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Abstract. This paper studies the methods to improve end-to-end neural
coreference resolution. First, we introduce a coreference cluster modifi-
cation algorithm, which can help modify the coreference cluster to rule
out the dissimilar mention in the cluster and reduce errors caused by
the global inconsistence of coreference clusters. Additionally, we tune
the model from two aspects to get more accurate coreference resolution
results. On one hand, the simple scoring function is replaced with a feed-
forward neural network when computing the head word scores for later
attention mechanism which can help pick out the most important word.
On the other hand, the maximum width of a mention is tuned. Our
experimental results show that above methods improve the performance
of coreference resolution effectively.
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1 Introduction

Coreference resolution, the task of finding all expressions that refer to the same
real-world entity in a text or dialogue, has become the core tasks of natural lan-
guage processing (NLP) since the 1960s. An example of demonstrating the task
of coreference resolution [1] that we need to resolve I, my and she as coreferential,
Nader and he as coreferential respectively is showed in following text.

“I voted for Nader because he was most aligned with my values,”she said.

Nowadays, people are paying more and more attention to applying neural
network to coreference resolution because neural-network-based models [2–5]
have achieved impressive coreference resolution performance, especially the end-
to-end neural model [5], which does not rely on syntactic parsers and many hand-
engineered features. This end-to-end model makes independent decisions about
whether two mentions are coreferential and then establish a coreference cluster
through this kind of coreference relation. For example, if we make decisions that
{President of the People Republic of China, Xi Jinping} and {Xi Jinping, Mr.Xi}
are coreferential respectively, then we can get a cluster that {President of the
People Republic of China, Xi Jinping, Mr.Xi} are coreferential naturally.
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However, this model sometimes makes globally inconsistent decisions, and
gets an incompletely correct cluster because of the independence between these
decisions. To avoid this kind of error, a coreference cluster modification algorithm
is proposed in this paper which can help rule out the mentions which are not
globally coreferential within each cluster on the basis of the span-ranking archi-
tecture. After getting a coreference cluster through locally coreferential decisions,
we use a scoring function to measure the extent of coreference relation between
every mention pair. Then we establish a standard to decide whether to rule out
the dissimilar mention in a coreference cluster.

Furthermore, we tune the hyperparameters from two aspects to get more
accurate coreference resolution results. On one hand, to get more accurate scor-
ing function to help measure the extent of coreference relation, we replace the
scoring function with a feed-forward neural network when applying an attention
mechanism [6] to compute the head word score. This modification enables the
system to pick out the most important word more accurately to help express the
representation of a mention which can help incorporate more information over
words in a span. On the other hand, our experiments and analysis show that
the model is susceptible to the maximum width of a mention, i.e. the number of
words a mention can comprise of most. Therefore, we tune the maximum width
of a mention in experiments.

Our experimental results show that the proposed coreference cluster modifi-
cation algorithm can improve the performance of coreference resolution on the
English OntoNotes benchmark. Our approach outperforms the baseline single
model with an F1 improvement of 0.3. Additionally, we can also obtain an F1
improvement of 1.2 when tuning the hyperparameters of the model.

2 Related Work

Machine-learning-based methods for coreference resolution have developed for
a long time since the first paper on machine-learning-based coreference reso-
lution [7] was published. Hand-engineered systems built on top of automati-
cally produced parse trees [8,9] have achieved significant performance. Recently
proposed neural-network-based models [2–4] outperformed all previous learning
approaches. The more recent end-to-end neural model [5] has achieved further
performance gains meanwhile it does not rely on syntactic parsers and hand-
engineered features.

From a higher view of these approaches, all of the above models can be cat-
egorized as (1) mention-pair classifiers [10,11], (2) entity-level models [4,12,13],
(3) latent-tree models [14–16], (4) mention-ranking models [3,9,17], (5) span-
ranking models [5]. Our proposed methods are based on the span-ranking model
[5], which relies on scoring span pairs and then uses the scores to make corefer-
ence decisions. However, the end-to-end span-ranking model only concentrates
on the direct link between span pairs while neglects the indirect link between
the interval spans, which is the motivation of our proposed coreference cluster
modification algorithm.
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3 Baseline Method

3.1 Task Definition

The end-to-end neural model [5] formulates the coreference resolution task as a
set of antecedent assignments yi for each of span i in the given document and
our model follows the task formulation. The set of possible assignments for each
yi is Y(i) = {ε, 1, 2, ..., i - 1} which consists of a dummy antecedent ε and all
preceding spans. Non-dummy antecedents represent coreference links between
i and yi. The dummy antecedent ε represents two possible scenarios: (1) the
span is not an entity mention or (2) the span is an entity mention but it is not
coreferential with any previous span. We can get a final clustering through these
decisions, which may lead to the problem of global inconsistence of coreference
cluster we have just mentioned above.

3.2 Baseline Model

The aim of the end-to-end baseline model [5] is to learn a distribution P(yi) over
antecedents for each span i as

P (yi) =
es(i,yi)

∑
y′∈Y(i) es(i,y′) (1)

where s(i, j) is a pairwise score for a coreference link between span i and span
j. The baseline model includes three factors for this pairwise coreference score:
(1) sm(i), whether span i is a mention, (2) sm(j), whether span j is a mention,
and (3) sa(i, j), whether span j is an antecedent of span i. s(i, j) is calculated as

s(i, j) = sm(i) + sm(j) + sa(i, j) (2)

sm(i) and sa(i, j) are both functions of the span representation vector g i, which
is computed via bidirectional LSTMs [18] and attention mechanism [6]. The
detailed calculation of sm(i) and sa(i, j) are as follows

sm(i) = w�
mFFNNm(g i) (3)

sa(i, j) = w�
a FFNNa([g i, gj , g i ◦ gj , φ(i, j)]) (4)

where ◦ denotes element-wise multiplication, FFNN denotes a feed-forward neu-
ral network, and the antecedent scoring function sa(i, j) includes explicit element-
wise similarity of each span g i ◦ g j and a feature vector φ(i, j ) encoding speaker
and genre information from the metadata and the distance between the two
spans.

The span representation g i is composed of boundary representation, head
word vector and feature vector. We will restrict our discussion to the head word
vector. The baseline model learns a task-specific notion of headness using an
attention mechanism [6] over words in each span:

αt = wα · Projection(x ∗
t ) (5)
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ai,t =
exp(αt)

∑END(i)
k=START (i) exp(αk)

(6)

x̂ i =
END(i)∑

t=START (i)

ai,t · x t (7)

where x̂ i is a weighted sum of word vectors in span i.
Given supervision of gold coreference clusters, the model is learned by opti-

mizing the marginal log-likelihood of the possibly correct antecedents [5]. This
marginalization is required since the best antecedent for each span is a latent
variable.

3.3 Clustering Rules

The baseline model makes decisions about whether span i and span j are coref-
erential while these decisions are independent between each other. The baseline
model obeys the following rules to make clustering decisions as follows.

– Span i has a set of scores, i.e. sa(i, j) with its every candidate antecedent in
its antecedents set Y(i) = {ε, 1, 2, ..., i − 1} which can measure the extent of
coreference relation.

– The span i picks out the one which has the highest score to be its antecedent
and establishes a coreference link with its antecedent span.

– If span pairs {span i, span j} and {span j, span k} are both linked, span pair
{span i, span k} will be linked naturally.

It is noticeable that span pair {span i, span k} will be linked naturally with-
out confirming whether these two spans are truly coreferential, which incurs the
problem of global inconsistence of coreference cluster. An example which demon-
strates the problem of global inconsistence of coreference cluster is as follows.

Chaoyang Road is a very important artery in the east-west direction. When
people living in the west want to cross over from the city , they have to go via this
road. Hence, if a traffic accident occurs at this place , we can indeed imagine
how widespread the extent of the impact will be.

In above paragraph, mention pairs {Chaoyang Road, this place} and {this
place, the city} are both locally coreferential, but the cluster of {Chaoyang Road,
this place, the city} is not globally coreferential.

4 Proposed Methods

As we mentioned above, the baseline model always makes globally inconsistent
decisions, and sometimes gets an incompletely correct cluster because of the
independence between these decisions.

Therefore, we propose a coreference cluster modification algorithm to modify
the clusters built by the baseline model in this paper. This method confirms
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the coreference relation between intra-cluster spans which can help rule out
the dissimilar span after we get a coreference cluster. Through the modification
procedure we can increase the possibility that these spans in a coreference cluster
truly refer to the same entity.

We show how to conduct the modification procedure in the situation of n
spans in a coreference cluster to demonstrate our algorithm. We first define
some variables as follows.

– There are n spans in a coreference cluster and we name them as {1, 2, ...,
n} in order in a text.

– Span k has a direct link with span i which means span i, as one candidate
antecedent of span k, has the highest score among all candidate antecedents.

– We set spans before span k except span i, i.e. P(i, k) = {1, 2, ..., i − 1, i +
1, ..., k − 1} as span k ’s indirect antecedents. Span k also has indirect links
with each span in P(i, k) which mean extent of compatibility with span k.

– When an incompatible link sa(j, k) appears, spans before span k except span
j form a set Q(j, k) = {1, 2, ..., j − 1, j +1, ..., k − 1} which is used to consider
which span to drop afterwards.

For span k, it originally takes only a direct link sa(i, k) into consideration
while neglects the indirect links with spans in the set P(i, k). In our method
the indirect links within the coreference clusters are labelled explicitly so that
we can finally get an enriched coreference cluster full of links between every two
spans in the cluster no matter direct or indirect (see Fig. 1).

Fig. 1. Enriched coreference cluster after labeling indirect coreference links explicitly.

Value sa(i, j) can be positive and negative. The greater the abstract value
of sa(i, j) is, the stronger the coreference relation of compatibility (positive) or
incompatibility (negative) will be. Furthermore, we design some rules as demon-
strated in Algorithm 1. The algorithm, from a high view, can be interpreted from
the point of confidence degree because the abstract value of sa(i, j) represents
the extent of coreference relation.

It takes two steps to conduct the algorithm:

– First step: check. We need to check whether there is the problem of global
inconsistence of coreference cluster. However it is unsafe to judge the relation
with the method of directly taking the indirect link into account because the
model has the limitation to represent the coreference relation. To tolerate
this kind of mistakes and increase robustness of the model, we introduce
the inequity rules that taking direct link and average of all indirect links in
P(i, k) into account to further confirm the coreference relation.
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Algorithm 1. Coreference cluster modification
for k = 3, 4, ..., n do

if sa(i, k) + 1
k−2

∑

p∈P(i,k)

sa(p, k) < margin then

j = arg min
p∈P(i,k)

sa(p, k)

if
∑

q∈Q(j,k)

sa(q, k) <
∑

q∈Q(j,k)

sa(q, j) then

drop span k
else

drop span j
end if

else
drop none of these spans in a cluster

end if
end for

– Second step: drop. If the problem of global inconsistence of coreference
cluster truly happen, we need to consider which span to drop furthermore.
It must be that some indirect link sa(j, k) is incompatible which means span
k and span j are incompatible. We make a comparision between the sum of
span j ’s links with spans in Q(j, k) and the sum of span k ’s links with
spans in Q(j, k), then we make the modification decision that drop span j or
span k.

5 Experiments

5.1 Experimental Setup

We used the English coreference resolution data from the CoNLL-2012 shared
task [19] in our experiments. This dataset contains 2802 training documents, 343
development documents, and 348 test documents.

Our model reused the hyperparameters from Lee et al. [5] so that we can
make comparisons with the baseline model. Some parameters of the baseline
model are mentioned below.

– Word representations. The word embeddings were fixed concatenations
of 300-dimensional GloVe embeddings [20] and 50-dimensional embeddings
from Turian et al. [21]. In the character CNN, characters were represented as
learned 8-dimensional embeddings. The convolutions had window sizes of 3,
4, and 5 characters, each consisting of 50 filters.

– Hidden dimensions. The hidden states in the LSTMs had 200 dimensions.
– Feature encoding. All features including speaker, genre, span distance and

mention width were represented as learned 20-dimensional embeddings.
– Pruning. The baseline model pruned the spans such that the maximum

span width L = 10, the number of spans per word λ = 0.4, and the maximum
number of antecedents K = 250.
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– Learning. The baseline model used ADAM [22] for learning with a minibatch
size of 1. 0.5 dropout [23] was applied to the word embeddings and character
CNN outputs and 0.2 dropout was applied to all hidden layers and feature
embeddings.

5.2 Coreference Cluster Modification

The only hyperparameter in this method is margin in the inequilties, which is
used to measure the possibility of global inconsistance of coreference cluster.
Moreover, some other factors may also affect the performance of our proposed
algorithm. We tuned these factors across experiments about different combina-
tions of them on the development dataset as showed in Table 1.

Table 1. Some factors were tuned by experiments on the development dataset, where
number means the number of spans in a coreference cluster and function means the
function involved in the first check step.

Number Function Margin Avg. F1

<5 Mean 0 67.4

<5 Min 0 67.3

<5 Mean −2 67.6

<7 Mean −2 67.7

<10 Mean −2 67.6

All Mean −2 67.3

From this table, we can see that our proposed method still didn’t work well
for post-processing the clusters with more than 10 spans. The distribution of
the size of coreference clusters on the development set given by the baseline
model is showed in Fig. 2. We can see that the coreference clusters with less
than 10 spans accounted for about 93% of all coreference clusters. Besides, the
mean function worked slightly better than the min function during the check
step. One possible reason was that the mean function took the information of
all indirect links within the cluster into account. Finally, the last row was chosen
as the configuration of our proposed method.

5.3 Parameter Tuning

The baseline model simply projects the outputs from the bidirectional LSTMs
[18] to a scalar score as we decribe in Equity [5] When computing the weight of
each word. We replace the simple function with a feed-forward neural network
which can help incorporate more information about words in a span to get more
accurate attention weights to pick out the head word. The feed-forward neural
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Fig. 2. Distribution of coreference clusters according to number of spans in a corefer-
ence cluster.

network in this method consists of two hidden layers with 150 dimensions and
rectified linear units [24].

We analysed the error examples of the baseline model on the test dataset. We
found that 3934 mentions were not detected, in which 576 mentions had more
than 10 words in a span that exceeded the maximum span width. This implied
that the model was susceptible to the maximum span width and an accuracy
improvement may be achieved by increasing the maximum span width. There-
fore, we increased the maximum span width from 10 to 30 words by experiments
and obtained the gain of average F1 as shown in Fig. 3.

5.4 Results

We report the precision, recall, and F1 of the MUC, B3, and CEAFφ4 metrics
using the official CoNLL-2012 evaluation scripts. The final measurement is the
average F1 of the three metrics.

Results on the test set are shown in Table 2. The performances of the systems
proposed in the last three years were included for comparison. The baseline model
of our methods was the span-ranking model from Lee et al. [5] which achieved

Fig. 3. Average F1 on the test dataset with different maximum width of spans.
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an F1 score of 67.2. Our method achieved an F1 score of 67.5, improving the
performance for coreference resolution. Furthermore, we can achieve a higher F1
score of 68.4 after parameter tuning.

Table 2. Results on the test set on the English CoNLL-2012 shared task. The final
column (Avg. F1) is the main evaluation metric, computed by averaging the F1 of
MUC, B3, and CEAFφ4.

MUC B3 CEAFφ4

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1

Martschat and Strube [16] 76.7 68.1 72.2 66.1 54.2 59.6 59.5 52.3 55.7 62.5

Clark and Manning [13] 76.1 69.4 72.6 65.6 56.0 60.4 59.4 53.0 56.0 63.0

Wiseman et al. [17] 76.2 69.3 72.6 66.2 55.8 60.5 59.4 54.9 57.1 63.4

Wiseman et al. [2] 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2

Clark and Manning [4] 79.9 69.3 74.2 71.0 56.5 63.0 63.8 54.3 58.7 65.3

Clark and Manning [3] 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7

Lee et al. [5] 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2

Lee et al. [25] 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0

Our proposed 78.3 73.8 76.0 68.3 62.4 65.2 62.8 59.7 61.2 67.5

Our proposed+paramter tuning 79.3 73.9 76.5 70.2 62.7 66.2 63.5 61.2 62.3 68.4

Recently, Lee et al. [25] has just improved the baseline model by proposing a
high-order inference model and tuning some model hyperparameters. The results
of this work were also listed in Table 2 for comparison. Although our results
were not as good as the ones of Lee et al. [25], our method has the advantage of
simplicity and it can be considered as a rule-based post-processing of the output
given by the baseline model.

6 Conclusion

We presented an improved neural coreference resolution method through a clus-
ter modification algorithm which can help modify the coreference cluster to
reduce errors caused by global inconsistence of coreference clusters. Additionally,
we replace the scoring function with a feed-forward neural network when com-
puting the head word score which can help pick out the most important word.
The maximum mention width is also tuned because our experiments showed
that the model is susceptible to the maximum width of mentions. Our experi-
mental results demonstrated that these above procedures helped to increase the
accuracy of coreference resolution. To improve the performance of the proposed
cluster modification algorithm for clusters with large sizes will be a task of our
future work.
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feature induction for unrestricted coreference resolution. In: Joint Conference on
EMNLP and CoNLL-Shared Task, pp. 41–48. Association for Computational Lin-
guistics (2012)

15. Björkelund, A., Kuhn, J.: Learning structured perceptrons for coreference resolu-
tion with latent antecedents and non-local features. In: Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (vol. 1: Long
Papers), pp. 47–57 (2014)

16. Martschat, S., Strube, M.: Latent structures for coreference resolution. Trans.
Assoc. Comput. Linguist. 3(1), 405–418 (2015)

17. Wiseman, S.J., Rush, A.M., Shieber, S.M., Weston, J.: Learning anaphoricity and
antecedent ranking features for coreference resolution. Association for Computa-
tional Linguistics (2015)

http://arxiv.org/abs/1604.03035
http://arxiv.org/abs/1609.08667
http://arxiv.org/abs/1606.01323
http://arxiv.org/abs/1707.07045
http://arxiv.org/abs/1409.0473


A Study on Improving End-to-End Neural Coreference Resolution 169

18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

19. Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., Zhang, Y.: CoNLL-2012 shared
task: modeling multilingual unrestricted coreference in ontonotes. In: Joint Con-
ference on EMNLP and CoNLL-Shared Task, pp. 1–40. Association for Computa-
tional Linguistics (2012)

20. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

21. Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general
method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, pp. 384–394. Association for
Computational Linguistics (2010)

22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

23. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

24. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807–814 (2010)

25. Lee, K., He, L., Zettlemoyer, L.: Higher-order coreference resolution with coarse-
to-fine inference, arXiv preprint arXiv:1804.05392 (2018)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1804.05392

	A Study on Improving End-to-End Neural Coreference Resolution
	1 Introduction
	2 Related Work
	3 Baseline Method
	3.1 Task Definition
	3.2 Baseline Model
	3.3 Clustering Rules

	4 Proposed Methods
	5 Experiments
	5.1 Experimental Setup
	5.2 Coreference Cluster Modification
	5.3 Parameter Tuning
	5.4 Results

	6 Conclusion
	References




