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Abstract. Differentially private data publication has recently received
considerable attention. However, it faces some challenges in differen-
tially private high-dimensional data publication, such as the complex
attribute relationships, the high computational complexity and data
sparsity. Therefore, we propose PrivMN, a novel method to publish high-
dimensional data with differential privacy guarantee. We first use the
Markov model to represent the mutual relationships between attributes
to solve the problem that the direction of relationship between vari-
ables cannot be determined in practical application. We then take
advantage of approximate inference to calculate the joint distribution
of high-dimensional data under differential privacy to figure out the
computational and spatial complexity of accurate reasoning. Extensive
experiments on real datasets demonstrate that our solution makes the
published high-dimensional synthetic datasets more efficient under the
guarantee of differential privacy.
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1 Introduction

With the emergence of big data era, a large amount of user data is generated
and accumulated, which becomes a new generation of resources to be urgently
developed and utilized [1]. For instance, purchase records of online users is helpful
for E-businesses to enhance the user experience and induce more consumption;
patient information is helpful for doctors to improve the accuracy of diagnosis
and level of medical services; population genetic database is helpful for scientists
to predict disease and reduce the risk of illness. These data resources have such
tremendous potential value. Therefore, how to make reasonable utilization is
particularly important.

A vital issue of mining and using big data is privacy protection, which often
involves the user’s personal privacy leakage. If the data are shared directly or
indirectly among the illegal person, it will make serious consequences [2]. Aim-
ing at the problem of sharing and publishing private data, traditional solutions
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widely use anonymization technologies [3]. However, these anonymization tech-
nologies exist two obvious defects, cannot be quantified and cannot resist back-
ground attacks. In 2006, Dwork proposed the concept of differential privacy [4],
which is a model of strict mathematical foundation and good robustness for pri-
vacy protection by adding controllable noise. Furthermore, it can resist the type
of attacks in case of an attacker with specific background knowledge, and control
the privacy leakage risk within acceptable limits. Differential privacy has been
widely recognized in the industry and it has become a practical standard for
privacy protection.

Differential privacy was originally designed to deal with simple relational
data. However, with the development of big data, many high-dimensional and
heterogeneous data appeared in practical applications. In the process of dealing
with high-dimensional data, the biggest problem is the curse of dimensional-
ity, that is, as the number of dimensions increases, the complexity and cost of
analyzing and processing multi-dimensional data increases exponentially. Thus,
one of the problems of high-dimensional data publishing is the sparsity of high-
dimensional data. In consequence, it cannot guarantee utility by differential pri-
vacy since original data were covered by noise. Another problem, which is more
prominent in high-dimensional data differential privacy publishing, is that the
relationship between high-dimensional data is rather complicated and the change
of single record will have a wider range of impact on the entire data, which results
in the increase of data sensitivity. Therefore, for releasing high-dimensional data
under differential privacy, it is important to reduce the data dimension and sim-
plify the relationship between attributes to make the sensitivity controlled within
a certain range.

To deal with the problem of high-dimensional data representation, researchers
in the field of the Probabilistic Graphical Model [5] provide a new idea. They take
advantage of the graph structure to represent the hidden relationship between
various types of data and map all kinds of problems in applications onto the
problem of calculating the probabilistic distribution of certain variables in the
probabilistic model. The probabilistic graphical model provides the possibility
of concise representation, efficient inference and learning various types of proba-
bility models. Therefore, it has been widely applied in many fields such as data
processing and mining.

In this paper, considering the characteristics of high-dimensional data, we
present a probabilistic graphical model for high dimensional data modeling and
simplify the complex relationships between data onto the mutual relationship
between variables. Specifically, we use Markov network to represent the prob-
abilistic distribution of multiple random variables, consequently reducing the
high-dimensional data dimension effectively and improving data utility. In addi-
tion, the inference algorithm in the probabilistic graphical model can effectively
reduce computational complexity. Our contribution of this paper are as follows:

1. We propose the Markov network model to represent relationships between
the variables without specifying directions of dependencies. The design of
the potential function in undirected graph model is not constrained by the
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probability distribution and more flexible. Meanwhile, it also avoids the con-
straint of global acyclic in directed graph model.

2. We develop the propagation-based approximate inference algorithm to deal
with the NP-hard problem of exact inference algorithm as its computational
complexity and spatial complexity grows exponentially. We specifically infer
the distribution by the confidence-update propagation algorithm and this
method can be applied to any structure network.

The remainder of the paper is organized as follows. The related work is pre-
sented in Sect. 2. Then, we describe some preliminaries in Sect. 3. The details of
PrivMN are proposed in Sect. 4, followed by an extensive experimental evalua-
tion in Sect. 5. Finally, a conclusion is depicted in Sect. 6.

2 Related Work

At present, the main research of differentially private data publication is how to
guarantee the publishing accuracy of query result with the privacy budget. There
are two kinds of applications, interactive data publishing and non-interactive
data publishing.

The main question of interactive data publishing is how to answer as many
data queries as possible with a limited privacy budget. In the early stage, Roth et
al. [6] improved the Laplace mechanism proposed by Dwork et al. This method
provides more inquiries under the same privacy budget. Gupta et al. [7] pro-
posed a universal iterative dataset generation framework, which supports more
queries as a whole. In general, the algorithm of interactive publishing method
is relatively complicated, and the unknown of subsequent queries makes it have
many limitations on query quantity and application mode.

The main problem of the non-interactive data publishing is how to design
an efficient publishing algorithm to make it not only satisfy the differential pri-
vacy, but also has more utility. There are two main non-interactive data pub-
lishing strategies. One is adding noise to the original data and then optimize
the data and publish the optimized result. Dwork [8] is an early representative
method, which combines with Laplace mechanism to publish an equal-width
histogram under differential privacy guarantee. However, one of the problems
of histogram releasing is the consistency of the range query results. Therefore,
many researchers propose some techniques to improve the availability and accu-
racy of the published equal-width histograms. For example, the post-processing
method proposed by Hay et al. [9] makes the result of the publication guaran-
tee the consistency under the condition of differential privacy, which not only
satisfies the query accuracy but also reduces the noise addition.

However, the privacy cost of the above releasing strategy is relatively high.
Therefore, another strategy is generally adopted, that is, convert or compress the
original data first and then add noise to the processed data. For instance, Xiao et
al. [10] first propose a multi-dimensional histogram distribution method DPCube
that effectively reduces the query error. The wavelet transform method proposed
by Xiao et al. [11] performs wavelet transform on the data before adding noise,
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which improves the accuracy of counting query to a certain extent. Barak et al.
[12] propose the method of Fourier transform contingency table, which achieves
the non-redundant encoding of marginal frequency. Meanwhile, the addition of
the noise in the Fourier domain will not undermine the consistency between the
edge frequencies.

When it comes to dealing with the problem of differential privacy protec-
tion for high-dimensional data, a basic idea is to propose an effective variable
selection method to reduce the dimension to a reasonable degree (dimensionality
reduction) on the premise of losing less information and then process the low-
dimensional data. For example, Qardaji et al. [13] evenly divide two-dimensional
spatial data onto equal-width cells and then add noise to each cell. Chen et al.
[14] use a classification tree to generalize the high-dimensional dataset and finally
publish noise counts. The PriView method proposed by Qardaji et al. [15] uses
the cover design method of combination principle to select views, which decom-
poses the high-dimensional data onto the low-dimensional views, and then adds
the noises to form the low-dimensional noisy marginal table, and finally uses
the maximum entropy optimization algorithm to reconstruct the k-attribute
marginal table for data publishing. Due to the increasing perturbation errors
and computation complexity, Xu et al. [16] propose DPPro that publishes high-
dimensional data via random projection to maximize utility while guaranteeing
privacy. Ren et al. [17] identify correlations and joint distributions among multi-
ple attributes to reduce the dimensionality of crowdsourced data, which achieves
both efficiency and effectiveness.

Some attempts on differentially private data publishing have been made in
the field of the probabilistic graphical model. Since Pearl [18] and Lauritzen [19]
first introduced the concept of the graphical model into the field of artificial
intelligence and statistical learning in the late 1980s, the graphical model has
been rapidly applied to many fields. Zhang et al. [20] propose the PrivBayes
method that uses the Bayesian network of the digraph model to represent the
relationship between data attributes and combine a series of low-dimensional
noise conditional probability tables by the chain rule of the Bayesian network
to form a joint distribution for data publishing. Based on PrivBayes, Su et
al. [21] present DP-SUBN, which develops a non-overlapping covering design
(NOCD) method for generating all 2-way marginals of a given set of attributes
to improve the fitness of the Bayesian network and reduce the communication
cost. In addition, Xiao et al. [22] propose another scheme, which mainly uses
attribute dependence graph to form attribute clusters, then adds noise to form
low-dimensional noise marginal table, and finally publishing by sampling.

Different from the above solutions, we focus on the mutual relationship
between multiple attributes, as well as the computational complexity and spa-
tial complexity. To solve these problems, PrivMN uses the method of high-
dimensional contingency table data publication and provides an approximate
distribution of the original dataset based on the inference theory of probabilistic
graphical model.
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3 Preliminaries

3.1 Differential Privacy

Basic Definition. For a finite domain Z, z ∈ Z is the element in Z. The dataset
D is consist of z sampled from Z, its sample size is n and the number of attributes
is dimension d.

Let datasets D and D′ have the same attribute structure. The difference
between them is denoted as DΔD′ and | DΔD′ | indicates the number of records
in DΔD′. If | DΔD′ |= 1, D and D’ are called adjacent datasets.

Definition 1. ε-Differential privacy [23]. A randomized algorithm M satisfies
ε-Differential privacy, if for any two neighboring databases D and D′, and for
any o ⊆ Range(M), Pr[M(D) ∈ o] ≤ exp(ε) · Pr[M(D′) ∈ o]. Where the proba-
bility Pr[·] is taken over M’s randomness and is the risk of privacy leakage. The
parameter ε is privacy protection budget.

From Definition 1, we can see that the privacy budget ε is used to control
algorithm M to obtain same output probability ratio of two neighboring datasets,
which reflects the level of privacy protection in fact. The smaller the value of
ε, the higher the level of privacy protection. When ε equals 0, the protection
level reaches the highest. At this time, the algorithm will output two identical
probability distribution results for any neighboring dataset, but these results
will not have any available information for a user.

Global Sensitivity. Differentially private protection can be achieved by adding
an appropriate amount of interference noise to the return values of query func-
tion. Too much noise will affect the availability of the output, while too little
will not provide enough security. The size of the noise is generally controlled by
global sensitivity.

Definition 2. Sensitivity [4]. Let f be a function that maps a dataset into
a fixed-size vector of real numbers (i.e. D → Rd). For two any neigh-
boring databases D and D′, the sensitivity of f is defined as GSf =
maxD,D′‖ f(D) − f(D′) ‖p. Where p denotes Lp norm used to measure Δf , and
we usually use L1 norm.

Noisy Mechanism. In practice, we usually add noise to algorithms to achieve
differential privacy. In this paper, we rely on two best known and widely used,
namely Laplace mechanism [8] and exponential mechanism [24]. The Laplace
mechanism is suitable for numerical datasets, while the exponential mechanism
is suitable for non-numerical datasets.

Laplace Mechanism. Laplace mechanism realizes the differential privacy by
adding random noises that obey Laplace distribution to perturb the exact query
result.
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Theorem 1. For any function f : D → Rd, the mechanism M, M(D) = f(D)+
Y , satisfies ε-Differential privacy, where Y ∼ Lap(Δf

ε ) is i.i.d. Laplace variable
with scale parameter Δf

ε . The greater the sensitivity of algorithm M, the more
amount of noise added.

Exponential Mechanism. If the output is not numeric, we need to use availability
function to evaluate the output. Let the output domain of query function is
Range, and each value r ∈ Range in the domain is an entity object. Under the
exponential mechanism, the function q(D, r) → R is the availability function of
the output value r, which is used to evaluate the quality of r.

Theorem 2. Let the input of random M is dataset D, and output is an entity
object r ∈ Range. q(D, r) is availability function with its sensitivity, Δq. The
mechanism M, M(D, q) = {r :| Pr[r ∈ Range] ∝ exp( εq(D,r)

2Δq )}, satisfies ε-
Differential privacy.

3.2 Markov Network

Basic Conception. Markov Random Field (MRF) is also known as Markov
Network. In general, the Markov Network is a complete joint probability distribu-
tion model for a group of random variables X which have Markov property [27],
and ISing Mode is one of the earliest Markov Networks.

Definition 3. Let G = (V,E) be an undirected connection graph, where node
Vj ∈ V represents a random variable. If the node Vi and Vj in edge (Vi, Vj) ∈ E
satisfy the local Markov property:

1. The probability of each possible distribution is greater than 0.
2. The conditional probability distribution of an arbitrary node is only related to

the value of its adjacent node (Locality).

Then the network structure is called Markov Network, denoted as H.

Conditional Independence. In the Markov network, there is a conclusion on
the property of independence that if XB ‘splits’ XA and XC , XA and XC are
independent when XB is given, and this property is also called Markov property.

Definition 4. If a set of observed variables Z is given, there is no path between
any two nodes x ∈ X and y ∈ Y , then we call node set Z separates x and y
in Markov network H and denoted as sepH(X;Y | Z). The global independence
associated with H is defined as: I(H) = {X ⊥ Y | Z} : sepH(X;Y | Z).
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Joint Probability Distribution

Definition 5. According to Hammersley-Clifford Theorem [25,26] and Local
Markov Property, the joint probability distribution of Markov network is defined
as: p(x) = 1

z

∏
i ψi(xi). ψi(xi) is a non-negative real-valued function of xi, which

is usually called the potential function of a clique, and the variable xi belongs
to set X. Z is the normalization constant of partition function and its value is
Z =

∑
x

∏
i ψi(xi).

4 PrivMN Algorithm

4.1 PrivMN Overview

In this paper, we consider the following problem: Given a dataset D with d
attributes, we want to generate a synthetic dataset that has approximate the
joint distribution of original dataset D while satisfying differential privacy.

The method proposed in this paper includes the following four steps and the
process of PrivMN is showed in Fig. 1:

1. Represent attributes relationship: we use a graphical model to represent the
relationship between attributes and establish the Markov model.

2. Approximate inference: we infer approximately on the model based on the
method of cluster graph confidence-propagation and obtain a series of low-
dimensional marginal tables.

3. Generate noisy marginal: we add noise to the low-dimensional marginal table
by exponential mechanism to form noisy marginal table.

4. Publishing synthetic datasets: we combine the noisy marginal tables and the
Markov model to generate a synthetic dataset.

Fig. 1. The detail steps of PrivMN

4.2 Represent Attributes Relationship

As mentioned before, we use Markov network to represent the relationship
between attributes. Firstly, we need to measure the relationship between
attributes, there are many kinds of measures, such as chi-square test, mean-
square contingency, Cramer’s V coefficient, mutual Information and so on. In
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this paper, we choose mutual information to measure the correlation between
two attributes. One reason is that mutual information is different from other
correlation coefficients, that it is not limited to real-valued random variables
and can express the degree of similarity generally. The other is not only for its
small sensitivity but also for its capability of seizing the linear and non-linear
correlations.

Given two attributes Ak and Al, the mutual information I(Ak, Al) is defined
as:

I(Ak, Al) =
|Ωk|∑

i=1

|Ωl|∑

j=1

pij log
pij

pi·p·j
(1)

where pij is the joint distribution of Ak and Al. p·j =
∑

j pij and p·j =
∑

i pij

is marginal distribution.
In this paper, we consider that Ak and Al are independent if I(Ak, Al) ≤

θkl for some small threshold θkl > 0. We choose Cramer’s V coefficient as the
threshold and Cramer’s V coefficient is a method to calculate the correlation
degree of between attributes in contingency table which attribute is greater than
2 × 2.

Cramer’s V coefficient is calculated as follows:

θkl =

√
χ2

nmin[(| Ωk | −1)(| Ωl | −1)]
(2)

where n is the size of a sample formed by two attributes, the domain of an
attribute Ai is represented by Ωi and its size is | Ωi |. χ2 is the value of chi-
square.

We present the process of establishing Markov network in Algorithm 1:

Algorithm 1. Establish Markov Network

Input: Dataset D with attributes A = {A1, A2, . . . Ad}
Input: Privacy parameter ε1
Output: Markov network H
1: Initialize H = (V, E) with V = {A1, A2, . . . Ad} and E = ∅;
2: η = Lap( 1

ε1
);

3: for each attribute pair (Ak, Al) do
4: calculate I(Ak, Al);
5: if I(Ak, Al) + η ≥ θkl + Lap( 1

ε1
) then

6: Add edge (Ak, Al) into H;
7: return H;

4.3 Approximate Inference

We have obtained the Markov network by Algorithm 1 which reveals attribute
relations obviously. Then, we need to infer the model and the purpose of the
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inference is to achieve the marginal distribution and the conditional distribu-
tion of the given model. However, it is still complicated to obtain the required
marginal distribution by inferring directly on the Markov network. Therefore,
we need further clustering on the Markov network to reduce the computational
complexity.

The cluster graph that we constructed in this step is a data structure, which
provides a flowchart of the factor processing. Each node in the cluster graph
is a cluster associated with a subset of the variables. The graph also contains
undirected edges that connect non-empty intersection sets in the domain. Each
edge between a pair of clusters Ci and Cj is relevant to a cut set Si,j that
Si,j ⊆ Ci ∩ Cj . In addition, we make use of a simple structure called Bethe
clustering graph, which can transform a general clustering graph into a clustering
graph satisfying the confidence-propagation algorithm.

We obtain a series of clusters Ci and cut sets Si,j after clustering Markov
network that satisfy the family-preserving of cluster graph: Each factor φ ∈ Φ is
related to a cluster graph Ci, expressed as α(φ), and satisfy Scope[φ] ⊆ Ci.

After obtaining the clustering graph, we ratiocinate in the clustering graph
by the confidence-propagation algorithm in Algorithm 2. Confidence-propagation
Algorithm of clustering Graph is an approximate calculation and iterative algo-
rithm based on the undirected graph model. It updates the current probability
distribution of the entire clustering graph by exchanging information between
the nodes in the clustering graph. Moreover, it can solve probabilistic inference
problems of the probabilistic graphical model and spread all information on
parallel.

After several iterations, the confidence of all nodes is no longer changed.
At this time, the clustering graph reaches the convergence state. Moreover, the
marginal distribution of each cluster is the optimal solution. This cluster graph is
called a cluster graph calibrated, that is, for each edge (i−j) between connected
clusters Ci and Cj in the cluster graph, there is

μi,j(Si,j) =
∑

Ci−Si,j

βi(Ci) =
∑

Cj−Si,j

βj(Cj) (3)

Therefore, the confidence set Q = {βi : i ∈ vertex set} ∪ {μi,j : i − j ∈
edge set} is a distribution similar to datasets. Where βi denotes the confidence
on Ci and μi,j represents the confidence on Si,j .

We present the process of approximate inference in Algorithm 2:

Algorithm 2. Approximate Inference

Input: Markov network H
Input: Factor set Φ
Output: Confidence set Q
1: Bethe cluster graph U ←− BehteGraphCreateAlgorithm(H);
2: confidence set Q ←− CGraph-SP-Calibrate(U , Φ);
3: return Q;
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4.4 Generate Noisy Marginal

In this section, we use the Laplace mechanism to add noise to the marginal tables
of each cluster to generate the noisy marginal tables and consequently realize
the differential privacy protection for the attributes in the cluster.

Let the number of clusters be m. For each clusters marginal table, we add
Laplace noise Lap(m

ε2
) to each entry’s count. Therefore, the privacy budget of

a single cluster for privacy protection is ε2
m . According to the combinatorial

property of the differential privacy protection algorithm, the differential privacy
protection for different clusters in the same dataset provides the sum of all
budgets. Therefore, the noisy marginal tables satisfy ε2-differential privacy.

In order to reduce the error caused by adding noise and ensure the availability
of noise-added data, we will post-process the noisy marginal tables. We cite the
post-processing technique in [22] to ensure consistency even if the noisy marginal
tables are of different sizes and attributes are not binary.

Let A = C1∩C2∩· · ·Cm �= ∅, the public attribute of cluster group. We use Tci

to denote Ci’s noisy marginal table, Tci [A] to denote A’s marginal constructed
from Ci and Tci [A] ≡ Tcj [A] to denote that two marginal tables are identical.
We want to ensure Tci [A] ≡ · · · ≡ Tcm [A], that is, all noisy marginal tables of
an attribute are coincident.

We achieve this goal in two steps. Where a is a possible value in As domain
and TA(a) is the count of a in As noisy marginal table.

1. Generate the approximate value of TA(a). The best estimate of TA(a) is
the minimum noise variance. Therefore, we use inverse-variance weighting
to obtain the variance of the weighted average as follows:

TA(a) =

∑m
i=1

Tci
(a)

σ2
i∑

i
1

σ2
i

(4)

where σ2
i =

∏
Aj∈(ci\A) | Ωj | is proportional to the variance of Tci [A](a).

2. Update all Tcis to be consistent with TA:

Tci(e) ← Tci(e) +
TA(a) − Tci(a)

∏
Aj∈(ci\A) | Ωj | (5)

where e is the a after the update.

To make all marginal tables consistent, we need to perform a series of mutual
consistency steps.

In addition, in order to reduce the bias caused by rounding the negative noisy
to 0 and assuring the accuracy, we turn negative counts into 0 while decreasing
the counts for its neighbors to maintain overall count unchanged. Specifically, we
choose a threshold θ that close to 0. The sum above the threshold is n and the
sum below the threshold is k. For each count c above the threshold, we subtract
| k | ∗ c

n as the last value of it, and the value below the threshold becomes 0.
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4.5 Publishing Synthetic Datasets

Combining with the previously obtained clustering graph and the noisy marginal
tables, we can calculate the joint distribution of attributes. Based on the joint
probability calculation formula in Markov networks, the confidence set, and the
noisy marginal tables, we can get the non-normalized distribution as follows:

PΦ(H) =
∏

βi(Ci)∏
μi,j(Si,j)

(6)

The normalization constant is usually obtained by the sum of all states, that
is, Z =

∑
Ci

∏
βi(Ci)

∑
Si,j

∏
μi,j(Si,j)

. Therefore, the joint distribution is calculated as follows:

PΦ(H) =
1
Z

PΦ(H) =
1
Z

∏
βi(Ci)∏

μi,j(Si,j)
(7)

However, directly sampling a synthetic dataset from the joint distribution
is computationally prohibitive. Therefore, we use the clustering graph and the
noisy marginal tables to generate a synthetic dataset. Specifically, the steps are
as follows: 1. Randomly select a cluster in the cluster graph and sample its
attributes from its noisy marginal distribution. 2. Continuously sample other
attributes in the cliques adjacent to the cliques, that is, they share a common
separator, and repeat the above operation. 3. Terminate this process until all
the attributes have been sampled.

After the sampling, we calculate the joint distribution by using the joint
probability calculation formula given earlier. Thus, we obtain the required joint
distribution, which satisfies the differential privacy protection of the complete
dataset.

In the four steps of PrivMN, only the first and third steps require access to
the original dataset, so we divide the total privacy budget ε into two portions
with ε1 being used for the first step and ε2 for the third step by the composition
property [8,28]. Therefore, the first and third steps are ε1- and ε2-differential
privacy respectively, and PrivMN satisfies -differential privacy as a whole, where
ε = ε1 + ε2.

5 Evaluation

We make use of three standard real datasets (both binary and non-binary) in our
experiments. For binary datasets, we choose Retail referred from [22]. Retail
is a retail market basket dataset, where each record consists of the distinct
items purchased in a shopping visit. We preprocess Retail to include 50 binary
attributes and its domain size is 250. For non-binary datasets, we use the same
datasets used in [20]. Adult contains census data from 1994 US census. There
are 15 non-binary attributes in it and its domain size is about 252. TPC-E
contains information of ‘Trade’, ‘Security’, ‘Security status’ and ‘Trade type’
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tables in the TPC-E benchmark. It consists of 24 non-binary attributes and its
domain size is about 277.

We evaluate the PrivMN in two aspects: One is the construction of marginal
table, which used to measure the accuracy of methods. The other is to train
multiple SVM classifiers on the same dataset to predict attributes. We first
generate synthetic datasets and then use these datasets to build SVM classifiers.
The correct rate or error rate is the judgment of all data, which is the overall
evaluation of the classifier and suitable for the evaluation of the experiment.
Therefore, we use the error rate to measure the performance of the classifier and
the property of the algorithm.

Since PriView [15] only works for binary datasets and cannot generate syn-
thetic datasets for SVM classification, for binary datasets we only report the
results on marginal tables. Due to L2 error and Jensen-Shannon divergence are
similar, we use the same evaluation scheme used in PriView, that is, we plot the
average L2 error where privacy budget ε ∈ {0.1, 1.0} and generate 200 random
k-way marginal tables for each k ∈ {4, 6, 8}.

For non-binary datasets, when k is relatively large, a k-way marginal table
is normally very sparse and the evaluation scheme used in binary datasets may
be significantly biased. Therefore, we choose to follow the same methodology
used in PrivBayes [20]. We generate all 2-way and 3-way marginal tables and
perform the average total variation distance between the original datasets and
the noisy datasets. In addition, we use the same method used in PrivBayes
to test the classification results with SVM classifiers. We report the results on
Adult, which is the most widely used benchmark dataset for SVM classification
analysis. We train SVM classifiers on Adult to predict where an individual (1)
is a male, (2) holds a post-secondary degree, (3) has salary > 50k per year, and
(4) has never married. We evaluate each classification task with privacy budget
ε ∈ {0.2, 0.5, 0.8, 1.0}. Each task uses 80% of the datasets as the training set and
the remaining 20% for prediction. We employ the misclassification rate as the
performance metric.

5.1 Contrast on Binary Datasets

In the first part of experiments, we compare the accuracy of four algorithms
on the binary dataset by assigning different privacy budgets. The results are
presented in Fig. 2.

It can be seen that our method, PrivMN, is far superior to PrivBayes in
most cases and has some advantages over PriView. In Fig. 2(a), PriViews L2

error is higher than PrivBayes when k = 8. It means that PriView is not stable
and there is a substantial decrease in the performance of the property with the
amount of attributes increase. Although PrivMN is similar to JTree, the error
of PrivMN is smaller than JTree. Our method still maintains certain advantages
as attributes increase. In general, the advantage of PrivMN is more observable
when ε = 0.1, that is, when ε is small, it is still the overall optimal without
excessive volatility. Therefore, we consider the synthetic dataset generated by
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(a) Retail, = 0.1 (b) Retail, = 1.0

Fig. 2. L2 error of k-way marginals on binary datasets

PrivMN can meet different analysis needs. In addition, PrivMN can be applied
to non-binary datasets, which is of great significance for practical applications.

5.2 Contrast on Non-binary Datasets

k-Way Marginal Tables. In the second part of the experiment, we compare
the average total variation distance of three algorithms for varying privacy bud-
gets on non-binary datasets and present the results in Fig. 3.

Since PriView cannot apply to non-binary datasets, we only compare the
remaining three methods. It can be seen from the figure that the experimental
results of PrivMN are far superior to PrivBayes. Under the condition of different
datasets and different k-way marginal tables, the error of JTree is large when ε =
0.2, and the overall change range is wide, especially in Fig. 3(c), (d). Although
PrivMN makes more errors than JTree when ε = 0.5 in Fig. 3(a), (b), it is
relatively flat as a whole. With the gradual increase of the privacy budget, the
added noise is less, and the average total variation distance is gradually reducing.
Therefore, PrivMN is suitable for extensive datasets and is utility for many real-
world applications.

SVM Classification. In the last part of experiments, we compare the misclas-
sification rate to measure the performance of PrivMN, JTree, and PrivBayes on
non-binary datasets. We report the results on Adult with different ε values in
Fig. 4.

Non-Private is the misclassification rate of the original dataset, which is also
the best experimental result we can achieve. In Fig. 4, PrivMN is far superior
to PrivBayes in all cases. Compared with JTree, PrivMN decreases more slowly
with different privacy budget, and the overall performance is better. In par-
ticular, PrivMN performs even better in Fig. 4(a), (b), (c). When ε = 0.2 in
Fig. 4(d), PrivMN has a slight fluctuation, but still within the acceptable range
while JTree gets an obvious error. Although the property of the dataset gen-
erated by PrivMN is lower than that of the original dataset, it can satisfy the
requirement of differential privacy and is superior to general methods. Therefore,
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(d) TPC-E, 3-way

Fig. 3. Total variation distance of k-way marginal tables on non-binary datasets
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(a) Adult, Y=education
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(b) Adult, Y=marital
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(c) Adult, Y=gender
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(d) Adult, Y=salary

Fig. 4. SVM misclassification rates on non-binary datasets
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PrivMN provides a generic data publishing solutions and it has certain practical
significance.

6 Conclusion

Differentially private high-dimensional data publication is one of most challeng-
ing research issues and an important problem to be solved urgently. In this paper,
we propose to use the Markov network model to represent the mutual relation-
ships between attributes to solve the problem that the direction of relationship
between variables cannot be determined in practical application. Moreover, we
take advantage of approximate inference to calculate the joint distribution of
high-dimensional data under differential privacy to figure out the computational
and spatial complexity of accurate reasoning. Experiments on several real stan-
dard datasets demonstrate that PrivMN is significant in practice.
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