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Abstract. In classical cooperative connection situations, the agents are
located at some nodes of a network and the cost of a coalition is based
on the problem of finding a network of minimum cost connecting all the
members of the coalition to a source.

In this paper we study a different connection situation with no source
and where the agents are the edges, and yet the optimal network asso-
ciated to each coalition (of edges) is not fixed and follows a cost-
optimization procedure. The proposed model shares some similarities
with classical minimum cost spanning tree games, but also substantial
differences, specifically on the appropriate way to share the costs among
the agents located at the edges. We show that the core of these particular
cooperative games is always non-empty and some core allocations can be
easily computed.
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1 Introduction

This paper deals with an alternative class of cooperative cost games defined on
minimum cost spanning tree (mcst) situations. A (classical) mcst situation arises
in the presence of a group of agents that are willing to be connected as cheap as
possible to a source (e.g., a supplier of a service, if the agents are computers, or
a water purifier, if the agents represent farms in a drainage system). Since links
are costly, agents evaluate the opportunity of cooperating in order to reduce
costs: if a group of agents decides to cooperate, a spanning network minimizing
the total cost of connection of all the agents in the group with the source (i.e.,
a mcst) is constructed, and the total cost of the mcst must be shared among
the agents of the group. The problem of finding an mcst can be easily solved
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by means of alternative algorithms proposed in the literature (e.g., the Kruskal
algorithm [9] or the Prim algorithm [14]). However, finding an mcst does not
guarantee that it is going to be really implemented: the agents must agree on
the way the cost of the mcst must be shared, and then a cost allocation problem
must be addressed. This cost allocation problem was introduced in [5] and has
been studied with the aid of cooperative game theory since the basic paper [3].
After this seminal paper, many cost allocation methods have been proposed in
the literature on mcst games (see, for instance, [2,4,6,7,10,18]).

More recently, alternative connection situations have been introduced where
the focus of interest of rational agents are the edges of a network. For instance,
in [8], the agents demand a connection between certain nodes of a network, using
a single link or via longer paths, and it is assumed that the set of implemented
edges is exogenously fixed and may be “redundant” (see also [11] for an alterna-
tive approach considering redundant links). A still different class of games has
been studied in [1], where the players are the edges of a graph and a coalition
of edges gets value one if it is a connected component in the graph, and zero
otherwise. All the aforementioned models deal with coalitional games where the
cost of a coalition is fixed, or its computation is based on a structural property
of the graph. In this paper, we investigate a particular subclass of the family
of games introduced in [12], where the complexity of solutions for cooperative
games defined on matroids has been extensively investigated. In our framework,
the players are the edges of a weighted undirected graph, and the cost associ-
ated to each coalition (of edges) is the one of an optimal network connecting
the endpoints of the edges in the coalition. The model we study in this paper
is quite natural in a context where different service providers wish to satisfy
a demand of economic exchange between pairs of nodes of a network (e.g., an
airline network, a content delivery network on the web, a telecommunication
network, etc.). For example, a very common strategic problem for airlines par-
ticipating in pooled flights is to decide how to allocate joint revenues and costs.
Consider, for instance, three airports 1, 2 and 3 which are connected to each
other by three different flight operators, each providing an air transport service
on a different single connection between two airports: an operator over the link
1−2, another one over the link 1−3 and a still different one over 2−3 (see Fig. 1
for a graphical representation of this connection situation). Clearly, implement-
ing each flight connection between two airports need not be the best strategy. In
fact, the implementation of only two links would be sufficient to guarantee the
connection among the three airports at a lower cost (provided that the capacity
constraints imposed by the flight vectors satisfy the demand for the service).
Consequently, the decision of the flight operators on whether to cooperate for
the implementation of an optimal airline network, also depends on the allocation
method used to share the monetary savings generated by this cooperation.

The structure of the paper is as follows. We start in the next section with
some basic definitions on cooperative games and graphs. Then, in Sect. 3 we
introduce the proposed model, namely, a Link Connection (LC) situation, and
the associated (coalitional) LC game, and we study their properties. In Sect. 4 we
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study a procedure to decompose an LC game as a positive linear combination of
“simple” LC games, which are defined on weighted networks with weights equal
to 0 or 1. Section 5 deals with the problem of finding allocations in the core of
an LC game. Section 6 concludes with some research directions.

2 Preliminaries and Notations

A coalitional cost game (or, shortly, a cost game) is a pair (N, c), where
N = {1, . . . , n} denotes the set of players and c : 2N → R is the character-
istic function, (by convention, c(∅) = 0). A group of players S ⊆ N is called
coalition and c(S) is the cost incurred by coalition S. If the set N of players is
fixed, we identify a cost game (N, c) with its characteristic function c and we
denote as CGN the class of all cost games with N as the set of players. For a
coalition S ⊆ N , we shall denote by s or |S| its cardinality.

A cost game (N, c) is said to be subadditive if it holds that c(S ∪ T ) ≤
c(S)+c(T ) for all S, T ⊆ N such that S ∩T = ∅. Moreover, a game (N, c) is said
to be concave or submodular if it holds that c(S ∪ T ) + c(S ∩ T ) ≤ c(S) + c(T )
for all S, T ⊆ N . Equivalently, a game (N, c) is said to be concave if it holds
that mc

i (S) ≥ mc
i (T ) for all i ∈ N and all S ⊆ T ⊆ N \ {i}, and where

mc
i (S) = c(S ∪ {i}) − c(S) is the marginal contribution of player i to S ∪ {i}.

Given a cost game c, an allocation is a vector x ∈ R
N such that the efficiency

condition
∑

i∈N xi = c(N) is satisfied.
An important subset of allocations is the core, which represents a classical

“solution set” for TU-games. The core of game (N, c) is defined as the set of
allocation vectors for which no coalition has an incentive to leave the grand
coalition N , precisely,

Core(c) = {x ∈ R
N :

∑

i∈N

xi = c(N),
∑

i∈S

xi ≤ c(S) ∀S ⊂ N}.

A (one-point) solution for cost games in CGN is a map ψ : CGN → R
N

assigning to each cost game c in CGN an |N |-vector of real numbers. The Shapley
value [15] φ is a special solution assigning to each cost game (N, c) an |N |-vector
computed according to the following formula:

φi(c) =
∑

S∈2N\{i}

psm
c
i (S) (1)

for each i ∈ N and with ps = 1

n(n−1
s ) for each s = 0, . . . , |N | − 1.

We provide now some notations about graphs. An undirected graph or net-
work is a pair 〈V,E〉, where V is a finite set of vertices or nodes and E is a
set of edges e of the form {i, j} with i, j ∈ V , i �= j. Given a graph 〈V,E〉, let
V (E) =

⋃
{i,j}⊆E{i, j} be the set of vertices (of the edges) in E. A path between

i and j in a graph 〈V,E〉 is a sequence of nodes (i0, i1, . . . , ik), where i = i0
and j = ik, k ≥ 1, such that {it, it+1} ∈ E for each t ∈ {0, . . . , k − 1} and such
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that all these edges are distinct. Two nodes i, j ∈ V are said to be connected in
〈V,E〉 if i = j or there exists a path between i and j in 〈V,E〉. A component of
〈V,E〉 is a maximal subset of V with the property that any two nodes in this
subset are connected. The set PE of all components in 〈V,E〉 is a partition of
V . A graph 〈V,E〉 is connected if for each i, j ∈ V with i �= j there exists a path
between i and j in 〈V,E〉. A cycle in 〈V,E〉 is a path from i to i for some i ∈ V .
A path (i0, i1, . . . , ik) is without cycles if there do not exist a, b ∈ {0, 1, . . . , k},
a �= b, such that ia = ib. A graph where all paths are without cycles is called
forest, and a forest that is also connected is called tree.

3 Link Connection Games

A link connection (LC ) situation is defined as a triple L = 〈V,E,w〉, where
〈V,E〉 is an undirected graph and w : E → [0,∞) is a weight function, that is a
map assigning to each edge {i, j} ∈ E a non-negative number w({i, j}) (in order
to simplify our notation, an edge {i, j} will be also denoted as ij, whenever no
confusion can arise). Each edge {i, j} ∈ E identifies an economic entity (e.g., a
service provider) aimed to satisfy a demand of connection between nodes i and
j for the fruition of a service (e.g., a communication channel in a telecommu-
nication network, an on-line service on the web, a flight in an airlines network,
etc.). A service connection between i and j can be implemented directly at a cost
w({i, j}), or indirectly, via a path between i and j in 〈V,E〉 using edges whose
connection is already activated. Differently stated, once a connection between
two nodes {i, j} ∈ E is activated (at a cost w({i, j})), the same connection can
be exploited to implement the delivery of other services with no extra-costs. Each
service provider {i, j} ∈ E may decide whether to directly satisfy the request
between i and j (at the cost w({i, j})) or, in alternative, to cooperate with other
service providers in order to exploit the connection already implemented.

In the following, the cost of a network 〈V,L〉 in an LC situation L = 〈V,E,w〉
and with L ⊆ E is denoted by w(L) =

∑
e∈L w(e). Given an LC situation

L = 〈V,E,w〉, it is possible to determine at least one minimum cost spanning
forest (mcsf ) 〈V, Γ 〉 for L, i.e. a network without cycles of minimum cost with
Γ ⊆ E and such that i and j are connected in 〈V,E〉 if and only if they are
connected in 〈V, Γ 〉, for each i, j ∈ V . So, the set of components PΓ in 〈V, Γ 〉
coincides with the set of components PE in 〈V,E〉. If 〈V,E〉 is a connected graph,
then a mcsf 〈V, Γ 〉 for L is a tree and it is called minimum cost spanning tree
(mcst) for L. In the following we will also use the notation L|S = 〈V (S), S, w|S〉
to denote the (sub-) LC situation such that w|S : S → R with w|S(e) = w(e)
for each e ∈ S (here V (S) :=

⋃
e∈S e is the set of vertices of the edges belonging

to S).

Definition 1. Given an LC situation L = 〈V,E,w〉, the corresponding LC game
is defined as the cost game (E, c), where E is the set of players (service providers,
located at the edges of the network) and the cost c(S) of each coalition S ∈
2N \ {∅}, is as follows:

c(S) = min{w(Γ )|〈V, Γ 〉 is a spanning forest for 〈V (S), S, w|S〉}.
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Remark 1. In Definition 1, and in the remaining of this paper, we are motivated
to study a cooperative situation where the cost of coalition S ⊆ N does not
depend on the actions adopted by service providers in N \S. Therefore we make
the assumption that the service providers of a coalition S can only implement
the services over the edges in S, and are not allowed to use connections in the
complementary coalition.

Example 1. Consider the LC situation depicted in Fig. 1. The corresponding LC
game (E = {12, 13, 23}, c) is such that c({12}) = 4, c({13}) = 2, c({23}) = 3,
c({12, 23}) = 7, c({12, 13}) = 6, c({13, 23}) = 5 and c({12, 13, 23}) = 5. Notice
that the core of the game (E, c) is Core(c) = {x ∈ R

E :
∑

i∈E xi = 5, 4 ≥ x12 ≥
0, 2 ≥ x13 ≥ −2, 3 ≥ x23 ≥ −1}.

2

1 3

2

1 3

Fig. 1. An LC situation L = 〈V, E, w〉, with V = {1, 2, 3}, E = {{1, 2}, {1, 3}, {2, 3}},
w(1, 2) = 4, w(1, 3) = 2, w(2, 3) = 3 (left side) and the corresponding mcst (right side).

Proposition 1. Let L = 〈V,E,w〉 be an LC situation. The corresponding LC
game (E, c) is subadditive.

Proof. The proof is straightforward and therefore is omitted. ��
It is well known that concave games have a non-empty core, which also contains
the Shapley value [16]. The following example shows that, in general, LC games
are not concave, so we cannot use the concavity argument to guarantee that the
core of LC games is non-empty.

Example 2 (LC games are not necessarily concave). Consider the LC situa-
tion L = 〈V,E,w〉 depicted in Fig. 2, with E = {12, 13, 23, 24, 34}. Clearly,
the cost of many coalitions of edges is simply the sum of the costs of the
individual edges (e.g., c(13, 24) = 3). For other coalitions, the construction
of spanning forests determine some extra monetary savings (e.g., the span-
ning tree Γ = {12, 13, 24} is the optimal configuration which guarantees the
connection of the adjacent nodes of all possible links in the graph at a total
cost of 4). Notice that the corresponding LC game is not concave. Consider
the coalitions S = {23, 34} and T = {12, 13, 23, 34}. Then, c(S ∪ 24) = 6 ,
c(T ∪ 24) = 4, and c(S) = 12, c(T ) = 6. So, mc

24(S) = −6 and mc
24(T ) = −2.
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2

1 3 4

Fig. 2. An LC situation whose corresponding LC game is not concave.

Table 1. The LC game corresponding to the LC situation of Fig. 2. All omitted coali-
tions have an additive cost, that is c(S) =

∑
e∈S w(e).

S 12,13,23 23,24,34 12,13,24,24 12,13,23,34 12,13,23,24 23,24,34,13 23,24,34,12 E

c(S) 2 6 4 6 4 7 7 4

Notice also that, according to relation (1), the Shapley value of game (E, c) is
(φ12(c), φ13(c), φ24(c), φ34(c), φ23(c)) = (− 16

15 ,− 16
15 ,− 1

15 , 29
15 , 64

15 ), which is not an
element of Core(c), since φ24(c) + φ34(c) + φ23(c) > 6 = c(24, 34, 23).

Consider an LC situation L = 〈V,E,w〉. Nodes i, j ∈ V are called L-
connected if i = j or if there exists a path (i0, . . . , ik) from i to j in 〈V,E〉,
with w({is, is+1}) = 0 for every s ∈ {0, . . . , k − 1}. A L-component of L is
a maximal subset of V with the property that any two nodes in this subset
are L-connected. We denote by C(L) the set of all the L-components. Given a
component T in 〈V,E〉, let CT (L) = {C ⊆ T : C is a L -component} be the
set of all L-components contained in T (notice that CT (L) forms a partition
of T and that CE(L) = C(L)). Similarly, for each non-empty coalition S ⊆ E,
CT (L|S) = {C ⊆ T : C is a L-component} denotes the set of all L|S -components
(i.e., in the restriction L|S = 〈V (S), S, w|S〉) contained in T .

An LC situation L′ = 〈V,E,w′〉 such that w′(e) ∈ {0, 1} for each e ∈ E
is said to be simple. Following the decomposition in [4] for classical connection
situations, the next lemma shows that an LC situation can be decomposed as
a sum of simple LC situations. We first need some further notations. Let L =
〈V,E,w〉 be an LC situation. We define the set ΣE of linear orders on E as the
set of all bijections σ : {1, . . . , |E|} → E. For each σ ∈ ΣE define the simple
LC situation Lσ,k = 〈V,E, eσ,k〉, for each k ∈ {1, 2, . . . , |E|}, where the vector
eσ,k ∈ {0, 1}E , is such that eσ,1(σ(j)) = 1 for all j ∈ {1, 2, . . . , |E|}, and for each
k ∈ {2, . . . , |E|}

eσ,k(σ(1)) = eσ,k(σ(2)) = . . . = eσ,k(σ(k − 1)) = 0
and

eσ,k(σ(k)) = eσ,k(σ(k + 1)) = . . . = eσ,k(σ(|E|)) = 1.
(2)
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Lemma 1. Let L = 〈V,E,w〉 be an LC situation. Let σ ∈ ΣE be such that
w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|E|)). Then we have that

w = w(σ(1))eσ,1 +
|E|∑

k=2

(
w(σ(k)) − w(σ(k − 1))

)
eσ,k. (3)

Proof. The proof is very similar to the decomposition procedure introduced
in [4]. ��
Example 3 (follows Example 2). Consider the LC situation of Example 2 and
the ordering σ = ({1, 2}, {1, 3}, {2, 4}, {3, 4}, {2, 3}). Notice that w(σ(1)) ≤
. . . ≤ w(σ(5)). According to Lemma 1 we have that

w = eσ,1 + 0eσ,2 + eσ,3 + 2eσ,4 + 4eσ,5

where the weight vectors eσ,1, . . . , eσ,5 are such that eσ,1 = (1, 1, 1, 1, 1), eσ,2 =
(0, 1, 1, 1, 1), eσ,3 = (0, 0, 1, 1, 1), eσ,4 = (0, 0, 0, 1, 1) and eσ,5 = (0, 0, 0, 0, 1).

4 A Decomposition Theorem

It is easy to check that for a simple LC situation L′ = 〈V,E,w′〉 and a component
T in 〈V,E〉, the total cost of a tree spanning all nodes in T at the minimum cost
is equal to the the number of elements in CT (L′) minus one, which is precisely
the minimum number of edges of cost 1 that are needed to connect all L′-
components. So, for a simple LC situation L′ = 〈V,E,w′〉 it holds that the
corresponding LC game (E, c′) can be rewritten as

c′(S) =
∑

T is a component in 〈V (S),S〉
(|CT (L′|S)| − 1) (4)

for each S ∈ 2E \ {∅}. In other terms, the cost of a coalition S is given by the
sum, over all the components T in the sub-graph 〈V (S), S〉, of the minimum
number of links of cost 1 needed to connect all the L′

|S -components contained
in T .

Example 4 (follows Example 2). Consider the simple LC situation L′ =
〈V,E,w′〉 with 〈V,E〉 of Example 2 and w′ such that w′(2, 3) = w′(2, 4) =
w′(3, 4) = 1 and w′(1, 2) = w′(1, 3) = 0, as depicted in Fig. 3. We have
C(L′) = {{1, 2, 3}, {4}} and, by relation (4), c(E) = |C(L′)| − 1 = 1.

Now, let S = {13, 24}. The LC situation L′|S = 〈V (S), S, w′
|S〉 is such that

there are two components in 〈V (S), S〉, precisely, {1, 3} and {2, 4}. Component
{1, 3} contains only one L′|S-component, i.e., C{1,3}(L′|S) = {{1, 3}}, whereas
component {2, 4} contains two L′|S-components, i.e., C{2,4}(L′|S) = {{2}, {4}}.
So, according to relation (4), c′(S) = |C{1,3}(L′|S)| − 1 + |C{2,4}(L′|S)| − 1 = 1.
Differently, if S = {13, 12, 23, 24}, then 〈V (S), S〉 is connected, and, again, we
have C{1,2,3,4}(L′|S) = {{1, 2, 3}, {4}} and c(S) = 1.
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1 3 4

Fig. 3. A simple LC situation.

Following the approach introduced in [13] to decompose mcst games, we can
now prove the following lemma.

Lemma 2. Let L = 〈V,E,w〉 be an LC situation with at least one edge e ∈ E
such that w(e) > 0, and let α = min{w(e) : w(e) > 0} be its minimum weight. Let
L′ = 〈V,E,w′〉 be the simple LC situation defined by w′(e) = 1 if w(e) > 0 and
w′(e) = 0, otherwise, for each e ∈ E, and let L′′ = 〈V,E,w′′〉 be the LC situation
with w′′ = w − αw′. Finally, let c, c′ and c′′ be the LC games corresponding to
L, L′ and L′′ respectively. Then, c = αc′ + c′′.

Proof. Clearly, by definition we have w = αw′ + w′′. Let S ∈ 2E\{∅} and let
〈V (S), Γ ′〉 be a mcsf for 〈V (S), S, w′

|S〉. Write Γ ′ = L0 ∪ L1 where L0 := {l ∈
Γ ′ : w′(l) = 0} and L1 := {l ∈ Γ ′ : w′(l) = 1}. The cost of Γ ′ is:

c′(S) = w′(Γ ′) = |L1| =
∑

T is a component in 〈V (S),S〉(|CT (L′|S)| − 1)
=

∑
T is a component in 〈V (Γ ′),Γ ′〉(|CT (L′|Γ ′)| − 1), (5)

where the first equality follows from relation (4) and the second one from the
fact that Γ ′ is a spanning forest in 〈V (S), S〉, which means that PΓ ′ ≡ PS .

We first show that there exists a mcsf Γ ′′ for 〈V (S), S, w′′〉 with L0 ⊆ Γ ′′.
Take an arbitrary mcsf Γ for S in 〈V (S), S, w′′〉. If L0 �⊆ Γ choose an l ∈ L0\Γ .
Since Γ ∪ {l} contains a cycle R, whereas Γ ′, and hence L0, do not contain
cycles, we can find an edge l′ ∈ R with l′ /∈ L0. Define Γ̃ := (Γ ∪ {l})\{l′}.
Since w′′(l) = 0 and w′′(l′) ≥ 0 we find that also Γ̃ is a mcsf for 〈V (S), S, w′′〉.
Moreover |Γ̃ ∩ L0| = |Γ ∩ L0| + 1. Repeating this argument results in the tree
Γ ′′ with L0 ⊆ Γ ′′.

Note that the set PΓ ′ of all components in 〈V (Γ ′), Γ ′〉 coincides with the one
PΓ ′′ in 〈V (Γ ′′), Γ ′′〉. Moreover, since L0 ⊆ Γ ′′, then for each component T ∈ PΓ ′

(or, equivalently, in PΓ ′′), the number of L′|Γ ′′-components contained in T must
be at most the corresponding number of L′|Γ ′ -components. Consequently, we
have that

w′(Γ ′′) =
∑

T is a component in 〈V (Γ ′′),Γ ′′〉(|CT (L′|Γ ′′)| − 1)
≤ ∑

T is a component in 〈V (Γ ′),Γ ′〉(|CT (L′|Γ ′)| − 1) = w′(Γ ′). (6)

Therefore, Γ ′′ is also a mcsf for 〈V (S), S, w′〉. Having w = αw′ + w′′ and
the fact that Γ ′′ is a mcsf for S in both 〈V (S), S, w′〉 and 〈V (S), S, w′′〉 we
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may conclude that Γ ′′ is also a mcsf for S in 〈V (S), S, w〉. So, c(S) = w(Γ ′′) =
αw′(Γ ′′) + w′′(Γ ′′) = αc′(S) + c′′(S). ��
The following decomposition theorem shows that every link game can be writ-
ten as a non-negative combination of LC games corresponding to simple LC
situations.

Theorem 1. Let L = 〈V,E,w〉 be an LC situation and let (E, c) be its cor-
responding LC game. Let σ ∈ ΣE be such that w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤
w(σ(|E|)). Define the LC game (E, cσ,k) corresponding to the simple LC situa-
tion Lσ,k = 〈V,E, eσ,k〉, for each k ∈ {1, . . . , |E|}. Then,

c = w(σ(1))cσ,1 +
|E|∑

k=2

(
w(σ(k)) − w(σ(k − 1))

)
cσ,k. (7)

Proof. The proof follows directly by Lemma 1 and the recursive application of
Lemma 2, using eσ,j in the role of w′, w(σ(j)) − w(σ(j − 1)) in the role of α,
and

∑|E|
k=j+1

(
w(σ(k))−w(σ(k −1))

)
eσ,k in the role of w′′ at each recursive call

j ∈ {1, . . . , |E| − 1} (and setting, by convention, w(σ(0)) = 0). ��
Example 5 (follows Examples 2 and 3). Consider again the LC situation of
Examples 2 and 3, with σ = ({1, 2}, {1, 3}, {2, 4}, {3, 4}, {2, 3}). According to
Theorem 1 we have c = cσ,1 + 0cσ,2 + cσ,3 + 2cσ,4 + 4cσ,5, where the LC games
cσ,1, . . . , cσ,5 corresponding to the simple LC situations eσ,1, . . . , eσ,5 are those
shown in Table 2. One can easily verify that the last row of Table 2 coincides
with the LC game c, as computed in Example 2 (see Table 1).

Table 2. Decomposition of the LC game corresponding to the LC situation of Fig. 2.

S {12, 13, 23} {23, 24, 34} {12, 13, 23, 34} {12, 13, 23, 24} {23, 24, 34, 13} {23, 24, 34, 12} E

cσ,1(S) 2 2 3 3 3 3 3

cσ,2(S) 2 2 3 3 3 3 3

cσ,3(S) 0 2 1 1 2 2 1

cσ,4(S) 0 1 1 0 1 1 0

cσ,5(S) 0 0 0 0 0 0 0

Sum 2 6 6 4 7 7 4

5 The Core of an LC Game

In this section we prove that LC games have a non-empty core and that core
allocations can be efficiently computed, even if, as we have shown in the pre-
vious section, LC games are not necessarily concave. One could argue that the
savings due to cooperation in an LC situation originate from the possibility to
break cycles without destroying the connectivity of the network. On the other
hand, it is not immediately clear how those savings should be shared among the
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links involved in the cycle in order to obtain a core allocation. Next example
shows that trivial allocation protocols, to be more specific, the equal sharing
rule applied to the edges involved in the cycles, in general does not provide a
core allocation.

Example 6. Consider the simple LC situation L′ = 〈V,E,w′〉 depicted in Fig. 4,
with the set E composed by the 15 edges depicted in Fig. 4 and where the cost
w′(e) of each edge e ∈ E is equal to 1. In order to obtain a mcsf on L′ it suffices
to eliminate four edges such that no cycles appear and the network remains con-
nected (e.g., deleting edges {1, 2}, {4, 5}, {7, 8} and {10, 11}), therefore leading
to an optimal network of cost 11. On the other hand, if we split equally the total
cost 11 (or the total saving 4) among the edges of the network we obtain that
each link in E should pay 11

15 which is not in the core of the corresponding LC
game, since c(12, 13, 23) = 2 < 3 11

15 = x12 + x13 + x23.

1

2

3

4

5 6

7

89

12 10

11

Fig. 4. A simple LC situation where the equal sharing allocation does not belong to
the core (the cost of each edge is 1).

Even if the cycles play a central role in the determination of the savings (as
illustrated in the previous example), defining an allocation rule based on the
analysis of the cycles of a graph could be computationally very hard (one edge
may belong to several cycles). In the following, our objective is to prove that
LC games have a non-empty core and core allocations can be easily computed
without looking at the cycles of a graph.

Let L′ = 〈V,E,w′〉 be a simple LC situation (with w′(e) ∈ {0, 1}). For
each i ∈ V , let Ci(L′) be the L′-component to which i belongs. We denote by
BΓ

ij = {{k, l} ∈ E : k ∈ Ci(L′) and l ∈ Cj(L′)} the bridge set of all edges
connecting the two L′-components Ci(L′) and Cj(L′) (clearly, {i, j} ∈ BΓ

ij and
w(k, l) = 1 for each {k, l} ∈ BΓ

ij). Moreover, let ĒΓ = E \ ⋃
e∈Γ :w′(e)=1 BΓ

ij be
the set of edges in E that do not belong to any set BΓ

ij with {i, j} ∈ Γ and
w′(i, j) = 1.
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Remark 2. Let 〈V, Γ 〉 be a mcsf for the simple LC situation L′ = 〈V,E,w′〉.
Note that for {i, j}, {k, l} ∈ Γ with {i, j} �= {k, l} and w′(i, j) = w′(k, l) = 1,
we have BΓ

ij ∩ BΓ
kl = ∅, since each edge of cost 1 in Γ connects two disjoint

L′-components.

Example 7 (follows Example 4). Consider again the simple LC situation L′ =
〈V,E,w′〉 of Example 4. Let the tree Γ = {{1, 2}, {1, 3}, {2, 4}} be a mcst in L′.
Then, we have that BΓ

24 = {{2, 4}, {3, 4}} and ĒΓ = {{1, 2}, {1, 3}, {2, 3}}.

Now, we can introduce a family of cost sharing vectors for simple LC games.

Definition 2. Let L′ = 〈V,E,w′〉 be a simple LC situation and let 〈V, Γ 〉 be
a mcsf for L′ = 〈V,E,w′〉. We denote by X (L′, Γ ) the set of (positive) vectors
x ∈ R

E
+ satisfying the following two conditions:

(i)
∑

e∈BΓ
ij

xe = 1 for all {i, j} ∈ Γ such that w′(i, j) = 1;

(ii) xe = 0 for all e ∈ Ē,

where 〈V, Γ 〉 is a mcsf for the simple LC situation L′.

In other words, X (L′, Γ ) is the set of positive allocation vectors such that the
service providers located over the edges in ĒΓ pay nothing and those over the
edges in BΓ

ij , for each {i, j} ∈ Γ with w′(i, j) = 1, share the cost to connect
Ci(L′) and Cj(L′).

Lemma 3. Let L′ = 〈V,E,w′〉 be a simple LC situation (with w′(e) ∈ {0, 1})
and let 〈V, Γ 〉 be a mcsf for L′. Then X (L′, Γ ) �= ∅ and

∑
e∈E xe = w′(Γ ).

Proof. To prove that X (L′, Γ ) �= ∅, simply take the vector x ∈ R
E
+ such that

xe =

{
1

|BΓ
ij | if ∃{i, j} ∈ Γ with w′(i, j) = 1 and e ∈ BΓ

ij ,

0 otherwise,
(8)

for each e ∈ E. It is immediate to check that the vector x defined according
to relation (8) satisfies conditions (i) and (ii) in Definition 2. To see that every
vector x ∈ X (L′, Γ ) is efficient, simply notice that

∑

e∈E

xe =
∑

{i,j}∈Γ :w′(i,j)=1

∑

e∈BΓ
ij

xe =
∑

{i,j}∈Γ :w′(i,j)=1

1 = w′(Γ ),

where the first equality follows from condition (ii) in Definition 2, and the second
equality from condition (i). ��
Example 8 (follows Examples 4 and 7). The allocation vectors in X (L′, Γ ), what-
ever mcsf Γ for L′ is constructed, is such that the edges {2, 4} and {3, 4} share
the cost of connecting the L′-components {1, 2, 3} and {4}. We have that

X (L′, Γ ) = {x ∈ R
E
+ : x12 = x13 = x23 = 0 and x24 + x34 = 1}.
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Next lemma, that holds for general LC situations, is useful to prove the
non-emptiness of the core of simple LC games, as shown by Proposition 2.

Lemma 4. Let L = 〈V,E,w〉 be an LC situation, let 〈V, Γ 〉 be a mcsf for L and
let c be the corresponding LC game. For each S ⊆ E. Then,

c(S) ≥ w(Γ ∩ S), (9)

Proof. Recall that c(S) = w(ΓS) =
∑

e∈ΓS
w(e), where ΓS is a mcsf for the

restriction LS = 〈V (S), S, w|S〉, and w(Γ ∩ S) =
∑

e∈Γ∩S w(e).
First note that each component T in 〈V (Γ ∩S), Γ ∩S〉 is also a connected set

of nodes in the network 〈V (S), ΓS〉. So, if two nodes i, j ∈ V are connected in the
network 〈V, Γ 〉 they must be connected also in the network 〈V, (Γ \S)∪ΓS〉 (i.e.,
〈V, (Γ \S)∪ΓS〉 is a spanning network for 〈V,E〉, meaning that P(Γ\S)∪ΓS

≡ PE),
and this directly implies relation (9). Suppose, on the contrary, that w(Γ ∩S) >
c(S) = w(ΓS). By simple considerations on the sets of edges Γ, S and ΓS we
obtain that

w(Γ )=w((Γ∩S)∪(Γ\S))=w(Γ∩S)+w(Γ\S)>w(ΓS)+w(Γ\S)≥w(ΓS∪(Γ\S)),

which yields a contradiction with the fact that Γ is a mcsf for 〈V,E〉 (notice
that the second equality follows from the fact that (Γ ∩S)∩ (Γ \S) = ∅ and the
last inequality from the fact that ΓS ∩ (Γ \ S) is not necessarily empty). ��
Proposition 2. Let L′ = 〈V,E,w′〉 be a simple LC situation (with w′(e) ∈
{0, 1}) and let (E, c′) be the corresponding LC game. Then, X (L′, Γ ) ⊆
Core(c′) �= ∅.
Proof. By Lemma 3 we know that X (L′, Γ ) �= ∅ and that each element x ∈
X (L′, Γ ) is an efficient allocation. Now, in order to prove that x ∈ X (L′, Γ ) is
in Core(c′) we need to prove that

∑
e∈S xe ≤ c′(S) for all S ⊆ E. Notice that

∑

e∈S

xe =
∑

{i,j}∈S∩Γ :w′(i,j)=1

∑

e∈S∩BΓ
ij

xe ≤
∑

e∈S∩Γ :w′(i,j)=1

1=
∑

e∈S∩Γ

w′(e) ≤ c′(S), (10)

for each S ⊆ E, where the first equality follows from condition (ii) in
Definition 2, the first inequality from condition (i) in Definition 2, the second
equality from the fact that w′ is a simple LC situation and the second inequality
from Lemma 4. ��
We can finally prove that LC games have a non-empty core.

Theorem 2. Let L = 〈V,E,w〉 be an LC situation and let (E, c) be the corre-
sponding LC game. Then, Core(c) �= ∅.
Proof. Let σ ∈ ΣE be such that w(σ(1)) ≤ w(σ(2)) ≤ . . . ≤ w(σ(|E|)). For each
k ∈ {1, . . . , |E|}, take xk ∈ X (Lσ,k, Γ k), where 〈V, Γ k〉 is a mcsf for Lσ,k and
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cσ,k is the LC game corresponding to the simple LC situation eσ,k. Define the
vector x ∈ R

E such that

x = w(σ(1))xk +
|E|∑

k=2

(
w(σ(k)) − w(σ(k − 1))

)
xk.

For each S ⊆ E with S �= ∅ we have that
∑

e∈S xe ≤ w(σ(1))cσ,1(S) +
∑|E|

k=2

(
w(σ(k)) − w(σ(k − 1))

)
cσ,k(S) = c(S), (11)

where the inequality follows from the fact that, by Proposition 2, xk ∈
Core(cσ,k) and the fact that w(σ(1)) ≥ 0 and w(σ(k)) − w(σ(k − 1)) ≥ 0 for
each k ∈ {1, . . . , |E|}, and the second equality follows directly from Theorem 1;
similarly, for the efficiency condition of core allocations in X (Lσ,k, Γ k) we have

∑
e∈N xe=w(σ(1))cσ,1(E)+

∑|E|
k=2

(
w(σ(k))−w(σ(k − 1))

)
cσ,k(E)=c(E)=w(Γ ).

Then it has been established that x ∈ Core(c). ��
Example 9 (follows Examples 2, 3 and 5). Let Γ k = Γ = {{1, 2}, {1, 3}, {2, 4}}
for each k ∈ {1, . . . , 5} (notice that this is a mcsf obtained using the Kruskal
algorithm [9] on the ordering of the edges σ). It is easy to check that X (Lσ,1, Γ ) =
{(x12, x13, x24, x34, x23) = (1, 1, 1, 0, 0)}, X (Lσ,2, Γ ) = {x ∈ R

E
+ : x13 + x23 =

x24 = 1 and x12 = x34 = 0}, X (Lσ,3, Γ ) = {x ∈ R
E
+ : x12 = x13 = x23 =

0 and x24 + x34 = 1} and X (Lσ,4, Γ ) = X (Lσ,5, Γ ) = {(x12, x13, x24, x34, x23) =
(0, 0, 0, 0, 0)}. Consider for instance the core allocations xk ∈ X (Lσ,k, Γ ) com-
puted according to relation (8) as follows:

{1, 2} {1, 3} {2, 4} {3, 4} {2, 3}
x1 1 1 1 0 0
x2 0 1

2 1 0 1
2

x3 0 0 1
2

1
2 0

x4 0 0 0 0 0
x5 0 0 0 0 0

x = x1 + 0x2 + x3 + 2x4 + 4x5 1 1 3
2

1
2 0

One can easily verify that x ∈ Core(c), as immediately suggested by Theorem 2.

6 Concluding Remarks

In this paper we studied a class of cooperative games where the players are the
edges of a weighted graph and the goal of a coalition of edges is to connect the
adjacent nodes at a minimum cost. We also provided a procedure based on a
decomposition theorem to easily generate allocation vectors in the core of an LC
game. An interesting research direction is related to the property-driven analysis
of particular one-point solutions for LC situations, i.e. maps that associate to
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each LC situation a particular allocation vector, independently from the selected
mcsf and, possibly, in the core of the corresponding LC game. Alternative cost
allocation protocols keeping into account the role of edges in maintaining the
connectivity of the network should be further investigated.

As shortly suggested in Example 9, the procedure to find core allocations
used in the proof of Theorem 2 is strongly related to the Kruskal algorithm for
finding a spanning network of minimum cost on weighted graphs [9]. In general,
it is possible to define a procedure aimed at computing vectors in X (Lσ,k, Γ k)
at each k-th step of the Kruskal algorithm, and obtain, after precisely n-steps
(where n is the number of nodes, if the graph is connected) both an optimal
network and an allocation in the core of the LC game. On the other hand, the
procedure used in Theorem 2 selects the elements of a particular subset of the
core, and the issue of how to efficiently generate all the allocations in the core
of an LC game (or other specific subsets of stable allocations) is still an open
problem. Notice that the non-emptiness of the core for LC games can be also
proved using the results in [12] for games on matroids (LC games being a special
case of games on matroids), and an interesting related question is whether the
procedure used in Theorem 2 can be generalized to the more general framework
of matroids.

Another open question concerns the existence of solutions for LC games that
are cost monotonic (i.e., such that if some connection costs go down, then no
edges will pay more) and, in addition, that can be extended to a population mono-
tonic allocation scheme (pmas) [17] (roughly speaking, an allocation method is
pmas extendible if it assigns an allocation vector to every coalition in a mono-
tonic way and such that the cost allocated to some edge does not increase if the
coalition of edges to which it belongs becomes larger). It would be interesting to
analyse whether the core allocations computed according to the procedure used
in Theorem 2 satisfy these properties.

Finally, as an alternative framework, one could imagine a version of a (mono-
tonic) LC game where each service provider has the power, alone or in coopera-
tion, to control the implementation of the services over the entire network, and
not only those using the connections within a given coalition, like in the current
version of the model.
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