models (Decision Trees - DTimp), neural networks-
based (Self-Organizing Maps - SOMimp), similarity-based methods (k-Nearest
Neighbours - KNNimp) and kernel-based methods (Support Vector Machines -
SVMimp), which we briefly describe herein. MMimp is the most common and
simple of imputation techniques: it imputes the missing values with the mean
of the complete values on the respective features [8,13,19]. KNN imputes the
incomplete patterns by finding its k nearest neighbours, found by minimising a
similarity measure. Once those k neighbours are found, the missing values are
imputed according to the type of feature [17]. The KNN implementation used
in this work considers a weighted average of the k neighbours (1–20 neighbours)
to determine the substitute value to impute. In DTimp, each incomplete feature
is used as target, while the remaining features are used to fit the model: missing
values are determined as if they were class labels [5]. SOMimp determines each
incomplete pattern’s Best Matching Unit (BMU) and imputes its missing values
according to the BMU’s weights on the incomplete features [11]. In this work,
several network sizes were tested for SOMimp: 10–100 nodes. Support Vector

Exploring the Effects of Data Distribution in Missing Data Imputation 257

Machines can also be used for imputation (SVMimp), considering the feature to
be imputed as the target. In this work, SVMimp was implemented considering
both a linear (SVMlinear) and a gaussian (radial basis function, RBF) kernel
(SVMrbf) [7]. For the linear kernel, we considered a value of C = 1, while for the
gaussian kernel, different values of C and γ were tested (1e-5 to 1e5, increasing
by a factor of 10).

Finally, the quality of imputation is evaluated regarding two imputation prop-
erties proposed by Chambers [6]: Predictive Accuracy (PAC) and Distributional
Accuracy (DAC). The former refers to a procedure’s efficiency on retrieving the
true values in data while the latter refers to its ability to preserve the origi-
nal data distribution. PAC properties were assessed using the well-known coef-
ficient of determination (R2) and Mean Squared Error (MSE) [10] and DAC
was assessed using the Kolmogorov–Smirnov distance (DKS) [12]. R2 provides
a measure of the correlation between the original and imputed values (efficient
imputations should have a value closer to 1), MSE measures the average squared
deviation of the imputed values from the true values (values closer to 0 suggest
more accurate imputations) and DKS measures the distance between the cumu-
lative distribution functions of the imputed values of a feature and its original
values where better imputations are represented by smaller distance values.

4 Experimental Results and Discussion

Considering all imputation methods, our experiments have shown that SVMimp
is the winning method for the great majority of distributions, with an overall
ratio of victories over 80%, regarding both PAC and DAC metrics. Considering
all distributions, SVMimp obtains the highest mean value for R2 – 0.765 ver-
sus 0.723 obtained with the remaining methods – and the lowest mean values
for MSE and DKS – 0.015 and 0.106 versus 0.019 and 0.136 of the remaining
methods, for the respective measures, showing that it is not affected by data dis-
tribution and surpassing the remaining methods. However, a preliminary anal-
ysis of the results indicated that, if SVMimp was not considered, the remaining
methods performed differently across different distributions, metrics, scenarios
and missing rates. Therefore, we have investigated how the remaining methods
behave in different configurations.

Overall, KNNimp and SOMimp are responsible for the highest performance
results, with a percentage of wins of 46.8% and 43.2%, respectively. Regarding
each individual metric, this tendency is maintained for R2 (Fig. 3a), although
it is slightly different for DKS and MSE: KNNimp is more appropriate to keep
the data distribution (Fig. 3b), while SOMimp is responsible for the best MSE
values (Fig. 3c).

Figure 4a shows the victories and draws, altogether, for each range of consid-
ered missing rates (5–10, 15–20 and 25%). SOMimp and MMimp show a similar
behaviour, where they surpass the other methods for increasing percentages of
missing data. Contrariwise, DTimp and KNNimp tend to perform worse as the
MRs increase. To further study this behaviour, Fig. 4b shows the overall victo-
ries and draws of each method, considering each specific metric (R2, DKS and

258 J. Pompeu Soares et al.

Fig. 3. Overall results (divided by wins and draws) for each metric: R2, DKS and MSE.

MSE). For low MRs (5–10%), KNN outperforms all other methods in terms of
both PAC and DAC, being considered the most frequent winner in all metrics
(50%, 75.2% and 68.6% for MSE, R2 and DKS , respectively). When the MR
increases (15–20%), KNNimp loses its podium to SOMimp in terms of PAC (R2

and MSE), though not DAC, where KNN appears as winner in 57.2% of times.
When the missing rate increases to 25%, the previous behaviour is respected,
although the differences between SOM and KNN are more accentuated. In terms
of PAC, SOMimp’s superiority becomes clearer (66.9% and 59.6% of wins for
MSE and R2), while KNNimp’s dominance in terms of DKS decreases to 49%.

Fig. 4. Overall results (wins and draws altogether) for each imputation method, divided
by MRs (a) and further specified by each metric (b).

The observed results are in agreement with the characteristics of the con-
sidered algorithms. Although MMimp is a rapid and simple solution to impute
missing data, it is known to ignore the relations between the features, disturbing
the original data variance [9]. As such, MMimp tends to have a poor performance
compared to the other methods, in terms of DAC. Regarding KNNimp, previous
works have shown that it has a robust behaviour even for large amounts of miss-
ing data [4,21]. The fact that it uses the information of the most similar cases
rather than all the cases makes it superior to MMimp, being stronger in main-
taining the distribution of data (DAC). DTimp is resilient to outliers and has
the ability to cope with skewed distributions; however, the higher the amount of

Exploring the Effects of Data Distribution in Missing Data Imputation 259

missing data, the more difficult is to have a good decision tree to estimate the
missing values [22]. SOM imputation somehow approximates a clustering solu-
tion, in the sense that the imputations are made in clusters, activation groups
constituted by the k-closest BMUs of a given incomplete pattern. This type of
mapping allows SOM to preserve the data topology, which is one of the factors
that may contribute to its robust behaviour [20].

Out of these four methods, MMimp serves as a baseline, and behaved as
expected, deteriorating the data distribution. DTimp does not seem to be a
general good approach for imputation in terms of PAC and DAC: it estimates
missing values based on the information of the remaining features and there-
fore it produces good estimates when the correlation is high. However, for low
correlations between features it can lead to poor performances, which could be
on the origin of its discouraging behaviour. Finally, imputation algorithms that
approached a clustering-based solution (KNNimp and SOMimp) seem to be gen-
erally appropriate to keep the PAC and DAC properties of data: this fact could
be related to the fact that both these methods properly address the similar-
ity between patterns, using only resembling data points to impute the missing
values.

Figure 5 specifies the overall victories and draws of each imputation by metric
(MSE, R2 and DKS), for each scenario. It is clear that KNNimp achieves the best
results for DAC, regarding all generation types. In terms of PAC, SOMimp seems
to be the preferable approach for all scenarios except T2, where the supremacy
of KNN is noticeable both in terms of MSE and R2.

Fig. 5. Comparison between analogous pairs: freq-based versus pdf -based generations
types.

From Fig. 5 it is also possible to compare the analogous pairs of freq-based
and pdf -based generation types. There are not relevant differences to point out,
except for the imbalance between SOM’s and KNN’s results for PAC metrics in
T2 versus T5 pairs. T2 generation is most often better imputed with KNN for
all metrics, with KNN gaining a clear advantage over SOM; in T5, this gap is
not so clear.

260 J. Pompeu Soares et al.

Since this work considers an extensive set of configurations (distributions,
missing data rates, scenarios and metrics), summarising the conclusions to pro-
vide a clear heuristic is not a trivial process. Thus, we have decided to build a
dataset including each existing variable from each studied dataset to analyse all
the available information. Specifically, the produced dataset includes informa-
tion on the name of distribution, missing rates, metrics, generation type, feature
ratio, number of features, number of features with the same distribution included
in the dataset, sample size, goodness-of-fit of the feature and the best imputation
method, as the target class. An excerpt of such dataset is shown on Listing 1.1.

1 @relation LowLevelInfoT1T2T3T4T5T6T7
2

3 @attribute Distribution_class {Beta ,BirnbaumSaunders ,Exponential ,
ExtremeValue ,Gamma ,GeneralizedExtremeValue ,GeneralizedPareto ,
InverseGaussian ,Logistic ,Loglogistic ,Lognormal ,Nakagami ,Normal ,
Rayleigh ,Weibull ,tLocationScale}

4 @attribute MissingRate {5 ,10 ,15 ,20 ,25}
5 @attribute Metric_class {ksdistance ,mse ,pearson}
6 @attribute GenType_class {T1,T2,T3,T4,T5,T6,T7}
7 @attribute FeatureRatio numeric
8 @attribute FeatureNo numeric
9 @attribute SameFeature numeric

10 @attribute SampleSize numeric
11 @attribute GoF numeric
12 @attribute bestMethod_class {DT,KNN ,Mean/Mode ,SOM}
13

14 @data
15 Gamma ,5,mse ,T1 ,0.33333 ,12 ,2 ,310 ,0.91288 , SOM
16 Gamma ,5,pearson ,T1 ,0.33333 ,12 ,2 ,310 ,0.91288 , SOM
17 Gamma ,5,ksdistance ,T1 ,0.33333 ,12 ,2 ,310 ,0.91288 ,DT

Listing 1.1. Produced dataset regarding all the available information.

With the help of Waikato Environment for Knowledge Analysis (WEKA)
software, we then started by analysing the simplest rules (ZeroR and OneR)
that allowed a general classification of the data. ZeroR suggested classifying all
instances as SOM (AUC of 0.5) and OneR used GoF to produce a larger set of
rules for classification (AUC of 0.608). These results show that SOM is generally
the overall winner for the great majority of configurations and suggest that GoF
has a high discriminative power. Motivated by these results, we performed an
attribute selection based on Information Gain, which revealed that GoF (0.229),
Sample Size (0.165) and Feature Ratio (0.158) are the top three most discrimina-
tive features. We also ran a sequential forward selection to determine the subset
of features that more accurately traduced the best imputation method for each
input variable. This search returned a subset including the missing generation
scenario (Generation Type), Sample Size and GoF, for which a 10-fold cross-
validation of a C4.5 decision tree returned an average AUC of 0.725, decreasing
just by 0.027 relatively to the AUC results including all information (0.752).

However, these features did not provide any insights regarding the different
distributions. Therefore, we have tested several decision trees in order to obtain
a model that included the most information possible, but without compromising
the interpretability of the model: we looked for subsets of features that enabled a
clear interpretation of a decision tree with a minimum performance drop, in order
to produce meaningful rules. The subset of features that enable the most clear

Exploring the Effects of Data Distribution in Missing Data Imputation 261

decision tree is the distribution of the feature (Distribution), MR, the metric
considered (Metric) and Generation Type, with a mean AUC of 0.675, showing
a decrease of 0.077 relatively to the best AUC achieved (considering all features).
Despite this drop in performance, this model allows the construction of general,
heuristic rules that may be useful for researchers that know the distribution of
data and want to select the best imputation method: an example branch of such
a decision tree is shown in Fig. 6. From this heuristic, some imputation methods
stood out for particular Distribution and Generation Types, e.g.: SOMimp for
Birnbaum-saunders (T1,2,3,4,5,6), Extreme Value (T1,2,3,6) and Weibull (T1,3,4,6);
KNNimp for Logistic (T1,2,3,4,5).

Fig. 6. Example of a branch of the decision tree generated from the con-
sidered subset of features. An example of a rule obtained by the pre-
sented model is: Generation Type = T3 and Metric = MSE and Distribution =

Gamma and Missing Rate <= 10: KNN(46,21)

5 Conclusions and Future Work

This research follows from Santos et al. [18], where authors found a relation
between data distribution and imputation quality, showing that the latter is
influenced by the missing rate and the ratio of features per distribution, when
missing data is generated completely at random. Herein, we extend the work of
Santos et al. to more extreme setups, where missing values affect specific areas
of features’ frequency histograms and probability density functions. To this end,
a set of comprehensive experiments were conducted in order to study the effect
of several data distributions on well-known imputation algorithms. We collected
several datasets with different characteristics, fitted the data to determine the
best distribution that describes each feature and then inserted missing data in
7 different approaches (T1 to T7). After the insertion of missing values, five
imputation methods were used to reproduce the original values and the results
were evaluated in terms of PAC and DAC metrics.

From the results gathered we can summarise the following conclusions:

• SVMimp is the winning method for nearly all distributions in both PAC and
DAC metrics, unaffected by data distribution;

• Overall, imputation algorithms that followed clustering-based solutions
(KNNimp and SOMimp) seem to be generally appropriate to keep the PAC
and DAC properties;

262 J. Pompeu Soares et al.

• KNNimp is more appropriate in terms of DAC and SOMimp seems preferable
in terms of PAC;

• KNNimp outperforms all methods regarding both PAC and DAC metrics
for MRs < 15%, However, for MRs ≥ 15% SOMimp is generally the best
approach for PAC, though for DAC, KNNimp still maintains its superiority.

With more detail on the heuristic analysis we have the following conclusions:

• Overall, SOMimp is the most robust approach across several scenarios;
• GoF, Sample Size, Feature Ratio and Generation Type seem to be relevant

features to determine appropriate imputation algorithms, although they do
not provide insights regarding the different distributions;

• It was possible to obtain a clear decision tree model that allows the extraction
of general rules comprising Generation Type, Metric, Distribution and MR;

• SOMimp is the most appropriate method for Birnbaum-saunders, Extreme
Value and Weibull distributions. Logistic distributions tend to be better
imputed with KNNimp.

There are several directions for future work. One is the extension of this
methodology for datasets comprising also discrete features, fitting discrete dis-
tributions and investigating how the studied imputation techniques perform in
each scenario. Also, from a classification perspective, it would be interesting to
assess whether the best imputation techniques regarding PAC and DAC metrics
would also achieve good results in terms of classification error. An ongoing work
is focused on a sensibility analysis of SVMimp, studying the best set of param-
eters that achieve high PAC and DAC results and looking for the absolute most
missing data rate for which SVMimp is still able to maintain the original data
values and distribution.

Acknowledgments. This article is a result of the project NORTE-01-0145-FEDER-
000027, supported by Norte Portugal Regional Operational Programme (NORTE
2020), under the PORTUGAL 2020 Partnership Agreement, through the European
Regional Development Fund (ERDF).

References

1. Abreu, P.H., Santos, M.S., Abreu, M.H., Andrade, B., Silva, D.C.: Predicting breast
cancer recurrence using machine learning techniques: a systematic review. ACM
Comput. Surv. (CSUR) 49(3), 52 (2016)

2. Aisha, N., Adam, M.B., Shohaimi, S.: Effect of missing value methods on bayesian
network classification of hepatitis data. Int. J. Comput. Sci. Telecommun. 4(6),
8–12 (2013)

3. Amiri, M., Jensen, R.: Missing data imputation using fuzzy-rough methods. Neu-
rocomputing 205, 152–164 (2016)

4. Batista, G.E., Monard, M.C.: A study of k-nearest neighbour as an imputation
method. HIS 87(251–260), 48 (2002)

5. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Rregression
Trees. CRC Press, Boca Raton (1984)

Exploring the Effects of Data Distribution in Missing Data Imputation 263

6. Chambers, R.: Evaluation criteria for statistical editing and imputation, national
statistics methodological series no. 28. University of Southampton (2001)

7. Garćıa-Laencina, P.J., Sancho-Gómez, J.L., Figueiras-Vidal, A.R.: Pattern classi-
fication with missing data: a review. Neural Comput. Appl. 19(2), 263–282 (2010)

8. Garćıa-Laencina, P.J., Sancho-Gómez, J.L., Figueiras-Vidal, A.R.: Classifying pat-
terns with missing values using multi-task learning perceptrons. Expert Syst. with
Appl. 40(4), 1333–1341 (2013)

9. Howell, D.C.: The treatment of missing data. The Sage Handbook of Social Science
Methodology, pp. 208–224. Sage Publications, Thousand Oaks (2007)

10. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M.: Meth-
ods for imputation of missing values in air quality data sets. Atmos. Enviro. 38(18),
2895–2907 (2004)

11. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)
12. Lopes, R.H.: Kolmogorov-smirnov test. International Encyclopedia of Statistical

Science, pp. 718–720. Springer, New York (2011)
13. Nanni, L., Lumini, A., Brahnam, S.: A classifier ensemble approach for the missing

feature problem. Artif. Intell. Med. 55(1), 37–50 (2012)
14. Pigott, T.D.: A review of methods for missing data. Educ. Res. Eval. 7(4), 353–383

(2001)
15. Rahman, M.M., Davis, D.N.: Fuzzy unordered rules induction algorithm used as

missing value imputation methods for k-mean clustering on real cardiovascular
data. In: Proceedings of the World Congress on Engineering I, pp. 391–394 (2012)

16. Rahman, M.G., Islam, M.Z.: Missing value imputation using decision trees and
decision forests by splitting and merging records: two novel techniques. Knowledge-
Based Syst. 53, 51–65 (2013)

17. Santos, M.S., Abreu, P.H., Garćıa-Laencina, P.J., Simão, A., Carvalho, A.: A new
cluster-based oversampling method for improving survival prediction of hepatocel-
lular carcinoma patients. J. Biomed. Inf. 58, 49–59 (2015)

18. Santos, M.S., Soares, J.P., Henriques Abreu, P., Araújo, H., Santos, J.: Influence of
data distribution in missing data imputation. In: Artificial Intelligence in Medicine,
pp. 285–294. Springer International Publishing, Cham (2017)

19. Sivapriya, T., Kamal, A.N.B., Thavavel, V.: Imputation and classification of miss-
ing data using least square support vector machines-a new approach in dementia
diagnosis. Int. J. Adv. Res. Artif. Intell. 1(4), 29–33 (2012)

20. Sorjamaa, A., Corona, F., Miche, Y., Merlin, P., Maillet, B., Séverin, E., Lendasse,
A.: Sparse linear combination of soms for data imputation: application to financial
database. In: Pŕıncipe, J.C., Miikkulainen, R. (eds.) WSOM 2009. LNCS, vol.
5629, pp. 290–297. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02397-2 33

21. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,
Botstein, D., Altman, R.B.: Missing value estimation methods for dna microarrays.
Bioinformatics 17(6), 520–525 (2001)

22. Van Buuren, S.: Flexible Imputation of Missing Data. CRC Press, Boca Raton
(2012)

https://doi.org/10.1007/978-3-642-02397-2_33
https://doi.org/10.1007/978-3-642-02397-2_33

Communication-Free Widened Learning
of Bayesian Network Classifiers Using

Hashed Fiedler Vectors

Oliver R. Sampson(B), Christian Borgelt, and Michael R. Berthold

Chair for Bioinformatics and Information Mining, Department of Computer
and Information Science, University of Konstanz, Konstanz, Germany

oliver.sampson@uni-konstanz.de

Abstract. Widening is a method where parallel resources are used to
find better solutions from greedy algorithms instead of merely trying to
find the same solutions more quickly. To date, every example of Widen-
ing has used some form of communication between the parallel workers
to maintain their distances from one another in the model space. For
the first time, we present a communication-free, widened extension to a
standard machine learning algorithm. By using Locality Sensitive Hash-
ing on the Bayesian networks’ Fiedler vectors, we demonstrate the ability
to learn classifiers superior to those of standard implementations and to
those generated with a greedy heuristic alone.

1 Introduction

Moore’s Law has begun to run up against harder physical limits, and parallel
processing has taken over the continuing increases in computing performance.
Whether it is from multiple cores in potentially multiple CPUs on desktops or
thousands of individual cores available in GPGPUs (general-purpose graphics
processing units) to seemingly unlimited parallel computing resources available
from commercial cloud computing providers, little research [2] has been per-
formed on applying those parallel resources to finding better quality solutions.
Widening [1] has demonstrated an ability to describe parallelized versions of
greedy machine learning algorithms, while using diversity between the parallel
workers, that are able to find better solutions than their standard counterparts.
The guiding philosophy is “Better. Not Faster.” Although the demonstrated
examples, such as Widened Krimp [24], Widened Hierarchical Cluster-

ing [11], Widened Bayesian Networks [25] and Bucket Selection [12]
have been able to find superior solutions, i.e., “better,” they have been unable
to demonstrate this ability in a run-time that is comparable to the standard ver-
sions of the greedy algorithms. “Not faster” is not intended to mean “slower.”

This is because all of the demonstrated examples have used some form of
communication between the parallel workers to enforce a distance between them
while they move through the model space. In this paper we present the first

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 264–277, 2018.
https://doi.org/10.1007/978-3-030-01768-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_22&domain=pdf

Communication-Free Widened Learning of Bayesian Network 265

example of Widening that enables the workers to traverse the model/solution
space without communication between them–communication-free widening.

Communication-free widening can be realized through the use of a hash func-
tion, where each model and its refinements form a potential path through the
model space only when they have all been hashed to the same hash value. The
sets of models that hash to the same values form a partitioning of the model
space and are the mechanism Widening uses to maintain diversity between the
parallel workers in the model space.

The hash function used here is a variant of a Locality Sensitive Hashing

[13] hash family and is used to hash the Fiedler vectors of the matrix represen-
tations of Bayesian networks which are evaluated for use as classifiers.

2 Background

2.1 Learning Bayesian Networks

A Bayesian network is a probabilistic graphical model that represents conditional
dependencies between features of a dataset. More formally, given a dataset, D,
with features, X , a Bayesian network, B, is a pair 〈G,Θ〉, where G = 〈X , E〉 is
a pair representing a directed acyclic graph, where the nodes of the graph are
represented by X , E are the edges, and Θ is the set of conditional probability
tables for each of the features. Each edge, E = 〈Xi,Xj〉, where E ∈ E and
Xi,Xj ∈ X , is an ordered pair reflecting the conditional dependency of one
feature on another, where a child node, Xj , is conditionally dependent a parent
node, Xi.

Algorithms for learning the structure of Bayesian networks are, at their core,
search algorithms that vary in how they score changes to a network’s struc-
ture along the search path in the super-exponentially sized, i.e., O(|X |!2(|X|

2)),
model space. Largely, they vary in the starting network configuration and in
the assumptions they make about the relationships between the features of the
Bayesian network and in their method of scoring the network. The algorithms can
be divided into four categories: constraint-based, search-and-score, hybrid, [15]
and evolutionary algorithms [17]. Constraint-based algorithms derive network
structure based on dependency relationships between features. Search-and-score
algorithms refine the network topology by adding, deleting, or reversing the
edges in the network and then score and select the network in a greedy man-
ner. Hybrid algorithms integrate techniques from both of the search-and-score
and constraint-based methods; a partially-directed-acyclic graph is created using
constraint-based techniques, and the network is evaluated using search-and-score
methods, while giving a direction to each undirected edge. These methods usually
use either Bayesian methods, by calculating the posterior probability of a net-
work given the dataset or likelihood-based information theoretic scores. Evolu-
tionary algorithms follow a typical evolutionary algorithmic pattern of mutation,
reproduction, selection, and random sampling, where the classification perfor-
mance accuracy for classification is often used for the selection (fitness) function.

266 O. R. Sampson et al.

When using a Bayesian network as a classifier, the calculated probabilities
are solely influenced by the Markov blanket, i.e., the target variable, its parents,
its children, and the other parents of its children [22]. To calculate the predicted
target variable value, each value of the target variable is evaluated using a vector,
x, of instantiated values for all of the other features in the dataset, i.e., X \ C,
using Eq. 1 [3],

ĉ = argmax
u=1,...,|C|

P (cu,x) = argmax
u=1,...,|C|

P (cu|pa(C))
|x|∏

v=1

P (xv|pa(Xv)) (1)

where C ∈ X is the target variable, cu are the values that C may assume, Xv is
the variable corresponding to the value xv ∈ x, and pa(·) is the set of parents
of a given node. The target variable value, ĉ, with the highest probability is the
predicted value.

2.2 Widening

Widening is a framework that describes a method for using parallel resources for
potentially finding better solutions with greedy algorithms than the algorithms
would find using their standard implementation.

Given an initial model, m0 ∈ M, from the set of all models in a model
space, a refinement operator, r(·), and a selection operator based on a perfor-
mance metric, s(·), a greedy algorithm can be defined as a series of iterations,
mi+1 = s(r(mi)), which continues until a stopping criterion is met. More exactly,
mi is refined to a set of derivative models, M ′

i = r(mi), and from this set one
model is selected, mi+1 = s(M ′

i). A simple extension to this is Beam Search,
where the top k models are selected at each iteration. The widening frame-
work terms this Top-k-widening, i.e., Mi+1 = sTop−k(r(Mi)) : |Mi+1| = k.
Widening begins to widen the search paths beyond a simple greedy mechanism
when diversity is brought into play. The notion of diversity can be implemented
in either the refining step as in [24,25] or in the selection step as in [11,12].
Given a diverse refinement operator, rΔ(·), as in [24,25], where a diversity func-
tion, Δ, is imposed on the output, Diverse Top-k Widening is described by
Mi+1 = sTop−k(rΔ(Mi)).

Depending on how this diversity is imposed, it can either be communication-
free or not. Widened Krimp evaluated the best models from all parallel workers
at the end of each iteration. The p-Dispersion-Min-Sum measure [21] is used
by Widened Bayesian Networks to find maximally disperse, i.e., diverse,
members of the refined sets at each refinement step. Widened Hierarchical

Clustering, in contrast, uses a clustering method to find diverse subsets and
selected a top member from each of the clusters. Bucket Selection uses a
hashing mechanism and transfers models between the parallel workers. All four
examples require non-parallelized communication between the parallel workers
for a comparison of their results.

Communication-Free Widened Learning of Bayesian Network 267

2.3 Communication-Free Widening

Communication-free widening can be thought of as a partitioning of the model
space, where a refinement operator either yields only models that are part of the
partition, or yields models to many partitions and discards those that do not
belong to the partition.

Many problems have large model spaces that are characterized as having
large plateau-like structures that are difficult for greedy algorithms to progress
within. Often there are many local optima distributed throughout the solution
space. Given a partitioning of such a model space, which restricts the search of
each parallel worker within a partition (See Fig. 1), we hypothesize (1) that as
the number of partitions increases, i.e., as the width increases, that Widening

will be able to find better solutions, and (2) that with too many partitions, the
solutions will deteriorate as more of the partitions do not cover a better solution
or will not cover a complete path to a solution.

Fig. 1. Solution paths (red) are limited to regions of the model space defined by the
output of a hash function, i.e., buckets, denoted by b1, . . . , b8.

Partitioning the model space introduces a potential problem to the greedy
search–reachability. The problem of reachability describes when the parallel
worker is unable to find any better solution in a partition or, in the extreme
case, any better solution in any partition. It also describes when a good or
best solution path is not complete under any given partition and would need to
“jump” partitions.

A hash function, H(·), is a natural method for partitioning a model space.
(See Fig. 1.) The refined models are hashed with H(·), where refined models
with different hash values from the original model are discarded. The best of
these models are in turn selected by a selection operator for the next iteration.
Continuing with the notation from above, each parallel path, denoted by j, is

268 O. R. Sampson et al.

described by Widening as Mj,i+1 = s({m′ ∈ r(Mj,i)|H(m′) = j}) where j is
the output of the hash function H(·).

2.4 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) has shown excellent results in similarity
search, with applications in image retrieval [16], genetic sequence comparison [5],
melody-based audio retrieval [20], among others. LSH reduces the dimensionality
of a dataset by hashing the dataset’s entries with a hash function, h(·) ∈ F , from
a hash family F , which has a high probability of giving the same value to similar
examples [6].

Several different hash families, F , are found in the literature including dat-
apoints on a unit hypersphere [28], angle-based distance [6], and p-stable distri-
butions [9].

In the r-Nearest Neighbor (r-NN) problem, LSH is used with a number,
L, of sets of concatenated hash functions from F in order to increase the proba-
bility of a collision between a query example and examples already hashed from
the database. Typically, the results of g different examples of each hash function,
{h1(·), . . . , hg(·)}, are concatenated together to create a hash value for one hash
function, H(·). L hash functions are used to hash each example, x ∈ D, into L
hash tables. When there is a collision between examples, a collision list is kept
for each hash entry in the appropriate hash table. When searching for r-NN

examples, a query item xq is hashed using each of the L hash functions, and the
previously bucketed values from each of L hash tables are retrieved. These are
then compared to xq with a standard similarity measure. Those falling within
some distance, r, of xq are considered to be matches for r-NN [9].

The L2 Gaussian hash family [9] hashes an example, v, of dimension d using
the function h(v) =

⌊
v·a+b

w

⌋
, where a is a d-dimensional vector whose elements

are randomly sampled from a Gaussian distribution with μ = 0 and σ = 1 and
b is a value randomly sampled from a linear distribution between [0, w), where
w is an input parameter. g different examples of h(·) derived from g different
vectors a and values b are concatenated together to compose H(·). In this work
we only use one (L = 1) set of hash functions, as opposed to the larger number
used for r-Nearest Neighbor in [9], because we are only interested in testing
a single partitioning of the model space.

2.5 Fiedler Vectors

An adjacency matrix, A, of an undirected network graph is defined to be an
n × n : n = |X | matrix with entries, aij ∈ {0, 1} : i, j ∈ {1, . . . , |X |}. aij is set
to 1 if there is an edge between nodes i and j in the network, and to 0 where
no edge exists. A node degree matrix, D, is an n × n diagonal matrix where
the diagonal, i.e., the entries dii, are set to the number of edges incident to the
node i ∈ {1, . . . , |X |}; all other entries are set to 0. The unnormalized Laplacian
matrix of the undirected graph is simply L = D−A, which, when deg(i) is the
node degree, gives [7]:

Communication-Free Widened Learning of Bayesian Network 269

LUN =

⎧
⎪⎨

⎪⎩

deg(i) if i = j,

−1 if i �= j and Xi,Xj are adjacent,
0 otherwise.

(2)

Normalized Laplacian matrices exist, such as the symmetric norm from
Chung [7]

LSN =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = j and deg(i) �= 0,

− 1√
deg(i)deg(j)

if i �= j and Xi,Xj are adjacent,

0 otherwise.

(3)

and the random walk from Doyle and Snell [10], LRW , which differs from that
of Chung by the value for adjacent nodes: − 1

deg(i) .
The eigenvalues of symmetric matrices are both real and positive, with the

number of eigenvalues equal to 0 reflecting the number of connected components
in the graph. The Fiedler vector is the eigenvector associated with the second
smallest, i.e., first non-zero, eigenvalue, or Fiedler value, of a connected graph’s
Laplacian matrix [7]. The Fiedler value is associated with a graph’s algebraic
connectivity; the Fiedler vector reflects graph’s structure, in that graphs cannot
be isomorphic if they do not have the same Fiedler vector. If the graphs do have
the same Fiedler vector, then the probability of their being isomorphic is very
high and seems to trend to 100% as |X | → ∞ [29].

Table 1. Dataset Characteristics. |D| is the number of entries in the dataset, |X | is
the number of features including the target feature, |C| is the number of target classes,
and max |H(·)| is the width where refined models are more likely to be refined to the
same hash than random, obtained from the experiments as depicted in Figs. 3a and 3b.

Dataset |D| |X | |C| max |H(·)|
Car 1728 7 4 22

Connect4 67556 43 3 29

Ecoli 336 8 8 23

Glass 214 10 7 24

Ionosphere 351 35 2 28

Pima 768 9 2 24

Waveform 5000 22 3 28

Assuming the property that the Fiedler vector approximates a unique iden-
tifier for a graph,1 we hypothesize (3) that the LSH function as described

1 Isomorphic graphs have similar Fiedler vectors. The converse is not necessarily true.

270 O. R. Sampson et al.

above, when hashing the Fiedler vector allows similar Bayesian networks to stay
together in a partition, and that the disparate refinement paths will lead to a
superior solution, thereby realizing Communication-free Widening.

2.6 Related Work

This work relies implicitly on work related to the Subgraph Isomorphism

Problem, which is an area of active research into efficient methods for finding
common subgraphs. The use of graph spectra is a popular method with applica-
tions in clustering [26], chemistry [30], and image retrieval [23], among others.
Luo et al. in [19] used spectral properties with other graph theoretical values for
graph clustering. Qiu and Hancock in [23] used graph spectral properties, and
the Fiedler vector in particular, for graph matching by decomposing a graph into
subgraphs.

Zhang et al. in [31] used LSH on graphs for k-Nearest Neighbor Simi-

larity Search. Their method is based on using a hash function of differences
between graphs in the database and prototypes either randomly selected before-
hand or calculated by clustering. Variants of LSH exist that use only one hash
function, such as the Single Hash MinHash [4]. To our knowledge no examples
exist in the literature of implementing LSH for graphs with the Fiedler vector
as the value to be hashed.

3 Experimental Setup

The datasets used for the experiments were chosen for their wide variety of
dimensionality and number of target classes and for their lack of missing values
(See Table 1). They are all available from the UCI Machine Learning Reposi-
tory [18] and were discretized using the LUCS-KDD DN software [8].

Fig. 2. Number of hash values related to w and g. The number of different initial hash
values measured for two datasets (ecoli and ionosphere) with two different sizes of
sets of initial models, |M0| = 40 in Fig. 2a and 2b, and |M0| = 80 in Fig. 2c and 2d, are
plotted with values for g ∈ {1, 2, 3} and w ∈ {0.1, 0.2, 0.4, 0.8, 1.0, 2.0, 3.0, 4.0}. Small
values of w result in a large number of hashes quickly approaching the number of initial
values.

Communication-Free Widened Learning of Bayesian Network 271

Each experiment tested the response to Widening by varying the input vari-
ables w, which controls the number of different output values for each function
hg(·) and g, which is the number of hash values concatenated together. Experi-
ments with every combination of w and g for each dataset were conducted using
5-fold cross-validation and repeated five times, resulting in 25 individually scored
trials with different random values for the hash functions h(·) for each trial. The
5-fold cross-validation is naturally an 80/20 train/test split. The iterative refine-
score-select steps in each of the five training folds are also learned and scored
using an 80/20 partitioning, resulting in an overall 64/16/20 train/validate/test
split. All experiments were conducted using KNIME v3.5.

3.1 Initialization

In the experiments presented here, the initial models are single-component net-
works with up to two edges being added from every node to other random
node(s). All experiments were performed with an initial model set, M0, with
|M0| = 40 initial models and with w ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2, 3, 4} and
g ∈ {1, 2, 3}. For each initial model, the Fiedler vector for the Markov blanket
is calculated and hashed. The number of initial hashes for the experiment is
determined from the initial set of hashed values.

Because of the stochastic nature of the hashing scheme, it is impossible to
predict exactly how many different partitions will be created from the initial set
of models, but we can measure the response for the number of generated hash
values. What is certain is that, in our application as w decreases and g increases
there will be a tendency for the number of hash values to increase (See Fig. 2).

For applications where the exact width needs to be known beforehand, sev-
eral different rounds of initialization are performed, and the round with the
model(s) with the correct number of unique hashes is used as the starting point
for Widening. The primary relationship being evaluated here is that between

Fig. 3. Percentage of refined models with Fiedler vector/LSH to the same hash value for
two datasets: car and connect4 and three Laplacian normalizations: SymNorm (green),
RandomWalk (purple), Unnormalized (blue). Figure 3a and 3b show the percentage of
models refined to the same partition when comparing the Fiedler vector for the entire
network. Figure 3c and 3d show the percentage of models refined to the same partition
when using the Fiedler vector only for the network’s Markov blanket.

272 O. R. Sampson et al.

the amount of widening, i.e., the number of unique hash values, and the result-
ing classification performance of the derived Bayesian networks. When there is
no widening, i.e., there is no hashing and partitioning of the model space, the
refined model path is a simple, greedy search.

3.2 Refinement

Because the Markov blanket is the portion of the network that, when changed,
can cause changes in classification accuracy, the refinement strategy first
attempts to add or delete edges from non-Markov blanket nodes to the Markov
blanket, depending on the constraints of the network’s being acyclic and a single
component. If that fails, similar attempts for any edge in the network are made.
Because this work is interested in demonstrating Widening via the use of the
Fiedler vector as a good hashable descriptor of a Bayesian network, and how its
use with an LSH-based hashing scheme will find better solutions than standard
greedy algorithms, only one model is refined per iteration—this corresponds to
the use of l = 1 in [25]. The number of parents for any given node in a model
is limited to 5, because conditioned probabilities can degrade to 0 for datasets
where |D| is insufficiently large.

The Fiedler vector for the refined model is filled with zeroes for the nodes
that are not included in the Markov blanket, and hashed using g concatenated
values of h(·). Any refined model with a hash value differing from its preceding
model is discarded. The preceding model may have a differing set of nodes in
the Markov blanket.

3.3 Partitioning

To determine the efficacy of the Fiedler vector/LSH method of refining models
within the same partition, we performed some preliminary experiments. Twenty-
five repetitions of |M0| = {40, 80} initialized models were refined through 50
iterations as described above. The new model’s hash value is compared to the
previous model’s hash value. When equal, the new model is kept for further
refinement; when unequal, it is discarded. No scoring of the resulting Bayesian
network is performed, so in this case, the only difference considered between
datasets is the number of features.

Figure 3 shows how well the Fiedler Hash/LSH technique performs with
refining models to the same hash value for three different types of normalization
for the Laplacian matrix compared to a 1/n baseline, which would be expected
with a purely random hashing scheme. Two different Fiedler vector/LSH hashing
schemes are shown in Fig. 3 to illustrate the effect of using just the Markov
blanket compared to the entire network. In the cases (Fig. 3a and 3b) where
the Fiedler vector from the entire network is hashed, the larger datasets have a
higher number of hashes for which the models are refined to the same partition,
and a higher number of hashes which perform better than the baseline. This is
because small perturbations to the larger network can have smaller effects on the
Fiedler vector. In the cases (Fig. 3c and 3d), where only the Markov blanket is

Communication-Free Widened Learning of Bayesian Network 273

Fig. 4. Communication-free Widened Bayes accuracy versus the number of unique
hashes. The red and blue lines are second degree polynomials fitted to the mean (red
dots) and median accuracy, respectively, for each value of the number of unique hashes
(width). When the lines are concave facing down, it supports the hypothesis of better
performance with Widening to a certain point with worsening performance thereafter.
connect4 is shown twice (Fig. 4g and 4h, once each with and without outliers (σ ≥ 3),
to better show the trend.) The x-axis shows the max number of hashes from Table 1
plus 20% thereof allowing for a decline in accuracy afterwards.

considered, the Markov blanket is (usually) smaller than the total network, and
small changes may eliminate a node or nodes entirely from the Markov blanket
resulting in larger changes to the Fiedler vector and its hash value. The crossover
to performance worse than the baseline is between 23 hash values for smaller
datasets, e.g., car and 29 for larger datasets, e.g., connect4. This value (max
|H(·)| in Table 1) is used for the maximal widening in later experiments.

Additionally, the different Laplacian matrix normalizations described in
Sect. 2.5 were compared with an unnormalized Laplacian matrix in these exper-
iments. The three different types of Laplacian matrix normalization performed
similarly to one another, but Chung’s LSN (See Eq. 3) slightly yet consistently
outperformed LRW and LUN (See Eq. 2), and is therefore used in the classifica-
tion evaluation experiments.

3.4 Scoring and Selection

At each iteration, the model is scored using 20% of the training data subset.
For Widening in general, the best models are selected, but, here only a single
model is being evaluated—this corresponds to the use of k = 1 in [25]. If the

274 O. R. Sampson et al.

Table 2. Experimental results comparing simple greedy search (one partition) to the
best results from Communication-free Widened Bayes and three algorithms from
the R bnlearn package. The p-values are for Student’s t-test, two-tailed, 95% confi-
dence level with equal variances assumed, comparing Communication-free Widened

Bayes Networks to the purely greedy variant.

Dataset R:Hill-

climbing

R:MMHC R:Tabu Greedy Comm.-free

Widened

Bayes

Best

number

of Parti-

tions

p-value

car 0.715 ±
0.037

0.700 ± 0.002 0.718 ± 0.035 0.682 ± 0.125 0.816 ±
0.029

2 <0.01

connect4 0.678 ±
0.012

0.658 ± 0.000 0.684 ± 0.002 0.589 ± 0.152 0.669 ±
0.006

23 <0.01

ecoli 0.632 ±
0.044

0.495 ± 0.088 0.602 ± 0.109 0.677 ± 0.100 0.803 ±
0.032

17 <0.01

glass 0.501 ±
0.112

0.388 ± 0.036 0.500 ± 0.057 0.532 ± 0.107 0.649 ±
0.079

15 <0.01

ionosphere 0.807 ±
0.055

0.641 ± 0.011 0.810 ± 0.057 0.826 ± 0.055 0.869 ±
0.037

17 <0.01

pima 0.706 ±
0.053

0.716 ± 0.065 0.760 ± 0.027 0.693 ± 0.050 0.745 ±
0.051

23 <0.01

waveform 0.504 ±
0.119

0.339 ± 0.000 0.612 ± 0.016 0.630 ± 0.058 0.725 ±
0.017

15 <0.01

performance score is better than that of the model from the previous iteration,
the model is passed into the next iteration, otherwise the old model is kept and
refined anew. The iterations stop when the improvement in performance is less
than 0.01%. A Laplacian correction of 1 is added to the entries in the conditional
probability table when a count is 0.

4 Results

A summary of the experimental results for the seven datasets is shown in Table 2.
Communication-free Widened Bayes was able to find superior solutions
when compared to three standard Bayesian network learning algorithms (Hill-

climbing (both perturb and restart = 100)), Max-Min Hill-Climbing

(MMHC) (perturb = 100), and Tabu from the R bnlearn v4.2 package [27])
for five of seven datasets. However, for all seven datasets Communication-free

Widened Bayes was able to demonstrate, as hypothesized, finding better solu-
tions when compared to a purely greedy learning method.

As depicted in Fig. 4, five of the seven datasets, (ecoli, pima, waveform,
ionosphere, and connect4) show the predicted curves for both the mean and
the median with the exception of ionospheres’s mean. ecoli and pima show
the clearest examples whereas glass shows a sharp peak in the middle that
the smoothing lines oversmooth. connect4 shows minimal variation in response
to Widening, and its results from the different algorithms differ relatively lit-
tle, indicating that good solutions are relatively easy to find along the solution
surface; we do not expect all datasets to respond equally well, either because

Communication-Free Widened Learning of Bayesian Network 275

of the nature of the dataset, or because of the reachability problem described
in Sect. 2.2. car found the best solutions with only two partitions, but, like
connect4 showed little variability overall.

5 Conclusion and Future Work

The results demonstrate for the first time the successful implementation of a
communication-free, widened version of a class of popular machine learning algo-
rithms. Additionally, the experiments compared two methods of normalizing the
Laplacian matrix and the unnormalized Laplacian matrix, and while no large
differences between the three were found, Chung’s symmetric normalization [7]
slightly outperformed the other two. The results verify the Fiedler vector as a
viable descriptor of mixed-sized Markov blankets from Bayesian networks for use
with Locality Sensitive Hashing.

A drawback to these experiments is the use of the undirected adjacency
matrix for calculating the Laplacian matrix. Hashing the complex values that
are the result of the eigendecomposition of skew-symmetric adjacency matrices
or of a Hermitian adjacency matrix [14], or even of variations to the Laplacian
matrix calculated with them could result in a stricter partitioning. Furthermore,
within each hash region, a Top-k could be used to find slightly better models at
each refinement step, thereby accelerating the search. Schemes that affect the
refining step, such as preventing an edge that has contributed to a better score
from being deleted in the next refining step, could also speed up the search.
Experiments involving other LSH hash families could also be useful.

References

1. Akbar, Zaenal, Ivanova, Violeta N., Berthold, Michael R.: Parallel data mining
revisited. Better, not faster. In: Hollmén, Jaakko, Klawonn, Frank, Tucker, Allan
(eds.) IDA 2012. LNCS, vol. 7619, pp. 23–34. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34156-4 4

2. Akl, S.G.: Parallel real-time computation: sometimes quantity means quality. In:
Proceedings of International Symposium on Parallel Architectures, Algorithms and
Networks, 2000. I-SPAN 2000, pp. 2–11. IEEE (2000)

3. Bielza, Concha, Larrañaga, Pedro: Discrete Bayesian network classifiers: a survey.
ACM Comput. Surv. (CSUR) 47(1), 5 (2014)

4. Andrei Z. Broder. On the resemblance and containment of documents. In: Proceed-
ings of Compression and Complexity of Sequences 1997, pp. 21–29. IEEE (1997)

5. Buhler, Jeremy: Efficient large-scale sequence comparison by locality-sensitive
hashing. Bioinformatics 17(5), 419–428 (2001)

6. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Comput-
ing, pp. 380–388. ACM (2002)

7. Fan-Roon Kim Chung. Spectral Graph Theory. Number 92 in Regional Conference
Series in Mathematics. American Mathematical Society, 1997

8. Coenen, F.: LUCS-KDD DN software (2003)

https://doi.org/10.1007/978-3-642-34156-4_4
https://doi.org/10.1007/978-3-642-34156-4_4

276 O. R. Sampson et al.

9. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pp. 253–262. ACM (2004)

10. Doyle, P.G., Laurie Snell, J.: Random Walks and Electric Networks. Mathematical
Association of America (1984)

11. Fillbrunn, Alexander, Berthold, Michael R.: Diversity-driven widening of hierar-
chical agglomerative clustering. In: Fromont, Elisa, De Bie, Tijl, van Leeuwen,
Matthijs (eds.) IDA 2015. LNCS, vol. 9385, pp. 84–94. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24465-5 8

12. Fillbrunn, Alexander, Wörteler, Leonard, Grossniklaus, Michael, Berthold, Michael
R.: Bucket selection: a model-independent diverse selection strategy for widening.
In: Adams, Niall, Tucker, Allan, Weston, David (eds.) IDA 2017. LNCS, vol. 10584,
pp. 87–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68765-0 8

13. Gionis, Aristides, Indyk, Piotr, Motwani, Rajeev: Similarity search in high dimen-
sions via hashing. VLDB 99, 518–529 (1999)

14. Guo, Krystal, Mohar, Bojan: Hermitian adjacency matrix of digraphs and mixed
graphs. J. Graph Theory 85(1), 217–248 (2017)

15. Koski, T.J.T., Noble, J.M.: A review of Bayesian networks and structure learning.
Mathematica Applicanda 40(1), 53–103 (2012)

16. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image
search. In: 12th International Conference on Computer Vision, pp. 2130–7. IEEE
(2009)

17. Larrañaga, Pedro, Karshenas, Hossein, Bielza, Concha, Santana, Roberto: A review
on evolutionary algorithms in Bayesian network learning and inference tasks. Inf.
Sci. 233, 109–125 (2013)

18. Lichman, M.: UCI Machine Learning Repository (2013)
19. Luo, Bin, Wilson, Richard C., Hancock, Edwin R.: Spectral feature vectors for

graph clustering. In: Caelli, Terry, Amin, Adnan, Duin, Robert P.W., de Ridder,
Dick, Kamel, Mohamed (eds.) SSPR /SPR 2002. LNCS, vol. 2396, pp. 83–93.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-70659-3 8

20. Marolt, Matija: A mid-level representation for melody-based retrieval in audio
collections. IEEE Trans. Multimed. 10(8), 1617–1625 (2008)

21. Meinl, T.: Maximum-Score Diversity Selection. Ph.D. thesis, University of Kon-
stanz, Konstanz, Germany (2010)

22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., Burlington (1988)

23. Qiu, Huaijun, Hancock, Edwin R.: Graph matching and clustering using spectral
partitions. Pattern Recognit. 39(1), 22–34 (2006)

24. Sampson, Oliver, Berthold, Michael R.: Widened KRIMP: better performance
through diverse parallelism. In: Blockeel, Hendrik, van Leeuwen, Matthijs, Vin-
ciotti, Veronica (eds.) IDA 2014. LNCS, vol. 8819, pp. 276–285. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12571-8 24

25. Sampson, Oliver R., Berthold, Michael R.: Widened learning of Bayesian network
classifiers. In: Boström, Henrik, Knobbe, Arno, Soares, Carlos, Papapetrou, Pana-
giotis (eds.) IDA 2016. LNCS, vol. 9897, pp. 215–225. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46349-0 19

26. Satu Elisa Schaeffer: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)
27. Scutari, Marco: Learning Bayesian networks with the bnlearn R package. J. Stat.

Softw. 35(3), 1–22 (2010)

https://doi.org/10.1007/978-3-319-24465-5_8
https://doi.org/10.1007/978-3-319-68765-0_8
https://doi.org/10.1007/3-540-70659-3_8
https://doi.org/10.1007/978-3-319-12571-8_24
https://doi.org/10.1007/978-3-319-46349-0_19

Communication-Free Widened Learning of Bayesian Network 277

28. Terasawa, Kengo, Tanaka, Yuzuru: Spherical LSH for approximate nearest neigh-
bor search on unit hypersphere. In: Dehne, Frank, Sack, Jörg-Rüdiger, Zeh, Nor-
bert (eds.) WADS 2007. LNCS, vol. 4619, pp. 27–38. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73951-7 4

29. Van Dam, E.R., Haemers, W.H.: Which graphs are determined by their spectrum?
Linear Algebra Appl. 373, 241–272 (2003)

30. Vishveshwara, S., Brinda, K.V., Kannan, N.: Protein structure: insights from graph
theory. J. Theor. Comput. Chem. 1(01), 187–211 (2002)

31. Zhang, Boyu, Liu, Xianglong, Lang, Bo: Fast graph similarity search via local-
ity sensitive hashing. In: Ho, Yo-Sung, Sang, Jitao, Ro, Yong Man, Kim, Junmo,
Wu, Fei (eds.) PCM 2015. LNCS, vol. 9314, pp. 623–633. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24075-6 60

https://doi.org/10.1007/978-3-540-73951-7_4
https://doi.org/10.1007/978-3-319-24075-6_60

Expert Finding in Citizen Science
Platform for Biodiversity Monitoring via

Weighted PageRank Algorithm

Zakaria Saoud(B) and Colin Fontaine

Centre dEcologie et des Science de la Conservation, UMR 7204 CNRS-MNHN-SU,
Musum national d’Histoire naturelle, 61 rue Buffon, 75005 Paris, France

{zakaria.saoud,colin.fontaine}@mnhn.fr

Abstract. Numerous citizen science platforms aiming at monitoring
biodiversity have emerged in the recent years. These platforms collect
biodiversity data from participants and allow them to increase their sci-
entific knowledge and share it with other participants, experts and sci-
entists. One key aspect of such platforms is quality control on the data,
a task usually performed by a limited number of co-opted experts. With
the amount of data collected increasing steeply, finding new experts is
needed. In this paper we propose a new graph-based expert finding app-
roach for the citizen science platform SPIPOLL, aiming at collecting data
on pollinator diversity across France. We exploit both users comments
quality and users social relations to calculate users expertise for spe-
cific insect family. Experimental results show that the proposed method
performs better than the state-of-the-art expert finding algorithms.

Keywords: Expert finding · PageRank algorithm · Citizen sciences

1 Introduction

Citizen science (CS) platforms represent a powerful tool allowing participants
to contribute to research and increase their scientific knowledge. Furthermore,
CS platforms help scientists in their research projects, by collecting more data
and analyzing it. Generally, the primary goal of CS platforms is connecting
many participants, experts, and researchers towards a common scientific goal.
Nowadays, numerous CS platforms have emerged and can be classified accord-
ing to their scientific objectives such as: medicine, ecology, astronomy, computer
science, psychology, etc. Many popular CS platforms with large communities
of participants exist today, such as Zooniverse1, Foldit2, Eyewire3, and eBird4.
Zooniverse benefits from the collaboration from more than 1 million registered
1 https://www.zooniverse.org/.
2 http://fold.it/portal/.
3 https://eyewire.org/explore.
4 https://ebird.org/home.

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 278–289, 2018.
https://doi.org/10.1007/978-3-030-01768-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_23&domain=pdf
https://www.zooniverse.org/
http://fold.it/portal/
https://eyewire.org/explore
https://ebird.org/home

Expert Finding in Citizen Science Platform for Biodiversity 279

users to analyze pictures of distant galaxies. Foldit allows users to fold the struc-
tures of selected proteins as correctly as possible, by playing an online puzzle
video game. Eyewire challenges players to map neurons in 3D, by solving 2D
puzzles, thereby helping researchers to model information processing circuits.
eBird collects bird information from many volunteers, to provide data about
bird distribution and abundance in real-time. Similarly to eBird, SPIPOLL5

allows users to take photos of flowering plants and their pollinating insects to
study changes in pollinator assemblages across space and time. However, most
of the existing CS platforms still lack an expert finding (EF) mechanism, which
could improve the quality of collected data and optimize data evaluation time.
EF approaches aim to extract a list of experts with high knowledge and expertise
in a specific domain, to produce high quality answers to questions from online
communities. Most of these approaches were focused on communities question
answering (CQA) websites. Unlike the existing EF approaches, our study deals
with the problem of EF in online CS platform on biodiversity, with the SPIPOLL
as a study case. In the SPIPOLL, after taking pictures of pollinators on flowers,
the users give a name to each photographed insect from 600 possibilities and
share their photos and associated insect names on the platform. While users
can comment on each other observations and identifications, experts validate or
correct the pollinator identifications.

In our approach, we analyze the users comments and extract the comments
that contain precise identifications. The extracted comments will be considered
as answers and will be used to construct the users social network. A weighted
PageRank algorithm will be applied on the obtained network, to calculate the
users expertise for a specific insect family. This paper is organized as follows:
Section 2 provides an overview of the related work in the area of EF in CQA web-
sites. Section 3 presents the general structure of the SPIPOLL website. Section 4
introduces the details of our proposed EF approach. Section 5 describes the
experimental setup and obtained results. Finally, we provide some concluding
remarks in Sect. 6.

2 Related Works

CQA websites represent a powerful tool of knowledge mining on specific topics
which cant be extracted easily from general web search engines. CQA websites
allow online users to post and answer questions and exchange knowledge among
them. Nowadays, several CQA platforms have emerged, such as Quora6, Yahoo
Answers7, Blurtit8 and Stack Overflow9. With the increase of these platforms,
the task of EF has received significant attention in the literature. EF aims to
find the appropriate users or experts who can provide good quality answers for

5 http://www.spipoll.org/.
6 https://fr.quora.com/.
7 https://fr.answers.yahoo.com/.
8 https://www.blurtit.com/.
9 https://stackoverflow.com/.

http://www.spipoll.org/
https://fr.quora.com/
https://fr.answers.yahoo.com/
https://www.blurtit.com/
https://stackoverflow.com/

280 Z. Saoud and C. Fontaine

posted questions. Many research fields can benefit from EF techniques, such as
questions recommendation [16] and spam detection [3,6]. For CQA websites,
several approaches have been proposed, which can be classified into three main
categories: 1- graph-based EF approaches, 2- content-based EF approaches and
3- competition-based EF approaches. In graph-based EF approaches, the users’
network is represented by a directed graph, where nodes represent users, and
edges represent the relationships among them. A link from user A to user B is
drawn, if the user B answers for question posted by user A. The user expertise
score can be estimated from the number of edges pointing on him. Most of exist-
ing works in this category have adopted link analysis algorithms like PageRank
[13] or Hits [8], to calculate the users’ expertise scores. We provide in what fol-
lows a brief review of such approaches: Zhang et al. [21] proposed a new experts
ranking algorithm, named ExpertiseRank. This algorithm is based on PageRank
algorithm and calculates the expertise of each user according to the expertise
of others related users to him. Li et al. [9] combined documents quality, docu-
ments topic-focus degree and users’ activities to calculate the users’ expertise
rank. A social network analysis (SNA) algorithm has been used to analyze the
links between the discovered experts, to obtain the specific experts for a spe-
cific topic. Zhao et al. [23] exploited the online social relations between users
via graph regularized matrix to find experts in CQA systems. Zhao et al. [22]
proposed a novel ranking metric network learning framework for EF by exploit-
ing both the social interactions between users and users’ relative quality rank to
given questions. Rafiei et al. [15] proposed a hybrid method for EF based on con-
tent analysis and SNA. The content analysis is based on concept map and SNA
is based on PageRank algorithm. Wei et al. [18] proposed the ExpRank algo-
rithm, an extension of the PageRank algorithm. In this algorithm, the negative
and the positive agreements relations between users have been both exploited to
calculate their expertise. Yeneterzi et al. [20] exploited topic-relevant users and
the interactions between them, to construct topic specific authority graph, called
Topic-Candidate (TC) graph. This graph has been used to estimate the topic-
specific authority scores for each user. Zhu et al. [25] exploited the information
in both relevant and target categories, to improve the quality of authority rank-
ing. Procaci et al. [14] proposed a new approach for EF in online communities
based on graph ranking algorithm and information retrieval approach. In this
approach, two machine learning techniques, artificial neural network, and clus-
tering algorithm have been exploited for EF. Dom et al. [5] applied a graph-based
algorithm to rank email correspondents according to their degree of expertise on
specific topics. Their results showed that PageRank algorithm performs better
than all other algorithms. Shen et al. [17] used a weighted HITS algorithm for
computing users reputation and recommending the obtained experts to the users
who have posted questions. Content-based EF approaches analyze the extracted
information from the users’ answers to predict their expertise. User expertise
score can be estimated from his Z-score [21], his answers’ quality [24], his exper-
tise domains [7] or his answers voted score [4]. Competition-based approaches
suppose that the best answerer has higher expertise than other answerers for a

Expert Finding in Citizen Science Platform for Biodiversity 281

question. To achieve that, they explore the pairwise comparisons between users
(players) deduced from best answer selections, to estimate user expertise score.
The resulting pairwise comparisons can be considered as two-players competi-
tion. Liu et al. [10] applied two-players competition models to determine the
relative expertise score of users. Aslya et al. [2] proposed a novel community
expertise network structure, by creating relations among the best answerer and
other answerers they have beaten. The EF process is based on the principle of
competition among the answerers of a question. In this work, unlike the exist-
ing graph-based EF approaches, we take into account the relationship degrees
between users. We represent the interactions between users by a weighted graph.
Then, we apply a weighted PageRank algorithm on this graph to estimate the
users’ expertise. Details of the proposed method will be described in Sect. 4.

3 The General Structure of the SPIPOLL

SPIPOLL is an SC platform created by the National Museum of Natural History
(MNHN) and the Office for Insects and their Environment (Opie), to collect data
on flowers and their insect pollinators within metropolitan France. The collected
data improve the users’ knowledge about insect pollinators and allow scientists
to assess the abundance variations of pollinator communities. In the SPIPOLL,
each user (observer) is asked to take pictures of all insects visiting chosen flower-
ing plant, for a given period of time. Observers are then asked to identify insects
and flowering plants, using an online identification key. The pictures of insects
and flowering plant from an observation session, as well as their identification,
are then uploaded on the SPIPOLL website to form a photographic collection.
Nowadays, the SPIPOLL database contains more than 31329 photographic col-
lections and 307719 insects’ pictures. Finally, the identifications will be validated
by a small group of entomologists from the OPIE. In the SPIPOLL, users can
also comment pictures and collections, and add doubts in the identified photos
if they aren’t sure about identifications.

However, with the increase of collected pictures in the SPIPOLL, the limited
number of current experts is insufficient to validate all identifications. Therefore,
we propose a novel approach to identify expert within the users for specific
insect family based on the users’ comments. The comments which contain precise
identifications will be considered as answers. Each answer will be compared
to corresponding validation (the correct identification validated by experts) to
verify its reliability. In other word, we know what the true identification is and
we then search for comment that gave the right answer with no ambiguity. In the
SPIPOLL, all data will be eventually validated as correct identification which is
a prerequisite for ecological analysis.

4 The Proposed Approach

In our approach, we exploit both comments (answers) quality and social interac-
tions between users to predict their expertise. In our weighted graph model, users

282 Z. Saoud and C. Fontaine

are represented as nodes, related among them by weighted directed edges. Each
edge points from the questioner (the observer) to the answerer (the commenta-
tor). The edges weights are calculated according to the reliability of exchanged
answers between users. We consider the comments that contain a precise iden-
tification (the exact name of the insect) as answers and the posted pictures as
questions which wait for identifications (answers). An answer is considered its
identical to the validation. Finally, we estimate the users’ expertise, by applying
a weighted PageRank algorithm on the graph representing the network of ques-
tions and answers among users. Our proposed approach can be summarized as
follows: 1- Merging users comments on pictures and collections. 2- Extracting
precise identifications from comments, using text analysis technique. 3- Extract-
ing the comments with precise identifications (CPIs). 4- Comparing the extracted
CPIs with the corresponding validations (the true identifications) and calculate
a score for each user and for each insect family. 5- Calculating the relationship
degree between users and constructing the users social network graph. 6- Apply
a weighted PageRank algorithm on the obtained graph and determine the expert
users.

4.1 Merging Users Comments

The comments posted on collections represent 90% of the whole comments on the
SPIPOLL website. This is due to the fact that most users prefer to add comments
directly to collections rather than on the insect pictures as it avoids several clicks.
This situation, prevent us from knowing the precise pictures that users’ refer in
their comments. As a solution for this, we compare the validation of each picture
belonging to a collection, with its collection comments. Each comment will be
attributed to the corresponding picture if this comment contains identification
identical to one of the validated picture of the collection. Comments without any
identical identification to any pictures validations will be attributed randomly
to any picture without comment from the collection. In the end, collections
comments will be merged with pictures comments. Figure 1 shows an example
of the comments merging process.

4.2 Extracting Precise Identifications from Comments

In the SPIPOLL, each user can add comments on pictures or collection, to great
other observers, to comment the picture esthetics, or to comment identifications.
Users can also add identifications in comments if they think that posted identi-
fications are false. Usually, the proposed identifications in comments are used by
observers to update its identifications. In some case, users propose wrong iden-
tifications which can push the observer to change their correct identifications.
For this reason, the comments represent an important key for obtaining reliable
identifications. Hence, comments can be used to calculate users’ expertise. In
one hand, we suppose that users with high expertise in specific insect family
are more likely to add comments with true and precise identification. In other

Expert Finding in Citizen Science Platform for Biodiversity 283

Fig. 1. Example of the comments merging process. ID(CC1) and ID(CC2) represent
the contained precise identifications on comments CC1 and CC2 respectively. V(P1)
and V(P2) represent the validations of the pictures P1 and P2 respectively.

hand, users with low expertise are likely to add comments with wrong identi-
fications. However, some comments can contain an imprecise identification and
can’t be used to judge users’ answers. Identification is considered imprecise when
it doesn’t contain a term or terms combination that correspond unequivocally
to a single insect name. On the contrary, comments with precise identification
contain a term or terms combination that correspond unequivocally to a single
insect name and can be defined as follows:

CPI = {term|∃ term ∈ Unique terms} (1)

With:

term : is a comment term.
Unique terms : is the set of existing unique terms. To obtain the set of

unique terms, we apply a text analysis technique on the SPIPOLL’ insect names.
First, we transform each insect name to a list of tokens, we then eliminate the
stopwords. We mention that unigram unique terms (with one word) which have
ambiguous meanings (like brown, garden, day, etc.) have been deleted, because
they have insufficient meanings to describe the insects.

4.3 Calculating Relationship Degree Between Users

The extracted CPIs will be used to calculate the relationship degree between
users. These comments will be considered as answers, and the posted pictures
will be considered as questions which wait for good identifications (answers).
In our case, we use only CPIs that have been posted on insects’ pictures of
the same family. The relationship between two users will be calculated for one
target insect family, using their average answers’ scores of insects which belong
to the target insect family. The relationship strength between two users will

284 Z. Saoud and C. Fontaine

increment if they exchange good answers (i.e. if their answers are identical with
the validations). The relationship degree between two users will decrement if
they exchange wrong answers. The difficulty of identification of insect can affect
on answers’ gained score. The user will earn more score if he gives good answers
for a difficult insect to identify, and will earn less score if he gives good answers
for an easy insect to identify. On the other hand, the user will lose fewer score
if he gives wrong answers for difficult insect, and will lose more score if he gives
wrong answers for an insect easy to identify. The length of the answer can also
affect on answers’ gained score. Expert users are expected to give long answers
with more unique terms. The relationship degree should be calculated from each
user side. Thus, we can calculate the relationship degree between two users A
(the commentator) and B (the observer) for specific insects’ family (insects set)
f , as follow:

relationshipf (A,B) =
∑

taxon∈f

score answerstx(A,B)
|f | (2)

|f | : is the number of existing insects in the f insect family.
score answerstx(A,B)represents the score of posted answers of user A on

the pictures of the user B, for a specific insect tx. This score is calculated using
the following formula:

score answerstx(A,B) =

∑
R∈Answerstx(A,B)

{ 1
ease(tx)

∗ |R| , R = V

− ease (tx) ∗ |R| , R �= V
∑

R∈Answerstx(A,B) |R|
(3)

With:
ease(tx) : represent the ease score of the insect tx. This score is high when

the insect is easy to identify and is low when it’s hard to identify. This score is
calculated as follows:

ease (tx) =
Number of tx pictures with true identifications

Total number of tx validated pictures
(4)

Answerstx(A,B) : is the set of posted answers of user A on the pictures of
the user B for the insect tx.

R : is one answer from the set of answers Answerstx(A,B).
|R| : is the length of the answer, i.e. the size of the largest existing unique

term on the answer.
V : is the corresponding picture validation.

In our study, each insect with score higher than 0.65 (the average ease score
of all insects), will be considered easy for identification. On the other hand, an
insect with a score lower than 0.65, will be considered hard for identification.

4.4 Constructing the Users Social Network

When users (observers) post pictures on the SPIPOLL website, some other users
can comment on his pictures. Connecting observers to commentators by direc-

Expert Finding in Citizen Science Platform for Biodiversity 285

tional weighted arrows from observers to commentators, allows us to create the
users’ social network. Hence, the SPIPOLL’ users can be organized in a weighted
and directed graph G(V,E), Where:

V : is the set of users who share or comment pictures of one specific insect
family.

E : is the set of directed edges, where ei,j indicates that user uj has com-
mented on one or more pictures of user ui. These edges are weighted using the
friendship degree formula (see Sect. 4.3).

4.5 Calculating Users Expertise Using Weighted PageRank
Algorithm

Nowadays, PageRank algorithm has proven its efficiency not only on web pages
ranking but also on EF field. Many PageRank-based EF algorithms [5,15,18,21]
have proved that PageRank outperforms other algorithms like HITS and Z scores
[21] for EF. However, these studies have applied PageRank only on non-weighted
graphs. In our case, we use a weighted PageRank algorithm to extract experts
from a weighted graph. Several Weighted PageRank algorithms have been pro-
posed [11,19] to improve the performance of original PageRank. The weighted
PageRank consists of adding weights to different parts of PageRank formula.
According to [1,19], weighted PageRank performs better than traditional PageR-
ank. In our approach, we use the proposed weighted PageRank algorithm by
Mihalcea [12]. In this algorithm, the PageRank score of target vertice Va is
calculated using the weights of coming edges from of its predecessors’ vertices
In(V a) and the weights of destined edges to the successors of its predecessors’
vertices Out(V b). In our approach, we calculate the weighted PageRank score
for a user A as follows:

WP (A) = (1 − d) + d
∑

B ∈In(A)

relationshipf (B,A)
∑

C∈Out(B) relationshipf (B,C)
∗ WP (B) (5)

With:
B : is a user who has received at least a comment from user A.
In(A) : is the list of users who have received comments from user A.
C : is a user who has commented on pictures or collections of user B.
Out(B) : is the list of users who have commented on the pictures or collections

of user B.
WP (B) : is the PageRank score of the user B.
d : is a damping factor which can be set between 0 and 1. Similar to the

previous studies, we will set the damping factor to 0.85.

5 Experiments

In this section, we evaluate the performance of our proposed approach using
a set of validated pictures, observers and commentators from the SPIPOLL.

286 Z. Saoud and C. Fontaine

The collected comments are posted on the insects’ pictures of the same fam-
ily. In our study, we choose the “Apidae” insect family because it contains the
most observed insects in SPIPOLL. To show the effectiveness of our proposed
approach, we compare it with 2 state-of-the-art methods: the Z-score [21] and
ExpertiseRank [21]. To generate the ground truth ranking scores, we use the set
of added identifications on the pictures. We calculate for each commentator, his
ground truth expertise score for specific insect, by comparing his identifications
with the corresponding validations. The ground truth expertise of the user Un

for the insect txm can be defined as follows:

Expertise (Un, txm) =
Number of correct identifications posted on txm by Un

Totale number of identifications posted on txm by Un

(6)

The obtained expertise will be used to calculate the user ground truth exper-
tise score for specific insect family. The ground truth expertise of the user Un

for the insect family fm can be defined as follows:

Expertise (Un, fm) =

∑
txm∈fm

Expertise (Un, txm)
|fm| (7)

|fm| : is the number of existing insects in the fm insect family.

5.1 Data Preparation

The dataset is obtained from a sample of the SPIPOLL database. We collected
the information from all posted pictures and comments from April 2010 to Octo-
ber 2017. In total, we extracted 31329 collections, 307719 pictures, 76288 com-
ments and 1455 users. Among these comments, 28% contain precise identifica-
tions. In our case, we use only the posted comments on the insect pictures of the
“Apidae” insect family, which represent 12% of all comments. Thus, we obtain a
sample which contains 1844 validated pictures, 252 users, and 1866 CPIs. Figure
2 shows the obtained social network using this sample. In this graph, the node
size represents the number of connections of the node with the other nodes.
Largest nodes have a higher degree of connections than others.

5.2 Evaluation Criteria

We evaluate the performance of each algorithm under investigation based on
two evaluation metrics: Precision at K (P@K) and Spearmans rho. The first
metric measures the proportion of the best commentators (best experts) ranked
in the top K results. In our evaluation, each commentator with higher ground
truth expertise than 0.4 (the average ground truth expertise of all users), will be
considered as best expert. The second metric measures the correlation between
the ideal ranking (the ground truth ranking) and the obtained ranking. We
calculate the Spearmans rho for the 10, 20 and 40 top ranked commentators.

Expert Finding in Citizen Science Platform for Biodiversity 287

Fig. 2. The obtained social network

5.3 Results

Figure 3 shows the obtained precision from the top 10, 20, 30, 40 commenta-
tors respectively. We can see that graph-based algorithms perform better than
the Z-score algorithm. This result proves that the exploiting of relations among
users can improve the performance of experts’ identification. As Fig. 3 shows,
our weighted PageRank algorithm also outperforms the ExpertiseRank algo-
rithm, especially in the top 10, 20 and 30 users. The precision of the weighted
PageRank algorithm reduces when the number of users increases and is equal to
the ExpertiseRank algorithm on the top 40 users. To measure the performance
of the three algorithms, we calculated the correlation between each algorithm
and the ground truth ratings. Figure 4 illustrates the statistical results regarding
Spearman’s rho. From this figure, we can see that for all algorithms, the corre-
lation decreases when the number of users increases. This due to the increasing
in the variation between the ideal ranking and the obtained ranking from each
algorithm. We can see also that our weighted PageRank algorithm gives a rela-
tively higher correlation than other algorithms, which show that our approach is
useful to rank experts than other algorithms. From the obtained results, we can
see that our weighted PageRank algorithm outperforms the other EF algorithms.

Fig. 3. Precision at top K commenta-
tors.

Fig. 4. The performance of three
algorithms in Spearman’s rho dis-
tance

288 Z. Saoud and C. Fontaine

6 Conclusions

In this paper, we proposed a new graph-based EF approach for the citizen sci-
ence platform, the SPIPOLL. This approach exploits users comments and users
social relations to predict their expertise on a specific insect family. The rela-
tionship between users is extracted from the comments sent by users. Depending
on the insects identification ease and the length of comments, the relationship
between users can increase or decrease. These relationships have been used to
construct a weighted graph. Then, a weighted PageRank algorithm has been
applied on the obtained graph to rank the users according to their expertise. We
evaluated the performance of our method using a dataset from the SPIPOLL
database. Experimental results showed that our method achieve better perfor-
mance than the state-of-the-art EF algorithms. This is due to the exploitation
of the relationship degrees between users and the weighted page-rank algorithm
for calculating the users expertise.

References

1. Aktas, M.S., Nacar, M.A., Menczer, F.: Using hyperlink features to personalize
web search. In: Mobasher, B., Nasraoui, O., Liu, B., Masand, B. (eds.) WebKDD
2004. LNCS (LNAI), vol. 3932, pp. 104–115. Springer, Heidelberg (2006). https://
doi.org/10.1007/11899402 7

2. Aslay, Ç., O’Hare, N., Aiello, L.M., Jaimes, A.: Competition-based networks for
expert finding. In: Proceedings of the 36th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 1033–1036. ACM
(2013)

3. Becchetti, L., Castillo, C., Donato, D., Leonardi, S., Baeza-Yates, R.A.: Link-based
characterization and detection of web spam. In: AIRWeb, pp. 1–8 (2006)

4. Cai, Y., Chakravarthy, S.: Expertise ranking of users inQA community. In: Meng,
W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013. LNCS,
vol. 7825, pp. 25–40. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37487-6 5

5. Dom, B., Eiron, I., Cozzi, A., Zhang, Y.: Graph-based ranking algorithms for e-
mail expertise analysis. In: Proceedings of the 8th ACM SIGMOD workshop on
Research Issues in Data Mining and Knowledge Discovery, pp. 42–48. ACM (2003)

6. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with trustrank.
In: Proceeding of the Thirtieth international conference on very large date bases-
Vol. 30, pp. 576–587. VLDB Endowment (2004)

7. Huang, C., Yao, L., Wang, X., Benatallah, B., Sheng, Q.Z.: Expert as a service: soft-
ware expert recommendation via knowledge domain embeddings in stack overflow.
In: 2017 IEEE International Conference on Web Services (ICWS), pp. 317–324.
IEEE (2017)

8. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
(JACM) 46(5), 604–632 (1999)

9. Li, Y., Ma, S., Zhang, Y., Huang, R.: Expertise network discovery via topic and
link analysis in online communities. In: 2012 IEEE 12th International Conference
on Advanced Learning Technologies (ICALT), pp. 311–315. IEEE (2012)

https://doi.org/10.1007/11899402_7
https://doi.org/10.1007/11899402_7
https://doi.org/10.1007/978-3-642-37487-6_5
https://doi.org/10.1007/978-3-642-37487-6_5

Expert Finding in Citizen Science Platform for Biodiversity 289

10. Liu, J., Song, Y.I., Lin, C.Y.: Competition-based user expertise score estimation.
In: Proceedings of the 34th International ACM SIGIR conference on Research and
Development in Information Retrieval, pp. 425–434. ACM (2011)

11. Liu, X., Bollen, J., Nelson, M.L., Van de Sompel, H.: Co-authorship networks in the
digital library research community. Inf. Process. Manag. 41(6), 1462–1480 (2005)

12. Mihalcea, R.: Unsupervised large-vocabulary word sense disambiguation with
graph-based algorithms for sequence data labeling. In: Proceedings of the confer-
ence on Human Language Technology and Empirical Methods in Natural Language
Processing, pp. 411–418. Association for Computational Linguistics (2005)

13. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab (1999)

14. Procaci, T.B., Siqueira, S.W.M., Braz, M.H.L.B., de Andrade, L.C.V.: How to
find people who can help to answer a question?-analyses of metrics and machine
learning in online communities. Comput. Human Behav. 51, 664–673 (2015)

15. Rafiei, M., Kardan, A.A.: A novel method for expert finding in online communities
based on concept map and pagerank. Human-centric Comput. Inf. Sci. 5(1), 10
(2015)

16. San Pedro, J., Karatzoglou, A.: Question recommendation for collaborative ques-
tion answering systems with rankslda. In: Proceedings of the 8th ACM Conference
on Recommender systems, pp. 193–200. ACM (2014)

17. Shen, J., Shen, W., Fan, X.: Recommending experts in q& a communities by
weighted hits algorithm. In: Information Technology and Applications, 2009.
IFITA’09. International Forum on. vol. 2, pp. 151–154. IEEE (2009)

18. Wei, C.P., Lin, W.B., Chen, H.C., An, W.Y., Yeh, W.C.: Finding experts in online
forums for enhancing knowledge sharing and accessibility. Comput. Human Behav.
51, 325–335 (2015)

19. Xing, W., Ghorbani, A.: Weighted pagerank algorithm. In: Proceedings Second
Annual Conference on Communication Networks and Services Research, 2004, pp.
305–314. IEEE (2004)

20. Yeniterzi, R., Callan, J.: Constructing effective and efficient topic-specific authority
networks for expert finding in social media. In: Proceedings of the First Interna-
tional Workshop on Social Media Retrieval and Analysis, pp. 45–50. ACM (2014)

21. Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities:
structure and algorithms. In: Proceedings of the 16th International Conference on
World Wide Web, pp. 221–230. ACM (2007)

22. Zhao, Z., Yang, Q., Cai, D., He, X., Zhuang, Y.: Expert finding for community-
based question answering via ranking metric network learning. In: IJCAI, pp. 3000–
3006 (2016)

23. Zhao, Z., Zhang, L., He, X., Ng, W.: Expert finding for question answering via
graph regularized matrix completion. IEEE Trans. Knowl. Data Eng. 27(4), 993–
1004 (2015)

24. Zhou, Z.M., Lan, M., Niu, Z.Y., Lu, Y.: Exploiting user profile information for
answer ranking in cqa. In: Proceedings of the 21st International Conference on
World Wide Web, pp. 767–774. ACM (2012)

25. Zhu, H., Chen, E., Xiong, H., Cao, H., Tian, J.: Ranking user authority with
relevant knowledge categories for expert finding. World Wide Web 17(5), 1081–
1107 (2014)

Random Forests with Latent Variables to
Foster Feature Selection in the Context of
Highly Correlated Variables. Illustration

with a Bioinformatics Application.

Christine Sinoquet1(B) and Kamel Mekhnacha2

1 LS2N, UMR CNRS 6004, University of Nantes, 44322 Nantes, France
christine.sinoquet@univ-nantes.fr

2 Probayes, 180 avenue de l’Europe, Inovallée, 38330 Montbonnot, France
Kamel.Mekhnacha@probayes.com

Abstract. The random forest model is a popular framework used in
classification and regression. In cases where dense dependences exist
within the variables, it may be beneficial to capture these dependences
through latent variables, further used to build the random forest. In this
paper, we present Sylva, a generalization of the T-Trees model (Botta et
al., 2008), the only attempt so far where latent variables are integrated
in the random forest learning scheme. Sylva is an innovative hybrid
approach in which an adapted random forest framework benefits from
the modeling of dependences via FLTM, a forest of latent tree models
(Mourad et al., 2011). The FLTM model drives the generation on the fly
of the latent variables used to learn the random forest. In the unprece-
dented large-scale study reported here, Sylva, instantiated by different
clustering methods, is compared to T-Trees using high-dimensional real-
world datasets in the context of genetic association studies. We show
that the already high predictive power of T-Trees is not significantly
increased by Sylva. In constrast, in Sylva, the importance measure dis-
tribution corresponding to top-ranked variables is significantly skewed
towards higher values than in T-Trees, which meets the feature selection
objective.

Keywords: Feature selection · Random forest with latent variables
Bayesian network with latent variables
Forest of latent tree models · High-dimensional data

This work was supported by the French National Research Agency (ANR SAMOG-
WAS project). The software development and the realization of experiments were
performed in part at the CCIPL (Centre de Calcul Intensif des Pays de la Loire,
Nantes, France). C. Sinoquet thanks V. Botta for his expert advice on the T-Trees
model, and C. Kemps for her help in the preparation of the data. C. Kemps was
granted by the GRIOTE project funded by the Pays de la Loire Region.

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 290–302, 2018.
https://doi.org/10.1007/978-3-030-01768-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_24&domain=pdf

Random Forests with Latent Variables to Foster Feature 291

1 Introduction

The random forest (RF) scheme devised by Breiman in the early 2000s [6] is
one of the most popular ensemble learning techniques used for binary classifi-
cation or regression. Supervised ensemble methods are meant to produce lower
variance predictions when applied beyond the learning set. This aim is achieved
by constructing a set of weak predictors and combining their outputs to build
the final prediction. The random forest framework applies bootstrap aggregat-
ing (bagging) to decision trees. In standard decision tree learning, at each node,
the whole set of variables, V, is inspected to determine the best discriminat-
ing split with respect to the variable of interest (class or continuous outcome).
In contrast, in RFs, a subset of V drawn at random is used for this purpose.
Regardless of the context (decision tree or RF), the optimal split at a node is the
split that decreases the most node impurity for a classification tree (respectively
the sum of squared errors for a regression tree) after the split. To set ideas,
in RFs, the latter quantity over all splits and over all trees involving a given
variable constitutes a standard measure of the importance of this variable to
the regression problem; symmetrically, the sum of impurity decreases over all
tree nodes in the forest allows to measure the importance to the classification
problem [12]. The recognized advantages of the non-parametric stochastic RF
framework encompass ability to identify complex relationships between predic-
tors and response, capability to handle high-dimensional data while maintaining
sufficient efficiency, and capacity to rank the variables according to their impor-
tances to the classification or regression problem. Henceforth, we will focus on
RFs in a binary classification context (categorical variable C taking its values in
{0, 1} unless stated otherwise), and V will denote the set of n observed discrete
variables.

In RFs, the presence of correlated variables may be a matter for debate,
depending on the downstream application. Solutions have been proposed, such
as conditional importance measure [20], and recursive feature elimination based
on permutation importance measure [10]. In other cases, when a dense depen-
dence network exists within the variables, it is in contrast appealing to infer
latent variables that capture the dependences between the variables, in order to
build the trees of the RF, based on these latent variables. This novel paradigm
was proposed in the seminal work of Botta and collaborators, who developed
the T-Trees (Trees inside Trees) model [5]. In this article, we propose Sylva,
a generalization of T-Trees, and at the same time the single proposal after T-
Trees to construct random forests from latent variables (RFLVs). Sylva is an
innovative hybrid method combining T-Trees with a refined variant of FLTM
(Forest of Latent Tree Models). The FLTM model was designed by Mourad and
collaborators, to model dependences within variables [13]. As high performances
were already reported for T-Trees, this paper focuses on T-Trees and Sylva.
In the extensive study reported here, Sylva, instantiated by different clustering
methods, is compared to T-Trees using high-dimensional real-world data.

The rest of the paper is organized as follows. Section 2 first briefly reviews the
features of T-Trees and FLTM essential to understand the Sylva method; then it

292 C. Sinoquet and K. Mekhnacha

explains the connection between FLTM and the RFLV Sylva proposal. Section
3 briefly describes the main algorithms behind Sylva. Section 4 provides infor-
mation on the implementation. A large-scale experimental comparative study of
T-Trees and four Sylva variants is presented and discussed in Sect. 4.

2 From T-Trees to Sylva

In this section, we first explain the shift from T-Trees to Sylva. Then we explain
how categorical latent variables are inferred through FLTM learning. The third
subsection connects the previous latent variables to the numerical latent vari-
ables handled by the Sylva RFLV framework and describes the key mechanisms
underlying this approach.

2.1 T-Trees Generalized

In the random forest framework, t trees are grown by recursively partitioning t
bootstrap samples of the initial dataset. At each tree node, a set of K variables is
drawn at random and an optimal split is computed. This involves the calculation
of all univariate split functions (v ≤ θ) across the value domain of any variable
v within these K variables.

The T-Trees concept was proposed to enhance random forests when analyzing
genetic data. Therein, the n discrete variables, genetic markers ordered along the
genome, are known to be related by a dense network of local spatial dependences.
The key idea behind T-Trees is to apply the RF framework to a novel feature
space consisting of latent variables expected to capture such dependences. In
T-Trees, contiguous blocks of m (e.g., m = 20) contiguous variables provide the
n
m latent variables of this novel feature space.

In the Sylva approach, we first transform the initial space of variables into a
smaller space of discrete latent variables through FLTM modeling. The FLTM
model is a generic model designed to capture dependences within data. It is a
set of latent tree models, namely tree-shaped Bayesian networks with observed
discrete variables at leaf nodes, and discrete latent variables at internal and root
nodes. The parameters of the FLTM describe the marginal distributions of all
root nodes, and the distribution of each other node conditional on its parent
node. These discrete latent variables will be further used to generate numerical
latent variables involved in non-linear multivariate node splitting functions.

2.2 Inferring FLTM Latent Variables

Learning a latent tree model in high-dimensional settings is intractable unless
a process based on iterative ascending clustering of variables is employed [14].
In this line, the FLTM learning algorithm imposes neither binary structure for
trees, nor common cardinality for latent variables.

The iterative ascending process used to learn an FLTM relies on a user-
specified clustering method. Figure 1 details the first iteration of the FLTM

Random Forests with Latent Variables to Foster Feature 293

learning algorithm on a toy example. In Sylva, we are only interested in latent
variables produced by the first iteration of the generic FLTM learning algo-
rithm. To note, this “simplified” task remains complex in high-dimensional
settings. The theoretical worst case time complexity for FLTM learning is
O(n2(1 + c2

max nbs e p)), where n and p are the number of observed variables
and number of observations, cmax is the maximal cardinality specified for the
latent variables, and nbs and e respectively denote the number of multiple starts
for the Expectation-Maximization (EM) algorithm and the number of iterations
for each EM run.

Fig. 1. FLTM learning adapted to the Sylva approach. (a) The clustering method
specified by the user is employed to partition the variables into non-overlapping clusters.
The metrics used is the mutual information measure. (b) The variables in each cluster
are connected to a latent variable, to form a latent class model (LCM). A heuristic is
used to determine the specific cardinalities of latent variables L1 to L4. This cardinality
is defined as an affine function of the number nc of child variables: card(L) = α+β×nc.
In addition, a cardinality threshold (cmax) allows to control the learning complexity.
(c) The Expectation-Maximization algorithm is run to instantiate the parameters of
each LCM: nbs possible instantiations of the parameters of the LCM are generated;
the best instantiation is determined using the BIC score criterion [18]. (d) Latent
variable L3 fails the quality test. The quality of a latent variable is assessed through a
criterion averaging the mutual information between this variable and any child variable,
normalized by the minimal entropy between the latent variable and any child variable.
If the criterion is greater than a specified threshold (τ), the latent variable is validated.

294 C. Sinoquet and K. Mekhnacha

2.3 From FLTM Latent Variables to Numerical Latent Variables in
the RF Framework

The strategy employed in T-Trees and Sylva to infer numerical latent variables
is to grow “embedded” decision trees following the RF principle. “Extremely
randomized trees” (Extra-trees) are used for this purpose [9]. In an Extra-tree,
not only are variables selected at random at a node; the best split is computed
from splits picked at random (one split per variable). In the remainder of this
article, we will then refer to meta-trees (and their meta-nodes) in the RFLV,
and embedded trees (and their nodes).

We now illustrate how Sylva works with the toy example of Fig. 2. The uni-
variate splitting in standard RF is first reminded in Fig. 2 (a). In Fig. 2 (b),
we select at random K (pre-specified as 4) clusters from the dependence map,
namely clusters associated with FLTM latent variables, possibly including single-
tons. Figure 2 (c) details the inference of the numerical latent variable related to
cluster C88, composed of variables S57, S63, S65 and S66. For the report, these
four variables were children of the same latent variable in the FLTM model.
Figure 2 (c) displays the Extra-tree expanded from this restricted set of four
variables. A formal presentation corresponding to Fig. 2 (b) and (c) is provided
in the next subsection.

2.4 Description of the Algorithms behind the Sylva RFLV

The main procedure of Sylva grows a forest of t meta-trees (Algorithm 1). The
parameters are described in Table 1. Each meta-tree is grown recursively using K
numerical latent variables at each meta-node as shown in Algorithm 2. Function
growEmbeddedTree grows an Extra-tree using k variables at each node. The
theoretical worst case and average case time complexities of standard RF learning
are O(t K p2 log(p)) and O(t K p log2(p)), where p is the number of observations.
The empirical complexity was shown to equal the average complexity [11]. The
empirical complexity for the RFLV in Sylva is therefore O(t K k p2 log4(p)).

3 Implementation

The two C++ components involved in Sylva were respectively adapted from T-
Trees [5] and FLTM [15]. ProBT, a C++ library dedicated to Bayesian networks,
freely available to academics, is required to run FLTM [2,16]. The extensiveness
of the comparative study required intensive use of Xeon hexa-core bi-processors
(2,66 GHz).

Notably, we adapted FLTM to allow the selection of the clustering method
among CAST [1], DBSCAN [8], the Louvain method [3], and a consensus-based
process involving the three latter methods. When using the consensus-based
strategy, Sylva stores the q (e.g., 3) top best FLTM models for each of CAST,
DBSCAN and the Louvain method, thus providing 3 × q partitions of V. The
consensus is built by merging sufficiently overlapping clusters from these par-
titions. Otherwise, clusters are fragmented. This way, we take the risk to miss

Random Forests with Latent Variables to Foster Feature 295

Fig. 2. Node splitting in standard random forest and in the Sylva approach. Context
of a genetic association study. The observed variables are genetic markers (discrete
variables with values in {0, 1, 2}). Each leaf is labeled with P(D), the probability to be
diseased. P(D) is computed from the population of cases and controls having reached
the node. (a) Standard random forest - K = 4. The 4 variables selected at random at
each node are indicated on the right of the node. At the root node, the best optimal
split is obtained for S13 (in bold), in competition with S2, S48 and S57. (b) Meta-node
splitting in Sylva - K = 4. At the root meta-node, C3, C7, C41 and C88, produced by
FLTM learning, are in competition. Each of these sets is processed to infer a numerical
latent variable. (c) Node splitting in the Extra-tree developed for the set C88 - k: the
size of C88. The leaves of this embedded tree are labeled with 0.004, 0.036, 0.962, 0.985
and 0.997, which defines the value domain of a numerical latent variable (denoted C88).
The best split for the root meta-node in (b) is C88 ≤ 0.0036.

296 C. Sinoquet and K. Mekhnacha

Algorithm 1

FUNCTION Sylva(V, C, D, t, Θo, Θn, K, θo, θn, k)

INPUT:

• V: n discrete variables

• C: a binary categorical variable (C /∈ V)

• D = (DV, DC): therein, matrix DV describes the n variables of V for

each of the p rows (i.e. observations), and vector DC depicts categorical

variable C for each of the p observations in DV

• For description of parameters t, Θo , Θn , K, θo , θn , k, see Table 1

OUTPUT:

• FFF : an ensemble of t meta-trees

1. Initialize FFF to the empty set

2. Run the FLTM generator to produce the map of dependences DepMap

3. for i in 1 to t

4. Sample with replacement from D, to provide Di

5. TiTiTi ← growMetaTree(C, Di, Θo, Θn, DepMap, K, θo ,,, θn,,, k)

6. Add meta-tree TiTiTi to growing forest FFF
7: end for

8: return FFF

Algorithm 2

FUNCTION growMetaTree(C, Di, Θo, Θn, DepMap, K, θo, θn, k)

OUTPUT:

• TTT : a subtree of the meta-tree under construction

9. if recursion is terminated then create a leaf node TTT and return TTT end if

10. Initialize LLL to the empty set, to further store K latent variables

11. Draw uniformly a subset CCC of K clusters from DepMap

12. for each cluster c�c�c� of CCC
13. Obtain the dataset Dc�Dc�Dc�; it consists of the submatrix of Di where only

columns (i.e. observed variables) in c�c�c� are kept

14. Tc�Tc�Tc� ← growEmbeddedTree(C, Dc�Dc�Dc�, θoθoθo, θnθnθn, k)

15. Infer numerical latent variable ��� using Tc�Tc�Tc�, compute its optimal split

16. and store ��� in LLL
17. end for

18. Determine OS∗, the best optimal split over all latent variables in LLL
19. Split matrix Di into Di1

and Di2
using OS∗

20. T1T1T1 ← growMetaTree (C, Di1
, ΘoΘoΘo, ΘnΘnΘn, DepMap, K, θoθoθo, θnθnθn, k)

21. T2T2T2 ← growMetaTree (C, Di2
, ΘoΘoΘo, ΘnΘnΘn, DepMap, K, θoθoθo, θnθnθn, k)

22. create a subtree TTT with root labeled by OS∗ and having T1T1T1 and T2T2T2 as child subtrees

23. return TTT

latent variables, but therefore control the number of false latent variables. The
current version of the FLTM generator, SYLVESTRA++, is available at [21].

4 Comparative study of T-Trees and Sylva

The application domain for our large-scale comparative study is that of genetic
associations studies. Given a pathology of interest, such studies aim at find-

Random Forests with Latent Variables to Foster Feature 297

ing genetic markers that are most influential on affected/unaffected status in
a population of cases and controls. To note, an extensive study focused on
Sylva/DBSCAN and applied to simulated genetic data had already been con-
ducted and is reported in [19]. The present work focuses on the behavior of
Sylva on high-dimensional real genetic data. We first present the datasets and
experimental settings. Then we present our three-fold comparative study.

4.1 Experimental Settings

Datasets. We used 161 datasets provided by the Wellcome Trust Case Con-
trol Consortium (WTCCC) [22]. These datasets describe cases’ and controls’
genotypes for seven diseases: Bipolar Disorder (BD), Coronary Artery Disease
(CAD), Crohn’s disease (CD), Hypertension (HT), Rheumatoid Arthritis (RA),
Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). Therein, for each of the
seven diseases, around 4,500 to 5,000 subjects (affected and unaffected) are
described for each of the 23 human chromosomes. Across these 161 large-scale
datasets, the number of variables ranges from 5,754 to 38,867 (average 20,236).

Parameter Adjustment. T-Trees and the FLTM generator respectively
require the adjustment of 7 and 5 parameters. To note, in Sylva, the adjust-
ment of the FLTM generator parameters is independent of the adjustment of
the T-Trees parameters. Given a specified parameter setting for FLTM learning,
the FLTM generator used in Sylva is able to optimize the parameters of the
clustering method specified by the user. For this purpose, Sylva relies on a user-
defined set of parameter combinations to build FLTM models. The best model is
automatically selected relying on the BIC score criterion. Table 1 describes the
parameter setting used in the present work. When the consensus-based clustering
method is used, automatic parameter adjustment is performed as well.

4.2 Results and Discussion

We now present our three-fold comparative study.

Comparison of AUC Distributions. Following [4], we used the parameter
setting recommended when applying T-Trees on the WTCCC datasets. We com-
puted the AUCs though the pROC package [17]. Table 2 recapitulates averages
and standard deviations for the AUC distributions related to the five methods
considered. For each Sylva variant, we observe a slight increase of the average
over T-Trees. This increase is the largest for Sylva/Consensus and the smallest
for Sylva/Louvain.

We then focused on the AUC distributions collected for each disease (23
datasets per disease). For each dataset, we compared the AUC distribution
obtained for T-Trees with the four distributions obtained for the Sylva vari-
ants. We used Wilcoxon rank sum tests for this purpose. We showed that there
is no statistically significant difference between T-Trees and any Sylva variant.

Comparison of the Top Importance Measure Distributions. For each
method and each disease, we obtained a distribution by merging the r variables

298 C. Sinoquet and K. Mekhnacha

Table 1. Parameter setting. The T-Trees parameters were tuned according to the
experimental feedback reported in [4]. In the latter work, T-Trees was extensively
tested under various parameter settings, on the WTCCC datasets (the same we use),
using cross-validations. The values of the FLTM generator parameters were set after
indications from [13], except for cmax which was tuned according to our own experience.
To adjust automatically DBSCAN and CAST parameters, a limited set of combinations
of values (DBSCAN) or values (CAST) is considered, and the corresponding FLTM
models obtained are compared based on the BIC score criterion.

Method Parameter description Value

T-Trees

Sylva

t # of meta-trees in the random forest 1000

Θo Threshold (# of observations), to control meta-tree leaf size 2000

Θn Threshold (# of meta-nodes), to control meta-tree size ∞
K # of blocks, or # of clusters, to be selected at random at each

meta-node, to compute the meta-node split

1000

θo Threshold (# of observations), to control embedded tree leaf

size

1

θn Threshold (# of nodes), to control embedded tree size 5

k # of variables in a block or cluster, to be selected at random,

at each node, to compute the node split

size of block (20) or

of cluster

FLTM

generator

α, β, 3 parameters to model the cardinality of each latent variable 0.2, 2

cmax as an affine function with a maximum threshold 10

τ Threshold to control the quality of latent variables 0.3

nbs # of multiple starts for the EM algorithm 10

CAST a Affinity threshold to decide cluster membership value selected in 0.05

to 0.9, step 0.05

DBSCAN R Maximum radius of the neighborhood, to grow a cluster idem

Nmin Minimum number of points required within a cluster value selected in

{2, 3}
Louvain No parameter to be tuned by user

Table 2. Comparison of the predictive powers of T-Trees and the four Sylva variants
on 161 real datasets. The four Sylva variants differ by the clustering methods used for
the FLTM constructions (see Sect. 2.2). SX stands for the appropriate Sylva variant.

AUC

Method

T-Trees Sylva

CAST DBSCAN Louvain Consensus

min 0.887 0.902 0.890 0.885 0.913

max 0.961 0.979 0.972 0.955 0.979

avg 0.934 0.946 0.952 0.940 0.955

avg(SX)-avg(T-Trees) 0.012 0.018 0.006 0.021

std 0.008 0.010 0.009 0.011 0.008

Random Forests with Latent Variables to Foster Feature 299

(e.g., r = 100) showing the highest importance (IMP) measures in each of the 23
datasets related to the disease. In the following, we will refer to such distributions
as top r-IMP distributions. We first compared T-Trees with any Sylva variant,
using Wilcoxon rank sum tests. This time, we show that the difference between T-
Trees and any Sylva variant is statistically significant (largest p-value: 7×10−6).

In addition, for each Sylva variant SX, we compared the top r-IMP distribu-
tion of T-Trees with the distribution of IMP measures obtained through method
SX for the top variables ranked by T-Trees. The latter distribution is denoted
r-T>SX. Symmetrically, we compiled the distribution r-SX>T.

In each subfigure of Fig. 4, the first five boxes show that top r-IMP distri-
butions tend to differ between T-Trees (box 1) and any Sylva variant. Since the
confidence intervals highlighted do not overlap, there is a strong evidence that
the medians differ between T-Trees and any Sylva variant [7]. We conclude that
any Sylva variant pinpoints more important variables than T-Trees. The com-
parison with the two other distributions shows that the most important variables
in a Sylva variant are detected as less important than other variables by T-Trees
(discussion not shown). These trends hold for the other diseases (not shown).

Finally, Fig. 3 illustrates how the difference between top r-IMP T-Trees and
SX distributions escalates with decreasing r values. This trend is observed across
the seven diseases analyzed (extract shown).

Fig. 3. Comparison of four importance measure distributions, for top 100, top 25
and top 3 variables. IMP: importance measure. T: IMP distribution for the top r
variables (top r-IMP) in T-Trees. SX: top r-IMP distribution for Sylva variant SX.
Sca: Sylva/CAST, Sdb: Sylva/DBSCAN, Slo: Sylva/Louvain, Sco: Sylva/Consensus.
Mi>Mj : IMP distribution for the top r variables identified by method Mi according
to method Mj . T1D: Type 1 Diabetes.

Analysis of Variables Jointly Identified by Standard Univariate Test-
ing, T-Trees and Sylva Variants. For each disease and each dataset, we more
thoroughly examine to which extent the top 100 variables overlap between any
two methods among the χ2 test (hereafter denoted U as univariate), T-Trees
and Sylva variant SX. We also examine the size of the intersection between the
top 100 variables provided by U, T-Trees and SX. From Fig. 5, we learn that the

300 C. Sinoquet and K. Mekhnacha

Fig. 4. Comparison of top r-IMP distributions for increasing values of r. See Fig. 3
for the notation top r-IMP. From bottom to top, the 8 groups of 5 boxes describe the
trends observed for r in {1, 3, 5, 10, 25, 50, 75, 100}. In each group of 5 boxes, from bot-
tom to top, the boxes describe the top r-IMP distributions for T-Trees, Sylva/CAST,
Sylva/DBSCAN, Sylva/Louvain and Sylva/Consensus. For disease abbrevations BD,
CD and RA, see Sect. 4.1.

Fig. 5. Number of top 100 variables common to two or three methods. U: univariate
test (χ2). T: T-Trees. See Fig. 3 for notations Sca, Sdb, Slo and Sco. A bar in the
histogram represents the average value computed from the 23 chromosome datasets
related to a given disease. M1/M2 (resp. M1/M2/M3): the average number of top 100
variables common to methods M1 and M2 (resp. M1, M2 and M3) is described.

average sizes are similar (≈ 20) for overlaps between U and T-Trees on the one
hand, and between U and SX on the other hand. Between 30 and 50 top 100 vari-
ables are common to T-Trees and Sylva/CAST or Sylva/DBSCAN. This number
increases up to 60 for T-Trees and Sylva/Louvain. The order of magnitude is in
the range 30–40 for the pair {T-Trees, Sylva/Consensus}.

In Sect. 4.2, we showed that the AUCs are quite similar and high for T-Trees
and any Sylva variant. On the other hand, the top r-IMP distributions differ.
We therefore conclude that T-Trees and Sylva are two powerful complementary
approaches. This feature suggests the possibility to cross-validate findings: a
variable jointly pinpointed as top 100 by T-Trees and Sylva should be selected

Random Forests with Latent Variables to Foster Feature 301

for further biological analysis, in the context of genetic association studies. A
fortiori, top 100 variables jointly identified by U, T-Trees and SX should be
paid attention to and provided to biologists as a short list of priorized variables.
Finally, it is recommended to use CAST or DBSCAN, and not the Louvain
method, to increase the probability of Sylva to detect top 100 variables missed
by T-Trees in its top 100s. Besides, in this context, using a consensus-based
clustering method does not help to yield more relevant top variables.

5 Conclusion

In this paper, we proposed Sylva, an approach designed to foster feature selection
when dealing with highly correlated variables. So far, Sylva is the second pro-
posal around a random forest framework with latent variables. The innovation
in Sylva consists in driving the dynamic generation of latent variables used to
learn the random forest, based on a forest of latent tree models. We illustrated
the relevance of Sylva for feature selection in the context of genetic associa-
tion studies. Beyond omics data analysis, Sylva is potentially suitable to analyze
a wide spectrum of data characterized by dense dependences. We will further
adapt Sylva to allow either continuous variables or a mix of discrete and contin-
uous variables. Second, there is still room for improving the time complexity of
Sylva. The bottleneck to apply Sylva on a very large scale is the scalability of the
FLTM learning algorithm. To accelerate the latter, we plan to investigate GPU
implementation. Finally, in the near future, we will investigate schemes alterna-
tive to embedded tree learning, to drive the generation of the latent variables of
the random forest from the latent variables of the FLTM model.

References

1. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. In Pro-
ceedings of the 3rd Annual International Conference on Computational Molecular
Biology (RECOMB), pp. 33–42 (1999)

2. Bessière, P., Mazer, E., Ahuactzin, J.-M., Mekhnacha, K.: Bayesian Programming.
Chapman and Hall/CRC, Boca Raton (2013)

3. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp. 10, P10008 (2008)

4. Botta, V.: A walk into random forests. Adaptation and application to Genome-
Wide Association Studies. Ph.D. Thesis, University of Liège, Belgium (2013)

5. Botta, V., Louppe, G., Geurts, P., Wehenkel, L.: Exploiting SNP correlations
within random forest for genome-wide association studies. PLOS ONE 9(4), e93379
(2014)

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods for

Data Analysis. CRC Press, Boca Raton (1983)
8. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for dis-

covering clusters in large spatial databases with noise. In Proceedings of the 2nd
International Conference on Knowledge Discovery and Data Mining (KDD), pp.
226–231 (1996)

302 C. Sinoquet and K. Mekhnacha

9. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.
36, 3–42 (2006)

10. Gregorutti, B., Michel, B., Saint-Pierre, P.: Correlation and variable importance
in random forests. Stat. Comput. 27(3), 659–678 (2013)

11. Louppe, G.: Understanding random forests: from theory to practice. Ph.D. Thesis,
University of Liège, Belgium (2014)

12. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable impor-
tances in forests of randomized trees. In: Burges, C.J.C., Bottou, L., Welling, M.,
Ghahramani, Z., Weinberger, K.Q. (eds.), Proceedings of Advances in Neural Infor-
mation Processing Systems 26 (NIPS), pp. 431–439 (2013)

13. Mourad, R., Sinoquet, C., Leray, P.: A hierarchical Bayesian network approach
for linkage disequilibrium modeling and data-dimensionality reduction prior to
genome-wide association studies. BMC Bioinform. 12(1), 16 (2011)

14. Mourad, R., Sinoquet, C., Zhang, N.L., Liu, T., Leray, P.: A survey on latent tree
models and applications. J. Artif. Intell. Res. 47, 157–203 (2013)

15. Phan, D.-T., Leray, P., Sinoquet, C.: Modeling genetical data with forests of latent
trees for applications in association genetics at a large scale. Which clustering
should be chosen? In: Proceedings of the 6th International Conference on Bioin-
formatics Models, Methods and Algorithms (Bioinformatics), pp. 5–16. Portugal,
Lisbon (2015)

16. ProBT Website. http://www.probayes.com/fr/recherche/probt/
17. Robin, X., et al.: pROC: an open-source package for R and S+ to analyze and

compare ROC curves. BMC Bioinform. 12, 77 (2011)
18. Schwarz, G.E.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464

(1978)
19. Sinoquet, C.: A method combining a random forest-based technique with the mod-

eling of linkage disequilibrium through latent variables, to run multilocus genome-
wide association studies. BMC Bioinform. 19, 106 (2018)

20. Strobl, C., Boulesteix, A.-L., Neib, T., Augustin, T., Zeileis, A.: Conditional vari-
able importance for random forests. BMC Bioinform. 9, 307 (2008)

21. sylvestra++ Website. https://www.ls2n.fr/listelogicielsequipe/DUKe/134/
SYLVESTRA++

22. WTCCC Website. http://www.wtccc.org.uk/

http://www.probayes.com/fr/recherche/probt/
https://www.ls2n.fr/listelogicielsequipe/DUKe/134/SYLVESTRA++
https://www.ls2n.fr/listelogicielsequipe/DUKe/134/SYLVESTRA++
http://www.wtccc.org.uk/

Don’t Rule Out Simple Models
Prematurely: A Large Scale Benchmark

Comparing Linear and Non-linear
Classifiers in OpenML

Benjamin Strang1(B), Peter van der Putten2, Jan N. van Rijn1,3,
and Frank Hutter1

1 University of Freiburg, Freiburg im Breisgau, Germany
benjamin.strang@students.uni-freiburg.de,

vanrijn@cs.uni-freiburg.de,j.n.vanrijn@columbia.edu, fh@cs.uni-freiburg.de
2 Leiden University, Leiden, The Netherlands
p.w.h.van.der.putten@liacs.leidenuniv.nl

3 Columbia University, New York, USA

Abstract. A basic step for each data-mining or machine learning task is
to determine which model to choose based on the problem and the data at
hand. In this paper we investigate when non-linear classifiers outperform
linear classifiers by means of a large scale experiment. We benchmark
linear and non-linear versions of three types of classifiers (support vector
machines; neural networks; and decision trees), and analyze the results
to determine on what type of datasets the non-linear version performs
better. To the best of our knowledge, this work is the first principled and
large scale attempt to support the common assumption that non-linear
classifiers excel only when large amounts of data are available.

Keywords: Linear Classifiers · Meta-Learning · Benchmarking

1 Introduction

The experiments in many academic machine learning papers are designed to
answer which particular method works better, typically by introducing a new
algorithm and demonstrating success over a set of baselines or benchmarks. In
a recent paper, Sculley et al. [22] pinpoint this as a problem: ‘Empirical studies
have become challenges to be won, rather than a process for developing insight
and understanding.’ [22] To counteract this, we propose to answer the question
when certain methods work better. Furthermore, we propose to add reference-
able large scale empirical support for rules of thumb that are frequently used by
data miners in real world applications. Meta learning studies can achieve these
goals and thereby help turn machine learning from what has recently been called
alchemy [16] into more of a principled engineering science. In this paper we will
investigate when non-linear models outperform linear models. This may appear
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 303–315, 2018.
https://doi.org/10.1007/978-3-030-01768-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_25&domain=pdf

304 B. Strang et al.

as a somewhat strange research question in this day and age, but linear models
are still frequently used in practice since they are simpler, typically computa-
tionally more efficient and (due to their simplicity) often easier to interpret than
modern non-linear models, such as deep learning models. With EU regulations
on algorithmic decision-making and a “right to an explanation” [9] which came
into effect on May 25, 2018, especially this often belittled dimension of inter-
pretability is bound to become one of the most important deciding factors in
day-to-day machine learning business. Furthermore, as our experiments demon-
strate, it is not a given that a non-linear classifier will outperform a linear one at
a statistically significant level. The underlying problem may simply be linear, or
more commonly, insufficient data is available to estimate complex relationships
reliably; furthermore, non-linear methods run a larger risk of overfitting given
that they are typically higher variance methods [15].

Our contributions are as follows: (i) We run a large scale meta learning
experiment on 299 datasets from OpenML [18,24], and compare linear vs. non-
linear variants of neural networks, support vector machines and decision trees.
Based on these datasets we give an indication when non-linear models may work
better, and how often. (ii) We train a meta model to predict when non-linear
models work better based on dataset characteristics. (iii) All experimental data
and results are made available through OpenML, and the code used is made
available as a Jupyter notebook. (iv) Whilst we address a very common topic
in modeling, to the best of our knowledge this study is at least an order of
magnitude larger than other studies on this topic in terms of number of datasets
included.

2 Related Work

We review the literature on some exemplar studies that either discuss the ques-
tion whether to use a linear or non-linear classifier, or use large scale experi-
mentation to answer general scientific questions. Due to the broadness of these
subject areas, this list is by no means complete.

Linear vs. Non-linear classifiers. Various studies exist that compare lin-
ear classifiers and non-linear classifiers. Typically the comparison of linear and
non-linear classifiers is performed in the context of a special modeling task,
e.g., electricity consumption forecasting [10], CO2 emissions [13], aggregate retail
sales [4], EEG signal classification [7], corporate distress diagnosis [1], macroe-
conomic time series forecasting [23], routing [21] and epidemiological data [8].
These studies have in common that they are small scale experiments limiting the
performance comparison to a special field of application and a small number of
datasets. A simple general conclusion regarding the classification performance of
linear and non-linear models cannot be drawn from the aforementioned related
work as the final conclusions of these studies differ regarding classification per-
formance. While in some studies [4,7,10,13] non-linear models in the form of
neural networks or support vector machines achieved a better performance, some
research groups find that non-linear components or methods are of no benefit or
worse than the particular linear modeling approach [8,21].

Don’t Rule Out Simple Models Prematurely: A Large 305

Large Scale Experimentation. OpenML [18,24] offers infrastructure to con-
duct large scale experiments which provide a solid empirical foundation for
answering scientific questions. For each dataset, it contains a range of scien-
tific tasks and meta-features, and it also allows for uploading new experimental
results. In the past, several large scale experiments have been conducted by var-
ious research groups using this infrastructure. [6] use the experimental results
on OpenML to study characteristics of precision recall curves over 886 classi-
fication datasets [6]. [14] researched in which cases feature selection improves
classification performance on 399 classification datasets [14]. [11] developed an
algorithm selection method for QSAR’s, and demonstrated its applicability on
2,700 QSAR problems [11]. Indeed, empirical results are typically more credible
when based on a large number of datasets.

3 Background

This work aims to answer the basic scientific question when to use a linear or
non-linear classifier by large scale experimentation. To achieve this, care needs
to be taken to build on a solid infrastructure and experimental setup. In this
section, we review the methods we used.

Datasets. We prefer quality over quantity. As such, rather than using all of
the thousands of datasets on OpenML, we selected a (still large) set of diverse
datasets, i.e., the OpenML100 [3], which provides 100 datasets carefully selected
from the OpenML overall dataset repository. The OpenML100 is designed to
contain datasets that have a real world concept (rather than artificially gener-
ated data), have a meaningful classification task, and are introduced by a scien-
tific publication. While the OpenML100 imposes dimensionality restrictions on
the datasets (i.e., 500–100,000 data points, 1–5,000 features), we also report on
results on datasets outside this range. Like for the OpenML100, highly unbal-
anced datasets with a minority class to majority class ratio of less than 0.05 were
excluded. As this additional set of datasets is not as curated as the OpenML100,
these results are reported separately. The total number of datasets used is 299.

Classifiers. This study considers support vector machines (SVMs), neural net-
works and decision trees, each of them in a linear and a non-linear variant. SVMs
natively support the notion of (non-)linearity by means of their kernel;

we use either a linear or an RBF kernel. For neural networks, next to a stan-
dard feed-forward network with hidden layers and non-linear (sigmoid) activation
functions, as a linear variant we consider a linear model with no hidden layers
trained by stochastic gradient descent. For decision trees, as a linear version we
consider a decision stump (a decision tree with depth 1); this is arguably a very
limited linear model, as it can only represent decision boundaries perpendicular
to one of the axes. This means that even when a dataset is linearly separable, a

306 B. Strang et al.

Table 1. Hyperparameters optimized by random search.

Classifier Parameters

SVM (linear) C (2−5 . . . 215, log-scale), dual (boolean), imputation strat-
egy, tol (10−5 . . . 10−1, log-scale)

SVM (non-linear) C (2−5 . . . 215, log-scale), gamma (2−15 . . . 23, log-scale),
imputation strategy, tol (10−5 . . . 10−1, log-scale), shrinking
(boolean)

NN (linear) alpha (10−7 . . . 10−1, log-scale), imputation strategy, learn-
ing rate (‘optimal’, eta = 1/(α · (t+ t0))), tol (10−5 . . . 10−1,
log-scale), penalty (l2, l1, elasticnet)

NN (non-linear) Alpha (10−7 . . . 10−1), early stopping (boolean), hidden
layer size (32, 64, 128), imputation strategy, initial learn-
ing rate (10−5 . . . 100, log-scale), num. hidden layers (1, 2),
tol (10−5 . . . 10−1)

DT (stump) Criterion (gini, entropy), imputation strategy, max. features
(0.1, 0.2, 0.3, . . . 1.0)

DT (non-linear) Criterion (gini, entropy), imputation strategy, max. depth
(2, 3, 5, 7, 10), max. features (0.1, 0.2, 0.3, . . . 1.0)

decision stump might not be able to model it perfectly; however, we decided to
still include this as a representative of the popular class of tree-based models.1

Hyperparameter Optimization. The performance of machine learning clas-
sifiers highly depends on hyperparameter optimization, which can often make
the difference between mediocre and state-of-the-art performance. In this study,
to minimize the bias resulting from the choice of a particular hyperparameter
optimization method, we use the simplest option: random search [2].

We use a budget of 250 iterations (in the case of the decision stump only 60
iterations due to the limited hyperparameter space). While more powerful opti-
mization methods, such as Bayesian optimization, are sometimes orders of mag-
nitudes faster, random search is simpler, trivially available in any programming
language, almost parameter-free, and robustly applicable across various types of
hyperparameter spaces, making it a straight-forward simple choice when we can
afford to evaluate a large number of configurations.

In order to determine which hyperparameters are important to optimize,
we followed the recommendations of [19]. Table 1 shows the hyperparameters
and ranges over which we performed random search. We note in particular that
this search space includes regularization hyperparameters, such as the penalty
parameter C in SVMs and the strength α of the L2 regularizer in neural networks.

Evaluation. We use nested 10-fold cross-validation for evaluating the classifiers.
For each of the 10 outer cross-validation folds, the hyperparameter optimization
1 In this study, we do not compare (still quite interpretable) decision trees against

(more powerful, yet less interpretable) random forests in order to limit ourselves
purely to a comparison of linear vs. non-linear models.

Don’t Rule Out Simple Models Prematurely: A Large 307

Fig. 1. Ratios of wall clock run times. Ratios larger than 1.0 indicate that the linear
model needed less time.

used an internal 3-fold cross-validation procedure on the training portion to
determine the best hyperparameters. The model is then re-fitted using the best
found hyperparameters on the full training set of that cross-validation fold, and
this is used to make predictions for the test set.

4 Linear Versus Non-linear

This section aims to answer the primary question of this work, i.e., when to use
linear and non-linear classifiers.

Setup. For each of the three classifier families, we perform hyperparameter
optimization and measure the performance in terms of predictive accuracy of
both the linear and non-linear classifier using 10-fold nested cross-validation.
As this yields 10 individual scores, we can also perform a statistical test, which
determines whether the results are statistically significant (α = 0.05); for this,
we used the Wilcoxon signed rank test as recommended by Demšar [5], since
non-parametric tests do not depend on the assumption of normally-distributed
data. The data is pre-processed using imputation, one-hot-encoding, variance
threshold and feature scaling to unit variance. Of course, the values for these
operations are inferred on the training set and applied to the test set. All clas-
sifiers, as well as the random search module, are as implemented in Scikit-learn
version 0.19.1 [12]. Each algorithm had a maximum run time of 96 hours on a 20
core Intel Xeon E5-2630v4, i.e., a maximum of 1,920 CPU hours per run. Tasks
which ran out of time were not evaluated. Figure 1 shows boxplots of the ratio
of the run time for the linear and non-linear algorithms per dataset. The run
time was measured over the full random search procedure.

Results. The results are provided in an OpenML study2, to which a Jupyter
Notebook is attached. This section summarizes the results as three case studies.
For each family of classifiers we present: (i) A table with summarizing statistics,
both on the OpenML100 and on the complete set. (ii) A scatter plot showing for

2 https://www.openml.org/s/123.

https://www.openml.org/s/123

308 B. Strang et al.

Support Vector Machine Case Study
Table 2. General Statistics on Performance

All datasets OpenML100 datasets

Absolutely Significantly Absolutely Significantly

Result Number % Number % Number % Number %

Linear better 121 41 14 5 19 20 2 2

Equal/Neither ... nor 19 6 218 74 6 6 44 46

Non-linear better 154 52 62 21 70 74 49 52

294 100 294 100 95 100 95 100

Fig. 2. Scatterplot showing whether
linear or non-linear performs statis-
tically better; each dot represents a
dataset.

Fig. 3. Accuracy difference per dataset
between linear and non-linear. Positive
values indicate linear performed better.

each dataset whether the linear or non-linear variant performed better, with the
number of data points and the number of features as axes. (iii) A figure plotting
the difference of mean predictive accuracy per dataset. It sorts the datasets
by difference in mean accuracy scores. A positive difference indicates a better
performance of the linear model.

The results of the SVM case study are presented in Table 2, Fig. 2 and Fig. 3;
the results of the neural network case study are presented in Table 3, Fig. 5 and
Fig. 4; finally, the results of the decision tree case study are presented in Table 4,
Fig. 6 and Fig. 7.

Don’t Rule Out Simple Models Prematurely: A Large 309

Neural Network Case Study

Table 3. General statistics on performance

All datasets OpenML100 datasets

Absolutely Significantly Absolutely Significantly

Result Number % Number % Number % Number %

Linear better 75 32 4 2 11 16 2 3

Equal / Neither ... nor 13 6 181 78 5 7 30 45

Non-linear better 143 62 46 20 51 76 35 52

231 100 231 100 67 100 67 100

Fig. 4. Scatterplot showing whether
linear or non-linear performs statis-
tically better; each dot represents a
dataset.

Fig. 5. Accuracy difference per dataset
between linear and non-linear. Positive
values indicate linear performed better.

Discussion. Many of the results are as expected, which validates the experi-
mental setup. The absolute statistics tables (Tables 2, 3 and 4) and difference
plots (Figs. 3, 4 and 7) show that the non-linear classifier performs better more
frequently than the linear one. Especially for decision trees this difference is
eminent, arguably because of the limited representation of the decision stump.
However, the linear classifier also sometimes performs better, and in many cases
there is no significant difference. Specifically, for all datasets, only in half the
cases SVMs yielded statistically significantly better results with the non-linear
kernel than with the linear one. However, we note that failure to detect a sig-
nificant difference does not imply that there is no such difference: our statistical
tests are only based on 10 samples (one per cross-validation fold) and thus have
limited power; thus, our results should not be overinterpreted.

310 B. Strang et al.

The scatter plots (Figs. 2, 5 and 6) reveal general trends which classifier
performs better on datasets with specific characteristics. We plot this against
the number of data points and the number of features; the background color
shows which type of classifier is dominant in a region (based on a k-nearest-
neighbour model with k = 5). Note that the background coloring looks a bit
peculiar because it is determined in Euclidean space and represented in log space.
Also note that some datasets have similar dimensions, causing several dots to
overlap. For all classifier types the non-linear models are dominant in the regions
with a large number of data points. However, when applied to a data set with
few data points, the implementations of linear SVMs and neural networks we
used do not perform worse than their non-linear counter parts at a statistically
significant level. This result indicates that the optimal choice is not always clear-
cut, and in case of doubt it may be preferable to use the linear version (since it
is less likely to overfit, faster to run, and yields more interpretable results). We
would like to highlight that, based on our data, we can only draw conclusions
based on the scikit-learn implementations and the datasets we used; it remains
an open question whether similar results would hold when using more advanced
regularization schemes for the non-linear classifiers and other real-world data
sets.

5 Learning When to Use What Classifier

In this section we present the results of an algorithm selection experiment. The
relevance is three-fold: (i) this experiment adds credibility to the analysis in
Sect. 4, by evaluating on a hidden test set (ii) this experiment is implicitly a
deeper variant of the analysis in Sect. 4, i.e., by looking at a larger set of data
characteristics, and (iii) the results of this experiment could be used to auto-
matically select between a linear and non-linear classifier.

Setup. The algorithm selection framework [17] consists of the following compo-
nents: (i) a set of previously encountered datasets D, (ii) a set of data character-
istics F (also called meta-features), (iii) a set of algorithms A, and (iv) measured
performance p of the algorithms A on datasets D. For any new dataset D′ (not
in D) the task is to predict which algorithm from A maximizes performance
measure p. In our case, D is the set of datasets on which both versions of a clas-
sifier terminated, A is the linear and the non-linear classifier of a given type, F
is a set of meta-features selected from OpenML (which we define more precisely
shortly) and performance measure p is predictive accuracy. We train a random
forest (100 trees) on the set of meta-features to predict whether the optimized
linear classifier or optimized non-linear classifier will perform statistically better.
Cases where there is no statistical difference are assigned to the ‘prefer linear’
class. Hence, this is a binary decision problem.

Don’t Rule Out Simple Models Prematurely: A Large 311

Decision Tree Case Study

Table 4. General statistics on performance

All datasets OpenML100 datasets

Absolutely Significantly Absolutely Significantly

Result Number % Number % Number % Number %

Linear better 79 26 4 1 10 10 0 0

Equal/Neither ... nor 13 4 162 54 0 0 17 17

hline Non-linear better 207 69 133 44 90 90 83 83

299 100 299 100 100 100 100 100

Fig. 6. Scatterplot showing whether
linear or non-linear performs statis-
tically better; each dot represents a
dataset.

Fig. 7. Accuracy difference per dataset
between linear and non-linear. Positive
values indicate linear performed better.

Table 5 shows the sets of meta-features that we consider, per category. In
our experiment we consider the following subset of these: (i) simple, containing
just the features that can be computed in a single pass over the dataset, (ii) no
landmarkers, which contains meta-features from the categories simple, statisti-
cal and information theoretic, and (iii) all, containing all meta-features in this
table. Indeed, calculating meta-features comes at a certain cost and in particular
calculating the landmarkers might impose a high run time. However, note that
the algorithms in A are both optimized using 250 iterations of random search,
and the landmarkers are (by design) ran with a given set of hyperparameters.
This justifies the use of applying landmarkers.

We evaluate the meta-model in a leave-one-out fashion, training the model
on all but one dataset and test it on this left-out dataset, in order to assess the
performance of the meta-model.

312 B. Strang et al.

Table 5. Meta features

Category Meta-features

Simple Number Of Features, Number Of Data Points, Dimensionality, Default
Accuracy, Number Of Data Points With Missing Values, Percentage Of
Data Points With Missing Values, Number Of Missing Values, Percent-
age Of Missing Values, Number Of Numeric Features, Percentage Of
Numeric Features, Number Of Symbolic Features, Percentage Of Sym-
bolic Features, Number Of Binary Features, Percentage Of Binary Fea-
tures, Majority Class Size, Majority Class Percentage, Minority Class
Size, Minority Class Percentage, Number Of Classes, Minority Majority
Ratio

Statistical Mean Means Of Numeric Attributes, Mean Std Of Numeric Attributes,
Mean Kurtosis Of Numeric Attributes, Mean Skewness Of Numeric
Attributes

Information
Theoretic

Class Entropy, Mean Attribute Entropy, Mean Mutual Information,
Equivalent Number Of Attributes, Mean Noise To Signal Ratio

LandmarkersDecision Stump Error Rate, Decision Stump Kappa, Decision Stump
AUC, Naive Bayes Error Rate, Naive Bayes Kappa, Naive Bayes AUC,
1-NN ErrRate, 1-NN Kappa, 1-NN NAUC

Table 6. Accuracy and AUROC scores for different sets of meta-features. The majority
class is the combined set of ‘linear statistically better’ and ‘no statistical difference’.
Results over all datasets.

Classifier family Default accuracy Simple No landmarkers All

accuracy AUC accuracy AUC accuracy AUC

SVM 0.789 0.844 0.874 0.844 0.897 0.861 0.908

DT 0.555 0.839 0.895 0.826 0.902 0.856 0.913

NN 0.801 0.857 0.846 0.870 0.827 0.861 0.852

Total dataset 0.708 0.803 0.837 0.801 0.836 0.805 0.841

Results Table 6 and Table 7 show the performance results of the meta-learning
experiment evaluated for all completed datasets and for the completed datasets
of the OpenML100 repository, respectively. As baseline the default accuracy
(obtained by always predicting the majority class) is listed for each subset. The
‘classifier family’ column shows which classifier type was used, the ‘default accu-
racy’ column shows the default accuracy, and the other columns show the accu-
racy and AUROC score of the meta-model for each set of meta-features. The set
of meta-features with the highest accuracy score is typeset in bold.

Both tables show a similar trend. In all cases, the meta-model performs con-
sistently better than the default accuracy. From this we conclude that the meta-
features model something related to the linearity of the dataset. Interestingly,
the majority class is different between the two meta-datasets. When consider-

Don’t Rule Out Simple Models Prematurely: A Large 313

Table 7. Accuracy and AUROC scores for different sets of meta-features. The majority
class is ‘non-linear statistically better’. Results over the OpenML 100.

Classifier family Default accuracy Simple No landmarkers All

Accuracy AUC Accuracy AUC Accuracy AUC

SVM 0.516 0.611 0.745 0.621 0.719 0.674 0.789

DT 0.830 0.840 0.869 0.840 0.795 0.870 0.883

NN 0.522 0.657 0.716 0.642 0.677 0.672 0.715

Total dataset 0.637 0.740 0.798 0.756 0.796 0.760 0.804

Fig. 8. Bar plot showing the mutual information for each meta feature. OpenML100
subset. Sorted by the mutual information values of the total dataset

ing only the OpenML100, the majority class is ‘non-linear statistically better’;
contrarily, when considering all datasets, the majority class is the combined set
of ‘linear statistically better’ and ‘no statistical difference’. This is most likely
due to the slightly larger datasets in the OpenML100. The set of simple meta-
features already makes a decent improvement compared to the default accuracy.
Adding the set of statistical and information theoretic features adds only a lit-
tle predictive power (as shown in the column ‘no landmarkers’). Finally, adding
the landmarker features (and thus having most information) results consistently
in the highest accuracy. We analyze which features are most important for the
meta-model. Features that are important to the meta-model have the poten-
tial to give more information about the linearity of a dataset and the dynamics
between the linear and non-linear classifier. We use the mean mutual information
measure, as described in [20], because this is a uni-variate measure and prevents
biases incurred from correlations between features. The results are presented in
Fig. 8.

The features that we analyzed in Sect. 4 (number of data points and number
of features) appear to be quite important. Of the other features, the nearest
neighbour based landmarkers seem important.

314 B. Strang et al.

6 Conclusion

Motivated by the interpretability of linear models (which is important in the
context of legal requirements explainability of automated decisions), as well as
secondary niceties of linear models (such as ease of use and computational effi-
ciency), this paper presented the results of a large scale experiment comparing
the performance of linear and non-linear classifiers. Our main focus was to build
large scale empirical support to determine the circumstances under which a given
type of classifier is better. We considered three classifier families: SVMs, neural
networks and decision trees, all as implemented in scikit-learn and represented
by a corresponding linear and non-linear model. Unsurprisingly, non-linear mod-
els of each classifier family achieved a better performance on more datasets than
their linear counterparts. However, for many datasets the performance difference
was not significant, a finding that is highly relevant for practical applications.
Meta-features related to dataset dimensionality (number of data points, num-
ber of features and the ratio of these) were the most relevant meta-features for
deciding whether to choose a linear or a non-linear model. As expected, non-
linear models typically exhibit a significantly better predictive performance if
the dataset at hand has a large number of data points and few features.

In order to make this experiment reproducible, all results are available on
OpenML and can be conveniently accessed through a Jupyter notebook. This
also makes it convenient to change the experimental parameters, such as the set
of datasets, displayed meta-features and optimization criterion, which all poten-
tially influence the results. Future work will focus on a better understanding
of the dynamics between meta-features and linearity of the dataset. One inter-
esting direction would be to search for meta-features that better distinguish the
datasets on which linear classifiers perform well. Furthermore, we would also like
to perform these analysis on different evaluation measures, such as Area under
the ROC Curve or F-measure. Having a publicly available meta-dataset enables
the community to actively participate in this process.

In summary, as our title states: don’t rule out simple models prematurely.

Acknowledgement. This work has partly been supported by the European Research
Council (ERC) under the European Unions Horizon 2020 research and innovation pro-
gramme under grant no. 716721. The authors acknowledge support by the state of
Baden-Württemberg through bwHPC and the German Research Foundation (DFG)
through grant no INST 39/963-1 FUGG.

References

1. Altman, E.I., Marco, G., Varetto, F.: Corporate distress diagnosis: comparisons
using linear discriminant analysis and neural networks (the Italian experience). J.
Bank. Financ. 18(3), 505–529 (1994)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(Feb), 281–305 (2012)

3. Bischl, B., et al.: OpenML Benchmarking Suites and the OpenML100. arXiv
preprint arXiv:1708.03731 (2017)

http://arxiv.org/abs/1708.03731

Don’t Rule Out Simple Models Prematurely: A Large 315

4. Chu, C.W., Zhang, G.P.: A comparative study of linear and nonlinear models for
aggregate retail sales forecasting. Int. J. Prod. Econ. 86(3), 217–231 (2003)

5. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7(Jan), 1–30 (2006)

6. Flach, P., Kull, M.: Precision-recall-gain curves: PR analysis done right. In:
Advances in Neural Information Processing Systems, pp. 838–846 (2015)

7. Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of linear,
nonlinear, and feature selection methods for EEG signal classification. IEEE Trans.
Neural Syst. Rehabil. Eng. 11(2), 141–144 (2003)

8. Gaudart, J., Giusiano, B., Huiart, L.: Comparison of the performance of multi-
layer perceptron and linear regression for epidemiological data. Comput. Stat. Data
Anal. 44(4), 547–570 (2004)

9. Goodman, B., Flaxman, S.: European Union regulations on algorithmic decision-
making and a “right to explanation”. arXiv preprints arXiv:1606.08813 (June 2016)

10. Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F.: Forecasting electric-
ity consumption: a comparison of regression analysis, neural networks and least
squares Support Vector Machines. Int. J. Electr. Power Energy Syst. 67, 431–438
(2015)

11. Olier, I., et al.: Meta-QSAR: a large-scale application of meta-learning to drug
design and discovery. Mach. Learn. 1–27 (2018)

12. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

13. Pino-Mej́ıas, R., Pérez-Fargallo, A., Rubio-Bellido, C., Pulido-Arcas, J.A.: Com-
parison of linear regression and artificial neural networks models to predict heating
and cooling energy demand, energy consumption and CO2 emissions. Energy 118,
24–36 (2017)

14. Post, Martijn J., van der Putten, Peter, van Rijn, Jan N.: Does feature selection
improve classification? A large scale experiment in OpenML. In: Boström, Henrik,
Knobbe, Arno, Soares, Carlos, Papapetrou, Panagiotis (eds.) IDA 2016. LNCS,
vol. 9897, pp. 158–170. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46349-0 14

15. van der Putten, P., van Someren, M.: A bias-variance analysis of a real world
learning problem: The CoIL Challenge 2000. Mach. Learn. 57(1), 177–195 (2004)

16. Rahimi, A., Recht, B.: Reflections on random kitchen sinks (2017)
17. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
18. van Rijn, J.N.: Massively Collaborative Machine Learning. Ph.D. thesis, Leiden

University (2016)
19. van Rijn, J.N., Hutter, F.: Hyperparameter importance across datasets. In: Pro-

ceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 2367–2376. ACM (2018)

20. Ross, B.C.: Mutual information between discrete and continuous data sets. PloS
one 9(2), e87357 (2014)

21. Schütze, H., Hull, D.A., Pedersen, J.O.: A comparison of classifiers and document
representations for the routing problem. In: Proceedings of the 18th annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 229–237. ACM (1995)

22. Sculley, D., Snoek, J., Wiltschko, A., Rahimi, A.: Winner’s curse? On pace,
progress, and empirical rigor. In: Proceedings of ICLR 2018 (2018)

23. Swanson, N.R., White, H.: A model selection approach to real-time macroeconomic
forecasting using linear models and artificial neural networks. Rev. Econ. Stat.
79(4), 540–550 (1997)

24. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. ACM SIGKDD Explo. Newsl. 15(2), 49–60 (2014)

http://arxiv.org/abs/1606.08813
https://doi.org/10.1007/978-3-319-46349-0_14
https://doi.org/10.1007/978-3-319-46349-0_14

Detecting Shifts in Public Opinion: A Big
Data Study of Global News Content

Saatviga Sudhahar(B) and Nello Cristianini

University of Bristol, Bristol, UK
{saatviga.sudhahar,nello.cristianini}@bristol.ac.uk

Abstract. Rapid changes in public opinion have been observed in recent
years about a number of issues, and some have attributed them to the
emergence of a global online media sphere [1,2]. Being able to monitor
the global media sphere, for any sign of change, is an important task
in politics, marketing and media analysis. Particularly interesting are
sudden changes in the amount of attention and sentiment about an issue,
and their temporal and geographic variations. In order to automatically
monitor media content, to discover possible changes, we need to be able
to access sentiment across various languages, and specifically for given
entities or issues. We present a comparative study of sentiment in news
content across several languages, assembling a new multilingual corpus
and demonstrating that it is possible to detect variations in sentiment
through machine translation. Then we apply the method on a number of
real case studies, comparing changes in media coverage about Weinstein,
Trump and Russia in the US, UK and some other EU countries.

Keywords: Media content monitoring · Public opinion · Sentiment
analysis · Machine translation · Big data

1 Introduction

The past few years have been marked by rapid changes in public attitudes and
sentiment about a range of topics. Examples include attitudes about sexual
harassment, social media, and varying degrees of support about Russia. Jour-
nalists and Social scientists have been interested for a long time in detecting,
tracking and measuring rapid changes in coverage of specific issues and entities
[1,2,5,7], a quest that is made harder by the global nature of the media sys-
tem. Studies have included analysis of Twitter content and news-media content,
for example following the Fukushima disaster [3,6] and public sentiment about
migration in Britain [9]. Some of these works involve human coding methods
which may be more accurate but they are often limited in their ability to deal
with very large data sets. This work can be automated by collecting online news,
on a global scale, and analyzing their contents to extract sentiment specific to a
given entity.

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 316–327, 2018.
https://doi.org/10.1007/978-3-030-01768-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_26&domain=pdf

Detecting Shifts in Public Opinion 317

Big data technologies along with AI could be part of tracking and making
sense of these global shifts, perhaps in real time, by monitoring global news
media coverage. This poses the challenge of measuring sentiment across differ-
ent languages in a comparable way. In turn, this requires a consistent method
for calibrating and comparing the sentiment extracted from news in different
languages.

In this paper we present one approach to detect shifts in media coverage
about specific issues, in a multilingual setting. On the technical side, we iso-
late sentiment about a topic by extracting the words that immediately surround
each mention of that topic, and analyzing them with the LIWC (Linguistic
Inquiry and Word Count) dictionary [11]. This is done both in English, and in
machine-generated English (machine-English for short) produced by Moses, the
statistical phrase-based translation tool [10]. In order to measure the validity of
this approach, we assemble a new multilingual corpus of news articles, published
by Euronews in English, German, French, Spanish and Italian, covering the
same topics, and we compare the sentiment about two chosen entities ‘Europe’
and ‘Russia’, extracted from the English version with that extracted from the
machine-English versions, reporting significant correlation both in positive sen-
timent and negative sentiment (ranging between 15% and 60% depending on
the language pair). We continue by demonstrating the technology in action on a
larger set of news outlets from 6 countries (US, UK, Germany, Italy, France and
Spain), analyzing a total of 4.4M articles, tracking the changes in positive and
negative sentiment surrounding three entities: Weinstein, Trump and Russia. We
observe correlations but also interesting patterns of difference, which may reveal
different attitudes about the same entities. We demonstrate how this could be
used to monitor rapid changes in sentiment and attention about any given entity
in global news media at a large scale.

In Sect. 2 we discuss related work in the domain of analysing opinion shifts in
online news and social media. In Sect. 3 we describe the data and methods used.
Section 4 discusses how sentiment can be measured through machine translation.
In Sect. 5 we discuss results related to the amount of attention and sentiment
for Weinstein, Trump and Russia and in Sect. 6 we discuss conclusions.

2 Related Work

Studies in the past have identified public opinion shifts in social media and opin-
ion polls. People have proposed methods for opinion mining of specific entities
from Twitter content [4]. Measures of public opinion derived from polls related
to consumer confidence and presidential job approval polls have seen to be corre-
lated with sentiment measured from analysis of text from tweets [16]. This work
detected topics and measured sentiment around these topics using the subjectiv-
ity lexicon from Opinion Finder [17]. Another work [18] studied how emotions,
and their role in public opinion formation, can be tracked in online forums. Sen-
timent is measured using the ANEW (Affective Norms for English Language
Words [25]) list measuring three different kinds of emotions: valence, arousal,

318 S. Sudhahar and N. Cristianini

and dominance. They showed that some political events such as the 9/11 attack
unleash disagreement in valence and arousal than in dominance emotions and
they have different lasting effects. Opinion shifts have been tracked in real time
[19] through the introduction of computational focus groups in Twitter. Users
were grouped according to similar user biases in to average users and elites and
then the response of these groups to US presidential debates were tracked and
shifts in sentiment were found.

Multilingual sentiment analysis has been explored by researchers over the
past few years. Previous work [21,22] has shown that machine translation sys-
tems are mature enough to be employed to produce reliable training data for
sentiment classification in languages other than English. They found that the gap
in opinion and sentiment classification performance between systems trained on
English and translated data is minimal. There has been a wide research effort on
analyzing sentiment in news other than English by applying bilingual resources
and machine translation techniques to employ the sentiment analysis approaches
existing for English [23,24]. For example sentiment of entities has been analyzed
in the past from news text translated from 8 foreign language news papers in to
English using information extraction methods and using the IBM Web Sphere
Translation Server (WTS) to translate text to English [24]. This study was lim-
ited to data containing news articles from 10 days in May 2007 and the entities
analyzed were the ones most common across news papers in their data set.
Machine translation has also been used successfully to generate resources for
subjectivity analysis in other languages such as Romanian and Spanish [23].

In this paper we demonstrate a large scale experiment on detecting sentiment
shifts about specific issues. Our work measures sentiment using the LIWC tool,
in news content across several languages, assembling a new multilingual corpus
and demonstrates that it is possible to detect variations in sentiment through
machine translation with Moses [10]. We apply the method on a number of real
case studies and in large scale, showing that we could now monitor the global
news media for rapid changes in sentiment about entities.

3 Data and Methods

The data sets used for this study were collected by our previously developed
modular system [26], an integrated platform for monitoring and analyzing news
media. In order to validate if sentiment across languages can be measured using
machine translation, we used news articles from Euronews for French (14,646
articles), German (15,850 articles), Italian (16,886 articles) and Spanish (16,821
articles) from January 2015 to October 2017. For the rest of the analysis we
obtained news articles from French, Spanish, Italian and German news outlets
from January 2010 to March 2018. The most prominent news outlets for each
country were selected for the analysis, which are Le Monde, Le Figaro, Libération
(France), Der Tagesspiegel, Die Welt, Die Zeit (Germany), El Mundo, El Páis,
La Vanguardia (Spain) and La República, La Stampa, Corriere della Sera (Italy).
We also collected news data from UK and US outlets in the same period such

Detecting Shifts in Public Opinion 319

as BBC, Daily Mail, Guardian, The Independent, Daily Telegraph and Daily
Mirror (UK) and Seattle Times, LA Times, New York Times, Washington Post
and New York Daily News (US). In total 4,439,440 articles were included in the
analysis.

3.1 Translating Text

We translate text using the traditional statistical phrase based machine trans-
lation [14] method with Moses. Statistical machine translation of text can be
formulated as follows: Given a source sentence written in a foreign language
f , Bayes rule is applied to reformulate the probability of translating f into a
sentence written in a target language e.

ebest = argmaxep(e|f) = argmaxep(f |e)pLM (e) (1)

p(f |e) is the probability of translating e to f and pLM (e) is the probability of
producing a fluent sentence e. Sentences are broken in to phrases instead of words
and phrases between the source and target language are aligned for training a
translation model.

In our work translation models were trained with Moses for French, Spanish,
German and Italian using the WMT (Workshop on Machine Translation) 2015
shared task training data. During the translation process Moses scores transla-
tion hypotheses using a linear model. Tuning refers to the process of finding the
optimal weights for this linear model, where optimal weights are those which
maximise translation performance on a small set of parallel sentences (Tuning
set). We tuned our trained models with the tuning set from WMT using the
MERT (Minimum error rate training [27]) algorithm. The output translation
table from Moses contains all phrase pairs found in the parallel training corpus
including a lot of noise. To reduce this noise the table is then pruned [28], result-
ing in faster loading of the model in memory. A language model was trained
using all the available English corpora in WMT. We evaluated our trained mod-
els in the WMT test set using BLEU [12] score metric which is the most used
metric based on n-gram precision computed between the machine generated
translation and human generated translation. It ranges between 0-100%, and
larger value identifies better translation. The idea behind BLEU is the closer a
machine translation is to a professional human translation, the better it is. We
obtain the following BLEU scores for each translation model: French (28.14%),
Spanish (30.91%), German (26.11%) and Italian (30.69%). Translation models
were deployed as Moses services, supporting multi-threading, so that all trans-
lation services run at a single point and several clients could request and collect
translations at the same time. We translated news articles from all the outlets
mentioned above including Euronews to English.

3.2 Measuring Sentiment

We used the LIWC sentiment word lists for positive and negative emotions
(named as posemo, negemo) to measure sentiment about an entity in news arti-

320 S. Sudhahar and N. Cristianini

cles. An entity in this context refers to named entities such as Persons, Organ-
isations or Locations. Sentiment scores were computed in two weekly intervals
with a one week overlapping time series window. For a given two weekly period,
we obtain all news articles from the outlets mentioned above and search them for
the given entity using Apache Lucene text search engine [15]. For each mention
of the word we compute the number of positive and negative words surrounding
the word with a text window of size 5 and total them for the period. Sentiment
scores psr and nsr were computed. psr refers to positive sentiment ratio which is
the number of positive words (p) divided by the total words in sentences contain-
ing the entity. The negative sentiment ratio (nsr) is computed similarly using
the number of negative words (n).

We also measure the sentiment distance for an entity given by (p−n)/(p+n).
It shows how negative or positive was the news coverage about the entity in a
given period of time.

3.3 Measuring Attention

The relative attention of an entity is computed by counting the number of entity
mentions in a given period, dividing it by the total number of words from all
articles in that period. This is again computed in two weekly intervals with a
one week overlapping time series window.

4 Measuring Sentiment in Machine Translated Text

In this section we discuss and validate how machine translated text can be used
to measure the sentiment across different languages. We compare the sentiment
about two chosen entities ‘Europe’ and ‘Russia’, extracted from the English ver-
sion with that extracted from the machine-English (translated) versions, report-
ing significant correlation both in positive sentiment and negative sentiment. For
this purpose we use English, French, German, Spanish and Italian news articles
from Euronews from 2015 to 2017. Euronews is a multilingual news media ser-
vice publishing news content in several languages other than English. For each
non-English article there is an equivalent English article published.

We translated Euronews news articles in French, German, Spanish and Italian
to English using our trained models. Starting from the machine-English article,
for each language we match its equivalent original English article by computing
cosine similarities between the document vectors (term frequency vectors) across
all relevant pairs obtained by date of article. We only filter the pairs that have
a cosine similarity (θ) > 0.5 for computing sentiment correlation between pairs
for entities ‘Europe’ and ‘Russia’. For each mention of the entity in the pair of
articles, we compute the number of positive and negative words surrounding the
entity with a text window size 5 and calculate scores psr and nsr as described
in Sect. 3.2. We compute the Pearson correlation coefficient between psr and
nsr vectors for the English and machine-English pairs resulting in a positive
and negative correlation score for the words in each language. Table 1 shows

Detecting Shifts in Public Opinion 321

Table 1. Positive and Negative Sentiment correlation scores and p-values for null
hypothesis between machine-English and original English article pairs for entities
‘Europe’ and ‘Russia’

Language Total pairs Topic Total pairs

with topic

Total pairs

with topic

θ > 0.5

Positive corr

(p-val)

Negative corr

(p-val)

French 14644 Europe 1113 219 0.25(0.03) 0.59(0.0)

Russia 1190 118 0.13(0.03) 0.41(0.05)

German 15849 Europe 1886 541 0.24(0.0) 0.62(0.0)

Russia 1428 346 0.31(0.02) 0.14(0.08)

Italian 16886 Europe 2056 458 0.50(0.0) 0.47(0.0)

Russia 1523 255 0.53(0.03) 0.33(0.01)

Spanish 16821 Europe 2337 738 0.38(0.0) 0.60(0.0)

Russia 1568 424 0.22(0.06) 0.51(0.0)

for each language, the total number of matching pairs found, then for each
topic, it shows the total pairs of articles containing the topic, the total number
of pairs containing the topic with a cosine similarity (θ) > 0.5 and positive
and negative correlation scores for these pairs. Overall we observe positive and
negative correlation in the region of 13%–53% and 15%–63%. To test the null
hypothesis, in each language from the pairs with (θ) > 0.5 we randomly assign
machine-English articles to English articles, form pairs and compute the positive
and negative correlation scores like before in 100 iterations. Our test statistic is
the correlation score obtained and in each iteration we check if the correlation
score is greater than the actual score obtained for each word in each language.
Our p-value is n/100 where n is the number of times the score was greater than
or equal to the actual score obtained. Table 1 shows the corresponding p-values
next to the actual score. The p-values are very low ranging from 0.0 to 0.08.
Therefore we conclude that the observed correlation is significant and sentiment
can be measured across languages using machine translation.

5 Results and Discussion

In this section we demonstrate how sentiment and attention has changed in
different periods of time over the past few years for entities Weinstein, Trump
and Russia comparing the trends across US, UK, French, Spanish, German and
Italian (FSGI) news outlets. The timelines were computed for each region by
summing up the following counts across all outlets from that region in a two
weekly period with a one week overlapping time series window. The counts are
the number of positive (p), negative (n) words surrounding an entity, the total
number of words in sentences containing the entity and the total number of words
in all sentences. These counts were used to compute the positive sentiment ratio
(psr), negative sentiment ratio (nsr), sentiment distance and attention towards
an entity as discussed in Sect. 3. We also measure the correlation between the

322 S. Sudhahar and N. Cristianini

2017 2018
-1

-0.5

0

0.5

1
Sentiment Distance

US
UK
FSGI

2017 2018
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Attention

US
UK
FSGI

Fig. 1. The Attention and Sentiment Distance for the entity Weinstein in US, UK and
FSGI news outlets starting from January 2017 until March 2018 analysing 716,610
articles. Period from January to September, 2017 is not shown in sentiment plot due
to high error bars.

2017 2018
-0.4

-0.2

0

0.2

0.4

0.6
Sentiment Distance

US
UK
FSGI

2017 2018
0

0.2

0.4

0.6

0.8

1
Attention

US
UK
FSGI

Fig. 2. The Attention and Sentiment Distance for the entity Trump in US, UK and
FSGI news outlets starting from January 2017 until March 2018 analysing 716,610
articles.

sentiment distance series and attention series for the entities in US-UK, US-FSGI
and UK-FSGI regions.

5.1 Shifts in Sentiment and Attention

Harvey Weinstein Scandal. The Harvey Weinstein scandal first came to
light on the 5th of October, 2017 in a New York Times article1, publishing a
story detailing allegations of sexual harassment against him. Since then there
have been a larger number of women coming forward to confess that they were
harassed by him. We plot two quantities in Fig. 1, showing the attention and
sentiment distance for Weinstein in US, UK and FSGI new outlets starting from
January 2017 until March 2018. The period from January to September, 2017 is
not shown in sentiment plot due to high error bars. Error bars were calculated
based on Wilson score confidence interval [17]. A high error bar indicates that
1 https://www.nytimes.com/2017/10/05/us/harvey-weinstein-harassment-

allegations.html.

https://www.nytimes.com/2017/10/05/us/harvey-weinstein-harassment-allegations.html
https://www.nytimes.com/2017/10/05/us/harvey-weinstein-harassment-allegations.html

Detecting Shifts in Public Opinion 323

2010 2011 2012 2013 2014 2015 2016
-0.5

0

0.5

1
Sentiment Distance

US
UK
FSGI

2010 2011 2012 2013 2014 2015 2016
0

0.2

0.4

0.6

0.8
Attention

US
UK
FSGI

Fig. 3. The Attention and Sentiment Distance for the entity Russia in US, UK and
FSGI news outlets starting from January 2010 until March 2016 analysing 3,722,830
articles. The period beginning in 2012 shows NaN values due to missing data.

the sentiment score for that period was not supported by enough positive and
negative mentions about the entity.

We see that the coverage starts from the beginning of October, 2017 with
a massive peak in all three regions marking the outbreak of the scandal on 5th
October. News media in all three regions show a steady increase in negative sen-
timent from the beginning of October and continues to be negative throughout
the latter part of 2017 and 2018. The sentiment is more positive in FSGI and
more negative in UK an US, although it is overall negative in all regions.

The correlation for attention is very high for Weinstein according to the
correlation plot in Fig. 4 in all three regions while Sentiment distance is much
more correlated in US-UK than US-FSGI or UK-FSGI meaning the way the
story was covered in the US and UK is very similar.

Donald Trump’s Reactions to Riots. Donald Trump’s presence in the media
became increasingly negative from August 2017 which continued until January
2018. Figure 2 shows the Attention and Sentiment Distance for the entity Trump
in US, UK and FSGI new outlets starting from 2017 January until March 2018.
We see that Trump was discussed more in US than UK or FSGI in the beginning
of 2017. Sentiment clearly shows a negative shift happening in the news coverage
of US, UK and FSGI during the first weeks of August. This was due to the
reaction of Trump to the Charlottesville Riots on 12th August 2017 [30], where
white supremacists clashed with counter-demonstrators during a rally. It was
followed by a period of negative coverage in news for Trump when he repeatedly
criticized the NFL players who protested against the national anthem to bring
attention to racial injustice in the United States [29].

324 S. Sudhahar and N. Cristianini

-1 -0.5 0 0.5 1

UK

-1

-0.5

0

0.5

1

U
S

-1 -0.5 0

FSGI

-0.6

-0.4

-0.2

0

0.2

0.4

U
S

-1 -0.5 0

FSGI

-1

-0.5

0

0.5

U
K

-0.5 0 0.5

UK

-0.6

-0.4

-0.2

0

0.2

0.4

U
S

-0.5 0 0.5

FSGI

-0.4

-0.2

0

0.2

0.4

0.6

U
S

-0.5 0 0.5

FSGI

-0.2

0

0.2

0.4

0.6

U
K

-1 -0.5 0 0.5 1

UK

-1

-0.5

0

0.5

1

U
S

-1 -0.5 0 0.5 1

FSGI

-0.5

0

0.5

1

U
S

-1 -0.5 0 0.5 1

FSGI

-0.5

0

0.5

1

U
K

Weinstein

Trump

Russia

0.54 0.22 0.32

0.380.580.45

0.91 0.46 0.41

(a) Sentiment distance

0 0.2 0.4 0.6 0.8 1

UK 10-3

0

2

4

6

8

10

U
S

10-4

0 0.2 0.4 0.6 0.8 1

FSGI 10-3

0

1

2

3

U
S

10-4

0 0.2 0.4 0.6 0.8 1

FSGI 10-3

0

1

2

3

U
K

10-4

0 0.002 0.004 0.006 0.008 0.01

UK

0

1

2

3

4

U
S

10-3

0 0.002 0.004 0.006 0.008 0.01

FSGI

0

0.5

1

1.5

2

U
S

10-3

0 1 2 3 4

FSGI 10-3

0

0.5

1

1.5

2

U
K

10-3

0 0.5 1 1.5 2

UK 10-3

0

0.5

1

1.5

2

U
S

10-3

0 0.5 1 1.5 2

FSGI 10-3

0

2

4

6

8

U
S

10-4

0 0.5 1 1.5 2

FSGI 10-3

0

0.2

0.4

0.6

0.8

1

U
K

10-3

Weinstein

Trump

Russia

0.98 0.94 0.95

0.910.850.82

0.94 0.89 0.85

(b) Attention

Fig. 4. Correlation plots of Sentiment distance series and Attention series between,
US-UK, US-FSGI and UK-FSGI for Weinstein (October 2017 - Mar 2018), Trump
(Jan 2017 - Mar 2018) and Russia (Jan 2010 - Mar 2016) monitored every two weeks
with a one week overlapping time series window.

The UK has the most negative coverage of Trump from the beginning of the
riots. We see at periods it is overall negative, whereas in other EU countries and
US it is more balanced. The correlation for media attention is high for all three
regions according to Fig. 4 while the Sentiment distance is also correlated across
regions, more in US-FSGI.

Detecting Shifts in Public Opinion 325

Russia’s Military Intervention in Ukraine. The Russian military interven-
tion in Ukrainian territory started in February 2014. The Crimean peninsula was
annexed from Ukraine by the Russian Federation in February-March 2014 [31].
We see how this event has caused a sentiment shift for Russia in global media.
Figure 3 shows the Attention and Sentiment Distance for the entity Russia in
US, UK and FSGI new outlets starting from 2010 January until March 2016.

Coverage of Russia peaks in February 2014 Crimean crisis, attracting negative
coverage in all regions and very negative in US and UK than FSGI. A rise in
attention is observed again in July 2014 while an increasingly negative coverage is
also observed at the same time during the shot down of Malaysia Airlines Flight
17 over an area of Ukraine. The attention seems to be higher in FSGI from this
period. The Russian intervention in Crimea and Eastern Ukraine caused a lot of
reactions and this period of negativity is well evident in the sentiment distance
plot showing negative coverage about Russia in the US, UK and FSGI regions
in the period between February 2014 and January 2016.

Correlation of media attention is very high for Russia across all three regions
and Sentiment distance is more correlated in US-UK than others.

5.2 Conclusions

Monitoring the contents of the global media is an important task that requires
automation. Challenges range from the correct way to measure and validate
sentiment, to the problem of operating across languages. In this study we
have demonstrated that it is possible to extract usable sentiment signals from
machine-translated text, in a news setting, and we have presented a study of how
media sentiment has changed across UK, US and some European counties, over a
long time period. There are significant correlations across the three regions, but
also interesting differences. Along the way we have also proven that sentiment
can be measured across translation by creating a new aligned corpus of news that
are paired using the translated Euronews articles from French, German, Span-
ish, Italian and their equivalent English article in Euronews where we assume
that the sentiment of the coverage of a given entity is similar. We found that
the positive and negative sentiment between these pairs are correlated showing
that we can measure sentiment across languages through machine translation.

Acknowledgements. Saatviga Sudhahar and Nello Cristianini are supported by the
ERC Advanced Grant “ThinkBig awarded to NC.

References

1. Tribou, A., Collins, K.: This is how fast America changes its mind, Bloomberg, 26
June [Online]. Available at: https://www.bloomberg.com/graphics/2015-pace-of-
social-change/ (2015)

2. Silver, N.: ’Change doesnt usually come this fast, FiveThirtyEight, 26
June [Online]. Available at: https://fivethirtyeight.com/features/change-doesnt-
usually-come-this-fast/ (2015)

https://www.bloomberg.com/graphics/2015-pace-of-social-change/
https://www.bloomberg.com/graphics/2015-pace-of-social-change/
https://fivethirtyeight.com/features/change-doesnt-usually-come-this-fast/
https://fivethirtyeight.com/features/change-doesnt-usually-come-this-fast/

326 S. Sudhahar and N. Cristianini

3. Lansdall-Welfare, T., Sudhahar, S., Veltri, G. A., Cristianini, N.: On the coverage
of science in the media: a big data study on the impact of the Fukushima disaster.
In: 2014 IEEE International Conference on Big Data (Big Data), pp. 60–66. IEEE
(2014, October)

4. Maynard, D., Gossen, G., Funk, A., Fisichella, M.: Should I care about your opin-
ion? Detection of opinion interestingness and dynamics in social media. Future
Internet 6(3), 457–481 (2014)

5. Mutz, D., Soss, J.: Reading public opinion: the influence of news coverage on
perceptions of public sentiment. Public Opin. Q. 61(3), 431–451 (1997)

6. Su, L.Y.F., Cacciatore, M.A., Liang, X., Brossard, D., Scheufele, D.A., Xenos,
M.A.: Analyzing public sentiments online: combining human-and computer-based
content analysis. Inf. Commun. Soc. 20(3), 406–427 (2017)

7. Young, L., Soroka, S.: Affective news: the automated coding of sentiment in polit-
ical texts. Polit. Commun. 29(2), 205–231 (2012)

8. Nyman, R., Kapadia, S., Tuckett, D., Gregory, D., Ormerod, P., Smith, R.: News
and narratives in financial systems: exploiting big data for systemic risk assessment.
Bank of England Working Paper No. 704. Available at SSRN: https://ssrn.com/
abstract=3135262 or https://doi.org/10.2139/ssrn.3135262 (2018)

9. McLaren, L., Boomgaarden, H., Vliegenthart, R.: News coverage and public con-
cern about immigration in britain. Int. J. Public Opin. Res. edw033 (2017)

10. Koehn, P., et al.: Moses: open source toolkit for statistical machine translation.
In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and
Demonstration Sessions, pp. 177–180. Association for Computational Linguistics
(2007)

11. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count:
LIWC 2001. Mathway: Lawrence Erlbaum Associates, vol. 71 (2001)

12. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 311–318. Association for Compu-
tational Linguistics (2002)

13. Flaounas, I., et al.: NOAM: news outlets analysis and monitoring system. In: Pro-
ceedings of the 2011 ACM SIGMOD International Conference on Management of
Data, pp. 1275–1278. ACM (2011)

14. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proceed-
ings of the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology, vol. 1, pp. 48–54.
Association for Computational Linguistics (2003)

15. Jakarta, A.: Apache Lucene-a High-performance, Full-featured Text Search Engine
Library. Apache Lucene (2004)

16. O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets
to polls: linking text sentiment to public opinion time series. Icwsm 11(122–129),
1–2 (2010)

17. Wilson, T., et al.: OpinionFinder: a system for subjectivity analysis. In: Proceed-
ings of HLT/EMNLP on Interactive Demonstrations, pp. 34–35. Association for
Computational Linguistics (2005)

18. Gonzalez-Bailon, S., Banchs, R.E., Kaltenbrunner, A.: Emotional reactions and the
pulse of public opinion: measuring the impact of political events on the sentiment
of online discussions (2010). arXiv preprint arXiv:1009.4019

19. Lin, Y.R., Margolin, D., Keegan, B., Lazer, D.: Voices of victory: a computational
focus group framework for tracking opinion shift in real time. In: Proceedings of
the 22nd International Conference on World Wide Web, pp. 737–748. ACM (2013)

https://ssrn.com/abstract=3135262
https://ssrn.com/abstract=3135262
https://doi.org/10.2139/ssrn.3135262
http://arxiv.org/abs/1009.4019

Detecting Shifts in Public Opinion 327

20. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput.
Sci. 2(1), 1–8 (2011)

21. Balahur, A., Turchi, M.: Multilingual sentiment analysis using machine transla-
tion? In: Proceedings of the 3rd Workshop in Computational Approaches to Sub-
jectivity and Sentiment Analysis, pp. 52–60. Association for Computational Lin-
guistics (2012)

22. Balahur, A., Turchi, M.: Comparative experiments using supervised learning and
machine translation for multilingual sentiment analysis. Comput. Speech Lang.
28(1), 56–75 (2014)

23. Banea, C., Mihalcea, R., Wiebe, J., Hassan, S.: Multilingual subjectivity analysis
using machine translation. In: Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pp. 127–135. Association for Computational
Linguistics (2008)

24. Bautin, M., Vijayarenu, L., Skiena, S.: International sentiment analysis for news
and blogs. In: ICWSM (2008)

25. Bradley, M.M., Lang, P.J.: Affective norms for english words (ANEW): Stimuli,
instruction manual and affective ratings. Technical report C-1, Gainesville, FL.
The Center for Research in Psychophysiology, University of Florida (1999)

26. Flaounas, I., Lansdall-Welfare, T., Antonakaki, P., Cristianini, N.: The anatomy
of a modular system for media content analysis (2014). arXiv preprint
arXiv:1402.6208

27. Och, F.J.: Minimum error rate training in statistical machine translation. In: Pro-
ceedings of the 41st Annual Meeting on Association for Computational Linguistics,
vol. 1, pp. 160–167. Association for Computational Linguistics (2003)

28. Johnson, H., Martin, J., Foster, G., Kuhn, R.: Improving translation quality by
discarding most of the phrasetable. In: Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pp. 967–975 (2007)

29. Malyon, E.: Donald Trump attacks ’disrespectful’ NFL decision to allow players
to continue protests against racial inequality’, 18 October [Online]. Available at:
https://www.independent.co.uk/sport/us-sport/national-football-league/donald-
trump-nfl-players-protests-racial-inequality-kneel-anthem-colin-kaepernick-
a8006806.html (2017)

30. Jacobs, B., Laughland, O.: Charlottesville: trump reverts to blaming both
sides including ‘violent alt-left’, 16 Aug [Online]. Available at: https://www.
theguardian.com/us-news/2017/aug/15/donald-trump-press-conference-far-
right-defends-charlottesville (2017)

31. Wikipedia contributors: Annexation of Crimea by the Russian Federation’, (Mar
2014 [Online]. Available at: https://en.wikipedia.org/wiki/Annexation of Crimea
by the Russian Federation (2014)

http://arxiv.org/abs/1402.6208
https://www.independent.co.uk/sport/us-sport/national-football-league/donald-trump-nfl-players-protests-racial-inequality-kneel-anthem-colin-kaepernick-a8006806.html
https://www.independent.co.uk/sport/us-sport/national-football-league/donald-trump-nfl-players-protests-racial-inequality-kneel-anthem-colin-kaepernick-a8006806.html
https://www.independent.co.uk/sport/us-sport/national-football-league/donald-trump-nfl-players-protests-racial-inequality-kneel-anthem-colin-kaepernick-a8006806.html
https://www.theguardian.com/us-news/2017/aug/15/donald-trump-press-conference-far-right-defends-charlottesville
https://www.theguardian.com/us-news/2017/aug/15/donald-trump-press-conference-far-right-defends-charlottesville
https://www.theguardian.com/us-news/2017/aug/15/donald-trump-press-conference-far-right-defends-charlottesville
https://en.wikipedia.org/wiki/Annexation_of_Crimea_by_the_Russian_Federation
https://en.wikipedia.org/wiki/Annexation_of_Crimea_by_the_Russian_Federation

Biased Embeddings from Wild Data:
Measuring, Understanding and Removing

Adam Sutton, Thomas Lansdall-Welfare(B), and Nello Cristianini

Intelligent Systems Laboratory, University of Bristol, Bristol BS8 1UB, UK
{adam.sutton,thomas.lansdall-welfare,nello.cristianini}@bris.ac.uk

Abstract. Many modern Artificial Intelligence (AI) systems make use
of data embeddings, particularly in the domain of Natural Language
Processing (NLP). These embeddings are learnt from data that has been
gathered “from the wild” and have been found to contain unwanted
biases. In this paper we make three contributions towards measuring,
understanding and removing this problem. We present a rigorous way
to measure some of these biases, based on the use of word lists created
for social psychology applications; we observe how gender bias in occu-
pations reflects actual gender bias in the same occupations in the real
world; and finally we demonstrate how a simple projection can signifi-
cantly reduce the effects of embedding bias. All this is part of an ongoing
effort to understand how trust can be built into AI systems.

Keywords: Fairness in AI · Bias in data · Artificial intelligence
Natural language processing · Word embeddings

1 Introduction

With the latest wave of learning models taking advantage of advances in deep
learning [21–23], Artificial Intelligence (AI) systems are gaining widespread pub-
licity, coupled with a drive from industry to incorporate intelligence into all man-
ner of processes that handle our private and personal data, giving them a central
position in our modern-day society.

This development has lead to demand for fairer AI, where we wish to establish
trust in the automated intelligent systems by ensuring that systems represent
us fairly and transparently. However, there has been growing concern about
potential biases in learning systems [1,6] which can be difficult to analyse or
query for explanations of their predictions, leading to an increasing number of
studies investigating the way black-box systems represent knowledge and make
decisions [7,9,11,19,20]. Indeed, principled methods are now required that allow
us to measure, understand and remove biases in our data in order for these
systems to be truly accepted as a prominent part of our lives.

In the domain of text, many modern approaches often begin by embedding
the input text data into an embedding space that is used as the first layer in
a subsequent deep network [4,14]. These word embeddings have been shown to
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 328–339, 2018.
https://doi.org/10.1007/978-3-030-01768-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_27&domain=pdf

Biased Embeddings from Wild Data 329

contain the same biases [3], due to the source data from which they are trained.
In effect, biases from the source data, such as in the differences in representation
for men and women, that have been found in many different large-scale studies
[5,10,12], carry through to the semantic relations in the word embeddings, which
become baked into the learning systems that are built on top of them.

In this paper, we make three contributions towards addressing these con-
cerns. First we propose a new version of the Word Embedding Association
Tests (WEATs) studied in [3], designed to demonstrate and quantify bias in
word embeddings, which puts them on a firm foundation by using the Linguis-
tic Inquiry and Word Count (LIWC) lexica [17] to systematically detect and
measure embedding biases.

With this improved experimental setting, we find that European-American
names are viewed more positively than African-American names, male names are
more associated with work while female names are more associated with family,
and that the academic disciplines of science and maths are more associated
with male terms than the arts, which are more associated with female terms.
Using this new methodology, we then find that there is a gender bias in the
way different occupations are represented by the embedding. Furthermore, we
use the latest official employment statistics in the UK, and find that there is a
correlation between the ratio of men and women working in different occupation
roles and how those roles are associated with gender in the word embeddings.
This suggests that biases in the embeddings reflect biases in the world.

Finally, we look at methods of removing gender bias from the word embed-
dings. Having established that there is a direction in the embedding space that
correlates with gender, we use a simple orthogonal projection to remove that
dimension from the embedding. After projecting the embeddings, we investigate
the effect on bias in the embeddings by considering the changes in associations
between the words, demonstrating that the associations in the modified embed-
dings now correlate less to UK employment statistics among other things.

2 Methodology

2.1 Word Embedding

A word embedding is a mapping of words into an n-dimensional vector space.
Given a corpus of text, a word embedding can be created that will translate that
corpus into a set of semantic vectors representing each word. Each word that
appears in the corpus will be represented by an n-dimensional vector to indicate
its position within the embedding.

This embedding has a set of features that can be used in natural language
processing methods. The nearest neighbours of a word will be other words that
have similar linguistic or semantic meaning, when comparing words using a mea-
surement such as cosine similarity. There are also linear substructures within the
word embeddings that can explain how multiple words are related to each other,
making it a useful preprocessing step for natural language processing applica-
tions.

330 A. Sutton et al.

A word vector for a given word will now be defined as w. Word vectors are
normalised to unit length for measurement:

ŵ =
w

||w|| . (1)

All future analysis will be done using normalised word vectors, if vectors in
the future are edited they will again be normalised to unit length.

2.2 Comparison of Embedded Words

Two words vectors w1 and w2 within a vector space can be compared by taking
the dot product of their words:

〈ŵ1, ŵ2〉 =
n∑

i=1

ŵ1,i · ŵ2,i. (2)

As both word vectors are normalised, this is equivalent to the cosine similarity
between the two word vectors. A cosine similarity closer to 1 means that the
vectors are similar to each other, while a cosine similarity of 0 means that the
vectors are orthogonal to each other.

In addition to comparisons between individual word vectors, we can compare
an individual word vector to a set of word vectors. This is done by finding the
mean of the set, normalizing the resulting vector and calculating the dot product
with the individual word vectors as follows:

〈ŵ, µ̂〉 =
n∑

i=1

ŵi · µi

||µ|| . (3)

The resulting calculation gives us how closely an individual word is associated
with a larger set of words. This association can be used to assess how closely
related a given word is to different topics or concepts within the embedding
space.

2.3 Removing Bias

To remove bias, first two vectors have to be identified that contain contrast-
ing directions of the bias. These two vectors (w1 and w2) must be considered
“opposite” of each other semantically, in terms of the bias that is required to be
removed. The following method of debiasing is the same as presented in [2]:

wb = ŵ1 − ŵ2, (4)

where the vector wb will have the direction of bias in the embedding (for example,
he and she are different genders and could potentially be used to capture a gender
direction).

Biased Embeddings from Wild Data 331

Using this bias direction, all word vectors can now have that component
removed by projecting them into a space that is orthogonal to the bias vector:

w⊥ = ŵ − (ŵ · ŵT
b) · ŵb, (5)

where w⊥ is the original word vector with the biased component removed. The
rank of the matrix of orthogonal projected vectors will be reduced by one in a
non-trivial embedding set. These orthogonal word vectors are required to again
be normalised for further analysis.

3 Experiments

In this paper, we conduct three experiments on semantic word embeddings. We
first propose a new version of the Word Embedding Association Tests studied
in [3] by using the LIWC lexica to systematically detect and measure the biases
within the embedding, keeping the tests comparable with the same set of tar-
get words. We further extend this work using additional sets of target words,
and compare sentiment across male and female names. Furthermore, we investi-
gate gender bias in words that represent different occupations, comparing these
associations with UK national employment statistics. In the last experiment, we
use orthogonal projections [2] to debias our word embeddings, and measure the
reduction in the biases demonstrated in the previous two experiments.

3.1 Data Description and Embedding

In all of our experiments, the first step is to obtain semantic vectors from a
word embedding that we wish to analyse. We use GloVe embeddings [18], pre-
trained using a window size of 10 words on a combination of Wikipedia from
2014, and the English Gigaword corpus [16], where each of the 400,000 words in
the vocabulary for this embedding are represented by a 300-dimensional vector.
These vectors capture, in a quantitative way, the nuanced semantics between
words necessary to perform meaningful analysis of words, reflecting the semantics
found in the underlying corpora used to build them.

The Wikipedia data includes the page content from all English Wikipedia
pages as they appeared in 2014 when a snapshot was taken. The English Giga-
word corpus is an archive of newswire text data from seven distinct international
sources of English newswire covering several years up until the end of 2010 [16].

3.2 Experiment 1: LIWC Word Embedding Association Test
(LIWC-WEAT)

In this experiment, we introduce the LIWC Word Embedding Association Test
(LIWC-WEAT), where we measure the association between sets of target words
with larger sets of words known to relate to sentiment and gender coming from
the LIWC lexica [17]. We begin by using the target words from [3] which were

332 A. Sutton et al.

-0.1 0 0.1 0.2
Positive

-0.1

0

0.1

0.2

N
eg

at
iv

e

Euro-American
Afro-American

(a) Association of
European and African-
American Names with
Sentiment

0 0.1 0.2 0.3 0.4
Male

0

0.1

0.2

0.3

0.4

Fe
m

al
e

Science
Math
Arts

(b) Association of Subject
Disciplines with Gender

0.1 0.2 0.3 0.4
Work

0.1

0.2

0.3

0.4

Fa
m

ily

Male Names
Female Names

(c) Association of Gender
with Career and Family

-0.2 0 0.2 0.4
Work

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fa
m

ily

Male Names
Female Names

(d) Extended Association
of Gender with Career
and Family

0 0.1 0.2 0.3
Positive

0

0.05

0.1

0.15

0.2

0.25

0.3

N
eg

at
iv

e

Male Names
Female Names

(e) Association of Gender
with Sentiment

-0.2 0 0.2 0.4 0.6
Positive

-0.2

0

0.2

0.4

0.6

N
eg

at
iv

e

Male Names
Female Names

(f) Extended Association
of Gender with Sentiment

Fig. 1. Association between different words and concepts in Experiment 1, resulting
from the proposed LIWC Word Embedding Association Test.

originally used in [8], allowing us to directly compare our findings with the
original WEAT.

Our approach differs from that of [3] in that while we use the same set of
target words in each test, we use an expanded set of attribute words, allowing us
to perform a more rigorous, systematic study of the associations found within the
word embeddings. For this, we use attribute words sourced from the LIWC lexica
[17]. The categories specified in the LIWC lexica are based on many factors,
including emotions, thinking styles, and social concerns. For each of the original
word categories used in [3], we matched them with their closest equivalent within
the LIWC categories, for example matching the word lists for ‘career’ and ‘family’
with the ‘work’ and ‘family’ LIWC categories.

We tested the association between each target word and the set of attribute
words using the method described in Sect. 2.2, focussing on the differences in
association between sentimental terms and European- and African-American
names, subject disciplines to each of the genders, career and family terms with
gendered names, as well as looking at the association between gender and senti-
ment.

Biased Embeddings from Wild Data 333

-0.2 0 0.2 0.4
Male

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fe
m

al
e

(a) Association of Occu-
pation with Gender

-0.2 -0.1 0 0.1
Male/Female Association

0

0.2

0.4

0.6

0.8

1

M
al

e/
Fe

m
al

e
R

at
io

(b) Occupation Statistics
versus Gender Associa-
tion

Fig. 2. Results from Experiment 2, showing the association between gender and its
relation to the number of men and women working in those roles.

Association of European and African-American Names with Senti-
ment. Taking the list of target European-American and African-American
names used in [3], we tested each of them for their associated with the positive
and negative emotion concepts found in [17] by using the methodology described
by Eq. 3 in Sect. 2.2, replacing the short list of words used to originally represent
pleasant and unpleasant attribute sets.

Our test found that while both European-American names and African-
American names are more associated with positive emotions than negative emo-
tions, the test showed that European-American names are more associated with
positive emotions than their African-American counterparts, as shown in Fig. 1a.
This finding supports the association test in [3], where they also found that
European-American names were more pleasant than African-American names.

Association of Subject Disciplines with Gender. A further test was con-
ducted to find the association between words related to different subject disci-
plines (e.g. arts, maths, science) with each of the genders using the ‘he’ and ‘she’
categories from LIWC [17].

The results of our test again support the findings of [3], with Maths and
Science terms being more closely associated with males, while Arts terms are
more closely associated with females, as shown in Fig. 1b.

Association of Gender with Career and Family. Taking the list of target
gendered names used in [3], we tested each of them for their associated with the
career and family concepts using the categories of ‘work’ and ‘family’ found in
LIWC [17].

As shown in Fig. 1c, we found that the set of male names was more associated
with the concept of work, while the female names were more associated with
family, mirroring the results found in [3].

334 A. Sutton et al.

Extending this test, we generated a much larger set of male and female target
names from an online list of baby names1. Repeating the same test on this larger
set of names, we found that male and female names were much less separated
than suggested by previous results, with only minor differences between the two,
as shown in Fig. 1d.

Table 1. List of the top 10 occupations per gender by their association with gender.

Gender Occupations most associated with a gender

Male Manager, Engineer, Coach, Executive, Surveyor, Secretary,
Architect, Driver, Police, Caretaker, Director

Female Housekeeper, Nurse, Therapist, Bartender, Psychologist,
Designer, Pharmacist, Supervisor, Radiographer, Under-
writer

Association of Gender with Sentiment. Extending the number of tests
performed in the original WEAT study, we additionally tested the set of target
male and female names and computed their association with the positive and
negative emotions. We found that both sets of names are considered to be posi-
tive, similarly to the European-American and African-American names used in
the previous test, but with male names appearing to be slightly more positive,
as shown in Fig. 1e.

We further tested these associations using our extended list of gendered baby
names, as in Sect. 3.2, finding that there is no clear difference between the
positive and negative sentiment attached to names of different gender in the
word embedding.

3.3 Experiment 2: Associations between Occupations and Gender

In this experiment, we test the association between different occupations and
gender categories coming from LIWC [17]. The association between each of the
occupations is further contrasted against official employment statistics for the
United Kingdom detailing the actual number of people working in each job role.

Association of Occupation with Gender. We first generated a list of 62
occupations from data published by the Office of National Statistics [15], filter-
ing the list to only include those occupations for which there is reliable employ-
ment statistics and can be summarised by a single word in the embedding, e.g.
doctor, engineer, secretary. For each of these occupations, we tested their asso-
ciation with each of the genders, as shown in Fig. 2a, with the top ten occupa-
tions associated with each gender shown in Table 1. We found there was a 70%
(p-value < 10−10) correlation in the closeness of association between occupations
and each of the gender attribute sets.
1 Baby names were taken from http://bit.ly/2Dmqjco, separated into two gendered

lists.

http://bit.ly/2Dmqjco

Biased Embeddings from Wild Data 335

Occupation Statistics versus Occupation Association. Using the list of
occupations from the previous section, we compared their association with each
of the genders with the ratio of the actual number of men and women working in
those roles, as recorded in the official statistics [15], where 1 indicates only men
work in this role, and 0 only women. We found that there is a strong, significant
correlation (ρ = 0.57, p-value < 10−6) between the word embedding association
between gender and occupation and the number of people of each gender in the
United Kingdom working in those roles. This supports a similar finding for U.S.
employment statistics using an independent set of occupations found in [3].

3.4 Experiment 3: Minimising Associations via Orthogonal
Projection

In this experiment, we deploy a method for removing bias from word embeddings,
first published in [2], and repeat all previous association tests related to gender
reported in this paper, empirically showing the effect of bias removal on the word
associations.

Finding an Orthogonal Projection for Gender. To remove gender from
the embedding, we first need to find a projection within the space that best
encapsulates the gender differences between words. To find the best projection,
we began from a list of 5 gendered pronouns in LIWC [17]. For each of the
pronouns, we paired them with their gender-opposite, for example pairing “he”
and “she”, “himself” and “herself” and so on. Taking the word vector from
the embedding for each pronoun, we computed their difference, as described in
Sect. 2.3, giving us a set of 5 potential gender projections.

Each gender projection was tested against an independent set of paired gen-
der words sourced from WordNet [13] (containing implicit gendered words such
as king and queen). After applying the gender projection to the test word-pairs,
following the procedure of [2], we measured the average cosine similarity between
the word-pairs. The gender projection that led to the WordNet word-pairs that
are most similar (highest cosine similarity) was then selected as our gender pro-
jection, corresponding to the difference between the vectors for “himself” and
“herself”.

Revised Association Tests. Using the orthogonal gender projection found in
the previous section, we repeated the tests from the LIWC-WEAT in Sect. 3.2
that were related to gender. This included the association of science, mathe-
matics and the arts with gender, the association of male and females names
with sentiment, work and family, and the ranking of occupations by their gender
association.

In Experiment 1, we previously found that the disciplines of science and
maths were more associated with male terms in the embedding, while the arts
were closer to female terms. The association of each of these subject disciplines

336 A. Sutton et al.

with gender after orthogonal projection was found to be more balanced, with
closer to equal association for both male and female terms, shown in Fig. 3a.

Male and Females names tested in [3] showed a clear distinction in their
association with work and family respectively, with our replication of the test in

0 0.1 0.2 0.3 0.4
Male

0

0.1

0.2

0.3

0.4

Fe
m

al
e

Science
Math
Arts

(a) Revised Association
of Subject Discipline with
Gender

0.1 0.2 0.3 0.4
Work

0.1

0.2

0.3

0.4

Fa
m

ily

Male Names
Female Names

(b) Revised Association of
Gender with Career and
Family

-0.2 0 0.2 0.4
Work

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fa
m

ily

Male Names
Female Names

(c) Revised Extended As-
sociation of Gender with
Career and Family

0 0.1 0.2 0.3
Positive

0

0.05

0.1

0.15

0.2

0.25

0.3

N
eg

at
iv

e

Male Names
Female Names

(d) Revised Association of
Gender with Sentiment

-0.2 0 0.2 0.4 0.6
Positive

-0.2

0

0.2

0.4

0.6

N
eg

at
iv

e

Male Names
Female Names

(e) Revised Extended As-
sociation of Gender with
Sentiment

-0.2 0 0.2 0.4
Male

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Fe

m
al

e

(f) Revised Association of
Occupation with Gender

-0.2 -0.1 0 0.1
Male/Female Association

0

0.2

0.4

0.6

0.8

1

M
al

e/
Fe

m
al

e
R

at
io

(g) Occupation Statistics
versus Revised Gender
Association

Fig. 3. Association between different words and concepts in Experiment 3 after word
vectors have been debiased via orthogonal projection in the gender direction. Line-
traces shown in blue indicate where points have moved from after debiasing.

Biased Embeddings from Wild Data 337

Sect. 3.2 finding the same results. Performing the same tests again after applying
the gender projection to both name lists, we wished to quantify the change in
associations. We calculated the change in the distance between the centroids of
each set of names before and after applying the orthogonal gender projection,
finding that the association with work for males and family for females reduced,
closing the gap between male and female names by 37.5% for the target names
found in the original WEAT and 66% for the extended list of names respectively.

In our experiment looking at the association of positive and negative emotions
with male and female names, we found that male and female names were both
positive, with male names being slightly more associated with positive emotions
than female names. The same finding were also true when using a larger set
of names and making the same comparison. Applying the orthogonal gender
projection to the word vectors, we again looked at how much the difference
between the two sets was reduced. We found that for the target names found in
the original WEAT, the distance between the two sets of names was reduced by
27%, while for the extended list the difference was reduced by 40%.

In Experiment 2, we found that there was a significant correlation of 70%
between the male and female association of each occupation, while comparing the
associations with official statistics of the number of men and women in each role
showed a correlation of 53%. Again, applying the orthogonal gender projection
and repeating these tests, we found that, on average, occupations moved closer
to having an equal association with each of the genders (Fig. 3f) and that their
association with gender was not significantly correlated (ρ = 0.178, p-value =
0.167) with the number of men and women working in each role.

4 Discussion

In our experiments, we have shown the effect of one debiasing procedure for
reducing the association a given word has in a word embedding generated from
natural language corpora with concepts related to gender. Being able to do so
relies on a set of gendered terms from which we can obtain pairings with opposite
meaning, allowing us to find an orthogonal projection within the space. This will
not always be possible for every type of bias that we may wish to remove (or at
least reduce) in an embedding because there will not always be a suitable word
vector pair that can be used to represent a given bias.

Other biases which are present may also be impossible to detect with our
LIWC-WEAT method, as a pre-defined and validated list of words from LIWC
were required to perform the tests. Other potentially undesired biases such as
race or age are not currently able to be captured using the LIWC lexica, and
thus different, carefully considered sets of words would need to be curated.

Indeed, general solutions to this problem are probably impossible, for philo-
sophical reasons, but we believe that biases can at least be mitigated or compen-
sated for, by removing specific subtypes of bias, given we have ways to measure
and detect them in the first place. However, in this process, care should also be
taken as we may introduce or compound other existing biases in the embeddings.

338 A. Sutton et al.

5 Conclusions

If we want AI to take a central position in society, we need to be able to detect
and remove any source of possible discrimination, to ensure fairness and trans-
parency, and ultimately trust in these learning systems. Principled methods to
measure biases will certainly need to play a central role in this, as will an under-
standing of the origins of biases, and new developments in methods that can be
used to remove biases once detected.

In this paper, we have introduced the LIWC-WEAT, a set of objective tests
extending the association tests in [3] by using the LIWC lexica to measure bias
within word embeddings. We found bias in both the associations of gender and
race, as first described in [3], while additionally finding that male names have
a slightly higher positive association than female names. Biases found in the
embedding were also shown to reflect biases in the real world and the media,
where we found a correlation between the number of men and women in an
occupation and its association with each set of male and female names. Finally,
using a projection algorithm [2], we were able to reduce the gender bias shown
in the embeddings, resulting in a decrease in the difference between associations
for all tests based upon gender.

Further work in this direction will include removing bias in n-gram embed-
dings, embeddings that include multiple languages and new procedures for both
generating better projections to remove a given bias, using debiased embeddings
as an input to an upstream system and testing performance, and learning word
embeddings which can be generated without chosen directions by construction.

Acknowledgements. AS is supported by EPSRC Centre for Communications. TLW
and NC are support by the FP7 Ideas: European Research Council Grant 339365 -
ThinkBIG.

References

1. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias: theres software
used across the country to predict future criminals. and its biased against blacks.
ProPublica, May 23 2016 (2016)

2. Bolukbasi, T., Chang, K.W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to
computer programmer as woman is to homemaker? Debiasing word embeddings.
In: Advances in Neural Information Processing Systems, pp. 4349–4357 (2016)

3. Caliskan, A., Bryson, J.J., Narayanan, A.: Semantics derived automatically from
language corpora contain human-like biases. Science 356(6334), 183–186 (2017)

4. Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: Semeval-2017 task 1:
semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055 (2017)

5. Flaounas, I., Ali, O., Lansdall-Welfare, T., De Bie, T., Mosdell, N., Lewis, J.,
Cristianini, N.: Research methods in the age of digital journalism: massive-scale
automated analysis of news-contenttopics, style and gender. Dig. Journal. 1(1),
102–116 (2013)

http://arxiv.org/abs/1708.00055

Biased Embeddings from Wild Data 339

6. Flores, A.W., Bechtel, K., Lowenkamp, C.T.: False positives, false negatives, and
false analyses: a rejoinder to machine bias: there’s software used across the country
to predict future criminals and it’s biased against blacks. Fed. Probat. 80, 38 (2016)

7. Fong, R., Vedaldi, A.: Net2Vec: quantifying and explaining how concepts are
encoded by filters in deep neural networks. arXiv preprint arXiv:1801.03454 (2018)

8. Greenwald, A.G., McGhee, D.E., Schwartz, J.L.: Measuring individual differences
in implicit cognition: the implicit association test. J. Personal. Soc. Psychol. 74(6),
1464 (1998)

9. Jia, S., Lansdall-Welfare, T., Cristianini, N.: Freudian slips: analysing the internal
representations of a neural network from its mistakes. In: Advances in Intelligent
Data Analysis XVI, pp. 138–148 (2017)

10. Jia, S., Lansdall-Welfare, T., Sudhahar, S., Carter, C., Cristianini, N.: Women
are seen more than heard in online newspapers. PLOS ONE 11(2), 1–11 (2016).
https://doi.org/10.1371/journal.pone.0148434

11. Kahng, M., Andrews, P.Y., Kalro, A., Chau, D.H.P.: Activis: visual exploration of
industry-scale deep neural network models. IEEE Trans. Vis. Comput. Gr. 24(1),
88–97 (2018)

12. Lansdall-Welfare, T., Sudhahar, S., Thompson, J., Lewis, J., Team, F.N., Cristian-
ini, N., Gregor, A., Low, B., Atkin-Wright, T., Dobson, M.: Content analysis of
150 years of british periodicals. Proc. Natl. Acad. Sci. 114(4), E457–E465 (2017)

13. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–
41 (1995)

14. Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., Stoyanov, V.: SemEval-2016
task 4: sentiment analysis in twitter. In: Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016), pp. 1–18 (2016)

15. Office for National Statistics: Statistical bulletin: Annual survey of hours and
earnings: 2017 provisional and 2016 revised results (2017). https://www.ons.
gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/
bulletins/annualsurveyofhoursandearnings/2017provisionaland2016revisedresults

16. Parker, R., Graff, D., Kong, J., Chen, K., Maeda, K.: English Gigaword Fifth
Edition ldc2011t07. DVD. Linguistic Data Consortium, Philadelphia (2011)

17. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count:
LIWC 2007. Mahway: Lawrence Erlbaum Associates, vol. 71 (2001)

18. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

19. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the pre-
dictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

20. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating
the visualization of what a deep neural network has learned. IEEE Trans. Neural
Netw. Learn. Syst. (2017)

21. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning
from simulated and unsupervised images through adversarial training. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), vol. 3, p. 6
(2017)

22. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. Nature 529(7587),
484–489 (2016)

23. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)

http://arxiv.org/abs/1801.03454
https://doi.org/10.1371/journal.pone.0148434
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/bulletins/annualsurveyofhoursandearnings/2017provisionaland2016revisedresults
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/bulletins/annualsurveyofhoursandearnings/2017provisionaland2016revisedresults
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/bulletins/annualsurveyofhoursandearnings/2017provisionaland2016revisedresults
http://arxiv.org/abs/1703.10593

Real-Time Excavation Detection at
Construction Sites using Deep Learning

Bas van Boven1(B), Peter van der Putten1, Anders Åström2, Hakim Khalafi3,
and Aske Plaat1

1 LIACS, Leiden University, Leiden, The Netherlands
bas@basvanboven.nl, {p.w.h.van.der.putten, a.plaat}@liacs.leidenuniv.nl

2 Accenture, Singapore, Singapore
anders.astrom@accenture.com
3 Amsterdam, The Netherlands

hakimkse@gmail.com

Abstract. In this paper we present a robust approach to real world,
real time action classification. It relies on a convolutional network based
object detector to extract relevant shape and motion features and uses
these features as input for an action classifier. Using a sequence of local-
ization and classification information of various objects deemed relevant
to an action, the model recognizes predefined actions in a reliable man-
ner, and can localize these actions in camera footage in real time. With-
out loss of generalization, we study our approach within the context
of a construction company that wants to prevent unauthorized exca-
vation activities happening at their construction sites. We differentiate
four excavation activities, two of which we detect on the basis of actions
because the target pattern contains temporal features, and two of which
we detect on the basis of object presence only. The system needs to
operate in real time, on basic on-site hardware and under varying image
conditions.

Keywords: Video analysis · Action classification · Convolutional
neural networks · Feature engineering

1 Introduction

The detection and classification of specific actions in video is a difficult task,
especially if computing resources and data are limited. Convolutional nets can be
a powerful tool, especially to detect concepts without having to engineer specific
features. They require a relatively large amount of labelled data though, and
more importantly, when applied end to end there is limited ability to leverage
domain knowledge to engineer features that might be useful for the task at hand.

In this paper we present a two staged approach that combines the benefits
of deep learning with the flexibility and control of feature engineering. We apply
it to a new real world problem, the detection of unwanted human or mechanical
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 340–352, 2018.
https://doi.org/10.1007/978-3-030-01768-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_28&domain=pdf

Real-Time Excavation Detection at Construction Sites using Deep Learning 341

excavation at construction sites. We approach this problem from scratch, from
gathering camera footage, labeling the data, training classifiers, integrating these
into an end to end pipeline, and deploying and running the system in the real
world. An additional constraint is that the system should monitor the site in real
time, with minimal latency, processing feeds from four cameras using a laptop
without internet connectivity. We first detect objects of interest, such as various
parts of excavators, and then use domain knowledge to enrich this information
with a variety of engineered features, and feed sequences of this data into a
subsequent more standard classifier. The experiments demonstrate the validity
and real world flexibility of the approach, which makes it a valid approach to
explore for a range of real world problems with similar needs.

This paper is structured as follows. We will first introduce the business
problem (Sect. 2) and related background (Sect. 3). Then we will describe our
methods and approach for the end to end pipeline in Sect. 4, and report on
experimental results (Sect. 5), followed by a discussion (Sect. 6) and conclusion
(Sect. 7).

2 Problem Description

A construction company is facing losses due to unauthorized excavation activities
at their building sites. Because of various reasons, such as misinterpretation
of work instructions and erroneous reading of site maps, their workers often
excavate at wrong locations. This can in turn lead to damage to important
infrastructure like sewage pipes and power lines, and repairing such accidental
damage can be expensive. In order to limit the cost of such damage, they need
a system that can automatically detect unapproved excavation events.

Using the system, one should be able to deploy four different cameras on
tripods, which are linked to the same laptop workstation by means of a wireless
connection. On this workstation, one can configure the zones in which excava-
tion is prohibited by means of a user interface. When excavation activities are
detected within this zone, a SMS alert should be sent and an on-site alarm should
be triggered. All excavation activities need to be detected before major damage
has been done. This means processing needs to happen in real time with mini-
mal latency. As internet connectivity cannot be guaranteed, all video processing
and analysis needs to happen locally on a laptop (i7-6820HK processor, 32GB
of DDR4-memory, a 512GB SSD and a NVIDIA GeForce GTX1080 GPU with
8GB of GDDR5X video memory).

The system should be designed to detect four different kinds of excavation
activities. First of all, there is mechanical excavation by digging: in this situ-
ation, a mechanical excavator with a bucket attachment at the end of its arm
is performing an action that will directly lead to it moving around ground or
retracting the arm of the excavator in order to reach into the ground. Second,
there is mechanical excavation by breaking: in this situation, a mechanical exca-
vator with a breaker attachment at the end of its arm is performing an action

342 B. van Boven et al.

that will directly lead to it putting its piercer into the surface. As in the previ-
ous digging example, this definition does not encompass riding or turning, but it
does include extending or retracting the arm in order to reach into the ground.

Third, we detect manual excavation by people who are crouching: in this
situation, a worker is using a tool to manually dig into the ground, for which it
is necessary for them to assume a crouching position. There are three reasons that
the definition is formulated as such. First is the observation that it would be very
difficult to detect all the individual tools used for manual excavation. The second
reason is that for most of these tools, assuming a crouching position is necessary.
Finally, local observations confirmed that workers are seldom crouching, if not for
excavating. Thus, crouching people are a good indicator of manual excavation
activities. Fourth, we detect manual excavation by an earth rod tool: in this
situation, a worker is using an earth rod tool to manually drill a hole into the
ground. An earth rod is a tool that consists of two parts: a long thin stick that can
be beaten into the ground, and a hammer that can be used for this. As workers
are generally not crouching when using this tool, it is necessary to detect this
type of excavation separately.

3 Related Work

Both object detection and action classification are problems of interest within
domains like surveillance, automatic video classification and video retrieval.

The objective of object detection is to identify instances of certain predefined
object classes in an image. Up until recently, solutions to this problem that pro-
duced state-of-the-art accuracy relied on machine learning methods like SVMs
to produce their results [4]. However, recent developments in the field of deep
learning have enabled more accurate object detection methods like Fast(er) R-
CNN [9,20] and R-FCN [2], which use deep convolutional neural networks as the
basis of their architecture. Even more recent architectures like You-Only-Look-
Once [18], YOLOv2 [19] and the Single-Shot Detector [13] are only marginally
less accurate then the current state-of-the-art, but their architectures are fast
enough to provide inference in real-time. All of these architectures rely on a con-
volutional base network to provide the first network layers: popular choices are
VGG-16 [22], Resnet-101 [26], Inception v3 [24] and Inception Resnet v2 [23].

The objective of action classification is to determine which kind of predefined
action is undertaken in a series of images. A distinction can be made between
approaches which feed hand-crafted features into a trainable classifier [5,11],
and approaches which use a trainable feature extractor [8,25] to select the most
useful features for classification [21]. Furthermore, the type of action one tries
to classify and the environment in which one tries to accomplish this are also
major factors in the success of the undertaken approach [21]. On datasets of less
controlled environments like Hollywood2 [21], trainable feature extractors (CNNs
[12]) have started to outperform hand-crafted features [6]. Recent state-of-the-art
CNN-based approaches feed their output through SVMs [8] or computationally
more expensive architectures like LSTMs [25] to produce a classification, but

Real-Time Excavation Detection at Construction Sites using Deep Learning 343

these studies were based on readily available data, not developed and tested
from scratch in a real world field setting as in our work.

4 Approach

We combine the ability of a CNN-based approach to extract features from uncon-
trolled environments with the information density hand-crafted features can pro-
vide. Our approach consists of two models: an object detector and an action
classifier. The object detector predicts which pretrained objects are are present
in the video frame, along with a location (bounding box) and a confidence value,
given a JPEG video frame as input. This bounding box data is used directly to
detect manual excavation, and is also fed into the action classifier, which pre-
dicts if mechanical excavation is taking place in a given sequence of bounding
box data. The output from both models can be thresholded to find the right
balance between sensitivity and specificity.

4.1 Data Collection and Preparation

We have constructed a dataset of video footage of excavation activities, from
which we have extracted training and test data for both our object detector
and action classifier. Most videos are shot by the project team on different days
and time of days, in different locations, with different equipment, from different
angles and by various people. We were constrained by the fact that self-captured
data is not necessarily as heterogeneous as one would like it to be. One way to
prevent overfitting [1] on domain-specific variables is to augment the dataset
with videos from external sources, which we have done for the object detector
ground truth. The videos were also randomly split between a training set (80%
of videos) and a test set (20% of videos).

Both actions and objects have to be labeled. In our case, the process of
gathering and labeling real-world data has proven to be very time consuming.
On average, a person could label around 300 images per hour for the object
detector, or 20 min of video for the action classifier. In our case, this has resulted
in around 50 h of continuous labeling for both models combined, on top of the
time it took to capture the footage.

The ground truth for the object detector consists of the set of bounding boxes
of all predefined objects within a set of JPEG-frames; we have targeted objects
that support both manual and mechanical excavation detection. For manual
excavation detection, we detect workers who are either crouching or have an
earth rod in their hands. For mechanical excavation detection, we detect various
parts of the excavator, the underlying assumption being that the positions and
movements of excavator parts are good indicators of said activities. We have
defined eight predefined objects: “cabin” (the part of an excavator that contains
the driver), “upper arm” (the arm section of an excavator directly connected to
the cabin), “forearm” (the arm section of an excavator that can be connected to
an attachment), “wheelbase” (the caterpillar wheels of an excavator), “bucket”

344 B. van Boven et al.

Table 1. Overview of ground
truth data for the object
detector.

Total Filtered Training Test

Videos 230 n/a 184 46

Frames 8,629 6,251 4,939 1,312

cabin 6,436 4,579 3,563 1,016

upper arm 6,182 4,373 3,368 1,005

forearm 6,190 4,368 3,407 961

wheelbase 6,603 4,750 3,708 1,042

bucket 5,163 3,512 2,860 652

breaker 1,284 1,029 688 341

crouching 1,751 1,324 1,109 215

earth rod 1,698 1,267 1,026 241

Table 2. Overview of ground truth
data for the action classifier for various
window sizes.

Total Training Test

Videos 117 95 22

Frames: exc. 9,703 7,977 1,726

Frames: no exc. 7,574 5,892 1,682

Window 3: exc. 3,218 2,432 786

Window 3: no exc. 2,488 2,003 485

Window 5: exc. 1,929 1,595 334

Window 5: no exc. 1,475 1,185 290

Window 7: exc. 1,388 1,142 246

Window 7: no exc. 1,010 821 189

Window 9: exc. 1,072 818 254

Window 9: no exc. 774 618 156

Window 11: exc. 890 726 164

Window 11: no exc. 607 509 98

(the scooping attachment of an excavator), “breaker” (the drilling attachment of
an excavator), “crouching” (a worker who is crouching to excavate) and “earth
rod” (a worker who is excavating with an earth rod).

Some videos were captured by a camera man walking around the construction
site, thus enlarging the intra video variety by capturing the same scene from
different viewpoints. From 230 recorded videos, we have extracted frames at a
rate of one frame per two seconds, which resulted in a pool of 8,629 frames. All
of the occurrences of the eight objects listed above were then manually labeled
by seven different people, although each frame was labeled by one person only.
The generated ground truth was then filtered: first, frames that were very similar
to the previous video frame (when all of the labeled bounding boxes overlap for
at least 80% with a bounding box of the same object in the previous frame)
were removed. Besides that, we have limited the number of extracted frames per
video to 50, and took a random subset when this threshold was exceeded. Also,
we manually removed frames that were heavily distorted by video artefacts such
as ghosting or synchronization jitter [17]. Table 1 provides an overview of the
ground truth data used for training and testing our object detector.

The ground truth for the action classifier consists of a classification (“mechan-
ical excavation”, “no mechanical excavation” or “unusable”) for each second of
video, and was generated from 117 videos of variable length (between 16 and
753 s each, with a total running time of 6 h and 35 min) but filmed from a fixed
point-of-view, which is relevant because the temporal aspect of actions is com-
bined with the assumption that cameras for the production system are always

Real-Time Excavation Detection at Construction Sites using Deep Learning 345

Fig. 1. Sample output from the object detector model, detections with highest confi-
dence of each object are shown.

mounted on tripods. Besides this classification, each second of video is associ-
ated with a list of detections from an extracted video frame, as provided by the
object detector. The videos were then split into non-overlapping windows of a
length of an odd number of frames, and sequences which contained at least one
“unusable” classification were removed from the window creation process. The
remaining windows got assigned a target classification based on a majority vote
over the contained frames. Finally, we have balanced the number of “excavation”
and “no excavation” samples to be exactly the same, by randomly discarding
some of the “excavation” windows. Table 2 provides an overview of the ground
truth data used for training and testing our action classifier.

4.2 Design of the Object Detector

We select the SSD-512 architecture for the object detector, mainly for its speed
[13]: our solution needs to process frames of four different cameras, and it is
not the only software that should run on the production system: we also have
to reserve resources for the action classifier, an orchestration service and some
rule-based logic. The SSD-architecture is based on the traditional feed-forward
Convolutional Neural Network [12], where the first layers of the network are ini-
tialized from a pretrained base network (in our case VGG-16 [23]): the benefit of
this being that such a base network is able to extract higher-level features from
images, which reduces training time. After this base network, five additional sets
of feature map layers are defined, which are all implemented as a convolutional
layer and responsible for object detections on a different scale. Finally, all detec-
tions of feature maps are concatenated in the network output layer, from which
all detections with a confidence lower than 1% are filtered out. After that, the
non-maximum suppression algorithm [15] is applied in order to merge different
overlapping detections of the same object into one. Finally, for each processed
frame we store the 200 detections with the highest associated confidence. See
Fig. 1 for an example of the object detector applied to a public domain image.

Our training function is taken from the original SSD-512 implementation [13],
which in turn is based on minimizing the MultiBox loss function [3], although

346 B. van Boven et al.

this loss function is adapted slightly to handle detections of multiple different
classes [20].

We also deploy a method to augment our training set, analog to the orig-
inal SSD-512 implementation [13]. First of all, a sub sample is selected from
the original image, out of one of the following three options: the original input
image, a sub sample covering at least 10%, 30%, 50%, 70% or 90% of the orig-
inal input image, or a sub sample of random size. Now, on this sub sample,
three translations are applied: a 50% chance of a horizontal flip, a 50% chance
of the image canvas being randomly expanded with a maximum of 400%, and
a 50% chance of hue, saturation, brightness and contrast adjustments, respec-
tively. Furthermore, the balance between positive and negative examples can be
significantly unbalanced in favor of the negative ones. Therefore, we pick at most
three times as many negative as positive examples, selecting the ones with the
highest associated confidence loss, as per the original SSD-512 implementation
[13].

4.3 Design of the Action Classifier

The action classifier is mainly based on AdaBoost [7], which combines a boosting
algorithm with a multitude of decision trees to arrive at a prediction. We use
500 estimators and the SAMME.R real boosting algorithm [27].

In order to make the action classifier as robust to real-life variety as pos-
sible, we have experimented with generating 10 permutations for each training
set sample, on which a number of translations are applied. Analogue to the
object detector, permutations have a 50% chance of getting flipped horizontally.
Furthermore, all detections are scaled to a random size between 70% and 130%,
keeping the aspect ration intact and preventing detections to move outside image
bounds. Finally, all detections are moved to a random place on the image canvas,
again keeping the distance between all detections intact.

Input features are based on object detections, which we limit to the strongest
detection of each of the six mechanical excavator parts per frame, if any. All of the
input features are normalized between 1 and −1. For each of the six parts, we first
distinguish five base features, namely the x- and y-coordinate of the center of the
predicted bounding box, the bounding box width and height and the confidence
of the prediction. Because this representation of the features is not necessarily the
most useful representation for discerning excavation actions from non-excavation
actions, we augment these features with a set of engineered features, which are
all different representations of these base features. In order to express movement
of parts, we define the difference between each set of consecutive frames for
each of the five attributes for each of the six excavator parts. Also, we calculate
a motility score for each object over the whole window, based on the relative
movements of the center point of the corresponding bounding box. Besides that,
we define relative arm motility, representing the motility of both arm parts
compared to the motility of the cabin and wheelbase objects in order to detect
rotation. Besides input features related to movement, we also define features
related to distance. For each object except for the cabin object in each frame,

Real-Time Excavation Detection at Construction Sites using Deep Learning 347

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

105

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training Iterations

A
ve
ra
ge

P
re
ci
si
on

mean cabin
forearm upper arm

wheelbase bucket
breaker crouching
earth rod

Fig. 2. Accuracy of the object detector in
AP after training for a certain number of
iterations. The thick red line denotes the
mean accuracy over all the classes. After
90,000 iterations the mAP reaches 0.80.

Table 3. Average Precision (AP) accu-
racy on the test set of excavator pictures
from various websites.

Class Average Precision Samples

Cabin 0.99 49
Forearm 0.92 49
Upper Arm 0.89 49
Wheelbase 0.99 49
Bucket 0.83 41

we supply the horizontal, vertical and Pythagorean distance between that object
and the cabin. In order to determine which type of excavator is pictured, we also
supply the difference in confidence between the two types of attachments in
each frame, along with the difference in horizontal, vertical and Pythagorean
distance between both attachments and the forearm object. Finally, we define
features related to object size. We calculate the total width, height and surface
area of each object over all frames, the relative size of arm boxes compared to
cabin boxes as an indicator for the camera angle and the cumulative horizontal,
vertical and Pythagorean change in size of each object over all frames as an
additional indicator of rotation.

5 Results

Our experiments are performed on the object detector and action classifier sep-
arately.

5.1 Object Detector

The accuracy of the object detector over a number of training iterations is dis-
played in Fig. 2. Each iteration, a batch of 8 training examples is passed both
forwards and backwards. We have used a SGD-solver combined with a multistep
learning rate policy and an initial learning rate of 1×10−6 [13]. Compared to the
other objects, the accuracy of the cabin and wheelbase object detection does not
improve as much with more iterations. A likely reason is that the base network
VGG-16 is trained on an object that is visually similar to these objects: a car
[22]. Furthermore, we have observed that the model incorrectly classifies certain

348 B. van Boven et al.

3 5 7 9 11
0.5

0.6

0.7

0.8

0.9

Window Size

A
re
a
U
nd

er
C
ur
ve

augmentation
no augmentation

Fig. 3. The influence of data augmenta-
tion with AdaBoost on the AUC-score of
the action classifier.

3 5 7 9 11
0.5

0.6

0.7

0.8

0.9

Window Size

A
re
a
U
nd

er
C
ur
ve

Gaussian Naive Bayes
Multilayer Perceptron

Support Vector Machine
Random Forest

AdaBoost

Fig. 4. The influence of window size and
classifier choice on the AUC-score of the
action classifier.

Table 4. Action classifier confusion
matrix. Ground truth in rows, predictions
in columns.

Excavation No excavation

Excavation 224 57
No excavation 48 369

Table 5. Action classifier confusion
matrix (1 frame-per-window version).

Excavation No excavation

Excavation 1,017 451
No excavation 391 1,703

patches of dirt as a bucket, probably because the color is similar and there is
often dirt attached to the bucket attachment in our training set.

We have also constructed a small dataset consisting of excavator images
crawled from the web in order to determine if our object detector could also
be useful outside the boundaries of our testing environment. This dataset was
manually labeled using the same approach as we used for constructing our train
and test sets. The results of running the model on this test set are given in Table
3. We can see that our model was able to generalize well to these different types
of excavators.

5.2 Action Classifier

The optimal parameters to fit our use case are determined experimentally, two
of which are window size and classifier type. We have established the influence of
these parameters by training 25 different models: 5 different classifiers combined
with 5 different window sizes. After training these 25 models, we compare them
on the basis of their AUC-score [10]. The results of these experiments are plotted
in Fig. 4. Top performers are AdaBoost on a window size of 5/7 and Random
Forest on a window size of 3/5, resulting in an AUC-score of 0.84-0.85.

We have also tested our data augmentation routine on a variety of window
sizes. The results of this experiment can be found in Fig. 3. Overall, data aug-
mentation does not improve the accuracy of the action classifier, indicating that
either the amount of ground truth data we feed to the model initially is already

Real-Time Excavation Detection at Construction Sites using Deep Learning 349

Table 6. The 10 most important features, ranked on information gain.

Attachment closest to forearm 1.6%

Motility of cabin 1.4%

Motility of upper arm 1.2%

Cumulative horizontal distance between cabin and upper arm 1.2%

Difference in vertical location of bucket, frame 1–2 1.2%

Difference in vertical location of bucket, frame 3–4 1.2%

Difference in vertical location of upper arm, frame 3–4 1.2%

Horizontal location of forearm, frame 5 1.2%

Difference in horizontal location of cabin, frame 3–4 1.0%

Difference in vertical location of upper arm, frame 2–3 1.0%

sufficient, or that the variety the data augmentation is providing is not mean-
ingful.

Eventually we have implemented an AdaBoost classifier and a window size
of 5 in our production model, with data augmentation turned off. See Table 4
for the confusion matrix belonging to this action classifier. The corresponding
AUC-score is 0.84. 85% of the samples are classified correctly.

A benefit of our action classifier is that we are able to take not only shape
information, but also motion information into account. In order to prove the
usefulness of this approach, we have constructed a variant of our action classifier
where windows consist of one frame only, thus eliminating all motion information
from training data. As can be derived from Table 5, such a model classifies 76%
of the samples correctly. This is 9% less then the accuracy our 5 frames-per-
window version achieves on the same data set. The corresponding AUC-score
decreased to 0.75.

In order to further understand the characteristics of mechanical excavation,
we also determine the features the model considers most important to make
a distinction between excavating and non-excavating actions on the basis of
information gain. The 10 features associated with the highest information gain
are listed in Table 6. With the exception of the horizontal location of the forearm
and the confidence of the cabin detection, all of the 15 most important features
are engineered features, highlighting the importance of feature engineering.

6 Discussion

Our two stage approach provides a good balance between more assumption free,
data driven learning at a lower level and using domain knowledge at a higher
level, for improved results and better control. In the first object detection step
we leave the task of figuring out the best features to the convolutional net,
though we already guide it to learn the right concepts by specifying specific
object classes. The subsequent action classification step then allows for a lot of

350 B. van Boven et al.

flexibility to engineer use case specific features based on detected objects, and the
experiments have demonstrated that these are most predictive. The experiments
confirmed as well that using sequences as input, i.e. more than one frame, gave
superior results, providing further support for a sequence based approach. From
an application perspective, the production pilot lived up to the expectations
of the construction company, and the intent is to keep using the system for a
prolonged period of time. Also, a range of other companies have shown interest
in the pilot, further demonstrating the relevancy of this problem.

In terms of future work, there are various methods in which our approach
could be improved further. First of all, one could incorporate object tracking
into the object detector model, to provide more reliable detection results to the
action classifier [14]. Also, pose estimation could be used in order to differentiate
various angles of the same action, as the mechanical excavation action looks
very different viewed from different angles [16]. Another possible improvement
is the incorporation of online learning methods, as we have already implemented
collection methods for incorrectly classified alerts.

7 Conclusion

We have demonstrated an approach to real time action classification based on
object detection, under difficult real world conditions and with limited hardware.
We have applied this approach to the practical problem of detecting unauthorized
excavation activities on construction sites. Our system is capable of classifying
actions in real-time on a laptop workstation: we are able to analyze the output
of four different cameras simultaneously without performance issues. To best
balance assumption free learning with application of problem domain knowl-
edge, we use a neural network based object detector to extract relevant shape
and motion features, and then use these features as well as problem specific,
engineered features derived from this as input for an action classifier. A major
benefit of this approach is that it is insensitive to stray objects and movements,
and thus is able to function in uncontrolled environments. A second benefit is
that we can use localization information originating from the object detector to
localize actions within a video frame.

References

1. Babyak, M.A.: What you see may not be what you get: a brief, nontechnical intro-
duction to overfitting in regression-type models. Psychosom. Med. 66(3), 411–421
(2004)

2. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully
convolutional networks. Advances in Neural Information Processing Systems, pp.
379–387 (2016). http://arxiv.org/abs/1605.06409

3. Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using
deep neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2155–2162 (2014)

http://arxiv.org/abs/1605.06409

Real-Time Excavation Detection at Construction Sites using Deep Learning 351

4. Felzenszwalb, P.F., Girshick, R.B., Mcallester, D., Ramanan, D.: Object detection
with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach.
Intell. 32(9), 1–20 (2009)

5. Fernando, B., Gavves, E., José Oramas, M., Ghodrati, A., Tuytelaars, T.: Modeling
video evolution for action recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5378–5387 (2015)

6. Fernando, B., Gavves, E., Oramas, J., Ghodrati, A., Tuytelaars, T.: Rank pool-
ing for action recognition. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1–14
(2016)

7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learn-
ing and an application to boosting. In: Vitányi, P. (ed.) Computational Learning
Theory, pp. 23–37. Springer, Berlin Heidelberg, Berlin, Heidelberg (1995)

8. Girdhar, R., Ramanan, D., Gupta, A., Sivic, J., Russell, B.: ActionVLAD: learning
spatio-temporal aggregation for action classification. In: CVPR, vol. 2, p. 3 (2017)

9. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition, pp. 1440–1448 (2015)

10. Hanley, A., McNeil, J.: The meaning and use of the area under a receiver operating
characteristic (ROC) Curve. Radiology 143, 29–36 (1982)

11. Hoai, M., Zisserman, A.: Improving human action recognition using score distri-
bution and ranking. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV
2014. LNCS, vol. 9007, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16814-2 1

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Advances In Neural Information Processing Systems,
pp. 1–9 (2012)

13. Liu, W., et al.: SSD: single shot multibox detector. In: European Conference on
Computer Vision, pp. 21–37 (2016)

14. Milan, A., Leal-Taixe, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for
multi-object tracking. arXiv preprint arXiv:1603.00831, pp. 1–12 (2016). http://
arxiv.org/abs/1603.00831

15. Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. Proc. Int. Conf.
Pattern Recognit. 3, 850–855 (2006)

16. Poirson, P., Ammirato, P., Fu, C.Y., Liu, W., Kosecka, J., Berg, A.C.: Fast single
shot detection and pose estimation. In: 2016 Fourth International Conference on
3D Vision (3DV), pp. 676–684

17. Punchihewa, A., Bailey, D.G.: Artefacts in image and video systems: classification
and mitigation. In: Proceedings of Image and Vision Computing New Zealand, pp.
197–202 (2002)

18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. CVPR 2016, 779–788 (2016). https://doi.org/10.1016/
j.nima.2015.05.028

19. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. arXiv preprint
arXiv:1612.08242 (2016). http://arxiv.org/abs/1612.08242

20. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: NIPS, pp. 1–10 (2015)

21. Sargano, A., Angelov, P., Habib, Z.: A comprehensive review on handcrafted and
learning-based action representation approaches for human activity recognition.
Appl. Sci. 7(1), 110 (2017)

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(ICRL), pp. 1–14 (2015)

https://doi.org/10.1007/978-3-319-16814-2_1
https://doi.org/10.1007/978-3-319-16814-2_1
http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831
https://doi.org/10.1016/j.nima.2015.05.028
https://doi.org/10.1016/j.nima.2015.05.028
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242

352 B. van Boven et al.

23. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, Inception-ResNet and the
impact of residual connections on learning. In: AAAI, pp. 4278–4284 (2017)

24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–
2826 (2016)

25. Torabi, A., Sigal, L.: Action classification and highlighting in videos. arXiv preprint
arXiv:1708.09522 (2017)

26. Wu, S., Zhong, S., Liu, Y.: Deep residual learning for image steganalysis. Multi-
media Tools and Applications, pp. 1–9 (2017)

27. Zhu, J., Rosset, S., Zou, H., Hastie, T.: Multi-class Adaboost. Ann. Arbor
1001(48109), 1612 (2006)

http://arxiv.org/abs/1708.09522

COBRAS: Interactive Clustering with
Pairwise Queries

Toon Van Craenendonck(B), Sebastijan Dumančić, Elia Van Wolputte,
and Hendrik Blockeel

KU Leuven, Department of Computer Science, Leuven, Belgium
{Toon.VanCraenendonck,Sebastijan.Dumancic,

Elia.VanWolputte,Hendrik.Blockeel}@kuleuven.be

Abstract. Constraint-based clustering algorithms exploit background
knowledge to construct clusterings that are aligned with the interests of
a particular user. This background knowledge is often obtained by allow-
ing the clustering system to pose pairwise queries to the user: should
these two elements be in the same cluster or not? Answering yes results
in a must-link constraint, no in a cannot-link. Ideally, the user should be
able to answer a couple of these queries, inspect the resulting clustering,
and repeat these two steps until a satisfactory result is obtained. Such
an interactive clustering process requires the clustering system to satisfy
three requirements: (1) it should be able to present a reasonable (inter-
mediate) clustering to the user at any time, (2) it should produce good
clusterings given few queries, i.e. it should be query-efficient, and (3) it
should be time-efficient. We present COBRAS, an approach to cluster-
ing with pairwise constraints that satisfies these requirements. COBRAS
constructs clusterings of super-instances, which are local regions in the
data in which all instances are assumed to belong to the same cluster. By
dynamically refining these super-instances during clustering, COBRAS
is able to produce clusterings at increasingly fine-grained levels of granu-
larity. It quickly produces good high-level clusterings, and is able to refine
them to find more detailed structure as more queries are answered. In
our experiments we demonstrate that COBRAS is the only method able
to produce good solutions at all stages of the clustering process at fast
runtimes, and hence the most suitable method for interactive clustering.

Keywords: Semi-supervised clustering · Pairwise constraints · Active
clustering

1 Introduction

Clustering is inherently subjective [4,9]: different users often require very dif-
ferent clusterings of the same dataset, depending on their prior knowledge and
goals. Constraint-based (or semi-supervised) clustering methods are able to deal
with this subjectivity by taking a limited amount of user feedback into account.

c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 353–366, 2018.
https://doi.org/10.1007/978-3-030-01768-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_29&domain=pdf

354 T. Van Craenendonck et al.

Often, this feedback is given in the form of pairwise constraints [17]. The algo-
rithm has no direct access to the cluster labels in a target clustering, but it can
perform pairwise queries to answer the question: do instances i and j have the
same cluster label in the target clustering? A must-link constraint is obtained if
the answer is yes, a cannot-link constraint otherwise.

Fig. 1. (a) The interactive clustering process. (b) Typical learning curves with COBRA,
the current state of the art. For a small number of super-instances, performance rises
rapidly but stagnates at a suboptimal level (orange curve). For a higher number of
super-instances, performances rises more slowly but stagnates at a higher level (red
curve). The dotted line shows the learning curve that we hope to obtain with the
proposed COBRAS system.

When obtaining constraints is expensive (e.g., requires human intervention),
the clustering process ideally proceeds iteratively, as summarized schematically
in Fig. 1(a). It is a loop where in each step the system’s current estimate of
the clustering is shown to the user, and the user has the opportunity to answer
several questions that will allow the system to improve the clustering, or end
the process and accept the current clustering. Ideally, such a process has three
properties: (1) the user can stop it at any time and get the best result obtained
until then; (2) the number of loop executions (hence, the number of queries
asked) until an acceptable result is obtained is as small as possible; (3) each
loop execution is fast; e.g., a user may not want to wait more than a few seconds
between queries. Summarizing this, the process must be anytime (in the number
of queries), query-efficient, and time-efficient; we abbreviate this as AQT.

No existing constraint-based clustering system fulfills all three requirements
(see next section for details). The approach closest to it is COBRA [15]. COBRA
uses the concept of super-instances: sets of instances that are assumed to belong
to the same cluster in the unknown target clustering. It uses constraints on
the level of super-instances, rather than individual instances. This dramatically
improves its query efficiency when the number of super-instances is small. How-
ever, having few super-instances increases the risk that a single super-instance

COBRAS: Interactive Clustering with Pairwise Queries 355

contains instances from different target clusters, causing COBRA to find lower-
quality clusterings. The number of super-instances NS is a parameter of COBRA
and is fixed during the clustering process. This forces the user to trade off query-
efficiency with clustering quality. Figure 1(b) illustrates this: depending on NS ,
COBRA quickly converges to a low-quality clustering, or slowly converges to a
higher-quality clustering.

In this paper, we introduce a method for dynamically refining super-instances
during clustering, based on user feedback. Extending COBRA with this method
gives COBRAS (COnstraint-Based Repeated Aggregation and Splitting). The
goal of this effort is to eliminate the above trade-off, and thus provide the first
clustering system that meets the AQT requirements without sacrificing cluster-
ing quality; ideally its learning curve should be close to the one shown in Fig. 1(b)
(dotted line). An experimental evaluation confirms that COBRAS meets this
goal.

2 Related Work

The most common way to develop a constraint-based clustering method is to
extend an existing unsupervised method. One can either adapt the clustering
procedure to take the pairwise constraints into account [12,17,18], or use the
existing procedure with a new similarity metric that is learned based on the
constraints [5,19]. Alternatively, one can also modify both the similarity metric
and the clustering procedure [2,3].

Most constraint-based clustering methods assume that a set of constraints is
provided prior to running the clustering algorithm [2,3,10,19]. This makes them
unsuitable for anytime (in the number of constraints) clustering. Furthermore,
traditional systems typically query random pairs [3,19], which might not be the
most informative ones; these are less query-efficient. Several active constraint-
based clustering methods have been proposed that outperform random query
selection [1,10], but most of them still require all queries to be answered prior to
clustering (query-efficient but not anytime). An exception to this is NPU [20],
an active selection procedure in which the data is clustered multiple times and
each resulting clustering is used to determine which pairs to query next based on
the principle of uncertainty sampling. NPU is both anytime and query-efficient.
However, it is not time-efficient: it requires re-clustering the entire dataset after
every few constraints, which becomes prohibitively slow for large datasets.

COP-COBWEB [16] is similar to COBRAS in that it has both splitting
and merging of clusters as key algorithmic steps. However, it is not anytime: it
assumes that all constraints are given prior to clustering.

COBS [14] uses an approach that is very different from the above. It generates
a large set of clusterings by varying the hyperparameters of several unsupervised
clustering algorithms, and selects from the resulting set the clustering that satis-
fies the most pairwise constraints. Generating the set of clusterings, however, can
be time consuming for large datasets, which reduces its suitability for anytime
clustering.

356 T. Van Craenendonck et al.

COBRA [15] is a recently proposed method that is inherently active: deciding
which pairs to query is part of its clustering procedure. First, COBRA uses K-
means to cluster the data into super-instances. The number of super-instances,
denoted as NS , is an input parameter. Initially, each of the super-instances forms
its own cluster. In the second step, COBRA repeatedly queries the pairwise
relation between the closest pair of (partial) clusters between which the relation
is not known yet and merges clusters if necessary, until all relations between
clusters are known.

It was already mentioned in the introduction that the results of COBRA
strongly depend on the number of super-instances NS . Figure 2 illustrates this
on a toy dataset. For NS = 10, the initial clustering (after 0 queries) is not
too bad (panel A). As queries are answered, the quality goes up, but after 14
queries it stagnates at a suboptimal level (panel D; the incorrectly clustered
part is marked with a red ellipse). For NS = 100, COBRA starts with a worse
clustering (panel B) but ends with a better one (panel E). It takes 103 queries,
however, to obtain the final clustering.

Note that the NS parameter allows the user to trade off one disadvantage
for the other, but not to remove both. The dynamic super-instance refinement
procedure that we introduce with COBRAS eliminates this trade-off.

Fig. 2. A: The starting situation of COBRA with 10 super-instances (COBRA-10).
Initially, each cluster consists of a single super-instance. B: The initial solution of
COBRA-100, which is highly over-clustered. C: The clustering produced by COBRAS
after 7 queries. D: The final result of COBRA-10. Each of the clusters is represented
as a set of super-instances. The final clustering is not correct, as S7 contains instances
from two actual clusters. E: the final clustering of COBRA-100. F: after 36 queries,
COBRAS produces the correct clustering.

COBRAS: Interactive Clustering with Pairwise Queries 357

3 COBRAS: Constraint-Based Repeated Aggregation
and Splitting

The key problem when running COBRA with a small NS is that super-instances
often contain instances from different clusters (e.g., S7 in Fig. 2A). COBRA
cannot assign all of these instances to the correct clusters, as each super-instance
is treated as a single unit.

COBRAS solves this problem by allowing super-instances to be refined.
It starts with a single super-instance that contains all instances, and repeat-
edly refines this super-instance until a satisfactory clustering is obtained. More
specifically, each iteration of COBRAS consists of two steps. First, it removes
the largest super-instance from its cluster and splits it into several new super-
instances. A new cluster is added for each of these new super-instances. A key
challenge in this step is determining a suitable splitting level for a super-instance,
i.e. the number of new super-instances that an existing one should be split in.
For this, we propose a constraint-based procedure, which is detailed in Sect. 3.2.

In the second step of each iteration, COBRAS determines the relation of the
newly created clusters to each other and the existing clusters by running the
merging step of COBRA on the new set of clusters.

By using this procedure of refining super-instances, COBRAS uses a small
number of super-instances in the beginning of the clustering process, and a larger
number as more queries are answered. This allows it to perform well for both a
small and larger number of queries, as illustrated in panels C and F in Fig. 2.

3.1 Algorithmic Description

COBRAS is described in detail in Algorithm 1. In this algorithm a super-instance
S is a set of instances, a cluster C is a set of super-instances, and a clustering C
is a set of clusters. COBRAS starts with a single super-instance S that contains
all instances, which constitutes the only cluster C (line 2). As long as the user
keeps answering queries, COBRAS keeps refining the set of super-instances and
the corresponding clustering (lines 3-10). In each iteration it selects the largest
super-instance Ssplit (line 4), determines an appropriate splitting level for it (line
5, this is detailed in Algorithm 2 in Sect. 3.2), and splits it into k new super-
instances by clustering its instances using K-means (line 6). We use K-means
as it is faster than K-medoids, even if the medoids are computed afterwards
(each K-medoid iteration is O(k(n − k)2) [11] whereas each K-means iteration
is O(nk)). Ssplit is then removed from its original cluster (line 7), and a new
cluster is added for each of the newly created super-instances (line 8). Finally,
in the last step of the while iteration COBRA is used to determine the pairwise
relations between all the clusters (new and existing). The COBRA merging step
is slightly modified compared to the original one [15]: if the relation between two
clusters is already known, i.e. from a query in a previous COBRAS iteration,
it is not queried again. Note that one could also think of other heuristics to
determine which super-instance to split instead of simply the largest one, e.g.

358 T. Van Craenendonck et al.

one could split the super-instance with the highest intra-cluster dissimilarity. We
have found, however, that selecting the largest super-instance is a simple and
effective heuristic that is difficult to beat.

Algorithm 1 COBRAS
Require: X : a dataset, q: a query limit
Ensure: C: a clustering of D
1: ML = ∅, CL = ∅
2: S = {X}, C = {S}, C = {C}
3: while |ML| + |CL| < q do
4: Ssplit, Corigin = arg maxS∈C,C∈C |S|
5: k,ML,CL = determineSplitLevel(Ssplit,ML,CL)
6: Snew1 , . . . , Snewk = K-means(Ssplit, k)
7: Corigin = Corigin \ {Ssplit}
8: C = C ∪ {{Snew1}, . . . , {Snewk}}
9: C,ML,CL = COBRA(C,ML,CL)

10: end while
11: return C

Algorithm 2 determineSplitLevel
Require: S: a set of instances that is to be split
Ensure: k: an appropriate splitting level, ML, CL: the obtained ML and CL con-

straints
1: d = 0, ML = ∅, CL = ∅
2: while no must-link obtained do
3: S1, S2 = k-means(S,2)
4: if must-link(medoid(S1), medoid(S2)) then
5: add (medoid(S1), medoid(S2)) to ML
6: d = max(d, 1)
7: return 2d, ML, CL
8: else
9: add (medoid(S1), medoid(S2)) to CL

10: S = pick between S1 and S2 randomly
11: d++
12: end if
13: end while

3.2 Determining the Splitting Level k

Different users may want different clusterings, which can require super-instances
at different granularities. For example, consider clustering a set of images of
20 different people, each taking two different poses. Clustering this data based

COBRAS: Interactive Clustering with Pairwise Queries 359

on identity will require more super-instances than clustering it based on pose.
Consequently, it is crucial to take user feedback into account to determine appro-
priate splitting levels.

Algorithm 2 describes the procedure that COBRAS uses to determine the
splitting level k for a super-instance S. The procedure tries to search for a k such
that the new super-instances will be pure w.r.t. the unknown target clustering.
To check the purity of S, COBRAS splits it into two new (temporary) super-
instances (by running 2-means on its instances), and queries the relation between
their medoids. If they must link, COBRAS assumes that the super-instance was
pure, and an appropriate level of granularity has been reached. If they cannot
link, the procedure is then repeated on one of the two new super-instances. This
continues until a must-link constraint is obtained. If d bisections are made before
an appropriate level of granularity is reached, then the super-instance as a whole
must be split into 2d smaller super-instances. Figure 3(a) illustrates this process:
super-instance S1 gets split into two super-instances which cannot link; one of
these, St1, is next split into two which again cannot link; among these, St3 is split
into two which must link; hence, St3 seems to be at the right level of granularity
and S1 is split into 22 = 4, which is the number of super-instances at this level.
Line 6 in Algorithm 2 makes sure that the super-instance is at least split into
two, even when the first constraint is must-link. This ensures that COBRAS will
continue refining super-instances as long as the user is willing to answer queries,
even when the data does not provide evidence for the usefulness of a particular
split.

3.3 Illustration

Figure 3 illustrates two iterations of the entire COBRAS clustering process. The
splitting of S1 into 4 smaller super-instances was already explained. These 4
super-instances are put into new clusters, and next, the standard merging process
of COBRA is applied. For details about this merging process, we refer to Van
Craenendonck et al. [15]. In this illustration, we assume that COBRA finds a
must-link between S4 and S5 and cannot-links between the others, which results
in 3 clusters. Next, super-instance S3 is considered for splitting, and split into
2. About the resulting S6 and S7, COBRA finds that S6 should remain in its
own cluster, but S7 must link with S4 and thus the clusters {S7} and {S4, S5}
are merged. This step shows how a part of one super-instance (in this case S7,
which was originally part of S3) can get reassigned to a more suitable cluster.

4 Experimental Evaluation

In this section, we evaluate COBRAS1 in terms of the AQT criteria (anytime,
query efficiency, time efficiency). We compare it to the following state-of-the-art
constraint-based clustering algorithms:
1 Source code for COBRAS is available at https://dtai.cs.kuleuven.be/software/

cobras/.

https://dtai.cs.kuleuven.be/software/cobras/
https://dtai.cs.kuleuven.be/software/cobras/

360 T. Van Craenendonck et al.

C2

C5

C2

C
6

C6

Top-down refinement of S1 Starting situation before
first COBRA merging step

Top-down refinement of S3 Starting situation before
 second COBRA merging step

C3

C4

After first bottom up
COBRA merging step

C7

St5 St6

St4St3

St1 St2

S1

1

2

3

8

9
4

7

10

A B C

D E F

11

12

S2

S4

S3

S5

C3

S2

S4

S3

S5

4

5 6

7

S3

C
6

S2

S4

S5

47

S6 S7

S2

S5

S4

After second bottom up
COBRA merging step

C2

C2

C7

S6 S7

C8

Fig. 3. (A) COBRAS decides to split the initial super-instance S1 into 4 new ones, as
discussed in Sect. 3.2. (B) S1 has been removed from the set of clusters (rendering it
empty), and a new cluster added for each of the newly created super-instances. This
is the starting situation for the first bottom-up COBRA run. (C) Using additional
queries, COBRA has merged the S4 and S5 clusters into one, and kept the others. In
the next iteration (D), COBRAS selects S3 for refinement, and splits it into 2 new
super-instances; this results in two new clusters (E). Finally (F), the merging step has
clustered S7 together with S4 and S5, while S2 and S6 remain in their own cluster.

– COBS [14] uses constraints to select and tune an unsupervised clustering
algorithm. We use the active variant in our experiments.

– COBRA [15] is the algorithm that is most related to COBRAS, as discussed
earlier in this paper. We run it with 10, 25 and 50 super-instances.

– NPU [20] is an active constraint selection framework that can be used with
any non-active constraint-based clustering method. It constructs neighbor-
hoods of points that are connected by must-link constraints, with cannot-
link constraints between the different neighborhoods. It repeatedly selects
the most informative instance, and queries its neighborhood membership by
means of pairwise constraints. NPU is an iterative method: after neighbor-
hood membership is determined, the data is re-clustered and the obtained
clustering is used to determine the next pairwise queries. NPU can be used
with any constraint-based clustering algorithm, and we use it with the fol-
lowing two:

COBRAS: Interactive Clustering with Pairwise Queries 361

• MPCKMeans [3] is an extension of K-means that exploits constraints
through metric learning and a modified objective. We use the implemen-
tation in the WekaUT package 2.

• COSC (for Constrained Spectral Clustering) [12] is an extension of spec-
tral clustering optimizing for a modified objective. We use the code pro-
vided by the authors 3.

COSC-NPU and MPCKMeans-NPU need to know the desired number of
clusters K prior to clustering. In our experiments, the true K (as indicated by
the class labels) is given to these algorithms. Note that this puts them at an
advantage in the experimental comparison, as in practice K is often not known
in advance.

Datasets

We use the same datasets as those used in the evaluation of COBRA [15]. These
include 15 UCI datasets: iris, wine, dermatology, hepatitis, glass, ionosphere,
optdigits389, ecoli, breast-cancer-wisconsin, segmentation, column 2C, parkin-
sons, spambase, sonar and yeast. These were selected because of their repeated
use in earlier work on constraint-based clustering (for example, [3,20]). Opt-
digits389 contains digits 3, 8 and 9 of the UCI handwritten digits data [3,10].
Duplicate instances are removed from all of these datasets, and the data is
normalized between 0 and 1. Further, we use the CMU faces dataset, con-
taining 624 images of 20 persons with different poses and expressions, with
and without sunglasses. This dataset has four natural clustering targets: iden-
tity, pose, expression and sunglasses. A 2048-value feature vector is extracted
for each of the images using the pre-trained Inception-V3 network [13]. Fur-
ther, two clustering tasks are included for the 20 newsgroups text dataset:
clustering documents from 3 newsgroups on related topics (the target clusters
are comp.graphics, comp.os.ms-windows and comp.windows.x, as in [1,10]), and
clustering documents from 3 newsgroups on very different topics (alt.atheism,
rec.sport.baseball and sci.space, as in [1,10]). To extract features from the text
documents we apply tf-idf, followed by latent semantic indexing (as in [10]) to
reduce the dimensionality to 10.

In summary, the comparison is based on 21 clustering tasks (15 UCI datasets,
4 target clusterings for the CMU faces data, and 2 subsets of the newsgroups
data).

Experimental Methodology

We perform 10-fold cross-validation 10 times (similar to e.g. [1] and [10]), and
report averaged results. The algorithms always cluster the full dataset, but can
only query the relations between pairs that are both in the training set. The
quality of the resulting clustering is evaluated by computing the Adjusted Rand
index (ARI, [8]), only on the instances in the test set. The ARI measures the
similarity between the produced clusterings and the ground-truth indicated by
2

http://www.cs.utexas.edu/users/ml/risc/code/.
3

http://www.ml.uni-saarland.de/code/cosc/cosc.htm.

http://www.cs.utexas.edu/users/ml/risc/code/
http://www.ml.uni-saarland.de/code/cosc/cosc.htm

362 T. Van Craenendonck et al.

the class labels. A score of 0 means that the clustering is random, 1 means that
it is exactly the same as the ground-truth. The score for an algorithm for a
particular dataset is given by the average ARI over the 10 repetitions of 10 fold
cross-validation.

We make sure that COBRAS and COBRA do not query any test instances
during clustering by only using training instances to compute the medoids of
the super-instances. For NPU, pairs involving an instance from the test set are
simply excluded from selection.

In each iteration of COBRAS, a super-instance is split and COBRA is run on
the resulting new set of clusterings. If the user stops answering pairwise queries
before the end of the COBRA run (which is simulated frequently in the exper-
iments: we consider the intermediate clusterings after each query), COBRAS
returns the clustering as it was at the beginning of the iteration. The clustering
that is returned is only updated after the COBRA run, which prevents us from
returning clusterings for which the merging step was not finished yet. This holds
for all COBRA runs expect the first one, as in that case there is no real prior
clustering at the beginning of the iteration.

COBRA is not able to handle an unlimited amount of pairwise queries: once
all the relations between super-instances are known, the clustering process natu-
rally stops. In our experiments, we assume that COBRA simply keeps returning
its final clustering after this point, which allows us to compare all algorithms for
the same number of pairwise queries.

Clustering Quality

Figure 4(a) shows the aligned ranks for COBRAS and all competitors over all
clustering tasks4. In contrast to the regular rank, the aligned rank [6,7] takes
the relative differences between algorithms for individual datasets into account.
The first step in computing it is to calculate for each dataset the average ARI
achieved by the algorithms. Then, for each algorithm, the difference between its
ARI and this average is calculated, and the resulting differences are sorted from
1 to kn (k the number of algorithms, n the number of datasets). The aligned
rank for an algorithm is the average of the positions of its entries in the sorted
list.

Figure 4(b) shows the average ARI of each method over all clustering tasks.
This gives some indication of how substantial the differences in ARI are in prac-
tice.

Figures 4(a) and (b) show that, compared over the entire range of queries,
COBRAS is clearly superior to each individual competitor. None of the com-
petitors is able to produce good results during the entire clustering process,
which is crucial for interactive clustering. Some of them outperform COBRAS
for a specific range of the number of queries, but those that do are outperformed

4 For COSC-NPU we set a timeout of 24h for each run of 250 queries for spambase.
Typically it only got to 40 queries after that time. We considered the last clustering
produced within 24h to be the final one, and use it in the results for all remaining
queries in producing the graphs.

COBRAS: Interactive Clustering with Pairwise Queries 363

(a) (b)

Fig. 4. (a) Aligned rank for all methods over all clustering tasks (b) Average ARIs for
all methods over all clustering tasks

by a much larger margin for other ranges. We illustrate this point by compar-
ing COBRAS to COBRA-50 in more detail. Figure 4(a) shows that COBRA-50
outperforms COBRAS in the range of (roughly) 50–70 queries. However, for
<50 queries, COBRAS-50 performs much worse than COBRAS; the difference
in average ARI in this range is much greater than in the 50–70 range. Further-
more, COBRA-50’s performance stagnates around 50 queries. Thus, the anytime
behavior of COBRA-50 is vastly inferior to that of COBRAS. COBRA-50 is only
preferable to COBRAS when one knows the optimal number of super-instances
in advance. The same holds for COBRA-10 and COBRA-25.

Table 1 shows win/loss statistics that confirm the above conclusions. It
demonstrates that COBRAS outperforms its competitors in the majority of
cases (18 out of 24). COBRAS significantly (Wilcoxon test, p < 0.05) outper-
forms COBRA-10, COBRA-25, COBRA-50 and COSC-NPU for at least one of
the query numbers. It outperforms MPCKMeans-NPU and COBS as well, but
this difference is found not to be statistically significant. It is never significantly
outperformed by any other method.

Runtime

Figure 5 shows the ratio of the run time of COBRAS to the run times of its
competitors for the 21 clustering tasks after performing 100 queries. COBRA is
typically the fastest algorithm. This is not surprising, as it requires only a single
run of K-means, while COBRAS requires multiple K-means runs. Compared to
the other competitors, COBRAS is one to three orders of magnitude faster for
all datasets. The key difference between COBRAS and its competitors is that
COBRAS only re-clusters the parts of the dataset that are being refined. In
contrast, MPCKMeans-NPU and COSC-NPU require frequent re-clustering of
the entire dataset.

Practically speaking, the time between consecutive queries is under a second
for all datasets considered here, which is fast enough for interactive clustering.

The high runtimes of COBS are caused by the fact that it generates a large
number of unsupervised clusterings prior to querying the user. Once this set of

364 T. Van Craenendonck et al.

T
a
b
le

1
.
W

in
s

a
n
d

lo
ss

es
ov

er
th

e
2
1

cl
u
st

er
in

g
ta

sk
s.

A
n

a
st

er
is

k
in

d
ic

a
te

s
th

a
t

th
e

d
iff

er
en

ce
is

si
g
n
ifi

ca
n
t

a
cc

o
rd

in
g

to
th

e
W

il
co

x
o
n

te
st

w
it

h
p
<

0
.0

5
.
B

et
w

ee
n

p
a
re

n
th

es
es

w
e

re
p
o
rt

th
e

av
er

a
g
e

m
a
rg

in
b
y

w
h
ic

h
C

O
B

R
A

S
w

in
s

o
r

lo
se

s.

2
5

q
u
er

ie
s

5
0

q
u
er

ie
s

1
0
0

q
u
er

ie
s

2
0
0

q
u
er

ie
s

W
in

L
o
ss

W
in

L
o
ss

W
in

L
o
ss

W
in

L
o
ss

C
O
B
R
A
S

v
s.

C
O
B
R
A
-1
0

1
1

(0
.0

5
)

1
0

(0
.0

2
)

1
6
*

(0
.0

7
)

5
(0

.0
1
)

1
7
*

(0
.1

0
)

4
(0

.0
1
)

1
8
*

(0
.1

2
)

3
(0

.0
1
)

C
O
B
R
A
S

v
s.

C
O
B
R
A
-2
5

7
(0

.0
3
)

1
4

(0
.0

4
)

9
(0

.0
3
)

1
2

(0
.0

3
)

1
4

(0
.0

4
)

7
(0

.0
1
)

1
7
*

(0
.0

6
)

4
(0

.0
1
)

C
O
B
R
A
S

v
s.

C
O
B
R
A
-5
0

1
6
*

(0
.1

5
)

5
(0

.0
1
)

9
(0

.0
4
)

1
2

(0
.0

4
)

9
(0

.0
2
)

1
2

(0
.0

2
)

1
2

(0
.0

3
)

9
(0

.0
1
)

C
O
B
R
A
S

v
s.

M
P
C
K
M

-N
P
U

1
1

(0
.0

6
)

1
0

(0
.0

2
)

1
3

(0
.0

7
)

8
(0

.0
2
)

1
1

(0
.0

7
)

1
0

(0
.0

2
)

1
1

(0
.0

6
)

1
0

(0
.0

2
)

C
O
B
R
A
S

v
s.

C
O
S
C
-N

P
U

1
4
*

(0
.1

3
)

7
(0

.0
2
)

1
5
*

(0
.1

3
)

6
(0

.0
2
)

1
3

(0
.1

3
)

8
(0

.0
3
)

9
(0

.1
0
)

1
2

(0
.0

4
)

C
O
B
R
A
S

v
s.

C
O
B
S

1
2

(0
.0

4
)

9
(0

.0
3
)

1
3

(0
.0

4
)

8
(0

.0
3
)

1
2

(0
.0

5
)

9
(0

.0
3
)

1
0

(0
.0

6
)

1
1

(0
.0

2
)

COBRAS: Interactive Clustering with Pairwise Queries 365

clusterings is generated, however, selecting the clusterings is fast. This means
that COBS can be useful in interactive settings where the time between starting
the system and answering the first query is of no concern.

Fig. 5. Ratio of COBRAS to competitors run time for 21 clustering tasks. For COBRA
we only include the run times of COBRA-25 to not clutter the graph, also the run times
for COBRA-10 and COBRA-50 are typically lower than all others.

To summarize all the above: COBRA and possibly COBS can compete with
COBRAS in terms of time efficiency; COBRA can compete in terms of query
efficiency if its NS parameter is chosen optimally; none of the existing methods
can compete in terms of anytime behavior.

5 Conclusion

We have introduced COBRAS, a novel system for interactive semi-supervised
clustering. The key innovation in COBRAS is its procedure for dynamically
refining super-instances. This innovation makes it the first clustering system
to excel at all three of the following crucial criteria for interactive clustering
systems: anytime behavior, query efficiency, and time efficiency. This should
make COBRAS the method of choice in many applications of semi-supervised
clustering.

Acknowledgements. TVC is supported by the Agency for Innovation by Science
and Technology in Flanders (IWT). Research supported by Research Fund KU Leu-
ven (GOA/13/010), Research Foundation - Flanders (G079416N), and the European
Research Council (Horizon 2020, grant agreement 694980, “SYNTH”).

References

1. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise con-
strained clustering. In: Proceedings of SDM (2004)

2. Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised
clustering. In: Proceedings of KDD (2004)

366 T. Van Craenendonck et al.

3. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning
in semi-supervised clustering. In: Proceedings of ICML (2004)

4. Caruana, R., Elhawary, M., Nguyen, N.: Meta clustering. In: Proceedings of ICDM
(2006)

5. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric
learning. In: Proceedings of ICML (2007)

6. Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: experimental analysis of power. Inf. Sci. 180, 2044–2064 (2010).
special Issue on Intelligent Distributed Information Systems

7. Hodges, J.L., Lehmann, E.L.: Rank methods for combination of independent exper-
iments in analysis of variance. Ann. Math. Stat. 33, 482–497 (1962)

8. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 21, 193–218 (1985)
9. von Luxburg, U., Williamson, R.C., Guyon, I.: Clustering: science or art? In: Work-

shop on Unsupervised Learning and Transfer Learning (2014)
10. Mallapragada, P.K., Jin, R., Jain, A.K.: Active query selection for semi-supervised

clustering. In: Proceedings of ICPR (2008)
11. Ng, R.T., Han, J.: Clarans: a method for clustering objects for spatial data mining.

IEEE TKDE 14(5), 1003–1016 (2002)
12. Rangapuram, S.S., Hein, M.: Constrained 1-spectral clustering. In: Proceedings of

AISTATS (2012)
13. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-

tion architecture for computer vision. CoRR abs/1512.00567 (2015). http://arxiv.
org/abs/1512.00567

14. Van Craenendonck, T., Blockeel, H.: Constraint-based clustering selection. Mach.
Learn. 106, 1497–1521 (2017)

15. Van Craenendonck, T., Dumančić, S., Blockeel, H.: COBRA: a fast and simple
method for active clustering with pairwise constraints. In: Proceedings of IJCAI
(2017)

16. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proceedings
of ICML (2000)

17. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering
with background knowledge. In: Proceedings of ICML (2001)

18. Wang, X., Qian, B., Davidson, I.: On constrained spectral clustering and its appli-
cations. Data Min. Knowl. Discov. 28, 1–30 (2014)

19. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with
application to clustering with side-information. In: NIPS (2003)

20. Xiong, S., Azimi, J., Fern, X.Z.: Active learning of constraints for semi-supervised
clustering. TKDE 26, 43–54 (2014)

http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567

Automatically Wrangling Spreadsheets
into Machine Learning Data Formats

Gust Verbruggen(B) and Luc De Raedt

KU Leuven, Leuven, Belgium
{gust.verbruggen,luc.deraedt}@cs.kuleuven.be

Abstract. To help automate the important pre-processing step in
machine learning and data mining, we introduce synth-a-sizer, a tool
for semi-automatically wrangling spreadsheets into attribute-value for-
mat, so that they can be used by popular machine learning tools, only
requiring the user to mark cells belonging to one single example. synth-
a-sizer is based on inductive programming principles. We introduce
synth-a-sizer’s transformations, search algorithm as well as a heuris-
tic and distance measure for identifying types. We also report on a first
experimental evaluation.

Keywords: Data wrangling · Program synthesis · Spreadsheets
Preprocessing · Inductive programming

1 Introduction

One long term goal of automatic machine learning and data science is to enable
naive end-users to automatically analyse their data. Today we are far away
from reaching that goal for two reasons. First, it is often hard to select the
right learning setting, algorithm and parameters for the learning task. Second,
it is well-known amongst data scientists that 80% of the time is spent on pre-
processing and only 20% on the actual machine learning or data mining [5].

Looking at the state of the art in machine learning and data mining reveals
that the first problem is receiving a lot of attention in the emerging area of auto-
mated machine learning [9]. Many impressive results have already been obtained
and powerful tools have already been developed [7,14]. Although there exist some
tools that aid in the automatic preprocessing of data, especially with respect to
feature construction [4], other preprocessing steps remain very challenging. Data
wrangling is one of the most important ones.

This paper addresses exactly this issue and studies how to help end-users
with data wrangling, that is, the process of transforming their data in the right
format for data analysis. As non-experts often gather their data in spreadsheets,
we focus on the question as to whether it is possible to take such a spreadsheet
and to automatically transform it into a format that can be used by standard
machine learning software such as Weka [10] and Knime [3]. Thus, we want to
help fully automate the data wrangling process [1].
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 367–379, 2018.
https://doi.org/10.1007/978-3-030-01768-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_30&domain=pdf

368 G. Verbruggen and L. De Raedt

Several approaches for data wrangling with minimal user effort already exist.
For example, the Wrangler [12] system provides an interactive interface for
creating transformation programs without needing to write code. Instantia-
tions of the FlashMeta [13] framework allow for synthesising data transfor-
mation programs by providing input-output examples. A notable instantiation
is FlashRelate, [2] which extracts relational data from spreadsheets. More
recently, Foofah [11] combine these two: transforming a spreadsheet based on
examples.

In this paper, we take a next step in these developments and explore whether
these processes can be automated while focussing on data in tabular form. A
key difference with other approaches is that we focus on wrangling of machine
learning data sets. While the above mentioned approaches use examples of the
desired input-output behaviour to guide the program synthesis, we focus on the
desired target format of the output. In this paper, the desired output is is in
attribute-value format, which is used when working with tools such as Weka.
This format has distinct properties that we exploit in order to mediate the need
for examples describing the desired output. Although we focus on the attribute-
value format here, we believe that the principles and techniques we introduce
could also be useful for relational learning.

This paper contributes a tool, synth-a-sizer, for semi-automatic data wran-
gling of machine learning datasets from minimal user input. synth-a-sizer uses
a predictive program synthesis approach that transforms semi-structured data
into a propositional format, for use in data analysis systems, from one positive
example. The technical innovations of synth-a-sizer are that (1) we focus on
the desired target format of the output and allow the user to provide hints about
the target format using a new notion of coloring; (2) we introduce a domain spe-
cific language with an accompanying syntactic bias which allows to restrict the
search space; and (3) we employ a novel type-based heuristic to assess and eval-
uate the transformations.

2 Motivating Example

Suppose a clothing store owner keeps two spreadsheets, containing sales and
properties of clothing, respectively, an excerpt of which is shown in Table 1.
The rightmost column in Table 1b is to be predicted. Given data in the correct
format, plenty of tools are available to perform this task.

First, however, a user would need to know about transformations to unpivot
and join tables together. In OpenRefine1 an additional forward filling operation
is required and Wrangler [12] make no assumptions about the output format,
giving unpivot as the last suggestion. This motivates our belief that existing data
wrangling tools are aimed at data scientists and other people who know their
way around transforming data.

1 http://www.openrefine.org.

http://www.openrefine.org

Automatically Wrangling Spreadsheets into Machine Learning Data Formats 369

Table 1. Spreadsheet data about clothing sales. Some cells are colored as they have
been selected by the user.

(a) Sales data.

29/08/2013 31/08/2013 09/02/2013

1006032852 2114 2274 2491

1212192089 151 275 570

1190380701 6 7 7

966005983 1005 1128 1326

876339541 996 1175 1304

1068332458 4 5 11

(b) Clothes’ properties. On the right is the
target, with one missing value.

1006032852 Low 4.6 Summer o-neck sleevless 1

1212192089 Low 0 Summer o-neck Petal 0

1190380701 High 0 Automn o-neck full 0

966005983 Average 4.6 Spring o-neck full 1

876339541 Low 4.5 Summer o-neck butterfly 0

1068332458 Low 0 Summer v-neck sleevless

(c) Tables 1a and 1b wrangled into attribute-value format. This is what the user doesn’t
see, but what is generated by synth-a-sizer and used by data mining tools in the
background in order to predict the last column.

1006032852 29/8/2013 2114 Low 4.6 Summer o-neck sleevless 1

1006032852 31/8/2013 2274 Low 4.6 Summer o-neck sleevless 1

1006032852 09/02/2013 2491 Low 4.6 Summer o-neck sleevless 1

1212192089 29/08/2013 151 Low 0 Summer o-neck Petal 0
...

1068332458 31/08/2013 5 Low 0 Summer v-neck sleevless

1068332458 09/02/2013 11 Low 0 Summer v-neck sleevless

Our approach, on the other hand, is aimed at users who have no knowledge
about transforming data at all. Currently, the only required interaction is select-
ing values in the spreadsheet, as shown in Table 1. Wrangling is then performed
in the background.

3 Problem Statement

The problem this paper wants to solve is best described on two levels. On a
higher level, we aim to enable users without experience in programming or data
wrangling to apply machine learning techniques to their data. As data gathered
by such users is typically stored in a spreadsheet, we focus on the problem of
mapping a spreadsheet S into a dataset D that can serve as the input to a
machine learning algorithm. The machine learning algorithm should then gener-
ate a hypothesis h that can be applied to the dataset D to yield h(D). Ideally,
this approach allows for mapping h(D) back into the spreadsheet S so that it can
be shown to the user. The ultimate goal is that the transformations, the resulting
dataset and the hypothesis are all constructed behind the scenes. Everything the
user would see is the original spreadsheet S that has now been extended with
the results of h(D). A necessary condition for this to work is that the original
spreadsheet S has been formatted in a systematic manner.

On a lower level, the problem we tackle in the present paper is to find the
program f that maps f(S) = D, which is a program synthesis problem where a
data wrangling program is learned.

370 G. Verbruggen and L. De Raedt

3.1 Notation

As common in spreadsheets, the basic structure our programs transform are
tables. A table is represented by an m × n matrix T . The element on column
i and row j is referred to as ti,j . We adopt a slicing notation a : b to denote a
range (a, a + 1, . . . , b) of cells, represented as a list of values. When a and/or b
are omitted, the range extends to the size of the table, such that for example
the values in row j are retrieved as T:,j .

An m-ary relation R ⊆ (A1, . . . , Am) of n tuples can be easily represented
by a set of such tables. In the trivial case, every tuple becomes a row and each
attribute is contained in a column of a single m × n table. This is the desired
target data format for attribute-value learners such as those available in Weka
and Knime. In the real world, however, the data can be spread out over multiple
tables. Furthermore, values can be repositioned, empty cells and spurious cells
can be added to the tables. The goal will then be to extract an equivalent table
in the target format.

Example 1. Suppose we have a relation of car sales indicating whether a sales-
person of a certain level gave a reduction or not:

{
(Tim, junior, Audi, A1, no), (Tim, junior, BMW, 1, yes),
(Megan, senior, Audi, A1, no), (Megan, senior, Audi, A4, yes)

}

There are various ways of representing this relation in a set of tables, two exam-
ples of which are given in Fig. 1. In the Sales table in Fig. 1, some spurious values
were added to denote the proportion of reductions given.

Tables can be transformed by transformations, which take as input one or
more tables, optionally some arguments, and return a single table. The result
of applying a transformation on some table(s) is then a new table with the ele-
ments from the original table(s) combined, repositioned, replicated or removed.
We write p = (φ,a) : T → T ′ for a table transformation p consisting of a trans-
formation φ and a tuple of arguments a, taking a set of tables T and returning
a new table T ′ = φ(T ,a). We restrict ourselves to transformations that only
change the layout of the spreadsheet, leaving cell values untouched. Each trans-
formation φ has a set of valid arguments given a set of tables, denoted as Aφ(T).

Applying a transformation results in a reconstruction error, a measure of
how much information is lost when it is applied to T , written as error(p,T). A
transformation can be inverted if there exists a transformation p−1 = (φ−1,a)
such that p−1(p(T)) = T .

Example 2. Given a simple table

T =
Audi A1

A3
A4

Automatically Wrangling Spreadsheets into Machine Learning Data Formats 371

and the Fill(direction, i) transformation (see also Table 2), which fills empty
values in column i with the value above (forward) or below (backward) it,
we get AFill(T) = {(forward, 1); (forward, 2); (backward, 1); (backward, 2)}.

A set of transformations L then serves as a simple domain-specific lan-
guage (DSL) for wrangling tabular data. A table transformation program P
is a sequence of transformations (p1, p2, . . . , pk) with pi = (φi,ai). Applying
it to a table T is computed as P(T) = φp(. . . φ2(φ1(T ,a1),a2) . . . ,ap). The
definitions of reconstruction error and invertibility naturally extend from one
transformation of a sequence of transformations.

3.2 Problem Statement

We can now specify the program synthesis problem as follows.
Given a set of tables T = (T1, . . . , Tk), a set of colorings C (cf. below), a

scoring function score(T , C), and a set of transformations L, find a transfor-
mation program P ∗ over L such that P ∗ = argmaxP score(P (T), C).

The assumption is that there is an unknown target relation R and a program
P t such that P t(T) and R are equivalent (notation P t(T) ≡ R). The equivalence
would account for row and column permutations. But the relation R is unknown
and therefore we can only estimate how good any P (T) is through a scoring
function. This scoring function should recognise tables that are in attribute-
value form. Such tables have rows that correspond to examples and columns
that correspond to attributes. As a simple aid for recognising this, our scoring
function can currently make use of one additional, user-provided input.

Essentially, the user is requested to color a set of cells that describe one
example, possibly using different colors. The idea behind the coloring is twofold.
First, cells belonging to one coloring should be mapped onto a single row. Cells
in different tables with the same color, should be mapped onto the same cell
in the target table. Second, all values in a single column should belong to the
same attribute and should therefore be of the same type. If a colored cell occurs
in a column, all other values in that column should be of the same type as the
colored cell. Formally, a coloring C is a mapping from a set of cells ti,j to a set
of colors. An example is given in Example 3.

While earlier work [15] assumed that the types were given, with each attribute
having a different type, the present approach uses an edit-distance measure to
determine how similar the type of two cells is. More specifically, it is assumed that
the distance between different elements belonging to the same type is small—
smaller than the distances between values of different types. The scoring function
should then take into account (1) the quality of the rows and columns with
respect to a coloring and (2) the reconstruction error.

Example 3. A cell coloring

C1 = {People1,1 → , P eople2,1 → , Sales1,1 → ,

Sales1,2 → , Sales2,2 → , Sales3,2 → }

372 G. Verbruggen and L. De Raedt

is shown on the left in Fig. 1. After successfully wrangling it, these tables are
transformed into the table on the right. Cells in each column are syntactically
similar to a colored cell, no more empty values are present and the coloring
contains an assignment that spans exactly one row. The transformed table should
then get a much better score than the original ones.

People

Tim Junior

Megan Senior

Sales

Audi

A1 Tim no

A1 Megan no

A4 Tim yes

2/3

BMW

1 Megan yes

1/1

Tim Junior Audi A1 no

Tim Junior Audi A4 yes

Megan Senior Audi A1 no

Megan Senior BMW 1 yes

Fig. 1. Two tabular representations of the relation in Example 1. (left) Spread out
over two tables. The Sales table additionally contains empty cells and values not in the
original relation. An example coloring is also shown. (right) Trivial representation as
a single table.

4 Program Synthesis

We now introduce a predictive synthesis approach to synthesise the table trans-
formation programs from just one example—a single tuple in the output relation
that is colored by a user. Rather than assigning a score to the program itself, as
in regular optimisation-based program synthesis [8], the output of the program
is scored. A search over the space of transformation programs, optimising this
score, is then used to find the program that correctly wrangles the input. In order
to guide this search, we put a syntactic bias on the arguments of each transfor-
mation, which actually encodes a set of constraints on the possible arguments a
transformation can take.

In the remainder of the section, we first introduce the supported transfor-
mations and their syntactic bias. Afterwards, we show how they are used to
guide two search algorithms towards a solution optimising our scoring function.
Finally, we provide the details of our scoring function.

4.1 Transformations and Syntactic Bias

The supported transformations is inspired on existing approaches [11,12]. They
have been chosen such that a wide variety of real world wrangling scenarios can
be solved. In order to support multiple tables, a Join transformation is added.
The full list is presented in Table 2.

Automatically Wrangling Spreadsheets into Machine Learning Data Formats 373

Given a set of input tables T and a list of transformations, we can easily
start recursively enumerating all transformation programs in search of one that
optimises the heuristic. This is very unlikely to find a correct transformation
program as the search space grows exponentially. To make the search over trans-
formations tractable, a syntactic bias is placed on their arguments.

The intuition behind our syntactic bias is very similar to witness functions
in FlashMeta [13], where they restrict the arguments of a function given the
input–output examples. We reduce Aφ(T) based on the coloring and our knowl-
edge of the heuristic. For example, the Fill transformation may only consider
columns that have exactly one colored cell. A Delete is not allowed to remove
colored cells. We write the reduced arguments of φ on T given C as Aφ(T,C).
The full syntactic bias for each transformation is given in Table 2.

Table 2. Transformations supported by synth-a-sizer, their effect on an m×n table
T and how the set of valid arguments is reduced given a coloring C. In the column on
the right, i and j range over the columns of the tables they correspond to, d and fwd
range over the boolean values.

Transformation Effect Aφ(T,C)

Fill(T, i, fwd) Fill each empty cell in Ti,: with the first
non-empty value above (fwd = 1) or
below (fwd = 0) it

All (i, fwd) such that
Ti,: contains empty val-
ues and exactly one col-
ored cell from C is in
Ti,:

Delete(T, i) Delete all rows j where ti,j is empty All (i) such that Ti,:

contains empty values
and no cells ∈ C are
deleted

Fold(T, i, j, h, d) Fold Ti:j,: into one (h = 0) or two (h =
1) new columns. If h = 1, elements from
the first row are used as a description for
values Ti:j,y �=0. If d = 1, rows with empty
values in the folded column are deleted

All (i, j, h, d) such that
Ti:j,: contains exactly
column y with n colored
cells and h = (n > 1
and Ty,0 ∈ C)

Join(T 1, T 2, i, j) (outer) Join tables T 1 and T 2 on columns
i and j respectively

All (i, j) such that
T 1

i,: ⊆ T 2
j,: or vice versa

4.2 Synthesis Algorithm

Our synthesis algorithm then performs a beam search over the space of transfor-
mation programs. The beam is defined using the scoring function detailed in the
next section. Two variations are implemented: depth-first (DFS) and breadth-
first (BFS), consecutively aimed at being faster versus more robust.

A priority queue is used to implement the search. Let b be the beam width.
In DFS, at every iteration of the synthesis loop: the best table so far is fetched,
its reduced set of possible transformations is computed, the results are scored

374 G. Verbruggen and L. De Raedt

and the b best extended programs are added back to the queue. In BFS, every
element is replaced by its top-b transformed tables from different transformations
as long as at least one of those b tables is better than the current one.

4.3 Scoring Tables

Given a set of tables and a coloring, we want to estimate how close the set of
tables is to being the unknown target relation. In an attribute-value formatted
table, all columns describe one attribute and should thus contain values of the
same data type. Every cell in the coloring should then belong to one of these
column types. The actual types are unknown, however. We therefore estimate
how similar the type of two values is using a syntactic distance function, which
is detailed in the next section. It is used to define the scoring function.

Let there be c different colors. Some transformations, such as Fill, may prop-
agate colors to other cells in the table. We then first select an assignment
a = {ti1,j1 , . . . , tic,jc} such that as many different columns as possible have a
colored value. Next, for each cell ti,j in the assignment, the average distance
between the cell and all other cells in its column

avg_color(ti,j) =
1
m

m∑
y=1

d(ti,j , ti,y) (1)

is computed, as well as the proportion of empty values in this column.

empty(ti,j) =
1
m

m∑
y=1

(ti,y ≡ ∅) (2)

These two values are added for each colored cell and then averaged over all
colored cells in the selection to compute the final score.

score_color(a) =
1
c

c∑
x=1

(avg_color(tix,jx) + empty(tix,jx)) (3)

Finally, the same procedure is repeated for columns without colored cells, the dif-
ference being that the average similarity between any pair of values is computed
such that (1) becomes

avg(ix) =
2

m(m + 1)

m∑
y=1

m∑
z=y

d(tix,y, tix,z). (4)

for some column ix. This allows for wrangling with partial colorings and also
provides some robustness. Scores for both types of columns are added to compute
the final score. When scoring multiple tables, their individual scores are summed.

score(T) = score_color(a) +
1

m − c

∑
i/∈i1,...,ic

(avg(i) + empty(ti,0)) (5)

Automatically Wrangling Spreadsheets into Machine Learning Data Formats 375

4.4 Cell Distance

At the heart of this method is the function that computes the similarity in type
of cells. We propose a syntactic similarity function between cell values, treating
them as a sequence of character classes.

This method is heavily inspired by the string edit distance between two cell
values, with two differences: every character is represented by its character class
and addition and deletion of elements between specific character classes can be
made cheaper, for example, between lower- and uppercase letters

First, both strings are tokenised according to a set of disjoint character
classes, such as digits, lower- and uppercase letters, delimiters (-, /,...) and
currency symbols. Every token is weighted with the number of characters it
consumed. Next, the token sequences are globally aligned using a custom sub-
stitution matrix. The final distance is then computed as the distance between
aligned tokens, weighted both by their weight and a distance matrix.

Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be the aligned tokenisations of two
strings a and b, w(ai) the weight of token ai and cost(t1, t2) the cost of a
substitution between tokens t1 and t2. The distance between a and b is then
computed as

d(a, b) =
∑

i

cost(ai, bi)
|w(ai) − w(bi)|

w(ai) + w(bi) + 1
. (6)

5 Evaluation

We propose a method for generating sythetic data that can be used for evaluating
synth-a-sizer. The core idea is to generate messy data from a clean dataset. We
start from a table and apply a number of subsequent random inverse transforma-
tions, creating a synthetic input dataset. The number of inverse transformations
applied is called the depth of the synthetic dataset.

More specifically, we generate inverse programs Pt and associated messy
tables D′ = P−1

t (D) and then attempt to synthesize programs P that restore
the original dataset as P (D′). The results are evaluated in terms of recall and
precision, respectively the proportion of rows in D that is also in P (D′) and
proportion of rows in P (D′) that is in D. The supported inverse transforma-
tions are explained in Table 3. Because some of the inverse transformations have
side effects, i.e., a Fill reorders the rows, a few constraints need to be placed
on the generated inverse programs in order to prevent total destruction of the
data. Most notably, a table can only be reordered once. Further details of the
generation process will be made available in a longer version of the paper.

Three datasets from the UCI repository [6] were selected, based on some sim-
ple requirements: not being too large, our implementation is not yet optimised
to scale, and containing at least some categorical attributes in order to gener-
ate interesting inverse programs. They are the Breast Cancer, Auto MPG and
Computer Hardware datasets2.
2 https://archive.ics.uci.edu/ml/datasets/.

https://archive.ics.uci.edu/ml/datasets/.

376 G. Verbruggen and L. De Raedt

Table 3. Inverse transformations supported by the data generator.

Transformation Inverse Inverse arguments

Fill(T, i, fwd) If it was not sorted before: sort T on col-
umn i. For every pair of consecutive equal
values, set the top (fwd = 0) or bottom
(fwd = 1) one to ∅

All (i, fwd) such that
Ti,: doesn’t contain
empty values

Delete(T, i) Repeat ∼ U(0, n − 1) times:
– Generate ∼ U(1,m/2) random strings
– Add a row to T with the strings in ran-
dom locations that are not i

All (i) such that Ti,:

does not contain an
empty value

Fold(T, i, j, h, d) Duplicate rows such that the elements
outside of columns i : i + h are repeated
j − i times. Expand values in folded col-
umn(s) in groups of j − i + 1 consecutive
rows into new columns

All (i, j, h, d) such that
(1) if h = 0: val-
ues outside of column i
are replicated between
at least n/2 rows or (2)
if h = 1: values in col-
umn i are replicated at
least n/2 times

Join(T 1, T 2, i, j) Look for functional dependency i → Y
between column i and columns Y such
that |Y | = j. Split table by removing
columns Y and building new table from
columns (i, Y)

All (i, j) such that
there exists a functional
dependency i → Y and
|Y | = j

5.1 Increasing Depth

We start by assessing the basic wrangling capability of synth-a-sizer. The first
row of each dataset is colored and sets of 100 programs of increasing depths are
generated. For both algorithms, the average recall and precision are plotted in
terms of the depth in Fig. 2. Both mixed BFS and DFS achieve almost perfect
reconstruction for lower depths in most cases. As depth increases, performance
drops. We can take a closer look at the performance by plotting the distribution
of the precisions, as done in Fig. 3.

In our experiments, there are two main reasons why tables are not per-
fectly wrangled. First, complex Fold operations are not always correctly detected,
resulting in zero precision. This happens more often in datasets which have more
similar attributes, such as Breast Cancer and Hardware. Second, Fill is some-
times applied in the wrong direction, resulting in precisions depending on the
number of unique elements in the filled column.

As synth-a-sizer relies on a distance measure between types, it is sensi-
tive to how syntactically similar different types are. An interesting question for
further research is how to combine the similarity with background information
about the underlying types, as well as alternative approaches for type detection.

Automatically Wrangling Spreadsheets into Machine Learning Data Formats 377

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
on

Breast Cancer

DFS
BFS

1 2 3 4 5

Auto MPG

DFS
BFS

1 2 3 4 5

R
ec
al
l

Hardware

DFS
BFS

Fig. 2. Precision (black) and recall (gray) on three datasets for inverse programs of
increasing depths (x-axis) using two synthesis algorithms. Due to good performance
on the Auto MPG data, precision and recall are very similar.

0 1

Depth 2

Breast Cancer

0 1

Depth 3

0 1

Depth 4

0 1

Depth 5

0 1

Depth 2

Auto MPG

0 1

Depth 3

0 1

Depth 4

0 1

Depth 5

Fig. 3. Distribution of precision (black) and recall (gray) for increasing depths on the
cancer (top) and auto (bottom) datasets.

0.0 0.5 1.0

Breast Cancer

0.0 0.5 1.0

Hardware

0.0 0.5 1.0

Auto MPG

Fig. 4. Precision distributions of repeating previously successful runs with different
colorings for all datasets.

5.2 Resilience to Coloring

We then ask the question how sensitive synth-a-sizer is to which cells are
colored. All inverse programs of depths 3-5 from the previous experiments for
which DFS achieved perfect results are computed 10 times with different rows
colored. The precision distributions of wrangling those tables using DFS are
shown Fig. 4. Only for the Breast Cancer data are the obtained results consid-

378 G. Verbruggen and L. De Raedt

erably worse, probably due to similar features across columns. For both other
datasets, synth-a-sizer seems robust enough to work for arbitrary colorings.

6 Conclusion

We presented synth-a-sizer, a tool that semi-automatically wrangles attribute-
value data from spreadsheets given only a coloring of one positive output
example. Even though it uses a very simple heuristic and synthesis algorithm,
it already achieves respectable performance on synthetically generated messy
spreadsheets.

While more effort is required to improve the heuristic and distance function,
these results provide a next step in the direction of fully automated wrangling
of data from spreadsheets.

Acknowledgement. This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No [694980] SYNTH: Synthesising Inductive Data Mod-
els).

References

1. Data Wrangling Automation, IEEE International Conference on Data Mining
(2016). http://users.dsic.upv.es/~flip/DWA2016/

2. Barowy, D.W., Gulwani, S., Hart, T., Zorn, B.: Flashrelate: extracting rela-
tional data from semi-structured spreadsheets using examples. In: ACM SIGPLAN
Notices, vol. 50, pp. 218–228. ACM (2015)

3. Berthold, M.R., et al.: Knime-the konstanz information miner: version 2.0 and
beyond. ACM SIGKDD Explor. Newsl. 11(1), 26–31 (2009)

4. Boullé, M.: Towards automatic feature construction for supervised classification.
In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014.
LNCS (LNAI), vol. 8724, pp. 181–196. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44848-9_12

5. Dasu, T., Johnson, T.: Exploratory Data Mining and Data Cleaning, vol. 479.
Wiley, New York (2003)

6. Dheeru, D., Karra Taniskidou, E.: UCI Machine Learning Repository (2017)
7. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:

Efficient and robust automated machine learning. In: Advances in Neural Informa-
tion Processing Systems, pp. 2962–2970 (2015)

8. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends R© Program.
Lang. 4(1–2), 1–119 (2017)

9. Guyon, I., et al.: A brief review of the ChaLearn AutoML challenge: any-time any-
dataset learning without human intervention. In: Workshop on Automatic Machine
Learning, pp. 21–30 (2016)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

http://users.dsic.upv.es/~flip/DWA2016/
https://doi.org/10.1007/978-3-662-44848-9_12
https://doi.org/10.1007/978-3-662-44848-9_12

Automatically Wrangling Spreadsheets into Machine Learning Data Formats 379

11. Jin, Z., Anderson, M.R., Cafarella, M., Jagadish, H.: Foofah: transforming data by
example. In: Proceedings of the 2017 ACM International Conference on Manage-
ment of Data, pp. 683–698. ACM (2017)

12. Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: interactive visual spec-
ification of data transformation scripts. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 3363–3372. ACM (2011)

13. Polozov, O., Gulwani, S.: Flashmeta: a framework for inductive program synthesis.
In: ACM SIGPLAN Notices, vol. 50, pp. 107–126. ACM (2015)

14. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: Pro-
ceedings of the 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 847–855. ACM (2013)

15. Verbruggen, G., De Raedt, L.: Towards automated relational data wrangling. In:
Proceedings of AutoML 2017 @ ECML-PKDD: Automatic Selection, Configuration
and Composition of Machine Learning Algorithms, pp. 18–26 (2017)

Learned Feature Generation for Molecules

Patrick Winter1,2(B), Christian Borgelt1,3, and Michael R. Berthold1,2,4

1 Department of Computer and Information Science, University of Konstanz, 78457
Konstanz, Germany

{patrick.winter,christian.borgelt,michael.berthold}@uni-konstanz.de
2 Konstanz Research School Chemical Biology (KoRS-CB), Konstanz, Germany

3 Department of Computer Science, Otto-von-Guericke University, 39106
Magdeburg, Germany

4 KNIME AG, 8005 Zurich, Switzerland

Abstract. When classifying molecules for virtual screening, the molec-
ular structure first needs to be converted into meaningful features, before
a classifier can be trained. The most common methods use a static algo-
rithm that has been created based on domain knowledge to perform this
generation of features. We propose an approach where this conversion is
learned by a convolutional neural network finding features that are use-
ful for the task at hand based on the available data. Preliminary results
indicate that our current approach can already come up with features
that perform similarly well as common methods. Since this approach
does not yet use any chemical properties, results could be improved in
future versions.

Keywords: Convolutional neural networks · Feature generation
Molecular features · Virtual screening

1 Introduction

High-throughput screens [5] are large-scale, biological experiments to find
molecules that show a desired biological activity. Even though they are mostly
automated, they are still expensive and time consuming. For this reason, machine
learning methods are used for virtual screening to select a subset of molecules
that are most likely to show activity. This is done by formulating a binary classi-
fication problem with the classes active and inactive. A diverse subset is tested in
the lab and the results are used as training data for the classifier. The molecules
with unknown activity are then classified, and the probability of a molecule
belonging to the active class is assumed to be the probability of the molecule
showing actual activity. Based on this the top-n molecules are picked for actual
testing in the lab, thus reducing the number of actual tests to be conducted.

Most classifiers need numerial features to work. In such cases, the molecular
structure gets converted into numerical features using a feature generator. The
most common feature generators for molecules are based on a static algorithm
that creates the same output for the same molecules without taking the specific
c© Springer Nature Switzerland AG 2018
W. Duivesteijn et al. (Eds.): IDA 2018, LNCS 11191, pp. 380–391, 2018.
https://doi.org/10.1007/978-3-030-01768-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01768-2_31&domain=pdf

Learned Feature Generation for Molecules 381

classification task into account. Once the features have been created a classifier
is learned to distinguish active molecules from inactive ones.

Dynamic approaches, that generate features for a specific classification task
like substructure mining [11] do also exist. Here substructures are selected based
on their frequency and how well they discriminate between the different classes.

The method that we propose uses a network that uses convolutions to gen-
erate features from the molecules structure and then classifies based on these
features using dense layers. By training the feature generation and classification
together, the feature generation will learn features which are useful for the spe-
cific classification task. These features could potentially outperform handcrafted
features for the task that they are built for.

1.1 Fingerprints

The most common approach to feature generation for molecules is the use of
fingerprints [23]. These fingerprints are built using domain knowledge. A sim-
ple example for a fingerprint is the MACCS fingerprint [6], which represents
166 predefined aspects of the molecule’s structure as a bit vector. A different
approach can be seen in circular fingerprints, such as the extended connectiv-
ity fingerprint [19], which encodes the occurrence of different substructures in
the molecule as a bit or counting vector (see Sect. 2.1 for details). Many years of
research and extensive expert knowledge went into the creation of many different
fingerprints. Therefore the selection of the best fingerprint for a specific problem
is not obvious.

Riniker et al. created a benchmark [18] comparing 14 different fingerprints
on a variety of data sets. The results showed that the top 12 fingerprints had no
significant difference on average, even though their performance on individual
data sets did differ. This indicates that there is no gold standard fingerprint
that can be relied upon to give the best performance most of the time. Since
the features given to the classifier determine how well it is able to distinguish
between the classes, it would be desirable if those features not be based on a
static decision as to which feature generator to use, but instead were learned
automatically based on the task that needed to be solved.

1.2 Image Processing

Approaches for automatically learning useful features for images using convolu-
tional neural networks [14] have been around for a while. But it was only after a
convolutional neural network won the ImageNet challenge in 2012 [12] and fast
implementations, especially those that utilize graphics processing units (GPUs),
became available, that these networks started replacing the old methods that
used handcrafted features [16].

These convolutional neural networks take the RGB values of the image as
input with little to no preprocessing. They then learn convolutional layers that
abstract this input into features that are useful to the classification that is per-
formed by dense layers at the end. In this way decisions on how to best generate

382 P. Winter et al.

useful features are made, based on what the classifier needs in order to improve
the separation of the classes.

To understand more about what a neural network has actually learned, there
are multiple methods. One of them is the class activation map [25], which visu-
alizes the patterns in an image that were responsible for the predicted class.

2 Related Work

Although learning the feature generation is now commonplace for images, this
has not yet been the case for molecular structures, where the use of (hand-
crafted) fingerprints is still the most common approach. Even many approaches
using neural networks use them for classification only and still use molecular
descriptors and fingerprints as input (e.g., [15,17,24]).

Some work has been done to use graph neural networks [2,10] for learning on
molecules. In this work however we focus on the use of traditional, grid based
convolution networks similar to the ones used in image processing. This way we
can build on the extensive research done in this field.

2.1 Fingerprint Examples

Common molecular fingerprints rely heavily on human expert knowledge. For
example, the MACCS [6] fingerprint is based on a list of 166 manually selected
aspects of a molecule’s structure. The presence or absence of each aspect is then
checked for each molecule and represented in that molecule’s fingerprint as a
bit. The aspects are based on domain knowledge and assumed to be especially
descriptive of a molecule’s behavior.

Another approach to fingerprints is the extended connectivity fingerprint. It
is based on the idea of encoding the occurrence of specific substructures into the
fingerprint. For the encoding, the algorithm iterates over each heavy atom in
the molecule’s structure and looks at the properties of all the atoms contained
in a given radius around this center atom. Just which properties are computed
is configurable. The properties are then hashed into a single value in the range
of 1 to n with n being the length of the generated fingerprint. This value is
now used as the position in the fingerprint for substructures with these aspects.
The value at this position is set to 1 for binary fingerprints or counted up by
1 for counting fingerprints. The problem with the extended connectivity finger-
print is that multiple different substructures can end up with the same hash
value. As a consequence different substructures can end up setting the same bit:
two different substructures can thus appear to be the same. The fingerprint is
also dependent on selecting the right parameters for the radius, the measured
molecular properties, and the length of the fingerprint.

2.2 Neural Networks

Convolutional neural networks are an approach for learning features. They con-
sist of a collection of different layer types. The earlier part of the network learns

Learned Feature Generation for Molecules 383

how to convert the input into useful features and the later part learns how to
classify the data based on the generated features.

Neural networks have a tendency to overfit the training data. To counter
this, dropout layers [22] can be used. During training they randomly deactivate
a specified amount of neurons to force the network to work with the remaining
information instead of zeroing in on the most prominent ones and ignoring other
opportunities. This leads to a more robust network.

Convolutional layers implement a sliding window over the data and thus learn
to abstract the data in a local area. The size of the window and the number of
filters per position as well as the step size can be configured and need to fit the
problem. Since the same weights are used in all positions, they also implement
position invariance.

Often neural networks are applied to problems with a large amount of input
neurons and since convolutional layers are usually used to create an increasing
amount of output features per position, the network tends to get very big. In
order to keep the number of neurons per layer down, max pooling layers down-
sample the input data, keeping only the most prominent information. This is
based on the idea that the presence of patterns is more important than their
exact location and information about the most dominant patterns is sufficient.

In a dense layer every neuron is fully connected to every neuron in the previ-
ous layer. Dense layers are used to learn a classifier and are therefore usually at
the end of a network. A typical use of dense layers are multi-layer perceptrons.
They consist of the input layer, a number of hidden dense layers, and a dense
layer as output.

In order to understand why a trained network assigns a certain class to a spe-
cific image, class activation maps [25] can be used. They visualize the recognized
patterns associated with the chosen class in the input image by highlighting the
pixels most responsible for the high value in the output neuron for the win-
ning class. This is done by back propagating how much each previous neuron
contributed to the activation of a selected neuron. When this is done through
the entire network, a heat map is created over the input dimensions. The class
activation map can be a useful tool for seeing how the network actually learns
the expected patterns and if the network is functioning as desired.

3 Learned Feature Generation

Our new method adopts the ideas from the field of image processing and tries
to modify them for use with molecular structures. We are in a similar situation
in that we have no universal best method to generate useful features and there-
fore an approach of letting a network learn which features benefit the specific
classification task most seems to be a viable option.

As illustrated in Fig. 1 we replace the static feature generator and the classi-
fier with one network. This network learns how to generate useful features in the
first part and how to classify the data in the second part. In this way the gen-
erated features are learned based on what is useful for the specific classification
task.

384 P. Winter et al.

Fig. 1. Classical method (left): A feature generator converts the structure into numer-
ical features. The numerical features are then used to train a classifier. Demonstrated
method (right): Feature generation and classification are both done by one neural net-
work. Features are learned by the first part of the network and the classification is
learned by the second part.

3.1 Preprocessing

Fig. 2. Grid based data representation (right) using the layout of the 2D renderer (left).
Each cell is encoded using a one-hot array resulting in a 3D tensor with 2 dimensions
(x and y) for the position and 1 dimension (z) for the features at this position.

As with most other machine learning methods, a neural network needs its
input data to be in a numerical format. However, the strength of neural networks
is that the input is allowed to be in a format, which, by itself, does not represent
a good abstraction of the content of the data. This abstraction into a useful
representation is learned by the convolutional network. The current approach

Learned Feature Generation for Molecules 385

(see Fig. 2) encodes the structure into a 2-dimensional grid containing characters
that represent the atoms and the bonds between them. Instead of the RGB values
for each pixel in an image, every cell is encoded by a one-hot array which marks
what character is located at this position. This one-hot array is based on a
global dictionary containing all possible characters. If no character is present in
the cell, then no bit will be set. The position for each atom is obtained by using
the layout engine of the RDKit [13] renderer that is normally used to render
molecules as images. This provides a representation of the molecule that is close
to a 2D rendered image of the molecule but in a machine readable format. Since
atom symbols are directly encoded with single bits instead of a collection of
pixels that form the symbol’s character we remove the need for the network to
reconstruct this information back. In addition we can keep the grid smaller for
more performant computation.

Because screening data usually has highly imbalanced classes we oversam-
ple the minority class in the training data to learn on an equal distribution of
classes. The oversampled data are then shuffled to prevent the network from
training too much of a single class in succession. Before training, the data are
transformed using rotation and flipping, similar to what is done with images.
Each transformation yields a valid representation for the same molecule. As a
result, even the oversampled data is presented in many different ways instead of
using the same representation of the same molecule multiple times. Training on
the transformed data also gives the network a chance to learn rotation invariance.
This is important, since the same substructure, in different molecules, can occur
in different positions (position invariance handled by the convolutional layers)
and differently rotated (rotation invariance handled by learning on differently
transformed data).

The transformation is performed by randomly rotating the molecule around
the center and then randomly flipping it vertically. These transformations are
performed on the original coordinates before being fit into the smaller grid. In
some cases a small rotation only moves a single atom in the grid, since it was
the only one that passed the threshold into another cell during downsampling.
This effect can also occur when the same substructure is contained in a different
model and is therefore in a different position and differently rotated. That is why
it is important to teach the network tolerance with regard to these smaller shifts.
The parameters of the transformation are chosen randomly, with a rotation of
0–359 degrees and with or without flipping. Since different parameters can result
in the same representation (not every rotation by one additional degree has an
effect) uniqueness is not ensured.

3.2 Network Architecture

The network architecture (Fig. 3) is inspired by the structure of VGG net-
works [21]. The input layer is followed by a dropout layer with a dropout rate
of 30% to counter overfitting. For feature generation we have 5 blocks of a con-
volution and a max pooling layer each. The convolutions generate an increasing
amount of features while the max pooling downscales the resolution of the data.

386 P. Winter et al.

Fig. 3. Architecture of the used network. The convolutional part of the network (CNN)
learns the generation of features while the multi-layer perceptron (MLP) at the end
learns the classification.

This way we increasingly transform the low information density with high local-
ity into high information density and very low locality. After a flatten layer that
converts the output of the convolutional part of the network into 1 dimension, we
obtain the features that are used for classification. A multi-layer perceptron with
one hidden layer and an output layer goes on to perform the classification based
on these features. The multi-layer perceptron also uses dropout layers with a
dropout rate of 75% to increase generalisation. Since the back propagation goes
through the entire network, the classifier can influence which features are learned
by the convolutional part of the network.

Once the network has been fully trained it can either be used as a whole
to perform feature generation and classification together, or otherwise only the
convolutional part is used to generate the features. In the latter case the output
of the flatten layer is used as the features. These features can then also be used
to work with different classifiers like a random forest.

Learned Feature Generation for Molecules 387

4 Preliminary Results

In order to evaluate our method we ran two experiments. The purpose of the
first one was to check if our network can recognize patterns in the data as
expected. We did this by using class activation maps. In the second experiment
we compared the classification performance with the performance of existing
fingerprints on real world data sets.

4.1 Learned Patterns

Fig. 4. Class activation map showing the patterns that are responsible for classification.
Warmer colors (red > yellow > green > blue) represent a higher importance of a cell
to the classification task. We can clearly see that the contained benzene rings are the
reason why this molecule was classified as class A.

A data set was split into molecules that either contain a benzene ring (class
A) or not (class B). The network then had to learn this classification and would
hopefully learn the pattern that was responsible for the split purely on the class
information. Looking at the class activation maps for the molecules that were
classified as class A (example in Fig. 4) we can visually verify that the network
picked up the correct pattern, as intended. Looking at the mean activation values
for atoms that are part of a benzene ring and atoms that are not we were also
able to see a considerable difference (see Fig. 5).

388 P. Winter et al.

Fig. 5. Activation values of class activation maps for atoms that are contained in the
benzene ring substructure responsible for classification and for atoms that are not
contained in a benzene ring.

4.2 Benchmark

Table 1. Number of times a method obtained a certain rank in comparison to the
other methods.

Rank ROC curve AUC Enrichment factor at 5%

CNN ECFC0 ECFP4 MACCS CNN ECFC0 ECFP4 MACCS

1 16 1 50 21 23 1 57 7

2 19 14 27 28 27 8 24 29

3 20 34 9 25 19 29 4 36

4 33 39 2 14 19 50 3 16

In order to evaluate the performance on real-world data sets we used the data
assembled by Riniker et al. [18] to benchmark different fingerprints. We compared
our method (CNN) against 3 fingerprints. The binary extended connectivity
fingerprint with a diameter of 4 (ECFP4), the counting extended connectivity
fingerprint with a diameter of 0 (ECFC0) and the MACCS fingerprint (MACCS).
As classifier we used a random forest. The metrics used for evaluation are the
ROC curve AUC [4] and the enrichment factor [8] at 5% as suggested by Riniker
et al. [18]. The ROC curve AUC measures the performance of the prediction on
the entire data set sorted by probability of belonging to the active class. The
enrichment factor at 5% is based on how many more active molecules are found
in the top 5% of the sorted predictions in comparison to random selection.

Learned Feature Generation for Molecules 389

Fig. 6. Results comparing the CNN features with the MACCS, ECFC0 and ECFP4
fingerprints. The ROC Curve AUC (top) measures the performance off the entire pre-
diction while the enrichment factor at 5% (bottom) measures the early recognition.

The data contains 88 single data sets. The data sets come from 3 sources: 17
are from the maximum unbiased validation (MUV) data sets [20], 21 from the
directory of useful decoys (DUD) [3,9], and 50 from the ChEMBL [1,7] database.
Each data set consists of 1,344–15,560 inactive and 30–365 active molecules. 20%
of the data was sampled via stratified sampling to create a training set. The
remaining 80% were used for testing.

The grid size of the preprocessed data was automatically selected so that
all molecules in the specific data set will fit into it. The same is true for the
dictionary of characters where only characters that are present in the data set
have an index in the one hot-array.

For the neural network we oversampled and shuffled the training data. We
trained the network for 100 epochs with different random seeds for the transfor-
mation in every epoch. In this way the network could only see the same molecule
with the same representation if the transformation, by random chance, was done
with the same or very similar parameters.

390 P. Winter et al.

In order to compare only the performance of the learned features with the
fingerprints without the performance difference in classifiers, we extracted the
features from the trained networks. We then trained a random forest for each
fingerprint and also for the features generated by the network. Each random
forest had 10,000 trees. We used soft voting and a minimum leaf size of 10 to
retrieve a fine granular class probability for sorting.

We ran every experiment 10 times and used the mean as result. Figure 6
shows the results for both the entire prediction as well as for early recognition.
Table 1 shows how well the method compare against each other. The results
indicate that the CNN features perform similarly well as the fingerprints. Con-
sidering how much expert knowledge had to be put into the creation of the
fingerprints, this is already an achievement.

5 Conclusion and Future Work

We created a method that represents a molecule’s structure as a 2D grid and
uses a convolutional neural network to convert this representation into a set of
features that are useful for the learned classification task. Using class activation
maps we were able to see that the network was actually able to recognize the
pattern responsible for the class in a generated data set. In a bigger evaluation on
88 data sets we were able to achieve results similar to fingerprints. Considering
how many years of research and how much expert knowledge went into the
creation and refinement of these fingerprints, this is already a promising result.

Our next step is to add chemical properties to the input data. This would give
the network the opportunity to also learn something about the chemistry of the
molecules, and thus should end up in a boost to the classification performance.

Acknowledgement. This work was partially funded by the Konstanz Research
School Chemical Biology and KNIME AG.

References

1. ChEMBL. https://www.ebi.ac.uk/chembl/
2. Deepchem. https://deepchem.io/
3. DUD - A Directory of Useful Decoys. http://dud.docking.org/
4. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of

machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)
5. Broach, J.R., Thorner, J., et al.: High-throughput screening for drug discovery.

Nature 384(6604), 14–16 (1996)
6. Durant, J.L., Leland, B.A., Henry, D.R., Nourse, J.G.: Reoptimization of MDL

keys for use in drug discovery. J. Chem. Inf. Comput. Sci. 42(6), 1273–1280 (2002)
7. Gaulton, A., et al.: ChEMBL: a large-scale bioactivity database for drug discovery.

Nucleic Acids Res. 40(D1), D1100–D1107 (2011)
8. Halgren, T.A., et al.: Glide: a new approach for rapid, accurate docking and scor-

ing. 2. enrichment factors in database screening. J. Med. Chem. 47(7), 1750–1759
(2004)

https://www.ebi.ac.uk/chembl/
https://deepchem.io/
http://dud.docking.org/

Learned Feature Generation for Molecules 391

9. Irwin, J.J.: Community benchmark for virtual screening. J. Comput.-Aided Mol.
Des. 22(3–4), 193–199 (2008)

10. Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph
convolutions: moving beyond fingerprints. J. Comput.-Aided Mol. Des. 30(8), 595–
608 (2016)

11. Klopman, G.: Artificial intelligence approach to structure-activity studies. com-
puter automated structure evaluation of biological activity of organic molecules.
J. Am. Chem. Soc. 106(24), 7315–7321 (1984)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

13. Landrum, G.A., et al.: RDKit: Open-source cheminformatics. https://www.rdkit.
org/ (2006)

14. Le Cun, Y., et al.: Handwritten zip code recognition with multilayer networks. In:
Proceedings. 10th International Conference on Pattern Recognition, 1990, vol. 2,
pp. 35–40. IEEE (1990)

15. Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S.: Deeptox: toxicity pre-
diction using deep learning. Front. Environ. Sci. 3, 80 (2016)

16. Nixon, M.S., Aguado, A.S.: Feature Extraction & Image Processing for Computer
Vision. Academic Press, New York (2012)

17. Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., Pande, V.:
Massively multitask networks for drug discovery. arXiv preprint arXiv:1502.02072
(2015)

18. Riniker, S., Landrum, G.A.: Open-source platform to benchmark fingerprints for
ligand-based virtual screening. J. Cheminformatics 5(1), 26 (2013)

19. Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model.
50(5), 742–754 (2010)

20. Rohrer, S.G., Baumann, K.: Maximum unbiased validation (MUV) data sets for
virtual screening based on pubchem bioactivity data. J. Chem. Inf. Model. 49(2),
169–184 (2009)

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

23. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors, vol. 11. Wiley,
New York (2008)

24. Unterthiner, T., et al.: Deep learning as an opportunity in virtual screening. Proc.
Deep Learn. Workshop NIPS 27, 1–9 (2014)

25. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep fea-
tures for discriminative localization. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

https://www.rdkit.org/
https://www.rdkit.org/
http://arxiv.org/abs/1502.02072
http://arxiv.org/abs/1409.1556

Author Index

Abreu, Pedro Henriques 87, 200
Almeida, Alexandre 40
Alves, Ana 40
Amini, Massih-Reza 124
Araújo, Hélder 251
Åström, Anders 340

Badiche, Xavier 213
Belkasmi, Brahim 213
Berthold, Michael R. 264, 380
Bindris, Nouf 52
Blockeel, Hendrik 3, 353
Bollen, Thomas 62
Borgelt, Christan 75
Borgelt, Christian 264, 380
Brefeld, Ulf 111

Caelen, Olivier 99
Costa, Adriana Fonseca 87
Crémilleux, Bruno 175
Cristianini, Nello 52, 164, 316, 328

De Raedt, Luc 3, 367
Doell, Christoph 75
Donohue, Sarah 75
Dumančić, Sebastijan 353

Ely Piceno, Marie 238

Fontaine, Colin 278
Frery, Jordan 99
Fromont, Elisa 213
Fürnkranz, Johannes 15

Gaonkar, Radhika 111
Gomes, Rui 40
Goyal, Anil 124

Habrard, Amaury 99, 213
Hammer, Barbara 137
He-Guelton, Liyun 99
Henriques Abreu, Pedro 251
Hosseini, Babak 137

Hüllermeier, Eyke 225
Hutter, Frank 303

Jabbour, Said 151
Jia, Sen 164

Khalafi, Hakim 340
Kliegr, Tomáš 15
Kolb, Samuel 3
Koptelov, Maksim 175

Lahti, Leo 31, 188
Laitinen, Ville 188
Lansdall-Welfare, Thomas 164, 328
Leurquin, Guillaume 62
Luis Balcázar, José 238

Mekhnacha, Kamel 290
Mercier, Marta 200
Metzler, Guillaume 213
Mhadhbi, Nizar 151
Mohr, Felix 225
Morvant, Emilie 124

Nijssen, Siegfried 62

Pätz, Cedrik 75
Plaat, Aske 340
Pompeu Soares, Jastin 251
Putten, Peter van der 303

Raddaoui, Badran 151
Rijn, Jan N. van 303
Rodríguez-Navas, Laura 238

Sais, Lakhdar 151
Sampson, Oliver R. 264
Santos, João 200, 251
Santos, Miriam Seoane 87, 200
Saoud, Zakaria 278
Sebban, Marc 99, 213

Seoane Santos, Miriam 251
Sinoquet, Christine 290
Soares, Carlos 200
Soares, Jastin Pompeu 87, 200
Strang, Benjamin 303
Sudhahar, Saatviga 52, 316
Sutton, Adam 328

Tavakol, Maryam 111
Teso, Stefano 3

van Boven, Bas 340
Van Craenendonck, Toon 353
van der Putten, Peter 340
Van Wolputte, Elia 353
Verbruggen, Gust 3, 367

Wever, Marcel 225
Winter, Patrick 380

Zimmermann, Albrecht 175

394 Author Index

	Preface
	Organization
	Contents
	Invited Papers
	Elements of an Automatic Data Scientist
	1 Introduction
	2 Autocompletion in Spreadsheets
	3 Data Wrangling
	4 Versatile Models and Mercs
	5 Learning Constraints and TacLe
	6 Putting Everything Together
	7 Conclusions
	References

	The Need for Interpretability Biases
	1 Biases in Machine Learning
	2 Interpretability
	3 Complexity Biases
	3.1 The Bias for Simplicity
	3.2 The Bias for Complexity
	3.3 Conflicting Evidence

	4 The Need for Interpretability Biases
	5 Cognitive Biases
	6 First Experimental Results
	7 Conclusion
	References

	Selected Contributions
	Open Data Science
	1 Introduction
	2 Elements of Open Data Science
	2.1 Open Data
	2.2 Open Algorithms
	2.3 Open Collaboration

	3 Conclusion
	References

	Automatic POI Matching Using an Outlier Detection Based Approach
	Abstract
	1 Introduction
	2 Related Work
	2.1 POI Matching
	2.2 Outlier Detection

	3 Description of the Datasets
	3.1 New York Dataset
	3.2 Porto Dataset

	4 Model Description
	4.1 Feature Engineering

	5 Model Validation
	6 Conclusions and Future Work
	Acknowledgement
	References

	Fact Checking from Natural Text with Probabilistic Soft Logic
	1 Introduction
	2 Related Work
	3 Probabilistic Soft Logic
	4 Fact Checking Family Relations
	4.1 Fact Extraction
	4.2 Inferring Relations
	4.3 Fact Checking

	5 Fact Checking Political Relations
	5.1 Fact Extraction
	5.2 Inferring Relations
	5.3 Fact Checking

	6 Conclusion and Future Work
	References

	ConvoMap: Using Convolution to Order Boolean Data
	1 Introduction
	2 Related Work
	3 Definition of the ConvoMap Optimization Criterion
	4 Algorithm
	5 Experimental Evaluation
	6 Conclusions
	References

	Training Neural Networks to Distinguish Craving Smokers, Non-craving Smokers, and Non-smokers
	1 Introduction
	2 Related Work
	3 Data Description and Preprocessing
	4 Methodology
	5 Experimentation and Results
	5.1 First Series of Experiments
	5.2 Second Series of Experiments

	6 Conclusion and Future Work
	References

	Missing Data Imputation via Denoising Autoencoders: The Untold Story
	1 Introduction
	2 Background Knowledge and Related Work
	2.1 Missing Mechanisms
	2.2 Imputation Algorithms

	3 Experiments
	4 Results and Discussion
	5 Conclusions and Future Work
	References

	Online Non-linear Gradient Boosting in Multi-latent Spaces
	1 Introduction
	2 Related Work
	3 Online Non-linear Gradient Boosting
	4 Experiments
	4.1 Classification Results
	4.2 Analysis of the Learned Multi-latent Representations

	5 Conclusion
	References

	MDP-based Itinerary Recommendation using Geo-Tagged Social Media
	1 Introduction
	2 Related Work
	3 Data Extraction and Analysis
	3.1 Data Acquisition
	3.2 From Coordinates to Places of Interest
	3.3 Location Mapping with Tags
	3.4 Itinerary Inference

	4 MDP-based POI Recommendation
	4.1 Preliminaries
	4.2 The Predictive Model
	4.3 Optimisation
	4.4 Multi-step Place Recommendations
	4.5 Online Personalisation

	5 Empirical Study
	5.1 Baseline Comparison
	5.2 Results and Discussion

	6 Conclusion
	References

	Multiview Learning of Weighted Majority Vote by Bregman Divergence Minimization
	1 Introduction
	2 Notations and Setting
	3 An Iterative Parallel Update Algorithm to Learn MMvC2
	3.1 Bregman-Divergence Optimization
	3.2 A Multiview Parallel Update Algorithm
	3.3 A Note on the Complexity of Algorithm

	4 Experimental Results
	4.1 Datasets
	4.2 Experimental Protocol
	4.3 Results

	5 Conclusion
	References

	Non-negative Local Sparse Coding for Subspace Clustering
	1 Introduction
	2 Related Works
	3 Proposed Non-Negative SSC algorithm
	3.1 Non-Negative Local Subspace Sparse Clustering
	3.2 Clustering Based on
	3.3 Link-Restore
	3.4 Kernel Extension of NLSSC

	4 Optimization Scheme of Proposed Methods
	5 Experiments
	5.1 Parameter Settings
	5.2 Clustering Results
	5.3 Effect of Link-Restore
	5.4 Sensitivity to the Parameter Settings

	6 Conclusion
	References

	Pushing the Envelope in Overlapping Communities Detection
	1 Introduction
	2 Background Information
	3 k-Clique-Star Based Community Discovery
	4 Experimental Evaluation
	4.1 Size of the Centroids
	4.2 Impact of k on Quality Metrics
	4.3 Experiments on Recovering Ground-Truth Communities

	5 Conclusion
	References

	Right for the Right Reason: Training Agnostic Networks
	1 Introduction
	2 Agnostic Models
	3 Domain-Adversarial Neural Networks
	4 Experiments
	4.1 Data Description
	4.2 Network Structure
	4.3 Experiment 1: Cross-domain Classification
	4.4 Experiment 2: Learning with Domain-Adversarial Neural Networks

	5 Discussion
	6 Conclusions
	References

	Link Prediction in Multi-layer Networks and Its Application to Drug Design
	1 Introduction
	2 Definitions and Problem Formulation
	2.1 Basic Notations
	2.2 Problem Formulation

	3 Related Work
	4 Exploring a Multi-layer Graph
	4.1 The Random Walk Model
	4.2 Network-Based Random Walk on Multi-layer Network

	5 Experimental Evaluation
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusion and Perspectives
	References

	A Hierarchical Ornstein-Uhlenbeck Model for Stochastic Time Series Analysis
	1 Introduction
	2 Preliminaries
	2.1 The Ornstein-Uhlenbeck Process
	2.2 The Ornstein-Uhlenbeck Driven t-Process
	2.3 Hierarchical Extension

	3 Model Validation
	3.1 Model Comparison

	4 Application to Human Microbiome Time Series
	5 Discussion
	References

	Analysing the Footprint of Classifiers in Overlapped and Imbalanced Contexts
	1 Introduction
	2 Related Work
	3 Experiments
	4 Results and Discussion
	5 Conclusions
	References

	Tree-Based Cost Sensitive Methods for Fraud Detection in Imbalanced Data
	1 Introduction and Related Work
	2 Notations and Problem Formulation
	2.1 Notations
	2.2 Problem Formulation

	3 Cost Sensitive Decision Trees
	3.1 Splitting Criterion and Label Assignment

	4 Cost Sensitive Gradient Boosting
	4.1 Generalities about Gradient Boosting
	4.2 Cost Sensitive Loss for Gradient Boosting

	5 Experiments
	5.1 Dataset and Experiments
	5.2 Results

	6 Conclusion
	References

	Reduction Stumps for Multi-class Classification
	1 Introduction
	2 Background: Nested Dichotomies
	3 Reduction Stumps and Reduction Stump Ensembles
	3.1 Motivation and Overview
	3.2 Training a Reduction Stump and Obtaining Predictions
	3.3 Ensembles of Reduction Stumps

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Analysis of Homogeneous Reduction Stumps
	4.3 Analysis of Heterogeneous Reduction Stumps

	5 Conclusion
	References

	Decomposition of Quantitative Gaifman Graphs as a Data Analysis Tool
	1 Introduction
	2 Decomposing Standard Gaifman Graphs
	2.1 2-Structures and Their Decompositions
	2.2 Prime Clans and Tree Decompositions
	2.3 Limits to the Visualization of Complex Clans
	2.4 Isolated Vertex Elision

	3 Interpreting a Decomposition of a Gaifman Graph
	4 Generalizations of Gaifman Graphs
	4.1 Thresholded Gaifman Graphs
	4.2 Quantitative Gaifman Graphs

	5 Discussion and Subsequent Work
	References

	Exploring the Effects of Data Distribution in Missing Data Imputation
	1 Introduction
	2 Related Work
	3 Experimental Setup
	4 Experimental Results and Discussion
	5 Conclusions and Future Work
	References

	Communication-Free Widened Learning of Bayesian Network Classifiers Using Hashed Fiedler Vectors
	1 Introduction
	2 Background
	2.1 Learning Bayesian Networks
	2.2 Widening
	2.3 Communication-Free Widening
	2.4 Locality Sensitive Hashing
	2.5 Fiedler Vectors
	2.6 Related Work

	3 Experimental Setup
	3.1 Initialization
	3.2 Refinement
	3.3 Partitioning
	3.4 Scoring and Selection

	4 Results
	5 Conclusion and Future Work
	References

	Expert Finding in Citizen Science Platform for Biodiversity Monitoring via Weighted PageRank Algorithm
	1 Introduction
	2 Related Works
	3 The General Structure of the SPIPOLL
	4 The Proposed Approach
	4.1 Merging Users Comments
	4.2 Extracting Precise Identifications from Comments
	4.3 Calculating Relationship Degree Between Users
	4.4 Constructing the Users Social Network
	4.5 Calculating Users Expertise Using Weighted PageRank Algorithm

	5 Experiments
	5.1 Data Preparation
	5.2 Evaluation Criteria
	5.3 Results

	6 Conclusions
	References

	Random Forests with Latent Variables to Foster Feature Selection in the Context of Highly Correlated Variables. Illustration with a Bioinformatics Application.
	1 Introduction
	2 From T-Trees to Sylva
	2.1 T-Trees Generalized
	2.2 Inferring FLTM Latent Variables
	2.3 From FLTM Latent Variables to Numerical Latent Variables in the RF Framework
	2.4 Description of the Algorithms behind the Sylva RFLV

	3 Implementation
	4 Comparative study of T-Trees and Sylva
	4.1 Experimental Settings
	4.2 Results and Discussion

	5 Conclusion
	References

	Don't Rule Out Simple Models Prematurely: A Large Scale Benchmark Comparing Linear and Non-linear Classifiers in OpenML
	1 Introduction
	2 Related Work
	3 Background
	4 Linear Versus Non-linear
	5 Learning When to Use What Classifier
	6 Conclusion
	References

	Detecting Shifts in Public Opinion: A Big Data Study of Global News Content
	1 Introduction
	2 Related Work
	3 Data and Methods
	3.1 Translating Text
	3.2 Measuring Sentiment
	3.3 Measuring Attention

	4 Measuring Sentiment in Machine Translated Text
	5 Results and Discussion
	5.1 Shifts in Sentiment and Attention
	5.2 Conclusions

	References

	Biased Embeddings from Wild Data: Measuring, Understanding and Removing
	1 Introduction
	2 Methodology
	2.1 Word Embedding
	2.2 Comparison of Embedded Words
	2.3 Removing Bias

	3 Experiments
	3.1 Data Description and Embedding
	3.2 Experiment 1: LIWC Word Embedding Association Test (LIWC-WEAT)
	3.3 Experiment 2: Associations between Occupations and Gender
	3.4 Experiment 3: Minimising Associations via Orthogonal Projection

	4 Discussion
	5 Conclusions
	References

	Real-Time Excavation Detection at Construction Sites using Deep Learning
	1 Introduction
	2 Problem Description
	3 Related Work
	4 Approach
	4.1 Data Collection and Preparation
	4.2 Design of the Object Detector
	4.3 Design of the Action Classifier

	5 Results
	5.1 Object Detector
	5.2 Action Classifier

	6 Discussion
	7 Conclusion
	References

	COBRAS: Interactive Clustering with Pairwise Queries
	1 Introduction
	2 Related Work
	3 COBRAS: Constraint-Based Repeated Aggregation and Splitting
	3.1 Algorithmic Description
	3.2 Determining the Splitting Level k
	3.3 Illustration

	4 Experimental Evaluation
	5 Conclusion
	References

	Automatically Wrangling Spreadsheets into Machine Learning Data Formats
	1 Introduction
	2 Motivating Example
	3 Problem Statement
	3.1 Notation
	3.2 Problem Statement

	4 Program Synthesis
	4.1 Transformations and Syntactic Bias
	4.2 Synthesis Algorithm
	4.3 Scoring Tables
	4.4 Cell Distance

	5 Evaluation
	5.1 Increasing Depth
	5.2 Resilience to Coloring

	6 Conclusion
	References

	Learned Feature Generation for Molecules
	1 Introduction
	1.1 Fingerprints
	1.2 Image Processing

	2 Related Work
	2.1 Fingerprint Examples
	2.2 Neural Networks

	3 Learned Feature Generation
	3.1 Preprocessing
	3.2 Network Architecture

	4 Preliminary Results
	4.1 Learned Patterns
	4.2 Benchmark

	5 Conclusion and Future Work
	References

	Author Index

