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Abstract. Word embeddings have recently been widely used to model
words in Natural Language Processing (NLP) tasks including semantic
similarity measurement. However, word embeddings are not able to cap-
ture polysemy, because a polysemous word is represented by a single
vector. To address this problem, learning multiple embedding vectors for
different senses of a word is necessary and intuitive. We present a novel
approach based on a Chinese lexicon to learn sense embeddings. Every
sense is represented by a vector that consists of semantic contributions
made by senses explaining it. To make full use of the lexicon’s advan-
tages and address its drawbacks, we perform representation expansion to
make sparse embedding vectors dense and disambiguate in gloss polyse-
mous words by semantic contribution allocation. Thanks to the use of an
intuitive way of noise filtering, we achieve noticeable improvement both
in dimensionality reduction and semantic similarity measurement. We
perform experiments on a translated version of Miller-Charles dataset
and report state-of-the-art performance on semantic similarity measure-
ment. We also apply our approach to SemEval-2012 Task4: Evaluating
Chinese Word Similarity, which uses a translated version of wordsim353
as the standard dataset, and our approach also noticeably outperforms
conventional approaches.

1 Introduction

To date, word embeddings [1] are widely used in NLP tasks including semantic
similarity measurement and are proved to be effective. Most word embeddings,
such as word2vec [2] and GloVe [3], are based on the distributional model that
leverages neural networks to model expected contexts of words. However, word
embeddings suffer from two major limitations. The first is that word embeddings
are unable to capture polysemy since every word is represented by a single vector.
The second is that most word embeddings are based on distributional statistics
of corpora, which have no connection to semantic inventories, making it hard to
learn reliable and accurate representations for infrequent words.
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There are many research works seeking to address these problems by learn-
ing sense embeddings. [4–6] decompose word embeddings into multiple proto-
types corresponding to distinct meanings of words. The main drawback of these
approaches is that they have no connection to sense inventories. Thus they do
not know which words are polysemous, how many senses they have. Besides,
the mapping from sense embeddings to any sense inventory has to be con-
ducted manually. [7,8] construct synsets using semantic resources like WordNet
[9] and Wikipedia first and then leverage them to decompose word embeddings.
Word Sense Disambiguation(WSD) algorithms or sense clustering algorithms
are adopted to construct synsets. So the unsatisfactory accuracy and coverage
of WSD algorithms and sense clustering algorithms become the bottlenecks.
Instead of decomposing word embeddings, [10,11] learn sense embeddings from
sense annotated corpus. Because there is no proper dataset with manual sense
annotation, they utilize WSD algorithms or sense clustering algorithms to gen-
erate sense annotated corpus first. So they suffer from the non-optimal WSD
algorithms and sense clustering algorithms too. Bilingual resources are lever-
aged by [12,13] for sense embedding learning. They hold an assumption that
the translation of words and their contexts can at least partially be helpful for
polysemy resolving in the original language. Establishing a connection to some
sense inventory is hard for them too.

With the shortage of proper datasets with manual sense annotation, we real-
ize lexicons have several advantages for sense embedding learning. First, lexicons
are redacted by linguistic experts and are semantically authoritative. Besides, we
can directly specify polysemous words’ senses. What’s more, infrequent words
and senses are also explained clearly, which would significantly help to improve
coverage and accuracy for embedding learning of infrequent senses.

In this article, we propose a novel approach based on a Chinese lexicon to
learn sense embeddings. In Chinese, the combination of words usually accom-
panies with semantic coupling. So we assume words in glosses have semantic
contributions to the words explained. Thus a word can be represented by the
semantic contributions made by words explaining it. Similarly, a sense can be
represented by a vector that consists of semantic contributions made by senses
explaining it too. But there are some problems to be addressed if we want to
use a lexicon as the only semantic resource. The first is that some glosses are
so short that the embedding vectors learned are very sparse. The second is that
we can not directly distinguish what a polysemous word in some gloss actually
means. The third is that the amount of senses is large making learned embedding
vectors high dimensional.

To address the problem caused by short glosses, we perform representation
expansion to make sparse embedding vectors dense. To guarantee and acceler-
ate convergence, we use an attenuation parameter to control the process. Then,
instead of telling what a polysemous word in some gloss actually means, we assign
each of its senses a weight using softmax algorithm and allocate its semantic con-
tributions to its senses, which we call semantic contribution allocation. Instead
of matrix calculation, we perform dimensionality reduction in a more intuitive
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way. If a sense makes few contributions to other senses, we treat its contribu-
tions as noise and filter them out. So vector dimension is reduced during noise
filtering. Experimental results report that executing representation expansion
and semantic contribution allocation in sequence iteratively improves the per-
formance of similarity measurement rapidly. And a proper threshold for noise
filtering is significantly helpful to performance improvement and dimensionality
reduction.

Our approach has following advantages. The first is that a lexicon is the only
semantic resource. Thus no more manual annotation effort is needed. The second
is that it can learn accurate representations for infrequent senses. The third is
that there are few parameters to tune with low training cost. The final one is
the intuitive way of noise filtering successfully balances dimensionality reduction
and performance improvement.

2 Algorithm

As introduced in the previous section, we assume that a word explaining another
word in gloss has a semantic contribution to the one explained. So a word can be
represented by the semantic contributions made by words explaining it. Similarly,
a sense can be represented by a vector that consists of semantic contributions
made by senses in sense gloss. Here we use a matrix M ∈ RNsense×Nsense to
denote all the semantic contributions, where Nsense is the number of sense gloss
in the lexicon. And we want to learn an accurate estimation of all the entries
in M . More specifically, we set M i,j as the semantic contribution to the ith
sense made by the jth sense. Then M i, the ith row of the matrix, is a vector
consists of semantic contributions to the ith sense made by all senses, which is the
representation of the ith sense. If we observe the matrix in another perspective,
we can find M j , the jth column of the matrix, consists of contributions made
by the jth sense to all senses.

A lexicon has several advantages for sense embedding learning but it also has
some drawbacks. The first is that some glosses are so short that sense embed-
ding vectors learned are very sparse. Besides, we can not directly tell what a
polysemous word in some gloss actually means. What’s more, the large amount
of sense makes embedding vectors high dimensional.

To address the problem of sparse embeddings caused by short glosses, we do
representation expansion to make sparse vectors dense. And instead of trying
to figure out what a polysemous word actually means, we assign each of its
senses a weight using softmax algorithm and allocate its semantic contributions
to its senses, which we call semantic contribution allocation. It needs to be
pointed out that every time M is modified by initialization or representation
expansion, semantic contribution allocation should be carried out immediately.
This is because changes in vectors induce changes in sense weight assignment.
So we try to learn more accurate representations by executing representation
expansion and semantic contribution allocation in sequence iteratively. Finally,
dimensionality reduction is realized by filtering out the semantic contributions
regarded as noise. The overview of the entire algorithm is shown in Algorithm 1.
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Algorithm 1. Overview

1: Initialization
2: Semantic contribution allocation
3: while ( consistency with standard dataset increases):
4: Representation expansion
5: Semantic contribution allocation
6: Dimensionality reduction

2.1 Initialization

We initialize M with zeroes at first. Then we scan sense glosses in the lexi-
con and compute initial semantic contributions made by words. Here we use
wordContributioni,k to denote the semantic contribution to the ith sense made
by the kth word. It is calculated like tf-idf [14]. Here tf(sensei, wordk) denotes
the term frequency of the kth word in the ith sense’s gloss and ef(wordk) denotes
the number of glosses that the kth word appears in.

wordContributioni,k = (1 + log tf(sensei, wordk)) × log
Nsense

ef(wordk)
(1)

According to the principle of maximum entropy, we allocate a polysemous
word’s semantic contributions to its senses equally. Here Nwordk

is the number of
senses of the kth word. For simplicity and without loss of generality, we suppose
sensej ∈ wordk, which means the jth sense is from the kth word.

M i,j =
wordContributioni,k

Nwordk

(2)

2.2 Semantic Contribution Allocation

Since we can not directly tell what a polysemous word in some gloss actually
means, we choose to allocate its semantic contributions to its senses. Then what
we should consider is weight assignment. We assume that if one sense is seman-
tically closer to the explained sense, it deserves higher weight. Here we use
weight(i, j) to denote the weight of the jth sense explaining the ith sense. We
try to measure the semantic distance in two different ways. distanceE(i, j) is
the Euclidean distance between the ith sense and jth sense, i.e. M i and M j .
And distanceC(i, j) is the cosine of the angle of M i and M j . For simplicity and
without loss of generality, we suppose sensej ∈ wordk.

When using distanceE(i, j) to measure the semantic distance, we assign
weights in the following way. To make sure the weights lie in a reasonable inter-
val, we use μ to control the process.

weight(i, j) =
e− distanceE(i,j)2

µ

∑
sensel∈wordk

e− distanceE(i,l)2
µ

(3)
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When using distanceC(i, j) to measure distance, the weights are assigned in
a different way. And we use ε for smoothing.

weight(i, j) =
edistanceC(i,j) − 1 + ε

∑
sensel∈wordk

(edistanceC(i,l) − 1 + ε)
(4)

After the weights are determined, senses’ semantic contributions are updated
in the following way.

Mnew
i,j = (

∑

sensel∈wordk

M i,l) × weight(i, j) (5)

2.3 Representation Expansion

Suppose we have learned embedding vectors for all senses in the lexicon but they
are sparse. How can we make them dense? Since every sense is represented by
a vector that consists of semantic contributions, we can expand a sense’s sparse
embedding vector by adding a weighted sum of learned embedding vectors. An
intuitive explanation is that if sense B has a direct semantic contribution to sense
A, then senses that have direct semantic contributions to sense B have indirect
contributions to sense A. And it can be implemented by adding embedding vector
of sense B with a weight to the one of sense A.

Intuitively, a sense’s semantic contribution plays a key role in representation
expansion. For example, suppose the embedding vector of sense A is sparse, and
the entries in it corresponding to sense B and sense C are positive, which means
sense B and sense C have semantic contributions to sense A. If sense B has a
larger semantic contribution than sense C, the vector of sense B deserves a larger
weight than the one of sense C in the expansion.

Besides, we assume that a sense’s embedding vector is not semantically equal
to the sense itself. While we are expanding representations, we are losing seman-
tic accuracy. And the more times we do representation expansion, the more
accuracy we lose. Here n denotes how many times we do representation expan-
sion and η is the attenuation parameter to denote accuracy loss. We express
their relationship in the following way, while α is the initial value we need to
figure out.

η(n) = αn (6)

Then the expansion of a sparse embedding vector is realized by adding all
senses’ embedding vectors multiplied by corresponding semantic contributions
and η. The process can be described as follows, where M i

new is the updated
representation of the ith sense.

M i
new = M i + η ×

Nsense∑

j=1

M i,j · M j (7)

After integration, we can directly update M ,where Mnew denotes the
updated M .

Mnew = M + η × M2 (8)
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2.4 Dimensionality Reduction

As illustrated above, M j is the jth column of M and consists of the semantic
contributions to all senses made by the jth sense. Here we use contribution(i)
to denote the sum of semantic contributions made by the ith sense.

contribution(i) =
Nsense∑

j=1

M j,i (9)

We assume if contribution(i) is very small, it is very likely to be noise and
has a negative effect on semantic similarity measurement. More specifically, if
contribution(i) is small, the ith column would be removed from M . Thus we set
a threshold to filter noise out, which at the same time reduces the dimension of
embedding vectors.

3 Experiment and Evaluation

In this section, we first perform experiments on a translated version of Mill-
Charles dataset [15]. With attenuation parameter set to 0.7, which is randomly
chosen, we try to figure out whether a stop word list is helpful to semantic
similarity measurement and using which distance metric is better for semantic
contribution allocation. Then, we try to find out the relationship between the
attenuation parameter and the correlation coefficient with the dataset. With
an ideal attenuation parameter, we try noise filtering, which is also a way of
dimensionality reduction, and we want to find a threshold that balances dimen-
sionality reduction and semantic similarity measurement performance. After all
these are finished, we can determine attenuation parameter for representation
expansion, distance metric for semantic contribution allocation and the thresh-
old for dimensionality reduction. Then, we compare with some conventional
approaches. Finally, we apply our approach to SemEval-2012 Task4, Evaluat-
ing Chinese Word Similarity, for another evaluation.

3.1 Preparation

We use Modern Chinese Dictionary [16] as our corpus. Before applying it to
sense embedding learning, some preprocessing is necessary. First, we filter out
meaningless symbols like phonetic notations. Then we filter out some sentences
that redirect pages. Finally, we filter out some descriptions about pragmatics.

The cosine of the angle of two embeddings is computed as semantic simi-
larity. When we compute the semantic similarity between two words, especially
polysemous words, we choose one sense from each word and try all possible com-
binations. For example, the similarity between the mth word and the nth word,
wordSimilarity(m,n), is computed as follows.

wordSimilarity(m,n) = max
sensei∈wordm,sensej∈wordn

M i · M j

||M i|| × ||M j || (10)
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We first perform experiments on a dataset based on Miller and Charles
dataset [17]. Because the original dataset is in English, we choose a translated
version [15]. Some words that are not written as an entry in the lexicon are
removed. The correlation between the dataset and our result is evaluated by
Pearson correlation coefficient.

We then switch to the standard dataset of SemEval-2012 Task4: Evaluating
Chinese Word Similarity, which is a translated version of wordsim353 [18]. And
the task uses Kendall correlation coefficient as the evaluation metric.

3.2 Experiment and Result

Whether to Use a Stop Word List and Which Distance Metric Is
Better. Setting attenuation parameter to 0.7, we perform semantic contribution
allocation based on the two distance metrics mentioned above, with or without
a stop word list. As is shown in Table 1, results show us that an improper stop
word list really does harm to semantic similarity measurement. And using cosine
to allocate semantic contribution is better. To achieve the best performance, we
should allocate semantic contribution using cosine as distance metric without a
stop word list.

Table 1. Correlation under different conditions

With Stop Word List or Not Yes Not

Euclidean 0.7690 0.8170

Cosine 0.8005 0.8227

Relationship Between Attenuation Parameter and Correlation. With-
out a stop word list, we try to figure out the relationship between the attenuation
parameter and correlation with the dataset. Allocating semantic contribution
based on cosine, we get the curve shown in Fig. 1. Bigger attenuation parame-
ter brings better performance. But as the attenuation parameter increases, the
curve tends to be flat. So if we go on increasing attenuation parameter, the cor-
relation would only increase slightly. To achieve the best performance, we fix the
attenuation parameter to 0.9 for following experiments and evaluations.

Dimensionality Reduction Threshold’s Effect on Correlation. As illus-
trated in previous sections, we treat a column of M as the semantic contributions
made by corresponding sense. And we assume if a sense makes very few seman-
tic contributions, its contributions are very likely to be noise and should be
removed. It may be helpful to both dimensionality reduction and performance
improvement. Then we need to figure out a proper threshold. In this part, we try
different thresholds and want to figure out the relationship between threshold
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and correlation. And before dimensionality reduction, the highest correlation we
achieve is 82.55%.

First, we set the threshold small and increase it slowly. We find that corre-
lation coefficient fluctuates in a very narrow interval and there is no significant
change. The result is shown in Fig. 2. Then we keep on increasing the threshold.
And we find that although the correlation coefficient is fluctuating, it is obviously
higher than the former best result. As is shown in Fig. 3, when the threshold is
set to 11000, the correlation coefficient reaches its peak to 90.52%. Keeping on
increasing the threshold, we find that larger threshold makes larger information
loss. And the correlation declines rapidly, as is shown in Fig. 4.

Setting the threshold to 11000, we want to check out how many dimensions
are filtered out. Result reports that 89.66% of dimensions are ignored. So the
intuitive noise filtering method filters out nearly 90% of features and brings
nearly 8% performance improvement from 82.55% to 90.52%.
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Fig. 1. When the attenuation parame-
ter increases, the correlation coefficient
increases but the curve tends to be flat.

0 200 400 600 800 1,000 1,200
0.82

0.83

threshold

co
rr

el
at

io
n

co
effi

ci
en

t

Fig. 2. When a small threshold increases
slowly, the correlation coefficient fluctu-
ates in a very narrow interval. This means
a small threshold has no significant effect
on correlation coefficient.

3.3 Evaluation

Evaluation on Translated Miller-Charles Dataset. With the attenuation
parameter set to 0.9, we use cosine to allocate semantic contribution and do
not use a stop word list. After dimensionality reduction, the Person correlation
coefficient we get is 0.9052. We compared this result with some conventional
approaches. How leverages the taxonomy and attribute knowledge from a Chi-
nese knowledge base, HowNet, which is similar to WordNet, to calculate semantic
similarity [19]. Dc utilizes snippets of query results from Google for similarity
measurement. If a word appears in the snippets of the query of another word and



Using a Chinese Lexicon to Learn Sense Embeddings 205

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
·104

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9

0.91
0.92

threshold

co
rr

el
at

io
n

co
effi

ci
en

t

Fig. 3. Using a moderate threshold for
dimensionality reduction, the correla-
tion coefficient obviously exceeds the
former best one.
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Fig. 4. When a large threshold increases,
the correlation coefficient declines rapidly.
This is because the threshold is so large
that it induces serious information loss.

vice versa, these two words are semantically similar [20]. Attr extracts attribute
sets from the Internet and measures semantic similarity by measuring the over-
lapping extent of two words’ attribute sets [15]. word2vec is the famous word
embedding algorithm and we leverage its Skip-Gram model for this evaluation
[2]. Dic learns word embeddings using Modern Chinese Standardized Dictionary
as the corpus [21]. Multi-sense relies on both monolingual and bilingual infor-
mation to learn sense embeddings. This model consists of an encoder to choose
senses for given words, and a decoder to predict expected context words for cho-
sen senses. When the autoencoder’s training is finished, sense embeddings are
learned [12].We is our result. As is shown in Table 2, our approach outperforms
others.

Table 2. Comparison with some conventional approaches on translated M&C dataset

Approach Dc How Attr word2vec Dic Multi-sense We

Pearson 0.5027 0.6394 0.7169 0.7876 0.7922 0.8049 0.9052

Evaluation on Translated WordSim353 Dataset. After experiments on the
M&C dataset, we carry out an evaluation on a translated version of wordsim353
[18], which is the standard for SemEval-2012 Task4: Evaluating Chinese Word
Similarity [22].We is our novel approach. word2vec represents word embeddings
learned by word2vec with Skip-Gram model [2]. Multi-sense learns sense embed-
dings by an autoencoder based on both monolingual and bilingual information
[12]. MIXCC, MIXCD, GUO-ngram and GUO-words are systems that par-
ticipated in the task [22]. As is shown in Table 3, our novel approach outperforms
other approaches.
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Table 3. Comparison with some conventional approaches on translated wordsim353
dataset

Approach Guo-words Guo-ngram MIXCD MIXCC Multi-sense word2vec We

Kendall -0.011 0.007 0.040 0.050 0.130 0.295 0.305

4 Related Work

Decomposing word embeddings into multiple prototypes corresponding to dis-
tinct meanings of words is conducted by [4–6]. These methods have no connec-
tion to sense inventories. Thus they can not specify which words are polysemous
and how many senses they have. And the mapping from sense embeddings to
some sense inventory has to be carried out manually. [7] tries to combine word
embeddings and synsets constructed from WordNet [9] to learn more accurate
sense embeddings. [8] uses WordNet and Wikipedia as semantic resources. On
the one hand, it extracts contextual information to learn word-based represen-
tations for words, on the other hand, it constructs synsets to learn synset-based
representations for senses. Both these two kinds of representations are utilized
to measure semantic similarity. [23] learns word embeddings first and initial-
izes a polysemous word’s sense embeddings by averaging semantically similar
words in sense glosses. Then it uses two WSD algorithms to obtain senses’ rele-
vant occurrences that are used to learn more accurate sense embeddings. There
are still some researchers using the sense-annotated corpus to exploit semantic
knowledge. But they have to generate a sense-annotated corpus first. [10] uses a
WSD system to annotate corpus while [11] chooses a sense clustering algorithm,
i.e. k-means, for polysemous word annotation. However, the non-optimal WSD
techniques and sense clustering algorithms seriously limit the annotation accu-
racy, which makes it hard to learn accurate and high-coverage sense embeddings.
Bilingual resources are also leveraged with the assumption that “polysemy in one
language can be at least partially resolved by looking at the translation of the
word and its context in another language” [12,13]. [24] proposes a probabilis-
tic model for sense embedding. The model takes the dependency between sense
choices of neighboring words into account. Then it uses an algorithm similar to
hard-EM to optimize a max-margin objective. It uses a knowledge base to help
model training, but the knowledge base is only used to determine the numbers of
polysemous words’ senses, which makes it hard to map from sense embeddings
to sense inventories.

5 Conclusion

In this article, we present a novel method that learns sense embeddings using a
Chinese lexicon as the only corpus. Using a lexicon to learn sense embeddings has
several advantages. A lexicon is redacted by linguistic experts and is semantically
authoritative. It specifies polysemous words’ senses and is significantly helpful to
learn embeddings for infrequent senses. But it also has some drawbacks. Short
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glosses tend to make sense embeddings vectors sparse, polysemous words in
sense glosses induce semantic ambiguity and the sense embedding vectors are
high dimensional before dimensionality reduction. First, to address the problem
caused by short glosses, we conduct representation expansion to make sparse
vectors dense and use an attenuation parameter to accelerate convergence. Then,
instead of determining what a polysemous word in some gloss actually means,
we assign each of its senses a possibility by softmax algorithm. Finally, if a sense
makes few semantic contributions to other senses, we treat its contributions as
noise and filter them out. Filtering out noise by a proper threshold is significantly
helpful to dimensionality reduction and semantic similarity measurement.

Our novel method has the following advantages. A Chinese lexicon is all we
need and no annotation effort is needed. The coverage and accuracy of infrequent
sense embeddings are guaranteed. Few parameters need to be tuned and the
learning cost is low. The intuitive and efficient way of noise filtering is remarkably
helpful to both dimensionality reduction and semantic similarity measurement.

We carry out an evaluation on a translated version of Miller-Charles dataset
and the Pearson correlation coefficient is 0.9052, which is state-of-the-art. We
also apply our method to SemEval-2012 Task 4: Evaluating Chinese Word
Similarity, and report noticeably better results compared with conventional
approaches.
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