
Ronnie Alves (Ed.)

 123

LN
BI

 1
12

28

11th Brazilian Symposium on Bioinformatics, BSB 2018
Niterói, Brazil, October 30 – November 1, 2018
Proceedings

Advances
in Bioinformatics and
Computational Biology

Lecture Notes in Bioinformatics 11228

Subseries of Lecture Notes in Computer Science

LNBI Series Editors

Sorin Istrail
Brown University, Providence, RI, USA

Pavel Pevzner
University of California, San Diego, CA, USA

Michael Waterman
University of Southern California, Los Angeles, CA, USA

LNBI Editorial Board

Søren Brunak
Technical University of Denmark, Kongens Lyngby, Denmark

Mikhail S. Gelfand
IITP, Research and Training Center on Bioinformatics, Moscow, Russia

Thomas Lengauer
Max Planck Institute for Informatics, Saarbrücken, Germany

Satoru Miyano
University of Tokyo, Tokyo, Japan

Eugene Myers
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden,
Germany

Marie-France Sagot
Université Lyon 1, Villeurbanne, France

David Sankoff
University of Ottawa, Ottawa, Canada

Ron Shamir
Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

Terry Speed
Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

W. Eric Wong
University of Texas at Dallas, Richardson, TX, USA

More information about this series at http://www.springer.com/series/5381

http://www.springer.com/series/5381

Ronnie Alves (Ed.)

Advances
in Bioinformatics and
Computational Biology
11th Brazilian Symposium on Bioinformatics, BSB 2018
Niterói, Brazil, October 30 – November 1, 2018
Proceedings

123

Editor
Ronnie Alves
Instituto Tecnológico Vale
Belém
Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Bioinformatics
ISBN 978-3-030-01721-7 ISBN 978-3-030-01722-4 (eBook)
https://doi.org/10.1007/978-3-030-01722-4

Library of Congress Control Number: 2018956561

LNCS Sublibrary: SL8 – Bioinformatics

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-4139-0562

Preface

This volume contains the papers selected for presentation at the 11th Brazilian Sym-
posium on Bioinformatics (BSB 2018), held from October 30 to November 1, 2018, in
Niteroi, Brazil. BSB is an international conference that covers all aspects of bioin-
formatics and computational biology. The event was organized by the Special Interest
Group in Computational Biology of the Brazilian Computer Society (SBC), which has
been the organizer of BSB for the past several years. The BSB series started in 2005. In
the period 2002–2004 its name was Brazilian Workshop on Bioinformatics (WOB).

As in previous editions, BSB 2018 had an international Program Committee (PC) of
31 members. After a rigorous review process by the PC, 13 papers were accepted to be
orally presented at the event, and are published in this volume. All papers were
reviewed by at least three independent reviewers. We believe that this volume repre-
sents a fine contribution to current research in computational biology and bioinfor-
matics, as well as in molecular biology. In addition to the technical presentations, BSB
2018 featured keynote talks from João Meidanis (Universidade Estadual de Campinas),
Peter Stadler (University of Leipzig), and David Sankoff (University of Ottawa).

BSB 2018 was made possible by the dedication and work of many people and
organizations. We would like to express our sincere thanks to all PC members, as well
as to the external reviewers. Their names are listed herein. We are also grateful to the
local organizers and volunteers for their valuable help; the sponsors for making the
event financially viable; and Springer for agreeing to publish this volume. Finally, we
would like to thank all authors for their time and effort in submitting their work and the
invited speakers for having accepted our invitation.

November 2018 Ronnie Alves

Organization

Conference Chairs

Daniel Cardoso de Oliveira Universidade Federal Fluminense, Brazil
Luis Antonio Kowada Universidade Federal Fluminense, Brazil
Ronnie Alves Instituto Tecnológico Vale, Brazil

Local Organizing Committee

André Cunha Ribeiro Instituto Federal de Educação Ciência e Tecnologia,
Brazil

Daniel Cardoso de Oliveira Universidade Federal Fluminense, Brazil
Helene Leitão Universidade Federal Fluminense, Brazil
Luis Antonio Kowada Universidade Federal Fluminense, Brazil
Luís Felipe Ignácio Cunha Universidade Federal do Rio de Janeiro, Brazil
Simone Dantas Universidade Federal Fluminense, Brazil
Raquel Bravo Universidade Federal Fluminense, Brazil

Program Chair

Ronnie Alves Instituto Tecnológico Vale, Brazil

Steering Committee

Guilherme Pimentel Telles Universidade Estadual de Campinas, Brazil
João Carlos Setubal Universidade de São Paulo, Brazil
Luciana Montera Universidade Federal de Mato Grosso do Sul, Brazil
Luis Antonio Kowada Universidade Federal Fluminense, Brazil
Maria Emilia Telles Walter Universidade de Brasilia, Brazil
Nalvo Franco de Almeida Jr. Universidade Federal de Mato Grosso do Sul, Brazil
Natália Florencio Martins Empresa Brasileira de Pesquisa Agropecuária, Brazil
Ronnie Alves Instituto Tecnológico Vale, Brazil
Sérgio Vale Aguiar Campos Universidade Federal de Minas Gerais, Brazil
Tainá Raiol Fundação Oswaldo Cruz, Brazil

Program Committee

Alexandre Paschoal Universidade Federal Tecnológica do Paraná, Brazil
André C. P. L. F. de Carvalho Universidade de São Paulo, Brazil
André Kashiwabara Universidade Federal Tecnológica do Paraná, Brazil
Annie Chateau Université de Montpellier, France
César Manuel Vargas Benítez Universidade Federal Tecnológica do Paraná, Brazil

Fabrício Martins Lopes Universidade Federal Tecnológica do Paraná, Brazil
Felipe Louza Universidade de São Paulo, Brazil
Fernando Luís Barroso Da

Silva
Universidade de São Paulo, Brazil

Guilherme Pimentel Telles Universidade Estadual de Campinas, Brazil
Ivan G. Costa RWTH Aachen University, Germany
Jefferson Morais Universidade Federal do Pará, Brazil
Jens Stoye Bielefeld University, Germany
João Carlos Setubal Universidade de São Paulo, Brazil
Kleber Padovani de Souza Universidade Federal do Pará, Brazil
Laurent Bréhélin Université de Montpellier, France
Luciano Antonio

Digiampietri
Universidade de São Paulo, Brazil

Luís Felipe Ignácio Cunha Universidade Federal do Rio de Janeiro, Brazil
Luis Antonio Kowada Universidade Federal Fluminense, Brazil
Marcilio De Souto Université d’Orléans, France
Marcio Dorn Universidade Federal do Rio Grande do Sul, Brazil
Maria Emilia Telles Walter Universidade de Brasilia, Brazil
Mariana

Recamonde-Mendoza
Universidade Federal do Rio Grande do Sul, Brazil

Marilia Braga Bielefeld University, Germany
Nalvo Franco de Almeida Jr. Universidade Federal de Mato Grosso do Sul, Brazil
Rommel Ramos Universidade Federal do Pará, Brazil
Ronnie Alves Instituto Tecnológico Vale, Brazil
Said Sadique Adi Universidade Federal de Mato Grosso do Sul, Brazil
Sérgio Vale Aguiar Campos Universidade Federal de Minas Gerais, Brazil
Sergio Lifschitzs Pontifícia Universidade Católica do Rio de Janeiro,

Brazil
Sergio Pantanos Institut Pasteur de Montevideo, Uruguay
Tainá Raiol Fundação Oswaldo Cruz, Brazil

Additional Reviewers

Clement Agret CIRAD, France
Diego P. Rubert Universidade Federal de Mato Grosso do Sul, Brazil
Eloi Araujo Universidade Federal de Mato Grosso do Sul, Brazil
Euler Garcia Universidade de Brasilia, Brazil
Fábio Henrique Viduani

Martinez
Universidade Federal de Mato Grosso do Sul, Brazil

Fábio Vicente Universidade Federal Tecnológica do Paraná, Brazil
Francisco Neves Universidade de Brasilia, Brazil
Maria Beatriz Walter Costa Universidade de Brasilia, Brazil
Pedro Feijão Simon Fraser University, Canada
Rodrigo Hausen Universidade Federal do ABC, Brazil
Sèverine Bérard Université de Montpellier, France
Waldeyr Mendes Universidade de Brasilia, Brazil

VIII Organization

Sponsors

Sociedade Brasileira de Computação (SBC)
Universidade Federal Fluminense (UFF)
Instituto de Computação, UFF
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Pró-Reitoria de Pesquisa, Pós-graduação e Inovação, UFF
Springer

Organization IX

Contents

Sorting k-Permutations by k-Operations . 1
Guilherme Henrique Santos Miranda, Alexsandro Oliveira Alexandrino,
Carla Negri Lintzmayer, and Zanoni Dias

Super Short Reversals on Both Gene Order and Intergenic Sizes. 14
Andre Rodrigues Oliveira, Géraldine Jean, Guillaume Fertin,
Ulisses Dias, and Zanoni Dias

Identifying Maximal Perfect Haplotype Blocks . 26
Luís Cunha, Yoan Diekmann, Luis Kowada, and Jens Stoye

Sorting by Weighted Reversals and Transpositions 38
Andre Rodrigues Oliveira, Klairton Lima Brito, Zanoni Dias,
and Ulisses Dias

Graph Databases in Molecular Biology . 50
Waldeyr M. C. da Silva, Polyane Wercelens, Maria Emília M. T. Walter,
Maristela Holanda, and Marcelo Brígido

ViMT - Development of a Web-Based Vivarium Management Tool 58
Cristiano Guimarães Pimenta, Alessandra Conceição Faria-Campos,
Jerônimo Nunes Rocha, Adriana Abalen Martins Dias,
Danielle da Glória de Souza, Carolina Andrade Rezende,
Giselle Marina Diniz Medeiros, and Sérgio Vale Aguiar Campos

An Argumentation Theory-Based Multiagent Model to Annotate Proteins . . . 66
Daniel S. Souza, Waldeyr M. C. Silva, Célia G. Ralha,
and Maria Emília M. T. Walter

AutoModel: A Client-Server Tool for Intuitive and Interactive
Homology Modeling of Protein-Ligand Complexes 78

João Luiz de A. Filho, Annabell del Real Tamariz,
and Jorge H. Fernandez

Detecting Acute Lymphoblastic Leukemia in down Syndrome Patients
Using Convolutional Neural Networks on Preprocessed Mutated Datasets . . . 90

Maram Shouman, Nahla Belal, and Yasser El Sonbaty

S2FS: Single Score Feature Selection Applied to the Problem of
Distinguishing Long Non-coding RNAs from Protein Coding Transcripts. . . . 103

Bruno C. Kümmel, Andre C. P. L. F. de Carvalho, Marcelo M. Brigido,
Célia G. Ralha, and Maria Emilia M. T. Walter

A Genetic Algorithm for Character State Live Phylogeny. 114
Rafael L. Fernandes, Rogério Güths, Guilherme P. Telles,
Nalvo F. Almeida, and Maria Emília M. T. Walter

A Workflow for Predicting MicroRNAs Targets via Accessibility
in Flavivirus Genomes . 124

Andressa Valadares, Maria Emília Walter, and Tainá Raiol

Parallel Solution Based on Collective Communication Operations
for Phylogenetic Bootstrapping in PhyML 3.0 . 133

Martha Torres and Julio Oliveira da Silva

Author Index . 147

XII Contents

Sorting λ-Permutations by λ-Operations

Guilherme Henrique Santos Miranda1(B) ,
Alexsandro Oliveira Alexandrino1 , Carla Negri Lintzmayer2 ,

and Zanoni Dias1

1 Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil
{guilherme.miranda,alexsandro.alexandrino}@students.ic.unicamp.br,

zanoni@ic.unicamp.br
2 Center for Mathematics, Computation and Cognition,

Federal University of ABC (UFABC), Santo André, Brazil
carla.negri@ufabc.edu.br

Abstract. The understanding of how different two organisms are is one
of the challenging tasks of modern science. A well accepted way to esti-
mate the evolutionary distance between two organisms is estimating the
rearrangement distance, which is the smallest number of rearrangements
needed to transform one genome into another. If we represent genomes
as permutations, we can represent one as the identity permutation and
so we reduce the problem of transforming one permutation into another
to the problem of sorting a permutation using the minimum number of
operations. In this work, we study the problems of sorting permutations
using reversals and/or transpositions, with some additional restrictions
of biological relevance. Given a value λ, the problem now is how to sort a
λ-permutation, which is a permutation where all elements are less than λ
positions away from their correct places (regarding the identity), by apply-
ing the minimum number of operations. Each λ-operation must have size
at most λ and, when applied over a λ-permutation, the result should also
be a λ-permutation. We present algorithms with approximation factors
of O(λ2), O(λ), and O(1) for the problems of Sorting λ-Permutations by
λ-Reversals, by λ-Transpositions and by both operations.

Keywords: Genome rearrangements · Approximation algorithms
Sorting permutations

1 Introduction

One challenge of modern science is to understand how species evolve, considering
that new organisms arise from mutations that occurred in others. Using the
principle of parsimony, the minimum number of rearrangements that transform
one genome into another, called rearrangement distance, is considered a well
accepted way to estimate the evolutionary distance between two genomes. A
genome rearrangement is a global mutation that alters the order and/or the
orientation of the genes in a genome.
c© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 1–13, 2018.
https://doi.org/10.1007/978-3-030-01722-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_1&domain=pdf
http://orcid.org/0000-0001-5643-4527
http://orcid.org/0000-0002-6320-9747
http://orcid.org/0000-0003-0602-6298
http://orcid.org/0000-0003-3333-6822

2 G. H. S. Miranda et al.

Depending on the genomic information available and the problems consid-
ered, a genome can be modeled in different ways. Considering that a genome
has no repeated genes, we can model it as a permutation, with each element rep-
resenting a gene or a genomic segment shared by the genomes being compared.
If the information about orientation is available, we use signed permutations
to represent them. When this information is unknown, we simply use unsigned
permutations. In this work, we only deal with the case where the orientation is
unknown. By representing one of the genomes as the identity permutation, we
reduce the problem of transforming one permutation into another to the problem
of sorting a permutation with the minimum number of rearrangements, which is
called sorting rearrangement distance or simply distance.

A rearrangement model M is the set of valid rearrangements used to calcu-
late the distance. A reversal rearrangement inverts a segment of the genome
and a transposition rearrangement swaps two adjacent segments of the genome.
Genome rearrangements are also sometimes called operations.

The problems of Sorting Permutations by Reversals and Sorting Permuta-
tions by Transpositions are NP-Hard [2,3]. The best-known results for both
problems are approximation algorithms with factor 1.375 [1,6]. Walter et al. [13]
considered a variation in which the rearrangement model contains both rever-
sals and transpositions, which is called Sorting Permutations by Reversals and
Transpositions, and they presented a 3-approximation algorithm for it. However,
the best-known approximation factor for this problem is 2k [11], where k is
the approximation factor of an algorithm used for cycle decomposition of the
breakpoint graph [5]. Given the best-known value for k, this algorithm has an
approximation factor of 2.8386+ ε, where ε > 0. The complexity of this problem
is still unknown.

Many variants of the sorting rearrangement distance emerged from the
assumption that rearrangement operations which affect large portions of a
genome are less likely to occur [9]. Most of these variants add a constraint that
limits the size of a valid operation [7,8,12]. Considering a size-limit of 2, the prob-
lems of Sorting Permutations by Reversals and/or Transpositions are solvable
in polynomial time [7]. Considering a size-limit of 3, the best-known approxima-
tion factors for Sorting Permutations by Reversals, by Transpositions, and by
Reversals and Transpositions are 2 [7], 5/4 [8], and 2 [12], respectively.

The problem of Sorting Permutations by λ-operations is a generalization of
the size-limited variants in which a rearrangement operation is valid if its size is
less than or equal to λ. Miranda et al. [10] presented O(λ2)-approximation algo-
rithms for reversals, transpositions, and both operations. Using size-limited oper-
ations makes more sense when one knows that the elements are not so far away
from their original positions, so we introduce the study of Sorting λ-Permutations
by λ-Operations. A permutation π is a λ-permutation if all elements of π are
at a distance less than λ from their correct positions considering the identity
permutation. We will consider the problems of sorting unsigned λ-permutations
by λ-reversals, by λ-transpositions, and by λ-reversals and λ-transpositions.

Sorting λ-Permutations by λ-Operations 3

Next sections are organized as follows. In Sect. 2, we present all the concepts
used in this paper. In Sect. 3, we present O(λ2)-approximation algorithms for the
problems studied. In Sect. 4, we present algorithms with approximation factors
of O(λ) and O(1). In Sect. 5, we show experimental results which compare the
algorithms presented in Sects. 3 and 4. We conclude the paper in Sect. 6.

2 Definitions

We denote a permutation by π = (π1 π2 . . . πn), where πi ∈ {1, 2, . . . , n} and
πi �= πj , for all 1 ≤ i < j ≤ n. We assume that there are two extra elements
π0 = 0 and πn+1 = n + 1 in π, but, for convenience, they are omitted from the
permutation’s representation. Given an integer λ as input, we say that π is a
λ-permutation if we have |πi − i| < λ for all 1 ≤ i ≤ n.

We denote the inverse permutation of π as π−1. This permutation is such
that π−1

πi
= i for all 1 ≤ i ≤ n. Note that element π−1

i indicates the position of
element i in π. For example, given π = (4 6 3 5 2 1), then π−1 = (6 5 3 1 4 2).

An operation of reversal is denoted by ρ(i, j), with 1 ≤ i < j ≤ n, and when
applied on a permutation π = (π1 π2 . . . πn), the result is permutation π ·ρ(i, j)
= (π1 π2 . . . πi−1 πj πj−1 . . . πi+1 πi πj+1 . . . πn−1 πn). The size of a reversal
is given by j − i + 1. For example, given π = (1 4 3 2 5), then π · ρ(2, 4) = (1 2
3 4 5) and the size of such operation is 4 − 2 + 1 = 3. We say that ρ(i, j) is a
λ-reversal if we have j − i + 1 ≤ λ.

An operation of transposition is denoted by τ(i, j, k), with 1 ≤ i < j < k
≤ n + 1, and when applied on a permutation π = (π1 π2 . . . πn), the result is
permutation π · τ(i, j, k) = (π1 π2 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn).
The size of a transposition is given by k − i. For example, given π = (4 5 6 1 2
3), then π · τ(1, 4, 7) = (1 2 3 4 5 6) and the size of such operation is 7 − 1 = 6.
We say that τ(i, j, k) is a λ-transposition if we have k − i ≤ λ.

The goal of these problems is to transform a λ-permutation π into the identity
permutation ι = (1 2 . . . n) by applying the minimum number of λ-operations,
which defines the sorting distance, such that each permutation generated during
the process is also a λ-permutation.

We denote by dλ
r (π), dλ

t (π), and dλ
rt(π), the sorting distance when we have

only λ-reversals, only λ-transpositions, and when we have both operations,
respectively.

3 Inversions-Based Approximation Algorithms

In this section we present approximation algorithms based on the concept of
inversions for the problems we are addressing.

An inversion is defined as a pair of elements (πi, πj) such that i < j and
πi > πj . The number of inversions in π is denoted by Inv(π).

Lemma 1. For all λ-permutations π �= ι and all λ ≥ 2, we have dλ
r (π) ≥

Inv(π)
λ(λ−1)/2 , dλ

t (π) ≥ Inv(π)
λ(λ−1)/2 , and dλ

rt(π) ≥ Inv(π)
λ(λ−1)/2 .

4 G. H. S. Miranda et al.

Proof. This follows immediately from the observation that a λ-reversal and a
λ-transposition can remove at most λ(λ−1)

2 inversions. ��
Next lemma shows that it is always possible to remove at least one inver-

sion from a λ-permutation by applying one λ-operation which results in a λ-
permutation.

Lemma 2. Let π be a λ-permutation. It is always possible to obtain a λ-
permutation with Inv(π) − 1 inversions by applying one λ-reversal or one λ-
transposition.

Proof. Let πj = i be the smallest element out-of-place (πi �= i) in π. Initially,
note we have inversion (πj−1, πj), since πj−1 > πj and j − 1 < j. Let σ be a
λ-operation that swaps elements πj−1 and πj , and let π′ = π · σ. It is easy to
see that Inv(π′) = Inv(π) − 1, since such inversion was removed, and note that
there always exists a λ-reversal or a λ-transposition equivalent to σ, because the
elements are adjacent and so both only swap two elements.

Observe that, in π′, element πj is closer to its correct position, since it was
moved to the left. Hence, we follow by showing that π′ is a λ-permutation by
considering two cases according to the values of πj−1 = π′

j .
If πj−1 ≥ j, then πj−1 is also closer to its correct position, in π′. Otherwise,

πj−1 < j. Thus, element πj−1 will be, in π′, one position away from its correct
position. Then, note that |j − πj | + 1 = (j − i) + 1 ≤ λ, because π is a λ-
permutation. Also observe that we have |j −π′

j | = j −π′
j because π′

j = πj−1 < j,
and j − π′

j < j − i because π′
j > i, and, so, j − i ≤ λ − 1. Therefore, π′ is a

λ-permutation and the result follows. ��
A generic greedy approximation algorithm for the three problems we are

addressing is presented in next theorem. It receives an integer λ ≥ 2 and a λ-
permutation π �= ι as inputs. It is greedy because it always tries to decrease the
largest amount of inversions in π. Since the only permutation with no inversions
is the identity, it will, eventually, sort π.

Theorem 3. There exist O(λ2)-approximation algorithms for the problems of
Sorting λ-Permutations by λ-Reversals, λ-Transpositions, and by λ-Reversals
and λ-Transpositions.

Proof. Let λ ≥ 2 be an integer and let π �= ι be a λ-permutation. Consider an
algorithm which chooses the λ-operation σ such that π · σ is a λ-permutation
and Inv(π · σ) is as small as possible and then it applies such operation over
π. The algorithm repeats the same process in the resulting permutation until it
reaches the identity permutation.

In the worst case, we always have one λ-operation reducing the number of
inversions by one unit, as shown in Lemma 2. Therefore, the number of opera-
tions of such greedy algorithm is at most Inv(π), and the approximation factor
follows immediately from Lemma 1. ��

Sorting λ-Permutations by λ-Operations 5

Note that the distance is O(n2) because any permutation can be sorted with
O(n2) λ-reversals or λ-transpositions. For Sorting by λ-Reversals, at each step
the algorithm considers O(λ2) possible reversals that can be chosen. Since the
variation in the number of inversions caused by an operation can be calculated
in O(λ

√
log λ) time [4], the algorithm has total time complexity O(n2λ3

√
log λ).

Using the same analysis, we conclude that the algorithms involving transposi-
tions have total time complexity O(n2λ4

√
log λ).

4 Breakpoints-Based Approximation Algorithms

In this section we present approximation algorithms based on the concept of
breakpoints for the three problems we are addressing.

A breakpoint is defined as a pair of elements (πi, πi+1) such that πi+1 − πi �=
1 (resp. |πi+1 − πi| �= 1), for all 0 ≤ i ≤ n, in the problems of Sorting λ-
Permutations by λ-Transpositions (resp. Sorting λ-Permutations by λ-Reversals
and Sorting λ-Permutations by λ-Reversals and λ-Transpositions). The number
of breakpoints in π is denoted by b(π).

Lemma 4. For all λ-permutations π �= ι and all λ ≥ 2 we have dλ
r (π) ≥ b(π)

2 ,
dλ

t (π) ≥ b(π)
3 , and dλ

rt(π) ≥ b(π)
3 .

Proof. This follows immediately from the observation that a λ-reversal and a
λ-transposition can remove at most 2 and 3 breakpoints, respectively. ��

A maximal subsequence (πi πi+1 . . . πj) without any breakpoints (πk, πk+1),
for all i ≤ k < j, is called a strip. If the strip’s elements are in ascending (resp.
descending) order, then we call it an increasing (resp. decreasing) strip. Strips
containing only one element are considered to be increasing. For example, con-
sidering sorting by both operations and π = (6 4 5 3 2 1), we have two increasing
strips (6) and (4 5), and a decreasing strip (3 2 1). Note, however, that segment
(3 2 1) is not a decreasing strip for the problem of Sorting by Transpositions.
This is because, direct from the definition of strips and breakpoints, there are
no decreasing strips when this problem is considered. The number of elements
in a strip S of a λ-permutation π is denoted by |S|.
Lemma 5. Let π be a λ-permutation and let πj = i be the smallest element
out-of-place in π. The strip S that contains πj is such that |S| ≤ λ − 1.

Proof. First, suppose we have S = (πj . . . πk) as an increasing strip. Then,
let R = (πi . . . πj−1) be the segment of elements to the left of S. Note that
any element in R is greater than any element in S and, so, πi ≥ k + 1, since
πi > πk. By contradiction, suppose |S| ≥ λ. Then, we have i ≤ k − λ + 1. Since
i ≤ (k + 1) − λ ≤ k + 1 ≤ πi, we also have that i ≤ πi, and so |πi − i| = πi − i ≥
k + 1 − (k + 1 − λ) = λ > λ − 1, which is a contradiction to the definition of
λ-permutations. When we have πj in a decreasing strip, the proof follows by
symmetry. ��

6 G. H. S. Miranda et al.

In next lemma, we suppose that the smallest element out-of-place is in an
increasing strip of a λ-permutation π �= ι and we show how to reduce the number
of breakpoints of π by moving this strip to its correct position, but without
considering λ-operations. It is auxiliar to Lemmas 7 and 8, which show how to
do this by applying a sequence of λ-transpositions. Lemma 9 shows how to do
this when the smallest element out-of-place is in a decreasing strip.

Lemma 6. Let π be a λ-permutation. Let πj = i be the smallest element out-
of-place in π. Suppose that πj is in an increasing strip S = (πj . . . πk). Then
b(π · τ(i, j, k + 1)) ≤ b(π) − 1 and (k + 1 − i) ≤ 2(λ − 1).

Proof. Let R = (πi . . . πj−1) be the segment of elements in π that will be trans-
posed with S. Observe that any element in R is greater than any element in S,
so π · τ(i, j, k + 1) is a λ-permutation, once greater elements are moved to the
right and smaller elements to the left. Also observe that in π we have the three
breakpoints (πi−1, πi), (πj , πj+1), and (πk−1, πk), where the first one is because
πi−1 = πj −1 = i−1 and πi > i = πj and the second and third ones are because
the strip’s start and strip’s end are at positions j and k, respectively. Transposi-
tion τ(i, j, k+1) moves the elements of S to their correct positions by transposing
them with elements of R, thus removing at least breakpoint (πi−1, πi). Since a
transposition can add at most three breakpoints, but we already had all of them
and we removed at least (πi−1, πi), we have b(π · τ(i, j, k + 1)) ≤ b(π) − 1.

By Lemma 5, we have |S| ≤ λ − 1, thus k + 1 − j ≤ λ − 1. Since π is a
λ-permutation, we have |πj − j| ≤ λ − 1, and, by construction, πj = i, thus
|i − j| + 1 = j − i + 1 ≤ λ − 1. Therefore, k + 1 − i ≤ 2(λ − 1). ��
Lemma 7. Let π be a λ-permutation. Let πj = i be the smallest element out-
of-place in π. Suppose that π only has increasing strips and that πj is in a strip
S = (πj . . . πk). It is always possible to obtain a λ-permutation π · τ(i, j, k + 1)
with at most b(π)−1 breakpoints by applying at most 5+ 	(λ−1)/2
 λ-reversals
such that all intermediary permutations are λ-permutations.

Proof. Let R = (πi . . . πj−1) be the segment that will be moved to the right in
τ(i, j, k + 1). Note that |S| ≤ λ − 1, by Lemma 5, and |R| ≤ λ − 1, because π is
a λ-permutation.

The idea is to move elements from S to their correct positions by applying at
most two sequences of pairs of λ-reversals, where each one puts at most �λ/2�
elements of S in their correct positions at a time.

In the first sequence of λ-reversals, there are two possibilities. If |S| ≤ �λ/2�,
then the first operation of each pair reverts |S| elements contained in both S
and R. If |S| > �λ/2�, then it reverts �λ/2� elements contained in both S and
R. In any case, the second operation of each pair reverts back the elements of
R affected by the first one, in order to leave π with only increasing strips again
(except for the elements of S which were affected by the first operation).

After the sequence is applied, we have at most �λ/2� elements of S from
positions i to i + min(�λ/2�, |S|), and, maybe, they are in a decreasing strip. If

Sorting λ-Permutations by λ-Operations 7

this is the case, then one more λ-reversal has to be applied to put these elements
in their correct places, by reversing such decreasing strip.

The second sequence of λ-reversals puts the at most �λ/2� remaining elements
of S in their correct positions, following the same idea, and, also, maybe one
extra λ-reversal will be necessary after it is applied. Note that, if there are no
remaining elements (in case of |S| ≤ �λ/2�), this sequence is not necessary.

The largest amount of operations needed in the process described above
happens when we have exactly �λ/2� + 1 elements in S. In order to put the first
�λ/2� elements of S in their correct positions, in this case, we have to apply at
most 	(λ − 1)/(�(λ/2)� + 1)
 pairs of λ-reversals and, maybe, one extra at the
end. Since each pair of operations puts �λ/2� elements exactly (except, maybe,
by the last pair) �λ/2�+1 positions to the left, the number of operations needed
is 4 + 1 = 5. Then, to move the remaining element of S to its correct position,
all the λ-reversals of the second sequence will have size 2 (note that, in this case,
we do not need the second operation of each pair), which means such element
will be moved only 2 positions to the left per operation, giving an extra amount
of 	(λ − 1)/2
 λ-reversals. Therefore, the number of λ-reversals to move S to its
correct position is at most 5 + 	(λ − 1)/2
 λ-reversals.

Now we have to show that after each operation is applied, we have a λ-
permutation as result and, after the last operation is applied, we have π ·τ(i, j, k+
1). Observe that any element in R is greater than any element in S. Then, once
the first operation of each pair moves elements of R to the right and elements
of S to the left, all elements affected will be closer to their correct positions,
resulting in a λ-permutation. The second operation of each pair reverts elements
of R to ascending order again, so it also results in a λ-permutation. After both
sequences of λ-reversals are applied, all elements of S are at positions from i to
i + k − j and all elements of R are at positions from i + k − 1 to k, resulting in
π · τ(i, j, k + 1), which is a λ-permutation with at least one less breakpoint than
π, as showed in Lemma 6. ��
Lemma 8. Let π be a λ-permutation. Let πj = i be the smallest element out-of-
place in π. Suppose that πj is in an increasing strip S = (πj . . . πk). It is always
possible to obtain a λ-permutation π · τ(i, j, k + 1) with at most b(π) − 1 reversal
breakpoints by applying at most 4 λ-transpositions such that all intermediary
permutations are λ-permutations.

Proof. Let R = (πi . . . πj−1) be the segment that will be moved to the right in
τ(i, j, k + 1). Note that |S| ≤ λ − 1, by Lemma 5, and |R| ≤ λ − 1, because π is
a λ-permutation.

The idea is to apply a sequence with at most four λ-transpositions that divide
both segments R = (πi . . . πj−1) and S = (πj . . . πk) into at most two parts
each, where each part has at most �λ/2� elements, and then exchange each part
of S at most twice (and at least once), with the (possible) two parts of R. If
we had exactly λ − 1 elements in each of S and R, such sequence would be
τ(i+ �λ/2�, j, j + �λ/2�), τ(i, i+ �λ/2�, j), τ(j, j + �λ/2�, k+1), τ(i+ �λ/2�, j, j +
�λ/2�).

8 G. H. S. Miranda et al.

Now we have to show that after each of the at most four operations is applied,
we have a λ-permutation as result. Observe that any element in R is greater
than any element in S. Since each λ-transposition puts elements of S closer to
their correct positions by transposing them with greater elements of R, we have
a λ-permutation after each λ-operation applied. After all λ-transpositions are
applied, the elements of S are at positions from i to i + k − j and the elements
of R are at positions from i + k − j + 1 to k, resulting in π · τ(i, j, k + 1), which
is a λ-permutation with at least b(π) − 1 breakpoints, as showed in Lemma 6. ��
Lemma 9. Let πk = i be the smallest element out-of-place in a λ-permutation
π. Suppose that πk is in a decreasing strip S = (πj . . . πk). It is always possible
to obtain a λ-permutation with at most b(π)− 1 reversal breakpoints by applying
at most one λ-transposition and one λ-reversal.

Proof. When j = i, one reversal ρ(j, k) put elements of S in their correct posi-
tions. Since |S| = k − j + 1 ≤ λ − 1 by Lemma 5, we have ρ(j, k) is a λ-reversal
and, since such operation just reverts a decreasing strip, we also have π · ρ(j, k)
as a λ-permutation.

Now assume j > i. Note that, in this case, we have the three breakpoints
(πi−1, πi), (πj , πj+1), and (πk−1, πk), where the first one is because πi−1 = πk −
1 = i − 1 and πi > i = πk and the second and third ones are because the strip’s
start and strip’s end are at positions k and j, respectively. Thus, we can apply
the λ-transposition τ(i, j, k + 1) followed by the λ-reversal ρ(i, i + (k − j)) and
then we get b(π · τ(i, j, k +1) ·ρ(i, i+(k − j))) ≤ b(π)−1, once a λ-transposition
can add at most three breakpoints but we already had (πi−1, πi), (πj−1, πj),
and (πk, πk+1), and the second λ-reversal can add at most two breakpoints but
we already had (πi−1, πj) and (πk, πi) and we removed the first one, since all
elements of S will be in their correct positions in π · τ(i, j, k +1) ·ρ(i, i+(k − j)).

Now we have to show that after each operation is applied, we have a λ-
permutation as result. Let R = (πi . . . πj−1) be the segment of elements that
should be moved in order to put S in its correct position. Observe that any ele-
ment in R is greater than any element in S. The first operation, a λ-transposition,
transposes S only with greater elements and thus the result is a λ-permutation.
The second operation, a λ-reversal, just reverts a decreasing strip to put the
elements of S in their correct positions, thus it also results in a λ-permutation.
Hence, we have as result a λ-permutation with at least one less breakpoint. ��

Next theorems describe approximation algorithms for the problems we are
addressing. Lemma 10 is auxiliar to Theorem 11. The algorithms receive an
integer λ ≥ 2 and a λ-permutation π �= ι as input. The goal is to decrease at
least one unit on the number of breakpoints in π by moving elements to their
correct positions (applying Lemmas 8 and 9). Since the only permutation with
no breakpoints is the identity, they will, eventually, sort π.

Lemma 10. Let π be a λ-permutation. Let S = (j . . . i) be a decreasing strip
in π (thus i < j). Let π′ = π · ρ(π−1

j , π−1
i) be the resulting permutation after

reverting S in π. Then, π′ is a λ-permutation.

Sorting λ-Permutations by λ-Operations 9

Proof. First note that element πj is to the right of element πi. We show that the
lemma follows by considering four cases, according to the positions of elements
i and j with relation to the elements πi and πj .

Case (i), i < j < π−1
j < π−1

i : note that both πi and πj are to the left of S.
Then, after reverting S, element i is closer to its correct position, while element
j is moved away from its correct position. Despite this, the distance between πj

and j in π′ is smaller than the distance between πi and i in π, and so if π is a
λ-permutation, π′ is also a λ-permutation.

Case (ii), i < π−1
j ≤ j < π−1

i : note that πi is to the left of S and πj is in
S. Then, after reverting S, the element i is closer to its correct position and the
distance of j to its correct position will still be less than λ, since the size of S is
at most λ, as Lemma 5 shows.

Case (iii), π−1
j ≤ i < π−1

i ≤ j: similar to (ii).
Case (iv), π−1

j < π−1
i ≤ i < j: similar to (i). ��

Theorem 11. The problem of Sorting λ-Permutations by λ-Reversals has a
O(λ)-approximation algorithm.

Proof. Let λ ≥ 2 be an integer and π �= ι be a λ-permutation. Consider an
algorithm which first applies one λ-reversal over each decreasing strip of π in
order to get a λ-permutation with only increasing strips. By Lemma 10, we
guarantee that all intermediary permutations generated by these λ-reversals are
λ-permutations.

Then, the algorithm will repeatedly take the smallest element out-of-place
and move the increasing strip that contains it to its correct position, obtaining
a λ-permutation with at least one less breakpoint, until it reaches the identity
permutation.

As shown in Lemma 7, at most 5+	(λ−1)/2
 λ-reversals are needed to move
each strip to its correct position. Since, maybe, one extra λ-reversal could have
been applied in the beginning of the algorithm to transform such strip into an
increasing one, we have that at most 6 + 	(λ − 1)/2
 λ-reversals can be applied
to remove at least one breakpoint. Therefore, the number of operations of our
algorithm is at most (6 + 	(λ − 1)/2
)b(π) ≤ O(λ)dλ

r (π), where the inequality
follows from Lemma 4. ��
Theorem 12. The problem of Sorting λ-Permutations by λ-Transpositions has
a 12-approximation algorithm.

Proof. Let λ ≥ 2 be an integer and let π �= ι be a λ-permutation. The algo-
rithm will repeatedly take the smallest element out-of-place and move the
increasing strip that contains such element to its correct position, obtaining
a λ-permutation with at least one less breakpoint, until it reaches the identity
permutation.

As shown in Lemma 8, at most 4 λ-transpositions are needed to move each
strip to its correct position. Then, in the worst case, we remove 1 breakpoint
every 4 λ-transpositions applied. With this and Lemma 4, the number of opera-
tions of our algorithm is at most 4b(π) ≤ 12dλ

t (π). ��

10 G. H. S. Miranda et al.

Theorem 13. The problem of Sorting λ-Permutations by λ-Reversals and λ-
Transpositions has a 12-approximation algorithm.

Proof. Let λ ≥ 2 be an integer and let π �= ι be a λ-permutation. Let πj = i
be the smallest element out-of-place in π. We have two cases to consider: when
the strip which contains πj is decreasing or not. In both cases, we can at least
remove breakpoint (πi−1, πi) from π without adding other ones by applying at
most 4 λ-transpositions (if the strip is increasing) or at most 2 λ-operations (if
the strip is decreasing), as showed in Lemmas 8 and 9, respectively.

Then, considering both cases described, the algorithm will repeatedly take
the smallest element out-of-place and move the strip that contains it to its correct
position, decreasing at least one breakpoint at a time, until it reaches the identity
permutation.

Note that, in the worst case, we remove 1 breakpoint every 4 λ-transpositions
and so the result is analogous to Theorem 12. ��

Since b(n) ≤ n+1, the algorithms move the strip containing the smallest ele-
ment out of place at most O(n) times. At each step, the algorithms spend O(n)
time to find the strip to move and they spend O(λ) (O(1)-approximation algo-
rithms) or O(λ2) (O(λ)-approximation algorithms) time to apply the operations
to move such strip. So, the time complexity for the O(1)-approximation algo-
rithms and the O(λ)-approximation algorithm are O(n(n+λ)) and O(n(n+λ2)),
respectively.

5 Experimental Results

We have implemented the inversions-based and the breakpoints-based approxi-
mation algorithms in order to analyze how they work in a practical perspective.
We performed experiments considering a total of 1000 random λ-permutations,
with size equal to 100 and values of λ = 5, 10, 15, . . . , 100, as input for the algo-
rithms. Then, we compared the results according to the average and maximum
approximation factors obtained for all permutations. For each permutation, we
considered the maximum value of lower bound between the ones shown in Lem-
mas 1 and 4.

We show the results in Fig. 1. We observed that the maximum approximation
factors were 5.38 and 6.76 for λ-reversals, 2.91 and 3.15 for λ-transpositions, and
3.00 and 3.18 for when both operations are allowed, considering the breakpoints-
based and the inversions-based algorithm, respectively. We also noticed, in our
tests, the average approximation factor of the inversions-based algorithm and
the breakpoints-based algorithm were similar, even with the relevant difference
among their theoretical approximation factors.

Sorting λ-Permutations by λ-Operations 11

0 10 20 30 40 50 60 70 80 90 100

λ

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

A
pp

ro
xi
m
at
io
n
Fa
ct
or

Inversions-based Approximation Algorithm (Average)
Inversions-based Approximation Algorithm (Maximum)
Breakpoints-based Approximation Algorithm (Average)
Breakpoints-based Approximation Algorithm (Maximum)

(a) Sorting λ-Permutations by λ-Reversals.

0 10 20 30 40 50 60 70 80 90 100

λ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
pp

ro
xi
m
at
io
n
Fa
ct
or

Inversions-based Approximation Algorithm (Average)
Inversions-based Approximation Algorithm (Maximum)
Breakpoints-based Approximation Algorithm (Average)
Breakpoints-based Approximation Algorithm (Maximum)

(b) Sorting λ-Permutations by λ-Transpositions.

0 10 20 30 40 50 60 70 80 90 100

λ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
pp

ro
xi
m
at
io
n
Fa
ct
or

Inversions-based Approximation Algorithm (Average)
Inversions-based Approximation Algorithm (Maximum)
Breakpoints-based Approximation Algorithm (Average)
Breakpoints-based Approximation Algorithm (Maximum)

(c) Sorting λ-Permutations by λ-Reversals and λ-Transpositions.

Fig. 1. Average and maximum approximation factors of the algorithms for Sorting
λ-Permutations by λ-Operations, with λ-permutations of size 100.

12 G. H. S. Miranda et al.

6 Conclusion

In this work we introduced the study of the problems of Sorting λ-Permutations
by λ-Operations. We developed algorithms with approximation factors of O(λ2),
O(λ), and 12 for the problems studied. We also performed experiments in order to
compare how the algorithms work in a practical perspective. For future work, we
intend to develop approximation algorithms for the problems of Sorting Signed
λ-Permutations by λ-Operations.

Acknowledgments. This work was supported by the Brazilian Federal Agency for the
Support and Evaluation of Graduate Education, CAPES, the National Counsel of Tech-
nological and Scientific Development, CNPq (grants 400487/2016-0 and 425340/2016-
3), São Paulo Research Foundation, FAPESP (grants 2013/08293-7, 2015/11937-9,
2017/12646-3, 2017/16246-0, and 2017/16871-1), and the program between the CAPES
and the French Committee for the Evaluation of Academic and Scientific Cooperation
with Brazil, COFECUB (grant 831/15).

References

1. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-Approximation algorithm for
sorting by reversals. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol.
2461, pp. 200–210. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45749-6 21

2. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J.
Comput. 26(3), 1148–1180 (2012)

3. Caprara, A.: Sorting permutations by reversals and eulerian cycle decompositions.
SIAM J. Discret. Math. 12(1), 91–110 (1999)

4. Chan, T.M., Pătraşcu, M.: Counting inversions, offline orthogonal range counting,
and related problems. In: Proceedings of the Twenty-first Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 161–173. Society for Industrial and Applied
Mathematics (2010)

5. Chen, X.: On sorting unsigned permutations by double-cut-and-joins. J. Comb.
Optim. 25(3), 339–351 (2013)

6. Elias, I., Hartman, T.: A 1.375-Approximation algorithm for sorting by transposi-
tions. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 369–379 (2006)

7. Heath, L.S., Vergara, J.P.C.: Sorting by Short Swaps. J. Comput. Biol. 10(5),
775–789 (2003)

8. Jiang, H., Feng, H., Zhu, D.: An 5/4-Approximation algorithm for sorting permuta-
tions by short block moves. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS,
vol. 8889, pp. 491–503. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13075-0 39

9. Lefebvre, J.F., El-Mabrouk, N., Tillier, E.R.M., Sankoff, D.: Detection and valida-
tion of single gene inversions. Bioinformatics 19(1), i190–i196 (2003)

10. Miranda, G.H.S., Lintzmayer, C.N., Dias, Z.: Sorting permutations by limited-size
operations. In: Jansson, J., Mart́ın-Vide, C., Vega-Rodŕıguez, M.A. (eds.) AlCoB
2018. LNCS, vol. 10849, pp. 76–87. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91938-6 7

11. Rahman, A., Shatabda, S., Hasan, M.: An approximation algorithm for sorting by
reversals and transpositions. J. Discret. Algorithms 6(3), 449–457 (2008)

https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1007/978-3-319-13075-0_39
https://doi.org/10.1007/978-3-319-13075-0_39
https://doi.org/10.1007/978-3-319-91938-6_7
https://doi.org/10.1007/978-3-319-91938-6_7

Sorting λ-Permutations by λ-Operations 13

12. Vergara, J.P.C.: Sorting by Bounded Permutations. Ph.D. thesis, Virginia Poly-
technic Institute and State University (1998)

13. Walter, M.E.M.T., Dias, Z., Meidanis, J.: Reversal and transposition distance of
linear chromosomes. In: Proceedings of the 5th International Symposium on String
Processing and Information Retrieval (SPIRE 1998), pp. 96–102. IEEE Computer
Society (1998)

Super Short Reversals on Both Gene
Order and Intergenic Sizes

Andre Rodrigues Oliveira1(B) , Géraldine Jean2, Guillaume Fertin2 ,
Ulisses Dias3 , and Zanoni Dias1

1 Institute of Computing, University of Campinas, Campinas, Brazil
{andrero,zanoni}@ic.unicamp.br

2 Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004,
University of Nantes, Nantes, France

{geraldine.jean,guillaume.fertin}@univ-nantes.fr
3 School of Technology, University of Campinas, Limeira, Brazil

ulisses@ft.unicamp.br

Abstract. The evolutionary distance between two genomes can be esti-
mated by computing the minimum length sequence of operations, called
genome rearrangements, that transform one genome into another. Usu-
ally, a genome is modeled as an ordered sequence of (possibly signed)
genes, and almost all the studies that have been undertaken in the
genome rearrangement literature consist in shaping biological scenarios
into mathematical models: for instance, allowing different genome rear-
rangements operations at the same time, adding constraints to these rear-
rangements (e.g., each rearrangement can affect at most a given number
k of genes), considering that a rearrangement implies a cost depending
on its length rather than a unit cost, etc. However, most of the works
in the field have overlooked some important features inside genomes,
such as the presence of sequences of nucleotides between genes, called
intergenic regions. In this work, we investigate the problem of comput-
ing the distance between two genomes, taking into account both gene
order and intergenic sizes; the genome rearrangement operation we con-
sider here is a constrained type of reversals, called super short reversals,
which affect up to two (consecutive) genes. We propose here three algo-
rithms to solve the problem: a 3-approximation algorithm that applies to
any instance, and two additional algorithms that apply only on specific
types of genomes with respect to their gene order: the first one is an
exact algorithm, while the second is a 2-approximation algorithm.

Keywords: Genome rearrangements · Intergenic regions
Super short reversals · Approximation algorithm

1 Introduction

Given two genomes G1 and G2, one way to estimate their evolutionary distance
is to compute the minimum possible number of large scale events, called genome
c© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 14–25, 2018.
https://doi.org/10.1007/978-3-030-01722-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_2&domain=pdf
http://orcid.org/0000-0002-0568-1859
http://orcid.org/0000-0002-8251-2012
http://orcid.org/0000-0002-4763-3046
http://orcid.org/0000-0003-3333-6822

Super Short Reversals on Both Gene Order and Intergenic Sizes 15

rearrangements, that are needed to go from G1 to G2. The minimality requirement
is dictated by the commonly accepted parsimony principle, while the allowed
genome rearrangements depend on the model, i.e. on the classes of events that
supposedly happen during evolution.

However, before one performs this task, it is necessary to model the input
genomes. Almost all previous works have defined genomes as ordered sequences
of elements, which are genes. Variants within this setting can occur: for instance,
depending on the model, genes may be signed or unsigned, the sign of a gene
representing the DNA strand it lies on. Besides, each gene may appear either
once or several times in a genome: in the latter case, genomes are modeled as
strings, while in the former case they are modeled as permutations.

Concerning genome rearrangements, the most commonly studied is reversal,
which consists in taking a continuous sequence in the genome, reversing it, and
putting it back at the same location (see e.g. [10] for one of the first studies
of the problem). A more recent and general type of genome rearrangement is
the DCJ (for Double-Cut and Join) [14]. One can also alternately define the
rearrangement events in order to reflect specific biological scenarios. For example,
in populations where the number of rearrangement events that affect a very large
portion of the genes is known to be rare, we can restrict events to be applied
over no more than k genes at the same time, for some predetermined value of
k [5,8,9].

Since the mid-nineties, a very large amount of work has been done concerning
algorithmic issues of computing distances between pairs of genomes, depending
on the genome model and the allowed set of rearrangements. For instance, if
one considers reversals in unsigned permutations, the problem is known to be
NP-hard [4], while it is polynomial-time solvable in signed permutations [10].
We refer the reader to Fertin et al.’s book [7] for a survey of the algorithmics
aspects of the subject.

As previously mentioned, almost all of these works have so far assumed that
a genome is an ordered sequence of genes. However, it has recently been argued
that this model could underestimate the “true” evolutionary distance, and that
other genome features may require to be taken into account in the model in
order to circumvent this problem [1,2].

Indeed, genomes carry more information than just their ordered sequences of
genes, and in particular consecutive genes in a genome are separated by inter-
genic regions, which are DNA sequences between genes having different sizes (in
terms of number of nucleotides).

This recently led some authors to model a genome as an ordered sequence of
genes, together with an ordered list of its intergenic sizes, and to consider the
problem of computing the DCJ distance, either in the case where insertions and
deletions of nucleotides are forbidden [6], or allowed [3].

In this work, we also consider genomes as ordered sequences of genes together
with their intergenic sizes, in the case where the gene sequence is an unsigned
permutation and where the considered rearrangement operation is super short
reversal (or SSR, i.e. a reversal of (gene) length at most two). In this context, our

16 A. R. Oliveira et al.

goal is to determine the minimum number of SSRs that transform one genome
into another.

Sorting by super short reversals and/or super short transpositions (i.e. trans-
positions of (gene) length at most two each) has been studied in linear and circu-
lar genomes, signed and unsigned, and in all cases the problem has been shown
to be in P class [8,9,11–13].

This paper is organized as follows. In Sect. 2 we provide the notations that
we will use throughout the paper, and we introduce new notions that will prove
useful for studying the problem. In Sect. 3, we derive lower and upper bounds on
the sought distance, which in turn will help us design three different algorithms:
one applies to the general case, while the remaining two apply to specific classes
of genomes. Section 4 concludes the paper.

2 Definitions

We can represent a genome G with n genes as an n-tuple. When there is no
duplicated genes, the n-tuple is a permutation π = (π1 π2 ... πn−1 πn) with
πi ∈ {1, 2, ..., (n−1), n}, for 1 ≤ i ≤ n, and πi = πj if, and only if, i = j. We
denote by ι the identity permutation, the permutation in which all elements are
in ascending order. The extended permutation is obtained from π by adding two
new elements: π0 = 0 and πn+1 = (n+1).

A genome G, represented by a permutation π with n elements, has m = n+1
intergenic regions rπ = (rπ

1 , ..., rπ
m), with rπ

j ≥ 0 for 1 ≤ j ≤ m, such that
the intergenic region rπ

i is located before element πi, for 1 ≤ i ≤ n, and the
intergenic region rπ

m is situated right after element πn.
A reversal ρ(i, j, x, y) applied over a permutation π, with 1 ≤ i ≤ j ≤ n,

0 ≤ x ≤ rπ
i , and 0 ≤ y ≤ rπ

j+1, is an operation that (i) reverses the order of the
elements in the subset of adjacent elements {πi, ..., πj}; (ii) reverses the order
of intergenic regions in the subset of adjacent intergenic regions {rπ

i+1, ..., r
π
j }

when j > i+2; (iii) cuts two intergenic regions: after position x inside intergenic
region rπ

i and after position y inside intergenic region rπ
j+1. This reversal results

in the permutation π′ such that rπ′
i = x + y and rπ′

j+1 = (rπ
i −x) + (rπ

j+1−y).
A reversal ρ(i, j, x, y) is also called a k-reversal, where k = (j−i)+1. A super

short reversal is a 1-reversal or a 2-reversal, i.e., a reversal that affects only one
or two elements of π.

Figure 1 shows a sequence of three super short reversals that transforms the
permutation π = (1 3 4 2 5) with rπ = (3, 5, 2, 1, 2, 8) into ι = (1 2 3 4 5)
with rι = (3, 2, 6, 4, 5, 1).

A pair of elements (πi, πj) from π is called an inversion if πi > πj and i < j,
with {i, j} ∈ [1..n]. We denote the number of inversions in a permutation π by
inv(π). For the example above, inv(π) = 2.

Given two permutations π and α of same size, representing genomes G1 and G2

respectively, we denote by Wi(π, α) = rπ
i − rα

i the imbalance between intergenic
regions rπ

i and rα
i , with 1 ≤ i ≤ m.

Super Short Reversals on Both Gene Order and Intergenic Sizes 17

0 3 1 5 3 2 4 1 2 2 5 7 1 6
ρ(5, 5, 2, 7)

0 3 1 5 3 1 1 4 1 2 5 4 5 1 6
ρ(3, 4, 1, 5)

0 3 1 1 4 3 6 2 1 4 5 5 1 6
ρ(2, 3, 1, 1)

0 3 1 2 2 6 3 4 4 5 5 1 6

(a)

(b)

(c)

(d)

Fig. 1. A sequence of super short reversals that transforms π = (1 3 4 2 5), with
rπ = (3, 5, 2, 1, 2, 8) into ι = (1 2 3 4 5), with rι = (3, 2, 6, 4, 5, 1). Intergenic regions
are represented by rectangles, whose dimensions vary according to their sizes. The 1-
reversal ρ(5, 5, 2, 7) applied in (a) transforms π into π′ = π, and it cuts π after position

2 at rπ
5 and after position 7 at rπ

6 , resulting in rπ′
5 = 9, rπ′

6 = 1, and rπ′
= (3, 5, 2, 1, 9, 1).

The 2-reversal ρ(3, 4, 1, 5) applied in (b) transforms π′ into π′′ = (1 3 2 4 5), and it

cuts π′ after position 1 at rπ′
3 and after position 5 at rπ′

5 , resulting in rπ′′
3 = 6, rπ′′

5 = 5,
and rπ′′

= (3, 5, 6, 1, 5, 1). Finally, the 2-reversal ρ(2, 3, 1, 1) applied in (c) transforms
π′′ into ι, as shown in (d).

Given two permutations π and α of same size and same total sum of the

intergenic region lengths, let Sj(π, α) =
j∑

i=1

Wi(π, α) be the cumulative sum of

imbalances between intergenic regions of π and α from position 1 to j, with
1 ≤ j ≤ m. Since π and α have same total sum of the intergenic region lengths,
Sm(π, α) = 0.

From now on, we will consider that (i) the target permutation α is such that
α = ι; (ii) π and ι have the same number of elements; and (iii) the number of
nucleotides inside intergenic regions of rπ equals the number of nucleotides inside
intergenic regions of rι. By doing this, we can compute the sorting distance of
π, denoted by d(π), that consists in finding the minimum number of super short
reversals that sorts π and transforms rπ into rι.

The intergenic graph of π with respect to the target permutation ι, denoted
by I(π, ι) = (V,E), is such that V is composed by the set of intergenic regions
rπ and the set of elements from the extended permutation π. Besides, the edge
e = (rπ

i , rπ
i+2) ∈ E if there is a j �= i such that (πi, πj) or (πj , πi+1) is an

inversion, with 1 ≤ i ≤ n−1 and 1 ≤ j ≤ n.
A component c is a minimal set of consecutive elements from V in which: (i)

the sum of imbalances of its intergenic regions with respect to rι is equal to zero;
and (ii) any two intergenic regions that are connected to each other by an edge
must belong to the same component.

18 A. R. Oliveira et al.

c1 c2

15 6 4 12 8 13 9 2

e1 e2 e3

0 3 1 2 4 5 7 6 8
Wi(π, ι) : +5 -9 -4 +5 +3 +4 -4 +0
Si(π, ι) : +5 -4 -8 -3 +0 +4 +0 +0

(a)

c1 c2 c3

10 6 9 12 8 13 9 2

e2 e3

0 1 3 2 4 5 7 6 8
(b)

c1 c2 c3 c4 c5 c6 c7 c8

10 15 8 7 5 9 13 20 1 2 3 4 5 6 7 8
(c)

Fig. 2. Intergenic graphs I(π, ι) in (a), I(π′, ι) in (b), and I(ι, ι) in (c), with

π = (3 1 2 4 5 7 6), rπ = (15, 6, 4, 12, 8, 13, 9, 2), π′ = (1 3 2 4 5 7 6), rπ′
=

(10, 6, 9, 12, 8, 13, 9, 2), ι = (1 2 3 4 5 6 7), and rι = (10, 15, 8, 7, 5, 9, 13, 2). Black
squares represent intergenic regions, and the number inside it indicate their sizes.
Rounded rectangles in blue represent components. Note that in (a) there are three
edges in I(π, ι), and C(I(π, ι)) = 2. We also have in (a) all values for Si(π, ι) and
Wi(π, ι), with 1 ≤ i ≤ 8. The permutation π′ is the result of applying ρ(1, 2, 8, 2) to π.
In (b) we can see that I(π′, ι) has one more component than I(π, ι), and the edge e1 was
removed. In (c) we can see that when we reach the target permutation the number of
components is equal to the number of intergenic regions in ι (i.e., C(I(ι, ι)) = m = 8).

A component always starts and finishes with elements from π. Besides, the
first component starts with the element π0, and the last component ends with
the element πn+1. Consecutive components share exactly one element from π,
i.e., the last element πi of a component is the first element of its adjacent compo-
nent to the right. A component with one intergenic region is called trivial. The
number of intergenic regions in a component c is denoted by r(c). The number
of components in a permutation π is denoted by C(I(π, ι)). Figure 2 shows three
examples of intergenic graphs.

3 Sorting Permutations by Super Short Reversals

In this section we analyze the version of the problem when only super short
reversals (i.e., 1-reversals and 2-reversals) are allowed to sort a permutation on
both order and intergenic regions. First, we show that any 1-reversal can increase
the number of components by no more than one unit. After that, we state that
if a component c of an intergenic graph I(π, ι) with r(c) > 1 has no edges (i.e.,
there is no inversions inside c), then it is always possible to split c into two
components with a 1-reversal.

Super Short Reversals on Both Gene Order and Intergenic Sizes 19

ck ck+1 c′
k

rπ
i rπ

i+1 rπ′
i rπ′

i+1

ρ(i, i, x, y)

ρ(i, i, x, y)

ρ(i, i, x, y)

... πi π′
i

...
Si(π′, ι) �= 0

(a)

ck c′
k

rπ
i rπ

i+1 rπ′
i rπ′

i+1
... πi π′

i
...

Si(π′, ι) �= 0

(b)

ck c′
k c′′

k

rπ
i rπ

i+1 rπ′
i rπ′

i+1
... πi π′

i
...

Si(π′, ι) = 0

(c)

Fig. 3. Example of intergenic graphs for all possible values of C(I(π′, ι)) with respect to
C(I(π, ι)), where π′ is the resulting permutation after applying a 1-reversal ρ(i, i, x, y)
to π. If the 1-reversal is applied over two components at the same time and x+y �= rπ

i ,
then C(I(π′, ι)) = C(I(π, ι)) − 1, as shown in (a). If the 1-reversal is applied over one
component, then either C(I(π′, ι)) = C(I(π, ι)), if x+y �= rπ

i −Si(π, ι), or C(I(π′, ι)) =
C(I(π, ι)) + 1, if x + y = rπ

i − Si(π, ι), as shown in (b) and (c) respectively.

Lemma 1. Given a permutation π and a target permutation ι, let π′ be
the resulting permutation from π after applying a 1-reversal. It follows that
C(I(π, ι)) − 1 ≤ C(I(π′, ι)) ≤ C(I(π, ι)) + 1.

Proof. If a 1-reversal ρ(i, i, x, y), applied over intergenic regions rπ
i and rπ

r+1, is
applied over two different components in I(π, ι) = (V,E), then rπ

i is the last
element of the first component, so Si(π, ι) = 0 and the graph I(π′, ι) = (V ′, E′),
where π′ is the resulting permutation, is such that C(I(π′, ι)) = C(I(π, ι)) − 1
if x + y �= rπ

i , as shown in Fig. 3(a). Let us consider now that this 1-reversal is
applied over intergenic regions of a same component c.

First note that, since 1-reversals does not remove inversions from π, the
intergenic graph I(π′, ι) has E′ = E. If (rπ′

i , rπ′
i+2) ∈ E′ (for 0 < i < n), or

(rπ′
i−1, r

π′
i+1) ∈ E′ (for 0 < i ≤ n), then C(I(π′, ι)) = C(I(π, ι)). Otherwise, we

have two cases to consider: C(I(π′, ι)) = C(I(π, ι)), if Si(π′, ι) �= 0 (as shown in
Fig. 3(b)); and C(I(π′, ι)) = C(I(π, ι))+1 if Si(π′, ι) = 0 (as shown in Fig. 3(c)).

��

Lemma 2. If a component c of an intergenic graph I(π, ι) with r(c) ≥ 2 con-
tains no edges, then there is always a pair of consecutive intergenic regions to
which we can apply a 1-reversal that splits c into two components c′ and c′′ such
that r(c′) + r(c′′) = r(c).

20 A. R. Oliveira et al.

Proof. Let pi be the index in rπ of the i-th intergenic region inside component
c. The last intergenic region of c is at position pr(c). By definition of component,
and since c contains no edges, for any p1 ≤ j < pr(c) we have that Sj(π, ι) �= 0.
Note that since r(c) > 1 we have that Sp1(π, ι) = Wp1(π, ι) �= 0.

If Sp1(π, ι) > 0, let k be the index of element from π located right after rπ
p1

.
Apply the reversal ρ(k, k, rι

p1
, 0). Otherwise, we have that Sp1(π, ι) < 0, and we

need to find two intergenic regions rπ
pi

and rπ
pi+1

for 1 ≤ i < r(c) such that
Spi

(π, ι) < 0 and Spi+1(π, ι) ≥ 0. Since, by definition of component, Spr(c) = 0,
such a pair always exists. So, apply the reversal ρ(pi, pi, r

π
pi

,−Spi
(π, ι)).

In both cases, the resulting permutation π′ has Spi
(π′, ι) = 0, Spi+1(π

′, ι) =
Spi+1(π, ι) + Spi

(π, ι), and for any i + 2 ≤ j ≤ r(c) we have that Spj
(π′, ι) =

Spj
(π, ι) so, as before, all intergenic regions from rπ′

pi+1
to rπ′

pr(c)
must be in the

same component.
This 1-reversal splits c into two components: c′ with all intergenic regions in

positions p1 to pi, and c′′ with all intergenic regions in positions pi+1 to pr(c),
and the lemma follows. ��

Now we state that any 2-reversal can increase the number of components by
no more than two units.

Lemma 3. Given a permutation π and a target permutation ι, let π′ be
the resulting permutation from π after applying a 2-reversal. We have that
C(I(π, ι)) − 2 ≤ C(I(π′, ι)) ≤ C(I(π, ι)) + 2.

Proof. If a 2-reversal is applied over intergenic regions of two different compo-
nents then we are necessarily creating a new inversion, and the graph I(π′, ι) =
(V ′, E′), where π′ is the resulting permutation, has C(I(π′, ι)) = C(I(π, ι)) − 2
(as shown in Fig. 4(a)) or C(I(π′, ι)) = C(I(π, ι)) − 1 (as shown in Fig. 4(b)).
Let us consider now that the operation is applied over intergenic regions of a
same component c.

Suppose that we apply an operation that exchanges elements πi and πi+1,
with 1 ≤ i < n − 1. If the resulting permutation π′ is such that (rπ′

i , rπ′
i+2) ∈ E′

then C(I(π′, ι)) = C(I(π, ι)). Otherwise, we have three cases to consider:
C(I(π′, ι)) = C(I(π, ι)), if Si(π′, ι) �= 0 and Si+1(π′, ι) �= 0 (as shown in
Fig. 4(c)); C(I(π′, ι)) = C(I(π, ι)) + 1 if either Si(π′, ι) = 0 or Si+1(π′, ι) = 0
(as shown in Fig. 4(d)); and C(I(π′, ι)) = C(I(π, ι)) + 2 otherwise (as shown in
Fig. 4(e)). ��

Using Lemmas 1, 2, and 3 we show in the following two lemmas the minimum
and maximum number of super short reversals needed to transform π into ι and
rπ into rι.

Lemma 4. Given a genome G1, let π be its corresponding permutation with rπ =
(rπ

1 , ..., rπ
m) intergenic regions. We have that d(π) ≥ max(m−C(I(π,ι))

2 , inv(π)),
where ι is the corresponding permutation of the target genome G2.

Proof. In order to sort π we need to remove all inversions, and since a 2-reversal
can remove only one inversion, we necessarily have that d(π) ≥ inv(π). Besides,

Super Short Reversals on Both Gene Order and Intergenic Sizes 21

ck ck+1 ck+2 c′
k

rπ
i rπ

i+1 rπ
i+2 rπ′

i rπ′
i+1 rπ′

i+2

e1

... πi πi+1 π′
i π′

i+1
...

(a)

ck ck+1 c′
k

rπ
i rπ

i+1 rπ
i+2 rπ′

i rπ′
i+1 rπ′

i+2

e1

... πi πi+1 π′
i π′

i+1
...

(b)

ck c′
k

rπ
i rπ

i+1 rπ
i+2 rπ′

i rπ′
i+1 rπ′

i+2

e1

... πi πi+1 π′
i π′

i+1
...

Si(π′, ι) �= 0 and Si+1(π′, ι) �= 0
(c)

ck c′
k c′′

k

rπ
i rπ

i+1 rπ
i+2 rπ′

i rπ′
i+1 rπ′

i+2

e1

... πi πi+1 π′
i π′

i+1 ...
either Si(π′, ι) �= 0 or Si+1(π′, ι) �= 0

(d)

ck c′
k

c′′
k c′′′

k

rπ
i rπ

i+1 rπ
i+2 rπ′

i rπ′
i+1 rπ′

i+2

e1

... πi πi+1 π′
i π′

i+1 ...
Si(π′, ι) = 0 and Si+1(π′, ι) = 0

ρ(i, i+1, x, y)

ρ(i, i+1, x, y)

ρ(i, i+1, x, y)

ρ(i, i+1, x, y)

ρ(i, i+1, x, y)
(e)

Fig. 4. Example of intergenic graphs for all possible values of C(I(π′, ι)) with respect
to C(I(π, ι)) where π′ is the resulting permutation after applying a 2-reversal to π.
When the 2-reversal is applied over two components at the same time then either
C(I(π′, ι)) = C(I(π, ι)) − 2, as shown in (a), or C(I(π′, ι)) = C(I(π, ι)) − 1, as shown
in (b). Otherwise, we have that either C(I(π′, ι)) = C(I(π, ι)), if Si(π

′, ι) �= 0 and
Si+1(π

′, ι) �= 0 as shown in (c), or C(I(π′, ι)) = C(I(π, ι)) + 1, if e1 �∈ I(π′, ι) and
either Si(π

′, ι) �= 0 or Si+1(π
′, ι) �= 0 as shown in (d), or C(I(π′, ι)) = C(I(π, ι)) + 2,

if e1 �∈ I(π′, ι), Si(π
′, ι) = 0 and Si+1(π

′, ι) = 0 as shown in (e).

by Lemmas 1 and 3, we can increase the number of components by at most two
with a super short reversal, so to reach m trivial components we need at least
m−C(I(π,ι))

2 super short reversals. Thus, d(π) ≥ max(m−C(I(π,ι))
2 , inv(π)). ��

Lemma 5. Given a genome G1, let π be its corresponding permutation with
rπ = (rπ

1 , ..., rπ
m) intergenic regions. We have that d(π) ≤ inv(π)+m−C(I(π, ι)),

where ι is the corresponding permutation of the target genome G2.

Proof. Suppose that first we remove all inversions of π with inv(π) 2-reversals
of type ρ(i, i + 1, rπ

i , 0) i.e., without exchanging its intergenic regions. Let π′

be the resulting permutation, with rπ′
= rπ. The number of components in π

cannot be smaller than C(I(π, ι)) since each 2-reversal removing an inversion is
applied inside a same component. Let us suppose then that π′ has k′ ≥ C(I(π, ι))

22 A. R. Oliveira et al.

components. By Lemma 2, we can go from k′ to m components using m − k′

1-reversals, which results in no more than m−C(I(π, ι)) 1-reversals, and the
lemma follows. ��

Finally, using Lemmas 4 and 5, we prove that it is possible to obtain a solution
3-approximable for this problem.

Theorem 6. Given a genome G1 with its corresponding permutation π, and a
target genome G2 with its corresponding permutation ι, the value of d(π) is 3-
approximable.

Proof. Let us represent G1 by a permutation π with rπ = (rπ
1 , ..., rπ

m) intergenic
regions, inv(π) inversions, and let k = C(I(π, ι)). If m−k

2 > inv(π) then, by
Lemma 4, d(π) ≥ m−k

2 , and, by Lemma 5, d(π) ≤ m−k+inv(π) ≤ m−k+m−k
2 ≤

3m−k
2 . Otherwise, m−k

2 < inv(π), so m − k < 2inv(π). By Lemma 4, d(π) ≥
inv(π), and, by Lemma 5, d(π) ≤ m−k + inv(π) ≤ 2inv(π)+ inv(π) ≤ 3inv(π),
and the lemma follows. ��

Although Theorem 6 states that this problem is 3-approximable, it is possible
to sort any permutation π and transform rπ into rι optimally if π1 = n and
πn = 1, as shown in the following lemma.

Lemma 7. If a permutation π is such that π1 = n and πn = 1, with n > 1, then
d(π) = inv(π) + ϕ(π), where ϕ(π) = 1, if the sum of imbalances of intergenic
regions in odd positions of rπ differs from zero, and ϕ(π) = 0, otherwise.

Proof. By Lemma 4, we have that d(π) ≥ inv(π). Besides, since only 2-reversals
remove inversions, and since 2-reversals exchange nucleotides between intergenic
regions of same parity only, then d(π) ≥ inv(π) + ϕ(π), with ϕ(π) = 1, if the
cumulative sum of imbalances of intergenic regions in odd positions, denoted
by Sodd(π, ι), differs from zero (in this case we will need at least one 1-reversal
to exchange nucleotides between an odd and an even intergenic region), and
ϕ(π) = 0 otherwise. Consider the following procedure, divided into four steps:

(i) Remove any inversion between elements in positions 2 to (n − 1) with 2-
reversals of type ρ(i, i + 1, rπ

i , 0), and let π′ = (n 2 ... (n−1) 1) be the
resulting permutation. Note that rπ′

= rπ, and π′ has (2n − 3) inversions
which means that inv(π) − 2n + 3 2-reversals were applied.

(ii) Take the element π′
1 = n to position n − 1 by a sequence of (n−2) 2-

reversals of type ρ(i, i+1, 0, 0), for 1 ≤ i ≤ n−2, and let π′′ = (2 3 ... n 1)
be the resulting permutation. After this sequence is applied, all intergenic
nucleotides are in the last three intergenic regions rπ′

n−1, rπ′′
n and rπ′′

n+1 only,
and inv(π′′) = n − 1.

(iii) Let a = Sodd(π′′, ι), if n is odd, and a = −Sodd(π, ι) otherwise, and let b =
Wn+1(π′′, ι). If b ≥ 0 (resp. b < 0) apply the 2-reversal ρ(n−1, n, rπ′′

n−1, b)
balancing rn+1 (resp. if a �= 0, apply the 1-reversal ρ(n−1, n−1, x, y) with
x = rπ′′

n−1 and y = a if a > 0; x = rπ′′
n−1+a and y = 0 otherwise), and, if a �= 0,

apply ρ(n−1, n−1, x, y), with x = rπ′′
n−1+b and y = a if a > 0; x = rπ′′

n−1+b+a

Super Short Reversals on Both Gene Order and Intergenic Sizes 23

and y = 0 otherwise (resp. apply by the 2-reversal ρ(n−1, n, x + y + b, 0)
balancing rn+1). We applied 1+ϕ(π) operations here. Let π′′′ = (2 ... 1 n)
be the resulting permutation, with (n−2) inversions and two components: one
with all intergenic regions rπ′′′

i , for 1 ≤ i ≤ n, and one with the intergenic
region rπ′′′

n+1 only.
(iv) Move element 1 from position (n−1) to position 1 by a sequence of reversals

ρ(i, i + 1, 0, k − rι
i+2) such that k is the length of the intergenic region

that the current 2-reversal is cutting in the right. We will apply (n − 2)
2-reversals, removing the same amount of inversions. This step goes from
2 to 2 + (n − 1) = m components since each 2-reversal here creates a new
component, except for the last one that creates two new components.

Summing up, we apply inv(π) − 2n + 3 reversals in (i), n − 2 reversals in (ii),
1 + ϕ(π) reversals in (iii), and n − 2 reversals in (iv), which gives us exactly the
minimum amount of (inv(π) + ϕ(π)) operations. ��

We can use Lemma 7 to obtain a 2-approximation algorithm for permutations
π with n ≥ 9 elements and inv(π) ≥ 4n, as explained in the next lemma.

Lemma 8. If a permutation π with n ≥ 9 elements has inv(π) ≥ 4n then the
value of d(π) is 2-approximable.

Proof. Suppose that we have a permutation π with n ≥ 9 such that inv(π) ≥ 4n.
By Lemma 4, we have that d(π) ≥ inv(π). Consider the following procedure,
divided into three steps:

(i) Apply a sequence of k super short reversals that moves the element n on
π to position 1, without exchanging any intergenic region (i.e., any super
short reversal ρ(i, i+1, x, y) applied here has x = rπ

i and y = 0, keeping rπ

intact). Let π′ be the resulting permutation. Since π has n elements, we
have that k < n and inv(π′) < inv(π) + n, regardless of the position of
element n in π.

(ii) Apply a sequence of k′ super short reversals in a similar way as above that
moves element 1 from π′ to position n. Let π′′ be the resulting permutation.
Since π′ has n elements, and since element 1 cannot be at position 1 in π′

(π′
1 = n), it follows that k′ < n − 1 and inv(π′′) < inv(π′) + n − 1 <

inv(π) + 2n − 1, regardless of the position of element 1 in π′.
(iii) Use the algorithm presented in Lemma 7 to sort π′′.

Note that the first two steps apply (k +k′) < (2n−1) super short reversals, and
Step (iii) applies up to inv(π)+2n super short reversals, so the procedure above
applies z super short reversals such that z ≤ 2n−1+inv(π)+2n = inv(π)+4n−1.
Since inv(π) ≥ 4n, we have that z ≤ 2inv(π), and the lemma follows. ��

24 A. R. Oliveira et al.

4 Conclusion

In this paper, we analyzed the minimum number of super short reversals needed
to sort a permutation π and transform its intergenic regions rπ according to the
set of intergenic regions rι of the target genome represented by ι. We defined
some bounds that allowed us to state three different algorithms: a more general
that guarantees an approximation factor of 3; an exact algorithm for any permu-
tation π with n > 1 elements such that π1 = n and πn = 1; and a more specific
one that sorts any permutation π with n ≥ 9 elements such that inv(π) ≥ 4n
with an approximation factor of 2. We intend to investigate the problem using
super short transpositions instead of super short reversals, as well as using these
operations together on signed permutations. We will also study the complexity
of all these variants of the problem.

Acknowledgments. This work was supported by the National Council for Scientific
and Technological Development - CNPq (grants 400487/2016-0, 425340/2016-3, and
140466/2018-5), the São Paulo Research Foundation - FAPESP (grants 2013/08293-7,
2015/ 11937-9, 2017/12646-3, 2017/16246-0, and 2017/16871-1), the Brazilian Federal
Agency for the Support and Evaluation of Graduate Education - CAPES, and the
CAPES/COFECUB program (grant 831/15).

References

1. Biller, P., Guéguen, L., Knibbe, C., Tannier, E.: Breaking good: accounting for
fragility of genomic regions in rearrangement distance estimation. Genome Biol.
Evol. 8(5), 1427–1439 (2016)

2. Biller, P., Knibbe, C., Beslon, G., Tannier, E.: Comparative genomics on artificial
life. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709,
pp. 35–44. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40189-8 4

3. Bulteau, L., Fertin, G., Tannier, E.: Genome rearrangements with indels in inter-
genes restrict the scenario space. BMC Bioinform. 17(S14), 225–231 (2016)

4. Caprara, A.: Sorting permutations by reversals and eulerian cycle decompositions.
SIAM J. Discret. Math. 12(1), 91–110 (1999)

5. Chen, T., Skiena, S.S.: Sorting with fixed-length reversals. Discret. Appl. Math.
71(1–3), 269–295 (1996)

6. Fertin, G., Jean, G., Tannier, E.: Algorithms for computing the double cut and
join distance on both gene order and intergenic sizes. Algorithms Mol. Biol. 12(16),
1–11 (2017)

7. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of
Genome Rearrangements. Computational Molecular Biology. The MIT Press, Lon-
don (2009)

8. Galvão, G.R., Baudet, C., Dias, Z.: Sorting circular permutations by super short
reversals. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(3), 620–633 (2017)

9. Galvão, G.R., Lee, O., Dias, Z.: Sorting signed permutations by short operations.
Algorithms Mol. Biol. 10(12), 1–17 (2015)

10. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm
for genomic distance problem). In: Proceedings of the 36th Annual Symposium on
Foundations of Computer Science (FOCS 1995), pp. 581–592. IEEE Computer
Society Press, Washington, DC (1995)

https://doi.org/10.1007/978-3-319-40189-8_4

Super Short Reversals on Both Gene Order and Intergenic Sizes 25

11. Jerrum, M.R.: The complexity of finding minimum-length generator sequences.
Theor. Comput. Sci. 36(2–3), 265–289 (1985)

12. Knuth, D.E.: The art of Computer Programming: Fundamental Algorithms.
Addison-Wesley, Reading (1973)

13. Oliveira, A.R., Fertin, G., Dias, U., Dias, Z.: Sorting signed circular permutations
by super short operations. Algorithms Mol. Biol. 13(13), 1–16 (2018)

14. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–
3346 (2005)

Identifying Maximal Perfect
Haplotype Blocks

Lúıs Cunha1,2 , Yoan Diekmann3 , Luis Kowada1 , and Jens Stoye1,4(B)

1 Universidade Federal Fluminense, Niterói, Brazil
2 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

3 Department of Genetics, Evolution and Environment, University College London,
London WC1E 6BT, UK

4 Faculty of Technology and Center for Biotechnology, Bielefeld University,
Bielefeld, Germany

jens.stoye@uni-bielefeld.de

Abstract. The concept of maximal perfect haplotype blocks is intro-
duced as a simple pattern allowing to identify genomic regions that show
signatures of natural selection. The model is formally defined and a sim-
ple algorithm is presented to find all perfect haplotype blocks in a set of
phased chromosome sequences. Application to three whole chromosomes
from the 1000 genomes project phase 3 data set shows the potential of
the concept as an effective approach for quick detection of selection in
large sets of thousands of genomes.

Keywords: Population genomics · Selection coefficient
Haplotype block

1 Introduction

Full genome sequences are amassing at a staggering yet further accelerating
pace. For humans, multiple projects now aim to deliver numbers five orders of
magnitudes higher than the initial human genome project 20 years ago1. This
development is fuelled by drastic reductions in sequencing costs, by far exceeding
Moore’s law [6]. As a result, the bottleneck in genomics is shifting from data
production to analysis, calling for more efficient algorithms scaling up to ever-
larger problems.

A simple yet highly interesting pattern in population genomic datasets are
fully conserved haplotype blocks (called maximal perfect haplotype blocks in the
following). When large and frequent enough in the population, they may be
indicative for example of a selective sweep. Their simple structure simplifies
analytical treatment in a population genetic framework. To our surprise, we
could not locate any software tool that can find them efficiently.

1 E.g., https://www.genomicsengland.co.uk/the-100000-genomes-project-by-
numbers.

c© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 26–37, 2018.
https://doi.org/10.1007/978-3-030-01722-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_3&domain=pdf
http://orcid.org/0000-0002-3797-6053
http://orcid.org/0000-0003-0030-0786
http://orcid.org/0000-0002-7975-0060
http://orcid.org/0000-0002-4656-7155
https://www.genomicsengland.co.uk/the-100000-genomes-project-by-numbers
https://www.genomicsengland.co.uk/the-100000-genomes-project-by-numbers

Identifying Maximal Perfect Haplotype Blocks 27

In this paper, we present a simple and efficient algorithm for finding all max-
imal perfect haplotype blocks in a set of binary sequences. While the algorithm
is not optimal in terms of worst-case analysis, and therefore this paper ends
with an interesting open question, it has the convenient property allowing its
lazy implementation, making it applicable to large real data sets in practice.

The paper is organized as follows: The problem of finding all maximal perfect
haplotype blocks in a set of binary sequences is formally defined in Sect. 2. The
trie data structure we use and our algorithm are presented in Sect. 3. In Sect. 4 we
describe our lazy implementation of the algorithm and show its applicability to
real data. Section 5 concludes with an open problem and two ideas for alternative
algorithmic approaches.

2 Basic Definitions

The input data to our problem are k binary sequences, all of the same length n,
each one representing a chromosome. Each column refers to a biallelic2 single
nucleotide polymorphism (SNP), with entries 0 and 1 corresponding to different
but otherwise arbitrary alleles, although polarised data (where 0 and 1 refer
to ancestral and derived allele, respectively) usually helps the interpretation of
results. Of special interest are large blocks of conservation, that are stretches
of identical alleles present at the same loci in many of the input sequences.
Formally, we define such blocks as follows.

Definition 1. Given an ordered set X = (x1, . . . , xk) and an index set I =
{i1, . . . , i�}, 0 ≤ � ≤ k, 1 ≤ ij ≤ k, the I-induced subset of X is the set
X|I = {xi1 , . . . , xi�

}.
Definition 2. Given k binary sequences S = (s1, . . . , sk), each of length n, a
maximal haplotype block is a triple (K, i, j) with K ⊆ {1, . . . , k}, |K| ≥ 2 and
1 ≤ i ≤ j ≤ n such that

1. s[i..j] = t[i..j] for all s, t ∈ S|K ,
2. i = 1 or s[i − 1] �= t[i − 1] for some s, t ∈ S|K (left-maximality),
3. j = n or s[j + 1] �= t[j + 1] for some s, t ∈ S|K (right-maximality), and
4. there exists no K ′ ⊆ {1, . . . , k}, K ′ � K, such that s[i..j] = t[i..j] for all

s, t ∈ S|K′ .

The formal problem we address in this paper can then be phrased as follows.

Problem 1. Given k binary sequences S = (s1, . . . , sk), each of length n, find all
maximal haplotype blocks in S.

2 For convenience, we exclude multiallelic sites which may contain alleles coded as 2
or 3, or merge the minor alleles if they are rare and represent them as 1. These make
up only a small fraction of the total SNPs in real data, and we therefore do not
expect any overall effect.

28 L. Cunha et al.

The following proposition gives a simple upper bound for the output of this
problem.

Proposition 1. Given k binary sequences S = (s1, . . . , sk), each of length n,
there can be only O(kn) maximal haplotype blocks in S.

Proof. We argue that at any position i, 1 ≤ i ≤ n, there can start at most
k − 1 maximal haplotype blocks. This follows from the maximality condition
and the fact that a maximal haplotype block contains at least two sequences
whose longest common prefix it is. ��

As the following example shows, for sufficiently large n the bound given in
Proposition 1 is tight.

Example 1. Consider the family of sequences Sk,n = (s1, s2, . . . , sk), each of
length n, defined as follows: s1 = 0n, s2 = 1n, followed by chunks of sequences
c1, c2, . . . such that chunk ci contains 2i sequences, that are all sequences of
length n which are repetitions of 0i1i and its rotations. The last chunk may be
truncated, so that the total number of sequences is k. For example, for k = 14
and n = 24 we have:

s1 = 000000000000000000000000
s2 = 111111111111111111111111
s3 = 010101010101010101010101
s4 = 101010101010101010101010

}
c1

s5 = 001100110011001100110011
s6 = 011001100110011001100110
s7 = 110011001100110011001100
s8 = 100110011001100110011001

⎫
⎪⎬
⎪⎭

c2

s9 = 000111000111000111000111
s10 = 001110001110001110001110
s11 = 011100011100011100011100
s12 = 111000111000111000111000
s13 = 110001110001110001110001
s14 = 100011100011100011100011

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

c3

Analysis shows that in chunk ci, i ≥ 1, every substring of length i forms a
new maximal haplotype block together with some substring in one of the earlier
sequences. Therefore, for n > k the total number of maximal haplotype blocks
in Sk,n grows as Θ(kn).

3 Algorithm

Our algorithm to find all maximal haplotype blocks in a set of sequences S uses
the (binary) trie of the sequences in S. For completeness, we recall its definition:

Identifying Maximal Perfect Haplotype Blocks 29

Definition 3. The trie of a set of sequences S over an alphabet Σ is the rooted
tree whose edges are labeled with characters from Σ and the labels of all edges
starting at the same node are distinct, such that the concatenated edge labels
from the root to the leaves spell exactly the sequences in S.

A branching vertex in a rooted tree is a vertex with out-degree larger than
one.
Example 2. Figure 1 shows the trie T1(S) of k = 4 binary strings of length n = 6.
It has three branching vertices.

0

0

1

0

0

0

1

0

1

0

1

1

1

1

0

1

1

1

1

s3 s4 s1 s2

Fig. 1. Trie T1(S) of k = 4 binary strings S = (s1, s2, s3, s4) with s1 = 010111,
s2 = 101111, s3 = 001000 and s4 = 010101. Branching vertices are indicated by filled
nodes.

It is well known that the trie of a set of sequences S over a constant-size
alphabet can be constructed in linear time and uses linear space with respect to
the total length of all sequences in S.

Our algorithm to find all maximal haplotype blocks of k binary sequences S,
each of length n, iteratively constructs the trie of the suffixes of the sequences
in S starting at a certain index i, i = 1, 2, . . . , n. We denote the ith trie in this
series of tries by Ti(S).

Observation 1. All branching vertices of T1(S) correspond to maximal haplo-
type blocks starting at index 1 of sequences in S.

This follows from the fact that a branching vertex in T1(S) corresponds to a
common prefix of at least two sequences in S that are followed by two different
characters, thus they are right-maximal. Left-maximality is automatically given
since i = 1.

30 L. Cunha et al.

Example 2. (cont’d). The tree T1(S) in Fig. 1 has three branching vertices, cor-
responding to the maximal haplotype blocks starting at index 1: the string 0101
occurring as a prefix in sequences s1 and s4; the string 0 occurring as a prefix in
sequences s1, s3 and s4; and the empty string (at the root of the tree) occurring
as a prefix of all four strings.

In order to find maximal haplotype blocks that start at later positions i > 1,
essentially the same idea can be used, just based on the tree Ti(S). The only
difference is that, in addition, one needs explicitly to test for left-maximality. As
the following observation shows, this is possible by looking at the two subtrees
of the root of the previous trie, Ti−1(S).

Observation 2. A haplotype block starting at position i > 1 is left-maximal if
and only if it contains sequences that are in the 0-subtree of the root of Ti−1(S)
and sequences that are in the 1-subtree of the root of Ti−1(S).

Example 3. (cont’d). As shown in Fig. 2, trie T2(S) has three branching ver-
tices, corresponding to the right-maximal haplotype blocks starting at index 2:
the string 101 occurring at positions 2..4 in sequences s1 and s4; the string 01
occurring at positions 2..3 in sequences s2 and s3; and, again, the empty string.
The string 101 is not left-maximal (and therefore not maximal), visible from the
fact that s1 and s4 were both in the same (0-) subtree of the root in S1(T). The
other two right-maximal haplotype blocks are also left-maximal.

0

1

0

0

0

1

1

1

1

1

1

0

1

0

1

s3 s2 s4 s1

Fig. 2. Trie T2(S) for the strings from Fig. 1.

The algorithm to find all maximal haplotype blocks in a set of k sequences S,
each of length n, follows immediately. It first constructs the trie T1(S) and locates
all prefix haplotype blocks by a simple depth-first traversal. Then, iteratively for
i = 2, 3, . . . , n, Ti(S) is constructed by merging the 1-subtree into the 0-subtree

Identifying Maximal Perfect Haplotype Blocks 31

of the root of Ti−1(S) during a parallel traversal of the two sister-subtrees. The
former 0-subtree will then be Ti(S). While doing so, branching vertices with
leaves that came from both of these subtrees are reported as maximal blocks
starting from index i. Pseudocode is given in Algorithm 1.

Algorithm 1. (Haploblocks)
Input: k binary sequences S = (s1, . . . , sk), each of length n
Output: all maximal haplotype blocks of S
1: construct T ← T1(S)
2: for each branching vertex v of T do
3: report maximal block at positions 1..d − 1, where d is the depth of v in T
4: end for
5: for i = 2, . . . , n do
6: merge-and-report(T.left, T.right; i, 0)
7: T ← T.left
8: end for

Function merge-and-report(l, r; i, d)
9: if l is empty then

10: l ← r � simplification of presentation: implemented through call by reference
11: return
12: end if
13: if r is empty then
14: return
15: end if
16: leftmaximal ← not (l.left and r.left are empty or l.right and r.right are empty)
17: if l.left is empty then
18: l.left ← r.left
19: else
20: merge-and-report(l.left, r.left; i, d + 1)
21: end if
22: if l.right is empty then
23: l.right ← r.right
24: else
25: merge-and-report(l.right, r.right; i, d + 1)
26: end if
27: rightmaximal ← not (l.left is empty or l.right is empty)
28: if leftmaximal and rightmaximal then
29: report maximal block at positions i..i + d
30: end if

Analysis. The overall running time of Algorithm 1 is O(kn2). This can be seen
easily as follows. The initial construction of T1(S) takes linear time in the input
size, thus O(kn) time. Similar for the identification of maximal haplotype blocks
starting at index i = 1. Each of the following n − 1 iterations performs in the
worst case a traversal of the complete tree that has size O(kn), thus taking
O(kn2) time in total.

32 L. Cunha et al.

Note that, as presented in the pseudocode of Algorithm 1, the algorithm only
reports the start and end positions i and j, respectively, of a maximal haplotype
block (K, i, j), but not the set of sequences K where the block occurs. This
can easily be added if, whenever in lines 3 and 29 some output is generated,
the current subtree is traversed and the indices of all |K| sequences found at the
leaves are collected and reported. Such a traversal, however, costs O(n · |K|) time
in the worst case, resulting in an overall running time of O(kn2 + n · |output|).
An alternative could be to store at each branching vertex of the trie as witness
the index of a single sequence in the subtree below. This would allow to report,
in addition to start and end positions i and j, respectively, also the sequence of
a maximal haplotype block (K, i, j). If desired, the set K can then be generated
easily using standard pattern matching techniques on the corresponding intervals
of the k input sequences in O(k · (j − i)) time.

4 Results

4.1 Data

To evaluate our algorithm, we downloaded chromosomes 2, 6 and 22 of the 1000
genomes phase 3 data set, which provides phased whole-genome sequences of
2504 individuals from multiple populations world-wide [1]. We extracted biallelic
SNPs and represented the data as a binary matrix with help of the cyvcf2 Python
library [10].

4.2 Our Implementation of Algorithm1

We implemented Algorithm 1 in C. Thereby we encountered two practical
problems.

First, the recursive structure of Algorithm 1, when applied to haplotype
sequences that are several hundred thousand characters long, produces a pro-
gram stack overflow. Therefore we re-implemented the tree construction and
traversal in a non-recursive fashion, using standard techniques as described, e.g.,
on the “Non-recursive depth first search algorithm” page of Stack Overflow3.

Second, the constructed trie data structure requires prohibitive space. For
example, already for the relatively small chromosome 22, T1(S) has 5,285,713,633
vertices and thus requires (in our implementation with 32 bytes per vertex) more
than 157 gigabytes of main memory. However, most of the vertices are in non-
branching paths to the leaves, corresponding to unique suffixes of sequences in
S. Since such paths can never contain a branching vertex, they are not relevant.
They become of interest only later in the procedure when the path is merged
with other paths sharing a common prefix. Therefore we implemented a lazy
version of our data structure, that stops the construction of a path whenever it
contains only a single sequence. During the merge-and-report procedure, then,
whenever an unevaluated part of the tree is encountered, the path has to be
3 https://stackoverflow.com.

https://stackoverflow.com

Identifying Maximal Perfect Haplotype Blocks 33

extended until it branches and paths represent single sequences again. This has
the effect that at any time only the top part of the trie is explicitly stored in
memory. For chromosome 22, the maximum number of nodes that are explicitly
stored at once drops to 5,677,984, reducing the memory footprint by about a
factor of 1,000. In fact, this number is not much larger for any other of the
human chromosomes that we tested, since it depends on the size of the maximal
perfect haplotype blocks present in the data, and not on the chromosome length.

Table 1 contains memory usage and running times for all three human chro-
mosomes that we studied. All computations were performed on a Dell RX815
machine with 64 2.3 GHz AMD Opteron processors and 512 GB of shared mem-
ory.

Table 1. Resources used by our implementation of Algorithm 1 when applied to the
three data sets described in Sect. 4.1.

Data set Length Memory Time

chr. 2 6,786,300 33.67 GB 2 h 37 min

chr. 6 4,800,101 23.91 GB 1 h 51 min

chr. 22 1,055,454 5.45 GB 25 min

4.3 Interpretation of Results

In order to demonstrate the usefulness of the concept of haplotype blocks and
our algorithm and implementation to enumerate them, we show how our results
can form the efficient algorithmic core of a genome-wide selection scan.

Given a maximal perfect haplotype block (K, i, j) found in a set of k chro-
mosomes, we estimate the selection coefficient s and the time t since the onset of
selection following the approach presented by Chen et al. [3]. Therefore, we first
convert the physical positions corresponding to indices i and j of the block from
base pairs to a genetic distance d quantifying genetic linkage in centimorgan4,
which is the chromosomal distance for which the expected number of crossovers
in a single generation is 0.01. Distance value d in turn is converted to the recom-
bination fraction r – defined as the ratio of the number of recombined gametes
between two chromosomal positions to the total number of gametes produced –
using Haldane’s map function

r =
1 − exp(− 2d

100)
2

. (1)

4 A genetic map required to do so is available for example as part of Browning et al. [2]
at http://bochet.gcc.biostat.washington.edu/beagle/genetic maps.

http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps

34 L. Cunha et al.

With r, K, k we can define a likelihood function L(s | r,K, k) allowing to compute
maximum likelihood estimates of the selection coefficient and time since the onset
of selection, ŝ and t̂, respectively. The full derivation from population genetic
theory is outside the scope of this paper, and the subsequent paragraphs merely
intend to provide some basic intuition. For more details, we refer the interested
reader to Chen et al. [3] and the appendix of reference [4].

First, assume a deterministic model for the frequency change of an allele with
selective advantage s, which yields a sigmoidal function over continuous time t
that ignores the stochasticity in frequency trajectories for small s,

yt =
y0

y0 + (1 − y0)e−st
, (2)

where y0 is the initial allele frequency at the onset of selection5 and yt = |K|
k

is the observed allele frequency assumed to be representative of the population
frequency. Equation 2 links up the selection coefficient s and the age t of the
allele, for example requiring larger selective advantage to reach a given frequency
if the allele is young.

Next, we exploit the fact that the recombination rate is independent of selec-
tion, and if assumed to be constant through time can therefore be seen to behave
as a “recombination clock”. Given a haplotype of length such that its recombina-
tion fraction is r, moreover, with an allele at one end that at time t segregates at
frequency y(t) in the population, the expected number of recombination events
C altering that allele in the time interval [0, t] can be obtained by

C = r

∫ t

u=0

(1 − y(u)) du = r

(
t − 1

s
ln(1 − y0 + esty0)

)
, (3)

where the second equality follows from substituting in Eq. 2. Assuming that the
number of recombination events follows a Poisson distribution, the probability
of no event, i.e. of full conservation of a haplotype after time t, becomes

e−C = e−rt(1 − y0(1 − est))
r
s . (4)

Finally, one can define the likelihood of observing a haplotype block for a
given s and t as |K| times the probability of a conserved haplotype (Eq. 4) times
the probability of recombination events at the borders (Eq. 3). As usual, the
logarithm simplifies the equation, yielding

ln L(s|r,K, k) ∝

− rt +
r

s
ln(1 − y0(1 − est)) + ln

(
t − 1

s
ln(1 − y0(1 − est))

)
, (5)

with t being directly derived from Eq. 2:

t =
1
s

ln
(

yt(1 − y0)
y0(1 − yt)

)
. (6)

5 In the following, y0 is arbitrarily fixed at 0.00005, corresponding to 1
2Ne

with an
effective population size Ne = 10,000.

Identifying Maximal Perfect Haplotype Blocks 35

Note that we omit the factor |K| and summands ln(r) for the recombination
fractions at the borders of the haplotype (see Eq. 3) that we assume are small
and approximately equal, as they are inconsequential for optimization. Also, the
massive speed gain of our approach trades off with a systematic but conservative
underestimation of ŝ when compared to the original equation in reference [3] as
we do not consider the full varying extent of the individual haplotypes.

Equation 5 can be evaluated for a range of values to find the (approximate)
maximum likelihood estimate ŝ at a given precision, e.g. s ∈ {0.001, 0.002, . . . }
to estimate ŝ with error below 0.001. Once ŝ has been found, the corresponding
time t̂ is obtained by substituting ŝ into Eq. 6.

As the Haploblocks algorithm is able to rapidly scan entire chromosomes, and
estimating ŝ and t̂ requires to evaluate only simple analytical expressions, one
can efficiently generate a genome-wide selection track. Figure 3 illustrates the
results for the locus known to contain one of the strongest signals of selection
detected so far, the lactase persistence allele in modern Europeans -13.910:C>T
(rs4988235). The selection coefficient we compute is consistent with the range of
current estimates (see Ségurel and Bon [11] and references therein).

chr2:131608646−141608646, EUR

pos [bp]

ŝ

131608646 134108646 136608646 139108646 141608646

0
0.004
0.008
0.012
0.016
0.02

0.024
0.028
0.032
0.036

AR
H

G
EF

4
FA

M
16

8B
PL

EK
H

B2
PO

TE
E

LO
C

44
09

10
W

TH
3D

I
LI

N
C

01
12

0
N

O
C

2L
P2

TU
BA

3D
M

ZT
2A

M
IR

47
84

LO
C

15
07

76
C

C
D

C
74

A
PO

TE
KP

LI
N

C
01

08
7

C
2o

rf2
7A

C
2o

rf2
7B

AN
KR

D
30

BL
M

IR
66

3B
ZN

F8
06

FA
M

20
1B

G
PR

39
LY

PD
1

N
C

KA
P5

LO
C

10
19

28
18

5
LO

C
10

19
28

16
1

M
IR

36
79

M
G

AT
5

TM
EM

16
3

AC
M

SD
M

IR
55

90
C

C
N

T2
−A

S1
C

C
N

T2
M

AP
3K

19
R

AB
3G

AP
1

ZR
AN

B3
R

3H
D

M
1

M
IR

12
8−

1
U

BX
N

4
LC

T
LO

C
10

05
07

60
0

M
C

M
6

D
AR

S
D

AR
S−

AS
1

C
XC

R
4

TH
SD

7B
LO

C
10

19
28

27
3

H
N

M
T

LI
N

C
01

83
2

SP
O

PL
N

XP
H

2
YY

1P
2

LR
P1

B
M

IR
71

57

Fig. 3. Maximum likelihood estimates of selection coefficients for the locus containing
the lactase gene in European individuals from the 1000 genomes data set. Each block
of weight above 500,000 was converted to a selection coefficient applying Eq. 5 on a
set of values {0.0002, 0.0004, . . . } and choosing the (approximate) maximum likelihood
estimate ŝ. Red lines indicate genes annotated in the RefSeq database [9]. (color figure
online)

36 L. Cunha et al.

5 Conclusion

We presented an O(kn2) time algorithm for finding all maximal perfect haplotype
blocks in a set of k binary sequences, each of length n, that scales well in practice.
Even large human chromosomes can be processed in a few hours using moderate
amounts of memory.

This allowed us to design an analytical approach with enumeration of maxi-
mal perfect haplotype blocks at its core that not only detects selection genome-
wide efficiently, but does so by directly estimating a meaningful and interpretable
parameter, the selection coefficient s.

As a proof of principle, we applied our method and evaluated the results for
a locus known to contain one of the strongest signals of selection detected so far,
and obtained a value for s consistent with current estimates.

It remains an open question if there exists an optimal algorithm for finding
all maximal perfect haplotype blocks, i.e., an algorithm that runs in O(kn) time.

It could be worthwhile to study the bipartite graph (U ∪ W,E) in which the
vertices in U = {u1, . . . , uk} correspond to the sequences in S and the vertices in
W = {w1, . . . , wn} to index positions in these sequences. An edge (ui, wj) ∈ E
is drawn if and only if si[j] = 1. Problem 1 is then equivalent to finding all twin
vertices (sets of vertices with identical neighborhood) in intervals of vertices in
W . Figure 4 shows this graph for the sequences from Example 2.

U : s1 s2 s3 s4

W :

Fig. 4. Bipartite graph (U ∪W,E) representing the four binary sequences s1 = 010111,
s2 = 101111, s3 = 001000 and s4 = 010101. Haplotype blocks can be identified as sets
of twins when the vertices in the lower row W are restricted to a consecutive interval.
For example, s1 and s4 are twins in the interval formed by the first four vertices of
W (indicated by thick circles), corresponding to the maximal perfect haplotype block
0101.

Twin vertices of a graph G can be determined by constructing its modular
decomposition tree, where internal nodes labeled as series or parallel correspond
to last descendant leaves which are twin vertices in G. McConnell and Mont-
golfier [7] proposed an algorithm to build a modular decomposition tree of a
graph with |V | vertices and |E| edges that runs in O(|V |+ |E|) time. Since there
are O(n2) necessary subgraphs to detect twin vertices, so far, such strategy is
not better than the one we proposed in Algorithm 1. However, it might be pos-
sible to achieve some improvement using the fact that intervals in W are not
independent.

Identifying Maximal Perfect Haplotype Blocks 37

Another alternative approach could be to use a generalized suffix tree of all
the input sequences or the positional Burrows Wheeler Transform [5,8].

References

1. 1000 Genomes Project Consortium, Auton, A., et al.: A global reference for human
geneticvariation. Nature 526(7571), 68–74 (2015)

2. Browning, S.R., Browning, B.L.: Rapid and accurate haplotype phasing and
missing-data inference for whole-genome association studies by use of localized
haplotype clustering. Am. J. Hum. Genet. 81(5), 1084–1097 (2007)

3. Chen, H., Hey, J., Slatkin, M.: A hidden Markov model for investigating recent pos-
itive selection through haplotype structure. Theor. Popul. Biol. 99, 18–30 (2015)

4. Chen, H., Slatkin, M.: Inferring selection intensity and allele age from multi-locus
haplotype structure. G3: Genes Genomes, Genet. 3(8), 1429–1442 (2013)

5. Durbin, R.M.: Efficient haplotype matching and storage using the positional
burrows-wheeler transform (PBWT). Bioinformatics 30(9), 1266–1272 (2014)

6. Hayden, E.C.: Technology: The $1,000 genome. Nature 507(7492), 294–295 (2014)
7. McConnell, R.M., De Montgolfier, F.: Linear-time modular decomposition of

directed graphs. Discret. Appl. Math. 145(2), 198–209 (2005)
8. Norri, T., Cazaux, B., Kosolobov, D., Mäkinen, V.: Minimum Segmentation for

Pan-genomic Founder Reconstruction in Linear Time. In: Proceedings of WABI
2018. LIPIcs, vol. 113, pp. 15:1–15:15 (2018)

9. O’Leary, N.A.: Reference sequence (RefSeq) database at NCBI: current status,
taxonomic expansion, and functional annotation. Nucl. Acids Res. 44(D1), D733–
D745 (2016)

10. Pedersen, B.S., Quinlan, A.R.: cyvcf2: fast, flexible variantanalysis withPython.
Bioinformatics 33(12), 1867–1869 (2017)

11. Ségurel, L., Bon, C.: On the evolution of lactase persistence in humans. Ann. Rev.
Genomics Hum. Genet. 18, 297–319 (2017)

Sorting by Weighted Reversals
and Transpositions

Andre Rodrigues Oliveira1(B) , Klairton Lima Brito1 , Zanoni Dias1 ,
and Ulisses Dias2

1 Institute of Computing, University of Campinas, Campinas, Brazil
{andrero,klairton,zanoni}@ic.unicamp.br

2 School of Technology, University of Campinas, Limeira, Brazil
ulisses@ft.unicamp.br

Abstract. Genome rearrangements are global mutations that change
large stretches of DNA sequence throughout genomes. They are rare
but accumulate during the evolutionary process leading to organisms
with similar genetic material in different places and orientations within
the genome. Sorting by Genome Rearrangements problems seek for min-
imum-length sequences of rearrangements that transform one genome
into the other. These problems accept alternative versions that assign
weights for each event and the goal is to find a minimum-weight sequence.
We study the Sorting by Weighted Reversals and Transpositions prob-
lem in two variants depending on whether we model genomes as signed
or unsigned permutations. Here, we use weight 2 for reversals and 3 for
transpositions and consider theoretical and practical aspects in our anal-
ysis.

We present one algorithm with an approximation factor of 2 for both
signed or unsigned permutations, and one algorithm with an approxima-
tion factor of 5

3
for signed permutations. We also analyze the behavior of

the 5
3
-approximation algorithm with different weights for reversals and

transpositions.

Keywords: Genome rearrangement · Weighted operations
Reversals and transpositions · Approximation algorithms

1 Introduction

A genome rearrangement is a mutational event that affects large portions of
a genome. The rearrangement distance is the minimum number of events that
transform one genome into another and serves as approximation for the evolu-
tionary distance due to the principle of parsimony.

We define genomes as permutations of integer numbers where each number
is a gene or a set of genes. These permutations can be signed or unsigned,
depending on which information we have about gene orientation. To compute
the rearrangement distance between two genomes, we represent one of them as

c© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 38–49, 2018.
https://doi.org/10.1007/978-3-030-01722-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_4&domain=pdf
http://orcid.org/0000-0002-0568-1859
http://orcid.org/0000-0001-5287-2925
http://orcid.org/0000-0003-3333-6822
http://orcid.org/0000-0002-4763-3046

Sorting by Weighted Reversals and Transpositions 39

the identity permutation (where all elements are sorted) to have a Sorting by
Genome Rearrangements problem.

A model M is a set of rearrangements allowed to act on a genome. Reversals
and transpositions are the best known genome rearrangements. A reversal occurs
when, given two positions of a genome, the sequence between these positions
is reversed and, on signed permutations, all signs between these positions are
flipped. Transpositions occur when two consecutive sequences inside a genome
exchange position.

When the model allows only reversals we have the Sorting by Reversals
(SbR) problem. On signed permutations, SbR has a polynomial algorithm [14].
On unsigned permutations, SbR is an NP-hard Problem [7], and the best approx-
imation factor is 1.375 [4].

When the model allows only transpositions we have the Sorting by Trans-
positions (SbT) problem. The SbT is an NP-hard problem [6], and the best
approximation factor is 1.375 [10].

When the model allows both reversals and transpositions we have the Sort-
ing by Reversals and Transpositions (SbRT) problem. The complexity of this
problem is unknown on signed and unsigned permutations. On signed permu-
tations, the best approximation factor is 2 [17]. On unsigned permutations, the
best approximation factor is 2k [16], where k is the approximation factor of an
algorithm used for cycle decomposition [7]. Given the best value for k known so
far [8], this approximation factor is 2.8334 + ε for some ε > 0.

A variant of problems considers different weights for different rearrangements,
which is useful if a specific rearrangement is more likely to occur than others in
a particular population [5,18]. Gu et al. [13] introduced the rearrangement event
called inverted transposition, a transposition where one of the blocks is reversed,
and Eriksen [12] developed an algorithm with an approximation factor of 7/6 and
a polynomial-time approximation scheme (PTAS) when reversals have weight 1
and transpositions and inverted transpositions have weight 2. Later, Bader and
Ohlebusch [2] developed an algorithm with approximation factor of 1.5 when
reversals have weight 1 and transpositions and inverted transpositions have both
same weight in the range [1..2].

We present two approximation algorithms for the Sorting by Weighted Rever-
sals and Transpositions problem (SbWRT) such that the weight of a reversal
(wρ) is 2 and the weight of a transposition (wτ) is 3. These weights were consid-
ered optimal by Eriksen [11] on his experiments. Bader and coauthors [1] also
developed experiments adopting exactly this weight ratio, and they claim that
it equilibrates the use of reversals and transpositions and is realistic for most
biological datasets.

The paper is organized as follows. Section 2 presents the background we
use throughout the paper. Section 3 presents two approximation algorithms for
SbWRT, with approximation factors of 2 and 5/3. Section 3 also investigates
other weights in the 5/3-approximation algorithm. Section 4 concludes the paper.

40 A. R. Oliveira et al.

2 Background

We model a genome with n genes as an n-tuple whose elements represent genes.
Assuming no duplicated gene, this n-tuple is as a permutation π = (π1 π2 ...
πn−1 πn) with |πi| ∈ {1, 2, ..., (n−1), n}, for 1 ≤ i ≤ n, and |πi| = |πj | if, and
only if, i = j. If we know the relative orientation of the genes, we represent
it with signs + or − assigned to each element, and we say that π is a signed
permutation. Otherwise, the signs are omitted and π is an unsigned permutation.

The identity permutation is the permutation in which all elements are in
ascending order and, in signed permutations, have positive sign, and we denote
this permutation by ι.

An extended permutation can be obtained from a permutation π by adding
elements π0 = 0 and πn+1 = n+1 in the unsigned case, or π0 = +0 and πn+1 =
+(n+1) in the signed case. From now on, unless stated otherwise, we will refer
to an extended permutation as “permutation” only.

A reversal ρ(i, j) with 1 ≤ i ≤ j ≤ n reverts the order of the segment
{πi, πi+1, ..., πj}. When π is a signed permutation, the reversal ρ(i, j) also flips
the signs of the elements in {πi, πi+1, ..., πj}. Therefore, if π is a signed permuta-
tion then (π1 ... πi ... πj ... πn) ◦ ρ(i, j) = (π1 ... −πj ... − πi ... πn) and if
π is an unsigned permutation we have that (π1 ... πi ... πj ... πn) ◦ ρ(i, j) =
(π1 ... πj ... πi ... πn). The weight of a reversal ρ(i, j) is denoted by wρ.

A transposition τ(i, j, k) with 1 ≤ i < j < k ≤ n + 1 exchanges the blocks
{πi, πi+1, ..., πj−1} and {πj , πj+1, ..., πk−1}. Since these blocks are not reversed,
transpositions never change signs. Therefore, given a signed or unsigned permu-
tation π, we have that (π1 ... πi πi ... πj−1 πj ... πk−1 πk ... πn)◦τ(i, j, k) =
(π1 ... πi πj ... πk−1 πi ... πj−1 πk ... πn). We denote by wτ the weight of a
transposition τ(i, j, k).

Let S be a sequence of reversals and transpositions that sorts π, we denote
the cost of S by wS(π,wρ, wτ) = wρ ×Sρ +wτ ×Sτ such that Sρ and Sτ are the
number of reversals and transpositions in S, respectively.

We denote the weighted distance of π by wRT (π,wρ, wτ) = wS′(π,wρ, wτ)
such that S′ is a sequence of operations that sorts π and for any sequence S
that sorts π, wS′(π,wρ, wτ) ≤ wS(π,wρ, wτ). Since we stated that wρ = 2 and
wτ = 3, given a sequence S with Sρ reversals and Sτ transpositions we have that
wS(π,wρ = 2, wτ = 3) = 2Sρ + 3Sτ .

2.1 Breakpoints and Strips

Let π be an unsigned permutation, a pair of consecutive elements (πi, πi+1), with
0 ≤ i ≤ n, is a breakpoint if |πi+1−πi| �= 1. Let π be a signed permutation, a pair
of consecutive elements (πi, πi+1), with 0 ≤ i ≤ n, is a breakpoint if πi+1−πi �= 1.
The total number of breakpoints in both cases is b(π). The identity permutation
is the only permutation without breakpoints (b(ι) = 0).

A reversal ρ(i, j) acts on two points of π, so given a permutation π and a
reversal ρ, we have b(π) − 2 ≤ b(π ◦ ρ) ≤ b(π) + 2. A transposition τ(i, j, k) acts

Sorting by Weighted Reversals and Transpositions 41

on three points of π, so given a permutation π and a transposition τ , we have
b(π) − 3 ≤ b(π ◦ τ) ≤ b(π) + 3.

Let Δb(π,S) = b(π) − b(π ◦ S) denote the variation in the number of break-
points by applying a sequence S of operations to π. With wρ = 2 and wτ = 3
we have that Δb(π, ρ) ≤ wρ and Δb(π, τ) ≤ wτ , so given any sequence S of
operations, Δb(π,S) ≤ wS(π,wρ = 2, wτ = 3), which results in the following
lemma.

Lemma 1. Given a sequence S and a permutation π, if Δb(π,S) > 0 then the
approximation factor of S is wS(π,wρ = 2, wτ = 3)/Δb(π,S).

Breakpoints divide the permutation into strips, which are maximal subse-
quences of consecutive elements with no breakpoint. The first strip of a permu-
tation always starts with element π1 and the last strip always ends with element
πn (the elements π0 and πn+1 are not computed as strips). On signed permu-
tations, a strip is positive if its elements have positive signs, and it is negative
otherwise. On unsigned permutations, a strip is positive if the displacement of
its elements from left to right forms an increasing sequence, and it is negative
otherwise. By convention, strips with only one element are negative on unsigned
permutations.

For instance, the permutation π = (+0 +2 +3 −1 −6 −5 +4 +7) has
b(π) = 5 since the pairs (+0,+2), (+3,−1), (−1,−6), (−5,+4), and (+4,+7)
are breakpoints. Besides, π has four strips: the positive strips (+2,+3) and (+4)
and the negative strips (−1) and (−6,−5).

2.2 Cycle Graph

Cycle graph is a tool to develop non trivial bounds for sorting problems using
reversals and/or transpositions [3]. Given a signed permutation π, we create its
cycle graph G(π) as follows. For each element πi, with 1 ≤ i ≤ n, we add to
the set V (G(π)) two vertices: −πi and +πi. Finally we add the vertices +π0 and
−πn+1. The set of edges E(G(π)) is formed by two types of edges: black edges
and gray edges. The set of black edges is {(−πi,+πi−1) | 1 ≤ i ≤ n+1}. The set
of gray edges is {(+(i−1),−i) | 1 ≤ i ≤ n + 1}. Since each vertex is incident to
one gray edge and one black edge, there is a unique decomposition of edges in
cycles. Note that G(ι) has (n+1) trivial cycles (i.e., cycles with one black edge
and one gray edge).

When π is unsigned, we create a signed permutation π′ by randomly assigning
signs to its elements, then we construct the cycle graph G(π′) and associate G(π′)
to π. Therefore, an unsigned permutation π have an exponential number of cycle
graph representations. Since our goal is to transform π into ι, the best cycle
graph maximizes the number of cycles. Finding this cycle graph for unsigned
permutations is an NP-hard problem [7].

The size of a cycle c ∈ G(π) is the number of black edges in c. A cycle c is
odd if its size is odd, and it is even otherwise. A cycle is short if it contains three
or less black edges, and it is long otherwise. We denote by c(G(π)) the number
of cycles in G(π) and by codd(G(π)) the number of odd cycles in G(π).

42 A. R. Oliveira et al.

Fig. 1. Cycle graph of permutation π = (+3 −1 −2 + 6 + 5 + 8 + 7 + 4).

We draw the cycle graph G(π) in a way that reveals important features
(Fig. 1). For each element πi ∈ π, with 1 ≤ i ≤ n, we place the vertex −πi before
the vertex πi. The vertex +π0 is located in the left of −π1 and the vertex −πi+1

is located in the right of πn.
Black edges of G(π) are labeled from 1 to n + 1 so that the black edge

(−πi, πi−1) is labeled as i. We represent c as the sequence of labels of its black
edges following the order that they appear in the path starting from the right-
most black edge being traversed from right to left.

If a black edge i is traversed from left to right we label it as −i; otherwise,
we simply label it as i.

Two black edges in a cycle c are convergent if they have the same sign, and it
is divergent otherwise. A cycle c is divergent if it has two divergent black edges,
and it is convergent otherwise. Moreover, a convergent cycle c = (i1, ..., ik),
for all k > 1, is nonoriented if i1, ..., ik is a decreasing sequence, and c is
oriented otherwise. Two cycles c1 = (i1, ..., ik) and c2 = (j1, ..., jk) with
k > 1 are interleaving if |i1| > |j1| > |i2| > |j2| > ... > |ik| > |jk| or
|j1| > |i1| > |j2| > |i2| > ... > |jk| > |ik|.

Let g1 and g2 be two gray edges such that: (i) g1 is incident to black edges
labeled as x1 and y1, (ii) g2 is incident to black edges labeled as x2 and y2, (iii)
|x1| < |y1|, and (iv) |x2| < |y2|. We say that g1 intersects g2 if |x1| < |x2| <
|y1| < |y2| or |x1| < |x2| = |y1| < |y2|. Two cycles c1 and c2 intersects if a gray
edge g1 ∈ c1 intersects a gray edge g2 ∈ c2.

Figure 1 shows the cycle graph for π = (+3 −1 −2 +6 +5 +8 +7 +4).
There are three cycles in G(π): the oriented odd cycle c1 = (+9,+5,+7); the
nonoriented even cycle c2 = (+8,+6,+4,+2); and the divergent even cycle c3 =
(+3,−1) (the black edge 1 has minus sign because it is traversed from left to
right). Moreover, gray edge g1 ∈ c3, which links black edges 1 and 3, intersects
with gray edge g2 ∈ c2, which links black edges 2 and 4, so it follows that cycles
c2 and c3 intersects.

A permutation π is simple if G(π) contains only short cycles. We can trans-
form any permutation π into a simple permutation π̂ by adding new elements
to break long cycles. This is a common approach for sorting permutations by
reversals [14] and by transpositions [10]. Let c be a cycle of size k ≥ 4, we add
a black edge (i.e., a new element in the permutation) to transform c into two
cycles c1 with 3 black edges and c2 with k − 2 black edges, as shown in Fig. 2.

Sorting by Weighted Reversals and Transpositions 43

Fig. 2. Transformation of a long cycle of size k = 5 into two cycles of size 3. The
transformation is made by removing edges g and b3, adding two vertices w and b
between wb and vb, adding two gray edges g1 = (wg, w) and g2 = (vg, v) and two black
edges (wb, w) and (v, vb).

3 Approximation Algorithms for SbWRT

We develop two approximation algorithms: one for signed or unsigned permuta-
tions with approximation factor of 2, and one specific for signed permutations
with an approximation factor of 5/3.

3.1 The 2-Approximation Algorithm

Our first approximation algorithm uses breakpoints and strips to sort signed or
unsigned permutations. It is a greedy algorithm that removes as many break-
points as possible at each iteration and tries to keep negative strips. At each
step, while the permutation is not sorted, the algorithm searches for an opera-
tion using the following order of priority:

(i) a transposition that removes three breakpoints;
(ii) a reversal that removes two breakpoints;
(iii) a transposition that removes two breakpoints;
(vi) a reversal that removes one breakpoint and keeps a negative strip;
(v) a reversal applied to the first two breakpoints of the permutation.

Note that Step (iv), which removes one breakpoint with a reversal, is applied
only if it keeps at least one negative strip. Step (v) is the only that does not
remove any breakpoint, but it creates a negative strip. According to Lemma 1,
Steps (i) and (ii) have an approximation factor of 1, Step (iii) has an approx-
imation factor of 3/2, and Step (iv) has an approximation of 2. Since Step (v)
does not remove breakpoints, we first recall the following lemma to ensure the
approximation factor 2 for this algorithm.

Lemma 2. [15] Let π be a permutation with a negative strip. If every reversal
that removes a breakpoint of π leaves a permutation with no negative strips, π
has a reversal that removes two breakpoints.

The following lemma guarantees that every time the algorithm perform Step
(v), it performs Step (ii) before reaching the identity permutation and before
Step (v) is performed again.

44 A. R. Oliveira et al.

Lemma 3. If Step (v) is applied, then Step (ii) will be applied before the per-
mutation becomes sorted and before the next use of Step (v).

Proof. Suppose that, at some point, the algorithm has a permutation π without
negative strips, and the algorithm applies Step (v) creating a negative strip.
By Lemma 2 and by the fact that only reversals transform negative strips into
positive ones, we know that the algorithm will perform Step (ii). But before
performing Step (ii) the permutation will always have at least one negative
strip, and Step (v) will not be performed until then. ��

From Lemma 3, each occurrence of Step (v) forces a later occurrence of Step
(ii), which gives us, by Lemma 1, the approximation factor of 2. We can find
which step of the algorithm can be applied in linear time, and this process repeats
at most n times. Thus, in the worst case, the algorithm runs in O(n2).

3.2 The 5/3-Approximation Algorithm

This algorithm uses cycle graph to sort a permutation. We define a score function
to prove an approximation factor of 5

3 for signed permutations based on the
number of cycles and the number of odd cycles.

Given a sequence S of operations applied on π, we denote by Δc(π,S) =
c(G(π◦S))−c(G(π)) and Δcodd(π,S) = codd(G(π◦S))−codd(G(π)) the variation
in the number of cycles and odd cycles, respectively, caused on G(π) by S.

Let wc be the weight of a cycle in G(π) and wo be the weight of an odd cycle
in G(π). Using these weights, we define a score function that relates the gain in
terms of cycles and odd cycles after applying a sequence S of operations and the
cost of operations in S. The cost of a sequence S is wS(π,wρ, wτ), and G(π ◦ S)
has a variation of Δc(π,S) cycles and Δcodd(π,S) odd cycles compared to G(π).

The objective function, denoted by RS , is then defined as

RS =
wcΔc(π,S) + woΔcodd(π,S)

wS(π,wρ, wτ)
.

Note that Δc(π, ρ) ∈ {−1, 0, 1} and Δcodd(π, ρ) ∈ {−2, 0, 2} [9,14], so let
Rρ = wc+2wo

2 be the best objective function of a reversal. Similarly, Δc(π, τ) ∈
{−2,−1, 0, 1, 2} and Δcodd(π, τ) ∈ {−2, 0, 2} [3,9,17], so let Rτ = 2wc+2wo

3 be
the best objective function of a transposition. We have the following lower bound
regarding the number of cycles and odd cycles.

Lemma 4. Given a permutation π we have that

wRT (π,wρ, wτ) ≥ (wc + wo)(n + 1) − (wc × c(π) + wo × codd(π))
max{Rρ, Rτ}

Proof. Note that for any reversal ρ(i, j) we have Rρ(i,j) ≤ Rρ, and for any
transposition τ(i, j, k) we have Rτ(i,j,k) ≤ Rτ . Since G(ι) has n+1 odd cycles, a
lower bound can be obtained by dividing the necessary gain in terms of cycles
and odd cycles to reach the identity permutation (in this case (wc + wo)(n +
1)− (wc × c(π)+wo × codd(π))) by the best ratio function between reversals and
transpositions (max{Rρ, Rτ}). ��

Sorting by Weighted Reversals and Transpositions 45

The procedure to transform π into a simple permutation π̂ (Sect. 2.2) does
not guarantee that wRT (π̂, wρ, wτ) = wRT (π,wρ, wτ), but it guarantees π and
π̂ have the same lower bound given by Lemma 4, since it adds a new cycle to
the identity permutation (so, instead (n + 1), we have (n + 2) in the first part
of the dividend), and it also adds a new odd cycle to the permutation (so both
c(π) and codd(π) increases by one in the second part of the dividend). Therefore,
our algorithm starts by transforming π into a simple permutation π̂.

Until the permutation is sorted, the algorithm searches for an operation using
the following order of priority:

(i) If there is an oriented cycle C, apply a transposition on C (Fig. 3(i)).
(ii) If there is a divergent cycle C of size two, apply a reversal on C (Fig. 3(ii)).
(iii) If there is a divergent cycle C of size three, apply a reversal on two divergent

black edges of C (Fig. 3(iii)).
(vi) If there are two intersected cycles C1 and C2 of size two, apply a sequence

of two transpositions on C1 and C2 (Fig. 3(iv)).
(v) If there is a cycle C1 of size 3 intersected by two cycles C2 and C3 both of

size two, apply a sequence of two transpositions on these cycles (Fig. 3(v)).
(vi) If there is a non-oriented cycle C1 of size 3 interleaved with a non-oriented

cycle C2 of size 3, apply a sequence of three transpositions on these cycles
(Fig. 3(vi)).

(vii) If there is a cycle C1 of size 3 intersected by two cycles C2 and C3 both of size
three, apply a sequence of three transpositions on these cycles (Fig. 3(vii)).

(viii) If there is a cycle C1 of size 3 intersected by two cycles C2 of size two and
C3 of size three, apply a sequence of three transpositions on these cycles
(Fig. 3(vii)).

Lemma 5. If a permutation π is such that π �= ι then it is always possible to
perform at least one of the eight steps above.

Proof. Since π �= ι, G(π) cannot contain only trivial cycles. Let π̂ be the simple
permutation obtained by the procedure that breaks long cycles from G(π).

If G(π̂) has oriented or divergent cycles, Steps (i) to (iii) can be applied. Oth-
erwise, G(π̂) has only trivial and nonoriented cycles of size two or three. Bafna
and Pevzner [3] showed that each nonoriented cycle of size two must intersect
with at least another cycle, and each nonoriented cycle of size three must either
interleave with another cycle, or intersect with at least two nonoriented cycles.

If G(π̂) has a nonoriented cycle of size three, this cycle either interleaves with
another nonoriented cycle (Step (vi) can be applied), or it intersects with two
other cycles, and these two cycles are: both even (Step (v) can be applied), or
both odd (Step (vii) can be applied), or have different parities (Step (viii) can
be applied). Otherwise, G(π̂) has a nonoriented cycle of size two that intersects
with another cycle of size two (Step (iv) can be applied). ��

Figure 3 illustrates each step and shows the cycles generated. Step (iii) gen-
erates one trivial cycle and one cycle of size two, that can be divergent or not

46 A. R. Oliveira et al.

Fig. 3. Schema of operations applied and cycle representation in each of the eight steps
of the algorithm.

depending on the input cycle. Step (v) generates four trivial cycles and one cycle
of size three, that can be oriented or not depending on the input two cycles.

Step (vii) generates six trivial cycles and one cycle of size three, that is
nonoriented. Step (viii) generates six trivial cycles and one cycle of size two,
that is nonoriented. All the remaining steps generate only trivial cycles. Note
that all steps keep the cycle graph simple since they generate cycles with three
or less black edges.

Table 1 summarizes for each step the variation on cycles (Δc(π,S)), the vari-
ation on odd cycles (Δcodd(π,S)), the sequence applied (S), the weight of the
sequence applied (wS(π,wρ, wτ)), and its objective function (RS).

The best approximation factor in this case is achieved when wc = 4 and
wo = 1, resulting in the following values of objective functions: R(i) = 10

3 ;
R(ii) = 6

2 = 3; R(iii) = 4
2 = 2; R(iv), R(v) = 12

6 = 2; R(vi), R(vii), R(viii) = 20
9 .

The greatest objective function is 10
3 and the lowest is 2, which give us the

approximation factor of
10
3
2 = 10

6 = 5
3 ≈ 1.667. We can find which step of the

algorithm can be applied in quadratic time, and this process repeats at most
n times. Thus, in the worst case, the algorithm runs in O(n3).

Sorting by Weighted Reversals and Transpositions 47

Table 1. Summary of variation on number of cycles and the objective function of each
step performed by the algorithm.

Step S wS(π, wρ, wτ) Δc(π,S) Δcodd(π,S) RS

(i) τ 3 2 2 2wc+2wo
3

(ii) ρ 2 1 2 1wc+2wo
2

(iii) ρ 2 1 0 1wc
2

(iv) τ, τ 6 2 4 2wc+4wo
6

(v) τ, τ 6 2 4 2wc+4wo
6

(vi) τ, τ, τ 9 4 4 4wc+4wo
9

(vii) τ, τ, τ 9 4 4 4wc+4wo
9

(viii) τ, τ, τ 9 4 4 4wc+4wo
9

3.3 Investigating Different Weights for Reversals and Transpositions

We investigate different values for wρ and wτ in our 5/3-approximation algo-
rithm. We generated alternative sequences that produce the same cycle graph
as the original sequences for each step of the algorithm, except for steps (ii) and
(iii) that apply only one reversal each. Table 2 lists the alternative sequences.

Table 2. Alternative sequences to the 5/3-approximation algorithm.

Step Original sequence Alternative sequence(s)

(i) τ ρ, ρ, ρ

(iv) τ, τ ρ, ρ, ρ

(v) τ, τ ρ, ρ, ρ, ρ

(vi) τ, τ, τ ρ, ρ, ρ, ρ, ρ and τ, τ, ρ, ρ, ρ

(vii) τ, τ, τ τ, τ, ρ, ρ, ρ and ρ, ρ, ρ, ρ, ρ, ρ and τ, ρ, ρ, ρ, ρ, ρ

(viii) τ, τ, τ ρ, ρ, ρ, ρ, ρ and τ, τ, ρ, ρ, ρ

Any transposition τ(i, j, k) can be replaced by three reversals ρ(i, j−1)ρ(j, k−
1)ρ(i, k − 1), so we stand as a limit that wτ ≤ 3wρ, otherwise the algorithm can
apply only reversals. For each pair of wρ and wτ , we tested different values for wc

and wo. For each value of wτ/wρ we calculated the maximum value of objective
function between the original and the alternative sequences, and obtained the
approximation factor using the greatest and lowest objective functions. In our
analysis, the approximation factor is always less than two when wτ/wρ is in the
interval 1 < wτ/wρ < 2.

As shown in Fig. 4, it is possible to improve the approximation factor to
89/55 ≈ 1.618 by allowing the alternative sequences from Table 2, and using
values of wτ and wρ such that wτ/wρ = 1.618, wc = 55, and wo = 17.

48 A. R. Oliveira et al.

Fig. 4. Approximation factor for different values of wρ and wτ .

4 Conclusion

We studied the problem of Sorting by Weighted Reversals and Transpositions
when the weight of a reversal is 2 and the weight of a transposition is 3. We
developed two different algorithms: a simpler 2-approximation algorithm for both
signed and unsigned permutations using breakpoints and strips, and a more
elaborated 5/3 ≈ 1.667-approximation algorithm for signed permutations using
cycle graphs.

We also investigated different values for the weight of a reversal and a trans-
position, and came to the conclusion that we can obtain a 1.618-approximation
algorithm by allowing some alternative sequences at steps of the 1.667-approx-
imation algorithm, and setting wτ/wρ = 1.618, wc = 55, and wo = 17. We
intend to continue working with this problem in order to develop algorithms
with approximation factors strictly less than 1.6.

Acknowledgments. This work was supported by the National Counsel of Techno-
logical and Scientific Development, CNPq (grants 400487/2016-0, 425340/2016-3, and
140466/2018-5), the São Paulo Research Foundation, FAPESP (grants 2013/08293-7,
2015/ 11937-9, 2017/12646-3, 2017/16246-0, and 2017/16871-1), the Brazilian Fed-
eral Agency for the Support and Evaluation of Graduate Education, CAPES, and the
CAPES/COFECUB program (grant 831/15).

References

1. Bader, M., Abouelhoda, M.I., Ohlebusch, E.: A fast algorithm for the multiple
genome rearrangement problem with weighted reversals and transpositions. BMC
Bioinform. 9(1), 1–13 (2008)

2. Bader, M., Ohlebusch, E.: Sorting by weighted reversals, transpositions, and
inverted transpositions. J. Comput. Biol. 14(5), 615–636 (2007)

3. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discret. Math. 11(2),
224–240 (1998)

Sorting by Weighted Reversals and Transpositions 49

4. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for
sorting by reversals. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol.
2461, pp. 200–210. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45749-6 21

5. Blanchette, M., Kunisawa, T., Sankoff, D.: Parametric genome rearrangement.
Gene 172(1), GC11–GC17 (1996)

6. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J.
Discret. Math. 26(3), 1148–1180 (2012)

7. Caprara, A.: Sorting permutations by reversals and eulerian cycle decompositions.
SIAM J. Discret. Math. 12(1), 91–110 (1999)

8. Chen, X.: On sorting unsigned permutations by double-cut-and-joins. J. Comb.
Optim. 25(3), 339–351 (2013)

9. Dias, U., Galvão, G.R., Lintzmayer, C.N., Dias, Z.: A general heuristic for genome
rearrangement problems. J. Bioinform. Comput. Biol. 12(3), 26 (2014)

10. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transposi-
tions. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 369–379 (2006)

11. Eriksen, N.: Combinatorics of Genome Rearrangements and Phylogeny. Teknologie
licentiat thesis, Kungliga Tekniska Högskolan, Stockholm (2001)

12. Eriksen, N.: (1+ε)-approximation of sorting by reversals and transpositions. Theor.
Comput. Sci. 289(1), 517–529 (2002)

13. Gu, Q.P., Peng, S., Sudborough, I.H.: A 2-approximation algorithm for genome
rearrangements by reversals and transpositions. Theor. Comput. Sci. 210(2), 327–
339 (1999)

14. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

15. Kececioglu, J.D., Sankoff, D.: Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica 13, 180–210
(1995)

16. Rahman, A., Shatabda, S., Hasan, M.: An approximation algorithm for sorting by
reversals and transpositions. J. Discret. Algorithms 6(3), 449–457 (2008)

17. Walter, M.E.M.T., Dias, Z., Meidanis, J.: Reversal and transposition distance of
linear chromosomes. In: Proceedings of the 5th International Symposium on String
Processing and Information Retrieval (SPIRE 1998), pp. 96–102. IEEE Computer
Society, Los Alamitos (1998)

18. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–
3346 (2005)

https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1007/3-540-45749-6_21

Graph Databases in Molecular Biology

Waldeyr M. C. da Silva1,2(B) , Polyane Wercelens2,
Maria Emı́lia M. T. Walter2, Maristela Holanda2, and Marcelo Bŕıgido2

1 Federal Institute of Goiás, Formosa, Brazil
waldeyr.mendes@ifg.edu.br

2 University of Braśılia, Braśılia, Brazil

Abstract. In recent years, the increase in the amount of data gener-
ated in basic social practices and specifically in all fields of research
has boosted the rise of new database models, many of which have been
employed in the field of Molecular Biology. NoSQL graph databases have
been used in many types of research with biological data, especially in
cases where data integration is a determining factor. For the most part,
they are used to represent relationships between data along two main
lines: (i) to infer knowledge from existing relationships; (ii) to represent
relationships from a previous data knowledge. In this work, a short his-
tory in a timeline of events introduces the mutual evolution of databases
and Molecular Biology. We present how graph databases have been used
in Molecular Biology research using High Throughput Sequencing data,
and discuss their role and the open field of research in this area.

Keywords: Graph databases · Molecular Biology · Omics
Contributions

1 Introduction

The development of Molecular Biology precedes the development of the mod-
ern Turing-machine based Computer Sciences. However, from the moment they
meet up, this close and cooperative relationship has intensified and accelerated
advances in the field. In 1953, the structure of DNA was described by Watson
and Crick [39] paving the way for the central dogma of Molecular Biology, which
has been continuously enhanced by the discoveries of science. In the same year,
International Business Machines (IBM) launched its first digital computer, the
IBM 701. In the decade that followed, the genetic code was deciphered with the
triplet codon pattern identification [12], which was almost wholly cracked in the
following years [21]. Meanwhile, the history of modern databases began in 1964
at General Electric, when the first considered commercial Database Management
System (DBMS) was born and named IDS - Integrated Data Store [3], [2]. From
then on, other initiatives appeared, such as Multivalue [15], MUMPS [25], and
IMS [13], which was designed for the Apollo space program in 1966.

The 1970s brought in the relational model [8], a very significant database
model that, according to the site DB-Engines, even today, it is the most widely
c© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 50–57, 2018.
https://doi.org/10.1007/978-3-030-01722-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_5&domain=pdf
http://orcid.org/0000-0002-8660-6331
https://db-engines.com/en/ranking

Graph Databases in Molecular Biology 51

used throughout the world. The first DNA sequencing was completed in 1971 [41],
and in 1975, Sanger’s method [28] for DNA sequencing, led to a generation of
methods [18]. Due to the possibility of using computers to analyze DNA sequence
data, in 1976 the first COBOL program to perform this type of analysis was
published [22] and could be considered the birth of Bioinformatics, even though
the name had yet to be coined.

In the 1980s, discussions about the human genome naturally emerged with
the advances in DNA sequencing which were due to the affordable costs [29].
Throughout the 1990s, the Human Genome Project conducted the sequencing
of the human DNA, which in 2001, culminated in the publications of the two
competitors in this assignment [19,38]. Also, in the 1990s, the modern Internet
emerged, and in the second half of the 1990s, the world experienced the Internet
bubble phenomenon [5].

The efforts of the genome projects have promoted new technologies for
sequencing, such as the High-Throughput Sequencing technologies (HTS), which
have been used in laboratories worldwide. Nowadays, biological data has
increased intensely in volume and diversity, becoming known as omics (genomics,
transcriptomics, epigenomics, proteomics, metabolomics, and others). Projec-
tions on omics are impressive, and it is estimated that in 2025, genomics will
generate one zetta-bases per year, which enables us to characterize the omics as
a Big Data science [32]. NoSQL databases have played a significant role in man-
aging large volumes of data, and as in other areas, the omics recently became a
target of the NoSQL movement.

Although the NoSQL movement does not have a consensual definition, the lit-
erature points out that NoSQL is an umbrella term for non-relational database
systems that provide mechanisms for storing and retrieving data, and which
has modeling that is an alternative to traditional relational databases and their
Structured Query Language (SQL). According to Corbellini [10], there are dif-
ferent types of NoSQL database models commonly classified as key-value, wide
column or column families, document-oriented, and graph databases. Despite
this classification, the NoSQL databases may be hybrids, using more than one
database model.

In this review, we summarize the current NoSQL graph databases contribu-
tions to Molecular Biology, limited to their use in omics data from HTS, from the
time they were first reported in the literature. We approach the contributions
of NoSQL graph databases to the different fields of Molecular Biology exploring
technical characteristics for the efficient storage of data. Finally, we conclude by
discussing the role of NoSQL graph databases and the open field of research in
this area.

2 NoSQL Graph Databases

Graphs naturally describe problem domains, and graph databases assemble sim-
ple abstractions of vertices and relationships in connected structures, making it
possible to build models that are mapped closer to the problem domain. Often,

52 W. M. C. da Silva et al.

data sets and their relationships are represented by graphs, and the importance
of the information embedded in relationships has prompted an increase in the
number of graph database initiatives [1]. This occurs due to various factors, such
as the interests in recommending systems, circuits in engineering, social media,
chemical and biological networks, and the search and identification of criminal
cells [31].

Graph databases are Database Management Systems (DBMS) with Create,
Read, Update, and Delete (CRUD) methods, which can store graphs natively or
emulate them in a different database model [27]. The schema in graph databases
can store data in vertices and, depending on the database, can also be stored in
edges [30].

A significant aspect of graph databases is the way they manage relationships
making it possible to establish them between entities. It is similar to storing
pointers between two objects in memory. In addition, indexes can make the data
retrieve of queries more efficient. However, there are some restrictions for types,
as the BLOB type (Binary Large Object), which is not yet supported by graph
databases.

3 Graph Databases Applied to Omics Data

In this section, we present works in which the NoSQL graph databases bring
contributions to the Molecular Biology using omics data.

With the advent of NoSQL databases, a fundamental question loomed: would
the NoSQL databases be ready for Bioinformatics? Have and Jensen [16] pub-
lished a paper answering this question for NoSQL graph databases. In their
work, they measured the performance of the graph database Neo4J v1.8 and the
relational database PostgreSQL v9.05 executing some operations on data from
STRING [36]. They found, for example, that the graph database found the best
scoring path between two proteins faster by a factor of almost 1000 times. Also,
the graph database found the shortest path 2441 times faster than the relational
database when constraining the maximal path length to two edges. The conclu-
sion was that graph databases, in general, are ready for Bioinformatics and they
could offer great speedups on selected problems over relational databases.

Bio4j [26] proposes a graph-based solution for data integration with high-
performance data access and a cost-effective cloud deployment model. It uses
Neo4J to integrate open data coming from different data sources considering
the intrinsic and extrinsic semantic features. Corbacho et al. [9] used the Bio4J
graph database for Gene Ontology (GO) analyzes in Cucumis melo.

ncRNA-DB [6] is a database that integrates ncRNAs data interactions from
a large number of well-established online repositories built on top of the Ori-
entDB. It is accessible through a web-based platform, command-line, and the
ncINetView, a plugin for Cytoscape1, which is a software for analyses and visu-
alization of biological networks. Another Cytoscape plugin is the cyNeo4j [33],

1 www.cytoscape.org.

www.cytoscape.org

Graph Databases in Molecular Biology 53

designed to link Cytoscape and Neo4j and enable an interactive execution of an
algorithm by sending requests to the server.

Henkel et al. [17] used the Neo4J to integrate the data from distinct system
biology model repositories. This database offers curated and reusable models
to the community, which describe biological systems through Cypher Query
Language - the native query language of Neo4J.

Lysenko et al. [20] used a graph database to provide a solution to represent
disease networks and to extract and analyze exploratory data to support the
generation of hypotheses in disease mechanisms.

EpiGeNet [4] uses the Neo4J to storage genetic and epigenetic events observed
at different stages of colorectal cancer. The graph database enhanced the explo-
ration of different queries related to colorectal tumor progression when compared
to the primary source StatEpigen2.

The Network Library [34] used Neo4J to integrate data from several biological
databases through a clean and well-defined pipeline.

2Path [30] is a metabolic network implemented in the Neo4J to manage ter-
penes biosynthesis data. It used open data from several sources and was modeled
to integrate important biological characteristics, such as the cellular compart-
mentalization of the reactions.

Biochem4j [35] is another work that seeks integration of open data from
different sources using Neo4J. It goes beyond a database and provides a frame-
work starting point for this integration and exploration of an ever-wider range
of biological data sources.

GeNNet [11] is an integrated transcriptome analysis platform that uses Neo4J
graph database to unify scientific workflows storing the results of transcriptome
analyses.

BioKrahn [24] is a graph-based deductive and integrated database containing
resources related to genes, proteins, miRNAs, and metabolic pathways that take
advantage of the power of knowledge graphs and machine reasoning, to solve
problems in the domain of biomedical science as interpreting the meaning of
data from multiple sources or manipulated by various tools.

Messaoudi [23] evaluated the performance time needed for storing, deleting
and querying biomedical data of two species: Homo sapiens as a large dataset
and Lactobacillus Rhamnosus as a small dataset, using Neo4J and OrientDB
graph databases. They found that Neo4J showed a better performance than
OrientDB using ‘PERIODIC COMMIT’ technique for importing, inserting and
deleting. On the other hand, OrientDB achieved best performances for queries
when more in-depth levels of graph traversal were required.

Reactome [14] is a well-established open-source, open-data, curated and peer-
reviewed database of pathways, which recently adopted the graph database as
a storage strategy due to performance issues associated with queries travers-
ing highly interconnected data. In this case, the adoption of graph database
improved the queries reducing the average query time by 93%.

2 http://statepigen.sci-sym.dcu.ie.

http://statepigen.sci-sym.dcu.ie

54 W. M. C. da Silva et al.

Arena-Idb is a platform for the retrieval of comprehensive and non-redundant
annotated ncRNAs interactions [7]. It uses two different DBMS: a relational
MySQL and the graph database Neo4J, which is applied to handle the construc-
tion and visualization of the networks on a web page.

Table 1 summarizes the contributions of each reported work in this review.
Although there are many NoSQL graph databases available, so far only three of
them (Neo4J, OrientDB and Grakn) have been reported in this field as shown
in the Fig. 1.

Table 1. Contributions of graph-oriented databases for Molecular Biology

Graph database Main contribution Other contributions Source

Neo4J Biological networks Protein-protein interaction [16]

Neo4J Gene annotation GO analyses [9]

OrientDB Data integration ncRNA interactions [6]

Neo4J Data integration - [17]

Neo4J Data integration - [26]

Neo4J Data visualization - [33]

Neo4J Biological networks Diseases association [20]

Neo4J Cancer Epigenetic events [4]

Neo4J Data integration - [34]

Neo4J Biological networks Metabolic networks [30]

Neo4J Data integration - [35]

Neo4J Transcriptome analyses - [11]

Grakn Data integration Biomedical analyses [24]

Neo4J/OrientDB Biomedical analyses - [23]

Neo4J Biological networks Metabolic networks [14]

Neo4J Biological networks ncRNA interactions [7]

Biological networks

Biomedical analyses

Cancer research

Data integration

Data visualization

Gene annotation

Transcriptome analyses

2013 2014 2015 2016 2017 2018
Year

 C
on

tib
ut

io
n

fo
r t

he
 M

ol
ec

ul
ar

 B
io

lo
gy

Grakn.ai Neo4J OrientDB

Fig. 1. Main contributions for the Molecular Biology using graph databases and omics
data.

Graph Databases in Molecular Biology 55

4 Discussion and Conclusion

In this work, we listed meaningful contributions of NoSQL graph databases to
Molecular Biology using omics data. Performing queries across databases is rou-
tine activity in in silico biological studies, which, despite the available interfaces,
is not a trivial task [35]. In this sense, the data integration is both a contribution
to the field of Molecular Biology and Computer Science.

Data integration and biological networks were the most significant fields
where the graph databases were employed. Data integration intends to represent
relationships from previously related data knowledge, while metabolic networks
intend to infer knowledge from existing relationships. However, it seems there is
a hierarchy within data integration where it is a root contribution from which
the others are derived. Biological networks are intuitively represented as graphs,
and the use of graph databases for this purpose was predictable.

Once the data has already been processed and entered into the graph
database, the queries become very intuitive and fast because of the way the
nodes can be traversed. The performance and intuitiveness of queries in graph
databases seem to be the main reason for using them as discussed in [14]. Graph
queries are more concise and intuitive compared to equivalent relational database
SQL queries complicated by joins. In addition, the engine of the graph databases
is different, which leads to another point of investigation regarding the relation-
ship between an engine and performance.

Databases contribute to the efficient storage of data, helping to ensure essen-
tial aspects of information security such as availability and integrity. The lack of
schema in NoSQL graph databases, despite offering flexibility, can also remove
the interoperability pattern of the data [20]. Graph database schemas may pos-
itively influence the maintainability of the graph databases, and open an ample
field to examine the best graph schema for the data and their relationships
concerning the normalization of data. A significant point to explore here is the
threshold where the granularity of the vertices negatively influences the com-
plexity and performance of the queries. Graph Description Diagram for graph
databases (GRAPHED) [37] offers rich modeling diagrams for this purpose.

Although the scientific production using NoSQL databases is growing fast,
the non-mutual citation supposedly shows a not explicit collaborative network. In
summary, the use of NoSQL graph databases to store general data has increased,
and the main contributions are related to data integration and performance in
searches with queries traversing complex relationships. graph databases can help
reach these solutions following the FAIR Guiding Principles for scientific data
management and stewardship, which aims to improve the findability, accessibil-
ity, interoperability, and reuse of digital assets [40].

Acknowledgements. W. M. C. S. kindly thanks CAPES and IFG. M. E. M. T. W.
thanks CNPq (Project 308524/2015-2).

56 W. M. C. da Silva et al.

References

1. Angles, R., et al.: Benchmarking database systems for social network applications.
In: First International Workshop on Graph Data Management Experiences and
Systems, p. 15. ACM (2013)

2. Bachman, C.W.: Integrated data store. DPMA Q. 1(2), 10–30 (1965)
3. Bachman, C.W.: The origin of the integrated data store (IDS): the first direct-

access dbms. IEEE Ann. History Comput. 31, 42–54 (2009)
4. Balaur, I., et al.: EpigeNet: a graph database of interdependencies between genetic

and epigenetic events in colorectal cancer. J. Comput. Biol. 24, 969–980 (2017)
5. Berners-Lee, T., et al.: World-wide web: the information universe. Internet Res.

20(4), 461–471 (2010)
6. Bonnici, V., et al.: Comprehensive reconstruction and visualization of non-coding

regulatory networks in human. Front. Bioeng. Biotechnol. 2, 69 (2014)
7. Bonnici, V., et al.: Arena-Idb: a platform to build human non-coding RNA inter-

action networks, pp. 1–13 (2018)
8. Codd, E.F.: A relational model of data for large shared data banks. Commun.

ACM 13(6), 377–387 (1970)
9. Corbacho, J., et al.: Transcriptomic events involved in melon mature-fruit abscis-

sion comprise the sequential induction of cell-wall degrading genes coupled to a
stimulation of endo and exocytosis. PloS ONE 8(3), e58363 (2013)

10. Corbellini, A., et al.: Persisting big-data: the NoSQL landscape. Inf. Syst. 63, 1–23
(2017)

11. Costa, R.L., et al.: GeNNet: an integrated platform for unifying scientific workflows
and graph databases for transcriptome data analysis. PeerJ 5, e3509 (2017)

12. Crick, F.H., et al.: General nature of the genetic code for proteins. Nature
192(4809), 1227–1232 (1961)

13. Deen, S.M.: Fundamentals of Data Base Systems. Springer, Heidelberg (1977).
https://doi.org/10.1007/978-1-349-15843-0

14. Fabregat, A., et al.: Reactome graph database: efficient access to complex pathway
data. PLoS Comput. Biol. 14(1), 1–13 (2018)

15. Fry, J.P., Sibley, E.H.: Evolution of data-base management systems. ACM Comput.
Surv. (CSUR) 8(1), 7–42 (1976)

16. Have, C.T., Jensen, L.J.: Are graph databases ready for bioinformatics? Bioinfor-
matics 29(24), 3107 (2013)

17. Henkel, R., Wolkenhauer, O., Waltemath, D.: Combining computational models,
semantic annotations and simulation experiments in a graph database. Database
2015 (2015)

18. Hutchison III, C.A.: Dna sequencing: bench to bedside and beyond. Nucl. Acids
Res. 35(18), 6227–6237 (2007)

19. Lander, E.S.: Initial sequencing and analysis of the human genome. Nature
409(6822), 860–921 (2001)

20. Lysenko, A., et al.: Representing and querying disease networks using graph
databases. BioData Min. 9, 23 (2016)

21. Martin, R.G., et al.: Ribonucleotide composition of the genetic code. Biochem.
Biophys. Res. Commun. 6(6), 410–414 (1962)

22. McCallum, D., Smith, M.: Computer processing of dna sequence data. J. Mol. Biol.
116, 29–30 (1977)

23. Messaoudi, C., Mhand, M.A., Fissoune, R.: A performance study of NoSQL stores
for biomedical data NoSQL databases: an overview, November 2017 (2018)

https://doi.org/10.1007/978-1-349-15843-0

Graph Databases in Molecular Biology 57

24. Messina, A., Pribadi, H., Stichbury, J., Bucci, M., Klarman, S., Urso, A.: BioGrakn:
a knowledge graph-based semantic database for biomedical sciences. In: Barolli, L.,
Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 299–309. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-61566-0 28

25. O’Neill, J.T.: MUMPS language standard, vol. 118. US Department of Commerce,
National Bureau of Standards (1976)

26. Pareja-Tobes, P., et al.: Bio4j: a high-performance cloud-enabled graph-based data
platform. bioRxiv (2015)

27. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc,
Sebastopol (2013)

28. Sanger, F., Coulson, A.R.: A rapid method for determining sequences in DNA
by primed synthesis with DNA polymerase. J. Mol. Biol. 94(3), 441IN19447–
441IN20448 (1975)

29. Shreeve, J.: The Genome War: How Craig Venter Tried to Capture the Code of
Life and Save the World. Random House Digital Inc., Manhattan (2005)

30. Silva, W.M.C.D., et al.: A terpenoid metabolic network modelled as graph
database. Int. J. Data Min. Bioinform. 18(1), 74–90 (2017)

31. Srinivasa, S.: Data, storage and index models for graph databases. In: Sakr, S.,
Pardede, E. (eds.) Graph Data Management, pp. 47–70. IGI Global, Hershey (2011)

32. Stephens, Z.D., et al.: Big data: astronomical or genomical? PLoS Biol. 13(7),
e1002195 (2015)

33. Summer, G., et al.: cyNeo4j: connecting neo4j and cytoscape. Bioinformatics
31(23), 3868–3869 (2015)

34. Summer, G., et al.: The network library: a framework to rapidly integrate network
biology resources. Bioinformatics 32(17), i473–i478 (2016)

35. Swainston, N., et al.: biochem4j: Integrated and extensible biochemical knowledge
through graph databases. PloS ONE 12(7), e0179130 (2017)

36. Szklarczyk, D., et al.: The string database in 2017: quality-controlled protein-
protein association networks, made broadly accessible. Nucl. Acids Res. 45(D1),
D362–D368 (2017)

37. Van Erven, G., Silva, W., Carvalho, R., Holanda, M.: GRAPHED: a graph descrip-
tion diagram for graph databases. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S.
(eds.) WorldCIST’18 2018. AISC, vol. 745, pp. 1141–1151. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-77703-0 111

38. Venter, J.C., et al.: The sequence of the human genome. Science 291(5507), 1304–
1351 (2001)

39. Watson, J.D., Crick, F.H.: A structure for deoxyribose nucleic acid. Nature
171(4356), 737–738 (1953)

40. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data manage-
ment and stewardship. Sci. Data 3 (2016). https://doi.org/10.1038/sdata.2016.18

41. Wu, R., Taylor, E.: Nucleotide sequence analysis of DNA: II. Complete nucleotide
sequence of the cohesive ends of bacteriophage λ DNA. J. Mol. Biol. 57(3), 491–511
(1971)

https://doi.org/10.1007/978-3-319-61566-0_28
https://doi.org/10.1007/978-3-319-77703-0_111
https://doi.org/10.1038/sdata.2016.18

ViMT - Development of a Web-Based
Vivarium Management Tool

Cristiano Guimarães Pimenta1, Alessandra Conceição Faria-Campos1,
Jerônimo Nunes Rocha1, Adriana Abalen Martins Dias3,

Danielle da Glória de Souza2, Carolina Andrade Rezende2,
Giselle Marina Diniz Medeiros2, and Sérgio Vale Aguiar Campos1(B)

1 Departamento de Ciência da Computação,
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

scampos@dcc.ufmg.br
2 Biotério Central da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

3 Departmento de Biologia Geral, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil

Abstract. Animal experimentation is still an important part in research
and experimentation, since it is still not possible to completely eliminate
animal testing. Therefore, it is necessary to find efficient ways to man-
age the processes that take place in animal facilities, thus aiding in the
achievement of the use of fewer animals and in more humane research
methods. Animals for research purposes are usually kept at vivariums.
One approach to help in the management of data in these facilities is the
use of Laboratory Information Management Systems (LIMS), specific
software for the management of laboratory information with emphasis on
quality. The present work describes ViMT, a LIMS designed to manage
the animal facility of the Federal University of Minas Gerais (UFMG),
Brazil. ViMT has been designed as a specialized LIMS having as major
objectives a flexible structure that makes it simple to model day by day
operations at a vivarium, trackability of operations and an easy to use
interface accessible from any computer or smartphone. ViMT has been
developed jointly with the UFMG Rodents Vivarium, and is currently
being deployed at this facility. It is a fully web-based, platform indepen-
dent system and can be accessed using browsers.

Keywords: LIMS · Vivarium · Data management

1 Introduction

The advancement of research and development of new medical procedures
resulted in an increase in animal experimentation. According to the Royal Soci-
ety for the Prevention of Cruelty to Animals, over a 100 million animals are
used in experiments every year around the world [14]. The most commonly used
species include rats, mice, guinea pigs, hamsters, rabbits, fishes, primates and
domestic animals [5]. These animals are kept at vivariums. A vivarium is the
c© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 58–65, 2018.
https://doi.org/10.1007/978-3-030-01722-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_6&domain=pdf

ViMT - Development of a Web-Based Vivarium Management Tool 59

place where live animals are kept for scientific research. It is built in a physical
area of adequate size and divisions, where specialized personnel work. In this
place there is water and food specific for each animal species, as well as constant
temperature and appropriate artificial lighting.

In 1959, Russel and Burch [15] proposed a set of guidelines for more ethical
use of animals known as the Three Rs(3Rs) that are also used at vivariums.
The 3Rs are Replacement: methods which avoid or replace the use of animals in
research, Reduction: use of methods that enable researchers to obtain compara-
ble levels of information from fewer animals, or to obtain more information from
the same number of animals, and Refinement: use of methods that alleviate or
minimize potential pain, suffering or distress, and enhance animal welfare for the
animals used. The 3Rs have a broader scope than simply encouraging alterna-
tives to animal testing. They aim to improve animal welfare and scientific quality
where the use of animals cannot be avoided. Since the proposition of the 3 Rs
several alternatives to animal experimentation have been developed, such as in
vitro cell and tissue cultures, computer models and use of other organisms (e.g.
microorganisms, invertebrates and lower vertebrates) [5,8]. Furthermore, ade-
quate storage and exchange of information regarding animal experiments can
greatly reduce the need for unnecessary repetitions, which would lead to fewer
animals being used [3].

However, despite all the efforts to avoid it, animals are still used in toxi-
cological screenings, studies related to the effects of medical procedures, drug
development, testing of cosmetic products, environmental hazard identification
and risk assessment [1,5,16]. Since it is still not possible to completely eliminate
animal testing, it is necessary to find efficient ways to manage the processes
that take place in animal facilities, thus aiding in the achievement of the 3Rs.
One approach to achieve that is the use of Laboratory Information Management
Systems (LIMS), which are computational systems used to track and manage
laboratory information, generating consistent and reliable results [2,6,10].

The present work describes ViMT, a LIMS designed to manage the animal
facility of the Federal University of Minas Gerais (UFMG), Brazil. ViMT has
been designed as a specialized LIMS with the following objectives in mind: a
flexible structure that makes it simple to model all day by day operations at a
vivarium, trackability of operations and an easy to use interface accessible from
any computer or smartphone.

ViMT has been developed jointly with the UFMG Rodents Vivarium, and
is currently being deployed at this facility. When at full capacity, ViMT will
manage all of the approximately 40,000 animals at the UFMG Vivarium.

2 Related Work

The management of the activities in a vivarium requires a very detailed and
accurate record of all operations. The use of computational tools to aid in this
task is well known. However, there are few specialized tools for this purpose, with
some of them proprietary [11]. Mazzaroto and Silveira [9] have developed a free

60 C. G. Pimenta et al.

software tool for that – BioterC – to manage animals in a lab facility in Brazil.
However, despite being designed specifically for vivariums, BioterC primarily
manages stock control, animals orders and breeding, lacking the ability to track
animal-related events, such as births, deaths and diseases, for example, which
hinders trackability and makes the system inadequate for UFMG Vivarium.

The use of electronic notebooks and LIMS to manage laboratory data has
been successfully reported but few of these tools provide the functions needed to
manage vivarium’s complex routines and most of them have been developed to
fulfill the needs involved in their development and cannot be adapted to manage
vivarium data [7,10]. For example, a biological laboratory typically receives a
sample that is processed to generate other products, or to identify some property
of the original sample. In a vivarium no such concept exists. The operations of a
vivarium typically do not track a single entity (sample or animal), and are not
related to its status in the system. Instead, they track sets of entities, cages of
animals in our case, the operations being more similar to stock control systems
than laboratory experiments.

ViMT has been designed to accommodate such flow of information, but at
the same time it still allows individual animals to be tracked, maintaining track-
ability, a key requirement for vivariums and other laboratories. These features
are often not present in systems not designed for this application.

3 Vivarium Operations

UFMG’s Vivarium is responsible for the husbandry of several strains of mice
and rats, following strict sanitary and ethical procedures, in order to guarantee
a high genetic quality of the animals. The main activities of the laboratory are
as follows: feed the animals, select animals for breeding, register births, wean
the litter, track deaths and diseases, receive animal orders from researchers and
deliver them.

In the UFMG Vivarium, animals are kept in individually ventilated cages,
labeled with information about the rodent species, strain, number of animals in
the cage, sex, date of birth, and other relevant dates such as breeding and wean-
ing. The density of animals in the cage follows the recommended by the Guide
of the Care and Use of Laboratory Animals [12]. A cage typically contains the
parents and offspring of a single couple and is identified by a combination of the
names of the parents’ cages. A good record keeping and tracking system is cru-
cial for the efficient management of the vivarium. For this, accurate cage/animal
identification is necessary and all the procedures performed in a cage or in an
individual animal must be trackable. It is also necessary to provide easy recovery
of any information about each animal of the colony, including breeding, births,
weaning and clinical findings such as illness, injury or death. The easy access to
this set of data permits the monitoring of the productive rates, the detection of
abnormalities and the improvement of the strategies of animal care, husbandry
and production.

ViMT - Development of a Web-Based Vivarium Management Tool 61

4 The ViMT System

Proper care, use, and humane treatment of animals used in research, testing,
and education require scientific and professional judgment based on knowledge
of the needs of the animals and the special requirements of the corresponding
programs. Because of that ViMT has been developed through direct interaction
with the vivarium personnel at UFMG. Therefore, ViMT is a tool that is adapted
to the different routines in the vivarium and includes forms for information on
the main activities performed there: the species and number of animals in the
facility, the number of animals requested by researchers, housing and husbandry
requirements, major operative procedures, removal, euthanasia and disposition
of animals.

The system is divided into a server and a client applications. The server is
implemented in Java and uses a MySQL relational database management system.
The client consists of a web interface, which can be accessed via any modern
browser, such as Google Chrome, Firefox, Safari and Opera. It was implemented
using the Angular platform (https://angular.io) and a local database to allow
offline access.

The workflow of the system is illustrated in Fig. 1. Each box represents an
activity. UFMG Vivarium does not receive animals from external sources, so the
only input is via births. This activity stores the number of animals that were
born, the date, and the cage in which the birth occurred. The breeding activity
stores the origin of the male and the female(s), the date and the identifier of the
cage to which the animals were transferred. Breeding leads to new birth activ-
ities. The separation activity identifies the cage and the date. After breeding,
the male is removed from the cage and euthanized. The offspring are weaned via
the weaning activity and moved to a new box. It contains information regarding
the origin and destination boxes, the number of animals of each sex that were
weaned and the date. The output of the system is represented by the delivery,
death or euthanasia of the animals. Death and euthanasia activities store the
cage in which the event occurred, the number of animals of each sex, the cause
and the date. Delivery contains the number of animals delivered, the cage from
which they were removed and the date, and is related to order, which keeps
track of the requesting researcher, their organization, the number of the ethics
committee’s protocol, the strain, sex, number and age of the animals and the
payment method.

The system is available online at http://vimt.luar.dcc.ufmg.br. The tool is
fully available online without the need for investment in new hardware, which
simplifies data collection, since the software can be accessed from any equipment
with Internet access, including smartphones. Furthermore, the use of ViMT pro-
vides a tool to simplify and improve data collection besides gains in the ability
to manage inventories and increase the predictability in the provision and pro-
duction.

https://angular.io
http://vimt.luar.dcc.ufmg.br

62 C. G. Pimenta et al.

Fig. 1. ViMT’s workflow.

4.1 Back-End

The back-end of the system uses the web server Apache Tomcat R©.

Data Modeling. The database can be grouped into three functional cate-
gories: users, activities and attributes. Users can be one of two types: internal
or external. Internal users correspond to the technicians (collaborators) and
administrators of the animal facility, while external users are its clients. There is
a permission system that grants users access to specific parts of the application
depending on their type.

Activities are the central entity of the system, since they model all the animal-
related functionalities. Each activity has a type, which defines the event associ-
ated to it (e.g. death, birth, breeding), and can be related to a parent activity.

They also have a set of attributes that define the activity. The structure and
type of the attributes vary among the different types of activities. Examples
of attributes include birth date, strain, order number. Attributes are modelled
separately from activities, and are related to the activity that uses them. By
modelling the system this way it becomes more flexible and easier to adapt to
future modification in the system.

Client Integration. There are two communication interfaces between server
and clients: a RESTful API and the WebSocket protocol. The RESTful API was
implemented as Java Servlets and use CRUD operations, provided by the HTTP
protocol [4], to allow clients to send requests to the server.

On the other hand, the WebSocket protocol provides full-duplex communica-
tion between the server and a client over a single TCP socket, which allows both
ends to start the communication and decreases latency compared to HTTP [13].
This is important to allow multiple users to access the application concurrently.
When the server detects an update, it sends a message to all connected clients
with the new data, eliminating the need for HTTP polling.

ViMT - Development of a Web-Based Vivarium Management Tool 63

Fig. 2. Collaborator dashboard. Fig. 3. Animals page.

4.2 Front-End

The front-end comprises a client and a collaborator areas, which can only be
accessed by users of the corresponding type. Clients are allowed to register them-
selves, but only administrators can create collaborator accounts.

Collaborator Area. The collaborator area is more complex than the client’s,
since they execute most of the activities. It has a dashboard that contains links
to its functionalities: the panels for Animals, Lineages and Orders (Fig. 2). The
Animals panel contains a list of the cages and information about the animals
in each of them (Fig. 3). This page will also have options to search for specific
cages besides filtering and sorting based on specific criteria.

The Lineages panel shows a list of all the animal strains maintained in the
facility. Each item in the list is a link to the events page of the corresponding
strain (Fig. 4), that allows the user to check the events registered for the strain

Fig. 4. ViMT Lineages panel showing the events registered.

64 C. G. Pimenta et al.

Fig. 5. ViMT Orders panel showing
the option to place a new order.

Fig. 6. ViMT Client area showing the
option to place a new order.

and to add new events. There is also a graph summarizing the number of occur-
rences of each type of event over the last 6 months. The Orders panel exhibits
the orders placed by the clients and the corresponding deliveries (Fig. 5).

Client Area. The client area (Fig. 6) is used for the external user (client) to
follow the orders placed by him/her and the corresponding deliveries. It is also
used by the client to place new orders.

5 Conclusion

Animal experimentation is an undesired but still necessary procedure. Millions of
animals are used every year in experiments. These animals are kept at vivariums,
where The quality, handling and use of these animals is controlled to increase
the quality of the experiments in which these animals are used, and consequently
reduce the number of experiments needed.

Maintaining a vivarium is complex, all aspects of the life of the animal must
be controlled such as feeding, breeding and others. Laboratory Information Man-
agement Systems are frequently used to assist in this task.

This work proposes ViMT, a LIMS designed to manage the animal facility of
the Federal University of Minas Gerais (UFMG), Brazil. ViMT is a specialized
LIMS designed to that manage day by day operations at a vivarium. It also
allows all operations to be tracked, an essential feature in a vivarium. It has an
easy to use interface accessible from any computer or smartphone.

ViMT has been developed jointly with the UFMG Rodents Vivarium, and
is currently being deployed at this facility. When at full capacity, ViMT will
manage all of the approximately 40,000 animals at the UFMG Vivarium.

The ViMT system simplifies the management of the vivarium, increasing its
efficiency, offering its users tools to better manage the vivarium.

ViMT also store all data in a structured format in a relational database.
Future work includes analyzing this data using advanced data analysis tools in
search of new scientific knowledge that can help not only vivariums, but also
laboratories that use these animals.

ViMT - Development of a Web-Based Vivarium Management Tool 65

6 Availability

The ViMT system can be accessed at http://vimt.luar.dcc.ufmg.br using the
user “guest@vimt.com” and password “gu3st”.

Acknowledgments. The authors wish to thank CNPQ, FAPEMIG, CAPES and
Biotério Central da UFMG for financial support.

References

1. Aeby, P., et al.: Identifying and characterizing chemical skin sensitizers without
animal testing: Colipa’s research and method development program. Toxicol. Vitr.
24(6), 1465–1473 (2010)

2. Avery, G., McGee, C., Falk, S.: Product review: implementing LIMS: a how-to
guide. Anal. Chem. 72(1), 57A–62A (2000)

3. Balls, M.: Replacement of animal procedures: alternatives in research, education
and testing. Lab. Anim. 28(3), 193–211 (1994)

4. Battle, R., Benson, E.: Bridging the semantic web and web 2.0 with representa-
tional state transfer (REST). Web Semant. 6(1), 61–69 (2008)

5. Doke, S.K., Dhawale, S.C.: Alternatives to animal testing: a review. Saudi Pharm.
J. 23(3), 223–229 (2015)

6. Faria-Campos, A.C., et al.: FluxCTTX: a LIMS-based tool for management and
analysis of cytotoxicity assays data. BMC Bioinform. 16(Suppl 19), S8 (2015)

7. Hanke, L.A.: FluxTransgenics: a flexible lims-based tool for management of plant
transformation experimental data. Plant Methods 10(1), 20 (2014)

8. Liebsch, M., et al.: Alternatives to animal testing: current status and future per-
spectives. Arch. Toxicol. 85(8), 841–858 (2011)

9. Mazzarotto, G.A.C.A., Silveira, G.F.: Desenvolvimento e implementação de um
software livre para o gerenciamento de um biotério brasileiro 1(2), 61–68 (2013)

10. Melo, A., Faria-Campos, A., DeLaat, D.M., Keller, R., Abreu, V., Campos, S.:
SIGLa: an adaptable LIMS for multiple laboratories. BMC Genomics 11(Suppl 5),
S8 (2010)

11. Muench, M.O.: A cost-effective software solution for vivarium management. Lab.
Anim. 46(1), 17–20 (2016)

12. National Reasearch Council: Guide for the Care and Use of Laboratory Animals,
8th edn. The National Academies Press, Washington, DC (2010)

13. Pimentel, V., Nickerson, B.G.: Communicating and displaying real-time data with
WebSocket. IEEE Internet Comput. 16(4), 45–53 (2012)

14. RSPCA: The use of animals in research and testing (2018). https://www.rspca.
org.uk/ImageLocator/LocateAsset?asset=document&assetId=1232742266055&
mode=prd

15. Russell, W.M.S., Burch, R.L., Hume, C.W.: The Principles of Humane Experimen-
tal Technique (1959)

16. Scholz, S., et al.: A European perspective on alternatives to animal testing for envi-
ronmental hazard identification and risk assessment. Regul. Toxicol. Pharmacol.
67(3), 506–530 (2013)

http://vimt.luar.dcc.ufmg.br
https://www.rspca.org.uk/ImageLocator/LocateAsset?asset=document&assetId=1232742266055&mode=prd
https://www.rspca.org.uk/ImageLocator/LocateAsset?asset=document&assetId=1232742266055&mode=prd
https://www.rspca.org.uk/ImageLocator/LocateAsset?asset=document&assetId=1232742266055&mode=prd

An Argumentation Theory-Based
Multiagent Model to Annotate Proteins

Daniel S. Souza1(B) , Waldeyr M. C. Silva1,2 , Célia G. Ralha1 ,
and Maria Emı́lia M. T. Walter1

1 University of Braśılia, Braśılia, Brazil
dssouzadan@gmail.com, {ghedini,mariaemilia}@unb.br

2 Federal Institute of Goiás, Formosa, Goiás, Brazil
waldeyr.mendes@ifg.edu.br

Abstract. Many computational and experimental methods have been
proposed for predicting functions performed by proteins. In silico meth-
ods are time and resource-consuming, due to the large amount of
data used for annotation. Moreover, computational predictions for pro-
tein functions are usually incomplete and biased. Although some tools
combine different annotation strategies to predict functions, biologists
(human experts) have to use their knowledge to analyze and improve
these predictions. This complex scenario presents suitable features for a
multiagent approach, e.g., expert knowledge, distributed resources, and
an environment that includes different computational methods. Also,
argumentation theory can increase the expressiveness of biological knowl-
edge of proteins, considering inconsistencies and incompleteness of infor-
mation. The main goal of this work is to present an argumentation
theory-based multiagent model to annotate proteins, called ArgMAS-
AP. Additionally, we discuss a theoretical example with real data to
evaluate the suitability of our model.

Keywords: Protein function · Annotation · Multiagent systems ·
Argumentation theory

1 Introduction

Annotation of protein function consists in finding descriptions about how pro-
tein acts in its environment, under different conditions, e.g., heat, energy, inter-
actions with/without water molecules, protein-protein interactions and post-
translational modifications.

The broad concept of function does not have a widely accepted definition.
Bork et al. [7] states that function should be described in different and specific
contexts, e.g., molecular functions, cellular functions and phenotypic functions,
including the interaction with the current environment conditions. Shrager [26]
says that function may be described at different levels, from biochemical func-
tions, biological processes and metabolic pathways, to organs and systems. Thus,
c© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 66–77, 2018.
https://doi.org/10.1007/978-3-030-01722-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_7&domain=pdf
http://orcid.org/0000-0003-3157-013X
http://orcid.org/0000-0002-8660-6331
http://orcid.org/0000-0002-2983-2180
http://orcid.org/0000-0001-6822-931X

An Argumentation Theory-Based Multiagent Model to Annotate Proteins 67

different ontologies and controlled vocabularies were defined to describe func-
tions considering different contexts, e.g., Enzyme Commission (EC) [29], Gene
Ontology (GO) [3] and Human Phenotype Ontology (HPO) [16].

The problem of protein function annotation consists in correctly assigning
these descriptions to a not yet characterized protein. Different strategies were
defined, from sequence level (i.e., DNA, mRNA and proteins in polypeptide
chains) to structural (spatial) level. These strategies explore different biolog-
ical concepts about proteins, e.g., homology, phylogeny, domains, active sites
and molecular dynamics [6,22,28]. Analysis of these concepts gives biologists
grounded knowledge about protein function, supporting their annotation task.

In general, in silico tools combine different strategies to improve their func-
tion prediction. Each strategy gives evidences about how protein acts. Evidences
are used as possible hypothesis for the prediction, and have different levels of
reliability, since they can either support the same prediction inferred by different
tools or conflict with each other.

The annotation task, since requiring a deep knowledge about protein features
and their biological roles, offers a complex scenario that is suitable for a multia-
gent environment [30]. Agents are designed to simulate different biologists’ knowl-
edge. These agents interact with each other, collaboratively and competitively,
solving conflicts and reaching agreement about annotation evidence, so that the
most plausible function for the analyzed protein can be predicted. On the other
side, since evidences are hypothetical, many times supported with inconsistent and
incomplete information, the annotation process could be improved with an argu-
mentation model for solving conflicts. In particular, a multiagent system based on
the argumentation theory [18] can be modeled in deliberation dialogues [17] that
allow agents to construct an annotation agreement, by discussing and expressing
their personal annotation preferences and opinions. In our model, deliberation dia-
logues based on expert knowledge formalized in the agents allow to reach a con-
sensus, reinforcing the annotation task.

The objective of this work is to present an argumentation theory-based mul-
tiagent model for annotating proteins, called ArgMAS-AP. We also show a the-
oretical example designed to evaluate the suitability of the proposed model.

In Sect. 2, we briefly present biological and computational concepts, used in
this work. In Sect. 3, we propose the argumentation theory-based multiagent
model. In Sect. 4, we discuss the theoretical example with real data. Finally, in
Sect. 5, we conclude and suggest future work.

2 Background

In this section, we briefly describe protein annotation strategies, multiagent sys-
tem and argumentation theory.

2.1 Protein Annotation Strategies

Protein annotation in silico methods have explored biological data ranging
from the sequence level of nucleotides to the structural/spatial level of proteins,

68 D. S. Souza et al.

including data from phylogeny, gene expression, protein-protein interactions and
biomedical literature, each aspect unveiling a particular feature that contributes
to find a protein function [21,25]. Moreover, machine learning methods have been
designed to integrate these features, aiming at improving function prediction per-
formance. This provides stronger biological background, since it overcomes each
method limitations, taking into account distinct strategies of annotation.

Differently from these methods, our multiagent system increases the expres-
siveness of protein biological knowledge, produced by different computational
methods, treating inconsistencies and information incompleteness using the
argumentation theory. An annotation for a protein is constructed based on a
deliberation dialogue among agents, instead of providing inferences from either
statistical measures or deductive reasoning. Besides, our model is flexible enough
to integrate multiple annotation strategies, formalized with specialized agents.
In this work, we are focused in sequence-based strategies, both BLAST [2], to
compute similarity, and HMMER [11], to get information about domain archi-
tectures.

2.2 Multiagent System and Argumentation Theory

According to Weiss [30], intelligent agents are entities who pursue their goals,
and perform tasks, such that their performance measures are optimized. These
entities are flexible agents that behave rationally according to their environment
conditions, limited by the available and acquired information and by their per-
ception and action capabilities. A rational agent always attempts to optimize
its performance measure. According to Wooldridge and Jennings [31], a flexible
and autonomous behavior allows the agent to control features about its inter-
nal state, characterized as: (i) reactivity: agents presenting a stimulus-response
behavior; (ii) proactivity: agents recognize opportunities and take initiatives;
(iii) interactivity: through communication languages, agents show social skills,
interacting with each other.

There are different reasoning models known in the literature to design intel-
ligent agents [27]. One of them is Belief-Desire-Intention (BDI), with utility and
goal driven-based agents. The BDI model is based on the theory of human prac-
tical reasoning, developed by Bratman [8], where the main focus is the role of
intention in reasoning. Practical reasoning is directed by actions, or it is the pro-
cess of deciding what to do based on three mental attitudes - beliefs, desires and
intentions, respectively representing the informative, motivational and delibera-
tive components of the agents [24].

A multiagent system (MAS) [30] is a collection of intelligent agents, each
acting to reach his own (or common) goals, and they can interact in a shared
environment with communication capabilities. In a MAS, coordination mecha-
nisms are proposed to avoid states considered undesired for one or more agents,
attempting to coordinate agents’ goals and tasks. Two coordination mechanisms
are: (i) cooperation: agents work collaboratively to increase their possibilities to
reach shared goals; and (ii) competition: agents act against each other to max-
imize their own goals. Additionally, agents may have hybrid mechanisms, i.e.,

An Argumentation Theory-Based Multiagent Model to Annotate Proteins 69

they may compete with each other, acting individually in the pursue of their
personal goals, to collaboratively maximize the reach of their shared goals.

In a MAS, argumentation-based techniques can be applied to specify agents’
autonomous reasoning at two levels [18]: (i) internally, e.g., beliefs’ revision, deci-
sion making under uncertainty, and non-standardized preference policies; and
(ii) externally, at communication level, with structured argumentation protocols
that enable agents to expose their opinions and solve conflicts.

Argumentation is a verbal and social activity of reasoning, with the objective
of increasing (or decreasing) the acceptability of a controversial point of view,
for the listener or reader, using propositions that justify (or refute) this point of
view through a rational judge [12]. Argumentation may be generally seen as a
reasoning process, with four steps [9]: (i) building arguments (to support/against
a “sentence”) from the available information of the environment; (ii) determin-
ing conflicts among agents’ arguments; (iii) evaluating acceptability of different
arguments; and (iv) taking conclusions using arguments that justify them.

3 The ArgMAS-AP Model

In this section, we present ArgMAS-AP, an argumentation theory-based multi-
agent model for annotating proteins (see Fig. 1). The annotation model explores
two strategies (see Sect. 3.1), based on different aspects of the biological knowl-
edge about proteins: (i) similarity of protein sequences; and (ii) conserved domain
architecture similarity, of predicted protein domains (subsequences). The argu-
mentation module, as described in Sect. 3.2, is responsible for the inference mech-
anism to suggest annotation, which uses deliberation dialogues among agents,
based on the argumentation theory, to reach an annotation agreement, from the
agents’ annotation suggestions and explanations.

3.1 Annotation Strategy Module

In this module, the first step is to use each input (a protein sequence) as a query
to BLAST [2] against the Swiss-Prot [4] database, to get information about at
most the k-nearest neighbor similar sequences (statistically ranked), which may
share common annotations with the input. Each of the similar sequences may be
totally, incompletely or inconsistently1 annotated. Annotations of protein names
are retrieved from the UniProtKB Web Service2, while annotations of the GO
terms are retrieved from the UniProt-GOA [5] database.

Next, the similar proteins, together with the input, are queried to
HMMER [11] against the Pfam-A [13] database, to calculate their corresponding
domain architectures. This allows to measure the similarities of the architecture
domains between each similar sequence with the input protein sequence.

Finally, all these predicted (and uncertain) information are analyzed in the
argumentation module, which comprises:
1 Inconsistent is a protein that has at least one incorrectly assigned annotation.
2 https://www.uniprot.org/help/api.

https://www.uniprot.org/help/api

70 D. S. Souza et al.

PROTEIN
SEQUENCES

CONSERVED
DOMAINS

 Query
 Target 1

 Query
 Target 2

 Query
 Target K

. . .

INPUT
(unknown

protein
sequence)

QUERY
K-NEAREST
NEIGHBOR
TARGETS

Manager Agent

Argumentative Agents

...

Query

Target 1

Target 2

Target K

. . .

1. BLAST / Swiss-Prot 1. HMMER / Pfam-A

2. Fetch alternative protein
names and GO annotations

2. Domain architecture similarity
(Levenshtein Distance)

OUTPUT
(annotated

protein)

AGENTS'
EVALUATION

AND
INFERENCE

Deliberation topic ...

A
rg

u
m

en
ta

ti
o

n
 M

o
d

u
le

A
n

n
o

ta
ti

o
n

 S
tr

at
eg

y
M

o
d

u
le

Fig. 1. High level scheme of the ArgMAS-AP model.

– a manager agent: that provides, for an input, one or more deliberation topics
to be discussed, which are different aspects of annotation, e.g., protein name,
molecular function, biological process or cellular component; and

– some argumentative agents: each agent generated from one similar protein
(retrieved from BLAST and HMMER), with the objective of handling knowl-
edge about its corresponding protein. Each agent participates in the discus-
sion of a particular deliberation topic, by expressing/defending its protein’s
annotation suggestion, also arguing with the other agents, trying to reach a
common agreement (the most plausible annotation).

At the end of the discussion of a topic, the manager evaluates which anno-
tations are more plausible to be assigned to the input protein sequence. There
are many possible deliberation scenarios. For example, two or more agents may
either reach an annotation agreement by supporting each other, or conflict, by
presenting distinct annotation suggestions. If one agent disagrees with the oth-
ers, agents naturally engage in an argumentative dialogue, through a deliberation
process, to find out which annotation suggestion leads to a mutual agreement. If
any mutual agreement is possible among the agents, the manager agent evaluates

An Argumentation Theory-Based Multiagent Model to Annotate Proteins 71

the arguments, choosing one based on different levels of credulity [10], or accept
all the conflicting arguments, since it cannot decide which one of the different
suggestions is the best to annotate the input protein sequence.

Protein Sequence Strategy. There are no measures known in the literature
that precisely relate sequence similarity to its functional similarity. The strategy
proposed in this work is based on the Pearson’s protocols of homology [22]. For
in silico methods, sequence similarity is the most widely used and reliable strat-
egy for protein annotation, usually using BLAST, where homology is inferred
from similar protein sequences. By homology, proteins may either diverge (par-
alogs) or conserve (orthologs) their functions. Pearson (2015) discussed function
divergence related to paralogy and orthology. He showed some cases that even
diverged proteins may share high function conservation. Also, there are cases
where proteins that present low sequence and structural similarity may still
share similar functions, what happens when different non-homologous sequences
converge.

Conserved Domain Strategy. Functional similarity was found among
orthologs with different levels of divergence, by measuring the conservation of
protein sequences’ domain architectures. This indicates that function conserva-
tion between orthologs demands higher domain architecture conservation, when
compared to some types of homologs [15]. Even so, the decreasing of functional
similarity is weak, if compared to the increasing of sequence divergence among
orthologs [1]. The domain architecture divergence are mainly caused by domain
shuffling, duplication and deletion events.

Methods developed with this strategy explore the similarity among the
domain architectures of the compared sequences. In this case, similarity is based
on conservation of domain architectures, consisting in a measure that allows
to infer that two protein sequences may conserve the same function by orthol-
ogy. Considering biological aspects of evolution, proteins are functionally diverse
due to mutations caused by selective pressure. Domain shuffling, deletion and
insertion events are mutations that lead to diversification of proteins, as much
as their functions. These events are naturally similar to the concepts applied
by the Levenshtein edit distance [19], which includes edit operations (insertion,
deletion and substitutions). This distance aims at finding the minimum number
of edit operations required to transform one architecture into another. Based on
this edit distance, we propose in Definition 1 our domain architecture similarity:

Definition 1. Domain architecture similarity. Let A = {a1, . . . , ai, . . . , an}
and B = {b1, . . . , bi, . . . , bm} two ordered domain architectures, where ai and bi
are protein domains, and each edit operation costs 1. The distance between two
architectures LD(A,B) ranges from 0 to max(|A|, |B|), where 0 means that they
are equal and max(|A|, |B|) means that they are totally dissimilar. Based on
LD(A,B), the similarity function can be formulated as follows:

Sim(A,B) = 1 − LD(A,B)
max(|A|, |B|) , if max(|A|, |B|) > 0

72 D. S. Souza et al.

where 0 ≤ Sim(A,B) ≤ 1, Sim(A,B) = 0 means that both architectures are
totally dissimilar, and 1 means that they are equal.

According to Finn et al. [14], the Pfam database should not have overlapping
families and the existing ones were organized into clans. However, families from
the same clan still share general functions, even if they have diverged into more
specific ones. Although the degree of divergence between families from the same
clan and among alignments could be used to weight the editing operations of
our similarity measure (Definition 1), we are not penalizing them.

3.2 Argumentation Module

This module includes the model for deliberation dialogues, implemented in the
Baidd tool by Kok [17]. The manager agent supervises and coordinates its argu-
mentative agents, to evaluate and suggest the most plausible protein annotation.
It instantiates k argumentative agents based on the protein sequence strategy.
Each argumentative agent is able to suggest an annotation, to construct argu-
ments to support, or refute, an existing argument.

A Model for Deliberation Dialogues. Consists of a dialogue among agents,
who discuss a deliberation problem, through a topic language with options, goals
and beliefs, as shown in Definition 2.

Definition 2. A deliberation dialogue context consists of: (i) an ASPIC argu-
mentation system [23]; (ii) a topic language Lt, with options Lo ∈ Lt, goals
Lg ∈ Lt, and beliefs Lb ∈ Lt; (iii) a mutual deliberation goal gd ∈ Lg.

The manager agent is responsible to present deliberation topics for differ-
ent annotation contexts. The argumentative agents have the mutual goal gd of
suggesting annotations for the input protein sequences. This dialogue is mod-
eled in several steps, through a communication language, by the so-called speech
acts [20], in the form of proposals, questions or arguments [17].

When a deliberation is presented, agents act in turns. In each turn, agents
can perform one or more speech acts in the dialogue. Excluding the proposal step
performed by the manager agent, each step has a target, which can be attacked,
supported or surrendered by the agents, in an argumentative context. When no
agent can formulate new arguments, the manager agent finishes the deliberation
context, and evaluates the winning proposal (if there is one), based on the agent
that provided the best utility measure (the most plausible protein annotation).

A Model for an Argumentative Agent. Based on Kok [17], each argumen-
tative agent plays a role in the system, simulating an expert, in a particular
deliberation topic. These roles describe the agents’ obligations and desires, as
part of their contexts in the dialogue. Each role consists of a set of options that
an agent might know, and its own goals, which can be either mutual or selfish.
Internally, argumentative agents are modeled according to the BDI model, with

An Argumentation Theory-Based Multiagent Model to Annotate Proteins 73

the support of the ASPIC inference engine, jointly implementing a reasoning
based on epistemic logic for the formulation of practical arguments. Actions (in
the construction of practical arguments) connects the mutual goal to the avail-
able proposed options, which are determined by the agent with higher utility.
The utility measure is built based on the argument that fits better the agents’
preferences, according to their beliefs, desires and intentions.

4 A Theoretical Example with Real Data

To illustrate the usefulness and richness of the argumentation module to anno-
tate proteins, we created an example of a complex scenario, where argumentation
takes place. This case includes a simulation of a dialogue among two argumenta-
tive agents, coordinated by their manager agent. Each argumentative agent has
knowledge about one protein obtained from sequence similarity. Since both pro-
teins have different annotations, each agent suggests a different biological role,
and both agents will be engaged in an argumentative dialogue.

First, we describe data, parameters and the agents’ simulation. After, we
discuss the deliberation process during the simulation, presenting the agents’
proposals and arguments, as well as the winning proposal.

4.1 Data, Parameters and Agents’ Simulation

Following the ArgMAS-AP model, we gave as input the sequence P0ACC1 from
Escherichia coli3, annotated as “Release factor glutamine methyltransferase
(prmC)”. The parameters for the protein and conserved domain strategies were
default, for both BLAST and HMMER. The obtained results, which generated
two agents were:

– P0ACC1 (input protein sequence): presents an architecture of a single domain
{PF13847} from the clan CL0063;

– Q6F0I44: annotated as “Release factor glutamine methyltransferase (prmC)”,
was retrieved from sequence similarity, presenting e-value = 1e−21, identity
= 27%, coverage = 82%, an architecture of a single domain {PF05175} from
the clan CL0063, with Sim(P0ACC1, Q6F0I4) = 1; and

– Q92G135: annotated as “Bifunctional methyltransferase (prmC/trmB)”, was
retrieved from sequence similarity, presenting e-value = 2e−44, identity =
35%, coverage = 91%, an architecture of two domains {PF05175, PF02390}
from the clan CL0063, with Sim(P0ACC1, Q92G13) = 0.5.

This information was passed to the argumentation module, where the man-
ager agent used them to instantiate two argumentative agents: A for Q6F0I4
and B for Q92G13. The argumentative agents’ settings are:

3 http://www.uniprot.org/uniprot/P0ACC1.
4 http://www.uniprot.org/uniprot/Q6F0I4.
5 http://www.uniprot.org/uniprot/Q92G13.

http://www.uniprot.org/uniprot/P0ACC1
http://www.uniprot.org/uniprot/Q6F0I4
http://www.uniprot.org/uniprot/Q92G13

74 D. S. Souza et al.

– roles: the biological role of the designated protein, related with P0ACC1;
– options: the recommended name of the corresponding protein;
– goals: the mutual goal “proteinName” (no selfish goals were considered); and
– beliefs: each agent instantiates the same rule set (Listing 1), and adds distinct

facts about the designated protein into its corresponding belief base.

1 /* Agent's personal facts related to its designated protein. */
2 identity, e-value, coverage, domain architecture similarity - Sim.

3 /* Rules driven to the mutual goal proteinName
4 Supporting arguments */
5 [r1] proteinName <- annotation(X), identity, coverage.

6 [r2] proteinName <- annotation(X), Sim(P0ACC1, X) >= 0.5.

7 /* Counter-arguments */
8 [r3] not proteinName <- your identity <= 30 is in the twilight zone.

9 [r4] not proteinName <- your Sim(P0ACC1, Y) is less than mine.

10 [r5] not proteinName <- my identity is less than yours,

11 but I present a high coverage considering my Sim(P0ACC1, X) >= 0.5,

12 supporting that I may have better conservation.

Listing 1: Argumentative agents’ belief base.
Next, the manager agent imposes the deliberation topic “annotation(T)” to

be discussed, and also the mutual goal “proteinName” to be reached by its argu-
mentative agents. Following, both agents join the dialogue, arguing each other
during the deliberation process. In the last step, the manager agent evaluates
the winning proposal, as shown in Fig. 2.

4.2 Discussion

This scenario shows an example where traditional methods usually fail in trans-
ferring annotation. The best statistically similar proteins can be miss-annotated,
since they cannot have the same functions. This degree of uncertainty was
exploited by the agents of ArgMAS-AP, using deliberation dialogue based on
argumentation theory to increase the expressiveness of biological knowledge
retrieved by two sequence-based annotation strategies: (i) inference by homology
based on sequence similarity; and (ii) inference by orthology based on domain
architecture similarity.

According to Fig. 2, the similar proteins Q6F0I4 and Q92G13 that gener-
ated the argumentative agents A and B, respectively, have different biological
roles, which enabled both agents to engage in an argumentative dialogue. Even
if Q6F0I4 had showed less conservation and coverage than Q92G13, and its sim-
ilarity is in the “twilight zone” (identity ≤ 30%) [22], Q6F0I4 still stands for a
high value of coverage with 100% of domain architecture similarity, considering
that both input (P0ACC1) and Q6F0I4 have different domain families belonging
to the same clan, which still conserve a more general function. Moreover, both
proteins give hypothetical functions to P0ACC1, but they are still uncertain.

The expressiveness of knowledge about Q6F0I4 gives to agent A plausible
reasons that overcome agent B counter-arguments, ensuring that its proposal

An Argumentation Theory-Based Multiagent Model to Annotate Proteins 75

Fig. 2. Simulation of a deliberation dialogue of agents A and B, where green boxes
represent the winning argument, and dashed red boxes represent a defeated argument.
The winning proposal is the annotation of agent A, “Release factor glutamine methyl-
transferase (prmC)”.

may lead to a “valid” or plausible annotation. On the other side, the knowledge
about Q92G13 is not strong enough to overcome argument A counter-arguments,
leading to an inconsistent and defeated proposal. Therefore, the winning proposal
taken by manager agent is the Q6F0I4 protein name, exactly the same name that
was associated to the input sequence P0ACC1.

5 Conclusion

In this work, we proposed ArgMAS-AP, an argumentation theory-based mul-
tiagent model to annotate proteins. We also discussed a theoretical example,
which demonstrated the suitability and feasibility of ArgMAS-AP. The delib-
eration dialogue between two agents improved knowledge, under uncertainty,
about the protein given as input, mimicking the process normally done by biolo-
gists (human experts) to annotate proteins. Our simulation showed the richness
of the argumentation theory, when applied to a complex scenario, where agents
engage in a deliberation process, exposing and solving conflicts about their jus-
tified arguments, to reach a common agreement about the function of the input
protein sequence.

Next steps are to refine the argumentation module as follows. The argumen-
tative agents reasoning and knowledge can be improved: defining more com-
plex rules, considering their utility measure; adding heuristics to belief revision,

76 D. S. Souza et al.

which enhance the agents’ nature of forming coalitions among supportive ones;
and adding to the manager agent a consistent evaluation strategy, e.g., voting,
utility or authority, for better solving the conflicts. These improvements allow
to capture more complex scenarios. After, we will use the free tool BAIDD BDI
Agents Interacting in Deliberation Dialogues6, developed by KoK [17], to imple-
ment the ArgMAS-AP model. Further, a benchmark can also be provided.

Acknowledgments. D. Souza and W. Silva kindly thank CAPES for the scholarship.
M. E. Walter thanks CNPq for the productivity fellowship (project 308524/2015-2).
C. Ralha also thanks CNPq for the productivity fellowship (project 303863/2015-3).

References

1. Altenhoff, A.M., Studer, R.A., Robinson-Rechavi, M., et al.: Resolving the ortholog
conjecture: orthologs tend to be weakly, but significantly, more similar in function
than paralogs. PLOS Comput. Biol. 8(5), 1–10 (2012)

2. Altschul, S.F., Gish, W., Miller, W., et al.: Basic local alignment search tool. J.
Mol. Biol. 215(3), 403–410 (1990)

3. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification
of biology. Nat. Genet. 25(1), 25–29 (2000)

4. Bairoch, A., Apweiler, R., Wu, C.H., et al.: The universal protein resource
(uniprot). Nucl. Acids Res. 33(Suppl. 1), D154–D159 (2005)

5. Barrell, D., Dimmer, E., Huntley, R.P., et al.: The goa database in 2009-an inte-
grated gene ontology annotation resource. Nucl. Acids Res. 37(Suppl. 1), D396–
D403 (2009)

6. Bernardes, J.S., Pedreira, C.E.: A review of protein function prediction under
machine learning perspective. Recent Pat. Biotechnol. 7(2), 122–141 (2013)

7. Bork, P., Dandekar, T., Diaz-Lazcoz, Y., et al.: Predicting function: from genes to
genomes and back. J. Mol. Biol. 283(4), 707–725 (1998)

8. Bratman, M.E.: Intentions, Plans, and Practical Reasoning. Harvard University
Press, Cambridge (1987)

9. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif.
Intell. 171(5–6), 286–310 (2007)

10. Charwat, G., Dvořák, W., Gaggl, S.A., et al.: Methods for solving reasoning prob-
lems in abstract argumentation a survey. Artif. Intell. 220, 28–63 (2015)

11. Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998)
12. van Eemeren, F.H., Grootendorst, R., Henkemans, A.F.S., et al.: Fundamentals of

Argumentation Theory. Handbook of Historical Backgrounds and Contemporary
developments, 1st edn. Lawrence Erlbaum Associates, New Jersey (1996)

13. Finn, R.D., Bateman, A., Clements, J., et al.: Pfam: the protein families database.
Nucl. Acids Res. 42(Database issue), D222–D230 (2014)

14. Finn, R.D., Mistry, J., Schuster-Böckler, B.: Pfam: clans, web tools and services.
Nucl. Acids Res. 34(Suppl. 1), D247 (2006)

15. Forslund, K., Pekkari, I., Sonnhammer, E.L.: Domain architecture conservation in
orthologs. BMC Bioinf. 12(1), 326 (2011)

16. Khler, S., Vasilevsky, N.A., Engelstad, M., et al.: The human phenotype ontology
in 2017. Nucl. Acids Res. 45(D1), D865 (2017)

6 https://bitbucket.org/erickok/baidd.

https://bitbucket.org/erickok/baidd

An Argumentation Theory-Based Multiagent Model to Annotate Proteins 77

17. Kok, E.M.: Exploring the practical benefits of argumentation in multi-agent delib-
eration. Ph.D. thesis, Utrecht University (2013)

18. Maudet, N., Parsons, S., Rahwan, I.: Argumentation in multi-agent systems: con-
text and recent developments. In: Maudet, N., Parsons, S., Rahwan, I. (eds.)
ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 1–16. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75526-5 1

19. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31–88 (2001)

20. Oishi, E.: Austins speech act theory and the speech situation. Esercizi Filosofici
1(1), 1–14 (2006)

21. Pandey, G., Kumar, V., Steinbach, M.: Computational approaches for protein func-
tion prediction: a survey. Technical report, Department of Computer Science and
Engineering, University of Minnesota, Twin Cities (2006)

22. Pearson, W.R.: Protein function prediction: problems and pitfalls. Curr. Protoc.
Bioinf. 51, 4–12 (2015)

23. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argum. Comput. 1(2), 93–124 (2010)

24. Rao, A.S., George, M.P.: BDI agents: From theory to practice. In: First Interna-
tional Conference on Multi-Agent Systems (ICMAS-95) (1995)

25. Shehu, A., Barbará, D., Molloy, K.: A survey of computational methods for protein
function prediction. In: Wong, K.C. (ed.) Big Data Analytics in Genomics, pp.
225–298. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41279-5 7

26. Shrager, J.: The fiction of function. Bioinformatics 19(15), 1934–1936 (2003)
27. Stuart Russell, P.N.: Artificial intelligence: a modern approach. Prentice Hall Series

in Artificial Intelligence, 3rd edn. Prentice Hall, Upper Saddle River (2010)
28. Tiwari, A.K., Srivastava, R.: A survey of computational intelligence techniques in

protein function prediction. Int. J. Proteomics 2014, 22 p. (2014). https://doi.org/
10.1155/2014/845479

29. Webb, E.C.: Enzyme nomenclature. Recommendations of the Nomenclature Com-
mittee of the International Union of Biochemistry and Molecular Biology on the
Nomenclature and Classification of Enzymes. Elsevier Inc., Academic Press, Cam-
bridge (1992)

30. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Modern App-
roach to Artificial Intelligence, 1st edn. The MIT Press, Cambridge (1999)

31. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl.
Eng. Rev. 10, 115–152 (1995)

https://doi.org/10.1007/978-3-540-75526-5_1
https://doi.org/10.1007/978-3-319-41279-5_7
https://doi.org/10.1155/2014/845479
https://doi.org/10.1155/2014/845479

AutoModel: A Client-Server Tool for Intuitive
and Interactive Homology Modeling

of Protein-Ligand Complexes

João Luiz de A. Filho1, Annabell del Real Tamariz2,
and Jorge H. Fernandez1(&)

1 LQFPP, Center of Biosciences and Biotechnology,
State University of North Fluminense, Campos dos Goytacazes, R.J, Brazil

joaoluiz.af@gmail.com, jorgehf@uenf.br
2 LCMAT, Center of Tecnological Sciences,

State University of North Fluminense, Campos dos Goytacazes, R.J, Brazil
annabell.brasil@gmail.com

Abstract. The protein tertiary structure prediction is not a simple task but the
assessment of this information becomes essential for functional annotation.
Computer protein structure prediction is an important tool in structural biology
helping to construct large quantity of interaction model of protein complexes or
used to obtain three-dimensional structure and functional information of non-
crystalizing proteins. However, the complexity of modeling softwares and a
hard-to-use user interface makes it difficult the use for non-expert scientists. On
this context, semi-automatic client-server software for protein homology mod-
eling was developed, the AutoModel. The main goal of AutoModel is to provide
a graphical, intuitive, interactive and practical interface to perform modeling
experiments in a distributed architecture, with the possibility of importing water
and ligand structural information from pdb templates, intended for easy mod-
eling of different protein-ligand complexes. Our system facilitates the new users
interaction with the modeling pipeline as it follows: 1. Searching structural
templates; 2. Sequences Alignment; 3. Protein modelling; 4. Model refinement
and 5. Loops refinement. In AutoModel 0.5 development we evaluated the use
of different alignment tools in order to increase the quality of generated models,
reduce the computational cost, and evaluate the impact of these changes in
modeling quality and the experimentation speed. Our data suggest that using
Muscle as alignment tool in the pipeline increases the quality of obtained models
if compared to the other tested releases with significantly lower computational
costs, which is always interesting in a distributed system running on a central
server as AutoModel. “AutoModel Server” and “AutoModel Client” packages
are available for Linux users through pypi package index. AutoModel is also
freely available for academic community “as is” in http://biocomp.uenf.br.

Keywords: Protein structure prediction � Homology modelling
Client-server architecture � Modeller � AutoModel

Electronic supplementary material The online version of this chapter (https://doi.org/10.1007/
978-3-030-01722-4_8) contains supplementary material, which is available to authorized users.

© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 78–89, 2018.
https://doi.org/10.1007/978-3-030-01722-4_8

http://orcid.org/0000-0002-8720-0114
http://biocomp.uenf.br
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_8&domain=pdf
http://dx.doi.org/10.1007/978-3-030-01722-4_8
http://dx.doi.org/10.1007/978-3-030-01722-4_8

1 Introduction

Protein folding is an important biological question, concerning biophysics, biology and
evolution and reflecting in the central goal of their proper functional characterization.
Although the proteins structure may be divided into four hierarchical organization
levels, where the higher level depends on the lower level of information [1], the
assessment of the protein three-dimensional (3D) structure becomes essential for
functional annotation and application of this knowledge on rational drug design [2–4].

In this context, predicting the protein tertiary structure is not a simple task and
traditionally experimental methods used for this purpose (nuclear magnetic resonance
(NMR), and crystallography mixed with X-ray diffraction) produce accurate models
with atomic resolution [5]. However, the NMR has difficulty in determining the pro-
teins structure which has more than 120 amino acid residues and some proteins such as
membrane proteins do not crystallize satisfactorily, not allowing the use of X-ray
diffraction [6]. Moreover, both methods are costly in time and resources and therefore
difficult to apply on a large scale [5, 7] and resulting in an exponentially growing gap
between sequenced proteins and their structures.

Thus, computational methods are being developed for determining the 3D structure
of a protein using only its amino acid sequence and implementing a computationally
efficient algorithm for the simulation of all the physical forces involved in folding
proteins on water [7]. Even currently one of the biggest challenges on structural
biology now, at this moment only small peptides or domains were determined properly
using this “ab initio” approach [8, 9]. Analyzing the CASP 12 results [10], current
development seems to consider the mixing of “ab initio” methods with other
methodologies such as threading and sequence-based homology [8, 11], but this
methodology that develops so fast will not be the center of considerations in this
document. However, other methodological approach, the comparative or homology
modeling may provide a useful 3D model for a protein [12, 13].

1.1 The Homology Modeling Prediction Method

The homology modeling prediction method relies on the assumption of structural
similarity based on sequence similarity, and attempts to solve the protein 3D structure
(target protein) using structural information from one or many proteins that works as
structural templates. These templates are proteins that must have two characteristics:
(i) known structure solved by experimental methods and (ii) be “homologous” to target
protein. As “structural or sequential homology” is difficult to define, the identity
of protein target and template sequences is a big determinant of this modeling
methodology, being resolved in the sequence alignment step. These features are used
by the modeling software for the creation of three-dimensional model. The homology
modeling usually works as a pipeline and is divided into four distinct stages: (1) finding
and selection of templates protein, (2) sequence alignment, (3) building the 3D
structure of the model based on the alignment and (4) errors prediction and model
validation [14]. The general pipeline is represented in Fig. 1A.

AutoModel: A Client-Server Tool for Intuitive and Interactive Homology Modeling 79

This method can be performed using specific software for each step, for example,
the HMMER [15] or Clustal [16] software to perform the alignment step and PRO-
CHECK that can be used to validate the model stereo-chemical quality [17]. However,
the increased demand for complete modeling tools turns the engine for the development
of complete and professional program suits capable of template searching, multiple
sequence alignment, structure modeling, molecular simulations, functional characteri-
zation, docking experiments and etc. Shrodinger [18] and Tripos [19] may illustrate
these excellent but expensive to nonspecialists solutions. A different but common
implementation of modeling programs as automatic web resource makes it easy to use
the resource for many users. Example of such implementation are the SWISS-MODEL
[20], ModWeb [14], Mholline [21] and ESyPred3D [22]. Although these services
facilitate the daily use of basic homology modeling with excellent quality results, in
general they perform an automatic internal pipeline and do not allow any user inter-
vention in modeling parameters, do not import to the model structural water or even
ligands complexed with structural templates. Furthermore, other programs provide a
full interactive pipeline for homology modeling experiments but their only-text inter-
face becomes a difficult barrier to overcome for a non-expert users. This is the case of
Modeller program [17].

Modeller is a program for comparative protein structure modeling [23]. This pro-
gram calculates the atomic coordinates of all non-hydrogen atoms tacking as an input to
the target protein sequence, the structure of the template and the alignment of these
sequences [13]. Modeller may also perform auxiliary tasks including structural profile
building [24], structural template searching, multiple alignments, phylogenetic trees
calculations and specific loop re-modeling in protein structures [23]. Although

Fig. 1. The classical protein homology modeling pipeline as implemented in AutoModel. A:
The algorithm requires a sequence of interest (target) and a template protein with structural
information. After a series of steps, the three-dimensional structure of the target protein is
obtained. B: Central window of AutoModel 0.5. The main window of AutoModel is divided in
five fields corresponding to every stage of homology modeling pipeline.

80 J. L. de A. Filho et al.

containing a lot of resources for homology modeling experimentation, Modeller
undergoes on absence of intuitive graphical interface, making the learning process in a
day-by-day experimentations a painful process for non-experts researchers.

In this context, we developed the AutoModel, an online tool that allows new or
unexperienced user to make predictions of the three-dimensional proteins structure
using the homology modeling method (Fig. 1B). The AutoModel differs from other
tools for performing user-interactive and semi-automatic sessions, i.e., allowing the user
to change important parameters in the prediction process when necessary. AutoModel
code is freely available for academic community “as is” in http://biocomp.uenf.br.

2 Implementation

2.1 Inside the AutoModel Architecture

The AutoModel was developed following the classical Client-Server architecture.
Briefly, the AutoModel Server waits connections and requisitions of AutoModel Client
through internet. Any interested user must install the Client software to perform a
modeling session. Every modeling session opens a request and AutoModel Client
sends the necessary files and data to AutoModel Server for intensive processing. In
turn, AutoModel Server processes this data using an appropriate python script, PDB
database, Modeller program and other resources (Fig. 2). At the end of the desired
calculation, the server sends the result to the client. From the user perspective, Auto-
Model runs locally but all intensive tasks run on AutoModel Server. The AutoModel
Server is based in a dual Xeon E56XX hardware (16 CPUs), can process up to 64
requests and allows multiple connections of AutoModel Clients simultaneously
(Fig. 2).

2.2 The AutoModel Server

The AutoModel Server hardware is installed in a Linux server located at the Labo-
ratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e
Biotecnologia at the Universidade Estadual do Norte Fluminense (LQFPP-CBB-
UENF). It was written in language python version 2 and uses reports of the obtained
model is generated using Procheck. Modeller provides a python API that facilitates the
development of all modules in python (Fig. 2).

Each module is a python script and must have a “create_script_in_folder()” and
“run()” methods. When AutoModel Client makes one request, the AutoModel Server
receives all the desired commands and users files necessary for operation. The Auto-
Model Server then creates a temporary folder and one script that execute all the
necessary third-party programs. After execution, the resulting files are sent back to the
AutoModel Client. During the session, this operation is completely transparent for the
user. Furthermore, the input-output formats from one step to the other inside the
modeling pipeline require some format conversion (FASTA to PIR and etc.) and for
this purpose the BioPython library [25] was used.

AutoModel: A Client-Server Tool for Intuitive and Interactive Homology Modeling 81

http://biocomp.uenf.br

2.3 The AutoModel Client

The AutoModel Client provides a graphical interface designed to facilitate non-expert
users to perform the homology modeling experiment in intuitive and simple graphical
environment. This software was written in python language version 2 and was designed
in two layers. The first layer connects to the server and performs all network requests
operations in the AutoModel Server through RPyC library [26], controlling the mod-
eling procedure. At this point all details of modeling experiment are managed by the
user through the AutoModel Client and the AutoModel Server is only used when high
CPU usage, third-part programs or database searching is necessary. The second layer in
AutoModel Client was written using WxPython [27] library and is in charge of gen-
erating the graphical interface for the user and receive user commands (Fig. 2).
Therefore, AutoModel Client was designed to use very low computer resources and
avoid installation of third-part programs. Although the modular architecture and the use
of python language and RPyC and WxPython libraries in theory allow the installation
of AutoModel Client in Windows and OSx operating systems, this release of Auto-
Model Client was tested only in Linux operating systems and is recommended for
Ubuntu and Mint distributions.

Fig. 2. General architecture of AutoModel. AutoModel Server contains the Modeller, MUSCLE
and Procheck programs, PDB database and several other modules for each stage of the modeling
pipeline. Several AutoModel Clients can connect to the server via internet using RPyC library
and perform an interactive session of template search (1), sequence to structure alignment (2),
modeling (3) and model refinement (4).

82 J. L. de A. Filho et al.

3 Results and Discussion

Modeling session with Automodel is fully interactive and may be repeated in loop, the
user conducts sessions in a semi-automatic way. This characteristic of the AutoModel
allows the non-expert users to test pros and cons in every step of the experimental
pipeline and perform modeling experiments with low or no previous knowledge on
structural Computational Biology and this becomes the central goal of the described
program herein.

3.1 AutoModel Interface and Normal Modeling Session

The implemented interface of AutoModel for the user is divided in five sections (Fig. 1
and 2), matching the 5 steps of homology modeling pipeline: (i) Template identifica-
tion, (ii) sequence to structure alignment, (iii) protein modeling, (iv) model assessment,
validation and refinement. In each step the user can change parameters that directly
influence in quality of generated model or in the specific experimental needs. In order
to use AutoModel, interested user only needs the sequence of the protein of interest.
Typically, target sequence is provided to the program in FASTA format.

After loading the target sequence, the user must search a template protein that has a
known three-dimensional structure. The AutoModel allows to load a known protein or
to select it from a list of homologous sequence and this template may be used for the
entire experimental pipeline. At this moment, it is only possible to select one template
sequence (Fig. 2-1) but next generation of the program will provide the user with the
possibility to build a structural profile of several structures and use this information in
the modeling procedure. Subsequently, the user can select specific chains, structural
waters and several heteroatoms or ligands from the template of choice. All these
important components if available in the template may be used to the construction of
the desired structural model. Furthermore, the heteroatoms or ligands selected in one
experiments can be quickly replaced by others before the next step of the model
building. The necessary alignment between sequences is performed on pressing only
the “Align” button of the graphical interface (Fig. 2-2). In order to perform the
alignment step, the AutoModel 0.5 uses the Muscle software, providing fast and
accurate results. Resulting pairwise alignment will be used in the next step of the
modeling pipeline: the structural model construction.

Three-dimensional model construction step is done by pressing the button “Get
Model”, this instructs the AutoModel to construct the protein model using the target
sequence, the template of choice with heteroatoms and waters, and the alignment using
the Modeller software (Fig. 2-3). In the AutoModel server five models will be con-
structed and the one with lower scoring energy function will be presented to the user as
the best result of the modeling procedure. In the header of each pdb file generated by
Modeller is the calculated “modeller objective function”, the parameter used by
AutoModel to select the better model.

To assess the general stereo-chemical quality of the generated model, AutoModel
presents to the user two options: (i) calculate the Discrete Optimized Protein Energy
(DOPE) per residue of target model and template structure and compare both in a
simple graphic or (ii) general stereo-chemical analysis of obtained model in

AutoModel: A Client-Server Tool for Intuitive and Interactive Homology Modeling 83

PROCHECK program (Fig. 2-4). DOPE score is a statistical potential generated by
Modeller software in three dimensional construction of the model [28]. To perform the
second option, AutoModel Server uses the software Procheck, which generates several
files with detailed stereo-chemical analysis and comparative quality of the obtained
model. The data generated by the model assessment may be necessary in the refinement
step. In AutoModel, the user may refine specific loops or detect regions of model with
bad energy. To perform this refinement, the user may select the “Loop Refinement”
option to select the loop region that will be refined. Made this, AutoModel uses specific
routine of the Modeller program to refine the desired loop region of model. At the end
of “loop refinement” procedure, a new model is generated, may be assessed using the
previously described tools and refined in other parts if necessary.

The RPyC library allows the development of the softwares using object-proxying, a
technique that permits to manipulate remote objects as if it was local. To do it, the
RPyC library can be arranged to use synchronous and asynchronous operations. On the
synchronous systems when the client software accesses remote objects, it is necessary
to wait until the end of the operation and only before that, the client can continue the
procedures. On the asynchronous operations, the client software can access remote
objects or send a batch of works to the server and continue with his local operation. We
tested the AutoModel using synchronous and asynchronous operations (Fig. 3). On the
synchronous operations, all modeling data were in AutoModel Server. We realized that
this design raised the volume of data necessary to complete the modeling process
(Fig. 3). With this, the AutoModel was unstable on slow internet connection as mobile
devices or the old infrastructure used in most developing countries. Indeed, imple-
mented AutoModel using the asynchronous operation was more responsible, stable and
faster. Moreover, it was possible to use a design where all user data of modeling
pipeline was stored in AutoModel Client, thereby reducing the data volume necessary
to complete the experiment, but increasing client hardware needs.

3.2 Comparison of Alignment Procedures and Modeling Study Case

To better exemplify the presented here AutoModel 0.5 release, a set of different pro-
teins was used to access the quality of the generated models, the speed of the service
and the impact of the alignment tool used in the general result of the homology
modeling experiment (Table 1 and Figs. S1–S3).

For theses comparative experiments tree different proteins were used. First, the
modeling of lactate dehydrogenase from T. vaginalis (TvLDH) [GenBank: AF070994]
protein using as a template the 1bdm pdb [29] (45% of sequence identity; [13, 30]), as
the control experiment used in the general example of the modeler webpage [31]
(Table 1 and Fig. S1). As a second example, the homology modeling of the storage 7S
vicilin from A. angustifolia [GenBank: AAM81249.1] with the 1uij:A pdb [32] as a
template (29% identity; Table 1 and Fig. S2). The last modeled protein was the (pu-
tative) developmental protein cactus from A. aegypti [refseq:XP_001650267] with the
1iknD pdb as a template (40% sequence identity; Table 1 and Fig. S3). All these
modeling experiments were performed in a low sequence identity for better under-
standing of the impact of the alignment tool in the modeling procedure.

84 J. L. de A. Filho et al.

In AutoModel 0.5 development, we evaluated the use of different alignment tools in
order to increase the quality of generated models, reduce the computational cost, and
evaluate the impact of these changes in modeling quality and speed of the experi-
mentation. Modeller alignment algorithm of 9v4 and 9v9 releases, HMMER and
Muscle programs were used with the same protein set. Thus, we evaluated: (i) the
quality of the generated models using the Prosa-web Server; (ii) machine time for full
modeling experiment and (iii) the time lapse of the alignment step. Our data suggest
that the use of AutoModel with the 9v9 Modeller release obtained better results than
generated models by Modeller 9v4 and the HMMER releases of the program pipeline,
demonstrating a dramatic improvement in alignment algorithm of 9v9 release. For the
overall quality of the generated model, the quality score of the external PROSA server
was used [33] (Table 1 and Figs. S1–S3).

The general analysis of the obtained results is represented in Table 1 and Figs. S1
to S3, and points to a better performance when alignment step of the modeling pipeline
is performed by the MUSCLE algorithm, showing a better balance in experimental
speed and accurate results. At the same time, it is important to remark that the last
release of Modeller (9v9) improved the speed of the alignment procedure and the
quality of the obtained results, a problem detected in the 9v4 release of the program.
However, using Muscle as alignment tool in the pipeline increases the quality of
obtained models if compared to the other tested releases and obtained significantly
lower computational costs, which is always interesting in a distributed system running
on a central server as AutoModel.

Fig. 3. Comparison between asynchronous and synchronous implementation of server-client
communication in AutoModel.

AutoModel: A Client-Server Tool for Intuitive and Interactive Homology Modeling 85

4 Conclusions

The AutoModel was developed to have an easy to use graphical interface to guide new
and non-expert user in homology modeling experimental pipeline. Unlike other
implemented modeling tools, AutoModel allows the user to control all the experimental
steps of the modeling pipeline, even including ligands and structural waters from the
structural template to the modeled protein. Although the last tested release of Modeller
(9v9) improved the speed of the alignment procedure and the quality of the obtained
results, a problem detected in the 9v4 release of the program, the use of Muscle as
alignment tool in the Automodel pipeline increased the quality of obtained models and
obtained significantly lower computational costs, important characteristic in a dis-
tributed system running on a central server. The main goal of AutoModel is to provide
a friendly interface to allow unexperienced user to control several parameters of
experiment in client-server architecture. In the presented release, the AutoModel 0.5
allows the user to select template, The main of AutoModel is to provide a friendly
interface to allow unexperienced user to control several parameters of experiment in
client-server architecture. In the presented release, the AutoModel 0.5 allows the user

Table 1. Comparison of different versions of AutoModel with ModWeb and Swiss-Model when
modeling the vicilin, TvLDH and gi | 157108525 | sequences.

Software AutoModel
0.4 (9v4)

AutoModel
0.4 (9v9)

AutoModel 0.5
(HMMER)

AutoModel 0.5
(Muscle)

ModWeb Swiss-Model

Sequence 1 7S Vicilin from A. angustifolia [GenBank: AAM81249.1]

Template 1uijA 1uijA 1uijA 1uijA 2ea7A 1uijA

Model qual. (Z-score) −4,85 −4,65 −1,21 −4,41 −4,48 −5,43

Time lapse of
alignment

2 m 18 s 2 m 07 s 1 m 27 s 1 s - -

Full Modeling time 7 m 44 s 8 m 10 s 7 m 6 m 14 s 10 h ± 1 h 1 h
10 m ± 10 m

Sequence 2 Lactate dehydrogenase from T. vaginalis (TvLDH) [GenBank: AF070994]

Template 1bdmA 1bdmA 1bdmA 1bdmA 4uulA 1bdmA

Model qual. (Z-score) −8,9 −8,43 −5,23 −8,18 −10,43 −9,05

Time lapse of
alignment

1 m 05 s 1 m 21 s 1 m 40 s 1 s - -

Full Modeling time 6 m 50 s 5 m 41 s 7 m 20 s 5 m 28 s 7 h ± 5 h 45 min ± 5 m

Sequence 3 Developmental Protein Cactus From A. aegypti [refseq:XP_001650267]

Template 1iknD 1iknD 1iknD 1iknD 1k1aA 5leaA

Model qual. (Z-score) 5,26 −1,44 −0,76 −2,66 −6,36 −4,42

Time lapse of
alignment

32 s 52 s 2 m 10 s 1 s - -

Full Modeling time 4 m 22 s 5 m 6 m 3 m 48 s 13 h ± 2 h 1 h
13 m ± 5 m

Other structural information from the template

Model with
crystallographic
water?

Yes No No

Model with ligands? Yes No Yes

86 J. L. de A. Filho et al.

to select template, select heteroatoms, import structural information of presented ligand
from the template, and even refine specific loops in a quick and easy way without
requiring expensive hardware or advanced knowledge in Computational Biology.

4.1 Availability and Requirements

The AutoModel Client is distributed “as is” under GNU/GPL license, and may be
considered as freeware for scientific, academic and student users. The client of
AutoModel is available to download in http://biocomp.uenf.br. In this page potential
users will obtain introductory manual, general information of the project and access to
the AutoModel Client download page. On the other hand, “AutoModel Server” and
“AutoModel Client” packages are available for Linux users through pypi package
index. Thus, with few commands, as “>pip install automodel-server”, the AutoModel
and its python dependencies are automatically installed in Linux servers. Beside this,
AutoModel server performs template downloads automatically from PDB website, thus
making obsolete the needs of “on site” bulky databases. The AutoModel Client and
Server are available for academic community “as is” for free in http://biocomp.uenf.br.

In order to use AutoModel Client, a netbook with Linux operating system and
internet access with minimum of 2 GB of RAM will be sufficient hardware but authors
recommend Ubuntu or Mint Linux distributions and 4 GB RAM laptop. Furthermore,
the full functional AutoModel Client requires a third part WxPython [27] and RPyC
libraries, and Python program installed in your system. For protein structure visual-
ization, Pymol [34] and/or VMD [35] must be also installed in your computer. All the
information necessary for installing these dependencies is available in our website.

Acknowledgements. This research was supported by E-26/110.216/2011 FAPERJ grant for J.
H.F. and FAPERJ master degree grant for J.de A.F.

References

1. Rodwell, V., Bender, D., Botham, K.M., Kennelly, P.J., Weil, P.A.: Harpers Illustrated
Biochemistry, 30th edn. McGraw Hill Professional, New York (2015)

2. Hillisch, A., Pineda, L.F., Hilgenfeld, R.: Utility of homology models in the drug discovery
process. Drug Discov. Today 9, 659–669 (2004)

3. Sliwoski, G., Kothiwale, S., Meiler, J., Lowe, E.W.: Computational methods in drug
discovery. Pharmacol. Rev. 66, 334–395 (2014)

4. Schmidt, T., Bergner, A., Schwede, T.: Modelling three-dimensional protein structures for
applications in drug design. Drug Discov. Today 19, 890–897 (2014)

5. Tang, M., et al.: High-resolution membrane protein structure by joint calculations with solid-
state NMR and X-ray experimental data. J. Biomol. NMR 51, 227–233 (2011)

6. Krieger, E., Nabuurs, S.B., Vriend, G.: Homology modeling. Methods Biochem. Anal. 44,
509–524 (2003)

7. Zhang, Y.: Interplay of I-TASSER and QUARK for template-based and ab initio protein
structure prediction in CASP10. Proteins Struct. Funct. Bioinform. 82, 175–187 (2014)

AutoModel: A Client-Server Tool for Intuitive and Interactive Homology Modeling 87

http://biocomp.uenf.br
http://biocomp.uenf.br

8. Roy, A., Kucukural, A., Zhang, Y.: I-TASSER: a unified platform for automated protein
structure and function prediction. Nat. Protoc. 5, 725–738 (2010)

9. RosettaCommons. https://www.rosettacommons.org/
10. CASP12. http://www.predictioncenter.org/casp12/
11. Conchúir, S.Ó., et al.: A web resource for standardized benchmark datasets, metrics, and

Rosetta protocols for macromolecular modeling and design. PLoS ONE 10, e0130433
(2015)

12. Webb, B., Sali, A.: Protein structure modeling with MODELLER. In: Kaufmann, M.,
Klinger, C., Savelsbergh, A. (eds.) Functional Genomics, vol. 1654, pp. 39–54. Springer,
Heidelberg (2017)

13. Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.,
Pieper, U., Sali, A.: Comparative protein structure modeling using Modeller. Curr. Protoc.
Bioinform. 15, 5–6 (2006)

14. Webb, B., Sali, A.: Comparative protein structure modeling using Modeller. Curr. Protoc.
Bioinform. 47, 5–6 (2014)

15. Finn, R.D., Clements, J., Eddy, S.R.: HMMER web server: interactive sequence similarity
searching. Nucl. Acids Res. 39, gkr367 (2011)

16. Larkin, M.A., et al.: Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948
(2007)

17. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M.: PROCHECK: a program
to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291
(1993)

18. Schrödinger. https://www.schrodinger.com/. Accessed 19 Aug 2018
19. Certara – Certara is the leading drug development consultancy with solutions spanning the

discovery, preclinical and clinical stages of drug development. https://www.certara.com/
20. Schwede, T., Kopp, J., Guex, N., Peitsch, M.C.: SWISS-MODEL: an automated protein

homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003)
21. MHOLline. http://www.mholline.lncc.br/
22. Lambert, C., Léonard, N., De Bolle, X., Depiereux, E.: ESyPred3D: prediction of proteins

3D structures. Bioinformatics 18, 1250–1256 (2002)
23. Fiser, A., Do, R.K.G., Šali, A.: Modeling of loops in protein structures. Protein Sci. 9, 1753–

1773 (2000)
24. Marti-Renom, M.A., Madhusudhan, M.S., Sali, A.: Alignment of protein sequences by their

profiles. Protein Sci. 13, 1071–1087 (2004)
25. Cock, P.J.A., et al.: Biopython: freely available Python tools for computational molecular

biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009)
26. RPyC - Transparent, Symmetric Distributed Computing. https://rpyc.readthedocs.io/en/

latest/
27. Talbot, H.: wxPython, a GUI Toolkit. Linux J. 2000, 5 (2000)
28. Shen, M.: Statistical potential for assessment and prediction of protein structures. Protein

Sci. 15, 2507–2524 (2006)
29. Kelly, C.A., Nishiyama, M., Ohnishi, Y., Beppu, T., Birktoft, J.J.: Determinants of protein

thermostability observed in the 1.9-. ANG. crystal structure of malate dehydrogenase from
the thermophilic bacterium Thermus flavus. Biochemistry 32, 3913–3922 (1993)

30. Wu, G., Fiser, A., Ter Kuile, B., Šali, A., Müller, M.: Convergent evolution of Trichomonas
vaginalis lactate dehydrogenase from malate dehydrogenase. Proc. Natl. Acad. Sci. 96,
6285–6290 (1999)

31. Šali, A.: Tutorial (2008)

88 J. L. de A. Filho et al.

https://www.rosettacommons.org/
http://www.predictioncenter.org/casp12/
https://www.schrodinger.com/
https://www.certara.com/
http://www.mholline.lncc.br/
https://rpyc.readthedocs.io/en/latest/
https://rpyc.readthedocs.io/en/latest/

32. Maruyama, N., Maruyama, Y., Tsuruki, T., Okuda, E., Yoshikawa, M., Utsumi, S.: Creation
of soybean b-conglycinin b with strong phagocytosis-stimulating activity. Biochim Biophys
Acta (BBA)-Proteins. Proteomics 1648, 99–104 (2003)

33. Wiederstein, M., Sippl, M.J.: ProSA-web: interactive web service for the recognition of
errors in three-dimensional structures of proteins. Nucl. Acids Res. 35, W407–W410 (2007)

34. DeLano, W.L.: The PyMOL molecular graphics system (2002)
35. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph.

14, 33–38 (1996)

AutoModel: A Client-Server Tool for Intuitive and Interactive Homology Modeling 89

Detecting Acute Lymphoblastic Leukemia
in down Syndrome Patients Using
Convolutional Neural Networks on
Preprocessed Mutated Datasets

Maram Shouman(B), Nahla Belal, and Yasser El Sonbaty

Arab Academy for Science and Technology,
College of Computing and Information Technology, Computer Science,

Alexandria, Egypt
maram.shouman18@yahoo.com, {nahlabelal,yasser}@aast.edu

Abstract. Convolutional neural networks extract high-level abstraction
features using minimum preprocessing steps. In this research, we propose
a new approach in classifying Down Syndrome with Acute Lymphoblas-
tic Leukemia using a convolutional neural network. Sequences are repre-
sented using a one hot vector depending on point mutation as input to
the CNN model. Therefore, it conserves the necessary position data of
each nucleotide in the sequence. Using two different genomic datasets,
our proposed model has achieved significant improvements over classical
classification techniques, with an increased accuracy of 98%, and 98.5%,
respectively.

Keywords: Down Syndrome · Mutation Detection Techniques
Convolutional neural network

1 Introduction

The complete set of DNA that is used to build up the organism is called a
genome. Sequencing the genome is an important step in understanding it. Also,
the genome contains information about where genes are. Studying the entire
genome sequence helps in understanding the whole work of the genomes, how
they direct the growth, maintenance, and development of the organism [24]. A
genetic disease [13] is caused by some mutation or change in the DNA. Any
variation in a DNA sequence is known as mutation. Genes are vital for human
lives, as they code for the protein that builds up the cell structures and carry
out most of life’s functionality. When a gene is mutated, its protein product can
never again complete its typical functionality, causing a disorder disease [15].

Down Syndrome is an example of a disorder that is caused by the presence
of an extra chromosome. Patients with Down syndrome (DS) have a high prob-
ability to get acute myeloid leukemia (AML) and acute lymphoblastic leukemia

c© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 90–102, 2018.
https://doi.org/10.1007/978-3-030-01722-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_9&domain=pdf

Detecting Acute Lymphoblastic Leukemia 91

(ALL), due to the mutation caused in their DNA. Also, they are characterized
by specific biological features in contrast with non DS-ALL [3].

Cancer is a prime example of heterogeneous disease. Acute lymphocytic
leukemia (ALL) [14] is a type of blood cancer, that is also known as acute
lymphoblastic leukemia. Moreover, it starts from white blood cells called lym-
phocytes in the bone marrow. Leukemia cells generally attack the blood fast.
They would then be able to spread to different parts of the body, including the
lymph nodes, bone, and central nervous system. The expression “acute” implies
that the leukemia can grow rapidly, and if not treated, will most likely cause
death in a couple of months.

Nowadays, it is easy to read a genome sequence due to the rapid development
of sequencing technologies. Moreover, the databases in Genbank and NCBI have
grown rapidly in the last few years. Motivated by the importance of the biolog-
ical problem, low accuracy obtained by regular classification techniques [28], as
well as the availability of huge databases, modern machine learning techniques,
and especially deep learning techniques which can be applied to help in under-
standing the genome and identifying diseases [8], we developed a new encoding
technique to be able to present the mutated genes in CNN architecture, which
shows impressive results.

Deep learning [7] is a new branch of machine learning techniques that was
introduced in the last decades. It contains different types of models in which
they have multiple non-linear transforming layers that extract features with a
high level of abstraction. It was able to show impressive results [23] and to solve
very complicated problems. Deep learning techniques, especially convolutional
neural networks have shown great improvement in different fields such as speech
recognition, image processing [7], 3d segmentation, and computer vision [23].

Convolutional neural networks (CNNs) is a specific type of deep learning algo-
rithms to overcome the problem in traditional machine learning algorithms which
requires manual feature extraction before the classification process. CNNs not
only perform classification, but they can also learn to extract features directly [7].
CNN provides the flexibility of extracting intrinsic and discriminating features
from genomes, that are most suitable for classification [20].

CNN accepts data in numeric form only. CNN is powerful in solving complex
and large-scale problems in different fields [5,16,26]. In this research, a deep
learning model using a one-hot vector is proposed to represent sequences based
on their mutation for detecting genetic disease. This model was inspired by a
deep learning model for text classification [20].

Our research applies deep learning techniques to capture mutated sequences
with the disease, and the hidden semantics and interconnections. In this research,
we apply a CNN deep learning model and compare it with classical machine
learning techniques such as Support Vector Machines (SVM), and k-means as
well as seq-CNN in [20], and one hot encoding method in [4]. Moreover, we
present a new conversion method for mutated sequences as input for CNN.

92 M. Shouman et al.

The paper is organized as follows. Section 2 presents the related work. Our
proposed model is presented in Sect. 3. Section 4 gives the experimental results
and evaluation. Finally, Sect. 5 gives the conclusion and future work.

2 Related Work

One of the deep learning models that applies convolutional layers in extract-
ing features from the data is the convolutional neural network model. In this
model, the extracted features from the previous layer are used by neurons in a
convolutional layer to extract higher-level features.

One of the applications of convolutional neural networks is face recogni-
tion [9]. CNNs can effectively model multidimensional data, and are shown to
be powerful in solving computer vision [23], and image recognition problems [26].
Although there are some researchers that applied CNN to solve biological gene
expression regulation sequences problems [18], the depth of CNN model allows
the applicability of complex learning patterns as well as identifying longer motifs,
and sophisticated regulatory codes [21].

To employ the CNN for solving the DNA motif discovery problem, existing
works typically encode nucleotide in DNA sequences using the one-hot vector
method [4,19]. That is, each base pair in a sequence is encoded with a binary
vector of four bits with one of it is hot (i.e. 1) while others are 0. For instance
A = (1, 0, 0, 0), G = (0, 1, 0, 0), C = (0, 0, 1, 0), and T = (0, 0, 0, 1). This sequence
representation method draws the similarity to the Position Frequency Matrix
in [29], in which a vector indicates the probability of occurrences of the four bases
at a certain position in a DNA sequence. Therefore, an input DNA sequence of
length L is represented as 4 × L matrix, where L is the length of the sequence.

Moreover, several researchers have investigated converting biological
sequences into numerical values [2,4,29]. These methods can be divided into
direct and indirect encoding [2]. Direct encoding methods use a numerical
value for each nucleotide or they use a vector of numerical values for each
nucleotide. However, the indirect methods apply a set of features from the bio-
logical sequences. The features can be dependent on the frequency counts of
k-mers, biological, or biochemical properties. For instance, in [4] A is repre-
sented by 0.25, C by 0.50, G by 0.75, and T by 1.00, it is difficult to justify how
those numbers are decided rather than heuristic. The evaluation study compares
three sequence representation methods: (a) one-hot vector; (b) ordinal encoding
with square matrix (square), and (c) 1D vector. It shows an accuracy of 87%,
92.6%, and 91.2%, respectively.

In [29], the convolutional neural network architecture takes its input as a 4×L
matrix where L is the length of the sequence. Each base pair in the sequence
is denoted as one of the four one-hot vectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and
[0, 0, 0, 1] and gives an accuracy of 80%. While in [23], after applying Deep Cons
convolutional neural network which involved one input layer, with three hidden
layers, and one output layer. The accuracy improved to 83%.

The DNA sequences consist of successive letters without space where there
is no term of a word in it. Text recognition is similar to this problem, where

Detecting Acute Lymphoblastic Leukemia 93

they both contain letters, one followed by spaces and the other not. Researchers
applied convolutional neural network text data problems such as topic catego-
rization, spam detection, and sentiment classification. As Convolutional neural
networks take only numeric data, it is a challenge to convert these data into
numeric form without losing any information. Moreover, unlike image recogni-
tion problems, that is mapped into two-dimensional numerical matrices, text
data are one-dimensional sequences of successive letters without spaces. Some
researchers solved this problem by generating a lookup table with a represented
vector that is used to match each word in the vocabulary [17]. However, some
researchers [6] claimed using a lookup table, another approach is proposed to
represent words using one hot vector. Moreover, they concatenated n-gram infor-
mation and used the representation as an input to convolutional neural networks.
This model showed outperformance in classification problems. In [20], a method
to translate DNA sequences to a sequence of words, in order to apply the same
representation technique for text data in CNN without losing position informa-
tion of each nucleotide in sequences is proposed.

Mutations are important information to detect some diseases. Different kinds
of mutation are classified in [13], with the most observed types in dominant dis-
orders being gain of function, haploinsufficiency, and dominant negative. The
gain-of-function mutations cause an increase in the amount of gene product or
its activity, and sometimes create a new product, leading to a toxic product
responsible for a pathological effect. Dominant negative mutations results from
change in the molecular function, which may cause implications of cancer, while
Haploinsufficiency can occur through different ways. First, the production mes-
sage may be erased due to mutation in the gene. Second, some parts of the gene
are missing due to deletion. Finally, ins of the protein.

Point Mutation is a single base pair alteration; it includes a transition
from one nucleotide to another. Many mutation detection techniques have
been derived in the last few decades [1,11,25]. In [25] a good comparison
is made between five different somatic point mutation detection techniques
(JointSNVMix, MuTect, Somatic Sniper, Strelka, and Varscan2). Strand-biased
are not highly detected in many tools such as Strelka, especially of low quality.
However, in MuTect and Varscan 2 the user decides whether to detect strand-
biased or not. According to the results of the experiment, MuTect showed better
results than the other tools especially in characterizing low allelic fraction SNV
(Single nucleotide variation). Similarly in [1] a comparison is held between six
different tools (Deep-SNVMiner, FreeBayes, GATK, LoFreq, and SAMTools). It
is compared with different dilution (0, 90, 99, 99.9, 99.99, 99.999, 99.9999%),
Deep-SNVMiner detected different mutation till 99.9%, LoFreq detected muta-
tion till 99%, GATK detected mutation till 90%, while SAMTools and FreeBayes
detected at level 0% only. Also in [10,22] provided a very useful implementation
for Samtools adding more functionality.

94 M. Shouman et al.

3 Proposed Model

In this paper, we present a deep learning method for studying mutated sequences.
Moreover, a certain threshold is required to identify DS with Leukemia, this
threshold is calculated as the sum of both mutated nucleotide (C to T) and
unmutated nucleotide (C). The convolutional neural network is used to predict
whether a Down syndrome patient has leukemia or not. By learning to discrimi-
nate between mutated and un-mutated nucleotides to be represented as a binary
code. This binary code is then used as input for CNN.

The main contribution of this research is the process of converting the values
of the DNA bases to numeric values, while maintaining the information about the
mutation that occurred. CNN accepts data in numeric form only, the proposed
model preprocesses the data to convert the DNA mutated sequence and un-
mutated data into numeric values without losing any information.

The proposed algorithm takes as input a mutated dataset. The first step is
to detect the single nucleotide polymorphism. Afterward, convert it to numeric
form, for example, if the original genome is A and has not been changed, then
the binary code will be 0001. While if it is mutated to C it will be 0010, but if
it is mutated to T it will be 0100, as illustrated in Table 2. These binary codes
are used as input to CNN. The following block diagram explains the structure
of our algorithm. Moreover, each block is illustrated in details in the following
subsections (Fig. 1) and Table 1.

Fig. 1. Proposed model block diagram.

A. Apply Mutation Detection Technique:
In this paper, Samtools Software is used to detect the mutation based on
multiple reasons illustrated in the following paragraph.
The SAMtools utilities comprise a very helpful and widely used suite of the
software system for manipulating files and alignments within the sam format.
The large SAM files will be regenerated to the binary equivalent BAM files.
Different implementation of samtools are available in different programming
languages such as in Perl, Python, and Java. Availability: http://samtools.
sourceforge.net
Moreover, samtools depends on the second error which comes at the next
likelihood in SNP genotype. One of the main difference between samtools and
the othe software is Indel genotype likelihood model. Samtools’ model springs

http://samtools.sourceforge.net
http://samtools.sourceforge.net

Detecting Acute Lymphoblastic Leukemia 95

from BAQ. In order to identify alleles it uses some ad hoc heuristics. Moreover,
it employes hand tuned filters and collects statistics about the alignment to
guarantee effective filtering. Also it is scalable for big data with a simple
framework. Moreover, it is provided with specific features such as genotype-
free analysis, and physical phasing. In addition, samtools concentrate on using
filters to reduce bias and produce consensus in the right way.

B. Convert Sequence to Numeric (Binary) form: DNA sequences are formed
from successive letters without any spaces and the mutated sequences may
cause different diseases. Therefore, a model is proposed in order to represent
these data without losing any information of each nucleotide in the sequences.
DNA Sequences consist of four values A, G, C, and T. With regular datasets,
it needs only two bits to represent these four values. However, mutation plays
a critical role in genetic disease detection. Specifically as mentioned [12],
in DS with Leukemia mutation from C to T is required to identify the
disease. There are two cases for each nucleotide. The first case is mutated
nucleotide such as from A to C, A to G, or A to T. Similarly, the remaining
nucleotides will have their possible mutations. While un-mutated nucleotides
remain unchanged. Un-mutated nucleotides sum up to four possibilities.
While mutated nucleotides give 12 possibilities (each nucleotide can be
mutated to the other 3.). Hence, the total number of possibilities is 16, which
needs four bits to represent. Table 2, illustrates the discussed representation.
Each possible mutation is represented using four binary digits. In table 2, the
dot notation represents no mutation. In row 1, if A is detected with no muta-
tion, it will be encoded to 0001. While in row number 8 a mutation detected
from C to T will be encoded to 1000.

C. Apply CNN:
In this paper, the DNA sequence is divided into a window size of three, with
one slide width as in [29] which obtains the best results, each nucleotide is
mapped to a numeric value depending on whether it is mutated or not, as
illustrated in the previous table. Every three successive nucleotides are treated
as a word then converted to a 2d array to be used as an input to the CNN.
Figure 2 shows an example of a DNA sequence that is mapped according to
the mutation detected in each nucleotide. As shown in Fig. 2, if A remains
unchanged the code will be 0001, while C is mutated to T so its code will
be 1000, and G is mutated to A has the code 1011. These three nucleotides
determine the first word. Afterward the window will slide one step, so the next
word will contain CGT. This process continues until the end of the sequence.
Then every two words will form the vertical data for the 2D matrix. This
matrix is used as an input for CNN.
The convolutional neural network depends on certain steps as shown in Fig. 3.
The primary step, is the layer that receives the input and tries to label the
input by bearing on what it has learned within the past. The resulting output
is then passed on to the subsequent layer. Intuitively, every convolution filter
represents a feature of interest, and also the CNN algorithm learns which fea-
tures comprise a specific class. The output strength depends on the presence
or absence of a specific feature and not on its location. The second Step is

96 M. Shouman et al.

Subsampling, that aims to scale back the sensitivity of the filters to noise and
variations. This could be achieved by taking averages of the input. The third
step is the activation layer that controls how the signal flows from one layer
to the following. Output signals which are powerfully related to past refer-
ences would activate additional neurons, enabling signals to be propagated
more expeditiously for identification. The fourth step is the fully Connected,
where the last layers through the network are all connected, In other words,
all neurons of preceding layers are connected to every neuron in consequent
layers. This mimics high-level reasoning where all possible pathways from the
input to output are considered. Moreover, once training the neural network,
there is an extra layer known as the loss layer. This layer provides feedback
to the neural network on whether or not it identified inputs properly, and
if not, how far its guesses were. This helps to guide the neural network to
strengthen the correct concepts as it trains. The proposed model contains six
convolutional layers. Each of these layers is followed by two subsampling lay-
ers which are used to extract features from sequences matrices. Then apply a
fully connected neural network with 50 neurons and to decrease the effect of
overfitting we used a dropout value of 0.5. Finally, the softmax output layer
is used to determine whether the sequence contains leukemia or not. In which
this Configuration shows the best results.

Table 1. DNA nucleotide mutation binary code.

Model

No DNA nucleotide Mutated nucleotide Binary code

1 A . 0 0 0 1

2 C . 0 1 0 1

3 G . 1 0 0 1

4 T . 1 1 0 1

5 A C 0 0 1 0

6 A T 0 1 0 0

7 A G 0 0 1 1

8 C T 1 0 0 0

9 C A 0 1 1 0

10 C G 0 1 1 1

11 G A 1 0 1 1

12 G C 1 1 0 0

13 G T 1 0 1 0

14 T G 0 0 0 0

15 T A 1 1 1 0

16 T C 1 1 1 1

Detecting Acute Lymphoblastic Leukemia 97

Fig. 2. Representation of DNA sequence in CNN

Fig. 3. Architecture of convolutional neural network. [27]

4 Experiment and Results

Dataset:
In order to evaluate the performance of the proposed model in solving point
mutation disease detection problem, and to facilitate evaluation and comparison,
different widely used and publicly available ALL-DS and ALL-NDS [12] are used.
Datasets are available on NCBI with accession number: GSE21094. This dataset
was released in 2011 and updated in 2017, Moreover, it contains genome-wide
profiling of 58 DS-ALL and 35 non-Down syndromes (NDS) ALL. Each sam-
ple holds about 27578 records. Only 2 datasets are used in this experiment as
the rest do not contain genomic data. For each sample, 27578 records are used,
and 8274 records are randomly selected as the testing set, and the remaining
are taken as the training set. The first is provided with IlmnID, Name, Ilmn-
Strand, SNP, AddressA ID, AlleleA ProbeSeq, AddressB ID, AlleleB ProbeSeq,
GenomeBuild, Chr, MapInfo, Ploidy, Species, Source, SourceVersion, SourceS-
trand, SourceSeq, TopGenomicSeq, BeadSetID, Intensity Only, Exp Clusters,
CNV Probe. The second is provided with AddressA ID, AlleleA ProbeSeq,
AddressB ID, AlleleB ProbeSeq, GenomeBuild, Chr, MapInfo, Ploidy, Species,
Source, SourceVersion, SourceStrand, SourceSeq, TopGenomicSeq, BeadSetID,
Intensity Only, Exp Clusters for more details please see [12]. These datasets
include down sydrome with leukemia, and without leukemia. Moreover, it is
provided with an average beta value which is calculated as the percent signal
from a methylated probe (C not converted to T) proportional to the sum of
both methylated (C not converted to T) and unmethylated probes (C bisulfite-
converted to T) (value = C/[(T + C) + 100]) [12].

98 M. Shouman et al.

Table 2. Performance of different datasets over classical machine learning techniques.

Model

Algorithm Accuracy

GSE21091 GSE20872

Decision Tree 32% 41%

K-means 51% 51%

Support Vector Machine 39% 52%

Experimental Configuration:
The experiment is trained and tested with Java under Linux environment on
a NVIDIA GetForce GT 540. A First, we applied classical machine learning
techniques illustrated in the following table. They give very low accuracy, then
we decided to use deep learning techniques. Each classifier has different tuning
steps and tuned parameters. For each classifier, we tested a series of values for
the tuning process with the optimal parameters determined based on the highest
overall classification accuracy.

In SVM, the radial basis function (RBF) kernel of the SVM classifier is often
used and shows the most effective performance. Therefore, we tend to used the
RBF kernel to implement the SVM algorithm. There are two parameters that
need to be set once applying the SVM classifier with RBF kernel: the optimum
parameters of the kernel width parameter (Y) and also the cost (C) it had been
choosen to administer the most effective results.

In Decision tree, the default values for the parameters controlling the size
of the trees (e.g. max depth, min sample leaf) result in growing and unpruned
trees which may potentially be very large on some data sets. To scale back
memory consumption, the complexity and size of the trees is controlled by setting
those parameter values to provide the most effective results.

Then applied K-Means clustering with different conventional initial centroid
selection methods and gets the higher accuracy with K = 2.

DeepLearnToolbox is used which provides an implementation for text catego-
rization on GPU using a convolutional neural network to implement the model.
The model contains 6 convolutional layers. Each of these layers is followed by 2
sub-sampling layers. These layers are used to extract features from the samples
with a weight of 0.001. For CNN training, we use mini batches of 50 training
samples. Other hyperparameters of the model were chosen based on its perfor-
mances in datasets for tuning.
Experimental Results:
After applying the classical machine learning techniques that has shown low
accuracy, we decided to apply our proposed model and compare it with the
one hot vector and Sqaure matrix [29] and [4]. One hot vector that represent the
A = (1, 0, 0, 0), G = (0, 1, 0, 0), C = (0, 0, 1, 0) and T = (0, 0, 0, 1) while, the Square
matrix represent the A by 0.25, C by 0.50, G by 0.75 and T by 1.00. Then apply
CNN (Table 3).

Detecting Acute Lymphoblastic Leukemia 99

Table 3. Performance of different datasets over different CNN.

Model

Algorithm Accuracy

GSE21091 GSE20872

CNN 98% 98.5%

One hot vector [29] 79% 79.5%

Square matrix [4] 80% 81%

Fig. 4. Accuracy of different machine learning techniques.

The accuracy is calculated as the percentage of correctly classified instances
(TP + TN)/(TP + TN + FP+ FN). Where TP, FN, FP and TN represent the
number of true positives, false negatives, false positives and true negatives,
respectively (Fig. 4).

As evidenced in the previous diagram and table, our proposed model sys-
tem shows higher accuracies than the system proposed in [29] and [4], with an
improvement of 19% and 18%, respectively. Furthermore, it shows that the pro-
posed model is more robust in detecting leukemia in Down Syndrome patients.
Moreover, the proposed end-to-end disease detection system did not require an
extremely specialized lexicon to achieve high performance, this is due to the
identification of mutations that cause the disease. Compared to the ordinary
hot vector classifier in [29], and square matrix in [4], which showed 79% and
80% accuracy, respectively, our proposed disease detection classifier showed an

100 M. Shouman et al.

accuracy of almost 98%. Moreover, the increase of the accuracy of the mutation
detection binary code will enhance the ability to discern leukemia, thus, form
better estimates to identify any genetic disease. This result shows that by con-
structing a high-performing disease recognition system, a state-of-the-art genetic
disease recognition can be obtained without needing to leverage more classical
machine learning methods such as SVM, Kmeans, and Decision Table.

5 Conclusion and Future Work

Children with Down Syndrome have a high probability of ALL (acute lym-
phoblastic leukemia) due to the genetic disorder. Although, biology and com-
puter science could seem to be two different fields, their are many intersection
fields such as computational biology and bioinformatics. Due to the impres-
sive results obtained by machine learning behind computer science to help in
detecting different genetic diseases. This paper presented a novel preprocess-
ing approach to CNN that enables detection of Leukemia in Down Syndrome.
This work differs from existing approaches in that it is based on the mutation
detection in order to decode the sequence into binary code. By applying this
approach of CNN on different data sets, an accuracy that ranges from 98% to
98.5% was obtained. From this research, machine learning will give dramatic
progress in different fields such as genome biology, genome medicine, and preci-
sion medicine in the upcoming years. There are several benefits to this method.
The approach presented herein provides means to capture and represent the
genetic disease based on mutation. More importantly, it also enables efficient,
existing and future, solution techniques to be effectively applied to any SNP
disease.

An enhancement to the technique proposed could be by combining different
deep learning techniques such as Convolutional neural networks and recurrent
neural network. Furthermore, the proposed technique could be tested on more
SNP diseases.

References

1. Andrews, T.D., Jeelall, Y., Talaulikar, D., Goodnow, C.C., Field, M.A.: Deep-
SNVMiner: a sequence analysis tool to detect emergent, rare mutations in subsets
of cell populations. PeerJ 4, 1–13 (2016)

2. Blekas, K., Fotiadis, D.I., Likas, A.: Motif-based protein sequence classification
using neural networks. J. Comput. Biol. 12(1), 64–82 (2005)

3. Buitenkamp, T.D., et al.: Acute lymphoblastic leukemia in children with down
syndrome: a retrospective analysis from the ponte di legno study group. Blood
123(1), 70–77 (2014)

4. Choong, A.C.H., Lee, N.K.: Evaluation of convolutionary neural networks modeling
of DNA sequences using ordinal versus one-hot encoding method. bioRxiv, pp. 60–
65 (2017)

5. Hannun, A., et al.: Deep speech: scaling up end-to-end speech recognition. arXiv
preprint arXiv:1412.5567 (2014)

http://arxiv.org/abs/1412.5567

Detecting Acute Lymphoblastic Leukemia 101

6. Johnson, R., Zhang, T.: Effective use of word order for text categorization with
convolutional neural networks. arXiv preprint arXiv:1412.1058 (2014)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

8. Leung, M.K.K., Delong, A., Alipanahi, B., Frey, B.J.: Machine learning in genomic
medicine: a review of computational problems and data sets. Proc. IEEE 104(1),
176–197 (2016)

9. Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G.: A convolutional neural network
cascade for face detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5325–5334 (2015)

10. Li, H.: A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
Bioinformatics 27(21), 2987–2993 (2011)

11. Li, H., et al.: The sequence alignment/map format and samtools. Bioinformatics
25(16), 2078–2079 (2009)

12. Loudin, M.G., et al.: Genomic profiling in down syndrome acute lymphoblastic
leukemia identifies histone gene deletions associated with altered methylation pro-
files. Leukemia 25(10), 1555 (2011)

13. Mahdieh, N., Rabbani, B.: An overview of mutation detection methods in genetic
disorders. Iran. J. Pediatr. 23(4), 375–388 (2013)

14. Maloney, K.W.: Acute lymphoblastic leukaemia in children with down syndrome:
an updated review. Br. J. Haematol. 155(4), 420–425 (2011)

15. McCarthy, M.I., MacArthur, D.G.: Human disease genomics: from variants to biol-
ogy. Genome Biol. 18(1), 1–3 (2017)

16. Mikolov, T.: Statistical language models based on neural networks. Presentation
at Google, Mountain View (2012)

17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

18. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief. Bioinform. 18(5),
851–869 (2017)

19. Ng, P.: dna2vec: Consistent vector representations of variable-length k-mers. arXiv
preprint arXiv:1701.06279 (2017)

20. Nguyen, N.G., et al.: DNA sequence classification by convolutional neural network.
J. Biomed. Sci. Eng. 9(05), 280–286 (2016)

21. Pan, X., Shen, H.-B.: Predicting RNA-protein binding sites and motifs through
combining local and global deep convolutional neural networks. Bioinformatics p.
bty364 (2018)

22. Ramirez-Gonzalez, R.H., Bonnal, R., Caccamo, M., MacLean, D.: Bio-samtools:
ruby bindings for samtools, a library for accessing bam files containing high-
throughput sequence alignments. Source Code Biol. Med. 7(1), 1–6 (2012)

23. Srinivas, S., et al.: A taxonomy of deep convolutional neural nets for computer
vision. arXiv preprint arXiv:1601.06615 (2016)

24. Venter, J.C., et al.: The sequence of the human genome. Science 291(5507), 1304–
1351 (2001)

25. Wang, Q., et al.: Detecting somatic point mutations in cancer genome sequencing
data: a comparison of mutation callers. Genome Med. 5(10), 1–8 (2013)

http://arxiv.org/abs/1412.1058
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1701.06279
http://arxiv.org/abs/1601.06615

102 M. Shouman et al.

26. Wu, R., Yan, S., Shan, Y., Dang, Q., Sun, G.: Deep image: scaling up image
recognition, 7(8). arXiv preprint arXiv:1501.02876 (2015)

27. Yan, S., Xia, Y., Smith, J.S., Lu, W., Zhang, B.: Multiscale convolutional neural
networks for hand detection. Appl. Comput. Intell. Soft Comput. 2017 (2017)

28. Yue, T., Wang, H.: Deep learning for genomics: a concise overview. arXiv preprint
arXiv:1802.00810 (2018)

29. Zeng, H., Edwards, M.D., Liu, G., Gifford, D.K.: Convolutional neural network
architectures for predicting DNA-protein binding. Bioinformatics 32(12), i121–
i127 (2016)

http://arxiv.org/abs/1501.02876
http://arxiv.org/abs/1802.00810

S2FS: Single Score Feature Selection
Applied to the Problem of Distinguishing
Long Non-coding RNAs from Protein

Coding Transcripts

Bruno C. Kümmel1(B), Andre C. P. L. F. de Carvalho2, Marcelo M. Brigido3,
Célia G. Ralha1, and Maria Emilia M. T. Walter1

1 Department of Computer Science, University of Brasilia, Brasilia, DF, Brazil
bruno.kummel@aluno.unb.br, {ghedini,mariaemilia}@unb.br

2 Department of Computer Sciences, University of Sao Paulo, Sao Carlos, SP, Brazil
andre@icmc.usp.br

3 Department of Cellular Biology, University of Brasilia, Brasilia, DF, Brazil
brigido@unb.br

Abstract. The task of distinguishing long non-coding RNAs (lncRNAs)
from protein coding transcripts (PCTs) has been previously addressed
with machine learning (ML) algorithms using hundreds of features. How-
ever, the use of a large number of features can negatively affect the pre-
dictive performance of these algorithms since it can lead to problems like
overfitting due to a phenomenon known as the curse of dimensionality. In
order to deal with these problems, dimensionality reduction techniques
have been proposed, among them, feature selection. This work proposes
and experimentally evaluates a simple and fast feature selection tech-
nique, called Single Score Feature Selection - S2FS.

For such, initially, frequencies of 2-mers, 3-mers and 4-mers were
extracted from public databases of PCTs and lncRNAs of Homo sapiens,
resulting in a dataset composed of two groups of RNA sequences, one
for PCTs and the other for lncRNAs, and a large number of features. To
reduce the number of features, S2FS was applied to the dataset. Exper-
imental results showed that relevant features were selected, keeping the
predictive accuracy, with a lower processing cost than some existing fea-
ture selection techniques.

Keywords: Feature selection · Machine learning · lncRNAs · PCTs
Bioinformatics

1 Introduction

A considerable large part of eukaryotic genomes is composed of DNA portions
that do not code for proteins. These molecules, known as non-coding RNAs (ncR-
NAs) [10], have important functions in the cell [8]. There are several types of

c© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 103–113, 2018.
https://doi.org/10.1007/978-3-030-01722-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_10&domain=pdf

104 B. C. Kümmel et al.

ncRNAs, classified according to their size and function within the cell, e.g., trans-
fer RNAs (tRNAs), ribosomal RNAs (rRNAs), snoRNAs, microRNAs and many
others [3]. These are known as small ncRNAs. Another class, called long non-
coding RNAs (lncRNAs), is very heterogeneous, is longer than 200 nucleotides,
and has a low protein coding capacity. Although their functional roles are still
largely unknown [11], the interest in these molecules has increased in recent
years. This occurred mainly because they regulate gene expression [17] and are
associated with several diseases [13].

Currently, there are no widely accepted computational tools that address
the problem of distinguishing lncRNAs from protein coding transcripts (PCTs)
considering only their primary sequences. Therefore, this problem is a good can-
didate for the use of machine learning (ML) algorithms. In fact, some tools,
using ML algorithms, have been developed to predict lncRNAs [5], e.g., lncR-
NApred [12], DeepLNC [19], lncRScan-SVM [5] or the method proposed by our
group [18].

These tools use distinct machine learning (ML) algorithms and slightly dif-
ferent subset of features, since an optimal set of features, in different species, is
currently not known.

The intuitive approach of combining all the features from different tools to
build one single set of features, trying to obtain classification models with bet-
ter predictive performance, does not hold. One reason is that the higher the
ratio between the number of features and the number of instances, the higher
the chances of overfitting, due to the curse of dimensionality, or Hughes phe-
nomenon [6]. According to this phenomenon, after having reached the optimal
number of features leading to good classifiers’ performance, if the dimensional-
ity is further increased, the more sparse the data becomes and, as a result of it,
the model loses generalization ability. In fact, the number of training instances
needed to induce predictive models with high generalization ability grows expo-
nentially with the number of features.

To overcome this problem, there are two alternatives: increasing the num-
ber of training data exponentially, usually unfeasible, or reducing the number
of features. In the latter, two approaches for dimensionality reduction can be
used: feature selection, which chooses a subset of the best features to represent
the original data; and feature aggregation, which combines and transforms the
original features [2].

Since in this work it is important to keep biological information of lncR-
NAs and PCTs sequences, feature selection was chosen. An exhaustive selection
algorithm choosing the best subset of features is usually unfeasible for high
dimensional data. Thus, techniques have been developed to select a good set
of features with a feasible computational cost [7]. The main feature selection
techniques are based on one of the approaches - wrapper, filter, and embedded.

Besides, the techniques either rank the features according to their discrimi-
nation ability, or select a good subset of features that, together, lead to a higher
discrimination ability. The second is a combinatorial optimization approach,

S2FS 105

leading to a high computational cost. This cost can be prohibitive if the number
of features is large, as is the case of genome sequence datasets.

After reducing the number of features, a classification ML algorithm can be
applied to the new dataset, inducing a predictive model about to discriminate
instances from the different classes.

This work proposes an empirical assessment of a simple and fast feature
selection technique, called S2FS, to be used in ML algorithms, for distinguishing
lncRNAs from PCTs. S2FS uses a greedy heuristic to select features based on
the classification performance of each individual feature, which is not correlated
to any other already selected feature. The method is based on the assumption
that a good subset contains features that are highly correlated with the response
class, but are uncorrelated with each other [4].

This paper is organized as follows. First, in Sect. 2, we propose the S2FS tech-
nique. Then, the results obtained using this technique are discussed in Sect. 3.
Finally, in Sect. 4, we conclude and suggest future work.

2 The S2FS Technique

In this section, we initially present the datasets used, then, we describe the S2FS
technique. Finally, we detail how the experiments were performed.

2.1 Datasets

The sequences used to build the datasets were downloaded from LNCipedia [20]
and RefSeq [15]. The Homo sapiens dataset is composed of 111,145 protein cod-
ing transcripts (PCTs) from RefSeq, and 100,849 ncRNA transcript sequences
from LNCipedia 4.0, both of the GRCh38 assembly.

Two datasets were initially constructed, the first with transcripts selected
with an entropy-based clustering algorithm, while the second was produced with
random samples from each class (PCTs and lncRNAs). Both subsets had the
same number of transcripts for each class. These datasets were created to verify
the accuracies of the models induced using different samples.

Since lncRNA is a very heterogeneous class, there might be transcripts
not distinguishable from PCTs, when extracting features from their primary
sequences. Therefore, the outlier transcripts may affect the decision boundary
of the model. Some works, e.g., Tripathi et al. [19], have used sample selection
to develop their classification models.

On the other hand, a model built only with transcripts that can be easily
discriminated, obtained by sample selection methods, may lose the generaliza-
tion capacity of classifying new transcripts. The previous work proposed by our
group [18] used the random sample selection technique.

In the experiments, the sequences were divided into a training set, used to
construct the model, and a test set, to evaluate the model predictive performance
for new sequences.

106 B. C. Kümmel et al.

Entropy-Based Clustering Selection. For the set of selected transcripts, an
align-free approach, similar to Tripathi et al. [19], was used. Thus, four features
were generated based on the Shannon Entropy (Eq. 1) of the occurrences of k-
mers of sizes 2, 3 and 4 for each sequence. In this equation, pi stands for the
probability of occurrence of the k-mer i in the corresponding sequence.

H = −
∑

i

pi log pi (1)

The sets of transcripts were built with pairs of sequences from distinct classes,
farthest apart from each other, using these entropy features. The transcript
selection method used the k-means algorithm [9] to group the transcripts in two
clusters. The cluster mainly composed of lncRNAs was called lncRNA-Cluster,
the other one PCT-Cluster. In each cluster, the class with the lowest number
of transcripts, respectively PCTs and lncRNAs, was discarded. This is due to
the fact that this method selects transcripts feature-wise similar to the other
transcripts of the same class. Since the discarded transcripts are significantly
different from their respective classes, they are not good samples for this method.

After creating and labeling the clusters, a transcript was chosen based on the
largest Euclidean distance from the center of the opposite cluster (Fig. 1). After
selecting the sequences of each dataset, the features used to select the sequences
were discarded for the corresponding subset, in order to avoid introducing bias
from this first step of selecting sequences in the process of feature selection.

Fig. 1. The stars in the middle of the circles represent the cluster center, and the
dotted lines from the stars to the circles’ frontiers show the corresponding Euclidean
distances.

Random Transcripts. After analyzing the results obtained with the datasets
previously described, a more general set of samples was constructed. Therefore,
a randomly generated dataset was created with the transcripts from RefSeq and
LNCipedia 4.0.

In this dataset, even transcripts with ‘N’ (for not identified nucleotides) in
their sequences were included in the set. These transcripts allowed us to verify
how the feature selection techniques would deal with data noise.

S2FS 107

2.2 Single Score Feature Selection

The S2FS technique selects a subset of features based on their individual predic-
tive performance in the classification of the training sequences. For such, each
feature of the training sequences, i.e., each k-mer frequency with size 2, 3 or
4, was used to train a simple Gradient Boosting Classifier (GBC). The hyper-
parameters of this classifier were set by grid search, using 5-fold cross-validation.
Figure 2 presents the pipeline of the ML algorithm, and details of S2FS.

Fig. 2. Classification process with GBC, using one feature at a time. Table A shows
the k-mers frequencies, for each transcript. Table B stores the obtained results, having
been used as the choice criterion for the feature selection technique.

During the training process, an AUC score was obtained for experiments with
each feature. Features with predictive performance not better than a random
chance, i.e., AUC score lower than or equal to 0.5, were removed from the feature
set. Next, the chosen features were classified based on a score, which can be either
the AUC scores or a weighted Euclidean distance from (0, 0) to (pc hits, nc hits),
where pc hits is the number of PCTs correctly classified by the feature, and
nc hits, the number of lncRNAs correctly classified. The classification accuracy
together with the resulting features determine which score strategy is the best
to be used. In the presented results, the AUC score was used for being faster,
and also for achieving a feature set similar to the set generated by the other
strategy (the weighted Euclidean distance score).

Once sorting the features by the scores, a greedy algorithm chooses the sub-
set based on the AUC scores, avoiding features highly correlated with any other
feature already selected for the set (Algorithm 1). Considering that all the fea-
tures in this work are non-negative, the Pearson correlation was used to quickly
check for linear correlation between the features.

108 B. C. Kümmel et al.

Algorithm 1. Greedy selection with a correlation filter
Let F [1 . . . n] be a list of features fi sorted by AUC score
S ← {f1}
for i = 2, step 1, until i ≤ n do

addFeature ← TRUE
for all fsj ∈ S do

if |ρ(fi, fsj)| > CorrelationThreshold then
addFeature ← FALSE

if addFeature then
S ← S + {fi}

2.3 Experiments

The experiments with the entropy selected transcripts and the random tran-
scripts datasets were performed with the same features, i.e., frequencies of occur-
rences of k-mers of sizes 2, 3, 4 and 5. These features were chosen mainly because
they can be directly extracted from the sequences, and do not need any other
information source, e.g., interaction with other transcripts or conservation of
transcripts between species. Besides, they are adopted by various classification
tools [5].

The next step randomly separated data from both classes in two sets, with
80% of the sequences forming the training dataset, and 20% the testing dataset.
The training dataset was used both to select the most relevant features and to
induce the classifiers. The testing data was used to verify the accuracy of the
classification model. Besides, to verify the importance of each feature chosen by
the selection techniques, the Random Forest algorithm [1] was used to induce
the classifiers.

The experiments used sets from 5 to 30 features, with a step of 5. In order to
avoid introducing errors in the measurements, all the experiments were run on
the same machine. The experiments were repeated 40 times, with different seeds
to split data between training and testing sets. The predictive results obtained
for the selected features were the average of all these executions. The results
were validated using statistical tests with a confidence interval of 90%.

The predictive performance of the classifiers using features selected with
S2FS was compared to those with random selection and also to two other fea-
ture selection techniques: an univariate selection technique; and a Sequential
Forward Selection (SFS) technique [16]. The univariate feature selection is sim-
ilar to S2FS in the sense that it investigates each feature individually, using a
statistical test to determine the relationship strength between the feature and
the response variable. In this work, the χ2 test function was used as the scoring
function to select features. On the other hand, SFS is a more strict technique.
In the first step, similarly to S2FS, it tests every feature with a specified clas-
sification function. However, in the next steps, it tests the new features to be
added alongside with the already selected features on the classification function.
This is potentially a very resource intensive task, depending on the classifica-

S2FS 109

tion function used. The more precise the classification function, the more time
is needed to find the features. In this work, the k-Nearest Neighbors function
was used, since it provided the best balance between accuracy and speed of the
feature selection process.

The final experiment with S2FS used a larger set of random selected tran-
scripts. The proposed technique selected 300 from a set of 1, 642 features, com-
posed of: the frequencies of k-mers of sizes 2, 3, 4 and 5; features of entropy - H2,
H3, H4 and H5; the longest ORF size; the GC content; the ORF coverage; the
ORF start position in the transcript; and the coefficient of variation of position
of 4-mers inside the longest ORF (CV positions).

Then, these selected features were used to train two classification models
with two different algorithms: a Gradient Boosting Classifier (GBC) and a Mul-
tilayer Perceptron (MLP) [14]. The GBC was set with a learning rate of 0.1,
100 estimators and a max depth of 6 features. The MLP was set with two layers
with 512 neurons, a RELU activation function, dropout regularization of 0.65
between the layers, and used the Adam optimization function combined with an
early stop strategy for training the model.

3 Results

The first experiments were performed with a set of all the k-mers, k = 2, 3,
4 and 5, from the selected sets of transcripts. The objective was to assess if
S2FS would find a good subset of features from a set of transcripts relatively
easy to distinguish. The results are presented in Table 1, Fig. 3. Since all the
feature selection techniques used the same classifier, the results are labeled by
the corresponding feature selection technique.

Table 1. Accuracies obtained with four different feature selection methods, taking as
input the entropy based selected transcripts of PCTs and lncRNAs of H. sapiens.

Features Random Univariate SFS S2FS

5 0.97427 0.94009 0.99422 0.99230

10 0.99109 0.97913 0.99720 0.99602

15 0.99634 0.98725 0.99795 0.99733

20 0.99742 0.99049 0.99844 0.99790

25 0.99817 0.99177 0.99858 0.99807

30 0.99847 0.99387 0.99886 0.99856

According to Fig. 3, both SFS and S2FS accurately predicted more than 90%
of the testing instances using only 15 features. Their accuracies slightly increased
as more features were added. In general, they were much better than the predic-
tive performance of the two other techniques. On the other hand, the univariate
technique did not perform well with this subset, having presented accuracies

110 B. C. Kümmel et al.

Fig. 3. Predictive performance of the four feature selection techniques, for the same
selected set of transcripts of H. sapiens.

worse than the random choice technique in all the tests. This indicates that the
feature selection technique strongly affects the model predictive accuracy.

Thus, trancripts’ selection seemed to have a strong effect in producing sev-
eral good features. Even the random approach, when selecting 25 features or
more, could select a set that enabled the classifier to obtain an accuracy of more
than 90%. However, there was no evidence that a model trained with features
extracted from these selected transcripts would be able to generalize transcripts’
classification. To verify this hypothesis, the set with the random selected tran-
scripts was tested. The obtained accuracies were significantly lower, as shown in
Fig. 4 and comparing the results from Tables 1 and 2.

Table 2. Accuracies obtained with four different feature selection methods, taking as
input random selected transcripts of PCTs and lncRNAs of H. sapiens.

Features Random Univariate SFS S2FS

5 0.76168 0.69068 0.69581 0.82266

10 0.83247 0.83073 0.73423 0.85812

15 0.84766 0.86219 0.74640 0.87114

20 0.86078 0.87513 0.75002 0.87895

25 0.86607 0.87975 0.75581 0.88231

30 0.86898 0.88786 0.75630 0.88420

S2FS 111

Fig. 4. Performance of the four feature selection techniques, for the random set of
transcripts of H. sapiens.

On the set with random transcripts, the univariate selection technique per-
formed better, and was able to select the best set of 30 features, when compared
to the other techniques. On the other hand, SFS performed poorly. When ana-
lyzing the features selected by SFS, several features containing N were selected.
This means that SFS, with the chosen base classifier, did not perform well in
the presence of noise in the data. S2FS found the best set of features for sets
with 10, 15, 20 and 25 features, and did not select any of the noise features of
the random set.

An interesting aspect of the S2FS is that when it chooses features from a
larger and heterogeneous set of frequency features (2-, 3-, 4- and 5-mers), it
chooses mainly the frequencies of 5-mers and 4-mers. These are also the most
significant features chosen by the models trained with Random Forests.

Although the execution time was not the objective of this work, S2FS per-
formed much faster than SFS. While SFS needs 14 h to select a set of 30, from
336 features, S2FS selected 30 features in less than 1 h. This reduction in pro-
cessing time is a good contribution, especially considering projects with very
large input features.

The last experiment was performed using S2FS to select 300 features, from
a set of 1, 624, for the same dataset: 16 2-mers; 64 3-mers; 256 4-mers; 256
CV positions of 4-mers; 1024 5-mers; H2, H3, H4 and H5; longest ORF size,
GC content, ORF coverage and ORF Star pos. It reached an accuracy of 0.9752
using MLP and GBC. These algorithms use different methods to build clas-
sification models, but the selected features provided good accuracy with both
methods.

112 B. C. Kümmel et al.

4 Conclusion

This work proposed the S2FS feature selection technique, to be used as input for
ML algorithms, to discriminate lncRNAs from PCTs. The proposed technique
was able to select significant features, in a fraction of time needed by SFS, a
more strict and commonly used technique.

Besides, none of the features removed by S2FS were among the best selected
by the other techniques, showing that S2FS can select significant features, or
be used on its first stage to prune out noisy features.

As expected, the longest ORF size is the most important feature, but entropy
features for 5-mers and 4-mers seemed to be more important than ORF coverage,
GC content and the ORF starting point on the transcripts. The features obtained
from the longest ORF, i.e., CV positions, were identified as better features than
any of the frequencies of the k-mers. Considering only the set of frequencies
of k-mers, the 5-mers showed to be more important, while the 2-mers were
less important. Other tests suggested that features extracted from the longest
ORFs are better predictors, when compared to those extracted from the entire
transcript.

Future works include testing S2FS with a more heterogeneous set of features
of lncRNAs and PCTs. Also, it is possible to explore processors’ parallelism, since
each feature is evaluated separately, with a distinct thread (or process), which
could accelerate the initial process of feature selection. Other classifiers could
also be tested in the first step of S2FS, to compare the resulting set of features.
Since S2FS was able to fast remove noisy features in the first step, it could
be used in an Ensemble of feature selectors combining different techniques with
different ML classifiers, to find better feature subsets on a reasonable amount of
time.

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
2. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new

perspective. Neurocomputing 300(26), 70–79 (2018)
3. Esteller, M.: Non-coding RNAs in human disease. Nat. Rev. Genet. 12(12), 861

(2011)
4. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis,

University of Waikato Hamilton, April 1999
5. Han, S., Liang, Y., Li, Y., Du, W.: Long noncoding RNA identification: compar-

ing machine learning based tools for long noncoding transcripts discrimination.
BioMed Res. Int. 2016 (2016)

6. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans.
Inf. Theory 14(1), 55–63 (1968)

7. Jain, A., Zongker, D.: Feature selection: evaluation, application, and small sample
performance. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 153–158 (1997)

8. Kaikkonen, M.U., Lam, M.T., Glass, C.K.: Non-coding RNAs as regulators of gene
expression and epigenetics. Cardiovas. Res. 90(3), 430–440 (2011)

S2FS 113

9. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2),
129–137 (2006). https://doi.org/10.1109/TIT.1982.1056489

10. Mattick, J.S.: Non-coding RNAs: the architects of eukaryotic complexity. EMBO
Rep. 2(11), 986–991 (2001)

11. Mattick, J.S., Rinn, J.L.: Discovery and annotation of long noncoding RNAs. Nat.
Struct. Mol. Biol. 22(1), 5 (2015)

12. Pian, C., et al.: LncRNApred: classification of long non-coding RNAs and protein-
coding transcripts by the ensemble algorithm with a new hybrid feature. PloS One
11(5), e0154567 (2016)

13. Ponting, C.P., Olive, P.L., Reik, W.: Evolution and functions of long noncoding
RNAs. Cell Volume 136(4), 629–641 (2009)

14. Popescu, M.C., Balas, V.E., Perescu-Popescu, L., Mastorakis, N.: Multilayer per-
ceptron and neural networks. WSEAS Trans. Circ. Syst. 8(7), 579–588 (2009)

15. Pruitt, K.D., Tatusova, T., Maglott, D.R.: NCBI reference sequences (RefSeq): a
curated non-redundant sequence database of genomes, transcripts and proteins.
Nucleic Acids Res. 35(Suppl. 1), D61–D65 (2007)

16. Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection.
Pattern Recogn. Lett. 15(11), 1119–1125 (1994)

17. Rinn, J.L., Chang, H.Y.: Genome regulation by long noncoding RNAs. Ann. Rev.
Biochem. 81, 145–166 (2012)

18. Schneider, H.W., Raiol, T., Brigido, M.M., Walter, M.E.M., Stadler, P.F.: A sup-
port vector machine based method to distinguish long non-coding RNAs from
protein coding transcripts. BMC Genomics 18(1), 804 (2017)

19. Tripathi, R., Patel, S., Kumari, V., Chakraborty, P., Varadwaj, P.K.: DeepLNC,
a long non-coding RNA prediction tool using deep neural network. Netw. Model.
Anal. Health Inform. Bioinform. 5(1), 1–14 (2016)

20. Volders, P.J., et al.: LNCipedia: a database for annotated human lncRNA tran-
script sequences and structures. Nucleic Acids Res. 41(D1), D246–D251 (2013)

https://doi.org/10.1109/TIT.1982.1056489

A Genetic Algorithm for Character
State Live Phylogeny

Rafael L. Fernandes1(B), Rogério Güths2, Guilherme P. Telles3,
Nalvo F. Almeida2, and Maria Emı́lia M. T. Walter1

1 Departamento de Ciência da Computação, Universidade de Braśılia,
Braśılia, Brazil

leafarlins@gmail.com, mariaemilia@unb.br
2 Faculdade de Computação, Universidade Federal de Mato Grosso do Sul,

Campo Grande, Brazil
r.guths@ufms.br, nalvo@facom.ufms.br

3 Instituto de Computação, Universidade Estadual de Campinas, Campinas, Brazil
gpt@ic.unicamp.br

Abstract. Character state live phylogeny generalizes character state
phylogeny in the sense that they relate taxonomic units based on their
similarities over a set of characters, but allowing live ancestors. An app-
roach for character state live phylogeny reconstruction is called parsi-
mony, where one tries to minimize the total number of character state
changes along the edges of the tree. The problem of finding a tree that
minimizes this number is known as large live parsimony problem. When
the tree topology is also given as input, the problem is known as small
live parsimony problem. We propose a genetic algorithm to solve the
large live problem, which uses extended versions of the algorithms of
Fitch and Sankoff to solve the small live problem, both devised in this
work. Besides, we performed two experiments. In the first one, a multiple
alignment of H1N1 and H3N2 viruses from different countries, taken as
input, allowed to obtain interesting live phylogenies, representing alter-
native evolutionary hypothesis. The second experiment took as input a
multiple alignment of the HIV virus env gene, from one patient, read
in different dates through 12 years. The generated live phylogenies were
similar to the ones generated by PAUP, where dates close to each other
were grouped into clusters, but suggesting new evolutionary stories.

Keywords: Live phylogeny · Genetic algorithms · Parsimony
Sankoff algorithm · Fitch algorithm

1 Introduction

Phylogeny reconstruction aims at finding evolutionary relations among objects,
which are shown by a tree elucidating how these objects are related to each other
through common ancestors. In these trees, internal nodes represent hypothetical

c© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 114–123, 2018.
https://doi.org/10.1007/978-3-030-01722-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_11&domain=pdf

A Genetic Algorithm for Character State Live Phylogeny 115

ancestors, while the objects are shown in the leaves. Several methods have been
proposed for reconstructing phylogenies [3,10].

Input data for phylogeny reconstruction are of two types: (i) discrete char-
acters with a finite number of states, formalized in a character state matrix
Mobjects×characters , where M [i, j] holds the state of character j of object i; and
(ii) comparative numerical data, represented in a distance matrix Dobjects×objects ,
where D[i, j] holds the distance between objects i and j.

Telles et al. [13] generalized the concept of phylogeny for both types of input
data by allowing the existence of taxonomic objects as ancestors. This concept,
called Live Phylogeny, suits the case of fast-evolving species, e.g., virus, and
also the construction of phylogenies for non-biological objects, e.g., documents,
images, and database records.

Two problems related to live phylogeny based on character states are
known [5], and are enunciated next. The small live parsimony problem is: given
a set of objects, a character state matrix and a phylogeny allowing live ances-
tors as input, find a labeling of the internal nodes with a minimum number of
changes of states along the given topology. The large live parsimony problem is:
given a set of objects and a character state matrix as input, find a phylogeny and
a labeling of internal nodes, live ancestors allowed, which minimizes the total
number of state changes.

As their classical counterparts, the small live parsimony problem may be
solved in polynomial time, and the large live parsimony problem is an NP-
hard problem. In this article, we propose the usage of genetic algorithms to
deal with practical instances of the large live parsimony problem, thus allowing
the construction of alternative hypothesis for the relationship among the input
objects.

The text is organized as follows. In Sect. 2, we propose a genetic algorithm
for the large live parsimony problem, using algorithms to solve the small live
parsimony problem. For this last one, we extended the algorithms of Fitch and
Sankoff to deal with live phylogenies. In Sect. 3, we discuss the results obtained
in two case studies. Finally, in Sect. 4, we conclude and suggest future work.

2 A Genetic Algorithm for Live Phylogeny

Genetic algorithms [8] (GAs) are created as an analogy to biology, with three
basic ideas: (i) the maintenance of a population of possible solutions; (ii) the
selection of individuals of the population by a fitness function; and (iii) the
application of operators which generate mutations and recombinations through-
out several generations.

GAs are a metaheuristic to solve hard problems, which would require an
exhaustive search in a large solutions space to find an optimal one. GAs were
applied to phylogeny reconstruction with different choices of population genera-
tion, fitness function and operators [6,7,14].

Our genetic algorithm for large live parsimony phylogeny construction is
called GA-LP. Figure 1 outlines the steps of GA-LP. Next sections discuss some
steps in more detail. The input is a character state matrix.

116 R. L. Fernandes et al.

Fig. 1. Outline of GA-LP, a genetic algorithm for live phylogeny. Here, I and O refer
to the Input and Output, respectively, of each module.

Some parameters can be set for GA-LP: the population size; the fraction
of best individuals in the population to be preserved for the next generation;
the probability decay for selecting other individuals for the next generation;
the probabilities of mutation and recombination operators; the fraction of live
internal nodes in the initial population; the range of live ancestors in the final
tree; the fitness function; and the stop criterion.

The initial population is built by randomly generating trees with a maximum
number of live ancestors. Either Live Fitch algorithm or Live Sankoff algorithm
(described next) may be used to label the internal nodes and to score live phylo-
genies in the population. At each iteration, selected parents create offspring for
the next generation. GA-LP uses a combination of elitism and randomization
for such selection.

Mutations and recombination are based on previous GAs for phylogeny [6,
14], but modified for live phylogenies. A new mutation operator is introduced to
generate live ancestors or leaves, as detailed below.

GA-LP stops when either a maximum number of generation is reached, or
when the best score of the population reaches a value less than a threshold, or
when the best score of the population does not change in a fixed number of gen-
erations. At the end, GA-LP returns the best phylogeny in the last generation.

A Genetic Algorithm for Character State Live Phylogeny 117

2.1 Fitness Functions

The small phylogeny problem can be solved by the algorithms of Fitch [4] and
Sankoff [9]. Both algorithms label the internal nodes of a tree according to the
states of its leaves, which are given as input, and both algorithms have a bottom-
up and a top-down phase. We refer the reader to the bibliography for further
details on these algorithms. Below we show how the bottom-up phases of Fitch
and Sankoff algorithms may be modified to allow live nodes.

Algorithm 1 shows Fitch’s algorithm adapted to allow live ancestors. The
modification was the inclusion of live ancestors, for which the score can be raised
by 1 or 2, depending on the two descendants. It means that, if both descendants
do not have the same state of node i, it is necessary two evolutionary changes
to use the tree as the evolutionary history of the objects.

Algorithm 1. Live Fitch bottom-up phase
Input: Mn×m matrix and phylogeny T (n objects, m characteristics)
Output: finalscore integer

1: finalscore = 0
2: for each column m of the input matrix do
3: for each node labeled by sk do
4: Rk = {sk}, R the set of possible states
5: end for
6: score = 0
7: for each node i from leaves to root in post-order do
8: if node i is a hypothetical ancestor with children u and v then
9: if Ru ∩ Rv �= ∅ then

10: Ri = Ru ∩ Rv

11: else
12: Ri = Ru ∪ Rv

13: score = score + 1
14: end if
15: else
16: � node i is a live ancestor with children u and v
17: Ri = {si}
18: if Ri ∩ Ru = ∅ then
19: score = score + 1
20: end if
21: if Ri ∩ Rv = ∅ then
22: score = score + 1
23: end if
24: end if
25: end for
26: finalscore = finalscore + score
27: end for

For the Sankoff’s algorithm, it is necessary a matrix Costp×p with the costs
of changing each pair of states, for all the p states, where Cost(a, b) denotes the
cost of changing state a to b. A cost c is associated to each node, where c(i, a)
is the cost of labeling node i with label a, which is one of the states. The state
of node i is denoted by si.

Similarly to Fitch, Algorithm2 shows Sankoff’s algorithm adapted to allow
live ancestors. In this case, the modification was the inclusion of live ancestors
as internal nodes. The algorithm calculates the cost of labeling the node i with
si already defined, keeping the initial value of ∞ in the other labels.

118 R. L. Fernandes et al.

Algorithm 2. Live Sankoff bottom-up phase
Input: Mn×m matrix, Costp×p matrix and phylogeny T (n objects, m characteristics, p states)
Output: integer finalscore

1: finalscore = 0
2: for each column m of the input matrix do
3: for each node i with defined label si = a do
4: c(i, l) = ∞ for each l �= si

5: c(i, a) = 0
6: end for
7: for each node i, from leaves to root in post-order, do
8: if node i is a hypothetical ancestor then
9: for each label lk, 1 ≤ k ≤ p do

10: c(i, lk) =
∑

v is child of i(Cost(lk, bv) + c(v, bv))
11: such that bv = min{c(v, rj) + Cost(lk, rj)}, 1 ≤ j ≤ p
12: else
13: � node i is a live ancestor
14: for l such that si = l do
15: c(i, l) =

∑
v is child of i(Cost(l, bv) + c(v, bv))

16: such that bv = min{c(v, rj) + Cost(l, rj)}, 1 ≤ j ≤ p
17: end if
18: end for
19: finalscore = finalscore + minimum value of c(root, l)
20: end for

2.2 Natural Selection, Mutations and Recombination

GA-LP uses a natural selection based on ranking. After sorting by score the
population, with length N , the first individual is protected from mutation and
the elitist strategy1 copies the best E individuals to the next generation. Then it
selects N −E individuals from the remaining list through a probability function
that depends on the ranking. This probability function can be adjusted, behaving
as a homogeneous function or favouring the selection of individuals with higher
score at various degrees.

According to the probabilities set in the parameter initialization, GA-LP
randomly decides if each individual is mutated or recombined. There are three
mutation operators on a single tree: Mutation 1 switches two disjoint subtrees
selected at random; Mutation 2 switches the label of two nodes selected at ran-
dom; and Mutation 3 moves live nodes or leaves either up or down, allowing
to create a live node when a leaf is moved up, or to remove a live node when
it is moved down and becomes a leaf, thus leading to different configurations
of a set of live nodes. This last mutation was designed for live phylogeny, with
possible situations illustrated in Fig. 2. Recombination 1 interchanges parts of
two individuals, one from the parent and the other from the offspring generation
randomly chosen, and is based on a GAML [6] operation.

3 Results

We performed experiments both to calibrate the parameters and to evaluate the
performance of GA-LP on real data. They were executed on a computer with
an Intel i5 processor and 4 GB RAM.
1 The elitist strategy creates a new population transferring the best organisms, not

modified, from the current generation to the next.

A Genetic Algorithm for Character State Live Phylogeny 119

Fig. 2. Examples for Mutation 3, specially designed for live phylogeny.

3.1 Parameter Calibration

To calibrate the parameters, we used a matrix M34×306, with 34 different organ-
isms and 306 characteristics, which are the columns of a multiple sequence align-
ment of proteins (20 states). We executed the algorithm 10 times and obtained
the average and the standard deviation of the output values. Initially, we evalu-
ated the behaviour of each mutation. We noted that Mutation 1 causes a steeper
reduction of the best score. Also, Recombination 1 decreases the average score
of the population faster.

We analyzed the output of different combinations of varying rates of the three
mutations, the recombination rate, and also the FV parameter, which defines
the ratio of live ancestors in the initial population. The stop criterion was a
score lower than 130. This value was defined experimentally, performing a large
number of executions of the algorithm. Once the minor value reached for the
input, after a huge times of executions, was the score of 128, we have arbitrarily
chosen the score of 130. The best results are shown in Table 1. Experiments were
executed with all combinations of mutation rates in {0, 25, 50, 75}, fixing the
other parameters.

The results showed that Mutation 1 should be as high as possible to obtain
the best combination. We fixed the rates of Mutation 1, 2 and 3 for the next
experiment to 70, 15 and 15, respectively. In the sequel, we found the best
value of the recombination rate, changing its values. As soon as we increased
the recombination rate above 50, the number of generations also increased. The
smallest values were reached with rates equal to 40 or 50.

Best results were achieved when the elite parameter E was set at least equal
to 10% of the population size. For lower values of E, the number of generations
became much higher. Thus, for some experiments, we fixed E to 10% of the

120 R. L. Fernandes et al.

Table 1. The first three columns show the combinations of mutations that achieved
the best results. Column Generations shows the average and standard deviation of the
number of generations needed to reach a score lower than 130, while column Time
shows the total time of 10 executions.

Mutation 1 Mutation 2 Mutation 3 Generations Time

75 25 0 1945 ± 1321 07:42:06

75 0 25 2524 ± 1660 10:08:44

50 25 25 2566 ± 1323 10:07:48

50 25 25 2920 ± 1446 11:11:39

population size, and for others, to 20%. We note that this is a parameter that
can be chosen by the user.

We also set the parameter for the range of the desired number of live ancestors
in the phylogeny. The other software parameters were fixed, varying the range of
desired live ancestors, from 1 to 3, from 4 to 6, and so on, up to the range 16 to 18.
The stop criterion was set with a parameter that interrupts the execution if 500
generations were performed without changing the best score of the population
in this experiment. In these experiments, the final score increases as more live
ancestors are required. Thus, the parameter forcing the existing of live ancestors
is important.

3.2 Two Case Studies

H1N1 and H3N2 Viruses. In this case study, the input was a matrix M75×759,
with 75 organisms and 759 characteristics, of a multiple sequence alignment of
the RNA polymerase PB2 from H1N1 and H3N2 viruses (4 states), collected in
2016 at four countries (USA, Russia, China, South Korea), and downloaded from
the NCBI influenza virus sequence database (ftp://ftp.ncbi.nih.gov/genomes/
INFLUENZA/).

We generated two phylogenies with GA-LP using the parameters described
previously, both including and not including live ancestors, and we compared
these results to a phylogeny generated with the Proml program of Phylip [1].

Figure 3 shows part of the tree without live ancestors, where each node is
represented by a number, country, region of origin and type of virus.

Fig. 3. Part of the phylogeny, showing objects from Russia in a cluster, obtained by
the GA-LP with no live ancestors allowed.

ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/
ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/

A Genetic Algorithm for Character State Live Phylogeny 121

Figure 4 shows part of the tree with live ancestors. We note that the clusters
generated by GA-LP were similar to those generated by Phylip, in the sense that
viruses found in geographically close regions were usually grouped in clusters.

Fig. 4. Part of the live phylogenetic tree, showing the Russia cluster, obtained by the
GA-LP allowing live ancestors.

We noted that the final score increases with a higher number of live ancestors,
linearly for M34×306, and non-linearly for M75×759. It means that phylogenies
with larger number of live ancestors have usually a worse parsimony, when com-
pared with phylogenies with few or no live ancestors.

The env Gene of the HIV Virus. The other case study used as input two
matrices, M52×765 and M136×680, with data correspondent to multiple sequence
alignments from the C2-V5 sector of env gene of the HIV virus, all from the
same patient, read in different dates (timepoints) through 12 years, cited by
Shankarappa [11], and available at the HIV Databases web site [2]. The Sankoff’s
algorithm was used as the fitness function. A variable cost matrix for the gene
characters of the reads was used.

We selected three output phylogenies to analyze, with 0, 18 and 54 live
ancestors. These phylogenies were compared, as well as a tree generated by
PAUP [12]. The phylogenies showed similar clusters, with objects closed to each
other if they were read in close dates (timepoints). Figure 5 shows parts of the
tree, with clusters generated from objects of the timepoints 11, 12, 13 and 15.

Fig. 5. Parts of the 18 live ancestors phylogeny, with objects representing reads from
timepoints 11 to 15 in a same cluster.

Figure 6 shows part of a tree with 54 live ancestors, where the number of live
ancestors (54) is higher than the number of hypothetical ancestors (13). We can
see a large cluster with objects corresponding mostly to the timepoints 00 and
01.

122 R. L. Fernandes et al.

Fig. 6. Parts of the 54 live ancestors phylogeny, with objects representing reads from
timepoints 00, 01 and 03.

In general, the clusters generated with GA-LP were similar to those gener-
ated with PAUP. It is noteworthy that the live phylogeny shows us a different
evolutionary history of the input objects. These experiments indicated, mainly
due to the method used to calculate the score, that a proper definition of the
range of live ancestors is essential to obtain good live phylogenies.

4 Conclusion

In this work, we presented a genetic algorithm to reconstruct a live phylogeny,
called GA-LP, taking as input character state matrices. Also, we proposed and
implemented a modified version of Fitch’s and Sankoff’s algorithms to solve the
small live parsimony problem. With the implementation, after having calibrated
the parameters, we performed two case studies. The first one took as input
a character matrix obtained from a multiple sequence alignment of H1N1 and
H3N2 from different countries. GA-LP constructed a tree that clusterized viruses
from similar geographic regions. In general, this live phylogeny preserved clus-
ters when compared to two other trees, produced by GA-LP generating a tree
without live ancestors and by Phylip. The other case study was developed taken
as input a character matrix constructed from a multiple sequence alignment of
the HIV env region, read from one patient, through different timepoints. Output
phylogenies were obtained with different numbers of live ancestors, with simi-
lar clusters, regarding to the objects’ timepoints. Also, the phylogeny generated
with PAUP showed clusters grouping objects with close timepoints, similar to
those generated with GA-LP.

We intend to improve the parameters’ calibration, exhaustively and using
different datasets, taking care to not introduce overfitting. Besides, more exper-
iments have to be performed, to further explore the advantages and the limita-
tions of the approach, specially regarding the distance to the optimal tree, which
may be found by branch-and-bound.

A Genetic Algorithm for Character State Live Phylogeny 123

References

1. Baum, B.R.: Phylip: phylogeny inference package (version 3.2). Q. Rev. Biol. 64,
539–541 (1989)

2. Data-HIV: HIV sequence database - special interest alignment set 1. https://www.
hiv.lanl.gov/content/sequence/HIV/SI alignments/set1.html. Acessed Apr 2018

3. Felsenstein, J.: Inferring Phylogenies. Palgrave Macmillan, Basingstoke (2004)
4. Fitch, W.M.: Toward defining the course of evolution: minimum change for a spec-

ified tree topology. Syst. Zool. 20, 406–416 (1971)
5. Güths, R., Telles, G.P., Walter, M.E.M.T., Almeida, N.F.: A branch and bound

for the large live parsimony problem. In: Proceedings of 10th International Joint
Conference on Biomedical Engineering Systems and Technologies. BIOSTEC 2017,
vol. 3, pp. 184–189 (2017)

6. Lewis, P.O.: A genetic algorithm for maximum-likelihood phylogeny inference using
nucleotide sequence data. Mol. Biol. Evol. 15(3), 277–83 (1998)

7. Matsuda, H.: Protein phylogenetic inference using maximum likelihood with a
genetic algorithm. In: Proceedings of Pacific Symposium on Biocomputing, pp.
512–523 (1996)

8. Mitchell, M.: Introduction to Genetic Algorithms. The MIT Press, Cambridge
(1999)

9. Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. Math. 28, 35–42
(1975)

10. Setubal, J., Meidanis, J.: Introduction to Computational Molecular Biology. PWS
Publishing Company, Boston (1997)

11. Shankarappa, R., Margolick, J.B., Gange, S.J., et al.: Consistent viral evolutionary
changes associated with the progression of human immunodeficiency virus type 1
infection. J. Virol. 73(12), 10489–10502 (1999)

12. Swofford, D.L.: Phylogenetic Analysis Using Parsimony (and Other Methods). Sin-
auer Associates, Sunderland (2002)

13. Telles, G.P., Almeida, N.F., Minghim, R., Walter, M.E.M.T.: Live phylogeny. J.
Comput. Biol. 20(1), 30–37 (2013)

14. Zwickl, D.J.: Genetic Algorithm Approaches for the Phylogenetic Analysis of Large
Biological Sequence Datasets Under the Maximum Likelihood Criterion. Ph.D.
thesis, The University of Texas (2006)

https://www.hiv.lanl.gov/content/sequence/HIV/SI_alignments/set1.html
https://www.hiv.lanl.gov/content/sequence/HIV/SI_alignments/set1.html

A Workflow for Predicting MicroRNAs
Targets via Accessibility in Flavivirus

Genomes

Andressa Valadares1(B), Maria Emı́lia Walter1, and Tainá Raiol2

1 Department of Computer Science, Institute of Exact Science, University of Braśılia,
Braśılia, Brazil

andressarodrial@gmail.com
2 Fiocruz Braśılia, Oswaldo Cruz Foundation, Braśılia, Brazil

Abstract. Flavivirus infections are a serious public health issue in
Brazil, particularly in recent years due to the large number and severity
of cases of Zika and Dengue virus infections and, more recently, out-
breaks of Yellow Fever virus infections. Therefore, understanding the
effects of genetic variations at functional and structural levels and devel-
oping new tools are necessary for supporting arboviral surveillance and
control efforts of these viruses. In this context, we developed a work-
flow to predict potential microRNA targets in Flavivirus genomes. The
workflow implementation comprised the integration of Perl scripts, tools
from ViennaRNA package, and miRanda software to search for poten-
tial microRNAs that potentially interact with non-coding regions of Fla-
vivirus genomes. As a case study, genome sequences of Dengue virus
serotypes were used. We could observe structural differences among the
serotype sequences and miRNA target binding sites exclusively identified
for each serotype, which may be useful for the development of diagnostic
methods.

Keywords: Flavivirus · Dengue · microRNA
RNA secondary structure · Bioinformatics workflow

1 Background

The flaviviruses are the most common arthropod-borne viruses worldwide, which
includes viruses transmitted by Dengue virus (DENV), West Nile virus (WNV),
Yellow fever virus (YFV), Japanese encephalitis virus (JEV) [10] and Zika virus
(ZIKV) [6]. These infections commonly cause febrile illness or syndromes such as
encephalitis and hemorrhagic fever [24]. Despite the huge public health impact,
there is no specific antiviral therapy available for treating any of the flaviviruses
infections [7].

Dengue fever is an international public emergency due to its rapid spread and
serious consequences [20]. It is estimated that annually 390 million infections
occur worldwide, being more prevalent in developing countries [3]. The infection
c© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 124–132, 2018.
https://doi.org/10.1007/978-3-030-01722-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_12&domain=pdf

A Work Flow for Predicting MicroRNAs Targets 125

is characterized by fever, rash, and in the more severe forms, hemorrhagic fever
and shock syndrome [21]. This virus is transmissible by mosquitoes and presents
four different serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) [14].

In recent years, extensive efforts have been made into understanding the
mechanisms behind flavivirus spread, replication, and pathogenesis [26]. For
instance, it has been reported that microRNAs play an important role in viruses
replication due to its ability to control viral and host gene expression [23].

MicroRNAs are small regulatory RNAs (∼23nt) that play an essential part
in gene regulation by binding to target mRNAs and suppressing their transla-
tion [2]. The accessibility of the target binding site is an important factor for
determining the microRNA repression efficacy [12]. It is required at least four
consecutive unpaired bases on target binding site to a successful microRNA-
mRNA interaction [15]. Therefore, predicting conserved secondary structures is
crucial to find more effective targets.

Despite the target site accessibility importance, only a few tools assume the
role of the target secondary structure. For example, the PITA software that con-
siders mRNA binding site structure affecting target recognition by thermody-
namically promoting or disfavoring the interaction [12]. Although, this program
has low efficiency compared to other algorithms [18]. Another limitation of the
available prediction tools is that most of them are only web applications, per-
forming the analysis of only few sequences at the same time and requires manual
input.

However advances have been reached in recent years, the interaction between
host microRNAs and flavivirus genomic RNA still requires further analysis [26].
Therefore, in this work, we present a workflow to predict microRNA targets by
site accessibility for non-coding regions of flaviviruses. The workflow integrates
available tools for secondary RNA and microRNA target predictions, combining
the results, predicting accessibility, and suggesting potential microRNA targets.

2 Workflow for Prediction of MicroRNAs Targets
via Accessibility

With the proposed workflow, secondary structures and microRNA targets are
predicted within non-coding regions of flavivirus using full-length RNA genomic
sequences (Fig. 1).

First, only non-coding regions of virus genomes are selected using developed
Perl scripts. Full-length RNA sequences are grouped by non-coding region sizes
(5′ and 3′ untranslated regions, UTR), then the most common length of each
region was chosen for downstream analysis. Next, the 3′UTR sequences were
split into three sub-regions (R1, R2, and R3) according to known domains of
flavivirus genomes within this region [4]. After selection of non-coding regions,
all redundancy is removed using the PRINSEQ software [22], followed by multiple
sequence alignments using the MUSCLE software [8].

RNAalifold [17] from ViennaRNA Package was used to predict a consensus
secondary structure of non-coding regions of flaviviruses, using default parame-
ters. Next, structure graph representations were generated using VARNA [5] and

126 A. Valadares et al.

Fig. 1. Workflow to compare predicted secondary structures and to predict microRNA
targets within genomic RNA sequences of Flavivirus via accessibility

mountain plots using cmount.pl. Finally, secondary structure predictions were
performed for each sequence using refold.pl. The program RNAalifold and the
scripts refold.pl and cmount.pl belongs to ViennaRNA Package [16]. The app-
roach using tools from the ViennaRNA Package to predict secondary RNA struc-
tures of Flavivirus was partially based on a previous study [25]. In the present
work, we improved the data analysis with additional and updated softwares, as
well as employing different visualization tools of the predicted structures.

The microRNAs of primates extracted from miRBase [13] and the pro-
cessed flavivirus sequences are inputs to the miRanda software [9]. Last, a Perl
script was developed to select only accessible targets comparing the results from
miRanda to the previously predicted structures. We consider accessible microR-
NAs targets those with microRNA-mRNA complementary matches of at least
four contiguous unpaired nucleotides within binding sites [15].

3 Case Study

The validation of the proposed workflow has been carried out by using Dengue
virus sequences as input. Each step of the workflow was performed for each of
the four Dengue serotypes (DENV-1, DENV-2, DENV-3, and DENV 4).

Dengue virus sequences were downloaded from NCBI Virus Variation Dengue
virus database [11]. Full-length sequences from any host were selected. Next, we
extracted only non-coding region 5′UTR and 3′UTR (R1, R2, and R3) using
Perl scripts.

After selecting only UTRs, all redundancy between regions was removed. A
high conservation of the regions was observed, with a reduction of sequences by
at least 72 % (Table 1). For the 3′UTR, the highest conservation was observed
for region R3, followed by region R2 and R1.

A Work Flow for Predicting MicroRNAs Targets 127

Table 1. Number of analyzed sequences per Dengue serotype and mean pairwise σ for
each non-coding region. Regions R1, R2, and R3 correspond to 3′UTR domains

Serotype 5′UTR R1 R2 R3

Sequences σ Sequences σ Sequences σ Sequences σ

DENV-1 26 96.99 127 93.59 53 96.78 25 97.96

DENV-2 52 95.16 88 94.55 43 96.72 35 96.93

DENV-3 21 95.39 44 95.88 29 97.62 19 97.31

DENV-4 12 97.31 14 94.14 13 96.09 10 96.32

Furthermore, to verify microRNA target accessibility and to compare
serotypes, the secondary structure prediction was performed as presented in
Fig. 2. For 5′UTR, we predicted structures highly similar to those previously
reported [19]. Also, the structures presented a strong similarity between all four
serotypes. The positional entropy is also almost identical, excepts for DENV-3
which is more unstable in the first stem-loop. The 3′UTR presented unexpected
conserved structures compared to those previously described [19]. This could be
a consequence of limitations of RNAalifold to predict secondary structures for
several sequences longer than 100nt with pseudoknots.

Analysing the 3′UTR subdomains, DENV-1, DENV-2, and DENV-3 revealed
an extensive region without any conserved structure. Despite the lack of any sec-
ondary structure, this region presented a low entropy and well-conserved base
pairs. In region R2, the serotypes showed a higher positional entropy which
suggests that there are possible alternative structures. In this subdomain, the
most similar conserved structures and conserved base pairs are observed in
DENV-1 and DENV-3. In region R3, secondary structures were very similar
between serotypes, presenting well-conserved base pairs which were more evi-
dent in DENV-1 and DENV-2. This could be explained by the importance of
this region for viral cyclisation [1].

After structure predictions, miRanda and Perl scripts were used for predic-
tion of microRNAs and selection of targets by structural accessibility, respec-
tively. We could identify 52 microRNAs for DENV-1, 47 for DENV-2, 52 for
DENV-3 and 20 for DENV-4. Mostly microRNAs were predicted for 3′UTR,
except for hsa-miR-6828-3p and hsa-miR-548g-3p identified in 5′UTR.

Only 5 microRNA targets could be identified in all serotypes (hsa-miR-548g-
3p, hsa-miR-6828-3p, hsa-miR-4692, hsa-miR-1914-3p, and hsa-miR-3191-5p).
Wen et al. have shown that the microRNA miR-548g-3p suppress DENV multi-
plication and also affects translation, consequently preventing the expression of
viral proteins [27].

Also, some microRNAs were identified only for certain serotypes, as presented
in Table 2. Further analysis are necessary to verify the roles of those microRNAs
for DENV infections. These results suggested that certain serotypes could be
regulated by different microRNAs, which may be used for diagnosis and prog-

128 A. Valadares et al.

(a) Secondary structures predicted in 5’UTR

(b) Secondary structures predicted in 3’UTR - R1

Fig. 2. Secondary structures predicted for each of the four DENV serotypes in the
untranslated regions 5′ (a) and 3′ R1 (b), R2 (c), and R3 (d). In the structure draw,
positional entropy is encoded as color hue, ranging from violet and blue for high entropy
(low probability pairs) until red for low entropy (high probability pairs).

A Work Flow for Predicting MicroRNAs Targets 129

(c) Secondary structures predicted in 3’UTR - R2

(d) Secondary structures predicted in 3’UTR - R3

Fig. 2. (continued)

130 A. Valadares et al.

Table 2. Predicted microRNAs exclusively identified for each DENV serotype using
the proposed workflow.

Serotype Region microRNA Targets*
DENV-1 R1 (n = 127) hsa-miR-130b-5p 33 (25.98%)

hsa-miR-578 10 (7.87%)
hsa-miR-7158-5p 21 (16.53%)

R2 (n = 53) hsa-miR-329-5p 25 (47.17%)
hsa-miR-6724-5p 53 (100%)
hsa-miR-6771-5p 18 (33.06%)
hsa-miR-8082 32 (60.37%)

R3 (n = 25) hsa-miR-554 23 (92.00%)
DENV-2 5′UTR (n = 52) hsa-miR-511-5p 13 (25.00%)

hsa-miR-6888-3p 47 (90.38%)
hsa-miR-4312 48 (54.54%)

R1 (n = 88) hsa-miR-6505-3p 33 (37.50%)
hsa-miR-6874-3p 26 (29.54%)

R2 (n = 43) hsa-miR-5087 43 (100%)
hsa-miR-554 43 (100%)
hsa-miR-6813-3p 20 (46.51%)

5′UTR (n = 21) hsa-miR-548ar-3p 13 (61.90%)
hsa-miR-548az-3p 17 (80.95%)
hsa-miR-548j-3p 21 (100%)

DENV-3 R1 (n = 44) hsa-miR-103a-2-5p 39 (88.63%)
hsa-miR-2682-3p 16 (36.36%)
hsa-miR-3140-3p 12 (27.27%)
hsa-miR-3152-5p 11 (25.00%)
hsa-miR-3660 31 (70.45%)
hsa-miR-4260 30 (68.18%)
hsa-miR-4318 11 (25.00%)
hsa-miR-4474-3p 28 (63.63%)
hsa-miR-4778-3p 44 (100%)
hsa-miR-5583-3p 13 (29.54%)
hsa-miR-6781-3p 18 (40.90%)
hsa-miR-6875-3p 39 (88.63%)
hsa-miR-7108-5p 11 (25.00%)
hsa-miR-25-5p 12 (27.27%)
hsa-miR-4633-3p 14 (31.81%)
hsa-miR-7151-3p 14 (31.81%)
hsa-miR-8068 10 (22.72%)
hsa-miR-891a-3p 14 (31.81%)

R2 (n = 29) hsa-miR-4633-3p 24 (81.75%)
DENV-4 5′UTR (n = 12) hsa-miR-3180-5p 11 (91.67%)

hsa-miR-4503 11 (91.67%)
hsa-miR-520a-5p 11 (91.67%)
hsa-miR-525-5p 11 (91.67%)

R2 (n = 14) hsa-miR-6832-3p 10 (71.42%)
*Number of predicted microRNA binding sites for sequences of
each Dengue serotype and non-conding region.
hsa: Homo sapiens

A Work Flow for Predicting MicroRNAs Targets 131

nosis of these infections. Besides, it indicates different approaches and solutions
depending on the serotype.

4 Conclusion

In this work, we developed a workflow to identify potential targets of micro-
RNAs within non-coding regions of Flavivirus genomes. The development of
tools to assist the fight against current and emerging arboviral is of great impor-
tance, given the increasing incidence and severity of the diseases caused by theses
viruses.

Considering the role of non-coding regions in the control of replication and in
regulatory functions of Flaviruses, we compared the secondary structures of these
regions, followed by the search and identification of microRNA targets in the
predicted structures. The final output of our workflow is the selection of the most
accessible potential microRNA target binding sites. We applied our workflow in
genomes of Dengue virus and compared the secondary structures at the level of
serotype. We found some differences mainly in the 3′UTR region between the
serotypes. In the 5′UTR region, we could observe different entropies between
the serotypes, with DENV-3 being the serotype with the greatest positional
instability in spite of having the lowest sequence variability.

In addition to the structural and conservation analysis, we could identify
unique targets for each Dengue serotype, such as hsa-miR-130b-5p, hsa-miR-578
and hsa-miR-7158-5p whose targets were identified only in serotype 1 within the
R1 region of the 3′UTR. Furthermore, hsa-miR-5087 and hsa-miR-6813-3p were
found only in the R2 region of serotype 2 and the microRNA hsa-miR-6832-3p
was found in the same region exclusively in serotype 4. The detection of these
miRNA targets could be used as a tool for virus classification and diagnosis,
facilitating the development of genetic strategies to control these arboviruses.

References

1. Alvarez, D.E., Ezcurra, A.L.D.L., Fucito, S., Gamarnik, A.V.: Role of RNA struc-
tures present at the 3 UTR of dengue virus on translation, RNA synthesis, and
viral replication. Virology 339(2), 200–212 (2005)

2. Bartel, P.: MicroRNAs target recognition and regulatory functions. Cell 136(2),
215–233 (2009)

3. Bhatt, S., et al.: The global distribution and burden of dengue. Nature 496(7446),
504 (2013)

4. Bidet, K., Garcia-Blanco, M.A.: Flaviviral RNAs: weapons and targets in the war
between virus and host. Biochem. J. 462(2), 215–230 (2014)

5. Darty, K., Denise, A., Ponty, Y.: VARNA: interactive drawing and editing of the
RNA secondary structure. Bioinformatics 25(15), 1974 (2009)

6. Dick, G., Kitchen, S., Haddow, A.: Zika virus (I). isolations and serological speci-
ficity. Trans. R. Soc. Trop. Med. Hyg. 46(5), 509–520 (1952)

7. Diosa-Toro, M., Urcuqui-Inchima, S., Smit, J.M.: Arthropod-borne flaviviruses and
RNA interference: seeking new approaches for antiviral therapy. Adv. Virus Res.
85, 91–111 (2013)

132 A. Valadares et al.

8. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucl. Acids Res. 32(5), 1792–1797 (2004)

9. Enright, A.J., et al.: Microrna targets in drosophila. Genome Biol. 5(1), R1 (2003)
10. Gould, E., Solomon, T.: Pathogenic flaviviruses. Lancet 371(9611), 500–509 (2008)
11. Hatcher, E.L., et al.: Virus variation resource-improved response to emergent viral

outbreaks. Nucl. Acids Res. 45(D1), D482–D490 (2016)
12. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., Segal, E.: The role of site acces-

sibility in microRNA target recognition. Nat. Genet. 39(10), 1278 (2007)
13. Kozomara, A., Griffiths-Jones, S.: miRBase: annotating high confidence micrornas

using deep sequencing data. Nucl. Acids Res. 42(D1), D68–D73 (2013)
14. Kuhn, R.J., et al.: Structure of dengue virus: implications for flavivirus organiza-

tion, maturation, and fusion. Cell 108(5), 717–725 (2002)
15. Long, D., et al.: Potent effect of target structure on microRNA function. Nat.

Struct. Mol. Biol. 14(4), 287 (2007)
16. Lorenz, R., et al.: ViennaRNA Package 2.0. Algorithms Mol. Biol. 6(1), 26 (2011)
17. Lorenz, R., Hofacker, I.L., Stadler, P.F.: RNA folding with hard and soft con-

straints. Algorithms Mol. Biol. 11(1), 8 (2016)
18. Witkos, M., Koscianska, T.E., Krzyzosiak, W.J.: Practical aspects of microRNA

target prediction. Curr. Mol. Med. 11(2), 93–109 (2011)
19. Ng, W.C., Soto-Acosta, R., Bradrick, S.S., Garcia-Blanco, M.A., Ooi, E.E.: The 5

and 3 untranslated regions of the flaviviral genome. Viruses 9(6), 137 (2017)
20. Special Programme for Research and Training in Tropical Diseases, World Health

Organization. Department of Control of Neglected Tropical Diseases, World Health
Organization. Epidemic and Pandemic Alert and Response: Dengue: Guidelines for
Diagnosis, Treatment, Prevention and Control. World Health Organization, Geneva
(2009)

21. Rodriguez-Roche, R., Gould, E.A.: Understanding the dengue viruses and progress
towards their control. BioMed Res. Int. 2013, 20 (2013)

22. Schmieder, R., Edwards, R.: Quality control and preprocessing of metagenomic
datasets. Bioinformatics 27(6), 863–864 (2011)

23. Sidahmed, A.M.E., Wilkie, B.: Endogenous antiviral mechanisms of RNA inter-
ference: a comparative biology perspective. In: Min, W.P., Ichim, T. (eds.) RNA
Interference. Methods in Molecular Biology (Methods and Protocols), vol. 623.
Humana Press, New York (2010). https://doi.org/10.1007/978-1-60761-588-0 1

24. Chambers, T.J., Monath, T.P., Maramorosch, K., Shatkin, A.J., Murphy, F.A.:
The Flaviviruses: Pathogenesis and Immunity

25. Thurner, C., Witwer, C., Hofacker, I.L., Stadler, P.F.: Conserved RNA secondary
structures in flaviviridae genomes. J. Gen. Virol. 85(5), 1113–1124 (2004)

26. Wang, Y., Zhang, P.: Recent advances in the identification of the host factors
involved in dengue virus replication. Virol. Sin. 32(1), 23–31 (2017)

27. Wen, W., et al.: Cellular microrna-mir-548g-3p modulates the replication of dengue
virus. J. Infect. 70(6), 631–640 (2015)

https://doi.org/10.1007/978-1-60761-588-0_1

Parallel Solution Based on Collective
Communication Operations for Phylogenetic

Bootstrapping in PhyML 3.0

Martha Torres(&) and Julio Oliveira da Silva

Núcleo de Biologia Computacional e Gestão de Informações Biotecnológicas
(NBCGIB), Universidade Estadual de Santa Cruz (UESC),

Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16,
Bairro Salobrinho, CEP, Ilhéus-Bahia 45662-900, Brazil

mxtd2000@yahoo.com.br

Abstract. PhyML is one of the most widely used phylogenetic tree recon-
struction programs. Phylogenetic bootstrapping is the classic technique to
measure the reliability of a tree that consists of creating disturbances to the
original alignment to generate replicates. PhyML 3.0 is an open source program
that already includes the bootstrap technique, and this technique is furthermore
parallelized in this version using MPI. The parallel solution is based on point-to-
point communication operations that are produced within a loop with “number
of replicates/number of processors” iterations, causing each processor to con-
struct one phylogenetic tree at a time. The purpose of this work was to modify
the parallel version in order to achieve better performance, by firstly replacing
the point-to-point communication operations with collective communication
operations, and secondly reducing the number of produced messages. The data
sets used in the performance evaluation include both synthetic and real data also
used by the programs PhyML, RaxML and fatsDNAml. Based on the perfor-
mance analysis, it was verified that the proposed solution outperforms the
original solution, thus proving that collective operations are more efficient than
point-to-point operations, and that the grouping of iterations for each processor
helps in the overall performance of the application. In addition, it was observed
that the proposed solution increases its speedup as the number of bootstrap
replicates increases, with a fixed number of processors.

Keywords: Phylogenetic tree reconstruction
Parallel phylogenetic bootstrapping � MPI (Message-Passing Interface)

1 Introduction

Among the programs used for phylogenetic inference, the authors highlight PhyML [1,
2] which is a software that performs the reconstruction process using the Maximum
Likelihood method. Recent comparisons of PhyML with other programs, which are
also at the top of the rankings for best software for reconstruction of phylogenetic trees
(such as RaxML [3] and GARLI [4]), indicate that PhyML is among the fastest and
most accurate alternatives. PhyML was as fast and accurate as the RAxML in terms of

© Springer Nature Switzerland AG 2018
R. Alves (Ed.): BSB 2018, LNBI 11228, pp. 133–145, 2018.
https://doi.org/10.1007/978-3-030-01722-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01722-4_13&domain=pdf

DNA and protein data [1]. Besides, [5] indicates that PhyML has been shown to be
faster than RAxML and GARLI when using DNA sequences, and showing the same
behavior using protein sequences.

Although the maximum likelihood method is considered as one of the best
approaches in the reconstruction of phylogenetic trees, this requires a great computa-
tional effort [1, 2]. This high computational cost is mainly due to exhaustive maximum
likelihood calculations and to the statistical strategy used for inferred tree certification
(in PhyML, bootstrap). PhyML is an open source program. The 3.0 version of PhyML
already includes the bootstrap technique to assess the uncertainty of the estimates for
the phylogeny, and this technique is furthermore parallelized in this version using the
MPI (Message Passing Interface) standard.

In [6] we presented a parallel version, using the shared memory paradigm with
OpenMP [7], on the internal maximum likelihood calculations of PhyML 3.0. Fur-
thermore, we compared the performance with the parallel MPI version of the boostrap,
giving similar execution times. When performing performance analysis of the hybrid
version, the combination of MPI (on bootstrap replicas) and OpenMP (on maximum
likelihood calculations), we noticed performance losses that led us to analyze in more
detail the original parallel implementation of the boostrap [6], giving rise to the current
work where changes are proposed to improve the performance of this version.

The parallel version of the PhyML 3.0 program is based on point-to-point com-
munication operations. These operations are produced “number of bootstrap
replicates/number of processors” times, causing each processor to construct one phy-
logenetic tree at a time. The purpose of this work was to modify this parallel version to
achieve better performance, firstly by replacing the point-to-point communication
operations with collective communication operations, and secondly by reducing the
number of produced messages.

The rest of the article is organized as follows. Section 2 describes the algorithm
used by PhyML 3.0 to perform parallel bootstrapping, as well as present the proposed
algorithm. Section 3 explains the methodology used in the study. Section 4 subse-
quently explains the obtained results, and Sect. 5 presents the final conclusions of the
present work.

2 Description of the Proposed Parallel Solution

Before describing the proposed solution, the authors explain the parallel bootstrap
solution implemented in PhyML 3.0 as shown in Fig. 1.

This algorithm has a main loop (lines 4 to 27), whose iterations correspond to the
number of bootstrap samples to be performed divided by the number of processors to
be used, i.e. if there are 100 bootstrap replicates and 4 processors, the value of nbRep
will be 25, and this loop will be executed 25 times.

For each iteration, the algorithm proceeds first, sending point-to-point messages:
processor 0 sends a different vector to each of the other processors, whose positions are
randomly shuffled, and which will be used to change input data on each processor.

134 M. Torres and J. O. da Silva

Once all processors have received their respective vector, each processor proceeds to
the calculation of likelihood and to obtaining a tree and its statistics at the same time.
This is exposed in Fig. 1 as INSTRUCTION BLOCK FOR CALCULATION OF
INDIVIDUAL TREE.

Subsequently, each processor respectively stores its tree information and its sta-
tistical data under “t” and “s” (lines 13 and 15). Next, they perform the point-to-point

Fig. 1. Original solution code

Parallel Solution Based on Collective Communication Operations 135

communication again, although this time each processor sends the data corresponding
to the calculated tree to processor 0.

Therefore, after performing the nbRep iterations, the main loop (lines 4 to 30) ends
and thereafter, processor 0 stores the final information taking all replicates of the
bootstrap into account, ending the consensus tree. In summary, this solution presents a
main loop that has nbRep iterations.

This value is directly proportional to the number of replicates and inversely pro-
portional to the number of processors used. The number of messages for each iteration
of this loop depends on the number of participating processors. In each iteration, the
processors perform the computation of a tree, produce P messages at the beginning and
2P messages of the same size at the end (P: number of processors), in addition to the
collective operation MPI_Reduce. The MPI standard creates the knowledge that the
collective operations are more efficient than point-to-point operations, since the MPI
library has efficient algorithms for these operations.

Thus, the authors propose a modification of the bootstrap algorithm (Fig. 1) to use
collective operations, as well as to increase the granularity of the algorithm. Figure 2
describes the proposed solution.

The idea is that processor 0 generates nbRep different vectors (lines 4 to 10), whose
positions are randomly shuffled, for each processor and stores them in a vector called
“novo_vector_s” (line 7).

Then, the collective operation MPI_Scatter is executed to distribute the nbRep
vectors for each processor and store them in the “novo_vetor” vector. Next, each
processor enters loop, lines 12 to 24, which locally calculates each tree for each
iteration by storing their information in vectors “novo_s” and “novo_t” (lines 17 to 20),
in addition to saving the partial information for the calculated trees under “score_par”
(lines 21 to 23). When the local calculation of the nbRep replicates ends (line 24), the
collective operation MPI_Reduce is performed to collect the total information for all
replicates. In addition, it is necessary to perform the collective operation MPI_Gather
twice to store the information of the trees and statistics for all the replicates in processor
0.

The number of messages in this solution depends on the implementation algorithm
for the collective operations, and on maximum P messages. Each processor locally
calculates the nbRep corresponding trees.

In this case, are sent at the start, maximum five messages and at the end, at most ten
messages, which have larger nbRep size than in the Fig. 1. Even so, the number of
messages has been reduced because the same number is sent in each iteration in the
original algorithm. In addition, the original algorithm is more exposed to problems
regarding fine granularity, since each processor calculates one tree at a time and then
receives the following message. In the case of the proposed solution, once the data is
received it is able to locally calculate nbRep trees so that the cost of sending the
messages can be masked by the local calculation, i.e. the granularity is higher for this
solution.

136 M. Torres and J. O. da Silva

3 Materials and Methods

The developed implementation was tested on the high-performance computer CACAU
(Center for Data Storage and Advanced Computing at the State University of Santa
Cruz). CACAU consists of 20 nodes, totaling 1.0 TeraFLOP. Each node has 2 Intel
(R) Xeon (R) E5430, 2.66 GHz, QuadCore, 16 GB RAM memory. The nodes are
interconnected across the Infiniband network. The authors have used the GNU/Linux
2.6.32-642 operating system, the gcc 5.4.0 compiler and the OpenMPI 2.1.0 library.

The methodology used to evaluate the proposed solution is the one most authors
use for this purpose [1, 10–13]. This methodology mainly consists of using a set of data
that most closely represents the real data. In our case, it was chosen a small dataset
representative of those available for performance evaluation. The data sets used in the
performance evaluation are divided into two groups: the first group refers to data sets

Fig. 2. Proposed solution code.

Parallel Solution Based on Collective Communication Operations 137

whose sequential execution time without bootstrap is shorter than one minute, which
are called small-size data sets, and the other group refers to data sets whose sequential
execution time without bootstrap is between 2 and 14 min, called medium-size data
sets.

In total, 18 small-size data sets were used of which 9 (data22.phy, dada24.phy,
data36.phy, data42.phy, data49.phy, data54.phy, data74.phy and data84.phy) are
simulated data available from1; this data sets includes 40 sequences and 500 sites, and
they have been generated by Seq-Gen [8] along random trees, using the GTR model,
with parameters estimated from HIV data [9]: nucleotide frequencies fA = 0.40,
fC = 0.20, fG = 0.22, fT = 0.18, four rate categories of gamma shape parameter 0.969,
and rates of nucleotide changes r(AC) = 1.72, r(AG) = 5.03, r(AT) = 0.84, r(CG) =
0.91, r(CT) = 7.70, r(GT) = 1 [10].

The other 9 data sets (protein_M1989, protein_M1381, protein_M1382, pro-
tein_M1384, protein_M1385, protein_M1889, protein_M1882, protein_M2638, pro-
tein_M2640 and protein_M2641) are real data sets consisting of actual protein
alignments and available at2. These data sets were used in [1], extracted from Treebase
[11]. The selection criteria used to choose the alignments was between 5 and 200
sequences shorter than 2,000 sites, in addition to being part of the 50 most recent
protein alignments registered under Treebase [1]. The authors have also used 4
medium-size data sets, two of which (Nucleic_M2792 and proteic_M2477 available
at3) are real data selected from Treebase and have been used in [1]. The other two are
101_SC and 150_SC which have respectively 101 and 150 sequences of several fungi,
and were used in [12, 13].

The input parameters used in Phyml 3.0 to perform the performance analysis were -
b 100 -s BEST -o tlr -c 4. The model used for the nucleotide was -m GTR and -m WAG
for the protein. In addition, the execution time provided by the Phyml 3.0 program was
used in the present study.

4 Results

The performance analysis has been divided into two parts. The first part uses small-size
data sets, and the second part uses medium-size data sets.

4.1 Small-Size Data Sets

In order to verify the correct implementation of the proposal and taking advantage of
the fact that the simulated data contain the true trees, a comparison was made between
the true trees and those provided by the original sequential solution, and the proposed
parallel solution.

1 http://www.atgc-montpellier.fr/phyml/benchmarks/data/simu/.
2 http://www.atgc-montpellier.fr/phyml/benchmarks/index.php?ben=md.
3 http://www.atgc-montpellier.fr/phyml/benchmarks/.

138 M. Torres and J. O. da Silva

http://www.atgc-montpellier.fr/phyml/benchmarks/data/simu/
http://www.atgc-montpellier.fr/phyml/benchmarks/index.php%3fben%3dmd
http://www.atgc-montpellier.fr/phyml/benchmarks/

The comparison was made using the Ktreedist program [14], which taken both
topology and branch length information of a phylogenetic tree into account. This
program computes a K-score that measures overall differences in the relative branch
length and topology of two phylogenetic trees after scaling one of the trees to have a
global divergence which is as similar as possible to the other tree. High K-scores
indicate a poor match between the estimated tree and the reference tree. Lower K scores
from Ktreedist indicate that two trees are more similar in terms of differences of the
relative branch length and topology.

Table 1 shows the K-score values, in this case the true tree available at4 was used as
the reference tree comparing it with the result of the original sequential program
(Original seq) and the proposed solution using 2 and 32 processors (2P and 32P).

The results indicate that the proposed solution provides equivalent results to the
original version and this result is practically unaffected when using a different number
of processors, the difference between the results ranging from 0.00002 to 0.0006.

Another way to verify the correct implementation of the proposed solution is to
compare the final log likelihood values to real data. Therefore, Table 2 summarizes the
final log likelihood values of real small-size data sets for 2 and 32 processors, com-
paring the proposed solution with the original solution. Due to the nature of the Phyml
program, each execution of the program provides a different final tree, even though it
may be observed that the likelihood values are very close to one another. The maxi-
mum difference was in the order of 0.02581. Therefore, our implementation presented
the same behavior that original solution.

Table 3 lists the execution times in seconds for the original (O) and proposed
(P) version for both 8 and 16 processors, and the run time improvement (I, in %) for the
proposed solution over the original.

Table 1. K-score values of original sequential solution (Original seq) and the proposed solution
for 2 (2P) and 32 processors (32P).

Data K-score
Original seq Proposed(2P) Proposed(32P)

data22.phy 0.03858 0.03855 0.03865
data24.phy 0.04133 0.04120 0.04132
data26.phy 0.06541 0.06524 0.06565
data36.phy 0.04813 0.04804 0.04814
data42.phy 0.05305 0.05303 0.05305
data49.phy 0.03984 0.03977 0.03979
data54.phy 0.06784 0.06822 0.06803
data74.phy 0.05801 0.05822 0.05818
data84.phy 0.02648 0.02654 0.02652

4 http://www.atgc-montpellier.fr/phyml/benchmarks/index.php?ben=sm.

Parallel Solution Based on Collective Communication Operations 139

http://www.atgc-montpellier.fr/phyml/benchmarks/index.php%3fben%3dsm

For 8 and 16 processors, the proposed version always outperformed the original
version. In the case of 8 processors, the proposed version showed average gains of
10.30%. For 16 processors, the average improvement was 45.73%. It can be noticed
that the original version does not scale, i.e. the execution time using 8 processors was

Table 2. The final log likelihood values for 2 and 32 processors, comparing the proposed and
original solution to real data

Data 2P 32P
Proposed Original Proposed Original

M1381 −12077.99995 −12078.0031 −12077.99932 −12078.00295
M1382 −12335.18897 −12335.18706 −12335.18880 −12335.19031
M1384 −2882.79360 −2882.79319 −2882.79329 −2882.79321
M1385 −5609.46830 −5609.47086 −5609.46969 −5609.46957
M1882 −6191.98897 −6191.98891 −6191.98863 −6191.98891
M1989 −3179.91146 −3179.90668 −3179.91570 −3179.91490
M2638 −1690.35010 −1690.33670 −1690.33655 −1690.33346
M2640 −2510.78407 −2510.78343 −2510.78139 −2510.78273
M2641 −5153.58044 −5153.57942 −5153.58347 −5153.58195

Table 3. Execution times in seconds for the proposed (P) and original (O) solutions for 8 (8P)
and 16 (16P) processors, and improvement (I) percentage of the proposed solution.

Data 8P 16P
O P I O P I

Data22 297 269 9.43 317 172 45.74
Data24 251 215 14.34 246 129 47.56
Data26 284 268 5.63 285 158 44.56
Data36 278 241 13.31 277 151 45.49
Data42 240 223 7.08 259 140 45.95
Data49 230 220 4.35 244 133 45.49
Data54 253 229 9.49 266 148 44.36
Data74 218 197 9.63 229 127 44.54
Data84 250 214 14.40 249 127 49.00
M1381 303 273 9.90 294 176 40.14
M1382 346 274 20.81 327 170 48.01
M1384 231 201 12.99 231 132 42.86
M1385 288 262 9.03 289 156 46.02
M1882 184 176 4.35 199 109 45.23
M1989 360 334 7.22 393 185 52.93
M2638 383 331 13.58 389 200 48.59
M2640 420 383 8.81 440 240 45.45
M2641 397 353 11.08 385 226 41.30

140 M. Torres and J. O. da Silva

shorter than the one using 16. In contrast, the proposed version continues to scale with
16 processors, and a significant performance gain was therefore obtained. It is
important to point out that in the original solution, the overhead increases with the
increase in the number of processors, thus impairing its performance.

Table 4 lists the execution times in seconds for the original (O) and proposed
(P) version for both 32 and 64 processors, and the run time improvement (I, in %) for
the proposed solution over the original. Again, the original version does not scale while
the proposed version continues to scale.

Next, a study was carried out on the behavior of the proposed solution with respect
to its scalability and efficiency. Table 5 shows speedup (S) described in formula (1),
and efficiency (E), described in formula (2), for 32 and 64 processors.

SpeedupP ¼ Sequential Execution Time=Parallel Execution TimeP ð1Þ

EfficiencyP ¼ SpeedupP=P ð2Þ

It shows an important feature of the proposed solution, which is that the solution
continues to reduce the execution time even using 64 processors. This is reflected in the
increase in speedup which still presents gain with 64 processors, with respect to the

Table 4. Execution times in seconds for the proposed (P) and original (O) solutions for 32 (16P)
and 64 (64P) processors, and improvement (I) percentage of the proposed solution.

Data 32P 64P
O P I O P I

Data22 486 114 76.54 974 81 91.68
Data24 411 90 78.10 805 64 92.05
Data26 477 108 77.36 957 80 91.64
Data36 434 102 76.50 907 69 92.39
Data42 416 99 76.20 832 70 91.59
Data49 399 88 77.94 794 61 92.32
Data54 434 104 76.04 834 66 92.09
Data74 376 86 77.13 752 61 91.89
Data84 375 85 77.33 778 59 92.42
M1381 493 124 74.85 932 80 91.42
M1382 505 119 76.44 1013 83 91.81
M1384 402 93 76.87 763 59 92.27
M1385 477 116 75.68 909 86 90.54
M1882 308 77 75.00 620 50 91.94
M1989 598 130 78.26 1154 90 92.20
M2638 580 131 77.41 1204 92 92.36
M2640 710 154 78.31 1449 108 92.55
M2641 653 161 75.34 1302 108 91.71

Parallel Solution Based on Collective Communication Operations 141

speedup of 32 processors. The efficiency is decreasing because the speedup values are
increasingly far from the ideal value (linear speedup); this means that by increasing the
number of processors, the overhead generated by the passage of messages in collective
operations increases the total execution time, and each time the local execution time is
reduced. The average speedup for 32 and 64 processors was respectively 15.08 and 21.9.
The average efficiency for 32 and 64 processors was respectively 41.13% and 34.22%.

4.2 Medium-Size Data Sets

The results obtained for medium-size data sets are presented as follows. Table 6 shows
the execution times in seconds for the original (O) and proposed (P) version for both 16
and 24 processors, and the run time improvement (I, in %) for the proposed solution
over the original.

This table shows that the proposed solution improves the execution times by an
average of 45.95. In the case of 24 processors, the original solution has a longer
execution time than using 16, i.e. it does not scale anymore, while the proposed
solution continues to scale.

Table 5. Speedup (S) and efficiency (E) for 32 and 64 processors for medium-size data sets.

Data S32 S64 E32 E64

Data22 15.69 22.09 49.04 34.51
Data24 15.01 21.11 46.91 32.98
Data26 15.45 20.86 48.29 32.60
Data36 15.22 22.49 47.55 35.14
Data42 14.71 20.80 45.96 32.50
Data49 15.75 22.72 49.22 35.50
Data54 14.29 22.52 44.65 35.18
Data74 15.37 21.67 48.04 33.86
Data84 16.46 23.71 51.43 37.05
M1381 13.94 21.60 43.55 33.75
M1382 15.18 21.77 47.45 34.02
M1384 14.78 23.31 46.20 36.41
M1385 14.29 19.28 44.67 30.12
M1882 13.60 20.94 42.49 32.72
M1989 15.91 22.98 49.71 35.90
M2638 16.66 23.99 52.08 37.48
M2640 16.28 22.79 50.87 35.61
M2641 12.88 19.57 40.26 30.57

142 M. Torres and J. O. da Silva

Table 7 shows the execution times in seconds for the original (O) and proposed
(P) version for 32, 64 and 72 processors, and the run time improvement (I, in %) for the
proposed solution over the original. This table shows that the proposed solution also
scales for medium-size data sets.

Next, a study was carried out on the behavior of the proposed solution with respect
to its scalability and efficiency. Table 8 shows speedup (S) described in formula (1),
and efficiency (E), described in formula (2), for 32 and 64 processors. The proposed
solution continues to scale when using 64 processors, and the speedup value continues
to rise although efficiency is decreasing as it is getting further away from the ideal
speedup value. The average speedup was 14.76 and 21.21 for 32 and 64 processors
respectively, and the average efficiency was 46.15% and 36.14% for 32 and 64 pro-
cessors respectively.

Table 6. Execution times in seconds for the proposed (P) and original (O) solutions for 16 (16P)
and 24 (24P) processors, and improvement (I) percentage of the proposed solution.

Data 16P 24P
O P I O P I

proteic_M2477 2467 1469 40.45 3313 1123 66.10
nucleic_M2792 9682 5241 45.87 13150 4560 65.32
101_SC 12107 5824 51.89 13598 6309 53.60
150_SC 14324 7775 45.72 18462 6372 65.49

Table 7. Execution times in seconds for the proposed (P) and original (O) solutions for 32
(16P), 64 (24P) and 72 (72P) processors, and improvement (I) percentage of the proposed
solution.

Data 32P 64P 72P
O P I O P I O P I

proteic_M2477 4264 1015 76.20 8561 658 92.31 9553 642 93.3
nucleic_M2792 16918 3458 79.56 32242 2865 91.11 35709 2549 92.86

Table 8. Speedup (S) and efficiency (E) for 32 and 64 processors for medium-size data sets.

Data S32 S64 E32 E64

proteic_M2477 14.24 21.97 44.51 34.33
nucleic_M2792 16.47 19.88 51.47 31.06
101_SC 12.61 19.31 39.41 30.17
150_SC 15.71 23.69 49.11 36.99

Parallel Solution Based on Collective Communication Operations 143

In order to show how the proposed solution behaves with increasing number of
bootstrap replicates, Table 9 shows the speedup for 32 processors for bootstrap values
of 100, 300 and 1000.

Table 9 enables the conclusion that the speedup improved when increasing the
number of bootstrap replicates, i.e. the proposed solution scales when increasing the
number of bootstraps. This means that, as the size of the local task significantly
increases, the more efficient the solution becomes.

5 Conclusions

The proposed solution always outperforms the original solution, showing that collec-
tive operations are more efficient than point-to-point operations, and that the grouping
of iterations for each processor helps in the overall performance of the application. The
proposed solution always scaled in the experiments, and up to 80 processors were used
always resulting in less time.

Based on the analysis, it was verified that the proposed solution increases its
speedup, which translates into increased efficiency as the number of bootstraps
increases with number of fixed processors. In other words, the solution becomes more
efficient as it increases the amount of local iterations by diluting the communication
overhead for collective operations.

Based on the obtained results, it is possible to conclude that as the number of
processors increases, the communication overhead of point-to-point operations and the
increase in the number of messages considerably affects the original solution. More-
over, for fine-granularity data sets this solution only scaled up to 8 processors, and with
coarser granularity it scaled up to 16 processors. Additionally, the proposed solution
presented similar results for speedup and efficiency for short and medium-size data sets,
that is to say the influence of the individual execution time of each iteration was smaller
in this type of solution.

For purposes of future analysis, one can consider large-size data sets that will
certainly positively affect the performance of the proposed solution because the
increase in execution time for one iteration represents increasing the local granularity
masking the communication overheads. Future work is also expected to explore col-
lective operations of the MPI3 standard to increase the efficiency of results.

Acknowledgments. This study was supported by The State University of Santa Cruz (UESC).

Table 9. Speedup of 32 processors (S32) using 100 (100B), 300 (300B) and 1000 (1000B)
bootstrap of medium-size data sets

S32 100B 300B 1000B

proteic_M2477 14.24 22.33 27.63
nucleic_M2792 16.47 22.23 28.92

144 M. Torres and J. O. da Silva

References

1. Guindon, S., et al.: New algorithms and methods to estimate maximum-likelihood
phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59(3), 307–321 (2010).
https://doi.org/10.1093/sysbio/syq010

2. Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood. Syst. Biol. 52(5), 696–704 (2003). https://doi.org/10.
1080/10635150390235520

3. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006). https://doi.
org/10.1093/bioinformatics/btl446

4. Zwickl, D.J.: Genetic algorithm approaches for the phylogenetic analysis of large biological
sequence datasets under the maximum likelihood criterion. Thesis (Doctor of Philosophy),
Faculty of the Graduate School, University of Texas at Austin, Austin, Texas, 115 f (2006)

5. Criscuolo, A.: morePhyML: improving the phylogenetic tree space exploration with PhyML
3. Mol. Phylogenet. Evol. 61(3), 944–948 (2011). https://doi.org/10.1016/j.ympev.2011.08.
029

6. Silva, J.O., Orellana, E., Torres, M.: Development of a parallel version of PhyML 3.0 using
shared memory. IEEE Latin Am. Trans. 15(5), 959–967 (2017). https://doi.org/10.1109/
TLA.2017.7912593

7. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel
Programing in OpenMP. Morgan Kaufmann, San Francisco (2001)

8. Rambaut, A., Grassly, N.C.: Seq-Gen: an application for the Monte Carlo simulation of
DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13, 235–238
(1997). https://doi.org/10.1093/bioinformatics/13.3.235

9. Posada, D., Crandall, K.A.: Selecting the best-fit model of nucleotide substitution. Syst. Biol.
50(4), 580–601 (2001)

10. Anisimova, M., Gascuel, O.: Approximate likelihood-ratio test for branches: a fast, accurate,
and powerful alternative. Syst. Biol. 55, 539–552 (2006). https://doi.org/10.1080/10635150
600755453

11. Sanderson, M.J., Donoghue, M.J., Piel, W., Eriksson, T.: TreeBASE: a prototype database of
phylogenetic analyses and an interactive tool for browsing the phylogeny of life. Am. J. Bot.
81, 183 (1994)

12. Stamatakis, T., Ludwig, Meier H.: RAxML-III: a fast program for maximum likelihood-
based inference of large phylogenetic trees. Bioinformatics 21(4), 456–463 (2005). https://
doi.org/10.1093/bioinformatics/bti191

13. Olsen, G., Matsuda, H., Hagstrom, R., Overbeek, R.: fastDNAmL: a tool for construction of
phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10,
41–48 (1994). https://doi.org/10.1093/bioinformatics/10.1.41

14. Soria-Carrasco, V., Talavera, G., Igea, J., Castresana, J.: The K tree score: quantification of
differences in the relative branch length and topology of phylogenetic trees. Bioinformatics
23, 2954–2956 (2007). https://doi.org/10.10193/bioinformatics/btm466

Parallel Solution Based on Collective Communication Operations 145

http://dx.doi.org/10.1093/sysbio/syq010
http://dx.doi.org/10.1080/10635150390235520
http://dx.doi.org/10.1080/10635150390235520
http://dx.doi.org/10.1093/bioinformatics/btl446
http://dx.doi.org/10.1093/bioinformatics/btl446
http://dx.doi.org/10.1016/j.ympev.2011.08.029
http://dx.doi.org/10.1016/j.ympev.2011.08.029
http://dx.doi.org/10.1109/TLA.2017.7912593
http://dx.doi.org/10.1109/TLA.2017.7912593
http://dx.doi.org/10.1093/bioinformatics/13.3.235
http://dx.doi.org/10.1080/10635150600755453
http://dx.doi.org/10.1080/10635150600755453
http://dx.doi.org/10.1093/bioinformatics/bti191
http://dx.doi.org/10.1093/bioinformatics/bti191
http://dx.doi.org/10.1093/bioinformatics/10.1.41
http://dx.doi.org/10.10193/bioinformatics/btm466

Author Index

Alexandrino, Alexsandro Oliveira 1
Almeida, Nalvo F. 114

Belal, Nahla 90
Brigido, Marcelo M. 103
Brígido, Marcelo 50
Brito, Klairton Lima 38

Campos, Sérgio Vale Aguiar 58
Cunha, Luís 26

da Glória de Souza, Danielle 58
da Silva, Julio Oliveira 133
da Silva, Waldeyr M. C. 50
de A. Filho, João Luiz 78
de Carvalho, Andre C. P. L. F. 103
del Real Tamariz, Annabell 78
Dias, Adriana Abalen Martins 58
Dias, Ulisses 14, 38
Dias, Zanoni 1, 14, 38
Diekmann, Yoan 26

El Sonbaty, Yasser 90
Emília Walter, Maria 124

Faria-Campos, Alessandra Conceição 58
Fernandes, Rafael L. 114
Fernandez, Jorge H. 78
Fertin, Guillaume 14

Güths, Rogério 114

Holanda, Maristela 50

Jean, Géraldine 14

Kowada, Luis 26
Kümmel, Bruno C. 103

Medeiros, Giselle Marina Diniz 58
Miranda, Guilherme Henrique Santos 1

Negri Lintzmayer, Carla 1

Oliveira, Andre Rodrigues 14, 38

Pimenta, Cristiano Guimarães 58

Raiol, Tainá 124
Ralha, Célia G. 66, 103
Rezende, Carolina Andrade 58
Rocha, Jerônimo Nunes 58

Shouman, Maram 90
Silva, Waldeyr M. C. 66
Souza, Daniel S. 66
Stoye, Jens 26

Telles, Guilherme P. 114
Torres, Martha 133

Valadares, Andressa 124

Walter, Maria Emília M. T. 50, 66, 103, 114
Wercelens, Polyane 50

	Preface
	Organization
	Contents
	Sorting -Permutations by -Operations
	1 Introduction
	2 Definitions
	3 Inversions-Based Approximation Algorithms
	4 Breakpoints-Based Approximation Algorithms
	5 Experimental Results
	6 Conclusion
	References

	Super Short Reversals on Both Gene Order and Intergenic Sizes
	1 Introduction
	2 Definitions
	3 Sorting Permutations by Super Short Reversals
	4 Conclusion
	References

	Identifying Maximal Perfect Haplotype Blocks
	1 Introduction
	2 Basic Definitions
	3 Algorithm
	4 Results
	4.1 Data
	4.2 Our Implementation of Algorithm1
	4.3 Interpretation of Results

	5 Conclusion
	References

	Sorting by Weighted Reversals and Transpositions
	1 Introduction
	2 Background
	2.1 Breakpoints and Strips
	2.2 Cycle Graph

	3 Approximation Algorithms for SbWRT
	3.1 The 2-Approximation Algorithm
	3.2 The 5/3-Approximation Algorithm
	3.3 Investigating Different Weights for Reversals and Transpositions

	4 Conclusion
	References

	Graph Databases in Molecular Biology
	1 Introduction
	2 NoSQL Graph Databases
	3 Graph Databases Applied to Omics Data
	4 Discussion and Conclusion
	References

	ViMT - Development of a Web-Based Vivarium Management Tool
	1 Introduction
	2 Related Work
	3 Vivarium Operations
	4 The ViMT System
	4.1 Back-End
	4.2 Front-End

	5 Conclusion
	6 Availability
	References

	An Argumentation Theory-Based Multiagent Model to Annotate Proteins
	1 Introduction
	2 Background
	2.1 Protein Annotation Strategies
	2.2 Multiagent System and Argumentation Theory

	3 The ArgMAS-AP Model
	3.1 Annotation Strategy Module
	3.2 Argumentation Module

	4 A Theoretical Example with Real Data
	4.1 Data, Parameters and Agents' Simulation
	4.2 Discussion

	5 Conclusion
	References

	AutoModel: A Client-Server Tool for Intuitive and Interactive Homology Modeling of Protein-Ligand Complexes
	Abstract
	1 Introduction
	1.1 The Homology Modeling Prediction Method

	2 Implementation
	2.1 Inside the AutoModel Architecture
	2.2 The AutoModel Server
	2.3 The AutoModel Client

	3 Results and Discussion
	3.1 AutoModel Interface and Normal Modeling Session
	3.2 Comparison of Alignment Procedures and Modeling Study Case

	4 Conclusions
	4.1 Availability and Requirements

	Acknowledgements
	References

	Detecting Acute Lymphoblastic Leukemia in down Syndrome Patients Using Convolutional Neural Networks on Preprocessed Mutated Datasets
	1 Introduction
	2 Related Work
	3 Proposed Model
	4 Experiment and Results
	5 Conclusion and Future Work
	References

	S2FS: Single Score Feature Selection Applied to the Problem of Distinguishing Long Non-coding RNAs from Protein Coding Transcripts
	1 Introduction
	2 The S2FS Technique
	2.1 Datasets
	2.2 Single Score Feature Selection
	2.3 Experiments

	3 Results
	4 Conclusion
	References

	A Genetic Algorithm for Character State Live Phylogeny
	1 Introduction
	2 A Genetic Algorithm for Live Phylogeny
	2.1 Fitness Functions
	2.2 Natural Selection, Mutations and Recombination

	3 Results
	3.1 Parameter Calibration
	3.2 Two Case Studies

	4 Conclusion
	References

	A Workflow for Predicting MicroRNAs Targets via Accessibility in Flavivirus Genomes
	1 Background
	2 Workflow for Prediction of MicroRNAs Targets via Accessibility
	3 Case Study
	4 Conclusion
	References

	Parallel Solution Based on Collective Communication Operations for Phylogenetic Bootstrapping in PhyML 3.0
	Abstract
	1 Introduction
	2 Description of the Proposed Parallel Solution
	3 Materials and Methods
	4 Results
	4.1 Small-Size Data Sets
	4.2 Medium-Size Data Sets

	5 Conclusions
	Acknowledgments
	References

	Author Index

