
A Verifiable and Dynamic Multi-keyword
Ranked Search Scheme over Encrypted
Cloud Data with Accuracy Improvement

Qi Zhang1(B), Shaojing Fu1,2,3, Nan Jia1, and Ming Xu1

1 College of Computer, National University of Defense Technology, Changsha, China
zqi6@outlook.com

2 State Key Laboratory of Cryptology, Beijing, China
3 Science and Technology on Information Assurance Laboratory, Beijing, China

Abstract. With the widely application of cloud computing, more and
more data owners prefer to outsource their data on the remote cloud
servers to reduce the overhead. Searchable encryption is proposed in
an urgently need for searching on the encrypted data. In this paper,
we present a tree-based privacy-preserving and efficient multi-keyword
ranked search scheme supporting verification and dynamic update. Con-
sidering the effect of the keywords location on the weight in most doc-
uments, the traditional TF × IDF algorithm can be optimized with
location information to get more accurate similarity score. To improve
the efficiency, we combine the vector space model and binary tree to
construct a tree-based index structure. And the index tree is encrypted
by secure kNN computation. Finally, We analyze the security against
two threat model, and implement the experiment on the real paper set
to evaluate the performance.
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1 Introduction

In recent years, cloud computing has sprung up in various fields due to its unique
advantages. More and more data owners choose to outsource their large amounts
of local data to remote cloud servers to reduce their storage and computation
overhead.

Despite those benefits, data stored on the cloud servers, especially the sensi-
tive information, faces serious security risks and privacy challenges since cloud
servers are honest-but-curious. A general way to reduce this leakage is encrypt-
ing the data before outsourcing. However, encryption will bring other difficulties.
For example, if we want to search an exact document on the server, we have to
download all the encrypted data and decrypt it locally which lead to large stor-
age and computation cost. Therefore, searching on encrypted data becomes a
valuable research issue.
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Searchable encryption is proposed to settle these problems since it can guar-
antee the security and usability of data. These years, lots of works has been
proposed on this field, such as single keyword search, multi-keyword search,
ranked search. Furthermore, verification and dynamic update are added to fulfill
the functionality.

In this paper, we present a tree-based secure and efficient multi-keyword
ranked search scheme supporting verification and dynamic update. Our paper
takes the keyword location into account. In plaintext area, the information
retrieval mechanism is first returning all the results whose title contains the
keywords and later returning the results whose body contains them. That is to
say the keyword location will greatly influence the similarity of the documents
with query request. However, in ciphertext, traditional TF value only consider
the number of the keywords in a document. Introducing the location information
in the TF value will counts. Moreover, the length of the paper also have impact
on the similarity. We construct a tree-based index structure to improve the effi-
ciency of search. Moreover, the verification and dynamic update function are also
designed based on the tree-base index structure. We choose to implement the
experiment on the data set of paper for its typical fixed format which composed
of title, abstract, body, conclusion and preferences so that we can easily assign
the different significance to the keyword in different part. Our Contribution can
be summarized as follows:

(1) We present a tree-based secure and efficient multi-keyword ranked search
scheme supporting verification and dynamic update.

(2) We introduce the keyword location and length of document to optimize the
TF × IDF algorithm to improve the accuracy.

(3) We analyze the security against two threat model, and implement the exper-
iment on the real paper set to evaluate the performance.

The rest of this paper is organized as follows. Section 2 gives the related
word on searchable encryption. Section 3 gives a brief introduction of the scheme.
Section 4 describes the scheme in detail. Section 5 presents the performance anal-
ysis. Finally, we conclude in Sect. 6.

2 Related Work

Song et al. [15] first proposed a solution for searching single keyword on encrypted
data with sequential scan which was provably secure but in high cost. Boneh [1]
first proposed public key searchable encryption scheme. Based on these scheme,
a great deal of improvement had been produced.

Single Keyword Search. Goh [8] defined a secure index using a bloom filter and
pseudo-random functions which will introduce false positive results. Chang and
Mitzenmacher [4] developed two index schemes using dictionaries. Li et al. [14]
developed a single keyword search scheme to support fuzzy search.

Multi-keyword Search. Lots of research [2,9,19] achieve the conjunctive multi-
keyword search. Boneh et al. [2] proposed a public-key scheme and supported
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conjunctive and disconjunctive search like subset and range query. Wang et al.
[19] designed a inverted index based public-key searchable encryption scheme.
They used private set intersection to support conjunctive multi-keyword search.
Wang et al. [21] utilized the bloom filter with LSH and construct two schemes
using homomorphic encryption and pseudorandom padding to deal with high-
dimensional feature-rich data.

Rank Search. Rank search is proposed to deal with the drawbacks of boolean
search. Wang et al. [20] used inverted index and TF × IDF to construct a
order-preserving symmetric encryption. However this scheme only support single
keyword search. Cao et al. [3] first proposed a basic multi-keyword ranked search
scheme (MRSE) using secure inner product computation which had low overhead
on computation and communication. However, this scheme ignored the different
importance of the keywords. Fu et al. [7] proposed a scheme supporting both
fuzzy and rank search by processing stemming algorithm, LSH and bloom filter.
Sun et al. [17] developed the scheme by MDB-tree index structure. Chen et al.
[5] used k-means algorithm to construct the hierarchical cluster index tree. Xia
et al. [22] designed a special KBB index tree to provide efficient multi-keyword
ranked search which we refer to in this paper.

Dynamic Search. In practice, the data on the server could not be immutable.
Therefore, update should be considered. Goh [8] realized the update based on
the bloom filter. Kamara et al. [11] constructed a new dynamic encrypted index
to give a dynamic SSE scheme. Later, they improved the scheme by KBB tree in
[10]. Wang et al. [21] provide efficient index dynamic over homomorphic encryp-
tion and pseudorandom padding. Wan and Deng [18] applied update based on
bilinear-map accumulation tree. Lai and Chow [12] developed a dynamic sym-
metric structured encryption scheme with random binary tree.

Verifiable Search. Wan and Deng [18] gave a solution to apply verification based
on homomorphic MAC. Sun et al. [17] combined MDB-tree and Merkle hash
tree to realize. And later proposed public and private verification scheme based
on bilinear-map accumulation [16].

3 Problem Formulation

3.1 System Model and Threat Model

System Model. The system model involves three entities: data owner, cloud
server and data user, as shown in Fig. 1.

Data Owner: The data owner owns the plaintext dataset F locally. First data
owner encrypts the plaintext document collection F by symmetric encryption
algorithm, and generates the secure index tree T to improve the search efficiency.
Later, outsource the index tree to the cloud server along with the encrypted
document collection C. And the secret keys for document encryption and secure
kNN algorithm are sent to the data user via a secure channel. When data owner
wants to update the data on the cloud, update request will be sends to cloud.
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Fig. 1. The architecture of our scheme.

Cloud Server: The cloud server is responsible for the data storage. The encrypted
document collection and encrypted index tree from data owner are stored on
the cloud. After receiving the search trapdoor from the data user, cloud server
traverses the secure index tree to search for the relevant documents and sends
back the top-k most similar results to the data user. Meanwhile the cloud server
also sends back information to the data user for verification. When receiving
the update request from data owner, the cloud server uses the information from
data owner to update the document collection and index tree.

Data User: The data user who has access to the data can upload a search request
consisting of some of keywords in the keyword dictionary. The data user uses
the secret key to generate a query trapdoor and sends it to the cloud. When
receiving the results from cloud server, data user can decrypts the results with
the symmetric key locally. The verification proof returned can be used to verify
the correctness, completeness and freshness of the results.

Threat Model. We assume the data user is authorized and trusted so that
we don’t consider the leakage in the data user side. Nor do we consider the
leakage of secret key on the channel of key distribution. But the cloud server is
assumed to be honest-but-curious. In other words, the cloud server will follow
the processes honestly but will be curious to the content of data, keywords and
other additional information. We mainly consider two threat models.

Known Ciphertext Model. In this model, the cloud server only knows encrypted
information, specifically, the encrypted document collection C, the encrypted
tree-based index I and the encrypted trapdoor.

Known Background Model. In this model, the cloud server knows additional
backgrounds, such as the document frequency and keyword frequency. These
information will be used to conduct statistical attack to infer the keywords in
the query request.
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3.2 Design Goals

To achieve a privacy-preserving, efficient, dynamic and verifiable multi-keyword
ranked search scheme over encrypted data on the cloud, we propose the following
design goals:

Search Efficiency. The time cost of search should be appropriate to the large
amount of data. Tree-based structure is a great way to achieve it.

Dynamic Update. The scheme should support dynamic update, including inser-
tion, deletion and modification.

Result Verifiable. The scheme can verify whether the returned results are what
the data user want or not. (1) Correctness. The results should satisfy the query
request and all originated from data owner with unmodified version. (2) Com-
pleteness. The results should contain all the search results which match the query
request. (3) Freshness. The results should be the freshest and unmodified.

Privacy. The scheme can prevent the data or any other information from being
analyzed by cloud server. (1) Data privacy. The server cannot recover the plain-
text documents by analyzing the ciphertext. Cryptography is always used to
protect the data. (2) Index and query privacy. The index and query are rep-
resented by vectors which contain the information of keywords such as the TF
value in the index and the IDF value in the trapdoor which should be pro-
tected. (3) Keyword privacy. The cloud server could not make out the specific
keywords. (4) Trapdoor unlinkability. The trapdoor need to be indistinguishable
for the same query.

3.3 Notations

See Table 1.

Table 1. The notations in our scheme.

F The plaintext document collection stored in data owner side, which
contains N documents, and denoted as F = {f1, f2, . . . , fN}

W The dictionary of n keywords shared between data owner and data user,
denoted as W = {w1, w2, . . . , wn}

C The encrypted document collection stored in cloud server side, denoted
as C = {c1, c2, . . . , cN}

T The unencrypted index tree generated from the document collection C

I The encrypted index tree generated from tree T

Q The query vector submitted by data user contains m keywords in W ,
denoted as Q = {q1, q2, . . . , qm}

TD The trapdoor generated from the query vector Q and will upload to
cloud server

R The top-k encrypted document search results returned from cloud server
for decryption and verification

PR The plaintext document results decrypted by R
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3.4 Preliminaries

Vector Space Model with TF × IDF. Vector space model is one of the most widely
used models for information retrieval whose basic idea is to represent the doc-
ument and query as a vector. Each dimension of the vector corresponds to a
keyword, and the value is the weight of the keyword, which can be calculated
using the TF × IDF mechanism [23]. The term frequency, TF , the frequency
of the word in the document which reveals the significance of the word. The
inverse document frequency, IDF , is the number of documents which contain
the word among the document collection. And the TF × IDF algorithm uses
the product of TF and IDF to measure the correlation between the keywords
and document:

S =
∑

wi∈Q

TFfi,wi
× IDFwi

=
∑

wi∈Q

ln(1 + Nf,wi
)√∑

wi∈W (ln(1 + Nf,wi
))2

× ln(1 + N/Nwi
)√∑

wi∈W (ln(1 + N/Nwi
))2

(1)

where Nfi,wi
is the number of keyword wi in document fi. N is the total number

of documents in collection, Nwi
is the number of documents that contain the

keyword wi.
This method is intuitive, also the processing speed is fast. However, it neglects

many other characteristics. Fully considering the effect of the word location and
the document length on the weight, we optimize the algorithm by introducing
them into TF × IDF . The optimized TF × IDF is denoted as:

S =
∑

wi∈Q

TF
′
fi,wi

× IDFwi

=
∑

wi∈Q

nwi

Lfi
× ∑k

1(γfj
× tfj,wi

)
√∑

wi∈W (nwi

Lfi
× ∑k

1(γfj
× tfj,wi

))2
× IDFwi

(2)

where the document can be divided into k parts, γfj
is the weighting coefficient

of the jth part of the document, and the sum of the coefficient is 1, tfj,wi
is the

number of keyword wi in the jth part, nwi
is the number of the keyword wi, Lfi

is the length of the whole document fi.

Tree-Based Index Construction. As shown in Fig. 2, we construct the indexes to
a binary tree based on the Xia’s scheme [22]. This tree-based index structure
can greatly improve the efficiency of search.

In this structure, each node u in the tree is defined as:

u = (ID, Pl, Pr,D, h). (3)
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Fig. 2. Index tree.

where ID is the identity of the node, Pl and Pr is the pointers to the left and
right child node, D is the index vector whose dimensions are the TF weight of
keywords, and h is the hash value of node u for verification. Each leaf node is
linked to a document. The building process is shown in Algorithm1.

Algorithm 1. BuildTree(F )

Input: the plaintext documents F , the encrypted indexes I
Output: the index tree T
1: for each document fi in F do
2: Initial the leaf node. u.ID = ID(fi),u.Pl = null,u.Pr = null,u.D[i] =

TFfi,wi
for i ∈ [1, n]

3: end for
4: while the root node is not generated do
5: Generate the parent node for each two nodes u

′
and u

′′
. u.ID =

ID(u),u.Pl = u
′
,u.Pr = u

′′
,u.D[i] = max{u

′
.D[i], u

′′
.D[i]} for i ∈ [1, n]

6: end while
7: return the tree T

4 The Proposed Scheme

4.1 Detail Scheme

The detail scheme is as follows.

Algorithm 2. Search(u)

Input: index tree node u, trapdoor TD, threshold TH
Output: k documents R
1: compute the relevance score S = u.D · TD
2: if the node u is not a leaf node then
3: if S > TH then
4: Search(u.Pl)
5: Search(u.Pr)
6: end if
7: else
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8: if S > TH then
9: insert the node and the score into r

10: if length(R) > k then
11: sort R and delete the result with minimum score
12: TH = min{R}
13: end if
14: end if
15: end if
16: return R

– {SK, sk} ← Initial(1l). This algorithm generates the secret keys for encrypt-
ing the documents, indexes and query. The data owner generates the secret
key sk for encrypting and decrypting the documents, and the secret key SK
for encrypting indexes. SK is composed of three elements, one (n + U + 1)-
bit vector as S, and two (n + U + 1) × (n + U + 1) invertible matrices as
{M1,M2}, where U is a random number of dummy keywords to insert. Thus,
SK = {S,M1,M2}.

– C ← Enc(F, sk). The data owner uses a symmetric encryption algorithm
such as AES to encrypt the plain document collection F .

– I ← BuildIndex(F, SK). It is used to generate the encrypted index for each
document. The data owner generates a n bit index vector for each document
fi in document collection F . Then, every vector is extended to (n + U + 1)-
bit vector pi. The (n + j)th bit where j ∈ [1, U ], is set to a random number
ε(j). And the (n + U + 1)th bit is set as 1. Then, call the algorithm T ←
BuildTree(F ) to construct a index tree. Next, the index vector pi on each
node of the tree is split into two random vectors {pi

′
, pi

′′} by the secret vector
S for splitting. Namely, if S[j] = 0, we set pi

′
[j] = pi

′′
[j] = pi[j]; if S[j] = 1,

we set pi
′
[j] and pi

′′
[j] as random numbers and pi

′
[j] + pi

′′
[j] = pi[j]. The

index is encrypted as Ii = {MT
1 pi

′
,MT

2 pi
′′}.

– TD ← Trapdoor(Q,SK). The data user generates a n bit index vector for
the search query Q, in which each dimensions are set to the IDFwi

of the
keywords wi, and for other keywords, Q[i] = 0. Then, the query vector is
extended to (n + U + 1)-bit vector q. Choose a random number v out of U ,
the v random positions in [n, n + U ] are set to 1, others are set to 0. And
the (n + U + 1)th bit is set to a random number t(t ∈ [0, 1]). Scale the first
n+U -bit, denoted as Q

′
, by a random number r, then the query q = (rQ

′
, t).

Next, the query vector q is split into two random vectors {q
′
, q

′′} by the
secret vector S for splitting. Namely, if S[j] = 1, we set q

′
[j] = q

′′
[j] = q[j];

if S[j] = 0, we set q
′
[j] and q

′′
[j] as random numbers and q

′
[j] + q

′′
[j] = q[j].

Then, the trapdoor is encrypted as TD = {M−1
1 q

′
,M−1

2 q
′′}.

– R ← Search(I, TD). This algorithm uses indexes and trapdoor to calculate
the similarity to get the top-k research results, showed in Algorithm 2. After
receiving the trapdoor TD from the data user, the cloud server calculates the
relevance score between TD and the index vector stored in each node to get
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the top k relevant results. The relevance score is calculated as:

S = Ii · TD

= (MT
1 pi

′
) · (M−1

1 q
′
) + (MT

2 pi
′′
) · (M−1

2 q
′′
)

= pi
′ · q

′
+ pi

′′ · q
′′

= pi · q

(4)

– PR ← Dec(R, sk). The data user uses the secret key sk transmitted from the
data owner by a secret channel to decrypt the secret results R and get the
plaintext results PR.

4.2 Result Verification

Algorithm 3. hash tree construction

1: for each leaf node do
2: u.h = hash(u.ID||Φ(fi)) // Φ(fi) means the content of the document.
3: end for
4: for each nonleaf node do
5: u.h = hash(u.ID||hpl

||hpr
)

6: if the node is root node then // signature
7: σr = Sign(u.h||ts) // ts is the timestamp
8: end if
9: end for

Algorithm 4. minimum hash sub-tree

Input: returned results R, index tree T
Output: minimum hash sub-tree mintree
1: for each node u in R do
2: insert u into mintree
3: while u is not root node do
4: insert u’s father node and u’s brother node into mintree
5: u = u.parent
6: end while
7: end for
8: return mintree

Algorithm 5. Verify

Input: minimum hash sub-tree mintree, returned results R
1: if the signature of root node is true then // freshness and authentic
2: if verification of each node in mintree is true then // authentic
3: recompute the hash value of nodes in R
4: if the value after recomputing = the value in mintree then
5: re-search the mintree using the same trapdoor // correctness
6: if the re-search result = R then // correctness and completeness
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7: return True
8: end if
9: end if

10: end if
11: end if

We refer to the Merkle tree to design our verification scheme. The data owner
construct the hash tree based on the index tree using Algorithm3. For example,
in Fig. 2, the hash value of leaf node f1 is hash(f1.ID||Φ(f1)), and the non-leaf
node r11.h = hash(f1.h||f2.h) and the root node r.h = hash(r21.h||r22.h). And
generate the signature of the root node by signature algorithm like RSA signa-
ture algorithm. Then cloud server will return necessary proof for verification with
the results. The proof includes the signature of the root node σr and the mini-
mum hash sub-tree mintree generated by Algorithm 4. In Fig. 2, if the returned
result is f2, the proof is (σr, f2, r11, r21, r, f1, r12, r22). After receiving the proof
and results, data user verifies the results to be completeness, correctness and
freshness by Algorithm 5.

4.3 Dynamic Update

Since the data stored at the cloud server may be deleted and modified, new
documents may be added, the scheme should support dynamic update. There are
two aspects should be take into consideration. One is the keywords dictionary.
This can be settled by keeping some blank space in the document vector in
advance. We have a premiss that the dictionary is relatively fixed and with
small increments. Therefore, this process can satisfy most of the situations and
the overhead is relatively low.

The other is the update of file collection which will influence both the
encrypted index tree and the encrypted file collection. The data owner preserves
a plaintext index tree locally, and generates sufficient information for updating
in an encrypted way showed in Algorithm6. Enlightened by the minimum hash
sub-tree, we will neither need to re-construct whole encrypted index tree nor to
proceed BuildIndex on whole tree, which will reduce the efficiency since this
algorithm contains many matrix operation.

Algorithm 6. Update proof

Input: the update file fupd

1: flag = {insert, delete,modify}
2: encrypt the file fupd to cupd

3: if flag = insert then
4: insert the cupd into the leaf nodes
5: end if
6: if flag = delete then
7: search and set the node of cupd to null
8: end if
9: if flag = modify then
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10: search and update the node of cupd

11: end if
12: re-build a new index tree
13: construct minimum sub-tree tupd for cupd by Algorithm 4
14: return {tupd, f lag, cupd}

After receiving the information for updating, the cloud server use the infor-
mation uupd to update the corresponding nodes in the index tree and document
cupd to update the file collection. This process is showed below.

Algorithm 7. Update

Input: updated file cupd, sub-tree tupd, update operation flag
1: if flag = insert then
2: insert the cupd into the Collection C
3: end if
4: if flag = delete then
5: search and delete the document
6: end if
7: if flag = modify then
8: search and replace the document to cupd

9: end if
10: replace corresponding nodes in T to tupd

5 Performance Analysis

In order to estimate the performance, we implement the scheme on real data
set using C# language on a Windows 7 server with Inter(R) Core(TM) i5-6500
3.20 GHz.

For ease of experiment, we choose the formatted paper set as our study object
for they have typically fixed format such as title, abstract, body, conclusion and
preferences. The data set contains 4529 papers with 2964 keywords. We refer to
the parameter setting under the plaintext in other works and set the parameter as
shown in Table 2. We analyze our scheme from precision, security and efficiency.

Table 2. The parameter in data labelling.

γ0 0.45 Title

γ1 0.35 Abstract

γ2 0.1 Body

γ3 0.07 Conclusion

γ4 0.03 References
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5.1 Precision

Precision is the fraction of real retrieved documents among all the returned
document. Since the similarity score of a document will be greatly influenced
and randomized, the process will produce false positive results and reduce the
precision of the results. The precision is defined as: Precision = k

′
/k, where k

′
is

the number of real documents and k is the number of returned top-k documents.
The results are shown in Fig. 3.

Fig. 3. The precision of search.

5.2 Security Analysis

Known Ciphertext Model. In this model, the cloud server can only obtain
the encrypted document and encrypted index. The adversary distinguishes two
documents mainly depending on the index generation I ← BuildIndex(F, SK)
and document encryption C ← Enc(F, sk). The document vector is (n + U + 1)-
bit. The first n-bit are the weight of the keywords. The U -bit are randomly
chosen, and the last bit is set to 1.

For index generation, the documents are first split into two vectors and the
number is set randomly if the number in S is “1”. Assume the number of “1”
in first n-bit and the last bit is μ1 and each dimension of F is ηf , there are
(2ηf )μ ·(2ηf )U possible values. Then the two vector are encrypted by two random
(n + U + 1) × (n + U + 1)-bit matrixes. Assume each elements in matrixes is
ηM -bit, there are (2ηM )(n+U+1)2×2 possible values for two matrixes. Thus the
probability that indexes of two document are the same can be computed as
follows:

Pd =
1

(2ηf )μ1 · (2ηf )U · (2ηM )(n+U+1)2×2

=
1

2μ1ηf+Uηf+2ηM (n+U+1)2

(5)

The larger μ1, U , ηf and ηM are, the more difficult to distinguish. If we choose
ηf = 1024, Pd < 1/21024 can be negligible. As a result, the encrypted indexes
are indistinguishable.
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For document encryption, since we choose the symmetric encryption with
semantic secure, the encrypted documents are secure against known ciphertext
model.

Known Background Model. In this model, the adversary can obtain some
statistical information to infer the keywords or any other information.

The trapdoor is a n + U + 1-bit vector. The first n-bit represents whether
the keyword exists in the query or not. U -bit dimension is included v out of U
bit “1” and the other bits are “0”. The last bit is set to a ηt-bit random number
t. First the vector is scaled by a ηr-bit random number r which have 2ηr possible
values. Then the vector is split into two vector by a (n + U + 1)-bit S with μ0

“0”. Assume each dimension in first (n + U)-bit is ηq bits, there are (2ηq )μ0 ·2ηt .
Then the two query vector are encrypted by two random matrixes. As a result
the probability that two trapdoors are the same is computed as follows:

Pq =
1

2ηr · 2ηt · (2ηq )μ0
(6)

It can be proved to be indistinguishable by setting large number of ηr, ηt, ηq

and μ0. For example, if ηr = 1024, Pq < 1/21024 and can be negligible.

Privacy

– Data privacy. Document collection is encrypted by a traditional symmetric
encryption algorithm like AES which has been proved to be semantically
secure.

– Index and trapdoor privacy. In our scheme, index I and trapdoor TD are
encrypted by secure kNN algorithm. And the dummy keywords, the vector
S for splitting and two matrixes M1,M2 for encrypting are all generated
randomly which hide the plaintext in each dimension. As long as the secret
key SK = {S,M1,M2} is kept confidential, the cloud server can not identify
the index or trapdoor by analyzing the ciphertext. It has been proved to be
secure in the known ciphertext model [3].

– Query unlinkability. The random number r, t and v randomly chosen εi pro-
tect the search pattern and make the trapdoor indistinguishable even for the
same search query. And thus, the similarity score will be different for each
query and the cloud server cannot identify the relationship.

– keyword privacy. By introducing the random number εi in the index vector
to randomize the similarity score, the keyword privacy can be well protected
under known background model.

5.3 Efficiency Analysis

Index Construction. The index tree construction includes two process, build-
ing and encrypting by secure kNN algorithm. In building process, the tree is
generated by all the documents in collection. The complexity of building is lin-
ear to the number of document O(N). Since encrypting process includes a split
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Fig. 4. The time cost of index tree construction. (a) For the different number of doc-
uments in collection with the fixed keyword dictionary n = 1000. (b) For the different
number of keywords in dictionary with the fixed document collection N = 1000.

vector and two secret matrix, the complexity of encryption process depends
on the number of keyword dictionary O(n2). As a result, the time cost of index
construction is mainly influenced by the number of document collection and key-
word dictionary. The time cost are shown in Fig. 4. Since the process is one-time
computation on the data owner, the time cost is acceptable.

Trapdoor Generation. The complexity of trapdoor generation depends on the
split vector and secret matrix. Thus the complexity is related to the number of
keyword dictionary O(n2). And the number of keyword query has little influence
of the time cost. The time cost is shown in Fig. 5.

Search. The search process can be briefly summarized as the product of each
tree node and query vector. Thus the complexity of search mainly depends on
the number of tree nodes and the number of keyword in dictionary. Actually,
we don’t need to compute the similarity score for every nodes. Based on the
tree structure, we can compare the similarity score of nonleaf node with the
threshold and eliminate the nodes which will apparently not be included in the
final results. The time cost is shown in Fig. 6.

Fig. 5. The time cost of trapdoor generation. (a) For the different number of keywords
in dictionary with the fixed keywords in query m = 5. (b) For the different number of
keywords in query with the fixed keyword dictionary n = 500.
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Fig. 6. The time cost of search. (a) For the different number of documents in collection
with n = 500, m = 5 and k = 20. (b) For the different number of keywords in dictionary
with N = 1000, m = 5 and k = 20. (c) For the different number of keywords in query
with N = 1000, n = 500 and k = 20. (d) For the different number of return documents
with N = 1000, m = 5 and n = 500.

6 Conclusion and Future Work

In this paper, we present a privacy-preserving, efficient ranked multi-keyword
search scheme. We first focus on the formatted data set such as paper, project
plan and so on. So that the keyword location and document length are introduced
into the computation of TF value in our search scheme. A tree structure for index
is designed to improve the efficiency of search. And we extend the functionality to
implement verification and dynamic update. We give an analysis of the security
against two threat model and apply our scheme on real paper set to analyze the
performance (Table 3).

Table 3. The comparison among our scheme and related work.

Scheme Verifiability Dynamism Construction TF× IDF

Our paper
√ √

Binary tree Location & length

[22] × √
KBB-tree Tradition

[6] × × MDB-tree & interest model Tradition

[17]
√ × MDB-tree Tradition
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This work still have further improvements. Inspired by Li et al. [13], the
query can be extended to support operations with “AND”, “OR”, “NOT” by
well designed parameters. And we can extend the scheme to support semantic-
based sentence query. Furthermore, the nodes in the tree can be well designed
such as clustering and partition to have a much better efficiency improvement.
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