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Preface

We are delighted to introduce the proceedings of the 14th European Alliance for
Innovation (EAI) International Conference on Security and Privacy in Communication
Networks (SecureComm 2018), held in Singapore, in August 2018. SecureComm
seeks high-quality research contributions in the form of well-developed papers. Topics
of interest encompass research advances in all areas of secure communications and
networking.

The technical program of SecureComm 2018 consisted of 33 full papers and 18 short
papers in the main conference sessions. The conference sessions were: Session 1, IoT
Security; Session 2, User and Data Privacy; Session 3, Mobile Security I; Session 4,
Wireless Security; Session 5, Software Security; Session 6, Cloud Security I; Session 7,
Mobile Security II; Session 8, Social Network and Enterprise Security; Session 9,
Network Security I; Session 10, Applied Cryptography; Session 11, Network Security
II; Session 12, Cloud Security II; and Session 13, Web Security.

Aside from the high-quality technical paper presentations, the technical program
also featured two keynote speeches and one technical workshop. The two keynote
speeches were given by Prof. Robert Deng from Singapore Management University,
Singapore, and Prof. Zhiqiang Lin from Ohio State University, USA. The workshop
organized was the 6th International Workshop on Applications and Techniques in
Cyber Security (ATCS 2018). The ATCS workshop focused on all aspects of tech-
niques and applications in cybersecurity research. The purpose of ATCS 2018 was to
provide a forum for the presentation and discussion of innovative ideas, cutting-edge
research results, and novel techniques, methods, and applications on all aspects of
cyber security and machine learning.

Coordination with the Steering Committee co-chairs, Imrich Chlamtac and Guofei
Gu, was essential for the success of the conference. We sincerely appreciate their
constant support and guidance. It was also a great pleasure to work with such an
excellent Organizing Committee team for their hard work in organizing and supporting
the conference. In particular, we thank the Technical Program Committee, led by our
co-chairs, Dr. Raheem Beyah and Dr. Sencun Zhu, who completed the peer-review
process of technical papers and compiled a high-quality technical program. We are also
grateful to the conference coordinator, Dominika Belisova, for her support and all the
authors who submitted their papers to the SecureComm 2018 conference and
workshops.



We strongly believe that the SecureComm conference provides a good forum for all
researchers, developers, and practitioners to exchange ideas in all areas of secure
communications and networking. We also expect that future SecureComm conferences
will be successful and stimulating, as indicated by the contributions presented in this
volume.

September 2018 Raheem Beyah
Bing Chang
Yingjiu Li

Sencun Zhu
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A Secure Remote Monitoring Framework
Supporting Efficient Fine-Grained Access

Control and Data Processing in IoT

Yaxing Chen1,2(B), Wenhai Sun2, Ning Zhang2, Qinghua Zheng1,
Wenjing Lou2, and Y. Thomas Hou2

1 School of Electronic and Information Engineering, Xi’an Jiaotong University,
Xi’an 710049, Shaanxi, China

cyx.xjtu@gmail.com, qhzheng@mail.xjtu.edu.cn
2 Department of Computer Science,

Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
{whsun,ningzh,wjlou,thou}@vt.edu

Abstract. As an important application of the Internet-of-Things, many
remote monitoring systems adopt a device-to-cloud network paradigm. In
a remote patient monitoring (RPM) case, various resource-constrained
devices are used to measure the health conditions of a target patient
in a distant non-clinical environment and the collected data are sent
to the cloud backend of an authorized health care provider (HCP) for
processing and decision making. As the measurements involve private
patient information, access control, confidentiality, and trustworthy pro-
cessing of the data become very important. Software-based solutions that
adopt advanced cryptographic tools, such as attribute-based encryption
and fully homomorphic encryption, can address the problem, but they
also impose substantial computation overhead on both patient and HCP
sides. In this work, we deviate from the conventional software-based solu-
tions and propose a secure and efficient remote monitoring framework
using latest hardware-based trustworthy computing technology, such as
Intel SGX. In addition, we present a robust and lightweight “heartbeat”
protocol to handle notoriously difficulty user revocation problem. We
implement a prototype of the framework for PRM and show that the
proposed framework can protect user data privacy against unauthorized
parties, with minimum performance cost compared to existing software-
based solutions with such strong privacy protection.

Keywords: Remote patient monitoring · Internet-of-Things (IoT)
Fine-grained access control · Secure hardware · Trusted computing

1 Introduction

Remote patient monitoring is one of the silver applications of the Internet of
Things (IoT) system. It allows health care providers to monitor the health con-
ditions of a patient outside the conventional clinical environment, e.g. at the
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

R. Beyah et al. (Eds.): SecureComm 2018, LNICST 254, pp. 3–21, 2018.

https://doi.org/10.1007/978-3-030-01701-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01701-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-01701-9_1


4 Y. Chen et al.

patient’s home. The measurements are collected in real time from various IoT
devices, for example, user activities from audio and video streaming, biometrics
such as weight, blood pressure, heart rate via wearable devices on patients’ bodies
or sensors installed in the room and then sent to the HCP for further functional
processing. Instead of maintaining their proprietary infrastructures, nowadays
HCPs adopt the public cloud to provide such remote health care services [1].

Due to the private and sensitive nature of the measured information, there is
a crucial need for effective and flexible access control and secure data processing
to protect user data against unauthorized access while keeping the usability and
functionalities of the PRM system. The patient can permit an authorized HCP
to access data types based on the offered service. For instance, a cardiovascular
HCP may need to access the information of electrocardiogram and heart rate.
At the same time, the data processing should be secure against unauthorized
parties and adhere to the intended service functions.

Much work has been done in the literature to address this problem. For exam-
ple, attribute-based encryption (ABE) [2–5] is a well-known technique used in
a variety of applications to achieve scalable, secure, fine-grained access control.
On the other hand, privacy-preserving date processing can be realized by secure
multi-party computation [6], fully homomorphic encryption (FHE) [7]. How-
ever, such pure crypto-based solutions typically involve complex crypto oper-
ations. RPM at the client side consists of a number of battery-powered and
extremely resource-constrained devices, which are likely unable to afford com-
plex computationally-intensive cryptographic operations. Another challenge is
the realization of on-demand user revocation and privacy-preserving data pro-
tection. The former typically requires a cumbersome large-scale key update as
well as storage re-encryption; the latter is usually considered to be prohibitively
expensive if we target generic computations, rather than a special class of com-
putation.

In this work, we take the RPM as a case study and propose a secure and
efficient remote monitoring framework. In contrast to the software-based solu-
tions that exploit cryptographic primitives as building blocks, we present a novel
framework by leveraging the hardware-based trusted computing technology, such
as Intel SGX to protect user data privacy and enable secure computations over
sensitive data. Specifically, assuming a current smart home IoT platform, e.g.
Samsung SmartHome [8], we set up a trusted broker in the home gateway to
provide data encryption, remote attestation and key management on behalf of
the user (i.e., patient). On the cloud server, access control enforcement and data
processing are performed in a trusted execution environment (TEE) protected
by secure hardware. Our proposed approach represents a major departure from
existing software-based solutions. Due to the use of secure hardware, our scheme
is very efficient as we only adopt symmetric encryption, such as AES and carry
out the monitoring service (i.e., HCP) functions which could be arbitrary con-
stitution over plaintext data, rather than encrypted ciphertext data.

On the other hand, there is a significant challenge that we need to address
before delivering the claimed secure and efficient framework. By our design, the
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secret keys on the untrusted cloud server never leave the enclave (SGX term
for TEE) and the trustworthy executions of the access control enforcement and
HCP application are guaranteed by SGX functions. However, strong attackers,
such as OS and VM hypervisor, can still launch denial-of-service (DoS) attack
[9] to compromise the system. For example, it is expected that the trusted bro-
ker can explicitly inform the HCP enclaves to erase the corresponding secret
keys to revoke the access permission of the HCP. However, a malicious OS may
ignore such request and help the revoked HCP to continue reading the patient’s
data. Worse still, an HCP may be compromised and fail to invoke corresponding
enclave functions in response to the revocation request. In order to solve this
problem, we propose a “heartbeat” protocol. In a nutshell, we force the enclave
of the revoked HCP to be unavailable if it does not receive a valid heartbeat
signal from the trusted broker after the defined time window.

Our contribution can be summarized as follows.

– Building upon recent development of secure processor, we propose a practical
secure remote monitoring framework that offers fine-grained access control
and privacy-preserving data processing on user information. Compared to
existing software-based solutions that rely on cryptographic primitives, the
proposed system offers rich functionality while incurring less performance
overhead.

– We propose a novel “heartbeat” protocol to address the drawback of Intel
SGX architecture, where it is possible for the untrusted cloud server or a mon-
itoring application to selectively drop network traffic to prevent the user from
further controlling the enclave upon initial remote attestation. The “heart-
beat” protocol allows revocation of previous entrusted key materials in the
enclave.

– We implemented a prototype of the framework for remote patient monitor-
ing. Experiments show that the proposed system offers unique protection
with little performance overhead. The software has been open-sourced for the
community to build upon the existing work.

The rest of this paper is organized as follows. Section 2 introduces the tech-
nique of Intel SGX. Section 3 gives a description of the system model, threat
model, and design goals. We present the details of our framework and “heart-
beat” protocol in Sect. 4, and analyze its security properties in Sect. 5. We
describe the implementation of our prototype in Sect. 6 and evaluate it in terms
of performance and framework scalability. Section 7 reviews the literature related
to our work. Finally, we conclude in Sect. 8.

2 Background

In this section, we provide background knowledge about the used trusted hard-
ware primitive – Intel software guard extensions (SGX).

SGX [10,11] is the latest Intel instruction extensions and allows the host
application to reserve a protected memory region as trusted execution environ-
ment (TEE), called enclave, so that sensitive application operations can run
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inside securely against privileged system software1, e.g. OS kernel, VM hyper-
visor. In addition, SGX provides two other important functions, storage sealing
and remote attestation. Storage sealing allows the enclave to protect its data on
the untrusted persistent storage; remote attestation enables a distant entity to
check the integrity of the newly generated enclave, including the internal state,
code, etc. Should the verification be successful, the entity is able to establish an
authenticated secure channel and deliver its secrets into the enclave. Next, we
will provide some technical details of these two functions, which are essential
building blocks of our framework.

Storage Sealing. Intel SGX platform maintains a seal key to enable crypto-
graphic sealing function, which is derived from a base key called Root Seal Key
that is hardcoded when the Intel SGX enabled processor is manufactured. The
derivation algorithm supports two policies for data accessibility control. One
policy named sealing to the enclave’s identity bases the seal key on the value of
the enclave’s MRENCLAVE, which is a SHA-256 digest of an internal log that
records all activities done while the enclave is built. It enforces that only the
certain enclave can recover sealed data. The other policy is called sealing to the
sealing identity, which utilizes the value of the enclave’s MRSIGNER to generate
the seal key. The MRSIGNER is a hash of the public key of the party who signs
the enclave prior to distribution. Such a policy facilitates the scenario where an
enclave needs to share its sealed data with other enclaves signed by the same
party.

Remote Attestation. To enable this functionality, Intel SGX platform pro-
visions a special enclave called quoting enclave. When a challenged enclave
remotely attests to an entity, it needs first to locally attest to the quoting enclave
as follows. First, the challenged enclave sends a unique signed structure known
as REPORT to the quoting enclave, which contains the two enclave’s identi-
ties, i.e., MRENCLAVE and MRSIGNER, some meta-data and a MAC. The
MAC is calculated using a report key derived from the Root Seal Key. After
the REPORT is received, the quoting enclave then verifies it by re-computing
the MAC over the underlying data of the REPORT with the same report key.
If the two MAC values are equal, it shows that the challenged enclave is indeed
an enclave running on the same hardware platform with the quoting enclave. In
other words, the firmware and hardware of the challenged enclave are trustwor-
thy. Next, the quoting enclave generates a new signed structure called QUOTE
by re-signing the underlying data of the report with the Intel Enhanced Privacy
ID (EPID), which is an anonymous group signature scheme implemented by
Intel. Finally, the QUOTE is delivered to the entity who in turn transfers it to
the Intel Attestation Service (IAS) for validation. In principle, any verifiers that
possess the group public key can verify the QUOTE.

Intel SGX, however, is known to be vulnerable to various physical and soft-
ware attacks, for example, side-channel attacks [12,13] including cache-timing

1 The trusted computing base (TCB) of SGX only comprises the CPU and several
privileged enclaves.
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attack, power analysis attack, branch shadowing attack, etc. Further, the com-
promised OS can launch DoS attack to disrupt the enclave function as it is still
in charge of the underlying resource allocation. Thus, this attack on an intuitive
SGX-based RPM system allows the HCP to continue accessing the patient data
by dropping off the HCP revocation command from the patient.

3 Problem Formulation

3.1 System Model

A remote patient monitoring system in our design consists of a patient and
various health care providers as shown in Fig. 1. At the patient’s end, multiple
devices, either wearable or physically fixed in the room, are deployed to mea-
sure the health conditions of the patient. The health care information collected
from the monitoring devices are sent to a patient-controlled gateway, where a
trusted broker program executes to manage the access policy for each subscribed
HCP, secret keys and data encryption. Then it uploads encrypted data as per
device to the cloud storage. HCPs, including hospitals, skilled nursing facili-
ties, disease research centers, etc., have respective specialties in health-related
data analysis, assessment and recommendations to the patients. HCPs in our
system also outsource their services to the cloud and set up SGX enclaves to
perform the computation involving sensitive patient information. To this end,
the cloud HCP application first needs to request the corresponding secret keys
from the patient gateway after a successful remote attestation. Then the HCP
enclave loads the intended ciphertext of patient data from cloud storage and
securely process them after decryption. In order to revoke an existing HCP of
the patient, a robust “heartbeat” protocol is running between the trusted broker
and the HCP enclave. Normally, the enclave will securely erase all the acquired
keys when it receives a revocation command along with a heartbeat signal. Any
exceptional situations will cause the enclave out of service.

3.2 Threat Model

We assume that the monitoring environment containing IoT devices, the gateway
and communication channels between them is trustworthy. In addition, we do
not trust the cloud including applications, OS kernels, VM hypervisor, etc.,
except for CPU and enclave internals, which is consistent with the security of
SGX. Thus, we, in general, exclude the relevant physical and software attacks
on SGX in this paper. However, we do consider the challenging issue of HCP
revocation under the DoS attack by the compromised OS or the malicious host
HCP application.

3.3 Design Goals

Our proposed framework aims to achieve the following design goals. With respect
to system performance and functionalities,
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Fig. 1. The proposed framework for remote heath monitoring and protocol flows

– Scalability: Our scheme should be scalable and allow the patient to subscribe
as many HCPs as he/she needs in practice.

– Efficiency: The overhead of proposed security mechanisms should be mini-
mal.

Pertaining to security, our framework mainly realizes the following goals,

– Confidentiality of personal health data and keys: It is expected that
the measured patient data are well protected when stored and processed in the
cloud and the corresponding secret keys will not be disclosed to unintended
parties.

– Trusted HCP data processing: The data processing operations of HCP in
the cloud should be verifiable and comply with the prescribed service agree-
ment.

– Fine-grained data access control: An authorized HCP can only access
the data types defined by the patient.

– Robust revocation: The patient should be able to revoke existing HCPs in
the case of service unsubscription.

4 Our Proposed Framework

4.1 Main Idea

In our proposed framework, it is expected that the private patient data should be
securely processed and also compliant with the subscribed HCP service. In order
to achieve this, we leverage Intel SGX to create an enclave for the patient and put
all the sensitive information and computation into the enclave. By remote attes-
tation and computation environment isolation by the enclave, we can ensure that
the enclave is faithfully and securely performing the expected HCP functions.
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In addition, the patient should be able to enforce access control policy for the
subscribed HCPs over his/her outsourced data and revoke the access permission
of the unsubscribed HCP. To achieve this, a unique random secret key is assigned
to each monitoring device that outputs a specific health-related data type. Data
confidentiality can be realized by using the key to encrypt the relevant type of
data. Further, the patient can also control which HCP can access what types
of patient data by providing the corresponding secret keys. Intuitively, in order
to revoke an existing HCP and prevent it from further accessing the patient
data, we may re-encrypt the data type that was allowed for the target HCP
with updated device keys and redistribute these keys to the remaining affected
HCPs. Obviously, this method incurs considerable computation and communica-
tion overhead, and cannot revoke the access permission promptly, which is very
important for a real-time RPM system. The patient can also choose to explicitly
send a revocation command to the enclave to destroy all assigned device keys,
but it will fail if the compromised OS or HCP host application intercepts this
request. To solve this challenging issue, we present a “heartbeat” protocol in
our framework. The core idea is to send a periodical heartbeat signal from the
patient side to retain the HCP enclave’s vitality and force the enclave to erase
all the assigned device keys if it receives an explicit revocation command along
with the signal. If the enclave does not receive a valid signal during a predefined
time window, it will be no longer available.

Last, we automate the scheme for the patient by executing a trusted broker
program in the patient-side gateway device to enable various critical security
functions, such as encryption, key management, attestation, etc.

4.2 Framework Description

The proposed scheme comprises five steps: System Setup, Data Upload, Service
Subscription, Secure Data Processing, Service Unsubscription. Next, we describe
them in details. The main notations are summarized in Table 1.

System Setup. In this phase, the patient first bootstraps and configures the
trusted broker in the gateway. In particular, an access control list ACL, a device
key list DKL and a secret shared key list SSKL are initialized. Then the patient
registers all monitoring devices to the trusted broker, who invokes the key man-
agement function FKM to generate a unique secret key ski for each registered
device i. The key along with the corresponding device ID i is recorded in DKL.
On the other side, an HCP sets up its service application in the cloud.

Data Upload. The monitoring devices constantly collect data from the patient
and ambient environment, and send them as files to the trusted broker. Each
data file j from a particular device is further encrypted into the ciphertext ctji
by the encryption function FEnc using the corresponding device key ski. Finally,
the ciphertexts are uploaded to the cloud storage and organized as per device,
i.e., CTi = {ctji |j ∈ Fi}, where Fi represents the whole file set of device i.

Service Subscription. When the patient subscribes to an HCP p, he/she first
defines the access permission rule ζp in accordance with the service agreement.
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Table 1. Main notations

Notation Description

EApp The enclave launched by the health
care provider

F∗ The function implemented by the
trusted broker. ∗ can be KM for key
management, Enc for encryption

sskp The shared key generated by the
trusted broker for secure
communication with the health care
provider p

ski The secret key for device i

ctji The ciphertext of the data file j
bound to device i encrypted with ski

CTi The ciphertexts bound to device i

ζp The access rule defined for the
health care provider p

ACL The access control list maintained by
the trusted broker

DKL The device key list maintained by
the trusted broker

SSKL The secret shared key list
maintained by the trusted broker

ζp explicitly indicates which monitoring devices can be accessed by the HCP.
Then, the HCP ID p along with the access rule ζp is recorded in the ACL.
Meanwhile, the cloud HCP application initializes a dedicated enclave EApp for
the target patient. Next, the trusted broker on behalf of the patient begins the
remote attestation interaction with the HCP enclave EApp to ensure that all the
enclave functions comply with the service agreement. At the end of a successful
attestation, a secret key sskp is negotiated and shared between the trusted broker
and the HCP enclave to generate an authenticated secure channel for subsequent
communications. The trusted broker adds (sskp, p) to the SSKL and the HCP
saves the sskp with an internal variable shared key.

Secure Data Processing. Initially, the application enclave EApp of HCP p
needs first to request corresponding device secret keys from the trusted broker.
After receiving the key request, the trusted broker sends back the device keys
according to the defined access rule in ACL. The communication channel is
protected using the shared secret key sskp. Next, so long as the EApp is not
closed by the host application, it can constantly load the intended ciphertexts
of patient data from the cloud storage, decrypt them with the obtained device
keys and process the plaintext information inside the enclave. In case the enclave
is torn down either due to power event or by the application itself, the secret
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materials can be sealed to the untrusted storage for long-term service delivery.
Notably, we limit the enclave to use sealing to the enclave’s identity policy for
storage sealing, so that the obtained secret keys won’t be shared with other
enclaves not verified by the patient.

Service Unsubscription. The patient is able to unsubscribe a particular HCP
service by revoking all the assigned device keys. We propose a lightweight “heart-
beat” protocol to enable efficient and robust HCP revocation. In general, the
trusted broker adopts an auxiliary function, which will periodically send a heart-
beat signal to the HCP enclave EApp after giving out the device keys. The signal
carries a state indicating whether or not the HCP has been revoked. Upon receiv-
ing a heartbeat signal with revocation state, the EApp will erase all secret keys.
Otherwise, it updates an internal variable named hb state, which is critical to
sustaining the functionality of enclave. If hb state is not updated after a defined
time window, all the functions of the enclave towards secure data processing
cannot be executed properly. Thus, it can prevent further data access by the
HCP. In what follows, we describe the “heartbeat” protocol in details.

4.3 Heartbeat Protocol

Figure 2 shows the proposed “heartbeat” protocol, which runs between the
trusted broker and the HCP.

Fig. 2. The “heartbeat” protocol between the trusted broker and HCP enclave

On the Trusted Broker Side. A loop function is implemented to enable
periodical heartbeat signal emission and each iteration represents a heartbeat
cycle. It also uses a variable loop end, initialized as false, to control the on-
off switch of emitting heartbeat signal (line 2). During each heartbeat cycle,
the trusted broker first calls the counter() function to obtain a monotonically
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increased positive number r (line 3). Then it calls the policy access() function
to get the current revocation status of the target HCP, which is stored in a
boolean variable is revoked (line 4). It generates a heartbeat signal hb by using
authenticated encryption, such as GCM[AES] to encrypt r and is revoked with
the shared key ssk of the target HCP and sends it to the HCP host application
in the cloud (line 5 and 6). If the HCP has not been revoked, the current process
will be suspended for a defined period hb freq before entering the next cycle.
Otherwise, it will exit the loop and stops sending the heartbeat signal (line
7–9).

On the HCP Host Application Side. The HCP implements an event
response function named heartbeat event loop() to monitor heartbeat signals
(line 1), in which it transfers the received heartbeat message to its enclave by
calling the enclave function ecall heartbeat process() (line 2). Within the enclave,
it decrypts the message with the shared key ssk to recover the number r and
the revocation status is revoked (line 3). Next, it checks whether r is larger than
the number r’, which is maintained by the enclave to record the maximum of
r that has been received before (line 4). Note that r’ is initialized to be −1.
If r ≤ r′, the enclave returns the state of REPLAY (line 11). Otherwise, the
enclave stores r as new r’ (line 5). Then it checks the revocation status (line 6).
Provided that the HCP needs to be revoked, the erase() function will be called
to free the memory for storing the obtained secret keys from the trusted broker,
and return the state of REVOKED to host application (line 7 and 8). Otherwise,
the enclave updates a global variable hb state by invoking the cur secure time(),
which returns a trusted machine time. The enclave also returns the state of
SUCCESS to the host application (line 9 and 10).

The host application bases the returned status to do some post processing
(line 12), i.e., REPLAY, REVOKED and SUCCESS. Specifically, REPLAY indi-
cates that the enclave suffers from the replay attack. REVOKED represents that
the HCP has been revoked. SUCCESS means that the current event is success-
fully processed. In addition, if the HCP doesn’t receive a heartbeat message from
the trusted broker for a defined time period event timeout and the REVOKED
status has not yet been set, it may suffer from abnormalities, either network fail-
ure or DoS attack, and thus triggers the detection function (line 12, 13), which
is out of the scope of this paper.

To further enable the revocation mechanism, we need to enhance other
enclave functions by inserting an assert before normal function codes are exe-
cuted, which checks the freshness of the hb state. Figure 3 shows the checking
algorithm. First, it gets the current trusted machine time cur time by invoking
cur secure time() and computes the difference diff time between cur time and
hb state (line 2,3). If diff time is less equal than a defined time window named
threshold, then it returns true, meaning that the hb state is fresh and that the
subsequent codes can be properly executed (line 4,5). Otherwise, it returns false
(line 6,7). One non-trivial issue is how to set the value of threshold, which is
a trade-off between the timeliness of revocation and the robustness of mecha-
nism. Supposed that the threshold were very large compared to the heartbeat
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frequency hb freq, the mechanism can be robust to temporary network failure
or compromised OS. However, it will postpone the revocation time of taking
effect. For example, when the revocation heartbeat signal is not received by the
HCP enclave because of network failure, the HCP can continue processing the
patient’s data until the time window defined by threshold runs out. On the con-
trary, if the threshold is close to the hb freq, it can response revocation event in
time but may be vulnerable to the network failure and compromised OS.

Fig. 3. The freshness check assert

Remark. The proposed “heartbeat” protocol can achieve the desired HCP revo-
cation function. Its correctness can be guaranteed by the follows. In the case of
receiving the valid heartbeat signal in the defined time window, if is revoked is
false, the HCP can continue to access the patient data. Otherwise, the access
permission of the HCP will be revoked by erasing all the assigned secret keys in
the enclave. Should the heartbeat signal is not received by the enclave during
the defined time window, the abnormality, due to either network delay or the
intentional drop off of the revocation signal by the compromised OS or HCP host
application, will be detected, which disables the remaining critical HCP enclave
functions towards data processing.

5 Security Analysis

In this section, we show that our proposed scheme can achieve the defined secu-
rity goals.

5.1 Confidentiality of Personal Health Data and Provisioned Key

This property is satisfied by both software-based encryption algorithms, such
as AES, and the used secure hardware TEE function, i.e. Intel SGX enclave.
When outside the enclave, the patient information collected from various moni-
toring devices are encrypted using respective device keys and stored in the cloud.
After remote attestation, the relevant device keys are provisioned into enclave
through an authenticated secure channel. The encrypted patient data can only
be decrypted and processed inside the enclave. On the other hand, the shared
secret key and assigned device keys by our design never leave the enclave. Thus,
the confidentiality of the data and relevant keys are realized in this work.
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5.2 Trusted HCP Data Processing

This property is guaranteed by the remote attestation function of Intel SGX.
During this process, the patient will verify the integrity and correctness of critical
HCP functions that take his/her private data as input. Thus, the patient can be
assured of the trustworthy execution of the subsequent data processing and its
compliance with the subscribed service agreement.

5.3 Fine-Grained Data Access Control

We use different device-wise keys to encrypt each data type associated with this
device. Thus, the patient is able to generate and maintain a straightforward but
fine-grained access control policy by explicitly regulating what types of data of
the devices can be accessed by the HCP. This is enforced by only giving the
HCP the relevant secret device keys.

5.4 Robust HCP Revocation

We leverage the “heartbeat” protocol to efficiently and effectively revoke an
existing HCP from the system. The correctness has been stated in Sect. 4.3.
Here we focus on the other two security-related aspects.

– Non-forgeability: No other parties except for the trusted broker and HCP
enclave can access the shared secret key, which is used to encrypt and authen-
ticate the heartbeat messages.

– Replay attack resistance: A compromised party, e.g. OS, HCP host appli-
cation, may replay previously received heartbeat message to the enclave to
keep the freshness of hb state. However, we use a monotonically increased
number r to maintain the message order. It is expected that r in newly
received heartbeat message should be greater than the stored r′ in the enclave.
Otherwise, the replay attack can be detected.

6 Implementation and Evaluation

We implemented a prototype2 in C using the Intel SGX SDK 2.1 for Linux,
and enclaves are built as Linux Shared Objects (.so). Our prototype is tested
on an Intel NUC7i5BNH, an SGX enabled platform running an Intel Kaby Lake
i5-7260U processor at 2.20 GHz (Turbo frequency can reach to 3.40 GHz) with
8 GiB of RAM and Ubuntu 16.01 operating system. Currently, an Intel license is
required to build enclaves in release mode, so we compiled the code using g++
in a debug mode.

2 The project is available to access through the GitHub via the following link: https://
github.com/yxChen1990/SGXLAB.git.

https://github.com/yxChen1990/SGXLAB.git
https://github.com/yxChen1990/SGXLAB.git
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6.1 Implementation

In our prototype, we implemented the network communication interfaces invoked
by the HCP host application with directly stub function calls from the trusted
broker. We also implemented a data sample module to imitate the activities
of monitoring devices. In particular, it provides a stub function data send() for
directly invocation by the trusted broker. Besides, we omitted the cloud storage
using a stub function sp upload data() implemented in the trusted broker, which
encrypts data sent by the sample module and is further invoked by the HCP host
application for loading the ciphertext data. Lastly, the HCP enclave provided
abundant ECALL functions for the HCP host application to accomplish designed
protocols. Below, we will give the description of each interface in accordance with
its functionality.

Remote Attestation. The functions in this module enable the trusted broker
to validate the hardware and software TCB of the HCP enclave and agree on the
secret shared key between the two entities. Referring to the sample code provided
by Intel SDK, we implemented this mechanism by negotiating five core mes-
sages between the trusted broker and HCP host application, which are denoted
by msg0, msg1, msg2, msg3, msgret, respectively. Specifically, the msg0 car-
ries an Extended GID generated by the HCP host application. It is processed by
sp ra proc msg0 req() in the trusted broker to validate the HCP host application
before launching remote attestation. Provided that the validation was passed, the
HCP host application will initialize remote attestation by invoking ecall init ra(),
which returns an attestation context. Based on the attestation context, the msg1
including the DHKE public key of the HCP enclave is constructed and sent to
the trusted broker. In response, the trusted broker calls sp ra proc msg1 req()
to process msg1 and returns back msg2, involving the DHKE public key of the
trusted broker. At the moment, a 128-bit asymmetric secret shared key between
the trusted broker and HCP enclave can be constructed. Notably, if the final
attestation is successful, the shared key will be recorded at both side, i.e., the
trusted broker inserts it along with the HCP’s ID, denoted by (hcp id, ssk)
to the SSKL and the HCP enclave writes it to the global variable shared key.
In the last round communication, the msg3, representing the QUOTE gener-
ated for the specific HCP enclave, is sent to the trusted broker for verification.
Instead of communicating with the IAS, the sp ra proc msg3 req() locally veri-
fies the MRENCLAVE and MRSIGNER and returns back the final attestation
result msgret. On the HCP’s end, it invokes ecall verify att result mac() to verify
msgret and further does some post-processing.

Heartbeat. This module includes functions used to synchronize heartbeat mes-
sages between the trusted broker and HCP enclave. Following the protocol
design in Sect. 4.3, we implemented a sp heartbeat loop() at the trusted bro-
ker’s side to constantly emit heartbeat signal msghb to the HCP enclave and
an ecall heartbeat process() at the HCP enclave’s side to handle the captured
heartbeat event. In particular, we created a dedicated thread to simulate the
protocol execution.
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Key Management. This function module facilitates the trusted broker to gen-
erate device keys and distribute them to HCP enclaves. The trusted broker
maintains two lists, i.e., device key list (DKL) and secret shared key list (SSKL)
to support such a functionality. We use two struct arrays to implement them:
the first one is defined as (dev id, sk); the second one is defined as (hcp id, ssk).
It also implements three functions. Specifically, the key generate() function is
used to generate keys for registered monitoring devices. The key access() inter-
face enables the access of the two lists by other functions in the trusted broker.
To facilitate key distribution, it implements a sp km proc key req() function to
deal with key requests from HCP enclaves, which takes the key request message
msgreq as input and returns back msgsk. More specifically, the msgreq includes
the HCP ID hcp id and its corresponding ciphertext generated by the HCP
enclave using the shared key shared key. The msgsk is a struct encrypted with
the same shared key retrieved from SSKL. The underlying struct consists of the
key number and target device keys, and can only be recovered to a global variable
device keys within the HCP enclave through the invocation of ecall put keys()
by the HCP host application.

Seal Secrets. With regard to the HCP, we offer two ECALL functions in this
module to enable that keys received by the HCP enclave can be flushed out to the
secondary storage for long-term service provision. The ecall create sealed policy()
encrypts keys with the platform seal key and returns the ciphertext data to the
HCP host application, which in turn can be stored in the untrusted storage
medium. On the contrary, the ecall perform sealed policy() recovers the sealed
keys into the HCP enclave. By our design, the exploited policy for deriving the
seal key is limited to only use sealing to the enclave’s identity, such that an
upgraded enclave need to once again attest to the trusted broker and request
keys from it.

Policy Management. For the trusted broker, we also implemented related
interfaces to accomplish policy management. The sp define policy() is provi-
sioned to facilitate a patient to define his/her access policy towards HCPs by
inserting access rules to the access control list (ACL). The ACL is implemented
by a struct array and the struct is defined as (hcp id, dev id, dev id,...). Cor-
respondingly, we implemented a policy access() function to allow the access of
ACL by other functions.

Data Processing. Provided that all above modules were properly functioned,
the HCP enclave then could compute over patient’s encrypted data. We imple-
mented an ecall perform statistics() function as an example, which takes two
encrypted data as inputs and outputs some statistic measurements like mean
and variance of the underlying data.

Last but not the least, to support user revocation, we augment all above
defined ECALL functions except those in Heartbeat and Remote Attestation
modules by enforcing the freshness assert checking at the point where the func-
tion starts. In particular, the freshness time window threshold within the assert
algorithm is set up as 5 times of the heartbeat frequency hb freq.
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6.2 Evaluation

As shown in Implementation, our framework involves many function modules.
The evaluation of the system aims to answer the following questions:

– How is computation performance when using Intel SGX?
– What is the cost by introducing the heartbeat mechanism?
– How is the scalability of the proposed framework in terms of fine-grained

access control?

Fig. 4. The computation performance w and w/o Intel SGX

Constant Time Functions. Majority of the aforementioned functions are
invoked few times during protocol execution and have constant overhead for
each revocation. For example, the functions in key management at both sides
either perform an O(1) symmetric key generation algorithm or conduct an
O(1) read/write operation on defined data structure. Similarly, functions in seal
secrets module perform a symmetric encrypt/decrypt operation and functions in
policy management perform a list read/write operation. In addition, though the
remote attestation between the trusted broker and HCP enclave needs multiple
network communications and complex verification computations, it is a one-time
protocol finished at the service subscription phase for a given HCP. Therefore,
it incurs no performance degradation to the subsequent data processing.
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Performance by SGX Enclave. In this experiment, we aim to measure the
performance penalty when using Intel SGX. Specifically, we implement a 128 bit
AES-GCM scheme and demonstrate the additional cost by SGX through evalu-
ating its performance. In the real world, data collected by different monitoring
devices varies greatly. For example, a heart-rate sensor may send a 1-byte data
while a footage of an activity monitor with a code rate of 4933 kbps will need
about 616 KB frame data per second. To see how the proposed system works
under such various conditions, we enable the trusted broker to encrypt files in
different sizes. In particular, we chose three file sizes, i.e., 1 B, 1 KB, and 10 KB.
In each defined file size, we are also interested in the performance with various
number of files since some applications, such as machine learning algorithms,
may need to deal with a large number of files. Figure 4 illustrates the perfor-
mance of the implemented AES-GCM scheme. We use the baseline to represent
the same implementation without Intel SGX. It can be observed that Intel SGX
is more suitable to process (encryption and decryption) small-sized files, i.e., 1 B
and 1 KB, where it only imposes a negligible performance overhead. On the other
hand, large-sized files, e.g. 10 KB, will introduce more performance penalty as the
file number increases. Note that Intel SGX SDK provides a closed-source trusted
cryptographic library named sgx tcrypto, which includes some well-known cryp-
tographic primitives. In particular, it also provides two AES implementations,
i.e., Rijndael 128 bit-GCM and Rijndael 128 bit-CTR. We can choose to use this
native 128 bit AES-GCM function to provide the message confidentiality and
integrity. It is expected that this optimized AES function will give us a much
better performance compared to our own implementation. We will apply this
function and evaluate its practical performance in the future.

Heartbeat Cost. The heartbeat mechanism in our framework consists of three
critical functions, i.e., the sp heartbeat loop() at the trusted broker’s side, the
ecall heartbeat process() and freshness assert() at the HCP enclave’s side. By
following numerical analysis, we show that the performance costs of these func-
tions are relatively very small. The main cost of sp heartbeat loop() is to encrypt
the heartbeat message with the shared symmetric key, the complexity of which
depends on the underlying message size. By our design, the size of heartbeat
message is fixed, including a 4 bytes counter and a 1-byte is revoked, so the
performance cost can be ignored. Accordingly, in the ecall heartbeat process(), it
mainly performs a reverted decryption operation. Lastly, the freshness assert()
obviously comprises no time-consuming operations.

The only potential resource cost introduced by the heartbeat mechanism
is that both the trusted broker and HCP host application must maintain a
dedicated thread to constantly emit or handle heartbeat messages during the
lifetime of the service.

Scalability of the Framework in Terms of Fine-Grained Access Con-
trol. On behalf of the patient, a trusted broker is established in the gateway to
control the access of his/her monitoring devices by multiple health care providers.
In theory, our framework can support the end user to subscribe as many HCPs as
he/she needs in practice. On one hand, to accomplish access control, the trusted
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broker only maintains numbered shared device keys in the DKL for data encryp-
tion as per device and two unique tuples for each subscribed HCP, i.e., (hcp id,
dev id[]) in the ACL to indicate which device keys can be accessed by the HCP
enclave and (hcp id, ssk) in the SSKL to secure the subsequent communication
between the two entities, which incurs minimum computation and storage cost.
On the other hand, by implementing the heartbeat mechanism, an HCP can be
revoked without triggering other time-consuming computations, such as device
key re-issuing and data storage re-encryption.

7 Related Work

Attribute-Based Encryption (ABE), first proposed by Sahai and Waters [14], is
a promising privacy-preserving data access control technology that achieves fine-
grained access control, scalable key management and flexible data distribution.
It has been well studied and adopted in many cloud computing applications in
the past decade [2–5,15,16]. Recently, Wang et al. [17] give a comprehensive
performance evaluation of ABE, focusing on execution time, data and network
overhead, energy consumption, and CPU and memory usage, to understand at
what cost ABE offers its benefits and under what situations ABE is best suited
for use in the IoT. They concluded that the computation cost in encryption
and decryption phase may be a heavy burden for those resource-limited devices.
Many researchers try to leverage other powerful entities to offload the cum-
bersome computation. For example, Yang et al. [18] exploit the cloud as an
outsourcing entity to encrypt data for publishers and decrypt data for receivers.
Huang et al. [19] and Zhang et al. [20] delegate the computation of encryption
and decryption to fog nodes, which is a micro data-center adjacent to the end
user in fog computing paradigm. Our work, however, avoids such cumbersome
cryptography-based methods by utilizing the light-weight hardware, i.e., Intel
SGX, to achieve fine-grained access control over user’s data while achieving the
same security requirements in the challenging IoT scenario.

Intel SGX is a hardware-based trusted computing technology, which has been
studied a lot in the literature. Baumann et al. [21] implemented a prototype
named Haven to protect unmodified legacy applications against malicious OS
by running them in SGX enclaves. Arnautov et al. [22] and Shinde et al. [23]
built a secure Linux container with Intel SGX to defend against outside attacks.
Fisch et al. [24] propose a system called IRON with Intel SGX to make functional
encryption (FE) and multi-input functional encryption (MIFE) practical. Sun et
al. [25] exploit Intel SGX to address the challenging searchable encryption (SE)
problem. In comparison to existing works, we solve the non-trivial key revocation
issue faced by Intel SGX by introducing a “heartbeat” protocol.

8 Conclusion

In this paper, we propose a secure and efficient framework for remote patient
monitoring in the context of IoT, which enables two fundamental security func-
tionalities for users (patients), i.e, a user can control which deployed devices can
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be accessed by which monitoring services (HCPs), and he/she can be further
assured that functions over his/her data are securely executed without leak-
ing the privacy information to unauthorized entities. To this end, we leverage
the off-the-shelf secure hardware, i.e., Intel SGX to circumvent those cumber-
some crypto-based solutions in previous works. Furthermore, we also introduce
a “heartbeat” mechanism to efficiently support service unsubscription for users.
Lastly, by implementing a prototype, we demonstrate that our framework is
feasible in practice and almost raises no performance degradation.
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Abstract. The growth of the Internet of Things (IoT) is contributing
to the rise in cyber attacks on the Internet. Unfortunately, the resource-
constrained IoT devices and their networks make many traditional secu-
rity systems less effective or inapplicable. We present TWINKLE, a
framework for smart home environments that considers the unique prop-
erties of IoT networks. TWINKLE utilizes a two-mode adaptive security
model that allows an IoT device to be in regular mode for most of the
time which incurs a low resource consumption rate and only when sus-
picious behavior is detected, switch to vigilant mode which potentially
incurs a higher overhead. We show the efficacy of TWINKLE in two case
studies that address two types of attacks: distributed denial-of-service
(DDoS) and sinkhole attacks. We examine two existing intrusion detec-
tion and prevention systems and transform both into new, improved
systems using TWINKLE. Our evaluations show that TWINKLE is not
only friendly to resource-constrained devices, but can also successfully
detect and prevent the two types of attacks, with a significantly lower
overhead and detection latency than the existing systems.

Keywords: Internet of Things · Smart home · Security
Resource consumption

1 Introduction

The Internet of Things (IoT) continues to pervade our lives. In 2016, 6.4 billion
devices were connected to the Internet [12]. This number is expected to increase
to 30 billion by 2020 [15]. However, as IoT devices are connected by the Internet,
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they also suffer from the same types of attacks that plague traditional Internet-
connected machines. In October 2016, for example, the Mirai IoT botnet, which
comprised of up to 100,000 infected IoT devices, launched multiple large-scale
distributed denial of service (DDoS) attacks [7]. This botnet created a 1.2 terabits
per second attack which resulted in the inaccessibility of many popular websites,
such as Twitter, Reddit, Netflix, GitHub, and Airbnb.

While IoT devices and traditional machines suffer from the same types of
attacks, IoT devices tend to be harder to secure due to some unique properties.
IoT devices are often harder to patch and update due to largely non-existent
automatic update systems. Also, they tend to have scarce CPU and memory
resources, and limited battery capacity, if not plugged into an external power
source. IoT devices can have anywhere from a few gigabytes to a few kilobytes of
memory. Furthermore, with many different types of IoT devices, IoT networks
are far more diverse and heterogeneous than traditional networks. These unique
properties, which differentiate IoT devices from traditional machines, hinder the
deployment of existing security mechanisms in IoT environments.

Cryptographic protocols and intrusion detection/prevention systems
(IDSes/IPSes), developed for the traditional Internet, are designed without
the assumption of extremely limited resource and computing power. Even sys-
tems that are considered extremely lightweight cannot be installed on memory-
constrained devices that have less than 1 MB of available memory [21]. For
example, Sehgal et al. [19] show that many IoT devices struggle to run the cryp-
tographic protocol TLS, a traditional Internet security standard. If a security
solution needs to probe devices they protect, most devices in an IoT environment
may either lack the power or network bandwidth to respond to every probe, or
simply wish to stay dormant most of the time. Sometimes a security solution may
impose some minor penalties on benign devices while mitigating an attack (e.g.,
dropping traffic from devices to mitigate a DDoS attack). These minor penalties,
when moved to an IoT environment, can become a significant hindrance to those
benign devices.

In this paper, we focus on the smart home environment where security and
privacy are especially important, and address the ineffectiveness of traditional
security mechanisms in the smart home. We introduce a security framework
called TWINKLE that supports individual security applications that handle spe-
cific attacks in the smart home. By enabling each security application to run in
two distinct modes, TWINKLE not only preserves the salient features of classic
security solutions, but also addresses the resource limitations that IoT devices
face. Every security application, while plugged into TWINKLE, will be running
in regular mode for the most time and incur a minimal amount of resource
consumption, but when it detects any suspicious behavior that an attack must
display, it can readily switch to vigilant mode and engage in sophisticated rou-
tines for a short time window during which to cope with the suspicious behavior
with strong competence. By only running the heavyweight routines when needed,
TWINKLE saves precious resources over methods that run these routines either
continuously or periodically.
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We further apply the TWINKLE framework to transform two prior attack
solutions for the smart home environment. We convert the D-WARD solu-
tion [13] that handles DDoS attacks from source networks to D-WARD+; unlike
D-WARD, D-WARD+ does not drop packets from benign devices while still
effectively keeping the DDoS traffic to an unharmful level. We also convert the
SVELTE solution [17] that detects sinkhole attacks to SVELTE+, which does not
consume network and power resources unless a suspicious behavior is detected
and further adds a routine to remove a sinkhole node once it is detected. Our
evaluation further demonstrates that D-WARD+ and SVELTE+ incur much
less overhead than D-WARD and SVELTE, respectively, while achieving equal
or better efficacy in handling the attacks.

The rest of the paper is organized as follows. In Sect. 2, we describe the
TWINKLE framework, including its two modes and its architectural design. In
Sect. 3, we describe how D-WARD addresses the DDoS attack from the source
and how we design D-WARD+ to address the drawbacks of D-WARD in the
smart home environment. In Sect. 4, we describe the sinkhole attack in 6Low-
PAN networks and the prior SVELTE solution, and present how we convert
SVELTE into the SVELTE+ solution running on TWINKLE. We present the
evaluation results of both case studies in Sect. 5, showing that the TWINKLE
framework can help reduce the resource consumption in the smart home, com-
pared to D-WARD and SVELTE. In Sect. 6, we discuss the feasibility of deploy-
ing TWINKLE, present possible extensions to TWINKLE, and consider open
issues that will be addressed in future work. Lastly, we survey related work in
Sect. 7 and conclude the paper in Sect. 8.

2 TWINKLE: A Two-Mode Security Framework
for the Smart Home

(a) Operational state diagrams (b) Resource consumption

Fig. 1. Comparison of TWINKLE and traditional defense methods

Many security solutions developed for the traditional Internet, if deployed in an
IoT environment such as a smart home, would require more computing power,
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resources, and energy than what IoT devices can provide. We design a two-
mode security framework called TWINKLE, TWo-mode IN-home frameworK
toward Lightweight SEcurity, that will not only preserve the salient features
of classic security solutions, but also address the resource limitations that IoT
devices face. We describe our design in this section.

Fig. 2. The basic architecture of TWINKLE

2.1 Basic Design with Two Modes

A smart home requires many types of security applications. It may face various
malicious attacks such as an eavesdropping attack that can spy on the traffic
between the smart home devices, a sinkhole attack that can misdirect traffic of
devices to a sinkhole, a wormhole attack that can reroute data from the smart
home to an attacker outside, or an attack that compromises devices at the smart
home and turns them into nodes of a botnet. Worse, a smart home may also
initiate attacks, such as launching a distributed denial-of-service (DDoS) attack
or a phishing campaign through compromised devices at home. The TWINKLE
framework thus aims to support various security applications for the smart home,
where every security application handles a specific type of attack. For every
security application, the user can plug it into the framework when needed, or
remove it when it is no longer necessary.

The central dilemma facing these security applications is that they must
address the inadequacy of computing power and resources available to smart
home devices without compromising their efficacy. If a security application runs
directly on a smart home device, it may demand resources from a device that are
unavailable; otherwise, a security application may still need devices to respond
to its requests, sometimes causing a stretch in the resources at those devices.
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We therefore design the TWINKLE framework to address this dilemma. It
supports any security application to operate in two distinct modes: regular mode
for most of the time which has a low resource consumption rate and vigilant
mode that potentially incurs a high overhead but is infrequent. In regular mode,
a security application invokes functions from TWINKLE to detect suspicious
behavior that an attack, if occurring, must display, where those functions must
also be lightweight. Once it detects suspicious behavior (i.e., an attack may be
occurring), the security application will enter vigilant mode to inspect closely
whether an attack is indeed occurring and if so conduct other security operations
such as sending an alert of the attack, mitigating the attack, or recovering from
the attack. After the attack is handled or the smart home is no longer under this
attack, the security application goes back to regular mode. As shown in Fig. 1a,
this two-mode design differs from many traditional attack detection methods
which either run continuously or periodically in one mode. Regular mode is less
resource-consuming than a traditional one mode system, while vigilant mode
may be more resource-consuming.

TWINKLE thus supports every security application to switch between these
two modes. By staying in regular mode most of the time, the security application
will incur a minimal amount of resource overhead. By transitioning into vigilant
mode for a short period only when needed, the security application can engage
in sophisticated operations, including those that may be resource-consuming,
to detect or handle an attack in question. This concept is depicted in Fig. 1b,
which represents the resource consumption of the two modes as compared to
traditional methods.

Fig. 3. Diagram of the suspicious behavior handling table (SBHT)

2.2 Architecture of TWINKLE

As shown in Fig. 2, TWINKLE is composed of three main components: manager,
policy checker, and watchdog. In general, the manager and policy checker will be
running at a central node, such as the border router of a smart home, and the
watchdog can be running at every device.
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The manager maintains the information of the smart home network, such
as the network topology, routing information, or allowed bandwidth of each out
bound connection. More importantly, it supports a function to handle suspi-
cious behavior, or the suspicious behavior handling function (SBHF). It
maintains a suspicious behavior handling table (SBHT), in which for each
suspicious behavior it points to a specific routine for handling that suspicious
behavior, as shown in Fig. 3.

The policy checker maintains routines for handling suspicious behavior. Such
routines are usually heavyweight and should only be running in vigilant mode
when invoked on demand.

The watchdog is a lightweight running process that monitors the smart home
for suspicious behavior. Multiple watchdogs can also be running at multiple
devices. Whenever a watchdog detects a suspicious behavior, it invokes the func-
tion above to process the suspicious behavior. As soon as the function begins
its execution, the system will enter vigilant mode. Depending on the security
application, a watchdog may perform signature-based detection, behavior-based
detection, or a combination of both. In fact, some security applications may not
require the watchdog to run on devices in the network. In these cases, off-the-
shelf intrusion detection systems (IDSes) can be utilized as the basis for the
watchdog that is installed on the border router.

When the TWINKLE framework supports a security application, it will
instantiate the manager, the policy checker, and the watchdog according to the
security application. The security application must define the attack it targets
and the suspicious behavior that its watchdog should monitor. Furthermore, it
needs to develop routines to handle each suspicious behavior, plug these routines
into the policy checker, and populate the suspicious behavior handling table with
every suspicious behavior that the security application is concerned about and
the routine that handles the suspicious behavior. Additionally, the security appli-
cation needs to provide the manager with the necessary information so that the
suspicious behavior handling routines can refer to as a basis for their operations.

TWINKLE also provides a dynamic mechanism for a security application to
install its watchdog at any device needed. Unlike the manager or policy checker
which can run at the central node, depending on the security application in ques-
tion, the watchdog may need to run on arbitrary devices in the smart home. To
cater to this need, TWINKLE deploys a lightweight process called elf at each
device that may be a candidate for running a watchdog of a security application.
When the TWINKLE framework deploys a new security application and needs
to run the watchdog code of the application at a device, TWINKLE can commu-
nicate with the elf on the device to ship, install, and eventually run the watchdog
code on the device. While the watchdog is lightweight, especially compared to
traditional methods, installing it on extremely resource-constrained devices may
not be possible. This situation is discussed in more detail in Sect. 6.
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Fig. 4. Jamming attack

2.3 Jamming Attack Scenario

As stated previously, the TWINKLE framework can support various security
applications which can be used to handle different types of attacks. In Fig. 4,
TWINKLE is being used to handle a jamming attack where the link between
devices A and B is being jammed by an unknown attacker. In the first two steps
(box 1 and box 2), TWINKLE is running in regular mode. In the first step,
the watchdog detects suspicious behavior defined by the security application.
In this case, device B is not receiving traffic from device A, which is abnor-
mal. Therefore, the watchdog notifies the manager of the suspicious behavior by
invoking the manager’s SBHF. As the function begins its execution, the manager
switches the security application to vigilant mode (box 3). The manager’s SBHT
will match the suspicious behavior detected with the routine to handle that sus-
picious behavior, and the manager will then invoke the policy checker to run
that routine. By running the routine, the policy checker will first command A to
change its frequency to possibly alleviate the jammed link. The policy checker
will also notify the user of the jamming attack (box 4). After mitigating the
attack, the policy checker would notify the manager, which returns the security
application to regular mode.

3 DDoS Attack Detection by Transforming D-WARD

In this case study, we transform D-WARD, a classic security system for detecting
and mitigating DDoS attacks at the source-end of the DDoS traffic, into D-
WARD+, a new DDoS defense solution as a security application on TWINKLE.

3.1 DDoS Attacks with IoT Devices

In a DDoS attack, an attacker sends a victim, such as a web server, an over-
whelming amount of traffic to make it unavailable. The attacker usually employs
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a botnet, or a network of compromised devices, to send the traffic. Due to their
abundance and the ease to be compromised, IoT devices are easy targets to be
recruited by a botnet. As shown in the Mirai attack [7], recent DDoS attacks
have been launched from compromised IoT devices and networks.

3.2 Prior Art: D-WARD Against DDoS Attacks

A DDoS defense system placed near the victim may struggle with high volume
attacks, but because links closer to the attack sources are less likely to be over-
whelmed, filtering attack traffic becomes more feasible for source-end defense
systems. One source-end solution example is D-WARD [13]. Deployed at the
border router of a policed network, D-WARD consists of an observation module,
a rate-limiting module, and a traffic-policing module. The observation module
classifies each aggregated flow, or agflow, from all devices in the policed network
to an entity outside, receiver, as good, suspicious, or attack, based on the ratio
of sent packets to received packets of each agflow. Also, each agflow consists of
multiple connections where each connection is the traffic from a specific device
to the receiver, and for each attack agflow, D-WARD classifies each individual
connection as good, transient, or bad, also based on the ratio of sent packets
to received packets of the connection. The rate-limiting module applies to each
bad and transient connection in an agflow, and it cuts the allowed sending rate
of each of these connections to a fraction, fdec, of its current amount. If the
device complies with the rate-limit, the rate-limit is increased linearly and even-
tually removed. The traffic-policing module drops all traffic that surpasses the
rate-limit.

While D-WARD is primarily designed for DDoS attacks launched from tra-
ditional end-hosts on the Internet, when deployed in a smart home environment,
it could hurt benign devices if their connections are labeled as transient con-
nections since their traffic, if over the rate limit, will then be dropped. While a
traditional benign end-host can recover from the accidental loss of their packets,
in a IoT environment such as a smart home, a benign device could instead suffer
significantly from such a loss, due to unnecessary retransmissions of lost packets
and increased latency, as shown in Subsect. 5.1.

3.3 D-WARD+: A Two-Mode Approach Against DDoS Attacks

We therefore transform D-WARD to D-WARD+ that runs on TWINKLE. To
overcome the aforementioned drawback of D-WARD, when detecting a DDoS
attack from a policed network, D-WARD+ leverages the fast retransmit mecha-
nism in TCP congestion control to reduce the sending rate of transient connec-
tions, rather than literally dropping their packets as done in D-WARD. Since
these connections could be from benign devices, doing so will not cause their
packets to be dropped, while still lowering the amount of DDoS traffic departing
from the network.
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The manager, watchdog, and policy checker of D-WARD+, all running at
the border router, are designed as follows. The manager keeps track of the rate-
limit of every connection in every attack agflow. The policy checker consists of
an agflow monitoring routine. The watchdog monitors the suspicious behavior
of each agflow and has the agflow monitoring routine invoked if it detects an
attack agflow.

As a security application of TWINKLE, D-WARD+ handles DDoS attacks by
switching between the two modes. Beginning with regular mode, if the watchdog
of D-WARD+ detects an attack agflow, it will invoke the manager’s function for
handling suspicious behavior, including passing the handler a suspicious behavior
description block (SDB). The SDB will include the identifier of the attack agflow
and other meta-data of the agflow. D-WARD+ then executes this function and
enters vigilant mode. In doing so, based on the SDB, the function will determine
to invoke the agflow monitoring routine to handle the agflow in question. The
routine will then monitor each transient connection of the attack agflow; it will
send three duplicate TCP acknowledgments to the device of the connection,
which, by following the TCP congestion control design, will reduce its congestion
window by half, thus halving its sending rate and mitigating the ongoing DDoS
attack. Here, we call the three duplicate TCP acknowledgments a signal. In case
the device ignores the signal and continues to send its traffic at the original rate,
the routine will detect it and label the connection as a bad connection. (Note that
if a DDoS device follows the signal in the same way as a benign device, it lowers
its sending rate and effectively mitigates the DDoS attack.) Furthermore, if the
traffic volume of the connection is still above certain threshold after sending a
signal, the routine can send another signal and observe the volume change of the
connection, and it can repeat this procedure until the connection is no longer
overwhelming its receiver.

Based on the two-mode design above, D-WARD+ is more suitable to a smart
home environment than D-WARD. By not literally dropping packets as in D-
WARD, D-WARD+ instead informs devices to transmit more slowly. Doing so
avoids retransmissions of packets from benign devices, thus lowering network
overhead and power consumption.

4 Sinkhole Attack Detection by Transforming SVELTE

In this case study, we transform SVELTE, an IDS for detecting sinkhole attacks
in 6LoWPAN networks, into a more resource-efficient security application on
TWINKLE.

4.1 Sinkhole Attack in 6LoWPAN Networks

6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) is a wireless
technology that combines IPv6 and Low-power Wireless Personal Area Networks
(LoWPAN) to enable low-powered devices to communicate using an Internet pro-
tocol. A 6LoWPAN network uses RPL (Routing Protocol over Low Powered and
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Lossy Networks) as its routing protocol [8]. For each destination in a 6LoWPAN
network to reach, RPL creates a graph called Destination Oriented Directed
Acyclic Graph (DODAG) where every node is a device in the network and the
destination is the root. Each node in a DODAG has a set of parents, including
a preferred parent, where every parent is a potential next hop to reach the root.
Moreover, every node in a DODAG has a rank to represent the distance between
the device and the root (the distance can be calculated in a number of ways, the
simplest being hop-count).

Each device periodically sends out a DODAG Information Object (DIO) mes-
sage to advertise its rank. An entering device, upon the receipt of DIO messages
from its neighboring devices, will create its set of parents, choose the preferred
parent, and calculate its own rank (which is greater than the rank of each of its
parents).

The 6LoWPAN network is subject to the sinkhole attack. In such an attack, a
compromised device announces a short path toward a destination node to attract
traffic from other nodes to the destination, therefore intercepting or dropping
the traffic and creating a sinkhole. A sinkhole attack via RPL can happen when
a device sends to its neighbors a DIO message to lie that the device has a low
rank. It has been shown that RPL’s self-healing and repair mechanisms are not
resilient against the sinkhole attack [22].

4.2 Prior Art: SVELTE Against the Sinkhole Attack in 6LoWPAN

SVELTE detects sinkhole attacks in 6LoWPAN networks that occur through
RPL rank manipulation. It has three main modules running on the border router
(6BR) of a 6LoWPAN network: 6LoWPAN Mapper (6Mapper) that gathers
information about the network and determine the DODAG rooted at 6BR, an
intrusion detection module that checks the rank inconsistency in data obtained
by 6Mapper to detect sinkhole attacks, and a distributed mini-firewall that filters
unwanted traffic before it enters the network. 6Mapper sends probing messages
to nodes in the entire network at regular intervals (e.g., 2 min). Each node then
sends a response message to 6Mapper, which includes its node ID, node rank,
parent ID, and all of its neighbors’ IDs and ranks.

Unfortunately, SVELTE’s probing mechanism can increase the network over-
head, device power consumption, and the latency of detecting sinkhole attacks.
Every probe from the 6BR will increase the network overhead. Every response
from a device will consume more power. Worst of all, SVELTE has a dilemma
in choosing the probing interval: a short interval will lead to a low latency in
detecting sinkhole attacks, but a large overhead due to frequent probing and
responding; a long interval will result in a low overhead, but a high latency in
detecting sinkhole attacks.

4.3 SVELTE+: A Two-Mode Approach Against Sinkhole Attacks

To be more resource-efficient, we transform SVELTE to SVELTE+ that runs on
TWINKLE. The essential difference between SVELTE+ and SVELTE is that
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the 6Mapper in SVELTE+ will not probe the entire network periodically and
correspondingly, the intrusion detection component will not run periodically,
either.

When SVELTE+ is plugged into TWINKLE, its manager, watchdog, and
policy checker are as follows. The manager will consist of the 6Mapper mod-
ule from SVELTE which runs on the central node and the distributed mini-
firewall which may run on devices. The policy checker, which also runs on the
central node, will include two suspicious behavior handling routines: (1) a sink-
hole detection routine (i.e., the intrusion detection module from SVELTE) that
inspects the ranks of nodes in the DODAG graph to determine if a sinkhole
attack is occurring; and (2) a sinkhole mitigation routine that SVELTE+ newly
introduced to mitigate a detected sinkhole attack. Finally, for each device that
originally runs a 6Mapper client, we instead equip it with a SVELTE+ watchdog
through TWINKLE; it monitors the RPL ranks of its neighbors and alerts the
manager of a suspicious behavior when it receives a new rank advertisement;
the manager in turn determines how to handle the suspicious behavior, such as
invoking the sinkhole detection routine.

SVELTE+ detects sinkhole attacks by switching between the two modes. It
begins in regular mode. Each time a node advertises a new rank, the watchdogs
that are within the range of the advertisement will treat the node as a suspect
and detect a suspicious behavior. Each watchdog then invokes the manager’s
function for handling suspicious behavior, including passing to the function a
suspicious behavior description block (SDB). The SDB will include the rank of
the suspect and the rank of the watchdog itself. More importantly, as soon as
the function begins its execution, SVELTE+ enters vigilant mode, allowing it
to invoke the corresponding routine to handle the suspicious behavior. Based on
the SDB, the function will inspect the behavior and further decides to invoke
the sinkhole detection routine inside the policy checker to handle the behavior.
The sinkhole detection routine first queries the 6Mapper in the manager for an
up-to-date DODAG; then, if the watchdog is a parent (child) of the suspect and
its rank is lower (greater) than the rank of the suspect as expected, the routine
then has verified the consistency between this watchdog and the suspect. If it has
verified the rank consistency with all of the parents and children (or a threshold
number of each) of the suspect, it will treat the suspect as a benign node and
invoke the 6Mapper to add the node to the DODAG, or simply update its rank
if it is already in the DODAG. In case the sinkhole detection routine cannot
establish the rank consistency between the suspect and its parents and children,
it will detect a sinkhole attack, label the suspect as a sinkhole attacker, and
further invoke the sinkhole mitigation routine as described below. The sinkhole
detection routine then finishes its execution, followed by the function for handling
suspicious behavior, and SVELTE+ returns to regular mode.

The sinkhole mitigation routine’s main purpose is to remove a sinkhole node
from not only the DODAG, but also the records of any device. Specifically, every
parent of the attacker will remove it as their child. Every child of the attacker
will remove it as its parent; it may also add a new parent as well as choose a
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new preferred parent. As a result, the attacker is isolated and can no longer
successfully reach any other node.

SVELTE+ outperforms SVELTE in multiple ways. SVELTE+ can reduce
the latency in detecting sinkhole attacks to a negligible amount because the
watchdog immediately invokes the suspicious behavior handler whenever a new
rank is advertised, without having to wait for the next probing interval, as in
SVELTE. SVELTE+ also decreases the network overhead and device power
consumption as compared to SVELTE; SVELTE+ may incur more overhead
in the beginning as nodes join the network, but as the network stabilizes, the
amount of times SVELTE+ switches to vigilant mode will be low. An exception
here is that a malicious node may frequently advertise a new, legitimate rank,
causing SVELTE+ to repeatedly process the suspicious behavior; SVELTE+
sets up an upper bound at which a benign node would advertise a new rank
and labels a node as malicious if it advertises a new rank too frequently (it can
further remove the node using the sinkhole mitigation routine).

5 Evaluation

We evaluated TWINKLE’s two-mode design by showing how D-WARD+ out-
performed D-WARD in source-end DDoS defense and how SVELTE+ outper-
formed SVELTE in sinkhole attack detection. The metrics we focused on were
retransmissions and connection duration for the DDoS case study and network
overhead and detection latency for the sinkhole case study. For the DDoS case
study, we additionally compared the effects of D-WARD+ and D-WARD on
a simple TCP flooding attack versus a smart TCP flooding attack. Note that
we did not compare D-WARD+ to D-WARD, and SVELTE+ to SVELTE, in
terms of detection accuracy because D-WARD+ and SVELTE+ use the same
detection modules as D-WARD and SVELTE, respectively.

We implemented D-WARD+, D-WARD, SVELTE+, and SVELTE in Java
on a 2015 Dell XPS with a 2.2 GHz Intel Core i5 processor and 8 GB of RAM.
Specifically, for the evaluation of D-WARD+ and D-WARD, we constructed
a Bluetooth Personal Area Network (PAN) in which a client device transfers
2.5 MB of data to the server through a router on which D-WARD+ and D-
WARD are implemented. For the router, we used a 2015 Dell XPS with the same
specifications as mentioned previously. In addition to behaving normally, the
client device was able to perform simple and smart TCP flooding attacks. Both
the client and server utilized TCP New Reno for congestion control. Additionally,
for the evaluation of SVELTE+ and SVELTE, we randomly generated mesh
IoT network topologies of varying size, which is explained in more detail in
Subsect. 5.2.

5.1 D-WARD+ Vs. D-WARD

The main difference between D-WARD+ and D-WARD is that D-WARD+ uti-
lizes the fast retransmit mechanism instead of dropping packets from transient
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connections. The fast retransmit mechanism allows D-WARD+ to throttle DDoS
traffic that leaves the source network it polices and avoid resource penalties on
benign traffic. In this section, we analyzed the attainability of these goals in
a smart-home network that utilizes D-WARD+. Specifically, we analyzed the
following:

1. the ratio of retransmissions D-WARD requires of a benign transient connec-
tion over the amount required by D-WARD+;

2. the difference in connection duration of a benign transient connection under
D-WARD compared to that of D-WARD+;

3. the maximum length of time that D-WARD+ allows a malicious transient
connection to perform a TCP flooding attack; and

4. the maximum length of time that D-WARD+ allows a malicious transient
connection to perform a “smart” TCP flooding attack by following TCP
congestion control.
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Fig. 5. Comparison of retransmissions and connection duration under D-WARD and
D-WARD+

Retransmissions. In order to calculate the ratio of retransmissions D-WARD
requires of a benign transient connection over the amount required by D-
WARD+, we examined the number of retransmissions required of a benign tran-
sient connection that attempts to send 2.5 MB of data outside of the policed
network under both D-WARD and D-WARD+.

Figure 5a presents the average number of retransmissions that D-WARD+
and D-WARD requires of benign transient connection over two main parameters:
the sender’s congestion window size, W , at the time D-WARD or D-WARD+
detects an attack agflow, and the pre-set fraction of traffic, fdec, that D-WARD
or D-WARD+ allows to leave the source network during a suspected DDoS
attack. An fdec of 1/2 is set as default by Mirkovic et al. [13]. Upon detection
of an attack agflow, D-WARD only allows W ∗ fdec segments to the sender
each RTT to mitigate any DDoS attacks. Therefore, when the benign transient
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devices follow TCP congestion control, D-WARD drops W −W ∗ fdec segments
every two RTTs. Thus, as W increases or fdec decreases, D-WARD drops more
segments which causes more retransmissions. With a large window size and a
strict pre-set fraction of allowed traffic, D-WARD may require more than 15
times the number of retransmissions than D-WARD+. Even when the window
size is less than 40 and the pre-set fraction of allowed traffic is greater than 0.5,
D-WARD still requires more retransmissions than D-WARD+, but to a lesser
degree.

Connection Duration. We further compared how long a benign transient
connection may last under D-WARD and D-WARD+. Clearly, when transmit-
ting the same amount of data, a shorter duration is desired. We examined the
duration of a benign transient connection that attempts to send 2.5 MB of data
outside of the policed network at a maximum bandwidth of 250 Kb/s under both
D-WARD and D-WARD+.

Figure 5b shows the average difference in connection duration between D-
WARD and D-WARD+ over the two main parameters W and fdec. When fdec
is set low, D-WARD may punish a transient connection too heavily which leads
to long connection durations. However, in cases where fdec is set high and W is
large, a transient connection’s duration under D-WARD can be slightly faster
(at most 3 s) than if it were under D-WARD+.

Simple TCP Flooding Attack. A “simple” TCP flooding attack is one in
which the attacker ignores TCP congestion and flow control. We formulate the
maximum length of time that D-WARD+ allows a malicious transient device to
perform a simple TCP flooding attack as follows. Upon detection of an attack
agflow, D-WARD+ provides all transient connections belonging to the attack
agflow a window of D seconds to prove the benevolence of their traffic. If a
transient device performs a simple TCP flooding attack, it will not follow TCP
congestion control which D-WARD+ notices within two RTTs. At this point,
D-WARD+ now has high confidence the transient connection is malicious, and
begins to drop this connection’s traffic, thus ending the DDoS attack.

Smart TCP Flooding Attack. A “smart” TCP flooding attack is one in
which the attacker follows TCP congestion control. We formulate the maximum
length of time that D-WARD+ allows a malicious device to perform a “smart”
TCP flooding attack by following TCP congestion control. Upon detection of an
attack agflow, D-WARD+ sends s signals every RTT for the next D seconds to
each transient connection belonging to the attack agflow so that after D seconds,
each transient connection’s congestion window will be below RECW .

Figure 6 compares how D-WARD and D-WARD+ handle a smart attacker in
TCP Reno. This figure shows two transient connections that belong to an attack
agflow, which was detected at 0 RTT. For simplicity, the victim has a constant
RECW of 10. Any traffic that surpasses the RECW of 10 is considered DDoS
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Fig. 6. Behavior of a smart attacker under D-WARD and D-WARD+ (Color figure
online)

traffic. Lastly, the circle-dotted (blue) line represents the amount of traffic sent
by the attacker and the square-dotted (green) line represents the amount of
traffic that is successfully received by the victim.

In Fig. 6a, D-WARD drops all traffic that surpasses the allowed window size of
6, which in this case means D-WARD set fdec to 0.3. D-WARD initially throttles
the smart attacker which forces the attacker to send at the allowed rate (from
0 RTT to 14 RTT), but once the congestion window settles below this initial
allowed rate, and because the smart attacker follows TCP congestion control, D-
WARD continues to linearly increase the allowed amount even past an amount
the receiver can manage (which can be seen at 20 RTT, 25 RTT, 32 RTT, and
37 RTT). This provides the smart attacker an opportunity to successfully send
DDoS traffic in the future.

In Fig. 6b, D-WARD+ allows all traffic to be sent to the victim, but sends
signals to the smart attacker to force it to send less than or equal to the allowed
rate. After 4 RTTs, D-WARD+ will have gained enough information about the
victim’s RECW and increase the signal threshold (the threshold at which 3
duplicate ACK packets will be sent to the attacker) to just below RECW . While
D-WARD+ allows DDoS traffic for a short period initially (0 RTT to 1 RTT),
because the smart attacker follows TCP congestion control, D-WARD+ can con-
tinue to preemptively restrict the smart attacker’s congestion window preventing
any further DDoS attacks.

5.2 SVELTE+ vs. SVELTE

The main difference between SVELTE+ and SVELTE is that SVELTE+ utilizes
on-demand probing while SVELTE utilizes periodic probing. In this section, we
explored how this difference affected network overhead and detection latency for
both security applications.
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Fig. 7. Difference in network overhead between SVELTE and SVELTE+ based on
probing intervals (PI) and number of new rank advertisements per device (NRA/D)
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Network Overhead. This metric measures the number of extra bytes that are
sent using SVELTE as compared to SVELTE+. Sending traffic requires power
consumption and therefore, a security system that sends less extra traffic by
power-constrained devices is highly desired.

Figure 7 depicts the difference between SVELTE and SVELTE+ in network
overhead. We compare SVELTE with three different probing intervals (30, 120,
and 480 s) to SVELTE+ with three different new rank advertisement frequencies
(1, 5, and 10 new rank advertisements per device). SVELTE+ incurs less network
overhead than SVELTE with probing intervals of 120 s and 30 s. At an average
degree of 3 and 4, SVELTE+ with 5 and 10 new rank advertisements per device
incur more network overhead than SVELTE with a probing interval of 480 s.
However, if a network contains 10 devices and each device advertises a new
rank 10 times in a one-hour period, there would be more than 1 new rank
advertised each minute. This would be highly unlikely in a stable and stationary
environment, such as a smart home. Also, note that while a 480s probing interval
for SVELTE incurs a relatively small amount of overhead, the detection latency
will be relatively high.
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Detection Latency. The metric measures the difference in the amount of time
it takes SVELTE to detect an attack as compared to SVELTE+. When con-
sidering detection latency in our simulations, we did not take into account the
negligible round-trip time (RTT) between the border router and each device or
processing time at the border router.

Figure 8 illustrates the relationship between network overhead and detec-
tion latency for SVELTE. As the probing interval increases, network over-
head decreases exponentially and detection latency increases linearly. Unlike
SVELTE+, SVELTE must strike a balance between network overhead and detec-
tion latency.

The detection latency with SVELTE+ instead is negligible since it immedi-
ately responds to a sinkhole attack on demand. It incurs only some communica-
tion delay and processing time for the watchdog to report the manipulation of
rank by an attacker and for the policy checker to process the report. Here, the
on-demand probing method employed by SVELTE+ is a clear advantage over
the periodic probing of SVELTE.

6 Discussion

One factor in the feasibility of deploying TWINKLE is the potential difficulty
of installing components on a smart home’s border router. We assume that the
border router has enough resources to run TWINKLE’s manager and policy
checker components. While this may be a safe assumption to make for many
commercial home routers, we have yet to evaluate this claim. Also, the feasibility
of running TWINKLE on routers is highly dependent on the security application.
We can estimate the memory consumption of D-WARD+ and SVELTE+ from
evaluation done on D-WARD and SVELTE. For example, D-WARD consumes
at most 37.581 KB of RAM at the router in a smart home with 100 outbound
connections, while SVELTE consumes at most 4.724 KB of RAM (49.924 KB of
ROM) at the router in a smart home containing 16 devices.

Another issue is the feasibility of running watchdog code on devices in the
smart home. We assume that a watchdog device can run an elf process which
can be used to transfer watchdog code onto the device. However, some devices,
such as legacy and extremely resource-constrained devices, may not have the
ability to install even lightweight processes like elf. Therefore, in some cases,
additional devices need to be added to the network to act as watchdogs. Fur-
thermore, watchdogs are required to have enough resources to run the lightweight
algorithms of regular mode. Again, the feasibility of running these algorithms is
dependent on the security application. SVELTE consumes at most 0.350 KB of
RAM (1.414 KB of ROM) at each device while D-WARD does not run any code
on the devices.

TWINKLE is a security framework that addresses the resource limitations
of IoT devices by giving security applications the ability to run in two modes.
However, TWINKLE can be extended to include more than two modes of oper-
ation. Certain security applications need to invoke a wide range of functions in
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order to mitigate an attack. Allowing for multiple levels of granularity in which
applications can invoke functions of varying resource-consumption intensity may
further reduce resource consumption.

In future work, we plan on studying, and eventually addressing, the aforemen-
tioned issues. Specifically, we will evaluate multiple different security applications
on TWINKLE and implement TWINKLE on a real IoT testbed to present a
more comprehensive study on the feasibility of deploying components on border
routers and devices.

7 Background and Related Work

We organize the related work into three sections. The first is on work that
provides analysis on smart home security and goals for securing smart home
environments. The second is on work that introduces security frameworks and
systems targeted towards IoT environments. The last section is on work that
motivates different components of our two-mode framework.

7.1 Smart Home Security Analysis

Recent work, [5,6], and [16], explores the current state of smart home security
and provide suggestions on improvements in this environment. Denning et al. [5]
group security and privacy goals into three categories: device goals (device pri-
vacy, device availability, command authenticity, and execution integrity), data
goals (data privacy, data integrity, and data availability), and environment goals
(environment integrity, activity pattern privacy, sensed data privacy, sensor
validity, and sensor availability). Notra et al. [16] report vulnerabilities in various
household devices, such as the Phillips Hue light-bulb, the Belkin WeMo power
switch, and the Nest smoke-alarm. The main contribution of [6] is the discovery
of security-critical design flaws in the SmartThings capability model and event
subsystem. These papers give insight into the vulnerabilities and open issues
that need to be addressed by smart home security frameworks and systems. Of
the three papers, only [16] provides a security solution. However, this solution
only provides protection via access control rules deployed at the gateway router
to prevent unauthorized in-bound and out-bound traffic. Our framework, not
only monitors traffic leaving and entering the network, but also monitors device
to device communication from within the network. This allows our framework
to potentially detect and prevent attacks that cannot be detected or prevented
solely at the gateway router.

7.2 Frameworks and Systems

In this section, we survey select papers which introduce security frameworks
for IoT environments [2,3,10], and [20]. In [3], the authors present a security
framework based on the Architecture Reference Model (ARM) of the IoT-A
EU project. The work in [2], uses game theory and context-aware techniques to
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create a risk-based adaptive security framework for IoT in an eHealth environ-
ment. Both [3] and [2] are proof-of-concept papers that do not provide evidence
that the presented frameworks are viable in resource constrained environments.
Similar to our framework, the frameworks presented in [20] and [10] are both
targeted towards smart home environments. Also, the authors of [20] present a
modular security manager which is similar to the Manager component in our
framework. However, like [3] and [2], the authors of both papers do not address
the limitations of IoT devices nor provide evaluation results for the resource
costs of deploying their solutions. In contrast, our framework’s primary focus is
to reduce resource consumption while maintaining a secure environment. Fur-
thermore, we show that our framework can reduce resource consumption through
the evaluation of two concrete case studies.

7.3 Motivation for Certain Components and Policies

Papers [4,9,11], and [14] motivate the need of certain components in a security
framework for the smart home environment. Instead of introducing new security
countermeasures, the authors of [9] attempt to strengthen security for smart
home networks by making it easier for non-expert home owners to set up secure
networks and intuitively manage trust and access to their devices. The research
in [14] attempts to provide adequate mechanisms to control the flow of data and
enforce policies based on users’ preferences. In [4], the authors utilize special
nodes that monitor traffic within the network to detect certain routing attacks.
The work in [9,14], and [4] show the need of user interaction, adjustable policies
set by users, and dedicated watchdog nodes for inspection of in-network com-
munication, respectively. Also, the work in [11] provides motivation for allowing
security policies, such as using efficient authentication and key agreement meth-
ods. The substantial research in the area of security in wireless sensor networks
(WSNs), such as the work presented in [1] and [18], can be leveraged to improve
TWINKLE. In summary, work presented in this section can supplement and
extend our framework.

8 Conclusion

The staggering growth of the Internet of Things (IoT) brings serious security
concerns. However, due to the constrained resources of IoT devices and their
networks, many traditional attack detection methods become less effective or
inapplicable in an IoT environment. Using the smart home as the battleground,
this paper proposes a security framework called TWINKLE that endeavors to
address a fundamental dilemma facing any security solution for IoT: the solution
has to consume as little resources as possible while still aspiring to achieve the
same level of performance as if the resources needed are abundant. It introduces
a two-mode design to enable security applications plugged into the framework to
handle their targeted attacks in an on-demand fashion. Every security applica-
tion can simply run lightweight operations in regular mode most of the time, and
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only invoke heavyweight security routines when it needs to cope with suspicious
behavior. By applying TWINKLE to distributed denial-of-service (DDoS) and
sinkhole attacks, we can successfully convert prior solutions to more resource-
efficient versions, as demonstrated by our evaluations.
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Abstract. Internet of Things (IoT) expose various vulnerabilities at
different levels. One such exploitable vulnerability is Denial of Service
(DoS). In this paper, we showcase our preliminary efforts towards study
of various forms of DoS and how it can be exploited in different protocols
of IoT. We propose our initial attack and defense framework for IoT and
that can perform various forms of DoS on IP and Bluetooth. We show
the initial results of DoS vulnerabilities such as Resource Exhaustion and
Bluetooth Low Energy (BLE) Packet Injection. In order to understand
how resilient is IoT for DoS, we propose a new metric to measure the
Resilience against DoS in IoT. We have conducted a real time experi-
mentation with IoT devices in our security IoT testbed. The experiments
conducted are for DoS, Distributed Denial of Service (DDoS) by setting
up Mirai and Permanent Denial of Service (PDoS) using BrickerBot on
various IoT devices.

Keywords: Internet of Things · Denial of Service · Security analysis

1 Introduction

The Internet of Things (IoT) is increasingly becoming an integral part of every-
one’s lives. IoT devices like smart lights at home [1], motion sensors to detect
movements [2] and many more, are continuing to occupy almost every household.
Though IoT devices are experiencing an exponential pace of adoption, they have
various security loopholes making them vulnerable to numerous attacks. As a
case in point, IoT devices have been recently used to launch various attacks such
as Denial of Service (DoS) and steal end-user information [3,4]. Recently, Mirai
malware had compromised a huge number of Deutsche Telekom routers [3] by
performing DDoS attack. There have been instances where it even resulted in
Permanent Denial of Service (PDoS) by bricking the IoT devices [5].

Apart from exposing various vulnerabilities IoT devices have less computing
power compared to desktop computers and other computing devices and thus,
are susceptible and less resilient to such attacks. The IoT devices handle a limited
amount of traffic for performing basic applications. In other words, DoS, DDoS
and PDoS attacks are a threat to the IoT devices. Current state of the art lacks
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in detailed experimentation and study of various forms of DoS and the resilience
of IoT against DoS. In this work, we perform initial study in a logical fashion.

First, in our work, we propose our initial attack and defense framework called
OWL (Optimized Weighted Legitimates and Illegitimates). OWL is tailored for
IoT which can successfuly perform DoS against IP and Bluetooth IoT devices.
OWL produces legitimate and illegitimate packets in order to perform the DoS.
However, OWL stands out in performing DoS attacks through few mutated pack-
ets by exploiting various DoS vulnerabilities of IoT devices. Next, we introduce
a DoS and DDoS defense framework for IoT. The framework is capable of ana-
lyzing the network traffic to determine if there is a DoS or a DDoS attack on a
specific IoT device.

Second, we have introduced IoT Resilience (RIoT ) metric to evaluate the
resilience of an IoT device against DoS, DDoS and PDoS. IoT Resilience will
be calculated based on the services running on an IoT device and the security
vulnerabilities exposed by the IoT device. Furthermore, we also adopt legacy
metrics such as throughput, allocation of resources and normal packet survival
ratio.

Finally, we have carried out initial experiments and evaluation of DoS, DDoS
and PDoS against IoT. We have performed DoS attacks through TCP connec-
tions [6,7], SYN flooding, etc. We have performed Bluetooth Low Energy (BLE)
Packet Injection attacks on Bluetooth devices. We carry out DoS attacks through
legitimate and illegitimate packets and evaluate the resilience of the IoT devices.
We consider legitimate packets (normal) and illegitimate packets (mutated). Fur-
thermore, we have used Mirai (Mirai malware forms a Botnet of IoT devices and
tries to compromise various other devices connected to the network) to perform
DDoS attacks within a controlled environment. Furthermore, we perform and
evaluate PDoS attack using BrickerBot on IoT devices. The experiments are
carried out in a controlled environment in our IoT security testbed [8].

In this paper, our contributions are threefold:

– We introduce our preliminary work on new attack and defense framework
called OWL for IoT.

– We introduce a new metric to evaluate the IoT Resilience.
– To understand the impact of DoS, DDoS and PDoS on IoT, we have performed

real world experiments using our framework in our IoT security testbed.

The structure of the paper is as follows: Sect. 2 introduces our preliminary
efforts of attack and defense framework. In Sect. 3, we introduce a new metric and
also discuss the adapted legacy metrics. In Sect. 4, we discuss our experimental
methodology. Section 5 provides experimental results and in Sect. 6, we discuss
the related work. Finally, we conclude in Sect. 7 with the future work.

2 IoT Attack and Defense Framework

In this section, we propose our initial attack and defense framework OWL
(Optimized W eighted Legitimates and Illegitimates). OWL framework is tai-
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lored for IoT and takes into consideration the IP and Bluetooth devices for per-
forming various DoS attacks using legitimate and illegitimate packets. OWL con-
sists of three modules namely Orchestration, Attack and Defense. OWL frame-
work is evaluated on real IoT security testbed which we will explain in Sect. 4.

OWL Orchestration facilitates the scanning, analysis and monitoring for
all the IoT devices. OWL Attack is responsible for performing DoS attacks on
IoT devices. The attack varies on the IoT device. If the IoT device is IP based,
then resource exhaustion attack is performed. The resource exhaustion attack is
carried out via legitimate packets from the repository. With regard to Bluetooth
devices, packet injection attack is carried out. OWL Defense caters to the DoS
and DDoS defense mechanism functionality. The defense framework performs
real time monitoring to identify anomalies in the traffic. For BLE devices, an
alert is shown that the corresponding device is under a DoS attack.

3 Denial of Service Metrics

We propose a new metric called IoT Resilience and also adapt legacy metrics
such as Throughput, Allocation of Resources and Normal Packet Survival Ratio
[10] to understand how resilient is an IoT against DoS, DDoS and PDoS.

3.1 IoT Resilience

Before we define the Resilience of an IoT device, we need to understand its
Permeance [9]. We define Permeance of an IoT device against a DoS, DDoS or
a PDoS attack as:

Definition 1 (a): The total number of packets an IoT device can service over
a period of time when it is bombarded with attack packets before the IoT device
fails to provide service.

PIoT = S ∗ (Pn ∗ Pa)
TRRT

Pn represents the total number of normal packets. Pa represents the total
number of attack packets. TRRT represents the Request Response Time of the
IoT device. S represents the Resilience constant specific to an IoT device vul-
nerability. In [8], the authors have done penetration testing for IoT devices and
have identified a metric system for port scanning to rate the vulnerable ports of
the IoT device. We make use of the same metric system to measure our constant
S. The Resilience constant S varies as a function of the risk level of the scanned
ports. The total number of open ports running specific services on each one of
them indicates a possibility of those services being affected when the device is
under a DoS, DDoS or PDoS attack. Higher the number of open ports, higher
are the chances of the device being attacked. Keeping this in mind, the authors
in [8] calculate the Exploitability Score for an IoT device. We use the same
methodology to calculate the score of the IoT devices used in our experiments.
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The unit of Permeance is p2/s. From the definition of Permeance, we can
define Resilience of an IoT device against a DoS attack as:

Definition 1 (b): The resilience of an IoT device is defined as the reciprocal
of its permeance.

RIoT =
1

PIoT

RIoT is the resilience of an IoT device whose unit is s/p2.

3.2 Legacy Metrics

We identify and discuss an array of DoS metrics known as Legacy metrics [10]
and utilize them to quantify the impact of such attacks on IoT devices. We
have chosen some of the widely used metrics from the state-of-the-art and are
as follows:

Throughput. For an IoT device, the throughput continues to increase for
requests from users. According to Bhandari et al. [10] the throughput is defined
as, the total number of bytes transferred per unit time from source to the desti-
nation.

Throughput=
Σn

i=0 packet delivered

Σn
i=0 (packet arrival time) − (packet start time)

Allocation of Resources. According to Bhandari et al. [10], Allocation of
resources is defined as the ratio of bandwidth of legitimate traffic to the bandwidth
of attack traffic.

Allocation of resources =
bandwidth of legitimate traffic

bandwidth of attack traffic

Normal Packet Survival Ratio. According to Bhandari et al. [10] Normal
Packet Survival Ratio (NPSR) is defined as the ratio of legitimate packets deliv-
ered to the user to the total number of packets delivered.

NPSR =
PL

PL + PA

where, PL represents the number of legitimate packets and PA represents the
number of attack packets.

4 Experimental Methodology

Our experiments are conducted in a real-world network topological setup to
evaluate our proposed framework and also to calculate the Resilience of IoT
devices against various DoS attacks.
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Fig. 1. Smart home setup and IoT security testbed

4.1 Denial of Service

For conducting DoS attacks we have used our initial OWL framework. We have
performed our experiments in IoT security testbed as shown in Fig. 1. For IP
devices, we have conducted Resource Exhaustion where OWL framework per-
forms resource exhaustion by sending spoofed legitimate packets to the IoT
devices. For e.g., The communication between the Android App on the mobile
phone and an IP Camera are monitored and the legitimate packets are injected
into the communication network channel of the IP camera. This kind of resource
exhaustion is done for various IP based IoT devices in our testbed in a Man in
the Middle attack fashion.

On Bluetooth Low Energy (BLE) devices, we were able to carry out
DoS attacks on devices such as Fitbit, Blood Pressure Monitor, etc. BLE Packet
Injection Attack involves OWL bombarding the BLE devices with a large number
of illegitimate BLE packets resulting in the devices being overwhelmed.

4.2 Distributed Denial of Service

Compromised IoT devices are capable of carrying out distributed denial of ser-
vice (DDoS) attacks on other IoT devices, computers or services. One such way



48 S. Setikere et al.

of facilitating a DDoS is via malware, such as Mirai [11] that is used in our
experimentation.

Mirai. Mirai turns networked devices into remotely controlled Bots and was
first detected in August 2016 by the Whitehat malware research group Mal-
wareMustDie [11]. Initial version of Mirai targets IoT devices running on open
Telnet/SSH ports and those devices that have default usernames and passwords.
Once the devices are infected, Mirai begins targeting other IoT devices by send-
ing a large number of packets. This results in overwhelming the resources of the
victim IoT devices.

When we launched a DDoS attack using ten (10) IP cameras on the victim
IP camera, we observed that the VSE attack was the one with the highest
throughput. This was followed by UDP and GREETH. The worst performing
attack were DNS and ACK attack which generated a throughput of 4.2 Mbps
and 5.9 Mbps respectively. In our Botnet experimentation, we used a total of
eleven (11) D-Link DCS-942L [12] IP cameras, two laptops and a dedicated
access point. We monitored the network traffic on a desktop computer through
a mirror port.

4.3 Permanent Denial of Service

Permanent Denial of Service (PDoS) involves sabotaging an IoT hardware by
exploiting its security flaws. The security flaws allow accessing IoT devices
remotely and provides the ability to execute commands that perform various
actions including system level operations. The attack involves execution of poten-
tially harmful commands that modify or corrupt an IoT device’s firmware, thus
rendering it useless, as the IoT device loses its ability to boot or function. Bricker-
Bot is a malware having the ability to carry out a PDoS attack [13].

BrickerBot is a malware that attacks IoT devices that run a specific version
of the DropBear SSH server and target Linux devices running Busybox (usually
IP cameras). The malware removes the default gateway, limits the kernel threads
to one and disables timestamps of TCP. It deletes the boot loader and file system
consisting of the Linux kernel. Once the file system has been deleted, the IoT
device is unable to reboot [15]. When BrickerBot malware ran on an IoT device,
the entire file system was wiped out. The IoT resilience would be immaterial
because the value is zero for a PDoS attack. In our experimentation, we used
two D-Link DCS-942L [12] IP cameras to test BrickerBot.

5 Experimental Results

In this section, we evaluate our initial OWL framework with our proposed metric
and provide detailed analysis of all the results induced. Table 1 provides the
comprehensive results of all the IoT devices. We have not discussed the results of
PDoS as the calculation of metrics such as IoT Resilience would be immaterial
and also the entire file system was wiped out when BrickerBot malware was
executed.
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Table 1. Initial experimental results

Device Throughput Allocation Resilience NPSR

Amazon echo 5.83E+04 3.96E-04 9.70E-09 9.11E-04

Nestcam 5.59E+05 1.99 1.86E-12 0.48

HP printer 7.34E+04 9.94E-04 2.98E-10 0.02

Samsung TV 2.09E+04 0.13 8.96E-08 0.64

Wink hub 2.6E+04 0.03 1.04E-11 5.14E-02

OmniGuard cam 632.7 0.0018 2.56E-07 0.04

D-Link 772.9 3.9E-04 1.24E-09 0.9

Smart things 1.8E+04 0.012 4.99E-11 0.81

Belkin smart switch 479.1 1.5E-03 1.98E-08 0.52

Fitbit-1 96.28 4.4E-04 2.5E-04 4.1E-03

BP monitor 119.74 0.001 8.18E-05 8.4E-03

BLE watch 72.54 0.001 8.18E-05 1.14E-02

5.1 Denial of Service

From Table 1, we can infer that when OWL was used to perform DoS attacks,
the throughput of the attack was low for all the devices. We noticed that OWL
was able to completely bring down all the devices at a much faster rate. For
e.g., to cause DoS on a Belkin Smart Switch, a throughput of 479.1 Mbps was
required by OWL. We can infer that the allocation of resources for OWL took
far less attack traffic bandwidth and more legitimate traffic to cause DoS in IoT
devices. For e.g., for Smart Things Hub to go down due to DoS, OWL had an
allocation of resources value of 0.012. The resilience of IoT devices when OWL
was used are, for example, Amazon Echo had a resilience of 9.7E-09 s/p2. OWL
had a higher NPSR rate and required far less number of legitimate and attack
packets. For example, NPSR value for Samsung Smart TV under OWL was 0.64.

With regard to Bluetooth devices, OWL framework was able to successfully
carry out DoS attacks. For e.g., Fitbit-1 failed to send updates to the Android
app when the throughput of the DoS attack reached 96.28 Mbps during a packet
injection attack.

5.2 Distributed Denial of Service

When we launched a DDoS attack using ten (10) IP cameras on the victim
IP camera, we observed that the VSE attack was the one with the highest
throughput. This was followed by UDP and GREETH. The worst performing
attack were DNS and ACK attack which generated a throughput of 4.2 Mbps and
5.9 Mbps respectively. We found that ACK and DNS attacks have the highest
allocation of resources value followed by SYN attack.

The NPSR was high during a SYN attack while it is the lowest for GREIP
and GREETH attacks. This implies that during a SYN attack, the device under
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attack receives and responds to packets at a higher rate when compared to the
other attack types. GREIP attack has the least NPSR value of 0.00023. The
IP camera had the least resilience to VSE and UDP attacks. The IoT resilience
value for VSE is 2.6E − 10 s/p2 and UDP is 3.8E − 10 s/p2. The IP camera
shows a higher resilience compared to the other attacks for DNS attack type
with a value of 1.6E − 05 s/p2.

5.3 Defense Framework Analysis

When we conducted successful DoS and DDoS attacks in our experiments, we
were able to detect those attacks from our defense framework. The threshold
value (maximum number of packets a device can process when it is not under a
DoS attack) for each of the IP based devices had been calculated using OWL.
When the threshold values were exceeded, necessary steps were taken by defense
framework. First, the IoT device’s IP was changed as per the defense framework
functionality. Second, we observed that during a DDoS attack (in case of Mirai),
the attacker devices were immediately removed from the network. Also, the
victim camera’s IP was changed.

6 Related Work

As DoS is a well-known concept, we have classified the current state-of-the-art
according to Mobile Ad-hoc Networks (MANETs), Wired Networks and Internet
of Things.

Mobile Ad-hoc Networks (MANETs). Jhaveri et al. [23] carry out a survey
of DoS attacks on MANETs and propose methodologies to detect and prevent
such attacks. The attacks also include Gray hole, Black hole and Wormhole
attacks. Kannhavong et al. [24] provide various details of flooding attacks along
with wormhole attacks, replay attacks and link spoofing attacks on MANETs.
They also discuss the implementation of various counter measures. Jawandhiya
et al. [25] categorize attacks against MANETs into Passive, Active, and Miscel-
laneous. Passive attacks include Eavesdropping attacks and Traffic monitoring.
The authors provide a comprehensive overview of Active attacks such as Jam-
ming attack, Byzantine attack and Transport Layer attacks (SYN flooding). DoS
attacks are classified as Miscellaneous where resource exhaustion is carried out
in MANETs. In addition, sleep deprivation attacks and routing table overflow
attacks are analyzed.

Wired Networks. Zargar et al. [16] classify DDoS flooding attacks as well as
their countermeasures. However, networks are limited to wired systems. DDoS
attacks arising from Botnets such as IRC-based, P2P-based and Web-based are
also discussed. Mirkovic et al. [9,17–21] provides a comprehensive analysis of
DDoS on a network including the metrics to measure the impact of DDoS attacks.
Bhandari et al. [10] elaborate on the various metrics that could be used to
evaluate the performance of DDoS attacks.
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Internet of Things. Perakovic et al. [22] analyze protocols like UDP, SYN,
NTP, ACK and their impact on connected IoT devices. However, authors in [22]
do not involve analysis of varying types of devices present and their resilience
against DoS attacks. Mirai’s functionalities and operations on IoT devices are
discussed by Kolias et al. [14]. The communication sessions between the com-
promised IoT devices and the Bot servers are analyzed but the effects of several
attack types are not discussed.

Nevertheless, none of the aforementioned research evaluated various DoS
attacks, Mirai Botnet and BrickerBot Malware through DoS metrics capable of
quantifying the impact on IoT devices. Furthermore, the above mentioned work
lacks measurement of resilience of IoT against DoS attacks.

7 Conclusion and Future Work

In this paper, we demonstrated and evaluated various forms of DoS attacks
on IoT devices. We have done a preliminary study of IP and Bluetooth IoT
devices against various DoS attacks. We implemented and demonstrated our
initial attack and defense framework called OWL. We proposed a new metric
to calculate the Resilience of IoT devices against DoS. We carried out DDoS
using IP cameras within a sophisticated environment and discussed the results.
In addition, we also carried out PDoS attacks on real IP cameras. We conducted
initial experimentation on our IoT security testbed and discuss the preliminary
results. We intend to perform a large scale study and extend OWL with complete
functionality. We also intend to involve Zigbee devices and perform large scale
experiments with more IoT devices.

References

1. Ur, B., Jung, J., Schechter, S.: The current state of access control for smart devices
in homes. In: Workshop on Home Usable Privacy and Security (HUPS), HUPS
2014, July 2013

2. Tozlu, S., Senel, M., Mao, W., Keshavarzian, A.: Wi-Fi enabled sensors for internet
of things: a practical approach. IEEE Commun. Mag. 50(6) (2012)

3. Distributed Denial of Service using Mirai. https://www.bankinfosecurity.com
4. Mirai Malware for IoT. https://www.symantec.com
5. Bricker Bot. https://security.radware.com
6. Kuzmanovic, A., Knightly, E.W.: Low-rate TCP-targeted denial of service attacks:

the shrew vs. the mice and elephants. In: Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations, pp. 75–86. ACM, August 2003

7. Schuba, C.L., Krsul, I.V., Kuhn, M.G., Spafford, E.H., Sundaram, A., Zamboni,
D.: Analysis of a denial of service attack on TCP. In: Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pp. 208–223. IEEE, May 1997

8. Sachidananda, V., Siboni, S., Shabtai, A., Toh, J., Bhairav, S., Elovici, Y.: Let the
cat out of the bag: a holistic approach towards security analysis of the internet of
things. In: Proceedings of the 3rd ACM International Workshop on IoT Privacy,
Trust, and Security, pp. 3–10. ACM, April 2017

https://www.bankinfosecurity.com
https://www.symantec.com
https://security.radware.com


52 S. Setikere et al.

9. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mecha-
nisms. ACM SIGCOMM Comput. Commun. Rev. 34(2), 39–53 (2004)

10. Bhandari, A., Sangal, A.L., Kumar, K.: Performance metrics for defense framework
against distributed denial of service attacks. Int. J. Netw. Secur. 5(2), 38 (2014)

11. Malware Must Die - Mirai Malware. http://blog.malwaremustdie.org
12. Dlink IP Camera. http://www.dlink.com.sg/
13. Phlashing-PDoS. http://hackersonlineclub.com
14. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: Mirai and

other botnets. Computer 50(7), 80–84 (2017)
15. BrickerBot-Permanent Denial of Service. https://arstechnica.com
16. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against dis-

tributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor.
15(4), 2046–2069 (2013)

17. Mirkovic, J., Prier, G., Reiher, P.: Attacking DDoS at the source. In: Proceedings
of the 10th IEEE International Conference on Network Protocols, pp. 312–321.
IEEE, November 2002

18. Mirkovic, J., Dietrich, S., Dittrich, D., Reiher, P.: Internet denial of service: attack
and defense mechanisms (Radia Perlman computer networking and security) (
2004)

19. Mirkovic, J., Arikan, E., Wei, S., Thomas, R., Fahmy, S., Reiher, P.: Benchmarks
for DDoS defense evaluation. In: Military Communications Conference, MILCOM
2006, pp. 1–10. IEEE, October 2006

20. Mirkovic, J., et al.: Measuring denial of service. In: Proceedings of the 2nd ACM
workshop on Quality of protection, pp. 53–58. ACM, October 2006

21. Mirkovic, J., et al.: Towards user-centric metrics for denial-of-service measurement.
In: Proceedings of the 2007 Workshop on Experimental Computer Science, p. 8.
ACM, June 2007
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Abstract. Recording the ownership of assets has historically consti-
tuted a cumbersome procedure requiring the intervention of third parties
that cannot be freely chosen and take a hefty fee. Its high cost had this
process reserved for valuable assets such as real estate, cars, jewelry or
artwork. The system itself is also vulnerable to corruption as records can
be manipulated by malicious actors. The blockchain presents a solution
to both these issues.

The blockchain, as a distributed and persistent ledger, removes the
need for third parties and lowers the cost of ownership record opera-
tions. Consequently, more modest assets such as IoT devices can benefit
from this process as well. By registering IoT devices to the blockchain
and documenting their transfers, we aim to create a chain of ownership
that can be used to keep track and prove the ownership of IoT devices.
In this system, a pseudonymous Proof of Ownership (PoO) must be
produced and verified before a sale can occur. A PoO can also replace
the product’s registration process that currently depends on the original
product vendor and requires the user to volunteer personal information
to a private company.

An extension is proposed to facilitate remote configuration of IoT
devices and to improve the management of device-related secrets for
owners that must configure a great number of devices.

1 Introduction

In 2008, Nakamoto [15] introduced the concept of the blockchain, a public shared
unforgeable ledger that lets participants register transactions in a persistent
and decentralized manner. If it was intimately linked with cryptocurrencies at
first, the blockchain has since been used in other applications. Amongst them
voting [4], online games [3], ride sharing [1], and many others1. With properties
1 https://gomedici.com/30-non-financial-use-cases-of-blockchain-technology-infograp

hic/, Last checked Feb, 16th 2018.
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like desintermediation, unforgeability, and decentralization, the blockchain is also
very attractive to the Internet of Things (IoT). Its usability in such setting has
been studied with mixed results [8,9,12,13].

A common blockchain use case is the tracking of assets’ ownership such as
houses, cars or artwork [20]. In some countries, because of corrupt officials, the
state cannot be trusted to keep accurate records of land ownership. Sweden2,
Georgia3, and Ukraine4 are each at different stages of implementing a land enti-
tlement project using the blockchain. Such initiatives have the power to combat
that corruption and give power back to farmers and small property owners.

In this paper, we propose to use the blockchain to track IoT devices’ own-
ership. The blockchain is a cheaper alternative to record ownership. Traditional
methods involve an outside authority such as notaries that implies trust and
drives up cost. Ours is also a simpler and faster process. Thanks to the decreased
cost and added usability, ownership records are made available for more low-cost
assets such as IoT devices.

This mechanism can also be used to exchange device-related secrets, enabling
remote configuration and efficient secret management. IoT use cases can involve
many devices deployed in various physical locations. This makes manual config-
uration inefficient. Smart grids are a good example of hundreds of devices that
need to be deployed to cover the entirety of electricity grids. The deployment
speed is highly impacted by the configuration method, as many devices need to
be configured at once. By leveraging the chain of ownership published in the
blockchain, we propose to facilitate remote configuration. Additionally, owners
can use the same mechanism to efficiently manage the multiple secrets used to
remotely manage their devices.

Related Work. Ownership tracking via a blockchain has already been imple-
mented. On the Bitcoin blockchain, Colored Coins [20] is designed to track asset
exchanges. On the Ethereum blockchain [7,22], smart contracts [21] can be pro-
grammed to do similar things. Other blockchains such as NXT [6] provide a
native asset exchange. There are also front-end applications [2,5] that bridge
several blockchains together to facilitate interoperation. These implementations
are not IoT-specific but their general-purpose tokens are IoT-compatible. They
are however only focused on ownership record and cannot be used for key man-
agement.

In the academic literature, the transfer of ownership is addressed at the device
level [16,18]. Ownership transfer is defined [19] as “the capability to pass own-
ership of a tag to a third party without compromising backward untraceability
for the said party or forward untraceability for the previous owner.” The focus

2 https://www.reuters.com/article/us-sweden-blockchain/sweden-tests-blockchain-te
chnology-for-land-registry-idUSKCN0Z22KV, Last checked Feb, 16th 2018.

3 https://cointelegraph.com/news/georgia-becomes-first-country-to-register-property
-on-blockchain, Last checked Feb, 16th 2018.

4 https://www.bloomberg.com/news/articles/2017-10-03/ukraine-turns-to-blockcha
in-to-boost-land-ownership-transparency, Last checked Feb, 16th 2018.
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is on key management and domain boundaries. The devices that are concerned
by these protocols are RFID tags. No record is kept of past owners. This article
precisely focuses on these ownership records.

Table 1. Our notations

Symbol Description

D Device

{Di}0≤i<n Family of n devices

idi Identifier of device Di

M Device manufacturer

C A Company

addrA Blockchain address of A. addrA = Hash(pubA)

(pubA, privA) Public/private blockchain key pair linked to addrA

si Secret linked to device Di

KA Master key of A

kA,B Symmetric key derived from KA and shared with B

kA,i Symmetric key derived from KA and idi

txk kth blockchain transaction

outkj jth output of txk

Organization. Security assumptions and threat models are presented in Sect. 2.
Based on the notations of Table 1, Sect. 3 introduces our tracking of ownership
using the blockchain. Section 4 proposes an extension of the approach to config-
ure IoT devices and manage keys for the sake of the owner.

2 Security Considerations

2.1 Security Assumptions

We operate under the following assumptions:

A1 Secured blockchain keys: Blockchain keys cannot be stolen, lost or otherwise
compromised. This implies good key management.

A2 Solid cryptographic primitives: Our proposal uses cryptographic primitives
such as signatures, hashes, or encryption. We assume these primitives cannot
be broken.

A3 Blockchain consistency : Fundamental blockchain properties include consis-
tency amongst nodes and consistency over time [17]. This implies that all
nodes in the network will agree on blockchain history, the last few blocks
excluded, and that accepted transactions cannot be modified. We assume
these properties are verified and the blockchain history cannot be altered.
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A4 Blockchain capability : Actors (M and C) own a blockchain address, the
corresponding public and private key pair, and the means of submitting or
retrieving a transaction to or from the blockchain.

A5 Reputation System: The actors take part in a reputation system where bad
behaviors can be reported. We assume this system cannot be tampered with.

A6 Unicity of device’s serial number : A device can be uniquely identified by
its serial number. We assume this serial number is physically located on the
device and cannot be tampered with.

A1 is a very strong assumption that does not really hold. When a private
blockchain key is lost, it cannot be changed or retrieved. The assets associated
with this key and the corresponding address can no longer be transferred. When
a private key is stolen, the victim must race the thief to emit a transaction that
will transfer all assets stored on the corresponding blockchain address to another
one. Blockchain transactions cannot be reversed. Multisignature addresses can
be used to mitigate the risk of theft. However, as this is a core issue for all
blockchain applications, there exist a number of methods to safeguard one’s key.
It can be locked in a safe, stored in a hardware token, put to paper, etc. These
considerations are out of the scope of this paper as they have been addressed
elsewhere5.

For the same reasons, we do not address the security of reputation systems
(Assumption A5).

2.2 Threat Model

Across our two proposals, we consider three types of attackers: a malicious new
owner, a malicious previous owner, and a malicious uninvolved third party. We
detail nine possible threats involving these actors. These threats are summarized
in Table 2.

Malicious Previous Owners. This attacker’s goal is to either fool a potential
buyer, by not providing the device after the sale has been concluded, or to retain
access to said device and thus gain access to sensitive data belonging to the new
owner. As the previous owner, the attacker is in possession of the credentials
that, at the time of the handover, enable device access. She can also provision
anything unto the device prior to the handover and is able to produce a valid
proof of ownership.

When a device is sold and exchanged, the previous owner can use her knowl-
edge to gain access to sensitive information. She can also use the device as an
entry point into the new owner’s network. This defines Threat T1.

A prospective owner can be fooled by the previous owner and buy a device
that will not be delivered. This defines Threat T2.

When a secret must be provided in order to gain access to the device (see
Sect. 4), the attacker may refuse to provide it or falsify it, thus preventing the
new owner from accessing his device. This defines Threat T3.
5 https://blockgeeks.com/guides/paper-wallet-guide/, Last checked April, 19th 2018

https://en.bitcoin.it/wiki/Storing bitcoins, Last checked April, 19th 2018.
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Malicious New Owners. The goal of this attacker is to gain access to sensitive
information without authorization. As its new owner, the attacker has full access
and full control over the device.

After the sale, if the device has not been properly wiped, the new owner can
extract potentially sensitive information related to the former owner from the
device itself. This defines Threat T4.

The new owner can also use the device’s identity to gain access to previous
owner’s data. This can be achieved by interacting with users or devices that
still recognize the device as being owned by the previous owner. This defines
Threat T5.

Malicious Third Party. This attacker’s goal is to appear as a legitimate device
owner to fool a potential buyer, steal and re-sale a device, disturb the sale trans-
action or gain information about the parties involved in the ownership transfer.
When a public blockchain is used, the attacker has access to all information
that transits through the blockchain. She can also produce and submit valid
blockchain transactions.

First, the attacker can try to clog the blockchain network. In this event, the
network would not be able to process the transaction signaling the ownership
transfer. This defines Threat T6.

Second, when the transfer occurs, the attacker may try to gain knowledge
about the involved parties. This defines Threat T7.

Third, the attacker may pretend to be the owner of a device she does not
possess or acquired illegally (through theft for instance). This is Threat T8.

Fourth, the attacker may fabricate a blockchain trace for a device that does
not actually exist. This is Threat T9.

Table 2. Threats

Nbr Attacker type Description

T1 Prev. Owner Previous owner retains access to the device

T2 Prev. Owner Proof of Ownership is produced but device is not provided

T3 Prev. Owner Secret is not valid. Provided device cannot be accessed

T4 New Owner New owner extracts sensitive data from the device

T5 New Owner New owner uses device to gain access to sensitive data

T6 Third Party Ownership transfer cannot be completed

T7 Third Party Attacker accesses sensitive information by eavesdropping

T8 Third Party Attacker successfully masquerades as the device owner

T9 Third Party Ownership chain with no corresponding device
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3 Asset Ownership

3.1 Motivation

As previously mentioned, asset tracking is one of the most straightforward
blockchain application. Assets that have been considered for this use case tend
to be expensive (i.e. land, cars, houses, paintings, etc.). These objects’ ownership
will most likely already be tracked using third parties such as notaries, insurance
companies, or other government-sanctioned entities. The corresponding admin-
istrative procedures can be long and costly. By using the blockchain instead,
trust in these third parties and their infrastructure is no longer required. The
cost of a transaction is also highly reduced. The transfer of ownership is a sim-
ple blockchain operation. For these reasons, ownership records do not have to be
confined to expensive items. We propose to apply this principle to IoT devices.

Triggers for ownership transfer in the IoT might be: a user re-selling an
old device after it has been replaced by a newer one, an individual looking for
cheaper options and turning to the second-hand market, a company re-assigning
resources as a project closes, long-term renting of IoT devices, etc.

Benefits of the Proposal. Keeping ownership records on the blockchain offers the
following benefits:

– Desintermediation: Traditionally, changes in ownership must be attested,
assisted, and recorded by third parties. As the blockchain keeps a public
proof of the transaction, they are no longer necessary.

– Shared architecture: When using existing public or private blockchains, one
can take advantage of the infrastructure already deployed by others. This use
case does not require the deployment of a dedicated infrastructure nor the
federation of a large number of systems to enable interoperability.

– Decentralized storage: This pertains to one of the fundamental blockchain
property, persistence. Blockchain transactions will be stored in a decentralized
fashion, protecting ownership record from loss and alterations.

– Simplicity : The process by which the ownership is transferred requires a single
transaction. Its simplicity makes it highly usable, even to private individuals.

– Lower costs: Ownership transfer usually involves a third party. This third
party will take a commission on the sale. The desintermediation therefore
has the added benefit of lowering costs.

– Traceability : Ownership of an object can be traced back to its original owner.
It can also be traced the other way around, from its original owner to the
latest one. One interesting consequence is the possibility of issuing security
alerts. When an incident affecting a large number of devices occurs, it is
currently hard to track owners and warn them of the issue. Owners can be
private individuals. They are not likely to follow best security practices. For
that reason, in the event of a large scale IoT attack, being able to track and
warn device owners could prevent further damage.
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– Proof of ownership (PoO): Before a sale or before providing services only the
legitimate owner of the device should be able to access, actors can require
a proof of ownership. Concerned services would be maintenance operations
or customer support for instance. In current systems, this proof takes the
form of a certified document. The owner can also be required to prove its
identity by answering a number of personal question following a company-
dependent registration process. We propose a PoO that is pseudonymous
and that can be independently verified, without certification authorities or
personal information.

– Availability : By its distributed nature, the blockchain offers availability guar-
antees that the deployment of a private fact recording infrastructure cannot
match.

– Pseudonymity : Traditionally, ownership records are nominative. This is nat-
ural as the PoO is linked to one’s identity. When using the blockchain, device
ownership is tied to the ownership of the corresponding blockchain private
key. This enables the use of pseudonyms.

– Ownership Transfer notification: One issue with ownership transfer is the
timely revocation of permissions granted to the device. Some access rights
can linger, thus weakening a system’s security. Recording ownership transfers
in the blockchain in a public fashion can enable the automatic revocation of
permissions upon ownership transfer. This would enhance the protection of
former owners private information.

3.2 Proposal

We take our example at the very beginning of the ownership chain with the sale
of a device D. We consider the following actors: the device’s manufacturer M ,
and a company C that wishes to acquire D. Following Assumption A4, both M
and C possess a blockchain address, the corresponding public and private key
pair, and the means of submitting or retrieving a transaction to or from the
blockchain.

Table 3. Transaction format

Field Description Status

Tx type Possible values are genesis and transfer Mand

Nounce Can be made mandatory for genesis tx (see Sect. 3.3) Opt

Inputs Lists all the inputs of the tx (see Table 4) Opt

Outputs Lists all the outputs of the tx (see Table 5) Mand

The general idea is to link the asset’s exchange to a series of blockchain trans-
actions, thus creating a chain of ownership. There are two types of transaction
available. The transaction that creates the link between the asset and its digital
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Table 4. Input format

Field Description Status

Previous tx Identifier of previous tx (usually the hash of the tx) Mand

Index Index of output to be used in previous tx, must be unspent Mand

Public key Pub key that matches the address in the selected output Mand

Signature Signed with the priv. key that matches the given pub. key Mand

Table 5. Output format

Field Description Status

Destination Blockchain address of the output owner Mand

Id Device serial number, mandatory for genesis tx Opt

Secret See Sect. 4 Opt

counterpart is the asset genesis transaction. Transactions that mark a change in
ownership are transfer transactions. Transactions follow the Bitcoin [15] model
of input/output, meaning that each transaction uses previous transaction out-
puts as inputs. Transactions are detailed in Table 3. Tables 4 and 5 breakdown
the construction of individual inputs and outputs respectively.

For an input to be valid, it must be signed with the private key correspond-
ing to the output’s destination address: We take the example of a transaction
tx0 with 2 outputs, out00 sent to addrA and out01 sent to addrB . Transaction
tx1 uses out00 as input. To be valid, the input must carry the public key corre-
sponding to addrA along with a valid signature produced using privA, private
key corresponding to addrA. Because outputs only carry blockchain addresses,
and because hashes are irreversible, the public key pubA is needed for the signa-
ture validation (reminder: addrA = Hash(pubA)). Each output in a transaction
corresponds to a different asset.

A genesis-type transaction has no input. Its outputs however must include an
id field. According to A6, device identifiers are unique and cannot be tampered
with. This field, shown in Table 5, therefore strongly affiliates a physical IoT
device and its digital counterpart.

Going back to our example, illustrated by Fig. 1, M issues a genesis trans-
action, tx0, with a single output sent to addrM , her own blockchain address,
and carrying D’s serial number. This transaction creates device D’s digital
representation and registers M as the original owner. Before a sale can take
place, M must produce a valid proof of ownership to C. To this effect, C
sends a challenge message, m, to M . Because the challenge is chosen by C,
M cannot reproduce an intercepted message. M signs m with privM and sends
(Hash(tx0), 0, SignprivM

(m), pubM ) back to C. Using the transaction identifier,
Hash(tx0), company C can check for itself the corresponding transaction in the
blockchain and the designated output, here the 0th. She validates that out00 is
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Fig. 1. Proof of ownership and ownership transfer

not spent and was addressed to M . C then verifies the provided signature. If the
signature is valid, the PoO is accepted. It is interesting to note that providing
such a proof does not compromise the owner’s pseudonymity.

Following Assumption A1, blockchain keys cannot be stolen. Assumption
A2 states that the blockchain’s cryptographic primitives cannot be broken. This
means that the only person capable of producing a valid PoO is the owner of both
the blockchain key and the device. Furthermore, since the blockchain history
cannot be altered according to Assumption A3, once an ownership record has
been published or updated, it cannot be modified. This neutralizes Threat T8.

A PoO can be useful outside of the scope of a sale. Currently, when buying
a device, customers can be required to register themselves with the correspond-
ing brand. This involves personal data that will later be used to identify and
authenticate them. A PoO can be used instead, enhancing customer privacy.

Now that M has proven he is the rightful owner of D, the sale can proceed.
When C purchases the device, M issues a second transaction of type transfer,
tx1. Transaction tx1 has one input, out00, signed with privM , and one output,
out10 sent to addrC . This second transaction transfers the ownership of D to C.

3.3 Limitations

Blockchain-Related Limitations. The security of the scheme depends on the
security of the underlying blockchain [14]. Amongst other issues we can cite 51%
attacks, propagation delays [11], withholding attacks [10], the untested scalabil-
ity of blockchains, their complex governance system, etc. Assumption A2 does
not cover these issues as they are not crypto-related but rather network-related.
However, despite all these theoretical shortcomings, blockchains like Bitcoin and
Ethereum have demonstrated their resilience to attacks and only grown stronger
as a result.

Another issue that needs addressing is the resistance to DDoS attacks. In
the Bitcoin blockchain, the only transactions without inputs are coinbase trans-
actions. First transaction of a block, a coinbase transaction can only be issued
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when a block is mined. Furthermore, now that Bitcoin miners’ payment is mov-
ing from block reward to transaction fees, all other transactions have a cost that
is only going to increase over time. This mitigates DDoS attacks as the cost is
linear in the number of transactions. When a large number of transactions floods
the network, miners can temporarily increase transaction fees, thus rendering an
attack even more costly. If they do not require inputs, genesis transactions are
not exempt from fees. Issuing a large number of them has a cost that is at least
linear in the number of transaction and can even grow faster as the miners’s
fees adapt to the situation. The cost of the attack is a deterrent. This addresses
Threat T6. Valid transactions can also be created by transferring a device’s
ownership to oneself. But the cost is the same.

We propose two additional means of mitigation. The first solution is to use a
private blockchain where the right to issue genesis transactions is limited to pre-
approved actors. Manufacturers would need to be registered in a manufacturer
consortium, granting them the exclusive right of issuing genesis transaction, thus
creating new devices. A manufacturer that behaves incorrectly, by advertizing
non existing devices or issuing too many genesis transactions, would lose its
publication privileges. This has the added advantage of addressing Threat T9.
Private blockchains unfortunately do not offer the same openness and decentral-
ization as public ones.

A second solution consists in increasing the cost of genesis transactions. They
would require a nounce as an input (see Table 4). Similarly to Proof of Work,
the nounce would be chosen so that the hash of the transaction is lower than a
pre-defined threshold. The difficulty does not need to be as high as Bitcoin proof
of work’s and can be adapted to counter DDoS attacks. The downside is that
this increased computational cost will mostly impact manufacturers as they are
the most likely to issue genesis transactions. This is therefore likely to impact
the device’s cost in return.

Use-Case-Related Limitations. In the above proposal, a genesis transaction
creates the digital representation of an IoT device. If the transaction is linked
to the device via its serial number, no proof of the existence of this device is
required. The production of a valid PoO does not translate to the possession of
a real-life IoT device. In case of theft for instance, the original owner can still
produce a valid proof but will not be able to produce the device itself. This
situation is not different from online shopping where the buyer has to rely on
pictures, listings, reputation, or other criteria to decide whether to trust the
vendor. Following Assumption A5, vendors that do not provide devices after
the transaction is complete can be reported. Their reputation score will be low-
ered and they are less likely to fool someone else in the future. This addresses
Threat T9.

Similarly, the issuance of a transfer transaction does not force the shipping
of the device to the new owner. It means however that the previous owner can no
longer prove that she owns the device. This is a deterrent as future prospective
buyers are unlikely to commit to the sale if the ownership cannot be proven.
Blockchain transactions are irreversible. To protect himself, the vendor can be
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tempted to require payment before the transfer transaction is issued. The buyer
then runs the risk of that transaction never being issued. Bitcoin multisignature
presents a solution to this problem. Multisignature refers to transactions that
need more than one signature to be valid. The desired number here is 2 out of
3. The buyer and vendor freely choose a party that they trust to be impartial.
The buyer then sends the funds to the multisignature address. If everything
goes smoothly, upon reception of the purchased item, the buyer and seller both
sign the transaction and funds are sent to the vendor. When a conflict occurs,
the third party decides who should receive the funds and signs the transaction
together with the interested party. The same can be done with ownership trans-
action. This addresses Threat T2.

An owner could also try to sell the same device to two different people. This
is a problem that is similar to the cryptocurrency double spending. In a similar
fashion, both transactions cannot co-exist. New owners should therefore be sure
to wait for the blockchain transaction to be confirmed. For Bitcoin, the generic
rule is to wait for the transaction to be burried under 5 to 6 blocks, which takes
around an hour. For such a use case, this delay is not an inconvenience.

In all of the above cases, bad behavior from any of the involved actors will
negatively affect that actor’s reputation score (Assumption A5). All reporting
should include the incriminating transaction(s) when applicable. For a double
sale for instance, two transactions spending the same output with valid signa-
tures should be provided as proof of bad behavior.

Finally, malicious previous owners might want to retain control of their for-
mer device after it has been shipped to its new owner. To protect against this
risk, the device should be wiped clean upon reception and all the credentials
should be changed. This addresses Threat T1. The same applies to a former
device owner who wants to prevent her sensitive data from being accessed by
the new owner. Before the device can be shipped, it should be restored to factory
default. This addresses Threat T4. The necessary steps should also be taken to
revoke the device’s access to all sensitive services such as a smart home private
network. This addresses Threat T5. Threats T4 and T5 are better addressed
by Sect. 4.

4 Managing Secrets

4.1 Motivation

Security rests on the sharing of secrets. These secrets are used to secure com-
munications or encrypt data. When a device is manufactured, initial secrets are
provisioned to start the security chain. When acquiring a device, its secrets need
to be retrieved from the manufacturer or previous owner. The means currently
at our disposal to do so lead to slow and cumbersome deployment processes.
What is needed therefore is a mean of efficiently retrieving that information to
be able to remotely and efficiently configure devices in an industrial context.

Currently, physical access to the device is often necessary. When buying a
device, the new owner will have it shipped to her location and configure it. The
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pin or the password may be written down on the device’s box, in the configu-
ration manual or otherwise physically attached to the device and its packaging.
Buyer and seller might also choose to call on a trusted third party to take care
of the configuration and installation of devices.

The need for an initial physical access is a hindrance on the deployment
process. Because many devices need to be configured at once, this method that
is slow, costly and may require to trust confidential information to a third party
is ill-fitted.

Another issue is the management of these secrets. In IoT scenarios, multiple
devices may be owned by the same entity. Furthermore, symmetric cryptography
is often preferred due to the constrained nature of IoT devices. This is another
multiplying factor for the number of keys involved. This multiplicity implies
the need for an efficient management of secrets over the life a device. Based on
the blockchain ownership records, we propose a solution that both delivers a
device’s secret to its newest owner and enable their management over the life of
the device.

Benefits of the Proposal. The benefits brought by the proposed scheme are as
follows:

– Simplified deployment process
– Cost reduction
– Reduction of the number of secret keys
– Distributed storage of keys

As an extension of the proposal from Sect. 3, to the benefits described above
we add the advantages described in Sect. 3.1 that are inherent to the use of a
blockchain as the underlying mechanism.

4.2 Proposal

For the sake of this proposal, we consider IoT devices as black boxes exposing a
number of functions that can be activated either by physical interactions or via a
communication channel. In both cases, a secret is required to successfully invoke
any function. When the device is manufactured, an initial secret is provided.
As for any function, the generation of a new secret requires the previous secret
and can be invoked either by physical interaction or through the communication
channel.

Once again, we start at the beginning of the ownership chain. The manu-
facturer M sells a batch of n devices {Di}0≤i<n to a company C. Each device
has a unique identifier idi. Additionally, C owns a master key KC . Used as an
input for key derivation, KC should not be shared and only be known by C. The
symmetric key kC,M is derived from KC and M . This means that a symmetric
key is associated with every vendor. Key kC,M will be used to encrypt {si}0≤i<n,
secrets linked to devices {Di}0≤i<n respectively. The blockchain still supports
two types of transaction, genesis and transfer.

Figure 2 illustrates the process by which ownership is transferred and secrets
are exchanged:
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Fig. 2. Transferring ownership and delivering device secret

Step 1 M interacts with each Di and generates a secret si. This secret si can
be an administrative password, a private key, a pin, etc.

Step 2 M retrieves kC,M from C or from its own record. That information can
be provided along with payment information for instance. We assumed
kC,M to be a symmetric key that needs to be provided by the buyer. If C
prefers using asymmetric cryptography, the key used to encrypt si can
also be retrieved from a registry storing public key records. These keys
are used for applicative purposes and should differ from the keys used
for the blockchain protocol. Using kC,M , M encrypts each si.

Step 3 M issues a genesis transaction, tx0, with n outputs where out0i is linked to
Di through its serial number idi and is sent to addrM , her own blockchain
address. M issues a second transaction of type transfer, tx1, with {out0i }
as inputs, signed with privM . This transaction yields n outputs, one
for each Di, sent to addrC . In addition to addrC , each output carries
EnckC,M

(si) (see Table 5).
Step 4 C retrieves {EnckC,M

(si)} from the blockchain and deciphers them,
recovering {si}.

Step 5 Using {si}, C gains access to each Di. When necessary, si is also used
for configuration.

Outputs can be separated, enabling devices to be sold separately. This factors
the transaction costs.

This scheme involves several keys and secrets, especially when considering
devices bought from multiple vendors but only KC and privC need to be safe-
guarded by C. Each si can be recovered from KC . This greatly simplifies the
management of secrets where many devices are involved.

Furthermore, updates can be made to a device’s secret, as illustrated by
Fig. 3. After buying a device Di, the new owner should change the corresponding
si as this secret is known to the previous owner (Threat T1). Using si, she can
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Fig. 3. Publishing a new secret to the blockchain

invoke any function of Di and generates a new secret, snewi . This secret can now
be stored in the blockchain. The owner simply furthers the ownership chain by
sending a transfer transaction to herself, replacing EnckC,i

(si) by EnckC,i
(snewi ),

where Enc is the encryption algorithm, and kC,i is a symmetric key derived
from KC and idi. A single actor can have several blockchain addresses and
transfer device ownership between them. Such transactions are made to hide the
link between the owner’s identity and her blockchain addresses, thus hiding the
number of device belonging to a single owner. This also hides how long an actor
holds on to a device (Threat T7). Note that the new secret should of course be
encrypted with a key that is not known to M .

4.3 Limitations

The first delicate point of this scheme is the transmission of the encryption key,
kC,M , from C to M . If symmetric keys are used, then a secure communication
channel should be put in place to enable the exchange. The security of a key
during its transmission falls outside of the scope of this document. When a large
number of sales involve the same actors, here M and C, the same key is used to
encrypt all secrets. The symmetric key must be exchanged only once.

If asymmetric cryptography is used, the public key can simply be transferred
or even made available in a registry chosen by the actors. The choice of registry
does not affect the scheme. This mitigates Threat T7.

Before selling a device, the owner should invoke the secret generation function
to bind the device to a new secret. If the secret that is communicated to the new
owner via the transfer transaction was already in use, it can be used to retrieve
private information from the previous owner (Threat T4). Similarly, if kC,M is
a symmetric key, it should not be reused when a new secret is uploaded to the
blockchain. Otherwise, all snewi are exposed to M (Threat T1). To achieve this,
kC,i can be derived from elements linked to the blockchain transactions. Let txn

be the latest transaction that proves M owns Di. Such a transaction must exist
with unspent output otherwise M is not the rightful owner of Di. In that case,
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Hash(txn) could be used as an input for key derivation. The transfer transaction
from M to C, transaction txm, will use one of txn output as input. Similarly,
when updating si, an output from txm will be used. The hash of the previous
transaction is therefore an easy element to recover. It varies with transactions,
leading to different kC,i.

As stated in Threat T3, the new owner runs the risk of receiving the correct
device but being given the wrong secret. In such a case, the device is unusable.
The motivation behind this can be for the previous owner to retain control of the
device (Threat T1) while accessing the new owner’s network. Devices should not
be connected to sensitive infrastructure before the secret has been verified and
changed, and the device has been wiped clean. As these are basic precautions,
the attack has really low chances of success. Meanwhile the attacker is no longer
in possession of the device. Furthermore, such bad behavior can be reported
through the reputation system (Assumption A5). There are few incentives to
engage in this kind of behavior.

One should be careful about publishing encrypted secrets to the blockchain as
attackers may try to decipher them (Threat T7). The secret should therefore be
updated in accordance with the security of the used encryption scheme. Recovery
of old secrets is not a threat as they are only used to activate functions and cease
to be useful once they have been updated. This, of course, holds if no information
about the new secret can be inferred from the old ones.

5 Conclusion

The blockchain has made the tracking of asset’s ownership relatively inexpensive.
It does not have to be reserved for houses and boats any longer. We therefore
propose to use it to track the ownership of IoT devices. The chain of ownership
can be augmented by adding additional information to transfer transactions. We
focused on encrypted device-related secrets that can help owners manage their
devices.

We have argued the benefits of these applications. Amongst them, the
pseudonymity of the PoO that can be produced to give guarantees to a prospec-
tive buyer and replace the registration systems in place, currently run by private
companies. Others benefits include the desintermediation and decentralization
of classic solutions. Limitations of our proposals have been argued.

A threat model has been detailed and three potential attackers considered: a
malicious previous owner, a malicious future owner, and a malicious third party.
We have defined six security assumptions and nine security threats involving
these attackers. One could argue that blockchain keys should not be considered
safe and can easily be lost or compromised. However, the issue of safekeeping
a key has been studied extensively and many solutions can be provided. In the
current state of affairs, the requirement that every potential owner possesses a
blockchain address seems the most unlikely. We believe this is likely to evolve in
a near future.
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Abstract. In the era of big-data, personal data is produced, collected
and consumed at different sites. A public directory connects data produc-
ers and consumers over the Internet and should be constructed securely
given the privacy-sensitive nature of personal data.

This work tackles the research problem of distributed, privacy-
preserving directory publication, with strong security and practical effi-
ciency. For proven security, we follow the protocols of secure multi-
party computations (MPC). For efficiency, we propose a pre-computation
framework that minimizes the private computation and conducts aggres-
sive pre-computation on public data. Several pre-computation policies
are proposed with varying degrees of aggressiveness. For systems-level
efficiency, the pre-computation is implemented with data parallelism
on general-purpose graphics processing units (GPGPU).We apply the
proposed scheme to real health-care scenarios for constructing patient-
locator services in emerging Health Information Exchange (or HIE) net-
works.

We conduct extensive performance studies on real datasets and with
an implementation based on open-source MPC software. With exper-
iments on local and geo-distributed settings, our performance results
show that the proposed pre-computation achieves a speedup of more
than an order of magnitude without security loss.

1 Introduction

In the era of big-data, personal data is produced, collected and consumed in digi-
tal forms, bringing unprecedented convenience to the society. As data production
and consumption are decoupled at different sites, sharing person-specific data
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over the Internet becomes a popular application paradigm as widely observed in
a variety of domains ranging from electronic healthcare, social networks, Internet
of things, malware detection, to many others.

A public directory service is a crucial data-sharing component. In a data-
sharing workflow, a data consumer queries the directory service to locate the
producer sites that may have the documents of interest. The directory service
maintains the private producer-location information, and connects data con-
sumers and producers. For instance, in electronic healthcare, HIE or Health-
care Information Exchange is an emerging data-sharing platform [4,10] where
the directory called locator service [1,5,9,11] helps a doctor (data consumer)
find the electronic medical records (EMR) of a patient (data producer). The
data-location information (“which hospitals a patient has visited”) may reveal
privacy-sensitive facts; for instance, knowing that a celebrity visited a rehabili-
tation center, one can infer that s/he may have a drug problem.

A naive way of constructing the directory is for any data producer to directly
publish its list of associated people (e.g., the list of patients having visited a
hospital). However, this approach discloses the private data-location informa-
tion to network adversaries performing traffic analysis. This privacy disclosure
leaks “identifiable information” and would violate data-protection laws (e.g.,
HIPAA in USA [6], EC95-46 in European Union [3] and various privacy laws in
Asian countries [56]) that govern the data-sharing across borders in regulatory
domains.

This work tackles the problem of distributed and privacy-preserving publica-
tion of directory, with strong security and high efficiency. In our problem, data
producers are operated autonomously and they distrust each other. The pub-
lication problem can be modeled as a secure Multi-Party Computation (MPC)
problem [25,27,37,52,73] where a joint computation with inputs private to dif-
ferent parties is evaluated in a proven-secure fashion. A naive instantiation of
the directory publication is by embedding entire publication logic in an MPC
protocol, which however causes high overhead and is impractical, because of
the expensive cryptographic primitives used in constructing an MPC. A con-
ventional remedy is to identify the private part of the computation (e.g., by
data-flow analysis [17,59]) and to map only this part to the MPC. Unfortu-
nately, this approach is not effective in our problem, as the private and public
data flows of the directory-construction logic are inter-tangled and separating
them becomes difficult.

In this work, we propose an aggressive pre-computation technique that min-
imizes (instead of separating) the private computation for multi-party directory
publication. Concretely, we conduct the pre-computation by considering all pos-
sible values of private data. It then applies expensive MPCs to a simple selection
logic, that is, select from the list of pre-computed results by the actual value of
private data. At the first glimpse, this optimization technique may seem counter-
intuitive as the pre-computation augments the input space exponentially. In
practice, particular to our directory construction problem, its effectiveness relies
on the application characteristic: The public computation is usually bulky and
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private identity data is much smaller. For instance, achieving the privacy of t-
closeness [51] entails complex computation on the public background knowledge,
such as similarity/distance calculation. With a global identity management sys-
tem, the private identifiable data is minimal. In addition, we propose several
policies that vary in the degree of pre-computation aggressiveness. The policies
can help the optimization technique adapt to concrete scenarios with different
private-data sizes.

To improve the system efficiency, we leverage the data-level parallelism and
implement the pre-computation on General-Purpose Graphics Processing Units
(GPGPU). We implement our design on real MPC software [25] and conduct
performance evaluation in both local and geo-distributed settings. Our evalua-
tion verifies the pre-computation speedup by more than an order of magnitude
over the conventional approach. Through evaluation on real-world datasets, the
assurance of privacy preservation is also verified.

The contributions of this work are listed as following:

– We address the research of constructing privacy-preserving directory in
emerging data-sharing applications. We model the general problem as a dis-
tributed privacy-preserving data publication problem.

– We propose an application-specific techniques for MPC pre-computation in
the directory publication. The insight is based on that the public background
knowledge in privacy-preserving publication can be isolated from expensive
MPC. We implement this optimization design on real MPC software.

– We propose systems-level optimization by data-parallel pre-computation. We
implement the optimization on GPGPU.

– We conduct performance evaluation and demonstrate an order of magnitude
performance speedup.

The rest of the paper is organized as following: Sect. 2 formulates the
research problem. The proposed technique, pre-computation based MPC for
directory publication, is presented in Sect. 3. A case study in healthcare domain
is described in Sect. 4. Performance evaluation is presented next in Sect. 5. We
discuss the generalizability and extensions of the proposed technique in Sect. 6.
Section 7 surveys the related work and Sect. 8 concludes the paper.

2 Research Formulation

This section presents the system and threat model, the security goals, survey
of existing techniques, and preliminary on privacy-preserving data publication
algorithms.

2.1 System Model

The target eco-system involves three roles: data producers, data consumers,
and the host of directory service. Each data producer owns a table of personal
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records where each record is keyed by the identity of the owner of this record.
Given a person of interest, a data consumer would want to find his/her records at
all producer sites. The directory service helps the consumer “discover” relevant
data producers who maintain the result records.

Formally, sharing personal records in our system works in two steps: First,
a data consumer interested in a person’s records poses a query to the directory
service and looks up the list of producers who have this person’s records. Then,
the consumer contacts individual producers and locally searches the records
there. In this process, the query is based on a personal identity, which we assume
is known globally. In practice, this global identity can be maintained physically
by an identity-management server or constructed virtually such as by patient
record linkage in healthcare [43,70].

Fig. 1. System model of public directory: Two data producers share three people’s
records. In the directory, value one means presence and zero means absence (e.g.,
producer H1 does not have gray person’s records). The underscored one in red is a
false positive in the sense that producer H2 does not have the record of the white
person but the directory records the opposite (for the sake of privacy preservation).

We assume each data producer locally has a data-protection mechanism in
place (e.g., user authentication and authorization) that prevents an external
party from accessing the records without data owner’s consent. Figure 1 illus-
trates the abstract model of our system. The model is applicable to data-sharing
applications in regulatory domains; A concrete example is about sharing patient
electronic medical records (EMR) in healthcare information exchange networks,
where data producers are hospitals, personal data are patients’ EMRs and con-
sumers can be physicians diagnosing patient. The details of the scenario will be
elaborated in Sect. 4.

The target computation of this work is about building the directory.
A baseline is that each data producer sends its local access-control list to the
third-party directory which enforces the access control when serving the direc-
tory requests. This baseline however becomes problematic when the directory
host is untrustworthy (e.g., by third-party clouds): First, enforcing access con-
trol with integrity entails user authentication and authorization to be done by a
trusted party. Second, the local access-control list reveals the binding between a
person and her data producers, which can be privacy-sensitive in many applica-
tions. For instance, in Healthcare scenarios, the binding between a patient and a
rehabilitation center can reveal that this person may have a drug problem. Even



Secure and Efficient Multi-Party Directory Publication 75

when the directory is protected by the host, an adversary can easily recover the
binding by performing network traffic analysis and extracting this information
from the side-channel of the consumer access trace.

We consider the privacy-preserving publication of directory. Existing data-
privacy definitions, such as k-anonymity, l-diversity, t-closeness, are applicable
to our problem. For instance, k-anonymity requires k people have their published
lists of producers to be the same. l-diversity requires people placed in the same
group have l distinct lists of producers. t-closeness requires each group of people
to have similar producer lists to all the producers. In this work, we mainly use
the notion of ε-privacy [69] to drive further presentation. The main idea of ε
privacy is to bound the amount of noises or false positives in the published list
of producers by a percentage of ε. We will discuss the application of our technique
to other privacy definitions in Sect. 6.2.

Formally, the notion of ε-privacy is adapted to our threat model by being
aware of background knowledge—we make the false positive producers indis-
tinguishable from true positives, such that the distribution of true positives is
similar to that of false positives. What’s noteworthy is that the similarity is mea-
sured on the dimension of external, public knowledge. For instance, in HIE, the
similarity between hospitals (producers) can be defined by hospital specialties
and geographic locations.

Privacy-Preserving Publication Algorithm: Achieving ε-privacy can be
done by a top-K algorithm. Concretely, given a list of true positive produc-
ers, the algorithm finds K negative producers which are closest to the positive
ones. The value of K can be simply calculated from ε and the number of true
producers |T |. Listing 2 presents the top-K algorithm which entails the itera-
tive computation of nearest neighbor with similarity/distance defined by public
knowledge. The distance computation depends on the metric that represents
producers and it can be Euclid distance, Hamming distance, and others.

Fig. 2. Top-K algorithm to achieve privacy
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2.2 Threat Model and Security Goals

This work targets on the distributed publication of privacy-preserving direc-
tory with untrusting data producers. In our problem, a data producer runs
autonomously and distrusts external parties including peer producers. Data
producers get engaged in the distributed computation for publishing privacy-
preserving directory where they exchange information with each other (Fig. 2).

In the threat model, an adversary can eavesdrop all messages being exchanged
during the distributed directory publication. For a producer, the adversary can
be a network eavesdropper or a peer producer. Formally, this is the semi-honest
model used in formulating a secure multi-party computation problem [21], where
the adversary, being a participant in the computation, honestly follows the pro-
tocol execution but is curious about any data that flows through her during the
execution. Multiple adversaries may collude. Given a network of n producers,
we consider the collusion can be up to n − 1 peer producers.

The security goal is to assure the data security in the directory-publication
process. Our security goal is to ensure perfect privacy (in an information-
theoretic sense). Informally, it means an adversary’s view only depends on her
input and public output. In other words, the messages exchanged in the protocol
execution when the input of other parties take one value are “indistinguishable”
from those when the input of other parties take another value. More formal
treatment of the MPC data security can be found on classic texts [27].

Our threat model and security goal fit in the real-world requirement for pol-
icy compliance in data sharing. In many regulatory domains, a data producer
has the responsibility of protecting the personal data it maintains and complying
data-protection laws. For instance, HIPAA [6] states any identifiable informa-
tion about a patient cannot be shared to any third-party, without the patient’s
consent.

Non-goals of this work include directory data authenticity, producer-site
data protection, key management, etc. Encrypting data on the directory is
orthogonal, as the content of directory is anyway disclosed to the adversary
of network eavesdropper performing traffic analysis.

2.3 Preliminary on Multi-Party Computation

In our protocol, we make use of existing multi-party computation (MPC) pro-
tocols whose background is presented here. In general, the purpose of MPC
is to evaluate a function whose inputs are provided by different parties. Each
input is private to its provider party. The protocol of MPC ensures that it
does not leak any information about the private inputs even when the compu-
tation states are exchanged and shared. Different computational models exist in
MPC, including circuit and RAM. After decades of studies, there are a variety
of MPC protocols realizing different computation models, specialized for differ-
ent network scales (for two, three or many parties). In particular, the protocol
of GMW [37] is for multi-party, Boolean-circuit based MPC that is constructed
based on the primitives of secret-sharing and oblivious transfers. The protocol
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of multi-server Private-Information Retrieval (ms-PIR) [39,46] is a RAM-based
MPC with multiple servers interacting a client on the computation of a simple
selection operation (e.g., like a database selection).

MPC causes high overhead, mainly due to the “data -oblivious” represen-
tation of the computation and cryptographic primitives being used in the con-
struction. For more-than-three party computation, the use of secret sharing also
cause high overhead as the shares need to be broadcast in the entire network.
This unscalability (in data and network sizes) makes it challenging to apply
MPC for real-world distributed applications.

In practice, the common way MPC is used for many-party distributed appli-
cations is based on the “outsourcing” paradigm. That is, given multiple input
parties, the GMW protocol distributes the input shares to a small number of
computing parties (e.g., three parties as in the Sharemind system [22]). The data
security heavily relies on the non-collusion assumption of the computing parties.
In our work, we deem this outsourcing model unsuitable for the target applica-
tion. In HIPAA, a hospital cannot share patient data with any third-party entity
without patient consent. Therefore, our problem considers each input party as
computing party and the MPC protocol needs to run directly on a medium or
large network.

3 Secure Directory Publication with Pre-Computation

In this section, we present the secure directory publication and the optimization
techniques based on pre-computation. The general idea is to abstract the com-
putation at different levels and precompute the computation at a specific level.
This way, we present a series of precomputation techniques (in Sects. 3.2, 3.3)
that vary in their aggressiveness. To start with, we present the naive approach
based on multi-party computation (MPC) without precomputation.

3.1 MPC-based Publication

Privacy-preserving directory publication is an MPC problem as the input data
are spread across multiple producers and are private to them. The naive way
to realize directory publication is thus to place the computation as in List 2
into the MPC; this approach is denoted by M0. Given the circuit representa-
tion of MPC program, the algorithm in List 2 can be easily converted to a
circuit; the algorithm is a nested loop with pair-wise distance computation, and
the data/control flow is essentially oblivious. In particular, we represent each
producer by a vector (e.g., specialties of a hospital) and the similarity between
producers can be realized by hamming distance. More complex string similarity
computation is realized by dynamic-programming based algorithms which are
also data oblivious. The security of this approach inherent from that of MPC.

This MPC approach is inefficient especially in big-data sharing scenario where
there are a large amount of personal records. This is due to the expensive cryp-
tographic primitives (e.g., oblivious transfers, etc.) used in MPC protocols. To
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improve the performance, it relies on reducing the use of MPC in the distributed
directory publication.

3.2 Full Precomputation Scheme

To reduce the use of MPC, we propose application-level precomputation. Given
the topK(T, S) algorithm in List 2 where only input T (the true producers) is
private, we pre-compute the algorithm on the public input S and all possible
values of private input T . The precomputation result is a table of results under
different T values. Then, we use the actual value of T to privately look up
this table and to securely retrieve the result entry. This stage can be realized
in MPC using protocols such as multi-server private information retrieval (ms-
PIR) [39,46]. Formally, the full precomputation is to compute topK(2S , S) where
2S is the power set of S which includes all possible values of private T . This
scheme is named M1.

The precomputation is effective in our directory-publication problem, pro-
vided the following characteristics. First the topK algorithm invokes some com-
plex computation such as distance computation (i.e. Line 7 in List 2) which
involve background knowledge about the producer profiles (e.g., hospital spe-
cialties and geographic locations). Precomputation avoids placing these complex
computations in MPC which reduces overhead. Second, the precomputation only
needs to be done once and its results can be reused for publishing different peo-
ple’s entries. Third, given the independence between different values, one can
leverage data-parallelism to facilitate the computation. Note that the precom-
putation needs to be done for all possible value of T , that is, the power set of
all producers; although the possibility combination grows exponentially with the
number of producers, we only consider the data-producer network is moderately
large. For instance, in healthcare, a regional or statewide HIE typically consists
of less than hundreds of hospitals in a consortium.

The security of precomputation relies on the fact that no private value
is involves in the precomputation. Private data only occurs in the actual MPC
computation.

3.3 Selective Precomputation Schemes

The full precomputation scheme considers the directory computation of topK as
a whole for precomputation. In this section, we dive into the computation topK()
and selectively precompute certain computation-intensive parts in topK(). Con-
cretely, our selective technique considers topK consists of distance-computation
at different granularity. For one, it is to pre-compute the distance between T
and S − T , considering all possible values of T . This way, we have the selective
precomputation, M2. For the other, it is to pre-compute the distance between all
pairwise data producers. This yield the selective precomputation scheme, M3.

In M2, the precomputation considers all possible values of true-producer T .
Given a value T ∗, it precomputes the set-wise distance between T ∗ and S − T ∗.
This produces a distance table for the subsequent MPC. In the MPC, it first
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follows the computation in List 2 until Line 6. Then for Line 6 to 9, it is replaced
by a secure lookup into the precomputation table. The lookup is realized by the
ms-PIR protocol as in M1.

In M3, it precomputes the pair-wise distance matrix. That is, for any pro-
ducer s1 and s2 ∈ S, it precomputes their distance and stores it in a table.
Then, in the MPC stage, it follows the algorithm in List 2 except that the call to
dist(T[i],S[j]) is replaced by a ms-PIR lookup to the precomputation table.

The security of these precomputation schemes are straightforward, as all
private-data related computations are placed inside the MPC/ms-PIR protocol
whose security is proven. The precomputation only considers the public data.

In summary, the topK computation for privacy-preserving directory publica-
tion can be modeled as a process that issues a series of call to dist(T[i],S[j]).
Our pre-computation schemes partitions this computation process at different
“break” points and selectively places a certain partition to precomputation and
the rest of computation into MPC/ms-PIR. Table 1 illustrates the three pre-
computation schemes from this computation-partitioning perspective.

Table 1. Partitioning topK algorithm to the precomputation-MPC framework: For
notation in this table, T, S are true and all producers as in the topK() algorithm in
List 2. Di for i = 1, 2, 3 are the table storing precomputation results. MPC is secure
multi-party computation protocol and msPIR is a special MPC protocol for multi-
server private information retrieval.

Pre-compute MPC+msPIR

M0 - topK(T, S)

M1 D1 = topK(2S , S) LookupmsPIR(D1, T )

M2 D2 = dist(2S , S) topK2MPC(T, S) invoking LookupmsPIR(D2, T )

M3 D3 = dist(S, S) topK3MPC(T, S) invoking LookupmsPIR(D3, T [i], S[j])

3.4 Data-Parallel Pre-Computation

The pre-computation handles multiple independent input values. There is innate
data parallelism that can be exploited for better performing pre-computation.
In our system, we realize it by data-parallel pre-computation tasks where each
task with distinct input value runs in a dedicated thread. Different threads
run concurrently and without synchronization. We implement this data-parallel
pre-computation framework on both multi-core CPU and general-purpose GPU
(GPGPU). Given the large number of possibilities in input values (and the sim-
plicity of each task), GPGPU lends itself to the parallel pre-computation due to
its scalable execution model.

In implementation, the CPU implementation is based on pthread library [13].
We pack multiple possible input values in one thread and the number of threads
is twice the number of hyper-threads in hardware. The GPGPU implementation
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is based on CUDA library [2]. In this case, the underlying NVidia-Tesla GPU
has global memory of 5 GB and threads run in one grid of 65,635 blocks, each
of 1024 GPU threads. This architecture allows to scale the number of threads
to 227 and can easily handle the producer networks of more than 27 parties.

4 Case Study: Healthcare Locator

In this section, we present the case study of applying our public locator service in
healthcare information exchange networks (HIE). HIE is a health data-sharing
network where the data is patient electronic medical records (EMR), data pro-
ducers are hospitals where each patient visit results in the generation of new
entries in an EMR, and data consumers are clinical doctors. A typical appli-
cation scenario is effective sharing patient’s EMR during a clinical visit where
the doctor diagnosing a patient needs to view the relevant EMRs of the patient
which are produced and stored in remote hospitals.

In this setting, our threat model and security goal apply. Patient EMRs
are personal, privacy-sensitive documents, the sharing of which must comply
HIPAA [6]. Each hospital has its local information-security infrastructure in
place (e.g., access control and user authentication).

A directory service, called HIE locator, can be used to facilitate the EMR
sharing between hospitals and to help discovery of a patient’s previous hospitals.
In the normal case, the list of hospitals is discovered by the doctor asking for it to
the patient. However, this is error prone (e.g., the patient forgets about it) and is
inapplicable in emergency (e.g., the patient is sent to hospital unconscious). Our
privacy-preserving directory can complement the common workflow to improve
the quality of healthcare.

Figure 3 illustrates the abstract workflow of sharing EMRs in HIE networks.
In a clinic scenario, Alice, the patient, is seeing a physician (data consumer)
who interacts with HIE network (directory) to locate the hospitals Alice vis-
ited before (data producer). In real HIE applications, the locator service runs
healthcare software (e.g., OpenEMPI [11]) and is hosted by Amazon AWS alike
public clouds. The public clouds are not trustworthy and it entails the use of our
privacy-preserving directory protocol for publishing the HIE locator. Concretely,
the life cycle of an EMR, including the data-sharing flow, can be divided into
three stages: (1) EMR production where Alice’s EMRs are generated or updated
to reflect her clinical visit; here we assume Alice has given consent on delegat-
ing the EMR to the “producer” hospitals. (2) Locator (periodical) publication
where the EMR updates are published to the public directory of HIE locator
in a privacy-preserving fashion. This is when our directory publication proto-
col is being invoked in the overall HIE workflow. (3) Locator service where the
locator serves the physician’s request to locate Alice’s producer hospitals (3.1)
and find the EMRs of interest there (3.2). In particular for stage 3.2, after the
physician obtains the list of potential hospitals (including both true and false
positive ones), he will contact each hospital and find EMRs by going through
the local user authentication and access control there.
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Fig. 3. Data-sharing workflow in the HIE: The figure illustrates how Alice’s medical
record (EMR) stored on Hospital H2 is used. It shows the entire life cycle of this
EMR: The EMR was produced when Alice paid a clinical visit to H2 (1). During the
current visit in Hospital H1, Alice’s physician requires accessing her EMR in H2 (3).
The physician first contacts the third-party locator service hosted on a public cloud
(which is constructed at an earlier time (2)) and obtains the list of candidate hospitals
H2 and H3. Here, H3 is a noise for privacy preservation purpose. The physician then
contacts both H2 and H3, and find EMR on H2 (4). Note that the physician can do
so because she has the credential to access data on both H2 and H3. For an adversary
obtaining the list of H2 and H3, she cannot distinguish which hospitals are noise as
she does not have the credential.

Security analysis: In this data-sharing process, the EMR is produced and
stored securely (stage 1)) by assuming the producer hospitals’ secure and trust-
worthy local healthcare infrastructure (e.g., faithfully enforcing access control
and honest health IT administrator).

The security in publishing the healthcare locator (stage 2)) is based on the
security of our privacy-preserving directory protocol, which is further based on
the security of MPC protocols [21] and computation-partitioning schemes.

The security in serving the healthcare locator (stage 3.1) is based on the fact
that sufficient amount of noise has been injected into the directory, such that an
Internet adversary performing traffic analysis and knowing the list of hospitals
contacted by the physician can not distinguish between the true positive hospi-
tals and noises. The formal notion of indistinguishability is presented in related
work [54,68,69].

The security in searching and retrieving records on individual hospitals (stage
3.2)) is ensured by the security of local healthcare IT (for enforcing access con-
trol) and the secure channel on the Internet (e.g., https and underlying PKI [35]).

5 Evaluation

In this section, we study the feasibility of our technique for HIE applications
in a holistic manner. Lacking benchmark dataset in existing literature, we first
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present a real healthcare dataset to populate the HIE data producers and locator.
This sets up a target scenario for the performance study which we will present
next. The purpose of performance evaluation is to answer the following ques-
tion: What is the overhead of privacy-preserving directory publication? and how
effective is the proposed precomputation technique in performance optimization?

5.1 Dataset

USNEWS Dataset. The USNEWS dataset [7] is used to model hospital profiles.
The dataset considers 16 primary hospital-specialty categories, such as cardi-
ology and rehabilitation (the entire list of specialties is shown in Table 2). For
each category, a hospital is associated with a rating of three grades: “Nation-
ally ranked”, “High-performing”, and “Null”. We map “Nationally ranked” to
value 2, “High-performing” to value 1, and “Null” (i.e. the hospital does not
have the department for this specialty) to value 0. Each hospital is associated
with other profile information, such as the resident city and state. Currently, we
select the dataset to include 40 top-ranked hospitals (out of 180) in the New
York metropolitan area.

Open-NY Health Dataset (“Sparcs”). To model patient-wise hospital visits, we
use an OPEN-NY dataset, called Sparcs [14]. The public dataset includes inpa-
tient discharge records with identifiable information removed. At the finest gran-
ularity, it provides per-visit per-patient information (e.g., patient age group,
gender, race, ethnicity and other de-identified information), the facility informa-
tion (e.g., zip-code, name, service areas) and other per-visit information (e.g.,
admission type, the length of stay). Given the identifiable patient information is
removed, we model the per-patient visit history by aggregating the records based
on available quasi-identity information (i.e. age group, race, ethnicity, etc.).

5.2 Performance of Directory Publication

We first conduct micro-benchmark to test the performance of data-parallel pre-
computation. Then, we test the overall performance of secure directory publica-
tion, with a machine of multi-core processor and in a geo-distributed setting.

Fig. 4. Pre-computation performance with GPGPU
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Table 2. Specialty catalog in the
USNEWS dataset

Index Name

0 Cancer

1 Cardiology & Heart Surgery

2 Diabetes & Endocrinology

3 Ear, Nose & Throat

4 Gastroenterology & GI Surgery

5 Geriatrics

6 Gynecology

7 Nephrology

8 Neurology & Neurosurgery

9 Ophthalmology

10 Orthopedic

11 Psychiatry

12 Pulmonology

13 Rehabilitation

14 Rheumatology

15 Urology

Table 3. Experiment platform

New York Server
CPU Xeon(R) E5-2640 v3 @ 2.60GHz

2 processors/16 cores/32 hyper-threads
Memory245 GB

California Server
CPU Xeon(R) E5-2687W @ 3.10GHz

2 processors/16 cores/32 hyper-threads
Memory256 GB
GPGPUNvidia Tesla K20c

1 grid/65535 blocks/227 threads
Global Memory 5119MB

Micro-Benchmark of Pre-computation. The pre-computation is imple-
mented with data parallelism (as described in Sect. 3.4) and runs on multi-core
CPU and GPGPU. We report the time to pre-compute on GPGPU and that
on CPU in Fig. 4. This figure also includes a baseline which is the 5% execution
time of running M0 (i.e. without any precomputation).

The performance result in Fig. 4a shows that GPGPU based pre-computation
is effective in reducing the execution time, and its overhead is negligible compar-
ing the baseline. Concretely, the CPU based precomputation has its execution
time to quickly surpass the baseline when the network grows over 15 parties.

Fig. 5. Performance of directory publication based on precomputation and MPC
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The GPGPU-based precomputation has much lower overhead than the baseline
for any network with less than 28 parties.

For more than 28 parties, all GPU threads are occupied and it will need multi-
ple iterations in transferring data from GPU’s global memory to host memory. As
a result, the GPGPU precomputation time increases exponentially, also reported
in the Fig. 4b (note that the y axis is of log scale). With a single GPGPU card,
the precomputation time surpasses the baseline when the network is larger than
about 40 parties. Here, we stress that the typical scale of a healthcare consor-
tium is usually medium-sized (e.g., tens of hospitals and clinical centers). For
nation-wide healthcare systems, there may be thousands of hospitals. In this
case, one can use more GPGPU cards to do the precomputation in parallel,
while retaining the efficiency.

Overall Performance with MPC The MPC-based implementation of
directory publication is realized on the GMW software [25], an open-source MPC
software and Percy++ [12], an open-source multi-server PIR software. We note
that our precomputation protocol only relies on the general MPC and PIR inter-
face and other MPC “backend” software can be used in our protocol. The GMW
protocol exposes a circuit-based programming interface that requires MPC pro-
grammers to write a generator for Boolean circuit encapsulating the intended
computation logic. At runtime, the GMW protocol runs on multiple parties
where each party generates and executes the circuit by iterating through all
gates in the circuit (following a topologically sorted order); for each gate, the
evaluation is synchronized across all parties. The GMW protocol makes bit-wise
use of two cryptographic primitives which provides the security of the protocol,
that is, secret sharing [65] and oblivious transfer [62]. In particular, the per-gate
evaluation in GMW is to broadcast the shares of input-wire bit to all the par-
ties in the entire network. In our application, we manually express the logic of
topK algorithm in the GMW Boolean circuit, and tightly estimate the number
of gates to pre-allocate so that the unused GMW circuit can be optimized out.
Our GMW-based implementation consists of about 1500 lines of C++ code.

Multi-processing execution platform: We first run our protocol on a single
node with multi-processing. The machine specs are in Table 3 (the New York
server). In this setting, each process represents a data producer and runs a
GMW party. In the execution, each process holds a dedicated copy of the entire
circuit allocated in its virtual-memory space and without shared memory. The
machine has memory large enough (245 GB in total) to hold all circuit copies of
the 39 parties without paging.

Results on multi-processing: To measure the performance of MPC, we used
four metrics, the number of AND gates (1), end-to-end execution time (2), mem-
ory consumption (3) and communication costs (4). (1) We report the number of
AND gates in the compiled GMW Boolean circuit. This metric helps evaluate the
performance in a hardware-independent fashion. We only consider AND gates in
a circuit and ignore other gates (i.e., XOR gates) because evaluating XOR is free
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Fig. 6. Geo-distributed performance on the Internet

(i.e. free-XOR technique [26]) and evaluating AND gates dominates the cost. (2)
We report the wall-clock time from launching the first process to the completion
of the last process. (3) We report the size of the heap memory in GMW that
stores all circuit gates. It is measured by the Valgrind framework (particularly
the Massif memory profiler [64]). (4) We report the party-to-party communica-
tion overhead, by monitoring all outbound messages through the socket port of
each process using IPTraf1.

In the experiment, we vary the number of parties (or data producers) and
present the result in Fig. 5. Figure 5a reports the result of AND gate number
and Fig. 5b reports wall-clock running time. They both show that the pre-
computation based schemes (i.e. M1,M2,M3) outperform the baseline without
pre-computation. Notably, the M1 scheme causes the best performance with
a speedup of 13 times (comparing the baseline M0) in the setting of 39 par-
ties. This result demonstrates the effectiveness of pre-computation techniques
that off-loads computation from the expensive MPC. In terms of memory con-
sumption in Fig. 5c, M1 and M2 are close, reducing up to memory consumption
roughly by an order of magnitude comparing M0 and M3. It shows that while
M1 produces pre-computation results as additional data, its much smaller cir-
cuit (for simple lookup operation in ms-PIR) makes the overall saving of memory
footprint as compared to the baseline M0. In Fig. 5d, the communication over-
head of M1 stays to be the smallest among the four schemes, with a saving of
more than 2 orders of magnitudes comparing M0. This is consistent with the
result in the number of AND gates.

Geo-distributed execution platform: We conduct the experiment with two
servers set apart more than 3000 miles (one server in the State of New York,
and the other in the State of California). The bandwidth is 100 Mbps. The
specification of the two servers is illustrated in Table 3. Each server runs half of
the parties with multiprocessing. Different parties communicate through sockets.
The precomputation runs only in one server.

Results with geo-distributed execution report the execution time of the
four schemes in the geo-distributed setting. The results are in Fig. 6. For com-
parison, we include the results in the single-node setting. The execution time
grows super-linearly with the number of parties in a network. For M0, M2 and

1 http://iptraf.seul.org/.

http://iptraf.seul.org/
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M3, running them on two geo-distributed nodes leads to longer execution time.
Interestingly for M1, the geo-distributed execution is faster than the single-node
one. In this case, the performance slowdown caused by the slower communica-
tion channels is offset by the performance gain from the extra hardware (e.g.,
CPU) on multiple nodes. We suspect this performance result is due to that the
MPC is dominated more by the local computations (on secret shares) and less
by the network communications.

6 Discussion

In this section, we consider the generalizability and extensions of the proposed
technique beyond Healthcare Locators. We present the extension to new compu-
tation beyond exact-match lookup as in HIE locator and new privacy definitions
beyond ε privacy.

6.1 Similarity-Based Directory

In this application scenario, a data consumer may want to find data about a
group of “similar” people. Comparing the HIE locator that performs exact-
match lookup (by a person’s ID), the directory here performs similarity search.
Take the healthcare domain as an example. The similarity-based directory (e.g.,
PatientLikeMe.com) entails publishing the binding between a patient, say Alice,
and the hospitals that store the EMRs of patients who are similar to Alice, where
the similarity can be defined on their syndrome, genome and other bio-medical
features.

This directory can be constructed by extending the topK algorithm in List 2.
In particular, the list of true producers is interpreted as the producers storing the
data of people who are similar to the person being queried. The person-person
similarity is defined on the external background knowledge as mentioned above.
In Line 7 of List 2 the producer-producer distance is defined on the external
domain knowledge (e.g., hospital profiles in specialty, locations, etc.).

6.2 Achieving Other Privacy Definitions

Our proposed technique can also be naturally extended to achieving other pri-
vacy definitions including k-anonymity, l-diversity, and t-closeness. A general
framework for these privacy definitions is that the original data is a table of
sensitive data key, quasi-identifier and public attributes. Achieving a specific
privacy definition entails finding a “partitioning” solution that partitions the
data-table rows based on quasi-identifiers into groups such that each group in
the result will meet the privacy definition. There are different algorithms such
as generalization, suppression, perturbation, etc. In this section, we consider the
Mondrian algorithm [50] that represents the data records as a point in a multi-
dimensional space (assuming multi-dimensional quasi-identifiers) and partitions
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the space by following kd-tree schemes and greedily refining the partition to the
smallest units.

One can express the Mondrian algorithm naturally in MPC and the pre-
computation stays effective because of extensive complex computation (e.g.,
computing distances) are based on public knowledge.

In details, adapting the Mondrian algorithm to directory publication can be
done by following: For each person the producer vector is her multi-dimensional
quasi-identifier and her identity is the data attribute that needs to be searched
publicly. In the Mondrian algorithm, it entails determining whether it allows
to split the current partition (1) and if it does, finding the dimension and split
value (2). In (1) and (2) it involves complex distance computation; for instance, l-
diversity requires counting the number of distinct producer vectors in a partition
and t-closeness requires computing the group-wise similarity (among all records
in a group). The number of distinct producer-vectors and group-wise similarity
can both be realized by a nested loop where each iteration computes the pair-wise
similarity between two records.

6.3 Data Updates

In many applications, data is being continuously generated. In this case, direc-
tory is constructed and updated in batches. In each batch, the latest updates are
reflected in the directory incrementally. The topK algorithm can be evaluated for
every batch by interpreting the list of all producers to all negative producers
before the updates and the list of true producers to be the new producers in
the current batch. The content stored in the directory can be time-series data
that each update batch is materialized independently.

7 Related Work

7.1 Privacy-Preserving Data Federation

Multi-party Noise Generation. Distributed differential privacy [32,61,72] is pro-
posed to support privacy-preserving aggregations. The randomized response [72]
provides differential privacy yet with uncontrollable noises and loss of utility.
PrivaDA [34] is proposed to achieve the optimal utility and performance opti-
mization by adopting arithmetic circuit based MPC for the noise generation.
Existing multi-party noise generation takes a randomized approach and mainly
targets for statistical aggregation (e.g., distributed differential privacy). This is
inapplicable to our problem which features deterministic noise generation for the
rigorous privacy guarantee, and needs to serve non-aggregation queries.

PPI. Privacy-Preserving Index or PPI is proposed to federate and index dis-
tributed access-controlled documents [18,19] and databases (e.g., patient medi-
cal records in the HIE locator service) [69] among autonomous providers. Being
stored on an untrusted server, PPI entails preserving the content privacy of
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all participant providers or hospitals. Inspired by the privacy definition of K-
anonymity [67], existing PPI work [18,19,69] follows the grouping-based app-
roach; it organizes providers into disjoint privacy groups of size K, such that
providers from the same group are indistinguishable. However, K-anonymity,
while easy to construct, does not guarantee high-quality privacy preservation. In
addition, early approaches of PPI construction [54,68] are based on randomized
responses [72], an iterative protocol that takes indefinite number of rounds to
converge and may produce incorrect result (with certain probability). To avoid
those drawbacks, ε-PPI combines randomized responses with a minimal use of
multi-party computation to construct PPI correctly and efficiently.

Multi-party Join. DJoin [60] is a federated database system built on top of
multi-party joins, which are realized by privacy-preserving set intersections and
general-purpose MPC for re-distributing noises. Its performance practicality has
been demonstrated in small network with 3 to 5 parties. Multi-party joining has
the potential to be applied in private record linkage problem (PRL) which is to
match and link remote records of the same principle (e.g., patient in the health-
care domain) across multiple sites. While PRL has been studied for decades in the
health-care domain, the recent advances include improved linking precision [44],
providing privacy guarantee [24] and building a practical system [8,11,70]. Par-
ticularly in [24] the authors identify the performance problem of using MPC
for PRL and propose to publish differential private synopsis of tables to avoid
MPC and improve performance. Our work, focused on noising locator service,
is orthogonal and complementary to the record linkage and joining, and can be
integrated to an overall federated system of HIE.

7.2 Distributed Privacy-Preserving Mining

Distributed privacy-preserving data mining [45,71] relies on algorithm/query-
specific approaches to secure data-mining computations. For instance, associa-
tion rule mining over vertically-partitioned databases [45,71] reduces to scalar
product which is secured by the impossibility of solving n equations in more
than n unknowns. In addition, by assuming no collusion at all [22,31], the secure
data mining can be realized by efficient operations such as secret sharing and
random number generation without using expensive protocols (e.g., oblivious
transfers [62]). Our work is distinguished from privacy-preserving data mining
in that we consider strong provable security against the worst-case collusion (e.g.,
all other parties may collude) which entails an extensive use of cryptographic
protocols at fine granularity, rendering performance a critical issue.

7.3 MPC Frameworks and Optimization

In the last decade, practical MPC has attracted a large body of research
work with a focus on programming language support and optimization [16,20–
22,25,40,48,57,63]. Practical MPCs are built on top of cryptographic protocols,
such as Yao’s garbled circuits [73] or GMW protocol [37], with protocol-level
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optimization, such as Oblivious Transfer (OT) extensions [41], or for stronger
security, such as resilience with dishonest majority [28]. The MPC protocols
assume a circuit interface to express the computation, and practical program-
ming support focuses on compiling a program written in a high-level language
into the circuit. Existing MPC protocols and systems mainly focus on a small-
scale computing that involves 2 or 3 parties. To the general MPC problem, a fun-
damental trade-off exists between performance and computation generality; for
instance, randomized responses [72] and other techniques for privacy-preserving
data mining take an ad-hoc and domain-specific approach, which can be efficient
at scale. By contrast, the general-purpose MPC is rather expensive.

MPC Optimization. High performance overhead stays to be one of the major hur-
dles to applying MPC in practice, which is partly caused by MPC’s fine-grained
use (e.g., per single bit) of expensive cryptographic primitives, and the need
to transfer all possible computation results for the “obliviousness” of computa-
tion flow. Various optimization techniques are proposed to utilize the program-
ming semantics to reduce the circuit size and depth (e.g., by using the hardware
synthesis tools [29,66]) and optimize the resource utilization (e.g., just-in-time
compilation and pipelined execution [40,48]). Program analysis [47] is used to
automatically infer privacy-sensitive data and constraints MPC only to the sen-
sitive data. [49] conducts pre-processing on verification of MPC and results in
general transformation from a passively secure protocol to an actively secure
one. Our MPC optimization is currently specific to the directory construction
problem, while holding the potential to apply to more generic computations.

Some programming frameworks support high-level programming languages
with compilers (e.g., Fairplay(MP) for SFDL [21,57], Sharemind for SecreC [42],
CBMC-GC for ANSI C [36], PCF for C [48], Wysteria for a high-level typed spec-
ification language [63], PICCO for C with extension [75]), while others expose a
quite low-level circuit based interface (e.g., GMW [25], JustGarble [20], OTEx-
tension [16]); particularly both boolean circuit (e.g., GMW) and arithmetic cir-
cuit (e.g., SEPIA [23]) are considered. In addition, some advanced technique
designs based on hybrid model that combines both boolean or arithmetic cir-
cuits (e.g., ABY [30], TASTY [38], Wysteria [63]).

7.4 Anonymization Definitions

Publishing public-use data about individuals without revealing sensitive infor-
mation has received a lot of research attentions in the last decade. Various
anonymization definitions have been proposed and gained popularity, including
K-anonymity [67], l-diversity [55], t-closeness [51], and differential privacy [33].
In addition, prior work [58] formally studied the information leakage under back-
ground knowledge attacks by formulating the problem using a proposed declar-
ative language. These anonymity notions however are generally inapplicable to
the PPI problem – they are mainly designed for statistic analysis or aggregation
style computation where the result is global per-table data, while PPI needs to
serve queries specific to individual records.
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r-confidentiality [74] is a privacy notion specific to the PPI problem. It
assumes a probabilistic attacker on PPI and considers the increase of attack
success-rate with/without using the background knowledge. By contrast, our
proposed ε-privacy considers to bound the attack success-rate (instead of the
increase) which we believe provides better privacy control.

8 Conclusion

This work presents an MPC-precomputation framework tailored for privacy-
preserving data publication for data-sharing applications. The pre-computation
framework improves the performance by minimizing the private-data computa-
tion and realizing the public-data only pre-computation in a data-parallel fash-
ion. Several pre-computation policies are proposed with varying degrees on the
aggressiveness. It is demonstrated that the proposed pre-computation scheme
is applicable in real health-care scenarios. Based on real datasets and imple-
mentation on open-source MPC software, the performance study shows that the
proposed pre-computation achieves a speedup of more than an order of magni-
tude without security loss.
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Abstract. The right to be forgotten results from a ruling of the Euro-
pean Court of Justice. It empowers individuals to control the display of
their personal data indexed by a search engine. Specifically, it requires
Internet search engine operators to deploy a process for individuals to
file requests concerning the removal of their personal data from search
indices.

To support the right to be forgotten, search engine operators such
as Google, Microsoft and Yahoo currently provide a web form where
users submit all relevant information. A subsequent manual process by
the search engine operators assesses whether the author of the request
is eligible to exercise the right to be forgotten and if the request itself is
lawful. However, manual verification is inefficient, unscalable, and prone
to subjective judgment. A framework for automated reasoning about
case law (“PriCL”) could in principle tell whether some precedents lead
to the conclusion that some action is legal or illegal. However, PriCL
leverages first order logic, and hence, is insufficient to determine similar-
ity of cases. In this paper, we design a framework that extends PriCL’s
logic with similarity measures in order to automate the enforcement of
the right to be forgotten. Our implementation of this logic leverages the
Z3 theorem prover. We evaluate the framework by performing 10 case
studies on the right to be forgotten. Each case was decided correctly in
less than 1 s.

Keywords: Formal language definitions · Verification and validation
Privacy protections

1 Introduction

In 2010, a Spanish citizen filed a complaint against La Vanguardia Ediciones SL
as well as Google Spain and Google Inc. He argued that the indexed informa-
tion concerning himself had been fully resolved for a number of years and that
reference to it was now entirely irrelevant. In May 2014, the Luxembourg-based
EU court of justice agreed and ruled that all online search engines must provide
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an interface for EU citizens to request the removal of their personal information
from search results, referred to as the “right to be forgotten”.

At present, search engine operators such as Google, Microsoft and Yahoo
provide a simple web form that requires users to provide all relevant information
relating to their case [7]. This is followed by a manual evaluation by the search
engine operators to assess whether the author of the request is eligible and the
request itself is lawful. “According to Google’s transparency report, the number
of removal requests that have been submitted to Google since the court decision
in May 2014 has already exceeded 1/5 of a million and the number of URLs that
Google has evaluated for removal are approximately 3/4 of a million” [6].

However, the manual verification has the following drawbacks:

1. Time/cost. A person working for a search engine operator needs to manually
understand the query, reason about it and then provide the response. Tak-
ing into account the number of increasing queries over last years [6], it will
be a time consuming and inefficient process, which requires more and more
resources and thus, more money.

2. Scalability. The system needs to keep growing in capacity to accommodate
all the user queries with a timely response.

3. Subjective judgment. Decisions are human made, thus possibly biased by sub-
jective judgment, and prone to the risk of human error.

Our Contributions. In this paper, we provide a framework for the automa-
tion of the right to be forgotten, i.e., we propose an automated scenario in
which search engine operators no longer need to verify all requests manually.
An employee working for the indexing system manually evaluates the user query
and acknowledges the user with a success or failure message. Our aim is to auto-
mate this manual procedure at the indexing system such that the user query is
processed automatically for the verification of the right to be forgotten. We need
to reason automatically with the user query based on the legal requirement. We
leverage the PriCL framework [15] to evaluate the user query according to the
right to be forgotten.

Technically, we make the following contributions:

1. Logic for similarity measure. PriCL provides automatic reasoning on privacy
case law by means of precedents. However, PriCL currently supports first
order logic for all reasoning algorithms and we have only one legal case for
the right to be forgotten to compare against. To be useful PriCL would need
to consider similarities regarding the justification, i.e., it should abstract away
some details of the original case. Therefore, we extended PriCL’s logic with
similarity measures, which account for similarities between new cases and the
existing one. With similarity measures PriCL can identify precedents that
may replace the originals in the line of arguments.

2. Formalization of the original case. In order to deduce the facts from the
2014 ruling, we first analyse the case document. The case document consists
of 23 pages and 100 paragraphs involving arguments (reference, axioms) and
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decisions. Each argument and judgment from the case is converted into logical
(predicate) form.

3. Implementation. We implemented the similarity measures for PriCL’s logic
and designed a framework that takes as input the user queries. These queries
are then evaluated for the right to be forgotten using PriCL with similarity
measures.

4. Verification in the Z3 theorem prover and evaluation. We modeled the logic
with similarity measures using the Z3 theorem prover and provide several test
cases to evaluate the similarity measures. Finally, we performed the validation
for the right to be forgotten for several user queries using our framework. Our
evaluation shows an accuracy of 100% while only requiring less than a second
for processing each case.

2 Motivation and Background

In this section we will start with a simple example. We will elucidate the inad-
equacy of the first order logic employed by the current approach (PriCL frame-
work). We will further explain our approach towards solving the aforementioned
shortcoming. Let us assume, we have a case with the following court ruling:

CaseA: Tom killed Adam and Tom goes to prison. The ruling implies that
killing a person is a crime. Following is another case for which we want to
deduce the ruling:
CaseB: Amy killed a fly. Deciding the fate of Amy, given rulings from case
A, appears trivial. However, automation of this decision is a non-trivial task.
PriCL [15] is a framework for expressing and automatically reasoning about
the case law by means of precedents. Precedents are cases that have been
concluded in the past and already have a decision.

PriCL converts each precedent into a specific case format and stores them in a
(case law) database. A case consists of a decision formula, a case description, a
court and a proof tree. Defining the proof tree is more involved since it needs to
capture the judge’s justification. There are two main types of nodes in the proof
tree: inner nodes (which may have other children) and leaf nodes. Inner nodes
are deduced from their children. Inner nodes can be of type AND, when all of
the arguments are necessary to reach their conclusion. They can be of type OR,
when any one of the provided arguments are sufficient to reach the conclusion.
There are a few argumentations that are neither explicitly covered by a decision
nor by a case reference. These argumentations are provided in a knowledge base
denoted KBw.

Leaf nodes of the proof tree can be of three types: Axiom (sentences which
are axiomatic statements), Assess (sentences assessing the truth value of a par-
ticular statement) and Reference (sentences in the legal case referring to another
case). Leaf nodes, denoted as facts, are additionally associated with a prereq-
uisite condition. The prerequisite condition is denoted as pre. These nodes are
represented as (pre → fact) in the proof tree.
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In our example, Case A is the precedent. It can be converted into the log-
ical format as, killed(Tom,Adam) ∧ prisoned(Tom). In this scenario, the fact
is prisoned(Tom) and the pre is killed(Tom,Adam). Thus, the proof tree node
can be visualized as, (killed(Tom,Adam) → prisoned(Tom)). The Case B can be
converted to logical format as, killed(Amy ,fly). In order to check the deducibil-
ity of formula prisoned(Amy), PriCL checks the following (explaining the exact
algorithm is out of scope for this paper):

killed(Amy ,fly) � killed(Tom,Adam) (A � B means, B holds given A)
killed(Amy ,fly) ∧ prisoned(Tom) � prisoned(Amy)
killed(Amy ,fly) ∧ prisoned(Tom) � ⊥ (⊥ denotes the value false)

PriCL assumes first order logic, which is not sufficient for similar situations,
e.g., killed(Tom,Adam) and killed(Tom,Bob) are not similar as per first order
logic. However, for court rulings they could be similar since killing a person is
a crime. To overcome this limitation, we extend the entailment (�) in PriCL
with similarity measures. We define a similarity measure function, to evaluate
the similarity between predicates, considering following points:

1. Similarity between names of predicates. Predicates with the same name or
predicates that are synonyms should only be considered for the similarity
check. For example, killed(Amy, fly) should be compared with killed(Tom,
Adam) (and its synonyms, e.g., murdered(Tom, Adam)).

2. Similarity between arguments of the predicate. We need to consider the simi-
larity between all possible pairs of arguments.

3. Order of arguments. Considering the order of arguments is important, e.g.,
between predicates killed(Tom, Adam) and killed(Amy, fly), Tom should be
compared with Amy, and Adam should be compared with fly.

4. Weighting of arguments. Deciding the weight of similarity between pair of
arguments is important, e.g., between predicates killed(Tom, Adam) and
killed(Amy, fly), similarity between Adam and fly makes a deciding role.

Example 1. Define the similarity between predicates killed(Tom, Adam) and
killed(Amy, fly).

1. Both predicates have the same name, i.e., killed. Thus, they should be com-
pared for similarity.

2. Tom, Adam, Amy are human being and fly is an insect. The similarity
between the human and the insect should be low, i.e., similarity(Tom, fly) =
low = similarity(Adam, fly).

3. In this example, the correct pair of arguments to be compared are: (Tom,
Amy) and (Adam, fly).

4. In this example, the similarity between (Adam, fly) plays a deciding role.
Since similarity(Adam, fly) ≡ similarity(human, insect) = low, the similarity
between predicates killed(Tom, Adam) and killed(Amy, fly) is low.

Next, we define the similarity between formulas. A formula is created from
conjunction, disjunction or implication between different predicates, e.g.,
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killed(Tom, Adam) ∧ prisoned(Tom) is a formula. Intuitively, two formulas are
similar if they have the same operators and the respective predicates are sim-
ilar to each other, e.g., killed(Tom, Adam) ∧ prisoned(Tom) and killed(Amy,
fly) ∧ prisoned(Amy) are not similar since predicates killed(Tom, Adam) and
killed(Amy, fly) are not similar predicates (Example 1). Finally, we define the
extended entailment (�) for two formulas φ and ϕ. Intuitively, if a formula φ
holds under a given condition I (I � φ ), and formula ϕ is similar to φ, then ϕ
also hold under I.

Using above constructs, we can see that in the Case B, killed(Amy, fly) �

killed(Tom, Adam) and hence prisoned(Amy) does not hold. In the next section,
we provide formal definitions and proofs required for above constraints.

3 Similarity Measures

The goal of this work is to decide a novel judicial case with respect to a case
that has already been conclusively ruled by some court. In this section, we will
start by comparing cases of law. We will elaborate on the role of similarity mea-
sures to approximate the correspondences between two cases. Since we convert
cases into a logical format, we use the small-step syntax and semantics of the
PrivacyLFP [3] logic and extend it to include similarity measures. We define a
structure ζ as an abstraction of legal cases. For a formula φ, we write ζ � φ
to mean that “φ is true in the structure ζ”. We say a formula φ is false in the
structure ζ if ζ � φ̄.

3.1 Case Law

We are interested in the evaluation if a novel judicial case can be decided in
analogy to an already decided case, a precedent. To that end, we leverage an
already existing tool, called PriCL [15], that builds an argument tree (proof
tree) based on the precedent’s court decision argument structure and compares
whether another case can also be structured in the same tree with the same facts.
However, in practice, the new case is not exactly identical to the precedent but
somewhat similar. In particular, we expect it to be similar to the same line of
arguments as the precedent, i.e. we expect the structure of the decision tree to be
identical. At the same time, the instances of the circumstances are not identical
but should be similar such that the line of reasoning is not invalidated. We call
these leaf nodes in the proof tree that are case-dependent decision nodes. If we
can assert that all decision nodes from the precedent have an equivalent instance
in the current case, then we can assume that the judgment is also valid for the
new case.

Therefore, the general scheme to decide analogies for case law as the “right
to be forgotten” is:

– analyze the precedent and structure it in a proof tree in a logical format
where children are either conjunctively (all sub-arguments must hold) or dis-
junctively (at least one sub-argument holds) combined.
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– match the case-specific arguments in the decision nodes with equivalent facts
from the new case.

If we can assert that all decision nodes have similar pendants then we will con-
clude that these cases should come to the same judgement. However, there are
two issues to be solved here: First, matching the case-specific arguments is in
general an NP-hard problem and, second, we need to define what we assume to
be similar enough in order to consider it equivalent.

Decision nodes have a format of (pre → fact), i.e., facts are based on precon-
ditions, e.g., in case A from Sect. 2, “Tom goes to prison” (prisoned(Tom)) is a
fact and precondition for this fact is “Tom killed Adam” (killed(Tom,Adam)).
Considering all such facts from decision nodes, the final judgement is made.

The case description from new cases is short and does not contain well-
organized argument structure. It contains few preconditions and facts that are
not sufficient to derive a proof tree. However, we need to derive a proof tree to
compare it with the precedent’s proof tree. To achieve this, We need to create
a new proof tree based on precedent’s argument structure. Intuitively, for every
decision node, (pre → fact) in precedent, if the pre condition holds in the new
case description, then we add this decision node in the new proof tree. To check
the former, we need to find a similar condition in the case description. We do
the following to achieve it:

– Find all possible formulas pre ′, by replacing predicates in pre by predicates
of case description.

– Check if any one of the formulas is similar to pre.

Finding all possible formulas pre ′ is exponential in order. However, we can
reduce all possible formulas to one in the case of Synonyms1. Let us explain this
using a simple example as follows:

Example 2. Let’s assume we have a decision node (pre → fact) in the prece-
dent case as: killed(Tom,Adam) ∧ category(Adam, human) → prisoned(Tom).
Following is a case description, which we want to decide: killed(Amy, fly) ∧
bitten(fly, Amy) ∧ dangerous(insect) ∧ category(fly, insect).

To create a proof tree for this case description, we need to check if the
precondition from decision node holds in the case description, i.e., killed(Tom,
Adam) ∧ category(Adam, human) is true in case description. The total number
of formulas pre ′ are:

pre ′
1 = killed(Amy ,fly) ∧ category(fly , insect)

pre ′
2 = killed(Amy ,fly) ∧ bitten(fly ,Amy)

pre ′
3 = killed(Amy ,fly) ∧ dangerous(insect)

pre ′
4 = bitten(fly ,Amy) ∧ category(fly , insect)

pre ′
5 = bitten(fly ,Amy) ∧ dangerous(insect)

pre ′
6 = dangerous(insect) ∧ category(fly , insect)

1 Synonyms express the word property.
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The next step is to check if any of the above formulas is similar to pre.
In order to check the similarity between formulas, it is sufficient to check for
similarity between predicates that are replaced, e.g., formula pre ′

1 is created by
replacing killed(Tom, Adam) by killed(Amy, fly) and category(Adam, human) by
category(fly, insect), so if we can verify that predicates killed(Tom, Adam) is sim-
ilar with killed(Amy, fly) and category(Tom, human) is similar with category(fly,
insect) then the formula pre and pre ′

1 will be similar formulas.

To evaluate the similarity between predicates, we define a similarity measure
function. It returns a value in the range from 0 (dissimilar) to 1 (equal). The
definition of the similarity measure function is as follows:

Definition 1 (Similarity Measure Function). For all predicates Pn(X),
Qm(Y ), where X and Y as the argument vectors of predicates P and Q of
arity n and m, respectively, we assume:

– P be the set of all predicates.
– similarity : U × U → [0, 1] is a symmetric function, where U is a universe of

words. The function similarity intends to define the similarity between argu-
ments of predicate, e.g., for predicates killed(Tom, Adam) and killed(Amy,
fly), similarity(Tom, Amy) ≡ similarity(Person, Person) ≈ 1 and similar-
ity(Adam, fly) ≡ similarity(Person, Insect) ≈ 0. We use Named-Entity-
Relationship [11] to categorize the entities, i.e., Tom is a person.

– ηP,Q : [0, 1]n×m → [0, 1] is a weighing function where for any matrix A ∈
[0, 1]n×m : ηP,Q(A) = ηQ,P (AT )

Then, we define a function K : P (X) × Q(Y ) → [0, 1] as:

K(P (X), Q(Y )) = ηP,Q

([
similarity(xi, yj)

]
i=1...n×j=1...m

)

and call it a similarity measure function for P.

Intuitively, the weighing function ηP,Q takes as a input a matrix created by
similarity of arguments and returns a similarity value based on the weighing
of arguments. In our case, ηP,Q returns the lowest similarity value, e.g., for
predicates killed(Tom, Adam) and killed(Amy, fly), the similarity matrix is:

A =
[

similarity(Tom,Amy) similarity(Tom, fly)
similarity(Adam,Amy) similarity(Adam, fly)

]

ηkilled,killed(A) = similarity(Adam, fly) ≈ 0 (lowest of all similarities). Hence
K(killed(Tom,Adam), killed(Amy, fly)) = ηkilled,killed(A) ≈ 0.

It is trivial to see that the similarity measure function is symmetric, i.e.,
K(P (X), Q(Y )) = K(Q(Y ), P (X)). This property ensures that the similar-
ity measure function will always produce the same results for two predicates
P (X), Q(Y ) irrespective of their argument order.

It is important to note that the similarity is not absolute, so we define a
similarity threshold, λ, which quantifies the similarity between predicates or
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formulas. The value of λ ranges from 0 to 1. The higher the value of λ the
more similar are the predicates or formulas to each other. In simple words, if
two predicates/formulas have λ value one then they are identical and if they
have λ value 0, then they are distinct. Any value in between 0 to 1 quantifies
the similarity between two predicates/formulas. The value of λ can be decided
manually or automatically based on the criticality of situation, e.g., for the legal
cases, high precision is required and hence it should have a high value. With
enough number of sample cases, we can also use machine learning approaches to
decide the λ value. Due to lack of real time use cases, we approximated λ value in
our implementation as 0.8. This approximation is based on the evaluation with
10 sample use cases designed by us. Given the similarity threshold, we define the
λ-similarity as follows:

Formally, lets assume a set U(P) = {P (X)|X ⊆ Un, P ∈ P, P ⊆ Un} and a
similarity threshold λ ∈ [0, 1], then we define:

Definition 2 (λ-similar predicates). Let L be a mapping function L: U(P)
→ U(P) such that for all P(X) ∈ U(P) we have:

K(P(X), L(P(X))) ≥ λ
Then predicates P(X) and L(P(X)) are λ-similar predicate.

Definition 3 (λ-similar Formula). Let ϕ be a formula. Fixing the mapping
function L such that, if the formula φ is generated by replacing all predicates
P(X) ∈ ϕ by L(P(X)) then φ and ϕ are called λ-similar formula.

Definition 4 (Extended �). Let φ, ϕ be formulas. We define ζ, λ � φ if and
only if φ is a λ-similar formula to ϕ and ζ � ϕ.

3.2 Modelling the Similarity Measures (ζ, λ � φ)

In this section, we model the similarity measures Definition 4, i.e., for a formula
φ we implement ζ, λ � φ. We identify two major tasks:

Task 1. Find a formula ϕ which is a λ-similar formula to φ.
Task 2. Check if ζ � ϕ.

To solve the first task, we leverage the definition of λ-similar formula 3. We define
a mapping set L which maps all predicates of formula φ to some or all predicates
in the structure ζ. If predicates of each pair in L are λ-similar to each other
then we call this mapping as λ-similar mapping. Finally, we define a formula ϕ
which is generated by replacement of predicates in φ by corresponding λ-similar
mapping. In accordance with Definitions 2 and 3, ϕ is a λ-similar formula to φ.
There can be several λ-similar mappings; we aggregate them along with their
corresponding λ-similar formulas in a set S.

To solve the second task, we define a formula V such that it contains logical
OR between all λ-similar formulas from the set S. Intuitively, V is true if any of
the λ-similar formula (ϕ) is true in ζ.

For all predicates Pn(X), Qm(Y ), where X and Y as the argument vectors
of predicates P and Q of arity n and m, respectively, let φ be a formula such
that it contains {P1(X1), .., Pk(Xk)} and ζ � Q1(Y1), .., Qj(Yj ). We define:
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– A function lambda-similar such that it takes two predicates as input and
returns boolean. Internally, it implements the Similarity Measure Function 1.
Formally, for two predicates P(X), Q(Y ):

lambda-similar(P,Q) =

{
true, if P and Q areλ-similar

false, otherwise

}
(1)

– A mapping set L = {l1, l2, .., ln}, such that li = (Pi, Qj) where j = {1 to
m}. In simple words, it maps all predicates of the formula φ to some or all
predicates in ζ. The total number of possible mappings are finite and equal
to jk. If predicates of each pair in the mapping are λ-similar to each other
then we call this mapping a λ-similar mapping.

– A function H such that it takes mapping L as input and returns boolean.
Formally for any mapping L:

H(L) =

{
true, ifL is a λ-similar mapping
false, otherwise

}
(2)

– A formula ϕ such that it is generated by replacing each predicate in φ by the
predicates in ζ corresponding to the mapping L. For example:
if φ = P1 ∧ P2 and L = {(P1, Q1), (P2, Q2)}, then ϕ = Q1 ∧ Q2.

– A set S such that for the given φ, ζ, it contains the formula ϕ for all possible
λ-similar mappings L. Formally:

S = {ϕ | ifH(L)} (3)

– A formula V such that for a given S it is the logical OR between each element
of S. If the set S is an empty set then it is equivalent to the truth value false.
Formally V, for a given S, is defined as:

V =

{
ϕ1 ∨ .. ∨ ϕn, ifS = {ϕ1, .., ϕn}
false, ifS = ∅

}
(4)

Thus, if V is true then at least one of the formula ϕ that is a λ-similar formula
to φ is true. Hence, from Defintion 4, ζ, λ � φ.

Example 3. Let φ = killed(Amy ,fly) ∧ prisoned(Amy) and ζ � {killed(Tom,
Adam), prisoned(Tom)} then:

L1 = {(killed(Amy, fly), killed(Tom, Adam)), (prisoned(Amy), prisoned(Tom))}
H1(L1) = lambda-similar(killed(Amy, fly), killed(Tom, Adam))

∧ lambda-similar(prisoned(Amy), prisoned(Tom))

= false(see Definition 1)

ϕ1 = killed(Tom, Adam) ∧ prisoned(Tom)
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L2 = {(killed(Amy, fly), killed(Tom, Adam)), (prisoned(Amy), killed(Tom, Adam))}
H2(L2) = lambda-similar((killed(Amy, fly), killed(Tom, Adam))

∧ lambda-similar(prisoned(Amy), killed(Tom, Adam))

= false(see Definition 1)

ϕ2 = killed(Tom, Adam) ∧ killed(Tom, Adam)

L3 = {(killed(Amy, fly), prisoned(Tom)), (prisoned(Amy), killed(Tom, Adam))}
H3 = lambda-similar((killed(Amy, fly), prisoned(Tom))

∧ lambda-similar(prisoned(Amy), killed(Tom, Adam))

= false(see Definition 1)

ϕ3 = prisoned(Tom) ∧ killed(Tom, Adam)

L4 = {(killed(Amy, fly), prisoned(Tom)), (prisoned(Amy), prisoned(Tom))}
H4 = lambda-similar((killed(Amy, fly), prisoned(Tom))

∧ lambda-similar(prisoned(Amy), prisoned(Tom))

= false(see Definition 1)

ϕ4 = prisoned(Tom) ∧ prisoned(Tom)

The set S = ∅ & V = false. Thus ζ, λ � φ.

Lemma 1. Given φ, ζ and λ, for all possible mappings L and their correspond-
ing ϕ, if H(L) is true then ϕ is λ-similar formula to φ.

Proof. By Definition 2, H(L) returns true only if L is a λ-similar mapping, i.e.,
predicates of each pair in mapping L are λ-similar to each other. Given H(L) is
true, ϕ is generated by replacing all predicates of φ with corresponding λ-similar
predicates. Therefore, by definition (3) of λ-similar formula, ϕ is a λ-similar
formula to φ.

Lemma 2. Given φ, ζ and λ, if there exist at least one ϕ that is λ-similar
formula to φ and O is logical OR of all such ϕ, then V is equivalent to O.

Proof. For a non-empty set S, V is equivalent to the logical OR between each
element of S (Definition 4). For a given mapping L, S contains the corresponding
ϕ only if L is a λ-similar similar mapping, i.e., H(L) returns true. By Lemma 1
we know that if H(L) returns true then corresponding ϕ is λ-similar formula to
φ. Thus, we can say that V is equivalent to logical OR of all ϕ that are λ-similar
formula to φ, which is equivalent to O.

Theorem 1. For all φ, ζ and λ, Given ζ, V is true iff ζ, λ � φ.

Proof (by contradiction). Let us assume that the above statement is false, then
their are two possible cases:

(1) V is true in the structure ζ (ζ � V) and ζ, λ � φ.
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As V is true, S contains at least one formula ϕ (Definition 4). By Defintion 3,
L corresponding to this ϕ is a λ-similar similar mapping, i.e., H(L) returns true.
By Lemma 1 we know that if H(L) returns true then the corresponding ϕ is a λ-
similar formula to φ. As ζ � V is equivalent to ζ � ϕ and ϕ is a λ-similar formula
to φ, we have ζ, λ � φ (Defintion 4). However, this contradicts our assumption.

(2) ζ, λ � φ and V is false in the structure ζ (ζ � V).

By Defintion 4 (Extended �), if ζ, λ � φ, then there exists at least one ϕ that is
a λ-similar formula to φ and ζ � ϕ. By Defintion 3, S will at least contain this
ϕ. As V is the logical OR between all ϕ from S and ζ � ϕ, ζ � V (as logical OR
of true with any formula is true). However, this contradicts our assumption.

3.3 λ-Similarity (ζ, λ � φ) for Synonyms

In this subsection, we model the λ-similarity for the predicates that are synonyms
to each other. Synonyms express word properties, i.e., search and explore are
synonyms to each other. This gives us the advantage of eliminating all other
mappings that have at least one pair of predicates that are not synonyms. We
show that by using the transitive property of synonyms, we can reduce the total
number of mappings to exactly one.

For all predicates Pn(X), Qn(Y ), where X and Y as the argument vectors of
predicates P and Q of arity n, let φ be a formula such that it contains {P1(X1),
.., Pk(Xk)} and ζ � Q1(Y1), .., Qj(Yj ). If the predicate P1 is synonym to the
predicates Q1, Q2, .., Qi, then by the transitive property of synonyms2, Q1, Q2,
.., Qi are also synonyms to each other. If Q1, Q2, .., Qi are true given a structure
ζ, then they are equivalent instances of each other. Thus, the mapping (P1, Q1)
is equivalent to taking all mappings {(P1, Q1), ..(P1, Qi)}.

Example 4. Let( (killed(Tom,Adam) ∧category(Tom, human)) → prisoned
(Tom) (pre → fact) be a node in precedent. We have the following case descrip-
tion for the new case:

killed(Amy ,fly) ∧ category(fly , insect)
Then the total number of mappings from pre to case description are:

1. killed → killed , category → category
2. killed → category , category → killed
3. killed → category , category → category
4. killed → killed , category → killed

However, we are only interested in mappings that contain synonyms predicate
pairs. Thus, the total number of mappings can be reduced from 4 to 1, i.e.,
killed → killed , category → category .

Z3 [16] theorem prover is used to model the implementation of the λ-
similarity for synonyms. It is developed by Microsoft Research and based on
SMT-LIB 2.0 standard.
2 If A is synonym to B and C, then B and C are also synonyms to each other.
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3.4 Formalization of the Mr. Mario Costeja Gonzalez’s Case

In this section, we describe the formalization of Mr. Gonzalez’s case. To convert
it into the PriCL case format, we divide the formalization into two phases:

1. Understanding and analyzing the legal case document. As the case document
involves arguments and judgments in the natural language, we need to convert
it into the logical format.

2. The next task is to identify the type of arguments, e.g., arguments referring
of other cases. After determining the type of arguments, we identified their
structure and converted them into the proof tree format as required by PriCL.

Analysis of the Case of Mr. Gonzalez: To deduce facts from the Mr. Mario
Costeja Gonzalez’s case, we analyze the case document which consists of 23
pages and 100 paragraphs involving arguments (reference, axioms) and decisions.
Arguments and judgments are converted into the logical form. Below is one of
the examples of the conversion from natural language to the logical form:
Textual Sentence from the Case:

“Mr Costeja Gonzalez, a Spanish national resident in Spain, lodged with the
AEPD a complaint against La Vanguardia Ediciones SL, which publishes a daily
newspaper with a large circulation, in particular in Catalonia (Spain) (‘La Van-
guardia’), and against Google Spain and Google Inc.”
Logical Form:

national(costeja_gonzalez, Spanish) /\

resident_of(costeja_gonzalez,Spain) /\

logged_complaint_with(costeja_gonzalez,AEPD) /\

logged_complaint_against(costeja_gonzalez ,La_Vanguardia_Ediciones_SL) /\

logged_complaint_against(costeja_gonzalez ,Google_Spain,Google_Inc) /\

publishes(La_Vanguardia_Ediciones_SL,a_daily_newspaper) /\

publishes_at(La_Vanguardia_Ediciones_SL,Catalonia).

In this example, we have used a predicate national(person name, Spanish) to
indicate that Mr. Costeja Gonzalez is a Spanish national. A variant of this pred-
icate can also be citizen(person, country). We have covered all such predicates,
i.e., similar predicates or synonyms of the predicates. It is important to see that
Mr. Costeja lodged the same complaint against both La Vanguardia Ediciones
SL and Google Spain. Thus, we use a generic predicate logged complaint against(
person, entity), which covers all such cases. As La Vanguardia Ediciones SL is
a daily newspaper, we use a predicate publishes to show the same.

After converting the entire document, we identified a total of 205 unique pred-
icates. As we saw above (national(person, country) and citizen(person, country)),
we can have various variations of the same predicate. We have included all such
variations.

Automatic conversion of text to logical form is out of the scope of this paper.
We have done the conversion manually, but NLP (natural language processing)
could be used in practice to automate this process.
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Structuring the Arguments (ProofTree): To convert the entire case into
the PriCL case format [15], we need to identify the argumentation structure. We
have identified arguments based on their types, i.e., whether they are decision
nodes providing the rulings of the court or they are axiom nodes providing the
universally true statements. We have generated one pictorial form of the tree
using word tree [8]. Figure 1 is one snapshot of the entire tree. Reference nodes
are black, Assess nodes are red, Axioms are green, and the Root node is of blue
color.

Fig. 1. Proof tree (Color figure online)

4 Evaluation

We empirically evaluated our framework with ten different use cases. We had
to create use cases manually as real use cases (submitted to search engines)
are not available publicly. Each case is differentiated based on following criteria
(extracted from the rulings of the Mr. Costeja’s case):

1. Whether the information is indexed by the search engine,
2. Whether the citizen lives in European Union,
3. Whether the information indexed is indeed affecting to the user,
4. Whether the indexed information is invalid at present.

All experiments mentioned were performed on a MacBook Air with Mac OS X
10.11.1 installed, a 1.6 GHz Intel core i5 processor and 4 GB RAM. Below is one
of the use case taken for evaluation:
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Fig. 2. Decision nodes vs use case

Alice lives in Germany. She searched Google for her name. She found a link
to a newspaper stating that she was found convicted of theft. This information
was published in 1990. However, all charges on her dropped by the court in the
year 1992.

Checking the authenticity of use cases is not in the scope of this paper.
This can be easily achieved by the Oblivion framework [17], which verifies the
connection between the citizen that files the request and the data the request is
about. Following are some statistics with different use cases:

There are seven decision nodes in the precedent case. The total time taken
to evaluate the right to be forgotten depends on the time taken to create the
proof tree from use cases. Graph in Fig. 2 shows the number of decision nodes
(for which the pre condition is entailed by the use case) entailed by each use
case. Use cases are arranged from the lowest number of entailed decision nodes
to the highest, on X-coordinate (numbered from one to ten). The Y-coordinate
contains values from zero to seven. Case ten contains most similarities with the
precedent case and entails all of the decision nodes. As a result, case ten creates
the exact decision tree of the precedent and thus requires maximum amount of
time Fig. 3 (0.25 s by Z3 and 0.851 s in total). On the contrary, case one and
two take minimum amount of time Fig. 3 (0.098 s by Z3 and 0.26 s in total) and
do not entail any pre condition from the precedent, i.e., they are completely
dissimilar to the precedent.

4.1 Discussion

At the time of writing this paper, we have only one case (Mr. Costeja’s) with
a legal ruling from the court. We use this case as the precedent. However, if in
the future more cases concerning the right to be forgotten appear in the court,
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Fig. 3. Time vs use case

we can easily integrate them in our framework. It is important to note that
the right to be forgotten only removes the indexing of information. The original
publication itself is not removed from the web, i.e., the information will no longer
be searched by a search engine but at the same time it can be accessed directly.

5 Related Work

Measuring semantic similarity between two texts or defining a logic for textual
entailment has always been a topic of research in the field of artificial intelligence.
Various approaches have been taken towards solving this problem [4,13,14].
Thanh Ngoc Dao and Troy Simpson [20] used tokenization, word stemming, part
of speech tagging, word sense disambiguation, and then building a semantic sim-
ilarity relative matrix of each pair of the word. They emphasized on formulating
the problem of capturing semantic similarity between sentences as the problem
of computing a maximum total matching weight of a bipartite graph.

Takale and Nandgaonkar [19] discussed several approaches to measure the
similarity between words using web documents. Their work mainly emphasized
on snippet extraction and snippet preprocessing. They used five different strate-
gies for similarity measure including Jaccard similarity coefficient, which is used
for comparing the similarity and diversity of sample sets. Rest of the strategies
include Dice’s coefficient, Overlap coefficient, Cosine similarity measures and
Simple matching index. Dice’s coefficient and Overlap coefficient are related to
the Jaccard similarity coefficient, while the cosine similarity is a measure of
similarity between two vectors of n dimensions by measuring the angle between
them.

These methods evaluated the similarity between two sentences either by cal-
culating the distance vector or counting the recurrence of words and then per-
forming some computations. These estimates may not be precise. However, in
this paper, we need accurate results as it involves legal judgment. We calculate
the similarity between predicates and formulas and define the extended entail-
ment to achieve the desired results. We calculate the similarity in more complex
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scenarios, e.g, similarity between predicates kills(Ben, Human) and kills(Ben,
Insect) depends on the similarity of the second argument. To achieve this, we
define a similarity function to calculate the similarity of arguments and finally
a weighing matrix to evaluate the similarity between predicates.

Some approaches have been considered in the past to express the privacy
policies [1,2,5,9]. Considering only first order logic does not suffice to express
privacy policies as privacy policies need to consider several other factors such
as partial structure, time, and similarity. A technical report of Garg, Jia and
Datta [3] expressed the privacy policy using first-order temporal logic including
propositional temporal logics and first-order metric temporal logic. In our work,
we use the small step syntax provided by PrivacyLFP [3], i.e., a smaller sublogic
without temporal connectives and negation.

It is essential to check the satisfiability and validity of a formula to verify the
logical entailment. A lot of theorem provers are providing the logical theorem
proving [10,12,16,18,21]. E [18] is, a high-performance theorem prover, based on
equational superposition calculus. It is implemented in C; thus, portable to most
of the UNIX dialects. Vampire and Spass [10,21] are automatic theorem provers
for the first-order classical logic. Z3 [16] is a high performance and efficient the-
orem prover based on SMT-LIB 2.0 standard. It supports propositional logic,
arithmetic, fixed-size bit-vectors, extensional arrays, data types, uninterpreted
functions, and quantifiers. We are using Z3 prover in our approach because it
provides high performance, efficient theorem proving, and support for proposi-
tional logic.

6 Conclusions

In this work we propose a novel logic for the automation of the right to be
forgotten. We formalize the legal case of Mario Costeja Gonzalez’s, which is
the only legal case for the right to be forgotten. We analyze the case document
of 23 pages and converted 100 paragraphs from the natural language to the
logical format. We implement the essential reasoning tasks (similarity measures)
that are needed for the automation. Finally, we evaluate our implementation on
ten different use cases. The average run time for the evaluation of a use case
is approximately one second, which is in turns much better than the manual
verification.
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Abstract. Biometric-based remote user authentication is a useful prim-
itive that allows an authorized user to authenticate to a remote server
using his biometrics. Leakage attacks, such as side-channel attacks, allow
an attacker to learn partial knowledge of secrets (e.g., biometrics) stored
on any physical medium. Leakage attacks can be potentially launched to
any existing biometric-based remote user authentication systems. Fur-
thermore, applying plain biometrics is an efficient and straightforward
approach when designing remote user authentication schemes. How-
ever, this approach jeopardises user’s biometrics privacy. To address
these issues, we propose a novel leakage-resilient and privacy-preserving
biometric-based remote user authentication framework, such that regis-
tered users securely and privately authenticate to an honest-but-curious
remote server in the cloud. In particular, the proposed generic frame-
work provides optimal efficiency using lightweight symmetric-key cryp-
tography, and it remains secure under leakage attacks. We formalize sev-
eral new security models, including leakage-resilient user authenticity
and leakage-resilient biometrics privacy, for biometric-based remote user
authentication, and prove the security of proposed framework under stan-
dard assumptions.

Keywords: Remote user authentication · Leakage-resilient
Biometrics privacy · Generic framework

1 Introduction

User authentication is the first line of defense in most information systems.
While password-based user authentication is still pervasive, it triggers increasing
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concerns over security (e.g., password leakage and correlated passwords) and
usability (e.g., many passwords for each user to remember and frequent update of
passwords). To address these concerns, biometrics based user authentication has
become increasingly popular in practice in recent years. We focus on biometric-
based remote user authentication in this work.

Biometrics (such as face, fingerprint, iris and voice) based remote user
authentication may be vulnerable to some leakage attacks in the real world,
such as “side channel attacks” on computation time, power consumption, radi-
ation/noise/heat emission. An attacker is able to obtain some imperfect infor-
mation of the secrets (e.g., biometrics) stored at either user or remote server’s
side. Specifically, if an impersonator is able to obtain imperfect/partial knowl-
edge of one user’s biometrics stored in cloud, then user’s authenticity may be
compromised. To capture such leakage attacks in biometrics-based remote user
authentication setting is the main motivation of this work.

Furthermore, we consider user’s biometrics as a secret value in this work.
One may argue that biometrics is public information [2,7,28] such as face or
fingerprint, but certain liveness detection systems in the literature [24,32] con-
firmed that biometrics acts as a secret key for (remote) user authentication. In
particular, we consider biometrics privacy against an honest-but-curious remote
cloud server.

The proposed leakage-resilient and privacy-preserving biometric-based
remote user authentication framework has the following properties: (1) user’s
secret biometrics is hidden to the public; (2) user relies on encryption tech-
nique to protect biometrics, the encryption key is permanently stored locally
and user’s encrypted biometrics is stored in remote cloud; (3) user’s encryption
key and encrypted biometrics remain secure under certain leakage attacks.

The proposed biometrics-based and privacy-preserving remote user authen-
tication framework is significantly useful in many real-world applications. We
take mobile device users enrolling/logging in a service provider in cloud as an
example, where they have their respective roles (i.e., client and server). The
user authenticity of proposed framework assists in ensuring that a registered
user and the remote service provider are performing authentication successfully
using encrypted biometrics that are stored in cloud. In other words, user authen-
ticity aims to capture impersonation attacks performed by outsider attackers.
The biometrics privacy prevents the honest-but-curious remote service provider
from revealing the registered user’s secret biometrics. Furthermore, these afore-
mentioned attacks will not be successful under the leakage of secret values.

1.1 This Work

In this work, we introduce the notion of leakage-resilient and privacy-preserving
biometric-based remote user authentication (LR-BUA), allowing registered users
authenticate to an honest-but-curious remote server using biometrics, and at the
same time ensuring leakage resilience to any secrets stored on physical medium
and privacy protection on biometrics. Our contributions can be summarized as
follows.
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– We present the formal security definitions for biometrics-based and privacy-
preserving remote user authentication schemes. In particular, we propose a
user authenticity model to capture impersonation attacks, and a biometrics
privacy model to address an honest-but-curious remote server.

– We present the first leakage-resilient user authenticity security model and bio-
metrics privacy model to capture the computationally hard-to-invert leakage
attacks on all secret values in the auxiliary inputs model.

– We present the first generic construction on leakage-resilient and privacy-
preserving biometric-based remote user authentication, and prove that the
proposed LR-BUA generic construction can achieve leakage-resilient user
authenticity and biometrics privacy under standard assumptions.

– We show the instantiations of all the building blocks. In particular, we present
a lightweight biometrics-based remote user authentication scheme and its
overall performance analysis.

Table 1. A comparative summary of biometrics-based user authentication.

Function/scheme [2] [29] [18] [28] [15] [23] Ours

Biometrics privacy � � � × � � �
†-Factor authenticationa Two One One One Three One Two

Lightweight cryptographyb � � × × × � �
Remote user authentication � × × � � × �
Leakage-resilient w.r.t user × × × × × × �
Leakage-resilient w.r.t server × × × × × × �
a† denotes number of factors for authentication/identification.
bLightweight Cryptography means symmetric key cryptography (e.g., sym-
metric key encryption [29]) rather than public key cryptography (e.g., homo-
morphic encryption [18,27]).

1.2 Related Work

Biometric-based Authentication. Atallah et al. [2] proposed the first
lightweight biometrics-based authentication using cryptographic hash functions,
and formally defined security requirements for biometrics-based authentication
including confidentiality, integrity and availability. Notice that some research
work in the literature [2,7,28] assume that the biometrics is a public value (such
as fingerprint and face), and their privacy concern is the relationship between a
biometric information and user’s real identity.

However, three-factor [15,17] and multi-factor [16] authentication (such as
smart card, password and biometrics) in the literature formed an opposite
research direction, such that biometrics acts as a secret key for (remote) user
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authentication, and the proposed three/multi-factor solutions are able to pro-
vide enhanced security on user authentication. Meanwhile, another research line
[24,32] also confirmed this assumption. One well-known three-factor authentica-
tion was done by Fan and Lin [15], in which an efficient three-factor authenti-
cation with privacy protection on biometrics was proposed, and formally proven
in Bellare and Rogaway’s [4] model. Specifically, they require user’s biometrics
is not sharing with remote server, and the biometrics matching is performed by
remote server.

Moreover, some research work focused on privacy-preserving (remote) user
biometrics authentication/identification, and a few novel solutions [18,23,27,29]
are mainly for biometrics identification in the cloud. For instance, Schoen-
makers and Tuyls [27] proposed to use a homomorphic encryption scheme for
efficient biometric authentication by employing multi-party computation tech-
niques. Wang et al. [29] used invertible matrices as symmetric-key secrets to
encrypt biometrics and the exact biometrics matching are executed in the trans-
formed (i.e., encrypted) domain, namely, transformation-based cancellable bio-
metrics [22]. In Table 1, we compare our proposed solution with typical works
on biometric-based authentication/identification to highlights our distinctions: it
shows that our proposed solution is the first lightweight biometrics based remote
user authentication with leakage-resilient and biometrics privacy.

“Fast Identity Online” (FIDO) alliance [1] is an industry consortium to
address the lack of interoperability between authentication devices and user
authentication experiences. Specifically, FIDO is used to enhance user authenti-
cation security (e.g., using biometrics) on local devices, while we focus on remote
biometric-based user authentication in this work.

Modelling Leakage Attacks. Biometrics and secret values used in biometrics-
based user authentication may be subject to leakage attacks. Micali and Reyzin
[25] firstly introduced a leakage-resilient cryptography model to capture various
side-channel attacks. Specifically, an adversary is allowed to access a leakage ora-
cle: Adversary can query a polynomial time computable function f , and receive
the output of f(x), where x is user’s secret key. They also put some restrictions
on f(x) such that the adversary is not able to recover the secret key x completely
through the chosen function f , and the amount of leakage f(x) must be less than
|x|. Later on, Naor and Segev [26] relaxed the restriction on f(x), and stated
that the lower bound of leaked bits is confined to the minimal entropy of secret
key x, namely, “noisy leakage” model.

Dodis et al. [12] proposed a more general model: “auxiliary inputs”. Instead
of min-entropy requirement on secret key x, they only require the chosen leakage
functions to be computationally hard to compute x given f(x). The adversary
is allowed to obtain the leakage bits larger than any upper bound that defined
in the bounded/noisy leakage models, and the chosen functions f must “hard-
to-invert”. Notice that leakage-resilient cryptography (e.g., [10,30,31]) has been
extensively studied in the auxiliary inputs model. However, all the previous
leakage-resilient works didn’t address the leakages on secret biometrics in the
(remote) user authentication systems, such as the secret (encrypted) biometrics
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stored in the remote server. Furthermore, the leakage attacks on secret biometrics
become more challenging as those encrypted biometrics is a key to the authen-
tication success, and the adversarial capability has not been formally captured
by the existing leakage models.

Fuzzy Extractor. Fuzzy extractor is one of the building blocks for construct-
ing biometric-based remote user authentication in this work. Juels and Watten-
berg [21] introduced a new type of cryptography primitive “fuzzy commitment
scheme”. It is particularly useful for biometric authentication systems because
error-correcting property within a suitable metric. Juels and Sudan [20] proposed
another novel construction “fuzzy vault scheme”. It is based on set distance
rather than hamming distance used in [21]. Specifically, the fuzzy vault scheme
randomly creates a secret k degree polynomial p(x) during the sketch generation
procedure. Given valid biometric information, a user can reproduce the polyno-
mial and recover x. Dodis et al. [14] formally introduced the notion of secure
sketches and fuzzy extractors, and use biometrics to derive a cryptographic key
for various cryptographic applications, such as password-based authentication.

Recently, Li et al. [23] proposed the first fuzzy extractor based biometric
identification protocol using a newly built fuzzy extractor, which is focusing on
real number strings with Chebyshev distance. In particular, the proposed fuzzy
extractor is suitable for efficient user identification, but its drawback is less error-
tolerance than hamming distance or edit distance. In order to achieve fast remote
user authentication on-line, we implement this succinct fuzzy extractor in our
proposed instantiation scheme.

With regard to specific attacks on fuzzy extractor, Boyen et al. [6] introduced
a notion called “robust sketches”, and provided a generic conversion to prevent
an active attack, such that adversary can modify the public helper data so as
to compromise the security of secure sketches and fuzzy extractors. Later on,
Canetti et al. [8] presented another notion, namely “reusable fuzzy extractor”
(the prior work is [5]). It addressed an issue that user has multiple sketches from
the same sketch scheme, and his (low-entropy) biometrics information may be
leaked.

2 Security Model

In this section, we firstly present the system model for biometric-based remote
user authentication, then we present the security models for LR-BUA.

Notation. We define a system with n users. We denote the i-th session estab-
lished by a user as Πi

U , and identities of all the users recognised by Πi
U during the

execution of that session by partner identifier pidi
U . We define sidi

U as the unique
session identifier belonging to the session i established by the user U . Specifically,
sidi

U = {mj}n
j=1, where mj ∈ {0, 1}∗ is the message transcript among users.

We say an oracle Πi
U may be used or unused. The oracle is considered as

unused if it has never been initialized. The oracle is initialized as soon as it
becomes part of a group. After the initialisation the oracle is marked as used
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Table 2. Summary of notations

Notation Definition

pki/ski User i’ public key/private key

IDi/ID̂S Identity of user i/server ̂S

dist(x, y) Distance between vector x and vector y

t ∈ R
+ Threshold value (positive real number)

B Biometrics information

C Encrypted biometrics information

TEnc One-way transformation-based encryption scheme

Ext(x, r) Strong extractor

and turns into the stand-by state where it waits for an invocation to execute
a protocol operation. Upon receiving such invocation the oracle Πi

U learns its
partner identifier pidi

U and turns into a processing state where it sends, receives
and processes messages according to the description of the protocol. During that
phase, the internal state information statei

U is maintained by the oracle. The ora-
cle Πi

U remains in the processing state until it collects enough information to
finalise the user authentication. As soon as the authentication is accomplished
Πi

U accepts and terminates the protocol execution meaning that it would not
send or receive further messages. If the protocol execution fails then Πi

U ter-
minates without having accepted. In addition, we present the commonly used
notations (see Table 2) in this paper.

2.1 System Model

In this work, we present a biometric-based remote user authentication system
involving two entities: user and cloud server. We then define a biometric-based
remote user authentication framework which consists of the following algorithms:

– Registration. This is an algorithm that executed between a user and a cloud
server ̂S in a secure channel. User registers his identity ID along with a
reference biometric information B1 to cloud server ̂S.

– Authentication. This is an interactive algorithm between a registered user and
a cloud server ̂S in a public channel. User sends his identity ID and specific
information associates with a candidate biometric information B′ to cloud
server ̂S, while ̂S accept it if and only if t′ = dist(B′,B) ≤ t.

2.2 Security Model

We define a formal user authenticity model to capture the impersonation
attacks performed by outsider adversaries, and a formal biometrics privacy
1 Reference biometrics can be interpreted as either encrypted biometrics [9] or plain

biometrics.
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model to capture an honest-but-curious server for biometric-based authentica-
tion/identification protocols. Furthermore, we extend both user authenticity and
biometrics privacy models to the leakage-resilient against auxiliary inputs models
for tackling leakage attacks, such as side-channel attacks.

Authenticity. Informally, an adversary A attempts to impersonate a registered
user and authenticate to a cloud server. We then define a formal authenticity
game between a probabilistic polynomial-time (PPT) adversary A and a simu-
lator S (i.e., challenger) as follows.

– Setup. S first generates identity/static key pair (IDi, ski) for n users and an
identity ID

̂S for cloud server in the system, where ski denotes the secret key of
user i. In addition, S honestly generates user’s reference biometric information
{Bi}. Eventually, S sends user/cloud server’s identities ({IDi}, ID

̂S) to A.
– Training. A can make the following queries in arbitrary sequence to S.

• Send: If A issues a send query in the form of (U, i,m) to simulate a network
message for the i-th session of user U , then S would simulate the reaction
of instance oracle Πi

U upon receiving message m, and return to A the
response that Πi

U would generate; If A issues a send query in the form of
(U , ‘start’), then S creates a new instance oracle Πi

U ′ and returns to A
the first protocol message.

• Biometric Reveal: If A issues a biometric reveal query to user i, then S
returns user i’s reference biometric information Bi to A.

• Static Key Reveal: If A issues a static key reveal (or corrupt, for short)
query to user i, then S returns user i’s static secret key ski (e.g., static
key stored in ROM) to A.

• State Reveal: If A issues a state reveal query to (possibly unaccepted)
instance oracle Πj

Ui
(j �= i), then S will return all internal state values

(e.g., ephemeral key stored in RAM) contained in Πj
Ui

at the moment the
query is asked.

– Attack. A wins the game if all of the following conditions hold.
• S accept user i; It implies sids

̂S
exists.

• A did not issue Biometric Reveal query with regard to user i;
• mi ∈ sids

̂S
, but there exists no Πs

Ui
which has sent mi (mi denotes the

message transcript from user i)2.
We define the advantage of an adversary A in the above game as

AdvBUA
A (λ) = |Pr[A wins]|.

Definition 1. We say a biometric-based remote user authentication (BUA)
scheme has authenticity if for any PPT A, AdvBUA

A (λ) is a negligible function
of the security parameter λ.

2 We do not consider the collude attack between an impersonator and a curious server
in this work.
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Biometrics Privacy. Informally, an adversary (i.e., server) attempts to learn
user’s plain biometrics. Below is the biometrics privacy game between an adver-
sary A and a simulator S.

– Setup: S first generates the identity/static key pair (IDi, ski) for n user in
the system, where ski denote the secret key of user i. In addition, S honestly
generates user’s reference biometric information {Ci}3. Eventually, S sends
user’s identities {IDi} to A. We denote the original n users set as U .

– Training: A is allowed to issue Send, Biometric reveal, State reveal and at most
n-1 Static key reveal queries to S. We denote the honest (i.e., uncorrupted)
user set as U ′.

– Challenge: S randomly selects a reference biometrics information Ci (IDi ∈
U ′) as challenge candidate, and send it to A. A wins the game if Bi ← A(Ci).
We then define the advantage of an adversary A in the above game as

AdvBUA
A (λ) = |Pr[A wins]|. (1)

Definition 2. We say a BUA scheme has biometrics privacy if for any PPT
A, AdvBUA

A (λ) is a negligible function of the security parameter λ.

Authenticity Against Auxiliary Inputs. To model the leakage on both the
biometric information and the static key with respect to auxiliary inputs, we
first define a set of admissible functions H. According to the work of Dodis et al.
[12], we define two classes of auxiliary input leakage functions below.

– Let How(εbio) be the class of all the polynomial-time computable func-
tions h : {0, 1}|bio| → {0, 1}∗, such that given h(bio) (for a randomly
generated biometric information bio), no PPT adversary can find bio with
probability ≥ εbio. The function h(bio) can be viewed as a composition of
qbio ∈ N

+ functions, i.e., h(bio) = (h1(bio), · · · , hqbio(bio)) where for all
i ∈ {1, · · · , qbio}, hi ∈ How(bio).

– Let How(εsta) be the class of all the polynomial-time computable functions h :
{0, 1}|sta| → {0, 1}∗, such that given h(sta) (for a randomly generated static
key sta), no PPT adversary can find sta with probability ≥ εsta. The function
h(sta) can be viewed as a composition of qsta ∈ N

+ functions, i.e., h(sta) =
(h1(sta), · · · , hqsta(sta)) where for all i ∈ {1, · · · , qsta}, hi ∈ How(sta).

We then present the new security model, i.e., leakage-resilient biometric-based
user authenticity model (LR-BUA), which is an extension of previous authen-
ticity model. Specifically, we provide two leakage queries for A in the LR-BUA
model.

– Biometric Leakage: If A issues a biometric leakage query to user i (i.e., Obio(i)),
then S returns fBio(Bi) to A, where fBio ∈ How(εbio), and Bi denotes the
reference biometric information of user i.

3 The secret key is used to protect biometrics, such as Ci ← F (ski,Bi), where F
denotes a one-way function.
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– Static Key Leakage: If A issues a static key leakage query to user i (i.e.,
Osta(i)), then S returns fSta(Stai) to A, where fSta ∈ How(εsta), and Stai

denotes the static key of user i.

A General Trivial Attack. Consider an adversary is allowed to reveal user’s
secret key Sta in the LR-BUA model, she then can launch a trivial attack by
encoding the reference derivation function into the leakage function of fSta, hence
obtains biometrics information Bi and wins the leakage-resilient user authenticity
game. Similarly, an adversary can launch another trivial attack by encoding the
static key derivation function into the leakage function of fBio if user’s reference
biometrics is revealed, which is corresponding to the leakage-resilient biometrics
privacy game below.

Our Treatment. In our proposed leakage-resilient biometric-based user authen-
ticity model, we ask the adversary to submit two leakage function sets FBio ⊆
How(εbio),FSta ⊆ How(εsta), where both FBio and FSta are polynomial in the
security parameter λ, prior to game Setup which is observed in [10]. During
the LR-BUA security game, A is allowed to adaptively access both biomet-
ric leakage oracle fBio and static key leakage oracle fSta. We require that
fBio ∈ FBio, fSta ∈ FSta and A is not allowed to leak reference biometric infor-
mation Bi entirely. We define the advantage of an adversary A in the LR-BUA
game as

AdvLR−BUA
A (λ) = |Pr[A wins]|.

Definition 3. We say a BUA scheme has leakage-resilient authenticity if for
any PPT A, AdvLR−BUA

A (λ) is a negligible function of the security parameter λ.

Biometrics Privacy Against Auxiliary Inputs. In this extended biomet-
rics privacy against auxiliary inputs model, A is additionally allowed to access
challenge user’s Static Key Leakage oracle Osta(i), and A is not allowed to leak
static secret key ski entirely. We follow the same treatment described above and
define the advantage of an adversary A in the biometrics privacy game as

AdvLR−BUA
A (λ) = |Pr[A wins]|. (2)

Definition 4. We say a BUA scheme has leakage-resilient biometrics privacy
if for any PPT A, AdvLR−BUA

A (λ) is a negligible function of the security
parameter λ.

3 Our Construction

In this section, we present the proposed generic fuzzy extractor that will be used
in the proposed generic construction, and present our proposed LR-BUA generic
framework and security analysis respectively.
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3.1 Generic Fuzzy Extractor

We present a generic fuzzy extractor with hard-to-invert auxiliary inputs, which
is built on top of a (robust)4 secure sketch [14] and a (δ, ε)-strong extractor with
hard-to-invert auxiliary inputs [10,12,31].

Definition 5. A generic fuzzy extractor with ε-hard-to-invert auxiliary inputs
consists of two randomised procedures (Gen,Rep) with the following properties.

– Gen: Let SS be a secure sketch and Ext be a strong extractor with ε-hard-
to-invert auxiliary inputs. Given an input x, Gen(x; r1, r2) → (P,R), such
that

P = (SS(x; r1), r2), R = Ext(x; r2).

– Rep: Given an noisy input x′ and P , recover the original input x = Rec(x′,
SS(x; r1)), then compute R = Ext(x; r2).

Theorem 1. The proposed generic fuzzy extractor with ε-hard-to-invert auxil-
iary inputs is secure if the (robust) secure sketch is secure and the (δ, ε)-strong
extractor with hard-to-invert auxiliary inputs is secure.

The security of proposed generic fuzzy extractor is based on the statistical indis-
tinguishability of two distributions below.

|Pr[A(r2, f(x),SS(x; r1),Ext(x; r2)) = 1]|
−|Pr[A(r2, f(x),SS(x; r1), u) = 1]| < δ

Where x, r1 ∈R {0, 1}l1 , r2 ∈R {0, 1}l2 , u ∈R {0, 1}m and f ∈ How(ε).

Proof. We use (δ, ε)-strong extractor with hard-to-invert auxiliary inputs to
derive the strong extractor Ext from the proposed generic fuzzy extractor. The
(δ, ε)-strong extractor with hard-to-invert auxiliary inputs can guarantee the
security of such (leakage-resilient) strong extractor of proposed generic fuzzy
extractor. In other words, the output string Ext(x; r2) is statistically indistin-
guishable with a string u which is generated uniformly at random, even if a
leakage function f is provided. Furthermore, the secure sketch SS(x; r1) is secure
due to the fact that adversary can recover x with a negligible advantage [14].
Therefore, the proposed generic fuzzy extractor with ε-hard-to-invert auxiliary
inputs is secure.

Remark. The proposed fuzzy extractor with ε-hard-to-invert auxiliary inputs
is a stronger assumption than a generic fuzzy extractor defined in [14], which
allows adversary to access a leakage function f (adaptively). We stress that

4 It can detect the modification of helper data Pi over public channel (secure in the
random oracle model), please refer to [6,13,23] for detailed generic construction of
robust secure sketch.
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the proposed fuzzy extractor with ε-hard-to-invert auxiliary inputs is a generic
construction (i.e., without concrete construction). To this end, Dodis et al. [12]
constructed the first reusable (and robust) extractor with hard-to-invert auxil-
iary inputs at the non-fuzzy case (i.e., without helper data and Rep algorithm, or
when x = x′, where x′ denotes a noisy input). Meanwhile, as stated by Canetti et
al. [8], most constructions of fuzzy extractor are not reusable (except [5,8]), and
adding error-correcting codes to a strong extractor with hard-to-invert auxiliary
inputs at the fuzzy case (i.e., when x �= x′) is a challenging task.

3.2 Generic Framework

High-level Description. User submits his/her reference biometrics to a remote
server during registration phase; Remote server then acknowledges user’s authen-
ticity if and only if user’s candidate biometrics is statistically “close” to his/her
reference biometrics during authentication phase. We define a collision-resistant
hash function as H : {0, 1}∗ → Zq, a strong extractor with ε2-hard-to-invert
auxiliary inputs Ext2 : {0, 1}l′1(λ) × {0, 1}l′2(λ) → {0, 1}m2(λ) and a generic fuzzy
extractor with ε1-hard-to-invert auxiliary inputs (Ext1 : {0, 1}l1(λ)×{0, 1}l2(λ) →
{0, 1}m1(λ)) in the system.

Fig. 1. Authentication. (public channel)

– Registration. A user i performs below.
1. Generate a biometric information Bi, and a secret key ski along with a

public randomness ri; Note that user i takes ski as a secret key and stores
it locally.

2. Compute an encryption key sk′
i = Ext2(ski; ri) using fuzzy extractor with

ε2-hard-to-invert auxiliary inputs Ext2;



Privacy-Preserving Biometric-Based Remote User Authentication 123

3. Compute the reference biometrics Ci = TEnc(sk′
i,Bi), and sends

(IDi, Ci, ri) to a cloud server ̂S.

Note that cloud server ̂S takes/stores reference biometrics Ci as a shared
secret key with user i, and the registered user erases sk′

i after the generation
of reference biometrics.

– Authentication. The interaction between a registered user and cloud server
performs as follows (see Fig. 1).

• Upon receiving a request IDi from user i, cloud server ̂S performs below.
1. Compute the challenge nonces rS1 , rS2 ;
2. Run the generic fuzzy extractor with ε1-hard-to-invert auxil-

iary inputs to obtain (Pi, ri) ← Gen(Ci; rS1 , rS2), where Pi =
(SS(Ci; rS1), rS2), ri = Ext1(Ci; rS2);

3. Send (Pi, ri) to user i.
• Then user i performs below.

1. Generate
a candidate biometric information Bc and compute Cc = TEnc

(sk′
i,Bc), where encryption key sk′

i = Ext2(ski; ri) is computed using
locally stored secret key ski and public randomness ri;

2. Run the generic fuzzy extractor with ε1-hard-to-invert auxiliary
inputs to obtain Ci = Rec(Cc, Pi) (Pi = (SS(Ci; rS1), rS2) if and only
if dist(Ci, Cc) ≤ t, and compute ri = Ext1(Ci; rS2);

3. Choose a response nonce r′
i and compute the token r′

c =
H(IDi||r′

i||ri||Pi);
4. Erase all state and send (r′

c, r
′
i) to cloud server ̂S.

• Eventually, cloud server ̂S computes the token rc = H(IDi||r′
i||ri||Pi) and

checks r′
c
?=rc. If it does hold, accept; Otherwise, reject.

3.3 Security Analysis

Theorem 2. The proposed LR-BUA achieves leakage-resilient authenticity
(Definition 3) in the random oracle model if the generic fuzzy extractor with
ε1-hard-to-invert auxiliary inputs is secure, where ε1 is negligible.

High-Level Discussion. Before we present detailed security proof, we clarify
the motivation of each game for leakage-resilient user authenticity security. Game
G1 is used to prevent replay attacks; Game G2 is used to capture an adversary,
who is allowed to reveal the static key of user i, aims to impersonate corrupted
user i to authenticate to a remote server ̂S.

Proof. We define a sequence of games {Gi} and let AdvLR−BUA
i denote the

advantage of the adversary in game Gi. Assume that A activates at most m
sessions in each game.

– G0: This is the original game for leakage-resilient authenticity security.
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– G1: This game is identical to game G0 except that S will abort if chal-
lenge/response nonce (i.e., rS∈ , r′

i) is used twice by the server/user in two
different sessions. Therefore, we have

∣

∣AdvLR−BUA
0 − AdvLR−BUA

1

∣

∣ ≤ m2/2λ (3)

– G2: This game is identical to game G1 except that in the “Attack”session,
S replaces the real value ri by a random value R ∈ {0, 1}m1(λ) with regard
to instance oracle Πi

Ui
. Below we show the difference between G1 and G2

is negligible under the assumption that the generic fuzzy extractor with ε1-
hard-to-invert auxiliary inputs is secure.
Let S denote an adversary, who is given (r, f1(Ci), · · · , fqBio

(Ci),SS
(Ci; r1), Tb), aims to break the generic fuzzy extractor with ε1-hard-to-invert
auxiliary inputs. S simulates the game for A as follows.

• Setup. S sets up the game for A by creating n users with the corresponding
identity, secret key and public randomness {IDi, ski, ri}. S randomly
selects an index i and guesses that the “Attack” event will happen with
regard to user i. In addition, S honestly generates rest user’s biometrics
information {Bj}n

j �=i and their corresponding reference biometrics {Cj}.
It is obvious that S can answer all the queries made by A except user i
(w.r.t. reference biometrics Ci). Below we mainly focus on the simulation
of user i only.

• Training. S answers A’s queries as follows.
– If A issues a send query in the form of IDi to S w.s.t instance oracle

Πi
Ui

, S forwards it to his challenger and obtains a helper data Pi

(where Pi = (SS(Ci; r1), r), and (r1, r) are chosen by his challenger),
and returns (Pi, ri) to A as the query response. Note that ri is the
public randomness chosen by S.
If A issues a send query in the form of (Pi, ri) to S, S randomly
chooses a response nonce r′

i and sets ri = Tb; S then computes the
token r′

c = H(IDi||ri||ri||Pi) and returns (r′
c, r

′
i) to A. Note that Tb

can be either T0 = Ext1(Ci; r) or T1 ∈R {0, 1}m1(λ).
– If A issues a static key leakage query to user i, then S randomly

chooses a leakage function fSta ∈ FSta ⊆ How(ε2) and returns
fSta(ski) to A as the leakage query outputs. Note that A is allowed
to reveal ski entirely.

– If A issues a biometric leakage query to user i, then S returns f1(Ci),
· · · , fqBio

(Ci) as the leakage query outputs.
– If A issues a state reveal query to an instance oracle Πi

Ui
, then S

returns (r′
i, r) to A.

If the challenge of S is T0 = Ext1(Ci; r), then the simulation is consistent
with G1; Otherwise, the simulation is consistent with G2. If the advantage
of A is significantly different in G1 and G2, then S can break the generic
fuzzy extractor with ε1-hard-to-invert auxiliary inputs. Therefore we have

∣

∣AdvLR−BUA
1 − AdvLR−BUA

2

∣

∣ ≤ n · m · AdvExt1S (λ) (4)
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– G3 This game is identical to game G2 except that in the “Attack” session,
we replace the token r′

c by a random value R. Since we model H as a random
oracle, if the replay attacks (w.r.t., G1) and impersonation attacks (w.r.t.,
G2) did not happen, then we have

AdvLR−BUA
2 = AdvLR−BUA

3

It is easy to see that in game G3, A has no advantage, i.e.,

AdvLR−BUA
3 = 0 (5)

Combining the above results together, we have

AdvLR−BUA
A (λ) ≤ m2/2λ + n · m · AdvExt1S (λ)

Theorem 3. The proposed LR-BUA achieves leakage-resilient biometrics pri-
vacy (Definition 4) if Ext2 is a strong extractor with ε2-hard-to-invert auxiliary
inputs, where ε2 is negligible.

Proof. Let S denote an adversary, who is given (r, f1(ski), · · · , fqSta
(ski), Tb),

aims to break the strong extractor with ε2-hard-to-invert auxiliary inputs. S
simulates the game for A as follows.

– Setup. S sets up the game for A by creating n users with the corresponding
identity/biometric {IDi,Bi}. S randomly selects an index i and guesses that
the challenge reference biometrics C∗ will happen with regard to user i. In
addition, S honestly generates rest user’s secret key and public randomness
pair {skj , rj}n

j �=i and their corresponding reference biometrics {Cj}. Eventu-
ally, S sends all the reference biometrics (include C∗) to A. It is obvious that
S can answer all static secret reveal queries made by A except user i. Below
we mainly focus on the simulation of user i only.

– Training. S answers A’s queries as follows.
• If A issues a send query in the form of (Pi, r) to S, then S performs the

simulation as follows. Firstly, S chooses the response randomness r′
i, and

computes the challenge reference biometrics C∗ = TEnc(Tb,Bi); Secondly,
S runs the generation of generic fuzzy extractor to obtain (Pi, ri) ←
Gen(Ci; ri1, ri2), where Pi denotes a helper date and ri = Ext1(Ci; r), and
(ri1, ri2) are randomly chosen by S; Eventually, S computes the token
r′
c = H(IDi||r′

i||ri||Pi) and sends (r′
c, r

′
i) to A as the query response. Note

that Tb can be either T0 = Ext2(ski; r) or T1 ∈R {0, 1}m2(λ).
We assume user i may use same ski,Bi with different public randomness
r∗ �= ri at most n(λ) times (where n is a polynomial in the security
parameter λ) for generating different references during registration. For
instance, C∗

i = TEnc(sk∗
i ,Bi), sk∗

i = Ext2(ski; r∗).
• If A issues a static key leakage query to user i, then S returns f1(ski), · · · ,

fqSta
(ski) as the leakage query outputs.



126 Y. Tian et al.

• If A issues a state reveal query to an instance oracle Πi
Ui

, then S returns
(r′

i, ri2) to A.
Finally, S outputs whatever A outputs. If A guesses the random bit correctly,
then S can break the strong extractor with ε2-hard-to-invert auxiliary inputs.
Hence, we have

AdvLR−BUA
A (λ) ≤ n(λ) · AdvExt2S (λ) (6)

4 Instantiation

In this section, we first present a lightweight biometric-based remote user authen-
tication scheme using an efficient fuzzy extractor proposed in [23]. We then
present the performance analysis and efficiency analysis respectively. Note that
the work in [31] showed that a strong extractor with auxiliary inputs can be con-
structed from the modified Goldreich-Levin theorem (refer to [31] for detailed
instantiation).

4.1 The Lightweight Biometric-Based Remote User Authentication
Scheme

We present a lightweight and efficient biometric-based remote user authentica-
tion scheme below.

– Registration. A user i performs below.
1. Generate a biometric information vector Bi = [bi1, bi2, · · · , bin] (bi ∈ Zq);
2. Choose an encryption key sk′

i ∈R {0, 1}n|q|;
3. Compute the reference biometric information Ci = sk′

i ⊕ Bi and send
(IDi, Ci) to cloud server ̂S.

– Authentication. The interaction between a user and the cloud server performs
as follows.

• Upon receiving a request IDi from user i, cloud server ̂S performs below.
1. Compute a challenge nonce rS ∈ Zp;
2. Run the fuzzy extractor in [23]to obtain (Pi, ri) ← Gen(Ci; rS), where

Pi = (SS(Ci), rS), ri = Ext(Ci; rS);
3. Send Pi to user i.

• Then user i performs below.
1. Generate a candidate biometric information vector Bc = [bc1, bc2, · · · ,

bcn], and computes the candidate biometrics Cc = sk′
i ⊕ B;

2. Run the fuzzy extractor in [23] to obtain Ci = Rec(Cc, Pi) (Pi =
(SS(Ci), rS) if and only if dist(Ci, Cc) ≤ t, and compute ri =
Ext1(Ci; rS);

3. Choose a random nonce r′
i ∈ Zp and computes the token r′

c =
H(IDi||r′

i||ri||Pi);
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Candidates: |q| n
Fingerprint [3, 29] 4-8 16-640
Face [33] 4-8 1024 - 16384

Fig. 2. General parameters.

4. Erase all state and send (r′
c, r

′
i) to cloud server ̂S.

• Eventually, cloud server ̂S computes the token rc = H(IDi||r′
i||ri||Pi) and

checks r′
c
?=rc. If it does hold, accept; Otherwise, reject.

A Trivial Attack. We notice that both user authenticity and biometric pri-
vacy may suffer to brute force attacks. For instance, an adversary may choose
a random candidate biometrics C∗ ∈ {0, 1}n|q| for remote user authentica-
tion. More formally, adversary wins the user authenticity game with probability
(C0

n|q|+C1
n|q|+· · · Ct

n|q|)/2n|q| (C denote the combinatorial number system in the
form of Cn

m = m!/n!(m−n)!), which is negligible in terms of security parameters.

4.2 Performance Analysis

This experiment was run on virtual machines (3.6 GHz single-core processor
and 6 GB RAM memory). In this experiment, we use Fingerprint and Face as
candidates biometrics to initialize biometric-based remote user authentication
scheme (BUA) (see Fig. 2). The experiment assumes that user biometric data
has been converted into the format needed (we focus on real number strings here
because the input requirement of fuzzy extractor [23]), because the representa-
tion (depends on the feature extraction algorithms) of biometric data could be
vary. Without loss of generality, we use simulated data which is independent
from various type of biometrics. We analyze the BUA in terms of computation
cost and communication overhead, and we assume an identity has 256-bit size,
a hash function SHA-256 has 256-bit output size, and the helper data of fuzzy
extractor includes a secure sketch with n · log(k · a + 1)-bit output size (Refer to
[23] for detailed description of parameters, such as t, k, a).

– Fingerprint 3a: Typically, the bit length of FingerCode (Refer to [19]) is
ranging from 64 bits to 5120 bits. Specifically, a proper fingerprint has the
following parameters: 2–5 concentric bands, 4–16 sectors, 2–8 Gabor filters,
quantised with 4–8 bits and stored with five different orientations [3,19]. Note
that there are two main factors that affect the computation cost: (1) Length
of bi (4–8 bits); (2) Dimension of FingerCode n (16–640).
From Fig. 3a, we can see that the running time increases linearly with whole
size of bit length because the computational cost of fuzzy extractor and XOR
operation are relying on the actual size of biometrics. Furthermore, we take
bi = 4 and n = 640 as a sample FingerCode, it requires about 6.16 ms for effi-
cient computation (w.r.t. authentication) on-line. If we assume p = 256, then
server and user has 703-bit and 768-bit communication overhead respectively.
Note that the output size of secure sketch is 447 ≈ 640 · log(4 + 1) bits.
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Fig. 3. Evaluation findings

– Face 3b: An image pixel is usually quantised to store from 4-bit to 8-bit
length, and the size of image is ranging from 32 × 32 to 128 × 128 with
respect to grayscale image. Note that 32× 32 is the minimal recognised value
of a grayscale image, and 128×128 is a most used image size according to the
experimental results (see Table 3 in [33]). From Fig. 3b, the running time also
increases linearly with whole size of bit length (the same reason as explained
above). We then take bi = 4 and n = 16384 as a sample of face recognition, it
requires about 277.46 ms for efficient computation (w.r.t. authentication) on-
line. Furthermore, server and user has 11707-bit and 768-bit communication
overhead respectively, and in particular, the user’ communication overhead
is a constant value. Note that the output size of secure sketch is 11451 ≈
16384 · log(4 + 1) bits.

Remark. Note that some types of biometric data such as iris or an audio record-
ing of a voice, are typically quantised in the binary format [11,32] which can also
be processed using above fuzzy extractor. The reason is that, the input of fuzzy
extractor [23] is actually a ciphertext, which means any specified format (such
as binary, integer, vector and matrix) will be transformed into a real random
string using XOR operation (recall that bi ∈ Zq).

4.3 Efficiency Analysis

We then present an efficiency comparison among relevant lightweight biometric-
based and fuzzy-extractor based user authentication and identification schemes
in terms of storage costs and computational costs. We consider a two-party
(namely, user and server) setting only for fair comparison.

– Storage cost: Let LB denote the length of biometrics B (e.g., |q|n); LZq
denote

the length of element in Zq. In Table 3, user’s storage cost (such as encryption
key or randomness) in our proposed solution is less than [23] since cloud server
stores the encrypted biometrics and the corresponding helper data, and user
does not need to run Gen algorithm during authentication phase. As for the
basic scheme in [29], it requires more storage due to two diagonal matrixes
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are replying on flexible dimension of biometrics. Thus our proposed generic
construction has less storage cost than [23,29] from user’s perspective.

Table 3. Storage costs in various schemes.

Schemes Public/secret key (user) Stored info (server)

[29] (LB + 2)2 (LB + 2)2

[23] LB + LZq LB+2LZq

LR-BUA 2LZq LB+ 3LZq

– Computational cost: Let TMul denote the multiplication operation; TExt

denote the fuzzy extractor; TExt′ denote the strong extractor (non-fuzzy case);
TKG denote the key generation algorithm; TEnc denote the encryption scheme;
TSign denote the digital signature scheme; TH denote the hash function. In
Table 4, user’s computational cost of our proposed construction at registra-
tion phase is larger than [23] since additional encryption Enc algorithm is
required for biometrics privacy and Ext′ is required for preventing leakage
attacks. However, user has less computational cost than [23] during authen-
tication phase. Specifically, user may perform lightweight Enc algorithm as
above instantiation described, when it compared to the Sign algorithm in [23].
Furthermore, the computational cost of our proposed construction and [23]
are linear, while [29] requires cubic growth of computational cost which is
relying on the dimensional of biometrics. According to the performance anal-
ysis, we can infer that the computational cost in [29] is more efficient than
[23] and LR-BUA at low-dimensional (of biometrics) case, but it performs
worse compared to [23] and LR-BUA at high-dimensional case.

Table 4. Computational costs in various schemes.

Schemes Registration Authentication

[29] O(B3)[TMul] O(B3)[TMul]

[23] O(B)[TExt + TKG] O(B)[TExt + TKG + TSign]

LR-BUA O(B)[TExt′ + TEnc] O(B)[TExt + TExt′ + TEnc + TH]

5 Conclusion

In this paper, we proposed a notion of leakage-resilient biometric-based remote
user authentication and its generic framework, and a lightweight instantiation
with overall efficiency analysis. We also defined the new formal security models
for leakage-resilient user authenticity and biometrics privacy, and proved the



130 Y. Tian et al.

security of the proposed generic construction under standard assumptions. We
leave the construction of leakage-resilient and privacy-preserving biometric-based
user authentication against impersonation attacks from multiple remote servers
as our future work.
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Abstract. Differentially private data publication has recently received
considerable attention. However, it faces some challenges in differen-
tially private high-dimensional data publication, such as the complex
attribute relationships, the high computational complexity and data
sparsity. Therefore, we propose PrivMN, a novel method to publish high-
dimensional data with differential privacy guarantee. We first use the
Markov model to represent the mutual relationships between attributes
to solve the problem that the direction of relationship between vari-
ables cannot be determined in practical application. We then take
advantage of approximate inference to calculate the joint distribution
of high-dimensional data under differential privacy to figure out the
computational and spatial complexity of accurate reasoning. Extensive
experiments on real datasets demonstrate that our solution makes the
published high-dimensional synthetic datasets more efficient under the
guarantee of differential privacy.

Keywords: Differential privacy · High-dimensional data
Data publication · Markov network

1 Introduction

With the emergence of big data era, a large amount of user data is generated
and accumulated, which becomes a new generation of resources to be urgently
developed and utilized [1]. For instance, purchase records of online users is helpful
for E-businesses to enhance the user experience and induce more consumption;
patient information is helpful for doctors to improve the accuracy of diagnosis
and level of medical services; population genetic database is helpful for scientists
to predict disease and reduce the risk of illness. These data resources have such
tremendous potential value. Therefore, how to make reasonable utilization is
particularly important.

A vital issue of mining and using big data is privacy protection, which often
involves the user’s personal privacy leakage. If the data are shared directly or
indirectly among the illegal person, it will make serious consequences [2]. Aim-
ing at the problem of sharing and publishing private data, traditional solutions
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widely use anonymization technologies [3]. However, these anonymization tech-
nologies exist two obvious defects, cannot be quantified and cannot resist back-
ground attacks. In 2006, Dwork proposed the concept of differential privacy [4],
which is a model of strict mathematical foundation and good robustness for pri-
vacy protection by adding controllable noise. Furthermore, it can resist the type
of attacks in case of an attacker with specific background knowledge, and control
the privacy leakage risk within acceptable limits. Differential privacy has been
widely recognized in the industry and it has become a practical standard for
privacy protection.

Differential privacy was originally designed to deal with simple relational
data. However, with the development of big data, many high-dimensional and
heterogeneous data appeared in practical applications. In the process of dealing
with high-dimensional data, the biggest problem is the curse of dimensional-
ity, that is, as the number of dimensions increases, the complexity and cost of
analyzing and processing multi-dimensional data increases exponentially. Thus,
one of the problems of high-dimensional data publishing is the sparsity of high-
dimensional data. In consequence, it cannot guarantee utility by differential pri-
vacy since original data were covered by noise. Another problem, which is more
prominent in high-dimensional data differential privacy publishing, is that the
relationship between high-dimensional data is rather complicated and the change
of single record will have a wider range of impact on the entire data, which results
in the increase of data sensitivity. Therefore, for releasing high-dimensional data
under differential privacy, it is important to reduce the data dimension and sim-
plify the relationship between attributes to make the sensitivity controlled within
a certain range.

To deal with the problem of high-dimensional data representation, researchers
in the field of the Probabilistic Graphical Model [5] provide a new idea. They take
advantage of the graph structure to represent the hidden relationship between
various types of data and map all kinds of problems in applications onto the
problem of calculating the probabilistic distribution of certain variables in the
probabilistic model. The probabilistic graphical model provides the possibility
of concise representation, efficient inference and learning various types of proba-
bility models. Therefore, it has been widely applied in many fields such as data
processing and mining.

In this paper, considering the characteristics of high-dimensional data, we
present a probabilistic graphical model for high dimensional data modeling and
simplify the complex relationships between data onto the mutual relationship
between variables. Specifically, we use Markov network to represent the prob-
abilistic distribution of multiple random variables, consequently reducing the
high-dimensional data dimension effectively and improving data utility. In addi-
tion, the inference algorithm in the probabilistic graphical model can effectively
reduce computational complexity. Our contribution of this paper are as follows:

1. We propose the Markov network model to represent relationships between
the variables without specifying directions of dependencies. The design of
the potential function in undirected graph model is not constrained by the
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probability distribution and more flexible. Meanwhile, it also avoids the con-
straint of global acyclic in directed graph model.

2. We develop the propagation-based approximate inference algorithm to deal
with the NP-hard problem of exact inference algorithm as its computational
complexity and spatial complexity grows exponentially. We specifically infer
the distribution by the confidence-update propagation algorithm and this
method can be applied to any structure network.

The remainder of the paper is organized as follows. The related work is pre-
sented in Sect. 2. Then, we describe some preliminaries in Sect. 3. The details of
PrivMN are proposed in Sect. 4, followed by an extensive experimental evalua-
tion in Sect. 5. Finally, a conclusion is depicted in Sect. 6.

2 Related Work

At present, the main research of differentially private data publication is how to
guarantee the publishing accuracy of query result with the privacy budget. There
are two kinds of applications, interactive data publishing and non-interactive
data publishing.

The main question of interactive data publishing is how to answer as many
data queries as possible with a limited privacy budget. In the early stage, Roth et
al. [6] improved the Laplace mechanism proposed by Dwork et al. This method
provides more inquiries under the same privacy budget. Gupta et al. [7] pro-
posed a universal iterative dataset generation framework, which supports more
queries as a whole. In general, the algorithm of interactive publishing method
is relatively complicated, and the unknown of subsequent queries makes it have
many limitations on query quantity and application mode.

The main problem of the non-interactive data publishing is how to design
an efficient publishing algorithm to make it not only satisfy the differential pri-
vacy, but also has more utility. There are two main non-interactive data pub-
lishing strategies. One is adding noise to the original data and then optimize
the data and publish the optimized result. Dwork [8] is an early representative
method, which combines with Laplace mechanism to publish an equal-width
histogram under differential privacy guarantee. However, one of the problems
of histogram releasing is the consistency of the range query results. Therefore,
many researchers propose some techniques to improve the availability and accu-
racy of the published equal-width histograms. For example, the post-processing
method proposed by Hay et al. [9] makes the result of the publication guaran-
tee the consistency under the condition of differential privacy, which not only
satisfies the query accuracy but also reduces the noise addition.

However, the privacy cost of the above releasing strategy is relatively high.
Therefore, another strategy is generally adopted, that is, convert or compress the
original data first and then add noise to the processed data. For instance, Xiao et
al. [10] first propose a multi-dimensional histogram distribution method DPCube
that effectively reduces the query error. The wavelet transform method proposed
by Xiao et al. [11] performs wavelet transform on the data before adding noise,
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which improves the accuracy of counting query to a certain extent. Barak et al.
[12] propose the method of Fourier transform contingency table, which achieves
the non-redundant encoding of marginal frequency. Meanwhile, the addition of
the noise in the Fourier domain will not undermine the consistency between the
edge frequencies.

When it comes to dealing with the problem of differential privacy protec-
tion for high-dimensional data, a basic idea is to propose an effective variable
selection method to reduce the dimension to a reasonable degree (dimensionality
reduction) on the premise of losing less information and then process the low-
dimensional data. For example, Qardaji et al. [13] evenly divide two-dimensional
spatial data onto equal-width cells and then add noise to each cell. Chen et al.
[14] use a classification tree to generalize the high-dimensional dataset and finally
publish noise counts. The PriView method proposed by Qardaji et al. [15] uses
the cover design method of combination principle to select views, which decom-
poses the high-dimensional data onto the low-dimensional views, and then adds
the noises to form the low-dimensional noisy marginal table, and finally uses
the maximum entropy optimization algorithm to reconstruct the k-attribute
marginal table for data publishing. Due to the increasing perturbation errors
and computation complexity, Xu et al. [16] propose DPPro that publishes high-
dimensional data via random projection to maximize utility while guaranteeing
privacy. Ren et al. [17] identify correlations and joint distributions among multi-
ple attributes to reduce the dimensionality of crowdsourced data, which achieves
both efficiency and effectiveness.

Some attempts on differentially private data publishing have been made in
the field of the probabilistic graphical model. Since Pearl [18] and Lauritzen [19]
first introduced the concept of the graphical model into the field of artificial
intelligence and statistical learning in the late 1980s, the graphical model has
been rapidly applied to many fields. Zhang et al. [20] propose the PrivBayes
method that uses the Bayesian network of the digraph model to represent the
relationship between data attributes and combine a series of low-dimensional
noise conditional probability tables by the chain rule of the Bayesian network
to form a joint distribution for data publishing. Based on PrivBayes, Su et
al. [21] present DP-SUBN, which develops a non-overlapping covering design
(NOCD) method for generating all 2-way marginals of a given set of attributes
to improve the fitness of the Bayesian network and reduce the communication
cost. In addition, Xiao et al. [22] propose another scheme, which mainly uses
attribute dependence graph to form attribute clusters, then adds noise to form
low-dimensional noise marginal table, and finally publishing by sampling.

Different from the above solutions, we focus on the mutual relationship
between multiple attributes, as well as the computational complexity and spa-
tial complexity. To solve these problems, PrivMN uses the method of high-
dimensional contingency table data publication and provides an approximate
distribution of the original dataset based on the inference theory of probabilistic
graphical model.
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3 Preliminaries

3.1 Differential Privacy

Basic Definition. For a finite domain Z, z ∈ Z is the element in Z. The dataset
D is consist of z sampled from Z, its sample size is n and the number of attributes
is dimension d.

Let datasets D and D′ have the same attribute structure. The difference
between them is denoted as DΔD′ and | DΔD′ | indicates the number of records
in DΔD′. If | DΔD′ |= 1, D and D’ are called adjacent datasets.

Definition 1. ε-Differential privacy [23]. A randomized algorithm M satisfies
ε-Differential privacy, if for any two neighboring databases D and D′, and for
any o ⊆ Range(M), Pr[M(D) ∈ o] ≤ exp(ε) · Pr[M(D′) ∈ o]. Where the proba-
bility Pr[·] is taken over M’s randomness and is the risk of privacy leakage. The
parameter ε is privacy protection budget.

From Definition 1, we can see that the privacy budget ε is used to control
algorithm M to obtain same output probability ratio of two neighboring datasets,
which reflects the level of privacy protection in fact. The smaller the value of
ε, the higher the level of privacy protection. When ε equals 0, the protection
level reaches the highest. At this time, the algorithm will output two identical
probability distribution results for any neighboring dataset, but these results
will not have any available information for a user.

Global Sensitivity. Differentially private protection can be achieved by adding
an appropriate amount of interference noise to the return values of query func-
tion. Too much noise will affect the availability of the output, while too little
will not provide enough security. The size of the noise is generally controlled by
global sensitivity.

Definition 2. Sensitivity [4]. Let f be a function that maps a dataset into
a fixed-size vector of real numbers (i.e. D → Rd). For two any neigh-
boring databases D and D′, the sensitivity of f is defined as GSf =
maxD,D′‖ f(D) − f(D′) ‖p. Where p denotes Lp norm used to measure Δf , and
we usually use L1 norm.

Noisy Mechanism. In practice, we usually add noise to algorithms to achieve
differential privacy. In this paper, we rely on two best known and widely used,
namely Laplace mechanism [8] and exponential mechanism [24]. The Laplace
mechanism is suitable for numerical datasets, while the exponential mechanism
is suitable for non-numerical datasets.

Laplace Mechanism. Laplace mechanism realizes the differential privacy by
adding random noises that obey Laplace distribution to perturb the exact query
result.
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Theorem 1. For any function f : D → Rd, the mechanism M, M(D) = f(D)+
Y , satisfies ε-Differential privacy, where Y ∼ Lap(Δf

ε ) is i.i.d. Laplace variable
with scale parameter Δf

ε . The greater the sensitivity of algorithm M, the more
amount of noise added.

Exponential Mechanism. If the output is not numeric, we need to use availability
function to evaluate the output. Let the output domain of query function is
Range, and each value r ∈ Range in the domain is an entity object. Under the
exponential mechanism, the function q(D, r) → R is the availability function of
the output value r, which is used to evaluate the quality of r.

Theorem 2. Let the input of random M is dataset D, and output is an entity
object r ∈ Range. q(D, r) is availability function with its sensitivity, Δq. The
mechanism M, M(D, q) = {r :| Pr[r ∈ Range] ∝ exp( εq(D,r)

2Δq )}, satisfies ε-
Differential privacy.

3.2 Markov Network

Basic Conception. Markov Random Field (MRF) is also known as Markov
Network. In general, the Markov Network is a complete joint probability distribu-
tion model for a group of random variables X which have Markov property [27],
and ISing Mode is one of the earliest Markov Networks.

Definition 3. Let G = (V,E) be an undirected connection graph, where node
Vj ∈ V represents a random variable. If the node Vi and Vj in edge (Vi, Vj) ∈ E
satisfy the local Markov property:

1. The probability of each possible distribution is greater than 0.
2. The conditional probability distribution of an arbitrary node is only related to

the value of its adjacent node (Locality).

Then the network structure is called Markov Network, denoted as H.

Conditional Independence. In the Markov network, there is a conclusion on
the property of independence that if XB ‘splits’ XA and XC , XA and XC are
independent when XB is given, and this property is also called Markov property.

Definition 4. If a set of observed variables Z is given, there is no path between
any two nodes x ∈ X and y ∈ Y , then we call node set Z separates x and y
in Markov network H and denoted as sepH(X;Y | Z). The global independence
associated with H is defined as: I(H) = {X ⊥ Y | Z} : sepH(X;Y | Z).
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Joint Probability Distribution

Definition 5. According to Hammersley-Clifford Theorem [25,26] and Local
Markov Property, the joint probability distribution of Markov network is defined
as: p(x) = 1

z

∏
i ψi(xi). ψi(xi) is a non-negative real-valued function of xi, which

is usually called the potential function of a clique, and the variable xi belongs
to set X. Z is the normalization constant of partition function and its value is
Z =

∑
x

∏
i ψi(xi).

4 PrivMN Algorithm

4.1 PrivMN Overview

In this paper, we consider the following problem: Given a dataset D with d
attributes, we want to generate a synthetic dataset that has approximate the
joint distribution of original dataset D while satisfying differential privacy.

The method proposed in this paper includes the following four steps and the
process of PrivMN is showed in Fig. 1:

1. Represent attributes relationship: we use a graphical model to represent the
relationship between attributes and establish the Markov model.

2. Approximate inference: we infer approximately on the model based on the
method of cluster graph confidence-propagation and obtain a series of low-
dimensional marginal tables.

3. Generate noisy marginal: we add noise to the low-dimensional marginal table
by exponential mechanism to form noisy marginal table.

4. Publishing synthetic datasets: we combine the noisy marginal tables and the
Markov model to generate a synthetic dataset.

Fig. 1. The detail steps of PrivMN

4.2 Represent Attributes Relationship

As mentioned before, we use Markov network to represent the relationship
between attributes. Firstly, we need to measure the relationship between
attributes, there are many kinds of measures, such as chi-square test, mean-
square contingency, Cramer’s V coefficient, mutual Information and so on. In
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this paper, we choose mutual information to measure the correlation between
two attributes. One reason is that mutual information is different from other
correlation coefficients, that it is not limited to real-valued random variables
and can express the degree of similarity generally. The other is not only for its
small sensitivity but also for its capability of seizing the linear and non-linear
correlations.

Given two attributes Ak and Al, the mutual information I(Ak, Al) is defined
as:

I(Ak, Al) =
|Ωk|∑

i=1

|Ωl|∑

j=1

pij log
pij

pi·p·j
(1)

where pij is the joint distribution of Ak and Al. p·j =
∑

j pij and p·j =
∑

i pij

is marginal distribution.
In this paper, we consider that Ak and Al are independent if I(Ak, Al) ≤

θkl for some small threshold θkl > 0. We choose Cramer’s V coefficient as the
threshold and Cramer’s V coefficient is a method to calculate the correlation
degree of between attributes in contingency table which attribute is greater than
2 × 2.

Cramer’s V coefficient is calculated as follows:

θkl =

√
χ2

nmin[(| Ωk | −1)(| Ωl | −1)]
(2)

where n is the size of a sample formed by two attributes, the domain of an
attribute Ai is represented by Ωi and its size is | Ωi |. χ2 is the value of chi-
square.

We present the process of establishing Markov network in Algorithm 1:

Algorithm 1. Establish Markov Network

Input: Dataset D with attributes A = {A1, A2, . . . Ad}
Input: Privacy parameter ε1
Output: Markov network H
1: Initialize H = (V, E) with V = {A1, A2, . . . Ad} and E = ∅;
2: η = Lap( 1

ε1
);

3: for each attribute pair (Ak, Al) do
4: calculate I(Ak, Al);
5: if I(Ak, Al) + η ≥ θkl + Lap( 1

ε1
) then

6: Add edge (Ak, Al) into H;
7: return H;

4.3 Approximate Inference

We have obtained the Markov network by Algorithm 1 which reveals attribute
relations obviously. Then, we need to infer the model and the purpose of the
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inference is to achieve the marginal distribution and the conditional distribu-
tion of the given model. However, it is still complicated to obtain the required
marginal distribution by inferring directly on the Markov network. Therefore,
we need further clustering on the Markov network to reduce the computational
complexity.

The cluster graph that we constructed in this step is a data structure, which
provides a flowchart of the factor processing. Each node in the cluster graph
is a cluster associated with a subset of the variables. The graph also contains
undirected edges that connect non-empty intersection sets in the domain. Each
edge between a pair of clusters Ci and Cj is relevant to a cut set Si,j that
Si,j ⊆ Ci ∩ Cj . In addition, we make use of a simple structure called Bethe
clustering graph, which can transform a general clustering graph into a clustering
graph satisfying the confidence-propagation algorithm.

We obtain a series of clusters Ci and cut sets Si,j after clustering Markov
network that satisfy the family-preserving of cluster graph: Each factor φ ∈ Φ is
related to a cluster graph Ci, expressed as α(φ), and satisfy Scope[φ] ⊆ Ci.

After obtaining the clustering graph, we ratiocinate in the clustering graph
by the confidence-propagation algorithm in Algorithm 2. Confidence-propagation
Algorithm of clustering Graph is an approximate calculation and iterative algo-
rithm based on the undirected graph model. It updates the current probability
distribution of the entire clustering graph by exchanging information between
the nodes in the clustering graph. Moreover, it can solve probabilistic inference
problems of the probabilistic graphical model and spread all information on
parallel.

After several iterations, the confidence of all nodes is no longer changed.
At this time, the clustering graph reaches the convergence state. Moreover, the
marginal distribution of each cluster is the optimal solution. This cluster graph is
called a cluster graph calibrated, that is, for each edge (i−j) between connected
clusters Ci and Cj in the cluster graph, there is

μi,j(Si,j) =
∑

Ci−Si,j

βi(Ci) =
∑

Cj−Si,j

βj(Cj) (3)

Therefore, the confidence set Q = {βi : i ∈ vertex set} ∪ {μi,j : i − j ∈
edge set} is a distribution similar to datasets. Where βi denotes the confidence
on Ci and μi,j represents the confidence on Si,j .

We present the process of approximate inference in Algorithm 2:

Algorithm 2. Approximate Inference

Input: Markov network H
Input: Factor set Φ
Output: Confidence set Q
1: Bethe cluster graph U ←− BehteGraphCreateAlgorithm(H);
2: confidence set Q ←− CGraph-SP-Calibrate(U , Φ);
3: return Q;
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4.4 Generate Noisy Marginal

In this section, we use the Laplace mechanism to add noise to the marginal tables
of each cluster to generate the noisy marginal tables and consequently realize
the differential privacy protection for the attributes in the cluster.

Let the number of clusters be m. For each clusters marginal table, we add
Laplace noise Lap(m

ε2
) to each entry’s count. Therefore, the privacy budget of

a single cluster for privacy protection is ε2
m . According to the combinatorial

property of the differential privacy protection algorithm, the differential privacy
protection for different clusters in the same dataset provides the sum of all
budgets. Therefore, the noisy marginal tables satisfy ε2-differential privacy.

In order to reduce the error caused by adding noise and ensure the availability
of noise-added data, we will post-process the noisy marginal tables. We cite the
post-processing technique in [22] to ensure consistency even if the noisy marginal
tables are of different sizes and attributes are not binary.

Let A = C1∩C2∩· · ·Cm �= ∅, the public attribute of cluster group. We use Tci

to denote Ci’s noisy marginal table, Tci [A] to denote A’s marginal constructed
from Ci and Tci [A] ≡ Tcj [A] to denote that two marginal tables are identical.
We want to ensure Tci [A] ≡ · · · ≡ Tcm [A], that is, all noisy marginal tables of
an attribute are coincident.

We achieve this goal in two steps. Where a is a possible value in As domain
and TA(a) is the count of a in As noisy marginal table.

1. Generate the approximate value of TA(a). The best estimate of TA(a) is
the minimum noise variance. Therefore, we use inverse-variance weighting
to obtain the variance of the weighted average as follows:

TA(a) =

∑m
i=1

Tci
(a)

σ2
i∑

i
1

σ2
i

(4)

where σ2
i =

∏
Aj∈(ci\A) | Ωj | is proportional to the variance of Tci [A](a).

2. Update all Tcis to be consistent with TA:

Tci(e) ← Tci(e) +
TA(a) − Tci(a)

∏
Aj∈(ci\A) | Ωj | (5)

where e is the a after the update.

To make all marginal tables consistent, we need to perform a series of mutual
consistency steps.

In addition, in order to reduce the bias caused by rounding the negative noisy
to 0 and assuring the accuracy, we turn negative counts into 0 while decreasing
the counts for its neighbors to maintain overall count unchanged. Specifically, we
choose a threshold θ that close to 0. The sum above the threshold is n and the
sum below the threshold is k. For each count c above the threshold, we subtract
| k | ∗ c

n as the last value of it, and the value below the threshold becomes 0.



Differentially Private High-Dimensional Data Publication via MN 143

4.5 Publishing Synthetic Datasets

Combining with the previously obtained clustering graph and the noisy marginal
tables, we can calculate the joint distribution of attributes. Based on the joint
probability calculation formula in Markov networks, the confidence set, and the
noisy marginal tables, we can get the non-normalized distribution as follows:

PΦ(H) =
∏

βi(Ci)∏
μi,j(Si,j)

(6)

The normalization constant is usually obtained by the sum of all states, that
is, Z =

∑
Ci

∏
βi(Ci)

∑
Si,j

∏
μi,j(Si,j)

. Therefore, the joint distribution is calculated as follows:

PΦ(H) =
1
Z

PΦ(H) =
1
Z

∏
βi(Ci)∏

μi,j(Si,j)
(7)

However, directly sampling a synthetic dataset from the joint distribution
is computationally prohibitive. Therefore, we use the clustering graph and the
noisy marginal tables to generate a synthetic dataset. Specifically, the steps are
as follows: 1. Randomly select a cluster in the cluster graph and sample its
attributes from its noisy marginal distribution. 2. Continuously sample other
attributes in the cliques adjacent to the cliques, that is, they share a common
separator, and repeat the above operation. 3. Terminate this process until all
the attributes have been sampled.

After the sampling, we calculate the joint distribution by using the joint
probability calculation formula given earlier. Thus, we obtain the required joint
distribution, which satisfies the differential privacy protection of the complete
dataset.

In the four steps of PrivMN, only the first and third steps require access to
the original dataset, so we divide the total privacy budget ε into two portions
with ε1 being used for the first step and ε2 for the third step by the composition
property [8,28]. Therefore, the first and third steps are ε1- and ε2-differential
privacy respectively, and PrivMN satisfies -differential privacy as a whole, where
ε = ε1 + ε2.

5 Evaluation

We make use of three standard real datasets (both binary and non-binary) in our
experiments. For binary datasets, we choose Retail referred from [22]. Retail
is a retail market basket dataset, where each record consists of the distinct
items purchased in a shopping visit. We preprocess Retail to include 50 binary
attributes and its domain size is 250. For non-binary datasets, we use the same
datasets used in [20]. Adult contains census data from 1994 US census. There
are 15 non-binary attributes in it and its domain size is about 252. TPC-E
contains information of ‘Trade’, ‘Security’, ‘Security status’ and ‘Trade type’
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tables in the TPC-E benchmark. It consists of 24 non-binary attributes and its
domain size is about 277.

We evaluate the PrivMN in two aspects: One is the construction of marginal
table, which used to measure the accuracy of methods. The other is to train
multiple SVM classifiers on the same dataset to predict attributes. We first
generate synthetic datasets and then use these datasets to build SVM classifiers.
The correct rate or error rate is the judgment of all data, which is the overall
evaluation of the classifier and suitable for the evaluation of the experiment.
Therefore, we use the error rate to measure the performance of the classifier and
the property of the algorithm.

Since PriView [15] only works for binary datasets and cannot generate syn-
thetic datasets for SVM classification, for binary datasets we only report the
results on marginal tables. Due to L2 error and Jensen-Shannon divergence are
similar, we use the same evaluation scheme used in PriView, that is, we plot the
average L2 error where privacy budget ε ∈ {0.1, 1.0} and generate 200 random
k-way marginal tables for each k ∈ {4, 6, 8}.

For non-binary datasets, when k is relatively large, a k-way marginal table
is normally very sparse and the evaluation scheme used in binary datasets may
be significantly biased. Therefore, we choose to follow the same methodology
used in PrivBayes [20]. We generate all 2-way and 3-way marginal tables and
perform the average total variation distance between the original datasets and
the noisy datasets. In addition, we use the same method used in PrivBayes
to test the classification results with SVM classifiers. We report the results on
Adult, which is the most widely used benchmark dataset for SVM classification
analysis. We train SVM classifiers on Adult to predict where an individual (1)
is a male, (2) holds a post-secondary degree, (3) has salary > 50k per year, and
(4) has never married. We evaluate each classification task with privacy budget
ε ∈ {0.2, 0.5, 0.8, 1.0}. Each task uses 80% of the datasets as the training set and
the remaining 20% for prediction. We employ the misclassification rate as the
performance metric.

5.1 Contrast on Binary Datasets

In the first part of experiments, we compare the accuracy of four algorithms
on the binary dataset by assigning different privacy budgets. The results are
presented in Fig. 2.

It can be seen that our method, PrivMN, is far superior to PrivBayes in
most cases and has some advantages over PriView. In Fig. 2(a), PriViews L2

error is higher than PrivBayes when k = 8. It means that PriView is not stable
and there is a substantial decrease in the performance of the property with the
amount of attributes increase. Although PrivMN is similar to JTree, the error
of PrivMN is smaller than JTree. Our method still maintains certain advantages
as attributes increase. In general, the advantage of PrivMN is more observable
when ε = 0.1, that is, when ε is small, it is still the overall optimal without
excessive volatility. Therefore, we consider the synthetic dataset generated by
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(a) Retail, = 0.1 (b) Retail, = 1.0

Fig. 2. L2 error of k-way marginals on binary datasets

PrivMN can meet different analysis needs. In addition, PrivMN can be applied
to non-binary datasets, which is of great significance for practical applications.

5.2 Contrast on Non-binary Datasets

k-Way Marginal Tables. In the second part of the experiment, we compare
the average total variation distance of three algorithms for varying privacy bud-
gets on non-binary datasets and present the results in Fig. 3.

Since PriView cannot apply to non-binary datasets, we only compare the
remaining three methods. It can be seen from the figure that the experimental
results of PrivMN are far superior to PrivBayes. Under the condition of different
datasets and different k-way marginal tables, the error of JTree is large when ε =
0.2, and the overall change range is wide, especially in Fig. 3(c), (d). Although
PrivMN makes more errors than JTree when ε = 0.5 in Fig. 3(a), (b), it is
relatively flat as a whole. With the gradual increase of the privacy budget, the
added noise is less, and the average total variation distance is gradually reducing.
Therefore, PrivMN is suitable for extensive datasets and is utility for many real-
world applications.

SVM Classification. In the last part of experiments, we compare the misclas-
sification rate to measure the performance of PrivMN, JTree, and PrivBayes on
non-binary datasets. We report the results on Adult with different ε values in
Fig. 4.

Non-Private is the misclassification rate of the original dataset, which is also
the best experimental result we can achieve. In Fig. 4, PrivMN is far superior
to PrivBayes in all cases. Compared with JTree, PrivMN decreases more slowly
with different privacy budget, and the overall performance is better. In par-
ticular, PrivMN performs even better in Fig. 4(a), (b), (c). When ε = 0.2 in
Fig. 4(d), PrivMN has a slight fluctuation, but still within the acceptable range
while JTree gets an obvious error. Although the property of the dataset gen-
erated by PrivMN is lower than that of the original dataset, it can satisfy the
requirement of differential privacy and is superior to general methods. Therefore,
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Fig. 3. Total variation distance of k-way marginal tables on non-binary datasets
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Fig. 4. SVM misclassification rates on non-binary datasets
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PrivMN provides a generic data publishing solutions and it has certain practical
significance.

6 Conclusion

Differentially private high-dimensional data publication is one of most challeng-
ing research issues and an important problem to be solved urgently. In this paper,
we propose to use the Markov network model to represent the mutual relation-
ships between attributes to solve the problem that the direction of relationship
between variables cannot be determined in practical application. Moreover, we
take advantage of approximate inference to calculate the joint distribution of
high-dimensional data under differential privacy to figure out the computational
and spatial complexity of accurate reasoning. Experiments on several real stan-
dard datasets demonstrate that PrivMN is significant in practice.
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Abstract. Protecting sensitive data in web and mobile applications
requires identifying sensitive data, which typically needs intensive man-
ual efforts. In addition, deciding sensitive data subjects to users’ require-
ments and the application context. Existing research efforts on identi-
fying sensitive data from its descriptive texts focus on keyword/phrase
searching. These approaches can have high false positives/negatives as
they do not consider the semantics of the descriptions. In this paper, we
propose S3, an automated approach to identify sensitive data based on
user requirements. It considers semantic, syntactic and lexical informa-
tion comprehensively, aiming to identify sensitive data by the semantics
of its descriptive texts. We introduce the notion concept space to rep-
resent the user’s notion of privacy, by which our approach can support
flexible user requirements in defining sensitive data. Our approach is
able to learn users’ preferences from readable concepts initially provided
by users, and automatically identify related sensitive data. We evalu-
ate our approach on over 18,000 top popular applications from Google
Play Store. S3 achieves an average precision of 89.2%, and average recall
95.8% in identifying sensitive data.

1 Introduction

Web and mobile applications are becoming an essential part of our daily life,
including online banking, social network service, health care, etc. These online
services handle users’ sensitive data, such as passwords, health records, and
financial information. Protecting users’ sensitive data on web and mobile plat-
forms is getting more and more important. Recent incidents [5,33] have leaked
information of hundreds of millions of users.

Separating and protecting user data is a basic principle of computer secu-
rity. User data protection requires to distinguish sensitive data and insensitive
data, and provide stronger but more expensive mechanisms to ensure sensitive
data security against a powerful adversary. There are many existing research
efforts [3,7,17,18,27,36,37] on protecting sensitive data both on web and mobile
applications. Researchers develop solutions that utilize other secure devices
(including mobile phones) [4,23,28,29] to protect the security of sensitive data in
the web platform from being affected. Other solutions [7,15,17,27] perform taint
analysis based on user-specified sensitive data sources in the mobile platforms.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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The solutions to protect sensitive data often need developers/users to identify
sensitive data, which is a challenging task. Deciding whether a piece of data is
sensitive subjects to users’ preference and the application context. User’s privacy
preference may change with the application scenario. Identifying sensitive data
typically needs intensive manual efforts [21], which prevents large-scale analy-
sis of sensitive data. Therefore, we need a way that can automatically identify
sensitive data based on users’ requirements.

Sensitive data is hardly distinguishable from insensitive data in the program-
ming representations of web and mobile applications. For example, the <span>
element displaying a user’s bank balance is same as the <span> element display-
ing the website title in terms of a machine. However, it’s easy for the user to
know that her bank balance is more sensitive than the website title, because she
understands the meaning of the data or its surrounding descriptive text. There-
fore, instead of analyzing source code of applications, it is more accurate and
efficient to identify sensitive data from the user interface (UI), and understand
the semantic meaning of data or its surrounding descriptive text.

Several solutions have been proposed to identify sensitive data using the
descriptive text in mobile applications. Supor [10] identifies sensitive input
data of Android applications by keyword based searching on descriptive texts.
UIPicker [21] utilizes SVM (Support Vector Machine) to learn sensitive descrip-
tive texts with sensitive keywords as features. AutoCog [26] identifies the real
permissions an Android application requires from its descriptions on Google
Play, by analyzing the semantic meaning of noun phrases, verb phrases and
possessives. Whyper [24] considers both actions and noun phrases to further
increase the accuracy. However, all the existing approaches are based on only
key word/phrase/counterpart searching, with no complete semantic information
considered. For instance, all of them incorrectly classify the sentence “Facebook
will not save your password” as sensitive because of the detection of a sensitive
phrase “save your password”, though it is only a normal claim message. More-
over, none of the prior work takes into account the flexible user requirements.

In this paper, we propose a more advanced technique, S31, to identify sensi-
tive data. S3 aims to understand users’ preferences by extracting the semantic
concepts from a set of user-provided texts, and identifies unseen sensitive data
with a learning-based approach. Instead of outputting a Boolean result in prior
work, S3 produces a probability of a text being sensitive to make the measure-
ment controllable by setting a threshold in different strictness levels. Besides,
S3 classifies sensitive data as multiple categories such as credential data, profile
data and financial data, in a more fine-grained way, so that users and developers
are able to choose different categories of sensitive data on demand for further
protection.

Contributions.

– To the best of our knowledge, S3 is the first automated approach to precisely
identify sensitive data by analyzing its semantic meaning on a large scale. S3

1 S3 stands for semantics, syntax, and sentiment.
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reduces much manual effort of identifying sensitive data for further protection
and research on it.

– S3 supports flexible user requirements in defining sensitive data. It enables
users to define sensitive data on demand by providing initial concepts. Then
S3 is able to automatically identify unseen sensitive data by learning from
the concepts.

– We conduct a series of evaluation, and compare S3 with existing approaches.
Evaluation results show that S3 is able to identify sensitive data with high
precision and recall, and can correctly identify instances which are not han-
dled in existing approaches.

2 Overview

In this section, we introduce our motivation, and analyze the challenges faced
by sensitive data identification. We then introduce techniques used in natural
language processing (NLP) as a background. At last, we give an overview of our
solution.

2.1 Motivation

Sensitive data (e.g., login input box, shopping history, and profile data) in a
UI widget is usually surrounded or embedded with a descriptive text [10,21],
indicating its functionality. Our approach leverages such descriptive texts to
measure its sensitiveness, following the same setting in [21]. The descriptive texts
in mobile applications are usually short, and well-spelled, which makes S3 quite
effective in identifying sensitive data. Users can define sensitive data categories
on demand, by providing concept texts for S3 to learn from. For example, one
may use “password”, “pin code”, etc., to define credential data.

2.2 Challenges in Sensitive Data Identification.

Importance of Semantics. The data sensitiveness is highly dependent on its
semantic meaning. For instance, the sentence “Facebook will not save your pass-
word.” does not indicate sensitive data, because it is just a declaration text
showing Facebook will not violate users’ privacy. Prior work [10,21,24,26] incor-
rectly identifies this text as sensitive because of the detection of a key phrase
“save your password”. Consider two sentences, “Register account” and “Account
registered”. The former one describes a sensitive operation requesting informa-
tion, and the latter one is a hint text confirming that the account has already
been registered. Existing work cannot distinguish the sensitiveness of the two
sentences, because they are composed of same sensitive keywords “register” and
“account”. Another representative example is “Log in” and “Logged in”. The
first one describes a sensitive operation but the second one is a normal mes-
sage indicating the user has already logged in. Both of them have the same
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words, regardless of their forms, but their sensitiveness are significantly dif-
ferent, because of the different part of speech of “log”. Therefore, to give a
more accurate measurement of the sensitiveness, we have to learn its semantic
meaning.

Flexible User Requirements. Sensitive data are subjective to users’ prefer-
ence and application context. For instance, a banking application is most likely
to handle users’ sensitive financial data, while a social network application con-
tains mostly sensitive profile data instead. However, existing work treats all of
them equally, which is not reasonable to users. It is preferable to identify sensi-
tive data in a more flexible way, by allowing users to customize the classification
of sensitive data they are really cared about.

2.3 NLP Background

The semantic meaning of texts is critical for correctly identifying sensitive data.
To understand the semantics of a text, we need NLP techniques to process it.
With advance of existing NLP techniques, the grammatical structure of a natural
language sentence can be parsed accurately. We next briefly introduce the key
NLP techniques used in our work.

Parts Of Speech (POS) Tagging [12,32]. It is also called “word tagging”,
“grammatical tagging” and “word-category disambiguation”. POS tagging is able
to identify the part of speech (such as nouns and verbs) a particular word in a
sentence belongs to. Current state-of-the-art approaches have been shown to
achieve 97% [19] accuracy in classifying POS tags for well-written news articles.

Named Entity Recognition [8]. It is also known as “entity identification”
and “entity extraction”, and works as a subtask of information extraction. These
techniques are able to classify words in a sentence into predefined categories such
as names, quantities, and expressions of time.

Phrase and Clause Parsing. It is also known as “chunking”. This technique
divides a sentence into a constituent set of words (or phrases) that logically
belong together (such as a Noun Phrase and Verb Phrase) to analyze the syntax
of the sentence. Current state-of-the-art approaches can achieve around 90% [19]
accuracy in classifying phrases and clauses over well-written news articles.

Syntactic Parsing [11]. It generates a parse tree of a sentence showing the
hierarchical view of the syntax structure for the sentence. By traversing the
parse tree, we are able to identify target phrases (such as noun phrases and verb
phrases) and POS tags.

2.4 Approach Overview

The overall architecture of S3 is illustrated in Fig. 1. S3 takes a raw text as
input. Preprocessor processes this text to generate an intermediate structure.
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Table 1. Members of the intermediate structure.

Item Description

Noun phrase list Reflect the content of the data it describes

Verb phrase list Reflect the operation it guides users to perform

Modifiers Adjectives of nouns in noun phrases

Lemma list Mapping of original word to its lemma form

POS tag list Mapping of a word to its pos tag

Parse tree Hierarchical view of the syntax structure for the sentence

The intermediate structure is a data structure holding all the required informa-
tion for further analysis. It contains the syntax information and other informa-
tion such as noun phrases, verb phrases, POS tags, etc. Then S3 analyzes its
topic by extracting its semantic meaning, and produces a candidate sensitive
category. Finally, S3 decides its sensitiveness by analyzing its syntax, POS, and
sentiment information.

Each sensitive category is represented as a set of vectors, called concept space
in the following, constructed from concept words/phrases provided by users. The
knowledge base is a large corpus of texts, from which S3 is able to identify the
semantic relation of unseen texts and the concept space, and thus determines its
topic.

Preprocessor
Concept 

Space
Intermediate 

Structure

S3 Overview

Candidate 
Category

Sen ment
Analysis

POS
Analysis

Syntax
Analysis

Sensi veness Decision

Topic
Analysis

Result

Knowledge Base Concepts

“Enter your password”

Fig. 1. Overall architecture of S3.

Preprocessing Inputs. The NLP techniques we have discussed above are used
as a preprocessor in S3 to accept the raw natural-language sentences as input
and produces an intermediate structure for further analysis. It uses standard
NLP techniques to perform text splitting, stopword removal, phrase collection,
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modifier extraction, lemma recovery, part of speech tagging, and syntactic pars-
ing. Figure 2 gives an illustrating example of partial preprocessing result. The
sentence node is labeled as S. It is the child of the root node. The interior nodes
of the tree are labeled by non-terminal tags (e.g., verb phrases VP and noun
phrases NP). The leaf nodes are labeled by terminal tags (e.g., pronouns PRP$
and nouns NN ). In summary, Table 1 lists the members of the intermediate
structure of a text after preprocessing.

Fig. 2. Preprocessing of a sample sentence.

3 S3 Design

In this section, we describe the core components of S3. They analyze the topic
of a preprocessed text, and decides its sensitiveness.

3.1 Topic Analysis

In this part, S3 analyzes the semantic meaning of a preprocessed text to produce
a candidate sensitive category for it.

To get a knowledge of the sensitiveness, the first thing is to know the topic
of the sentence. Intuitively, noun phrases in a sentence relate to its content, and
verb phrases relate to actions. We analyze the topic of a text based on the two
phrases. In S3, the semantic meaning of both phrases is obtained by measuring
the semantic distance of the target phrase and each sensitive category in a vector
space, where each category has its own cluster, referred to as concept space. The
closest sensitive category is chosen to classify its sensitiveness.

Concept Space. We use vector representations of words [20] to create a domain
of sensitive category to represent concept space in our approach. The intuition is
to cluster closely related sensitive words/phrases in the vector space, so that we
are able to classify unseen texts based on the clusters. Such words and phrases
in the clusters are called concepts, provided by users or developers. For example,
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one may create a category “Credentials” by feeding concepts of “username”,
“password” and “pin code”. S3 then constructs a concept space based on them
for this category.

An unseen word/phrase is classified to a sensitive category based on K -
Nearest Neighbors (KNN) algorithm [6]. It first transforms the word/phrase to
its vector representation, and then calculates K nearest vectors under a prede-
fined threshold of similarity distance in the concept space of each category. A
word/phrase is classified to the i-th sensitive category if Ki is maximum, and
assigned with the maximum similarity score in the concept space as its probabil-
ity. If no neighbors are found, this word/phrase is classified as insensitive. The
similarity distance between two vectors is measured using cosine similarity [9],
which is a standard way of quantifying the similarity between two documents
in the vector space in document retrieval [31]. In order to improve the result of
classification, S3 uses the lemma form of each word in noun phrases and verb
phrases. The lemma forms can be obtained in the intermediate structure.

Modifier Analysis. The semantic meaning of concepts are affected by the
words modifying it. Specifically, a noun phrase often contains adjectives that
can affect its sensitiveness. For instance, the sentence “Email address” describes
sensitive profile information but the sentence “Invalid email address” is a normal
hint message. Therefore it is necessary to analyze the sentiment of the adjectives
to improve the accuracy. In our approach, we use SentiWordNet [2] to give a
sentiment score of an adjective. A negative adjective is assigned a negative value.
The more negative the word is, the larger the absolute value of its sentiment
score is. S3 first collects adjectives in a noun phrase using POS information in
the intermediate structure. Then it adds the sentiment score to its probability of
being sensitive if the sentiment score is negative and thus reduces its probability.

3.2 Sensitiveness Decision

Topic analysis, giving only candidate sensitive category, is not sufficient to deter-
mine the sensitiveness. For instance, the sentence “Register account” describes a
sensitive action but the sentence “Account registered” is an insensitive message
showing that the account has already been registered. However they are both
classified as the same sensitive category because they consist of same words in
lemma form. Therefore, despite topic analysis, S3 also performs syntax, lexical
and sentiment analysis to finally determine the sensitiveness.

Syntax Analysis. Empirically, we observe noun phrases and verb phrases in
sensitive descriptive texts usually have fixed syntactic patterns, and we note
such nodes a Candidate Block (CB) in the parsing tree. We summarize three
syntactic patterns with CB notations of a descriptive text as follows:

– Noun phrase only (CBNP ). The noun phrase directly indicates the content
of the surrounding data. For instance, “Your password” indicates a password
input box.
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– Verb only (CBA). The action (verb) indicates some operation. For instance,
“Log in” and “Register” describe sensitive account operations. “Pay with
Paypal” is also a CBA, as shown in Fig. 3c, where “Paypal” is removed as a
name of entity.

– Verb phrase (verb+noun phrase) (CBANP ). In the parsing tree of a
sentence, if a noun phrase node has an ancestor verb phrase node (V P ), we
say the noun phrase is dominated by the action in the V P . For instance, in
“Register account”, the noun phrase node “account” has a father V P node
of action “Register” as shown in Fig. 3a, then the noun phrase is dominated
by the action.

In the case of CBA and CBNP co-existing in a text without forming a
CBANP , we empirically defines the priority of CBNP is higher than that of
CBA. For example, in the case of “Account registered” as shown in Fig. 3b, the
noun phrase “account” is the emphasis of the sentence, and the action “regis-
tered” modifies it.

After S3 collects all the CBs, it checks if their ancestor nodes or sibling
nodes contain verb phrases. If verb phrases are found, the sentence is identified
as insensitive. This is because the surrounding verb phrases can reduce the sen-
sitiveness of a CB significantly. In Fig. 3b, the CBNP “Account” has a sibling
verb phrase “registered”. Therefore the meaning of this sentence is to state the
noun phrase is operated by the action and thus the sensitiveness of the noun
phrase is reduced to insensitive by the action. In Fig. 3a, the CBANP has no
surrounding nodes containing verb phrases, so the whole sentence is sensitive.

Fig. 3. Syntax analysis illustration. The red rectangles indicate CBs. (Color figure
online)

POS Analysis. For sentences containing only a CBA, e.g., “Log in” and “Logged
in”, POS affects the sensitiveness of the CBA significantly. In our approach, we
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assume only the base form (noted as VB in the parse tree) and non-3rd person
singular present (noted as VBP in parse tree) of a verb remain the sensitiveness.
Other forms of a verb will reduce the sensitiveness of the CBA to insensitive. For
example, the word “Logged” is tagged as VBN (past participle) in the sentence
“Logged in”. The sensitiveness of this sentences is reduced to insensitive. S3
checks POS of the action in a CBA of a sentence to revise its sensitiveness.

Sentiment Analysis. We observe that negative sentiment of descriptive texts
makes it insensitive (e.g., “Login failed”). We have tried Stanford Sentiment
Analysis [30] but it does not produce satisfactory results of identifying the senti-
ment of texts in our problem domain. We have observed that most of the negative
descriptive texts include some common keywords like “fail”, “no”, “error”, etc.
In our approach, we make a list of such negative words. S3 performs a keyword-
based searching in a sentence to analyze its sentiment. A sentence is negative if
it contains any of the negative keywords.

4 Evaluation

In this section, we present the evaluation of S3. Given a piece of text, S3 classifies
it to some sensitive category with a probability. We first introduce the experiment
setup of evaluation. Then we analyze the results of evaluation, and compare S3
with related work. Finally we analyze the causes of producing false positives and
false negatives.

We implemented the preprocessor based on Stanford CoreNLP [19] to gener-
ate the intermediate structure, which is a state-of-the-art suit of core NLP tools
including Stanford Parser from Stanford. To map words to the concept space,
we implemented Stanford GloVe [25] for vector representation of words. We use
English Wikipedia 2014 and Gigaword version 5 [14] as the base corpus. Each
word is represented as a vector of 300 dimensions.

4.1 Evaluation Setup

We evaluate S3 on Android applications. We get all the text resources of an
Android application using decompiling technique. In this paper, we use texts
from a snapshot of popular Android applications. The app data set was gener-
ated from the official Google Play Store in November 2016. It contains the top
500 free applications in each category (34 categories totally). Except some con-
nection errors occurred in the downloading process, we collected 18,681 applica-
tions totally. For each application, we extract texts from /res/values/strings.xml
file after decompiling it. We remove non-English texts from all the 18,681 appli-
cations and finally get 1,741,143 distinct English texts. We sort them based on
the frequency of each text appearing in all the applications. In our evaluation,
we manually define 7 sensitive categories. For each category, we define concepts
for noun phrases, actions and single actions respectively. Information of the 7
categories is illustrated in Table 2.
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Table 2. Categories of sensitive data.

Category # CoNP # CoA # CoSA

Account 5 16 6

Calendar 4 5 0

Credential 16 18 0

Finance 30 10 4

Profile 45 21 0

Search & history 6 6 2

Setting 8 9 1

#CoNP: Number of noun phrases; #CoA: Num-
ber of actions; #CoSA: Number of single actions.

We first manually annotate the top 5,152 frequent texts using the listed
categories. In our evaluation, we invite five volunteers to annotate these texts
independently. A text is annotated as one category only if at least three volun-
teers label the text as the same category. Then S3 is applied on these texts to
output results under different thresholds of similarity distance from 0.5 to 1.0
with 0.05 as interval. For each threshold, we measure the number of true posi-
tives (TP), false positives (FP), true negatives (TN) and false negatives (FN),
which are illustrated as follows:

– TP: A text which S3 correctly identifies as sensitive (category).
– FP: A text which S3 incorrectly identifies as sensitive (category).
– TN: A text which S3 correctly identifies as not sensitive (category).
– FN: A text which S3 incorrectly identifies as not sensitive (category).

In statistical classification [22], Precision is defined as the ratio of the number
of true positives to the total number of items reported to be true, and Recall is
defined as the ratio of the number of true positives to the total number of items
that are true. F-score is defined as the weighted harmonic mean of Precision
and Recall. Accuracy is defined as the ratio of sum of true positives and true
negatives to the total number of items. Higher values of precision, recall, F-Score,
and accuracy indicate higher quality of S3 to identify sensitive data. Based on
the total number of TPs, FPs, TNs, and FNs, we compute the precision, recall,
F-score, and accuracy of S3 in identifying sensitive texts as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F–score =
2 · Precision ·Recall

Precision + Recall
(3)

Accuracy =
TP + TN

TP + FP + TN + FN
(4)
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4.2 Results

In this section, we describe the evaluation results and compare S3 with related
work. We first measure the effectiveness of S3 under different thresholds in iden-
tifying sensitive texts to find the optimal threshold. Then we analyze in detail
the effectiveness under the optimal threshold. Finally, we compare S3 with other
approaches.

Threshold Setting. Errors of S3 come from false positives and false nega-
tives. S3 seeks to achieve higher performance than prior work by reducing false
positives and false negatives. However, to choose the optimal threshold in the
trade-off of false positives and false negatives, we seek less false negatives than
false positives. This is because false positives identify normal data as sensitive,
and thus cause over protection, while false negatives leave sensitive data unpro-
tected, and cause more serious consequences, e.g., data exposed to attackers. In
statistics, Recall can reflect the measure of false negatives and Precision reflects
false positives. Therefore we seek higher recall value than precision value in this
paper.

The threshold controls the relatedness measure between a target noun phrase
and action with concept spaces. A higher threshold indicates that the target is
classified into a concept space only with closer relation with the concept space.
Evaluation results differ under different thresholds as illustrated in Fig. 4. We
compute average precision, recall, F-score and accuracy of the 7 categories for
each threshold. The threshold ranges from 0.5 to 1.0 with 0.05 as interval. The
results show that as threshold increases, precision first increases sharply before
threshold 0.7 and then increases smoothly. Recall first increases smoothly before
threshold 0.7 and then decreases sharply. The reason of such trend is that a
higher threshold means S3 identifies a text as sensitive more strictly which causes
less false positives but more false negatives. The accuracy differs more smoothly
than precision, recall and F-score. This is because the number of negative samples
(4588 identified by human) is much larger than the number of positive samples
(564 identified by human) in 5152 texts. Therefore the fluctuation between true
positives and true negatives is small and thus affects accuracy little. We can
conclude from the results that under threshold 0.70, recall (95.8%) gets its max-
imum value and both F-score (92.2%) and accuracy (99.7%) get the maximum
value as well.

Effectiveness Analysis. In this section, we evaluate the effectiveness of S3
in identifying sensitive texts. We take the optimal threshold 0.7 as an example
to describe the evaluation results. Table 3 shows the evaluation results under
threshold 0.7. Column “Category” lists names of the 7 predefined categories of
sensitive data. Column “HI” lists the number of texts identified as correspond-
ing category of sensitive data by human users. Column “MI” lists the number
of texts identified as corresponding category of sensitive data by S3. Columns
“TP”, “FP”, “TN” and “FN” list the number of true positives, false posi-
tives, true negatives and false negatives respectively. Columns “P (%)”, “R(%)”,
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Fig. 4. Evaluation results under different thresholds.

Table 3. Evaluation results under threshold 0.7.

Category HI MI TP FP TN FN P (%) R(%) FS(%) Acc(%)

Account 66 66 63 3 5083 3 95.5 95.5 95.5 99.9

Calendar 18 19 17 2 5132 1 89.5 94.4 91.9 99.9

Credential 77 87 75 12 5063 2 86.2 97.4 91.5 99.7

Finance 83 103 81 22 5047 2 78.6 97.6 87.1 99.5

Profile 200 232 193 39 4913 7 83.2 96.5 89.4 99.1

Search & history 42 41 39 2 5108 3 95.1 92.9 94.0 99.9

Setting 78 78 75 3 5071 3 96.2 96.2 96.2 99.9

Average − − − − − − 89.2 95.8 92.2 99.7

OneCategory∗ 564 626 545 81 4507 19 87.1 96.6 91.6 98.1

HI : Number of texts identified by human as sensitive (category); MI : Number of texts
identified by S3 as sensitive (category); TP : Number of true positives; FP : Number
of false positives; TN : Number of true negatives; FN : Number of false negatives; P :
Precision; R: Recall; FS : F-score; Acc: Accuracy; *: The last row is computed by
treating all sensitive texts as one category.

“FS(%)” and “Acc(%)” list the percentage of Precision, Recall, F-score and
Accuracy respectively. The evaluation results show that S3 effectively identifies
and classifies sensitive texts out of top 5152 frequent texts with average preci-
sion, recall, F-score, and accuracy of 89.2%, 95.8%, 92.2% and 99.7% respectively.
If we treat sensitive data as one category, S3 achieves precision, recall, F-score,
and accuracy of 87.1%, 96.6%, 91.6%, and 98.1% respectively. Evaluation results
show that S3 produces less false negatives than false positives in most categories
which is in line with our expectations. We will discuss the reasons of producing
false positives and false negatives in Sect. 4.3.
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Comparison with Related Work. In this section, we compare S3 with related
approaches in identifying sensitive texts. Table 4 shows the comparison results
among different approaches in identifying sensitive texts. We select eight typical
instances to present the comparison process.

Table 4. Comparison of S3 and related work.

Sentence Supor UIPicker Whyper AutoCog S3

Enter your password � � � � �
Facebook will not save your password × × × × �
Register account � � � � �
Account registered × × � × �
Log in � � × × �
Logged in × × × × �
Your password � � � � �
Invalid password × × × × �

�: The sentence is correctly identified. ×: The sentence is incorrectly identified.

For the sentence “Enter your password”, it describes an input box receiving
user’s password. It contains sensitive keywords “Enter” (an action) and “pass-
word” (a noun phrase). All the approaches are able to correctly identify this
sentence as sensitive. Moreover, S3 can classify it as category “Credential”. The
second sentence “Facebook will not save your password” also contains sensitive
keywords “save” (an action) and “password” (a noun phrase). However it is
only a normal hint sentence and describes no sensitive data. Both Supor and
UIPicker incorrectly identify it as sensitive because it contains sensitive key-
words. Whyper also fails because the sentence contains a sensitive noun phrase
“your password” with dominant action “save”. AutoCog fails as well because
the sentence has a sensitive verb phrase “save your password”, a sensitive noun
phrase “your password”. However even though the sentence has a sensitive noun
phrase with dominant action (make up a CBANP ), it does not guarantee that
it is the point of the sentence. S3 correctly identifies it because it finds that the
CBANP is dominated by “Facebook will” (has an ancestor node of verb phrase)
so that the CBANP is not the point of the sentence and thus the whole sentence
is not sensitive.

Another comparison example is sentences “Register Account” and “Account
registered”. Both of the two sentences have sensitive keywords “Register” and
“Account”, but the meanings of them are significantly different. The former one
describes an account registration manner but the latter one is a hint message
saying that the account is already registered. All the related approaches can
correctly identify the former sentence but fail for the latter sentence. As we are
not sure if an action check is compulsory or not in Whyper, we here assume
it is not compulsory so that Whyper correctly identifies the sentence. S3 first
identifies the sensitive noun phrase “Account” which makes up a CBNP . It then
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analyses that the CBNP has a sibling action (verb phrase) “registered” which
does not dominate the noun phrase. As a result, S3 correctly identifies it as
insensitive.

The part of speech of a word is able to affect the sensitiveness of a text. Take
two sentences “Log in” and “Logged in” as an example. Both contain sensitive
keyword “log” (assuming all the approaches can transform the original token to
its lemma form correctly). Supor and UIPicker can correctly identify “Log in”.
Whyper and AutoCog fail because they are not able to identify single actions.
However all the related approaches fail in identifying “Logged in”. Even though
it contains sensitive keyword, it is a hint text showing the user has already logged
in. They fail because the part of speech of tokens is not considered in the related
approaches. S3 can correctly identify such texts.

Sentiment also affects the sensitiveness of a text. For instance, the sentence
“Your Password” describes an input box receiving user’s password but “Invalid
password” is a hint text showing the user has typed a wrong password even
though it contains the sensitive keyword “password”. Such negative text reduces
its sensitiveness. All the related approaches do not consider the sentiment of a
text, so all fail. S3 correctly identify such text.

4.3 FP/FN Analysis

In this section, we analyze the causes of false positives and false negatives under
threshold 0.7. Here we select representative examples to discuss the causes.

First we present why S3 incorrectly identifies a text as some category of
sensitive data, which produces false positives.

– Inaccurate underlying NLP infrastructure. One major source of false
positives is the incorrect syntactic parsing of texts by the underlying NLP
infrastructure. Take the text “Send Email” as an instance. It is not labeled as
sensitive data by our volunteers. However, the underlying Stanford Parser is
not able to correctly parse its syntax in original form. It annotates the whole
text as a noun phrase. S3 then analyzes its topic and finally classifies it as
category “Profile” with maximum probability 85.3% as it has three neighbors
“email”, “e-mail” and “email address” while zero neighbors in other cate-
gories. However, it correctly parses the syntax in lowercase form: an action
“send” followed by a noun phrase “email”. The noun phrase “email” is clas-
sified as category “Profile” but the dominant action “send” has no neighbors
within threshold in category “Profile”. Therefore, S3 classifies the text as
insensitive in the lowercase form. Due to the classification priority, S3 chooses
the category with the higher probability among original and lowercase form,
such text is eventually identified as category “Profile”. We observe that a
majority of false positives result from incorrect syntactic parsing. Such cases
can be addressed with the advancement in underlying NLP infrastructure.

– Inaccurate threshold control. Take the text “Product ID:” as an example,
S3 successfully identifies it as a noun phrase “Product ID”/“product id” (in
original and lowercase form respectively) with a following colon. This text
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matches the pattern that only contains a noun phrase. In topic analysis,
S3 classifies the text using 7 concept spaces. It finds 2 neighbors “id” and
“user id” within the threshold with maximum probability 80.1% in category
“Profile” while zero neighbors in other categories. Then the text is incorrectly
identified as category “Profile”, but actually it is a normal text describing a
product. Such false positives result from inaccurate threshold control and can
be addressed by increasing the threshold.

Next we present why S3 incorrectly identifies a text as insensitive, which
produces false negatives.

– Inaccurate underlying NLP infrastructure. Consider the text “Zip
Code”. It is labeled as category “Profile” by volunteers, but S3 identifies it as
insensitive. S3 correctly parses the text as a noun phrase in the original form.
However, both the token “Zip” and “Code” are identified as names of entities
and then removed. In the lowercase form, the text is incorrectly parsed as an
action “zip” followed by a noun phrase “code”. Although the noun phrase
“code” has neighbors in category “Profile”, the dominant action “zip” has
zero neighbors in any categories so the text is identified as insensitive. In this
instance, the syntax is parsed correctly in the original form but the underly-
ing named entity analysis is incorrect. Such instances can be addressed with
the improvement of underlying named entity parser. In “Change Passcode”
of the original form, S3 incorrectly parses its syntax as a noun phrase and
in the lowercase form it parses its syntax as an action “change” followed by
an adjective “passcode”. It is easy to know the correct syntax should be an
action “change” followed by a noun phrase “passcode”. Such instances can
be addressed with the advancement of the underlying NLP infrastructure.

– Incomplete knowledge base. For instance, the word “logout” is not found
in the top frequent words of our base corpus English Wikipedia 2014 and
Gigaword version 5. It causes S3 to incorrectly identify the text “logout” as
insensitive. Such issues can be addressed by collecting more words from the
knowledge base corpus.

– Incomplete concept space. There are a few false negatives caused by the
incomplete concept space. For example, the text “Use street address” is parsed
correctly as an action “use” followed by a noun phrase“street address”. How-
ever, the dominant action “use” has zero neighbors of the concept spaces of
actions in any categories. Therefore S3 incorrectly identifies it as insensitive.
This case can be addressed by extending concept spaces or decreasing the
threshold.

– CB priority. A small source of false negatives results from the priority issue
in processing CB. For instance, the sentence “Allow Ad to create a calendar
event?” describes a “Setting” manner, but S3 identifies it as insensitive. S3
correctly parses its syntax as an action “Allow” followed by a noun phrase
“Ad” and an action “create” followed by a noun phrase “a calendar event”. S3
first identifies the sensitive candidate noun phrase “a calendar event” because
it has three neighbors in category “Calendar” while noun phrase “Ad” has no
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neighbors in any categories. Then S3 identifies the noun phrase “a calendar
event” is dominated by an action “create”. This action also has neighbors in
concept space of actions in category “Calendar”. Then the noun phrase “a
calendar event” and its dominant action “create” make up a CBANP . Since
the noun phrase “Ad” is insensitive but its dominant action “Allow” has
neighbors in category “Setting”, the action “Allow” makes up a CBA. Because
the CBANP has higher priority than CBA, S3 identifies the sensitiveness of
the text based on the CBANP “create a calendar event”. However the syntax
check fails because the CBANP is dominated by another action “Allow” (the
ancestor node is a verb phrase). Such issue can be addressed by processing
the CB sequentially until it reaches a sensitive category rather than only
processing the top priority CB.

– CB definition. Rare false negatives result from the issue in defining CB in
cases that the noun phrase and its dominant action belonging to different
categories. Take the text “Search by location” as an instance. It describes
a “Search” manner, but S3 identifies it as insensitive. S3 correctly parses
its syntax as an action “Search” followed by a noun phrase “location”. The
noun phrase “location” has neighbors in category “Profile”, but its dominant
action “Search” has no neighbors in category “Profile”. Therefore the noun
phrase and its dominant action cannot form a CBANP , and is thus classified
as insensitive. Such issue can be addressed by forming two separate CBs for
the noun phrase and its dominant action.

4.4 Performance

We evaluate the performance of S3 by measuring the average time of identifying
a text and its memory usage. We use S3 to identify top 20,000 out of 1,741,143
texts and measure the average time for each text. The experiment is performed
on a Dell PowerEdge R730 server with 20 cores (40 threads) of Intel(R) Xeon(R)
CPU E5-2660 v3 @ 2.60 GHz and 64 GB memory. The operating system is 64
bit Ubuntu 14.04.1 with Linux 3.19.0 kernel. The total time of processing 20,000
texts is 8682.4 s. The average time for each text is 0.43 s. Memory usage is 1,502
MB including the base corpus.

5 Related Work

To the best of our knowledge, S3 is the first systematical tool to automati-
cally identify sensitive data including input data and output data from descrip-
tive texts in mobile applications. Our approach utilizes NLP and learning
based methods to analyze descriptive texts. Related research efforts using
NLP and/or learning based methods to analyze texts/documents mainly are:
(1) Sensitive input data identification in Android applications [10,21]; (2)
Detecting mismatches between Android UIs and program behaviors [1]; (3)
Description/Review-to-Behavior fidelity analysis in Android applications [13,24,
26,35]; and (4) Automatic discovery of Indicators of Compromise (IOC) [16].
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Sensitive Input Data Identification in Android Applications. Supor [10]
analyzes the descriptive texts of input boxes to analyze their sensitiveness. It
first locates all the input boxes of a UI and then searches for their descriptive
text. It uses keyword based searching to analyze such texts, and thus could cause
many FP and FN because no semantic and syntactic information are considered.
Moreover, the process of generating keywords needs much manual effort and also
lacks flexibility of involving new sensitive data categories. UIPicker [21] utilizes
SVM (Support Vector Machine) to learn the descriptive texts. The features are
a set of sensitive keywords. The accuracy tends to increase as the size of training
set increases. However it is also the limitation of this approach, because it causes
much manual effort to prepare a well-labeled training set. The features are also
limited by the size of sensitive keywords, so that it cannot handle unknown words.
Compared with such approaches, S3 considers complete semantic and syntactic
information to give accurate sensitiveness of a descriptive text. Besides, S3 does
not require much manual effort to prepare massive keywords or training set.

Detecting Mismatches Between Android UIs and Program Behaviors.
BackStage [1] checks the advertised functionality of Android UI elements (e.g.,
buttons) against their implemented functionality to detect such mismatches. To
get the advised functionality, it analyzes the descriptive texts of these elements.
It collects all the verbs and nouns from their application dataset and then clusters
them into 250 classes. It gets the advertised functionality by testing the member-
ship of a target UI element among the 250 clusters. The approach of BackStage
is similar to the topic analysis of S3, but it does not consider syntactic infor-
mation. Therefore, BackStage is able to get only the approximate meaning of a
descriptive text, and is thus not applicable to identifying sensitiveness.

Description/Review-to-Behavior Fidelity Analysis in Android Appli-
cations. Approaches are proposed to identify the real permissions an Android
application needs from its descriptions (Description-to-Behavior fidelity) or
users’ reviews (Review-to-Behavior fidelity). AutoCog [26], Whyper [24], and
TAPVerifier [35] analyze Description-to-Behavior fidelity. AutoCog uses a learn-
ing based method to generate a dataset of noun phrases with corresponding verb
phrases and possessives (called np-counterpart in the paper) if any. It performs
an np-counterpart based searching on descriptions to identify the real permis-
sions. Actually it is an extension of keyword based searching, and does not con-
sider complete syntactic information as well. Whyper first extracts related noun
phrases and actions from API documents. Then it checks if the noun phrase is
dominated by the action in a description. It considers syntactic information, but
it is not complete, and no other semantic information (e.g., POS, sentiment) is
considered. TAPVerifier first collects verbs in different actions and then defines
semantic patterns of descriptions. However, only verbs are not sufficient to ana-
lyze the sensitiveness of a text in our problem domain. AUTOREB [13] analyses
Review-to-Behavior fidelity. The approach of AUTOREG is similar to UIPicker.
It also uses a machine learning method and the features of the classifier are key-
words as well. The difference is that AUTOREB utilizes the “relevance feedback”
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technique [34] to add relevant words to the keyword list. Syntactic information
is not considered in AUTOREG either.

Automatic Discovery of Indicators of Compromise (IOC). IOC is an arti-
fact observed on a network or in an operating system that with high confidence
indicates a computer intrusion. It can be converted into a machine-readable Ope-
nIOC format for automatically analysis. iACE [16] is proposed to discover IOC
data in online pages (e.g., blogs, forums) and creates IOC in OpenIOC format. It
first identifies IOC sentences in a document by searching IOC tokens and context
terms. It identifies IOC tokens with regrexes and uses keyword based searching
to identify context terms. Then it checks the relation between IOC tokens and
context terms by graph mining. Finally, it creates IOC if the relation passes the
check. Though iACE considers relatively complete syntactic information, regrex
matching of identifying IOC tokens and keyword based searching of identifying
context terms could cause many FPs and FNs.

In our problem domain, it is impossible to standardize sensitive data because
different users may care about different sensitive data. Therefore it requires an
approach that allows users to define sensitive data on demand. This is a key
aspect of S3. It proposes the notion of concept space to represent a category of
sensitive data. None of the related approaches have such flexibility to define a
category on demand. S3 performs a careful revision of sensitiveness with com-
plete syntax, POS and sentiment information taken into account. None of the
related approaches are applicable in our problem domain.

6 Conclusion

In this paper, we propose S3, an automated approach to identify sensitive data
from flexible user requirements. S3 takes semantic, syntactic and lexical analy-
sis into account to understand the semantic meaning of sensitive data and then
decides its sensitiveness. To enable S3 to support flexible user requirements in
defining sensitive data, we propose the notion concept space which is constructed
by initial readable concepts provided by users. S3 is able to learn users’ prefer-
ences from the concept space, and automatically identify related sensitive data.
We evaluate S3 on 18,681 application from top 500 free applications in 34 cat-
egories of Google Play. We classify sensitive data into 7 categories. S3 achieves
an average precision of 89.2%, and average recall 95.8% (within threshold 0.7)
in classifying sensitive data.
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Abstract. Program code is a valuable asset to its owner. Due to the
easy-to-reverse nature of Java, code protection for Android apps is of
particular importance. To this end, code obfuscation is widely utilized by
both legitimate app developers and malware authors, which complicates
the representation of source code or machine code in order to hinder the
manual investigation and code analysis. Despite many previous studies
focusing on the obfuscation techniques, however, our knowledge of how
obfuscation is applied by real-world developers is still limited.

In this paper, we seek to better understand Android obfuscation and
depict a holistic view of the usage of obfuscation through a large-scale
investigation in the wild. In particular, we focus on three popular obfus-
cation approaches: identifier renaming, string encryption and Java reflec-
tion. To obtain the meaningful statistical results, we designed efficient
and lightweight detection models for each obfuscation technique and
applied them to our massive APK datasets (collected from Google Play,
multiple third-party markets, and malware databases). We have learned
several interesting facts from the result. For example, more apps on
third-party markets than malware use identifier renaming, and malware
authors use string encryption more frequently. We are also interested in
the explanation of each finding. Therefore we carry out in-depth code
analysis on some Android apps after sampling. We believe our study
will help developers select the most suitable obfuscation approach, and
in the meantime help researchers improve code analysis systems in the
right direction.
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1 Introduction

Code is a very important intellectual property to its developers, no matter if they
work as individuals or for a large corporation. To protect this property, obfusca-
tion is frequently used by developers, which is also considered as a double-edged
sword by the security community. To a legitimate software company, obfuscation
keeps its competitors away from copying the code and quickly building their own
products in an unfair way. To a malware author, obfuscation raises the bar for
automated code analysis and manual investigation, two approaches adopted by
nearly every security company. For a mobile app, especially the one targeting
Android platform, obfuscation is particularly useful, given that the task of dis-
assembling or decompiling Android app is substantially easier than doing so for
other sorts of binary code, like X86 executables.

Android obfuscation is pervasive. On the one hand, there are already more
than 3.5 million apps available for downloading just in one app market, Google
Play, up to December 2017 [13]. On the other hand, many off-the-shelf obfus-
cators are developed, like ProGuard [14], DashO [7], DexGuard [8], DexPro-
tector [9], etc. Consequently, the issues around app obfuscation attract many
researchers. So far, most of the studies focus on the topics like what obfuscation
techniques can be used [20], how they can be improved [38], how well they can be
handled by state-of-art code analysis tools [37], and how to deobfuscate the code
automatically [22]. While these studies provide solid ground for understanding
the obfuscation techniques and its implications, there is still an unfilled gap in
this domain: how is obfuscation actually used by the vast amount of developers?

We believe this topic needs to be studied, and the answer could enlighten new
research opportunities. To name a few, for developers, learning which obfuscation
techniques should be used is quite important. Not all obfuscation techniques are
equally effective, and some might even have bad influence on the performance of
a program. Plenty of code analysis approaches were proposed, but their effects
are usually hampered by obfuscation and the impact greatly differs based on
the specific obfuscation technique in use, e.g., identifier renaming is much less of
an issue comparing to string encryption. Knowing the preferences of obfuscation
techniques can better assist the design of code analysis tools and prioritize the
challenges need to be tackled. All roads paving to the correct conclusions call for
measurement on real-world apps, and only the result coming from a comprehen-
sive study covering a diverse portfolio of apps (published in different markets,
in different countries, from both malware authors and legitimate companies) is
meaningful.

Our Work. As the first step, in this paper, we systematically study the obfus-
cation techniques used in Android apps and carry out a large-scale investigation
for apps in the wild. We focus on three most popular Android obfuscation tech-
niques (identifier renaming, string encryption, and Java reflection) and measure
the base and popular implementation of each technique. To notice, the exist-
ing tools, like deobfuscators, cannot solve our problem here, since they either
work well against a specific technique or a specific off-the-shelf obfuscator (e.g.,
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ProGuard). As such, they cannot be used to provide a holistic view. Our key
insight into this end is that instead of mapping the obfuscated code to its orig-
inal version, a challenge not yet fully addressed, we only need to cluster them
based on their code patterns or statistical features. Therefore, we built a set of
lightweight detectors for all studied techniques, based on machine learning and
signature matching. Our tools are quite effective and efficient, suggested by the
validation result on ground-truth datasets. We then applied them on a real-world
APK dataset with 114,560 apps coming from three different sources, including
Google Play set, third-party markets set, and malware set, for the large-scale
study.

Discoveries. Our study reveals several interesting facts, with some confirming
people’s intuition but some contradicting to common beliefs: for example, as
an obfuscation approach, identifier renaming is more widely-used in third-party
apps than in malware. Also, though basic obfuscation is prevalently applied in
benign apps, the utilization rate of other advanced obfuscation techniques is
much lower than that of malware. The detailed statistical results are provided
in Sect. 4. We believe these insights coming from “big code” are valuable in guid-
ing developers and researchers in building, counteracting or using obfuscation
techniques.

Contributions. We summarize this paper’s contributions as below:

– Systematic Study. We systematically study the current mainstream
Android obfuscation techniques used by app developers.

– New Techniques. We propose several techniques for detecting different
obfuscation techniques accurately, such as n-gram -based renaming detection
model and backward slicing-based reflection detection algorithm.

– Large-scale Evaluation. We carried out large-scale experiments and
applied our detection techniques on over 100K APK files collected from three
different sources. We listed our findings and provided explanations based on
in-depth analysis of obfuscated code.

Roadmap. The rest of this paper is organized as follows: We systematically sum-
marize popular Android obfuscation techniques in Sect. 2.2. Section 3 overviews
the high-level architecture of our detection framework. The detailed detection
strategies and statistical results on large-scale datasets are provided in Sect. 4.
Also, we discuss some limitations and future plans in Sect. 5. Section 6 reviews
the previous research on Android obfuscation, and Sect. 7 concludes this paper.

2 Background

In this section, we briefly introduce the structure of APK file and overview some
common Android obfuscation techniques.
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2.1 APK File Structure

An APK (Android application package) file is a zip compressed file contain-
ing all the content of an Android app, in general, including four directo-
ries (res, assets, lib, and META-INF) and three files (AndroidManifest.xml,
classes.dex, and resources.arsc). The purposes of these directories and files
are listed as below.

res This directory stores Android resource files which will be mapped to the .R
file in Android and allocated the corresponding ID.

assets This directory is similar to the res directory and used to store static
files in the APK. However, unlike res directory, developers can create subdi-
rectories in any depth with the arbitrary file structure.

lib The code compiled for specific platforms (usually library files, like .so) are
stored in this directory. Subdirectories can be created according to the type
of processors, like armeabi, armeabi-v7a, x86, x86 64, mips.

META-INF This directory is responsible for saving the signature information of a
specific app, which is used to validate the integrity of an APK file.

AndroidManifest.xml This XML file is the configuration of an APK, declaring
its basic information, like name, version, required permissions and compo-
nents. Each APK has an AndroidManifest file, and the only one.

classes.dex The dex file contains all the information of the classes in an app.
The data is organized in a way the Dalvik virtual machine can understand
and execute.

resources.arsc This file is used to record the relationship between the resource
files and related resource ID and can be leveraged to locate specific resources.

2.2 Android Obfuscation Characterization

In general, obfuscation attempts to garble a program and makes the source or
machine code more difficult for humans to understand. Programmers can delib-
erately obfuscate code to conceal its purpose or logic, in order to prevent tam-
pering, deter reverse engineering, or behave like a puzzle for someone reading
the code. Specifically, there are several common obfuscation techniques used by
Android apps, including identifier renaming, string encryption, excessive over-
loading, and so forth.

Identifier Renaming. In software development, for good readability, code iden-
tifiers’ names are usually meaningful, though developers may follow different
naming rules (like CamelCase, Hungarian Notation). However, these meaning-
ful names also accommodate reverse-engineers to understand the code logic and
locate the target functions rapidly. Therefore, to reduce the potential informa-
tion leakage, identifier’s names could be replaced by meaningless strings. In the
following example, all identifiers in class Account are renamed.

1 public class a{

2 private Integer a;
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3 private Float = b;

4 public void a(Integer a, Float b){

5 this.a = a + Integer.valueOf(b)

6 }

7 }

String Encryption. Strings are very common-used data structures in software
development. In an obfuscated app, strings could be encrypted to prevent infor-
mation leakage. Based on cryptographic functions, the original plaintexts are
replaced by random strings and restore at runtime. As a result, string encryp-
tion could effectively hinder hard-coded static scanning. The following code block
shows an example.

1 String option = "@^@#\x ‘1 m*7 %**9_!v";

2 this.execute(decrypt(option));

Java Reflection. Reflection is an advanced feature of Java, which provides
developers with a flexible approach to interact with the program, e.g., creating
new object instances and invoking methods dynamically. One common usage is
to invoke nonpublic APIs in the SDK (with the annotation @hide). The following
code gives an example of reflection that invokes a hidden API batteryinfo.

1 Object object = new Object ();

2 Method getService = Class.forName("android.os.

ServiceManager").getMethod("getService", String.class);

3 Object obj = getService.invoke(object , new Object []{ new

String("batteryinfo")});

As an obfuscation technique, reflection is a good choice of hiding program
behaviors because it can transfer the control to a certain function implicitly,
which can not be well handled by state-of-the-art static analysis tools. Therefore,
malware developers usually heavily employ reflection to hide malicious actions.

3 System Design

Our target is to systematically study the Android obfuscation techniques and
carry out a large-scale investigation. As the first step, we design an efficient
Android code analysis framework to identify the obfuscation techniques used
by developers. Here we overview the high-level design of this framework and
introduce the datasets prepared for the subsequent large-scale investigations.

3.1 System Overview

To detect the usage of obfuscation techniques, we propose an architecture to
analyze APK files automatically, as illustrated in Fig. 1. After the APK files
collected from several channels (details are provided in Sect. 3.2) are stored on
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our server, this detection framework will try to unpack them for the primary
testing. Some damaged APK files failing to pass this step will be discarded and
manually checked to make sure the samples used in the following phases are
valid. Then this framework applies three targeted detection methods to identify
obfuscated Smali code blocks. These detection methods could be classified into
two categories: signature-based and machine learning-based.

Fig. 1. Android app obfuscation detection framework

3.2 APK Dataset

We are interested in the obfuscation usage status of apps in different types, so
three representative APK datasets were used in our experiment: Google Play
set (26,614 samples), third-party market set (65,666 samples), and malware set
(22,280 samples). These samples were collected during 2016 and 2017. In total,
our experiment dataset contains 114,560 sample with the size of around 1.521TB.
More details are given in Table 1.

As the official app store for Android, Google Play is the main Android app
distribution channel. Thus, its sample set could reflect the deployment status of
obfuscation used by mainstream developers. Also, due to the policy restriction,
in some countries (such as China), Google Play is not available, and users have
to install apps from third-party markets. Therefore, in the second dataset, we
select six popular app markets from China (say Anzhi [4], Xiaomi [19], Wandou-
jia [18], 360 [1], Huawei [10], and AppChina [5]) and developed the corresponding
crawlers to collect their apps. Note that the replicated samples from different
markets have been excluded. Lastly, except for legitimate app samples, we are
also curious about whether malware authors heavily use obfuscation skills to
hide their malicious intentions. So, the last dataset contains the malware sam-
ples coming from VirusShare [16] and VirusTotal [17,30].

4 Obfuscation Detection and Large-Scale Investigation

In this section, we introduce the detection approaches for each obfuscation tech-
nique and summarize our findings based on large-scale experiments.
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Table 1. APK dataset for investigation

Type Source Number

Official Market Google Play 26, 614

3rd-party Market Wandoujia 8, 979

360 18, 724

Huawei 22, 048

Anzhi 7, 121

Xiaomi 4, 649

AppChina 4, 145

Malware VirusShare 19, 004

VirusTotal 3, 267

4.1 Identifier Renaming

Generally, in the software development, the names of identifiers (variable names,
function names, and so forth) are usually meaningful, which could provide good
code readability and maintainability. However, such clear names may leak much
information due to the easy-to-reverse feature of Java. As a solution, identifier
renaming is proposed and widely used in practice.

The renaming operation can be appended at different stages of APK file
packaging. For example, ProGuard [14] and Allatori [2] work at the source-code
level, mapping the original names to mangled ones based on the user’s configura-
tion. The other obfuscators, like DashO [7], DexProtector [9], and Shield4J [15],
can work directly on APK files, modifying .class and .dex files.

Given an identifier, we can easily tell whether some obfuscator has renamed
it based on the information it contains. In other words, if an identifier name is
obscure and meaningless, it can be regarded as obfuscated because it tries to hide
the actual intention. A typical renaming operation is changing the original name
to a single character (like “a”, “b”) or some kind of puzzling string (like “IlllIlII”,
“oO00O0oo”) [20]. However, the manual check is obviously not qualified for our
large-scale scanning goal. Moreover, we focus on the whole APK contents rather
than a single identifier. Therefore, we need to design a representation which can
measure the overall extent of identifier renaming given an app.

Beyond that, as a special case of identifier renaming, the excessive overloading
technique utilizes the overloading feature of Java and could map irrelevant iden-
tifier names to the same one, making the code more confusing to analysts [21].
For example, in the sample idfhn1, more than 46 functions are named as idfhn
(the same as the package name). Though the compiler could distinguish these
variables with the same name, security analysts have to face more troubles. In
our research, we also paid attention to the application of overloading feature and
its impact on code analysis.

1 MD5: 7d9eb791c09b9998336ef00bf6d43387.
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Identifier Renaming Detection. To the above challenges and targets, we
combine the computational linguistics and machine learning techniques for accu-
rate renaming detection. The high-level idea is based on the probabilistic lan-
guage model. The insight is that identifier renaming will lead to the abnormal
distribution of characters and character combinations, which distinguishes from
normal ones (non-obfuscated). The model outputs 1 or 0 according to whether
the app is judged as using identifier renaming. Here we give our three-step app-
roach:

1. Data Pre-processing. All the identifier names of the target APK sample are
extracted as the training candidates. Note that, software developers often
introduce third-party libraries into their apps. However, those third-party
libraries may contain obfuscated code, which does not reflect the protection
deployed by developers. Therefore we also pre-removed over 12,000 common
third-party libraries to avoid the inference using the approach of Li et al. [32].

2. Feature Generation. The amount of identifiers varies among different apps.
To build a uniform expression, we apply the n-gram algorithm [12] to gener-
ate a fixed-length 2 feature vector for each app. An n-gram is a contiguous
sequence of n items from a given sequence of text or speech. Through our
small-scale tests, we found 3-gram 3 can well depict the distribution of char-
acter combinations while restricting the length of the vector. Then we applied
it to traverse each name string in extracted raw name set to form the feature
vector. Each element of the vector records the frequency of a certain charac-
ter combination and will be normalized. Note that, the vector also involves
the frequencies of fewer-than-three character combinations (a, ab, etc.) due
to the length of an identifier may be smaller than three.

3. Classification. We collected apps from F-Droid and applied different obfus-
cators on them to generate the training set. Due to our model is a two-class
classifier, we decided to use Supported Vector Machine (SVM) as the classi-
fication algorithm for its powerful learning ability. After the training phase,
we applied it to our large-scale dataset.

Experiment Settings. We implemented a prototype of our detection model
based on Androguard [3] with more than 1,500 Python lines of code. For training,
we downloaded 3,147 apps with their corresponding source code from F-Droid.
Two obfuscators, ProGuard and DashO, were used to generate variant obfus-
cated samples because they have different renaming policies. Note that, due to
the diversity of apps’ project configurations, not all of them can be processed by
both ProGuard (2,107 successful samples) and DashO (654 successful samples).
Among them, we randomly chose 500 original apps and 500 successful obfus-
cated apps (250 from Proguard and 250 from DashO) as the training set. We

2 The length is restricted by the legal characters sets used for contracting a name in
Java: [“a-z”, “ A-Z”, “0-9”, “ ”, “$”, “\”].

3 For example, if there is a string “abcdefgh”, all of the 3-gram sequences it contains
are {abc, bcd, cde, def, efg, fgh}.
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then randomly selected 500 original, 250 Proguard-obfuscated and 250 DashO-
obfuscated apps from the remaining set to do the validation. Our model reached
0.6% FN rate and 0.0% FP rate, which is quite satisfactory. We then collected
another testing set consisting of 200 samples obfuscated by another obfuscator
called Allatori. The completely successful classification results showed the strong
generalization ability of our model.

Large-Scale Investigation and Findings. We carried out a large-scale detec-
tion on the three typical datasets (Google Play, third-party markets, and mal-
ware) mentioned in Sect. 3.2. The obfuscation detection result by dataset is given
in Fig. 2. According to such statistics, we have two immediate findings:

43.0%
57.0%

Google Play

73.0%

27.0%

Third-party Markets

63.5%

36.5%

Malware

Obfuscated (Renaming)
Non-obfuscated (Renaming)

Fig. 2. Ratio of identifier renaming in three datasets

⇒ 1. Compared with the apps on Google Play, the ones from third-party
markets apply more renaming operations.
⇒ 2. Over one third of malware don’t apply identifier renaming.

To the first finding, we ascribe it to the discrepancy between app market
environments. The piracy issue in Chinese app markets are quite severe, say
nearly 20% apps are repacked or cloned [24]. Such situation urges developers to
put more effort into protecting their apps. On the other hand, Google Play pro-
vides more strict and timely supervision, which mitigates the severity of software
piracy largely. The better application ecosystem makes many developers believe
obfuscation is just an optional protection approach.

To the second finding, the percentage of malware utilizing identifier renaming
is only 63.5%, slightly less than third-party apps, which is opposite our tradi-
tional opinion. After manually checking the code of malware without renaming-
obfuscation, we conclude that two aspects contribute to such phenomenon.

– Script Kiddies. Many entry-level malware authors only could develop simple
malicious apps and lack the knowledge of how to disguise malicious behaviors
through obfuscation. A few codes and clumsy class structures are two main
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features of those entry-level apps. The vicious behaviors of the malware are
usually exposed to analysts due to the rough implementation.

– False Alarmed “Malware”. For some apps, their main bodies are benign and
non-obfuscated, while the imported third-party libraries contain some kinds
of sensitive and suspicious behaviors which are recognized as malicious by
some anti-virus software. A common example is the advertising library.

In addition, we explored the difference in renaming implementation between
malware and benign apps. The result reflects:

⇒ 1. Malware authors prefer to use more complex renaming policies.
⇒ 2. Malware may use irrelevant names to hide the true intention.

We find that, in benign apps (the samples on Google Play and third-party
markets), most identifier names are mapped to {a, b, aa, ab, aaa, . . . } and so
on, in lexicographic order. In fact, such renaming rules accord with the default
configurations of many obfuscators (such as ProGuard). That is to say, app
developers do not intend to change the renaming rules to more ingenious ones.
However, malware authors usually put more effort into configuring the renaming
policies. For example, some malware samples utilize special characters (encoded
in Unicode) as obfuscated names (e.g., È, ô), which seems very odd but still
be regarded as legal by Java compilers. Also, some dazzling weird names (like
{IlllIlII, oO00O0oo, . . . }) could be found. Such renaming policy can actually make
manual analysis more strenuous.

Apart from that, we find that overloading, as a grammar feature pro-
vided by Java, is also applied by malware to confuse analysts. In sample
tw.org.ncsist. mdm4, the name of overloaded function attachBaseContext
(A protected method in class android.app.Application) will mislead security
analysts because the logic of this function is actually implemented for encryption.

4.2 String Encryption

The strings in a .dex (Dalvik executable) file may leak a lot of private informa-
tion about the program. As security protection, those hard-coded texts can be
stored in an encrypted form to prevent reverse analysis. In this section, we take
a deep insight into the string encryption and focus on two aspects:

1. Detect whether an app uses the string encryption.
2. Analyze the cryptographic functions invoked by apps.

String Encryption Detection. Similar to the approach for identifier renam-
ing detection (Sect. 4.1), we trained a machine-learning based model to classify
encrypted strings and plain-text strings. We reused the 3-gram algorithm, SVM
algorithm, and the open-source apps from F-Droid. Here we only describe the
different steps. At first, all strings appeared in an app are extracted. Next, a
4 MD5: 01a93f7e94531e067310c1ee0f083c07.
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vector was generated for each app. Distinct from the setting for identifier renam-
ing detection, there is no restriction on the content of a string. Therefore, we
extended the acceptable character set to all ASCII codes5.

In the implementation, we reused most code of identifier renaming detection
model. Since string encryption is not a common function provided by off-the-
shelf obfuscators, we chose DashO and DexProtector to generate the ground
truth and finally obtained 737 string-encrypted samples for training. To avoid the
overfitting caused by unbalanced data, we randomly selected 500 original apps
and 500 string-encrypted apps to train our model. To verify the effectiveness, we
randomly selected another 100 original apps and 100 string-encrypted apps for
testing. The result shows our model could achieve 98.5% success rate with FP
1% and FN 2%.

Cryptographic Function Detection. Previous work has proposed various
approaches to identify cryptographic functions in a program, like [23,28,34].
Those methods were specifically designed for the identification of the standard,
modern cryptographic algorithms in binary code, like AES, DES, and RC4. The
features used by the previous commonly include entropy analysis, searchable
constant patterns, excessive use of bitwise arithmetic operations, memory fetch
patterns and so on, besides, the dynamic binary instrument is also widely-used
by analysts to better locate and identify the cryptographic primitives. However,
previous approaches do not fit android platform very well due to three rea-
sons: (1) Smali instructions have different representations from the x86 assembly
language, especially for memory access. (2) Java provides the complete imple-
mentations of standard cryptographic algorithms through Java Cryptography
Extension [11]. Therefore, in most cases, developers do not need to implement
cryptographic related functions again. (3) Java provides a series of string & char-
acter operations, like concat(), substring(), getChars(), strim() and so on,
which can be used to build an encrypted string.

To better handle the identification in Android apps, we extended the previous
approaches with more empirical features, shown as below.

– The ratio of bit and loop operations.
– The usage of Java Cryptography Extension API invoking.
– The amount of operations on string & character variables.
– The frequency of encrypted strings as function parameters (for decryption).

Large-Scale Investigation and Findings. We applied our string encryption
detection model on the testing datasets. The results are presented in Fig. 3. The
direct findings are that:

⇒ 1. Nearly all benign apps don’t use string encryption.
⇒ 2. String encryption is more popular in malware.

5 Unicode codes can be represented in the form of \uxxxx, where xxxx is a 4-digit
hexadecimal number.
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Fig. 3. Ratio of string encryption in three datasets

These statistical results comply with our perception, and we could under-
stand it from three perspectives. (1) String encryption is not a common feature
provided by off-the-shelf obfuscators (Proguard). The obfuscators offering the
string encryption feature are expensive (DexGuard, DexProtector). (2) Many
developers may lack the knowledge or awareness of deploying more advanced
obfuscation techniques. They may believe the default identifier renaming is
enough for code protection and it is not necessary to consider other techniques.
(3) String encryption can help malware evade the signature scanning of some
anti-virus software and hidden the intention effectively, leading to a higher rate
of utilization than benign apps.

We then manually analyzed the implementations of cryptographic functions
extracted from malware set and got the following findings.

⇒ The cryptographic functions usually disguise its true intention by changing
to an irrelevant name.

For instance, in sample com.solodroid.materialwallpaper6, the decryp-
tion function is disguised as a common legitimate API NavigationItem;->
getDrawable() which should be used for retrieving a drawable object.

⇒ About 17.6% of string-encrypted malware implement multiple crypto-
graphic functions and take turns to use them in a single app.

In sample com.yandex.metrica7, four different cryptographic functions were
implemented. All of them first initialize the key, then doing the encryption/de-
cryption. However, the key initialization procedures are quite different from each
other. As a result, the workload of restoring rises significantly for analysts.

1 // In class com.yandex.metrica.impl.ad;

2 static final String a(String str){

3 if (c == null){

6 MD5: fab2711b0b55eb980f44bfebc2c17f1f.
7 MD5: 95f7d37a60ef6d83ae7443a3893bb246.
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4 a13840 (); // key initialization function

5 }

6 Continue ...

7 }

⇒ The secret keys can be either statically defined or dynamically generated.

In the static case, the key is either hard-coded or directly imported as the
parameter, which can be easily located and obtained. On the other hand, the
dynamic key is usually generated at runtime and even could be fluctuating in
different runtime context, which is nearly impossible to be handled by static
analysis. The following code snippet shows an example of dynamic key genera-
tion, in which elements[3] is not a fixed value because of the uncertain stack
trace at runtime.

1 StackTraceElement [] elements = Thread.currentThread ().

getStackTrace ();

2 int hashCode = elements [3]. getClassName ()+elements [3].

getMethodName ().hashCode ();

4.3 Reflection

Reflection allows programs to create, modify and access an object at runtime,
which brings many flexibilities. However, such dynamic feature also impedes
static analysis due to those reflective invocations, especially those invoking other
functions. Such uncertain behaviors could result in that the static analysis cannot
capture the real intention.

In this section, we explore two questions on reflection:

1. How widespread is the reflection used in the wild?
2. Among all the usage, how many of them are for the obfuscation purpose?

Reflection provides diverse APIs targeting at different objects like Class,
Method and Field. In practice, particular APIs are often executed in sequence
to achieve specific functionalities. In our study, we focus on the sequence pattern
[Class.forName() → getMethod() → invoke()] which is the most frequent
pattern for reflective calls mentioned by Li et al. [31]. Also, in this sequence,
the execution of the program is implicitly transferred to another function (the
function targeted by getMethod()), which has an obvious influence on program
status, especially the control flow.

Reflection Detection. First, we located the reflective invocations by searching
for the certain APIs, Class.forName(), etc. Then we managed to recover the
real target of the reflective calls, actually the parameters of Class.forName()
and getMethod(). In theory, dynamic analysis is the best way to find the input
parameter. However, its low path coverage and efficiency issues are not suitable
for large-scale scanning. To balance the efficiency and coverage, we developed a
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light-weight tool to trace the input parameters. The high-level idea is to find the
real content of the parameters through backward slicing.

More details, first our tool scans the function body and locates two reflection
calls – Class.forName() and getMethod(). The parameter registers will be
set as slicing criterion. Then it traces back from the locations, analyzing each
instruction to find the corresponding slices. After that, this tool parses and
simulates each instruction in slices, and calculates the final value of the slicing
criterion.

Here, we use a real-world example (see the below code block) to illustrate
such work flow. In this case, our tool will mark the positions of blue-highlighted
reflective calls and trace the data flow of red-highlighted registers. The final
output would be {“android.os.SystemProperties”, “get”}.

1 const/4 v1, 0

2 const-string v0,’android.os.SystemProperties ’

3 invoke-static v0,Ljava/lang/Class;->forName(Ljava/lang/String

;)Ljava/lang/Class;

4 const-string v2, ’get’

5 . . .
6 invoke-virtual v0, v2, v3, Ljava/lang/Class;->getMethod(Ljava/

lang/String; [Ljava/lang/Class;)Ljava/lang/reflect/

Method;

Note that, to reduce the maintenance complexity, we do not carry out recur-
sive function invoking resolution. If the content of the target register is the return
value of another function, the metadata of that function will be recorded (name,
parameters, etc.). Besides, due to our tool works at the static level, predicates
(if and switch, etc.) may lead to the failure of recovering the real target. When-
ever the target can not be definitely obtained by our tool, a null will be recorded
instead. We then measured the successful recovery rate of our static-level tool.
Among all 121,262 occurrences of reflective calls, 116,595 (96.2%) non-null tar-
gets were recorded, which means our tool can work effectively.

Large-Scale Investigation and Findings. The implementation of our detec-
tion model (reflection usage and invoked functions in reflection) is still based on
Androguard with around 1600 Python lines of code. After experiments on our
APK dataset, the reflection statistics are shown in Fig. 4. We could find:

⇒ The proportions of reflection deployment in benign apps and malware are
similar.

To the successfully recovered functions, we further explore why these reflec-
tion implementations are necessary. According to different APK dataset, the
most frequently invoked functions are listed in Tables 2, 3, and 4 respectively.
These lists reflect:

⇒ Most of the reflection cases are used to invoke hidden functions or to support
backward compatibility.
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Fig. 4. Ratio of reflection in three datasets

Table 2. Functions invoked via reflection (Google Play)

Frequency Recovered Function

2,275 android.support.v4.content.LocalBroadcastManager.getInstance

1,297 android.webkit.WebView.onPause

1,250 android.os.SystemProperties.get

821 org.apache.harmony.xnet.provider.jsse.NativeCrypto.RAND seed

523 com.google.android.gms.common.GooglePlayServicesUtil.

isGooglePlayServicesAvailable

Table 3. Functions invoked via reflection (3rd-p Market)

Frequency Recovered Function

3,859 android.os.SystemProperties.get

1,800 android.support.v4.content.LocalBroadcastManager.getInstance

1,158 org.apache.harmony.xnet.provider.jsse.NativeCrypto.RAND seed

721 android.os.ServiceManager.getService

613 android.os.Build.hasSmartBar

Table 4. Functions invoked via reflection (malware)

Frequency Recovered Function

2,977 java.lang.String.valueOf

2,142 android.telephony.gsm.SmsManager.getDefault

687 android.os.SystemProperties.get

518 java.lang.String.charAt

352 java.lang.String.equals
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In Android system, the functions related to the Android framework and
OS itself are usually annotated with the label “@hide”, which can only be
called through reflection. In above three tables, all functions starting with
android.os.* and android.webkit.* are hidden-annotated.

We also manually checked the use case of android.support.v4.content.
LocalBroadcastManager.getInstance. We found that the corresponding
reflective calls are usually enclosed in a try-catch block, aiming to handle the not-
found exception caused by discrepancy among systems with different versions.
Such pattern is a programming standard recommended by the official Android
documents [6].

To malware samples, we find:

⇒ Compared with benign apps, malware prefers to use more complex reflec-
tion invoking patterns to hide its intentions.
⇒ String operations are usually combined with reflection to enhance the com-
plexity of the code.

For example, the following code block is extracted from an obfuscated mal-
ware8. After analysis, the function invoked by reflection could be restored as:

1 if (!ò.trim().toLowerCase ().contains(0̂("G))OCH")))

As a comparison, the original code is shown below. In this case, all string
operations can be written in non-reflection forms. We could find such reflection
usage makes the code structure more complicated and confusing, which enhances
the effect of code obfuscation.

1 if (!(( Boolean) Class.forName("java.lang.String").

getMethod("contains", new Class ({ CharSequence.class }).

invoke(Class.forName("java.lang.String").getMethod("

toLowerCase", null).invoke(Class.forName("java.lang.

String").getMethod("trim", null).invoke(ò, null), null)

, new Object []{0̂("G))OCH")})).booleanValue ())

5 Discussion

In this section, we discuss some limitations of our study and then describe the
future plan. Though we have conducted a large-scale investigation of mainstream
obfuscation techniques used in Android apps, we should point out there are still
some existing techniques not involved in our research, say control flow obfusca-
tion and native code obfuscation.

According to our investigation, the control flow obfuscation is non-universal
and only provided by two available Android obfuscators, DashO and Allatori.
Moreover, we believe both tools cannot provide a strong control flow obfusca-
tion implementation as they claimed. In our experiments, less than 5% methods

8 MD5: 7ff1b8afd22c1ed77ed70bfc04635315.
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contained in our sample APKs were obfuscated in the control flow, and the
obfuscation implementations were trivial (such as only adding some simple “try-
catch” combinations). Therefore, at this moment, we cannot capture enough
meaningful (real-world) control-flow obfuscated samples for study.

Another topic not involved in this paper is native code obfuscation. As an
advanced programming skill, developers can implement components in native
code with the help of Android NDK. However, the implementation of native
code is quite different from Java-level techniques, which makes the native code
obfuscation could be treated as an independent research topic. Therefore, we
leave it as our future study.

6 Related Work

Obfuscation is always a hot research topic in Android ecosystem, and there are
several studies performed on how to obfuscate Android apps effectively and how
to measure the obfuscation effectiveness.

6.1 Obfuscation Measurement and Assessment

Obfuscation techniques have been widely used in the Android app development.
Naturally, in academia, researchers are interested in whether these techniques
do work. An early attempt is [27] which empirically evaluates a set of 7 obfus-
cation methods on 240 APKs. Also, Park et al. [35] empirically analyzed the
effects of code obfuscation on Android app similarity analysis. Recently, Faruki
et al. [26] conducted a survey to review the mainstream Android code obfus-
cation and protection techniques. However, they concentrated on the technical
analysis to evaluate different techniques, not like our work based on a large-
scale dataset. They show that many obfuscation methods are idempotent or
monotonous. Wang et al. [41] defined the obfuscator identification problem for
Android and proposed a solution based on machine learning techniques. The
experiments indicated that their approach could achieve about 97% accuracy to
identify ProGuard, Allatori, DashO, Legu, and Bangcle. Duan et al. [25] con-
ducted a comprehensive study on 6 major commercial packers and a large set
of samples to understand Android (un)packers. On the aspect of deobfuscation
research, Bichsel et al. [22] proposed a structured prediction approach for per-
forming probabilistic layout deobfuscation of Android APKs and implemented
a scalable probabilistic system called DeGuard.

Different from above research, our work is based on large Android app
datasets which cover official Google play store, third-party Android markets,
and update-to-date malware families. We attempt to understand the distribu-
tion of Android obfuscation techniques and provide the up-to-date knowledge
about app protection.
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6.2 Security Impact of Android Obfuscation

As discussed earlier, the obfuscation will create barriers for Android program
analysis. Works on clone/repackage detection [40,42] find that obfuscations can
impair detection results.

Studies of malware detection also showed that obfuscation is an obstacle
to malware analysis. Rastogi et al. [37] evaluated several commercial mobile
anti-malware products for Android and tested how resistant they are against
various common obfuscation techniques. Their experiment result showed anti-
malware tools make little effort to provide transformation-resilient detection (in
the year 2013). After that, Maiorca et al. [33] conducted a large-scale experiment
in which the detection performance of anti-malware solutions are tested against
malware samples under different obfuscation strategies. Their results showed
the improvement of anti-malware engines in recent years. Recently, Hoffmann et
al. [29] developed a framework for automated obfuscation, which implemented
fine-grained obfuscation strategies and could be used as test benches for eval-
uating analysis tools. Similar works are also completed by Preda et al. [36].
To handle obfuscated samples, Suarez-Tangil et al. [39] propose DroidSieve, an
Android malware classifier based on static analysis and deep inspection that is
resilient to obfuscation.

For malware detection, researchers mainly discussed arms race between obfus-
cation and malware detection. Although some malware detection tools claim to
still work well in the presence of obfuscation, none could eliminate the obfusca-
tion effects in their experimental evaluation. Our study focuses on the empirical
study of security impacts of obfuscation in the wild from different views, which
are complementary to existing works. That is, we statistically evaluate the distri-
bution of obfuscation methods from views of different markets, hardening capa-
bility of obfuscations and temporal evolution, with a light-weight and scalable
obfuscation detection framework. We believe some of our findings would be use-
ful for developers and researchers to better understand the usage of obfuscation,
for example, keeping pace with the development of obfuscation technique.

7 Conclusion

In this paper, we concentrate on exploring the current deployment status of
Android code obfuscation in the wild. For this target, we developed specific
detection tools for three common obfuscation techniques and performed a large-
scale scanning on three representative APK datasets. The results show that,
to different techniques and app categories, the status of code obfuscation dif-
fers in many aspects. For example, the basic renaming obfuscation has become
widely-used among Chinese third-party market developers, while still not perva-
sive in Google Play market. Besides, malware authors put great efforts on more
advanced code protection skills, like string encryption and reflections. Also, we
provide the corresponding illustrations to enlighten developers to select the most
suitable code protection methodologies and help researchers improve code anal-
ysis systems in the right direction.
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Abstract. Mobile devices such as smartphones and tablets have become
increasingly popular tools for Internet-based communication such as web
browsing and text messaging. At the same time however, mobile devices
fail to provide important privacy guarantees for their users. In particular,
mobile devices per default neither conceal which services they are con-
tacting nor hide their source IP addresses. Solutions to these problems
exist, but either do not provide sufficient protection or have not gained
widespread use due to a lack of usability. In this paper, we therefore
present an architecture that combines the transparent tunneling of traf-
fic with the strong protection of low-latency anonymisation networks. We
furthermore present and discuss trade-offs that can be made to reduce
the latency and overhead caused by the transparent tunneling of traf-
fic. Based on measurements taken from a testbed setup, we show that
our solution provides anonymity at the IP layer with acceptable energy
consumption and goodput penalties.

1 Introduction

Wireless and mobile communication technologies such as Wi-Fi, UMTS and LTE
allow mobile connectivity to the Internet at speeds sufficient for email, instant
messaging, web browsing, and even video streaming. As a consequence, mobile
devices such as smartphones and tablets became widely used for Internet-based
communication.

Similar to desktop devices, smartphones and tablets per default do not pro-
vide sufficient concealment of the users communication activities. On the one
hand, mobile devices do not hide the IP addresses of the services they are con-
tacting, consequently leaking this information to the Internet service provider
(ISP) and to local Wi-Fi access point providers. On the other hand, mobile
devices do not hide their own IP addresses from the services they are contact-
ing. Thus if the service colludes with the ISP of the user, both entities are able
to link the service with the real-world identity of the user.
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Virtual Private Network (VPN) services like Mullvad1 and Private Internet
Access2 allow users to mitigate these problems by installing an application on
their devices that tunnels all traffic through the VPN provider’s servers. While
VPN services typically act transparently and can be set up easily, they require
the user to trust the VPN provider, since the latter can easily observe which ser-
vices the user is contacting [1,2]. Applications like Orbot3 and ANONDroid4 in
contrast utilise low-latency anonymisation networks and thus provide anonymi-
sation without the user having to trust a single entity. At the same time however,
these applications do not yet provide the same level of transparency as VPN ser-
vices do. The ANONdroid application only provides a local SOCKS-interface,
so that only applications that support SOCKS can profit from anonymization.
Orbot already provides a VPN mode that achieves a similar level of transparency
as applications from VPN providers do. However, Orbot only supports anonymi-
sation of TCP traffic5 and we are not aware of any documentation or evaluation
of Orbot’s architecture and performance.

Motivated by the need for easy-to-use and strong IP layer anonymisation, we
present the following contributions in this paper:

– Inspired by virtual private network technology, we propose an architecture for
transparent tunneling of arbitrary IP traffic through low-latency anonymisa-
tion. We furthermore discuss protocol-specific optimisations for UDP, TCP
and DNS traffic.

– We present results from experiments on a testbed, where we measured the
average goodput and energy consumption during the download of data under
different settings. In particular, we compare the performance of different
devices with different versions of Android for the cases that OpenVPN for
Android, Orbot or our solution is used for anonymisation.

The paper is structured as follows: In the next section, we first give a short
introduction to mix networks and highlight how low-latency mix networks differ
from traditional mix networks. In Sects. 3 and 4, we state the goals that guided
the design of our solution and discuss to which extend these goals have been
addressed in the literature. In Sects. 5 and 6, we subsequently present our solu-
tion in detail and discuss protocol-specific optimisations. Section 7 discusses to
which extend the optimisations we proposed weaken the privacy guarantees of
the low-latency anonymisation service that is used. In Sect. 8, we present and
discuss our experimental results. Section 9 then provides summary of our results.

1 Mullvad. https://www.mullvad.net/en/, 2018-01-05.
2 Private Internet Access. https://www.privateinternetaccess.com/. 2018-01-05.
3 “Orbot: Tor for Android”. Guardian Project. https://guardianproject.info/apps/

orbot/. 2018-01-05.
4 “ANONdroid”. JAP-Team. https://play.google.com/. 2018-01-23.
5 “Tor Project: FAQ”. Tor Project. https://www.torproject.org/docs/faq.html.en.

2018-01-05.
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2 Background

Our work addresses privacy issues of mobile devices such as smartphones and
tablets that are connected to the Internet via Wi-Fi or mobile communications.
We consider a user, who runs one or more applications on his device. Each
application in turn contacts a number of Internet services to exchange data.
Depending on the service, the respective application might need to provide login
credentials in order to gain access.

To protect his privacy, the user wants to set up his mobile device in such a
way that the installed applications never contact Internet services directly, but
instead utilise an anonymisation service like Tor [3] or AN.ON [4] to contact
services privately. In particular, the user expects the service to provide sender
anonymity, meaning packets sent by the user’s device cannot be linked to it
anymore after being processed by the network.

Low-latency mix networks are based on the mix concept introduced by
Chaum [5]. To conceal its communication using a sequence of mix nodes, a client
pads each packet to a fixed length and performs layered encryption, where each
layer is encrypted with the key of the corresponding mix node. Low-latency mix
networks are designed for use cases where a high latency results in unacceptable
slowdown, such as web browsing or multimedia streaming. Instead of encrypt-
ing each mix packet separately using public key cryptography, low-latency mix
networks therefore only make use of public key cryptography once to exchange
symmetric keys between senders and mixes. A set of symmetric keys is then
called an anonymous channel or circuit and is used for multiple packets. The
low-latency mix networks considered in our work furthermore provide reliable
communication, automatically performing retransmission of lost packets.

Due to the absence of any artificial delay during the processing of mix packets
by mixes, low-latency mix networks are vulnerable to traffic analysis attacks
based on timing. Thus, low-latency mix networks can only protect against a local
adversary that can observe or compromise a fraction of the mixes by generating,
modifying or dropping packets. Furthermore, low-latency mix networks do not
provide anonymity for a particular channel if the first and last mix of the channel
are under control of the adversary.

3 Goals

In our opinion, a useful and effective mechanism for mobile devices that provides
anonymisation of traffic at the network and transport layer should achieve the
following goals:

1. Strong anonymisation of traffic: The mechanism must support obfusca-
tion of arbitrary traffic at the network and transport layer in a manner that
does not open up new attacks for the local adversary described in Sect. 2.

2. Low setup complexity: The mechanism needs to be easy to setup on cur-
rent operating systems for mobile devices. In particular, it shall be imple-
mentable without requiring modifications of the operating system kernel or
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unlocking of administrative privileges (e.g. rooting on Android or jailbreaking
on iOS). Furthermore, the solution should provide protection for all installed
applications per default without the need to make changes to any application.

3. Low overhead: The anonymisation should not result in a significant loss of
network throughput nor increase the latency significantly. Furthermore, the
solution should consume a low amount of energy.

We consider anonymisation at the application layer out of scope, since latter can-
not be done in general without changing the code of the applications themselves.
For example, web browsers typically protect the confidentiality and integrity
of their traffic by means of Transport Layer Security (TLS). Consequently, a
transparent proxy application cannot erase identifying information from the web
traffic without being able to compromise TLS encryption, which is clearly unde-
sirable.

4 Related Work

According to our knowledge, the integration of low-latency anonymisation
services into mobile devices so far received only few attention by the research
community. Wiangsripanawan et al. [6] proposed game-based definitions for loca-
tion privacy as well as for sender anonymity, receiver anonymity and unlinka-
bility together with three different mechanisms that allow mobile Tor clients to
avoid loss of existing circuits after their IP address have changed. Andersson and
Panchenko [7] investigate the differences regarding anonymity and performance
for the cases that the Tor client is running directly on the mobile device, the Tor
client is running on a computer at the home of the user and the case that the
mobile device connects to a third party Tor client. More recently, the work of
Doswell [8] presents a field study along with network simulation and mathemat-
ical modelling, showing the impact of congestion and circuit build time on the
achievable data transfer speed. Furthermore, Doswell proposes a design called
mBridge, which employs a trusted bridge relay as first hop and Mobile IP [9] to
handle changes of the mobile devices’ IP address.

Fundamentally, all previous work on low-latency anonymisation that we are
aware of focuses on efficient maintenance of connectivity to the anonymisation
service. Thus, there still is a need for investigation regarding how an anonymisa-
tion client can be integrated into the mobile device in an effective and resource-
efficient manner.

5 Design

Existing low-latency anonymisation networks like Tor [3] or AN.ON [4] typically
provide a client software that is run as a background service on the user’s sys-
tem. In order to make the anonymous communication service accessible to other
applications, the client software implements a proxy interface and can therefore
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be used like a regular proxy (usually SOCKS or HTTP proxy). While this app-
roach has the advantage that it only requires processing of application layer data
and is thus easy to implement, it currently fails in practice, as Android and iOS
do not support a corresponding permanent global setting. Instead, Android and
iOS only allow manual proxy settings per network [10,11], which would have to
be done manually by the user and thus is error-prone.

To overcome the aforementioned problem, we instead utilise a virtual network
interface (VNI), which is already provided by Android and iOS [12,13]. Latter
is handled by the operating system like a real network interface. The interfaces
provided by Android and iOS furthermore automatically set up their forwarding
table so that whenever an application sends a packet to an arbitrary destination,
this packet will be enqueued in the VNI until it is processed by a dedicated
process that we call mediator service in the following.

Network
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Data

IP packet
IP packet

Mix packet

IP/mix

User level

packet
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Socket Socket

TX Queue
RX Queue

Fig. 1. The architecture of the software running on the user’s smartphone.

Figure 1 illustrates the architecture of the software running on the user’s
device in detail. Except for the mediator service, all packets sent by user-
level applications are appended to the VNIs transmission queue (TX queue) by
the operating system. We assign an IP address from a private address space
(10.0.0.0/8 or 172.16.0.0/12) to the VNI in order to avoid overlap with IP
addresses of the Internet.

The only process that is able to exchange IP-packets with the external net-
work is the mediator service. Latter is aware of the VNI and is able to read
and remove IP-packets from the transmission queue. Additionally, the mediator
service is able to append IP-packets to the reception queue (RX queue) of the
VNI. The operating system subsequently delivers all IP-packets added to the
reception queue to the corresponding applications.

For each IP-packet read from the transmission queue, the mediator service
extracts the relevant header data and payload, sets up a new channel through
the anonymisation service if necessary and submits the extracted data over the
channel. Whenever the mediator service receives data from the anonymisation
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service, it assembles a corresponding IP-packet and appends it to the reception
queue. If necessary, the mediator service then closes the channel through the
anonymisation service.

5.1 Improving Efficiency and Anonymity Considering Transport
Layer Packet Streams

Since we focus on current mobile devices based on Android and iOS, the primary
consideration that influenced our design is that latter devices mainly communi-
cate in the form of TCP and UDP flows, where each flow consists of multiple
packets destined to the same recipient.

From the perspective of the mediator service introduced above, we assign
each field of a packet header to one of the following three categories:

– Static: Data that needs to be transmitted and which does not change from
packet to packet of the same flow.

– Dynamic: Data that needs to be transmitted and which differs between
packets of the same flow.

– Private: Data that must not or does not need to be transmitted.

Additionally we treat the whole packet payload (i.e. the application layer
data) as dynamic because our anonymisation approach works on the transport
layer and has therefore no knowledge about which parts of the payload are in
fact static or private.

For static data, we can trade off transmission overhead against memory con-
sumption (in terms of keeping state). To do so, the mediator only once sends
control information that contains the set of header fields and values that shall
be used for all packets of the corresponding flow. The last relay then keeps this
information in memory until the flow has been terminated.

Dynamic data in turn allows a trade-off between overhead and latency. Since
the encapsulation process of the low-latency anonymisation protocol enforces
a fixed length for the resulting mix packets, the dynamic data contained in
one packet might only use a fraction of the space reserved for anonymous pay-
load data, thus resulting in significant padding overhead. To reduce the needed
amount of padding, the mediator can wait a certain amount of time for fur-
ther packets and if successful, encapsulate the dynamic data of multiple packets
within one mix packet.

In the following we describe how we adapted the general approach described
above to the important transport layer protocols UDP and TCP and how we
deal with the remaining IP traffic.

UDP: The UDP header contains four fields, namely the destination port, the
source port, the payload length and a checksum. The destination port is consid-
ered to be static data and thus will be transmitted (together with the destination
IP address) only once per UDP packet flow. Additionally we treat the source
port as static data. The checksum is handled as private data and therefore not
transmitted. As the anonymous channel offers reliable transport, the checksum
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will be recreated by the last relay before sending the UDP packet to the final
destination. The UDP payload length is considered to be dynamic. We assume
that many application layer protocols on top of UDP expect to receive non-
fragmented data units (e.g. RTP packets) and thus we must preserve the UDP
packet size while sending the UDP packet from the last relay to the final desti-
nation.

TCP: For TCP, the situation is more complex, since a naive transmission of
TCP header data and payload would neglect the fact that low-latency anonymi-
sation services already provide reliable transmission of data, thus resulting in an
undesirable transport of TCP over TCP. Additionally it turned out that most
of the TCP header fields could or should be treated as private. The former for
efficiency reasons, the latter due to anonymity reasons, e.g. to avoid leakage of
details about the sender’s TCP implementation (which in turn could be related
to revealing the operating system used etc.). Therefore our general approach is
to basically only transport the TCP payload but not the TCP header. The only
exception is that we treat the destination port number (and destination address)
as static data.

To achieve this, we employ a minimal user-level TCP stack that allows the
mediator service to transparently interact with the TCP streams of local applica-
tions. Since the mediator service and the application that uses TCP are running
on the same device, the user-level stack does not need any sophisticated mech-
anisms for detection of packet loss and congestion control, allowing us to avoid
high computational overhead. Figure 2 illustrates the interaction between the
local application, the mediator service, the anonymisation service and the recip-
ient upon initiation of a new TCP connection by the local application. Whenever
the mediator service takes a TCP SYN packet from the transmission queue, it
opens a new anonymous channel and sends a signalling packet with the corre-
sponding IP address and port number to the last relay of the anonymisation
service. Latter then initiates a TCP connection using the given address and port
number and responds with a signalling message that indicates whether the con-
nection has been set up successfully. If the connection succeeded, the mediator
service generates a TCP packet for the local application with the SYN and ACK
flag set. Otherwise, the mediator service generates a TCP packet with RST bit
set and appends it to the reception queue.

During transmission of data by the local application, the mediator will trans-
parently extract the payload from the packets and send it over the established
anonymous channel. When the application terminates the connection by sending
a packet with the FIN flag set, the mediator will signal the anonymisation service
to close the associated connection. If the recipient terminates the connection, the
anonymisation service will notify the mediator, which in turn will shut down the
TCP connection of the corresponding application.

IP. Although the official APIs of Android and iOS currently only support UDP
and TCP, we also discuss anonymisation solely at the IP layer in the following.
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Fig. 2. Interaction between the local application, the mediator service and the
anonymisation service for TCP transmissions (pessimistic mode of operation).

This allows us to provide at least a minimal protection in the case that other
transport layer protocols are supported by Android or iOS in the future.

We treat all IP-traffic which is neither TCP nor UDP in the same way. First
of all each IP-packet flow is transmitted over an individual channel to reduce
linkability. For each IP-packet we send certain header information (as explained
below) and the IP-packet payload. The last relay will create IP-packets out of
this information and sends them to the final recipient.

Considering IP version 4 and IP version 6, the Version field, and the Des-
tination Address clearly belong to the static data. The Total Length/Payload
Length field belong to the dynamic data. The Source Address and the Header
Checksum belong to private data.

Additionally, we categorise the Differentiated Services Code Point (DSCP)
and Explicit Congestion Notification (ECN) as well as Traffic Class as private
data. The reason is, that we are not aware of any low-latency anonymisation
service which supports different service/traffic classes, thus limiting their effec-
tiveness to only the path between the last relay and the recipient.

For IPv4 packets, we think that data related to fragmentation (Identification,
Flags, Fragment Offset) can be treated as private data, if anonymity has priority.
Fragmentation is rarely used in practice – and IPv6 does not even support it.
In this case all fragmented IPv4 packets will be dropped. The Time to Live
(TTL)/Hop Limit field can also be treated as private in case of prioritising
anonymity. Therefore the last relay will set this field to a predefined fixed value.
Nevertheless there might be cases where this field is used in protocols (traceroute
would be one example). Therefore we consider it as dynamic data if compatibility
needs to be prioritised.

The IP header supports optional headers by the Options and IHL fields in
case of IPv4 and by the Next Header field in case of IPv6. Again, if anonymity
should be prioritised, we consider these fields as private. More specific, we drop
all IP-packets which have optional headers. If compatibility has priority, we do
not change the fields and therefore consider them as dynamic data.
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6 Optimistic DNS

In this section we will describe some efficiency improvements related to DNS,
which we treat in a special way due to its importance.

MediatorApp
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DNS
Server Destination

Req. NDest

Resp. IPtemp

SYN IPtemp mix pkt. Req. NDest

Resp. IPDest

SYN IPDest

SYN/ACK IPDest

ACK
mix pkt.

SYN/ACK
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Fig. 3. Interaction between the local application, the mediator service and the
anonymisation service for DNS requests.

One fundamental advantage of VNI-based anonymisation over SOCKS-based
solutions is that the operating system can be configured to use the VNI for DNS
name resolution. All DNS requests, including those triggered by applications,
will then be appended to the transmission queue of the VNI, thus allowing the
mediator service to perform name resolution over the anonymisation service.
However, since DNS resolution needs to be completed before any packets can
be sent to the intended recipient, we face the problem that the anonymisation
of the DNS request by means of rerouting over multiple mixes introduces sig-
nificant latency. We therefore propose an optimistic DNS resolution, which is
illustrated in Fig. 3. Upon arrival of a DNS request, the mediator service imme-
diately chooses a local, temporary IP address and generates a corresponding DNS
response. The mapping from the temporary IP address to the DNS name is kept
in memory by the mediator service, so that subsequent packets can be correctly
associated with their destination. As soon as the mediator starts submission of
data to the anonymisation service, it prepends signalling data containing the
DNS hostname, leaving the task of DNS name resolution to the last relay.

In order to avoid that the DNS lookup table grows infinitely, we set the
time-to-live (TTL) field in our DNS responses to 60 s and remove outdated DNS
entries after 70 s. These timeout values reflect the default lifetime of application
level DNS caches as used by Mozilla Firefox and Google Chrome.
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7 Discussion

Considering TCP, we only transmit the minimal necessary data, namely the
destination IP and port number and the payload itself. Since we do not see how to
further reduce this information without breaking application layer compatibility
we consider our TCP solution as optimal from a privacy point of view.

Considering UDP, our current implementation is close to the optimal case.
The only field which we could possibly avoid to transmit is the source port
number. In fact some preliminary tests suggest that letting the last relay choose
a random source port will not break applications. But we need to do a more
profound analysis here.

Considering our optimistic approach for DNS resolution, we see advantages
and disadvantages with respect to privacy compared to the normal DNS reso-
lution using anonymous UDP channels. Remember that in our optimistic DNS
approach, the last relay eventually does the DNS resolution. Thereby it can link
the payload of the related anonymous channel with the destination host name
contained in the signalling packet. This in fact could leak more information com-
pared to the case, where the last relay only learns the destination IP address
(but not the host name). Think e.g. of a web server hosting multiple web sites. A
common approach to distinguish the different web sites is based on the requested
host name. Therefore the last relay will learn which of the multiple web sites
was in fact requested (in case of optimistic DNS) while in case of normal DNS
it will not learn this (assuming that in both cases the HTTP protocol itself is
encrypted by TLS).

On the other hand, the optimistic DNS approach could also offer some privacy
benefits compared to the normal anonymous DNS lookup. Assuming that there
is a web-site https://gugle.com operated by Numbers Inc., the DNS servers of
Numbers Inc. could respond with a new unique IP address for each DNS request
for gugle.com. Usually DNS responses are cached on the client side, meaning
that subsequent HTTP requests sent from the same client to gugle.com will
all use the same destination IP address while HTTP requests originated from
different clients will use different destination IP addresses. Therefore the web
servers of Numbers Inc. can distinguish different users even if all of them use
an anonymisation service for their communication (including DNS requests). In
case of our optimistic DNS resolution, all DNS requests will be made by the same
client, namely the last relay of the anonymisation service. Thus it will prevent
the attack described above.

8 Evaluation

Network layer anonymisation on mobile devices is particularly challenging due
to their constrained resources. A high computational overhead will result in
low throughput and high battery drain, thus severely limiting the usefulness of
the device. To evaluate the practical value of the design presented in Sect. 5,

https://gugle.com
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we implemented our solution (named ANONguard6) for the Android operating
system and performed experiments on a local testbed7. We chose to evaluate our
solution in a local testbed to obtain upper bounds on the performance of our
solution in an idealized setting in which there is almost no network latency and
congestion.

As depicted by Fig. 4, we set up a 802.11ac-capable wireless access point (AP)
that allows a mobile device to connect with a dedicated measurement host. For
our measurement, we used a Motorola Moto X Style running Android 7.0 and
an ASUS Nexus 7 (2nd generation) running Android 6.0.1. Both devices were
running the latest official version of Android that was provided by the manu-
facturer. To generate arbitrary traffic workloads, we implemented a measure-
ment client for Android along with a measurement server application for Linux.
The instrumentation host was used to perform repeated measurements in an
automated fashion, as it controls the setup of the anonymisation software on
the mobile device, starts the measurement client and extracts the measurement
results from the device.

Gigabit Ethernet
802.11ac

measurement host

instrumentation host

device under test

Fig. 4. The setup of the testbed used for experimental evaluation.

8.1 Goodput

In our first experiment, we investigated the loss of goodput due to network layer
anonymisation. Clearly, we expect a certain loss of goodput due to the encap-
sulation of traffic into fixed-size packets that are smaller than the Maximum
Transmission Unit (MTU) of the network card, which in itself does not neces-
sitate measurements. However, even though many current smartphones have
sufficient computational power, frequent multi-layer encryption and decryption
might lead to high temperatures that force the device to slow down and thus
limit the actually achievable bandwidth. Furthermore, the utilisation of a vir-
tual network interface incurs additional computational overhead whose impact
is hard to estimate analytically.
6 A test version of ANONguard can be installed from Google Play (https://play.google.

com/store/apps/details?id=anonvpn.anon next.android).
7 The source code for our evaluation tools as well as the used anonymisation tools can

be found on https://dud-scm.inf.tu-dresden.de/ANON-Public.

https://play.google.com/store/apps/details?id=anonvpn.anon_next.android
https://play.google.com/store/apps/details?id=anonvpn.anon_next.android
https://dud-scm.inf.tu-dresden.de/ANON-Public
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Methodology: To obtain measurements, we first deployed a set of mixes on the
measurement host and start the anonymisation software on the mobile device.
Afterwards, we set up our measurement client to constantly download data from
the measurement server as fast as possible and record the total number of bytes
received within 10 min. To avoid errors due to instrumentation, the recording
was started one minute after the download had began.

We performed measurements with one, two and three mixes to evaluate the
impact of encryption and decryption on the achievable goodput, since each mix
requires one decryption operation per incoming packet. In the case of one mix
anonymisation, we used version 0.7.3 of OpenVPN for Android. For the two
and three mix scenario, we used our solution as well as Orbot version 15.5.1-
RC-2 (Tor version 0.3.1, compiled with Android NDK Rev. 15c). As reference,
we also performed measurements without any anonymisation. Furthermore, we
performed measurements where the client directly connects to our mixes and thus
avoids any overhead associated with the usage of a virtual network interface.

Results: Figure 5 shows our results for different configurations and devices. Each
dot represents the mean value of the average goodput, measured in megabit per
second, over 10 runs and the bars denote the confidence intervals for a significance
level of 95% based on Student’s t-distribution.
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Fig. 5. Mean values for the average goodput during a continuous download for different
devices and anonymisation solutions.

Clearly, the employment of current implementations of transparent tunneling
leads to a significant drop in network performance. In the case of OpenVPN, the
average goodput dropped from 308.2 ± 2.5 Mbit/s to 61.9 ± 0.9 Mbit/s on the
Moto X Style and from 102.0 ± 0.5 Mbit/s to 42.8 ± 1.9 Mbit/s on the Nexus
7. Orbot achieved similar results, allowing 57.5 ± 1.5 Mbit/s on the Moto X
and 28.8 ± 1.1 on the Nexus 7 if two relays are used and 51.0 ± 0.7 Mbit/s as
well as 27.1 ± 0.1 Mbit/s if three relays are used. On the Moto X Style, the
ANONguard application achieved a notably higher goodput than OpenVPN
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and Orbot, allowing 84.5 ± 5.2 Mbit/s if two relays are used. This is surprising,
since the whole tunneling and anonymisation functionality of OpenVPN and
Orbot is running as native code while ANONguard is purely written in Java. We
experimented with different settings for OpenVPN and Orbot but were not able
to substantially improve their performance. Another surprising observation is
that the average goodput of ANONguard slightly improved to 93.5± 1.4 Mbit/s
when three relays were used. Unfortunately, we did not find a definitive answer
for this result in the time available for the measurement study.

While the Nexus 7 showed a rather continuous performance during each
measurement run, performance on the Moto X dropped during each run where
anonymisation was enabled. In all our results, we only included runs where the
initial temperature of the Moto X was between 35 and 40◦ Celsius. During each
run, the temperature of the device increased to a value close to 60◦ Celsius
and then stabilised at a value around 53◦ Celsius after the CPU frequency has
been automatically reduced. However, the drop in performance was not dramatic
compared to the drop from goodput without anonymisation: in the first two
minutes of the measurement, the average goodput of ANONguard with two
relays reached 103.4 ± 2.5 Mbit/s whereas in the remaining 8 min, the average
goodput reduced to 79.7± 6.8 Mbit/s. Similarly, Orbot’s goodput dropped from
68.1 ± 1.4 Mbit/s to 54.9 ± 1.7 Mbit/s.

While the results shown on Fig. 5 have been obtained by a single TCP-
connection, we performed the same measurements with 3 simultaneous TCP
transmissions. In this setting, the average goodput without any anonymisa-
tion increased to 335.2 ± 16.3 Mbit/s, whereas the goodput using ANONguard
increased to 98.9 ± 2.4 Mbit/s. We observed similarly low increases in goodput
for OpenVPN and no difference for Orbot. Consequently, the number of simul-
taneous transmissions does not have a strong impact on our results.

Analysis of Goodput Degradation: To evaluate possible causes for the strong
degradation of goodput, we performed additional measurements to asses the par-
ticular impact of encryption and decryption as well as interaction with the virtual
network interface. The results presented by Fig. 5 indicate that encryption and
decryption do not have a major impact on goodput, since the number of relays
did not have a notable impact on the results of Orbot and ANONguard. To
verify this claim, we ran the goodput measurement with a modified version of
ANONguard where encryption and decryption has been disabled. Afterwards,
we furthermore integrated the AN.ON client implementation that is used in
the ANONguard application directly into the measurement client application,
thus avoiding the overhead associated with the virtual network interface and
conducted measurements without the ANONguard application. Even if cryptog-
raphy as well as transparent tunneling is disabled, the AN.ON client just achieves
115.59 ± 10.50 Mbit/s of average goodput on the Moto X and 47.3 ± 0.6 Mbit/s
on the Nexus 7. An initial runtime profiling indicates that internal synchroni-
sation is a primary cause for the loss of performance of ANONguard. After we
re-enabled encryption, the goodput slightly dropped to 108.1±3.2 Mbit/s on the
Moto X and 43.5± 4.5 Mbit/s on the Nexus 7. Using just transparent tunneling
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without encryption yielded a goodput of 83.6 ± 1.2 Mbit/s on the Moto X and
25.3 ± 0.9 Mbit/s on the Nexus 7. Besides internal synchronisation, profiling in
latter case suggests that the frequent computation of TCP checksums contributes
to the loss of performance.

Discussion: Our measurements suggest that current solutions for network
layer anonymisation significantly reduce the achievable goodput on mobile
devices. However, the observed loss of performance mostly seems to stem from
networking-related performance issues such as synchronisation of concurrent
threads as well as computation of checksums. We did not observe a strong addi-
tional loss of goodput after enabling the virtual network interface together with
encryption and decryption, which indicates that our current results underesti-
mate the actual goodput that is achievable if there are no networking-related
performance bottlenecks.

8.2 Energy Consumption

Complementary to our measurements regarding goodput, our second experiment
focuses on the energy consumption of the transparent anonymisation.

Methodology: To obtain samples, we performed the same steps as described in
the previous section but before launching the measurement client, we disabled
the power supply of the mobile device and used the Trepn Power Profiler8 to
record the battery power of the device every 100 ms (which is the highest fre-
quency Trepn supports). If available, the Trepn Power Profiler reads battery
power from the fuel gauge of the battery pack [14]. After 12 min have passed,
we stop the recording of the battery power and use the mean value of all data
points between the second and 12th minute as sample value. Before the next
measurement run was started, we charged the battery of the device to 95%.
Since the Motorola Moto X Style does not have an integrated fuel gauge, we
only performed measurements with the Nexus 7, which comes with a BQ2751
fuel gauge from Texas Instruments (according to the kernel log messages of the
device).

Our measurement procedure provides a worst case perspective on the increase
in battery drain, since it seems unlikely that smartphones constantly have to
cope with one or more running TCP transfers. However, we are not aware of any
published models or datasets that allow us to emulate the variety of dynamic
workloads that mobile devices typically have to deal with.

As a reference, we performed measurements without anonymisation on min-
imal screen brightness and also on maximum screen brightness. All measure-
ments involving anonymisation were recorded with minimal screen brightness.
The wakelock acquired by the Trepn profiler ensured that the device did not
change its screen brightness or went to sleep mode during the transfer. We also
recorded the average goodput of each run and observed a decrease of around
5 Mbit/s for the setting without anonymisation and the setting with OpenVPN.

8 https://developer.qualcomm.com/software/trepn-power-profiler, 2018-02-16.

https://developer.qualcomm.com/software/trepn-power-profiler
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In all other settings, the observed decrease in average goodput was less than
2 Mbit/s, rendering the impact of the power profiling on average goodput negli-
gible.
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Fig. 6. Mean values for the average energy consumption during a continuous download
for different devices and anonymisation solutions.

Results: The results of our measurements are depicted by Fig. 6, where each dot
represents the mean value of the average battery power, measured in milliwatt,
over 10 runs and the bars denote the confidence intervals for a significance level
of 95% based on Student’s t-distribution. On maximum screen brightness, we
measured an average battery power of 3590.3 ± 24.8 mW during the download
if no anonymisation is enabled. On minimal screen brightness, we observed an
average battery power of 2197.1 ± 8.6 mW. While OpenVPN and Orbot with
2 relay channels additionally require 98.1 ± 132.4 mW and 234.0 ± 54.8 mW of
power on average, our solution currently requires 957.6± 75.9 mW of additional
power if 2 relays are used. Similar to the results from the previous section, we
identified networking-related implementation issues to be the main source of
energy consumption. Without cryptography, the ANONguard application still
demanded 867.2 ± 47.5 mW of power. If the measurement client contacted the
AN.ON mixes directly, 468.7 ± 11.9 mW of power were additionally required
without use of cryptography.

Discussion: Ultimately, our measurements indicate that current state of the art
solutions like OpenVPN and Orbot only require few additional battery power,
suggesting that transparent anonymisation can be implemented without causing
prohibitive energy consumption. Our Java-based solution currently consumes
significantly more energy than OpenVPN and Orbot, whose anonymisation and
VNI handling is implemented natively. However, it remains open if the high
energy consumption is inherent in the use of Java or if they can be solved by an
improved control and data flow.
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9 Conclusion

In this paper we described the design of a low-latency network layer anonymisa-
tion solution for mobile devices that uses a virtual network interface to obfuscate
network layer information transparently. Our experimental evaluation indicates
that current solutions cause a significant loss of achievable goodput but require
comparatively low energy. Given the average data rate available for mobile users,
we believe the performance and energy consumption impacts are acceptable.
Nevertheless we will continue our investigations regarding the performance bot-
tlenecks and further optimise our solution. We also plan to perform further
measurement studies to evaluate the performance and latency improvements of
the optimisations presented in this paper and to investigate the viability of our
solution for latency-critical traffic such as voice over IP or video conferencing.

Acknowledgements. This work was in parts supported by the German Federal
Ministry of Education and Research through project AN.ON-Next under Grant No.
16KIS0421.
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Abstract. The UI (user interface) state of a mobile application is
important for attackers since it exposes what is happening inside an
application. Attackers could initiate attacks timely according to this
information, for example inserting fake GUIs or taking screenshots of
GUIs involving user’s sensitive data. This paper proposes PoWatt, a
method to infer the timing of sensitive UI occurrences by exploiting
power side channels on mobile devices such as smartphones. Based on
power traces collected and power patterns learned in advance, PoWatt
applies a pattern matching algorithm to detect target UI occurrences
within a series of continuous power traces. Experiment results on popu-
lar Android apps show that PoWatt can detect sensitive UI loading with
an average precision of 71% (up to 98%) and an average recall rate of
70% (up to 88%) during offline detection. In real-time experiments for
online detection, PoWatt can still detect sensitive UIs with a reasonable
precision and recall, which can be successfully exploited by real-world
attacks such as screenshot-based password stealing. Finally, we discuss
the limitations of PoWatt and possible mitigation techniques.

Keywords: Side channels · Power traces · Power side channels
UI inference · Smartphones

1 Introduction

Side channel attacks have been studied extensively. The goal of side channel
attacks is gaining confidential information from the targeted computing system,
while leveraging side channels that are not directly revealing sensitive informa-
tion. Previously discovered side channels include timing information [4,18,21],
sound [22], shared memory/registers/files between processes [16] and power con-
sumption [8,15], etc.

Power side channels (or power analysis attacks) have become an important
type of covert side channels. One well-known example of power side channels is
the recovery of an encryption key from a cryptosystem [7,8]. Messerges et al.
examined both simple power analysis (SPA) and differential power analysis
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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(DPA) attacks [14] against the data encryption standard algorithm and man-
aged to breach the security of smart-cards using signal-to-noise ratio (SNR)
based multi-bit attack. For mobile systems such as smartphones, researchers
have shown that power information can also be used to infer users’ locations [15].

Goal Overview. This paper introduces a new power side channel, which can be
exploited to initiate side channel attacks by inferring UI (user interface) states
on mobile devices such as smartphones. We investigate the feasibility of using
unprivileged power traces to infer sensitive UI states of mobile applications (apps
for short), such that the attacker would learn the exact timing to initiate the
corresponding attacks.

For example, in order to initiate activity hijacking attacks on Android, attack-
ers need to know when the user login UI will be prompted so that they can
intercept the UI state transition and insert fake user login UIs that could steal
user credentials. In our work, we regard the UI states of a mobile app as the
confidential information that the attacker wants to gain through side channel
attacks; while the power traces, as an unprivileged resource, can be used as a
side channel to achieve this goal.

Our Proposal. This paper proposes PoWatt (PoW er Attack), a method to
infer sensitive UI states based on power traces collected on Android smartphones,
in order to demonstrate the feasibility of power side channel exploitation. Specif-
ically, we investigate the effectiveness of capturing sensitive UI loading events
from power traces collected during app execution.

The key idea of PoWatt is based on the fact that power patterns of each UI
loading even in Android apps has unique features that distinguish it from other UI
loading events. We can study the power patterns of a sensitive UI in advance and
detect its occurrences on another phone based on the learned pattern. PoWatt
is thus designed as a typical pattern matching approach, which involves training
data collection, model training and target UI detection.

During training data collection, we design a method to identify the starting
point of a UI loading event and use automated scripts to collect the power trace
of a target UI. The power traces are collected with a software-based approach
that can read power values from the smartphone profile.

In the model training phase, we generate a prediction model by splitting the
training data into different groups and finding the most accurate parameters to
generate the most matches between these groups. The result of model training
includes fitting curves and accompanying parameters for each sensitive UI.

The detection phase can be conducted either offline or online. In offline detec-
tion, we use the trained model to detect the target UI from continuous power
traces collected separately from training data collection. The algorithm detects
matching target UIs with a time window sliding along the time-indexed power
trace. In online detection, the algorithm is the same, while we add the detecting
algorithm running in background in the training phase to reduce its impact on
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the power patterns. We carry out real-time experiments by inviting several vol-
unteers to use the above-mentioned apps with our exploitation tool running in
the background.

Results Overview. We perform experiments on four popular Android apps,
include Alipay, Amazon, WeChat, and Word. Most experiments are conducted on
a Nexus 5 smartphone. We collect power traces with automated scripts manip-
ulating these apps traversing different UIs including the target sensitive UIs,
and detect the occurrences of these sensitive UIs with PoWatt using the trained
models for each app.

In experiments with offline detection, we split the collected data into five
groups and performed five-cross evaluation. Results show that we can achieve an
average precision of about 71% (up to 98%) and an average recall rate of about
70% (up to 88%) to detect given sensitive UIs For online detection, PoWatt
detects 45–85% of the target UI occurrences in real-time cases, with an average
precision of 66%.

The results demonstrate that we are able to infer a target UI state from the
power trace of a running app with a reasonable precision and recall rate, thus it
is practical for attackers to exploit power traces to infer UI states.

Although our approach is not perfect in terms of detection accuracy, it
presents a real threat to user privacy as an attacker is able to detect the pres-
ence of a particular UI with a reasonable successful rate, revealing that attacking
based on power side channel is becoming a practical concern.

2 Background and Motivation

2.1 Power Measurements

The power consumption of a smartphone can be measured with both hardware-
based and software-based methods. Although power measurements based on
hardware meters are very accurate, it is not applicable to real-world scenarios,
thus we use a software-based measurement method to record power traces on a
smartphone.

Power related readings are publicly accessible on most smartphone OSes such
as Android. In general, instant power numbers can be calculated based on voltage
and current readings of BMU (Battery Monitoring Unit) [20]. The battery status
information is accessible by most apps without system-level privilege, as many
mobile apps need to know the battery status to carry out responses such as
saving user context before the battery dies.

The power numbers can be calculated by polling battery status files. Battery
device drivers are required to updating these files in order to provide instant
power numbers of Android system. Within these files, power consumption is
specified in microamps (µA) of current and in microvolts (µV ) of voltage. The
update frequency varies with different devices, ranging from 10 to 100 times per
second.
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2.2 Distinguishability in Power Patterns

Our study is based on the following hypothesis: different UIs within an app are
distinguishable based on their power patterns since different UIs have different
usage of network communication, calculation tasks and UI rendering.

We use software-based method to measure the user login UI from the Amazon
app running on a Nexus 5 smartphone with Android 6.0. Figure 1 shows the
power traces of the user login UI in three different test runs. We can see that
the power patterns exhibit obvious similarity for the same UI on different test
runs, which makes it distinguishable in a continuous power trace.
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Fig. 1. Power traces collected for the log-in UI for the Amazon app through software-
based measurement, in three different runs.

Based on the measurement results, we observed the existence of power side
channels that can be used to distinguish between different UI States, which is
potentially exploitable for attackers to infer sensitive UI loading phases such as
user login (password input) UIs. This motivates us to conduct further studies
on the feasibility of exploiting power side channels to infer sensitive UI states.
More details on the measurement study can be found in our earlier work [19].

3 PoWatt Overview

The goal of our study is to demonstrate the feasibility of inferring sensitive UI
states of mobile apps through power side channels on mobile devices. In order
to achieve this goal, we face the following challenges:

– How do we capture the power pattern for a target UI? A user may
visit dozens (or even hundreds) of different UIs when using a mobile app, thus
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we need to find a way to specify the particular UI that might be interested
to the attacker. We also need to specify the starting and ending points of a
UI loading phase before we learn its pattern.

– How do we detect the occurrence of a target UI based on its power
pattern? Even we have obtained a unique power pattern for a target UI, we
need to find a way to detect the power pattern in a continuous power trace,
as the user will use the app in a continuous manner. Furthermore, the exact
power readings and loading time might vary in different occurrences of the
same UI, even it runs on the same smartphone.

– How do we conduct real-time online detection of the target UI?
Detecting a target power pattern in an offline power trace may be easier to
do, however, performing meaningful attacks typically requires real-time online
detection. Online detection increases the complexity because the detection
mechanism itself also costs considerable power, which may pollute the power
patterns and cause detection to fail.

3.1 Threat Model

In our study, the attacker (i.e., the malicious app) is installed in the same OS
environment with the victim app, which contains some sensitive UIs that might
reveal its secrets, such as login passwords or financial data. The goal of the attack
is to learn the timing of these sensitive UIs when it appears on the screen such
that the attacker can perform further actions to steal the secrets.

We assume that the attacker (i.e., the malicious app) has prior knowledge
on the victim app and the target UI it attempts to detect. For example, the
attacker can install the victim app on another smartphone (preferably of the
same model) and collect the power traces to study the power patterns of the
target UI state, such as a login screen.

When the malicious app is conducting real-time power side channel exploita-
tion, it runs in the background recording the power data while the victim app
runs in the foreground. The malicious app attempts to infer sensitive UI states
of the victim app based on the power trace it collects, initiating further attacks
once it detects the correct timing.

3.2 Overview of PoWatt

The purpose of PoWatt is to find an effective method to capture the occurrences
of the target UI from a continuous power trace collected from an app. Figure 2
presents an overview of PoWatt, which involves the following main steps.

Training Data Collection. The first step is collecting training data. We first
specify a sensitive UI (i.e. the target UI) within the target app, for instance, the
user login UI. Then we run the target app in the foreground and the data col-
lecting program in the background to collect multiple power traces continuously.
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Fig. 2. Overview of PoWatt. (Note that the shaded components are used for real-time
online detection only.)

In our experiments, we use an automated script to visit different UIs in this
app, with the target UI (e.g., the login UI) visited multiple times during the
process. The result is a continuous power trace that includes the power patterns
of the target UI and other UIs as well.

During online detection, running a real-time pattern matching algorithm in
the background will increase power consumption and affect the pattern matching
accuracy. In order to simulate the same environment as in the detection phase,
we also let the same pattern matching algorithm running in the background
while collecting power data for the training dataset on the target UI for online
detection.

Model Training. Based on a subset of the collected power traces (the rest
will be used in testing), we then train a model to identify the target UI. These
power traces are basically time-indexed power numbers recording the occurrence
of the target UI. In order to obtain the fitting curve, we first apply several pre-
processing steps including calculating an average curve and smooth the data
with moving average to eliminate noises.

After pre-processing, we split the training data into two separate sets. We
first calculate a fitting curve with one part of the training data and use it to
detect the target UI in the rest of the data. We use a simple genetic algorithm
to find the parameters that yield the best overall accuracy (considering both
precision and recall). These fitting curves and accompanying parameters will be
used to conduct the detection in the next phase.

UI Inference. We perform both offline and online detection to demonstrate
the possibility of detect the target UI while exploiting the power side channel.

For offline detection, we use the model trained with training data to detect
the target UI in the testing data. We apply a time-window based pattern match-
ing algorithm with the trained model. Offline detection is used to demonstrate
the feasibility of power trace exploitation, thus we do not run the detection
algorithm in real-time to prevent it from polluting the power trace.

We also perform online detection in a more realistic environment, where the
detection algorithm runs in the background on a smartphone to detect the target
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UI, which runs in the foreground. Because the detection algorithm also consumes
power, we run the power trace collection and training process again, with the
detection algorithm running in the background. Thus we will have similar power
patterns during training and detection. The detection algorithm is the same as
used in offline detection.

4 PoWatt Design

4.1 Data Collection

Target UI Specification. Mobile apps are composed of different UI compo-
nents (i.e., Activities in Android). In a single app, the user typically navigates
through multiple UIs to use some specific app functionality. In Android, current
and past UIs are saved and maintained in a stack data structure called a Back
Stack. When a new UI is loaded, it is pushed on the top of the stack. If the cur-
rent UI has a “parent” UI (e.g., the UI has a “back” button), it gets popped out
the stack when the user returns to its “parent” UI. As a result, when the loading
process of some specific UI happens, there are two possibilities of the trigger
source: (1) the user creates a new instance of the UI; (2) the user navigates back
from one of its “children” UIs.

A typical UI loading process in the Android framework works as follows:
(1) The ActivityManager component calls performLaunchActivity() API;
(2) the onCreate() or onPause() function (both of them are implemented by
the app) gets called depending on the source of trigger; (3) After that, the
performTraversal() API is called, in which the loaded UI will be put into the
framebuffer and the screen gets repainted; (4) Finally, if the UI is newly created,
it will be pushed into the Back Stack, and the current one will be destroyed; if
the UI is the parent of the current one and it gets resumed, the current one will
be popped out and destroyed.

Each UI loading process is unique because it involves loading different
resources in different sequences, and showing different color schemes on the
screen.

We modify the Android framework to record power traces of the tar-
get UI. When we record the power trace of each UI loading, we use the
performLaunchActivity() API calling point as the starting point a UI pro-
cess, and monitor it until the completion of the performTraversal() API.

Power Data Polling and Calculation. We collect the power numbers of the
target UI to form a power trace, which is used to reflect its power characteristics.
To collect the power numbers, we use the built-in software-based measuring
method. Instant current and voltage numbers can be acquired by polling system
battery status files.
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Adaptation for Online Detection. The above procedure works well for offline
detection of the target UI in a continuous power trace. However, when we try
to conduct online detection, the detection algorithm itself consumes significant
power, which affects the power consumption patterns of the target app.

In order to minimize the influences of the online detection algorithm, we run
the algorithm in the background when we collect the training power data. In this
way, we simulate the same environment as in the detection phase while collecting
power data for the training dataset on the target UI.

4.2 Model Training

During model training, our goal is to generate a representing power pattern
(i.e., fitting curves) and accompanying parameters (thresholds), which is used
to identify the target UI in a power trace during the detection phase. In our
study, we generate the fitting curve based on the power consumption time series
TS1, TS2, ..., TSn extracted from the power traces, which contains n runs of the
loading phase of the target UI.

After collecting the training dataset, we first calculate an average power pat-
tern based on the set of different power patterns (TS1, TS2, ..., TSn) for the same
UI, and then apply a Gaussian filter to smooth the power curve by calculating
their moving average. The result is the main fitting curve (FC).

As a supplement to the power traces, we also calculate a power differential
series (DS) that considers the difference of the power numbers in each adjacent
pairs in the trace. For each TSi = p1, p2, ..., pn, its corresponding DSi is calcu-
lated as p2 − p1, p3 − p2, ..., pn − pn−1. We calculate the average DS and apply
the same Gaussian filter to smooth the curve. The resulting differential curve
(FC ′) is used to represent the power trend for the target UI, which we consider
as an important supplement to the main fitting curve.

For the generated fitting curve FC, we then calculate the distance of each
power pattern to the fitting curve, and use the average distance as the threshold
(Th). For the differential curve FC ′, we calculate a threshold (Th′) using the
same method.

We can use either fitting curve and the corresponding threshold to detect the
target UI in a continuous power trace. However, we want to train a model that
involves both fitting curves to achieve better accuracy. For each time series TSi,
we add two parameters P1 and P2, and use the following criteria to determine
whether is a match:

Sigmoid(
Dist(TSi, FC)

Th
+ P1 × Dist(DSi, FC ′)

Th′ ) > P2

where P1 and P2 will be trained using a simple genetic algorithm to maximize
the F-Measure value:

F Measure = 2 × precision× recall

precision + recall
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When calculating distances between two time series, we use the square of
the actual distance, since the Euclidean norm is better than Manhattan norm
in terms of preventing overfitting.

We use a sliding window approach as shown in Fig. 3 to detect whether there
is positive match in a power trace based on the above criteria. Once we detect
the match, the sliding window will jump to the end of the match and continue.
The matching algorithm is the same as used later in the UI inference step. The
parameters P1 and P2 will be initially set as a number from (0.2, 0.5) and (0.5,
0.7), respectively. For the genetic algorithm, we generate 200 instances for each
generation and train them over 10 generations, in order to find the best possible
parameters (P1 and P2).

Please note that the model training process for online detection is the same
as for offline detection. The only difference is that the power traces used when
training for online detection include the power consumption of the detection
algorithms running in the background.

4.3 UI Inference

In the UI Inference phase, PoWatt applies the same detection algorithm as used
in training based on the fitting curves (FC and FC ′), the thresholds (Th and
Th′), and the trained parameters (P1 and P2), to detect whether there is a match
to the target UI in the testing power trace.

Offline Detection. For offline detection, the goal is to identify the occurrence
of the target UI in a continuous power trace in an offline manner, after we record
the power trace.

The detection process is depicted in Fig. 3. We create a time window along
the time series with window size equaling the longest power pattern for the target
UI during training. Then we apply the detection algorithm mentioned earlier to
repeatedly calculate the distance between the fitting curves and the times series
in the current window. We find a match when the distances satisfy the given
criteria for the trained parameters and thresholds.

Without real-time background noises, offline detection can demonstrate the
capability of PoWatt to detect the target UI in ideal situations.

Online Detection. The method we adopt in online detection is the same as
in offline detection. However, because we apply pattern matching in real-time,
it adds extra power consumption to the power trace, such that we need to re-
train the model with the power traces collected with the detection algorithm
running in the background. Fortunately, the detection algorithm itself is not
power hungry and its power consumption patterns is regular. Thus we are still
able to find a power pattern to match the target UI even with detection in the
background.

Online detection will be performed by volunteers, such that we can demon-
strate the capability of PoWatt to detect sensitive UIs in real scenarios.
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Fig. 3. The workflow of the UI detection algorithm.

5 Experiments and Results

5.1 Experimental Setup

In our experiments, we choose four popular Android apps from including Alipay,
Amazon, WeChat and Word. Details of these apps are shown in Table 1. We
consider the user login or payment password input UI of each app as the target
UI, as attackers may try to steal user passwords from these apps. We use a Nexus
5 smartphone with Android 6.0 for most of our experiments.

Table 1. Details of the mobile apps used in our experiments.

App Version Category Target UI

Alipay 9.5.3 Payment Password input

Amazon 6.4.0.100 Shopping Log in

WeChat 6.3.15 Communication Password input

Word 1.0.1 Productivity Log in

For each app, we write an automated UI testing script based on a tech-
nique for building test cases for Android apps [10]. We do not use the popular
MonkeyRunner here since it requires adb connection, which will result in big
influence on the power patterns. Within each automated UI testing script, we
try to reach multiple UIs while achieving the desired number of occurrences (20
in each trace) of the target UIs.

Table 2 shows the power trace statistics. For each app, we include 20 occur-
rences of the target UI, as well as 100 occurrences of other UIs (including differ-
ent unique UIs as list in the table). We use the automated scripts to collect five
traces for each app.
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Table 2. Power trace specification in each automated script. (We ran the same script
five times during data collection.)

App # of Unique UIs Target UIs Other UIs

Alipay 9 20 100

Amazon 11 20 100

WeChat 10 20 100

Word 9 20 100

For offline detection, we use these automated UI testing scripts to generate
5 power traces for each app, then we conduct five-cross evaluation, each time
using four power traces as training data and the remaining power trace as the
testing data. We train a model with the four training power traces and use the
model to predict target UIs in the testing trace. Offline detection is performed
on a desktop PC with the power traces.

In order to evaluate the effectiveness of real-time online detection, we invite
volunteers from our lab to use the apps listed in Table 1 on the Nexus 5 smart-
phone.

With the online detection program running in the background, all the partic-
ipants are trained to perform two different tests: one using a given UI sequence
which is the same as the in the automated test script; the other asking the volun-
teer to visit different UIs inside each app with randomized order and number of
visits. In both tests, they are asked to visit the target UIs (login UIs) for exactly
20 times. Each participant has 10 min to finish the experiments. If a positive
matching of the target UI is detected, a notification will be pushed on top of
the screen in the notification area to remind the user. We ask all participants to
count the number of total positive detection notifications, and whether it is a
true positives (or false positive).

5.2 Results and Analysis

Offline Detection. Table 3 shows the results of UI inference during offline
detection. We perform five-cross evaluation with the five power traces collected
for each app. The results include the precision and recall numbers in each test,
as well as their average value.

We can see that the Word app has the best overall result in both precision
and recall of 98% and 88%, respectively. The reason is because the long in UI of
the Word app is implemented as a webpage in WebView, thus its loading time is
relatively long. A long loading time will expose more features of the target UI,
thus increasing the detection accuracy. For the other three apps, their detection
precision are all at about 60%, which is acceptable. In all four apps, Amazon
fares the worst with an average recall of only 49%.

Although the results still have space for improvement, they are good enough
to be used in meaningful attacks as attacks do not have to be successful every
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time. We have accomplished our goal to demonstrate the effectiveness of inferring
UI states exploiting a power side channel.

Table 3. UI Inference results for offline detection on collected power traces. We show
five-cross examination results, and their average.

App Run #1 Run #2 Run #3 Run #4 Run #5 Overall

prec. recall prec. recall prec. recall prec. recall prec. recall prec. recall

Alipay 64% 80% 68% 85% 65% 85% 67% 80% 55% 85% 64% 83%

Amazon 43% 50% 55% 55% 68% 65% 79% 55% 57% 20% 60% 49%

WeChat 56% 70% 67% 50% 67% 60% 58% 90% 62% 40% 62% 62%

Word 91% 100% 100% 90% 100% 100% 100% 55% 100% 95% 98% 88%

Online Detection. Table 4 shows online detection results following the same UI
sequences as in the automated scripts. Because there are no new UIs introduced
during the test, the detection accuracy remains comparable to what we have as
for offline detection. On average, we are able to detect the target UI in real-time
with an average precision of around 66% and an average recall rate of 59%. The
highest detecting precision and recall is on the Word app with 94% and 85%,
respectively.

We then show online detection results with random UI sequences in Table 5.
The average precision now drops to 43% while the average recall drops to 54%.

Although both the precision and recall rates are lower than those from the
previous power trace study, this is expected because real-time pattern matching
brings instability to the power patterns. However, even with the Amazon app,
we are still able to detect the timing of user login with a one in three chance.
Even there is a 72% chance that we might mispredict, we are still able to perform
meaningful attacks with a reasonable success rate.

Table 4. Results of online detection (on a Nexus 5 smartphone with Android 6.0).
The volunteers followed the UI sequence in the automated script.

App Unique UIs Target P FP Prec. Recall

Alipay 9 20 16 6 63% 50%

Amazon 11 20 18 7 61% 55%

WeChat 10 20 20 11 45% 45%

Word 9 20 18 1 94% 85%
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Table 5. Results of online detection (on a Nexus 5 smartphone with Android 6.0).
The volunteers were free to click as many different UIs as possible.

App Unique UIs Target P FP Prec. Recall

Alipay 45 20 29 20 31% 45%

Amazon 25 20 25 18 28% 35%

WeChat 23 20 26 17 35% 45%

Word 12 20 23 5 78% 90%

6 Case Study

To show that our methodology in PoWatt can pose real-world threats on smart-
phones, we present a case study of a real-world attack exploiting power side
channels. The attack we demonstrate here is a screenshot-based UI attack, which
is introduced in ScreenMilker [11]. The attackers could steal user passwords
through this attack on smartphones.

We assume that the attack happens in an environment of common configu-
rations where the Android OS does not have be compromised and the malicious
app is a totally legit non-system app with no extra permissions needed (we may
need the “network” permission to broadcast the attacking results, but it is in fact
unnecessary). The malicious app and the victim app are co-installed on the same
Android OS, and our case study show that the malicious app could successfully
steal confidential information from the victim app with the hints provided by
PoWatt.

We assume that the attacker has prior knowledge of the victim app and has
already generated a detection engine using the online detection model training
techniques described in PoWatt. The malicious app then runs in the background
and collects the power trace continuously in real-time. While collecting the power
data, it continuously applies real-time detection to check whether the user has
attempted to load the target UI (login UI in this example). Once it detects that
the login UI has been loaded, the malicious app starts to take screenshots of the
victim app in order to steal sensitive information (i.e., username or passwords)
from it.

We implemented our attack on a Nexus 5 smartphone and choose the Alipay
app as our victim app. Alipay is a popular mobile payment app with multiple
functions including payment, money transfer and investment. We consider the
user passwords of Alipay app to be highly sensitive.

Figure 4 shows the screenshots taken in our case study. Once the malicious
app detects the loading of the user login UI, it will continuously take screen-
shots of the victim app. With the default prompt of the keyboard animation on
tapped keys, the attacker is able to steal the user’s Alipay password (“mypw”).
Attacker could achieve this either programmatically with some graphical recog-
nition algorithms or manually with full images acquired.
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Although the attack is pretty straightforward to apply, the most important
thing in the attack procedure is that the attacker has to know when to start
taking screenshots. Although the login UI for the Alipay app is not guaranteed
to be detected each time it loads, with several more attempts, the attacker will
eventually get the chance to detect the occurrence of the target UI and capture
the desired passwords successfully.

Please note that in this attacking example, the malicious app requires extra
permissions to take screenshots, which is not considered a very sensitive per-
mission in Android as many apps are allowed to perform the action. However,
when the seemingly innocuous privilege is exploited together with power side
channels, the attacker can successfully steal sensitive information from the apps.

Fig. 4. The attacker steals user credentials by continuously taking screenshots of the
Alipay login UI after detecting the timing of its loading.

7 Discussions

Threats to Validity. We have demonstrated that we are able to infer sensitive
UI states with power side channels and perform real-time attacks to steal user
information. There are a few limitation of this work that might affect its validity.

Power side channels might only be distinguished for a limited set of UI opera-
tions whose power patterns are consistent each time it is loaded. Some other UIs
might exhibit different power patterns each time it is loaded. For example, an
image display app may consume different power while loading image thumbnails
if the number of images it processes are different. Fortunately, we observe that
sensitive UIs involving login passwords or financial data are typically stable and
exhibit unique power patterns.

Possible Mitigations. In order to protect users from power side channel
attacks, we could make modifications to mobile apps or the OS itself.
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– Energy obfuscation through code injection. One straightforward miti-
gation approach is that we can inject meaningless code into mobile apps while
performing sensitive user interactions, in order to insert power bursts into its
power pattern to make it unpredictable. This can be achieved at the source
code level during the app development process, or through instrumentation
to the bytecode for app binaries.

– Randomly changing display/color parameters. One interesting feature
for the OLED or AMOLED displays used for smartphones is that it consumes
different power when different color schemes are used [5]. Thus we can vary the
displaying color and other parameters each time the sensitive UI is displayed
on the screen. This could be achieved during app development or through
bytecode instrumentation [9].

– Raising the privilege needed to access power files. Of course, we can
always make the power information privileged, such that not all apps could
access these data directly. As a matter of fact, mobile apps probably do not
need to read low-level power related files containing raw voltage or current
readings. The only thing that most apps need to know is how much battery
is still remaining, which should not pose serious threats as a side channel.

8 Related Work

8.1 Power Side Channels

Power analysis attacks (or power side channels) [1] have become an important
type of side channel attacks in recent years. One well-known example of power
analysis is the recovery of an encryption key from a cryptosystem [7,8]. Messerges
et al. [13,14] examined both simple power analysis(SPA) and differential power
analysis (DPA) attacks against the data encryption standard (DES) algorithm
and managed to breach the security of smart-cards using the proposed signal-
to-noise ratio (SNR) based multi-bit attack [12].

On mobile platforms, Michalevsky et al. proposed PowerSpy [15], which inves-
tigates the relation between signal strength and the power pattern of the smart-
phone and showed that they can infer smartphone users’ whereabouts based on
the power traces.

Our work also focuses on the mobile platform, but we have presented a dif-
ferent and more general attack in UI state inference based on power traces.

8.2 UI-Based Attacks

The UI security of an application has been studied extensively [3,6,17]. On
traditional desktop platforms, UI-based attacks are basically categorized as UI
spoofing attacks [3,6]. Recently, UI-based attacks start to emerge on mobile
platforms. For example, ScreenMilker [11] can take screenshots of the foreground
app covertly and steal user credentials.

Chen et al. propose an attack on the Android platform called UI inference
attack [2]. They use the share-memory side channel to infer UI states, in order
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to detect the correct timing for attacks. Our work targets at a similar attack in
UI inference, but we have achieved it through power side channel exploitation.

9 Conclusions

In this paper, we present PoWatt, a method that demonstrates the existence of
a new side channel to infer UI states of mobile apps: the power side channel.
Attackers can infer the UI states of a mobile app in the foreground with an
un-privileged app running in the background, which helps to identify the timing
of attacking on sensitive user inputs or screen outputs based on power traces.

The results demonstrate that we are able to infer a target UI state from the
power trace of a running app with a reasonable precision and recall rate, thus
it is practical for attackers to exploit power traces to infer UI states. Although
this study on power side channels is only a small step towards understanding the
power side channel issues on mobile devices, it shows that there are new ways
to perform attacks based on unprotected power information. More studies are
needed to investigate its potential damages and possible mitigation techniques.
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Foundation of China (No. 61772042).

References

1. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

2. Chen, Q.A., Qian, Z., Mao, Z.M.: Peeking into your app without actually seeing it:
UI state inference and novel android attacks. In: Proceedings of the 23rd USENIX
Conference on Security Symposium, pp. 1037–1052 (2014)

3. Chen, S., Meseguer, J., Sasse, R., Wang, H.J., Wang, Y.-M.: A systematic app-
roach to uncover security flaws in GUI logic. In: IEEE Symposium on Security and
Privacy, S&P 2007, pp. 71–85. IEEE (2007)

4. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications: a
reality today, a challenge tomorrow. In: Proceedings of the 2010 IEEE Symposium
on Security and Privacy, pp. 191–206 (2010)

5. Dong, M., Zhong, L.: Power modeling and optimization for OLED displays. IEEE
Trans. Mob. Comput. 11(9), 1587–1599 (2012)

6. Fischer, T., Sadeghi, A., Winandy, M.: A pattern for secure graphical user interface
systems. In: The 20th International Workshop on Database and Expert Systems
Application, DEXA 2009, pp. 186–190, August 2009

7. Kocher, P., Jaffe, J., Jun, B.: Introduction to differential power analysis and
related attacks (1998). http://www.cryptography.com/resources/whitepapers/
DPATechInfo.pdf

8. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

https://doi.org/10.1007/978-3-540-28632-5_2
http://www.cryptography.com/resources/whitepapers/DPATechInfo.pdf
http://www.cryptography.com/resources/whitepapers/DPATechInfo.pdf
https://doi.org/10.1007/3-540-48405-1_25


226 Y. Guo et al.

9. Li, D., Tran, A.H., Halfond, W.G.J.: Making web applications more energy efficient
for OLED smartphones. In: Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pp. 527–538. ACM (2014)

10. Li, Y., Yang, Z., Guo, Y., Chen, X.: Droidbot: a lightweight UI-guided test input
generator for android. In: Proceedings of the 39th International Conference on
Software Engineering Companion, ICSE-C 2017, pp. 23–26 (2017)

11. Lin, C.-C., Li, H., Zhou, X., Wang, X.: Screenmilker: how to milk your android
screen for secrets. In: Proceedings of The 21th Annual Network and Distributed
System Security Symposium (NDSS) (2014)

12. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards, vol. 31. Springer, Heidelberg (2008)

13. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
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Abstract. Camera is a standard on-board sensor of modern mobile
phones. It makes photo taking popular due to its convenience and high
resolution. However, when users take a photo of a scenery, a building
or a target person, a stranger may also be unintentionally captured in
the photo. Such photos expose the location and activity of strangers,
and hence may breach their privacy. In this paper, we propose a coop-
erative mobile photographing scheme called PoliteCamera to protect
strangers’ privacy. Through the cooperation between a photographer and
a stranger, the stranger’s face in a photo can be automatically blurred
upon his request when the photo is taken. Since multiple strangers nearby
the photographer might send out blurring requests but not all of them
are in the photo, an adapted balanced convolutional neural network
(ABCNN) is proposed to determine whether the requesting stranger is in
the photo based on facial attributes. Evaluations demonstrate that the
ABCNN can accurately predict facial attributes and PoliteCamera can
provide accurate privacy protection for strangers.

Keywords: Mobile phone · Photo · Privacy

1 Introduction

Nowadays mobile phones usually have built-in cameras that facilitate capturing
photos. For instance, iPhone 7 is embedded with a 12-megapixel camera [23].
However, an increasing privacy concern has arisen as more and more pictures
are taken in people’s daily lives. When a user takes a photo of a scenery or a
friend with a mobile phone, it is likely that a stranger can also be accidentally
included in the photo, with the face clearly recognizable. Figure 1 illustrates two
examples. In Fig. 1(a), the building is the target but a stranger is captured; in
Fig. 1(b), the photographer intends to picture the target person but two strangers
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are accidentally included. In these examples, the photo can breach the stranger’s
privacy by revealing the stranger’s location and activity. Thus strangers’ privacy
should be protected.

(a) A stranger is included
when the photographer
pictures a building.

(b) Two strangers are in-
cluded when the photog-
rapher pictures a target
person.

Fig. 1. Privacy issues with photos taken by mobile phones.

Based on advanced techniques in computer vision, there exist several appli-
cations which can blur faces in a photo, such as ObscuraCam [2], Point Blur [6]
and [8]. However, none of these commercial applications can inform the inclu-
sion of a stranger in a photo and allow him to decide whether to blur his face
or not. Only the photographer is allowed to determine the necessity of blurring
the stranger’s face.

Several recent works have been done to protect strangers’ privacy in photos
through blurring their faces. They differ in the way of determining whether a
stranger is in the photo or not. Our previous work [14] checks whether a stranger
is in a photo or not based on GPS locations of the photographer and the stranger.
Due to the dependence on GPS location, it does not work well indoor due to
the unavailability or inaccuracy of GPS. Wang et al. [27] design a system for
protecting photo privacy that identifies a stranger in a photo by recognizing his
motion patterns and visual appearance (e.g., clothes color) profiled into the sys-
tem in advance. However, users’ visual fingerprints need to be updated whenever
they change (e.g., changing clothes), which is not convenient. Zhang et al. [28]
propose a server-based system to protect privacy of photographed users that
compares the portrait of a user uploaded to the server and the portrait of the
persons included in photos. Their scheme considers full portrait captured in the
photo (i.e., the whole body), which is quite different from this paper that only
considers face. Also, their scheme assumes a trusted server from the privacy
perspective, which is not always available.
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In this paper, we use facial attributes that do not change frequently (e.g.,
black hair or blond hair) to determine whether a stranger is in a photo or not.
Since such facial attributes are relatively stable, if a person is in a photo, by com-
paring the faces in the photo with his recent profile photo in facial attributes, the
person can be correctly matched to his face in the photo. Also, in photographing
scenarios, it is not very likely that the facial attributes of two nearby strangers are
exactly same, since the number of persons in a limited geographic area around
the photographer is usually not large. That means if facial attributes can be
accurately identified from photos, mismatch between faces and strangers will be
of a low chance. Thus intuitively facial attribute-based face-stranger matching
is a promising method to explore.

Based on facial attributes, we design a cooperative scheme PoliteCamera to
protect the privacy of strangers who are unintentionally included in photos taken
by mobile phones. PoliteCamera works as an application on the mobile phones for
both the photographer and the stranger. When a photographer takes a photo, he
(via the mobile phone) will notify nearby strangers of the potential risk of being
included in the photo via peer-to-peer short-range wireless communications (e.g.,
WiFi Direct [4]). If a stranger prefers not to be included in the photo, he can
send a blurring request to the photographer together with his facial attributes
included in the request. The photographer will check whether the requesting
stranger’s face appears in the photo or not based on the facial attributes sent
from the stranger and the facial attributes of faces captured in the photo. If the
attributes of a face in the photo match those of the requesting stranger, that
face is considered to be the stranger’s and it will be blurred in the photo.

The set of facial attributes will be carefully selected so that a combination of
attribute values is specific enough to differentiate different strangers nearby the
photographer but is not specific enough to uniquely identify who the requesting
stranger is in the real world. The number of possible attribute value combinations
should be reasonably large (e.g., tens of thousand). Then the probability for
two different strangers to have the same combination is low, since the number
of strangers around a photographer is usually small. The number of possible
combinations should also not be too large. In this way, each combination could
be owned by many people in the real world, and thus cannot be used to infer
who the stranger is. As described later, approximate match instead of exact
match will be used in PoliteCamera, which makes linking multiple appearances
of the same person difficult. Thus, the privacy risk of re-identification will be
low. Moreover, privacy-preserving computing technologies can also be applied to
complete the matching of facial attributes without sending the stranger’s facial
attributes to the photographer in cleartext, and in this way further protect the
stranger’s facial attributes from the photographer (see Sect. 2.4 for a discussion).

The privacy protection offered by PoliteCamera is based on the cooperation
between photographers and strangers. Although these two roles are separately
discussed, real-world users can take either role in different scenarios. Since every
user can be a stranger in many scenarios, users have a motivation to use this
system, and participation in this system means mutually protecting each other’s
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privacy and benefiting everyone including self. This inter-user cooperation design
is also motivated by many real-world systems such as collaborative filtering rec-
ommender systems [19] and peer-to-peer video streaming systems [15]. Users’
privacy can be better protected when more people use this system. Although it
is not a perfect solution for the problem, it still significantly advances the state
of the art in this domain.

The contribution of this paper is summarized as follows:

– We propose a facial attribute-based system PoliteCamera for protecting
strangers’ privacy in mobile photographing. To the best of our knowledge,
PoliteCamera is the first scheme that makes nearby strangers aware of possi-
ble inclusion in a photo when the photo is being taken, allowing them to deter-
mine whether to blur their face in the photo or not, and protects strangers’
privacy under both indoor and outdoor scenarios, without using any trusted
server, human gesture, or special wearables.

– We design a novel adapted balanced convolutional neural network (ABCNN)
that can simultaneously predict multiple facial attributes from a photo, and
use it to determine the existence of requesting strangers in a photo.

– To avoid identifying the real target persons of a photo as a stranger, a heuristic
approach is employed to effectively filter targets to prevent incorrect blurring.

– The proposed system is implemented, and extensively evaluated on real
datasets and in the field. Experimental results show the excellent performance
of the system.

The rest of the paper is organized as follows. Section 2 introduces the design
of PoliteCamera. Section 3 presents implementation. Section 4 shows evaluation
results. Section 5 reviews related work. Section 6 concludes the paper.

2 System Design

This section describes the design of PoliteCamera.

2.1 System Overview

Three types of entities are involved in the system: the photographer who takes
a photo, the target who is intentionally captured by the photographer, and the
stranger who is near the target and might be accidentally included in the photo.

The system is designed to protect the stranger’s privacy by giving an option
to the stranger to opt out from the photo. The general idea is that the system
notifies nearby strangers the possible inclusion in a photo, and blurs a stranger’s
face if the stranger sends a blurring request. A naive approach is to blur every
stranger’s face in the photo. However, this is not an ideal solution, since blurring
will inevitably affect the quality of the photo. To minimize the effect on photo
quality, our design only blurs a stranger’s face if he requests to do so. We assume
PoliteCamera is installed on both the photographer’s and the stranger’s mobile
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phone. Each user of PoliteCamera provides one of his photos to the PoliteCam-
era app upon the installation of the system. Each user’s facial attributes are
learned from this base photo and stored in the system for future use. (The base
photo can be updated by the user but this does not need to be done frequently
since facial attributes do not change frequently.) When a stranger requests a
photographer to blur his face, he can send these attributes to the photographer
and the photographer will determine whether his face is in the photo based on
these facial attributes and blur his face if so.

There are two challenges with the approach. Firstly, there might be multiple
nearby strangers who receive the notification of potential privacy leakage by
the photo. Some of them may request to blur their faces but others may not
request so. Hence, we need to determine if the requesting stranger’s face is in
the photo or not, which is not trivial. Secondly, when the target is a single
person or multiple persons, we need to keep the target unblurred even if the
target’s phone mistakenly sends out a blurring request. Telling the target from
the stranger is necessary but difficult.

2.2 The Architecture and Workflow of PoliteCamera

As Fig. 2 shows, the system consists of six major modules: face detection and
preprocessing, blurring request and collection, facial attributes classifier, target
filter, stranger determination and face blurring. When a photographer takes a
photo, the face detection module will run on the captured image. If any face is
detected, the notification of possible inclusion in the photo will be sent to nearby
strangers via peer-to-peer short-range wireless communications. If a stranger
would like to blur his face in the photo, he sends a blurring request to the
photographer. To help the photographer determine if the requesting stranger is
in the photo, this stranger also sends his pre-computed facial attributes (e.g.,
gender, obtained from his face image when initializing the PoliteCamera app).
Upon receiving blurring requests, the photographer crops all the faces in the
picture, and then feed them into the pre-trained facial attributes classifier. By
comparing the facial attributes of requesting strangers and the attributes of
detected faces in the photo, the stranger determination module of photographer
can identify those requesting strangers captured in the photo. If a requesting
stranger is in the photo, the face blurring module of the photographer smoothly
blurs the corresponding face; otherwise, the request is ignored. In case the target
mistakenly sends a blurring request, the target filter module distinguishes the
target from the stranger based on specific defined rules, and keeps the target
unblurred in the photo.

The design of PoliteCamera depends on several available technologies in
mobile phones. In particular, face detection and preprocessing can be imple-
mented using APIs provided by the operating system on mobile phones, such
as the FaceDetector APIs in Android SDK. Similarly, peer-to-peer short-range
wireless communications can be set up by available technologies on most mod-
ern mobile phones, such as WiFi Direct [4] and Bluetooth. We will introduce the
implementation of these two modules in Sect. 3. Next, we will illustrate more
details about the rest four modules.
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Fig. 2. The architecture of PoliteCamera.

2.3 Facial Attribute Classifier

Given an input face image in pre-defined dimensions, this module aims to simul-
taneously output a set of facial attributes associated with this input image. In
particular, each facial attribute is a binary label, where +1 indicates the pres-
ence of the corresponding attribute, and −1 means its absence. In this paper, we
propose to train a facial attribute classifier through the ABCNN model where a
weighted objective function is constructed to maximize the prediction accuracy.

Formally, let I be the set of input images, and N be the number of facial
attributes. For a given image x ∈ I, let yi ∈ {−1,+1} be the binary label of
the ith attribute, where i ∈ {1, 2, . . . , N} is the index of facial attributes. Let
H be the hypothesis space of possible decision functions, and fi(θT x) be the
decision function, where θ = {θ1, θ2, . . . , θN} is the network weights. Hence, the
loss function of the ith facial attribute can be defined as Li(fi(θT x), yi). Let
E(Li) be the expected loss over the range of inputs I. Then the optimization
task is to minimize the expected squared error for each attribute.

∀i : fi = arg min
fi∈H

E(Li) (1)

For each input x and attribute i, the corresponding classification result ci(x)
and the according accuracy acci(x) can be obtained from the output of fi(x)
described as:

ci(x) =

{
+1 fi(x) > 0
−1 otherwise,

and

acci(x, y) =

{
+1 yi(x)ci(x) > 0
0 otherwise

(2)

As discussed above, the traditional approach treats facial attributes as N
independent tasks, and each classifier is trained independently. The typical loss
function for the ith facial attribute is constructed by choosing the hinge-loss
function, which is shown as:

arg min
θi

Li(fi(θT x), yi) = arg min
θi

(max(0, 1 − yi(x)fi(θT x))) (3)
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However, a problem with the traditional approach is that training indepen-
dent classifiers cannot learn the latent correlations between attributes. To exploit
such correlations, the classifier should be constructed to learn all of these facial
attributes simultaneously. In addition, the attribute label distribution in the
training set should match with the corresponding distribution in the testing set.
Therefore, it is necessary to balance the dataset to train a better classifier. One
way to obtain a balanced dataset is to perfectly collect evenly distributed dataset
of images for each attribute. However, it will cause extra efforts since most of
data in real application is not evenly distributed, and finding such dataset may
be very challenging especially at a large scale. An alternative solution is to
modify the loss function in order to simulate a balanced dataset. In our pro-
posed ABCNN, some changes are made to the objective function to address
the imbalance between the training dataset and the test dataset. Specifically, a
mixed objective function is proposed by considering the distribution difference
between training data and testing data as adapted weights. Firstly, the training
distribution Si for each attribute i is computed by calculating the fraction of
positive samples Train+

i (0 < Train+
i < 1) and fraction of negative samples

Train−
i (0 < Train−

i < 1) in the training set. Given the binary testing target
distribution Target+i and Target−i (where Target+i +Target−i = 1), an adapted
weight is assigned for each class of attribute i, as shown in Eqs. (4) and (5):

p(i| + 1) = 1 +
ΔT+

Target+i + Train+
i

(4)

p(i| − 1) = 1 +
ΔT−

Target−i + Train−
i

(5)

where ΔT+ = Target+i − Train+
i and ΔT− = Target−i − Train−

i . It can be
seen from the above equations that we will increase the weight of the ith facial
attribute if the fraction of positive or negative labels in the training data is less
than the testing data. The intuition is that the increment of those weights will
help balance the distribution difference between training data and testing data.
Correspondingly, we will decrease the fraction weights of positive or negative
labels in the training data if it is higher than that in the testing data. Then, these
adapted weights are incorporated into the mixed objective function. Instead of
using the hinge-loss function, a weighted mixed task square error is adopted as
the loss function, and the optimization problem of ABCNN can be expressed as:

∀i : arg min
fi∈H

E(L(x, y)) = arg min
fi∈H

E(
∑N

i=1 p(i|yi(x))||fi(x) − yi(x)||2) (6)

The optimization problem aims to find the optimal decision function f that has
the smallest error between predictions and target labels. Over an M -element
training set X with labels Y, from Eq. (6) we can get:

∀i : arg min
fi∈H

E(L(X,Y )) = arg min
fi∈H

E(
∑M

j=1

∑N
i=1 p(i|Yji(x))||fi(Xj) − Yji||2) (7)
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The ABCNN architecture can be built by replacing the standard loss layer of
a deep convolution neural network (DCNN) with a layer implementing Eq. (7).
After the above classifier is trained, we can predict facial attributes by inputting
a face image with fixed dimensions (which are consistent with that of training
images) to the classifier.

2.4 Stranger Determination

This module aims to determine if a requesting stranger is included in the photo
or not and which face matches the stranger. This is done though thresholding
the difference between the facial attributes of the detected faces and those of
the requesting stranger. In fact, facial attributes predicted by the classifier is a
vector of binary values, where +1 indicates the presence of the corresponding
attribute, while −1 represents its absence. The difference is defined as the num-
ber of different attributes between two faces under the same set of attributes.
Formally, let N be the number of attributes associated with a face. For a given
face, its corresponding attributes vector V = [a1, . . . , aN ], where ai ∈ {−1,+1}
represents the ith facial attribute. We use Vr and Vs to represent the facial
attributes of the requesting stranger and a specific detected face respectively.
The inner product of Vr and Vs is Vr·Vs =

∑N
i=1 Vr[i]Vs[i]. If all the attributes

are identical that inner product should be N . The Vr[i]Vs[i] is −1 only when the
ith attribute in Vr and the ith attribute in Vs are different. Hence, the difference
can be obtained as:

diff =
N − Vr·Vs

2
(8)

As discussed before the facial attributes cannot be used to uniquely identify
a stranger. In order to further protect the stranger’s facial attributes from the
photographer, inner product computation can be done with a two-party privacy-
preserving scheme [5]. Usually the predication results from two images from the
same person cannot match exactly due to angle difference or some other reasons.
Thus a threshold is set to tolerate such minor deviations. The rule is that only the
difference between facial attributes of the requesting stranger and any specific
detected face is less than or equal to the threshold, we consider the detected face
belongs to the requesting stranger. Our evaluations show that it is a good choice
to set 1 as the threshold.

2.5 Target Filter

This module is designed to distinguish the target from the stranger in a photo,
so that the target’s face will not be blurred even if the target mistakenly sends a
blurring request. Specifically, if the target of a photo is one or multiple persons,
the task is filtering out the targeted faces; if the target is a building or something
else, we would like to avoid the stranger being mistakenly identified as the target.
Therefore, a heuristic approach is proposed to achieve this goal. Based on our
observations from real-world experience, the target is usually associated with
the following properties in the photo:
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– One common goal of taking photos is recording beautiful moments. The target
is likely to be smiling when he is being pictured, since smiles make a person
more attractive and confident.

– The photographer usually intentionally makes the target’s face significantly
larger than others who are accidentally included in the photo. For instance,
if a stranger is too close to the camera and hence his face is larger than
the target’s, the photographer will usually stop picturing or move a little bit
so that the target is better captured into the photo. Moreover, considering
that there might be multiple targets appearing in the photo but with slightly
different face sizes (e.g., a group of people taking a picture), we expect to filter
all targets in the photo by comparing a detected face with the largest face in
the photo, which is considered as one of the targets’ faces by default. If the
size difference is less than a pre-defined threshold, we consider the detected
face as one of the target faces.

– Similarly, the photographer usually puts the target in a dominant position of
the photo. The central region is one of the most popular options, which can
highlight the target in the photo.

Consequently, smiling, face size and face position can facilitate deter-
mining if a face belongs to the target or not. Based on these observations, we
propose three rules to determine whether a person in the photo is a target or
not.

1. The person is smiling.
2. The person’s face is the largest one in the photo or slightly smaller than the

largest one by a pre-defined threshold. Based on our test, we find that the
average size difference between two targets’ faces in a photo is around 10%.
Hence, if more than one face is detected, we compare the largest one with the
others. If the size difference between the largest one and a certain face is less
than or equal to 10%, we consider that face as one target face. Otherwise, the
detected face will not be treated as a target.

3. The person’s face appears at the central region of the photo. The central
region is defined as the middle section of horizontal trisections of a photo.

However, it is too strict if we determine a detected face is the target only when all
those three rules are satisfied, since sometimes not all of them are satisfied. For
instance, the target is not always smiling when the photo is taken. Considering
this, we determine that the face is the target if at least two of the three rules
are satisfied.

2.6 Face Blurring

The purpose of face blurring is to mask the features of a face in order to make
the face not recognizable, without degrading the quality of photo much. Similar
to our previous work [14], we adopt an approach based on the Gaussian Blur
algorithm [21] to smoothly blur faces. To conduct face blurring, we need to
determine a blurring area in the face enclosing the main identifiable features of
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the face. In particular, we draw a square whose side length is 2.4 times of the
distance between eyes, and whose center is the middle point between eyes. Then
the Gaussian Blur operation can be performed in the square blurring area.

3 Implementation

The facial attribute classifier was implemented using Python 2.7 and MxNet [3],
which is an open-source deep learning framework. WiFi Direct was used to con-
duct peer-to-peer communications between the stranger and the photographer.
The face blurring module was implemented as same as our previous work [14],
so some details are omitted here.

3.1 Face Detection and Preprocessing

Face detection is based on the FaceDetector class provided in Android SDK.
Faces in an image can be detected by calling the findFaces method of FaceDe-
tector. This method detects faces by finding pupils in the image, and returns
a number of detected faces into an array of FaceDetector.Faces class. For each
instance of Face class, the distance between two eyes of a face and the coor-
dinate of the middle point between two eyes can be obtained. Then we crop
each detected face with a square area, which is the same as the blurring square
described in Sect. 2.6. Also, the size of the cropped square is used to represent
the size of the corresponding face in the target filter module. To prepare for
target filtering, we need to detect the position of each face in the photo. To do
so, we evenly divide the picture into three regions (left, middle, right) along the
horizontal direction. Then for each detected face, we calculate the middle point
between its eyes. If the middle point is located in the middle region, we say this
face is in the central region.

3.2 Facial Attribute Classifier

This module aims to predict a set of facial attributes from a given face image.
As described in Sect. 2.3, we use ABCNN to predict the facial attributes and
ABCNN is implemented by the Python interface of MxNet [3]. In particular, we
build the ABCNN network by replacing the final loss layer of a 16-layer VGG
network from [22] by the loss function in Eq. (7), and the architecture shown
in Fig. 3. The architecture consists of 16 weight layers, including 13 convolution
layers and 3 fully connected layers, which are associated with over one million
weights. Since the network only accepts RGB image input with dimensions of
128 * 128 pixels, each cropped face obtained from the face detection and prepro-
cessing module should be scaled to that size before being sent into this classifier.

In this paper, the ABCNN network is trained on the CelebA dataset [16],
which is a large-scale facial attributes dataset. It contains 20 images for each
of over 10K celebrities, hence with a total of more than 200K images. The first
160K images are used for training, and the remaining 40K images are used for
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Fig. 3. Architecture of the ABCNN network.

validation and testing, specifically, 20K for validation and 20K for testing. For
our implementation, we use a set of pre-cropped and aligned face images pro-
vided by the CelebA dataset, and scale the dimensions of training RGB images
from 178 * 218 pixels to 128 * 128 pixels. Each image in the CelebA dataset is
annotated with binary labels of 40 facial attributes (e.g., ‘Young’ and ‘Male’).
However, in this work, we choose 16 out of the 40 attributes that do not change
frequently for the same person as our considered attributes. The 16 chosen facial
attributes include {Arched Eyebrows, Bushy Eyebrows, Big Lips, Big Nose, Point
Nose, Black Hair, Blond Hair, Brown Hair, Gray Hair, Eyeglasses, Bald, High
Cheekbones, Narrow Eyes, Oval Face, Male, Young }. In addition, since the ‘smil-
ing’ attribute is required for target filtering, we also add it into the classifier (note
that it is not used for stranger determination but only for target filtering).

4 Evaluations

To train the classifier, we set the batch size to 384 images per training iteration,
and hence the training process requires approximately 420 iterations to finish a
full epoch on the training set. The learning rate is initialized as 0.05, and reduced
by a factor of 0.8 every four epochs until it decays to 0.000001. We train the
ABCNN for 110 epochs with all images from training set on two NVidia K80
GPUs.

4.1 Model Selection

Classification accuracy is defined as the number of correctly predicted cases
divided by the number of testing images. From Eq. (2), we can derive the clas-
sification accuracy of each attribute i:

ei(X,Y ) =
1

Ntest

Ntest∑
j=1

acci(Xj , Yj) (9)
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Consequently, we can evaluate the average classification accuracy by calculating
the average classification accuracy over all the N attributes:

E(X,Y ) =
1
N

N∑
i=1

ei(X,Y ) (10)

The ABCNN prediction model is trained on the training dataset, but the
number of training epochs needed is determined based on the validation dataset.
Specifically, the accuracy trend when the number of training epochs increases is
shown in Fig. 4. As the training continues, the accuracy over the training dataset
keeps increasing. However, training for more epochs means higher cost. Thus,
based on the maximum accuracy over the validation dataset, we stop training the
ABCNN network after 80 epochs (with 89.84% validation accuracy) and use the
resulted model for performance evaluations in order to guarantee the coverage
of the model without too high cost.

Fig. 4. Average classification accuracy vs training epochs.

Then based on Eq. (9) we evaluate the classification accuracy of each facial
attribute on the test dataset, including 16 attributes used for stranger deter-
mination and the ‘Smiling’ attribute for target filtering. The average accuracy
over those 16 attributes is also tested according to Eq. (10). As Fig. 5 shows,
the average accuracy is 88.53% (see the horizontal dashed line) which is pretty
high. Out of the first 16 facial attributes, 6 attributes outperform the average
performance, including Bushy Eyebrows, Black Hair, Blond Hair, Gray Hair,
Eyeglasses, Bald and Male. For example, the classification accuracies of Eye-
glasses and Bald achieves 98.31% and 98.34%, respectively.

To measure the performance of our proposed ABCNN in predicting the
facial attributes, we compared it with the state-of-art algorithm proposed in
[17]. They also construct a multi-task training classifier and the corresponding
facial attribute prediction and average accuracy are represented with the blue
dashed line and the horizontal blue solid line in Fig. 5, respectively. In addition,
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we also compared the proposed ABCNN with [16] which uses the basic CNN
model to select features and inputs them to the SVM classifier for training. Its
performance is displayed by green line and green dashed line for facial attributes
prediction accuracy and average accuracy, respectively. ABCNN outperforms
both the multi-task training classifier in [17] and the CNN-SVM model [13].

Fig. 5. Classification accuracy of each attribute and average accuracy in testing. (Color
figure online)

4.2 Classification Consistency

Since the facial attributes are used for stranger determination, the trained clas-
sifier is expected to make consistent predictions given a specific person. That
is, given two different face images of the same person, ideally all the 16 facial
attributes obtained from the two images are identical. To evaluate classification
consistency, we use the LFW image database [7] that has been widely used in the
literature. Since images in the LFW database are organized by person, it is more
efficient to sample images for experiment. In this experiment, we randomly pick
50 persons, and a pair of different face images of each person (see Fig. 6 as an
example). The classification results over the two images in Fig. 6 are presented in
Table 1. It can be seen that the classified facial attributes of these two images are
exactly the same except ‘Big Lips’, ‘Brown Hair’ and ‘High Cheekbones’. Out of
the 50 persons, the classification results for 32 persons are fully consistent. For
the rest 18 persons, 7 persons have 15 identical attributes, 8 persons have 14
identical attributes, and the remaining 3 persons have 13 identical attributes.

Besides, we examine the classification consistency on persons with more than
4 face images in the LFW dataset. In particular, we pick 2 pairs of different face
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(a) First face image (b) Second face image

Fig. 6. Two different face images from the same person.

Table 1. Facial attributes classification of Fig. 6(a) and (b).

Facial attributes Fig. 6(a) Fig. 6(b)

Arched Eyebrows No No

Bushy Eyebrows No No

Big Lips No Yes

Big Nose Yes Yes

Pointy Nose No No

Black Hair No No

Brown Hair Yes No

Blond Hair No No

Gray Hair No No

Eyeglasses No No

Bald No No

High Cheekbones No Yes

Narrow Eyes No No

Oval Face No No

Male Yes Yes

Young No No

images for each of those 10 persons. Then we compare the predicted attributes
pair by pair, and hence perform 20-pair comparisons. As Table 2 shows, 8 pairs
of face images are labeled with the exactly the same attributes, and only 6 pairs
are labeled with 3 or more different attributes.

Furthermore, we examine the possibility of two different persons being pre-
dicted with identical attributes. We randomly pick 100 persons from the LFW
dataset, and perform facial attribute classification on a face image of each person.
Then, we compare facial attributes of every person with those of the other 99
persons and hence 4950 pairs are compared in total. Only 144 pairs have exactly
the same attributes. All these results show that the classification consistency is
high.
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Table 2. Classification consistency of 10 persons with 2 pairs of face images each.

Number of identical attributes 16 15 14 13 12 11 10

Number of pairs 8 4 2 2 2 1 1

4.3 Optimal Thresholding

The above consistency experiments show that facial attributes of two face images
from the same person may not be perfectly identical. Hence, a scheme that
depends on exactly matching of facial attributes between two faces will not
work for stranger determination. The stranger determination is implemented by
thresholding the difference of facial attributes between two compared face images
to allow a reasonable difference between these two faces. Hence, it is needed
to find a proper threshold. The goal is that we can obtain more true positives
without causing too many false positives under the threshold. Here, true positive
means two different face images of the same person being determined as the same
person. False positive means images of two different persons being determined
are from the same person. In this experiment, we pick 50 persons from the LFW
database, and two different face images with each person. In order to evaluate
false positive, 50 tests are conducted. In each test, we pick one face image from
the above 50 persons as the target, and choose another face image from a different
person to compare with the target. From the above classification consistency
evaluations, we consider 0, 1 and 2 as reasonable threshold candidates and show
the results in Table 3. Based on these results, we choose 1 as the threshold in
stranger determination which has good performance in both true positive and
false positive.

Table 3. Effectiveness of stranger determination under different threshold with 50
tests.

Threshold = 0 Threshold = 1 Threshold = 2

# True positives 36 45 48

# False positives 1 3 12

4.4 Effectiveness of Target Filter

This test aims to examine how well the target filter module can detect the target
from a photo. In this experiment, we perform target filter on field photos from
two different sources where multiple targets might be in one photo. We use false
filtering rate to measure the performance, which is defined as the percentage of
times when not all targets in the photo are successfully detected or any stranger
appearing in the photo is mistakenly detected as the target.

First, we evaluate the effectiveness of target filter on 100 photos, which we
have pictured by mobile phone in the past, and at least one target person is
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included in each photo. The result shows that the false filtering rate is only 8%,
which means the target filter only fails to detect the target in 8 photos. Figure 7
illustrates two example photos of our test. Figure 7(a) is a successful example,
but Fig. 7(b) is a failed example. The reason for unsuccessful target detection is
that the face is not at the central region of the photo, and ‘Smiling’ attribute is
falsely predicted as ‘No’. Based on our proposed three rules, only the rule based
on face size can be satisfied, and hence the target is not successfully detected.

(a) A test photo where the
target is successfully detected.

(b) A test photo where the
target filter failed.

Fig. 7. Target filter test on photos taken by the authors.

Then we pick 100 photos shared by our friends in Facebook from 10/01/2016
to 12/26/2016. At least one target person is included in each photo. Figure 8
shows some example photos, where faces are blurred upon the friends’ request.
Similar to the above test, we run target filtering on these 100 photos. The false
filtering rate is 12%, which means the target filtering operation fails in 12 photos.
We look into each of those 12 photos, and find the same reason causing false
target filtering. When multiple targets are shown in the photo, the target at
the rightmost or leftmost is detected as out of the central region of the photo.
Also, this target was not smiling when the photo was taken or the ‘Smiling’
attribute is falsely predicted as ‘No’. As a result, in those cases, the rules based
on face position and smiling cannot be satisfied, and hence the target filter
cannot successfully detect all the targets in the photo. However, the overall
target filtering accuracy is still high.

Fig. 8. Target filter test on photos shared by friends on Facebook.
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4.5 Accuracy of Protection

This part evaluates the effectiveness of our system in protecting the stranger’s
privacy. The experiments are conducted on our campus. Figure 9 shows two
example experiment scenes.

Fig. 9. Example experiment scenes

True Protection Rate: This group of tests considers the scenario where one
target person and two strangers appear in the photo. We assume either one of the
two strangers or both of them request face blurring. The true protection rate is
defined as ratio of times when the faces of the requesting strangers are blurred in
the photo. For each requesting stranger, we conduct 10 tests separately. Figure 10
shows an example where the right stranger’s face is successfully blurred. Table 4
shows the true protection rate which is high.

Fig. 10. Example of a successful protection.

False Protection Rate: Again we consider the scenario where one target per-
son and two strangers appear in the photo. Suppose the two strangers in the
photo do not request to blur their faces but other nearby strangers who are not
in the photo submit blurring requests. In this case, we define false protection rate
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Table 4. True protection rate

# Requesting strangers True protection rate

1 90%

2 80%

as the percentage of times when any of two strangers in the photo is mistakenly
detected as a requesting stranger and hence falsely blurred. To evaluate the false
protection rate in a noisy environment, we conduct simulations with 1, 3, 5 and
10 nearby requesting strangers separately. Specifically, in each test, we randomly
pick a certain number of entities from the LFW database, who act as nearby
requesting strangers, and one face image for each selected person. For each spe-
cific number of requesting strangers, 50 tests are conducted separately. Table 5
shows results with different number of requesting strangers. We can see that
false protection rate increases with the increasing number of nearby requesting
strangers. This is because the more nearby requesting strangers, the higher pos-
sibility of their facial attributes being overlapped with that of strangers in the
photo. Note that the false protection rate is as low as 3% with only one nearby
requesting stranger. Even under noisy environment with 3 nearby strangers who
request face blurring, the false protection is only 8%. The false protection rate
increases to 24% with 10 nearby requesting strangers, but this case does not
occur often in the real world.

Table 5. False protection rate

# Nearby requesting strangers

1 3 5 10

False protection rate 3% 8% 14% 24%

5 Related Work

Photo and Video Privacy. Jung and Philipose [11] propose a system to pro-
tect video privacy. If it detects the person being recorded is making certain
gestures like waving hands, the wearable camera will stop recording that per-
son. Raval et al. [18] design a system called MarkIt to protect video privacy. It
detects sensitive objects predefined by users in video, and those sensitive objects
will be covered with markers before releasing the video to third-party applica-
tions. Jana et al. [9] design an OS abstraction Recognizer to enforce fine-grained
access control in augmented reality system by reducing the quality of raw sensor
data. Darkly [10] restricts untrusted applications from accessing raw data from
perceptual sensors.
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Schiff et al. [20] implement a system to protect photo privacy by detecting
persons that wear special tracking markers and blurring their faces in photos.
However, people who want to protect their privacy must wear special markers
beforehand which is not suitable for our considered daily scenarios. Bo et al.
[1] propose a protocol to protect the privacy of people being pictured based
on a physical tag, which contains their privacy preferences. However, people
have to wear clothes with QR-code as privacy tags. Visual fingerprints have
also been used to detect whether a user is in a photo [27], but their scheme
requires update of visual fingerprints whenever there is any change (e.g., clothes
change), requiring too much intervention from people. Templeman et al. [25] pro-
pose an approach to prevent photos from being shared with others by checking
the attributes extracted from the photo, such as location and content. PlaceAv-
oider [26] is a context-aware system which can notify the photographer when
an application is going to capture photos in sensitive places. Zhang et al. [28]
design a photo capturing and sharing system to protect people’s privacy based
on graph representations of people’s portraits. Notisense [17] is implemented to
notify bystanders of nearby mobile sensing activities. Tan et al. [24] implement
a system to protect photo privacy based on the recognition of persons who are
known to the phone owner, and deny third-party applications to access these
photos.

Facial Attributes Classification. Kumar et al. [13] propose an approach to
train facial attribute classifiers. Features from manually-picked facial regions for
each facial attribute are separately optimized using AdaBoost algorithms. In
addition, independent SVM classifiers are trained by feeding optimized features.
In this approach, various features are learnt for each facial attribute, and an inde-
pendent SVM classifier is separately trained. Even though it is a valid approach,
it is not efficient for feature extraction and classification. Recently, with the
increasing popularity of convolution neural network (CNN), it has been lever-
aged to extract more sophisticated features of facial attributes. For instance,
Kang et al. [12] propose gated CNNs, which aim to determine which regions of
a face are most correlated to corresponding attributes. Then, the output of such
CNNs is encoded into a global feature vector for training independent binary
SVM classifiers. Zhang et al. [29] apply CNNs to learn facial attributes, which
are used to infer social relations between pairs of identities with an image. Liu
et al. [16] design three CNNs, including two localization networks (LNets) and
an attribute recognition network (ANet). LNet is designed for localizing features
in face images, while ANet is trained on face identities and attributes to extract
features. Then, independent SVM classifiers are trained on those extracted fea-
tures. However, none of them can be directly used for imbalanced distributed
datasets.

6 Conclusion

We proposed a system PoliteCamera to protect strangers’ privacy who are acci-
dentally captured in a photo taken by mobile phones. The system can inform
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nearby strangers that they are possibly included in a photo and give them an
option to blur their faces in the photo. A novel ABCNN structure is designed
to predict facial attributes, where the facial attributes are used to determine
whether a requesting stranger is in the photo and which face in the photo
belongs to him. We implemented a prototype system, and evaluated its per-
formance through experiments. The accuracy of the facial attributes prediction
is better than the state of the art, and experimental evaluations demonstrate
that the system can effectively protect strangers’ privacy.
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Abstract. The prevalence of mobile malware has become a growing
issue given the tight integration of mobile systems with our daily life.
Most malware programs use URLs inside network traffic to forward
commands to launch malicious activities. Therefore, the detection of
malicious URLs can be essential in deterring such malicious activities.
Traditional methods construct blacklists with verified URLs to identify
malicious URLs, but their effectiveness is impaired by unknown mali-
cious URLs. Recently, machine learning-based methods have been pro-
posed for malware detection with improved performance. In this paper,
we propose a novel URL detection method based on Floating Centroids
Method (FCM), which integrates supervised classification and unsuper-
vised clustering in a coherent manner. The proposed method uses the
lexical features of a URL to effectively identify malicious URLs while
grouping similar URLs into the same cluster. Our experimental results
show that a URL cluster exhibits unique behavioral patterns that can be
used for malware detection with high accuracy. Moreover, the proposed
behavioral clustering method facilitates the identification of malicious
URL categories and unseen malware variants.

1 Introduction

Malicious software, or malware, has become a major threat to the growing mobile
ecosystem. Recently, the number and sophistication of mobile malware, par-
ticularly those target Android platforms, have increased dramatically [1]. The
Android platform and mobile anti-virus scanners provide security protection
mechanisms to protect Android devices, yet an increasing number of advanced
mobile malware can still penetrate the mobile system by evading these mecha-
nisms. As mobile devices are increasingly associated with personal information,
an effective mobile malware detection system is urgently needed.

Malware authors have adopted repackaging and code obfuscation techniques
to generate a large number of malware variants. These malware variants exhibit
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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similar malicious behaviors at runtime, which can be clustered together to iden-
tify their common behaviors. The vast majority of malware programs launch
their malicious activities through network (e.g., sending spam, exfiltrating pri-
vate data, and downloading malware updates). Thus, we can use the malware’s
network behaviors to conduct classification.

Clustering algorithm is an unsupervised learning method, which groups the
samples into different families based on their similarities with each other. How-
ever, the challenge of the clustering algorithms is to accurately cluster the same
family of malware together, while avoiding the inclusion of benign apps. Some
clustering algorithms can effectively discover the differences and commonalities
between malicious samples, and with these features they can divide malicious
samples into multiple categories. However, this approach does not have the abil-
ity to efficiently distinguish between benign and malicious samples, i.e., it is
highly likely that a benign sample will be included into a malicious cluster when
it has some similar characteristics with a certain type of malware.

In this paper, we introduce a novel machine learning technique, Floating
Centroid Method (FCM) [2] for mobile malware detection and malware family
clustering. FCM can cluster similar samples with the same label, while sepa-
rating samples with different labels as much as possible that effectively avoids
the inclusion of benign samples into a malicious cluster. Note that most mal-
ware programs use URLs to execute or transfer commands to support their
malicious behaviors [3]. So the method that extracts URLs in HTTP traffic to
detect malware can be effective in most cases. Using FCM, malicious URLs can
be clustered and identified. By analyzing clustering results, we can find more
valuable information about malware’s network behaviors. The contribution can
be summarized as follows:

• Through the analysis on URLs, we discover the many-to-many relationship
between URLs and malware family labels. Based on this observation, we
propose a novel network-level behavioral clustering method.

• We use Canopy algorithm [4] to improve the selection of cluster number in
FCM. The improved FCM can quickly determine the optimal cluster number.
With the improved FCM algorithm, we create a novel model that can cluster
and detect malicious URLs based on similar lexical features which has a higher
accuracy than traditional clustering algorithms.

• We mine the rich information within each URL cluster and perform statistical
and manual analysis to reveal different behavioral patterns in different clusters
which helps in finding malicious variants.

The rest of the paper is organized as follows: related works are introduced in
Sect. 2. We give a detailed description on the method implementation in Sect. 3.
The experimental results and comparative analysis are discussed in Sect. 4. The
limitation of this method is introduced in Sect. 5. The conclusions are provided
in Sect. 6.
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2 Related Work

Malware detection has traditionally been implemented based on static and
dynamic analysis methods. Static analysis can identify malicious behaviors of
suspicious apps without code execution. DroidMat [5], Drebin [6], and Droid-
Miner [7] are static analysis methods that utilize the machine-learning algo-
rithm to detect anomalies by analyzing permissions, called APIs or bytecode
instructions. However, static analysis is challenged by the code polymorphism
and obfuscation of malware. In dynamic analysis methods, the app is executed
in a sandbox environment. Dynamic analysis systems [8,9] have been proposed
to analyze system calls to detect malicious behaviors. However, these dynamic
analysis methods are difficult to deploy due to their complexity.

In addition, suspicious apps can be analyzed by observing their network
traffic. We briefly review the mechanisms that use network traffic for malware
detection. Some malware detection methods focus on a specific network proto-
col [10], which considers some basic information about the TCP header. Other
studies have focused on the HTTP application-layer traffic between the attackers
and victims, such as works [11–13]. The flower system [11] is an automatic app
signature system that only considers the key value pair and hostname in HTTP
header. TrafficAV [12] uses four fields (request method, request host, request
URL, and user-agent) in HTTP header and combines the decision-tree algo-
rithm to create an effective malware detection model. Recon [13] reveals privacy
leaks in mobile network traffic by observing the keys that appear in the URLs.
Work [14] also focus on the URLs. The authors design and implement AURA, a
framework for identifying the hosts that an app talks to and evaluating the risks
communication entails. Many studies focus on the clustering of malware samples
to perform malware detection or explore malicious behavior of a certain type of
malware. Shabtai et al. [15] analyzed a large amount of Android network traffic
to identify malicious attacks by repackaging. They pointed out that the apps
should be grouped into different categories based on the statistical characteris-
tics of network data. They also summarized the deviation between benign and
malicious network behaviors. Gorla et al. [16] focused on the market descriptive
information of the app to extract keywords for clustering different apps. They
identified the most unusual apps in each cluster as suspicious apps because apps
in the same cluster would have similar attributes or behaviors, while the suspi-
cious apps are drastically different from other apps. However, this method has
a high false-positive rate.

Our proposed method differs from the above classification and clustering
methods, as we integrate classification and clustering into a holistic model. The
benign URLs are for the convenience of people’s memory, while malicious URLs
do not want to attract people’s attention. Malicious URLs are often filled with
a lot of junk characters and change encoding methods, use IP addresses instead
of domain names, and randomly generate domain names. From this point of
view, lexical mining of malicious URLs is a viable way. So our work clusters and
identifies malicious URLs based on their lexical features. FCM algorithm is used



Lexical Mining of Malicious URLs for Classifying Android Malware 251

to effectively cluster similar URLs into a group while identifying malicious URLs
within the clustered URLs, attaining a better clustering performance.

3 Methodology

Our goal is to cluster similar samples together while keeping benign and mali-
cious samples separated. Figure 1 presents an overview of our method, including
URL extraction, feature representation as well as clustering and detection.

Fig. 1. The overview of URL clustering and detection method

3.1 URL Extraction

We design a traffic collection platform to collect network data generated by
Android apps during network interaction. Then, we extract URL samples from
the network traffic. A large number of network traffic data generated by both
benign and malicious apps is collected. This module consists of two components:
app execution and network traffic collection.

We run the apps on multiple Android emulators. Every app is driven by the
Android tool Monkey [17], which can randomly send some events to the device
during the execution of each app. In the process of traffic collection, additional
operations of simulator restart and random event generation are used to trigger
the malware’s malicious activities as much as possible. To avoid the network
traffic mixing by different apps, we only execute one app every time. Before
running the next app, the emulator will be destroyed and a new emulator is
re-established, which ensures that no app is running in the background when
each app is executed. We then extract URLs from traffic data using the tshark
tool [18].

3.2 Feature Representation

(1) Component Description: We divide each URL into five components and
process them separately. The five components are shown in Fig. 2. The
component m represents the request method, such as “GET”,“POST” and
“HEAD”. The component h represents the hostname. This field is specific
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for the Internet host and port number of the requested resource. The com-
ponent p stands for page, which includes the path and page name. We use
the “/” character to segment this string and regard each word as a candi-
date feature after page segmentation. The component n represents the set of
parameter names (i.e., n = {name, color}). The parameter names are always
followed by the page and start with the character of “?”. The component
v is the set of parameter values (i.e., v = {ferret, black}). The parameter
values are usually followed by the parameter names and connected to the
parameter name with “=”. Not all of the URLs contain these five compo-
nents. In general, components m, h, p are common in almost every URL,
and only a partial URLs contain components n and v.

Get H p://example.com:8080/over/there?name=ferret&color=black
m h p n

v

Fig. 2. Example of a URL consisting of five components

(2) Feature Selection: We process each component separately. For m com-
ponent, we save all the request methods appearing in our dataset into a
dictionary. For h component, we use another dictionary to save all the dif-
ferent hostnames that appear in our dataset. For the word in components
p, n and v, we consider using an automatic feature selection algorithm (chi-
square test [19]) to automatically identify meaningful features. This app-
roach accounts for the relevance of a single word to the final category label
and ignores the frequency of each feature appears. The formula of the chi-
square test is as follows:

χ2(t, c) =
∑

et∈0,1

∑

ec∈0,1

(Netec − Eetec)
2

Eetec

(1)

where Netec refers to the occurrence number of feature t and class c, and
Eetec is the expected occurrence number of feature t and class c when they
are independent of each other. The et and ec are boolean, and value “0”
indicates that the feature t is not in the word set from class c, whereas et
with a value of “1” indicates that word set of class c contains feature t. We
use all the lexical features in the components of m, h and select 100 features
with high chi-square test score from components p, n and v respectively.

(3) Vectorization: We vectorize the selected features since the adopted
machine-learning algorithm can only accept numerical data as input. We
use one-hot encoding method to encode selected features obtained in fea-
ture selection section. In one-hot encoding, each word will be converted into
m bits, among which only one bit is set to 1 and the others are set to 0.
Notably, we make a distinction between the words belonging to components
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m, h, p, n and v. This is done by having a separate dictionary for each
component. After encoding words from different components, we also need
to vectorize each URL. Given a URL, the resulting vector can be stitched
together with multipart vectors. In this vector, the value of 1 indicates that
the word appears in the URL, and 0 otherwise.

3.3 Clustering and Detection Model

The original FCM algorithm comprises of two parts. The first part is a three-
layer feedforward neural network and the second part is a K-Means clustering
algorithm. The K-Means algorithm needs to set the K value in advance. However,
the K selection is a difficult but critical issue. Thus, we propose to enhance
the FCM by adding the Canopy algorithm [4] for data coarse clustering. The
modified FCM uses Particle Swarm Optimization (PSO) [20] algorithm to adjust
the parameters of the neural network in accordance with the clustering accuracy
of K-Means. The schematic of the modified FCM is shown in Fig. 3 and we
elaborate on the details of each part in the following.

Fig. 3. The schematic diagram of improved FCM algorithm

(1) Neural Network Mapping: A mapping relationship refers to the transfer
of training data samples from the original data space to the partition space.
For this mapping, the input dimension is N and the output dimension is M ,
so the mapping is from a vector of N -dimensional elements to a vector of M
elements. Specifically, the N -dimensional URL vector is fed into the neural
network and then is mapped as a vector with M -dimensions. Given that the
feedforward neural network can fit any nonlinear function, it is suitable to
use feedforward neural network for mapping completion.

(2) Canopy Clustering: To determine the optimum K value quickly and accu-
rately, we use Canopy algorithm to cluster data roughly, and then obtain K
according to Canopy-clustering results. Specifically, the Canopy algorithm
is used to cluster data mapped by the neural network roughly and then
calculate the best cluster number for the dataset. Although the Canopy
clustering algorithm has low accuracy, it has a great advantage in speed and
thus is often used with K-Means.
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Algorithm 1. PSO algorithm optimizes the feedforward neural network
Input: Dataset S and the structure of feedforward neural networks
Output: Best neural network and its corresponding clustering model

1: Initializing 20 different neural networks as individuals
2: while maximum generation has not been reached do
3: for id:=1 to the number of individuals do
4: Map dataset S to the partition space
5: Canopy algorithm clusters the mapped dataset to obtain the K
6: K-Means algorithm clusters the mapped dataset
7: According to clustering result to calculate E value as this individual’s fitness

8: Update individuals by their fitness

9: return Best neural network and its corresponding clustering model

(3) K-Means Clustering: The optimum K is determined by Canopy cluster-
ing, and then K-Means algorithm is used to divide the mapped data into K
disjoint clusters. The center of each cluster is called centroids. After calcu-
lating K centroids, each cluster is marked as malicious or benign in a process
called coloring. To prevent coloring bias toward the class with more samples,
in practice we balance the problem through setting weights for samples. The
sample weight belonging to class i with |Si| samples is defined as follows:

Wi =
1

|Si| (2)

The principle of coloring is that if the sum of weights of malicious samples in
a cluster takes the majority, the cluster is colored as malicious. Otherwise,
the cluster is marked as benign.

(4) Learning Process: We first define a variable z to evaluate a mapped point
in the partition space whose formula is shown in Formula 3. For a point
in the partition space, dselfmin represents the euclidean distance between the
point and the closest centroid with the same label. Similarly, dnoselfmin is the
distance between the point and the nearest centroid having different labels
with it. When no cluster has the same label or has different labels for this
point, z is assigned as the maximum that is a number. Under a limited
condition, if a sample happens to be mapped to a cluster center whose label
is consistent with the sample, then z equals 0; if not, then z equals 1.

z =

{
dself
min

dself
min+dnoself

min

∃ �self class

∧
�noself class

maximum Else
(3)

Finally, the optimization target function is defined as follows:

E =
s∑

l=0

1
1 + ea(1−2Zl)

, (4)
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where Zl is the z value of the lth sample, s is the total number of samples in the
training set, and a is a real constant determining tortuosity, and E is the target
of neural network optimization. A smaller E indicates a better neural network
and partition space.

Based on the optimization target function, the PSO algorithm is used to
optimize the neural network and simultaneously obtain the final partition space.
The detail of how the PSO algorithm utilizes the clustering result of K-Means
to optimize the feedforward neural network is shown in Algorithm1. With the
optimized neural network, unseen URL vector can be mapped as a new vector.
The data space where the vector is located has a clear boundary between benign
and malicious samples, and then the vector is clustered by K-Means to a specific
cluster. The prediction label of the URL vector is the same as the nearest cluster
centroid, and the URL vector shares some attributes with other samples in this
cluster.

4 Evaluation

For evaluating the proposed method, we first introduce the dataset used in our
method, and then analyze some parameters that affect the model’s performance.
Next, we compare our performance with other state of the art methods. Some
interesting findings are presented. Lastly, we apply the model on the wild apps,
and compare the detection results with different anti-virus scanners.

4.1 Data Set

Malicious apps originate from VirusShare website [21]. This library, which is
constantly updated, is one dedicated to providing a large number of malware
datasets for security researchers. We downloaded 27127 samples from this web-
site dated between July 2014 and September 2016. We collected the network
traffic generated by these malicious apps and finally obtained 18.9 GB traffic.
We extracted URL samples from the network traffic. Notably, not all URLs
requested by malware are malicious, and malicious URLs may only account for
a small part. So to let our training set have correct labels, we screened all URLs
using the detection report from VirusTotal [22]. Only explicitly malicious URLs
were added to the collection of malicious URLs. Eventually, only 11251 explicitly
malicious URLs are added to our dataset.

As for the benign data set, we downloaded a total of 6072 apps from multiple
third-party application markets (hiapk, wandoujia, and yinyongbao). Similarly,
the apps we downloaded from the app markets were not always benign. So we also
used VirusTotal to screen these apps. Only apps that VirusTotal confirms benign
are added to our benign app collection. And then the traffic-collection platform
was used to obtain their traffic data. Ultimately, we obtains 25276 benign URLs
from the 14.2 GB collected traffic. Although benign URLs are more than twice
of malicious URLs, the FCM algorithm sets different weights (see Formula 2) for
samples from different class which helps balance the problem.
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4.2 Evaluation of Clustering and Detection Model

The parameters of FCM algorithm are related to the structure of the feedforward
neural network, which is determined by the number of neurons that are included
in the input, hidden, and output layers. According to the empirical analysis of
FCM [2], we set the number of hidden-layer neurons in the neural network to 15
and the neurons number in the output layer to 9. Given that the neuron number
of the input layer is determined by the data set, we set the neuron number in
the input layer to 475 according to the length of URL vector.

(1) The Effect of Neural Network Mapping: We use a feedforward neural
network to map training data from the initial data space to the partition
space. The 475-dimensional data are mapped to 9 dimensional. In theory,
a clear division exists among the different categories of mapped data. To
verify that our optimal neural network can be helpful for clustering, we
display the training data before and after neural-network mapping. We use
Principal Component Analysis (PCA) to process and subsequently visualize
the data. Figure 4(a) shows the initial data, where different shapes represent
different categories (solid points represent benign samples, and hollow points
represent malicious samples). We find that a large part of different category
data are mixed together. If directly clustering these data, we will end with a
false inclusion of benign samples in malicious clusters. A clear boundary is
observed between benign and malicious samples after mapping in Fig. 4(b),
and only a few samples fall into other categories. Thus, from the figures,
we can clearly conclude that the data after mapping are more helpful in
improving clustering accuracy than data before mapping.

(2) The Impact of URL’s Different Components on Model: We divide
a URL into five components and deal with each component separately. By
intuition, each of the five components plays a different role on malicious
URL clustering and detection model. In this section, we assess the impact
of different components of a URL on final results. In the experiment, we
vectorize the components m, h, p, n, and v, respectively. Each component
after vectorization is then fed to the improved FCM algorithm to train the
corresponding clustering and detection model. Training set and test set are
separated randomly and the test set occupy 30% of total samples. According
to the accuracy of different models on test set, we plot the line chart (Fig. 5).

The horizontal axis represents the optimization generation of PSO optimizing
target function (see Formula 4), and the vertical axis represents the Accuracy of
the model at different optimization generations. Each type of line represents a
different model trained by different components of the URL. We can see that the
components p and h have greater contributions to the model than components
of m, n and v. Component m of the URL has the poorest recognition because
the request method is not diverse enough and almost all of request methods are
“GET” and“POST”. Each component plays a role in malicious URL detection,
so we can derive a better model by combining all URL components.
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Fig. 5. Different components of URL affect on the accuracy with the optimization
generation increasing

4.3 Comparison with State of the Art

(1) Comparison with Other Clustering Algorithms: FCM can cluster
similar samples into the same group. Here, we compare the clustering per-
formance of FCM with other popular clustering algorithms. We have selected
several popular clustering algorithms, i.e., K-Means, DBSCAN, Brich, and
Hierarchical Clustering. For each algorithm, we attempt to use multiple sets
of parameters to maximize the performance of each algorithm. The final
results of different algorithms are shown in Fig. 6. Regarding malware iden-
tification performance, FCM performs best in terms of Accuracy, Precision,
F-Measure, and FPR. Only DBSCAN algorithm has higher TPR than FCM,
but DBSCAN algorithm has a very high false-positive rate. Regarding clus-
tering performance, we compare the Silhouette Coefficient (SC) [23] of each
algorithm. A higher SC score means a model with better-defined clusters.
Figure 6 shows that the SC score of FCM is 0.4, which is much higher than
that of other algorithms.

(2) Comparison with Other URL-similarity Measurement Methods:
We claim that we can use the lexical features of URL to cluster similar URLs
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into a group. The most relevant method on URL-similarity measurement
method is described in [24], which considers structural similarity among
URL strings.

In their method, URLs are divided into the four components m,p,n,v and
does not use the hostname information. However, we believe that regardless of
malicious URL detection or clustering, the hostname plays an important role.
Our experimental results further prove this point (see Fig. 5). In [24], they ini-
tially calculate the distance between the m component. If the request method is
consistent, the distance dm is 0; if it is different, the distance dm is 1. They use
the edit distance to count the distance between the p component of two URLs,
named as dp. For component n, they save all the names of a URL to an list
and then calculate the jaccard distance between the two lists; this distance is
recorded as dn. For component v, they splice the values of a URL into a string
and calculate the editing distance between two strings when two URLs are com-
pared. The distance of this component is dv. Finally, the distance between two
URLs is d, and the formula of d is as follows:

d = dm + dp + dn + dv (5)

Fig. 6. The model evaluation of FCM with the traditional clustering algorithms

To compare two URL-similarity measurement methods, we use K-Means
algorithm to cluster the data sets obtained by the two methods. Figure 7 shows
the clustering results of both methods. We can see that our methods have obvious
advantages over structural similarity method [24] in all metrics.

4.4 Interesting Findings

FCM algorithm divides our data into 26 small clusters and each cluster is labeled
benign or malicious. The URLs in a cluster are grouped together based on simi-
lar lexical features. We analyze each cluster and discover that each one has some
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Fig. 7. The clustering results comparison of our method and structured similarity
method [24]

interesting characteristics. We use DOM Tree technology to visualize each clus-
ter. Here, we show two examples. One cluster is marked as malicious (see Fig. 8),
and the other is benign (see Fig. 9).

Figure 8 shows a total of 114 URLs in the cluster. The request methods in the
cluster are all “GET”, and contain six unique hostnames. The different paths
are followed by the hostnames. Words ending with the symbol “=” are keys
in query strings. The corresponding values of the keys are not shown because
the values are usually alphanumeric strings that are unique for the app itself
or for third-party providers. The hostname “stat.appsgeyser.com” is malicious
as validated with VirusTotal. However, no detailed information on malicious
behavior about the hostname is found in VirusTotal. We can see that the keys
in query strings are “action”, “name”, “id”, “p”, “age”, “stall” and “system”.
The values of “name”, “id” and “age” are related to the private data of users
and devices. The word “ad” appearing in multiple URLs shows that the URLs
may be related to the advertising service.

Fig. 8. An example of malicious cluster
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The cluster in Fig. 9 is a benign cluster in which the method is also “GET”
and contains three unique hostnames. Frequent words found in the cluster are
“tingsh”, “service” and “images”. Obviously, this cluster gathers a number of
flows related to entertainment services. The specific entertainment service is
listening to books. Interestingly, the URLs in the cluster do not transmit any
parameter to server, and most of the requested resources are images. This phe-
nomenon is in line with common sense because the apps need to load some
pictures or other resources when they start.

By comparing multiple clusters, we conclude that the words used in URLs are
always related to particular services and can reflect some specific behaviors. In
particular, the benign and malicious URLs tend to use different words, so it fur-
ther validates the use of lexical features in performing malicious URL clustering
and detection. The analysis on the cluster will help us gain more understanding
of malware’s network behaviors.

Fig. 9. An example of benign cluster

4.5 URL Detection in the Wild

The ultimate goal of creating a detection model is to be applied to the real
environment to detect malicious apps. To verify the actual detection capabilities
of the established model, we download 833 new apps from the app market in
December 2017, and extract a total of 10473 URLs from their network traffic. We
use bag of words model created in the training phase to vectorize these URLs,
and then feed the vectors into the trained neural network. The neural network,
which maps the data sample to a partition space, and then the URL (i.e., benign
or malicious) is predicted based on the partition space in which the sample is
located, i.e., the centroid closest to the sample after the mapping. The app is
marked as malware, if it contains malicious URLs. The entire process is shown
in Fig. 10.

In the end, our new malware dataset consists of 305 malicious apps that are
confirmed by VirusTotal reports. The 305 malware are filtered by 59 anti-virus
scanners in VirusTotal; however, each scanner in VirusTotal can only detect
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Fig. 10. The detection process for unseen app

Fig. 11. Detection rate comparison with novel malware in the wild using our method
and other anti-virus scanners

part of these malware samples. We select nine popular anti-virus scanners which
are AegisLab, Avira, Sophos, McAfee, F-Secure, BitDefender, Tencent, Kasper-
sky and Baidu respectively. The detection results of scanners are derived from
the VirusTotal service, which vary considerably. The best anti-virus scanner is
AegisLab which can detect 189 out of 305 malware and the detection rate is
61.9%, whereas the Baidu scanner only discovers 17 malware in the wild app
set whose detection rate is only 5.6%. Figure 11 shows the detailed statistics. In
contrast, our detection model can identify 188 out of 305 apps and the detection
rate is 61.6% that is on par with the best performing scanner, and outperforms
eight other anti-virus scanners. Note that detecting novel malicious apps is a
notoriously difficult task, and all existing methods are not able to achieve high
detection rate due to the malware’s high adaptability. Thus, the comparison
result validates the capability of our model in scanning wild apps.

5 Limitations

Our method only focuses on the URLs in HTTP traffic which brings its lim-
itation on identifying traffic using non-HTTP protocols or HTTP encryptions
(i.e., HTTPs). We have conducted a statistical analysis on the collected traffic,
and the proportion of malware samples using unencrypted HTTP protocol for
communication is 83.67% [25]. From the statistics, we can conclude that our
method will be effective in detecting most of the real-world malware samples.
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We admit that new types of malware using different URLs or obfuscating URLs
can bypass the proposed method. This is a common caveat of supervised learn-
ing method. However, when the new malware is added to the training samples,
we could re-train and update the classifier for detecting such new type of mal-
ware. In addition, the process of malicious URL identification requires the label
(benign and malicious) for the training data set. Unfortunately, samples with
specific labels across the entire network are relatively hard to find.

6 Conclusion

In this paper, we propose an accurate and efficient malware detection method
through malicious URLs clustering and detection from network traffic. To facil-
itate malicious URL clustering and detection, we enhance the FCM algorithm
to render it suitable for finding best cluster number. Using the enhanced FCM
algorithm and a real-world dataset, we detect malicious URLs and gather simi-
lar URLs into the same cluster. For URL clusters, we discover insightful behav-
ioral difference between benign and malicious URLs using statistical and man-
ual analyses. Specifically, we observe that the words used in URLs have close
relationships with the specific services or reflect behaviors pertinent to the mali-
cious activities. Cluster analysis simplifies the analysis on malware and further
improves malware detection at the network-level.
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Abstract. As Android malware increasingly relies on network interfaces
to perform malicious behaviors, detecting such malicious network behav-
iors becomes a critical challenge. Traditionally, static analysis provides
soundness for Android malware detection, but it also leads to high false
positives. It is also challenging to guarantee the completion of static anal-
ysis within a given time constraint, which is an important requirement
for real-world security analysis. Dynamic analysis is often used to pre-
cisely detect malware within a specific time budget. However, dynamic
analysis is inherently unsound as it only reports analysis results of the
executed paths. In this paper, we introduce GranDroid, a graph-based
hybrid malware detection system that combines dynamic analysis, incre-
mental and partial static analysis, and machine learning to provide time-
sensitive malicious network behavior detection with high accuracy. Our
evaluation using 1,500 malware samples and 1,500 benign apps shows
that our approach achieves 93% accuracy while spending only eight min-
utes to dynamically execute each app and determine its maliciousness.
GranDroid can be used to provide rich and precise detection results
while incurring similar analysis time as a typical malware detector based
on pure dynamic analysis.

1 Introduction

As Android devices become the most popular end-hosts for accessing the
Internet, cybercriminals have increasingly exploited Android’s network con-
nectivity to glean sensitive information or launch devastating network-level
attacks [11,14,20]. Significant research efforts have been spent on studying the
network usage of Android devices for detecting malicious Android apps using
both static and dynamic analyses approaches.

Static analysis approaches [7,12,19,27] perform sound analysis in an offline
manner and thus incur no runtime overhead. However, static analysis can result
in excessive false positives. Dynamic analysis approaches, on the other hand, are
more precise but incur additional runtime overhead [10,15,28]. However, recent
reports indicate that dynamic analysis can be easily defeated if an app being
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analyzed can discover that it is being observed (e.g., running in an emulator),
and as a result, it behaves as a benign app [16,18].

Due to the aforementioned limitations, it is not a surprise that recently intro-
duced malware detection approaches perform hybrid analysis, leveraging both
static and dynamic information. In general, hybrid analysis approaches stati-
cally analyze various application components of an app, execute the app, and
then record runtime information. Both static and dynamic information is then
used to detect malicious apps, which can lead to more in-depth and precise
results. However, most of the existing Android malware analysis approaches
detect Android malware by matching manually selected characteristics (e.g.,
permissions) [12,19,23] or predefined programming patterns [27]. The existing
approaches do not capture the programming logic that leads to malicious network
behaviors.

Our key observation about a typical hybrid analysis approach is that a signif-
icant amount of efforts are spent on constructing various static analysis contexts
(e.g., API calls, control-flow and data-flow graphs). Yet, the malicious network
behaviors are only induced by specific programming logic, i.e., the network-
related paths or events that have been dynamically executed. This can lead
to wasteful static analysis efforts. Furthermore, running an instrumented app or
modified runtime systems (e.g., Dalvik or ART) to log events can incur significant
runtime overhead (e.g., memory to store runtime information, and network or
USB bandwidth to transport logged information for processing). Consequently,
it is challenging for hybrid analysis to be able to complete its analysis within a
given time budget (e.g., five minutes). Adhering to a time budget, however, is
an important criterion for real-world malware analysis and vetting systems.

In this paper, our research goal is to enhance the capability of hybrid analysis
and evaluate if the analysis result is sufficiently rich to detect malicious network
behaviors in malware running on real devices (to avoid evasion attacks) given
a specific time budget. In this work, we introduce GranDroid, a graph-based
malicious network behavior detection system. We extract four network-related
features from the network-related paths and subpaths that incorporate network
methods, statistic features of each subpath, and statistic features on the sizes
of newly-generated files during the dynamic analysis. These features uniquely
capture the programming logic that leads to malicious network behaviors. We
then apply different types of machine learning algorithms to build models for
detecting malicious network behaviors. We evaluate GranDroid using 1, 500
benign and 1, 500 malicious apps collected recently, and run these apps on real
devices (i.e., Asus Nexus 7 tablets) using event sequences generated by UIAu-
tomator1. Our evaluation results indicate that GranDroid can achieve high
detection performance with 93.2% F-measure.

The contribution of our paper includes the following:

1. We develop GranDroid based on system-level dynamic graphs to detect
malicious network behaviors. Unlike prior work that rely on network traffic

1 Available from: https://developer.android.com/training/testing/ui-automator.html.

https://developer.android.com/training/testing/ui-automator.html
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information to detect network-related malware, GranDroid utilizes detailed
network-related programming logic to automatically and precisely detect the
sources of malicious network behaviors.

2. GranDroid enables partial static analysis to expand the analysis scope at
runtime, and uncover malicious programming logic related to dynamically
executed network paths. This can make our analysis approach more sound
than a traditional dynamic analysis approach.

3. We perform an in-depth evaluation of GranDroid to evaluate the runtime
performance and the efficacy of malicious network behavior detection. We
show that GranDroid can run on real devices efficiently, achieving a high
accuracy in detecting malicious network behaviors.

2 Motivation

Bouncer, the vetting system used by Google, can be bypassed by either delaying
enacting the malicious behaviors or not enacting the malicious behaviors when
the app is running on an emulator instead of a real device. Figure 1 illustrates a
code snippet from Android.Feiwo adware [5], a malicious advertisement library
that leaks user’s private information including device information (e.g., IMEI)
and device location. The Malcode method checks fake device ID or fake model
to determine whether the app is running on an emulator.

1: public static Malcode(android.content.Context c) {

2: ...

3: v0 = c.getSystemService("phone").getDeviceId();

4. if (v0 == 0 || v0.equals("000000000000000") == 0) {

5. if ((android.os.Build.MODEL.equals("sdk") == 0) &&

(android.os.Build.MODEL.equals("google_sdk") == 0)) {

6: server = http.connect (server A);}

7: else{

8: server = http.connect (server B); }}

9: else{

10: server = http.connect (server B);}

11: // Send message to server through network interface

12: ...}

Fig. 1. Android.Feiwo Adware example

In this example, if the app is being vetted through a system like Bouncer,
it would be running on an emulator that matches the conditions in Lines 4 and
5. As a result, it will then connect to a benign server, i.e., server A, which serves
benign downloadable advertisement objects (i.e., Line 6). However, if the app is
running on a real device, it will make a connection to a malicious server, i.e.,
server B, which serves malicious components disguised as advertisements (i.e.,
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Lines 8 and 10). An emulator-based vetting system then classifies this app as
benign since the application never exhibits any malicious network behaviors.

For static analysis approaches, the amount of time to analyze this app can
vary based on the complexity of code. Furthermore, there are cases when static
analysis cannot provide conclusive results as some of the input values may not
be known at the analysis time (e.g., the location of server B can be read in
from an external file). This would require additional dynamic analysis to verify
the analysis results. Therefore, using static analysis can be quite challenging for
security analysts if each app must be vetted within a small time budget (e.g., a
few minutes).

Our proposed approach attempts to achieve the best of both static and
dynamic approaches. As an example, when we use our approach to analyze
Malcode, it would first run the app for a fixed amount of time. While the app
is running, our hybrid analysis engine pulls all the loaded classes (including any
of its methods that have been executed and any classes loaded through the Java
reflection mechanism) and incrementally analyzes all methods in each class to
identify if there are paths in an app’s call graph that contain targeted or sus-
picious network activities. Despite the malware’s effort in hiding the malicious
paths, our system would be able to identify the executed path that includes the
network related API calls on Lines 6, 8 and 10. These paths are then decomposed
into subpaths and submitted to our classifier for malicious pattern identification.

There are two notable points in this example. First, our approach can ana-
lyze more information within a given time budget than using dynamic analysis
alone. This would allow vetting techniques including Bouncer to achieve a
higher precision without extending the analysis budget. Second, unlike existing
approaches such as DroidSIFT, which only considers APIs invoked in the appli-
cation code [29], our approach also retrieves low level platform and system APIs
that are necessary to perform the targeted actions. This allows our approach to
build longer and more comprehensive paths, leading to more relevant informa-
tion that can further improve detection precision. In the following section, we
describe the design and implementation of GranDroid in detail.

3 System Design

We now describe the architectural overview of our proposed system, which oper-
ates in three phases: graph generation, feature extraction, and malicious network
behavior detection, as shown in Fig. 2. Next, we describe each phase in turn.

1. Graph Generation 

TCPDUMP 

UI  
Automator 

JITANA  

Graphs 
SNPs 

Subpaths 

2. Feature Extraction 

Features 
Subpath: Existence, 
Frequency, Statistic 
File: Statistic 

Feature 
Extraction 

Tool Features 
 as  

Numeric 
Vectors 

SVM, 
Decision Tree, 

Random Forest, 

3. Detection 

Fig. 2. System architecture
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Fig. 3. Method graph

3.1 Graph Generation

GranDroid detects malicious network behaviors by analyzing program contexts
based on system-level graphs. As illustrated in Fig. 2, the process to generate the
necessary graphs involves three existing tools and an actual device or an emu-
lator (we used an actual device in this case). First, we install both malicious
and benign apps with known networking capability on several Nexus 7 tablets.
Next, we select malware samples and benign apps that can be exercised via
UIAutomator and can produce network traffic (we monitored traffic via TCP-
Dump). Incomplete malware samples and the ones that produce no network
traffic are discarded, as GranDroid currently focuses on detecting malicious
network behaviors. For future work, we plan to extend GranDroid to cover
other types of malware (e.g., those that leak information via intents).

Next, we use Jitana [21], a high-performance hybrid program analysis tool
to perform on-the-fly program analysis. While UIAutomator exercises these
apps installed on a tablet, Jitana concurrently analyzes loaded classes to gen-
erate three types of graphs: classloader, class, and method call graphs that our
technique utilizes. Jitana performs analysis by off-loading its dynamic analysis
effort to a workstation to save the runtime overhead. It periodically communi-
cates with the tablet to pull classes that have been loaded as a program runs.
Once these classes have been pulled, Jitana analyzes these classes to uncover all
methods and then generates the method call graph for the app. As such, we are
able to run Jitana and TCPDump simultaneously, allowing the data collection
process to be completed within one run. For the apps that we cannot observe
network traffic, we also discard their generated graphs. Next, we provide the
basic description of the three types of graphs used in GranDroid.

Class Loader Graph and Class Graph. A Class Loader Graph of an app
includes all class loaders called when running an app. A Class Graph shows
relationships among all classes. The important information that these graphs
provide includes the ownership relationship between methods, classes, and the
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app that these classes belong to (based on the class loader information). Such
information is particularly useful for identifying paths and subpaths as it can
help resolving ambiguity when multiple methods belonging to different classes
share the same name and method’s signature.

Method Graph. Our system detects malicious network behaviors by exploring
the invoking relationship of methods in the Method Graph. As shown in Fig. 3,
blocks represent methods, and edges indicate invoking relationship among meth-
ods. Each block contains the name of the method, its modifiers and the class
name which this method belongs to. Sensitive Network Paths (SNPs) are defined
as paths that contain network related APIs. We generate SNPs from the method
graph of each app.

Note that these dynamically generated graphs are determined by the event
sequences that exercise each app. As such, they actually reflect the runtime
behavior of an app. Another useful information contained in these graphs include
the specific Android APIs provided by Google and used by each app. We observe
that detecting an actual malicious act often boils down to detecting critical
Android APIs that enable the malicious behaviors. For example, if a malicious
app tries to steal users’ private information by sending it through the Internet,
network related APIs must be used to commit this malicious act. In addition to
network related APIs, there are also other system-level and user-defined meth-
ods that can be exploited by malware authors. Jitana is able to capture the
invocations of these APIs and any lower level APIs that can help with identi-
fying SNPs and their subpaths formed by these sensitive method invocations.
The information can be extracted from the Method Graph of each app. Next,
we describe the process of generating SNPs and the corresponding subpaths.

Sensitive Network Path (SNP) Generation. An SNP (a path related to
network behavior) can be used to determine if an app exhibits malicious net-
work behaviors. To generate SNPs, we extract all the network related Android
APIs provided by Google, and network related APIs from third party HTTP
libraries, such as Volley [4] and Okhttp [2]. In the Method Graph, we consider
all nodes whose in-degree are zero as sources, and all network related method
nodes as destinations. GranDroid generates SNPs from sources to destinations
via depth first search (DFS). Each SNP contains all the methods (nodes) from
the program entry points to network related destinations. Figure 4 illustrates the
SNP Generation. There are two sources (Node 1 and Node 2, marked as red)
and two destinations (Node 7 and Node 11, marked as green) in the graph. SNP
preserves the order of methods, and we believe that paths from malware have
different patterns compared to those from benign apps. In the following section,
we will explain our strategies in extracting features from SNP.

Sensitive Network Subpath (SNS) Generation. In order to extract fea-
tures, we also need to extract all the subpaths from each SNP. These subpaths
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Fig. 4. Path generation (Color figure
online)

Fig. 5. Subpath generation

are regarded as patterns for machine learning classification. In our system, we
only use the starting node and the ending node to indicate subpath, and ignore
all the nodes between them. Figure 5 shows the process of generating subpaths.
These subpaths are then converted into numeric vectors in the Feature Extrac-
tion phase.

3.2 Feature Extraction

We now describe the features that our system extracts from the information
generated by the Graph Generation phase. Our features come from the generated
graphs, paths, and subpaths. We also consider the amount of the generated
features for each malware sample as another feature. To quantify this, we use
the size of the file that is used to store each feature for each app. File size provides
a good approximation of the volume of each generated feature.

Subpath Existence Feature (F1). We extract all the SNSs for each mali-
cious app in the training set, and build a database to store them. We order these
subpaths by their names, and form a Boolean vector from these subpaths. For
each sample in the testing set, GranDroid generates the SNSs for each app
and we check whether these subpaths match any paths stored in the database.
A matching subpath indicates a malicious pattern, and the corresponding bit
in the Boolean vector is set to 1. Otherwise, the corresponding bit remains at
0. Even though our training set contains more than 20,000 subpaths, the vec-
torization process can be efficient when a database management system (e.g.,
SQLite) is used. This subpath vector provides an enriched feature for classi-
fication. The subpaths reflect the programming logic of malware, and there-
fore, GranDroid inherently captures the relationship among methods in the
network-related paths.
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Fig. 6. Subpath frequency
feature

Subpath Frequency Feature (F2). As men-
tioned above, Subpath Existence Feature is
extracted to form a numeric vector based on net-
work subpaths of malware in the training set. To
generate Subpath Existence Feature, we check if
the identified subpath exists in the database or
not. However, in generating Subpath Frequency
Feature, we count how many times the subpath
appears for each sample.

To do so, we use both SNP and SNS informa-
tion. As shown in Fig. 6, instead of marking 1 or
0 to build Subpath Existence Feature, we mark the frequency value in the vector
position. Intuitively, the frequency of the subpaths can be useful in representing
the usage pattern of malicious programming logic.

Path Statistic Feature (F3). We collect several statistic features for each
Android app from its Network Sensitive Path. We use nine statistical features
that include the lengths of the longest and short paths, the average path length,
the number of paths, the number of classes and methods in all paths, the sum
of lengths of all paths, and the average numbers of classes and methods per
path. We observe that these statistical features can represent malicious network
behaviors.

File Statistic Feature (F4). For each app, we save all of the graphs, paths
and feature information into separate files. We hypothesize that the size of these
files can be used to form another numeric feature vector for our machine learning
based detection system, because the file size accurately reflects the amount of
generated information that can provide some insight about the complexity of
these network paths (e.g., the numbers of API calls and the number of paths).
In the end, the attributes we use to form the File Statistic Feature for each
app include the size of each graph (method graph, class graph, and class-loader
graph) and each generated feature (SNPs, subpaths, subpath existence, subpath
frequency and path statistics).

3.3 Detection

In the Detection phase, we apply three well-recognized machine learning algo-
rithms to automatically determine if an Android app has malicious network
behaviors.

Our system utilizes four different features (F1–F4) as previously mentioned.
Intuitively, we consider that each of the four feature sets can reflect malicious
network behaviors in some specific patterns. In order to get the best detection
result, we need to mine the dependencies of features within each feature set and
relationship between different feature sets. We discussed approaches to convert
feature set F1, F2, F3 and F4 into numeric vector in the previous section. We
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can simply unionize or aggregate different feature sets into a combined feature
set.

Even though there are many supervised learning algorithms to use, we only
apply three widely adopted algorithms to build malware detectors: Support Vec-
tor Machine (SVM), Decision Tree and Random Forest.

4 Empirical Evaluation

We present the results of our empirical evaluation of GranDroid. We first
explain the process to collect our experimental objects. Next, we report our
detection results by using different sets of features. We also compare our methods
with other related approaches. Lastly, we report the runtime performance of
GranDroid.

4.1 Data Collection

Initially, our dataset consists of 20,795 apps from APKPure [1] collected from
January 2017 to March 2017. We also downloaded 24,317 malware samples from
VirusShare [3]. Note that these samples are newer than those from the Android
Genome Project [31], a popular malware repository that was also used by Droid-
Miner.

To ensure that our experimental environment has not been contaminated
after executing a malware sample, we turn off common features that generate
network traffic such as auto updates for apps and systems. We also manually
checked that there is no background traffic. This is done to ensure that the
network traffic seen is generated by our malware sample and not from residual
effects from previously exercised malware samples. After running a few samples,
we also reflash our devices to ensure that they are free from contaminations.

As previously mentioned, we also run TCPDUMP packet analyzer in each
tablet to capture the network traffic information and save it as a PCAP file.
Usually, malware which conducts malicious network behaviors regularly sends
and receives HTTP packets. As such, we only select apps by mainly focusing
on their HTTP traffic in the PCAP files. Initially, we have 11,238 benign apps
and 24,317 malicious apps. After removing apps without HTTP traffic, only
1,725 malicious apps and 1,625 benign apps remain. In order to have a balanced
dataset, we randomly select 1,500 benign and 1,500 malicious apps to form our
dataset.

4.2 Detection Result

For each experiment, we run the 10-fold cross validation on the dataset. We
generate different sets of features for these dataset by ways explained in previ-
ous sections, and apply three different machine learning methods to build our
detection system. In order to compare the performance with other methods, we
also implement one popular approach based on our dataset.
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Table 1. The performance of GranDroid using five different features (F1–F4, F3 &
F4) and three different Machine Learning algorithms: Support Vector Machine (SVM),
Decision Tree (DT) and Random Forest (RF).

F1 F2 F3 F4 F3 ∪ F4

SVM

(%)

DT

(%)

RF

(%)

SVM

(%)

DT

(%)

RF

(%)

SVM

(%)

DT

(%)

RF

(%)

SVM

(%)

DT

(%)

RF

(%)

SVM

(%)

DT

(%)

RF

(%)

I. Accuracy 79.3 84.3 83.3 60.3 82.7 83.0 88.7 86.3 87.7 50.3 91.0 91.7 50.3 89.0 92.3

II. Precision 71.6 95.6 94.6 55.9 74.7 91.6 92.6 85.2 86.5 50.2 7.7 91.9 50.2 88.7 92.1

III. Recall 97.3 72.0 70.7 97.3 98.7 72.7 84.0 88.0 89.3 100 95.3 91.3 100 89.3 92.7

IV. F-Measure 82.5 82.1 80.9 71.0 85.1 81.0 88.1 86.6 87.9 66.8 91.4 91.6 66.8 89.0 92.4

Result Based on F1. We first implement our system based on Subpath Exis-
tence Feature (F1). Table 1:F1 shows the result of applying SVM, Decision Tree
and Random Forest on F1. We compare four metrics for each classification
method in Table 1. The accuracy for F1 when using SVM is 79.3%; however Deci-
sion Tree achieves the highest accuracy at 84.3% and Random Forest achieves
the accuracy of 83.3%. It is also worth noting that F1 is similar to the modality
feature used by DroidMiner. As such, we can also regard GranDroid’s per-
formance based on F1 as that of a reimplemented DroidMiner being applied
to our dataset, i.e., the reported results for F1 are representative of the results
of DroidMiner.

Result Based on F2. As explained in Sect. 3, Subpath Frequency Feature (F2)
is based on F1. It builds feature vector based on the frequency of each subpath.
Table 1: F2 shows the detection result. For F2, Decision Tree achieves the highest
F-measure of 85.1%. It achieves the accuracy of 82.7% with 74.7% precision and
98.7% recall. It appears that F2 only slightly affects the overall performance of
our system.

Result Based on F3. F1 and F2 are created by checking the existence and
frequency of subpaths in the training set. In essence, these first two vectors can
be classified as signature-based features as they correlate existence of a subpath
and its frequency to malware characteristic.

Fig. 7. Performance of random forest

To overcome this shortcoming, we
extract statistical information from SNP
to construct Path Statistic Feature (F3).
As illustrated in Table 1: F3 obviously
achieves higher performance than F1 and
F2 in terms of all four metrics. This indi-
cates that statistical information related
to paths is an important factor that can
improve detection performance.



274 Z. Li et al.

Result Based on F4. Besides the statistical feature from paths, we also convert
the size all the graph and feature files into numeric vectors. We refer to this
feature as File Statistic Feature (F4). Table 1: F4 shows the result based on F4.
F4 surprisingly outperforms F1, F2 and F3. When F4 is used with Random
Forest, it can achieve F-measure of 91.6%.

Result Based on F3
⋃

F4. We have shown that statistical feature sets,
F3 and F4, provide higher detection accuracy than F1 and F2. Intuitively, we
hypothesize that we may be able to further improve performance by combining
F3 and F4. To do so, we concatenate the feature vector of F3 with the feature
vector of F4 and refer to the combined vector as F3 ∪ F4.

Table 1: F3∪F4 validates our hypothesis. In this case, Random Forest achieves
92.3% detection accuracy, which is better than using either feature individually.
Figure 7 graphically illustrates the comparison of different feature sets via Ran-
dom Forest, which also shows that F3 ∪ F4 yields the best F-Measure.

4.3 Evaluating Aggregated Features

By concatenating F3 and F4, we can achieve better performance than using those
two features individually. However, we hypothesize that the richness of path
information contained in F1 and F2 may help us identify additional malicious
apps not identified by using F3∪F4. As such, we first experiment with applying
Random Forest on a new feature based on concatenating all features (F1∪F2∪
F3∪F4). We find that the precision and F-measure are significantly worse than
the results generated by just using F3 ∪ F4 due to an increase of false positives.

Next, we take a two-layer approach to combine the classified results and not
the features. In the first layer, we simply use Random Forest with features F1,
F2, and F3∪F4, to produce three classification result sets (θF1, θF2, θF3∪F4). As
Table 1 shows that the results in θF1 and θF2 contain false positives, we combat
this problem by only using results that appear in both result sets (i.e., θF1 ∩
θF2). We then add the intersected results to θF3∪F4 to complete the combined
result set (θcombined). θcombined is then used to compare against the ground truth
to determine the performance metrics. In summary, we perform the following
operations on the three classification result sets produced by the first layer:

θcombined = θF3∪F4 ∪ (θF1 ∩ θF2)

Using this approach, we are able to achieve an accuracy of 93.0%, a precision
of 92.9%, a recall of 93.5%, and a F-measure of 93.2%. This performance is
higher than that of simply using F3 ∪ F4 as the feature for classification (refer
to Table 1).
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4.4 Comparison with Related Approaches

Table 2. Utilized HTTP statistic features

Feature description

The number of HTTP requests

The number of HTTP requests per second

The number of GET requests

The number of GET requests per second

The number of POST requests

The number of POST requests per second

The average amount of response data

The average amount of response data per second

The average amount of post data

The average amount of post data per second

The average length of URL

Existing dynamic analysis tech-
niques use network traffic behav-
iors to detect malware and bot-
nets [15,30]. The major difference
is that their works observe dynamic
network traffic information while
our approach focuses on program-
ming logic that can lead to invoca-
tions of network-related methods.
If a malicious traffic behavior is
detected by executing an app, the
app is then classified as malware.
Next, we show how GranDroid performs against one of these purely dynamic
analysis approaches.

HTTP Statistic Feature. Prior research efforts have used network traffic
information to conduct the malware or botnet detection [30]. Their work mainly
focuses on extracting the statistical information from PCAP files, converting
such information into features, and then applying machine learning to construct
the detection system.

Table 3. The performance of HTTP
statistic approach based on using Sup-
port Vector Machine (SVM), Decision
Tree (DT) and Random Forest (RF).

HTTP statistic approach

SVM (%) DT (%) RF (%)

I. Accuracy 57.0 76.0 79.7

II. Precision 53.8 75.3 77.0

III. Recall 99.3 77.3 84.7

IV. F-Measure 69.8 76.3 80.6

To facilitate a comparison with
GranDroid, we re-implement their sys-
tem. Table 2 lists all the extracted
features. Table 3 reports the detec-
tion results. As shown, Random Forest
achieves the best F-measure of 80.6%.
This is significantly lower than our app-
roach when F3 and F4 are used with Ran-
dom Forest. As a reminder, our approach
achieves the F-measure of 93.2%.

Table 4. Detection result comparison

Method DroidMiner

(F1) (%)

HTTP

statistic

approach

(%)

GranDroid

(%)

Accuracy 84.3 79.7 93.0

F-Measure 80.9 80.6 93.2

In summary, GranDroid out-
performs this popular approach
in terms of Android malicious
network behavior detection. We
observe that the overall perfor-
mance of Random Forest is better
than other classifiers. Table 4 sum-
marizes the overall performances of
all approaches consisting of DroidMiner (F1), HTTP Statistic Approach
and GranDroid. For DroidMiner’s results, we use Decision Tree. For
GranDroid’s results, we use Random Forest. We see that GranDroid achieves
higher detection accuracy and F-measure than other approaches. Particularly,
GranDroid achieves a 93.0% detection accuracy, much higher than that of
DroidMiner (84.3%) and that of HTTP Statistic Approach (79.7%). Even
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though DroidMiner has about 5% FP rate, and GranDroid has about 8%
FP rate, GranDroid achieves a much higher F-Measure than those of other
approaches.

4.5 Average Malware Detection Time

On average, the time to execute an application using UIAutomator was about
5 min, our feature extraction time was 1.76 s, and the model training time using
Random Forest, the best performing algorithm, was 1.14 s.

Consider a situation when a security analyst needs to vet an app for mali-
cious components. Prior work by With Bouncer, each app is also executed for
5 min to observe if there are any malicious behaviors. The time of 5 min is also
confirmed by Chen et al. [8] when they reported that most malware would gen-
erate malicious traffic in the first 5 min. As such, our approach also executes an
app for about 5 min and within that time, it can achieve the average accuracy
and F-measure that are comparable to those achieved by approaches that rely
on sound static analysis. Based on this preliminary result, GranDroid has the
potential to significantly increase the effectiveness of dynamic vetting processes
commonly used by various organizations without incurring additional vetting
time.

In addition, the time requires to train a detection model is also very short
(i.e., 1.14 s). This means that we can quickly update the model with newly
generated features, which indicates that GranDroid can be practically used by
security analysts to perform time-sensitive malware detection.

5 Discussion

We have shown that GranDroid can be quite effective in detecting network
related malware. However, similar to other hybrid analysis or classifier based
detectors, GranDroid also has several limitations. First, as an approach that
relies on executing apps, the quality of event sequences used to exercise the apps
can have a major impact on code coverage. Currently, automatically generating
event sequences for Android apps that can reach any specific code location or
provide good coverage is still an open research problem [9]. As such, it is possible
that our system can perform better if we have a better way to generate input
that can provide higher code coverage. In this regard, static analysis would be
able to explore more code but it might not be able to adhere to strict vetting
time budget.

Second, our analysis engine, Jitana only works on dex code and cannot
analyze native code. As such, implementations of network related APIs that
utilize JNI to directly execute native code would not be fully analyzed by our
approach. However, there are existing work that attempt to perform native code
analysis. For example, Afonso et al. [6] perform an analysis of the native code
usage in Android apps, and they report that sandboxing native code can be
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quite useful in practice. Approaches such as this can be incorporated into our
work to extend the analysis capability.

Third, as a learning based detector, evasion is a common problem as cyber-
criminals may try to develop attacks that are so much different than those used in
the training dataset [24]. However, as mentioned by the authors of DroidSIFT,
semantic- or action-based approaches are more robust and resilient to attack vari-
ations than syntax- or signature-based approaches [29]. This is because semantic-
or action-based approaches focuses their efforts on actual events. It is difficult to
instigate a particular network related event (e.g., downloading a malicious com-
ponent) without utilizing network related APIs. While it is possible for cyber-
criminal to evade our detector, it would require significant more efforts than
trying to evade signature-based detectors.

Fourth, our current implementation only supports network related APIs,
which are widely used to carry out malicious attacks. However, our approach
can be extended to cover other classes of APIs. The key in doing so is to identify
relevant APIs that can be exploited to conduct a specific type of attacks. For
example, a malicious app that destroys file system would need to use file related
APIs. Fortunately, there are some existing approaches that can help identify
these relevant APIs [17].

6 Related Work

Network traffic has been used to detect mobile malware [15,22,30]. However,
these studies have also shown that such systems can be evaded by simply delay
the malicious behaviors so that only benign traffic is generated within observa-
tion window. Another important observation is that by simply looking at usage
of such APIs is not sufficient to distinguish between benign and malicious apps
as both types of apps with network functionalities would need to use those APIs.
Our approach tries to overcome this ambiguity by considering execution paths
that include framework, system, and the third party library’s code that often
invokes network related APIs [25].

Past research efforts to address this problem statically analyze various pro-
gram contexts to help distinguish between benign and malicious apps [7,12,13,
19,25,27]. AppContext creates contexts by combining events that can trigger
the security sensitive behaviors (referred to as activation events) with control
flow information starting from each entry point to the method call that trig-
gers an activation event (referred to as context factors). Machine learning (i.e.,
SVM) method is then applied on these contexts to detect malware, achieving
92.5% precision and 77.3% recall. DroidMiner applies static program analysis
to generate two-tiered behavior graph to extract modalities (i.e., known logic
segments in the graph that correspond to malicious behaviors) and then aggre-
gates these modalities into vectors that can be used to perform classification. It
is worth noting that their approach suffers from scalability issues. As the num-
ber of methods in an app increases from 5,000 to 19,000, the analysis time also
increases from a few seconds to over 250 s [26].
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The work that is most closely related to our work is DroidSIFT [29], which
uses API dependency graphs to classify Android malware. The basic idea is to
develop program semantics by establishing API dependency graph that is then
used to construct a feature set. However, their main feature is weighted graph
similarity while our approach considers network path-related features that aim at
detecting malicious network behaviors. While GranDroid takes a hybrid pro-
gram analysis approach, DroidSIFT, on the other hand, takes a static analysis
approach. It uses Soot as the program analysis platform. GranDroid presents
several advantages. First, DroidSIFT only focuses on application code and does
not include underlying framework or third party library code, while our anal-
ysis can capture these third party and framework codes. Second, as a static
analysis approach, DroidSIFT cannot deal with components that are loaded
at runtime through Java reflection or Android Dynamic Code Loading (DCL),
but our approach can easily deal with these dynamically loaded components.
Third, their analysis time can also vary due to different application size and
complexity. They report an average detection time of 3 min but the detection
time for some apps can exceed 10 min. Thus, the approach cannot guarantee to
complete under tight vetting time budget. We have reached out to the authors
of DroidSIFT to access their implementation to be used as another baseline
system. Unfortunately, we have not received the response.

7 Conclusion

In this work, we present GranDroid, a graph based malware detection system
that utilizes dynamic analysis and partial static analysis to deliver high detection
performance that is comparable to approaches that rely mainly on static analysis.
When we use Random Forest with two of our feature sets, we can achieve over
93.2% F-measure which is about 10% higher than the F-Measure that can be
achieved by DroidMiner when applied to our dataset. We also demonstrate
that we can achieve this level of performance by spending on average 8 min
per apps on analysis and detection. While we only focus on detecting network-
related malware in this work, our approach, by considering sensitive APIs, can
be extended to detect other types of malicious apps designed to, for example,
drain power or destroy resources. Such extension is possible because GranDroid
focuses its analysis efforts on paths that can lead to specific API invocations. It
is thus possible to detect different forms of malware by knowing specific APIs
that they use to perform attacks.
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Abstract. In Android malware detection, fine-grained features can provide a
more accurate description of the application’s behavior. Nonetheless fine-
grained feature extraction has not been done perfectly, hence, invalid features
will not only bring additional overhead but also reduce the detection accuracy.
In this paper, we propose FGFDect, a malware classification model by mining
Android applications for fine-grained features. Our work aims to handle two
types of features that frequently appear in Android malware. One of them refers
to the permissions that have been registered, but actually not been used. The
other is the API called via the reflection mechanism. This information improves
the precision of static analysis, which no longer need to make conservative
assumptions about coarse-grained features. These two feature sets are fed into
the machine learning algorithms to classify the app into benign or malware.
FGFDect is evaluated on a large real-world data set consisting of 6400 malware
apps and 4600 popular benign apps. Compared with those traditional approaches
with coarse-grained features, extensive evaluation results demonstrate that the
proposed approach exhibits an impressive detection accuracy of 96.7% with the
false positive rate of 0.7%. In addition, the proposed approach complements
existing permission-based approaches and API-based approaches.

Keywords: Permission � API � Reflection � Static analysis � Fine-grained

1 Introduction

Nowadays, Android is the most widely used mobile OS [1] and it plays an important
role in our daily life. This development platform allows every mobile device manu-
facturer who intends to join them to become a member of the Android alliance.
However, Android malware attack technology has become increasingly mature.
Emerging malware has many characteristics related to the field of wide, difficult to
detect, reveal state secrets and cause users economic losses [2]. Although there are a
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large number of detection methods, there is still no ideal detection rate for some
malware. A crucial factor is that many applications over-claim permissions in order to
facilitate the development and upgrade of the applications. This caused trouble with
permission-based malware detection. Another reason is that over 90% of static analysis
techniques for Android apps do not account for reflection calling issues [3]. Recent
reports [4] also pointed out that the reflection calling is an important factor in the poor
performance of many malware detection tools.

Most of the previous work [5–8] only extracted features from Android application
behaviors (e.g., permission request and API calls), then note that each feature is binary,
indicating when a data feature occurs in an app, its value is 1, otherwise, its value is 0.
Ultimately, machine learning algorithms are employed to perform classification of
benign and malicious applications. However, the feature extracted by this method is
coarse-grained, which will affect the judgment of the application. For permission, there
is a problem that developers over-request, but in fact the application does not use. The
current research on this issue is still rare and needs to be solved urgently. For API,
scanning reflection calls API is still a difficult task. To the best of our knowledge, there
is one work presented by Barros et al. [9] who proposed a solution for reflection
analysis of Android apps. However, their approach focuses on checking information
flows from developer’s perspective, but the source code of Android is hard to obtain by
for most market applications. Haohua et al. [10] for the first time, covers reflection
invocation via array assignment, but the number of such applications is relatively small
and the detection rate is not significantly improved.

In order to reduce system overhead and improve the low accuracy caused by the
coarse-grained features of traditional methods. This paper proposes a fine-grained
feature classification model named FGFDect for Android application detection, which
can more truly describe the behavior of the application and eliminate the interference of
unrelated information. The most important thing is that experiments show that our
method does achieve the expected effect of improving the detection accuracy without
causing any additional system overhead. A brief summary of our contributions is given
below:

• This model could extract fine-grained API, including scanning smali files one by
one for API called directly, in addition, also including variable assignment reflec-
tion calls for API (Sect. 3.2).

• After that, this model found out the used permissions according to the API-
permission mapping library constructed by ourselves, and removed the applied but
unused permissions to determine the final fine-grained permission feature
(Sect. 3.3).

The reminder of this paper is organized as follows. Section 2 presents the necessary
background about our study. After that in Sect. 3, this paper present the model by
mining fine-grained features for Android application, the design of FGFDroid. In
Sect. 4, this paper introduce the results of the experiment and compare to the related
work. And last, this paper close with conclusion and future work in Sect. 5.
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2 Preliminaries

In this section, permission-API mapping and reflection mechanism related background
information will be introduced.

2.1 Permission-API Mapping

The main purpose of Android to set up permission mechanism is that it can make
detailed distinction and access control to some specific operations performed by the
application [6]. Through the API call, the application can access and obtain some
sensitive data in the phone, such as contacts, geographies, photos and accounts, or
trigger some high-risk behaviors such as sneaking into the network and sending
deductions SMS [11]. As with permission information, APIs vary widely in usage due
to differences between normal and malware.

Permission information and API information can all reflect the characteristics of a
program to a certain extent. However, it has some limitations, the false positive rate of
the classification results will have some impact. For example, in the actual development
process, programmers will tend to request too much permissions in order to facilitate
the development and upgrade of the application, resulting in a lot of permissions in the
application has not been used. Therefore, this paper combines permission features and
API features by using previous work [12] which is PScout to obtain permissions-API
mapping so as to remove useless permissions. This tool has been constantly updated,
the fact proved that Android permission system has little redundancy and it remains
relatively stable as the Android OS evolves. Fortunately, PScout’s analysis found over
32 thousand mappings between API calls and permissions until now. Part of its
mapping as shown in Table 1, which can be processed as {permission 1: [API1,
API2…], permission 2: [API1, API2, …], …, permission N: [API1, API2…]} by our-
selves. This will surely provide enough help for our later static analysis.

2.2 The Reflection Mechanism

Android applications are based on Java language development, so it can take full
advantage of Java’s reflection mechanism. According to previous work [3] has shown

Table 1. The part of the permission-API mapping provided by PScout.

CallerClass CallerMethod Permission

android/server/wifi/WifiServiceImpl enableNetwork CHANGE_WIFI_STATE
android/server/wifi/WifiServiceImpl addOrUpdateNetwork CHANGE_WIFI_STATE

android/server/wifi/WifiServiceImpl checkAndStartWifi CHANGE_WIFI_STATE
android/location/LocationManager requestLocationUpdates DUMP
android/location/LocationManager getLastKnownLocation DUMP

android/internal/telephony/PhoneSubInfo getImei READ_PHONE_STATE
android/internal/telephony/PhoneSubInfo getDeviceId READ_PHONE_STATE

android/internal/telephony/PhoneSubInfo getSubscriberId READ_PHONE_STATE
android/internal/telephony/UiccSmsController sendText SEND_SMS
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that reflection is frequently used by Android developers to (1) provide genericity, e.g.,
using reflection to implement generic functions. (2) Maintain backward compatibility.
(3) Reinforce app security. (4) Access inaccessible APIs.

Unfortunately, in recent years, malware makers have used reflection mechanisms as
an important way to hide malicious behavior in software [13]. In order to avoid static
analysis, malicious applications can propagate malicious code by invoking sensitive
methods through reflection at runtime. Lindorfer et al. [14] also pointed out that from
2010 to 2014, the proportion of Android malware using the reflection mechanism
increased from 43.87% to 78%. In addition, since 2010 this proportion has never been
eased.

In order to tame the reflections of static analysis methods, [15] investigated the
sequence invocation of reflection methods and summarized their common usage pat-
terns by randomly selecting 500 applications. Figure 1 could illustrate how reflection is
used by developers, which is able to model the most typical usage of reflection calls.
Among them, solid arrows indicate if they have been statically declared, you can use
the reflection method or field directly. Otherwise, they must be used after the class has
been initialized as indicated by the dotted arrow.

Due to the characteristics of the reflection mechanism, the API extraction is not
comprehensive enough. Therefore, it poses challenges for many static analysis tools. At
present, the detection of reflection method calls is relatively deficient.

3 System Design

We start with getting and parsing the AndroidManifest.xml and classes.dex file.
Classes.dex file [16] is converted into .smali files (an interpreted language that syn-
tactically approaches pure source codes) with APKTool. As shown in Fig. 2, the
system consists of four steps. Firstly, we constructed a permission-API mapping library
based on prior knowledge [12]. Secondly, we can get the APIs directly called by
scanning the .smali files, then get the APIs reflected call by scanning the variable

Fig. 1. Abstract pattern of reflection usage.
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assignments. Thirdly, by scanning the AndroidManifest.xml files, the fine-grained
permissions can be obtained based on the mapping library. Lastly, the feature vector are
constructed and fed into machine learning algorithms to detect whether the app is
malicious or benign.

3.1 Building a Permission-API Mapping Library

There are tens of thousands of permission-API mappings provided by PScout, and
some of them are useless, which can lead to unnecessary system overhead and affect
system efficiency. Therefore, this paper designs a filtering algorithm based on the
semantics, and finally selects more than 600 groups of the most helpful mapping for
classification.

Part of the data provided by the PScout as shown in Table 1 (Sect. 2.1), we used
three columns of its contents, namely the CallerClass, CallerMethod and Permission.
Firstly, we need to process these data into a consistent form with the .smali file as
mentioned in the second paragraph of Sect. 2.1. We are interested in APIs that can get
the personal information. For example, function getDeviceId () indicates “Returns the
unique device ID, for example, the IMEI for GSM and the MEID or ESN for CDMA
phones”. After that we chose 652 APIs to get the following crucial information: device
ID, IP address, location (include latitude, longitude), email, wifi, postal code, account,
phone number, sim serial number, installed application list, audio/video, cookies,
visited URLs, and browser bookmarks. Finally, the permission-API mapping library
built by us is shown in Fig. 3.

Fig. 2. Overview of FGFDect.

{android.permission.READ_PHONE_STATE: 
[getVoiceMailNumber, getDeviceSvn, getSubscriberId, 
getLine1Number, getDeviceId, getIccSerialNumber, ], 
android.permission.MANAGE_ACCOUNTS: 
[clearPassword, updateCredentials, removeAccount, ], 
android.permission.ACCESS_COARSE_LOCATION: 
[requestLocationUpdates, getLastLocation, ] ... }

{android.permission.READ_PHONE_STATE: 
[getVoiceMailNumber,  getDeviceSvn, getSubscriberId, 
getLine1Number,  getDeviceId,  getIccSerialNumber,  ], 
android.permission.MANAGE_ACCOUNTS: 
[clearPassword, updateCredentials, removeAccount,  ], 
android.permission.ACCESS_COARSE_LOCATION: 
[requestLocationUpdates, getLastLocation,  ]     }

Fig. 3. Part of permission-API mapping.
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3.2 Fine-Grained Extraction for API

In order to evade the conventional static detection, hackers develop technology for
malicious applications is evolving, and the way to call sensitive APIs is also constantly
evolving. From the simple and direct call of the early days, it has become more and
more complicated and covert. As a result, get coarse-grained API as before can no
longer meet the need of malware detection techniques. So this paper made a fine-
grained extraction of the API, including direct calls and reflection calls, which will be
covered in more detail below.

(1) Directly call the API: An application that uses this kind of invocation style, if it
needs to get some network information, then call the corresponding function that is
getNetworkInfo(). This method takes an approach that scanning all API’s usage in .
smali file directly to check for the presence of related function calls. The method
includes the following steps:

Step 1: Exclude some unrelated files from all .smali files, such as R.smali, R$attr.
smali, R$layout.smali, R$id.smali and so on. Because these documents do not belong
to the main function file, there will be no sensitive function calls in them, there is no
need for analysis;

Step 2: Scan the remaining smali files one by one, analyze the file contents line by
line. Then match with the API library we built in the previous section. If a program
contains invoke-virtual and the corresponding sensitive function, it means that the
application does indeed call the relevant sensitive API. Figure 4 describes a file named
VirusShare_0b2e2250b514297 adb7da45b5d22dae8.apk in VirusShare dataset by
calling getNetworkInfo function to get a smali code snippet of network information.
The first line invoke-virtual shows virtual method call, the method of calling at run time
confirms the actual call. General API are used this way to call;

Step 3: The APIs obtained in this section build a set called DC (API), meaning the
collection of APIs that are scanned directly. If all the files are scanned but no sensitive
function call can be found, it indicates that there is no direct API call in the application.
We need to further analyze whether the sensitive API is invoked in a more subtle way.

(2) Reflection call API: Let us take Fig. 5 as an example to better explain the idea of
reflection call API, where the code snippet is extracted from an app of DroidBench
named Reflection3.apk [17]. This case is used by many testing tools (such as Flow-
Droid [17]) to evaluate performance, but does not work well because it contains
reflection calls. In this example, first forName method is used to get the class where the
method is called, which is ReflectiveClass (line 3-4). Then initialize the object (line 5).
The getMethod method is finally used to retrieve the API of the reflection call and using

Fig. 4. Smali code snippet for getting network information.
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the invoke method to execute (lines 6-10). Among them, the called setImei formed by
string splicing, getImei is directly assigned. In addition, the string can be assigned to
the variable, then the variable as a parameter of getMethod. Whatever the method, it is
essentially a reflection call to a variable assignment type.

Sensitive API calls made this way cannot be detected by scanning the .smali file
directly. Therefore, this paper based on the method framework in [3] namely DroidRA
to detect such hidden calls. For the method in Fig. 5, DroidRA can detect that lines 6-8
use the reflection call “setImei” and lines 9-10 use the reflection call “getImei”. The
method first preprocesses the APK file: converts to Jimple code, determines the
analysis entry, and ensures that all application code is covered. Then, the preprocessed
code is reflected and analyzed. A context-based, dataflow-based analysis method is
used to detect whether the reflection is invoked by the Android application. Finally,
given the reflection call parameters (class name, method name and method parameters).

In order to enhance the detection efficiency of our system. On the basis of Droi-
dRA, this paper delete the application’s permission, package name, entry page and
other initialization work, because such work has been completed in the decompilation
phase. Finally, the extracted reflection call API built into a set of RC (API), meaning
the collection of APIs that are reflected call.

3.3 Fine-Grained Extraction of Permission

First of all, after reversing the Android application, get all the permissions of the
application in the AndroidManifest.xml file. Then these permissions be built a set called
CG (Permission), which is the coarse-grained collection of permissions. Then
according to the API-permission mapping library provided by Sect. 3.1, we find out the
permissions that have been used, remove the applied but unused permission, in order to
determine the final fine-grained permission set named FG (Permission).

Algorithm 1 Generate FG(Permission)
Input: CG (Permission); FG(API); 

Permission-API Mapping Library
Output: FG(Permission)
for i to CG(Permission) do 

if i == Permission-API Mapping Library.getkey() then
value[] = Permission-API Mapping Library.get(key)
for j to FG(API) do 

if FG[j] == value[] then 
continue

EA(Permission)[] = i 
end if

end for
end if

end for
FG(Permission) = CG(Permission) – EA(Permission)
return FG(Permission)
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Algorithm 1 highlights the step of generating the FG (Permission) set with the
input of CG (Permission), FG (API) of a given app and the Permission-API mapping.
We put each permission without the appropriate API into the collection EA (Permis-
sion), meaning excessively applied permissions. FG (Permission) is finally obtained by
removing the permissions of the overly applied from the coarse-grained permission set.

3.4 Construction of Feature Set

The fine-grained feature set of FGFDect is co-constructed with a fine-grained set of
APIs and a fine-grained set of permissions. The fine-grained API set contains two parts:
API direct call and API reflection call. The fine-grained set of permissions removes the
permissions that have been applied but not actually used from coarse-grained per-
missions. The feature space is represented as follows:

FG APIð Þ DC APIð Þ
RC APIð Þ

� �

FG Permissionð Þ CG Permissionð Þ � EA Permissionð Þð Þ

0
@

1
A ð1Þ

4 Evaluation and Analysis

To evaluate the effectiveness of our approach, we first introduce the dataset and the
metrics (see Sect. 4.1 for details). We then evaluated our approach based on the fine-
grained features compare with coarse-grained features of other baseline approaches (see
Sect. 4.2 for details). Afterward, we proved that the advantage of the FGFDect design
and performance through testing with four machine learning algorithms (see Sect. 4.3
for details).

1 TelephonyManager telephonyManager = //default;
2 String imei = telephonyManager.getDeviceId();
3 Class c =
4 Class.forName(“de.ecspride.ReflectiveClass”);
5    Object o = c.newInstance();
6    Method m = c.getMethod(“setIme” + “i”,
7 String.class);
8 m.invoke(o,imei);
9 Method m2 = c.getMethod("getImei");
10 String s = (String) m2.invoke(o);
11 SmsManager sms = SmsManager.getDefault();
12 sms.sendTextMessage("+49 1234", null, s, null, null);

Fig. 5. Code excerpt of de.ecspride.MainActivity from Reflection3.apk.
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4.1 Dataset and Metrics

In order to perform experiments, a large number of datasets need to be selected. From
the perspective of comprehensiveness and applicability, experiments have been per-
formed on the dataset consists of 11000 applications on a computer with Intel Core i7-
6500HQ 2.50 GHz CPU and 16 GB memory. The 6400 malicious samples of this
experiment come from the data set in [18] and VirusShare [19], the latter is a very
authoritative malicious sample library website and the malicious samples are confirmed
by more than 50 security engines. At the same time, this paper also climbed telephone
communications, social, life, video, travel, shopping 6 different types of applications
from Google Play and Anzhi Market. Using the malware detection tool VirusTotal,
Virscan scans for confirmation, collecting a total of 4,600 non-malicious applications.

The metrics used to measure our detection results are shown in Table 2. The goal of
any malware detection research is to achieve a high value for ACC and a low value for
FPR.

4.2 Analysis of Features

(1) Analysis of reflection call API: The goal of our reflection analysis is to provide
analysts (or other methods) with the necessary information to better understand how
reflection is used by Android applications. Therefore, in this experiment, we did not
consider all reflection-related methods, but chose the ones that are of most interest to
the analyst.

At first, we compute the coverage of reflection calls that FGFDect identifies and
inspects the results. We randomly selected 800 Android applications (400 benign
applications and 400 malicious applications) for testing, of which about 56 (7%) of
applications cannot get an API call by scanning directly, but scan again by our
reflection call method, which is called sensitive API can be obtained. In addition, 588
(79%) of them also include API reflection calls for applications that can scan directly to
the API.

Most importantly, according to our manual analysis, we found that about 263
(75%) of the malicious applications that APIs are called via reflection are related to its
major malicious function. This will be helpful to improve the classification accuracy
rate. Because this part of the APIs are not available if we still use the traditional
method. For example, the aforementioned APK named Reflection3.apk, the traditional
method cannot get its API called through the reflection mechanism, and just this API is
closely related to its malicious function. Eventually this application is mistakenly
identified as a benign application if the traditional method is used.

Finally, we also randomly extracted 50 of our applications containing reflection call
APIs to compare our system to other open source tools. The results show that the open
source tools such as FlowDroid, Androguard, Androwarn really cannot extract API
called by reflection.

(2) Analysis of fine-grained permission: For the fine-grained analysis of permissions,
we still randomly selected 800 applications. The number of benign and malicious
applications each accounts for half of the total. Performing our experimental
methodology, we found that 186 of the 800 applications did indeed excessive apply
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permissions. To our surprise, 137 of them are benign applications. Figure 6 shows the
average number of coarse-grained and fine-grained permissions in 800 randomly
selected applications. We found that transitional application of permission in benign
applications is more severe than malicious applications.

This result shows that during the initial stages of program development, the
developers of normal applications do apply a lot of permissions that are not necessary
in order to facilitate the next development and upgrade. As a result, rely on the
traditional coarse-grained extraction methods must lead to the benign applications
classified to be malicious. However, using our permission extraction method greatly
reduces this false positive rate. Because the permissions we extract are the permissions
that the application really uses.

4.3 Performance of FGFDect

Four different classifiers are employed to evaluate our approach. These classifiers are
Random Forest, Decision Tree (C4.5), Nearest Neighbor and Logistic Regression. All
the 4600 benign apps and 6400 malicious apps are mixed together. After the extraction
and analysis of the fine-grained features with our approach, each app is first represented
as a feature vector provided by Sect. 3.4. Then, on the training dataset (consisting of
2600 benign apps and 3400 malicious apps), the known malicious application has a
classification label of 1 and the known benign application has a label of −1 so that the
classifier can understand the difference between the malicious application and the
benign application. After the training sample’s classification label is generated, four
kinds of machine learning algorithms can be used to train the four classifiers. Finally,
when a sample without classification label is entered into the classifier, the classifier
can also determine whether it is benign or malicious.

The detection performances are shown in Fig. 7. The result indicates that all four
classifiers can achieve a high value for TPR and a low value for FPR. In particular,
Random Forest performs best among four classifiers. With Random Forest, the
detection performance yields a TPR of 0.965 at an FPR of 0.007, and the ACC is 0.967.

Table 2. Descriptions of the used metrics.

Term Abbr. Definition

True Positive TP Malicious apps classified as malicious apps
True Negative TN Benign apps classified as benign apps
False Negative FN Malicious apps classified as benign apps
False Positive FP Benign apps classified as malicious apps
True Positive Rate TPR TP/(TP + FN)
False Positive Rate FPR FP/(FP + TN)
Accuracy ACC (TP + TN)/(TP + TN + FN + FP)
Precision PRE TP/(TP + FP)
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Since Random Forest algorithms have the best performance, we use Random Forest
algorithms to test the performance of the system when using different feature sets. As
shown in Fig. 8, which is almost in line with our expectation, the use of fine-grained
feature sets has significantly higher accuracy and lower false positive rate due to
remove excessive application of permissions and obtain APIs for reflection calls.

Fig. 6. The average number of coarse and fine grained permissions in random applications.

Fig. 7. The performance of FGFDect under different classification algorithms.
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5 Conclusion

In this paper, we designed a fine-grained feature classification model FGFDect, based
on this model, we can obtain the reflection of the API call which cannot be extracted
through the traditional methods. What’s more, we can remove the permission that
excessively applied by application. As a result, the features we obtained were more
accurate, some exceptional cases were analyzed, and other possible interference was
ruled out. Fortunately, a large number of experiments show that using our method is
very helpful to improve the classification accuracy, and the false positive rate also
decreased.
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Abstract. The proliferation of advanced information technologies (IT),
especially the wide spread of Internet of Things (IoTs) makes wire-
less spectrum a precious resource. Cognitive radio network (CRN) has
been recognized as the key to achieve efficient utility of communication
bands. Because of the great difficulty, high complexity and regulations
in dynamic spectrum access (DSA), it is very challenging to protect
CRNs from malicious attackers or selfish abusers. Primary user emulation
(PUE) attacks is one type of easy-to-launch but hard-to-detect attacks in
CRNs that malicious entities mimic PU signals in order to either occupy
spectrum resource selfishly or conduct Denial of Service (DoS) attacks.
Inspired by the physical features widely used as the fingerprint of vari-
ant electronic devices, an adaptive and realistic PUE attack detection
technique is proposed in this paper. It leverages the PU transmission
features that attackers are not able to mimic. In this work, the transmis-
sion power is selected as one of the hard-to-mimic features due to the
intrinsic discrepancy between PUs and attackers, while considering con-
straints in real implementations. Our experimental results verified the
effectiveness and correctness of the proposed mechanism.

Keywords: Cognitive radio networks (CRNs)
Primary user emulation (PUE) attacks · Detection
Hard-to-mimic features

1 Introduction

The rigid spectrum allocation scheme regulated by governmental agencies leads
to great deficit on spectrum band resources. Static spectrum access technology
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results in lots of waste on wireless spectrum resources. The emergence of new
intelligent spectrum allocation/re-allocation schemes, especially cognitive radio
network (CRN), are studied elaborately in the last decade, due to the ever-
increasing wireless applications. Cognitive radio (CR), or known as secondary
user (SU) in CRN, is a technology that allows wireless devices (unlicensed users)
access spectrum resources dynamically without introducing major interference
to licensed primary users (PUs). Because of the great difficulty and high com-
plexity in dynamic spectrum access (DSA), and many open issues on security
deployment, CRN study still under development [25].

Spectrum sensing allows CRs acquire real-time spectrum occupation status
such that interleaving communications shared by PUs and SUs become feasible.
Basically, a well-designed CRN aims to serve for two purposes [3]: to maximize
the usage of spare spectrum resource as well as to protect the incumbent primary
system from secondary network interference. Due to the requirement to SUs that
they shall not interfere the PU functionalities, SUs should adapt their behaviour
in accordance to PU activities. Such requirement can be regarded as two separate
parts: (1) monitoring PU activities, and (2) behaving properly.

In general, knowing PU activities is essentially critical for cognitive radios
to share the spectrum resource with legitimate users. One of the effortless ways
to acquire PU activity information is that PUs are able to notify SUs their
spectrum usage status; or there exist a third party as an inquiry center that
knows what PUs will do in the near future. An alternative solution is to develop
robust and efficient spectrum sensing technique to acquire knowledge on PU
activities. Also, the spectrum sharing efficiency greatly depends on a secure CR
operating environment. In addition, due to the opportunistic spectrum access
(OSA) nature, CR systems encounter several CR-specified security problems.

Regarding spectrum sensing, one major challenge is to detect PU signals with
high accuracy while maintain low false alarm rate. The false detection rate may
become extraordinarily high when primary user emulation (PUE) attacks hap-
pen. A PUE attack is that malicious entities mimic PU signals in order to either
occupy spectrum resource selfishly or conduct Denial of Service (DoS) attacks.
PUE attacks can be easily implemented in CRNs. It introduces great overhead on
cognitive radio communication and causes chaos in dynamic spectrum sensing
[9,10]. However, defense against the PUE attacks is nontrivial because tradi-
tional authentication and authorization (AA) methods are no longer applicable
to CR systems. A more adaptive and practical PUE attack detection technique
is highly desired.

Inspired by radiometric used to identify short range transceivers and the
interpulse/intrapulse fingerprint in radar identification, we propose to detect
PUE attacks in CRN environment leveraging the hard-to-mimic PU transmission
features. As one type of hard-to-mimic feature, the PU transmission features are
determined by the inherent physical characteristics of the device. Attackers are
not able to generate such kind of features. A received signal strength (RSS)-
based hypothesis detection mechanism is designed, which can detect attackers
who attempt to fool the system by mimicking PUs’ patterns.
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In general, RSS-based approaches have been studied elaborately in many
literatures for PUE attack defense. It is applied either as one direct rudimentary
feature of PU [6], or as the premise for PU localization [8,13,17]. These works can
be challenged by either smart attackers or the practical constraints such as SUs
are unaware of their geographical information. There are two major advantages
that make our work more feasible and efficient in real-world applications than
exiting solutions: (1) in general, our proposal allows mobility of nodes in the
CRN and does not require prior geographical information of either PUs, SUs,
or attackers; and (2) compared to machine learning or neural network based
methods, our proposal does not need the training process.

The rest of this paper is organized as follows. Section 2 provides background
knowledge that motivated this work. Section 3 describes a practical CRN model
on which our detection mechanism is built. Section 4 discusses a PUE attack
intuition under perfect propagation model assumptions. The proposed RSS-
based PUE attack detection method is introduced in Sect. 5. Section 6 presents
a tentative trail based on real-world measurements. Section 7 shows our numer-
ical experimental results and comparison to other related schemes, and finally,
Sect. 8 concludes this paper.

2 Background Knowledge and Related Work

According to Federal Communications Commission (FCC): “no modification to
the incumbent signal should be required to accommodate opportunistic use of
the spectrum by Secondary Users (SUs)” [1]. Obviously FCC places constraints
on PUs such that PUs are not obligated to notify CR users with their activ-
ity scheduling and intention, neither to provide AA services. Consequently, CR
systems are expected to collect and process sufficient and highly accurate infor-
mation of the spectrum environment without imposing overhead on incumbent
users by adding new features, such as redundant symbolic pads or authentication
protocols.

In CR systems, it is necessary to distinguish attacker signals from PU sig-
nals in spectrum sensing stage. PUE attacks will cause severe problems on
the efficiency of spectrum utility. Since no obligation is imposed on PUs, it
is natural to explore the features of different wireless transceivers. In general,
there are two categories of transceiver features: the primary/strong radiomet-
ric/fingerprint, and the secondary/weak radiometric. The primary radiometric
denotes the intrinsic characteristics or imperfections of wireless transceivers, that
can be used to identify the uniqueness of the hardware. Transient is one of the
most discussed radiometric that can be used to identify short range transceivers.
Transient is the part of the signal where the amplitude rises from background
noise to full power. In literature, five transient features are used [22]:

1. The length of the transient, along the x-axis;
2. The variance of the normalized amplitude of the transient;
3. The number of peaks (periods) of the carrier signal in the transient;
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4. The first part of a discrete wavelet transform of the transient; and
5. Difference between the normalized mean and the normalized maximum value

of the transient.

It is proved that transient features are useful fingerprints for wireless
transceivers identification. They are not well studied in PU recognition in CRNs,
however, due to the difficulties in detecting transient on the scale and scope of
CRNs.

Another inspiration comes from radar identification, in which two kinds of
fingerprint are usually discussed. One is interpulse fingerprint that considers
factors including frequency, amplitude, pulse width, pulse repetition rate, etc.
The other one is intrapulse fingerprint that pays attention to pulse waveform
characteristics, such as unintentional modulation on pulse (UMOP) feature [15]
and time domain waveform feature, including rise slope and fall time, falling
angles, angle of pulse, and pulse point [14]. It looks intriguing, but requires
accurate measurements on signals that is usually not available for CRs.

There are other ideas based on the imperfections of transceivers such as
frequency offset error caused by different transmitter and receiver oscillators,
or modulation errors caused by the imperfection of electric circuits [5]. Usually,
those fingerprint extraction requires prior knowledge of modulation/mulplexing
technology, and it is often very computational intensive.

The secondary/weak radiometric usually does not identify signals from a
particular transceiver. Instead, it identifies signal characteristics that are not
reproducible to attackers. A smart attacker is able to mimic some PU signal
features such as spectrum bandwidth, activity pattern, and adaptively change
transmission power. Many studies tried to extract features of communication
channel of the wireless environment [6,7,13], which is known as geometrical
information of the PU transmitter, because PUs and attackers are unlikely be
at the same place.

Two types of channel fingerprint detection approaches are well discussed.
The first category is distance-based approaches [6]. A rudimentary approach
is to use RSS-based location estimation techniques, which record the received
energy level from the PU as the reference radiometric, and compare with the
sensed spectrum signal strength for detection. A novel idea was proposed to
deploy helper nodes around PUs, which are able to help verify PU signal based
on helper node’s authentic link signatures [16]. A smart attacker model was
presented to prove that the first order feature of RSS is not adequate for PUE
attacks detection, and then a RSS detection method using second order feature
is proposed to confront the smart attackers [6]. However, the assumption that
all SUs and PUs’ positions are prefixed and known is not applicable to many
situations in CRNs. The second category is location-based approach [13], which
requires geographical information from at least part of network participators. In
those proposals, peripherals such as GPS, helper nodes and prior knowledge of
PU position, are necessary.

PUE attack detection happens in spectrum sensing stage. In 2010, FCC
announced that they adopted condition a device’s use of TV White Spaces on its
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consultation of a geolocation database to ensure the availability of the desired
spectrum [4]. Several literatures have discussed the feasibility of constructing
PU activity database and the details in design of prototypes [11,18,21,24]. The
database will record, model and predict PU activities in order to regulate CR
access and optimize spectrum use efficiency. These base stations are able to
provide many critical PU information, such as geographical location, activity
pattern, and modulation/mulplexing technology. Even further, a FCC Commis-
sion’s Rule proposes that PUs such as Federal Primary Users are going to register
in a database before accessing 3.5 GHz band [2].

On one hand, while such kind of database model can eliminate PUE attacks,
they do violate the original FCC requirement [1]. Database enabled spectrum
sensing provides a new inspirations on against of PUE attack, but still remains
problematic. As the general PU information is known to CRs with involvement
of regular database, smart attackers can mimic PU signal features. In addition,
the geographic information of PU is not available for moving base stations or
radars. On the other hand, the PU registry approach has been deployed in very
limited scale, which is only in federal PU environments [2].

As discussed above, a more adaptive and practical PUE attack detection
technique is highly desired. Considering the limited prior knowledge of PUs and
constraints on computing resources of CRs, it is natural to extend our vision on
hard-to-mimic PU signal features for PUE attack detection. While the secondary
radiometric can be easily reproduced by smart attackers, the actual transmission
power is an exception. Although the attacker can smartly adapt their transmis-
sion power to disguise their locations, they are usually incapable of mimicking
counterpart power as PUs. PUs are usually radars, TV stations, and cellular base
stations, which signal strength is normally tens to thousands of times higher com-
paring to what PUE attackers can produce [19]. For example, the strength of
CRs signals is normally in scale of milliwatts [19]. With cooperative spectrum
sensing, and involvement of a fusion center (FC), the emitter transmission power
based PUE detection is applicable without requiring any prior knowledge of PUs
and CRs location information.

3 Detection Model

In CR spectrum sensing study, the cooperative sensing method is preferable
due to the well-known “hidden PU problem”. This problem happens when a
SU cannot sense an active PU either due to the PU signal is out of range or
because the signal faded away in concurrent wireless fading channel. In coopera-
tive spectrum sensing, CRs have to share their sensing results to obtain the most
comprehensive knowledge of the desired spectrum environment. In centralized
CRNs, a fusion center can collect and synthesize sensed spectrum information
from all CRs, and make a joint decision on PU appearance. Our detection model
is based on such deployment with the following assumptions.
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– The PUs are either public infrastructures (i.e. TV stations) or federal facilities
(i.e. weather radar system). They have powerful transmission capability to
serve their own purposes.

– The PUs are not required to be geographically fixed, such that PUs including
moving radars or stations are considered.

– Without loss of generality, assume CRs and the FC are randomly scattered in
an circular area with radius of rCRN . CRs are not equipped with localization
peripherals, and they are unaware of the location of either themselves or the
peers.

– CRs are able to sense the radio environment and report processed spectrum
features to the FC.

– The FC can collect spectrum features from CRs and perform deliberate anal-
ysis. The FC has knowledge of general information of measured PUs, such as
their occupied spectrum bands, their approximate propagation power, etc.

Fig. 1. A centralized CRN sharing the spectrum with a PU.

Figure 1 shows a scenario of centralized CRN jointly share the spectrum
resource with a PU. In order to be more consistent to real-world situation, in
our detection model, the position of the PU and distances among each parties
are unknown, and there is not localization peripherals, such as GPS, time of
arrival (TOA) based equipment, is equipped by CRs because these peripherals
are unaffordable in many applications. In consequence, this detection model
poses a higher challenge on PUE attacks detection.

4 PUE Attacks Detection Under Perfect Propagation
Model

As discussed earlier, the attackers can hardly emit the magnitude of signal
power as PUs do, so the propagation power becomes a useful hard-to-mimic sec-
ondary radiometric of transmitters. The challenge is, however, such a secondary
radiometric feature remains unmeasurable in wireless environment. Usually, the
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receiver can measure the RSS, which is determined by many factors, such as
transmission power, propagation environment, and transmission distance.

An ideal propagation model, Free-Space Path Loss (FSPL) model, assumes
no obstructions between the transmitter and receiver, and the signal propagate
along a line-of-sight (LOS) channel. This ideal propagation model inspires a
reasonable intuition on PUE attacks detection. In this section, our new idea
on PUE attacks detection is introduced with consideration of some restrictions
in real world such as unknown PU and CRs locations, but we assume an ideal
wireless propagation environment. The FSPL model is expressed as:

Pr

Pt
=

Gl · λ2

(4πd)2
(1)

where Pr and Pt are received signal power and transmitted signal power respec-
tively; λ is signal wave length; d is the LOS distance between transmitter and
receiver; Gl is the product of the transmit and receive antenna field radiation
patterns, and it is a constant if the pattern is known. Thus, the received to
transmitted power ratio is proportional to the reciprocal of d2 as:

Pr

Pt
∝ 1

d2
(2)

4.1 A Naive Detection Model

In the ideal propagation model, given the RSS measurement and global infor-
mation of PU propagation power, the transmitter-receiver distance is deducible,
which gives us a hint on the relation between the uncloneable radio feature
Pt and the wireless channel feature d. In our PUE attacks detection model, a
hypothesis test is adopted to decide the presence of the attacker.

• H0: the signal is from the PU
• H1: the signal is from the attacker

The PU propagation power is usually in scale of hundreds or thousands of
watts, defined as Pt,pu. In contrast, the attacker, usually comparable to CRs, has
the propagation power of tens to hundreds of milliwatts, defined as Pt,attacker.
Thus, the ratio of PU propagation power to attacker propagation power is com-
puted as R = Pt,pu/Pt,attacker.

In a CRN with N CRs, the transmitter-receiver distance di (i = 1, 0, · · · , N)
can be easily computed given the propagation power Pt,pu and individual CR
received power Pr,i. If the signal is transmitted by the PU, the distance is com-
puted as:

di = M ·
√

Pt,pu

Pr,i
= di,pu (3)
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Here, M is defined as a constant M =
√

Gl·λ2

(4π)2 . Similarly, if the signal is
transmitted by the attacker, the distance is computed as:

di = M ·
√

Pt,pu

Pr,i
= M ·

√
Pt,attacker

Pr,i
·
√

R

= di,attacker ·
√

R (4)

Further, if the distance between individual CR and the FC di,fc is also known,
ideally, it is easy to infer to the distance between the PU and the FC in a range
dpu,fc ∈ [max(|di − di,fc|),min(di + di,fc)]. If the signal is transmitted by the
PU, the computed dpu,fc does not belong to an empty set, as demonstrated in
Fig. 2. If the signal is transmitted from the attacker, the distance is computed
as di = di,attacker · √

R, according to Eq. 4. Thus, the range set dattacker,fc ∈
[max(|di,attacker · √R − di,fc|),min(di,attacker · √R + di,fc)] is possibly empty as
shown by Fig. 3. The FC can apply the hypothesis test by:

– If (di + di,fc) ≥ |dj − dj,fc|,∀i, j = 1, 2, · · · , N , the signal is from the PU
(H0); or

– If (di +di,fc) < |dj −dj,fc|,∃i, j = 1, 2, · · · , N , the signal is from the attacker
(H1).

Fig. 2. In the case of PU transmission, compute distance range between the transmitter
and the FC. The radius of blue circles are the lower bounds of dpu,fc, computed as
|di − di,fc|; the radius of green circles are the upper bounds of dpu,fc, computed as
di + di,fc. The PU is supposed to locate between the lower and upper bounds. (Color
figure online)
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Fig. 3. In the case of PUE attacks, compute distance range between the transmitter
and the FC. The radius of blue circles are the lower bounds of dattacker,fc, computed
as |di −di,fc|; the radius of green circles are the upper bounds of dattacker,fc, computed
as di + di,fc. The figure shows no intersection between the lower and upper bounds.
(Color figure online)

Following the hypothesis test, the detection rate Pd is calculated as:

Pd = 1 − Pfn

≥ 1 − Pr{di,attacker − dj,attacker ≤ di,fc + dj,fc√
R

,

∀i, j = 1, 2, · · · , N}

≥ 1 − (1 − (
rCRN − max(di,fc+dj,fc)√

R

rCRN
)2)N , (5)

where Pfn = Pr(H0|H1) is the false negative probability. In Eq. 5, the first
inequality originates from the expansion of the inequality to the absolute value of
|di−di,fc|. The second inequality can be explained that the greatest false negative
probability happens (suppose max(di,fc+dj,fc)√

R
≤ rCRN ) when the attacker is

located in the center of CRN, and all CRs are located in the ring-shape area
centered at the attacker with inner radius of rCRN − max(di,fc+dj,fc)√

R
and outer

radius of rCRN . The false positive probability Pfp = Pr(H1|H0) is zero under
such hypothesis test condition.

4.2 Evaluation of Hypothesis Test by Monte Carlo Method

A Monte Carlo method is applied to calculate the detection accuracy in a sce-
nario where CRs and attackers are randomly distributed in an circular area,
which is centered at the FC with radius rCRN . Figure 4 shows the result. The
detection accuracy Pd increases dramatically as the number of CRs increases.
And Pd is approaching one when there are more than four CRs in the testing
scenario.
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Fig. 4. The detection accuracy of the hypothesis test computed by Monte Carlo method
with different number of CRs in the CRN. For each different number of CRs, repeat
the hypothesis test for 100000 times.

5 A RSS Based PUE Attack Detection Approach

The above hypothesis test is discussed under ideal propagation model, which
provides a reasonable intuition on PUE attack detection, with the given prop-
agation power features of PUs and attackers. But, in reality, the RSS based
distance measurement method is not well applicable for several reasons. First of
all, the FSPL propagation model cannot faithfully describe the actual propaga-
tion environment. Secondly, signal propagation patterns are variant in different
environments. Also, RSS can be vary by a large magnitude over short distances.

Therefore, we choose the single transmitter log-normal shadowing fading
propagation model to describe the relationship among transmitted power Pt,
received signal power Pr, and distance d between transmitter and receiver.

Pr(dBm) = Pt(dBm) + K(dB) − 10γlog10
d

d0
+ G (6)

where Pt and Pr are measured in dBm. K is the path loss variable at the refer-
ence distance d0, which depends on the antenna characteristics and propagation
environment. γ is the empirical path loss exponent, which is learned to have
different values in different environment [12]. Table 1 presents some γ values
measured by empirical studies. G is a normal random variable with zero mean
and standard deviation σ. Most empirical studies for outdoor channels measure
the standard deviation σ ∈ (5, 12) in macrocells and σ ∈ (4, 13) in microcells
[12].

Over the years of development, a number of propagation models have been
developed in different wireless environments, such as Hata model, COST231
model, piecewise linear model, etc. [12]. In some literatures, a statistical model
is used to obtain maximum likelihood of the propagation model parameters with
great fitness [23]. In our work, we assume the model parameters with some errors,
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Table 1. Empirical path loss exponents γ

Environment γ range

Urban macrocells 3.7–6.5

Urban microcells 2.7–3.5

Factory 1.6–3.3

are accessible either from historically empirical study, or statistical estimation.
Thus, the path loss propagation model, inferred from Eq. 6, can be written as
Eq. 7, where C is a constant determined by reference propagation path loss, and
Γ is the empirical path loss exponent.

L = Pt − Pr = C + Γ · log10d + G (7)

Because G is a normal random variable, the optimal estimator of log10d is
obtained by averaging the propagation loss L. Thus, we smooth the RSS by
using a local averaging method from neighboring CR groups. Then, we apply
our hypothesis test to detect PUE attacks.

5.1 CRs Grouping

A RSS smoothing method that divides secondary network into circular areas has
been studied [6]. One major restriction of this method lies in the requirement
that all CR positions are known globally and CRs remain geographically static.
In our work, as discussed in Sect. 3, a dynamic CRN is assumed where CRs can
be either static or mobile, and the CRs are assumed unaware of their positions.
In order to estimate distance to the PU in a small area, a CR grouping technique
is applied, which assumes the distances between the PU and CRs in a group can
be uniformly treated as di,pu, where i represents the i-th CR as the group leader.

In comparison to clustering patterns in traditional wireless sensor networks
(WSNs), CRs grouping does not meant to construct a hierarchical CRN struc-
ture. Instead, it is a logical grouping process that is completed by the FC. The
grouping process is shown in Fig. 5. Every CR will maintain a dynamic neigh-
bor list by intermittently requesting in a short broadcasting range rneighbor. In
spectrum sensing stage, CRs will send their neighbor list along with the RSS
measurements to the FC, which enables the FC create a N ×N binary CR neigh-
bor matrix Aneighbor with each element be denoted as ai,j . The FC will group
RSS measurements by rows (for every cr(i)), shown in Fig. 6. In each group, the
averaged propagation loss is computed as L∗

i = Pt,pu − mean(Pr,k|∀ai,k = 1).
Further, the distance between the PU and each group is estimated as di,pu,
when it assumes all CRs in a group have approximately the same distance to
the PU, because di,pu 	 rneighbor.
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Fig. 5. Process of CR grouping and PUE attack detection.

Fig. 6. CRs grouping and RSS smoothing diagram.

5.2 Hypothesis Test of PUE Attack Detection

In practical PUE attack detection, the hypothesis test defined in Sect. 4 is
adopted. The propagation powers of the PU and attacker are denoted as
Pt,pu(dBm) and Pt,attacker(dBm), respectively, where the propagation power
difference, regarded as radiometric difference, is calculated as F (dB) = Pt,pu −
Pt,attacker.

Refer to Eq. 7, the distance between a transmitter and the i-th CR group is
estimated as:

d̂i = 10(L
∗
i −C−ε)/Γ (8)

where ε is the remaining error term. If the signal is transmitted by the PU, the
estimated distance is the approximate distance between i-the CR and the PU
d̂i,pu:

d̂i = d̂i,pu (9)
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If the signal is transmitted by the attacker, the path loss is computed as:

L∗
i =(Pt,attacker + F ) − mean(Pr,k|∀Ai,k = 1) (10)

Thus, the estimated distance is a scaled approximate distance between i-the
CR and the attacker d̂i,attacker:

d̂i = d̂i,attacker · 10F/Γ (11)

As assumed in Sect. 4, all CRs are randomly distributed in a circular area
with radius of rCRN . The transmitter-receiver distances satisfy:

di,pu − dj,pu ≤ 2 · rCRN ,∀i, j = 1, 2, · · · , N (12)

(di,attacker − dj,attacker) · 10F/Γ ≤ 2 · rCRN · 10F/Γ ,

∀i, j = 1, 2, · · · , N (13)

Refer to Eqs. 9 and 11, the FC can apply the following hypothesis test:

– If d̂i − d̂j ≤ T,∀i, j = 1, 2, · · · , N , the signal is from the PU (H0), or
– If d̂i − d̂j > T,∃i, j = 1, 2, · · · , N , the signal is from the attacker (H1)

Here T is the threshold factor that affects the accuracy of the hypothesis
test. The probability of false negative can be calculated as:

Pfn = Pr{max(d̂i,attacker) − min(d̂j,attacker) ≤ T

10F/Γ
,

∀i, j = 1, 2, · · · , N}⎧⎪⎨
⎪⎩

≤ 1, if T
10(F+ε′)/Γ > rCRN

≤ (1 − (
rCRN − T

10(F+ε′)/Γ

rCRN
)2)N ,

if T
10(F+ε′)/Γ ≤ rCRN

(14)

where ε′ is the error term. The interpretation to Eq. 14 is similar to the one to
Eq. 5. It is noteworthy that the equality happens only when attacker is located
at some particular locations. The probability of false positive can be calculated
as:

Pfp = Pr{max(d̂i,pu) − min(d̂j,pu) > T,

∃i, j = 1, 2, · · · , N}⎧⎪⎨
⎪⎩

= 0, if T
10ε′/Γ ≥ 2 · rCRN

< 1 − (
α− T

10ε′/Γ

π )N ,
if T

10ε′/Γ < 2 · rCRN

(15)
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where cos α = rCRN −T/10ε′/Γ

rCRN
. The Eq. 15 can be explained as the complementary

of the probability to the case that all CRs are located in the intersection area
between a ring-shape area with width of T

10ε′/Γ and the CRN distributed area.
According to Eqs. 14 and 15, with larger value of F and lower value false negative
rate Pfn, better hypothesis threshold factor T can be designed. With the larger
number of CRs N , the lower false negative rate Pfn can be achieved, but a higher
false positive rate Pfp may occur.

6 Real-World Emulation Trial

In this section, a deployment trail of our method in real-world PUE attack
detection is presented. To perform spectrum sensing in CRN, we used Universal
Software Radio Peripheral (USRP) N210 as the sensing nodes, one of which
acts as a smart PUE attacker. Due to the practical limitations, we are unbale
to emulate PU activities. Thus, we regard one of the local digital television
(DTV) station as the primary user. The PUE attacker impose malicious signal
on another unused spectrum band. In order to conduct effective attacks, the
smart attacker will mimic the DTV behavior: it will record the DTV signal from
near spectrum band and broadcast the exact received signal data.

We implemented the experiment in our lab. The attacker (one USRP N210)
is allocated to a fixed spot, and the sensing nodes (other USRP N210 Devices)
are placed in 6 different places/rooms, shown in Fig. 7. Due to lack of empirical

Fig. 7. Experiment deployment.
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model parameters, we directly applied Hata propagation model for urban envi-
ronment [12]. The PU signal information is presented in Table 2, where hT is
the transmitter height. Accordingly, we take of the value of receiver height hR

as 10 m.

Table 2. PU parameters

Frequency 590–596MHz

Power 345 kW

hT 278m

The result is shown in Fig. 8, which indicates an almost perfect detection. It
is because the great discrepancy between PU transmission power and attacker
transmission power (over 60 dB difference), despite the inaccurate propagation
model parameters. The sensing nodes will receive a relatively high power of PUE
attack signal if near to the attacker, but receive barely nothing if too far away
from the attacker. In next section, we will present more detail discussions on
detection performance regarding to model parameter errors and attacker trans-
mission power.

Fig. 8. ROC of emulation.

7 Numerical Evaluation

7.1 Practical Model Evaluation

Further, a numerical experiment with more comprehensive network topology,
is designed to evaluate the proposed hypothesis test. The parameters in Eq. 7
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is estimated from empirical study, which may not be the best estimation. The
empirical model we used for distance estimation is:

L = Cest + Γest · log10d + G (16)

While the best fit propagation model is:

L =(Cest − ε C) + (Γest − ε Γ ) · log10d + G

=Cest + Γest · (log10d − ε C

Γ
− ε Γ

Γ
log10d) (17)

where ε C and ε Γ are the empirical propagation model estimation errors (Cest−
Cbest = ε C and Γest − Γbest = ε Γ ). Thus, the estimated distance is, if signal is
transmitted by the PU:

d̂i = (d̂i,pu)(1−ε Γ/Γ ) · 10−ε C/Γ (18)

Similarly, the estimated distance calculated based on the attacker transmis-
sion signal is:

d̂i = (d̂i,attacker)(1−ε Γ/Γ ) · 10(−ε C/Γ+F/Γ ) (19)

Compared to Eqs. 14 and 15, the empirical propagation model estimation
errors may increase both the false positive and false negative probabilities, due
to the increasing uncertainty from the estimated distance.

7.2 Numerical Test and Comparison

The designed test scenario is in a 3000m × 3000m field. The PU and the FC are
initially randomly located in the field. The PU is able to move. CRs and the
attacker are randomly distributed in a circular area with radius 500 m. The best
fitted propagation model parameters, Cbest and Γbest, are designed by referring
to the empirical Hata model [12]. The model parameter errors follow Gaussian
distribution, defined as ε C ∼ (0, σ2

ε C) and ε Γ ∼ (0, σ2
ε Γ ). The details are

shown in Table 3.

Table 3. Parameter setting

Field 3000m × 3000m

Cbest 111.76

Γbest 31.8

G ∼(0, 82)

ε C ∼(0, σ2
ε C)

ε Γ ∼(0, σ2
ε Γ )

Pt,pu 50 (dBw) = 100 (W)

PU mobility Yes
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We have compared the performance of our proposal with a back propaga-
tion neural network (BPNN) based approach [20]. It is a PUE attack detection
scheme that does not need geographical information of the PU, which is similar
to our work. However, it does require CRs’ geographical information for both
training and testing process. Although there are other PUE attacks detection
methods, their strong assumptions make it inappropriate to compare them with
our approach. In the evaluation test, we apply a three layer BPNN with three
input nodes, four hidden nodes and two output nodes, as shown in Fig. 9.

Fig. 9. BPNN structure for PUE attack detection.

Figures 10, 11, 12, and 13 present the comparison between our proposal and
the BPNN approach using the receiver operating characteristics (ROC) curves
corresponding to different number of CRs (N) and different propagation power
differences (F ) under several different parameter error propagation models.

The performance evaluation results in the figures show that both our pro-
posed approach and BPNN approach for PUE attack detection have achieved
better performance when there are larger number of CRs and larger propagation
power difference between the PU and the attacker. When compared all result

Fig. 10. ROC of two approaches, when σε C = 0 and σε Γ = 0, with different number
of CRs (N) and different attacker propagation power Pt,attacker.
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Fig. 11. ROC of two approaches, when σε C = 3 and σε Γ = 1, with different number
of CRs (N) and different attacker propagation power Pt,attacker.

Fig. 12. ROC of two approaches, when σε C = 5 and σε Γ = 2, with different number
of CRs (N) and different attacker propagation power Pt,attacker.

Fig. 13. ROC of two approaches, when σε C = 10 and σε Γ = 3, with different number
of CRs (N) and different attacker propagation power Pt,attacker.
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figures, however, it is shown that the BNPP approach is not sensitive to model
parameter errors σε C and σε Γ , while the performance of our approach greatly
depends on the accuracy of model estimation. It is because the training data
feeding to the neural network in BPNN approach is directly from real propa-
gation environment, thus the testing process does not rely on the propagation
model estimation. As shown in Figs. 10 and 11, on the other hand, our approach
achieves a superior performance when the propagation model is well estimated.

However, the comparison based only on performance does not provide a com-
prehensive vision. The BPNN is robust against the inaccuracy in propagation
model estimation because it is essentially empirical and learns from historical
data. Actually the BPNN detector does not work with the same inputs that are
required by our proposed method.

In summary, our proposed detection approach possesses two major advan-
tages over the BPNN detector. Firstly, the BPNN approach requires CRs’ geo-
graphical information in both training and testing process, which may greatly
increase the cost by equipping CRs with extra peripherals, such as GPS, while
our approach does not rely on any prior geographical information. Secondly,
in our approach, no training process, especially supervised training process, is
required. In PUE attack detection, training signal at receiver sides with tag of
the PU is not always available in practical. Therefore, our approach, compared
to BPNN detector, is more feasible in a wide selection of scenarios.

8 Conclusions

In this work, we proposed a novel PUE attack detection approach leveraging the
hard-to-mimic feature of high PU transmission power, compared to the attacker
transmission capability. The detection model considered many constraints in
real-world situations, such as mobile PUs, unknown geographical information
of each party, and the geographical randomness of PUs and attackers as well
as the CRN formation. Both theoretical analysis and experimental results have
validated our proposal.
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Abstract. Vehicular networks are networks of communicating vehicles,
a major enabling technology for future cooperative and autonomous driv-
ing technologies. The most important messages in these networks are
broadcast-authenticated periodic one-hop beacons, used for safety and
traffic efficiency applications such as collision avoidance and traffic jam
detection. However, broadcast authenticity is not sufficient to guaran-
tee message correctness. The goal of misbehavior detection is to ana-
lyze application data and knowledge about physical processes in these
cyber-physical systems to detect incorrect messages, enabling local revo-
cation of vehicles transmitting malicious messages. Comparative studies
between detection mechanisms are rare due to the lack of a reference
dataset. We take the first steps to address this challenge by introducing
the Vehicular Reference Misbehavior Dataset (VeReMi) and a discus-
sion of valid metrics for such an assessment. VeReMi is the first public
extensible dataset, allowing anyone to reproduce the generation process,
as well as contribute attacks and use the data to compare new detec-
tion mechanisms against existing ones. The result of our analysis shows
that the acceptance range threshold and the simple speed check are com-
plementary mechanisms that detect different attacks. This supports the
intuitive notion that fusion can lead to better results with data, and we
suggest that future work should focus on effective fusion with VeReMi
as an evaluation baseline.

Keywords: Misbehavior detection · Vehicular networks
Intrusion detection

1 Introduction

Vehicular Ad-hoc Networks (VANETs) have received extensive attention in the
research community in the past two decades as a potential enabling technology
for improved road safety and efficiency. These networks, consisting of vehicles
with ad-hoc wireless communication modules, are gaining importance in the con-
text of cooperative autonomous driving applications. The idea is that commu-
nication can significantly improve autonomous driving by essentially increasing
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the availability of information within the vehicle. However, for these applications
to work correctly, this information needs to be authenticated and verified for cor-
rectness [14]. Standardization agencies have already defined cryptographic (IEEE
1609.2), communication (IEEE 802.11p, IEEE 1609), and application (ITS-G5,
SAE J2735) standards, but addressing the correctness of the transmitted data
has largely been a research issue. Cryptographic solutions (e.g., vehicular PKIs)
only provide message integrity, and do not ensure message correctness; detect-
ing the lack of correctness in authentic messages is referred to as misbehavior
detection. These are typically classified into data-centric and node-centric [20],
depending on the semantics of the decision: in data-centric detection, the data
is reliable, while in node-centric detection, the sender is trustworthy (and thus
the messages sent by it should be trusted).

There are many remaining research challenges in the area of misbehavior
detection for VANETs. For example, similar to the area of intrusion detection,
it is intuitively obvious that it is hard to build a single detection mechanism that
detects all possible attacks. Instead, many proposals aim to either detect specific
attacks [19] (i.e., particular types of behavior that are malicious), or they try to
protect a specific application by structuring the checks such that only correct
messages are accepted [18]. Many authors have proposed to apply some type
of data fusion as a tool to combine information from multiple sources [5,13,
19], but it is not well-studied how individual detection mechanisms compare. In
this article, we inform this discussion with data, and argue that it is necessary
to have a clear understanding of how mechanisms behave to maximize fusion
performance. For this purpose, we also introduce a new metric that can be used
to study the weaknesses and strengths of specific mechanisms by looking at how
their error rates are distributed over the detecting vehicles. If the errors are
concentrated in a certain area, one can either redesign the mechanism or use
a situation detection mechanism (as suggested by our previous work). In this
entire process, the essential step is a large common dataset that can be shared
as input for multiple mechanisms; this dataset is the VeReMi dataset (Vehicular
Reference Misbehavior Dataset), one of the two main contribution of this work.
To the best of our knowledge, this is the first of such datasets that is publicly
available.

To illustrate the need for such a public dataset, it is worth looking at the dif-
ferent approaches taken to evaluate VANET applications, which can be catego-
rized in three groups: real-world field studies, analytical models and simulations.
Field studies are effective for some scenarios, but especially for security and for
large scale applications, this leads to prohibitive cost, especially for attacks aim-
ing to disrupt traffic and cause accidents. Analytical models typically assume
significant simplifications to keep the evaluation manageable. Therefore, simula-
tion studies are often used as the primary evaluation methods for VANETs [14].
Even when using simulation, the computational cost for a representative anal-
ysis is significant, suggesting that common datasets could be useful. The state
of datasets for intrusion detection evaluation is best illustrated by a recent sur-
vey by Mitchell and Chen [12], who analysed intrusion detection techniques for
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cyber-physical systems, which is closely related to VANETs. Out of 30 ideas dis-
cussed in [12], 4 used a public dataset, 22 papers did not release their dataset,
and 4 did not use any dataset at all. For VANETs specifically, even releasing
source code is uncommon, and sometimes it is not even declared which tools are
used for simulation [8]. Although some authors in this field now have started to
release material for reproducibility [9,22], this is still highly uncommon [7]. This
is also a challenge for the security community within VANET research; this work
requires both reliable, representative VANET simulations, and public attacker
implementations, to enable comparisons between different detectors. This paper
aims to address this need and push the community towards a more rigorous,
scientifically valid approach to meet these and future challenges within our field.

Fig. 1. Evaluation workflow

There are many different methodologies that can be used to evaluate mis-
behavior detection systems (and indeed, intrusion detection in general). In this
paper, we focus on the evaluation workflow shown in Fig. 1, which basically con-
sists of a system simulation step, a detection step, and an analysis step. In the
system simulation step, a scenario (with or without attack(s)) is executed, and
message reception is logged; in the detection step, a detection system is fed with
the corresponding message logs, and the analysis step consists of computing rel-
evant metrics and visualizing the results. Our simulations are performed within
the LuST scenario [2], using VEINS [17] for the simulation of vehicles; more
details are provided in Sect. 2. The message classification process is done using
our evaluation framework Maat, which executes multiple parallel detectors, as
discussed in detail in Sect. 4. This workflow is particularly effective for the eval-
uation of a broad spectrum of scenarios, and can be used to estimate the overall
detection performance in a potential system deployment. For some evaluation
goals (e.g., intrusion response effectiveness), where detection must be part of
the system execution, the simulation and detection steps should be combined.
In this paper, we focus on study designs that can be performed independently
of the system simulation.

In summary, this paper has two major contributions; in Sect. 2, we introduce a
dataset that can serve as a broad baseline for misbehavior detection evaluations,
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while Sect. 3 describes how to aggregate and present the results. We then show
how to apply this dataset in our second major contribution, which is a broad
evaluation of plausibility mechanisms proposed by previous authors in Sect. 4.
We conclude with a discussion of future work in Sect. 5.

2 Dataset

The first contribution of this paper is a dataset intended to provide a common
base line for misbehavior detection evaluation. Previous studies have always
relied on individually designed simulation studies: although this has the advan-
tage of customizable attacks and flexibility with respect to the specifics of the sce-
nario, it makes it difficult to compare mechanisms with each other. The purpose
of our dataset is to provide an initial baseline with which detection mechanisms
can be compared. This reduces the time required for researchers to perform
high-quality simulation studies, and it makes it easier for readers to compare
the results of different papers. We acknowledge that no dataset can completely
replace a detailed analysis of a detection mechanism; however, the current state
of the art, where a comparison with any other scheme requires a time-intensive
and error-prone re-implementation of every scheme, is unacceptable. Our dataset
will provide the first step towards a comprehensive evaluation methodology for
this field.

The dataset we introduce essentially consists of message logs for every vehicle
in the simulation and a ground truth file that specifies the attacker’s behavior.
Local information from the vehicle is included through messages of a different
type (representing periodic messages from a GPS module in the vehicle). Any
detector can thus read the sequence of messages and determine the reliability of
every message (or a subset thereof). Our dataset and the source code used to
generate it1 is publicly available, and consists of 225 individual simulations, with
5 different attackers, 3 different attacker densities, 3 different traffic densities, and
5 repetitions for each parameter set (with different random seeds). A detailed
discussion of these aspects and the choices made in the generation process is
provided below. Note that anyone can reproduce and extend our dataset in a
consistent way using the provided source code, enabling anyone to extend the
evaluation of any detector that was studied with VeReMi.

2.1 Scenario Selection

The purpose of our dataset is to provide a holistic basis for evaluation of misbe-
havior detection mechanisms, rather than a specific traffic situation that works
well or poorly for a specific mechanism. This is aimed to reduce unintentional
selection bias based on properties of the mechanism and the scenario, sacrificing
the level of detail with which individual scenarios are studied. The alternative
approach that is often taken is to pick a few specific traffic scenarios to be stud-
ied (e.g., congested highways, free-flowing traffic in a Manhattan grid setting)
1 https://veremi-dataset.github.io/.

https://veremi-dataset.github.io/
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and analyze these in detail. This provides detailed information on mechanism
behavior, but relies on a lot of manual decision making, making fair comparisons
between mechanisms difficult. We instead focus on how mechanisms behave in
a variety of different scenarios. To this end, we provide a much larger dataset
that can be used to assess the overall performance, before looking at individual
scenarios to provide specific improvements for specific detection mechanisms. In
order to achieve this, we selected a representative sample of the entire simulation
scenario, based on the included road types and the associated traffic densities.

Our work is based on the Luxembourg traffic scenario (LuST), originally
introduced by Codeca et al. [2], who aimed to provide a comprehensive scenario
for evaluation of VANET applications. Although this scenario is very suitable for
traffic engineering, the simulation cost for the simulation of a city-scale VANET
over multiple hours is prohibitive2. For this reason, reproduction of an entire
study performed by other research groups is quite rare in our community –
most papers that reference results from other articles are follow-up work. This
is where our dataset comes in: it provides a simple message stream per vehicle,
making it much easier to reproduce detection studies. Table 1 describes some
core parameters of the simulation – more information can be obtained in the
OMNeT++ configuration file in our source code.

Table 1. Simulation parameters

Parameter Value Notes

Mobility SUMO LuST (DUA static) [2]

Simulation start (3, 5, 7) h Controls density

Simulation duration 100 s

Attacker probability (0.1, 0.2, 0.3) Attacker with this probability

Simulation area 2300, 5400–6300, 6300 Various road types

Signal interference model Two-ray interference VEINS default

Obstacle shadowing Simple VEINS default

Fading Jakes VEINS default

Shadowing Log-normal VEINS default

MAC implementation 802.11p VEINS default

Thermal noise −110 dbm VEINS default

Transmit power 20mW VEINS default

Bit rate 6Mbps VEINS default (best reception)

Sensitivity −89 dBm VEINS default

Antenna model Monopole on roof VEINS default

Beaconing rate 1Hz VEINS default

2 For illustration purposes; our 100 s excerpt of the scenario at high densities contains
hundreds of vehicles and runs for a few hours – a significant part of this cost is the
realistic simulation of signals bouncing off the ground and various buildings.
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2.2 Attacks and Implementation

We implemented an initial set of attacks associated with position falsification,
the type of attack that is most well-studied in our field (and for which many
mechanisms have been designed [20]). Rather than implement a broad set of
attacks, we focused on this specific attack to show the efficacy of our approach.
We foresee that other researchers can contribute new attack implementations
and corresponding datasets to the central VeReMi repository, which we will
maintain. By focusing on a specific attack in this paper, we show how VeReMi is
useful for other researchers and provide an initial starting point for the commu-
nity. Since the data is published as a list of message logs, which include speed,
claimed transmission time, reception time, position, and RSSI for each receiver,
it is easy to take a newer version of VeReMi and run it through detectors that
have already been published. This enables researchers to directly compare their
detector against existing ones, and any new attack against a variety of detectors
(as long as their source code is published).

The attackers we implement are the constant attacker, the constant offset
attacker, the random attacker, the random offset attacker, and the eventual stop
attacker. The constant attacker transmits a fixed, pre-configured position; the
constant offset attacker transmits a fixed, pre-configured offset added to their
actual position; the random attacker sends a random position from the simula-
tion area; the random offset attacker sends a random position in a preconfigured
rectangle around the vehicle; the eventual stop attacker behaves normally for
some time, and then attacks by transmitting the current position repeatedly
(i.e., as if it had stopped). The random attacks (4 and 8) take a new random
sample for every message. The parameters for our attacks are shown in Table 2;
the numbers are based on previous work [19].

Table 2. Attacker parameters

ID Attack Parameters

1 Constant x = 5560, y = 5820

2 Constant offset Δx = 250, Δy = −150

4 Random Uniformly random in playground

8 Random offset Δx, Δy uniformly random from [−300, 300]

16 Eventual stop Stop probability + = 0.025 each position update (10Hz)

2.3 Characteristics

The dataset consists of a total of 225 simulation executions, split into three
density categories. The low density (corresponding to a run starting at 3:00)
has 35 to 39 vehicles, while the medium density (a run at 5:00) has between 97
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and 108 vehicles, and the high density (7:00) has between 491 and 519 vehicles.
Out of these vehicles, a subset is malicious: this decision is made by sampling a
uniform distribution ([0, 1]) and comparing it to the attacker fraction parameter,
essentially assigning each vehicle to be an attacker with that probability. All of
the vehicles classified as attacker execute the same attack algorithm (described
in the previous section). Each receiver generates a reception log containing all
periodic position updates generated by SUMO (10 Hz) and all received messages
(i.e., beacons from other vehicles). Each of these log entries contains a reception
time stamp, the claimed transmission time, the claimed sender, a simulation-
wide unique message ID, a position vector, a speed vector, the RSSI, a position
noise vector and a speed noise vector. In addition, a ground truth file is updated
whenever a message is sent by any vehicle: this file contains the transmission
time, sender, attacker type, message ID, and actual position/speed vectors. The
attacker type is set to 0 for legitimate vehicles. The following describes the
dimensions of the VeReMi dataset in terms of messages and reception events per
density.

The amount of messages transmitted in the simulations varies between the
simulations and densities; at low densities, 908 to 1144 messages are sent, at
medium densities, there are between 3996 and 4489, and at high densities, there
are 20482 to 21878 messages sent. The corresponding reception events are much
more scattered; each vehicle at different densities can receive 0 messages (e.g., if
they are not close to any other vehicles). For low density, a vehicle receives up to
278 reception events (total over all low density simulations is 277916 events
spread over 2820 receivers), while at medium density this number goes up to
911 reception events (total over all 1815215 spread over 7695 receivers). Finally,
for a high density, a single vehicle processes up to 5468 reception events in
the 100 simulation seconds (total over all simulations over all 37500 vehicles
is 37043160), or about 1000 messages per vehicle (10 per second, i.e., roughly
100 nearby vehicles at a beaconing rate of 1 Hz if we ignore lost messages). A
graphical view of reception event frequency is given in the histogram in Fig. 2.

The scenario also includes a wide variety of traffic behavior, as illustrated in
Fig. 3, which shows aggregate speed statistics over all runs in a specific density.
The statistics were computed by taking the current local speed vector for every
vehicle for every position update (which happens at 10 Hz) and aggregating all
these samples. This results in a mean speed of 24.36 m/s for the low density sce-
nario, with a very large standard deviation of 13.73 m/s; since the median speed
is 30 m/s, this suggests that most of the deviation is due to traffic lights. In the
medium density configuration, the median (13.33 m/s) and mean (15.06 m/s)
drop significantly, although the amount of vehicles in the simulation is fairly
low (only about 2.5 times the vehicles compared to a low density); the standard
deviation is still very high (12.34 m/s), indicative of the wide variety of driv-
ing behavior. Finally, our high density scenario drops down further to a mean
speed of 12.81 m/s, with a standard deviation of 10.94 m/s, while the median is
12.81 m/s.



VeReMi: Dataset for MDS Evaluation in VANETs 325

Fig. 2. Histogram showing the raw
amount of reception events in the sim-
ulations.

Fig. 3. Histogram showing distribution
of speed in the simulations.

2.4 Limitations

Our dataset cannot be fully representative of all possible attacks in VANETs,
especially because the implemented attacks are representative of a specific type
of attack. Investigating the effect of multiple attack types across a single sim-
ulation is not possible with this dataset. We argue that our dataset should be
used as a starting point for a more rigorous approach to the evaluation of such
systems – other researchers can use this process to find weaknesses in our detec-
tion approaches and implement new attacks. We believe this process is essential
to achieving scientifically meaningful results: existing work nearly always relies
on non-published code in some way, and thus it is very difficult to verify others’
results. This leads to difficulty in replication of results, especially for complex
detection systems that have many moving parts. The purpose of this dataset
publication is to alleviate this: authors can make verifiable and reliable compar-
isons between their schemes and ours.

Another important limitation of our dataset is that the evaluation workflow
in Fig. 1 is fundamentally non-interactive: it is designed for detection, not for
response. This means that some specific misbehavior detection schemes that
rely on interactivity or application decisions based on the detection of an attack
(e.g., increasing safety distance in autonomous driving) cannot be evaluated with
our dataset directly. However, for systems that protect specific applications, a
comparison with other schemes always requires custom implementation. The
core weakness of our approach is that we cannot directly evaluate trust over
time without major modifications to our workflow, since trust schemes often do
not output decisions for every message.

3 Metrics

Detection performance is a complicated and multi-faceted issue, whose definition
also varies across publications, depending mostly on the purpose of the detector.
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Even in intrusion detection in general, determining how to evaluate detection
mechanisms and how to choose the appropriate mechanism for deployment, is
considered a challenging issue, and the trade-off is non-trivial [1]. In misbehavior
detection specifically, many authors use false positive/negative rates or equiva-
lent metrics to determine how well attacks are detected, and this is combined
with other performance metrics (such as latency, or application-specific metrics).
Although these metrics are useful to compare performance of mechanisms, we
find that there is a lack of metrics that are useful for the development of new
detectors. In this section we propose an additional metric that fills this gap.

Another issue that should be addressed is specific to detection in distributed
peer-to-peer systems: how should detection metrics be aggregated across par-
ticipants? For example, given a simulation with two honest vehicles and one
attacker, how do we characterize the detection performance of the same detec-
tion system (running within two vehicles independently)? We previously touched
on this issue in a discussion with the vehicular communication community [21].
In this paper we will quantify the detection quality by classifying every detection
event as true/false positive or as true/false negative; a detection event occurs
whenever a message is received (i.e., we assume the detection decision is made
as soon as possible after reception). We aggregate these results by counting the
errors generated by detection events, not in terms of sent messages or partici-
pants. Which aggregation method is chosen is highly relevant for the interpreta-
tion of the results: in this work we focus on detection events to obtain a picture of
the overall quality of the results. Aggregating by message provides information
about how well a specific message sent by the attacker is detected, but present-
ing the results in terms of detected messages would mean that the amount of
receivers is completely disregarded. Similarly, aggregation by participant ignores
how much contact this vehicle has with the other vehicles. Since the amount of
messages between vehicles is also indicative of a potential impact of an attack,
aggregation by detection events is the best approach for an overall evaluation
of detector performance. However, we point out that these metrics can also be
implemented with our dataset, since we provide message and sender labels for
every message.

3.1 Evaluating Detection Quality

The first metric we use to decide the quality of the detector is based on the
well-established confusion matrix (which basically corresponds to an overview
of true/false positives (TP/FP ) and true/false negatives (TN/FN)). There are
many options to choose from here; for example, accuracy, defined as the number
of correct classifications (TP+TN) over all classifications (TP+FP+TN+FN),
appears intuitive but suffers from the accuracy paradox for imbalanced sets. It
is thus considered good practice [4,15] to always provide a quantification with
two values, showing the trade-off between increased false positives to reduce
false negatives and increased false negatives to reduce false positives. One such
formulation is the use of precision and recall : precision quantifies the relevance of
detection events (TP/(TP +FP )), while recall quantifies what rate of positives
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is actually detected (TP/(TP +FN)). An optimal detector thus has a precision
and a recall of 1; how significant a deviation from this value is acceptable depends
strongly on the application.

The state of the art [20] typically reports false positive (FP/(FP + TN))
and true positive (TP/(FN + TP )) rates, which provides a different and sig-
nificantly skewed picture in certain situations, as discussed in machine learning
literature [4,15]. Specifically, precision and recall are more informative in situ-
ations where a binary classification task (e.g., packet maliciousness decisions)
is performed on an imbalanced dataset. As our dataset contains attackers in
different degrees, and the amount of decisions made for attacker-transmitted
messages (TP + FN) compared to the amount of decisions made for benign
messages (FP + TN) is significantly different, we should thus prefer precision
recall curves. As pointed out by other authors [4], a detector that is better in
the PR graph is guaranteed to be better in the ROC graph; the interpretation
process is generally similar (i.e., which curve is closer to the optimal point).

PR graphs provide us with an overall estimation of detector performance,
but they have an important disadvantage: they are generally not as easy to
interpret as a graph with FPR/TPR (referred to as an ROC curve). This greatly
impacts the use of PR graphs in the literature: not only are they somewhat harder
to understand fully, PR graphs often “look much worse”, as demonstrated by
Davis and Goadrich [4, Fig. 1]. This figure shows that the ROC curve can look
close to optimal (the area under curve (AUC) is large), while the PR curve for the
same data looks much worse (the AUC is small). This is partially related to the
fact that interpolation between points on a PR curve is non-trivial; for details,
refer to [4]. In addition to this issue, PR-graphs do not provide information about
where potential flaws of individual mechanisms are, or whether a combination
of multiple detectors can out-perform the individual mechanisms (as we argue
in previous work [5]).

3.2 Evaluating Detector Limitations

To study the limitations of detectors without arbitrarily guessing which factors
may influence such detectors, we design a new metric to find indications of such
influences. The idea of our metric is quite simple: examine whether the distri-
bution of erroneous classification rates (i.e., false positives and false negatives)
is uniform over the receiving vehicles. If this metric says the distribution is uni-
form, the detector performance is not dependent on factors that are varied in the
simulation, such as which vehicle executes it, or the relative position between the
receiving and sending vehicle. On the other hand, if this distribution is extremely
skewed, the conclusion is that the detector performance depends a lot on the con-
text of the vehicle. We expect this is the case for many misbehavior detection
schemes (and indeed most of the literature just assumes this is true), but it is
also valuable information to know where the discrepancies occur. This enables
further investigation into the detector’s strengths and weaknesses, and finding a
skewed distribution would suggest that combining the results of different mech-
anisms is the way forward. Note that this is not a qualitative metric: uniformly
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good or poor error dispersion does not imply that a metric is significantly better
or worse, it only suggests whether there is room for improvement.

Given this intuition, we investigated and found a metric for statistical dis-
persion that is commonly used in sociology and economics to measure income
inequality: the Gini coefficient or Gini index [3], originally defined in 1987 by
Dixon et al. The idea can be visualized by sorting people by income in ascending
order and then plotting the cumulative fraction of this list against the cumula-
tive income of that group. More formally, the Gini index G of a population with
mean size µ and value xi assigned to individual i is defined as:

G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2µ

(1)

The Gini index itself is not novel, nor is the application to quantify errors
(see e.g. [6]), but our application of it is slightly different: we propose that it can
be used effectively to determine the statistical dispersion in the error rates across
vehicles. The reasoning is that computing the overall performance as discussed
in the previous section hides localized effects associated with individual vehicles.
Thus, if a mechanism has some regions where it performs really well (e.g., a
highway), while it performs very poorly in other regions (e.g., urban settings with
lots of traffic lights), these effects will be averaged out in the overall performance.
If the overall performance is reasonable, one can use the dispersion in the error
rates to determine whether this happens both for false positives and for false
negatives (the latter being dependent on the attack): the higher the Gini index of
these rates, the more differences exist between vehicles. However, if performance
is poor overall, the Gini index can still be close to zero (or conversely, be close to
1); the arrays (0.1, 0.1, 0.1, 0.1) and (0.9, 0.9, 0.9, 0.9) have the same Gini index
of zero. There are at least two main ways to use the result of this metric: (1)
investigate the vehicles on either side of the skew and see whether the detector
can be improved by changing its’ functionality or (2) investigate whether fusion
can be used to exploit low amounts of errors produced by different detectors in
different scenarios.

4 Evaluation of Plausibility Detectors

This section shows an application of our dataset and metrics to analyze several
data-centric plausibility detectors, which are detectors that verify a received mes-
sage against data from local sources only. The decisions made by these detec-
tors are practically instant (i.e., they do not depend on other data sources),
and it does not generate additional attack vectors that can be used for bad
mouthing and similar attacks, as is a risk in trust schemes and consistency
mechanisms [20]. As plausibility mechanisms are often used as a basis for trust
establishment [10,13,16,18], we focus on these. We implement detectors in our
detection framework Maat3, which is a detection and fusion framework based on

3 https://github.com/vs-uulm/Maat.

https://github.com/vs-uulm/Maat
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subjective logic that we are currently developing. In this work, we compare four:
the acceptance range threshold (ART), the sudden appearance warning (SAW),
the simple speed check (SSC), and the distance moved verifier (DMV). Of these,
the acceptance range threshold is the most well-studied, originally introduced by
Leinmüller et al. [10] and later used by others, including Stübing et al. [18] and in
our earlier work [19]. It basically uses the expected reception range as a measure
for the plausibility of the position included in incoming single-hop beacon mes-
sages, which are the most important source of information for VANET applica-
tions. The sudden appearance warning was also introduced by Schmidt et al. [16],
and is based on the assumption that vehicles will not suddenly appear, but
rather always approach from a distance; if a message originates close by with an
unknown sender, it is considered malicious. The simple speed check and distance
moved verifier were implemented as part of our work on a detection framework,
and both examine whether a new beacon confirms information claimed in an
older beacon. The simple speed check decides maliciousness based on how the
claimed speed relates to the speed implied by the position and time differences
between the current and the previous beacon, and the claimed speed in the
current beacon. If the deviation exceeds a threshold, this detector classifies the
message as malicious (similar to, but much simpler than, a Kalman filter [18]).
Finally, the distance moved verifier checks whether the vehicle moved a mini-
mum distance (similar to the way the MDM proposed by Schmidt et al. [16]),
and if this distance is too small, the message is considered malicious.

This selection of mechanisms is made for several reasons: (1) all of these
mechanisms are exceedingly simple, (2) these mechanisms are designed to detect
false positions in some sense, but as our analysis will show, different mechanisms
detect different attacks, (3) the mechanisms rely on different data elements in
the packet. Especially the simplicity is important for this discussion, since this
allows us to not only compare the mechanism performance dependent on their
respective thresholds, but also showcase how our metrics and dataset enable a
useful and detailed analysis of mechanism behavior. We also focus on position
verification as a specific application, in order to focus on a specific set of attacks,
as discussed previously. Finally, these are the mechanisms for which the source
code is available, unlike other mechanisms we have found in the literature –
re-implementing mechanisms can be challenging, as often the implementation
details are missing due to space limitations, and the code is not publicly available.

Table 3. Detector parameters, chosen based on earlier work.

Detector Parameter Values

ART Est. reception range (m) 100, 200, 300, 400, 450, 500, 550, 600, 700, 800

SAW Max. appearance distance (m) 25, 100, 200

SSC Max. speed deviation (m/s) 2.5, 5, 7.5, 10, 15, 20, 25

DMV Min. distance (m) 1, 5, 10, 15, 20, 25
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4.1 Results: Detection Performance

Here we show the analysis results of our misbehavior detection framework, Maat,
executing the detectors described above with different parameters, as listed in
Table 3. Maat, which is currently in development within our institute, uses a
graph representation to represent the data received by a vehicle, and is able to
execute multiple detectors with multiple thresholds in parallel. In this paper,
we focus on the outcomes of individual detection mechanisms: for a real-world
deployment of Maat, this evaluation process is the first step. These results can
be used to configure initial thresholds for each detector. For brevity, we focus on
high and low density scenarios with high amounts of attackers (30%), as these
provide the most notable output; we publish the entire set of figures and the
underlying data as additional material4. The 10% and 20% attacker cases show
comparable result for each set of graphs in Fig. 4; similarly, the medium density
is comparable to the high density (as the application behavior is quite similar,
as illustrated by Fig. 3).

As our dataset contains five simulation runs per behavior/attacker parameter
set, each point in the graphs represents the mean of five runs, aggregated over
vehicles as described previously. The error bars in these graphs show the sample
standard deviation associated with this mean. The colors show the different
detectors, also listed in the legend on the bottom; for black-and-white readers,
we point out that the extremes of the threshold values (indicated with arrows at
the extreme ends of each plot) are unique. Finally, note that the lines in these
graphs are for illustrative purposes only – as previously discussed, interpolation
between these points is a non-linear task [4].

4.2 Discussion: Detection Performance

In Fig. 4, the different attackers are listed from top to bottom as specified in
Table 2. Overall, as one might expect, the type of attack is an important distin-
guishing factor in the effectiveness of the detection process (i.e., easily detected
attacks generally have higher recall). One can observe immediately that the
results for the different detectors vary greatly per attack, regardless of density.
However, some detectors’ performance is dependent on the density of the traffic
(DMV is notable here). It can also be seen that the SAW has very poor perfor-
mance for all attacks except for 16 – this corresponds to expectations from the
detector design. We now focus on a brief discussion of each individual attacker.

For the first attacker, which falsifies position, the results show that in low
density settings, all detectors except SSC very accurately detect the attack. A
similar trend can be observed in the high density scenario; however, note that
the ART performs slightly worse at very high thresholds (greater than 500);
this conforms with results from an earlier study [19] (with different data and
a different implementation). With regards to the SSC, which verifies whether
the claimed speed in the current beacon corresponds to the distance moved

4 https://github.com/vs-uulm/securecomm2018-misbehavior-evaluation.

https://github.com/vs-uulm/securecomm2018-misbehavior-evaluation
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Fig. 4. Precision-recall graphs for low densities (left) and high densities (right).
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between two beacons. However, note that this is not necessarily correlated with
an attack: it occurs naturally in the application behavior that vehicles’ speed
deviates significantly from the movement, for example when breaking for traffic
lights. Since no interpolation is performed by the SSC based on other information
(such as sensor measurements) and the beacon frequency is relatively low, this
mechanisms’ performance is overall quite poor. Note that vehicles do drive by
the position claimed by the attacker (i.e., the attack position is within the scope
of the simulation).

The second attacker, type 2, adds a fixed vector to its’ position; this attack
is harder to detect for most mechanisms, and this can be observed by the poor
performance in all cases. The very large standard deviation in the low density
case (left) suggests that the success is very dependent on the relative position
of the vehicles; especially for ART, this is exactly what one would expect. This
is confirmed by the greatly reduced deviation observed in increased densities.
Since the attacker adds exactly the same value to each beacon, it is expected
that the DMV does not perform at all: indeed, this effect can be observed very
well in the high density graph (precision remains constant at 0.3, the attacker
fraction, for all thresholds). A very similar behavior is shown by the SSC; again,
this is expected, since the relative position claimed by the attacker is the same
as the ground truth.

Attacker type 4, which transmits a random position from the simulation area
(essentially corresponding to a broken GPS), is never detected by the DMV (since
the probability that two positions near the same area are chosen is very close to
zero). The ART and the SSC have no problems with this attacker, which is quite
easy to detect. It can, however, be observed that low ART thresholds result in a
low precision. Note that in this case, the randomness introduced into the attack
results in a poorer performance; this attacker fits more to faulty behavior than
to an attack (which is commonly also classified as misbehavior [20]).

The next attacker, attacker type 8, shows remarkably similar behavior to
attacker 2 for the mechanism (again, confirming previous results [19]). However,
due to the randomness in this attacker, the attacker is somewhat harder to
detect for the ART than before, and cannot be detected at all by the DMV. The
SSC, on the other hand, appears to be surprisingly suitable for this attack. This
information suggests fusion may be a suitable option to investigate in future
work.

Finally, our last attacker (attacker type 16) is different from the previously
discussed attacks, in that it changes the vehicles’ messages in a pattern over
time (as opposed to manipulation of individual messages independently, as done
previously). This is noticeable in the very different detection behavior, in par-
ticular of the DMV, since the attacker is essentially converging to a situation
where they do not move at all (which the DMV easily detects). However, ART
and SSC behavior is comparable to attackers 8 and 1 – as expected: the attack
could be seen as a transition from attacker 8 to attacker 1 over some time.

In summary, we can conclude that the ART with a high threshold works
well against attackers that transmit erroneous positions (attackers 1 and 4), but
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has significant difficulties with those that are designed to confuse applications
(attackers 2, 8 and 16). Against these malicious cases, the SSC works surprisingly
well with lower thresholds, but it is subject to very poor performance against
attacker 2. The DMV mechanism works best in dense traffic against attacker
16, and it also does well against attacker 1, but overall its’ performance is very
poor: this mechanism is clearly only suitable to identify very specific attacks. We
also note that the SAW does not outperform any mechanism in any scenario;
a future study that includes ghost vehicles (similar to for example, [11]) could
show some benefit, but the extremely low precision will require some effort to
make this scheme deployable. Finally, note that ART and SSC appear to out-
perform each other depending on the scenario (and the configured threshold):
these are mechanisms we will focus on for our examination of the dispersion.

4.3 Results: Dispersion of Errors

Now that we have reviewed the detection performance in terms of precision-
recall (PR), we examine our new metric based on the Gini index to study how
to improve detection performance. Preliminary analysis has shown that the Gini
index is not meaningful for small sample sizes as in our low density results,
since the population is too small to make meaningful statements (because the
sample standard deviation is very large for these results). The data and graphs
are available for future analysis, but we caution against drawing conclusions
from these for this reason. We therefore focus on a discussion of the high density
scenario, which contains enough vehicles to allow for a meaningful analysis of
the distribution of error rates. The results are shown in Fig. 5; as before, each
point is the mean of five runs, and the sample standard deviation is indicated.
Recall that in our setup, a Gini index closer zero means that the distribution of
false positive/negative rates over the vehicles is closer to being equal, without
making statements about the actual value.

4.4 Discussion: Dispersion of Errors

In this assessment, the Gini index for false positives rates is the same for every
attacker: we first discuss the false negative dispersion per attacker. This dis-
persion gives us information about how different the detection performance is
depending on the relative position of the attacker and the benign receiver.

For the ART, we observe that the dispersion of false negatives with regards
to attacker 1 is very high: this can be explained by the fact that vehicles near
the claimed constant false position will not be able to detect it with this mecha-
nism. A similar effect can be observed for attacker 4, while for the other attacks,
the dispersion only increases when the threshold is very low. This reflects the
increasing recall discussed in the previous section, but remember that the pre-
cision also decreases significantly here. The SSC has a very low dispersion of
errors for attacker 2, but unfortunately this is also the attacker against which
its’ precision is very low. Against attacker 8, the SSC outperforms the ART; the
dispersion of errors suggests that this could be a localized effect, meaning that
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Fig. 5. Gini indices of FPR and FNR for different attackers

a combination of these mechanisms is likely to be feasible. For the mechanisms
that perform very poorly against certain attackers (SAW and DMV), the Gini
index shows that their poor performance is not easily fixed: the error dispersion
is very close to zero in most cases. The exception is the DMV with regards to
attackers 2 and 16: some performance improvement may be achievable by mak-
ing changes to this detector. Finally, note that for attacker 1, the recall of the
DMV is very high, while the Gini index for the false negative rate is very close
to zero.

One can observe that the dispersion of false positives for the ART show that
for higher thresholds, the amount of false positives is significantly skewed over
the population; this reflects the intuition that receiving a message from up to
700 meters away is unlikely but not impossible; however, for a threshold of 800,
the dispersion is zero. For the SSC, we observe that the threshold is much less
relevant to the observed dispersion; this suggests that the mechanism would need
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to be changed more fundamentally to flatten the dispersion. A notable case is
the DMV: this mechanism has a very high Gini index, and thus is an excellent
candidate for fusion with other sources. In this particular setup, where detector
assess the reliability of each message from the same source in isolation from other
sources, an attack cannot lead to more false positives. Another class of attacks,
where an attacker aims to convince a benign vehicle of a false perception of the
traffic scenario (e.g., claiming a traffic jam where there is none, by convincing
the target that the average speed is much lower than it actually is), this is not
necessarily the case. Future work could use our metric to assess the real impact of
this type of attack, as well as the use of this attack for data-driven bad mouthing
attacks : causing a benign vehicle to incorrectly classify another benign vehicle
as malicious by convincing it of a false aggregate.

5 Conclusion

In this paper, we have introduced a new dataset for misbehavior detection in
vehicular networks, called VeReMi. The purpose of this extensible, publicly avail-
able dataset is to provide a basis on which researchers can compare detection
results in a wide set of traffic behaviors and attacker implementations. We have
additionally shown the application of this dataset to two existing, well-studied
detection mechanisms (the acceptance range threshold and the sudden appear-
ance warning), as well as two simple new detectors (simple speed check and
distance moved verifier). We have also provided a detailed discussion on why
precision-recall is the preferred method of comparison, as well as a new metric
that enables the user to determine which detectors can potentially be improved.
Using a combination of these metrics allows developers to have a more holistic
view of a detector’s assessment, which is information that can also be used in
many fusion frameworks. In our continuing work, we will use these metrics and
this dataset as a basis to assess other commonly employed mechanisms, such
as fusion between mechanisms and trust establishment. This dataset will enable
other researchers to compete with our detectors.

For future work, we see several directions beyond these detection performance
improvements; one of these is to assess the feasibility of machine learning tech-
niques for misbehavior detection. The dataset can be used to either learn the
attacker behavior (enabling high-quality detection of specific attacker patterns)
or the benign behavior (enabling the detection of deviations from this behavior).
We expect that this direction is a feasible way to generate detector designs for
specific scenarios that will also occur in the real world. However, we caution
against using this data (or even our simulation code) as the sole foundation
for the evaluation of such machine-learned models. Different real-world condi-
tions (something as simple as a different speed limit on all roads) can impact
the performance of such a learned model in a way that is not detectable without
generating independent simulation results, or through the use of real-world data.

Future work should more closely investigate the available metrics from a secu-
rity perspective. Although PR graphs are considered advantageous over most
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other options, they clearly do not give a complete picture of detector perfor-
mance. The challenge in detection of malicious activity is that the difference
between modeled behavior and observed behavior for both the attackers and the
benign actors is fundamentally unknowable in advance of an attack. For exam-
ple, benign actors will likely transmit messages with significant GPS errors in
areas where urban valleys exist, and attackers may develop new methods or tune
their parameters to avoid detection. Thus, although we feel that a dataset can
function as a solid baseline for the behavior of different detection mechanisms,
it is important to remark that such a dataset will always have the inherent lim-
itation that the overall attacker prevalence is not generalizable. This is what
makes misbehavior and anomaly detection distinct from a simple classification
task (such as medical diagnostics), for which the prevalence can be estimated –
dedicated metrics for misbehavior detection is likely the way forward.
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Abstract. The recent surge in the usage of smart wearables for health
monitoring highlights securing the communication among a group of per-
sonal devices using group secret keys (GSK). Simultaneous GSK gener-
ation on multiple wearables is very challenging as finding a common
feature among the devices that has good entropy is difficult. In this
paper, we present two novel GSK protocols – FEAT-GSK and FEST-
GSK, employing the unique gait characteristics of a person and fuzzy
extractors. FEST-GSK eliminates the reconciliation and privacy ampli-
fication stages as it employs error correcting code and strong extractor.
We implement our protocols on android devices and conduct various
experiments. Our results demonstrate that the gait features extracted
on user’s devices show highest correlation (Pearson-correlation-coefficient
>0.9), and guarantees matching group key generation e.g., 256-bit key in
less than 4 s, whereas, the adversaries show as low as 20% key agreement
with respect to the user.

Keywords: Group secret key generation · Fuzzy extractor
Secure sketch · Gait analysis · Accelerometer sensor

1 Introduction

The tremendous technological advancements in smart wearables and related
domains have resulted in their increased usage in our day-to-day life. The built-in
sensors and applications can perform impressive loads of tasks, like tracking our
footsteps, monitoring health and other activities [4]. These smart wearables com-
municate with each other and transmit the sensitive health information usually
through a wireless medium e.g., Bluetooth Low Energy (BLE) [1]. The wireless
medium employed poses many serious security concerns like passive eavesdrop-
ping and data tampering/modification, etc. A recent demonstration of sniffing
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attack [9] shows that the information like password, location, and attributes
related to our health data can be leaked, which could lead to major security
breach. For instance, a user’s smart-phone uses Bluetooth to communicate with
other wearables and also connects to the cloud-based services via internet to
enable remote health monitoring, then, compromising a single wearable device
can lead the attacker to gain access to a chain of devices and abundant useful
information. Hence, robust and secure communication is essential among the
wearable devices when they are communicating either in (i) peer-to-peer man-
ner, or (ii) when a single device intends to communicate with all the body-worn
devices of a subject [5]. Pair-wise encryption using the symmetric keys estab-
lished between two devices, and the group secret keys (GSK) shared among a
set of devices can achieve the confidentiality of the sensitive data.

Secure group communication is essential in many body area network-based
applications [2,30], e.g., a base station may be required to securely update the
software of all the devices simultaneously, or to transmit a broadcast message.
The common methods employed for distributing the group keys are – manually
loading the key to all the devices, or, manually loading a key to one of the devices,
e.g., base station, which later distributes the key to other devices using the pre-
distributed symmetric keys of individual devices. For security applications, the
secret keys must not be utilized for a longer time as they can be compromised,
and hence, the keys must be renewed periodically [5,30]. Every time a group
key is renewed or regenerated, the above mentioned manual methods require
human intervention to store a new key, and N -number of communications are
required for a base-station, N being the number of devices in a group. Hence,
these methods are inefficient and cumbersome for a user. Ideally, the group secret
key generation process must be automatic and unobtrusive, requiring very little
or no human intervention.

Recent works have primarily focused on secret key generation between two
wearable devices by employing biometrics like ECG [34], physical layer char-
acteristics like received signal strength [19,20,28,29,31], link quality indicator
(LQI) [22], and accelerometer sensor data on smart devices [36]. The most chal-
lenging part of secure group key generation is to identify and extract a com-
mon feature or characteristic among multiple devices. In addition, the features
must possess enough randomness to ensure that the generated secret keys will
have high entropy. A recent work [30] proposes a secure group key distribution
scheme for smart wearable devices employing information-theoretically secure
fuzzy vault technique. However, less attention has been paid to simultaneous
group secret key generation for multiple smart wearables in the literature.

To address the above challenges and to meet the security requirements, in this
paper, we propose two novel protocols to achieve simultaneous group secret key
generation by a group of smart wearable devices using the unique gait character-
istics of a person, i.e., walking style, extracted from the accelerometer sensor data
recorded from the devices, and two cryptographic primitives: fuzzy extractors
and secure sketch. A fuzzy extractor extracts nearly uniform randomness from
its input and is error tolerant. It reproduces the randomness provided the input
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does not differ drastically with the original value. A secure sketch can recover
its original input given another input value that is close to the original one.
Hence, our fuzzy extractor, secure sketch and gait-based schemes can produce
matching group secret keys on all the smart wearables of a subject. Following
are our specific contributions:

1. We propose two novel group secret key generation schemes for smart wear-
ables, (i) a Fuzzy Extractor And gaiT-based GSK (FEAT-GSK) protocol, and
(ii) a Fuzzy Extractor, Secure sketch and gaiT-based GSK (FEST-GSK) pro-
tocol. Our FEST-GSK scheme employs hamming code and strong extractor
SHA-256, and thus, eliminates the reconciliation and privacy amplification
stages involved in traditional key generation schemes.

2. We implement our protocols on multiple off-the-shelf smart wearable devices
and demonstrate experimentally that the proposed solutions are suitable for
practical applications.

3. We conduct numerous experiments in various environments with multiple
subjects, and the results reveal that, FEAT-GSK and FEST-GSK schemes
achieve matching group secret key generation on all smart wearables of a
user. The two protocols generate 256-bit secret keys with highest entropy i.e.,
>0.95 bits in just 3.72 and 1.81 s, respectively.

4. Our security analysis shows that, the correlation between the gait character-
istics extracted on passive and active adversaries with respect to the same on
legitimate devices of a user, will be minimal and hence the adversary cannot
reproduce the same group secret key as the legitimate devices.

To the best of our knowledge, our work is the first to propose simultaneous
group secret key generation schemes for multiple smart wearables using infor-
mation theoretically secure fuzzy extractors and unique gait features of a user.

The rest of this paper is organized as follows: The preliminaries are presented
in Sect. 2. Section 3 provides the details of our system and threat model. Section 4
presents the protocol designs. The evaluation of our protocol and security analy-
ses are discussed in Sects. 5 and 6, respectively. Section 7 presents the literature
review, and Sect. 8 concludes the paper.

2 Preliminaries

In this section, we present the preliminaries employed in our proposed protocol.

2.1 Secure Sketch and Fuzzy Extractor

Assume M be a metric space with a distance function dis, and threshold t.

Secure Sketch: A secure sketch (M, t) is a pair of randomized procedures,
secure sketch SS and recovery Rec, with the following properties [14]:

– The secure sketch SS procedure takes an input w ∈ M and returns an output
string s ∈ {0, 1}*.
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Fig. 1. Secure sketch and fuzzy extractor.

– The recovery procedure Rec takes input w′ ∈ M and the bit string s ∈ {0,
1}* to produce w, i.e., Rec(w′, SS(w)) = w, if dis(w,w′) ≤ t. This defines
the correctness property of secure sketch. If dis(w,w′) > t, then secure sketch
algorithm does not ensure to produce the output w.

A secure sketch reproduces the precise input as shown in Fig. 1a and is secure,
which implies that w is secure and no information is revealed about w, though
s is made public.

Fuzzy Extractor: We employ fuzzy extractor [14] in our protocols as it is error
tolerant and information theoretically secure [13]. It consists of two procedures,
generator Gen and reproduce Rep, as shown in Fig. 1b.

– The Gen procedure takes an input w εM, and produces an output K ε {0, 1}l
that is uniformly random and a helper string H .

– If the input is changed to w ′ such that the distance between w and w′ i.e.,
dis(w ,w ′) ≤ t , then K can be reproduced with the help of H by another
procedure Rep.

The helper data H does not reveal any information about K , even if it is
made public.

Fuzzy Extractor from Secure Sketch: Secure sketch can be also employed
to construct fuzzy extractor [14]. Assume (SS, Rec) is a secure sketch and let
Ext be a strong extractor, then the fuzzy extractor can be defined as follows:

– Gen(w, r, x): set H = (SS(r;w), x), K = Ext(w;x) and output K.
– Rep(w′,H) : Rec(w′, s) = w, and output K = Ext(w;x).

Figure 1c shows the constructs. In the first block, SS is applied to w and random
string r to obtain s, and K is calculated by applying Ext to w and random string
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x. Here H(s, x) forms the helper data. To reproduce K, first w is recovered from
w′ and H(s, x) using Rec(w′, s), then the Ext(w, x) is applied to obtain K.

2.2 Processing Accelerometer Sensor Data

Independent component analysis (ICA) [18] is a signal processing technique to
separate a multivariate signal into non-Gaussian and statistically independent
subcomponents. The motivation for this approach is a cocktail party problem.
Assume that there are two persons in a room speaking simultaneously, and two
microphones kept at different distances from them are recording their speech
denoted by r1(τ) and r2(τ), where r1 and r2 are the amplitudes of the signals
and τ is the time index. The recorded signals are the cumulative addition of
the signals from the two persons denoted as s1(τ) and s2(τ). In terms of linear
equations, the recorded signals can be represented as:

r1(τ) = s1d11 + s2d12; r2(τ) = s1d21 + s2d22 (1)

where d11, d12, d21 and d22 are the parameters related to the distances between
the persons and microphones. Using the recorded signals, it is possible to separate
the individual subcomponents i.e., s1 and s2 effectively by using ICA.

3 System and Threat Model

Figure 2a shows our system model. We consider four smart wearables viz., a
smart-phone on the waist, which we denote as Hub, and three other devices – a
smart-watch, a smart-glass and another smart-phone placed on the chest. Each
smart device is associated with a unique device identifier id. The devices commu-
nicate with each other through Bluetooth. For the threat model, we consider two
types of adversaries – passive and active. Both the adversaries wear similar type
of devices as the legitimate user. The active adversary follows the walking style
of the subject so that he/she can extract similar gait characteristics, and try to
generate the secret key. The passive adversary walks as per his/her own style
and does not try to mimic the legitimate subject, and captures the sensor data
to generate secret key similar to user. The adversary can eavesdrop and try to
analyse the content of the message, and can also modify the packets exchanged
between the legitimate devices. We assume that all the on-body devices of user
are legitimate, and we do not consider jamming attack by the adversary.

4 Protocol Design

In this section, we present our two protocol designs, FEAT-GSK and FEST-GSK.
We first describe the procedure to extract gait features from the accelerometer
data that is common to both the protocols, and subsequently present the proto-
cols in detail.
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4.1 Gait Feature Extraction

Accelerometer sensors are ubiquitous and can be found on every smart wearable.
We extract the unique gait feature from accelerometer sensor data as follows:
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Fig. 2. System model and stages of processing accelerometer sensor data.

1. Initiating the process: The Hub initiates the process of secret key generation.
The Hub broadcasts a message init = {idHub||nHub||fs||ds||S CAPT} to all
the smart wearables while the subject is walking at a normal speed. Here,
the identifier of the Hub idHub = 1, nHub is the nonce, and S CAPT is the
message identifier. The init also includes details like sampling frequency fs
and duration to capture the data ds. All body-worn devices including Hub
start recording the accelerometer sensor data for specified time duration upon
receiving this message.

2. Processing the sensor data: The accelerometer sensor measures acceleration
along three axes X, Y , and Z relative to the sensor’s placement/orientation.
Since the orientation of sensor on each device varies, and the placement of each
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on-body device is different, the resulting acceleration measured on body-worn
devices while the subject is walking, will be highly random and uncorrelated.
Thus, the raw acceleration measured along different axes X, Y , and Z on each
smart wearable does not provide any useful information. Hence, we process
the sensor data to extract the acceleration due to gait only, on each wearable
device, which consists of two procedures – (i) separating the sources, and (ii)
synchronizing the data.
i. Separating the sources: We convert the acceleration measured along X,

Y , and Z coordinate axes called as device coordinate system, to another
generic system, a world coordinate system, i.e., components along North,
East and -G (vertical direction) [36]. The sensor data measured on each
device comprises of the acceleration due to individual body-parts and also
the gait. The major component of the signal measured for the devices
worn on head, chest and waist, will be the one originated due to gait.
On the other hand, if we consider the smart wearable on the wrist, the
measured signal consists of components due to gait as well as arm move-
ments. Thus, in order to extract the component due to gait only, we apply
source separation technique, ICA [18]. Figure 2b shows acceleration along
-G extracted on smart-phone, raw acceleration on smart-watch, and the
acceleration along -G on smart-watch after applying ICA, in one of our
experiments.

ii. Synchronizing the data: Proper synchronization of the sensor data is very
essential to ensure successful group secret key generation on all smart
wearables. The intuition is that, when a person is walking, the accel-
eration measured by all the devices will be highest at the ‘heel strike’
event [30]. We apply a low pass filter to sensor data (acceleration along
-G) to detect this event. We set the cut-off frequency of the filter to 3 Hz,
since the average step frequency ranges from 1.7–2.7 Hz [36]. Figure 2c
illustrates the step detection method. Figure 2d shows the synchronized
acceleration along -G extracted on multiple smart wearables of a sub-
ject. To improve the correlation, Savitzsky-Golay filtering [29] is applied
to acceleration along -G extracted on all the devices, which removes the
noise components. Once synchronization and filtering are completed, all
the smart wearables are ready for group secret key generation, using either
our FEAT-GSK or FEST-GSK scheme explained in Sects. 4.2 and 4.3
respectively.

4.2 FEAT-GSK Protocol

In this section, we present Fuzzy Extractor And gaiT-based group secret key
(FEAT-GSK) protocol. Algorithm 1 (Sect. 4.2) explains the procedure followed
by Hub and other legitimate devices simultaneously, according to the sequence of
execution. The symbols � and � in the algorithm denote over-the-air message
transmission between the Hub and other smart wearables. The unique identifiers
assigned for the devices are id = 1, 2, 3 and 4 for Hub, smart-glass, smart-phone
(chest), and smart-watch, respectively. The Hub performs Gen operation on
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Algorithm 1. FEAT-GSK

Entity: Hub
Input: idHub = 1; D ; q; nHub

Output: Group secret key K

begin

Gen:
Key K1 ← Quantize D using q;
I1 ← List of valid indexes;

Recon Hub:
if (SI(I1, Iid) < 0.7) then

Reject Iid; (Attack detected)
msg reqi←{Iid||idHub||nHub||REQ I};
Send msg reqi to Device Id = id �
goto Recon Hub:;

else
Accept Iid; (No Attack)

end if
Set I = {Ii}4i=1 ← Construct set I ;
Set Icom = {Icomδ }Δ

δ=1, where
Δ = Num. common indexes in Ii, and
(Icomδ ∈ ⋂

Ii∈I Ii) ⇔ (∀Ii ∈ I, Icomδ ∈ Ii);
K ← Final key from (K1, Icom);
Output secret key K ;
bdl key ← {Icom||idHub||nHub};
Send list Hub:
msg key ← {bdl key, MAC(K, bdl key)};
Broadcast msg key to all devices �

goto Send list Hub;

end

Entity: Other smart wearables
Input: id; D′

id; H = q; nHub

Output: Group secret key K

begin

Rep:
Key Kid ← Quantize D′

id using H ;
Iid ← List of valid indexes;
Recon Dev :
msg recon ← {id||Iid||nHub};
� Send msg recon to Hub

goto Recon Dev ;

Verify key Dev :
K′

id ← Final key from (Kid, Icom);
if (MAC(K′

id, b) �= MAC(K, b)) then
Reject Icom; (Attack detected)
msg reqi ← {id||nHub||Icom||REQ I};
� Send msg reqi to Hub;
goto Verify key Dev ;

else
Accept Icom; (No Attack)
Output key K′

id = K;
bdl match ←

{id||nHub||KEY MATCH};
msg match ←
{bdl match, MAC(K′

id, bdl match)};
� Send msg match to Hub;

end if

end

the extracted acceleration along -G (D), i.e., D is quantized using parameters
q = {W, n, α}, to generate an initial key K1 of length l′ > l, where W, n, α
are the window size, number of bits per sample, and the guard band size respec-
tively, and l is the length of the final group secret key. The parameters q are
the public helper data H. The other wearable devices perform Rep operation
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on their acceleration along -G (D′
id ∼ D) and generate an initial key Kid ≈ K1

using the public helper data H. The quantization method employed can be either
single bit (n = 1) or multi-bit quantizer [30]. Also, all the devices generate a list
of sample indexes Iid that are not discarded during quantization. At this stage,
the keys Kid ≈ K1, however, as the sensor data is captured on each device sep-
arately, this may produce some bit disagreements. This is because the indexes
discarded by different devices may be slightly different during quantization. To
correct the bit mismatches, all the devices including Hub perform reconciliation.
All the devices send their list Iid to Hub, along with their id and nonce nHub.
The Hub verifies the authenticity of the message using device id, and calcu-
lates the similarity index (SI) [30] between its own list I1 and Iid for integrity
check. If SI > 0.7, meaning at least 70% of the indexes in Iid overlap with
I1, the Iid is considered as legitimate/non-modified (no attack) and accepted.
If the SI < 0.7, the Iid is rejected suspecting an active attack/modification
by an adversary. If the lists received from all the devices are authentic, then
Hub constructs a list of common indexes Icom using all the lists I1–I4, and
generates a final key K of length l, using only the bits corresponding to ini-
tial l indexes of Icom in K1. The hub broadcasts {bdl key,MAC(K, bdl key)}
to all the devices, where bdl key = {idHub||Icom||nHub}, and MAC(·) is the
message authentication code. Upon receiving this message, all the devices gen-
erate K ′

id of length l from their respective Kid using Icom, and verify if the
MAC(K ′

id, b) matches with the received MAC(K, b). After the devices con-
firm the authenticity and integrity of the data, a confirmation message with
identifier KEY MATCH is sent to the Hub as shown in the algorithm. Once
the Hub receives confirmation from all the legitimate devices, it broadcasts
a message msg res = {bdl res,MAC(K, bdl res)} to all the devices, where
bdl res = {idHub||nHub||G KEY SUCCESS}, and G KEY SUCCESS is a
message identifier.

4.3 FEST-GSK Protocol

In this section, we present Fuzzy Extractor, Secure sketch and gaiT-based group
secret key (FEST-GSK) protocol.

Gen Construct of Hub: We design our protocol using distance metric-based
fuzzy extractors [14] and hamming code for error correction. Figures 3a and b
show our constructs Gen and Rep, used by Hub and other devices respectively,
for group secret key generation. In the Gen construct, the acceleration due to
gait (along -G) extracted on the Hub (D) is quantized in Qn block using multi-
bit quantization [30] with parameters q = {W, n, α}, to produce W and I. We
employ Hamming (7, 4)-code for error correction, and hence, we set n = 4. In
quantization, a guard band is introduced between successive quantization levels
to reduce the bit-discrepancies that may occur during quantization [30]. The
set I = {I0, I1, . . . , IN−1} consists of the indexes of the samples that are not
discarded during quantization. N is the total number of samples that are not
discarded. We use Gray coding for generating the bits, with the code equiva-
lent to decimal 0 at the lowest level and the code corresponding to 15 at the
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Fig. 3. Gen and Rep constructs of FEST-GSK protocol using hamming code for error
correction and SHA-256 strong extractor.

highest quantization level. The set W = {W0,W1, . . . ,WN−1} consists of the
4-bit strings Wi generated, corresponding to the indexes in I. The quantization
parameters q and I form a part of helper data H. We append a 3-bit string Pi

from a set of random bit strings P, to each Wi inside the block PAD to produce
7-bit strings for each Wi, i.e., w = {w0, w1, . . . , wN−1} where wi = Wi||Pi. Inside
the secure sketch block SS, the hamming encoder block HE encodes a series of
4-bit words ri taken from a set of random bit strings r = {r1, r2, . . . , rN−1} to
produce a set of coded words c = {c0, c1, . . . , cN−1} given by ci = C(ri). The
set c is combined with w to obtain s = {s0, s1, . . . , sN−1} where si = ci ⊕ wi.
Finally, a 256-bit secret key K = H(x ⊕ w) is generated in the extractor block
Ext, using a strong-extractor H(·) = SHA-256, with 128-bit w (series of wi con-
catenated) as an input and a random bit string x of 128-bit length as a key,
as shown in the Fig. 3a. The sets P, s and x form the remaining part of helper
data H. The Hub constructs a bundle bdl help = {nHub||idHub||H}, and broad-
casts a message msg help = {bdl help,MAC(K, bdl help)} to all other smart
wearables.

Generating the random bit strings P, r and x: Prior studies have shown that
for security applications, a Random Number Generator (RNG) that depends on
external events is preferred compared to Pseudo-RNGs [30,35]. Thus, we employ
accelerometer sensor as a hardware RNG in our protocol. We generate the ran-
dom strings P, r and x from the X, Y and Z components of accelerometer sensor
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data captured while the subject wearing/holding the device (Hub) is performing
routine activities. To ensure highest entropy, we follow the Root Mean Square-
based (RMS) sample selection method presented in [30] to generate the random
bit strings. Specifically, we first generate three strings RX , RY and RZ by quan-
tizing the X, Y, and Z components of accelerometer data, respectively, using
multi-bit quantization [30] with W = 50, n = 4, α = 0, and binary coding for
the quantization levels (0 - lowest, 15 - highest). After this, we interleave the bits
of above strings to get a long random bit string RXY Z . The string RXY Z shows
high entropy since it is derived from three different acceleration streams [30].
Finally, depending on N, i.e., the number of sensor recordings that are not dis-
carded during quantization, RXY Z is divided into non-overlapping sub strings
P, r and x of appropriate length, e.g., if W = 128-bit and n = 4, then length of
P = 96-bits, r = 128-bits, and x = 128-bits.

It is worth noting that, the accelerometer sensor reading consumes negligible
energy [30,36] even on resource constrained platforms used in medical appli-
cations. Thus, our method of random bit string generation does not affect the
battery life of smart-phone (Hub).

Rep Construct of Other Legitimate Devices: The other smart wearables
employ Rep function of fuzzy extractor to generate the same group secret key
as Hub, as shown in Fig. 3b. In Rep construct, we use general notations for sets,
results etc., and omit the subscript id for easier understanding, though multiple
devices execute this procedure separately and may have different parameter val-
ues e.g., the notation W ′′ is equivalent to W ′′

id. The first block in Rep function
is Qn, where the acceleration due to gait (along -G), i.e., D′ is quantized using
multi-bit quantization [30] with parameters q = {n, α} extracted from helper
data H. Similar to Hub, Gray coding is used for the quantization levels, and
the set of 4-bit strings W ′′ = {W ′′

0 ,W ′′
1 , . . . ,W ′′

N ′−1} and a set of non-discarded
indexes I ′ = {I ′

0, I
′
1, . . . , I

′
N ′−1} are generated. N ′ is the number of samples that

are not discarded during quantization by the smart device.
The Hub and other smart wearables capture the sensor data individually,

hence, there may be slight differences in the values recorded, and may result in
bit errors during quantization. Figure 4a illustrates the quantization error due
to difference in sample values. Thus, sample set correction is performed in Rep
function to remove the errors. The block Set Correction takes inputs W ′′ and
I ′ from Qn, and I from helper data H, and outputs a corrected sample set W ′

that contains same indexes used by Hub. During correction, if an ith sample
(discarded) is added to I ′, a 4-bit string W ′

i is added to set W ′ and is assigned
the same code word as W ′

(i−1).
After set correction, the next step is padding the bits. Inside the block PAD,

each W ′
i in W ′ is concatenated with a 3-bit string Pi to produce set w′ =

{w′
0, w

′
1, . . . , w

′
N}, where w′

i = W ′
i ||Pi. Once w′ is obtained, inside the block Rec,

set c′ = {c′
0, c

′
1, . . . , c

′
N} is computed using s from helper data H as c′

i = w′
i ⊕ si.

After this step, each c′
i is decoded inside HD block to get set c = {c0, c1, . . . , cN}.

The corrected set w is obtained using c and s as wi = ci ⊕ si. Figure 4b shows
the bit correction method using hamming code. Finally, Ext computes the key
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K ′ = H(x ⊕ w), where H(·) = SHA-256 is a strong extractor, and w, x are
the parameters obtained from helper data H. After final key generation, all the
devices including Hub verify the key agreement using MAC values, by following
a procedure similar to FEAT-GSK protocol in Sect. 4.2.

The improved protocol FEST-GSK eliminates the two expensive steps of
traditional key generation; (i) reconciliation, and (ii) privacy amplification, as
our constructs employ error correcting codes and strong extractors. Hence, our
scheme is suitable for IoT applications.

Fig. 4. Illustration of error correction.

5 Evaluation and Results

In this section, we describe our protocol implementations, evaluation and results.
We have implemented the two protocols FEAT-GSK and FEST-GSK as appli-
cations that can run on Android-based smart-phone [6], smart-watch [7], and
smart-glass [8]. For extracting the acceleration due to gait on smart-watch, we
have employed FastICA [3] library. All the experiments were repeated for differ-
ent environments, like small room, large office area, corridor, and cafeteria.

The experiments were conducted with 14 volunteers having equal number of
male and female participants1. We categorized the experiments into two sets –
one to evaluate our group secret key generation protocol on all the legitimate
devices of the subject, and another, for security analysis. In both the sets, each
experiment was conducted for 8–10 min with sampling frequency of sensor data
set to 100 Hz, and repeated for 5 rounds. We collected the datasets while each
subject was performing the assigned task in each experiment.

In the first set of experiments, each subject walked normally, following his/her
usual style, and the datasets were captured. The average walking speed of each
subject in these experiments was ≈1 m/s. For the security evaluation, we parti-
tioned 14 subjects into 7 pairs. We again sub-divided the experiment into two
1 The ethical approval has been obtained from the corresponding organization.
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phases. In the first phase, one person in each group was selected as a legitimate
user, and the other as an adversary. The legitimate user was asked to walk nor-
mally and the adversary was asked to follow/imitate the user’s walking style at
the same time. In the second phase, same tests were repeated by swapping the
roles of legitimate user and adversary in each pair.

5.1 Evaluation of FEAT-GSK Protocol

For the protocol evaluation, we employ window-based one-bit quantization [30],
and fix the parameters W = 50, n = 1, and α = 0.5. The Hub generates a key
K1 and all the other legitimate devices generate keys Kid, by applying Gen and
Rep functions to their own acceleration along -G i.e., D and D′

id, respectively.
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Fig. 5. Pair-wise bit disagreement for the initial keys generated by legitimate devices
using FEAT-GSK protocol (before reconciliation).

To analyse the performance, we consider the dataset captured from each sub-
ject in the first set of experiments. We calculate the percentage bit-disagreement
between the initial keys generated by all four legitimate devices of subject prior to
reconciliation. We obtain a total of 6 pair-wise comparisons for the four devices,
viz., 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4, where the numbers denote device id. As seen
in Fig. 5, the pair-wise bit disagreement for the initial keys generated by the
legitimate devices was 19–40%. Our results show that the bit rate for generating
initial keys was 69–82 bps. After employing reconciliation, the final keys gener-
ated by all legitimate devices were observed to match each other, confirming
successful group key generation. To evaluate the randomness of the generated
final group secret keys, we calculate the Shannon entropy. Our results show that
the average entropy of the keys was 0.97–0.99 bits (1 is the maximum value
for the entropy of binary strings), which shows that the keys generated by our
protocol can be used for practical applications. The keys generated also pass the
NIST [27] entropy test.
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Fig. 6. Hamming distances between w and w′ and SHA-256 keys generated by legit-
imate devices, and passive/active adversaries (w.r.t. legitimate devices) using FEST-
GSK protocol.

5.2 Evaluation of FEST-GSK Protocol

In the improved protocol FEST-GSK, since our constructs for fuzzy extractors
are based on hamming code, for each key generation session, we calculate the
hamming distance between the sets w and w′ generated by Hub and other smart
wearables respectively, to observe the error pattern among the devices. For quan-
tization, we set W = 50, n = 4, and α = 0.25. The columns of resulting hamming
distance matrix denote the pair-wise hamming distance between w and w′ of the
four smart wearables. Figure 6a shows the hamming distance calculated for w
and w′ of legitimate devices (User) for different datasets captured in our exper-
iments. It can be observed that, the hamming distance varies between ≈8–23,
that lies well within the maximum number of errors that can be corrected by
the hamming code [14] in our setting.

Each legitimate smart wearable (of a subject) should generate matching
secret key K ′ similar to Hub (K ), in order to use K as a common group secret
key. To analyse the number of bits that match in the keys generated by Hub and
other smart wearables, we quantify this in terms of hamming distance between
the keys K and K ′. Figure 6b shows the pair-wise hamming distance calculated
between K and K ′ for different datasets of all legitimate devices as 0. This is due
to error correction codes used in our constructs, that eliminate any bit errors
between w and w′, and hence, the final secret key generated by the legitimate
devices using strong extractor and random bit-string x will be the same. Our
experimental results show that the bit rate for generating w/w′ is ≈71 bps. Thus,
our improved scheme FEST-GSK takes ≈1.81 s to generate a 128-bit w/w′ which
in-turn generates a strong final key of 256-bits. Figure 7 shows that the entropy
of keys generated by legitimate devices is >0.975 bits, indicating very high ran-
domness. Also, the generated group keys pass the NIST [27] entropy test which
shows that the proposed scheme generates keys with high randomness.
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Fig. 7. The group secret keys of legitimate devices show entropy >0.975 bits.
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Fig. 8. Pearson correlation coefficient of acceleration on user and adversaries.

6 Security Analysis

In this section, we present the security analysis of our protocols. We basically
consider two types of adversaries – passive and active adversaries as described in
Sect. 3. In the following sub-sections, we evaluate the correlation of gait charac-
teristics extracted on the smart wearables of user and passive/active adversaries,
and measure the bit agreement of the keys and hamming distance for the w and
w′ generated by different entities.

6.1 Correlation of Gait Characteristics

An important point to ensure successful group secret key generation only by
the legitimate smart wearables of a subject is that the processed sensor data
on all the devices must be highly correlated [30,36]. To quantify the amount of
correlation among the extracted gait characteristics, i.e., acceleration along -G
on smart wearable of a user and that of an adversary, we calculate the Pearson
Correlation Coefficient (P) [29] for (i) Hub of user with other smart wearables
of same user, and (ii) all legitimate devices of subject with all smart wearables



Fuzzy Extractor and Gait-Based Robust GSK for Smart Wearables 353

1 2 3 4 5 6 7 8 9 10111213
Adversary id

0

20

40

60

80

100
Bi

t d
is

ag
re

em
en

t (
%

)

(a) Passive adversary

1 2 3 4 5 6 7 8 9 10111213
Adversary id

0

20

40

60

80

100

Bi
t d

is
ag

re
em

en
t (

%
)

(b) Active adversary

Fig. 9. Bit disagreement between the final keys generated by adversaries and legitimate
devices.

of (a) passive adversary AdvP, and (b) active adversary AdvA. The coefficient P
measured for two sets provides a value in the range −1 to 1, with 1 indicating
perfect or highest correlation, 0 no correlation, and −1 anti correlation. Figure 8
shows the mean (μ) and standard deviation (σ) of P calculated for the above
three cases, from different datasets captured. It can be observed that, P for
legitimate devices is very high i.e., >0.9 (μ = 0.9545, σ = 0.0287), whereas, P
for passive adversary is ≈0 (μ = −0.0080, σ = 0.0423), showing no-correlation,
since the passive adversary’s sensor data will be totally different from that of the
legitimate user. The coefficient P for active adversary is in the positive range,
slightly more than 0 (μ = 0.0700, σ = 0.0963), which shows that the sensor data
on active adversary has a small amount of correlation, however, not as high as
the legitimate devices of subject. Our observation on the correlation of user and
adversary’s gait characteristics adheres to the prior report [30]. The researchers
have analysed that gait is a very complex and unique characteristic, and hence
impersonating another user is extremely difficult [15,24,26,30]. This shows that,
only the legitimate devices of a user can extract gait features with very high
correlation, that can be used as a common source for secret key generation.

6.2 FEAT-GSK Protocol

In order to check the similarity between the bits generated by legitimate devices
and an adversary during key generation, we evaluated the datasets captured dur-
ing the second set of experiments. Figure 9 shows the bit disagreement between
the final 128-bit group secret keys generated by the legitimate devices and pas-
sive/active adversaries. We observe that the passive adversaries have bit agree-
ment of only 20–30% with respect to the legitimate devices, whereas, the active
adversary’s bit agreement is 32–45%. For enhanced security, we suggest gener-
ating 256-bit final group secret key and then truncating it to 128-bit by using
XOR operation between the first and last 128-bits.
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6.3 FEST-GSK Protocol

We calculate the hamming distance between the sets w (128-bit) of Hub of user,
and w′ generated by smart wearables of (i) passive adversary, and (ii) active
adversary, for the datasets captured in different experiments. From Fig. 6a we
can observe that the hamming distance calculated for w′ of passive adversaries
AdvP w.r.t. w of Hub of user varies from 65–97 bits. Similarly, Fig. 6a shows
that w′ of active adversaries AdvA differ with w of legitimate devices by 45–85
bits. It is clear that these exceed the maximum number of errors that can be
corrected in our setting, i.e., considering 128-bit w/w′, and 4-bits per sample
encoding [14].

As the final secret key of 256-bit length is produced by strong extractor using
w/w′ and a random bit string x, any slight mismatch between w and w′ leads
to key disagreements. Figure 6b shows the hamming distance calculated between
the group secret keys generated by Hub of user and smart wearables of (i) passive
adversaries AdvP, and (ii) active adversaries AdvA, respectively. It is evident from
the above figures that, since the adversaries fail to correct all the errors in w′,
both the passive and active adversaries cannot reproduce the same group secret
key as the legitimate smart wearables of a user despite knowing the helper data
H. To avoid brute force attack or guessing the bits of w, we recommend using
larger bit strings e.g., 256-bits for w and w′.

7 Related Work

In this section, we explain the state-of-the-art for key generation using accelerom-
eter data and gait, and fuzzy extractor and secure sketches-based applica-
tions. The accelerometer sensor present on devices has been exploited by many
researchers for authentication/pairing [17,25], key sharing [16,30] and key gen-
eration [10,36]. The basic concept of utilizing the accelerometer sensor data for
proximity detection of two devices was presented in [17] The authors in [25] have
extended the above approach for pairing two mobile devices by observing the cor-
relation pattern when shaken together in a same movement. The pairing devices
can be distinguished from other devices that have concurrent movement. These
schemes are suitable in a scenario when the two devices can be held in hand, how-
ever in the context of wearables, multiple devices are worn on different body parts
and it is infeasible to shake them together. The researchers in [16] use heuristic
trees to generate key for sensor devices. A threshold value is used to determine
the error in key bits. However, an adversary can easily predict the generated
key by brute-force attack. The researchers in [36] have proposed pair-wise secret
key generation scheme for wearable devices using the acceleration data and gait
characteristics of a person. The authors in [30] have presented a group secret key
generation and distribution protocol for wearable devices, where, the group key
is generated by a single device – hub, when the subject wearing/holding devices
is performing routine activities. This key is shared securely with all other body-
worn devices by using the gait features of the person by employing fuzzy-vault
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technique [21] when he/she is walking. In contrast, in our work a group secret
key is generated by all the wearable devices simultaneously.

Fuzzy extractors and secure sketches for biometrics-based authentication
were initially presented by Dodis et al. [14], and later employed by many
researchers for other biometrics security applications, like, face [37] and multi-
modal systems [33]. The basic concept of these works is that, the user’s biometric
data is used as a key to authenticate a person in order to access his/her records
or data stored in a server. Initially, the biometric data is converted to a uniform
string in a noise-tolerant way, and a public helper data is also produced. When-
ever the records are to be accessed, the user provides his/her biometrics to the
server. If this input is close enough to the original data, the uniform string can
be recovered with the help of helper data and the person can be considered as
legitimate. Here, the user’s biometric acts as the key and is not stored. Boyen
et al. [11] have used fuzzy extractors for remote authentication of a client to a
server, and the work in [12] extends it for mutual authentication when a secure
channel is not available. Sutcu et al. [32] have presented practical challenges in
the construction of secure sketch and also proposed secure sketch for face biomet-
rics. The authors in [23] have proposed a secure sketch scheme for asymmetric
representations of biometric data.

Our work is different from all the prior work. To the best of our knowledge,
we are the first to propose secure group secret key generation for multiple smart
wearable devices simultaneously using fuzzy extractors and unique gait features
extracted from accelerometer sensor data.

8 Conclusion and Future Work

In this paper, we have presented two novel group secret key generation schemes
for smart wearable devices – FEAT-GSK and FEST-GSK, exploiting the unique
gait characteristics of a user extracted from accelerometer sensor data and the
cryptographic primitives – fuzzy extractor and secure sketch. The FEST-GSK
scheme employs error correcting code and strong extractor, and hence, does
not require explicit reconciliation and privacy amplification stages of traditional
key generation protocols. We have implemented our solutions on android-based
smart-wearables and demonstrated experimentally that our FEAT-GSK and
FEST-GSK protocols are robust, and can generate 256-bit group secret keys
of entropy >0.95 bits in just 3.72 and 1.81 s, respectively, and hence are suitable
for practical applications. The security properties of our protocols ensure that
only the legitimate devices generate matching group secret keys, whereas the
passive and active adversaries cannot reproduce the same keys.

In our future work, we would like to consider multiple smart wearables placed
below the waist of a user, e.g., on the knees, legs, ankles, in the pockets, etc., for
the evaluation of our protocols. Extracting acceleration due to gait on wearable
devices placed on the lower body parts is challenging and needs different app-
roach [30,36]. Also, in our future work we would like to consider other attacks
like gait analysis using computer vision techniques.
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Abstract. As mobile ad hoc networks (MANETs) and similar decen-
tralized, self-organizing networks grow in number and popularity, they
become worthwhile targets for attackers. Sybil attacks are a widespread
issue for such networks and can be leveraged to increase the impact of
other attacks, allowing attackers to threaten the integrity of the whole
network. Authentication or identity management systems that prevent
users from setting up arbitrary numbers of nodes are often missing
in MANETs. As a result, attackers are able to introduce nodes with
a multitude of identities into the network, thereby controlling a sub-
stantial fraction of the system and undermining its functionality and
security. Additionally, MANETs are often partitioned and lack Internet
access. As a result, implementing conventional measures based on central
authorities is difficult. This paper fills the gap by introducing a decen-
tralized blockchain-based identity system called Unchained. Unchained
binds identities of nodes to addresses on a blockchain and economically
disincentivizes the production of spurious identities by raising the costs
of placing large numbers of Sybil identities in a network. Care is taken
to ensure that circumventing Unchained results in costs similar or higher
than following the protocol. We describe an offline verification scheme,
detail the functionalities of the concept, discuss upper- and lower-bounds
of security guarantees and evaluate Unchained based on case-studies.

Keywords: MANET · Security · Sybil attack · Blockchain
Identity · Authentication

1 Introduction

Stimulated by the persistent growth and expansion of the Internet of Things
(IoT) [21,25], as well as progressing digitalization of our daily life, e.g., [15,29],
wireless ad hoc networks such as mobile ad hoc networks (MANETs) or vehicular
ad hoc networks (VANETs) become more common and popular. MANETs and
their sub-types are often heavily partitioned, with transient connections occur-
ring between nodes due to their mobility, resulting in a constantly changing
network topology. Furthermore, communication in MANETs is usually orga-
nized in a decentralized manner without a connection to any central authority
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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or the Internet [19,28]. As a result, these networks are worthwhile and easy tar-
gets for attackers. This raises the issue of providing proper security and privacy
protection mechanisms in order defend them against attacks. Without such, the
distributed nature of MANETs and their lack of a central authentication author-
ity leaves them easy targets for Sybil attacks. This type of attack is a common
issue in large-scale peer-to-peer (P2P) systems, where hostile or faulty computing
elements threaten the security of the whole network. Single faulty entities may
be able to present multiple identities, thereby controlling a substantial fraction
of the system, consequently undermining its functionality and security [12].

Several techniques focus on preventing Sybil nodes from joining a network at
all [11,16]. Other approaches attempt to detect them when they are already part
of the network [3,30]. One of the key enablers of Sybil attacks is the absence
of a mechanism that prevents attackers from setting up arbitrary numbers of
(virtual) nodes. In MANETs, there usually is no central authority that controls
or administers the network. Since detecting Sybil nodes after joining a network
is a cumbersome and inaccurate task, we propose the Unchained protocol which
introduces economic disincentives of introducing Sybil nodes to a network by
leveraging blockchain technology and combining it with an offline verification
approach.

Unchained uses blockchain technology to bind ad hoc network node identities
to blockchain-based wallet addresses, i.e. public/private key pairs, and requires
a certain deposit to be made on the blockchain in order to join the network.
Circumventing the protocol and introducing a Sybil node means investing even
more financial assets than it would cost to create an Unchained identity the
regular way. Due to its offline verification approach, Unchained operates in envi-
ronments without internet access and without direct access to the underlying
blockchain, thereby “unchaining” its security mechanism. This allows its use in
MANETs with no or merely intermittent Internet connectivity.

The remainder of this paper is structured as follows: Sect. 2 introduces related
works and supplementary literature. Section 3 focuses on the operational details
of the Unchained approach. Afterwards, Sect. 4 details security properties of
the protocol and explains how to customize the protocol for various use cases,
while Sect. 5 elaborates on different options to handle difficulty changes in the
underlying cryptocurrency. Section 6 provides a discussion and evaluation based
on case studies. Finally, Sect. 7 concludes this work and provides an outlook on
future work.

2 Supplementary Literature and Related Works

This section provides background information and describes related works
regarding previous approaches to solve the issue of Sybil attacks. Section 2.1
provides general information on the concepts of blockchain technology, terms
and frameworks. Section 2.2 focuses on related works.
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2.1 Blockchain Technology

A blockchain consists of a (theoretically) unlimited number of blocks which are
chained together in a chronological order. Each block consists of transactions that
successfully passed a validation procedure. As illustrated in Fig. 1, the collected
valid transactions result in a new block that is added to the existing blockchain.
The blockchain concept, also called distributed ledger system, is most notably
known for providing the foundation of the peer-to-peer (P2P) cryptocurrency
and payment system Bitcoin (B) [22].

Fig. 1. Blockchain structure, adapted from [22].

A key enabler of blockchains is the so called mining process, allowing to
achieve a global consensus on which transactions to include in the next block in a
decentralized way. Currently, the most common blockchain consensus algorithm
is based on proof-of-work, which is used by Bitcoin, Ethereum [32], and others.
When collecting transactions to form a new block, participants have to solve
a computationally hard puzzle that is referred to as proof-of-work. A proof of
work is a piece of data that is difficult to produce but easy to verify and satisfies
certain requirements. Bitcoin’s proof-of-work is based on searching for a nonce
(value) that when hashed together with a block header, begins with a number
of zero bits. “The average work required is exponential in the number of zero
bits required and can be verified by executing a single hash” [22]. The varying
number of zero bits is used to adjust the difficulty of finding a valid block.
Hardware speed ups and growing user participation in building blocks result
in more computing power being available for the mining process. In order to
publish new blocks in, on average, a given time intervals, the difficulty of the
proof-of-work is adjusted depending on the available computing power. In the
case of Bitcoin, the target time per block is ten minutes. In the case that new
blocks are generated too fast, the difficulty increases, if new blocks are generated
too slowly, it is decreases.

As soon as a block with a valid nonce is found, the block is published and
attached to the chain. All participants verify the submitted proof-of-work for
correctness, the included transactions for validity and accept it as the new latest
block. Since each block depends on its predecessor, changing the content of a
block requires an infeasible recalculation of all successor blocks. The first user
to find a new block also receives a block reward. In the case of Bitcoin, this
reward is, as of December 2017, 12.5 B plus additional transaction fees. These
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block rewards have both the purpose of disseminating the currency among users,
as well as incentivizing miners to spend energy on securing the blockchain. If
multiple blocks are found at the same chain height, mining may proceed on
either block and the longer chain is considered valid.

2.2 Related Works

Several other projects focus on Sybil attack prevention and Sybil attack detec-
tion in different network environments, therefore we only highlight some further
publications. SybilGuard [35] is one of the well-known protocols that aims to
limit the corruptive influence of Sybil attacks in peer-to-peer networks. The
SybilLimit protocol is an advanced version of SybilGuard and aims to defend
online social networks from Sybil nodes [34]. SybilGuard as well as SybilLimit
rely on human-established trust relationships, hence they cannot be applied to
mobile ad hoc networks.

[3,30] focus on Sybil attack detection in MANETs, whereas [33] targets
the detection and localization of Sybil nodes in VANETs. In contrast to these
approaches, Unchained focuses on preventing sybil nodes from joining a network
instead of detecting them when they are already part of the network.

Furthermore, [11,23] try to prevent and detect Sybil attacks in sensor net-
works, whereas Unchained focuses on mobile ad hoc networks in general.

Blockchains matured and grew in popularity, resulting in various blockchain
architectures, e.g., Ethereum [32], Qtum [10], or IOTA [27], as well blockchain-
based applications and use cases, e.g., as a platform for IoT applications [9,26],
applications in the automotive sector [18], in the finance sector [8,24] or as a
part of security and authentication protocols [17,20,26].

3 Unchained Identities in MANETs

When setting up a new network, e.g., a MANET, each node is equipped with
an identity that uniquely identifies the specific device within the network.
When deployed, communicating devices have to validate each others identities
for security and privacy reasons before exchanging information. The following
section describes the general process of creating new identities when flashing
the firmware to a device as well as validating identities. Both of these processes
are based on blockchain technology and do not require any trusted third parties
apart from a decentralized cryptocurrency’s P2P network. For illustration pur-
poses, we use the Bitcoin network in the following sections. However, Unchained
can be implemented on all proof-of-work based Blockchains.

3.1 Creating a New Identity

The process of creating a new unchained identity is illustrated in Fig. 2 and
assumes that a key pair, i.e. public and private key, presenting a Bitcoin wallet
address already exists and that it holds a certain amount of Bitcoin. The amount
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contained within this address needs to be sufficient to make the deposit necessary
in the first step of the identity creation process. First, the coins in the Bitcoin
wallet are transferred to a pre-defined deposit address (step 2) and the resulting
transaction is mined into a block by the Bitcoin network as part of BlockX (step
3). In the subsequent step 4, an Identity proof is created based on the information
from the minded block. The proof contains the block header (block number,
block hash, difficulty target of the block), the deposit transaction, hashes for the
merkle tree allowing to prove that the transaction is part of the block, the index
number of the deposit address in the block as well as the public key.

Fig. 2. Creating a new identity.

Furthermore, a unique NodeID is calculated based on the Hash Message
Authentication Code (HMAC) as illustrated in Eq. 1–3. First, the block’s proof-
of-work hash is used as a key for the HMAC calculation in combination with the
index number of the deposit transaction in the block. The purpose of this app-
roach is to prevent attackers from attempting to create node IDs matching arbi-
trary attacker defined criteria. Since the ID depends on the deposit transaction,
but also on the block’s proof-of-work hash, guessing the node ID is equivalent
to predicting the correct hash of the next block of the Bitcoin blockchain and
therefore not feasible.

kHMAC := BlockPoWHash (1)

TXindex := index of deposit TX in Block (2)

nodeID := HMAC(kHMAC,TXindex) (3)

Finally, the constructed identity proof and the node’s private key are flashed
onto the node, which is afterwards deployed in the network.
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3.2 Identity Validation

Communication between nodes of a network is an essential functionality of ad hoc
network. Before transmitting application data, nodes verify each others’ identity
in a bidirectional manner in order to secure and protect sensible network data.

Fig. 3. Overview of the validation process.

The validation of node identities is performed upon first contact of each two
nodes, such as a two-way handshake or the broadcasting of identity information
to let nodes learn about their neighbors. In the following, we describe how par-
ticipating nodes verify an identity upon receipt of its identity proof. A graphical
overview of this procedure is given in Fig. 3. In the case of a two-way hand-
shake, the procedure is simply repeated on each side after receiving the identity
proof. Another potential scenario is a number of nodes broadcasting their iden-
tity proofs and verifying received identity proofs, allowing them to connect to
surrounding peers when necessary.

First, the structure of the identity proof is validated. A valid identity proof
contains a block header, a deposit transaction, the hashes of a merkle tree proving
that the transaction is part of the specific block, a node ID and the public
key of the node, which was also used to sign the deposit transaction. At this
point, it is also verified that the block’s height is above networkParameterheight

Afterwards, the block corresponding to the block header is verified based on the
hashes from the merkle tree that is used to verify the transaction’s presence in
the block. Next, the node checks that the difficulty of the block hash matches
the difficulty target in the block header and that the difficulty target is at least
networkParameterminDifficulty for the given block height.

Once these properties are confirmed, the deposit transactions is verified. It
contains a payment greater or equal to networkParameteramount, which is sent to
the mandatory receiver address networkParameterreceiver. The transaction has
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to be correctly signed with exactly one key pair that is also used for any future
cryptographically secure (encryption, signatures, key exchange) communications
with other nodes and the public key that is included in the identity proof. Finally,
it is verified that the node ID matches the formula given in Eq. 3.

If all steps described above are successful, the validation process finishes
and the participating nodes may start communicating. Otherwise the received
identity proof is discarded and no further communication is initiated.

4 Parameter Choice

In Sect. 4.1 we discuss various network parameters that allow adjusting the
behavior of Unchained to suit different use cases. In addition, security prop-
erties and considerations are detailed. Section 4.2 focuses on pricing an identity.

4.1 Network Parameters

First, we describe the network parameters that allow the customization of
Unchained to suit different use cases.

Starting Block Height. The parameter networkParameterheight defines the
minimum block height that is accepted for identity proofs. The block height is
defined by the number of blocks preceding a block on the blockchain. The genesis
block’s block height is zero [4]. The block height corresponds to the block height
at the start of the network’s lifetime. By rejecting identity proofs at lower block
heights, there is no need to consider allowing blocks with significantly lower
difficulties.

Deposit Address. networkParameterreceiver is the deposit address to which a
transaction, used when creating an identity proof, sends a certain amount of
Bitcoin. The main property of this address is that funds sent there should not
be recoverable by an attacker that is trying to create a large number of identities.
Hence, using transaction fees instead of a deposit is not a viable option since
an attacker may mine a valid block on their own and directly recover all funds.
Currently, Unchained provides three different options that define what happens
to the deposit.

The first option is proof-of-burn [7], where an invalid receiving address with
no (known) existing private key is used. As a result, the sent deposit cannot
be recovered. This method is secure, but not elegant since it destroys a certain
amount of Bitcoin and the Bitcoin supply is strictly limited by the underlying
Bitcoin protocol.

The second option is that the software of the network secured with Unchained
is developed by a certain entity, or the network is maintained or controlled by a
certain entity. The entity may choose to use an address under its control as the
receiving address. This way, the developers or maintainers of the network could
raise funds for further development by receiving Bitcoin through the creation
of identities used by users of the network. As the developers have an interest
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in keeping the network secure, this approach is a viable choice that prevents
attackers from recovering funds.

A third approach is to use the donation address of a charity. Unless the charity
itself has an interest in attacking the network or is otherwise compromised, an
attacker is unlikely to be able to recover the funds. If desired by a network
operator, they may choose to allow multiple deposit addresses to be used. Hence,
users may choose between different charities when making a donation to create
an Unchained identity.

Deposit Amount. The networkParameteramount parameter determines the
minimum deposit size required to set up a new identity. The amount is cho-
sen in such a way that it is affordable for those who would like to participate in
the network, while still being high enough to disincentivize the creation of large
numbers of Sybil nodes. For larger networks, the deposit size may be lower since
the network may tolerate higher numbers of spurious identities before an attacker
gains a tangible benefit from their use. Section 4.2 details further considerations,
limits and implications that depend on the deposit size.

A potential alternative is to use a small value for networkParameteramount

and introducing a bigger networkParameterlockedAmount value. The first amounts
gets sent to networkParameterreceiver, while the second amount is sent back to
the identity’s owner, but locked up using the CheckLockTimeVerify output [31]
of a transaction or another type of smart contract. The locktime is equal to the
lifetime of the identity. This way users may recover their funds after leaving
the network, while ensuring that the creation of high numbers of concurrent
identities still lock up significant amounts of capital.

Minimum Difficulty. This parameter defines the minimum amount of work
that is required to generate a new block that may be used to build an iden-
tity proof. While Sect. 5 details more sophisticated approaches to control the
allowable difficulty of blocks for identity proofs, the most basic way is to set a
simple minimum difficulty parameter networkParameterminDifficulty that matches
the underlying blockchain’s difficulty at the time of setting up the network using
Unchained. Alternatively, a value slightly below this value may be chosen to
allow for drops in network difficulty.

If the parameter is hardcoded, it should be selected sufficiently low. If Bit-
coin’s target difficulty drops below the hardcoded value, it becomes impossi-
ble to create further identities. To avoid this issue, implementations should set
networkParameterminDifficulty dynamically as described in Sect. 5.

Updates. Changes in the valuation of Bitcoin, difficulty or simply the general
operating environment of the secured network may change over time. Therefore,
it may become necessary to update the parameters described above to ensure
that the network is operating as desired.

Assuming an entity that is maintaining and developing the network, it is
possible to periodically distributed signed bundles of updated network parame-
ters, including the block height at which this bundle should take effect. After the
bundle is published, users who generate fresh identities should attach the update
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to their identity proof before flashing it onto their node. Similar considerations
are also described in Sect. 5 with a special focus on difficulty updates.

4.2 Pricing an Identity

An attacker trying to create a large number of identities aims to minimize costs.
One option is to mine a block conforming to the networkParameterminDifficulty

parameter, filling it solely with deposit transactions, but never publishing it to
the Bitcoin network. Since Unchained does not verify the full blockchain, these
transactions do not even require valid inputs. However, mining a block with valid
difficulty and not publishing it incurs a high opportunity cost, as well as energy
cost. Hence, instead of paying for the identities, the attacker pays for the hashing
power used to create the block. While the energy costs may vary, depending on
location, the opportunity cost is easy to quantify and equal to the block reward
plus additional transaction fees.

Given the current block size (1 MB), minimum transaction size (224 B) and
block reward (12.5 B plus fees) of Bitcoin, this also leads to an upper limit on
the price for one identity, as given in Eq. 4, with the current maximum amount
given in Eq. 5 [1,2,7].

amountmax = block reward · min TX size
max block size

(4)

= 12.5B · 224B
1MB

= 2.8mB (5)

Given the current price of Bitcoin as of 2017-10-29 at approximately $10399
[5,6], the resulting maximum price per identity is roughly equivalent to $29.
Going above this limit makes it cheaper for an attacker to generate a fake
block than simply paying for the identities, as long as fees and energy costs
are disregarded. Most networks will likely set a lower value than 2.8mB for
networkParameteramount, in order to make identities more affordable for users
and anticipate volatility with regards to Bitcoin valuation.

5 Handling Difficulty Adjustments

Our system has to adapt to changes in the target difficulty of the underlying
cryptocurrency. In the case of Bitcoin, the difficulty is adjusted every 2016 blocks.
This is equivalent to roughly two weeks. These adjustments are made to keep the
time interval between each block at, in the case of Bitcoin, on average 10 min. To
handle these adjustments, we propose multiple approaches with different trade-
offs.

Each node keeps a list of accepted target difficulties for each 2016 block
interval. If the accepted target difficulty of an interval is adjusted upwards due
to new information, identities confirmed using blocks with lower difficulty are
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retroactively invalidated. When the accepted target difficulty is lowered, it may
be prudent to retroactively accept discarded peers into the network. However,
since invalid identities are unlikely to be stored, the second case is unlikely to
be implemented. The different approaches of handling difficulty changes concern
the way this list of accepted target difficulties is updated.

5.1 Maximum Seen Difficulty

The first approach is both simple to implement as well as fully decentralized.
The list of accepted target difficulties is initialized to zero or a known history
at the point the node is initialized. Whenever an identity proof is received by a
node, it looks up the target difficulty for that block in the list of difficulties. If
both difficulty values match, the identity is accepted. In case the difficulty of the
received identity proof is lower, the identity is discarded. Alternatively, when the
difficulty of the received identity is higher, it is accepted and the target difficulty
in the list is updated. If the list of accepted target difficulties was initialized with
a known history however, these known-good values should not be overwritten
even if an identity with a higher difficulty is encountered.

This solution allows the eventual detection and invalidation of forged iden-
tities that were validated using blocks of insufficiently high difficulty, as long
as a connection to an honest node from the same two week period is made at
some point. No infrastructure in addition to the previously described system is
necessary.

As a caveat, this method is vulnerable to a denial of service attack. Assum-
ing an attacker is able to mine a block targeting a difficulty that is higher than
the difficulty of the underlying cryptocurrency and uses the block in an identity
proof, the targeted nodes will update their lists of target difficulties accordingly,
invalidating all regular identities that were generated during the timeframe cor-
responding to the malicious block. However, mining a block targeting a higher
difficulty is even more expensive than mining a regular block. This issue can be
mitigated by combining this approach with one of the two following methods.
At the same time, this method can be used as a fallback solution for both of
them.

5.2 Bundled Updates

Assuming network is run by a single operator, the operator may publish signed
messages containing the target difficulty for each 2016 block range. The mes-
sage is appended to each identity proof, setting the target difficulty in the list
to the provided value. A drawback of this solution is that, in case the operator
ceases to exist, no further difficulty updates can be broadcasted, leaving new
nodes unable to join the network. However, when combining this approach with
the mechanism from Sect. 5.1, only nodes worried about denial of service attacks
need to attach update messages to their identity proofs. Nevertheless, joining the
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network without one of these messages also remains as an alternative. Nonethe-
less, when the operator ceases operations, the mitigation for the denial of service
attack vector also ceases to be functional.

5.3 Majority Vote

Rather than relying on a single operator as in Sect. 5.2, nodes may choose to
accept signed difficulty updates from multiple providers. One or more of these
messages may then be attached to an identity proof. The values of each update
provider are stored in the list of target difficulties. In the event that for any
interval mismatching difficulty update messages are detected, the majority value
is considered the true difficulty target. Whenever there is no majority, the highest
value is treated as the true difficulty target. In the case of a majority, nodes
might mistrust future update messages provided by providers belonging to the
minority.

This approach has multiple benefits over the previous approach. There is no
single point of failure that prevents the network from growing. Additionally, sup-
posing an attacker is able to trick a difficulty update provider to forge an update,
the result is not necessarily a successful attack, as the attacker is still missing
a majority that accepts the update, Hence, the attacker has to compromise at
least 50% of the update providers to perform a denial of service attack.

Moreover, this approach is compatible with the solution from Sect. 5.1, allow-
ing nodes to join the network even without access to any signed difficulty update
messages.

6 Evaluation

The following section focuses on evaluating the Unchained protocol and the pro-
vided security guarantees. Since Unchained’s security guarantees mainly depend
on the difficulty level as well as the token price of the underlying proof-of-work
blockchain, we analyze how changing difficulty levels and token prices would have
affected the Sybil attack prevention mechanism of a fictional MANET deployed
in December 2016. Sections 6.1 and 6.2 perform analysis based on the assumption
that the Bitcoin blockchain is used, and Sect. 6.3 uses the same scenario based on
the Ethereum blockchain. We choose these two chains for several reasons: First,
they are the most popular and most utilized proof-of-work blockchains that cur-
rently exist. Second, the different changes in difficulty and price cover important
corner cases such as increasing and decreasing difficulties over time with sudden
drops and raises. We assume a scenario of a MANET that was initially deployed
in December 2016 with nodes continually joining and leaving the network and
operated until the time of writing this work in November 2017.

6.1 Bitcoin Difficulty Analysis

The difficulty level of the Bitcoin blockchain is adjusted every 2016 blocks, which
is equivalent to 14 days given a blocktime of ten minutes per block. As illustrated
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in Fig. 4a, the difficulty level is steadily rising with two minor exception in August
and November 2017. At the same time, as shown in Fig. 4a, the Bitcoin price
itself also increased almost steadily by a factor of ten within the last twelve
months.

Fig. 4. Average daily price in USD and block difficulty level between Dec. 2016 and
Nov. 2017 (Source: [5,6,14]).

As already discussed in Sect. 4 the lower bound of security guarantees pro-
vided by Unchained is always the lowest level of difficulty and the lowest price
per block that occurred during the existence of the network. Given the initial
deployment of our hypothetical MANET in December 2016, all nodes joining
at later stages have higher security guarantees than the initial nodes due to an
increased block difficulty and price. As discussed in Sect. 4.2, the price is only
a theoretical measurement for security guarantees, since it is up to the network
operator to decide the minimum price of a node’s identity. However, increasing
token prices and therefore also increasing block prices, may also result in more
expensive identities thereby raising the bar for a Sybil attacks.

Assuming a MANET setup at the beginning of November 2017, days before
the decreasing Bitcoin price in (see Fig. 4a), reflects the exact opposite where
it becomes less expensive to introduce new identities to the system for a short
period of time. However, as discussed previously, it is up to the network operator
to decided whether to pick the maximum possible identity-per-block-price or a
lower price. For practical reasons it is likely that most operators pick a lower
price and therefore minor price declines do not affect the security guarantees of
our example MANET a lot. Moreover, it is also up to the network operator to
define a minimum identity-price that is higher than the identity-per-block-price
since it is still unlikely that a malicious entity has the computational power to
mine a block with a matching difficulty level, given the vast hashing power of
Bitcoin’s mining pools.

6.2 Bitcoin Price Analysis

Using the historic price data gathered for Fig. 4a, going back until July 17th
2010, it is possible to calculate for each date, on which a network using Unchained
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could have been started, the highest drop in price and thus security level experi-
enced by the network. While future developments cannot reliably predicted, this
provides an intuition on the historic worst case performance of Unchained. In
Table 1, the proportion of starting dates that would have lead to a drop on any
subsequent day of at least a given percentage is given. Only for 0.1% of possible
starting dates the security level would have at any later point dropped below
10% of the given date.

Table 1. Affected starting dates after which the Bitcoin price drops below a certain
percentage of the given day’s price.

Drop to Affected started dates

<10% 0.1%

<20% 2.8%

<30% 8.5%

<40% 13.5%

<50% 18.0%

<60% 22.8%

<70% 27.2%

<80% 36.2%

<90% 49.5%

<100% 77.5%

Historically, high drops in security level only occur very rarely. Smaller drops
occur more frequently, with almost 50% of possible starting days experiencing
drops of at least 10% at some point in the future. While most networks will
be able to tolerate smaller drops in security level, raising Bitcoin prices can
also be an issue, as they can make identities too expensive for regular users.
Considering this, for networks intended to exist over long time frames, provisions
for an update mechanism for networkParameteramount should be made. In case
mass adoption occurs, the volatility level of cryptocurrencies and fiat currency is
expected to converge. Hence, Unchained’s level of security will stabilize as well.

6.3 Ethereum Difficulty Analysis

Unchained is blockchain agnostic as long as the underlying chain architecture
uses a proof-of-work consensus algorithm. Therefore, we also analyze how the
changing difficulty levels and token prices of the Ethereum blockchain and how
this would have affected the Sybil attack prevention mechanism of our fictional
MANET deployed in December 2016.

Similar to the Bitcoin price, the Ethereum price also increased heavily, start-
ing around $8 in December 2016 to more than $450 at the end of November
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2017, even though the Ethereum price suffered some decreases in July 2017.
Ethereum’s block difficulty, illustrated in Fig. 4b, also increased over the last
twelve month. However, a sudden drop occurred on October 16 due to a diffi-
culty adjusting hard-fork of the Ethereum network [13]. Nevertheless, even the
reduced difficulty level is far higher than the initial level in December 2016.

As a result, the security guarantee evaluation results are similar to the Bit-
coin evaluation of Sect. 6.1. MANET nodes setup in December 2016 with the
initial difficulty are cheaper and easier to create in terms of identity price and
block difficulty. All nodes created afterwards provided higher security guarantees.
When focusing on the timeframe briefly before and after the difficulty adjust-
ment, identities created before the adjustment are less difficult than identities
created afterwards. The same applies for the price of identities both before and
after the price drop of Ether in July 2016 as illustrated in Fig. 4b.

In both the case of the Bitcoin as well as the Ethereum blockchain, price and
difficulty increased heavily within the last 12 month. As a result, the lower bound
of provided security is defined by the earliest nodes that joined the test MANET
when created, since their identity proofs depends on the lowest block difficulty
and identity price. All following node identities provide security guarantees above
this lower bound. Furthermore, given the case that the difficulty levels will likely
not increase indefinitely and remain somehow static (with minor fluctuations) at
some point in the future, Unchained’s lower and upper bounds will also converge
and be less volatile.

7 Conclusion and Future Work

Detecting Sybil node attacks is major issue of large-scale P2P networks where
malicious nodes threaten the security of the overall system. After joining a net-
work, detecting such nodes is a cumbersome and inaccurate task. In this work we
introduce a protocol for a decentralized blockchain-based identity system with
offline verification that raises the difficulty of introducing high numbers of Sybil
nodes to a network by providing economic disincentives.

Unchained uses blockchain technology to bind ad hoc network node identities
to blockchain-based wallet addresses, i.e., public/private key pairs. In order to
join the network, a proof-of-identity is created for each device. The proof is
derived from a deposit transaction made from the wallet address to a deposit
address and flashed to the node afterwards. Nodes validate each others’ identities
using the uniquely generated identity proofs.

Circumventing the protocol and introducing a Sybil node is equivalent to
investing more financial assets than it would cost to create a malicious block
on the blockchain. In addition, identity proofs are designed in such a way that
no Internet access or direct connection to the underlying blockchain is required
after the initial setup of the ad hoc network, thereby raising the bar to introduce
Sybil nodes to even highly partitioned networks.

We detail the network parameters and update mechanism of Unchained and
discuss upper- and lower-bounds of security guarantees. Finally, an evaluation
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based on a hypothetical MANET deployed leveraging the Bitcoin and Ethereum
blockchain is used to analyze the protocol’s security properties depending on the
block difficulty and token prices between December 2016 and November 2017.

For future work, we plan to generalize the protocol and not only focus on
MANETs or other ad hoc networks and instead integrate Unchained into IoT
environments. Furthermore, we intend to explore the feasibility of adapting exist-
ing Sybil attack prevention or detection algorithms to consider the node’s iden-
tity proof block difficulty and block price as attributes for their trust scoring
systems.

We also aim to implement and deploy the Unchained protocol on the Bitcoin
as well as Ethereum blockchain and evaluate real-world use-cases.
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Abstract. Vulnerabilities have a detrimental effect on end-users and
enterprises, both direct and indirect; including loss of private data, intel-
lectual property, the competitive edge, performance, etc. Despite the
growing software industry and a push towards a digital economy, enter-
prises are increasingly considering security as an added cost, which makes
it necessary for those enterprises to see a tangible incentive in adopting
security. Furthermore, despite data breach laws that are in place, prior
studies have suggested that only 4% of reported data breach incidents
have resulted in litigation in federal courts, showing the limited legal
ramifications of security breaches and vulnerabilities.

In this paper, we study the hidden cost of software vulnerabilities
reported in the National Vulnerability Database (NVD) through stock
price analysis. Towards this goal, we perform a high-fidelity data aug-
mentation to ensure data reliability and to estimate vulnerability dis-
closure dates as a baseline for estimating the implication of software
vulnerabilities. We further build a model for stock price prediction using
the NARX Neural Network model to estimate the effect of vulnerability
disclosure on the stock price. Compared to prior work, which relies on
linear regression models, our approach is shown to provide better accu-
racy. Our analysis also shows that the effect of vulnerabilities on vendors
varies, and greatly depends on the specific software industry. Whereas
some industries are shown statistically to be affected negatively by the
release of software vulnerabilities, even when those vulnerabilities are
not broadly covered by the media, some others were not affected at all.

Keywords: Vulnerability economics · Prediction
National vulnerability database

1 Introduction

An ideal software should be defect-free, reliable and resilient. However, vulner-
abilities are defects in software products, which expose the product and users
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to risk alike, for e.g., Distributed Denial of Service attacks [1,2] or typosquat-
ting attacks [3]. When such defects happen, users prefer vendors who take such
defects as a priority, fix them, report them to their users, and keep the commu-
nity as a whole immune to adversaries. Failure to do so would put vulnerable
vendors at risk, whereby users seek different vendors, causing great losses.

In practice, vulnerabilities have multiple costs associated with them. For
example, a vulnerability leads to loss of trust by users, tarnished brand reputa-
tion, and ultimately results in the loss of customer-base. To deal with vulnera-
bilities, vendors also incur additional costs in the form of developer-hours spent
fixing them and redeploying fixes. As such, vulnerabilities could be a direct cause
of losing a competitive edge in the global market to vendors less prone to them.
For example, a study by the National Institute of Standards and Technology
(NIST) estimated that the US economy looses about $60 Billion USD every year
for patches development and redistribution, systems re-deployment, as well as
direct productivity loss due to vulnerabilities [4].

To make matters worse, the number of security incidents and vulnerabili-
ties have been growing exponentially, leading to a similar growth in resources
required for fixing them. In 2012, for example, Knight Capital, a financial services
company, lost $400 Million USD because of a bug in their code; the company
bought shares at the ask price and sold them at the bid price [5]. Losses from
WannaCry (2017), a ransomware attack in over 150 countries affecting more
than 100,000 groups, is estimated to be $4 Billion USD [6]. Virus attacks, such
as Love Bug (2000), SirCam (2001), Nimda (2001), and CodeRed (2001), have
had an impact of $8.75 Billion, $1.25 Billion, $1.5 Billion and $2.75 Billion USD,
respectively [7]. With deployment of software in critical infrastructure, vulner-
abilities could have overwhelming impact. For example defects like the loss of
radio contact between the air traffic controller and the pilots due to unexpected
shutdown of voice communication system and crash of the backup system within
a minute of it turning on, could cost lives [8].

The cost of vulnerabilities is a variable that does not depend only on the
type of the vulnerability, but also the industry, potential users, and the severity
of the vulnerability as seen by those users. For example, users of security or
financial software are more likely to lose faith in their product, compared to
general e-commerce applications. A more severe vulnerability is also more likely
to impact a vendor than a minor software glitch. For example, a vulnerability
that can be used to repeatedly launch a Denial of Service (DoS) attack could
be viewed more severely by users than, say, an access control misconfiguration
(e.g., 1-time access-token exposure).

For publicly-traded drug and auto vendors, Jarrell and Peltzman [9] demon-
strated that recalling products has a detrimental impact on shareholder value.
Conversely, though, researches have shown that software vendors may, on the one
hand, not suffer any significant losses due to vulnerabilities [10], or, on the other
hand, grow in profit and offerings despite the parallel growth in software vulner-
abilities. However, there are also underlying costs associated with each software
vulnerability, as mentioned above, and those costs are maybe invisible [10]. For
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example, Romanosky et al. [11] studied software-related data breaches in the
United States, and found that 4% of them resulted in litigation in federal courts,
out of which 50% (2% of the original studied cases) won by the plaintiffs.

Contributions. In this paper, we quantitatively analyze the loss faced by soft-
ware vendors due to software vulnerabilities, through the lenses of stock price
and valuation. To this end, this work has the following contributions. (i) An
evaluation of vulnerabilities, disclosed in the year 2016, from the National Vul-
nerability Database (NVD) and their impact on their vendors. (ii) An accurate
method for predicting stock price of the next day using NARX Neural Network.
(iii) Industry-impact correlation analysis, demonstrating that some industries
are more prone to stock loss due to vulnerabilities than others. (iv) Vulnerabil-
ity type analysis, indicating that different types have different powers of affecting
the stock price of a vendor.

Our work stands out in the following aspects, compared to the prior work
(more in Sect. 2). First, unlike the prior work, which is event-based (tracks vul-
nerabilities that are only reported in the press), we use a comprehensive dataset
of disclosed vulnerabilities in the National Vulnerability Database (NVD). Per
Spanos and Angelis [12], 81.1% of the prior work they surveyed were limited to
security breaches, while we focus on all software vulnerabilities. Furthermore,
per the same source, 32.4% of the prior work used Lexis/Nexis (database of
popular newspapers in the United States) as their source, 24.3% used the Data
Loss Archive and Database (data for privacy breach), 13.5% used CNET (tech-
nology website), and 13.5% used Factiva (global news database). In this study,
we uniquely focus on using NVD. (ii) We design a model to accurately predict
stock for the next day to precisely measure the effect of a vulnerability. Our app-
roach outperforms state-of-the-art approach using linear regression (e.g., while
our mean-squared error (MSE) using ANN is below 0.6, using linear regression
results in MSE of 6.24). (iii) Unlike the prior work, we did not exclude any ven-
dors, as we considered publicly-traded vendors on NYSE, NASDAQ, Frankfurt,
Other OTC, Taiwan, and LSE. Spanos and Angelis [12] in their survey found
that 83.8% of the surveyed work used vendors that traded in a US stock market,
13.5% used vendors from different countries and only 2.9% (1 out of 34 works)
used firms traded in TYO (the leading stock exchange in Japan) [12].

Organization. The rest of the paper is organized as follows: In Sect. 2, we re-
visit the literature. In Sect. 3, we present our approach to the problem. In Sect. 4,
we present our prediction model. In Sect. 5, we evaluate the results. In Sect. 6
we further comment on the statistical significance of our results, followed by
discussion, limitations and future work in Sect. 7. We conclude the paper in
Sect. 8.

2 Related Work

Our work is an amalgam of different fields, where we connect the vulnerabilities
to economic affect on vendor. Perceptions often relate vulnerabilities to effect on
the end user. Little has been said and done from the vendor’s perspective.
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Effect on Vendor’s Stock. Hovav and D’Archy [10], and Telang et al. [13]
analyzed, in event-based studies, vulnerabilities and their impact on vendors.
While Hovav and D’Archy have shown that market shows no signs of signifi-
cant negative reaction due to vulnerabilities, Telang et al. show that a vendor
on average loses 0.6% of its stock value due to vulnerabilities. Goel et al. [14]
pointed out that security breaches have an adverse impact of about 1% on the
market value of a vendor. Campbell et al. [15] observed a significant negative
market reaction to information security breaches involving unauthorized access
to confidential data, but no significant reaction to non-confidential breaches.
Cavusoglu et al. [16] show that the announcement of Internet security breaches
has a negative impact on the market value of vendors.

Bose et al. [17] show that each phishing alert leads to a loss of market capi-
talization that is at least US$ 411 million for a firm.

Vulnerability Analysis. Li and Paxson [18] outlined a method to approximate
public disclosure date by scrapping reference links in NVD, which we use in this
study. Nguyen and Massaci [19] pointed out that the vulnerable versions data in
NVD is unreliable. Christey and Martin [20] outlined caveats with the NVD data,
also suggesting its unreliability. Romanosky et al. [21] found that data breach
disclosure laws, on average, reduce identity theft caused by data breaches by
6.1%. Similarly, Gordon et al. [22] found a significant downward shift in impact
post the September 11 attacks.

Financial Impact of Defects. Jarrell and Peltzman [9] analyzed the impact
of recall in the drug and auto industries on vendors’ stock value loss. Towards
calculating the effect of a vulnerability, it is crucial to predict a hypothetical
stock valuation in the absence of a vulnerability. Kar [23] suggested the use of
Artificial Neural Network (ANN) as a reliable method for predicting stock value.
Farhang et al. [24], suggest that higher security investments in Android devices
do not impose higher product prices on customers.

3 Methodology

Using the information available on the National Vulnerability Database (NVD),
the goal of this study is to track the public disclosure date of vulnerabilities
and capture their impact on vendors stock market valuation. As in the prior
work [9], we consider the fluctuation in the stock price as a measure of the
reported vulnerabilities’ impact. To this end, we calculate the impact on the
following days, with respect to the predicted value of the stock on the day of
vulnerability disclosure. However, we limit ourselves up to the third day of the
public disclosure of the vulnerability to reduce the likelihood of interference with
factors that might affect the market value. The rest of this section explains in
details the steps taken to achieve the above goal.

3.1 Data and Data Augmentation

Our main sources of data are NVD [25] and Yahoo Finance [26]. Figure 1 sum-
marizes, at a high-level, the flow of data creation, from the source of data to the
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Fig. 1. Dataset creation flow. Desc. stands for the description of vulnerability, Ref.
Link is the link referring to details corresponding to the vulnerability, Pub. Date is
the Published Date, CVSS is Common Vulnerability Scoring System metrics, CWE is
the Common Weakness Enumeration identifier, PDD is the Public Disclosure Date,
approximated as the minimum of the dates gathered from the links corresponding to
a vulnerability, and VHSP is the Vendor Historical Stock Price downloaded of mutual
vendors from Yahoo Finance.

final dataset. In a nutshell, we extract information from JSON files downloaded
from the National Vulnerability Database (NVD), scrape through the reference
links for each vulnerability provided by NVD to approximate the disclosure date
of the vulnerability, then check for indicative words, such as “lib” or “library” in
the description of the vulnerability. If such words do not exist in the description,
which means that those vulnerabilities are more likely associated with the vendor
and not due to a third party, we consider the vulnerability for further analysis.
We check for the vendor’s historical stock prices using the Yahoo Finance. If
the vendor exists in Yahoo Finance, we consider the vendor for our analysis,
otherwise the vendor is rejected.

National Vulnerability Database (NVD) is a vulnerability database main-
tained by the National Institute of Standards and Technology (NIST) and con-
tains all vulnerabilities reported to MITRE [27]. Analysts at NVD analyze the
reported vulnerabilities, then insert them into the database after adding other
necessary information, including (most importantly) a Common Vulnerabilities
and Exposures Identifier (CVE-ID). In the following we elaborate on the other
data elements in NVD associated with each vulnerability.

The NVD includes the following information (elements) for each reported
vulnerability: the CVE-ID, vendor, product, Common Vulnerability Scoring Sys-
tem (CVSS) label, published date, Common Weakness Enumeration Identifier
(CWE-ID) [28], description, and reference links. The CVSS label is provided
using both version 2 and version 3 [29,30], which are widely used standard scor-
ing techniques. The vendor element is the name of the vendor of the software
that has the vulnerability, the product element is the name of the product which
contains the vulnerability, and the CVSS is the severity of the vulnerability.
CVSS version 3, released in the later half of 2015, labels vulnerabilities as LOW,
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MEDIUM, HIGH, and CRITICAL, while the version 2 classifies them into LOW,
MEDIUM, and HIGH. The attribute published date indicates the date when the
vulnerability was entered into the NVD, while CWE-ID refers to the type of the
weakness. The description element is a textual content to contextualize the sub-
mitted vulnerability. The reference links element is a set of the external URLs
linking to references with additional details about the vulnerability, including a
security advisory, a security thread, an email thread or a patch.

Data Preprocessing and Augmentation. The NVD data can be downloaded
from the NVD website in either XML or JSON format; we chose the JSON
format. The data is distributed in multiple JSON files with a file per year. We
use the vulnerabilities reported in the year 2016, and limit our analysis to the
severe ones. Since not all vulnerabilities have their CVSS version 3 assigned to
them, we consider vulnerabilities with CVSS version 3 label as CRITICAL or
version 2 label as “HIGH” to be severe. In our analysis we are interested in
understanding the impact of core vulnerabilities in the software itself, rather
than inherited vulnerabilities due to the use of third-party libraries. To this end,
we filtered vulnerabilities due to third-party libraries by discarding those with
the word “library” in their description. Given that a vulnerability may affect
multiple vendors and products, we limit ourselves to the main source of the
vulnerability by counting a vulnerability only under one vendor. For that, we
checked the vendor name and the description in the vulnerability record, and
found that the main vendor always appears in the description. Where multiple
vendors appear in the description, we exclude those vulnerabilities from our
analysis, since the vulnerability could be due to a third-party library common
among products of those vendors. As a result, our dataset was reduced from
8,709 to 2,849 vulnerabilities.

Since the published date attribute captured in NVD is the date when the vul-
nerability was entered into the database and not the date when the vulnerability
was actually found, the most important step in our analysis was to find the date
when the vulnerability was disclosed to the public. We use the links present in
the NVD to scrape through the web and label dates corresponding to each of
the links, in an approach taken also by Li and Paxson [18]. We observed that
some of the domains have stringent security measures preventing the automating
scraping, while some did not have a date. For all such 1262 out of 8365 links, we
manually visited the links and updated the corresponding URLs. For all URLs,
we calculated the minimum of the dates corresponding to a vulnerability (when
multiple dates are obtained from multiple URLs) and consider it as the public
disclosure date. It should be noted that we ignore the links linking to patches, as
the date of patching may or may not be same as the disclosure date, and market
could only respond to public disclosure date.

In our dataset, we also found redundant vendor names, e.g., schneider-electric
vs. schneider electric, trendmicro vs. trend-micro, and palo alto networks vs.
paloaltonetworks. We consolidate the various vendors under a consistent name,
through manual inspection. For all the vendors in the above dataset we further
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augment them by incorporating stock price over time from Yahoo Finance, as
highlighted in the following.

Yahoo Finance. For all the vulnerabilities in our dataset we gathered his-
torical stock price information from Yahoo Finance. The historical data can
be downloaded from Yahoo Finance as a Comma Separated Values (CSV) file.
The file contains seven information attributes, namely, the date, open, low, high,
close, adjusted Close, and volume. The date attribute corresponds to the date on
which the stock’s listed performance is captured. The open and close attributes
are the stock value of the vendor on the given day at the opening and closing
of the market, respectively. The low and high are the lowest and highest value
of the vendor’s stock achieved on the given day. The adjusted close attribute
reflects the dividends and splits since that day. During an event of stock split,
the adjusted closing price changes for every day in the history of the stock. For
example, if stock for vendor X closed at $100 USD per share on December 5th, a
2:1 stock split is announced on December 6th, and the stock opened at $50 USD
and closed at $60 USD, that represents a decline of $40 in the actual closing
price. However, the adjusted close for December 5th would change to $50 USD,
making the gain $10 at the end of December 6th. The volume attribute is the
number of shares traded on the given day.

Price Prediction. We use the open, low, high, close, adjusted close, and volume
of all preceding days as input to predict the close for a day, as explained in more
details in Sect. 4. We use the predicted price as a baseline to estimate the cost of
vulnerabilities upon their disclosure. Upon examining the vendors in our dataset,
we found 60 of them available through Yahoo Finance. Out of the 60 vendors,
only 41 of vendors had vulnerabilities in our selected dataset. Out of those 41
vendors, 5 vendors had missing data attributes (e.g., blackberry had several
“null”-valued attributes).

Press. As a baseline for comparison with our results based on the approach used
in the literature, we sample vulnerabilities reported in the media. We search
for “software vulnerabilities in 2017” in Forbes, and ZDNet, and capture four
vulnerabilities for comparison.

3.2 Assessing Vulnerability’s Impact

To assess the impact of vulnerabilities, we separate our dataset by vendor. To
find the effect of a vulnerability for the date on which the vulnerability was
published, we look for the stock value on that particular date. It is worth noting
that the stock markets do not open on weekends and holidays, making stocks
unavailable on those days. For all dates with disclosed vulnerabilities whereby
the stock data is unavailable, we approximate the open, low, high, close, adjusted
close, and volume attributes in a linear relation with the last operating day and
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the next operating day. For example, suppose the value on the last operating
day, d0, is x, the market was closed on days d1, d2, and d3, and the value on
next operating day, d4, is y. We first calculate the number of days between d0
and d4, denoted by d (here, 3). We then approximate the values on days di for
i ∈ {1, 2, 3} as di = x + i×(y−x)

d .
Finding the effect of a vulnerability is done by comparing the predicted stock

price assuming the vulnerabilities did not exist with the actual price which takes
the existence of the vulnerability into account. Therefore, we first predict a stock
price for the no-vulnerability case and calculate the impact of the vulnerability’s
Abnormal Return on day i (ARi for i ∈ {1, 2, 3}), where ARi = Ri − R̄, such
that Ri is the actual stock price on day i, and R̄ is the expected stock without
vulnerability (predicted). We then calculate the % of Abnormal Return on day
i (PARi), where i ∈ 1, 2, 3, as PARi = ARi×100

Ri
.

Finally, we calculate the Overall (%) Abnormal Return on day i (OARi),
where i ∈ {1, 2, 3}. For vendor {V1, . . . , Vm} with vulnerability {v1, . . . , vn}, the
PAR values for a vulnerability vj are denoted by PARj

i for i ∈ {1, 2, 3}. We
calculate OARk

i =
∑n

j=1 PARj
i on day i for a vendor Vk.

4 Prediction

The data of all vendors consists of the aforementioned features: date, open, close,
high, low, volume and fractional change in the price from previous time step. All
of these features, except date, are considered to predict the close value in the
future. In order to increase the performance of the machine learning algorithm,
data preprocessing is required. The general method for feature standardization
is to consider the mean and standard deviation of each feature. In other words,
feature standardization projects the raw data into a new space where each feature
in the data has a mean and a standard deviation of zero and unit, respectively.
This is, the mapping transforms the feature vector x into z = x−x̄

σ , where x̄
and σ, are the mean and standard deviation of the original feature vector x,
respectively. These features are then fed into the nonlinear autoregressive neural
network with exogenous factors (NARX) to predict the stock value of vendors.

4.1 NARX Neural Network

The NARX neural network, generally applied for prediction of the behavior
of discrete-time nonlinear dynamical systems, is one of the most efficient tools
of forecasting [31]. Unique characteristics of NARX provide accurate forecasts of
the stock values by exploiting an architecture of recurrent neural network with
limited feedback from the output neuron. In comparison with other architectures,
which consider feedback from both hidden and output neurons, NARX is more
efficient and yields better results [32]. Based on the NARX neural network model,
the next value of the output at time t, y(t), can be regressed on previous values
of the output and exogenous input, represented using the following model:

y(t) = f [u(t − 1), ..., u(t − du); y(t − 1), ..., y(t − Dy)],



Understanding the Hidden Cost of Software Vulnerabilities 385

b b

y(t)
close

w

w

Z−1

Z−1

Z−1

Z−1

Z−1

Z−1

y(t−Dy)

y(t− 2)

y(t− 1)

u(t−Du)

u(t− 2)

u(t− 1)

u(t) (open, high, low, adj. close, volume)

Fig. 2. General structure of the NARX neural network

Table 1. NARX parameter settings.

Parameter Value

Number of input neurons Five

Number of output neurons One

Transfer functions Tansig (hidden layer)

Purelin (output layer)

Training, validation, testing 70%, 15%, and 15%

Evaluation function Mean squared error

Learning Algorithm Levenberg-Marquardt

where u(t) and y(t) are the input and output of the network at time t. du and
dy, are the lags of exogenous inputs and output of the system, and the function
f is multi-layer feed forward network. The general architecture of the NARX
neural network is shown in Fig. 2.

For each vendor, we divide the dataset into training, validation and test
subsets (with 70%, 15%, and 15%, respectively). We use the training data to
train a predictive model. The Mean Squared Error (MSE) is used to evaluate
the performance of the corresponding models. The MSE is defined as:

MSE =
1
n

n∑

i=1

(yti − ypi)
2,

where n is the number of samples. yt and yp are representing the actual value of
the stock price and corresponding predicted value, respectively. A feed forward
neural network with one hidden layer has been used as predictor function of the
NARX. Levenberg-Marquardt (LM) back-propagation learning algorithm [33]
has been employed to train the weights of the neural network. The specifications
of the proposed NARX neural network are presented in Table 1.
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Fig. 4. Actual vs. Predicted: ARIMA.
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Fig. 5. Error histogram of Adobe stock.

Baseline for Comparison. In addition to the NARX neural network model,
we also predicted the stock price of vendors using the Autoregressive Integrated
Moving Average (ARIMA) model [34], one of the most popular time series pre-
diction models, for comparison. To establish such a comparison with prior work
using linear regression, we conducted the prediction for the stock price of one
vendor, namely, Adobe. The AR portion of ARIMA signifies the variable to be
predicted is regressed on its past values. Also, the MA portion in the ARIMA
model indicates that the error in the regression model is a linear combination of
error values in the past. The ARIMA model with external regressors, x, and for
one-step ahead prediction can be represented by

yp(t) − φ1yt(t − 1) = μ − θ1e(t − 1) + β(x(t) − φ1x(t − 1)),

where yp and yt are the predicted and actual prices of the stock, respectively. μ,
θ, and φ are a constant, the MA coefficient, and the AR coefficient values.

The results are shown only for Adobe and for the rest of the vendors only
the MSE is shown in Table 2. Figure 3 depicts the actual and predicted stock
price. The low value of the error strongly suggests that the NARX model can
forecast the stock values with high accuracy. In addition, The error histogram is
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Table 2. Results for each vendor. Vul. stands for vulnerability count and OAR1,
OAR2, and OAR3 stand for the average effect at day 1, 2, and 3 (%), respectively.
(2) Vendor names are abbreviated as follows: PAN=Palo Alto Networks,
RWA=Rockwell Automation, TM=Trend Micro. � indicates that the vulnerabilities
had no overall impact on vendor’s stock value while � indicates that the stock of the
vendor were impacted, overall.

Vendor MSE Vul OAR1
(1) OAR2

(1) OAR3
(1) Vendor MSE Vul OAR1

(1) OAR2
(1) OAR3

(1)

Adobe 5.9E-4 494 �0.65 �0.37 �0.50 Oracle 1.0E-3 130 �0.48 �0.81 �1.51

Advantech 9.5E-4 9 �0.61 � 0.89 �0.96 Osram 7.8E-3 1 �1.17 �6.42 �7.95

Apache 9.9E-4 37 �0.60 �0.98 �1.17 PAN(2) 4.3E-3 2 �1.09 �1.13 �8.54

Apple 2.8E-4 154 �0.41 �0.75 �1.03 Redhat 1.6E-3 13 �0.74 �0.59 �0.61

Atlassian 9.7E-3 4 �3.85 �3.86 �3.12 RWA(2) 8.9E-4 5 �1.47 �0.87 �0.06

Cisco 2.3E-3 111 �0.10 �0.33 �0.42 Samsung 7.6E-3 10 �0.08 �0.08 �2.95

Citrix 2.4E-3 9 �0.14 �0.01 �0.57 Sap 2.3E-3 17 �0.82 �0.69 �1.28

Facebook 1.1E-3 6 �0.13 �0.33 �0.45 Schneider 3.1E-3 7 �1.56 �1.87 �1.79

Fortinet 4.5E-3 7 �0.37 �0.19 �0.92 Siemens 3.7E-3 14 �0.51 �0.83 �0.32

GE 5.8E-4 3 �0.12 �0.58 �0.39 Sophos 3.8E-3 3 �1.72 �1.87 �0.89

Google 7.6E-4 410 �0.08 �0.21 �0.08 Splunk 1.2E-2 1 �0.88 �3.17 �1.11

Honeywell 4.3E-4 1 �0.09 �0.87 �2.35 Symantec 1.3E-3 13 �0.24 �0.52 �0.77

HP 7.6E-3 36 �0.21 �0.37 �0.64 Teradata 3.6E-3 3 �2.18 �2.86 �2.75

IBM 4.4E-4 51 �0.22 �0.32 �0.26 TM(2) 9.3E-3 16 �0.56 �0.74 �0.98

Juniper 6.3E-3 13 �0.19 �0.80 �1.10 Vmware 6.1E-3 11 �0.45 �0.32 �0.74

Lenovo 7.4E-3 9 �0.75 �1.12 �0.55 Zyxel 5.2E-3 2 �0.18 �1.18 �0.18

Microsoft 8.6E-4 279 �0.45 �0.39 �0.56 Equifax 4.9E-4 1 �1.52 �14.02 �24.19

Netapp 6.5E-3 4 �1.08 �0.76 �1.19 Dow Jones 3.5E-4 1 �0.08 �0.34 �0.03

Netgear 4.3E-3 14 �1.18 �1.61 �0.10 Alteryx 4.8E-2 1 �0.61 �2.18 �7.70

Nvidia 1.0E-3 38 �0.56 �1.46 �4.39 Viacom 2.3E-3 1 �1.60 �0.60 �0.62

provided in Fig. 5, and shows that the majority of the instances are forecasted
precisely. In Fig. 4, although visual representation suggests a weakness of fit with
ARIMA in prediction the stock values, the difference in the value of MSE for
these to models, 6.42 for ARIMA and 0.59 for NARX, quantitatively justifies
the goodness of the proposed method over methods used in the literature.

5 Results

We experimented with a large number of vulnerabilities, meaning that multiple
vulnerabilities could correspond to a single date. Therefore, the effect we see
could be due to one or more vulnerabilities. For every vulnerability disclosure
date and vendor, we calculate % Abnormal Return on days 0, 1, and 2 (AR1,
AR2, and AR3 respectively as described above). The results are presented in
Table 2. The table contains the normalized MSE, count of the vulnerabilities,
and Abnormal Return on days 1, 2, and 3 for every vendor (as described above).
We observe that vulnerabilities had an adverse impact on the stock price of 17
out of the 36 vendors.

Table 4 represents a breakdown of vendors by industry and their likeli-
hood of their stock being impacted by vulnerabilities. For the classification of
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industries, the software industry contains vendors such as Adobe, Apache, Atlas-
sian, Google, VMware, Sap, Oracle, Redhat, and Alteryx. The device indus-
try includes Advantech and Apple. The networking industry includes Cisco,
Citrix, Netgear, and Zyxel. The security industry includes Fortinet, Juniper,
Paloalto Networks, Symantec, and Trendmicro. The consumer product industry
includes Rockwell Automation, Osram, Splunk, Schneider, Teradata, Facebook,
Netapp, and Viacom. The electronics & hardware industry includes Lenovo,
and Nvidia. Finally, the finance industry includes Equifax and Dow Jones. To
assign a likelihood of an industry’s stock price being impacted by vulnerabili-
ties, we use Highly-Likely when the number of vendors with stock price affected
negatively by the vulnerabilities in the given industry is larger than those not
affected, Less-Likely otherwise; we use Equally-Likely when the number of ven-
dors affected equals the number of vendors not affected.

We look at vulnerabilities from 10 vendors to find the reason for the nearly no-
effect of vulnerabilities in some industries. We see that in every dataset there are
a few dates which have no significant positive effect (from vendors perspective)
on the market leading the results to be negative. By referring to the description
of the vulnerabilities, we observe that:

1. Vulnerabilities affecting vendors’ stock negatively are of critical severity (vul-
nerabilities with CVSS version 3 label of CRITICAL) while the rest were less
severe (vulnerabilities with CVSS labels of HIGH or MEDIUM).

2. Vulnerabilities affecting vendors’ stock price negatively have a combination of
version 3 label of HIGH or CRITICAL, and a description containing phrases
such as “denial of service”, “allows remote attacker to read/execute”, “allows
context-dependent attackers to conduct XML External Entity XXE attacks
via a crafted PDF”, and “allows context-dependent attackers to have unspec-
ified impact via an invalid character”. Additionally, vulnerabilities descrip-
tion such as “allows authenticated remote attacker to read/execute”, “remote
attackers to cause a denial of service”, and “allows remote attackers to write
to files of arbitrary types via unspecified vectors” have little (on days 0, 1,
and 2) to no effect on the stock price. Therefore, we can conclude that vul-
nerabilities involving unauthorized accesses have a higher cost, seen in their
detrimental effect on the stock price.

3. Vulnerabilities with phrases such as “local users with access to” and “denial
of service” in the description have no impact on the stock. Therefore, DoS
attacks lacking confidentiality factor lead to no impact on stock value.

For the vulnerabilities gathered from the press, we followed the same steps.
We found that these vulnerabilities have an adverse effect on vendor stock price
in almost every case.

6 Statistical Significance

To understand the statistical significance of our results, we use the confidence
interval of the observations as a guideline. Particularly, we measure the statistical
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confidence of overall effect of vulnerabilities corresponding to a vendor on days
1, 2, and 3, respectively. Table 3 shows the confidence intervals (lower and upper
limit) on days 1, 2, and 3, measured with 95% confidence.

95% Confidence Interval. 95% Confidence Interval (CI) is a range that con-
tains the true mean of a population with 95% certainty. For a smaller population,
the CI is almost similar to the range of the data, while only a tiny sample of data
lies within the confidence interval for a large population. In our study, we have
noticed that our data populations are diverse, where some vendors have a small
number of samples, and others have larger number of samples. For example,
Figs. 6, 7 and 8 show the distribution of observations of effect for multiple exam-
ple vendors and several vulnerabilities associated with each vendor. The shown
histogram captures counts of the effect of vulnerabilities; the x-axis includes
brackets of the effect (measured by OAR) and the y-axsis captures the count for
the given effect. The diversity of the effect is well-captured by the count distri-
bution; high severity impact is seen in a vendor where the counts are focused in
the negative side of the interval, whereas lower (or no) impact is seen where the
count focus is in the positive side. The confidence interval with 95% confidence
for a given population (distribution) can be calculated as,

CI =
(

x̄ − 1.96
σ√
n

, x̄ + 1.96
σ√
n

)

,

where x̄ is the mean of the population, σ is the standard deviation, and n is the
number of samples in the population.

Putting it into perspective, while OARi, where i ∈ {1, 2, 3}, captures the
overall effect of vulnerabilities corresponding to a vendor, the Confidence Interval
(CIi, where i ∈ {1, 2, 3}) gives the confidence for the effect to lie within its upper
and lower bound. In Table 3, and by considering the data associated with Adobe,
for example, we can say with 95% confidence that the confidence interval for the
population, CIi, contains the true mean, OARi. We also observe that:

1. Our OARi in Table 2 are within their respective confidence intervals, which
means that our results reported earlier are statistically significant.

2. The true mean values for Adobe, Palo Alto Networks, Schneider Electric, and
Teradata, on the day a vulnerability is disclosed, are bounded in negative
intervals. Thus, the probability for a vulnerability having an effect on the day
a vulnerability is disclosed on the vendor’s stock price is highly likely.

3. The true mean for Oracle, Palo Alto Networks, Schneider Electric, and Zyxel
on days after the day a vulnerability is disclosed are bounded in negative
intervals. Thus, the probability for a vulnerability having a negative impact
on days succeeding the day a vulnerability is disclosed on the vendor’s stock
price is highly likely.

4. The true mean for every vendor on the three days is bounded from below
by negative value. Although the confidence intervals do not say anything
about the percentage of population that would fall in the negative side of
the interval, the lower bound indicate a likelihood that the population would
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Fig. 8. Histogram of the effect of vulnerabilities on stock value: Apple

have samples with negative effect on the vendor’s stock. Thus, given the
various vulnerabilities on a specific vendor, it is likely that some of those
vulnerabilities would have a negative effect on the vendor’s stock value, even
though the overall effect (measured by the mean) would be nullified. This, as
well, is well captured in our analysis.

7 Discussion and Comparison

There has been several works dedicated to understanding the hidden cost of
software vulnerabilities in the literature, which we discuss in the following across
multiple aspects by comparison.

7.1 Comparison of Findings with Prior Work

The prior work has made various conclusions concerning the effect of the software
vulnerabilities, and whether they are associated with a certain feature of those
vulnerabilities, including correlation with types, publicity, etc. In the following,
we compare our work and findings with the prior work across multiple factors,
including vulnerability type, publicity, data source, methodology, and sector.

Confidentiality vs. Non-confidentiality Vulnerabilities (Confirmation).
Campbell et al. [15] observed a negative market reaction for information security
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Table 3. Statistical confidence for each vendor. OAR1, OAR2, and OAR3 stand for the
average effect at day 1, 2, and 3 (percent), respectively. CIi is the confidence interval for
dayi, where i ε{1, 2, 3}. (2) Vendor names are abbreviated; PAN= Palo Alto Networks,
RWA = Rockwell Automation, TM= Trend Micro.

Vendor CI1 CI2 CI3 Vendor CI1 CI2 CI3

Low High Low High Low High Low High Low High Low High

Adobe −1.10 −0.20 −0.96 0.22 −1.23 0.23 Oracle −1.08 0.12 −1.19 −0.43 −2.10 −0.92

Advantec −0.96 2.18 −2.20 3.98 −3.02 4.94 PAN(2) −1.80 −0.37 −2.10 −0.15 −24.23 7.15

Apache −0.17 1.45 −0.40 2.36 −0.64 2.98 Redhat −0.19 1.68 −0.33 1.51 −0.64 1.86

Apple −0.25 1.07 −0.11 1.62 −0.17 2.24 RWA(2) −0.19 3.13 −2.18 2.00 −1.67 1.79

Atlassian −2.05 0.53 −3.41 1.62 −2.77 2.50 Samsung −0.21 0.06 −0.21 0.06 −3.07 8.96

Cisco −0.22 0.41 −0.20 0.85 −0.17 1.02 Sap −0.31 1.94 −0.57 1.94 −0.10 2.66

Citrix −0.46 0.75 −0.93 0.94 −0.69 1.83 Schneider −2.95 −0.17 −3.36 −0.37 −4.17 0.58

Facebook −0.38 0.63 −0.74 0.08 −2.37 3.27 Siemens −0.19 1.22 −0.60 2.26 −1.10 1.73

Fortinet −1.04 2.98 −0.76 2.66 −1.48 3.07 Sophos −0.19 3.64 0.77 2.96 −1.03 2.80

GE −1.05 1.30 −1.54 0.37 −2.28 1.50 Symantec −0.20 0.69 −0.05 1.09 −0.09 1.63

Google −0.41 0.25 −0.76 0.34 −0.75 0.60 Teradata −2.50 −1.86 −4.63 −1.10 −8.29 2.79

HP −0.38 0.79 −0.35 1.09 −0.34 1.63 TM(2) −1.71 0.60 −1.90 0.42 −0.41 2.37

IBM −0.04 0.48 −0.11 0.74 −0.17 0.69 Vmware −0.51 1.41 −0.79 1.42 −0.86 2.34

Juniper −1.66 1.29 −2.38 0.79 −3.57 1.37 Zyxel −0.52 0.88 −1.42 −0.95 −2.27 2.64

Lenovo −1.55 0.05 −2.67 0.42 −2.69 1.59 Nvidia −0.49 1.60 −0.57 3.49 1.10 7.67

Microsoft −0.03 0.92 −0.31 1.08 −0.20 1.33 Netgear −0.16 2.52 0.21 3.00 −2.28 2.48

Netapp −0.44 2.59 −0.27 1.80 −4.13 1.74

breaches involving unauthorized access to confidential data, and reported no sig-
nificant reaction to non-confidentiality related breaches. Through our analysis,
we had a similar conclusion. Particularly, we found that vulnerabilities affect-
ing vendor’s stock negatively have descriptions containing phrases indicating
confidentiality breaches, such as “denial of service”, “allows remote attacker to
read/execute”, “allows context-dependent attackers to conduct XML External
Entity XXE attacks via a crafted PDF”, and “allows context-dependent attack-
ers to have unspecified impact via an invalid character”.

How Publicity Affects Price (Contradiction). There has been several
works in the literature on attempting to understand how the coverage by media
and other forms of publicity for viruses and data breaches affect the stock value
of a given vendor associated with such vulnerabilities. For example, Hovav and
D’Arcy [10] demonstrated that virus-related announcements do not impact stock
price of vendors. Our results partly contradict their claims, as we show that vul-
nerabilities impact the stock value a vendor, sometimes significantly (negatively),
regardless to whether such vulnerabilities are announced or not.

Data Source and Effect (Broadening Scopes). Goel et al. [14] and Telang
and Wattal [13] estimated the impact of vulnerabilities on the stock value of a
given vendor by calculating a Cumulative Abnormal Rate (CAR) and using a
linear regression model. Their results are based on security incidents: while both
gather data from the press, Telang and Wattal [13] also use a few incidents from
Computer Emergency Response Team (CERT) reports. On the other hand, we
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Table 4. Per industry stock impact likelihood analysis.

Industry Likeliness

Software Highly likely

Consumer products Highly likely

Finance Highly likely

Security Equally likely

Electronics & hardware Equally likely

Conglomerate Less likely

Device Less likely

Networking Less likely

consider a wide range of vulnerabilities regardless of being reported by the press.
Our results show various trends and indicate the dynamic and wide spectrum of
effect of vulnerabilities on the stock price of vendors.

Methodology (Addressing Caveats of Prior Work). The prior work shows
the impact of vulnerabilities using CAR, which aggregates AR’s on different
days. However, we refrain from using CAR because of the following. First, CAR
does not effectively capture the impact of a vulnerability, due to information
loss by aggregation. For example, CAR would indicate no-effect if the magni-
tude (upward) of one or more days analyzed negate the magnitude (downward)
of other days. Second, we consider a vulnerability as having had an impact if
the stock shows a downward trend on d1, d2, or d3, irrespective of the magni-
tude. Third, our results, through a rigorous analysis are statistically significant.
To demonstrate the caveats of CAR and show the benefits of our approach in
capturing a better state of the effect of vulnerabilities on the stock price, we
consider both Samsung and Equifax in Table 2. On the one hand, the impact of
vulnerability on Equifax on days 2 and 3 was significant (−14.02 and −24.09 vs.
+1.52 on day 1), where CAR would capture the effect. On the other hand, such
an effect would not be captured by CAR with Samsung (−0.08 and −0.08 on
days 1 and 2 vs. +2.95 on day 3). Our approach, however, considers the effect
of the vulnerability the stock price over the different days separately (and does
not lose information due to aggregation).

Sector-Based Analysis. A general hypothesis is that the cost of security and
vulnerabilities on vendors is sector-dependent. One of the main shortcomings of
the prior work, however, is that it overlooks analyzing the cost based on sectors
of the software industry. By classifying vendors based a clear industry sector, our
results show the likelihood of effect to be high in software and consumer product
industry, while the likelihood is less in the device, networking or conglomerate
industries. Table 4 further highlights the industries with highest losses, by track-
ing losses by individual vendors. Although Table 2 shows that a vulnerability
may or may not have an effect on its vendor’s stock price, Table 3 shows that
individual vulnerabilities may affect the stocks’ value.
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Shortcomings. In this study we found a significant effect of vulnerabilities on
a given day and limited ourselves to the second day after the release of the
vulnerability in order to minimize the impact of other factors. However, other
factors may affect the stock value than the vulnerability, making the results
unreliable, and highlight the correlational-nature of our study (as opposed to
causational). Eliminating the effect of those factors, once known, is an open
question. Furthermore, apart from the effect on stock, a vendor may sustain
other hidden and long-term losses, such as consumers churn (switching to other
products or vendors), loss of reputation, and internal losses (such as man-hour
for developing remedies), which we do not consider in our evaluation, and open
various directions for future work.

7.2 Breaches and Disclosure

Our analysis of the vulnerabilities show that while vulnerabilities may or may
not have an impact on the stock price, a vulnerability reported by the press is
highly likely to impact the stock price. The diverse results for the vulnerabilities
collected from NVD are explained by the diverse severity of the vulnerabilities,
whereas (1) the press may report on highly critical vulnerabilities that are more
likely to result in loss, or (2) the reported vulnerabilities in the press may create
a negative perception of the vendor leading to loss in their stock value. This,
as a result, led many vendors to not disclose vulnerabilities in order to cope
with bad publicity. For example, Microsoft did not disclose an attack on its bug
tracking system in 2013 [35], demonstrating the such a behavior in vendors when
dealing with vulnerabilities [36]. Recent reports also indicate a similar behavior
by Yahoo when their online accounts were compromised, or by Uber when their
employees and users personal information were leaked. More broadly, a recent
survey of 343 security professionals worldwide indicated that the management of
20% of the respondents considered cyber-security issues a low priority, alluding
to the possibility of not disclosing vulnerabilities even when they affect their
systems [37].

8 Conclusion and Future Work

We perform an empirical analysis on vulnerabilities from NVD and look at their
effect on vendor’s stock price. Our results show that the effect is industry-specific,
and depends on the severity of the reported vulnerabilities. We also compare the
results with the vulnerabilities found in popular press: while both vulnerabilities
affect the vendor’s stock, vulnerabilities reported in the media have a much more
adverse effect. En route, we also design a model to predict the stock price with
high accuracy. Our work is limited in a sense that we do not consider other
external factors affecting the stock or internal factors affecting long term users
behavior and deriving vulnerabilities cost. Exploring those factors along with
regional differences in effect will be our future work.
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Abstract. The online shopping sector is continuously growing, generat-
ing a turnover of billions of dollars each year. Unfortunately, this growth
in popularity is not limited to regular customers: Organized crime tar-
geting online shops has considerably evolved in the past years, caus-
ing significant financial losses to the merchants. As criminals often use
similar strategies among different merchants, sharing information about
fraud patterns could help mitigate the success of these malicious activ-
ities. In practice, however, the sharing of data is difficult, since shops
are often competitors or have to follow strict privacy laws. In this paper,
we propose a novel method for fraud detection that allows merchants
to exchange information on recent fraud incidents without exposing cus-
tomer data. To this end, our method pseudonymizes orders on the client-
side before sending them to a central service for analysis. Although the
service cannot access individual features of these orders, it is able to infer
fraudulent patterns using machine learning techniques. We examine the
capabilities of this approach and measure its impact on the overall detec-
tion performance on a dataset of more than 1.5 million orders from a
large European online fashion retailer.

1 Introduction

The electronic commerce sector (e-commerce) is rapidly growing world-wide,
offering a large variety of products which are delivered directly to the customers’
home. In order to stay competitive with traditional shops, online retailers try to
send out products as soon as possible after being purchased, thus leaving only
little time to check for fraudulent activity. Following this strategy, the online
merchant Amazon alone generated a sales revenue of about 177.87 billion dollars
in 2017 [34]. However, the great success of these shops and their high incomes also
attract cybercriminals that cause significant financial losses to the merchants.

The creativity of the cybercriminals is virtually unlimited and ranges from
individual fraudsters refusing to pay for products to highly organized cybercrimi-
nals. So called reshipping scams are, for instance, a common fraud scheme which
causes an estimated financial loss of 1.8 billion US dollars each year [14]. In
these scams, the fraudsters use stolen payment data and let the shop send the
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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products to middlemen who relabel the goods and forward them to the criminals.
In consequence, it becomes rather impossible for law enforcement to catch these
cybercriminals due to the lack of any actual information about their identity.

As a reaction to the growing threat caused by cybercriminals, merchants
have started to rely on fraud detection systems which automatically scan incom-
ing orders for fraudulent patterns. According to a report published by Lexis-
Nexis [19], these systems often combine multiple fraud detection techniques,
such as identity and address verification or device fingerprinting. Despite these
efforts to automate the detection process, manual reviews are often addition-
ally necessary to verify that an order is indeed malicious. Still, there remains
a large number of undetected fraud incidents. As fraudsters tend to use similar
fraud patterns among various merchants, an exchange of current fraud incidents
between online retailers could effectively reduce the number of successful fraud
attempts. In practice, however, this exchange of information is difficult because
competitive merchants are often unwilling to share their data and also privacy
laws pose a big hurdle for sharing customer data among different parties.

In this paper, we propose a novel approach that allows merchants to exchange
information on recent fraud incidents without exposing customer data to other
retailers. In particular, each merchant pseudonymizes incoming orders on the
client side before uploading them to a central analysis service. This service in
turn applies machine learning techniques to the pseudonymized data accumu-
lated from all participating online retailers. In this way, the analysis service does
not have access to orders in plaintext and each merchant cannot see data from
the others. The resulting detection method, however, is capable of uncovering
patterns in the pseudonymized data that may indicate global fraud and would
have been missed otherwise.

Our pseudonymization method is based on Bloom filters as proposed by
Schnell et al. [29]. We extend this data representation to improve the privacy
of customers and empirically evaluate the probability of de-pseudonymization
attacks. Based on these results, we calibrate the parameters of our pseudonymiza-
tion method such that a machine learning algorithm can find actual fraud pat-
terns while still providing a good protection of the underlying data.

We apply our method to a large data set consisting of more than 1.5 mil-
lion actual orders collected by a large European online retailer and evaluate
several learning methods on the pseudonymized data. We compare our results
against a baseline that the merchant obtains without the use of pseudonymiza-
tion. Although the detection performance decreases due to the information loss
introduced by the pseudonymization, significant fraud patterns still remain in
the data which can help to inform merchants about potential fraudulent activity.

In summary, we make the following contributions:

1. We present an approach that allows the sharing of data between different mer-
chants without directly exposing sensitive information about their customers.

2. We determine the strength of the proposed pseudonymization method while
assuming a realistic attack scenario.
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3. We evaluate the detection performance of our approach on a large dataset
containing 1,840,582 actual orders and demonstrate its ability to extract use-
ful fraud patterns from the data despite the loss of information introduced
by the pseudonymization.

4. To foster future research in this area, we make our method publicly available
to the community1.

The remainder of this paper is structured as follows. Section 2 provides some
background information about the fraud ecosystem and common fraud patterns.
In Sect. 3 we define a threat model which allows us to design a system for privacy-
enhanced detection of online fraud. The resulting system is evaluated in Sect. 4.
We discuss the challenges and limitations that we have faced throughout our
research in Sect. 5 and discuss related work in Sect. 6. Section 7 concludes this
paper.

2 Background

Online retailers are nowadays facing a large variety of different types of fraud.
Due to convenience for the customers, it is not possible to simply enforce a strict
verification process before delivering the purchase. Instead, the merchant needs
to carefully weigh up the chance of losing a legitimate customer against the
chance of being scammed by a cybercriminal. This decision is far from being
trivial since fraudsters are continuously improving their patterns in order to
remain undetected. In the following, we briefly discuss three prevalent fraud
patterns of different complexity.

The so-called chargeback fraud [19,38] represents a simple, yet common kind
of fraud. A scammer purchases several products that are paid by credit card.
After receiving the purchased goods, the fraudster requests a chargeback from
her bank, thus getting the spent money refunded. This type of fraud understand-
ably works just once at each merchant. Consequently, professional fraud often
additionally involves identity theft where stolen credit card data or other per-
sonal information of other people are used to commit fraud repeatedly. Similar
fraud activities also emerge in the context of bank transfers. For example, SEPA
transfers can be canceled within a few days as part of a chargeback fraud.

Another type of fraud involves the payment by invoice, a popular payment
method in some European countries. Normally, a customer purchases products
that are delivered together with the invoice. This allows for invoice fraud which
is similar to chargeback fraud in the sense that the payment is postponed to a
later time. However, compared to chargeback fraud, it poses the additional risk
to the retailer that no financial information about the customer is available—
not even the minimal guarantee of a valid solvent bank account. This further
lowers the threshold for committing fraud: while for chargeback fraud at least a
(possibly stolen) credit card number is required, for the invoice the retailer has no
interaction with the fraudster whatsoever. The fraudster obtains the products,
but is never paying the invoice.
1 http://www.github.com/darp/abbo-tools.

http://www.github.com/darp/abbo-tools
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Fig. 1. Overview of the different steps of a privacy-enhanced fraud detection. A mer-
chant (1) extracts features from an incoming order that are subsequently (2) prepro-
cessed and (3) pseudonymized. Next, the analysis service applies (3) classification and
(4) clustering methods to uncover fraudulent activities.

A more involved group of fraudulent activities combining various scamming
patterns is known as re-shipping scams [14], commonly applied by professional
cybercriminals. The fraudsters purchase goods from merchants by using stolen
credit card data or benefit from deferred payment solutions like invoice. They
hire middlemen commonly referred to as drop points via job announcements in
newspapers or online portals. These drop points accept the packages and forward
them to the fraudsters. The fraudsters’ identity remains unknown while the
possibly unwitting middleman might be approached by law enforcement. These
middlemen are often used by multiple fraudsters to scam different merchants
and are active for less than a month.

The exchange of fraudulent orders among multiple vendors and the appli-
cation of a global classifier could effectively hinder fraudulent orders involving
common drop points, stolen identities or credit card numbers. Overall, these
fraud patterns highlight the need and benefit of a shared fraud detection that is
discussed in the remainder of this manuscript.

3 Methodology

In this section we develop the overall setting of a shared analysis service among
several merchants. We then derive a threat model and discuss the resulting
privacy risks. Based on this step, we finally design a pseudonymization method
to protect the customers’ privacy during fraud detection.

3.1 The Analysis Service

Each participating merchant pseudonymizes its incoming orders before uploading
them to the analysis service. A classification model trained on the pseudonymized
data returns a prediction score which describes the potential risk of a submitted
order. In contrast to a classifier solely trained on the data from a single retailer,
the proposed classifier has access to the orders from all participating merchants.
In this way, it is capable to identify global fraud incidents that could be missed
by a single vendor. As consequence of this design, the analysis service does not
have access to data in plaintext and only the merchants can link reported fraud
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predictions to the original orders. That is, no information about ordered goods
and customers are shared in clear with the analysis service.

Figure 1 summarizes the processing chain of the merchants and the analysis
service. The features are extracted and preprocessed for each incoming order,
pseudonymized and mapped to a vector space at the client side. Subsequently, the
analysis service performs classification and clustering to identify fraud incidents.
We discuss these steps in more detail in the following.

3.2 Features for Fraud Detection

To identify online fraud effectively, the classification model needs access to a set
of discriminating features. The participation of a diverse range of online retailers
also requires the definition of a meaningful subset of features that every retailer
can contribute to. Thus, we focus on a minimal set of features which on the one
hand are naturally available due to the purchase process and on the other hand
enable the classification model to discriminate fraudsters from normal orders:

Address Data. Every online fraud needs to be delivered to a certain physical
address before the fraudster is able to resell the stolen goods and generate profit.
The drop points are often reused since it is difficult to organize a multitude
of delivery places without the help of a sophisticated organizational structure
which is often not available. By collecting address data from multiple merchants
it becomes easier to identify suspicious behavior for one particular address.

Cart Items. The ultimate goal of the fraudster is to get goods for free which
she can easily resell. In most cases she will therefore focus on specific brands
and types of goods which have a good market value. This highly resaleable
combination of goods in correlation with fraud will emerge naturally in the
data pool of the analysis service and thus can be exploited by the classifier.
We describe the ordered goods as a list of unique article identifiers and their
respective prices.

Iterations. Fraudsters try to optimize their shopping cart by repeatedly adding
or removing items until they can fool the checkout system and get the delivery.
This is the single point where they can receive feedback from the fraud detection
system and try to uncover the black box by exploiting common assumptions, for
instance that a lower basket size increases the chance to get through.

Solvency Score. Online retailers usually include a solvency score in their assess-
ment of a customer. This score describes more or less accurately the probability
that a customer will default. In the context of fraud detection, this feature helps
to discriminate benign orders from fraud orders: If a customer has a good sol-
vency score she is most of the time an actual person with a positive shopping
history and is thus less likely to commit fraud.

This minimal set of features allows the analysis service to build classification
models that balance out the amount of used features with the benefit of the
pooling effect.
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3.3 Threat Model

Sharing this kind of data between several parties obviously raises serious pri-
vacy and competition concerns. An order contains sensitive information about
a customer such as her name, address and purchased products. To derive a
secure pseudonymization method, we therefore need to define a threat model
that describes the involved parties and their capabilities.

Merchants. The analysis service is used by multiple, possibly competitive mer-
chants. A fraudulent merchant might thus try to abuse the analysis service to
access confidential information from other merchants, such as the amount and
type of commonly sold goods, the addresses of active customers and so on.

Hence, we design the analysis service such that the participating online retail-
ers do not need to trust each other. In particular, each merchant has only access
to its own uploaded data, that is, no retailer ever needs to have explicit access
to the pseudonymized data of other participating merchants. Instead, the infor-
mation of fraud incidents from other retailers is implicitly contained in the clas-
sification model trained by the analysis service.

Analysis Service. A fraudulent operator of the analysis service has access to
the data of all merchants, thus posing a serious risk to the confidentiality of
the data. We assume that the operator is not one of the participating retailers
but knows the names and addresses of some customers in the dataset. Using this
information, she tries to deduce the goods that a particular customer has bought
from one or several merchants.

In consequence, we have to ensure that the analysis service never has access
to the plain data but only to pseudonymized orders. Still, the possibility is given
that the operator of the analysis service attempts to break the pseudonymization
using her background knowledge about certain customers. Thus, we need to
strengthen our pseudonymization technique accordingly.

3.4 Pseudonymization

After discussing the utilized features and defining the threat model, we can
finally develop a suitable pseudonymization technique. This technique has to
fulfill certain requirements in our scenario. Most importantly, it should not be
possible to easily reconstruct the information stored within the pseudonymized
orders. At the same time, it should allow a machine learning algorithm to still
extract fraudulent patterns from the data. Moreover, the approach should be
capable of handling different data types as the discussion of the features in the
previous subsection highlights.

Preprocessing the Data. Our proposed pseudonymization technique is based
on Bloom filters [1], which we describe afterwards. The conversion of an incoming
order into this data structure requires a preprocessing that can be divided into
two distinct steps.
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Fig. 2. Instead of using the exact value of the numerical features, their values are
discretized by binning them.

First, non-string values are converted into a string representation. For numer-
ical features like the article price, this is done by simply binning their values. In
particular, the size of these bins is selected regarding to the value distribution
of the considered feature. Figure 2 depicts an example of this procedure for the
article price. The selection of the bin size affects both the detection performance
and the pseudonymization strength. By selecting a large bin size, more articles
get assigned to the same price. This makes it harder for an attacker to derive
whether the filter contains a particular article solely based on its price value.

In the second step, all strings are decomposed into smaller substrings before
being inserted into the Bloom filter. Overall, different types of decompositions
exist which can be applied.

– Word Decomposition. The order is split at the whitespaces and the resulting
elements are inserted into the Bloom filter. While the decomposition of orders
through this method is rather simple, it is not possible to match strings whose
spelling only slightly differ.

– N-Gram Decomposition. In contrast to the word decomposition, the extrac-
tion of n-grams allows us to compensate for spelling mistakes and thus to
decide whether two Bloom filters contain similar strings [8].

– Entity Decomposition. This decomposition is similar to the word decompo-
sition, but additionally stores the information to which part of the order a
particular word belongs. This, for instance, allows determining whether the
shipping and billing address of an order differ—a pattern indicative for fraud-
ulent activity.

– Colored N-Grams Decomposition. Similar to the decomposition in entities,
colored n-grams store to which part of an order the extracted n-gram belongs.
Figure 1 shows an example for a colored 2-gram decomposition.

Bloom Filters. After the preprocessing of an order, the resulting strings are
finally put into a Bloom filter. For each order, we initialize a separate Bloom
filter. This probabilistic data structure enables storing large sets of elements
within a limited amount of memory while simultaneously allowing an efficient
comparison between different filters. At the same time, it does not allow an
attacker to recover the information stored inside the data structure without
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Fig. 3. Two elements are inserted into the Bloom filter using three hash functions (with
a collision at the 4th bit).

background knowledge. Initially proposed for spell checking, Bloom Filters have
already been successfully applied in several privacy-sensitive fields including the
linkage of health records [11,21,26,29].

Figure 3 depicts the basic concept behind Bloom filters schematically. The
filter is a bit array of fixed length m where all bits are initialized as 0 s. To insert
an element x into the filter, a predefined number of k independent hash functions
hi(x) are applied on the element. Each hash function maps the element to a
particular position in the filter where the corresponding bit is set to 1. Similarly,
it is possible to check whether the filter contains a particular element by applying
these hash functions to the element and checking whether the corresponding bits
are set to 1. If one of the bits is not set, the element has definitely not been
inserted into the filter. In contrast, a positive match may be a false positive if
the bits are set to 1 by other inserted elements.

These so-called collisions are usually an unwanted property of Bloom filters.
However, collisions are desirable in our case since they already thwart an attacker
from certainly reconstructing information stored within the filter. Nonetheless,
this mechanism on its own is not sufficient to protect sensitive data as our
evaluation in Sect. 4 underlines.

Hardening the Bloom Filter. We examine several extensions of Bloom filters
to strengthen their security properties.

– Noise Insertion. Adding noise to the Bloom filter can help to protect the data
stored inside of it [11,21] but can also partially destroy important informa-
tion. We examine the effects of this approach for our application scenario by
randomly setting bits in the filter.

– Merging Filters. Instead of just setting random bits, it is also possible to
sample fake items from their respective distributions and add them to the
Bloom filter. While this approach is more complex, it also further lowers
the probability of successful frequency analysis attacks [16]. We implement a
similar approach by merging multiple filters into a single one before sending
it to the analysis service. Thus, an attacker has no possibility to assign a
specific feature, e.g. an article, to a particular customer.

– Keyed Hash Functions. If an attacker has knowledge of the underlying distri-
butions of the dataset and exact parameters used to pseudonymize the data,
she can perform a dictionary attack and reconstruct the information stored
inside the filters. This kind of attack can be effectively thwarted by keyed
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hash functions [28,29]. In our case, the retailers share a secret key which is
unknown to the operator of the analysis service, thus significantly improving
the protection of the data stored inside the filters.

With these extensions at hand, it should be possible to clearly lower the prob-
ability of a de-pseudonymization. However, these techniques can simultaneously
affect the detection performance of the classifier. We examine and discuss the
effects of these techniques in Sect. 4.2.

3.5 Learning-Based Fraud Detection

In the last step, we apply machine learning techniques for automatically detect-
ing fraudulent patterns in the pseudonymized data. The usage of machine learn-
ing relieves a fraud analysis from manually constructing detection rules. In par-
ticular, we consider classification and clustering techniques. In the classification
step, a learning model distinguishes between fraud and non-fraud cases. After-
wards, fraudulent patterns are extracted from the data by applying clustering
techniques. This allows a fraud analyst to interpret these patterns and to take
further actions if necessary.

Classification. The application of machine learning requires an appropriate vector
representation of each Bloom filter. To this end, we associate each bit of the
Bloom filter with a dimension in an m-dimensional vector space, where each
dimension is either 0 or 1 and m corresponds to the length of the Bloom filter:

x ∈ R
m = (b1, b2, . . . , bm) , bi = {0, 1} . (1)

This yields very sparse high-dimensional data on which machine learning tech-
niques can be applied. We examine the performance of Linear Support Vector
Machines [10] and Gradient Boosted Trees [7] on this representation.

Clustering. In the next step, we try to find fraudulent patterns within the
pseudonymized data by applying clustering methods such as k-means [9]. The
identified clusters are ranked according to their ratio between fraud and benign
samples. That is, clusters that contain many fraud incidents and preferably no
benign samples are ranked at the top.

We can then extract (pseudonymized) fraudulent patterns from the highest
ranked clusters. Figure 4 schematically visualizes an example for this process.
Each Bloom filter of a fraud case is represented as a row in the left image. Red
pixels represent set bits, black pixels unset bits. In addition, white horizontal
lines separate the different clusters from each other. This representation easily
uncovers fraudulent patterns as a unique combination of red vertical stripes
in the image. In practice, the analysis service can extract these patterns and
send them to each online retailer. Since they have complete knowledge of the
underlying pseudonymization technique, they are able to map back the fraud
pattern to plaintext. Figure 4 shows an example on the right where an uncovered
combination of n-grams indicates fraudulent activity.



Privacy-Enhanced Fraud Detection with Bloom Filters 405

Fraud patterns Uncovered pattern at client-side

Fig. 4. Schematic visualization of the process to uncover fraud patterns on the client-
side.

4 Evaluation

A successful operation of the central analysis service rests on two key require-
ments: First, we need to hinder a de-pseudonymization as good as possible. Sec-
ond, we should be able to apply machine learning techniques to detect fraudulent
orders. To evaluate whether we can balance these opposing requirements, we con-
duct the following experiments:

1. Calibrating the data protection. We examine the strength of our implemented
pseudonymization method under the given threat model. Based on the results,
we preselect a range of parameters that ensure a good data protection.

2. Calibrating the detection performance. We pseudonymize a sample of the data
using the selected parameter ranges and train a classifier for each combination.
We pick the parameter combination that yields the best detection results.

3. Classification. We pseudonymize the complete dataset of orders and evaluate
the detection performance on this data. Subsequently, we compare the results
with the detection performance achieved on the unprotected data.

4. Clustering. Finally, we cluster the pseudonymized data and extract common
patterns of professional fraud from it. We then discuss how these patterns
can help merchants to identify fraud more quickly.

4.1 Evaluation Dataset

Our dataset consists of 1,840,582 orders including 14,179 fraud incidents from
2016 provided by Zalando, a large European online fashion retailer. The data
was carefully cleaned to ensure a high data quality. To discriminate between
benign and fraudulent orders, we consider the actual payment. We flag each
order as fraudulent that is not payed after three months. We have conducted our
experiments in close consultation with Zalando. In each step, we have carefully
followed German data privacy laws.

4.2 Calibrating the Data Protection

We first examine the pseudonymization method described in Sect. 3.4 to preselect
a range of promising Bloom filter parameters that provide high pseudonymiza-
tion strength.
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Attack Scenario. To adequately evaluate the protection introduced by the
proposed pseudonymization method, we consider the following attack scenario
according to the threat model from Sect. 3.3. The analysis service represents the
adversary and tries to reconstruct information stored within the Bloom filters.

Without background knowledge, such an attack is not possible. The adversary
needs to know the parameters that have been used to create the Bloom filters,
such as the type of hash functions. In addition, the service needs a list of possible
addresses or articles. Without this information, a Bloom filter simply appears
to the adversary as random bit sequence. Therefore, we grant the service full
knowledge of the underlying method and assume that it has collected a list of
customer addresses and possible articles, for example, by crawling the web. Its
objective is now to gain knowledge about the shopping behavior of the customers
in the dataset. In particular, the service wants to derive which goods a particular
customer has bought.

With the necessary background knowledge the attacker can create own Bloom
filters with the names and addresses of targeted customers and compare them
with the pseudonymized orders. To this end, the adversary uses the Jaccard
similarity [33] which is defined between two Bloom filters B1 and B2 as

J(B1, B2) =
|B1 ∩ B2|
|B1 ∪ B2| =

|B1 ∧ B2|
|B1 ∨ B2| . (2)

B1∧B2 represents the bitwise intersection, B1∨B2 the respective union between
the two vectors. The attacker can now match two Bloom filters if their similarity
score is greater than a particular threshold. After having identified a particular
customer in one of the pseudonymized orders, the adversary can run a dictionary
attack in order to determine which goods have been purchased by this customer.

Results. For measuring the influence of different pseudonymization parameters,
we sample an artificial dataset consisting of 1,000 distinct orders. Using this data,
we evaluate the impact of several Bloom filter parameters on the pseudonymiza-
tion strength. The obtained results are averaged over 5 repetitions.

Decompositions. The results for different decompositions types are presented in
Fig. 5a. The plot depicts the fraction of correctly re-identified customers for differ-
ent decomposition types depending on the Bloom filter length. For all examined
decompositions, the attacker is able to re-identify the majority of customers even
when a small Bloom filter size of 500 Bits is selected. Further reducing the size
of the filters increases the collision probability and in turn also lowers the de-
pseudonymization probability. However, the high number of collisions destroys
valuable patterns for the detection of fraud at the same time.

Overall, we find that the collision probability does not provide proper pro-
tection of the sensitive data and we require further protection mechanisms.
Moreover, the selected decomposition type has only little impact on the de-
pseudonymization probability. Hence, we select two decomposition types that
should allow deriving the best detection performance, i.e., n-grams and colored
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Fig. 5. (a) and (b) depict the impact of different decomposition types and hardening
mechanisms on the pseudonymization strength.

n-grams. While both allow handling spelling mistakes, colored n-grams also allow
distinguishing between different parts of an order.

Hardening Mechanisms. Since the collision probability does not provide sufficient
protection, we have to rely on the hardening extensions described in Sect. 3.4.
The results of their evaluation are depicted in Fig. 5b. In this experiment, we
add 10% of noise to the Bloom filters and measure the impact on the de-
pseudonymization performance. Surprisingly, the addition of noise has almost
no effect on the success of the attacker. The reason for this is that the attacker
has knowledge about the name and address of a customer in our attack scenario.
If both are re-identified in a particular Bloom filter, the probability is very high
that the pseudonymized order indeed belongs to that customer—despite the
presence of noise.

In contrast to adding noise, the two other hardening mechanisms succeed in
protecting the customer data. If we merge k orders during the pseudonymization
with k = 3, the attacker is unable to re-identify the order of a particular customer.
However, if the merged order is identified as fraud, the merchant needs to check
which one of the k orders actually contains fraud patterns. The hardening mech-
anism of keyed hash functions also successfully thwarts de-pseudonymization
without the drawback of the merge method. In this case, the mechanism requires
that the key remains unknown to the attacker.

In summary, the adversary in our attack scenario can be effectively thwarted
when merging multiple orders or by using keyed hash functions. These two mech-
anisms provide a good protection independent from the size of the Bloom filters.
In the following, we thus examine the effects of both hardening mechanisms on
the detection performance using Bloom filter sizes between 1000 and 10,000 Bits.
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4.3 Calibrating the Detection Performance

The parameters selected in the previous step ensure a good data protection.
It thus remains to calibrate our approach such that also a good detection of
fraudulent activity is possible—if at all.

Overall, we have 384 different parameter combinations to evaluate after the
preselection of parameters, such as the size of the Bloom filter, the regularisation
parameter of the learning method and the lengths of the n-grams. In order
to cope with this large number, we use only a small subset of the available
training data and perform the model selection on it. This subset consists of
11,145 samples including 5,591 fraud incidents. We train a linear SVM on the
data and measure its performance using the area under the ROC curve (AUC) [2].
We bound the AUC at 1% false positives to favor models with low false-positive
rates. Having large false positive rates could otherwise lead to the rejection of
legitimate customers, thus causing even greater financial loss to the merchants.

Based on the results of these experiments, we select a Bloom filter size of
4000 bits and a colored 2-gram decomposition. Moreover, we choose a bin size of
10 and 1 for the article price and the solvency score, respectively.

4.4 Classification

We finally examine the change in detection performance on the full dataset. We
pseudonymize the dataset using the previously determined parameter values. We
then split the dataset into two distinct sets and compare the detection perfor-
mance obtained on the pseudonymized data with the original performance. The
results are presented in Fig. 6a. The baseline provided by Zalando is depicted
in black whereas the results obtained on the pseudonymized data are shown as
colored lines.

Note, that all classifiers have been trained on the same set of features in
order to ensure comparability. Using keyed hash functions as hardening mecha-
nism, we achieve a detection performance of about 75% compared to the results
obtained by Zalando at 1% false positives. As can be seen from Fig. 6a, this ratio
remains nearly constant, even for significantly lower false positive rates such as
0.1%. We credit the difference in detection performance compared to Zalando
to the information loss induced by the pseudonymization. While Zalando, for
instance, trains the learning algorithm based on the exact numerical values, we
lose information due to the binning of numerical features as described in Sect. 3.4.
Nonetheless, we can uncover a large fraction of the fraud cases without access to
the original orders, demonstrating that a central analysis service is technically
feasible.

We also evaluate the detection performance after merging the filters. In par-
ticular, we randomly pick three Bloom filters and merge them into one. If at least
one of the merged filters has been labeled as fraud, the resulting Bloom filter
is also considered to be malicious. We notice a significant drop in the detection
rate, thus achieving only about 30% of the original detection rate. We deduce
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Fig. 6. Classification results on 1,840,582 orders with a Bloom filter size of 4000 and two
different hardening mechanisms. Each ROC curve shows the normalized true positive
rate by using the performance of the baseline classifier as reference. Moreover, the table
in (b) presents the purity of the top-ranked clusters obtained on a dataset of 11,145
orders.

that merging the Bloom filters changes the underlying distributions drastically
and thus has a large impact on the detection rate.

In summary, we achieve a detection performance of about 75% compared to
the unprotected data while at the same time clearly enhancing the protection of
the underlying data. In the following, we evaluate whether it is possible to extract
fraudulent patterns from the data using clustering despite the information loss
introduced by the pseudonymization.

4.5 Clustering

We apply a k-means clustering to the dataset of 11,145 samples which has also
been used to perform the parameter selection as discussed in Sect. 4.3. In par-
ticular, we test different values for k and pick the one which yields the best
results, that is, a clustering where the top ranked clusters have the highest purity.
Figure 6b shows the top ranked clusters obtained when selecting k = 100.

We investigate these best-ranked clusters to determine whether they contain
schemes of organized cybercrime. By de-pseudonymizing the data at the mer-
chant, we find that the orders in the first three clusters are mainly grouped
together due to specific articles or addresses they share. However, after consul-
tation with Zalando, they can not be considered professional fraud and rather
correspond to simple chargeback scams.

By contrast, cluster 4 and 5 exhibit typical patterns of professional scam. In
particular, the forth cluster mainly contains orders of expensive clothes which
are delivered to drop points in Berlin. Moreover, these orders show a high itera-
tion count, indicating that the fraudsters tried to optimize their shopping cart.
Similar patterns can also be found in the cluster 5 where the fraudsters ordered
rather high-priced accessories like watches or bags and let them send to drop
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points in Cologne. It is worth noting that both clusters contain 41 and 26 presum-
ably legitimate orders, respectively. Overall, the case study thus shows that the
extraction of fraud patterns from the pseudonymized data is possible, however,
it requires tuning to lower the fraction of legitimate orders in large clusters.

5 Limitations

Our approach represents a first step towards a privacy-enhanced detection of
fraudulent activity in e-commerce. However, there still exist several challenges
and limitations which we discuss in the following, together with future research
directions.

Malicious Collaborations. In our threat model we do not consider the collab-
oration between a malicious merchant and a malicious analysis service. In this
scenario, the key for the pseudonymization could be leaked to the analysis service,
thus enabling its operator to run dictionary attacks on the Bloom filters. For-
tunately, the collaboration of multiple merchants or a malicious analysis service
alone do not pose a risk. It therefore remains future research to find extensions
that also protect the customer data in scenarios where a malicious merchant and
service collaborate.

Consistent Data Labeling. A consistent procedure for labeling the input data
fed to the machine learning algorithm is essential to achieve a good classification
performance. While this seems to be an obvious requirement, it is far from trivial
in practice. This is because various online retailers often have their own definition
of fraud and thus varying labeling procedures. In order to apply our approach in
practice, it would be necessary that the participating online retailers agree on a
common labeling scheme.

Data Access. We only have access to the data of a single merchant to conduct
our experiments. In order to demonstrate that our approach is indeed capable
of identifying global fraud patterns, we thus require further data from other
merchants. Still, the obtained results indicate that the identification of fraud is
possible on pseudonymized data using our method and thus can help us acquire
a larger group of participating merchants.

Frequency Analysis Attacks. Several researchers have shown that Bloom filters
are prone to frequency analysis attacks [15–17]. Although these attacks pose
a real threat in practice, they require the adversary to have exact background
knowledge about the underlying distributions from which the features are drawn.
While this is a realistic assumption for publicly available information such as
names or addresses, it requires insider knowledge for other features like the
solvency score.

By adding noise to the filters, the risk of a successful attack can be further
reduced and should thus be negligible in our case. Nonetheless, measuring the
actual risk needs further research since it highly depends on the particular appli-
cation scenario and the knowledge available to the adversary.
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6 Related Work

In the following, we discuss related work which contains research of mainly three
different disciplines. First, we discuss research that provides insights into the
underground ecosystem related to reshipping scams. Second, we describe papers
that deal with fraud and malware detection. Finally, we review related literature
which focusses on privacy-preserving technologies.

Underground Ecosystem. The first in-depth study on reshipping scams is pre-
sented by Hao et al. [14] who have analyzed the log files from seven reshipping
scam operations that took place between 2010 and 2015. Their paper provides
a detailed overview of the inner workings of this underground economy and esti-
mates the overall financial loss caused by reshipping scams to be around 1.8
billion US dollars per year. In addition, they have been able to identify several
possible ways how these criminal activities can be disrupted. However, the sug-
gested countermeasures need to be enforced by the shipping service companies,
thus requiring the online retailers to rely on these companies. In contrast, we
focus on defenses that can be directly applied by the merchants themselves.

Other research groups have examined fraudulent activity closely related
to reshipping scams. In particular, reshipping scams mostly imply identity
theft [3,30,35] and mule recruitment [12,22]. A survey on hijacking of online
accounts for identity theft has been conducted by Shay et al. [30]. The authors
have interrogated 294 people about their experience with account hijacking. Sur-
prisingly, about 30.3% of the participants report that they have experienced
compromise attempts on their email or social network accounts at least once. A
similar study has been conducted by Bursztein et al. [3] but focusses on manual
account hijacking. While identity theft allows fraudsters to distribute malware
or spam using the stolen identities [18], it also poses a crucial part in reship-
ping scams. Consequently, some countermeasures initially proposed for spam or
malware might also help to impede fraud in e-commerce.

Fraud Detection in e-Commerce. A large strain of research examines techniques
to efficiently detect credit card fraud [5,23]. Chan et al. [6] present a survey of
different techniques for detecting credit card fraud. Likewise, other researchers
have studied approaches to detect related fraud variants. In particular, Pandit et
al. [25] propose a fraud detection system based on a Markov Random Field to dis-
cover fraud in online auctions. Their approach has been evaluated on a data set
containing more than 60,000 actual users from eBay. Another method by Maran-
zato et al. [20] targets frauds against reputation systems in e-markets. An orthog-
onal strategy to defend against online fraud is the application of fingerprinting
techniques like browser fingerprinting and device fingerprinting [4], which unfor-
tunately raises serious privacy concerns [24]. The most similar method to ours
has been proposed by Preuveneers et al. [27]. The authors present a system which
provides fraud detection as a service to the merchants. However, their approach
does not consider data protection. Moreover, they use individual detection rules
for each merchant instead of a global classifier trained on the data of several
online retailers.



412 D. Arp et al.

Privacy-Preserving Technologies. When processing personal data, it is particu-
larly important to ensure that the data is protected from unauthorized access.
Techniques to achieve a high protection level for sensitive patient data have been
widely studied in the field of medical databases [16,29,37]. In particular, Schnell
et al. [29] present an approach for privacy-preserving record linkage based on
Bloom filters. Personal identifiers are stored in Bloom filters which can then
be used to re-identify the database entry of a person within different databases
without revealing its identity. Several researchers have demonstrated attacks on
Bloom filters [15–17] using frequency analysis techniques. However, these attacks
require the attacker to have background knowledge on the underlying distribu-
tions. While this is a realistic assumptions for publicly available information such
as names or addresses, it requires insider knowledge for other features like the
solvency score.

In addition, various researchers have recently demonstrated several successful
information leakage attacks against machine learning models [13,32,36]. As a
result of these attacks, the adversary is able to deduce some potentially sensitive
information from the data that has been used to train the classifiers. In order to
fend off some of these attacks, Shokri and Shmatikov [31] propose a system to
jointly learn a neural network without exposing too much information of the local
datasets. However, since random weights from locally trained neural networks
are exchanged between the different parties, the exact privacy implications of
this approach are still unclear. A similar defense technique has been presented
by Wu et al. [39] to privately evaluate random forests and decision trees, but is
limited to two parties and thus not applicable in our scenario.

7 Conclusion

This paper takes a first step towards an earlier detection of fraudulent orders
committed against online retailers. As scammers often use similar strategies
among several merchants, an exchange of information about recent fraud schemes
between merchants could effectively impede the success of these scams. However,
merchants are often unwilling to share this data with competitors and, moreover,
have to follow strict privacy laws.

As a remedy, we propose an analysis service that allows multiple merchants
to upload incoming orders that are pseudonymized in advance. In this way, the
analysis service is able to extract global fraud patterns from the shared but
pseudonymized data. This enables the service to inform the merchants about
recent fraud schemes in a privacy-friendly way.

We implement a pseudonymization technique based on Bloom filters and
evaluate its impact on the overall detection performance. To this end, we use
a large dataset of actual orders collected by a large European online fashion
retailer. In the pseudonymized setting we are able to spot 75% of the fraud
cases detected by the privacy-unaware analysis at the same false positive rate.
An additional clustering step further demonstrates that we are able to identify
common patterns of professional fraud.
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Although our approach does not provide perfect results, we demonstrate that
balancing privacy and performance in fraud detection is technically feasible and
direct access to sensitive information is not strictly necessary. Our approach is
generic and can be extended using different pseudonymization techniques and
learning methods. As a consequence, we are optimistic that future work can fur-
ther narrow the gap between unprotected and privacy-enhanced fraud detection.
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Abstract. Since an exploit kit (EK) was first developed, an increasing
number of attempts has been made to infect users’ PCs by transmitting
malware via EKs. To tackle such malware distribution, we propose herein
an enhanced similarity-matching technique that determines whether the
test sets are similar to the pattern sets in which the structural properties
of EKs are defined. A key characteristic of our similarity-matching tech-
nique is that, unlike typical pattern-matching, it can detect isomorphic
variants derived from EKs. In an experiment involving 36,950 datasets,
our similarity-matching technique provides a TP rate of 99.9% and an
FP rate of 0.001% with a performance of 0.003 s/page.
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1 Introduction

Many PCs are infected by malware during web surfing. Infections can also be
caused by clicking on malicious links in email. Recent malware, called Princess
ransomware, has been propagated across various countries via behaviors without
users’ knowledge. Such malware distribution is closely associated with webpages
that contain exploit kits (EKs) such as RIG and Magnitude. Adversaries have
long attempted to use EKs to target users. To tackle them, previous studies [1–5]
used machine learning (ML)-, pattern-, and behavior-based approaches.

The ML-based model [1–3] checks the space in the hyperplanes built by
benign/malicious training sets and determines the space to which a test sample
is close. This classification is sometimes weak for cases involving benign samples
encoded with packers, such as Dean Edwards [6] or benign JavaScript codes that
contain eval() and escape() functions, which are commonly used as malicious
attributes. This model also encounters difficulties in detecting browser-plugin-
based attacks loaded immediately from the start page. Such attacks accompany
a redirect seen as a legitimate URL (e.g., a fake Flash executable).

The pattern-based analysis [4] offers rapid detection with patterns. However,
this approach can be applied only to content that contains pattern forms that can
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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be clearly classified. In this case, the number of patterns (or signatures) increases
along with the increase in EK variants. The performance of such a model depends
on the number of patterns and rule policies, which include simple matching or
counting of the repeats of some patterns.

Fig. 1. Same Neutrino EKs, but different code sequences.

Dynamic analysis [5] provides a high detection rate, but this model encoun-
ters difficulties in detecting malicious traces that are not activated (i.e., malicious
behaviors are exposed only when an attack is active). There is a myriad of web
servers to prepare a resurgence for disseminating malware. These web servers and
malicious links are hidden. In this circumstance, we propose similarity-matching-
based malicious webpage detection to detect EKs by harnessing previous advan-
tages. The main contributions of this study are as follows:

– We propose a new string-similarity-matching model. We introduce new string-
similarity-related features for EK classification.

– The number of patterns is comparable to the size of typical pattern-matching
or training sets in machine learning.

– This model provides a detection rate of 99.9% and can determine the mali-
ciousness of a webpage every 0.0033 s. The performance is comparable to that
of ML-based models.

The remainder of this paper is organized as follows: Sect. 2 presents related
work; Sect. 3 provides an overview of the proposed model; Sect. 4 explains the
details of our implementation; Sect. 5 describes our experimental results; and
Sect. 6 discusses the limitations and conclusions.

2 Related Work

This section introduces previous models and their difference with our model.

2.1 Similarity Matching Models

We introduce four string metrics based on the nature of measurement. The Lev-
enshtein distance [7] computes the minimum number of edits needed to trans-
form one string into another. It measures the distance difference between two
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string sequences. This is expressed by the minimum number of single/multiple-
character edits (insertions, deletions, or substitutions) required to change one
character into the other. For example, the Levenshtein distance between “hack”
and “acks” requires 2 (delete “h”; insert “s”). It is highly dependent on whether
the elements of the compared sets are sequentially similar. Hence, this algorithm
is disadvantageous when a string order is mingled nonsequentially even though
the two strings are composed of the same words, as shown in Fig. 1. The time
complexity for the worst case is O(m × n), where m and n are the lengths of
the two strings.

SequenceMatcher uses the Ratcliff/Obershelp algorithm [8]. This is obtained
by applying 2×M

T , where T is the total number of elements in both strings, and
M is the number of matches. For instance, when comparing the two strings “abc”
and “a”, it returns 0.5 by considering T = 4 and M = 1 (i.e., 2 × 1/4 = 0.5).
SequenceMatcher provides solutions in a quadratic time for the worst case. It is
advantageous only when a similarity exists in pairs of the same code sequences.
Our experiment indicates that SequenceMatcher is not good at detecting EKs,
except in cases where the code sequence is the same.

The Sørensen-Dice index [9] is known as the F1 score. When taken as a
string-similarity measure, the coefficient can be calculated for two strings, x and
y, using bigrams. For instance, in calculating the similarity between “virus” and
“pacus”, we find the set of bigrams in each word. Each set has four elements,
and the intersection of two sets has one element: us. The statistic is calculated
as s = (2 × 1)/(4 + 4) = 0.25.

The Jaccard index [10,11] is defined as the size of the intersection divided
by the size of the union of two sets. The Jaccard distance, which measures the
dissimilarity between two sets of text, is obtained by subtracting the Jaccard
coefficient from 1 by applying J(A, B) = |A∩B|

|A∪B| , and dJ (A, B) = 1-J(A, B).
Similarity-related studies [12–14] have attempted an index of malicious link

trees built during exploitation. In particular, two studies [11,12] compared two
trees using a variant of the Jaccard approach. These models need to correctly
render tree structures, but attackers can hinder the operation by obfuscating the
flows, which might decrease the detection rate because of discretized trees. Stud-
ies in this domain (e.g., Hamming distance-based [13] and Ratcliff algorithm-
based [14]) mostly focus on the similarity in the generated tree structure and call
sequences in malicious webpages. Kizzle [15] focused on the automatic antivirus
signature extraction of EKs based on an algorithm generating regular-expression-
based signatures. It used 50 machines for initial clustering. Jobs take approxi-
mately 90 min on average. Thus, this model is resource-heavy. Kizzle obtained
datasets from 2014 on four major EKs, such as Nuclear, Sweet Orange, Angler,
and RIG. However, our dataset consisted of 12 different EKs from 2014 to 2017.
The coding structures of the EKs differ from each other and have numerous
variants. We developed a formula for measuring the degree of similarity based
on features.
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2.2 Limitations

We calculated similarity measures using SequenceMatcher, Levenshtein distance,
Sorensen, and Jaccard index to understand the problem of the current string
metrics to be used for EK detection. Table 1 lists the test result, in which Lev-
enshtein exhibited a high matching rate. The results for Sorensen and Jaccard
overlapped.

Table 1. Angler FP results obtained by the string-matching algorithm.

# SequenceMatcher Levenshtein Jaccard

Type I 114 115 5 23

Type II 5 225 0 221

Type III 51 88 0 2

Type IV 29 146 0 88

Type V 27 203 1 116

We performed an experiment, in which we assessed the number of false pos-
itives (FPs) that occurred when each string metric classified all EK samples of
the same type. Five types existed among 226 samples of Angler. These types
had entirely different code structures from each other and denoted as types I,
II, III, IV, and V. They contained 114, 5, 51, 29, and 27 samples, respectively.
For instance, Angler Type I contained 114 variants. Their code sequences or
used codes are similar to each other, as shown in Fig. 1. We compared the FPs
with 226 Angler samples to determine how exactly the string metrics classify
I−V types. We selected one sample from each type to establish a pattern and
compared the 226 samples.

Levenshtein produced five FPs while matching 114 samples, as listed in
Table 1. Levenshtein classified five other samples from types II to V when exactly
classifying 114 samples of Type I. The minimum measure value for Levenshtein
was 0.236 while it evaluated the 114 samples. It showed FPs of 4.386, 0, 0, 0,
and 3.703% for Angler types I, II, III, IV, and V, respectively. The respective
minimum values were measured as 0.236, 0.249, 0.27, 0.289, and 0.2435.

We performed the same experiment for Fiesta, Gondad, Nebula, and Magni-
tude. Similar tendencies were observed for these EKs. In this test, Levenshtein
provided minimum similarity values of 0.2125−0.192 for three Fiesta types,
1−0.2805 for four Gondad types, 1−0.567 for five Magnitude types, and 0.5205
for a Nebula type. As seen in this experiment, Levenshtein provided low FPs for
the EK classification.

However, using Levenshtein for malicious webpage detection has two limita-
tions. First, the string metrics require the original source codes of both samples
being compared. The file sizes of these sources range from hundreds of bytes
to hundreds of kilobytes. That is, these metrics require a considerable amount
of space. Second, a variety of similarity scores, which are uncontrolled, exists.
Hence, we cannot establish a baseline for judging the maliciousness of a webpage.
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In resolving these drawbacks, we need to reduce the size to a level suitable
for practical use and configure a fixed baseline. In brief, we formulate them
as {g(A1 − B), · · · , g(A10 − B)} ≤ threshold when we compare 1 test sample
(B) with 10 patterns (A) for EK detection. This condition is satisfied when the
difference between An and B meets the threshold, and the model then infers
that B is malicious.

3 Design

Similarity matching provides a better performance in a scenario with slight
changes. However, current similarity metrics cannot easily detect variants of
an EK. Hence, we propose an alternative model that can classify EKs with the
equality in the code sequence and the structural format. We introduce similarity-
related features before designing a model to distinguish exploit codes.

3.1 Features

Table 2 categorizes the features into three classes: probabilistic, size-based, and
distance-based features. The probabilistic features specify the frequencies of
letters. Size-based features describe the characteristics relevant to the size.
Distance-based features denote the difference in the distribution of alphanumeric
and nonalphanumeric characters. The details of our features are as follows:

Table 2. Features used in the similarity measures.

Feature class # Feature name Description cited

Probabilistic 1 WordNum Number of words New

2 MaxWordSize Size of word with maximum
length

New

3 MaxRepeatWordSize Size of word with maximum
repeats

New

4 MaxRepeatWordNum Number of word with
maximum repeats

New

5 FunctionName Existence of critical
JavaScript functions

[16]

Size-based 6 StringSize String size without space New

7 LongestLine Length of a longest line [16]

8 FileSize File size of webpage [17]

9 LineNum Number of lines [17,18]

Distance-based 10 SimilarCharDistribution Code string similarity New

11 RatioNonalphanumeric Ratio of nonalphanumeric
characters

New

12 SubstringOverlap Measure repeats of a specific
string

New

13 RatioAlphanumeric Ratio of alphanumeric
characters

New
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WordNum. The word number is the count of different words. We find key-
value pairs in a string. In the (key, value) tuple, the key represents the word
size whereas the value represents the word count of the same size. This provides
information related to how EKs are constructed using different word sizes. From
this property, we compare the distribution ratio of words between the EKs and
benign pages. The total number of different words in Angler is 18.2 on an average.
The counts of benign webpages were extensively distributed between 1 and 928.
By contrast, most EKs were centralized between 1 and 165, as plotted in Fig. 2.
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Fig. 2. Distribution of word lengths used in EKs and benign webpages. The x-axis
represents the length of words, and the y-axis represents the number of samples in our
dataset.

MaxWordSize. We consider the maximum word size because many EKs con-
tain a long string word resulting from obfuscation. For example, 48.7% of the
Angler samples in our dataset include a word with more than 1000 characters.
Among the remaining samples, 50.4% have words with an average length of 15.75
characters. In other words, the Angler contains a word with a long size or mul-
tiple short words with a very high probability. Magnitude, Nuclear, RIG, and
Sundown EKs showed a trend similar to that of Angler. The maximum word
size of Fiesta, Sweet Orange, and Blackhole is generally over 3000, 90000, and
100000 characters, respectively. However, most Neutrino EKs were less than 120
characters. Thus, word sizes in EKs show distinct properties that can be divided
into several ranges.

MaxRepeatWordSize or MaxRepeatWordNum. The codes of most EKs
are obfuscated. The obfuscation pattern often shows the recurrence of same
strings with fixed sizes. Therefore, we extract a word with the most repeats. This
property fully expresses the characterization of EKs using iteration. We parse
codes and produce key-value pairs with maximum repeats. For instance, from
this code, “AdgSf344 42 AdgSf344 42 AdgSf344 42 AdgSf344 42 AdgSf344 42
AdgSf344 42 AdgSf344 42 AdgSf344 42tAdgSf344 42rAdgSf344 42yAdgSf3
44 42 AdgSf344 42AdgSf344 42”, we yield a {11, 7} tuple, which refers to the
word size of maximum repeats and its counts. In addition, three different word
sizes exist. The size of maximum word contains 47 characters.
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FunctionName. Attackers reuse CVE codes and add new CVE codes [17].
They rarely remove old ones to increase exploit probabilities. Furthermore,
new vulnerabilities related to Java, Flash, IE, and browser-plugins are lim-
ited, thereby increasing code reusability. Thus, the differences in code are rel-
atively small. This tendency is strongly exposed in EKs of the same type,
where code sharing is high. During the information collection stage, EKs
gather user agent/application environments such as browser (e.g., MSIE) ver-
sion, cookies, and swf information. EKs then run an unpacking code to de-
obfuscate their attack payloads by calling eval() and document.writeln(). How-
ever, recent EKs do not exhibit eval() and document.write() in codes because
of obfuscation.1 Hence, many EKs are invisible and only partially readable.
These JavaScript functions or lexical formats in URLs are widely used, but
may not extensively work. For instance, some cases of Nuclear, Fiesta, Neb-
ula, RIG, and CK VIP EKs use replace, charAt, fromCharCode, unescape,
split, getElementById, and exec functions. More recently, attackers use the
+ operator and concatenate two or more strings to return a single func-
tion name, such as [“r” + “e” + “p” + “l” + “a” + “c” + “e”],“sc” + “r” + “ipt,”
eval(“unes” + “cape”), [‘s’ + ‘p’ + ‘l’ + ‘i’ + ‘t’], [“”,“e”,“x”,“e”,“c”,“”],‘inde’ +
‘xOf’, “createE” + “lement,”“getEle” + “mentsBy” + “TagName,”‘cha’ + ‘rAt,’
and“VBs” + “cri” + “pt.” This format is often changed to other combinations.
Thus, an EK can be detected by checking for the presence of these keywords
before and after removing operator and quotation marks. We return the result
as 0 or 1. In such cases, YARA [19] is not enough (delete and sum).

Some types of Angler use navigator. User agent, Trident, MSIE [0–7], eval,
Math, var, and substr. Other Angler EKs include string formats with <span
class= “text” id =, <p class=“text” id =, or <p ui=“. This form can be used
as a signature for Angler detection. Some types of Magnitude use eval, exe-
cute, unescape, and CreateObject functions. In addition, EKs often use try-catch
statements; however, the keyword is also used in benign JavaScripts.

StringSize. Many EKs are composed of webpages of a certain size. This feature
is counted by multiplying key-value pairs. The result is approximately similar
with the longest line, except spaces. Neutrino and Redkit EKs generally have
a short string size (between 26 and 370 characters); however, most EKs have
string sizes that range from several thousands up to nearly 400,000 characters.
Specifically, Sweet Orange has large strings. Thus, the distribution ratio is dis-
tinguished from benign pages.

LongestLine, FileSize, and LineNum. Our main considerations are perfor-
mance. In considering this parameter, we only take a specific body of the entire

1 To avoid detection, attackers use split(), escape(), eval(), XOR/8-bit ASCII/BASE64
or their own encoding, and JavaScript compression tools. The outputs of these meth-
ods yield obfuscated strings with %, +, \x, or $ as the first character. In recent years,
EKs often hide JavaScript functions.
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code, namely the longest line. From a piece of code, we extract all attribute
values of features, except FunctionName, FileSize and LineNum in Table 2. In
reality, we only read 4500 bytes from the longest line even if the length of the
longest line is more than 4500 bytes because this size of code is enough to extract
features and detect EKs.2 The detection rate in the experiment is slightly differ-
ent, with the longest line having a length of 3500−5500 bytes. Consequently, the
detection rate is dependent on the features rather than the length. The surface
for detection is reduced, but the performance increases. On this feature, while
some might say that adversaries can generate a large number of short lines of
codes to avoid the longest line feature, multiple code lines can also be used in a
high-impact feature.

A file size is distributed to 137−933,612 bytes in our malicious dataset, which
influences the attributes of features. In line numbers, some EKs only contain a
longest line. Some of the Magnitude, Rig, Sundown, Terror, and Blackhole EKs
are composed of a line number of 1. By contrast, some EKs are distributed
between 1 and 1000 line numbers. Remarkably, many EKs, except Neutrino,
exhibit a property that the file size and longest line have similar sizes. For
instance, the longest line is 264,338 bytes if a file size is 267,827 bytes. Neu-
trino EKs mostly contain less than 400 characters in the longest line.

SimilarCharDistribution. EK variants show two types of tendencies: dif-
ferences in the code sequence and differences in the letters used. EK variants
differ in word sequence despite having the same code, as shown in Fig. 1. Most
variants make different EKs using different characters. With regard to the char-
acters, we transform each character to a one-to-one corresponding number. More
specifically, we change special characters to negative numbers and alphanumeric
characters to positive numbers. This bijection is expressed as f : S → N , where
S is a set of characters, and N is a set of integers. After this correspondence, we
sum all numbers in a set of N and divide by the size of N. For instance, “abc”
is changed by considering“a” as 1, “b” as 2, and“c” as 3.

We formulate
∑n

1 Sn. S is applied to this principal: x := y. x is a character,
and y is a number mapped to x. We then sum all the numbers to discover the
existence of the same character distribution and detect scrambled codes, such
as “abc def” and “def abc”. This mangled code is common in the Angler. The
detection of strings with different code sequence relies on this feature. Subse-
quently, we determine the reciprocal of the sum as a float in the range [-1, 1].
The sum is close to -1 if a webpage contains many nonalphanumeric characters,
such as arithmetic operators. By contrast, the sum is close to 1 if a webpage
is composed of alphanumeric ASCII or Unicode characters, such as 0−9, A−Z,
and a−z. This property is useful when the two string samples being compared
are structurally similar in terms of the character distribution.

2 See https://drive.google.com/open?id=1tfBCB1tcfxg3GNo7yZwYUCqhABjbbN-P.

https://drive.google.com/open?id=1tfBCB1tcfxg3GNo7yZwYUCqhABjbbN-P
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RatioNonalphanumeric. The exploit codes contain nonalphanumeric charac-
ters because they are often obfuscated to nonalphanumeric forms. Hence, the
relative magnitude of nonalphanumeric characters in an entire string is highly
exposed. We express nonalphanumeric characters as negative numbers between
-1 and 0. The more nonalphanumeric characters there are, the lower the negative
number becomes. Thus, we reflect the magnitude of nonalphanumeric character
distribution. For instance, an underscore and a hyphen each have a different
value. In this approach, the score of nonalphanumeric characters increases by
multiplying distance n according to a character sequence, d: n → [0, 4500], where
d is distance. In fact, when the nonalphanumeric letters are ‘!@#’, the !, @, and
# are 10, 20, 30, respectively. The magnitude of the mapped nonalphanumeric
is 10 * 1 + 20 * 2 + 30 * 3.

SubstringOverlap. Many EKs contain properties that repeat a specific word.
They also have high overlaps of words, such as “ALal3ALal3ALal3 ALal3
ALal3ALal3 ALal3ALal3ALal3” and “0011 * 0011 * 0011 * 0011 * 0011 * 0011 *
0011 *”. A specific substring overlap that shows a high frequency is recognized
as having a high level of similarity between a pair of strings. We reconstruct an
original string to a new form, which consists of 1, 1 and 0, to measure repeats
of specific words. To do this, we first classify words from a string. Alphanumeric
characters are then transformed to 1 (alphabetic characters) and 0 (Arabic num-
bers), while nonalphanumeric characters are transformed to 1 for each character
in the words. After changing characters to numbers, we check for the existence
of the same string. This feature extends the detection rate by searching the over-
lap of words. For instance, ‘ALal3’ and ‘0011*’ are transformed to ‘11110’ and
‘00001.’ This approach generally provides extensive coverage and is more effec-
tive than exact matching trials because of the countless variants. In calculating
the frequency of overlapping words, we divide the number of intersections by the
number of words in original strings, where m is the number of words matched,
and n is the overall size of the words.

f1 =
m

n + 1
(1)

RatioAlphanumeric. If two strings show code similarity even though they
use different characters, the model should present that they are significantly
similar. In measuring this similarity, we sum the positive and negative values
separately in order until the end of the string. We apply Eq. (2), where n and m
denote cardinality. According to the frequencies, the scores differ. The count of
alphanumeric characters is more critical in practice than the nonalphanumeric
characters because the alphanumeric ratio is more common in EKs (Table 4).

f2 = (
1

∑n
i=1 xi

− 1
|∑m

j=1 yj | ) × (n + m) (2)

Such a feature-based string matching method can effectively overcome string
sequence problems and the computational issues of naive string matching over
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long strings. We compute the feature values of two strings S1 and S2, measure
the similarity degree between them, and recognize their similarity.

3.2 Proposed Model

As shown in Fig. 3, we first cluster the EKs to the same EK groups to design
the model. We then select a representative EK from the group. Subsequently, we
extract 13 attribute values from representatives, which compose of nine integers
and four floating-point numbers between -1 and 1. The values significantly reduce
the file size through two steps because EKs can be denoted as float type instead
of a large string. We use 118 pattern instances with 13 attribute values. We also
extract the same attribute values from test webpages. Subsequently, this model
classifies EKs by comparing the scores of each attribute’s values in the same array.

EK samples clusteringEK samples with a longest line

cluster with Levenshtein select one EK typemake a longest line

pattern sets 

labeled samples

extract features and 
change them to number

[0.1223, 0.1234, 0.8273, 0.3256]

[0.1223, 0.4217, 0.5226, 0.1398]

[0.5223, 0.1332, 0.3272, 0.5243]

[0.3223, 0.4234, 0.1273, 0.2123]

feature values 

[0.1223, 0.1234, 0.8273, 0.3256]

[0.1223, 0.4217, 0.5226, 0.1398]

[0.5223, 0.1332, 0.3272, 0.5243]

[0.3213, 0.4234, 0.1243, 0.2112]

test samples

similarity matching

matched(malicious)

Fig. 3. Modeling procedure of our similarity matching.

Pattern Collection and Feature Extraction. We build a set of features to
be used for patterns. Every EK contains multiple EK versions, and each version
has innumerable variants. In this model, we select one sample representing each
version. For instance, Angler in our dataset has seven different EK versions. The
representatives of EKs are a subset of all Angler EKs. We used the Levenshtein
distance to select the EKs. We only use the selected EKs for building patterns.
We do not need benign patterns because our matching method determines the
closest one among EKs, unlike an ML-based approach. In building the set, this
model gathers the attribute values of features after reading 4500 bytes of selected
EK samples, which comprises a small portion of the overall code. These values
are designed to inspect whether repeating words exist or check whether code
sequences coincide. We also map each character of exploit codes to each different
number. The numbers are counted and summed. Their outputs are transformed
to floats scoring of [-1, 1] range to express the feature level with original exploit
codes. This transformation considerably reduces the size of a pattern set.

Afterwards, this model estimates the existence of similarity by sequentially
comparing each feature value of two strings s1 and s2, where s1 is the 13 attribute
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values obtained from a test sample, and s2 is the 13 attribute values from the
pattern instances. The proposed model executes 13 feature comparisons per given
test sample one at a time until a match is achieved or until it reaches the end
of the pattern set. The test case is considered malicious when a match is found.
In other words, the test case satisfies the scope of the threshold, which is a
similarity ratio for acceptance. The total number of comparisons is N(f × P),
where P is the number of patterns, and f is the number of features that takes
13 attribute values. The worst-case time complexity is O(N), where N is the
number of compared patterns. We terminate further execution after achieving a
match to avoid this worst case.

String Matching. Our measure quantifies the similarity, which is mainly based
on a character-based statistical comparison. We elicit the repeated exposure of
the same elements. The model then measures whether an input string is similar
to our patterns. To overcome the problem of previous string metrics (described
in Sect. 2), we build a decision boundary (θ), called a threshold, to determine
whether a webpage is malicious or benign. We use θ 0.05 as the threshold.
Accordingly, the feature attribute values should satisfy the following condition
to be malicious: |pattern attribute values−test attribute values| ≤ threshold. The
equation is represented as |Pn − fn| ≤ C,where A = {P1, · · · , Pn}, and B =
{f1, · · · , f13}. A is a set of patterns, and B is a set of attribute values extracted
from the test sample. Pn and fn are finite sets. In this formula, C is the thresh-
old and fn is a partial of the attribute values. C = Pn × decision boundary (θ)
between 1 and 0.01, which is the range of the similarity that we define. When
the similarity comparison result |Pn − fn| is located in the scope of our thresh-
old, this model decides that the matching of the two strings is similar. In other
words, one of A is structurally identical to B.

4 Implementation

This section explains the implemented feature extraction and matching modules.
The feature extraction module starts to load a headless WebKit browser with

URLs. Our model then gathers links occurring in webpage rendering and col-
lects webpage sources with the links. Next, the model collects features from the
sources.3 The extraction module aims to gather webpage sources, and is a com-
ponent for extracting attribute values. The feature extraction stage is based on
the longest line of the input data.

The similarity-matching module is a component used to decide whether
a webpage is malicious. We consider two more procedures in this stage:
probabilistic/size- and distance-based matching. The probabilistic/size-based
matching distinguishes suspicious webpages among test webpages to be com-
pared. The proposed model executes nine feature comparisons using features

3 The feature extraction uses the JavaScript, HTML, and VBScript codes. We use the
original code before it is interpreted by JavaScript engines, such as jscript.dll or V8.
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1−9 in Table 3. For the first filtering, the model changes the extracted attribute
values to generalized formats. For instance, attribute values “6 56 11 1 149 154
154 1” are changed to “1 2 2 1 3 3 3 1”.4 In reality, this model compares nor-
malized formats of test samples with those of 118 rules predefined. The filtered
outputs are suspect and highly likely to be EKs. Distance-based matching uses
only the outputs that pass through this step. A final decision is accomplished
by distance matching.

Six matching steps are employed in the distance-matching step: (1) This
work reads each attribute value of the patterns and test string. (2) This model
measures the difference of each attribute value from the pattern sets A and
test sets B at the same location. (3) The result of difference is compared with
the threshold. (4) The model determines whether it satisfies the range of the
threshold. (5) The matching for the features should be true for all. If not true,
the algorithm moves to the next pattern. (6) The comparison is performed in a
similar manner until the end of the patterns. We introduce the pseudocode in
Algorithm 1 to illustrate these steps.

Algorithm 1: Matching algorithm
Input : Floats x and y, which are a pattern file and a test file
Output: True (malicious) or False (benign)

procedure similarity match(A, B)
A = |A|
B = |B|
θ = 0.05
C = A × θ
if |A−B| ≤ C then return True;
else return False;

end procedure
procedure begin(x, y)

TestAttributeValue ← y
n ← 0
while not at end of pattern or unmatched do

PatternAttributeValue ← read a line from x
for n < number of attributes do

n += 1
testn← TestAttributeValue [n]
patternn← PatternAttributeValue [n]
Mn ← similarity match(patternn, testn)

if all Mn == True then break;
else move to next pattern;

end procedure

The collection modules for the test samples are mainly programmed using
phantomJs [20] with 148 lines of code, whereas the feature extraction and match-
ing modules were implemented using Python 2.7 with 389 lines of code.

4 See https://drive.google.com/open?id=1UVg-gbfIv7NTabq90UkVKt3CeleBEBY9.
Patterns for classification (left) and clustered patterns for matching (right).

https://drive.google.com/open?id=1UVg-gbfIv7NTabq90UkVKt3CeleBEBY9
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5 Evaluation

5.1 Dataset and Experimental Setup

We collected publicly available datasets (from Jan. 2013 to Apr. 2017) from
http://www.malware-traffic-analysis.net/ [21] and a third-party antivirus com-
pany to demonstrate our approach. Out of the 36,950 webpages, 15,620 were used
as benign webpages and gathered from the Alexa Top 5000 sites [22]. A total
of 21,330 were used as malicious webpages. All these samples were labeled by
VirusTotal [23] and commercial sandbox inspection. EKs include Angler (230),
Gondad (2,174), Neutrino (129), Nuclear (84), Sundown (23), Sweet Orange
(1,508), RIG (471), Blackhole (402), Redkit (599), CK VIP(1,183), Caihong
(1,005), Fiesta (10), and Unknown (13,512). The entire dataset was processed
using Weka 3.8. We applied both 10- and 5-fold cross-validations.

We ran the experiments inside VirtualBox on Windows 7 with an Intel Core™
i7-7700HQ CPU, 2.80 GHz with 8 GB memory.

Table 3. Detection rate as weighted average (a 10-fold cross-validation was applied.)

Classifier TP Rate FP Rate Precision Recall F1 score ROC area

RandomForest 0.999 0.001 0.999 0.999 0.999 1.000

J48 0.997 0.003 0.997 0.997 0.997 0.998

SVM 0.926 0.054 0.937 0.926 0.926 0.936

Logistic 0.882 0.140 0.885 0.882 0.881 0.945

BayesNet 0.979 0.016 0.980 0.979 0.979 0.999

5.2 Detection Rate and Performance

We verified the validation of features that can be used in string similarity using
ML approaches. RandomForest (RF) had a TP rate of 99.9% and an FP rate
of 0.01%. In the model, bagging was applied using 100 iterations and the base
learner. This classifier exhibited a high detection rate and a high performance
(approximately 0.00186 s/page), as listed in Table 3. The experiment applying a
5-fold cross validation method showed the difference of 0.004 at most in SVM,
but most classifiers showed same/similar results. RandomForest misclassified 38
false negatives (FNs) and 11 FPs. The FNs occurred in Angler, Neutrino, and
Sundown EKs. The most common cause of misclassified FPs was the similar
obfuscation by packers. The errors in the FNs were revealed in the malicious
pages of short codes with simple link tags.

In addition, we evaluated the relevance for each attribute using the class Info-
GainAttributeEval, which provides a method for scoring the features in Weka.
A higher information gain ratio indicates a better discriminative power for clas-
sification. In this experiment, the size of the longest line had a high gain ratio,

http://www.malware-traffic-analysis.net/
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as listed in Table 4. We recognized that the size-based feature was one of the
most distinguishable properties. In string matching, we assumed that the use of
features with a higher info gain helped achieve a higher detection rate.

Table 4. Features ranked by the information gain ratio for 36,950 datasets.

Rank Info gain Feature Rank Info gain Feature

1 0.796 LongestLine 8 0.554 WordNum

2 0.780 StringSize 9 0.513 SimilarCharDistribution

3 0.757 MaxWordSize 10 0.458 MaxRepeatWordSize

4 0.739 RatioAlphanumeric 11 0.337 MaxRepeatWordNum

5 0.726 FileSize 12 0.043 RatioNonalphanumeric

6 0.668 LineNum 13 0.001 FunctionName

7 0.587 SubStringOverlap

Table 5. Detection rate comparison.

# sample ClamAV F-Prot BitDefender Sophos RF FriSM

FN FP FN FP FN FP FN FP FN FP FN FP

Malicious 21330 21105 19869 14944 1562 38 1

Benign 15620 0 0 0 1 11 11

The accuracy of each test was measured based on the area under the receiver
operating characteristic (ROC) curve. An area of 1 represents success, whereas
an area of 0.5 represents failure in general. In our experiment, the ROC area
was close to 1 (area under curve (AUC) = 0.9902), indicating that a classifier
successfully classified almost all the positive and negative cases.

We compared our model with four antivirus products, all of which were oper-
ated in a Linux environment. In this evaluation, our model showed 1 FNs and
11 FPs5 at θ 0.05 as presented in Table 5. The 11 FPs largely originated from
two cases: short benign pages with a redirect (with a file size of less than 10 Kb)
and obfuscated webpages. Unreadable benign webpages using obfuscator tools
(base64, Dean Edwards’ JavaScript packers or compressors) were very similar to
EKs. Another cause of FP was a short html tag with a redirect.6

The results showed that the TP rate was 99.99%, and the FP rate was
0.001%. The TP and FP rates were similar to those of typical ML-based models.
Nonetheless, the proposed model was more advantageous than ML- or pattern-
based models in terms of the number of patterns and training datasets. If 118
patterns are used, these models may demonstrate a low detection rate. The

5 See https://drive.google.com/open?id=143nOUCKBMgB8t7g8PEJvh8yryBLYhAK-.
6 We offer brief sample outputs for both TNs and FP cases at this website:

https://drive.google.com/open?id=1QDl1Kpyq85arwHCuvU7qiJGVoWOhUuhP.

https://drive.google.com/open?id=143nOUCKBMgB8t7g8PEJvh8yryBLYhAK-
https://drive.google.com/open?id=1QDl1Kpyq85arwHCuvU7qiJGVoWOhUuhP
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proposed model can detect similar strings even though the exact rules are not
defined in pattern lists. This also results in a rapid performance. For detecting
an obfuscated webpage that does not have any traces or even function names
and parameters, similarity matching provides a high detection rate. As regards
the testing time, RF and FriSM demonstrated 0.0026 s and 0.0033 s per page,
respectively. In this regard, antivirus products were 0.0165 s on average.

5.3 Error Analysis

FriSM searched seemingly similar malicious webpages. Thus, FriSM showed high
FPs. Three methods can be used to reduce the error ratio and remediate FN
problems: (1) applying new features, (2) increasing threshold, and (3) upgrad-
ing patterns. In particular, in this model, finding the optimal threshold is very
important for the best classification. We prove this by performing an experi-
ment to determine the appropriate decision threshold that will minimize the
overall classification error. The threshold uses theta to classify a webpage as
either benign or malicious. FNs can be reduced by increasing θ; however, conse-
quently, FPs also increase. This model only accepts cases that closely resemble
each other (i.e., almost same), where two strings are considered similar if theta
is quite low, but less similar if theta is high. At present, our theta is low, and
our model detects cases wherein the similarity of two strings is high.

We can increase the threshold by increasing θ (e.g., 0.05 → 0.051) to increase
the detection rate. In this situation, the misclassified FNs were reduced from 1
to 0; however, the misclassified FPs also increased from 11 to 13. The threshold
used to control the similarity simultaneously affected the FN and FP rates. We
evaluated the accuracy for θ (between 0.049−0.051). In this range, TP on θ
0.049, 0.05, and 0.051 was 11, 1, and 0, respectively. FP was 9, 11, and 13. Thus,
the accuracy was the highest at θ 0.05 and 99.97%. Our θ 0.05 did not ensure
that the similarity rate was more than 99.95%. Instead, θ provided a baseline to
determine the similarity of character distribution of the x and y strings. Hence, in
terms of the detection rate, we needed to moderate the optimized threshold. We
can add more patterns to increase the detection rate; however, this decreased the
performance because of the increase in the number of patterns being considered.

Lastly, we evaluated 129 additional EK samples (111 were prior EK types,
and 18 were new) collected between Apr. 11, 2017 and Feb. 12, 2018 from [21]
to understand the detection methods between FriSM and RF. A total of 111
EKs consisted of KaiXin, RIG, Magnitude, and Terror. The 18 Magnitude and
Terror EKs were not defined as patterns in our model. In this experiment, our
model exhibited a high detection rate of 96.9% (100% in prior EKs, 78% in new
EKs); however, RF showed low detection rates of 83.7%. New EKs showing a
structural similarity with our EK patterns were detected even though they had
not been specifically defined as patterns.
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6 Discussion and Conclusions

This model may not be applicable if the structure of EKs drastically changes or
patterns do not exist. Hence, in future work, we need to develop a new method
to avoid FPs and TNs. In addition, the threshold in our model requires the range
of the similarity comparison to be narrowed to reduce FNs. This increases the
number of patterns and can be a nontrivial task even though the rule sets are
small compared to the ones of previous models. Nonetheless, this approach is
still useful for rapidly detecting EKs unless EKs show a distinct increase. The
proposed method, which depends on feature, attribute values, and threshold for
a high detection rate, had a TP rate of 99%.
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Abstract. Malware or threat actors use a Command and Control (C2)
environment to proliferate and manage an attack. In a sophisticated
attack, a threat actor often employs a Domain Generation Algorithm
(DGA) to cycle the network location in which malware communicates
with C2. Network security controls such as blacklisting, implementing a
DNS sinkhole, or inserting a firewall rule is a vital asset to an organi-
zation’s security posture. However, all of them are typically ineffective
against a DGA. In this paper, we propose a machine learning frame-
work for identifying and clustering domain names to circumvent threats
from a DGA. We collect a real-time threat intelligent feed over a six
month period where all domains have threats on the public Internet at
the time of collection. We then apply the proposed machine learning
framework to study DGA-based malware. The proposed framework con-
tains a two-level model, which consists of classification and clustering is
used to first detect DGA domains and then identify the DGA of those
domains. Our extensive experimental results demonstrate the accuracy of
the proposed framework. To be precise, we achieve accuracies of 95.14%
for the first-level classification and 92.45% for the second-level clustering,
respectively.

Keywords: Malware · Domain Generation Algorithm
Machine learning · Security · Networking

1 Introduction

A computer network and its assets are frequently under a variety of attacks
including malware attacks, where threat actors attempt to infiltrate layers of
protection and defensive solutions [1–3]. Anti-malware software, for the longest
time, is a critical asset for an organization as it provides a level of security on
computer systems to deter and remove malicious threats. However, many anti-
malware solutions typically utilize static string matching approaches, hashing
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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schemes, or network communication whitelisting [4]. Sophisticate threat actors
and authors/developers to new malware strands purposely integrate evasive tech-
niques and covert communication channels to bypass most detection techniques,
which presents a grand challenge in securing an enterprise.

One component to some variations of malware strands is a method to com-
municate with a centralized server to service a Command and Control (C2) using
either a static or dynamic method [5]. In the static method, the malware has been
pre-written with a value such as an IP address or a domain name that becomes
permanently fixed throughout the lifespan of the malware and that once a secu-
rity operator identifies such an illicit network, a simple firewall rule will relieve
the threat. In the dynamic method, the creator of the malware implements a
technique to communicate back to a variety of servers, based on a sequencing
approach known as Domain Generation Algorithm (DGA) [6]. The dynamics of
a DGA commonly utilizes a seeded function. That is, given an input such as a
timestamp, a deterministic output would follow as pre-defined by the DGA. The
challenge behind deterring a DGA approach is that an administrator would have
to identify the malware, the DGA, and the seed value to filter out past malicious
networks and future servers in the sequence.

Network security measures such as Access Control List (ACL), firewalls, and
Domain Name System (DNS) sinkholes have been the prominent best practice
to reduce the proliferation of unauthorized access and the spread of malware
strands. A DGA, however, increases the difficulty to control malicious commu-
nication as a sophisticated threat actor implements the ability to change the
server or location periodically the malware communicates back (callback) to the
C2 in an automated fashion. Overall, utilizing a DGA would primarily establish
a game of cat and mouse for both security operators mitigating the threat while
the centralized server for the C2 would frequently change location.

This study evaluates known malicious domains that exclusively belong to
DGAs and we attempt to apply machine learning approaches including multiple
feature extractions, classification, and clustering techniques. Computer systems
frequently query domain names using DNS due to vastly broad running applica-
tions and services [7]. Security appliances that monitor and evaluate each DNS
query needs to determine whether a particular domain has some level of mali-
ciousness and specifically, whether or not a specific query originates from a DGA.
If so, which one. Moreover, this study utilizes a real-time threat intelligence feed
that has been collected over a six-month period on a daily basis while lever-
aging high-performance nodes [8,9] from the Global Environment for Network
Innovation (GENI) [10] to conduct extensive data processing. We further pro-
pose a machine learning framework to classify and detect DGA malware and
experimentally evaluate the proposed framework through a comparison of vari-
ous machine learning approaches. Specifically, our machine learning framework
consists of the following three main components: (1) Blacklist with a pattern
filter that first filters the incoming DNS queries and stores them in the blacklist.
(2) Feature extractor that extracts features from those domains that are not in
the blacklist. The domains will be sent to the next component. (3) Two-level



A Machine Learning Framework for Studying DGA 435

classification and clustering. To identify DGA domains, we start with the first-
level classification to classify DGA domains and normal domains. We then apply
the second-level clustering to group domains sequenced by the DGA. The over-
all goal is to determine the technique the DGA employs so that our proposed
framework can prevent future communication to the C2. Our evaluation results
show that we can achieve the accuracy of 95.14% for the first-level classification
and the accuracy 92.45% for the second-level clustering, respectively.

The rest of the paper is organized as follows. Section 2 defines the research
problem while Sect. 3 demonstrates existing related work. Section 4 presents data
collection and the proposed machine learning framework and Sect. 5 dicusses
the experimental and evaluation of the framework. Lastly, Sect. 6 concludes our
studies and presents future work.

Fig. 1. Threat models: multiple conditions for a DGA to function in a network envi-
ronment where filtering results in a firewall that prevents the communication and an
empty cell in Internet domain that results in an NX domain error. Note, the domains
listed in the figure belong to existing live threats.

2 Problem Statement

Firewall blacklisting constantly expands as the multiple sources of inputs expand
filtering rules. However, sequences in a DGA may not be known to these inputs
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promptly. Moreover, for the malware to communicate correctly to an appro-
priate domain, a threat actor must register each respective domain name in the
sequence to maintain the C2 or risk the loss of a node in the distribution. Figure 1
demonstrates an example scenario for such a case.

Our research problem is to accurately identify and cluster domains that orig-
inate from known DGA-based techniques where we target to obtain a security
apparatus that autonomously mitigates network communication to unknown
threats in a sequence.

2.1 Assumptions and Threat Models

Threat actors need a method to control and maintain the malware in a C2
environment while operating in an unnoticeable manner from network security
systems hence, a DGA. The successfulness of the malware does not require a
domain to be registered or valid and that a DGA may iterate a sequence that
results in an NX DOMAIN situation (unregistered). Blacklisting, establishing a
DNS sinkhole, or implementing a firewall rule are standard techniques to prevent
malicious network activity from malware and the signatures to implement these
mitigation techniques are often provided by threat intelligence feeds. However,
this research does not utilize any blacklisting or pre-known malicious domains
to block traffic derived from a DGA in the initial stages of our analysis and that
such features are built over our observations. The main reason behind our imple-
mentation is that many threat intelligence feeds and heuristic data often provide
signatures to malware that has plagued a network or public Internet. A sophis-
ticated threat actor would implement or utilize a 0-day style malware (malicious
code that has never been seen or known to the public) and therefore, black-
listing would be inappropriate for our analysis. Our proposed machine learning
framework aims to solve the problem of detecting DGA sequences using machine
learning techniques derived from observations in a network.

3 Related Work

Current Internet and end-user systems are frequently plagued with the hazards
of malware. The landscape of the modern Internet grows as mobile devices,
Internet of Things (IoT), and network connected vehicles expand where a threat
actor may attack the increasing number of potential targets a daily basis [11,12].
Many of such systems are susceptible to malware attacks due to mismanagement
issues, poor patching behaviors, and dangerous 0-day attacks [13].

Because DGA-generated domain names contain significant features that can
be used to differentiate DGA domain names from normal ones [14]. Therefore,
many studies aim to target blocking those DGA domain names as an defense
approach [15,16]. The DGA that generates the domain fluxing botnet needs to
be known so that we can take countermeasures. Several studies have looked at
understanding and reverse engineering the inner workings of botnets [17,18].
Thomas et al. [19] proposed an automatic method to extract DGA from current
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malware. Their study focused on domain fluxing malware and relied on the
binary extraction for DGA. Their approach is only effective for certain types
of malware [20]. Besides blocking and extracting DGAs from normal domains,
deeper study has been explored based on the features of DGA domain names.

Since the DGA domains names are usually randomly generated, the lengths
of DGA domains are very long, which is a good feature that can be used for
detecting DGA domains. However, shorter DGA domain names are more difficult
to detect. This is because most normal domains are tend to be short. Ahluwalia et
al. [21] proposed a detection model that can dynamically detect DGA domains.
They apply information theoretic features based on the notion of domain length
threshold. Their approach can dynamically detect the DGA domains with any
length. Many other works have been done on DGA detection based on the DGA
domain features.

Ma et al. [22] proposed a lightweight approach to detect DGA domains based
on URLs using both lexical and host-based features. They consider lexical fea-
tures of the URL such as length, number of dots, and special characters in
the URL path. Antonakakis et al. [23] propose a novel detection system, called
Pleiades. They extract a number of statistical features related to the NXDo-
main strings, including distribution of n-grams. Wang et al. [24] proposed using
word segmentation to derive tokens from domain names to detect malicious
domains. The proposed feature space includes the number of characters, digits,
and hyphens. Similar to Ma et al. [22], McGrath et al. [25] also take a close
look at phishing URLs and found that the phishing URLs and DGA domains
have different characteristic when compared with normal domains and URLs.
Therefore, they proposed a model for detecting DGA domains based on domain
length comparison and character frequencies of English language alphabets. The
similar approach based on DGA features can be find in [15,26].

In order to classify DGA domain names, Schiavoni et al. [5] proposed a feasi-
ble approach for characterizing and clustering DGA-generated domains accord-
ing to both linguistic and DNS features. In the study, they proposed that DGA
domains have groups of very significant characters from normal domains. By
grouping the domains according to their features, the authors applied a machine
learning classifier could distinguish them from all the domains easily. Several
machine-learning techniques have been studied to classify malicious codes. They
include neural networks, support vector machines (SVM) and boosted classi-
fiers [27]. There are also several studies aiming to predict DGA domain names
from historical DGA domains [28]. Woodbridge et al. [29] used DNS queries to
find the pattern of different families of DGAs. Their approach does not need
a feature extraction step but requires a long short-term memory (LSTM) net-
work, which needs time to accumulate data. Similar to Woodbridge et al. [29],
Xu et al. [30] checked DNS similarity and pattern to predict future DGA
domains. Their approach is effective for some DGAs. Recently, researches have
proposed deep learning techniques for detecting DGAs learn features automati-
cally, which require no effort from human for feature analysis [31,32].
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4 Design

Establishing a viable source for this research requires two components: (1)
domains derived from a DGA; (2) machine learning that (2a) would encom-
pass multiple feature extraction techniques and (2b) would entail clustering the
domains. Multiple online sources from simple Google searching provide exam-
ple codes for a DGA construction. However, a majority of these techniques are
trivial and fundamental at best. Online threat intelligence feeds give a more real-
istic approach to examine current and live threats that roam the public Internet.
This section describes the approach for data collection and proposed a machine
learning framework for DGA malware analysis.

4.1 Threat Intelligence Feed and Ongoing Threat Data

DGAs are plentiful through multiple online examples that are found from Google
searching and Github repositories. However, sophisticated threat actors pur-
posely create tailored DGA to evaluate current detection systems. Using real-
time active malicious domains derived from DGAs on the public Internet mea-
sures the accuracy of the proposed approach. Specifically, threat intelligence
feeds collected from Bambenek Consulting [33] over a period of six months were
obtained through daily manual querying demonstrated trends of ongoing threats.
The structure of the data is presented in a CSV format of domain names, orig-
inating malware, and DGA membership with the daily file size of approximate
110 MB. Figure 2 demonstrates an example feed from the collected data.

Fig. 2. Example sample dataset from Bambenek consulting gives domain names, mal-
ware origins, DGA schema, and date collected.

4.2 The Machine Learning Framework

We propose a machine learning framework that consists of three important steps,
as shown in Fig. 3. We first have the input DNS queries with the payload, then it
will be passing into our process step, which consists of 4 important components:
(1) We first use a domain-request packet filter to get domain names and store
them in the blacklist. If the input is a known domain, we will skip (2)–(4), and
directly go to the output, otherwise, we will proceed to next component. (2)
Then, a feature extractor is used to extract domain features. (3) Next, we apply
the first-level classification to distinguish DGA domains and non-DGA domains
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and second-level clustering to group similar DGA domains. (4) Finally, we detect
the DGA domains. After the domain name goes through the process step, we
will append this domain to the blacklist.

Fig. 3. Machine learning framework.

The rest of this section discusses these important steps in details.

Blacklist. To perform the classification and clustering in our following steps,
we only need the information of domain names. Since the collected raw data
contains some trivial information that is useless in our experiment, we apply a
domain-request packet filter to remove that trivial information to obtain only
domain names. This is done by using the Gruber Regex Pattern Filter [34]. All
the network traffics undergo this filtering process. The filtered domain names are
stored in the blacklist [35] and then sent to the feature extractor in next step.

Feature Extractor. The second step is to extract features from the domain
names obtained from the first step. We consider each domain name as a string.
To efficiently classify domains, we use two types of features: linguistic features
and DNS features. We start with the discussions of linguistic features and then
the DNS features.

There are six linguistic features: Length, Meaningful Word Ratio, Pronounce-
ability Score, Percentage of Numerical Characters, Percentage of the Length
of the Longest Meaningful String (LMS), and Levenshtein Edit Distance. The
detailed description and calculation of each linguistic feature are given as follow:

Length: This feature is simply the length of a domain name, denoted by |d|.
Meaningful Word Ratio: This feature measures the ratio of meaningful words in
a string (domain name). It can be calculated as follow:
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f1 =
n∑

i=1

|wi|
|d| (1)

where wi is the i-th meaningful substring of this string, |wi| is the length of
i-th meaningful substring. A high ratio stands for a safer domain, whereas a
lower ratio indicates that it could be a DGA domain. We strict the length of
each meaningful substring |wi| in the string to be at least 4 letters because
most legitimate domain names have meaningful substrings with more than 3
letters. For example, for a domain name of yivdbook, we have f1 = (|book|)/8 =
4/8 = 0.5. If a domain name is homedepot, we have f1 = (|home|+ |depot|)/9 =
(4 + 5)/9 = 1, the domain is fully composed of meaningful words.

Pronounceability Score: In the linguistic sense, the more permissible the com-
binations of phonemes are, the more pronounceable the word is, and thus the
higher pronounceability score. Since DGA generated domains have a very low
number of such combinations, a pronounceability score becomes a useful feature
in the first-level classification. This feature uses an n-gram lookup table to eval-
uate the pronounceability of a string. We calculated the feature by extracting
the n-grams score of a domain d. We choose the substring length l ∈ 2, 3 in our
computation and count their occurrences in the English n-gram frequency text.
For a domain d, the n-grams score is calculated as follow:

f2 =
∑

n − gram(d)
|d| − n + 1

(2)

where n is the length of the matching word in the n-gram list.

Percentage of Numerical Characters: This feature measures the percentage of
numerical characters in a string. It can be simply calculated by f3 = |n|/|d|,
where |n| is the number of numerical characters.

Percentage of the Length of LMS: This feature is to measure the length of the
longest meaningful string in a domain name. The calculation can be written as
f4 = |l|/|d|, where |l| is the length of longest meaningful string.

Levenshtein Edit Distance: This feature measures the minimum number of single-
character edits between a current domain and its previous domain. For example,
given two strings “kitten” and “sitting”, the Levenshtein Edit Distance between
them is 3, because the characters that need to be edited are k to s, e to i and
adding a g at the end.

Aside from linguistic features, we also look into DNS features where 27 DNS
features in Table 1 are used in this research. We utilize DNS features because
a DGA domain usually contains less information, whereas a legitimate domain
does. For example, DGA domains tend to have short time and their creation
dates are typically within one year.
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Table 1. DGA classification features

Features Description (+/−)

Expiration date If longer than 1 year +

Creation date If longer than 1 year +

DNS record If DNS record is documented +

Distinct IP addresses #. IP addresses related to this domain +

Number of distinct countries #. countries related this domain +

IP shared by domains #. domains are shared by the IP −
Reverse DNS query results If DN in top 3 reverse query results +

Sub-domain If domain is related to other sub-ones +

Average TTL DNS data time cached by DNS servers +

SD of TTL Distribution SD of TTL −
% usage of the TTL ranges Distribution range of TTL +

# of distinct TTL values Different value of TTL on server −
# of TTL change How frequently TTL changes +

Client delete permission If client has delete permission −
Client update permission If client has update permission −
Client transfer permission If client has transfer permission −
Server delete permission If server has delete permission −
Server update permission If client has update permission −
Server transfer permission If client has transfer permission −
Registrar The domain name registrar +

Whois Guard If use Whois guard to protect privacy −
IP address same subnet If IP address is in the same subnet −
Business name If domain has a corporation name +

Geography location If domain provides address +

Phone number If domain provides a phone number +

Local hosting If use local host machine +

Popularity If on the top 10000 domain list +

Note: DN - Domain name. TTL - Time-To-Live. SD - Standard deviation. All the
features used in our model. (+/−): “+” stands for positively related to normal domain,
whereas “−” stands for negatively.

Two-Level Model: Classification and Clustering. To understand DGA
domains, we propose a two-level machine learning model consisting of the first-
level classification and the second-level clustering. In the former, we use a classifi-
cation model called J48 classifier to classify input domains into DGA domain (bad
domain) and non-DGA domain (good domain). Then, the classified DGA domains
will be sent to the second-level clustering, where we use the DBSCAN-based clus-
tering [5] to divide the DGA domains into several groups, as shown in Fig. 4.



442 T. Chin et al.

Fig. 4. Two-level model of classification and clustering

First-Level Classification: A perfect classification algorithm for classifying DGA
domains and non-DGA domains requires the maximal difference between them.
By using the features obtained above, we test different machine learning clas-
sifiers including Decision Tree-J48, Artificial Neural Network (ANN), Support
Vector Machine (SVM), Logistic Regression and Naive Bayes to find the best
classifier. Among those classifiers, we notice that J48 is the best to classify DGA
domains (its detailed discussion is given in Sect. 5), so J48 is chosen as a classifier
in our first-level classification.

Second-Level Clustering: Only the classified DGA domains are used for the
second-level clustering. Our clustering model is based on the DBSCAN algo-
rithm, where we use domain features to compute the distance of their domain
names and to group these domains according to their domain feature difference.
Let di and dj be domain names, where i �= j. We first set i = 0 representing
the first domain and then calculate the overall distance between di and all other
domains. Since we have two types of features: linguistic feature and DNS feature,
the overall distance is a combination of linguistic distance and DNS similarity.
The linguistic distance is computed based on the six linguistic features followed
by the following equation:

Dl(di, dj) =

√√√√
6∑

k=1

disk(di, dj), (3)
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where disk(di, dj) is the distance of each linguistic features between two domains
di and dj . To get the DNS similarity, we first construct a weight matrix M ∈
R

K×L, where K and L are the number of DNS features and linguistic features of
all the DGA domains D classified from the first-level classification, respectively.
The relationship between K and L is represented by a bipartite graph that is
represented in M, where each component Mk,l holds the weight of an edge (l, k).
For each DNS record, weight Mk,l is computed by:

Mk,l =
1

|D(k)| , for any l = 1, ..., L, (4)

where |D(k)| is the cardinality of the subset of domains that are pointed to
the DNS record. We then use a matrix S ∈ R

L×L to store DNS similarity
information, where for each component, Sdi,dj

is the similarity value of domains
di and dj . Our intuition is that when two domains point to the same DNS record
k, they should have high similarity. Therefore, we could calculate the similarity
matrix based on the weight matrix M. Let N be M normalized by columns. We
have:

N ≡ M when

(
K∑

k=1

Mk,l = 1,∀l = 1, · · · , L

)
. (5)

Final similarity matrix is calculated by:

S = NT � N ∈ R
L×L. (6)

The overall distance is a combination of linguistic distance and DNS similar-
ity, which is calculated by:

D(di, dj) = Sdi,dj
+ log(

1
Dl(di, dj)

) (7)

After we have the overall distance, we can get all points density-reachable
from di based on the threshold distance, ε. If D(di, dj) > ε, we add those points
dj to a cluster C. The minimal cluster points, MinPts, is used to determine a
core point. Let di be a core point. If the number of point in C > MinPts, then
a cluster is formed. If di is a border point, implying that no points are density-
reachable from di, then our DBSCAN model visits the next domain. The above
steps will be repeated until all of the domains have been processed.

5 Evaluation

5.1 Global Environment for Network Innovation

GENI is an NSF funded heterogenous testbed solution. Leveraging high-
performance nodes aided in the ability to process large volumes of real-time
data feeds in a timely manner. The nodes selected for the evaluation consisted
of systems running: Intel(R) Xeon(R) CPU E5-2450 @ 2.10 GHz, 16 GB of hard
drive space, and 1GB of memory where the size could be manipulated, based on
reservation.
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Experimental Setup. To evaluate our model thoroughly, we use five datasets
of DGA domain data: CryptoLocker, Tovar, Dyre, Nymaim, and Locky from the
latest DGA-feed [36–38]. We collected the DGA domain names over a period of
six months in 2017. 160,000 domain names were tested in our model. To provide
a list of normal control group domain names, we choose the top 1 million most
popular Internet domains listed in domain punch [39]. We mix the control domain
names and DGA domains names with a 1:1 ratio for the first-level classification.
In the second-level clustering, we use classified DGA domain names from the
first-level classification to cluster different groups of DGA domains.

5.2 Our Execution and Results

Experimental Results. To find the best model for the first-level classifica-
tion, we test five different machine learning models, J48, ANN, SVM, Logistic
Regression, and Naive Bayes. Figures 5(A) and (B) show the performance of dif-
ferent algorithms on the classification of the DGA domains. We find that J48
has the highest average accuracy, 95.14%, compared to other machine learning
algorithms. Figure 5(B) also shows that J48 is the fastest one with an average of
0.0144 ms to classify the domain names. To see the accuracy of J48 associated
with scalability, we test five groups of samples for each DGA generated domain
with a total number of 1000, 5000, 15000, 20000, 50000 domain names. We find
that J48 performs the best for CryptoLocker domain names.

Figure 6(A) shows how the second-level clustering algorithm performs on
different DGAs. When we use both linguistic distance and DNS similarity as
the overall distance, its average accuracy is 87.64%, whereas if we only use DNS
similarity as the overall distance, the average accuracy is 89.02%. This is because
most of DGAs have very similar string composition and length. These features
can not help the clustering algorithm to identify similar DGA domains from
each other. Furthermore, we test the accuracy of clustering when more groups
are mixed together.

As Fig. 6(B) shows, we test all the two group combinations for all the five
DGAs. When we mix Cryptolocker with other DGAs, the average accuracy for
clustering is 81.43% for all the features. However, when we use only DNS features
as the DBSCAN distance, its accuracy increases to 92.45%, which means that
most Cryptolocker domains are clustered into one group. Similarly, when test-
ing other groups, we find that the accuracies of clustering are 91.05%, 92.22%,
92.89%, and 92.57% for ovar, Dyre, Nymaim, and Locky, respectively. The result
demonstrates that the clustering model is efficient to group the same DGA
domains into one group.

5.3 Discussions

As seen in our experimental evaluation, the proposed machine learning frame-
work has demonstrated the efficient way to predict a future DGA domain name.
We have evaluated the proposed machine learning framework with most lat-
est DGA domain names from DGA-feed to cluster and predict DGA domains
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Fig. 5. (A) Accuracy of different machine learning algorithms (B) Classification time
of different machine learning algorithms.

Fig. 6. (A) Clustering accuracy for each DGA. (B) Clustering accuracy for each two
DGAs group.

from these real-world data. Our evaluation has shown that with 33 features
we proposed in our model, the J48 classification algorithm performed the most
effective and efficient in comparison to ANN, SVM, Logistic, and Naive Byes
due to the minimal classification time, 0.0144 ms, and the highest accuracy,
95.14%. We have also tested the clustering accuracy. Our result has shown that
the DBSCAN clustering model has the accuracy of 92.45%. We have noticed
that the best accuracy we get from clustering is the one where only DNS query
features are used. The experimental results have proved that a cluster of DGA
domains usually points to several specific server IPs. DNS information of these
domains are very similar and therefore clustering them with only DNS features
is very accurate.

6 Conclusions and Future Work

The dichotomy of DGA in malware presents a grant challenge in securing an
organization. Firewall blacklisting is constantly expanded since filtering rules
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are constantly added through the multiple sources of inputs. However, DGA
sequences may not be known by the multiple sources promptly as sophisticated
malware developers can integrate DGA to bypass a majority of network con-
trols. In this research, we have proposed the machine learning framework to
circumvent threats from a DGA. The proposed framework consists of a black-
list, feature extractor, classification and clustering, and detection. Furthermore,
we have collected a real-time threat intelligence feed over a six month period
where all domains live threats on the Internet. Based on our extensive experi-
ments on the real-world feed, we have shown that the proposed framework can
effectively extract domain name features as well as classify, cluster and detect
domain names. In the future, we will explore deep learning algorithms such as
Convolution Neural Network (CNN) via tensor-flow for this research and evalu-
ate them on a real-world testbed such as GENI [40–42].
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Abstract. Serverless computing is an emerging trend in the cloud,
which represents a new paradigm for deploying applications and services.
In the serverless computing framework, cloud users can deploy arbitrary
code and process data on the service runtime. However, as neither cloud
users nor cloud providers are trustworthy, serverless computing platform
suffers from trust issues caused by both sides. In this paper, we pro-
pose a new serverless computing framework called Se-Lambda, which
protects the API gateway by using SGX enclave and the service run-
time by leveraging a two-way sandbox that combines SGX enclave and
WebAssembly sandboxed environment. In the proposed service runtime,
users’ untrusted code is confined by WebAssembly sandboxed environ-
ment, while SGX enclave prevents malicious cloud providers from steal-
ing users’ privacy-sensitive data. In addition, we implement a privilege
monitoring mechanism in SGX enclave to manage the access control of
function modules from users. We implement the prototype of Se-Lambda
based on the open source project OpenLambda. The experimental results
show that the Se-Lambda imposes a low performance penalty, while buy-
ing a significantly increased level of security.

Keywords: Serverless computing · Cloud security
Runtime security · Intel SGX · WebAssembly

1 Introduction

With the rapid development of cloud computing, serverless computing has
become a new paradigm for deploying applications and services [7]. Serverless
computing is based on event-driven programming, in which application logic
is implemented as functions and events that trigger them, and then the cloud
provider executes functions following an event stream. When a serverless appli-
cation is deployed, the price is dependent on the actual amount of computing
resources consumed by each request, thus cutting the costs of cloud users. In
addition, application scaling is automatically handled by the cloud platform
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itself, rather than by users or tenants that create application or virtual machine
instances. By taking the advantages of serverless computing, we can leverage it
to build web, Internet of Things (IoT), and mobile applications.

In the serverless computing framework, an application invokes different APIs
to realize a functionality as its logic is split into different functions. During an
API call, API gateway is responsible for obtaining an API token, resolving the
URL and invoking the corresponding service runtime. Therefore, API gateway is
the core component of serverless computing, which always suffers from a variety
of malicious attacks. Once a module of API gateway is compromised, it will
affect other modules. In addition, the service runtime of serverless computing
platform also faces severe security challenges.

On the one hand, unlike Infrastructure-as-a-Service (IaaS) model which
has strong isolation guarantee due to good isolation between virtual machine
instances, the serverless architecture, which is mostly based on containers for
executing functions, only achieves weak isolation guarantee. The reason is that
containers depend on the isolation provided by the host OS kernel, and the
kernel often leverages software mechanisms for isolation and needs to protect
a larger interface [2]. In addition, users of the serverless computing framework
can deploy arbitrary function module which may contain malicious code to be
executed on the service runtime. Therefore, a malicious cloud user can com-
promise the platform’s host runtime, even the underlying system, by exploiting
vulnerabilities of the container or OS kernel. On the other hand, the serverless
computing framework shares the same issue as other cloud computing models,
with which is that malicious or curious cloud providers may steal cloud users’
privacy-sensitive data, such as encryption keys, since they control the whole
software stack of the service runtime.

It is a challenge to allow trustworthy execution of programs in hostile envi-
ronments, such as a public cloud, without trusting the cloud provider. Previous
approaches either use homomorphic encryption or leverage Trusted Execution
Environment (TEE). As we know, because of the expensive computing cost, it
is not practical to use homomorphic encryption for securing data in clouds. Intel
Software Guard Extensions (SGX), as a hardware-based TEE that provides an
isolated environment called enclave to secure the execution of a program, can
protect the running enclave against malicious software, including the operating
system, hypervisor, and even low-level firmware.

In particular, SGX enclaves have been applied to existing data-processing ser-
vices, such as MapReduce framework [22], log server [15], and coordination ser-
vices [5]. Unfortunately, these researches need to customize specialized enclaves
for protecting the confidentiality and integrity of users’ data. In additional,
Haven [3] and Graphene-SGX [31] leverage library OS to execute unmodified
legacy applications in clouds, which suffers from a large amount of Trusted Com-
puting Base (TCB) and a high performance overhead. In order to minimize the
TCB of applications, researchers put part of an application into the enclave,
such as SCONE [2] and Panoply [27]. All these architectures protect the confi-
dentiality of users’ data, assuming that any application running inside an SGX
enclave are trusted.
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However, cloud applications themselves may contain malicious code, and
thus are untrusted, which is the case particularly for serverless computing archi-
tecture. To address the issue of untrusted applications, Minibox [18] combines
hypervisor-based isolation technique [19] and native client sandbox [35] to pro-
tect applications in Platform-as-a-Service model, which is limited to x86 native
code, and with a TCB that is too large to be directly applied in the server-
less architecture. In addition, Ryoan [13] uses a distributed sandbox to protect
data-processing service, which focuses on preventing untrusted code from leak-
ing users’ data. Ryoan has an increased TCB and brings much performance
overhead, which is not suitable for the service runtime of serverless computing
platform, such as Node.js runtime.

In this paper, we propose Se-Lambda, a serverless computing framework that
can secure the processing of users’ data without trusting the whole software stack
of the cloud provider. In Se-Lambda, both API gateway and service runtime are
protected. For API gateway, Se-Lambda leverages the SGX enclave to protect the
core modules of API gateway, which avoids the negative influence of malicious
attacks. In addition, Se-Lambda uses SGX’s remote attestation to provide a
function validation module in the API gateway, which verifies the integrity of a
function module before it is executed.

For service runtime, Se-Lambda leverages a two-way sandbox, which places
WebAssembly sandboxed environment into the SGX enclave, to provide shield
execution for users’ function modules. The WebAssembly sandboxed environ-
ment is the state-of-art sandbox that supports both web embedding and non-
web embedding environment, which isolates users’ function modules to prevent
malicious code from compromising the host runtime, even the cloud platform. In
addition, the SGX enclave prevents cloud provider from leaking users’ data by
taking the advantages of SGX’s strong isolation. Moreover, the two-way sandbox
leverages the dynamic function execution technique to reduce the overhead of
unnecessary enclave creation and destruction.

Based on the design, neither function modules nor cloud providers are sup-
posed to be trustworthy. The integration of the two-way sandbox into service
runtime will impose a little performance overhead, while introducing an increased
level of security.

The main contributions of this paper are as follows:

– We propose a detailed design of Se-Lambda, including the securing of API
gateway and service runtime. In API gateway, Se-Lambda utilizes the SGX
enclave to protect the core modules of API gateway and leverages SGX’s
remote attestation to verify the integrity of function module.

– We provide a two-way sandbox for the service runtime, which prevents
untrusted users’ function module from compromising the host runtime, even
the cloud platform. In addition, it protects users’ privacy-sensitive data from
the malicious cloud provider.

– We implement a prototype of Se-Lambda and evaluate it. It introduces a
significantly increased level of security while imposing a little performance
overhead.
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In the next section, we describe the background and threat model. Then, we
introduce system design in Sect. 3. Then, we describe implementation details in
Sect. 4, followed by evaluation results in Sect. 5. Finally, we discuss related work
in Sect. 6 and draw conclusions in Sect. 7.

2 Background

2.1 Software Guard Extensions

Intel Software Guard Extensions (SGX) is an extension of the Intel architecture,
which is used to enhance software security. With SGX, developers can place the
trusted portion of the software in the enclave to protect select code and data
from disclosure or modification, as neither privileged nor unprivileged software
can access enclaves that are protected areas of execution in memory. In the
context of SGX, enclaves are isolated execution units, with encrypted code and
data. The data is placed in the Enclave Page Cache (EPC), the memory in the
EPC is encrypted by the Memory Encryption Engine (MEE) to prevent known
memory attacks. The contents of the memory in the EPC will be decrypted
only when it enters the CPU package and will be encrypted when it leaves the
CPU package. Therefore, the TCB of an enclave contains only itself and the
underlying CPU.

SGX provides a CPU-based remote attestation mechanism that enables third
parties to verify the integrity of the code running in an enclave, and a data shar-
ing mechanism between enclaves over a secure channel established by the remote
attestation mechanism. An enclave can only execute unprivileged instructions in
user space. When an application in the enclave needs a system call to get the
underlying system service, the enclave needs to be switched out to execute this
system call.

2.2 WebAssembly

WebAssembly (WASM) [33] is an experimental, low-level programming language
that is usually applied to the web, which defines a small, portable and load-time-
efficient format suitable for compilation to the web. Up to now, web browsers
such as Chrome, Microsoft Edge, Safari, and Firefox, have begun to support the
initial version of WebAssembly.

WebAssembly leverages Software Fault Isolation (SFI) to build the sand-
boxed environment, which is isolated from the host runtime. The sandboxed
environment is applied to prevent buggy or malicious modules from leaking users’
data. Each WebAssembly module is subject to the security policies of its embed-
ding. For example, modules running in a web browser follows the same origin
policy as the browser, while modules in a non-browser environment follows the
same POSIX security policy as the system. A WebAssembly module must declare
all accessible methods and their related types at the time of loading, including
the dynamic link functions it used. Therefore, we can leverage Control-Flow
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Integrity (CFI) implicitly to check whether an application is hijacked during
program execution.

The way of function call in WebAssembly is different from C/C++ function
call in the following aspects: (1) A function call must specify target index corre-
sponding to effective entries in function index or table index space. (2) Indirect
function calls need to specify the type signature of the target function at the
calling, then the type signature must be exactly matched before the function
is called. Through the above mechanism, WebAssembly can effectively avoid
control-flow hijacking attacks.

2.3 Threat Model

We assume that cloud users and cloud providers do not trust each others,
but trust their own codes and platforms. At the cloud platform level, we
assume a powerful adversary who controls the entire software environment of
the cloud platform, including the operating system, hypervisor, and even low-
level firmware. In addition, the adversary may physically get access to the ser-
vice’s server to perform hardware attacks, such as cold boot attack. At the cloud
user level, we assume that the adversary can deploy arbitrary code on the ser-
vice runtime of serverless architecture, especially malicious code. The adversary
may break the container’s isolation by exploiting the vulnerabilities of softwares,
which may compromise the host runtime, even the cloud platform.

We assume that the following components are trusted: (1) the Intel SGX
instruction set extension; (2) the Intel SGX kernel driver, and the aesmd which
approves the enclave creation by verifying attributes in the enclave signature; (3)
the WebAssembly sandboxed environment. Other than these components above,
there is no need to trust any other part in Se-Lambda.

We do not consider denial of service that an attacker may terminate the
execution of the enclave or crash the enclave. Additionally, side channel attacks,
such as page faults and cache timing, are beyond the scope of our model due to
the infeasibility of exploiting these channels in practice.

3 System Design

The purpose of designing Se-Lambda is to provide a secured serverless computing
environment where cloud users and cloud providers do not trust each others. The
serverless computing framework needs to protect cloud users’ data from being
leaked as well as the host runtime of cloud providers from being compromised.

3.1 Architecture

Due to the architectures of various serverless platforms are a little different,
we refer to the architecture of Amazon’s AWS Lambda, which includes an API
gateway and a service runtime. Figure 1 shows a detailed overview of the Se-
Lambda architecture.
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Se-Lambda prevents the untrusted software on API gateway from compromis-
ing core modules by leveraging hardware to isolate them. In addition, Se-Lambda
offers an integrity validation to verify the integrity of cloud users’ function mod-
ules. The integrity validation contains an auxiliary module in API gateway and
the validation logic in two-way sandbox (see Sect. 3.2).

Se-Lambda prevents the service runtime from leaking cloud users’ data
and malicious code from compromising the host runtime of cloud providers by
introducing a two-way sandbox, which provides a two-way protection between
cloud users’ function modules and the cloud provider. When deploying a server-
less application on the protected service runtime, both cloud users and cloud
providers do not need to worry about trust issues (see Sect. 3.3).

Se-Lambda offers a dynamic function execution mechanism to improve the
performance of the two-way sandbox by optimizing the life cycle of the two-way
sandbox to reduce the times of creating and destroying it (see Sect. 3.4).

3.2 API Gateway

We use SGX enclave to isolate the core module of API gateway and provide an
integrity auxiliary module in API gateway.

Core Modules Isolation. API gateway is the key component of Se-Lambda,
which contains various core modules, such as authentication and authorization.
Figure 2 shows the workflow for API gateway handling user requests, which
briefly includes the following steps. First, API gateway handles a user request
by parsing the request information and performing security checks to prevent
malicious attacks. Then, when the request is verified, API gateway calls the user
authentication and access control modules in service mediation. Finally, after the
authentication succeeds, API gateway invokes the corresponding service runtime
to execute function modules and outputs the result to the user.

Se-Lambda does not trust other software on the API gateway, including the
operating system and hypervisor. Placing all modules of API gateway into SGX
enclave will cause a large TCB. Instead, we only place the privacy-sensitive core
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modules into SGX enclave to isolate them from being compromised. As we only
protect part of API gateway, we can offer a fine-grained isolation as well as a
small TCB.

Function Validation. Se-Lambda ensures that function modules running on
the service runtime are what the cloud users expect through integrity validation
for those modules. However, previous software based integrity validation can be
bypassed or compromised by attackers, which may drop a validation request
or tamper with the validation code itself. Se-Lambda leverages SGX’s remote
attestation to provide an integrity validation for function modules by taking the
advantage of hardware attestation.

In detail, after the protected service runtime creates the two-way sandbox,
the sandbox attests to API gateway that it is trusted and establishes an authen-
ticated communication channel by launching a remote attestation. When API
gateway invokes the protected service runtime to execute a function module, it
sends function module’s hash value, which is from user’s request, to the two-way
sandbox by the above authenticated channel. Then, before the function module
is executed, the two-way sandbox leverages hash checking to verify the integrity
of this function module.

3.3 Two-Way Sandbox

The service runtime is the engine that executes users’ function modules in
the serverless computing framework. However, neither cloud users nor cloud
providers are trustworthy, since malicious users’ code may compromise the host
runtime and malicious cloud providers may steal users’ data. Some solutions
provide trusted environment to address these issues, which are not suitable for
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the serverless programming model. In this section, we provide a protected service
runtime, which includes a two-way sandbox.

Figure 3 shows the architecture of the two-way sandbox, which includes a
gray part of trusted and a white part of untrusted. The trusted part contains
CPU, SGX driver, and a two-way sandbox is an SGX enclave that includes
a WebAssembly sandboxed environment. The two-way protection provided by
the sandbox is that SGX enclave protects the confidentiality of users’ data and
WebAssembly sandboxed environment protects the security of the host runtime
of the cloud provider.

Function Module

WebAssembly Sandbox

Untrusted Library 

Kernel

Hardware 

Shield Library

SGX Enclave

Service Runtime

SGX Driver

CPU
Untrusted
Trusted

Notation:

Fig. 3. Architecture of two-way sandbox

However, the code inside SGX enclave cannot execute privileged instructions
and needs to switch to the outside world to execute them, which may faces
malicious attacks, such as Iago attacks [8] in which a malicious kernel could
manipulate system call return values and then induce a protected process to act
against its interests. In addition, although WebAssembly sandboxed environment
prevents software vulnerabilities from compromising host runtime, it does not
prevent the execution from exceeding the permissions.

One of the safety functions of the two-way sandbox is to manage the interface
between the function module and the outside world. Thus, the two-way sandbox
includes a privilege monitoring module within SGX enclave to manage the access
control for a function module, which recodes system calls of the function module
and filters them according to permission set. In order to prevent Iago attacks,
we share the same approach as previous works [3,27] by letting the privilege
monitoring module perform checks on the return values of system calls.

In addition, the two-way sandbox achieves the dynamic function execution
technique, which is discussed in Sect. 3.4, by dynamically allocating memory dur-
ing the execution of function modules. For example, when executing a function
module, the two-way sandbox loads it into dynamically allocated memory. After
the function module is executed, the dynamically allocated memory is freed to
the OS, which greatly reduces the memory footprint.
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3.4 Optimization of Two-Way Sandbox Life Cycle

According to the limitations of serverless architecture, the execution time of each
function is ephemeral, which means that the enclave that provides the sandbox
will also be short-lived. However, the time overhead of creating and destruct-
ing an enclave is high [13]. As shown in Fig. 4(a), the life cycle of the two-way
sandbox contains creation, initialization, integrity attestation, function’s execu-
tion, result return, and destruction. The two-way sandbox starts with creating
and initializing SGX enclave. Then, API gateway validates the integrity of the
function module. After the function module is executed, the two-way sandbox
outputs the result and then is destructed.
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Execution

Return

Destruction
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Initialization
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point
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Return
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Attestation
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Fig. 4. The life cycle of the two-way sandbox

Se-Lambda avoids the duplicated creation and destruction of the two-way
sandbox as well as reduces the memory footprint of the sandbox by introducing
the dynamic function execution technique, which adds a loading-point after the
initialization of SGX enclave. As shown in Fig. 4(b), after the two-way sandbox
creates and initializes the SGX enclave, it reaches a loading-point and then waits
for loading function module. When the API gateway schedules the sandbox based
service runtime to execute a function module, the function module is dynamically
loaded into the two-way sandbox. After the function module is executed, the two-
way sandbox will clear it through the dynamic function execution mechanism.
At the same time, the two-way sandbox will be restored to the state of waiting
for dynamically loading function module.

4 Implementation

Se-Lambda’s prototype system is based on the open source serverless computing
framework OpenLambda. We choose Node.js (version 8.7) as the service runtime,
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which is built on the Google V8 JavaScript engine. We use the WebAssembly
sandboxed environment in the V8 engine to protect the host runtime from being
compromised by malicious code. In addition, we migrate the V8 engine into
SGX enclave to prevent users’ data from being leaked by malicious or buggy
underlying systems.

In the API gateway of OpenLambda, we implement an isolated environment
to protect some trusted modules, as well as an auxiliary module to assist the
integrity validation of users’ function modules. Because the SGX enclave can
only execute unprivileged code, we provide a secure underlying system service
for users’ function modules to offer functionalities such as dynamic memory allo-
cation and privilege monitoring. Based on the features of interpreted language,
we optimize the life cycle of the two-way sandbox and introduce a dynamic
function execution mechanism.

4.1 API Gateway

We treat some core modules (e.g., authentication and authorization modules)
in the API gateway as trusted modules, and implement them as dynamically
extensible modules. In addition, we implement a security check mechanism on
the interface between SGX enclave and the OS to prevent underlying OS attacks.

We leverage the remote attestation mechanism of SGX to implement the
integrity verification for users’ function modules. We implement the auxiliary
module of integrity validation in API gateway, which is responsible for estab-
lishing authenticated channel and sending function module’s hash to the two-
way sandbox. Then, we implement the integrity validation logic in the two-way
sandbox to verify the integrity of function module.

4.2 Dynamic Memory Allocation

The dynamic memory allocation is needed by the two-way sandbox in Se-
Lambda. SGX2 adds instructions such as EACCEPT, EMODT, and EMODPR
to support dynamic memory allocation in the enclave, which can dynamically
increase enclave memory or swap out rarely used enclave pages. After the CPU
that supports SGX2 obtains a memory page from the system kernel, it calls the
EACCEPT instruction to accept this page. In addition, after using EMODT
and EMODPR instruction to modify the permission of an existing EPC page,
the CPU needs to call EACCEPT instruction to accept this.

However, there is no hardware that supports SGX2 available at present.
Instead, in the implementation, we use a pre-allocated memory mechanism in
SGX1. When creating an enclave in the service runtime, we allocate a large
amount of memory that meets the requirements of the two-way sandbox during
the execution of a function module. In addition, we implement a simple user-
space memory management module to manage pre-allocated memory, which gets
a fixed length of memory when an enclave is created. After the SGX enclave is
destroyed, the pre-allocated memory will be freed.



Se-Lambda: Securing Privacy-Sensitive Serverless Applications 461

4.3 Shield Module

We implement a shield library in SGX enclave to avoid constraints of SGX
enclave and WebAssembly sandboxed environment, which includes privilege
monitoring and I/O control. In the two-way sandbox, although code in
WebAssembly sandboxed environment cannot exploit vulnerabilities to compro-
mise the host runtime, they can perform the operations that are beyond the
normal permissions. We leverage system call filtering and permission checking
to implement the privilege monitoring module, which is responsible for moni-
toring code behavior in WebAssembly sandboxed environment. When a func-
tion module triggers a system call in WebAssembly sandboxed environment, the
privilege monitoring module records the system call parameters. Then, it checks
permissions of the function module and filters it according to the permissions
defined in the creation process of this function module. In addition to privilege
monitoring, the shield library is also responsible for managing the interaction
between the SGX enclave and untrusted OS.

4.4 Dynamic Function Execution

To realize dynamic function execution, we implement a loading-point after the
two-way sandbox is created and initialized. Once the execution of a function
module ends, the two-way sandbox restores to the loading-point for the next
function module. As it is very complicated to restore a program to the pre-
vious state, we leverage the features of interpreted language, which launches
a virtual machine to execute code. Fortunately, the WebAssembly is a stack-
based interpreted language, which is interpreted by the virtual machine in the
JavaScript engine. When porting the WebAssembly sandboxed environment into
SGX enclave, we change source code to allocate the used resources dynamically
during the execution of the WebAssembly virtual machine.

For example, when the service runtime executes a function module, it loads
this function module into the newly allocated memory of SGX enclave. Then,
the two-way sandbox starts the instance of WebAssembly virtual machine to
interpret this function module. Once the execution of this function module ends,
the WebAssembly virtual machine outputs the result and automatically shuts
down itself. Because resources used by the WebAssembly virtual machine is
dynamically allocated, we implement a mechanism to free all the resources after
the virtual machine is shut down. As a result, the two-way sandbox reverts
to loading-point and continues to wait for the execution of the next function
module.

5 Evaluation

Se-Lambda is designed to provide a lightweight and secure serverless framework
for cloud users. The evaluation of Se-Lambda includes three parts. First, we
evaluate the security guarantee of Se-Lambda. Then, we compare the perfor-
mance of API gateway with SGX enclave against native variants. Finally, we
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conduct an empirical experiment on Se-Lambda’s service runtime to evaluate
the performance impact of the two-way sandbox. We choose Google brotli [6]
and OpenCV [20] as the evaluation benchmarks. In addition, we quantify the
memory footprint and time overhead of the two-way sandbox.

All benchmarks are conducted on a Dell Precision Tower 3620 workstation
with Intel Xeon E3-1225 v5 3.3 GHz processor (with Skylake microarchitecture,
4 cores, and SGX version 1) and 8 GB RAM. We install Intel’s SGX Linux Driver
and SDK 2.0 on the Ubuntu 16.04.3 LTS with Linux kernel version 4.10. All the
performance measurements are averaged on 100 runs.

5.1 Security Evaluation

Since Se-Lambda provides security mechanism for both service runtime and API
gateway, we evaluate the confidentiality and integrity of these components. In the
evaluation, we simulate some attack events against the two-way sandbox inside
service runtime and API gateway, to verify the security guarantee. In addition,
we compare the security guarantee of the two-way sandbox and Ryoan [13].

As shown in Table 1, Se-Lambda can defend against all the listed attacks.
Firstly, Se-Lambda can ensure the integrity of SGX enclave and users’ code.
Since the two-way sandbox and isolated function modules of API gateway are
attested via SGX’s remote attestation, they can prevent attackers from being
tampered with. Se-Lambda validates the integrity of users’ code through func-
tion validation. Thus Se-Lambda can detect tampered users’ code and refuse its
execution.

Then, in terms of confidentiality, Se-Lambda can protect users’ sensitive data.
Since both the two-way sandbox and API gateway process sensitive data inside
SGX enclave, attackers cannot steal sensitive data. Finally, Se-Lambda can pre-
vent untrusted code from compromising host runtime. The two-way sandbox can
execute untrusted code, which is due to the protection of WebAssembly sandbox.
In order to verify privilege monitoring, we invoke the two-way sandbox to run an
application with different system calls. The results show that only system calls
in the permission set can succeed.

We also compare the two-way sandbox with Ryoan in terms of security guar-
antee. Table 2 shows the comparison results. The results show that both the
two-way sandbox and Ryoan can confine untrusted code and prevent sensitive
data leakage because of the two-way protection. However, the two-way sandbox
can perform privilege monitoring to avoid system call abuse, while Ryoan does
not support.

5.2 API Gateway Performance

The API gateway is the key component of serverless computing framework, which
handles requests from users and dispatches service runtime to execute function
modules. In our evaluation, we use ApacheBench [1] to post the request and fetch
the response. We gradually increase the concurrency of ApacheBench to test the
throughput and per-request latency of API gateway. Meanwhile, we evaluate the
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Table 1. The security guarantee of Se-Lambda

Component Attack event Security threat Defense
ability

Two-way
sandbox

Executing untrusted code on sandbox Confidentiality Yes

Stealing the sensitive data of users Confidentiality Yes

Executing arbitrary system calls Confidentiality Yes

Tampering with users’ code Integrity Yes

Tampering with the integrity validation Integrity Yes

API
gateway

Stealing isolated modules’ sensitive data Confidentiality Yes

Tampering with the isolated module Integrity Yes

Table 2. Comparison of two-way sandbox and Ryoan

Security guarantee Two-way sandbox Ryoan

Confining untrusted code Yes Yes

Preventing sensitive data leakage Yes Yes

Privilege monitoring Yes No

CPU utilization of API gateway, with SGX enabled and disabled, respectively.
The baseline is to run API gateway without SGX, which is also called Gateway,
while API gateway with SGX is called Gateway-SGX.

Figure 5 shows the throughput and per-request latency of Gateway and
Gateway-SGX. Gateway-SGX achieves approximately 11,600 requests per sec-
ond, while the latency increases dramatically when the throughput is more than
this value. Gateway achieves 16,000 requests per second. We observe that Gate-
way performs better than Gateway-SGX, since the bulk of the Gateway-SGX ’s
latency is cost to create and destroy an enclave.

As shown in Fig. 6, the CPU utilization grows with throughput. As Gateway-
SGX needs extra CPU cycles to maintain SGX enclave environment, the CPU
utilization of Gateway-SGX is slightly higher than Gateway. The CPU utilization
peak of Gateway and Gateway-SGX is about 125%, since the API gateway is
a multi-thread program with different threads running on multiple CPU cores.
This demonstrates that the overhead imposed by SGX is acceptable.

5.3 Service Runtime Workloads

One of the most popular deployment models of serverless computing is to build
web services on cloud platform. We choose two libraries that are frequently used
to construct web services, including Brotli (version 1.0.1) for compressing and
decompressing web data [6], and OpenCV (version 3.3) for image processing [20],
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to conduct the experiments. All these workloads are implemented in C/C++. In
order to make them run in the WebAssembly sandboxed environment, we com-
pile these C/C++ source code into WebAssembly by a precompiled toolchain,
including emscripten [9] and binaryen [4]. In the experiments, we evaluate the
execution time and the memory cost of these libraries.

Execution Time Overhead. Brotli is a data format specification, which com-
presses data streams with a combination of generic-purpose lossless compression
algorithm. We choose the datasets of squash compression benchmark [28], which
ranges from 10 KB to 100 MB, to test the total time of compressing and decom-
pressing a file. As shown in Fig. 7(a), the execution time overhead increases with
the size of the tested file. We find that the most time of a small workload is spent
in creating enclave while the overhead of enclave creation is less significant for a
large workload. For example, a large workload like compressing enwik8 (100 MB)
running in the two-way sandbox is 1.8x slower than the native variant.

OpenCV is an open source computer vision library, which can be deployed
on the cloud as an image processing service. In this experiment, we compile
OpenCV into Node.js module with the WebAssembly format, which can be
loaded into the two-way sandbox. We evaluate the time overhead of OpenCV,
with or without the two-way sandbox, by performing image processing on pic-
tures, ranging from 11 KB to 3.5 MB. As shown in Fig. 7(b), when processing
a large image (3.5 MB), the overhead of OpenCV with the two-way sandbox
is 35% higher compared to the native variant, since image processing involves
heavy computation. When processing a large image, most of the overhead is
spent in loading file into the enclave and privilege monitoring.

Optimization Evaluation. In this experiment, we evaluate the effect of opti-
mizing the life cycle of two-way sandbox. We continuously invoke the two-way
sandbox at 100 times, with optimization enabled or disabled, to execute Brotli
application, which compressing and decompressing a file, ranging from 10 KB to
10 MB.
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Fig. 7. Execution time for Brotli, OpenCV

As shown in Fig. 8, the execution time of two-way sandbox is reduced with
optimization enabled. The effect of optimization is getting better as the file size
grows, because the overhead of creating and initializing an SGX enclave increases
with the file size and the optimization avoids it.

Memory Overhead. In this experiment, we choose five different stages during
the life cycle of the two-way sandbox, including creation, loading-point, attes-
tation, execution, and return, to evaluate the memory footprint of the two-way
sandbox. As shown in Fig. 9, each workload has five peaks, which represent
the memory footprint at different states, such as before creation (Static Stage),
before loading function (Loading Stage), after attestation (Attested Stage), after
functions’ execution (Executed Stage), and after outputting results (Returned
Stage).

We find that the memory footprint of the two-way sandbox gradually
increases after enclave creation. As discussed in Sect. 3.4, instead of destroy-
ing the two-way sandbox, we optimize the life cycle of the two-way sandbox by
making the sandbox still exist after it outputs the result of the function module.
The highest memory overhead during the life cycle of the two-way sandbox is
spent at functions’ execution, which is reasonable because the memory is dynam-
ically allocated at the execution of function modules. As the maximum file of
Brotli ’s dataset is enwik8 (100 MB), the memory overhead of it at functions’
execution is much higher than the others.

6 Related Work

In this section, firstly, we discuss solutions against untrusted platform and soft-
ware protection for untrusted code. Then we discuss containers and sandboxes
using SGX enclave, the security of SGX enclave and homomorphic encryption.
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Solutions Against Untrusted Platform. Software solutions leverage a
trusted hypervisor to prevent untrusted OS from compromising trusted appli-
cations, such as InkTag [12] and Sego [16], which have a large TCB. Hardware
solutions use a trusted hardware to protect a trusted application from untrusted
OS, such as SGX.

VC3 [22] provides an SGX-based execution environment for MapReduce jobs
to prevent malicious underlying systems from disclosing privacy-sensitive data.
Secure-Zookeeper [5] protects privacy-sensitive modules of zookeeper coordina-
tion services across multiple SGX enclaves and provides secure communications
between enclaves. SGX-Log [15] leverages a secure log system based on SGX
enclave to protect the confidentiality and integrity of system logs. Opaque [36]
leverages SGX enclave to construct new distributed oblivious relational operators
for distributed data analytics platform, which hides access patterns. In addition,
some researchers also used SGX enclave to protect network applications, such
as S-NFV [24], content-based routing [21]. However, all of these systems need
specialized SGX enclaves to protect cloud applications.

Haven [3] is the first to use library OS to provide a SGX enclave environment
for applications, which could execute any Windows application without modi-
fying the application. Graphene-SGX [31] provides a trusted execution envi-
ronment that based on Graphene library OS for Linux applications and sup-
ports multiple processes. In order to improve the performance of library OS,
SGX-kernel [30] provides user-level asynchronous cross-enclave communication
and preemptible multi-threading in SGX enclave. Compared to Graphene-SGX,
Panoply [27] reduces the application TCB by two orders of magnitude and sup-
ports event management in SGX enclave. All these systems protect the confiden-
tiality of users’ data, assuming that any application running inside SGX enclave
are trusted.

Software Protection for Untrusted Code. In order to prevent malicious
code from compromising the underlying host runtime, some researchers propose
solutions which are based on software fault isolation techniques. NaCl [35] lever-
ages SFI to isolate untrusted native code, which can run native code in the web
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browser to improve the security and performance of native code. TxBox [14]
is a sandbox that executes untrusted applications in system transactions and
allows parallel security checks. MiniBox [18] leverages a two-way sandbox to
prevent x86 native code and the OS from each other, which uses Native Client
and TrustVisor [19] to build two-way sandbox. Unlike the two-way sandbox of
Se-Lambda, it has a large TCB to run function module directly inside these
systems.

Containers and Sandboxes Using SGX Enclave. SCONE [2] provides a
protection mechanism for containers, which uses SGX enclave inside the Docker
container to protect container processes from outside attacks. To reduce enclave
transition cost when issuing system calls inside an enclave, SCONE implements
asynchronous system calls. However, SCONE does not consider malicious code
inside the SGX enclave.

Ryoan [13] provides a distributed two-way sandbox for request-oriented
data processing services, which inspires us. Ryoan places an Native Client [35]
instance into SGX enclave, and implements a series of security policies and opti-
mizations. However, Ryoan’s implementation has a large TCB, and Native Client
can only execute x86 native code. The two-way sandbox of Se-Lambda can exe-
cute code with arbitrary language that can be compiled into WebAssembly, such
as JavaScript, C, C++, and Rust.

Security of SGX Enclave. Recent work [34] points out that a malicious OS
can use in-enclave thread synchronization vulnerability to compromise users’
code. Since SGX enclave shares system resources with non-enclave, such as page
table, cache, and branch predictor, these sharing mechanisms may introduce
many side channels. Side channel attacks [17,26,32] leverage page table or branch
predictor to leak information. Some mitigation measures, such as SGX-Shield [23]
and T-SGX [25], can be integrated into Se-Lambda.

Homomorphic Encryption. Homomorphic encryption allows untrusted code
to perform computations directly on encrypted data without revealing users’
data, which shares similar threat model with Se-Lambda. However, fully homo-
morphic encryption [10,11] can perform arbitrary computations on the encrypted
data, which suffers from significant performance overhead. Partial homomorphic
encryption applies only to confined scenarios, such as MapReduce jobs [29] run-
ning on the encrypted data. In comparison, Se-Lambda provides similar protec-
tions for users’ data, while imposing much less performance overhead.

7 Conclusion and Future Work

In this paper, we propose Se-Lambda, which improves the integrity and confi-
dentiality of serverless computing services. Cloud users can use Se-Lambda to
process privacy-sensitive data on the service platform, which they do not control;
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at the same time, the service platform does not have to worry about malicious
user code breaking the host runtime. Thus, Se-Lambda is beneficial to both cloud
users and service platforms.

Our prototype system is based on the open source project OpenLambda,
which is an experimental project. With the development of serverless computing,
we will add new features to Se-Lambda. In order to improve the security of
API gateway, we consider placing most of the API gateway modules into SGX
enclave. In addition, we will implement a complete programming framework and
toolchain for developers.

Since WebAssembly is an experimental underlying language, it is still under
continuous and iterative development. Our prototype system leverages the Min-
imum Viable Product (MVP) version of WebAssembly. When WebAssembly
implements features such as garbage collection, tail call, bulk memory opera-
tions, we will integrate them into the two-way sandbox. Additionally, we will
provide protection for WebAssembly to avoid sandbox bypassing attacks.
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Abstract. The security challenges of container technologies such as
Docker and Kubernetes are key issues in software development and
other industries. This has increased interest on application container
counter-measures e.g. detection and mitigation of the high number of
vulnerabilities affecting container images, in particular images retained
at DockerHub. However, investigations on application-layer vulnerabili-
ties in Microservice Architectures (MSA) such as Cloud Native Environ-
ments (CNE) is lacking. In this paper, we investigate both image and
application layer vulnerabilities and apply vulnerability correlation to
understand the dependence relationships between vulnerabilities found
in these layers. The outcome of this analysis offers interesting insights
applicable to risk management and security hardening of microservices
e.g. deployment of vulnerability correlation-based security policies that
are useful for vulnerability detection, risk prioritization and resource
allocation. Our prototype implementation extends our previous security
system: Cloud Aware Vulnerability Assessment System (CAVAS), which
employs the Security Gateway concept for security policy enforcement.
The Security Gateway leverages the client side discovery and registry
cloud pattern for discovering microservices and the notion of dynamic
document stores for exploring and testing RESTful microservices. Our
experimental evaluation shows that the security gateway’s vulnerability
detection rate out-performs that of traditional testing approaches with
31.4%. Also, we discover that about 26.2% of severity metrics for vul-
nerabilities detected by image security scanners is in-correct. Hence, cor-
recting this information is a prerequisite step to vulnerability correlation.
Our proposal can therefore be employed for efficient continuous security
and risk assessments in CNE.
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1 Introduction

Container technologies like Docker and Kubernetes are enabling rapid appli-
cation development and deployment. These technologies enhance productivity
when combined with cloud infrastructure and DevOps [1] and are key com-
ponents of Microservice Architectures (MSA) and Cloud Native Environment
(CNE). However, container-based infrastructure is challenged by several secu-
rity concerns, requiring novel security paradigms as effective counter-measures.
An emerging security concept is the shift-left approach which proposes con-
tinuous security by wiring security tests early and throughout the Continuous
Integration (CI) and Continuous Development (CD) pipeline [2]. These set of
activities that implement these practices are generally referred to as SecDe-
vOps (also called RuggedOps, DevSecOps, SecOps) [3]. However there are no
set guidelines for SecDevOps and most research efforts focus on image-level vul-
nerabilities ignoring application-level vulnerabilities especially those affecting
REST-based MSA. Most MSA adopt REST [4] for inter-service communication
[5], however automated security testing of REST is challenging1. Traditional
security assessment techniques fail to explore REST applications, yet the explo-
ration phase is a prerequisite for vulnerability detection through identification
of entry/exit points. This exploration difficulty emerges since REST applications
are not implemented with well defined interfaces as web applications. Also, holis-
tic vulnerability analysis of CNEs e.g. cloud-based microservices requires proper
scrutiny of vulnerabilities at all levels [6].

Contribution. This work proposes a cloud native, continuous security method-
ology that employs security policies for detecting vulnerabilities in Docker con-
tainer images and microservice applications. Our approach employs the shift left
concept, achieved via our previously introduced concept- Security Gateway [7],
a core component of Cloud Aware Vulnerability Assessment System (CAVAS).
The security gateway serves as a security control for enforcing security policies.
The notion of the security gateway here refers to security assessments, which is
different from how the term is used in other contexts e.g. application firewalls [8]
and network routers [9]. We support the security gateway with two innovative
concepts: dynamic document store and security health endpoints. The dynamic
document store overcomes the aforementioned challenge of detecting vulnera-
bilities in REST microservices by leveraging OpenAPI2(formerly Swagger) doc-
uments for vulnerability detection. Similarly, the security health endpoint pro-
vides security observability by easily presenting security information for deployed
microservices. The client side discovery and registry cloud pattern is leveraged
for microservices discovery. Furthermore, we validate the accuracy of the vul-
nerability information contained in image vulnerability scan results. Figure 1
illustrates our analysis of inaccuracies in vulnerability information returned by
container image vulnerability scanners. We develop a technique for rectifying
these anomalies and thereafter correlate the vulnerabilities detected at both
1 https://www.owasp.org/index.php/REST Assessment Cheat Sheet.
2 https://github.com/OAI/OpenAPI-Specification.

https://www.owasp.org/index.php/REST_Assessment_Cheat_Sheet
https://github.com/OAI/OpenAPI-Specification
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image and application levels, within and across containers of the same applica-
tion. The knowledge gained via vulnerability correlation [10] provides effective
risk management techniques, e.g. we employ this insights for adding correlation-
based rules in security policies. These rules prioritize detection of correlated
vulnerabilities given the greater security risks posed by correlated vulnerabili-
ties. To the best of our knowledge, this work is the first that applies the principle
of vulnerability information validation and correlation in the context of MSAs
and CNEs.

Fig. 1. Incorrect vulnerability security metrics in 12 analyzed microservices

The rest of this paper is structured as follows, the next section presents
related works, followed by a background of application container image vulner-
abilities, challenges to security assessments in CNEs and problem definition. In
Sect. 3, the design and system model of CAVAS is described based on specified
requirements. The implementation details of CAVAS is presented in Sect. 5. In
Sect. 6, we evaluate our work and Sect. 7 concludes the paper.

2 Related Work

Gummaraju et al.’s [11] security analysis of DockerHub revealed that over 30%
and 40% of official and community of Docker images respectively, have severe
vulnerabilities. In [12], the authors conducted a vulnerability oriented security
analysis of the Docker ecosystem and highlighted several security implications for
deploying Docker-based applications. Bila et al. [13] presented a continuous secu-
rity architecture for cloud-based container clusters that leverages OpenWhisk3

serverless architecture for instant vulnerability alert notification. Harbor [14]
is an open-source, enterprise grade registry similar to CAVAS, however it does
not integrate with software supply chains and cloud container orchestration.
Tak et al. [15] demonstrated the existence of drift in containers i.e. a situation
where declared containers differ from deployed containers owing to un-tracked
changes. The authors recommended continuous security testing for containers
since one-time static analysis tests do not detect image drifts. Some of these

3 https://openwhisk.apache.org/.

https://openwhisk.apache.org/
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recommendations are considered in this work. Zhnag et al. [16] used Harbor-
master for policy enforcement in Docker environments, but the policies are for
access control while our policies are for vulnerability detection. Antunes et al.
[17] investigated on vulnerability testing tools for web services including an anal-
ysis of current approaches, tools and architectures. Their investigation tackles
traditional monolithic web services and is therefore not fitted for CNEs.

In [18] the challenges of deploying microservices to cloud platforms were
highlighted including the security issues, however the authors offered no practi-
cal solutions to the raised issues. Thanh et al. [19] proposed approaches for inte-
grating security and privacy in cloud application development, focusing on devel-
opment pipelines, we tackle both development and production environments.
Savchenko et al. [20] introduced a methodology for validating microservice cloud
applications. Two shortcomings are identified in this work, first it is not clear
if the proposed framework is evaluated, secondly, the work is limited to non-
security tests in development environments e.g. unit tests and integration tests,
our work complements this gap.

To the best of our knowledge, this work is the first applying vulnerability
information validation and correlation to microservices and CNEs.

3 Background and Problem

3.1 Application Container Vulnerabilties

The NIST Application Container Guide [6] outlines major risks to the core com-
ponents of container technologies. We outline subsets of these risks most relevant
to this paper.

Insecure Container Runtime Configurations. Container runtimes provide
options for customization which can expose the security of the system if improp-
erly configured. For example, a container executed with root permissions natu-
rally has access to the OS devices, kernel and other containers. This privilege
might be abused by compromised containers.

Image Vulnerabilities. Images are essentially static, archive files composed
of several package definitions. Images might be free of vulnerabilities at creation
time but become vulnerable after some time if vulnerabilities are discovered in
one or more of its components. Containers derived from images are not auto-
matically updated like traditional software packages, thus, a common risk in is
existence of vulnerable containers whose parent image versions are outdated i.e.
stale images. These stale images pose serious security risks upon execution.

Image Configuration-Based Vulnerabilities. Similar to normal software,
images are prone to configuration-based vulnerabilities which might either be
intentional or un-intentional. For example, an image might include an SSH dae-
mon, running with default credentials. Attackers might exploit this vulnerability
to successfully attack containerized environments.
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Images from Untrusted Sources. This is one of the most high-risk image
vulnerabilities. Due to publicly available images on DockerHub and other public
image registries, images are easily pulled and executed without due validation.

Application Vulnerabilities. Applications are commonly built into images
essentially providing those applications access to the host containers internals
upon execution. Vulnerable applications use containers for conducting side-
channel attacks [21].

3.2 Security Assessments in Cloud-Native Environments

Several security issues are introduced when applications are deployed to CNEs
[5]. Security assessments are imperatives for timely detection and mitigation
of vulnerabilities associated with these security issues. However, CNEs present
several challenges for security assessments, We highlight some of these security
challenges next.

Microservices Discovery. Microservices are subject to constantly changing
environmental parameters such as ip addresses, port numbers and service end-
points. This dynamism presents an overhead for security e.g. security assessments
which are traditionally configured for static network resources, hosts and appli-
cations. Essentially, security tools are challenged with discovering microservice
endpoints e.g. after scaling operations. This discoverability challenge is similar
to that of virtualized environments, but occurs at the application layer hence
virtualization-based approaches do not suffice.

Security Testing of REST Services. REST is a favoured architectural style
for microservices [5]. REST exposes resources using endpoints easily accessible
for a wide range of applications e.g. mobile and IoT devices. However, unlike web
applications, automated security assessments for RESTful applications is diffi-
cult [17]. Security scanners detect vulnerabilities in web applications by itera-
tively fetching and crawling through web-page links to discover entry/exit points.
This is possible since web applications have well defined interfaces. Then ran-
dom requests are sent and responses are analyzed for security vulnerabilities.
Conversely, REST services do not have such well defined interfaces, and while
responses from web applications are predictable, REST services dynamically
generate responses.

Technological Diversity. Microservices are built with different business capa-
bilities by different development teams, which may use different technologies
i.e. different programming languages and frameworks [20]. The motivation for
this approach is to use the best tools for specific problems. While this aids
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productivity, it complicates security. For example, the Spring PetClinic applica-
tion4 consists of four microservices, three developed in Java and one developed
in JavaScript (UI-Service). Effective vulnerability detection therefore requires
employment of different testing configurations for each microservice e.g. dif-
ferent policies. This is due to the uniqueness of vulnerabilities per technology.
Furthermore, developers integrate several open source components, which could
be laden with vulnerabilities [22].

3.3 Problem Definition

Challenges to Continuous Security Assessments and Vulnerability
Management. Continuous security assessments are useful for identifying vul-
nerabilities in applications and networks. Identification of vulnerabilities and
timely patching reduces attack surfaces thereby thwarting cyber-attacks. Secu-
rity assessments for traditional applications/environments involve statically
deployed applications/systems, but CNEs are ephemeral. Microservices are
dynamically launched and de-registered, owing to scaling requirements and com-
plexities in distributed systems. Hence, a discoverability challenge emerges for
security assessment i.e. the capacity to constantly locate deployed microservices.
Furthermore, the diversity of technologies in microservices increases possibili-
ties for security vulnerabilities. The desire for fast-paced development cycles in
microservice-based architectures (to meet time-to-market) further complicates
these challenges by overlooking comprehensive security tests in CD pipelines.
Consequently, vulnerable microservices could be launched to production environ-
ments. Novel security assessments techniques specifically adapted and integrated
to CNEs are therefore required to tackle these security challenges.

Limitations of Prior Research. Current research tackling security of CNEs
focus on other of security aspects e.g. authentication and authorization, secu-
rity monitoring and anomaly detection. These are critical challenges affecting
CNEs, but vulnerability detection and security assessments are not yet in focus.
Effective security evaluation microservices aids timely detection of compromised
microservices and reduces attack surfaces. Moreover, security evaluations are
key regulatory and compliance requirements especially for cloud applications
[23]. For example, the Centre for Internet Security recommends implementation
of continuous vulnerability assessments to identify and mitigate vulnerabilities.5

To the best of our knowledge, there are no research efforts focused in this direc-
tion. Traditional security assessment methods do not handle the challenge of
effectively conducting security assessments in CNE. We aim at helping security
teams implement robust vulnerability management and mediation systems that
are native to the cloud i.e. suited for CNE. Similarly, several research works
have analyzed the severity of security vulnerabilities infecting container images
4 https://github.com/spring-petclinic/spring-petclinic-microservices.
5 https://www.cisecurity.org/controls/continuous-vulnerability-assessment-and-

remediation/.

https://github.com/spring-petclinic/spring-petclinic-microservices
https://www.cisecurity.org/controls/continuous-vulnerability-assessment-and-remediation/
https://www.cisecurity.org/controls/continuous-vulnerability-assessment-and-remediation/
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yet there are no works that demonstrate practical remediation approaches e.g.
automated integration of container and application vulnerability analysis for
cloud based CI and productive environments. Our approach is consistent with
the current SecDevOps move which emphasizes integration of security into the
development and operations teams and operations.

4 Design and System Model

Ensuring continuous security in CNEs requires innovative approaches which can
be identified by outlining security requirements. These requirements are dis-
cussed in this section, followed by a description of how we fulfill them.

4.1 Requirements for Security Assessments in Cloud Native
Environments

We identified five requirements necessary for continuous security assessments in
microservices-based and CNEs. First, the security assessment solution should
automatically discover deployed microservice instances. This requirement has
several security benefits e.g. inserting security controls. Next is support for secu-
rity policies, given their usefulness for security automation and control. Fine
grained security policies provide for security efficiency. Accordingly, the solu-
tion should support and enforce a wide range of security policies. Third, the
solution must be tamper-proof i.e. isolated from possible attacks. It should not
be discoverable by only the core services e.g. service registry and discovery and
API Gateway. We apply the concept of security VMs [24] to achieve this, VMs
are replaced with containers. Security containers are isolated from application
containers using cloud networks security groups. Fourth, the solution must effec-
tively resolve the technologies used in developing microservices. Microservices
within an application may be developed using diverse technologies, employing
generic security testing policies might not be as effective as policies that specifi-
cally tackle the development technology. For example, a Java application should
be tested with a Java-biased policy. Hence the solution should automatically
identify technologies. We satisfy this requirement by implementing the dynamic
document stores, details are at Sect. 4.4. The last requirement is the need to
validate the vulnerability information returned by images vulnerability scan-
ners. We realized several anomalies in the security metrics assigned to detected
vulnerabilities, details are at Sect. 4.6.

4.2 Security Automation with the Security Gateway

The notion of a Security Gateway adopts the concept of Security Enforcement
Points (SEP), which are commonly used to enforce security policies at run-time.
For example in [25], Almorsy et al. leveraged SEP to enforce security policies
by intercepting and validating requests sent against critical components. The
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Fig. 2. CAVAS workflow: SecDevOps in the continuous development/integration envi-
ronment and continuous security in production environment (AWS ECS)

security gateway, differs from the microservices gateway pattern6 operationally.
The security gateway enforces defined security requirements in the CI pipeline as
well as production environments. Conversely, API-Gateways are concerned with
efficient routing of incoming and outgoing traffic, the security gateway serves
as a SEP for the policies described in Sect. 6.2. Our definition also differs from
the use of the term security gateways in the context of application firewalls [8]
and network routers [9]. By leveraging client-side service discovery and registry,
the security gateway automatically overcomes two challenges: discoverabilty and
inventory of microservices. Client side discovery is an approach that forces incom-
ing microservices to first contact the discovery server in order to gain situational
awareness of other microservices7. Similarly, the embedded registry component
maintains living record of deployed microservices. The CAVAS workflow (illus-
trated in Fig. 2) describes automated steps within the development environment
(steps 1–11 ) and the cloud-based production environment (steps 12–16 ). The
Security Gateway is positioned in the staging phase i.e. steps 9–11.

4.3 Support for Security Policies

Security policies are best practices for automating security [26] through the
definition of risk levels and appropriate actions to be taken when thresholds
are breached. The Security Gateway acts as a SEP for enforcing the following
policies:

– Container Image Security Policies - Automated vulnerability analysis of con-
tainer images is enforced through container security policies. These policies
define the permissible security risk levels with rules as advised in the NIST
Application Container Guide [6]. Container-based microservices are vulnera-
ble to several security issues e.g. over 30% of official images in Docker hub
were infected with severe vulnerabilities [11]. Policies also enforce scheduled
security assessments in production environments.

6 http://microservices.io/patterns/apigateway.html.
7 http://microservices.io/patterns/client-side-discovery.html.

http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/client-side-discovery.html
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– Microservice-Specific Security Policies - Ideally, every microservice would have
a specific policy used for continuous security assessment. These policies are
defined based on the implementation details of each microservice. This app-
roach aims at improving efficiency of security testing by targeting specific
microservice implementation technologies. For example, a microservice devel-
oped in Ruby programming language. A security policy specifying vulnera-
bilities announced at the Ruby security advisories8 or OWASP Ruby Cheat-
sheet9 would be used for testing the service. Standard application security
rating systems e.g. WASC and CWE are defined in these policies.

– Baseline Security Policies - Detailed security scanning for vulnerabilities
requires time, 30–60 min for an average web application and 6–12 h for
medium-scale web applications. Given the speedy turnout rate for microser-
vices, lengthy tests are no long feasible. Therefore, to strike the balance
between speed and security, we propose baseline security policies for conduct-
ing Pre-deployment security tests. These tests are time-based i.e. 2–3 min and
produce either PASS or FAIL results.

4.4 Using OpenAPI Documents for Microservice Security Testing

The challenges of using security scanners for conducting security tests against
RESTful resources were previously highlighted in Sect. 3. An approach for
overcoming this challenge consists in leveraging web service description docu-
ments [17]. Web service description documents are machine readable documents
containing information e.g. operations of web services. Vulnerability scanners
can ingest these documents and extract information requisite for security test-
ing. Given that there are no standardized conventions for documenting REST
resources, we use OpenAPI (formerly called Swagger) for our use case. Ope-
nAPI uses JSON and YAML for formatting documents. We propose microser-
vices contain OpenAPI documents, this can be achieved through two approaches:
on-demand generation and file-based. We support both approaches, documents
are retained in policy stores in accordance with externalized configuration cloud
native design pattern10. Furthermore, OpenAPI documents aid discovery of first
and second order vulnerabilities in REST APIs [27]. Security policies earlier
described in Sect. 4.3 can be also retained in the dynamic document stores. The
store can be protected with token-based authentication e.g. JSON Web Token
(JWT) or other automated authentication methods.

4.5 Security Observability

Health Endpoint Monitoring Pattern provides resiliency by enforcing periodic
heartbeats against microservices [28]. This checks aid timely failure identifica-
tion11. This technique can also be applied for maintaining security states of
8 https://www.ruby-lang.org/en/security/.
9 https://www.owasp.org/index.php/Ruby on Rails Cheatsheet.

10 http://microservices.io/patterns/.
11 http://microservices.io/.

https://www.ruby-lang.org/en/security/
https://www.owasp.org/index.php/Ruby_on_Rails_Cheatsheet
http://microservices.io/patterns/
http://microservices.io/
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Listing 1.1. Example Image Scan Result with ”Negligible” Severity Metric

{
” f i x ” : ”None” ,

”package” : ”dpkg−1.17.27” ,

” s e v e r i t y ” : ” Neg l i g i b l e ” ,

” u r l ” : ” https : // s e cu r i t y−t r a cke r . debian . org / t r a cke r /CVE−2017−8283”,

”vuln” : ”CVE−2017−8283”

}

microservices. Given that the distributed nature of microservices further com-
plicates security monitoring, approaches for easily verifying security statuses of
microservices is imperative. Thus, we proposed the concept of Security Health
Endpoints in [7]. Scan reports are made easily accessible for other security
tools via predefined URLs e.g. http://localhost:8090/security-health whereas the
health checks are accessed at http://localhost:8090/health. The information can
be directly extracted for security tasks e.g. automated configuration of AWS
Security group rules and integration of vulnerability information into SIEMs
[29].

4.6 Vulnerability Information Correlation and Validation

The accuracy of vulnerability information is critical for proper risk assessment
hence the need to validate information retrieved from vulnerability information
sources and vulnerability scanners results. For example, in probabilistic threat
models where CVSS scores are used for calculating probabilities, hence the need
for comprehensive and accurate security metrics. Several sources offer vulnerabil-
ity information e.g. software vendors, security software vendors and independent
researchers. Relying on single sources is not sufficient since sources could either
provide incomplete or wrong information. Listing 1.1 is an example result where
CVE-2017-8283 is assigned CVE severity “Negligible” whereas the NVD entry
has a CVSSv2 score of 7.5 (HIGH)12. Therefore, correlating vulnerabilities from
several sources improves accuracy and creates better understanding of security
risks and vulnerabilities [30]. This feature is integrated in CAVAS by using HPI-
VDB13, a publicly available vulnerability database that correlates vulnerabil-
ity information from numerous sources. Currently the database contains about
96410 vulnerabilities, originating from over 225420 different applications and
over 17430 software vendors. Details of our methodology is provided in Sect. 5.5.

5 Implementation

This section provides implementation details of our prototype implementation:
CAVAS. These implementations extend the features of CAVAS introduced in
12 https://nvd.nist.gov/vuln/detail/CVE-2017-8283.
13 https://hpi-vdb.de/vulndb.

https://nvd.nist.gov/vuln/detail/CVE-2017-8283
https://hpi-vdb.de/vulndb
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Fig. 3. CAVAS architecture

our earlier works [7,31,32]. CAVAS is implemented using cloud native design
patterns. Figure 3 illustrates the microservices-based architecture of CAVAS,
described in the following subsections:

5.1 Security Gateway

The Security Gateway concept leverages cloud design patterns for security test-
ing by adapting the behaviour of the service discovery and registry server to suit
security testing. This approach enables integration of SEPs for security poli-
cies enforcement. The Security Gateway consists of a customized Eureka server
deployed in the staging environment with a config server, these are core compo-
nents of CNEs. In [7], we described our adaptation of the Netflix Eureka server
to serve as the Security Gateway. The dynamic document stores supports auto-
mated security testing for REST applications using OpenAPI documents. These
OpenAPI documents are retained in the Config Server, with other configuration
files as specified in the microservice externalized configuration tenet. The Secu-
rity Gateway performs Pre-deployment Security Tests using a Algorithm 1, and
can be easily adapted to enforce enterprise security policies e.g. PASS manda-
tory for deployments. Listing 1.2 is a baseline security policy for detecting SQL
Injection, XSS and CSRF vulnerabilities.

5.2 Image Vulnerability Analyzer

The Image Vulnerability Analyzer (IVA) interacts with Anchore and Docker
Security Bench for appropriate vulnerability analysis. It depends on the Registry
Monitoring Service for alerts on when to conduct test and the image or container
to be tested. We implemented this component in Java using Spotify Docker Java
client library14.

14 https://github.com/spotify/docker-client.

https://github.com/spotify/docker-client
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Algorithm 1. SecurityGateway Algorithm
1: procedure PreDeploymentSecTest(MuTInfo, SecPolicy)
2: Receive registration request from MuT
3: assign instanceStatus STARTING � testing mode
4: appSecTests (MuTInfo, SecPolicy) � app tests
5: if appSecTests.equals FAIL then
6: denydeploymentRequest (MuTInfo)
7: end if
8: complianceTests (MuTInfo, SecPolicy) � config tests
9: if complianceTests.equals FAIL then

10: denyDeploymentRequest (MuTInfo)
11: if currentT imeStamp − latestT imeStamp > 24hours then
12: imageSecTest (MuTInfo, SecPolicy) � conditional image tests
13: if imageSecTest.equals FAIL then
14: denyDeploymentRequest (MuTInfo)
15: end if
16: if imageLastSecTest.equals FAIL then � most current image tests
17: denyDeploymentRequest (MuTInfo)
18: end if
19: end if
20: end if
21: assign instanceStatus UP � deploy to prod
22: end procedure

5.3 Registry Monitoring Service

The Representational State Transfer (RMS) serves as a notification endpoint for
receiving webhook event notifications from the our private registry. Our devel-
opment environment has a private image registry based on Docker Registry 2.0.
This approach affords control over image entry and exit by using the Docker
Registry API15. All events in the registry such as pull and push commands as
illustrated in steps 4–7 of Fig. 2, are sent to the endpoint as event notifications.
On receipt of notifications, the RMS sends scanning requests to the IVA. Images
not available in the local registry are pulled from DockerHub, in this case IVA
scans these in-coming images for security vulnerabilities, a PASS is required for
entry.

5.4 Vulnerability Scanning Engines

We use Anchore and OWASP ZAP as scanning engines for vulnerability detec-
tion. Anchore is an open-source tool for conducting static vulnerability analy-
sis of application containers16. Anchore retrieves vulnerability information from
several sources and has an API for 3rd party integration. For application vul-
nerability analysis, we leverage OWASP ZAP17, a popular open-source dynamic
15 https://docs.docker.com/registry/spec/api/.
16 https://github.com/anchore/anchore-engine.
17 https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project.

https://docs.docker.com/registry/spec/api/
https://github.com/anchore/anchore-engine
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
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vulnerability scanner. OWASP ZAP’s API enables automation and integration
with CAVAS, it also supports OpenAPI documents ingestion. The community
edition of Docker Bench Security18 is integrated into CAVAS for detecting secu-
rity mis-configurations. Docker Bench security implements the Centre for Inter-
net Security (CIS) benchmark19 which specifies best practices for establishing
secure configuration baselines for Docker environments.

5.5 Correcting Vulnerability Information

In order to correlate vulnerabilities, several steps are required. This approach
was prompted when we discovered negligible and unknown returned as vulnera-
bility severity metrics. Since these security metrics are not defined in the Com-
mon Platform Enumeration20 vulnerability structure, we carefully inspected the
results and discovered several anomalies. Thus, a technique for validating and
correcting these anomalies was devised. Essentially, vulnerabilities with either
unknown or negligible severity metrics were filtered and crosschecked against
the HPI-VDB using API calls. Anomalies are thereafter replaced with the cor-
rect metrics: CVSSv2 scores e.g. 10.0, 3.5, CVE severity e.g. HIGH, LOW or
CVE status e.g. AWAITING ANALYSIS, DEFERRED21. The next step was
vulnerability correlation, done by identifying commonalities in image and appli-
cation vulnerabilities. We used Common Weakness Enumeration (CWE) since
it is commonly used for classifying application vulnerabilities as well as an addi-
tional classification for software packages, hence some vulnerabilities are assigned
both CVEs and CWEs. Our technique queries our internal vulnerability database
i.e. persisted results of application and image scans, for matching CWEs/CVEs
within microservices that consists an application. The knowledge gained can be
used in several security scenarios e.g. policy formulation, risk assessment and
vulnerability prioritization.

5.6 Cloud Deployment Manager

To satisfy the need for continuous security in-production environments, the
Cloud Deployment Manager (CDM) manages microservices deployed in the pro-
duction AWS environment. The CDM can be deployed either in development or
production environments as illustrated in Fig. 2. CDM integrates with several
AWS services e.g. Elastic Container Service (ECS), Elastic Container Registry
(ECR) and Elastic Computing Cloud (EC2). CDM conducts in production secu-
rity testing e.g. fuzzing by spawning identical instances of microservices sched-
uled for security tests, for tests in the staging environment. This safeguards
deployed microservices from unforeseen behavior consequent of tests e.g. fuzzing
tests. This is possible since containers are immutable hence testing microservices

18 https://github.com/docker/docker-bench-security.
19 https://www.cisecurity.org/benchmark/docker/.
20 https://nvd.nist.gov/products/cpe.
21 https://nvd.nist.gov/vuln.

https://github.com/docker/docker-bench-security
https://www.cisecurity.org/benchmark/docker/
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/vuln
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Listing 1.2. Example Baseline Security Policy

{
” po l i c y name” : ” v e r s i o n 2 t e s t s ” ,
” po l i c y type” : ” Base l i n e Secur i ty Po l i cy ” ,
” attack s t r ength ” : ”medium” ,
”max pe rm i s s i b l e r i s k ” : ” low ” ,
” scope ” : {

” dep th l im i t ” : 5
} ,

” checks ” : [ ” s q l i n j e c t i o n ” ,” xss ” ,” c s r f ” ] ,
” p lug in s ” : {” d i s cove ry checks ” : ” mild ” ,
” c r o s s s i t e s c r i p t i n g ” : ”medium” ,
” c r o s s s i t e r eque s t f o r g e r y ” : ”medium” ,
” s q l i n j e c t i o n ” : ”medium”}
}

with the same source image is sufficient to identify vulnerabilities without testing
the production microservice. The CDM also conducts continuous inspection of
the processes running in deployed microservices to identify malicious activities
(steps 15 and 16 ). As earlier discussed in Sect. 4.5, we propose the inclusion of
security health endpoints in CNEs. To afford this feature, we implement secu-
rity health endpoint resources in each microservice. These resources are capable
of retrieving the current security assessment results, e.g. on receipt of a GET
request, the most recent security testing report is returned in json format.

Table 1. Summary of test environment

Environment variable Value

Local host operating system Ubuntu 14.04 Trusty Tahr

Local host RAM/HDD 32 GB/500 GB

Automations server/Git Jenkins/Github

Cloud container orchestration AWS ECS, AWS EC2

6 Evaluation

We evaluated CAVAS through practical experiments in a private CI/CD
pipeline, the details are illustrated in Table 1. Three types of experiments were
conducted, first the vulnerability detection rate [33] for CAVAS is determined
and evaluated. Next, we show the efficiency of our proposed technique for vul-
nerability information validation and correlation. Lastly, the effectiveness of our
security policies is evaluated.
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Fig. 4. CAVAS vulnerability detection rate

6.1 Vulnerability Detection Rate

Three container-based microservice applications were used for this experiment:
Spring PetClinic (See footnote 4), Movie recommendation Service22 and an
eShop Application from Eberhard Wolff’s book [34], also available on GitHub23.
We will thereafter refer to these applications as PetClinic,kbastani and eWollf
respectively. The applications were cloned from their GitHub repositories and
support for OpenAPI documents generation was added. The applications were
selected based on popularity as reference microservice architectures, evidenced
through their high GitHub ratings. Each application consists of several microser-
vice instances, e.g. PetClinic consists of: petclinic-vets, petclininc-api-gateway,
petclininc-customers and petclininc-visits. The core microservices components
e.g. service registry and discovery are not tested. To measure the image vul-
nerabilities, the corresponding images for each microservice is built and ana-
lyzed for security vulnerabilities using the integrated Anchore scanning engine.
The results are thereafter collected and persisted in CAVAS reports database.
To measure the application vulnerabilities, the images are executed i.e. con-
tainerized and tested using dynamic security testing techniques. This step is
necessary for detecting the vulnerabilities existing in the application code. In
this testing phase, two Eureka servers are deployed: with traditional OWASP
ZAP vulnerability scanner and with the Security Gateway, we refer to them as
Eureka A and Eureka B respectively. The baseline security policy is used for
testing. Eureka A conducts the test using conventional web application testing

22 https://github.com/kbastani/spring-cloud-microservice-example.
23 https://github.com/ewolff/microservice.

https://github.com/kbastani/spring-cloud-microservice-example
https://github.com/ewolff/microservice
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methods hence several vulnerabilities are not detected. Conversely, Eureka B
leverages the dynamic document stores to retrieve and employ the OpenAPI
documents for each Microservice Under Test (MuT). Since this approach over-
comes the challenge of testing REST services (see Sect. 3.2), more vulnerabilities
are detected. The details of the tests are illustrated in Fig. 4. Ultimately, Eureka
B out-performs Eureka A with about 31.4%. Figure 5, also shows the detected
image vulnerabilities, over 5,600 vulnerabilities were detected for the 12 images
tested.

Fig. 5. Anomalies in images vulnerability severity metrics

Vulnerability Information Validation and Correlation. To verify the effi-
ciency of our vulnerability correlation and validation approach, we conducted two
tests. In the first test, we investigated the correctness of vulnerability informa-
tion returned from the image vulnerability tests. To conduct a broader test, a
fourth application, PiggyMetrics24 (thereafter called piggymetrics) was added.
We discovered that about 20.8% of detected vulnerabilities were marked negligi-
ble, while about 5.4% were marked as unknown. This error-rate is unhealthy for
risk assessment hence CAVAS has a component for automatically detecting and
correcting vulnerability information. Additionally, we wanted to investigate the
correlation between container images and application vulnerabilities. According
to [30], vulnerability correlation provides deeper visibility into vulnerability anal-
ysis and provides more effective risk management approaches. As seen in Figs. 4
and 5, the image vulnerabilities detected per application are almost identical.
This is the first level of correlation, the second level is to detect the correlation
between the vulnerabilities detected in the application as well as the image. To
24 https://github.com/sqshq/PiggyMetrics.

https://github.com/sqshq/PiggyMetrics
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do this, a common factor is used as the base, for our experiments, we used the
CWE which is used for both packages and web application vulnerability classi-
fication. Other types of classifications are not feasible e.g. few web applications
have CVEs. Due to space limitations, details of the results are not shown, how-
ever Table 2, briefly shows the CVEs, corresponding CVSS, severity metrics and
CWE id for the vulnerabilities correlated in the kbastani application. All the vul-
nerabilities correlate with CWE-200: An information exposure is the intentional
or unintentional disclosure of information to an actor that is not explicitly autho-
rized to have access to that information25. The correlation results can be applied
to different scenarios, e.g. the vulnerabilities in Table 2 could be prioritized for
patching because the possibility of successful attacks using these vulnerabilities
could be higher since they exist at both application and image layer. Hence more
efforts could be implemented towards rectifying correlated vulnerabilities.

Table 2. Vulnerabilities correlated in the kbastani application

kbastani application

CVE Id CVSS score Severity CWE Id

CVE-2017-9526 4.3 Medium CWE-200

CVE-2017-1000100 4.3 Medium CWE-200

CVE-2017-7407 2.1 low CWE-200

CVE-2015-5276 5.0 Medium CWE-200

CVE-2018-1000007 5.0 Medium CWE-200

6.2 Security Policy Enforcement

To demonstrate the efficiency of the security gateway in enforcing security poli-
cies, we commit code to the petclinic-customers code repository and generally
follow steps 1–10 of the CAVAS workflow (Fig. 2). At the staging area, the
baseline security policy is implemented against the MuT as a process of the
pre-deployment test. Since the MuT does not satisfy the rules expressed in the
policy, it fails the test and cannot be pushed to production. We also evaluate a
policy based on the knowledge gained from the vulnerability correlation effort.
kbastani-movies-ui is the MuT and a rule is added to the baseline security pol-
icy to check for correlated vulnerabilities i.e. CWE-200 and CVE-2018-1000007.
Again, following steps 1–10 of CAVAS workflow, the MuT fails the test and the
deployment request is canceled.

7 Conclusion and Future Work

This paper presents an innovative shift-left and continuous security approach
suited for detecting application and container image vulnerabilities in develop-
ment and production environments. Our prototype implementation extends our
25 https://cwe.mitre.org/data/definitions/200.html.

https://cwe.mitre.org/data/definitions/200.html
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previous work: Cloud Aware Vulnerability Assessment System (CAVAS), which
employs the Security Gateway concept for security policy enforcement by act-
ing like a SEP. The Security Gateway employs dynamic document stores and
takes advantage of client side discovery and registry cloud pattern for identify-
ing and testing microservices for security vulnerabilities. Ultimately, our eval-
uations show that the security gateway’s vulnerability detection rate is better
than that of traditional testing techniques by 31.4%. Additionally, we propose
techniques for validating vulnerability information returned from image vulner-
ability scans given that over 26.2% of this information is incorrect. After correct-
ing these anomalies, we employ vulnerability correlation for identifying depen-
dence relationships between image and application vulnerabilities. The result of
this analysis is interesting and prospective since microservices of an application
are composed of virtually identical packages, thus very similar vulnerabilities.
This vulnerability commonality can be exploited by attackers e.g. a successful
attack against one microservice might expose other microservices to the same
attack vector. To counter this type of attack, we propose vulnerability correlation
derived policies that identify and prevent deployment of vulnerable containers.
In the future, we intend to conduct more complex experiments for vulnerability
correlation to measure its efficiency for risk assessment. Therefore, supporting
schemes like vulnerability correlation matrix for CNEs might be relevant.
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Abstract. Cloud computing relies on resources sharing to achieve high
resource utilization and economy of scale. Meanwhile, contention on
shared resources opens doors for co-located virtual machines (VMs) to
have negative impacts on each other, and even introduces vulnerabilities
such as information leakage. For example, via CPU cache-based side-
channel attacks, an attacker VM can extract crypto keys from a victim
VM.

To cost-effectively secure the cloud against those threats without sac-
rificing resource sharing, in this paper, we first investigate the factors
that can impact the success of such attacks. Our investigation reveals
that the root cause of such attacks is the constant sharing patterns
of hardware resources between VMs. Based on our findings, we quan-
tify the negative impacts a VM can have on another VM on the same
machine using the vulnerable probability, and propose lightweight and
generic scheduler-based defense mechanisms called Shuffler schedulers,
which can effectively limit the vulnerable probability of all VMs. The
key is that distributing CPU time to vCPUs with equal probability
would reduce the overall vulnerable probability of the system. Our anal-
yses and experimental results show that the Shuffler schedulers can
effectively reduce information leakage to mitigate cross-VM side-channel
attacks, with little performance penalty while preserving high resource
utilization.

1 Introduction

Cloud has become as an extremely successful paradigm for conveniently storing,
accessing, processing and sharing information. One of the building blocks of the
cloud computing economy is its resource sharing empowered by virtualization
techniques. Virtualization provides a logical abstraction for multiple VMs to
share the same hardware resources, where VM isolation and resource sharing
are regulated by the hypervisor.
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However, such sharing among VMs may cause potential vulnerabilities. For
example, sophisticated attacks could exploit the underlying shared resources to
extract sensitive information from neighboring VMs, resulting in security and
privacy breaches. Studies showed that co-location can be achieved by normal
cloud users with little cost [28,32,39] in the public clouds. As a result, side-
channel attacks are demonstrated be to a real threat to cloud tenants [15,28].

Cache-based side-channel attacks, among others, represent the primary and
most threatening concerns of cloud security in previous studies [7]. Many solu-
tions are proposed. One category of solutions [10,27] is to harden the targeted
operations being attacked, so that the victim is no longer vulnerable to attacks
in the insecure cloud environment. However, the hardened programs may still be
vulnerable to other side-channel attacks [41]. Compared to hardening vulnerable
programs individually, a more general solution is to secure the cloud environ-
ment. For example, dedicated host service provided by the cloud provider [2]
physically isolates a user’s VMs from all other VMs, thus preventing those
VMs being attacked. An alternative is to dedicate a portion of CPU caches
to each VM [17,19]. Both solutions close the cache side channel at the cost
of resource sharing, which is not favorable for the cloud paradigm. There are
solutions employing the moving target defense philosophy by frequently migrat-
ing VMs [25] to other hosts. However, Liu et al. [20] reported to complete the
attacks in minutes. To defend against such attacks, live migration will introduce
unaffordable overhead.

Therefore, to mitigate this continuous threat, it is imperative to have a solu-
tion that can (1) effectively mitigate cache-based side-channel attacks without
sacrificing resource sharing, and (2) incur as little overhead as possible without
significant performance or monetary cost. These objectives become even more
challenging to achieve, given that one cannot tell in advance which VM(s) is
(are) the attacker(s) in a cloud environment. That is, we should assume that
any VM could be an attacker.

In this paper, we set to find such a solution. For this purpose, an important
question to ask is “what makes the victim vulnerable to side-channel attacks?”
We reveal that it is the runtime sharing patterns that enable the attacker to
spy the victim via the shared resources. Furthermore, we quantify the time such
patterns last by the vulnerable probability. By reproducing the Prime+Probe
attack [15,20], we confirm that the attack results are limited by the vulnerable
probability. Therefore, the attacks could be mitigated by reducing the vulnerable
probability.

Motivated by our previous work [21], we find that distributing CPU time
to candidate vCPUs with equal probability would effectively reduce the over-
all vulnerable probability. Thus, we propose our shuffling scheduling scheme
based on a random virtual CPU (vCPU) selection mechanism. The Local Shuf-
fler (LS) scheduler and the Global Shuffler (GS) scheduler are designed and
implemented. Our experimental results show that the Shuffler schedulers can
significantly reduce the vulnerable probability without sacrificing performance.
In addition, when repeating the side-channel attack on a 4096 bits RSA key, the
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Shuffler schedulers reduce the (key bits) recovery rate from 100% to below 72%.
Note that this is for the worst-case scenario which favors the attacker as much as
possible. Furthermore, we show that this recovery rate reduction can effectively
mitigate such attacks.

Compared to other solutions, our scheme has several advantages: (1) it pre-
serves high resource utilization, (2) it is lightweight in terms of overhead, (3) the
implementation requires only minor revisions to the current hypervisor sched-
uler, thus making it easy to deploy, and (4) it is effective not only to cache-based
side-channel attacks, but also to attacks exploiting other shared resources in run-
time, such as DRAM [26] and processor interconnect [16].

The remainder of the paper is organized as following: Sect. 2 introduces
related background information. Section 3 describes our motivation examples
along with the identification of the vulnerable probability. Section 4 discusses
detailed design and implementation of our defense mechanism. Section 5 demon-
strates the evaluation results of the Shuffler schedulers. Some closely related
issues are further discussed in Sect. 6. Related work is summarized in Sect. 7.
Finally, Sect. 8 concludes our work.

2 Background

2.1 Cross-VM Side-Channel Attacks

In cross-VM side-channel attacks, the attacker VM resides in the same physical
host as the victim VM, and spies the victim VM’s memory accesses by frequently
interleaving with the victim VMs on the shared resources. In such a spying
process, the victim VM’s memory accesses are only exposed to the attacker
during runtime.

As exposed by Zhang et al. [43], an attacker could spy the victim’s memory
accesses by frequently preempting the victim. However, this is no longer possible
in recent version of Xen [31]. Cross-core shared resources such as CPU last level
cache (LLC) [15,20,40], processor interconnect [16], DRAM [26], etc., can still
be utilized to launch cross-VM side-channel attacks in the cloud. In such attacks,
the victim’s memory accesses are only exposed to the attacker when the attacker
VM and the victim VM run concurrently on different cores. In Sect. 3.1, we will
introduce the vulnerable probability to quantify such a vulnerability of a victim
during this process, and demonstrate that this value limits the side-channel
leakage.

2.2 Hypervisor Scheduling Mechanisms

As each memory access usually takes tens of nanoseconds, fine grained view
of how the attacker VM and the victim VM run in time is needed to analyze
the spying process of cache-based side-channel attacks. To understand the vCPU
scheduling trace made by the hypervisor scheduler, we take the hypervisor sched-
ulers of Xen as an example.
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Virtualization enables multiple (guest) VMs to run on the same host. The
hypervisor mediates the requests for shared CPU resources by multiple VMs
through built-in schedulers. To facilitate the scheduling of CPU, the concept
of vCPU is introduced, which refers to the virtual processor of a VM. Each
VM can have one or more vCPUs. Upon this, the hypervisor schedules physical
CPUs (cores) for vCPUs using different schemes. Additionally, Xen provides a
flexible scheduler interface, via which customized scheduling algorithms can be
implemented.

For recent versions of the Xen hypervisor, there are four different schedulers,
namely the Credit scheduler, the Credit2 scheduler, the Real-Time Deferrable
Server scheduler (RTDS), and the ARINC653 scheduler. By default, the Credit
scheduler [1] is utilized. It is a general-purpose scheduler that aims to provide
proportional fair share of CPU resources to different VMs. We built our proto-
type based on this scheduler.

3 Motivation

As introduced in Sect. 2.1, in cross-VM side-channel attacks, the victim is vul-
nerable to attacks when the victim and the attacker run concurrently on different
cores. Such a runtime pattern enables the attacker to effectively spy the victim
via shared resources. To precisely capture this vulnerability, we define a new
measurement metric called the vulnerable probability, which is the normalized
time during which the victim runs concurrently with the attacker using the vic-
tim’s accumulative running time as a measure of scale.

To verify the impact of the vulnerable probability on the attack results, we
reproduce cross-VM side-channel attacks and demonstrate through experiments
our key observations along with their insights. These insights further motivate
us to study how the victim can avoid being attacked, and to design our solution
in the next section.

3.1 Vulnerable Probabilities in Attacks

Prime+Probe via LLC has been thoroughly studied [7] and demonstrated in the
public cloud [15,28]. This attack is used in our discussion, but our discussion is
effective to other attacks such as Flush+Reload [40] as well.

We use HP ProLiant DL380 G6 equipped with two Xeon E5540 CPUs. All
4 cores in each CPU package share the same LLC. Xen hypervisor version 4.6.0
with the Credit scheduler is used to manage VMs running on the host. The vic-
tim VM repeats signing a file with 4096 bits RSA key using GnuPG-1.4.13. The
attacker VM spies the square-and-multiply implementation of modular exponen-
tiation used by GnuPG-1.4.13 via shared LLC as described in [15,20]. We also
run additional background VMs (2–10) during the attacks. To reduce the noise
introduced by Dom0, we pin Dom0 to one CPU package and all DomUs (guest
VMs, including the attacker and the victim) to the other CPU package. Each
DomU is configured to have one vCPU.
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(a) An attack case in which the at-
tacker collects 99.5% key bits. 100% of
the victim’s crypto execution is under
the attacker’s spy.

(b) An attack case in which the at-
tacker collects 48.5% key bits. 49% of
the victim’s crypto execution is under
the attacker’s spy.

Fig. 1. Vulnerable probabilities in the two attacks

Fig. 2. Recovery rates versus vulnerable probabilities in 1080 attacks

In each attack, the attacker can collect a portion of the secret key bits as a
partial key. We define this rate as the (key bits) recovery rate, which is used to
quantify the attack results. To verify the impact of the vulnerable probabilities
on the attack results, we repeat attack 30, 60, 90, ...240 times when running 5-12
VMs, including the attacker VM and the victim VM, respectively.

Figure 1 demonstrates how the attacker (VM-1) and the victim (VM-2) were
scheduled to run in two independent attacks. In the first attack (Fig. 1a), 100% of
the victim’s crypto execution on core-1 is spied by the attacker running on core-
0, while in the other attack (Fig. 1b), only 49% of the victim’s crypto execution
is exposed to the attacker. Meanwhile, the attacker collects 99.5% and 48.5%
key bits separately in these two attacks. The vulnerable probabilities (100% and
49%) and the recovery rates (99.5% and 48.5%) are closely correlated.

Intuitively, the vulnerable probabilities determine the attack results. To verify
this hypothesis, we compare the vulnerable probabilities and the recovery rates
of all 1080 attacks, as shown in Fig. 2. We calculate the Pearson correlation
coefficient (PCC) that quantifies dependencies and correlations. The PCC value
is 1.0, suggesting that the attack result is largely determined by the vulnerable
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probability. Therefore, if we manage to reduce the vulnerable probabilities, we
could reduce the side-channel leakage.

3.2 Effects of Hypervisor Scheduler

Based on the previous discussions, we aim to minimize the vulnerable prob-
ability. Clearly, this value is determined by how VMs are scheduled to run.
There are many factors that affect the vCPU scheduling process, including the
vCPUs/cores ratio, the time slice length, the time slice arrangement, etc. In
the previous work [21], we revealed that slice arrangement affected side-channel
leakage more significantly than other factors. Below we demonstrate the effects
of the slice arrangement to the vulnerable probability.

The scheduling trace t1 in Fig. 3a shows the original slice arrangement in an
attack collected in Sect. 3.1, while t2 in Fig. 3b shows another slice arrangement
in the same attack. Compared to t1, t2 assigns the vCPUs more evenly to all the
available cores. Correspondingly, how the victim (VM-2) is spied by the attacker
(VM-1) is shown in Fig. 3c and d. The vulnerable probability is reduced from
100% to 68%. Thus, proper arrangement of time slices can effectively reduce the
vulnerable probability.

(a) Scheduling trace t1, original slice
arrangement.

(b) Scheduling trace t2, another slice
arrangement.

(c) VM-2’s vulnerable probability is
100%, when spied by VM-1 in t1.

(d) VM-2’s vulnerable probability is
68%, when spied by VM-1 in t2.

Fig. 3. Vulnerable probability of the same attack with different slice arrangements. In
both scheduling traces, the victim (VM-2) completes the same crypto operation.
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Motivated by this result, we move on to design and implement a scheduler-
based mechanism that can significantly reduce the vulnerable probability.

4 Our Solution

As shown in the last section, the slice arrangement largely determines the vul-
nerable probability. In this section, we will revisit the design of the hypervisor
scheduler, particularly focusing on the slice arrangement in the vCPU schedul-
ing process. From the scheduler’s perspective, we begin by scoping the attacker’s
goals and capabilities.

4.1 Threat Model

We assume that in each attack, the goal of an attacker is to extract as much infor-
mation as possible. Under this condition, we consider a threat model meeting
the common requirements in published the attacks [15,20,40], with the following
characteristics:

– Co-location: the attacker VM runs in the same physical host with the victim
VM.

– Unknown attacker: from the perspective of the hypervisor scheduler, attacker
is unknown in advance, meaning that any VM could be the attacker.

– Single attacker: we assume the state-of-the-art setting in which each attacker
vCPU spies the victim individually. We discuss colluding attacks involving
multiple vCPUs in Sect. 6.1. Below we use attacker, attacker vCPU and
attacker VM interchangeably.

– CPU overcommitment: we assume that there are more vCPUs than cores in
the host. We discuss this assumption in Sect. 6.2.

– Effective spy during runtime: we assume that the attacker can effectively spy
the victim’s memory access via shared resources during runtime, and that the
third party VMs introduce minimum noise to the side channels.

– Persistent attacks: we assume the attacker can repeat the same attack for a
reasonable large number of times. For example, Liu et al. [20] repeated the
same attack for more than 20, 000 times to recover the secret key.

4.2 Problem Statement

We aim to reduce the vulnerable probability by scheduling. In a given attack
with scheduling trace t, the victim (vCPU or VM) v and the attacker a, the
vulnerable probability is represented as P (t, v, a), which is defined by the time
of the victim runs concurrently with the attacker on the scale of the victim’s
accumulative running time. For example, in Fig. 3, P (t1, V M2, V M1) = 100%
and P (t2, V M2, V M1) = 68%.
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Since it is not possible to pinpoint the specific attacker, the goal for the
hypervisor is to mitigate the overall vulnerability of the system, which is bound
by the most vulnerable vCPU pairs quantified as:

P (t) = max
∀v,a

{P (t, v, a)} (1)

Therefore, an effective defense mechanism can be mathematically captured by
the solution to min

t
P(t). To this end, we conduct a mathematical analysis on

the problem and propose a scheduler-based scheme to achieve the optimization
accordingly.

4.3 Problem Analysis and Solution

In the discussion below, we assume that there are m available cores and n (n >
m) active vCPUs in a host. For a given scheduling trace t and victim vCPU v,
there are m − 1 vCPUs run concurrently whenever v runs. Thus, its vulnerable
probabilities against to all potential attackers are subject to:

∑

∀a
P (t, v, a) = m − 1

Then the largest vulnerable probability an attacker can obtain can be calcu-
lated by Eq. 2. Here we assume the worst-case that any of the n− 1 vCPUs may
be the attacker.

max
∀a

{P (t, v, a)} ≥
∑

∀a P (t, v, a)
n − 1

=
m − 1
n − 1

(2)

The intuitive interpretation of Eq. 2 suggests that the balanced allocation of
the CPU time would guarantee the minimal vulnerable probability for a specific
victim vCPU. Take the scheduling traces t1 and t2 in Fig. 3 as an example.

subject to
∑

∀a
P (t1, V M2, a) =

∑

∀a
P (t2, V M2, a) = 2

max
∀a

P (t1, V M2, a) = max
∀a∈{VM1,V M3,V M4}

P (t1, V M2, a)

= max{1, 0.52, 0.48} = 1
max

∀a
P (t2, V M2, a) = max

∀a∈{VM1,V M3,V M4}
P (t2, V M2, a)

= max{0.68, 0.60, 0.72} = 0.72

From the results, we can infer that the victim in t2 has a smaller worst-case
vulnerable probability. This advantage stems from a more balanced distribution
of CPU time. Combining Eqs. 1 and 2 we can obtain that:

P (t) = max
∀a,v

{P (t, v, a)} = max
∀v

{max
∀a

{P (t, v, a)}} ≥ m − 1
n − 1
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Thus,

min
t

P(t) ≥ m − 1
n − 1

(3)

Based on the above discussions, distributing CPU time to vCPUs with equal
probability would reduce the overall vulnerable probability of the system. Thus,
we propose to select all candidate vCPUs with equal probability when making
scheduling decisions. Later we will demonstrate that such a scheme effectively
reduces the overall vulnerable probability to the near optimal value through
experiments.

4.4 Implementation of the Shuffler Schedulers

To demonstrate the effectiveness of our solution, we use Xen’s Credit sched-
uler as an example, and the scheme could be applied to other schedulers as
well. Revisiting the example shown in Fig. 3, we can observe that the vulnerable
probability could reach as high as 100% due to the constant runtime patterns of
vCPUs, which originate from two scheduling schemes.

– The tendency of vCPUs to be scheduled to the same core. In the credit
scheduler, each core maintains a local run queue (runq) of the active vCPUs.
Each time the scheduling routine is triggered, the vCPU currently running
on this core is returned to its runq, and the next vCPU to run is selected
from this runq.

– VCPU’s scheduling in round-robin order. Each runq is managed in a round-
robin fashion in the runq. The returned vCPU is appended to the end of the
runq of the same priority and the next vCPU to run is selected from the head
of the runq.

Intuitively, we can design a deterministic scheduler, which records the vulner-
able probability of all vCPU pairs, and each time greedily selects a vCPU that
minimizes P (t) in Sect. 4.3. However, the scheduling decision of a deterministic
scheduler is predictable. Zhang et al. [43] abused the open source Xen hypervisor
to trick the Credit scheduler to behave in the attacker’s favor. Gullasch et al. [11]
utilized similar feature in the Linux process scheduler to launch attacks as well.

Thus, we propose to integrate the uniform and random selections in the
design of the Xen’s Credit scheduler. Following this scheme, we implement the
Local Shuffler (LS) scheduler. We minimize the modifications to make the imple-
mentation lightweight. Specifically, we have the following changes:

1. Runq selection: during the scheduling, a runq is uniformly and randomly
selected from all available runqs.

2. VCPU selection: within the selected runq, the next vCPU to run is uniformly
and randomly selected from all candidate vCPUs with the highest priority,
and the current running vCPU is returned to the same runq.
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Fig. 4. Vulnerable probabilities distributions

In the LS scheduler, a runq is still maintained for each core. In addition, we
further propose and implement the Global Shuffler (GS) scheduler, where only
one global runq is maintained for all cores. In the GC scheduler, the scheduling
scheme is modified as following:

1. Runq selection: during the scheduling, all candidate vCPUs are kept in a
globally shared runq.

2. VCPU selection: the same with that of the LS scheduler within the selected
runq.

We limit the above changes to relevant functions in the source code of the
Credit scheduler (sched credit.c). In the following section, we will evaluate and
compare the schedulers LS and GS with Credit from multiple perspectives.

5 Performance Evaluation

In this section, we evaluate the effectiveness of our proposed schedulers from
different perspectives. We use the same hardware and configurations as used
in Sect. 3.1. The hypervisor utilized for our evaluations is the Xen hypervisor
version 4.6.0.

5.1 Vulnerable Probability

To evaluate the vulnerable probabilities when different schedulers are used, we
repeated the experiment 30 times when running 9 VMs and collected 2160 (30 ·(
9
2

)
) potential attacker and victim pairs for each scheduler. Figure 4 shows the

cumulative distribution function (CDF) of the vulnerable probabilities for all
possible attacks.

In this figure, the x-axis represents the vulnerable probabilities while the
y-axis shows the CDF values. The distributions of the vulnerable probabilities
for each scheduler are distinguished by different markers. “Credit”, “LS” and
“GS” represents the default Credit scheduler, the Local Shuffler scheduler and
the Global Shuffler scheduler separately. Furthermore, the maximum vulnerable
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probability illustrates the worst-case scenario when the potential attackers could
obtain the most information from the victim.

In this figure, we can clearly observe that Credit leads to the most widely
distributed values, with the worst-case value being 100%. This suggests that
an attacker could obtain an almost complete data set of the victim’s memory
accesses in persistent attacks. In contrast, LS and GS can limit this worst-case
value to 49%. Since the attacker can repeatedly launch the same attack in our
threat model, the worst-case value indicates the effectiveness of the attacks. We
use it in the following evaluations. Another observation is that the vulnerable
probabilities of LS and GS is more evenly distributed within a smaller range of
25%–49% than that of Credit.

There are many factors that may affect the scheduling trace in attacks,
including the running time, the vCPUs/cores ratio, the workloads, and the time
slice length. Next, we compare the worst-case vulnerable probabilities using dif-
ferent schedulers under various settings (among 2160 possible attacks if not
otherwise specified).

Fig. 5. The worst-case vulnerable prob-
abilities with different running time

Fig. 6. The worst-case vulnerable prob-
abilities with different vCPUs/cores

Table 1. Sysbench workloads

Workloads Description Parameters

CPU intensive Verify prime numbers by doing
standard division of the number
starting from 1

--test=cpu --max-time=10

Memory intensive Allocate a memory buffer and then
write from it randomly

--test=memory --max-time=10

I/O intensive Randomly read/write previously
created files

--test=fileio --max-time=10
--file-test-mode=rndrw

We first varied the running time from 1 second to 16 seconds and the results
are shown in Fig. 5. In this figure, the x-axis represents the running time and
the y-axis represents the worst-case vulnerable probabilities. Furthermore, each
group of data represents the results of the three schedulers.
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We can observe from the figure that for Credit, the worst-case vulnerable
probabilities can always reach 100% despite the variation of the running time.
While for other schedulers, the worst-case vulnerable probabilities can be effec-
tively reduced by 20%–50%. In addition, the worst-case vulnerable probability
continuously decrease as the running time increases for our proposed schedulers.
This suggests that the effectiveness of our schemes is more remarkable for long-
term executions due to the more even distribution of time slices to vCPUs.

We further evaluate the worst-case vulnerable probabilities with different
vCPUs/cores ratios as shown in Fig. 6. By increasing the number of VMs, we
changed the number of vCPUs from 5 to 12 running on 4 cores as represented
on the x-axis in the figure. From this figure, we can see that our solution can
also achieve 20%–50% reductions. Furthermore, we also observe that the result
approximates the optimal value calculated by Eq. 3.

For different workloads, using sysbench [18], we generated CPU intensive
workloads, memory intensive workloads and I/O intensive workloads to evalu-
ate different schedulers. The configuration is shown in Table 1. The results are
displayed in Fig. 7. With the Shuffler schedulers, the worst-case vulnerable prob-
abilities can be reduced to below 60%.

Fig. 7. The worst-case vulnerable prob-
abilities with different workloads

Fig. 8. The worst-case vulnerable prob-
abilities with different time slice lengths

Finally, we changed the time slice length configured with parameter tslice ms
(default 30) in Xen, from 1 ms to 16 ms for all schedulers. The result is shown
in Fig. 8. Our schedulers can effectively reduce the worst-case vulnerability by
more than 50%.

To sum up, for the worst-case vulnerable probability in various settings:

1. It can reach almost 100% in most settings when the default Credit scheduler
is used.

2. Our proposed Shuffler schedulers can reduce it to below 80%.
3. The GS scheduler is slightly more effective than the LS scheduler, suggesting

a global queue implementation is preferable for evenly distributing CPU time.
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5.2 Recovery Rate

In this section, we reproduce the same Prime+Probe attack used in Sect. 3.1,
and evaluate how the Shuffler schedulers reduce the (key bits) recovery rate
compared to the Credit scheduler.

Figure 9 shows the CDF of the recovery rates for repeated attacks. From the
figure, we can clearly observe that Credit leads to the most widely distributed
values, with the worst-case recovery rate being 99%. In contrast, LS and GS
limit the worst-case recovery rate to 66% and 78%, respectively. The worst-case
recovery rate indicates the effectiveness of persistent attacks. We use it in the
following evaluations.

We further evaluate the worst-case recovery rates with different vCPUs/cores
ratios as shown in Fig. 10. We also changed the number of vCPUs from 5 to 12
running on 4 cores as represented on the x-axis in the figure, and present the
highest recovery rates on the y-axis. The number of attacks repeated for different
vCPUs number is 30, 60, 90, ..., 240, respectively.

From the figure, we can see that our solution can limit the recovery rates to
below 85%. In our experiment, all background VMs run CPU intensive workloads
that introduce little noise to the attacks. In the cloud environment, the existence
of error bits will further reduce the worst-case recovery rates.

Fig. 9. Recovery rates distributions

Fig. 10. The worst-case recovery rates
with different vCPUs/cores

Fig. 11. The worst-case recovery rates
with different time slice lengths
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Furthermore, the worst-case recovery rates can be further reduced to the near
optimized value shown in Eq. 3. This can be confirmed by repeating the same
attack while setting smaller tslice ms value, as shown in Fig. 11. We configured
vCPUs/cores to 5/4, and changed the tslice ms from 1 ms to 16 ms for all sched-
ulers. The worst-case recovery rates are reduced to below 72% for the Shuffler
schedulers, from 99% for the Credit scheduler, when tslice ms is set to 1 ms. The
worst-case recovery rate of 72% makes reconstructing the full key infeasible, as
we will discuss in Sect. 6.3.

5.3 Scheduling Overhead

Besides security, we also evaluate the performance overhead of the Shuffler sched-
ulers. The overhead incurred by the schedulers mainly comes from the CPU time
consumed for scheduling operations and performance penalty due to extra con-
text switches. We will evaluate them separately.

For the CPU time consumption, we measure the system-wide performance
when executing CPU intensive workloads in all VMs. The performance of each
VM is reported by sysbench [18]. During a given period, the more CPU time con-
sumed by the scheduling operations, the less number of events can be executed
in the VMs. For the performance penalty, we count the total number of vCPU
context switches during the same period. We use these two metrics together
to profile the overhead for each scheduler, as shown in Fig. 12. Intuitively, the
smaller the time slice length, the higher frequency the scheduler is triggered, thus
the higher overhead. So we used different tslice ms values in this experiment as
shown in the x-axis.

In Fig. 12a, the y-axis represents the system-wide performance during 10
seconds. The higher the better. Each bar shows the average value among 150
repetitions. We can observe that decreasing the tslice ms values always imposes
extra overhead, which can reach up to 2%. However, the extra overhead intro-
duced by the Shuffler schedulers using the same tslice ms values is less than 0.5%
compared to the Credit scheduler.

Fig. 12. Overhead of different schedulers
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In Fig. 12b, the y-axis represents the total number of vCPU context switches
during the same period. The lower the better. As expected, the number of vCPU
context switches decreased by half as we doubled the tslice ms value. Further-
more, we also find that GS caused similar number of vCPU context switches
compared to Credit, while LS reduced this number by 13%–20%. It is because
the current running vCPU has higher probability to continue running when the
LS scheduler is used.

To sum up, the Shuffler schedulers introduce negligible overhead compared to
the Credit scheduler, since they neither consumed more CPU time in scheduling
operations, nor generated more vCPU context switches.

6 Discussion

6.1 Colluding Attacks

In our threat model, we assumed the state-of-the-art attacking scenarios in which
a single attacker vCPU was used [15,20,40]. We argue that colluding attacker
vCPUs could hardly gain more advantages over single attacker vCPU, based on
two observations: (1) To avoid the mutual pollution of the monitored cache sets,
no overlapping executions of the attacker vCPUs are desired, since they spy the
shared resources by “writing”. This requires the cooperation of the hypervisor,
which is not possible without compromising the hypervisor. (2) To stitch the
collected information together, the attacker vCPUs need to synchronize at overly
high frequency, which is not readily available. Thus, the capability of colluding
attacks is limited by our proposed solution as well.

6.2 CPU Overcommitment

In our thread model, we assumed CPU is overcommitted in the physical hosts.
CPU overcommitment is commonly used to consolidate the VMs to save power
consumption and to improve resource utilization [6,8,22]. For example, the
default vCPUs/cores ratio is 16 in OpenStack [4]. Though for public clouds, the
vCPUs/cores ratio is not disclosed by the cloud providers, there are some clues
to overcommitment. For example, for the latest general purpose T2 instances in
Amazon EC2, the vCPUs/cores ratio may be 5 (12 credits/hour), 10 or 20, etc.
[3].

If CPU is not overcommitted, the idle cores can be used to inject noise to
the side channels to mitigate attacks. Zhang et al. [42] had discussions in this
direction. Such a mechanism can be a good complement to our solution.

6.3 Key Reconstruction

The evaluation shows that when our proposed Shuffler schedulers were used, the
attacker could only collect less than 72% key bits in a single attack. As a result,
the side-channel attacks fail since it is infeasible to guess the missing 28% key
bits.
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One may wonder if advanced crypto key analysis techniques enable the
attacker to reconstruct the full key string from such partial keys. For example,
when there was bits corruption in the partial keys, Heninger and Shacham [12]
managed to reconstruct the full key string by utilizing the redundant informa-
tion in the key string. However, such key reconstruction methods cannot directly
apply to our case, since the partial keys have missing bits at random, and key
bits positions are incorrect.

Alternatively, the attacker could accumulate collected information across
multiple partial keys to reconstruct the complete key. Similar problem was dis-
cussed in the context of deletion channel [13,23,24]. In this model, a transmitter
sends a bit and the receiver either receives the bit (with probability 1 − P ) or
does not receive anything without being notified (with probability P ). Similarly,
we state the key reconstruction problem when the Shuffler schedulers are used:

For a victim’s key bits sequence X = x1x2...xl of length l. In each attack,
the attacker can collect a subsequence, Y1, Y2, ..., Yn, where each Yi is obtained
independently by deleting each of X’s element with probability P . Under these
conditions, what is the number of subsequences (n) needed to reconstruct X with
high probability?

We model the attacker’s data collection in this way, since the hypervisor
scheduling is transparent to the attacker, and the Shuffler schedulers promised
vulnerable probabilities to be smaller than 72%. Then bits deletion is inevitable
with P ≥ 28%.

The state-of-the-art result of this problem to the best of our knowledge is [13]:
{
n = O(l · poly(logl)), P ≤ (1/

√
l)

n = exp(
√
l · poly(logl)), any P

Considering P = 28% and l = 4096, only the second result applies to our key
reconstruction problem. In this case, the number of repeated attacks required to
reconstruct the full key increases exponentially with

√
l =

√
4096 = 64, making

the attacking time unaffordable when our proposed Shuffler schedulers are used.
To sum up, our scheduling-based scheme effectively mitigates cross-VM side-

channel attacks.

7 Related Work

Side-channel attacks have attracted a lot of attention during the past and many
schemes have been proposed to mitigate such attacks. For many attacks, visi-
ble timing difference for different hardware events is required. Askarov et al. [5]
provided a timing mitigator to bound the information leaked through the tim-
ing channel. To eliminate the timing channel, Stefan et al. [30] proposed an
instruction-based scheduling, Vattikonda et al. [34] suggested to remove the fine
grained timer in Xen. However, obfuscating timing information negatively affects
benign cloud tenants as well, and the attacker may obtain precise timing infor-
mation using other methods [29]. Zhang et al. [42] introduced bystander VMs



Shuffler: Mitigate Cross-VM Side-Channel Attacks via Hypervisor Scheduling 507

running configurable workloads to inject noise to covert channels, which could
be a good complement to our solution.

Crypto operations are often the target of side-channel attacks. Gueron [10]
proposed a new modular exponentiation implementation to secure RSA against
side-channel attacks. Raccoon [27] was also proposed to harden programs against
side-channel attacks by obfuscating the program at the source code level.
However, the modified programs may still be vulnerable to new side-channel
attacks [41].

Compared to harden individual program, a more general solution is to secure
the cloud environment against side-channel attacks. Dedicated host service pro-
vided by the cloud providers [2] can be used to physically isolate VMs from all
other VMs, thus preventing them being attacked. However, dedicated hosts come
at the cost of higher price for the cloud user and lower resource utilization for the
cloud provider. Alternatively, certain degree of VM isolation could be achieved by
carefully placing and frequently migrating VMs in its life-cycle [25,32,39]. Based
on prior studies [25,35] and confirmed by our measurements, it took about 1.47
seconds to live migrate an instance with 2048 MB RAM and 7 GB hard drive via
1Gbps network. Furthermore, the latency of such migrations could be translated
into monetary cost of the providers ranging from $1 to $100.

Once the attacker and the victim run their cloud tenants in the same host, dif-
ferent shared resources may be exploited to launch side-channel attacks. Various
prior efforts focused on mitigating known attacks via different shared resources,
such as networks-on-chip [37], memory controller [36], memory pages [44], CPU
caches [9,17,19,38], etc. Specifically, to mitigate cache side-channel attacks, God-
frey and Zulkernine [9] proposed to flush caches during context switches, Wang
and Lee [38] suggested a new cache design, Liu et al. [19] proposed to partition
the LLC for each cloud tenant using Intel’s Cache Allocation Technology, Kim et
al. [17] designed a memory page coloring scheme to prevent usage patterns of sen-
sitive data being leaked. These defenses are often effective to a specific group of
attacks. However, they usually introduced significant overhead, reduced resource
utilization, and even required far-reaching changes to the hardware.

A finer-grained isolation via scheduling is more economically desirable for
both the cloud user and the cloud provider. Hu [14] discussed the impact
of scheduling policy on hardware timing covert-channel and proposed a lat-
tice scheduler for process scheduling. In virtualized environment, the impact
of various scheduling factors, including load balancing, weight, cap, time slice
and (context-switch) rate limiting, on covert-channel attacks were studied [33].
Varadarajan et al. [31] found that the attacker needed to measure the cache state
frequently in side-channel attacks, and that the efficacy of such attacks can be
dramatically reduced by enabling the minimum runtime guarantee feature in
Xen. They both targeted side-channel attacks via core-shared resources such as
L1 cache. In comparison, our previous work [21] studied how different factors
affected the more advanced side-channel attacks via cross-core shared resources
such as LLC. In this work, we revealed that the root cause of the side-channel
leakage is the runtime resources sharing patterns between cloud tenants. We
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had an in-depth discussion of it, defined the vulnerable probability to quantify
it, and proposed a scheduling-based mechanism to reduce it. In addition, the
extra overhead is less than 0.5% in our evaluation.

8 Conclusion

The multi-tenancy in the cloud infrastructure enables side-channel attacks to
be launched by co-locating VMs. In this paper, we revisit the cache-based side-
channel attacks where the attackers exploit the shared hardware resources such
as CPU cache. Unfortunately, existing solutions either fail to provide sufficient
protections at economic costs or limit their scope to specific attacks. In this
paper, we propose a lightweight and generic solution to eliminate a wide range
of cross-VM and possibly unknown attacks. Our thorough analyses have demon-
strated that the efficacy of such attacks could be dramatically reduced by dis-
tributing CPU resource as evenly as possible to all candidate vCPUs. Accord-
ingly, we have designed and implemented the Shuffler schedulers by incorporat-
ing this strategy and randomization into Xen’s Credit scheduler. The evalua-
tion results show that the Shuffler schedulers significantly reduce the vulnerable
probabilities of all VMs, thus mitigating attacks without sacrificing the original
resource sharing or performance.
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1 Introduction

With the advent of networking technology, companies and individuals are deal-
ing with more and more online affairs, and it has led to a dramatic rise in net-
working, data storage and computing needs. Simple addition of local computing
infrastructure often results in a sharp increase in costs and unnecessary waste of
resources, and it prompts these organizations to seek affordable solutions from
public cloud technologies. Using Microsoft’s Azure storage service and Ama-
zons S3 as examples, compared with building and maintaining a private storage
infrastructure, customers can simply move their data to public clouds, and then
public clouds provide scalable and dynamic storage at a relatively inexpensive
price. For most customers, public cloud solutions have obvious advantages in
cost control, management and maintenance.

Using public cloud service has significant benefits, it brings new security and
privacy risks at the same time. For storage services based on public clouds, all
infrastructures are owned and totally controlled by the cloud service provider.
Customers make use of the storage infrastructure through the provider, and they
have no administrative rights for the infrastructure that is not located locally.
There is no way for the customer to ensure that cloud service providers are
legally authorized (In private cloud, the infrastructure is located in customer’s
region of control, but the cost of building and maintaining a private cloud plat-
form remains substantial, and public cloud is still the main choice). Security
protocols like SSL, TLS, IPSec, can be applied to guarantee the confidentiality
and integrity of data during transmission over the Internet. However, in these
protocols, both the cloud service provider and the client can obtain the secret
key. It means that user’s privacy data could be maliciously acquired by the cloud
service provider, even these security protocols were well applied. On the other
hand, these large cloud service providers are also the target of various malicious
attacks, secret keys in the cloud service provider also has the risk of being stolen.
Public cloud security incidents, like Apple’s iCloud leaking user’s private photos
[17] and Dropbox leaking user’s passwords [7], seriously affected the prospect of
public cloud.

Kamara and Lauter think that concerning data’s confidentiality and integrity
is the biggest obstacle for the adoption of cloud storage and cloud computing [10].
In their work, they proposed an idea of using mature symmetric cryptographic
techniques to provide virtual private storage service on public cloud infrastruc-
ture, which helps users to get credible cloud storage services on untrusted public
cloud. Their work offered no concrete implementation, and under practical situ-
ations, frequently encrypting data on the client side brings intense consumption
on the limited local computing resources. It runs counter to our original intention
of using public cloud to save local resources.

In this paper, we solve these problems above by using Jetson TX1 to build
a data encryption and decryption proxy device that locates in client’s intranet
and controlled by the customer. The device encrypts the data sent to the public
cloud and decrypts the returned ciphertext, so customers do not need to change
the original network architecture, nor do they need to add data encryption and
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decryption operations on the client side, they can convert the unreliable, uncon-
trollable cloud storage services provided by public clouds into virtual private
cloud services, which is reliable and controllable.

In fact, Jetson TX1 and other embedded GPUs are wildly applied in many
research fields, like deep neural networks [24] and computer-vision [23], however,
they are seldom involved in research of cryptography. Motivated by this situation,
we introduce Jetson TX1 to build virtual private cloud storage on public cloud
infrastructure. Our work focuses on the following aspects.

1. Speeding up the SM4 kernel on Jetson TX1. First, we implemented a PTX-
version round function on Jetson TX1 for SM4 algorithm. Then we reasonably
allocated Jetson TX1’s storage resources, and found the most suitable choice
through comparison. Finally, our GPU-based SM4 implementation reached
30.30Gbps at its peak rate, which is 26.6 times faster than the CPU-based
one on the same platform.

2. Designing secret key’s architecture. First, setting secret key and generating
round keys were completed before the data processing stage, it saved unnec-
essary cost of round key generation. On the other hand, the device had no
IP address while working, so secret key was safer in it, as it was harder to be
attacked remotely.

3. Reducing the performance degradation caused by data transfer. The CPU
and the GPU on Jetson TX1 shared an unified DRAM memory, and com-
pared with the multi-stream technology commonly used on desktop GPUs, we
found that zero-copy memory is more efficiency on Jetson TX1 with no neg-
ative effects, and this can also be applied to other symmetric cryptographic
algorithms, not only to our SM4 implementation.

The rest of our paper is organized as follow: Sect. 2 reviews the related works
on GPUs, especially on embedded GPUs. Section 3 presents the overview of
Jetson TX1, CUDA, and SM4 symmetric algorithm. Section 4 describes in detail
about how to enhance SM4 on Jetson TX1, and the strategy to build our data
processor for cryptographic cloud storage. Section 5 evaluates the performance
of proposed implementation. Section 6 concludes the paper.

2 Related Works

The SM4 algorithm was declassified in 2006 and standardized in 2012 as Chinese
standard symmetric cipher. Researchers have done a lot of works on its security
problems and attacking methods [13]. At the same time, there are relatively few
studies on high performance SM4 implementation, and in practical applications,
the performance bottleneck severely limits the usability of SM4 algorithm.

As the dedicated graphics processor, GPUs are originally developed to accel-
erate the manipulation for computer graphics, and its main content of the
research is concentrated in this field. However, researchers have been trying to
expand GPU’s general-purpose computing power [1] in the field of cryptographic
algorithms. Before CUDA even exists, using libraries specifically developed for
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3D image processing, like Direct3D and OpenGL, AES has been run and accel-
erated successfully on GPUs [3]. Moss et al. [18] and Fleissner et al. [5] used
GPUs to implement the modular exponentiation. In 2007, NVIDIA corporation
introduced the CUDA (Compute Unified Device Architecture) API [12], which
made it simplified for developers to involve the GPU hardware when designing
parallelization within applications [16]. Since then, more cryptographic algo-
rithms were scheduled in GPUs for better performance, including both symmet-
ric algorithms (like AES [15] and DES [14]) and asymmetric algorithms (like
ECC [31] and RSA [30]). Compared with other implementations, GPUs can
greatly improve the algorithm’s implementing rate, and reduce the delay, Gilger
et al. used GPUs to accelerate all these symmetric algorithms in OpenSSL cryp-
tographic library [8]. GPUs were also used as a general-purpose accelerator to
improve whole system’s computing capability [2].

Compared with desktop GPUs, which has been broadly studied and
addressed in cryptography, fewer studies are contributing to mobile and embed-
ded GPUs. In fact, embedded GPUs have huge advantages in achieving the
higher performance and better power efficiency, which is purposed in practi-
cal applications, and also valuable to the customer in public cloud environ-
ment. Declared as“the ideal platform for compute-intensive embedded projects”
by Nvidia [20], Jetson TX1 has been widely used in the field of computer vision
[23], deep neural networks [24], and even for the classical molecular dynamics
algorithms [19]. Due to the hardware and software constraints and dependencies,
naively porting optimizations for desktop GPUs to embedded GPUs might not
work. Furthermore, embedded devices have limited storage capacity available,
realization of high-performance symmetric algorithms on low-power embedded
GPUs platform is still challenging due to its massive computational and storage
requirements.

3 Background

3.1 NVIDIA Jetson TX1 and CUDA

The embedded platform we used in the paper is Nvidia’s Jetson TX1, which
is a single-board computer containing low power consumption ARM CPUs and
an integrated GPU. Its architecture is shown in Fig. 1. Jetson TX1 is based on
the 64-bit Tegra X1 SoC [19], the integrated GPU owns 1 copy engine for data
transfer, and 2 streaming multiprocessors (SM) for data processing. Each SM
contains 128 single precision CUDA cores and 512 bytes texture alignment, and
they shared 256 KB L2 cache. When using this GPU to complete transactions,
32 threads within one SM grouped as a warp and ran in a clock concurrently. All
GPU threads followed the Single Instruction Multiple Threads (SIMT) architec-
ture. In order to improve resource utilization, the warp may be preempted when
it is stalled, and the runtime context switches to another one, so SMs are always
hold occupied. Multiple warps of threads assigned to one SM are called block. A
block can contain up to 1024 GPU threads, and each block could access 48 KB
fast shared memory and 32 KB registers.
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Fig. 1. NVIDIA Jetson TX1’s architecture

Apart from the integrated GPU, Jetson TX1 contains 4 high perfor-
mance Cortex-A57 cores (1.9 GHz), and 4 lower performance Cortex-A53 cores
(1.3 GHz) [29], Cortex-A53 cores are only available to software in low-power
modes. Each Cortex-A57 core has 48 KB L1 instruction cache and 32 KB L1
data cache, and these four cores shared 2 MB L2 cache together. Cortex-A53
cores owns 32 KB L1 instruction cache and 32 KB L1 data cache, and shared
512 KB L2 cache.

3.2 SM4 Symmetric Algorithm

As a 32 round unbalanced Feistel cipher, both the processing block and the key of
SM4 are 128-bit. It is Chinese standard symmetric cipher for data confidentiality
[13] and its security strength is same to that of AES-128.

4 Implementation Architecture

As mentioned above, when the public cloud provides IaaS [27], the customer was
able to build a virtual private cloud based on public cloud infrastructure and
obtain encrypted cloud storage [10,25]. However, it required to complete data
encryption locally, which would result in a shortage of local computing resources.
To solve this problem, we schedule a fast SM4 kernel on the integrated GPU, and
designed sane usage strategy that suits the public cloud application environment.
We used Jetson TX1 to build a data encryption and decryption proxy device
located in the customer’s network, and this section describes the detail.

4.1 Scheduling SM4 on Jetson TX1

To accelerate SM4 algorithm on integrated GPUs, naively porting a software
implementation is unable to meet the requirement. On the other hand, opti-
mizations for desktop GPUs cannot be directly used on mobile platforms due
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to hardware and software constraints and dependencies. Therefore, we need to
redesign complete optimization solutions for SM4 algorithm on Jetson TX1.

As mentioned above, the algorithm needs 32 times of round function to com-
plete a data block encryption, and we tried to speed up this part using the
parallel thread execution (PTX) instruction set [22]. PTX is a pseudo-assembly
language used in Nvidia’s CUDA programming environment [28]. When compil-
ing the CUDA source code, which is written in a C-like language or other forms,
the nvcc compiler translates it into PTX instructions, then the graphics driver
turns these translated PTX instructions into binary codes that can run on the
CUDA core. Using the PTX instruction set, we are able to accurately control the
usage of GPU’s resources, thereby improving the overall program’s operational
efficiency.

The main commands of the round operation in SM4 encryption are bitwise
exclusive OR, left circular shift operation and non-linear transformation. Among
them, bitwise exclusive OR and left circular shift operation were accomplished
by PTX instructions. For bitwise exclusive OR, xor.b32 was the option. For
left circular shift operation, we first left-shifted the input with shl.b32, then use
shr.b32 to right-shifted the input by corresponding bits, and finally used or.b32
to generate the result. For non-linear permutations, using arithmetic calculations
is very computationally expensive and complex. Querying the pre-allocated and
assigned memory space [8] is a common practice to achieve non-linear permu-
tation. And in our work, we built a 256 bytes size S-Box. To implement the
non-linear permutations for a 32-bit block, it needed to query the S-Box for 4
times. Algorithm 1 shows the detailed implementation of the round function.

In order to evaluate whether our optimization is effective, we compared the
overall throughput of the algorithm before and after optimization. In the test,
the program owned one block with 512 GPU threads in it, and every thread
encoded 1024 bytes data. Finally, the overall throughput of the optimized kernel
was 2.864 Gbps, and the unoptimized result was 2.128 Gbps, Our optimization
method improved the utilization of hardware resources and the overall perfor-
mance under the same test environment. In the following process, we would still
do similar comparisons to confirm the effectiveness of our optimizations.

To enhance the performance of the SM4 kernel, reasonable memory arrange-
ment was also needed. CUDA-enabled GPUs provide a variety of storage
resources, including global memory, constant memory, shared memory, and 32-
bit register. It is essential to choose proper arrangement for data used in the
algorithm, including S-Box (as mentioned above, it was used to achieve non-
linear transformation) and plaintext/ciphertext.

For the S-Box, constant memory, shared memory, and 32-bit register are all
options to speed up its accessing rate. Among them, register is the fastest. How-
ever, on-chip register is scarce, overuse would decline the number of concurrent
threads running on each SM and result in overall performance degradation. In
order to reduce the usage of register, we made 32 GPU threads within a warp
to co-store a set of 256 bytes S-Box, the specific implementation is as follows: In
the warp, a 256 bytes S-Box was equally assigned to 32 GPU threads, and what
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Algorithm 1. The Round Function
Input:

Xi, Xi+1, Xi+2, Xi+3, rki:
Xi, Xi+1, Xi+2, Xi+3, rki ∈ Z32

2 and i = 0, 1, ..., 31;
Output:

Xi+4: Xi+4 ∈ Z32
2 and i = 0, 1, ..., 31;

1: unsigned int t;
2: asm volatile
3: ( “{\t\n”
4: “xor.b32 %0, %1, %2 ; \t\n”
5: “xor.b32 %0, %0, %3 ; \t\n”
6: “xor.b32 %0, %0, %4 ; \t\n”
7: “}”
8: :“ + r”(t): “r”(Xi+1), “r”(Xi+2),

“r”(Xi+3), “r”(rki)
9: );

10: unsigned char ∗pchar = (unsigned char ∗)&t;
11: for i = 0 to 3 do
12: pchar[i] = device sbox[pchar[i]];
13: end for
14: asm volatile
15: ( “{\t\n”
16: “.reg.b32 a ; \t\n”
17: “.reg.b32 b ; \t\n”
18: “xor.b32 %0, %0, %1 ; \t\n”
19: “shl.b32 a, %1, 2 ; \t\n”
20: “shr.b32 a, %1, 30 ; \t\n”
21: “or.b32 a, a, b ; \t\n”
22: “xor.b32 %0, %0, a ; \t\n”
23: “shl.b32 a, %1, 10 ; \t\n”
24: “shr.b32 a, %1, 22 ; \t\n”
25: “or.b32 a, a, b ; \t\n”
26: “xor.b32 %0, %0, a ; \t\n”
27: “shl.b32 a, %1, 18 ; \t\n”
28: “shr.b32 a, %1, 14 ; \t\n”
29: “or.b32 a, a, b ; \t\n”
30: “xor.b32 %0, %0, a ; \t\n”
31: “shl.b32 a, %1, 24 ; \t\n”
32: “shr.b32 a, %1, 8 ; \t\n”
33: “or.b32 a, a, b ; \t\n”
34: “xor.b32 %0, %0, a ; \t\n”
35: “}”
36: : “ + r”(Xi) : “r”(t)
37: );
38: return Xi+4 = Xi;
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a thread got depends on its thread ID. When to perform non-linear transforma-
tion, the thread used the instruction shuffle twice to share its own two register
to all threads and get the data it needed. In this way, every thread only used 2
registers, instead of 64. In addition to this scheme, constant memory and shared
memory can also be used to store S-Box. We tested these three optimization
solutions separately, and when the S-Box was stored in constant memory, the
implementation was the fastest. Due to multiple usage of instruction shuffle, this
implementation of using registers had a sharp decline in performance, however,
it is resistant to key recovery timing attack [9].

For the plaintext/ciphertext, they were both stored in global memory. Com-
pared with other memory space, the bandwidth of global memory was lower, and
non-optimal global memory access had a higher impact on the performance. We
took advantage of coalesced access to reduce the generated transactions when
accessing the global memory. First, when accessing data in the global mem-
ory, each GPU thread accessed a 128-bit block at one time (This is exactly
the size of input block for SM4 algorithm). Further, we split the concatenated
plaintext into several 128-bit blocks and rearranged their location, and ensuring
when GPU threads were ordered to access plaintext/ciphertext in the global
memory, the warp was accessing a continuous memory space, not multiple dis-
crete data fragments. Then we evaluated the effect of our optimization. Before
optimization, the kernel’s throughput is 4.44 Gbps, and after optimization, it
increased to 6.048 Gbps. Coalesced access improved the accessing speed of the
plaintext/ciphertext in the global memory, thereby enhanced the overall perfor-
mance of the implementation.

It is worth mentioning, that these optimization methods for SM4’s S-Box
and plaintext/ciphertext on Jetson TX1, could also be applied to other sym-
metric cryptographic algorithms as well. Take AES for an example, it can also
achieve non-linear transformation by accessing pre-allocated space, and its plain-
text/ciphertext would also be stored in the global memory due to its size.

Finally, we adjusted the integrated GPU’s concurrency strategy. Compared
with desktop GPU, SMs in Jetson TX1 own less register. In GTX1080 [26], there
is 64 K 32-bit register on each SM, and in Jetson TX1, the number dropped to
32k. When we did the algorithmic acceleration on the GTX1080, we set 1024
threads per block, however, on Jetson TX1, we cut it down by half to 512, and
used 4 block to make the most of Jetson TX1’s 2 SMs.

Fig. 2. How Jetson TX1 works in public cloud
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4.2 Key’s Architecture

Secret key is an integral part of data encryption. In SM4 algorithm, the secret
key needed to be expanded into round keys, and then used for each round of
data processing. To release the GPU from repeated round keys extension, the
program expanded round keys just after the device administrator set the secret
key at the beginning of the system startup. When GPU threads processed data,
the program first loaded these round keys into shared memory, and then did
following steps. Compared with the global memory, shared memory is on chip,
so its accessing rate is much higher, and on the other hand, register is too small
to store round keys.

To protect user’s data on the public cloud, we added one Jetson TX1 to the
original network topology, and how it works was shown in Fig. 2. Our device was
working at the MAC layer, and it was transparent to both the customer and the
service provider. Both its two physical network interfaces, one was connected to
the customer and another was connected to the Internet, had no IP address. It
increased the difficulty of remote access by attackers, and it was a safer environ-
ment for the secret key. On the basis of the original service, when the customer
uploaded data to the public cloud, plaintext data first needed to pass through
Jetson TX1. After Jetson TX1 encrypted these data packets, it forwarded them
to the public cloud. So data stored in the public cloud was ciphertext. When
the customer downloaded data from the public cloud, ciphertext data first was
decrypted by Jetson TX1 and then forwarded to the customer. In this way, we
provide virtual private storage service on public cloud, and the whole process is
transparent to both the customer and the service provider.

START

Se ng grid number, block number, thread number, and launching GPU threads

GPU threads executed kernel func on

Synchronizing all threads to complete the opera on

END

Allocating storage resources on  the host and the device

Releasing host and device resources

Copying data from the host to the device

Copying data from the device to the host

Se ng grid number, block number, thread number, and launching GPU threads

GPU threads executed kernel func on

Synchronizing all threads to complete the opera on

Fig. 3. The flow of a normal CUDA-based program
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Fig. 4. How a multi-stream CUDA-based program works

START

Se ng grid number, block number, thread number, and launching GPU threads

GPU threads executed kernel func on

Synchronizing all threads to complete the opera on

END

 Se ng device flag, allocating storage resources,  mapping the host memory to GPU device pointer

Releasing host and device resources

Se ng grid number, block number, thread number, and launching GPU threads

GPU threads executed kernel func on

Synchronizing all threads to complete the opera on

Fig. 5. The flow of a zero-copy access CUDA-based program

4.3 Using Jetson TX1 as the Cryptographic Engine

After optimizing SM4 kernel on Jetson TX1, we used the kernel to complete the
data encryption operation. Figure 3 shows the flow of how a normal CUDA-based
program works. For a CUDA-based realized layer, the input data first must be
transferred from the host (CPU) memory to the device (GPU) memory, then
CUDA cores follow the kernel function to process data, finally copy the output
back to the host memory. For SM4 algorithm, the amount of its input and output
data is huge, data transfer is inevitable and affects the overall performance of
the system.

By default, memory allocated on the host memory are pageable. To trans-
fer the data from the pageable host memory to the device memory, the CUDA
driver first needs to allocate and copy the data to a pinned memory (page-lock
memory), and then transfers the data from the pinned memory to the device
memory. These extra pinned memory allocation and data transfer from pageable
host memory to pinned host memory can be avoided. CUDA provides special
APIs, like “cudaHostAlloc()”, to allocate pinned memory in the host memory,
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and data in the pinned memory can be directly transferred to the device. When
using pinned memory on an embedded GPU platform, there are some constraints
to be considered. For a desktop platform, it was usually equipped with expand-
able memory modules, the memory space on the host side is relatively large. On
Jetson TX1, GPU and CPU shared a piece of physical memory that is fixed at
4GB. Using pinned memory reduced the amount of available physical memory,
over-allocation had pronounced impact on the embedded system’s performance.

Using pinned memory improved data transfer efficiency, however, when a
CUDA-based program works, it still needs to complete transferring data to GPU,
processing the data and transferring the output back these steps serially. Com-
pared with data processing, data transfer delay is still considerable. In order to
improve the overall performance on this basis, we scheduled and pipelined the
kernel function and data transfer between the host memory and the device mem-
ory in multiple streams, as shown in Fig. 4. In this way, data transfer latency
could be overlapped with kernel execution. With appropriate turning, it was
possible to ensure that the copy engine and the GPU at least one could be fully
occupied.

In addition to multi-stream way, CUDA provides another feature, called
zero-copy access [21]. By mapping the pinned memory on host side to a
GPU device pointer, the kernel function can access the data through the
device pointer without explicit data transfer between the host and the device.
When using zero-copy access, first, we need to use the statement “cudaSet-
DeviceFlags(cudaDeviceMapHost)” to set the device flag, and call the func-
tion“cudaHostAlloc” with a special flag “cudaHostAllocMapped” to allocate
pinned memory on the host side. Then using the function “cudaHostGetDe-
vicePointer” to map the allocated memory space to device pointers. When
these operations are completed, the kernel can directly fetch data from the host
through the device pointers. So the flow of a zero-copy access CUDA-based pro-
gram was simplified and optimized as shown in Fig. 5.

Compared with Fig. 3, the new program had no data transfer operation
between the host and the device, and those extra configurations and function
call operations for zero-copy access could be set up in the system initialization
phase. In this way, data transfer posed little overhead on the whole performance,
and the program used the single default stream to achieve the best performance.

Comparing these two optimization strategies, the program using zero-copy
access do not need explicit data transfer. However, due to the black-box nature
of CUDA, when programmers used the function “cudaMemcpy” to complete the
data transfer, its efficiency can not be precisely controlled. Similarly, there is a
potential compromise in data accessing rate when using zero-copy memory. Zero-
copy access is completed under CUDA’s assistant, both its working mechanism
and operating efficiency are not clear to us. In [4], programmers thought that
zero-copy access was not the best choice when there is not much computation
to perform. So we tried both these two strategies on Jetson TX1 and compared
their results to find out which is better.
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5 Performance Assessment

Based on our GPU-based SM4 implementation, we have achieved ECB, CBC
and CTR these mainstream data encryption modes. And in this section, we
evaluated the performance of our SM4 kernel on Jetson TX1, and compared it
with the common CPU-based implementation. In the meantime, we analyzed the
impact of these two optimization strategies on data transfer, data access, and
kernel execution efficiency (multi-stream and zero-copy access, used to reduce
performance degradation from data transfer, as mentioned above). And chose
the appropriate one for our device. Detailed information about Jetson TX1’s
hardware was provided in Sect. 3, and the OS runs on the platform was Ubuntu
16.04, the compiler we used is GCC 5.4.0 and CUDA toolkit 8.0.
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Fig. 6. Throughput of GPU-based SM4 implementation and CPU-based SM4 imple-
mentation

5.1 Kernel Speed

The performance text was run on Jetson TX1. To evaluate our GPU-based SM4
implementation, we used our kernel to encrypt data of different sizes and counted
the throughput. In our implementation, the S-Box was stored in the constant
memory, plaintext/ciphertext was stored in the global memory, round keys were
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generated by the CPU in the initial stage and then stored in the shared memory.
Each block had 512 threads, and a total of four blocks were called to maximize
the computing power of the integrated GPU on Jetson TX1. For the CPU-based
SM4 implementation, we tested its performance both on Jetson TX1’s quad core
CPU and on a laptop with a Intel CORE i7-6820HQ CPU and 16 GB memory.
To make the most of CPU’s capability, multiple threads was called, and all these
data, including S-Box, round keys and plaintext/ciphertext were stored in the
host memory, and round keys were also pre-generated before the data encryption
operation starts. When measuring the consumption time, we only considered the
data encoding time, without considering the data transfer delay.

We tested the performance of both GPU-based SM4 implementation and
CPU-based SM4 implementation when they encrypted data in ECB, CBC and
CTR mode, and the final test results is shown in Fig. 6. GPUs were good at
dealing with high concurrent transactions. When data volume increased, its
advantages of high concurrency were highlighted. The experimental results also
supported this conclusion. When the data grew, the overall throughput of GPU-
based implementation increased rapidly, but the CPU-based one’s growth was
limited. The maximum throughput of our GPU-based SM4 implementation on
Jetson TX1 is 30.30 Gbps, compared with the CPU-based implementation on
the same platform, the maximum throughput of which is 1.14 Gbps, it is about
26.6 times higher. On Intel CORE i7-6820HQ, the maximum throughput of
the CPU-based implementation is 3.34 Gbps, and compared with it, GPU-based
implementation still has obvious advantages. Considering that the bandwidth of
current 10 Gigabit fiber is about 10 Gbps, for the customer, the computational
power provided by the SM4 kernel is sufficiently redundant. The CPU-based
implementation, both on Jetson TX1 and Intel CORE i7-6820HQ, has the prob-
lem of insufficient performance.
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5.2 Multi-stream Vs. Zero-Copy Access

Using GPUs to complete the symmetric cryptographic operation, the impact
of data transfer between the host memory and the device memory can not be
ignored. On the desktop GPU, it is a common practice to use multi-stream
method to overlap data transfer with data process operation. However, even
after optimization, data transfer is still the performance bottleneck in practical
applications. On embedded GPUs like the TX1, the CPU and the GPU shared a
unified DRAM memory, and CUDA provides other efficient mechanism to omit
explicit data transfer operation, which is called zero-copy access. The working
mechanism is not clear, and its optimization effect also needs to be judged,
so we compared the performance of programs using these two strategies, to
find out which is better. In the experiment, two CUDA-based programs using
different strategies encrypted varied sizes of data on Jetson TX1, and we tested
the throughput. For the program that uses multi-stream, memory allocation,
data initialization and round key generation were completed in the initialization
phase, We measured only the time consumed by the necessary operations for
data encryption, including data transfer and data processing. For the program
that uses zero-copy access, data was not explicitly copied from the CPU to the
GPU and vice versa, so we measured GPU’s computing time. Similarly, device
flag setting, memory allocation, mapping device pointer to the host memory
were also done with other operations in the system initialization phase.

The kernel optimization strategies for both program were the same, for zero-
copy access program, its default stream owns 4 blocks, but for the multi-stream
one, it has 8 streams and each stream owns only one block to achieve the best
performance. The test result of these programs is shown in Fig. 7. The maxi-
mum throughput of the zero-copy access program is 30.19 Gbps, compared with
that of the multi-stream program, which is 12.16 Gbps, it is 2.48 times higher. It
should be noted that, compared to the multi-stream, zero-copy access program
significantly reduces the precious memory consumption on the DRAM, as the
DRAM on Jetson TX1 is fixed and non-expandable. At least, there is no need
to allocate memory space for the device in the DRAM. For GPU-based SM4
implementation on Jetson TX1, zero-copy access was a more suitable optimiza-
tion strategy. On the other hand, we found that when using zero-copy memory,
the throughput of the program is almost the same to the kernel when only con-
sidering the data encryption on the GPU (as shown in Fig. 6(a), the maximum
throughput of the kernel is 30.30 Gbps). It proved that using zero-copy memory
had no negative impact on the data accessing nor on the kernel execution, and
it released GPU’s computing capability from the bottleneck of data transfer on
Jetson TX1. Zero-copy access can also be applied to enhance the performance
of other symmetric cryptographic algorithms on the Jetson TX1.

6 Conclusion

In this paper, we have presented how to use embedded GPUs to build virtual pri-
vate cloud environment on public cloud infrastructure to provide secure and inex-
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pensive encrypted cloud storage service. On the integrated GPU in Jetson TX1,
the maximum throughput of our GPU-based SM4 kernel reaches 30.30 Gbps, it is
26.6 times faster than the CPU-based implementation on the same platform. We
have omitted explicit data transfer operation from our program with no negative
impacts on the kernel’s performance, and the data encryption and decryption
proxy device can provide 30.19 Gbps data processing capabilities, it means that
one single Jetson TX1 is sufficient for the customer in 10 Gigabit fiber network
environment. And we also found, for symmetric cryptographic algorithms or
other GPU applications with heavy data transfer burden on Jetson TX1, data
transfer was no longer the performance bottleneck.

In the future, we would continue to improve the performance of our GPU-
based SM4 implementation on Jetson TX1. On the other hand, our existing work
was vulnerable to timing-attack [6], malicious public cloud service providers and
users hidden in customer’s intranet (for example, a malicious programs buried
in the customer’s intranet) can collaborate to recover the secret key [9]. Using
register to store S-Box that mentioned in our article might be a solution, but it
drew down the performance. Timing-attack resistant bitsliced implementation
[11] is another possible solution, and this would be our following work.
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Abstract. We address overdetermined systems of linear equations,
where the number of unknowns is smaller than the number of equa-
tions so that only approximate solutions exist instead of exact solutions.
Such systems are prevalent in many areas of science and engineering,
and finding the optimal solutions is mathematically known as the lin-
ear least squares (LLS) problem. Real-world overdetermined systems are
often large-scale and computationally expensive to solve. Consequently,
we are interested in connecting the LLS problem with cloud computing,
where a resource-constrained client outsources the problem to a powerful
but untrusted cloud. Among several security considerations is that the
input of and solution to the LLS problem usually contain the client’s pri-
vate information, which necessitates privacy-preserving outsourcing. In
this paper, we present a construction called Sells, which employs a math-
ematical method called QR decomposition to solve the above problem, in
a masked yet verifiable manner. One advantage of adopting QR decom-
position is that in certain circumstances, solving a batch of LLS problems
only requires fully executing Sells once, where certain intermediate result
can be reused and the overall efficiency is greatly improved. Theoretical
analysis shows that our proposal is verifiable, recoverable, and privacy-
preserving. Experiments demonstrate that a client can benefit from the
scheme not only reduced computation cost but also accelerated problem
solving.
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1 Introduction

We consider, over the set of real numbers, a system of m simultaneous but
independently obtained linear equations involving n unknowns x1, . . . , xn:

ai,1x1 + ai,2x2 + · · · + ai,nxn = bi, i = 1, . . . ,m.

1.1 Overdetermined System of Linear Equations

The above system of linear equations can be equivalently represented in the
matrix form of Ax = b, where A = (ai,j) ∈ R

m×n is the coefficient matrix,
b = (bi) ∈ R

m×1 is the column vector of constant terms, and x = (xj) ∈ R
n×1 is

the column vector of unknowns. Basically, when m<n, the system has an infinite
number of solutions, and is said to be underdetermined. When m=n, under cer-
tain condition (A is invertible) the system has an exact solution x = A−1b. This
is the familiar “textbook” case. When m>n, the system is said to be overdeter-
mined, and usually has no exact solution. This is, however, the dominant case
in practice. For example, to evaluate n unknown variables in the physical world,
each instance of measurement (where measurement errors are inevitable) cor-
responds to an independent equation; the number of measurements, m, can be
sufficiently large, and the resultant overdetermined system helps lower certain
deviation including measurement errors.

Concerning the above linear system Ax = b we are interested in the “m>n”
case, because a large number of real-world problems from various application
fields (e.g., weather forecasts [1], wireless localization [2], and harmonics estima-
tion in power systems [3]; more examples will be given and discussed in Sect. 4)
can be reduced to solving overdetermined systems, for which approximate solu-
tions are pursued instead of exact ones (which in fact usually do not exist). The
method of linear least squares (LLS) can be used to find an optimal approximate
solution to Ax = b w.r.t. min

x
‖b − Ax‖2, where ‖ · ‖ is the Euclidean norm (we

will be more specific in Sect. 2). Finding such an optimal solution is known as
the LLS problem, which is mathematically equivalent to solving the overdeter-
mined system. Typically, the QR decomposition (a.k.a. QR factorization) [4] of
the coefficient matrix is employed in favor of numerical accuracy.

1.2 Solving Large-Scale Overdetermined Systems with the Cloud

Many scientific calculation scenarios involve large-scale overdetermined linear
systems (i.e., m>n�1) [5], solving which often incurs prohibitive computation
costs. For example, a modern laptop computer may spend as long as 2.5 min
to solve an overdetermined system with (m = 12, 000, n = 6, 000), while solv-
ing an even larger one may become completely infeasible as this may cause the
computer to run out of memory. A straightforward solution is to employ more
powerful hardware, e.g., a workstation/desktop computer with more powerful
CPU and sufficiently large memory. However, this will bring extra expenditures
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on hardware, and thus is uneconomical and impractical for wide use. Specifi-
cally, when a large number of independent users are involved, such hardware
expenditure is inevitable for each of them and the total costs are considerably
expensive. Therefore, a more cost-saving and more practical solution is prefer-
able. Consequently, in this paper we consider the cloud computing paradigm in
which a resource-constrained user, referred to as a tenant or a client, turns to
a powerful cloud for assistance. That is, the majority of the workload is shifted
to the cloud, which aids the client to solve large-scale overdetermined systems
(equivalently, the LLS problems). By such outsourcing, the client can be freed
from hardware/software constraints and enjoy the cloud’s nearly unlimited com-
puting resources in a pay-per-use manner.

An attending issue with cloud computing is that the cloud might be untrust-
worthy, which arouses several assurance concerns [6]. First, for commercial incen-
tives, the cloud may be so “lazy” that it provides inaccurate or even invalid
computation results, hoping not to be detected by the client. Second, the data
processed and generated during the computation in the cloud often contains sen-
sitive information about the client (proprietary scientific measurements, private
financial or medical records, etc.), which may be exploited by the cloud for var-
ious purposes [7–9]. Therefore, it is of significant importance for the client to be
able to verify the computation results and also to deploy appropriate mechanisms
to protect sensitive data.

To address the above concerns, it is necessary for the client to transform a
“local” problem like LLS into a masked yet verifiable cloud computing task. The
“auxiliary” operations by the client such as transformation and verification have
to be efficient (at least they should be lightweight as compared to the original
problem itself, herein LLS); otherwise, the “auxiliary” operations simply negate
the benefits of using cloud computing. Interestingly, as to be demonstrated in
this paper, certain auxiliary operation itself can be aided by the (untrustworthy)
cloud, which renders the “masked yet verifiable problem solving” a sophisticated
and subtle interaction between the client and the cloud. Overall, we find secure
outsourcing of LLS not only technically challenging but also intriguing.

1.3 Motivation and Technical Contributions

In the literature, observable work has been done on secure outsourcing of large-
scale linear systems ([7,9,10], just to name a few). Nevertheless, we make the
observation that previous studies focus on the familiar “textbook” case (where
exact solutions exist); little has been done to address the overdetermined system
(where only approximate solutions exist), or equivalently, the LLS problem. So
far, how to connect cloud computing to linear least squares seems to be an
unexplored question. In this paper, we make an effort to “securely” solve the
LLS problem with the aid of the cloud. The technical contributions of this paper
are summarized as follows:

– For the first time, we define the problem of secure outsourcing of LLS, to
which the problem of solving overdetermined system of linear equations is
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mathematically equivalent. Accordingly, we propose a framework for privacy-
preserving outsourcing, formulate the basic components, and identify the
design goals.

– We present a concrete solution known as Sells (which stands for secure and
efficient LLS outsourcing). Thorough theoretical analysis shows that our pro-
posal fulfills all the design goals and simultaneously maintains efficiency. To
the best of our knowledge, Sells is the first secure outsourcing scheme eligible
for solving large-scale LLS problems.

– We implement and evaluate Sells concerning LLS problems of different scales
(i.e., with various combinations of parameters m and n satisfying m>n�1).
Extensive experimental results obtained from our prototype demonstrate that
Sells can benefit a client with reduced computation cost as well as accelerated
problem solving.

This paper is organized as follows. Mathematical preliminaries are briefed in
Sect. 2. The problem statement regarding solving overdetermined system with
the aid of the cloud is in Sect. 3. Section 4 presents our proposal known as Sells.
Theoretical analysis is conducted in Sect. 5, while efficiency performance is eval-
uated in Sect. 6. We discuss related work in Sect. 7. Concluding remarks are in
Sect. 8.

2 Preliminaries

2.1 Matrix-Matrix Multiplication and Matrix-Vector Multiplication

For dense matrices X ∈ R
l×m and Y ∈ R

m×n, their product is XY ∈ R
l×n.

The computation complexity of such dense-matrix-dense-matrix multiplication
is O(lmn). When each row of X has only 1 non-zero element, X is actually
a sparse matrix and the computation complexity of the sparse-matrix-dense-
matrix multiplication XY is O(ln). Similarly, when each column of Y has only
1 non-zero element, Y is a sparse matrix and the computation complexity of the
dense-matrix-sparse-matrix multiplication XY is O(ln).

When n = 1, Y ∈ R
m×n is reduced to a column vector y ∈ R

m×1. The
product of matrix X and vector y is also a column vector Xy ∈ R

l×1. The
computation complexity of such matrix-vector multiplication is O(lm).

2.2 Linear Least Squares (LLS)

Essentially, the LLS problem is to solve an overdetermined system of linear equa-
tions Ax = b, where A ∈ R

m×n, b ∈ R
m×1, and m (the number of equations)

> n (the number of unknowns). As the system usually has no exact solution,
we are interested in the optimal approximate solution x̃ ∈ R

n×1, which fits the
system best. For any x ∈ R

n×1, define r = b − Ax ∈ R
m×1 as the residual

vector. Then, the best approximation (i.e., the LLS solution) x̃ is attained by
minimizing (the square of) r’s Euclidean norm [11]:

x̃ = arg min
x

‖b − Ax‖2 = arg min
x

‖r‖2 = arg min
x

(rTr). (1)
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2.3 Solving LLS with QR Decomposition

In linear algebra, the QR decomposition of a matrix A ∈ R
m×n (m ≥ n) is to

factor it as A = QR, where Q ∈ R
m×m is an orthogonal matrix (i.e., QQT = I,

which is the identity matrix) and R ∈ R
m×n is an upper triangular matrix. QR

decomposition is one of the standard approaches to solving the LLS problem [4],
which is presented as the minimization problem shown in Eq. (1).

For an overdetermined linear system Ax = b ∈ R
m×1, we conduct the QR

decomposition of the coefficient matrix A ∈ R
m×n as

A = QR =
[
Q1 ∈ R

m×n,Q2 ∈ R
m×(m−n)

]
[
R1 ∈ R

n×n

0(m−n)×n

]
,

where R1 is upper triangular and 0(m−n)×n is a zero matrix. For any x ∈ R
n×1,

left-multiplying the residual vector r = b − Ax with QT, we have

QTr = QT(b − Ax) =
[
QT

1

QT
2

]
b − QTQ

[
R1

0

]
x =

[
QT

1 b − R1x
QT

2 b

]
=

[
u
v

]
.

Since QQT = I, ‖r‖2 = rTr = (rTQ)(QTr) = uTu + vTv. Because v = QT
2 b

is independent of x, min ‖r‖2 is attained only when u is a zero vector. That is,
the LLS solution x̃ is found by solving R1x = QT

1 b.
According to [12, Sect. 3.3.2], the QR decomposition of a matrix is not unique,

and the computation cost of the decomposition is O(mn2).

2.4 Random Permutation Function and Invertible Sparse Matrix

A random permutation of a set S = {s1, · · · , sn} is defined as a bijection from S
to itself, denoted as π : S → S. In Cauchy’s two-rows notation [13], the elements
of S are in the first row and the corresponding image elements are in the second
row. The random permutation function can be expressed as:

π =
(

s1 s2 · · · sn

t1 t2 · · · tn

)
,

where π(si) = ti, i = 1, · · · , n. When ti = π(si) = si, the permutation function
is called identical permutation. The inverse function of π is denoted as π−1, i.e.,
π−1(ti) = si. Algorithm 1 demonstrates the random permutation generation.

Based on random permutation function, an invertible sparse matrix P ∈
R

m×m can be generated with the following Algorithm2. In addition, P ’s inverse
matrix P −1 = (P −1(i, j)) ∈ R

m×m is also a sparse matrix and can be quickly
computed as

P −1(i, j) = ω−1
j δπ−1(i),j , 1 ≤ i, j ≤ m, (2)

where P −1(i, j) is the element on the i-th row and j-th column of P −1.
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Algorithm 1. Generation of random permutation
Input: S = {s1, · · · , sn}
Output: random permutation π of S
1: set π to be the identical permutation of S.
2: for i = n : 2 do
3: select a random integer j where 1 ≤ j ≤ i;
4: swap π(si) and π(sj).
5: end for

Algorithm 2. Generation of random invertible sparse matrix
Input: security parameter λ, matrix dimension m
Output: random invertible sparse matrix P ∈ R

m×m

1: taking as input the security parameter λ, randomly, uniformly, and independently
select m non-zero real numbers from R: {ω1, · · · , ωm} ⊂ R.

2: invoke Alg. 1 to yield a random permutation π of the integer set {1, 2, · · · , m}.
3: generate a sparse matrix P = (P (i, j)) ∈ R

m×m as P (i, j) = ωiδπ(i),j , 1 ≤ i, j ≤ m,
where δx,y denotes the Kronecker delta function that returns 1 if x = y or 0
otherwise.

3 Problem Statement

3.1 System Model

Denote an LLS problem as P(A, b), which takes as input A ∈ R
m×n and b ∈

R
m×1 (m>n�1). The solution to P is x̃ ∈ R

n×1 sat. x̃ = arg min
x

‖b−Ax‖2. To

securely solve P(A, b) with the aid of the cloud, the client needs to transform
the problem P into a masked yet verifiable cloud computing task P ′. To this
end, we consider the framework shown in Fig. 1, where the solid lines indicate
certain data flows while the dashed line indicates the workflow.

Fig. 1. Framework of LLS outsourcing involving two players, the client and the cloud.
The client first generates a secret key K and uses it to convert the original LLS problem
P to an outsourced computing task P ′. Then, it receives and verifies the solution to
P ′ by the cloud, based on which it recovers x̂, which is expected to be the solution to
P (i.e., to equal x̃).

In this cloud computing paradigm, an LLS outsourcing scheme comprises
5 algorithms (KeyGen, TaskGen, TaskSol, Verify, Recover), where only



Securely Outsourcing Overdetermined Systems of Linear Equations 535

TaskSol is conducted by the cloud while others are initiated by the client. First,
the client calls KeyGen to generate its secret key K. Then, it invokes TaskGen
to transform a given problem P into a masked task P ′, which is outsourced to
the cloud. Upon receiving P ′, the cloud executes TaskSol to return the client
the solution to P ′. This intermediate result is subsequently verified by the client
with Verify. If the result passes the verification, the client then invokes Recover
to derive x̂, which is expected to be the solution to the original problem P. To
prevent the cloud from acquiring sensitive information associated with P, the
secret key K is employed by the client for masking the problem, verifying the
received result, and recovering the real solution.

A subtle issue may arise in the above framework. Since the client is assumed
to be resource-constrained, even transforming P into P ′ may be too heavyweight.
Actually, in our case study, the computation complexity of problem transforma-
tion happens to be on par with solving P itself. Thus, the client has to turn to
the cloud for generating the masked task, which means the TaskGen module is
interactive. At this stage the client does not care about the correctness of such
“cloud-aided problem transformation”; all examinations are left to the Verify
module. It may be feasible for one to design a non-interactive TaskGen, i.e.,
an algorithm that only involves the client’s local processing instead of certain
assistance from the cloud. We leave investigation on such feasibility as part of
our future work.

3.2 Threat Model

Following [7,8,14,15], we adopt a “fully malicious” threat model where the cloud
is a deceptive and/or curious adversary. Specifically, the cloud may return an
invalid computation result while hoping not to be detected by the client, and/or
try to infer, based on all the information it receives (referred to as the cloud’s
knowledge), the input of the LLS problem P or the solution to it.

3.3 Components: Formalized Description

1. KeyGen(λ) �→ K: Given the security parameter λ, the client executes this
probabilistic key generation algorithm to yield its secret key K.

2. TaskGen(P,K) �→ P ′: The client executes this probabilistic task genera-
tion algorithm to transform with K the original problem P into a masked
computing task P ′, which is outsourced to the cloud.

3. TaskSol(P ′) �→ s(P ′): The cloud invokes this probabilistic task solving algo-
rithm to compute an intermediate result s(P ′), which is supposed to be a
solution to the masked task P ′.

4. Verify(P,K, s(P ′)) �→ true/false: The client invokes this probabilisitc ver-
ification algorithm to check with the secret key K whether s(P ′) is a valid
solution to P ′ (i.e., the result of TaskGen(K,P)). If so, the client outputs
true; otherwise, it outputs false and terminates.

5. Recover(P,K, s(P ′)) �→ x̂: The client executes this deterministic recovery
algorithm to restore x̂ from s(P ′) with K. The final x̂ is expected to be the
solution x̃ to the original problem P.
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3.4 Design Goals

We identify three design goals for LLS outsourcing schemes.

Definition 1 (Verifiability). An LLS outsourcing scheme is said to be verifi-
able if for any s(P ′) that is returned by the cloud but not a valid solution to P ′,
there exists a function nelg(·) negligible in the security parameter λ satisfying
Pr(Verify(P,K, s(P ′)) �→ true) ≤ nelg(λ).

Definition 2 (Recoverability). An LLS outsourcing scheme is said to be
recoverable if for any s(P ′) that is returned by an honest cloud following the
designed algorithms, then Recover(P,K, s(P ′)) = x̃.

Definition 3 (Privacy preserving). An LLS outsourcing scheme is said to
be privacy-preserving if the cloud cannot infer any of the coefficient matrix A,
the constant vector b, and the LLS solution x̃ based on its knowledge.

4 Proposed Scheme: Sells

Following the QR decomposition method introduced in Sect. 2.3, we construct an
LLS outsourcing scheme known as Sells to solve an overdetermined linear system
Ax = b. The basic idea is as follows. The client converts the coefficient matrix
A to a masked form A′, and transforms the LLS problem into an outsourced
task, which is the QR decomposition of A′. Based on the decomposition result
by the cloud, the client then “locally” derives the solution to the original LLS
problem.

A very remarkable feature of our design is that the constant vector b is always
kept by the client and thus completely blind to the cloud. Besides obvious secu-
rity benefit, this also accelerates solving different overdetermined linear systems
Ax(i) = b(i) with the same A but different b(i)’s: the client only needs to turn to
the cloud once for the QR decomposition and then it can reuse the intermediate
result to locally deduce any instance of x(i). Indeed, many scientific calculation
tasks (e.g., acoustic signal processing [21], image restoration [22], and electro-
magnetic scattering characterizing [23]) can be reduced to solving such linear
systems, for which Sells is particularly beneficial.

Next, one by one we elaborate on the components of Sells, some of which are
relatively simple but others are a bit complex.

4.1 KeyGen(λ) �→ K =(M ,N )

Given the security parameter λ, the client invokes KeyGen to generate as
its secret key a random orthogonal matrix M ∈ R

m×m (e.g., following [12,
Sect. 3.4]) and a random invertible upper triangular matrix N ∈ R

n×n.
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4.2 TaskGen(A, K) �→ A′

To protect the privacy of the coefficient matrix A ∈ R
m×n, the client intends to

mask it via left and right multiplications with M and N , respectively. However,
following Sect. 2.1, the computation complexity of locally calculating MA is
O(m2n), that of (MA)N is O(mn2), and thus that of A′ = MAN is O(m2n)
in total (considering m > n), which is at least as large as that of the QR
decomposition of A (O(mn2), cf. Sect. 2.3). Hence, the client needs the cloud’s
assistance for such masking.

For efficiently computing MAN , we adopt and modify the secure outsourc-
ing protocol for matrix multiplication proposed in [16], which utilizes sparse
matrices of specific structure (cf. Sect. 2.4) for privacy protection. This technique
has been employed as a building block for securely outsourcing various scientific
calculations such as matrix inversion [17], matrix determinant [24], and quadratic
programs [25]. Our TaskGen is illustrated in Table 1, which involves only one-
round client-cloud interaction. In TaskGen, as Pk and P −1

k (k ∈ [1, 4]) are all
sparse matrices (cf. Algorithm 2), the client only needs to perform several rel-
atively lightweight dense-matrix-sparse-matrix and sparse-matrix-dense-matrix
multiplications to compute X, Y , Z, and A′. Therefore, the client’s total com-
putation complexity for computing MAN is reduced from O(m2n) to only
O(m2). Lemma 1 tells the correctness of our protocol.

Table 1. A one-round interactive TaskGen, via which the client can efficiently com-
pute A′ = MAN with the aid of the cloud. The total computation complexity of the
client’s operations is only O(m2).

Lemma 1. If the cloud honestly executes TaskGen, then A′ = MAN .

Proof. If the cloud follows the protocol, then

S = XY Z = (P1MP −1
2 )(P2AP −1

3 )(P3NP −1
4 ) = P1MANP −1

4 .

∴ A′ = P −1
1 SP4 = P −1

1 (P1MANP −1
4 )P4 = MAN .

	




538 S. Pan et al.

4.3 TaskSol(A′) �→ (Q ′,R′)

Upon receiving A′ ∈ R
m×n, the cloud conducts the QR decomposition for A′

and returns the computation result (Q′ ∈ R
m×m,R′ ∈ R

m×n) to the client. For
the decomposition, the cloud can choose from several feasible approaches.

4.4 Verify(A, K, (Q ′,R′)) �→ true/false

To detect possible cheating behaviors by the cloud, the client should check the
correctness of the “cloud-aided problem transformation” as well as the solution
to the masked task received from the cloud. In Sells, it suffices to verify whether
(Q′,R′) forms a QR decomposition of MAN . Specifically, the client needs to
check whether Q′ is orthogonal (i.e., Q′Q′T = I), whether R′ is upper triangular,
and whether Q′R′ = MAN .

Since the computation costs for calculating Q′Q′T, Q′R′, and MAN are
as high as O(m3), O(m2n), and O(m2n), respectively, we do not really perform
these matrix multiplications for a deterministic verification. Instead, following
[17,18] we employ Freivalds’ technique [19] to design a probabilistic but efficient
verification procedure shown in Algorithm 3, which involves constant rounds of
checks. The computation complexity of Algorithm 3 is only O(m2) thanks to the
matrix-vector multiplications. The client accepts (Q′,R′) if Algorithm 3 returns
true, or terminates otherwise.

Algorithm 3. Verification of received solution to the masked task (Verify)
Input: coefficient matrix A, secret key K = (M , N ), and received (Q′, R′)
Output: true / false

1: if R′ is not upper triangular then
2: return false

3: end if
4: for i = 1 to l (� m) do
5: select a random (m×1)-dimensional 0/1 vector α, compute p = Q′(Q′Tα)−Iα
6: if p �= (0, 0, · · · , 0)T then
7: return false

8: end if
9: select a random (n × 1)-dimensional 0/1 vector β, compute q = Q′(R′β) −

M
(
A(Nβ)

)

10: if q �= (0, 0, · · · , 0)T then
11: return false

12: end if
13: end for
14: return true

We shall capture in the next section the effectiveness of the verification algo-
rithm, which can balance between security and efficiency. For example, l = 40
seems enough for achieving almost perfect verifiability, yet such an l is still far
smaller than a typical m or n (recall Sect. 1.2).



Securely Outsourcing Overdetermined Systems of Linear Equations 539

4.5 Recover(b, K, (Q ′,R′)) �→ x̂

Given the verified decomposition result (Q′,R′), the client invokes Algorithm 4
to calculate x̂ with b and K. A favorable feature of our Algorithm4 is that (like
Verify) it does not involve any matrix-matrix multiplication; particularly, in
steps 2 and 4, only matrix-vector multiplications are employed for efficiency. In
step 3, since R′

1 is an upper triangular matrix, R′
1y = b′ can be efficiently solved

with an iterative method called back substitution [12, Sect. 2.3], the computation
complexity of which is O(n2).

Algorithm 4. Solution recovery (Recover)
Input: constant vector b, secret key K = (M , N ), and verified (Q′, R′)
Output: column vector x̂

1: parse Q′ as
[
Q′

1 ∈ R
m×n, Q′

2 ∈ R
m×(m−n)

]
, parse R′ as

[
R′

1 ∈ R
n×n

0(m−n)×n

]
.

2: compute b′ = Q′T
1 (Mb).

3: solve R′
1y = b′ to get y.

4: compute x̂ = Ny.

5 Analytic Evaluation

5.1 Security

Theorem 1. Sells is a verifiable LLS outsourcing scheme.

Proof. For Algorithm 3 to yield true, the R′ returned by the cloud has to be
upper triangular; otherwise, the client rejects s(P ′) = (Q′,R′) immediately. Now
let us focus on the check on p in the for loop. Let Prob1 be the probability that
a non-orthogonal Q′ passes one-round check, and Probf be the probability that
it passes all l rounds of checks. (We will also take q into consideration shortly.)

Let α = (α1, · · · , αm)T, D = Q′Q′T − I = (di,j) (di,j is the element on the
i-th row and j-th column of D), p = Q′Q′Tα− Iα = Dα = (p1, · · · , pm)T. For
a non-orthogonal Q′, Q′Q′T �=I ⇒ D �=0m×m, so at least one element of D is
nonzero. Assume w.l.o.g. that dx,y �= 0. Let γ =

∑m
j=1,j �=y dx,jαj . Because the

x-th element of p is px = γ + dx,yαy and Pr(αy = 0) = Pr(αy = 1) = 1
2 ,

∴
{

Pr(px = 0|γ = 0) = Pr(dx,yαy = 0) = Pr(αy = 0) = 1
2 ,

Pr(px = 0|γ �= 0) = Pr(dx,yαy = −γ|αy = 1)Pr(αy = 1) ≤ Pr(αy = 1) = 1
2 ,

∴ Pr(px = 0) = Pr(px = 0|γ = 0)Pr(γ = 0) + Pr(px = 0|γ �= 0)Pr(γ �= 0)

≤ 1
2

Pr(γ = 0) +
1
2

Pr(γ �= 0) =
1
2
(Pr(γ = 0) + Pr(γ �= 0)) =

1
2
.
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∴ Prob1 = Pr(p = (0, · · · , 0)T |Q′ is non-orthogonal)

≤ Pr(px = 0 |Q′ is non-orthogonal) ≤ 1
2
,

∴ Probf = (Prob1)l ≤ 2−l.

Now let us focus on the check on q in the for loop, according to which the
client checks whether Q′R′ equals MAN . Similarly, any (Q′,R′) that does not
satisfy Q′R′ = MAN can pass the verification with a probability no more than
2−l. We omit the details for simplicity.

The client accepts (Q′,R′) iff R′ is upper triangular, Q′Q′T = I, and Q′R′ =
MAN . Therefore, for any (Q′,R′) that does not form a QR decomposition of
MAN , Pr(Verify(A,K, (Q′,R′)) �→ true) ≤ 2−2l. 	

Theorem 2. Sells is recoverable for the LLS problem.

Proof. Consider an orthogonal matrix Q′ =
[
Q′

1,Q
′
2

] ∈ R
m×m and an upper

triangular matrix R′ =
[

R ′
1

0

]
∈ R

m×n, which form a QR decomposition of A′ =

MAN . Let Q = M−1
[
Q′

1,Q
′
2

]
=

[
Q1,Q2

]
and R =

[
R ′

1
0

]
N−1 =

[
R1
0

]
.

Since M (thus M−1) and Q′ are orthogonal, Q = M−1Q′ is also orthogonal.
On the other hand, as N (thus N−1) and R′

1 are upper triangular, R1 = R′
1N

−1

is also upper triangular. Last, multiplying Q by R, we have

QR = (M−1Q′)(R′N−1) = M−1A′N−1 = M−1(MAN)N−1 = A.

Thus, Q and R form a QR decomposition of the original coefficient matrix A.
For the x̂ calculated in step 4 of Algorithm4, noticing (M−1)T = M we

have

R1x̂ = R1Ny = R1N(R′−1
1 b′) = (R′

1N
−1)NR′−1

1 (Q′T
1 Mb)

= (Q′T
1 M)b = (M−1Q′

1)
Tb = QT

1 b.

According to Sect. 2.3, such an x̂ equals the LLS solution x̃ to P(A, b). This
proves the recoverability of Sells. 	


For proving the privacy preserving of Sells, we first present the following
lemma.

Lemma 2. In TaskGen, for X = P1MP −1
2 , it holds that

X(i, j) = (ω1,i/ω2,j)M(π1(i), π2(j)),

where X(i, j) and M(i, j) denote the elements on the i-th row and j-th column
of X and M , respectively.

Proof. Following step 1 of TaskGen, P1 = (P1(i, j)) and P2 = (P2(i, j))
are generated by independently and repeatedly invoking Algorithm2. That is,
P1(i, j) = ω1,iδπ1(i),j , P2(i, j) = ω2,iδπ2(i),j , 1 ≤ i, j ≤ m. Then, the element on
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the i-th row and j-th column of P1M is computed as
m∑

k=1

P1(i, k)M(k, j). Since

δx,y (i.e., the Kronecker delta function) returns 1 if x = y or 0 otherwise,

m∑

k=1

P1(i, k)M(k, j) =
m∑

k=1

ω1,iδπ1(i),kM(k, j) = ω1,iM(π1(i), j).

Next, we consider the matrix multiplication (P1M)P −1
2 . According to

Eq. (2), the element on the i-th row and j-th column of P −1
2 is P −1

2 (i, j) =
ω−1
2,j δπ−1

2 (i),j , 1 ≤ i, j ≤ m. As δπ−1
2 (k),j = 1 iff π−1

2 (k) = j (i.e., k = π2(j)), the
element on the i-th row and j-th column of X = (P1M)P −1

2 is computed as

X(i, j) =
m∑

k=1

(
ω1,iM(π1(i), k)

)
P −1

2 (k, j) =
m∑

k=1

(
ω1,iM(π1(i), k)

)
(ω−1

2,j δπ−1
2 (k),j)

= ω1,iω
−1
2,j M(π1(i), π2(j)). �

Similarly, for Y = P2AP −1
3 ,Z = P3NP −1

4 , Y (i, j) = (ω2,i/ω3,j)A(π2(i),
π3(j)) and Z(i, j) = (ω3,i/ω4,j)N(π3(i), π4(j)). We omit the proof for simplicity.

Theorem 3. Sells is privacy-preserving in the fully malicious model.

Proof. In Sells, as the column vector of constant terms b is always kept by the
client, the privacy of b and x̃ (solved according to R1x = QT

1 b, cf. Sect. 2.3)
is naturally guaranteed. Following Definition 3, next we only need to prove the
privacy of A.

In Sells, A is masked by left and right multiplications of randomly generated
matrices M and N , respectively. Without knowing M and N , the adversary
cannot recover A from A′ = MAN . Next, we show that the adversary cannot
derive any of M , A, and N though it knows (X,Y ,Z).

First, we consider X,Y , and Z separately. According to TaskGen, M is
masked with two random invertible sparse matrices P1 and P2 to generate X =
P1MP −1

2 , where following Lemma 2 X(i, j) = (ω1,i/ω2,j)M(π1(i), π2(j)). Such
mask can be regarded as a two-phase operation:

– Phase 1: The position of each element in M is randomly rearranged with two
permutations to generate M̃ , i.e., M̃(i, j) = M(π1(i), π2(j)).

– Phase 2: The value of each element in M̃ is further obfuscated by multiplying
a factor to generate X, i.e., X(i, j) = (ω1,i/ω2,j)M̃(i, j).

According to Algorithm1, there are m! possible cases of both random permu-
tations π1 and π2. This implies that in Phase 1 there are (m!)2 possible ways
to rearrange the elements of M to yield M̃ . In Phase 2, each element in M̃
is further masked by two non-zero numbers randomly, uniformly, and indepen-
dently chosen from R (which is an infinite space, i.e., |R| = ∞). Therefore, the
expected time for the adversary without knowing (P1,P2) to recover M from
X is O(

(m!)2 · |R|2m
)
, which is obviously a non-polynomially bounded quantity.
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In fact, even if the client simply sets each ωk,i (k = 1, 2) to a λ-bit random inte-
ger, the expected time to recover M from X is still O(

(m!)2(2λ)2m
)
, which is a

non-polynomially bounded quantity in terms of m. Thus, the adversary cannot
recover M by directly decrypting X. As A and N are masked in the similar
way, the adversary also cannot recover A (from decrypting Y ) nor N (from
decrypting Z) in polynomial time (we omit the proof for simplicity).

Second, we consider the computation results by the adversary based on
(X,Y ,Z). The adversary can obtain XY = P1MAP −1

3 and Y Z =
P2ANP −1

4 . Following the above analysis, without knowing Pk (k ∈ [1, 4]), the
adversary cannot recover MA (from XY ) nor AN (from Y Z). Thus, although
it additionally knows A′ = MAN , it is unable to acquire any of M and N
using (XY ,Y Z). Next we consider S = XY Z = P1MANP −1

4 . According to
Algorithm 2, there are m! and n! possible positions of non-zero elements in P1

and P4, respectively. Therefore, when the adversary attempts to solve (P1,P4)
by constructing linear equations based on (A′,S), the possibility of successfully
recovering the exact (P1,P4) is only 1

(m!n!) , which is a negligible quantity in
terms of m and n (both are sufficiently large, recall Sect. 1.2).

To sum up, the adversary cannot recover any of M , A, and N based on its
knowledge. Therefore, Sells is privacy-preserving in the fully malicious model. 	


5.2 Complexity

Now we investigate the computation complexity on the client side.

– In TaskGen, P1,P2,P3, and P4 are all sparse matrices and each of them
has only one non-zero element in each row, so the client only needs to
spend O(m2), O(mn), and O(n2) costs computing P1MP −1

2 , P2AP −1
3 , and

P3NP −1
4 , respectively.

– In Verify, since l � m is a constant, the client spends O(m2) computation
costs checking whether Q′(Q′Tα)−Iα = 0 and Q′(R′β)−M

(
A(Nβ)) = 0.

– In Recover, the client first spends O(m2) cost computing b′ = Q′T
1 (Mb);

then, through back substitution, the client spends O(n2) cost solving y from
R′

1y = b′; finally, it takes the client O(n2) cost to map y to x̂.

To sum up, the overall computation complexity is O(m2). When m and n
are of the same order, this is lower than that of locally solving an LLS problem
with the QR decomposition method, which is O(mn2).

6 Experimental Evaluation

In this section, we evaluate Sells with large-scale overdetermined systems of
linear equations of varying dimensions, each of which is in the form of Ax = b
with A ∈ R

m×n, b ∈ R
m×1, m > n � 1. All algorithms are implemented with

MATLAB. As input, we employ random A and b in all experiments: any element
in A or b is randomly, uniformly, and independently sampled from the same
interval [−1024.0, 1024.0].
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We implement the client on a laptop computer with an Intel i3-2330M pro-
cessor running at 2.20 GHz and 4 GB memory, and emulate the cloud with a
desktop workstation with an Intel i7-6700K processor running at 4.00 GHz and
8 GB memory. Although the laptop does not look so “resource-constrained” (par-
ticularly when compared to our “cloud”), it turns out that it is impossible to
conduct many of our experiments on “clients” with memory less than 4 GB.

6.1 Efficiency of Sells

To evaluate the computation overhead for solving overdetermined systems under
various scales, we adopt the processing time as the performance metric. Two
scenarios are tested for comparison.

– In the first scenario, the client deploys Sells, and the processing time on both
the client and the cloud sides is measured. However, we exclude the KeyGen
algorithm (which is fairly lightweight, as specified in Sect. 4.1) and step 1 of
the TaskGen algorithm (as specified in Table 1) for measurement because
they can be conducted offline. Specifically, K = (M ,N) and Pk (k ∈ [1, 4])
are all independent of A or b; they can be generated by the client beforehand
(as long as m and n are determined). For our interactive TaskGen, time
costs on the client and the cloud sides are measured respectively. For Verify,
the parameter l (the number of check rounds in Algorithm3) is set to 40,
which assures almost perfect verifiability following Theorem1.

– In the second scenario, the client computer does not turn to the cloud.
It directly adopts the QR decomposition method specified in Sect. 2.3 to
solve the overdetermined systems “locally.” It is worth noting that MATLAB
has implemented certain optimization for QR decomposition, which actually
biases the performance comparison in favor of this local approach.

Table 2 illustrates the client’s processing time (averaged from repeated but
independent experiments) in the two scenarios. In all experiments, the client’s
processing time in the second scenario (i.e., local computing) is significantly
larger than the total time in the first scenario (i.e., privacy-preserving cloud
computing). To make this clear, we adopt their ratio as the indicator for cost
savings. Just for simplicity, the condition m > n is instantiated with m = 2n.
Then, we make the observation that this indicator increases as the scale of the
overdetermined system increases, which means the larger the overdetermined
system is the more performance gain is obtained.

Moreover, regarding the same settings, Table 3 compares the total processing
time of Sells (on both the client and the cloud sides) and the time of employ-
ing local QR decomposition. For Sells, the computation cost on the (relatively
more powerful) cloud is observably larger than that on the client. The explana-
tion is straightforward: conforming to the philosophy of cloud computing, Sells
indeed assigns expensive parts of the computation to the cloud, while the client
only performs relatively lightweight operations. According to Table 3, the total
elapsed time of Sells is far less than that of the local scenario, implying that Sells
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Table 2. The client’s processing time (in seconds) for solving overdetermined systems
of different scales. It takes tSells.client in all when employing Sells (which is the sum of
the online time costs of TaskGen on the client side, Verify, and Recover), or tdirect
when adopting local QR decomposition, which in our case benefits from MATLAB’s
built-in acceleration.

m, n tSells tdirect
tdirect

tSells.client

TaskGen Verify Recover client (Σ)

2000, 1000 0.18 0.08 0.03 0.29 1.09 3.76

4000, 2000 0.41 0.17 0.08 0.66 4.79 7.23

6000, 3000 0.97 0.43 0.19 1.59 20.21 12.71

8000, 4000 1.86 0.72 0.33 2.91 47.92 16.47

10000, 5000 3.46 1.13 0.66 5.25 96.38 18.35

12000, 6000 7.85 1.63 1.17 9.65 211.97 21.96

Table 3. Processing time (in seconds) for solving overdetermined systems of different
scales, where tSells.client and tSells.cloud represent the costs of the client and the cloud in
Sells, respectively. Note that tSells.cloud is spent on not only TaskSol but also part of
TaskGen.

m,n tSells.client tSells.cloud tSells (Σ) tdirect

2000, 1000 0.29 0.26 0.55 1.09

4000, 2000 0.66 1.82 2.48 4.79

6000, 3000 1.59 5.98 7.57 20.21

8000, 4000 2.91 13.72 16.63 47.92

10000, 5000 5.25 25.16 30.41 94.38

12000, 6000 9.65 40.91 50.56 211.97

is a pragmatic proposal. This can be made more apparent if we implement the
client on a more resource-constrained computer and/or emulate the cloud with
a more powerful server. Overall, besides bringing significant cost savings to the
client, Sells also shortens the actual time for the problem solving.

6.2 Performance Comparison

To the best of our knowledge, Sells is the first secure outsourcing scheme eli-
gible for solving a large-scale overdetermined system, where only approximate
solutions exist. Nevertheless, we are still interested in a performance comparison
between Sells and “related” schemes from the state of the art that are dedicated
to solving linear equations where exact solution exist (usually this means m = n),
which include proposals from Salinas et al. [9] and Yu et al. [10]. Fortunately,
the intended performance comparison is still applicable, as the two schemes do
accommodate the m > n case. In this case, the two schemes still try to find the
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exact solution to the linear equations, wishing that there are just enough linearly
dependent equations such that the system can be exactly reduced to n indepen-
dent equations. If so, the two schemes [9,10] yield valid solutions that are exact
and unique. However, in our experiments with completely random A and b, the
wished “just enough” condition generally does not hold, and the two schemes
[9,10] only yield invalid solutions. In our comparison, because we focus on effi-
ciency instead of effectiveness, we do not care whether the solutions returned
by [9,10] are valid or not. Note that though the “related” scheme in [7] also
focuses on outsourcing large-scale linear systems of equations, it is specifically
designed for the linear systems with square coefficient matrix (i.e., the m = n
case); therefore, we exclude this scheme for comparison.

Table 4. Processing time (in seconds) of the client by deploying Sells and other two
schemes [9,10] for solving large-scale overdetermined systems.

m, n 2000, 500 4000, 1000 6000, 1500 8000, 2000 10000, 2500 12000, 3000

Salinas et al.’s [9] 0.18 0.31 0.65 1.19 1.96 2.71

Yu et al.’s [10] 0.23 0.89 2.23 3.71 5.66 8.76

Sells 0.13 0.49 1.15 2.34 4.33 5.42

m, n 2000, 1000 4000, 2000 6000, 3000 8000, 4000 10000, 5000 12000, 6000

Salinas et al.’s [9] 0.47 1.77 3.96 7.01 10.93 16.89

Yu et al.’s [10] 0.27 1.05 2.34 4.35 6.86 10.01

Sells 0.29 0.66 1.59 2.91 5.25 9.65

m, n 2000, 1500 4000, 3000 6000, 4500 8000, 6000 10000, 7500 12000, 9000

Salinas et al.’s [9] 2.06 8.51 19.68 41.19 54.18 94.71

Yu et al.’s [10] 0.32 1.23 2.83 5.43 8.23 12.16

Sells 0.41 0.91 2.07 4.97 9.19 14.08

For a fair comparison, all three secure outsourcing schemes ([9], [10], and
Sells) are implemented with MATLAB on the same laptop/workstation configu-
ration specified in the previous subsection. Again we adopt the total processing
time on the client side (as in Table 2) to measure the performance. In doing so,
however, we fail to find any operations in [9] which correspond to Verify, and
thus we conjecture that [9] actually sacrifices security for efficiency. In favor of
Yu et al.’s scheme [10] we deliberately optimize it and exclude measuring cer-
tain operations that can be conducted offline. The results are shown in Table 4,
where the condition m>n is instantiated with cases of (m : n) = (4 : {1, 2, 3}).
Generally, the experimental results demonstrate that Sells is comparable to the
other two schemes in terms of efficiency. In many cases, Sells still outperforms
both existent schemes.

7 Related Work

In the literature, extensive work has been done on secure outsourcing of large-
scale systems of linear equations, but with a focus on the “textbook” case (where
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exact solution exists) instead of the overdetermined case. Wang et al. [14,15]
employed homomorphic encryption to securely outsource large-scale linear sys-
tems based on the Jacobi method, where the client encrypts the coefficient matrix
with certain homomorphic algorithm and sends it to the cloud, which then inter-
acts with the client for iterative problem solving. Nevertheless, Wang et al.’s
schemes [14,15] only work for certain kind of linear systems where the coef-
ficient matrices are diagonally dominant. To break through this limit, Salinas
et al. [9] developed a new scheme based on the conjugate gradient method [20],
where the coefficient matrix only needs to be full-rank. Without using homo-
morphic encryption, Salinas et al.’s scheme [9] is more computationally efficient
compared with [14,15]. However, all [9,14,15] are iterative and thus involve inten-
sive communications between the client and the cloud, as pointed out in [7,10].
In addition, we note that although [9] considers a threat model where the cloud
may be cheating, it seems that the outsourcing scheme presented there does not
bother to verify any result returned by the cloud to detect possible misbehavior.

Recently, several non-iterative schemes [7,10] have been proposed. Chen
et al. [7] employed sparse matrices to protect the coefficient matrix and designed
an outsourcing scheme for linear systems, which requires only 1 round of com-
munication between the client and the cloud. However, their scheme is specif-
ically designed for the linear systems with square coefficient matrices (i.e., the
m = n case). As a following study, Yu et al. [10] utilized a series of obfuscation
techniques to design another non-iterative scheme, which can accommodate the
m > n case and can better protect the data privacy (including the number and
positions of zero elements in the coefficient matrix) at the cost of two rounds of
interactions.

Although there have been many research efforts on secure outsourcing of
linear systems, they are dedicated to exact solutions instead of approximate
solutions; none of them (whether iterative or non-iterative) can be readily applied
to tackle overdetermined systems where optimal solutions are pursued.

8 Conclusions

In this paper, we are interested in solving an overdetermined system of lin-
ear equations, which is mathematically equivalent to the linear least squares
(LLS) problem and becomes a challenging task for a resource-constrained client
when the scale of the problem increases. In practice, large-scale overdetermined
systems abound in many fields of science and engineering. To confront such
challenges, we propose to harness the cloud to solve overdetermined systems, in
a privacy-preserving manner. To this end, first, we have formalized the prob-
lem of secure outsourcing of LLS. We have identified the system/threat model,
formulated the scheme components, and established the design goals. We hope
our formalization efforts can pave the way for rigorous treatment on the LLS
outsourcing problem and consequently inspire more proposals.

Second, we have presented a secure and efficient LLS outsourcing scheme
called Sells, which employs the QR decomposition technique. It is possible to
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solve overdetermined systems with other techniques (e.g., SVD decomposition
[12, Sect. 3.3.3], as employed in [3]), but employing the QR decomposition one for
LLS outsourcing reaps a few evident benefits. For example, in Sells the column
vector of constant terms b is always kept by the client; its original form (or even
any scrambled form) is completely inaccessible to the cloud. Therefore, the pri-
vacy of b (thus the solution to the LLS problem) is intrinsically guaranteed. For
another example, Sells particularly lends itself to solving a series of overdeter-
mined linear systems Ax(i) = b(i) with the same coefficient matrix but different
constant vectors. Interestingly, this is indeed a common case in many research
fields [21–23]. In this case, the client turns to the cloud for the QR decomposition
only once, and can then reuse the result. One can check our Algorithm2 to make
sure that the (Q′,R′) received (and verified) from the cloud can be reused for
quickly deriving from any given b(i) a corresponding x(i).

Third, we have evaluated Sells with overdetermined systems under various
scales. Extensive experiments have demonstrated that Sells is efficient and prac-
tical: it brings significant cost savings to the client and simultaneously shortens
the entire time needed for the problem solving. Further experiments have shown
that in terms of efficiency, Sells is comparable to existent solutions that are
dedicated to solving linear systems with exact solutions only.

To the best of our knowledge, Sells is the first secure outsourcing scheme
that is readily applicable to the LLS problem. For future work, we are interested
in a non-interactive (hence more communication-efficient) TaskGen algorithm,
which transforms, without any assistance from the cloud, the LLS problem into
a masked task. We would also like to explore approaches other than the QR
decomposition technique to securely outsource an overdetermined system of lin-
ear equations (e.g., SVD decomposition [12]).
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Abstract. In recent years, machine learning techniques are widely used
in numerous applications, such as weather forecast, financial data anal-
ysis, spam filtering, and medical prediction. In the meantime, massive
data generated from multiple sources further improve the performance
of machine learning tools. However, data sharing from multiple sources
brings privacy issues for those sources since sensitive information may be
leaked in this process. In this paper, we propose a framework enabling
multiple parties to collaboratively and accurately train a learning model
over distributed datasets while guaranteeing the privacy of data sources.
Specifically, we consider logistic regression model for data training and
propose two approaches for perturbing the objective function to pre-
serve ε-differential privacy. The proposed solutions are tested on real
datasets, including Bank Marketing and Credit Card Default prediction.
Experimental results demonstrate that the proposed multiparty learning
framework is highly efficient and accurate.

1 Introduction

The past few decades have witnessed an increasing role that machine learn-
ing techniques play in both academic and industry communities. These tech-
niques can be widely used to extract useful information from datasets in various
fields [14]. At the same time, the advent of the big data era provides a better
platform for its further development. For example, some advertisement compa-
nies collect massive data from social media, such as search history from Google
and individuals’ interactions from Facebook, and analyze the data to lock in
targeted customers and improve accuracy of posting advertisements. Machine
learning algorithms also have applications in the medical area. Taking cancer
scan for instance, some types of cancers are really difficult for even experienced
doctors to accurately determine cancer staging, but it has been reported that
intelligent computers can help do this with higher accuracy. The combination of
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data analytics and efforts by doctors can give better medical treatment plans.
Machine learning also exerts its effect in the field of finance. Financial com-
panies accumulate a large amount of data records of their customers including
purchase history, credit level, and loans and mortgage repayment activities. Then
these companies could develop automatic, intelligent fraud detection systems to
actively learn the behaviors of customers and distinguish potential threats and
bankrupt cases, which can significantly reduce asset loss and bad debts.

A typical machine learning paradigm is to make targeted predictions based
on a single dataset [26]. However, the data resources are increasingly distributed
and stored by different owners. For example, medical data can be distributed in
several hospitals and healthcare institutes; personal credit history, asset status,
and accounting information can be distributed across multiple financial compa-
nies. Combining data from multiple sources for learning can usually derive better
prediction performance. As a result, the traditional paradigm of learning from
a single dataset is experiencing transitions towards collaborative learning, i.e.,
data from multiple parties are used to collaboratively train a learning model.
A conventional collaborative learning approach is to have a central party, i.e.,
a virtual server and let multiple data owners directly upload their data to the
server for training [5,20–22].

Although collaborative learning achieves better performance than singe
dataset based learning, concerns on privacy are arising. It is possible that dur-
ing the process, the private information of each party, e.g. health data records,
can be disclosed, which will cause privacy leakage. Furthermore, the privacy
leakage issue will cause mistrust between participating parties, preventing them
from sharing their data to the central server. Therefore, it becomes increasingly
important to design a protocol to train a learning model from the datasets from
multiple parties, while at the same time preserving their privacy.

Some work has been done for privacy-preserving machine learning in the
past few years, and those protection techniques can be mainly divided into
three groups. The first group perturbs the original data with randomized algo-
rithms [13,17,24]. Although the perturbation techniques can protect confiden-
tial information, perturbed data may differ from the original data to a large
extent, and thus decrease the accuracy of the resulted training model. Secondly,
anonymization is also a popular method to protect users’ sensitive informa-
tion [12]. For example, we can remove the name and identification number from
individual history records. Then the accuracy of the training model will not be
affected and the privacy of data owners can also be preserved. However, such
anonymization techniques are vulnerable to attacks involving auxiliary informa-
tion. Thirdly, some cryptographic techniques have also been reported in previ-
ous studies [4,10]. In [10], Graepel et al. reported a homomorphic encryption
scheme to retain both the privacy of training and testing examples. However,
homomorphic encryption techniques will incur intensive computations, making
it impractical for large-scale applications.

Recently, differential privacy [7] as an arising notation has attracted much
attention in the field of privacy. Theoretically, it could offer formal privacy
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guarantees no matter what auxiliary information the attackers have. There has
been a lot of work on the realization of machine learning models under differen-
tial privacy. A typical approach is first generating noise via Laplace mechanism
or exponential mechanism and then building a noisy model for their dataset
using these generated noises [7]. Some other approaches modify the objective
function of the training model [8]. These mechanisms can perturb the objective
function by adding noise, and output predictions of the perturbed noisy model.
However, most of them are focusing on the single-party setting, and have not
applied to multiparty learning.

In this paper, we propose a framework for privacy-preserving multiparty
learning among multiple data owners. The proposed framework achieves dif-
ferential privacy, providing theoretical guarantees for each party’s privacy. The
framework focuses on the application of logistic regression for model building,
but can be easily applied or extended to other machine learning models. In
this framework, each data owner first trains its model locally, and each of them
will obtain an output objective function for their local model. We design two
approaches of noise generation in this process to meet differential privacy. Then
these data owners will upload their learned local parameters to a central server
for sharing. The central server will average the uploaded local parameters and
send the averaged parameters back to those data owners. Local data owners will
then incorporate the averaged parameters to retrain their local model. The above
process will be repeated iteratively until the parameters converge. The proposed
framework is based on the weighted parameter averaging mechanism since the
number of data records for different data owners might be different. Experimen-
tal results show that the proposed framework is computationally efficient. The
main contributions of this paper are summarized as follows:

– We propose a differentially private framework for multiple parties to col-
laboratively build learning models using logistic regression, which provides
theoretical privacy guarantees for those parties.

– Two efficient mechanisms are designed for generating noise during local learn-
ing to achieve differential privacy for multiparty learning.

– We propose a weighted parameter sharing mechanism for multiple data own-
ers with different sizes of data records.

– We run extensive experiments to evaluate the performance of the proposed
framework using real datasets, and the results show high efficiency and accu-
racy of the proposed solution.

The rest of the paper is organized as follows. Section 2 introduces prelimi-
nary background knowledge. Section 3 elaborates the two different approaches for
realizing differentially private learning in a multiparty setting. In addition, the-
oretical privacy analysis for the proposed mechanism is also provided. Section 4
presents evaluation results. Section 5 discusses related work and their difference
from our work, and Sect. 6 concludes the paper.
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2 Preliminaries

2.1 Differential Privacy

Differential privacy is an important concept in the area of privacy. It formally
guarantees that no matter what change has been made to any particular element
in a database an attacker cannot tell the difference in the output of a randomized
algorithm [13].

Definition 1. A randomized algorithm M that takes the elements in D and
outputs a function M(D) achieves ε-differential privacy if

P (M(D) ∈ S)
P (M(D′) ∈ S)

≤ eε (1)

where S is the output range of M(D). D and D′ are a pair of neighbor-
hood databases differing in a single item. ε is a privacy budget that controls
the strength of the privacy of the algorithm M for any pair of neighborhood
databases. For smaller ε, the output M(D) is almost the same for any pair
D and D′, making it hard for the adversarial party to identify the difference
between these two neighborhood databases. To make it more clear, we have:

e−ε ≤ P (M(D) ∈ S)
P (M(D′) ∈ S)

≤ eε (2)

The derivation of Eq. (2) is based on the interchangeability of the Definition 1.
For smaller ε, we have the approximation formula:

eε = 1 − ε (3)

The combination of Eqs. (2) and (3) will give:

1 − ε ≤ P (M(D) ∈ S)
P (M(D′) ∈ S)

≤ 1 + ε (4)

Since 0 < P (M(D) ∈ S), P (M(D′) ∈ S) < 1, the expansion of Eq. (4) can be
rewritten as:

|P (M(D) ∈ S) − P (M(D′) ∈ S)|< ε (5)

It can be clearly seen from Eq. (5), if ε is a negligible variable, any malicious
party inquiring M(D) cannot distinguish D and D′. Then strong privacy of the
data owner will be achieved.

Several methods have been used to satisfy ε-differential privacy and Laplace
mechanism is a commonly used one [7]. In particular, the Laplace mechanism
adds a random noise to the output of an algorithm, where the random noise
is drawn from Laplace distribution depending on the global sensitivity of the
algorithm [8].
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Definition 2. Given a real-valued vector mapping function: D → M(D), the
sensitivity of M(D) is denoted as:

ΔSM = max‖M(D) − M(D′)‖1 (6)

where D and D′ are any pair of neighborhood databases, and ‖M(D)−M(D′)‖1

is the l1 distance between M(D) and M(D′). The sensitivity ΔSM describes
the maximum variation of the output M(D) under single-item changes.

Definition 3. The Laplace distribution centered at μ, and scaled with b has the
following probability density function:

Lap(x|μ, b) =
1
2b

exp(−|x − μ|
b

) (7)

Then to compute the noisy output on database D, we will have:

M′(D) = M(D) + Lap(x|0,
ΔSM

ε
) (8)

where Lap(x|0,
ΔSM

ε
) indicates that the Laplace distribution follows zero mean

and
ΔSM

ε
scale. The noise generation mechanism in Eq. (8) can provide ε-

differential privacy for any randomized algorithm M.

2.2 Linear Regression and Logistic Regression

Consider a basic machine learning task for binary classification, where a database
D is given. Suppose D consists of N samples X1,X2,X3, · · · ,Xn. Each sample
Xi is denoted as (xi1, xi2, xi3,· · ·, xim, yi), where xi1, xi2, xi3, · · · , xim are the
m attributes of sample Xi, and yi ∈ {0, 1} is the corresponding binary label.
For example, when we record cancer history of patients, we need to write down
some basic information, such as age, weight, height, and so on. In addition, we
also need some high-level information, including blood pressure, heart rate, and
medical related indexes. All these information corresponds to the m attributes
of a data record. The label yi ∈ {0, 1} indicates existence of a disease. A patient
will be labeled as 1 if diagnosed with a particular cancer, and otherwise will be
labeled as 0.

From the perspective of machine learning scientists, it is assumed that there
exists a hidden relationship between the m attributes xi1, xi2, xi3, · · · , xim and
the recorded label yi ∈ {0, 1}. The objective of a machine learning algorithm
is to learn this particular relationship which empowers us to predict the label
of a data record as accurate as possible given the corresponding attributes
logged. Suppose the prediction function f taking the input of ith element
(xi : xi1, xi2, xi3, · · · , xim), and outputting the predicted label ŷi is expressed
as the following:

ŷi = f(xi) (9)
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The above function f is usually formulated as an optimization problem that one
would like to maximize the prediction accuracy. The number of errors made by
the prediction function f over the entire dataset is shown as:

N∑

n=1

Πŷi �=yi
(10)

where Π is a loss function that evaluates the difference between the predicted
label and the real label. Our goal is to minimize the number of prediction errors,
and the optimization problem is stated as [15]:

w∗ = arg minw

N∑

n=1

Πf̂(xi) �=yi
(11)

where w is the parameter of the function f , and w∗ is the optimal result of
Eq. (11).

The types of objective function and loss evaluation could vary. In this paper,
we focus on the application of logistic regression, which is a commonly used clas-
sification technique. In the following part, we will first introduce linear regression
and then extend to logistic regression.

Linear regression is the basic regression model, and the prediction function
f is assumed to be linearly dependent on the m attributes. The predicted label
ŷi can be stated as:

ŷi = wT xi + α (12)

where (xi : xi1, xi2, xi3, · · · , xim) are the m attributes of the ith data record, (w :
wi1, wi2, wi3, · · · , wim) are the corresponding parameters related to m attributes,
and α is the bias factor of the linear function that helps increase the prediction
accuracy.

To measure the error between predicted label and real label, the Euclid dis-
tance of a particular data record xi is expressed as:

d = (wT xi + α − yi)2 (13)

From Eq. (13), we can easily reach the sum of errors over the entire database:

(w∗, α∗) = arg min(w,α)

m∑

i=1

(wT xi + α − yi)2 (14)

Equation (14) is an optimization problem with respect to the parameters (w, α).
In general, the goal of linear regression is to construct a linear function to learn
the real label according to attributes of the data sample.

In real world applications, sometimes people are more interested in the prob-
ability prediction for particular tasks. Taking the bankrupt prediction as an
example, finance companies would like to learn the bankrupt probability of their
customers based on payment history and salary level. Logistic regression is devel-
oped to learn the probability for some tasks, and is widely used in various areas
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to predict the occurrence of particular events, such as incidence of a disease,
repurchase probability of a product, and failure rates of facilities. In fact, logis-
tic regression is an extended version of linear regression, but the difference is
that we have to map the linear function to a probability prediction. The most
commonly used mapping function is sigmoid function written as:

y =
1

1 + e−x
(15)

Substituting Eq. (12) into Eq. (15), we have:

yi =
1

1 + e−(wT xi+α)
(16)

Also, Eq. (16) can be rewritten as:

ln
yi

1 − yi
= wT xi + α (17)

If we treat yi as the probability of positive case and 1 − yi as the probability of
negative case, and then

yi

1 − yi
represents the relative possibility of data sample

xi to be a positive case. It can be seen in Eq. (16) that logistic regression is to
use linear regression results to predict the logarithm probability for occurrence
of the real label.

If we treat yi as the poster probability estimation p(yi = 1|xi), then we can
rewrite Eq. (17) as:

ln
p(yi = 1|xi)
p(yi = 0|xi)

= wT xi + α (18)

It can be derived from Eq. (18) that:

p(yi = 1|xi) =
ew

T xi+α

1 + ewT xi+α
(19)

p(yi = 0|xi) =
1

1 + ewT xi+α
(20)

As a consequence, we can use the maximum likelihood method to estimate w
and α over the entire dataset [15]:

l(w, α) =
N∑

i=1

ln p(yi|xi;w, α) (21)

Let p1(x;w, α) = p(y = 1|x;w, α), p0(x;w, α) = p(y = 0|x;w, α) = 1 −
p1(x;w, α). Then the likelihood term in Eq. (21) can be rewritten as:

p(yi|xi;w, α) = yip1(xi;w, α) + (1 − yi)p0(xi;w, α) (22)
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Substituting Eq. (22) in to Eq. (21), and according to Eqs. (19), (20), the maxi-
mization of Eq. (22) is equivalent to minimizing the following problem:

l(w, α) =
m∑

i=1

(−yi(wT xi + α) + ln(1 + ew
T xi+α)) (23)

The above optimization problem is a differentiable convex function, and can be
easily solved by the gradient decent method, or the Newton method.

2.3 System Architecture and Threat Model

The system architecture of the collaborative multiparty learning is illustrated
in Fig. 1. It is assumed that N parities are included in this system, and each
party has its own local dataset for training. All of the parties agree to train the
same model, and logistic regression is applied. The central sever is to maintain
the parameters of all these participating parties, including storing, updating,
offloading, downloading, and so forth. As we discussed before, each participant
constructs a local logistic regression model based on its own dataset. In the ini-
tialization step, every participant will obtain a set of parameters (wi, αi), where
i ∈ [1, N ]. After obtaining the first round parameters, all these participants will
upload their parameters to the central server for sharing. Now the central sever
can act as a restoring and exchanging system that allows each participant to
download the parameters of others. The advantage is that each participant can
use other datasets in learning without knowing the original data of other parties.
In addition, each party will not interfere with each other during the training pro-
cess since the only interaction is the parameter exchanging. It should be noted
that weighted parameter sharing is used such that the central server averages
the parameters in proportional to the size of each party’s data.

Central Server

Local  Data 1

Local  Data 2 Local  Data 3

Local  Data N

Upload latest parameters

Download latest parameters

Fig. 1. System framework for multiparty learning.

However, the above multiparty learning system also induces privacy chal-
lenges. Since every participant maintains its own dataset which may contain
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sensitive information, directly uploading the parameters to the central sever
might cause release of private information. As a result, the parameters of each
participant should be protected before being sent to the central sever for shar-
ing. In this paper, we will employ two methods to protect the parameters that
will ensure differential privacy. The experimental results in Sect. 4 will show that
both methods can achieve good performance.

3 Privacy-Preserving Logistic Regression

3.1 Output Function Perturbation Approach (OFPA)

As mentioned in the previous section, the parameters (w, α) may contain sensi-
tive information which cannot be uploaded to the central server directly. Every
run of the logistic regression model by the local participant will produce a new
set of parameters (w, α). As we will discuss in Algorithm 1, it is very challenging
to directly apply the Laplace mechanism due to the difficulty of calculating the
global sensitivity of the objective function. As a result, we choose to develop ways
to perturb the objective function and then we can easily apply the Laplace mech-
anism to preserve differential privacy. Let us first start with a simple approach
which directly adds Laplace noise to the parameters (w, α) [13], as described in
Algorithm 1.

Algorithm 1. Laplace noise addition to parameters
Input:

Input a local database D;
Output:

Encrypted parameter (w, α);
1: Construct a local logistic regression model M over the database D;
2: Compute the optimal parameter (w∗, α∗) for M;
3: Compute ΔSM from Eq. (6);
4: Generate a random noise vector v with elements from the Laplace distribution

Lap(x|0,
ΔSM

ε
) =

ε

2ΔSM
exp(− |x|ε

ΔSM
);

5: Compute (w, α) = (w∗, α∗) + v;
6: return (w, α);

Theorem 1. The output (w, α) = (w∗, α∗) + v from Algorithm 1 satisfies ε-
differential privacy.

Proof: The proof is omitted due to space limit.

From Theorem 1, we know that Algorithm 1 provides a way to realize ε-
differential privacy with respect to parameters (w, α) of each local participant.
However, the disadvantage of Algorithm 1 is the complexity of computing global
sensitivity ΔSM, which may not be preferable for model training.
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Next we will develop a more brief and stable method to realize ε-differential
privacy for the parameters (w, α). Instead of adding noise to the parameters
directly, we decide to generate a noise vector v via the Laplace mechanism, and
adding this generated noisy vector into objective function which will give:

l′(w, α) = l(w, α) + vT w

=
m∑

i=1

(−yi(wT xi + α) + ln(1 + ew
T xi+α)) + vT w

(24)

It can be proved that the output of Eq. (24) meets ε-differential privacy as stated
in Theorem 2. The detailed computational procedures for collaborative learning
of OFPA is shown in Algorithm 2.

The 3rd line of Algorithm 2 points out the stop criteria for collaborative
learning. If the variation at the central server is below the preset threshold, we
assume the result is optimal and the parameters obtained are global optimal
for all participants. In the 7th line, it can be seen that for every participant’s
objective function, we will add a Laplace noise vector to protect the privacy.
The 8th line is the core part of collaborative learning that every participant
will download the weighted averaging parameters for the next-round training.
The main function of the central server is stated in line 12; i.e., it will calculate
the weighted average of the uploaded parameters from all participants. From
the whole process, participants can enjoy the benefits of multiple data sources
without worrying about information leakage.

Theorem 2. The output of l′(w, α) = l(w, α) + vT
ikw for each participant in

Algorithm 2 satisfies ε-differential privacy.

Proof: To prove the ε-differential privacy for any pair of neighbor databases D
and D′, we need to show that Definition 1 holds for any randomized algorithms.

Without loss of generality, suppose the last element of D and D′ is different,
such that D is composed of (x1, y1), (x2, y2), · · · , (xn−1, yn−1), (xn, yn), and D′

is composed of (x1, y1), (x2, y2), · · ·, (xn−1, yn−1), (x′
n, y′

n). In addition, we also
assume that ‖ xi ‖≤ 1, which can be normalized to 1 if not. We know that the
minimization of Eq. (24) will lead to the zero derivative. In addition, let (w, α)
and (w′, α′) be what are obtained for D and D′ after every round of training.

To prove ε-differential privacy between D and D′, we only need to show ε-
differential privacy of the output from l′(w, α). The zero derivative of Eq. (24)
for the last element of D and D′ will give:

v − ynxn − xn

1 + exp(wT
nxn + α)

= v′ − ynx′
n − x′

n

1 + exp(wT ′
n x′

n + α′)

(25)

Since ‖ xn ‖1≤ 1, ‖ x′
n ‖1≤ 1, exp(wT

nxn + α) > 0, and exp(wT ′
n x′

n + α′) > 0.
Thus for any pair of v and v′, we will get ‖ v − v′ ‖1≤ 4 from Eq. (25). Then
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for any (w, α) we have the following:

P ((w, α)|(x1, y1), (x2, y2), (x3, y3), · · · , (xn, yn))
P ((w, α)|(x1, y1), (x2, y2), (x3, y3), · · · , (x′

n, y′
n))

=
Πm

i=1e
−4
ε vi

Πm
i=1e

−4
ε v′

i

= e

−4
ε

‖v‖1−‖v′‖1 ≤ eε

(26)

Algorithm 2. Privacy-Preserving Collaborative Logistic Regression of OFPA
Input:

Input N databases D1, D2, D3, · · · , DN ;
Output:

Output global optimal parameter (w, α);
1: Initialize k = 0 ;
2: Initialize (wk, αk) = 0;
3: while | Δ(wk, αk) |> η
4: for i = 1 : N
5: Local data owner i constructs its own logistic re-

gression model l(w, α) from Eq. (23);
6: Generate a random vector vik with elements from

Laplace distribution Lap(x|0, 4/ε);
7: Compute perturbed objective function l′(w, α) =

l(w, α) + vT
ikw;

8: Download weighted parameters from central
server, and update (wik, αik) = (wk, αk);

9: Compute (w∗
ik, α∗

ik) = arg min l′(w, α);
10: Upload (w∗

ik, α∗
ik) to the central server;

11: end for;
12: Central server computes weighted averaging param-

eter (wk, αk);
13: k = k + 1;
14: return (w, α) = (wk, αk);

3.2 Output Function Approximation Approach (OFAA)

For OFPA, we add a noise vector into the objective function according to Laplace
mechanism. However, one can see that the generated noise is from a constant
scale Laplace distribution, and we cannot adjust the noise level. As a result,
a preferable mechanism should be able to adjust the noise level according to
particular forms of the objective function. In the following, we will develop an
approach by injecting noise to coefficients of the objective function’s approxima-
tion form.
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Before delving into details of the function approximation approach, we first
discuss the structure of the objective function of logistic regression. It can be ver-
ified that l(w, α) in Eq. (23) is a continuous and differentiable function. Accord-
ing to Stone-Weierstrass Theorem [23], we can approximate l(w, α) with a poly-
nomial function with respect to (w, α). Parameter (w, α) is a m + 1 dimen-
sional vector variable (w1, w2, w3, · · · , wm, α). Let Φj be the set of products of
(w1, w2, w3, · · · , wm, α) at the jth degree expressed as:

Φj = {wd1
1 · wd2

2 · wd3
3 · · · wdm

m · αdm+1 |
m+1∑

i=1

di = j} (27)

where d1, d2, d3, · · · , dm+1 ∈ N , and let φ(w) = wd1
1 · wd2

2 · wd3
3 · · · wdm

m · αdm+1 .
Then we can get the approximation expression of l(w, α) according to Stone-
Weierstrass Theorem as follows:

l(w, α) =
J∑

j=0

∑

φ∈Φj

∑

si∈D
λφsi

φ(w) (28)

where si is the ith element in database D, and λφsi
is the coefficient of polynomial

for data record si. It can be seen from Eq. (28) that the objective function l(w, α)
can be approximated with a formula consisting of polynomial function only. As
a result, it occurs to us that we can add noise to the coefficients of each degree
in the polynomial form. The following Algorithm 3 will give detailed steps about
adding noise to the coefficients of the polynomial expression.

From Algorithm 3, we can see that the central server plays the same role
of the previous algorithm, but the difference lies in the noise generation mech-
anism. The determination of the noise level is from the 7th and 8th steps of
Algorithm 3. For the jth degree of the approximate polynomial expression, we
choose the maximum coefficient ‖ λΦj

‖max, and set ΔS = 2(J + 1) ‖ λΦj
‖max

as the scale for Laplace distribution. Then in the 10th step, we will obtain a new
perturbed approximate objective function l̂(w, α). The parameter (w, α) from
l̂(w, α) satisfies ε-differential privacy, and the proofs will be given in Theorem3.

Theorem 3. In Algorithm 3, the perturbed approximate objective function
l̂(w, α) satisfies ε-differential privacy for Laplace distribution with scale ΔS.

Proof: Firstly, without loss of generality, we suppose D and D′ differ with the
last data record, and let sn and s′

n be the corresponding last data records. We
have that:
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P ((w, α)|(s1, s2, s3, · · · , sn)
P ((w, α)|(s1, s2, s3, · · · , s′

n)

=
ΠJ

j=0Πφ∈Φj
Πsi∈D e

(
ε ‖ λ′

φsi
− λφsi

‖1

ΔS
)

ΠJ
j=0Πφ∈Φj

Πsi∈D′ e
(
ε ‖ λ′

φsi
− λφsi

‖1

ΔS
)

≤ ΠJ
j=0Πφ∈Φj

e
(
ε(‖ ∑

si∈D λ′
φsi

− ∑
si∈D′ λ′

φsi
‖1)

ΔS )

= ΠJ
j=0Πφ∈Φj

e
(
ε(‖ λ′

φsn
− λ′

φs′
n

‖1)

ΔS )

= ΠJ
j=0 e

(
ε(‖ λ′

Φjsn
− λ′

Φjs′
n

‖1)

ΔS

≤ ΠJ
j=0 e

(
ε(2max(‖ λ′

Φj
‖1, ‖ λ′

Φj
‖1))

ΔS

= e
∑J

j=0 ε/(J+1) = eε

(29)

The first inequity is derived from the triangle formula ‖ a ‖1 − ‖ b ‖1 ≤ ‖ a±b ‖1,
where a and b are real numbers. The second inequality is derived as follows:

‖ λ′
Φjsn

− λ′
Φjs′

n
‖1 ≤ ‖ λ′

Φjsn
‖ + ‖ λ′

Φjs′
n

‖1

≤ 2max(‖ λ′
Φj

‖1, ‖ λ′
Φj

‖1)

Then Eq. (29) holds, and the proof is complete.
It can be seen that the noise addition mechanism of Algorithm 3 guarantees ε-

differential privacy. As a result, releasing the parameter of l̂(w, α) will not cause
information leakage. In addition, the noise addition mechanism in Algorithm 3
is designed for objective function with polynomial expression, but l(w, α) is not
of polynomial form yet. We have stated that l(w, α) can be approximated with
a polynomial form by the Stone-Weierstrass Theorem and next we will find a
way to derive the approximation polynomial form of l(w, α).

It is well known that Taylor expansion is commonly used in approximating a
continuous and differentiable function with arbitrary precision. In this paper, we
decide to use Taylor expansion to derive the approximation polynomial expres-
sion for our objective function l(w, α). For convenience, we can rewrite l(w, α)
as the following:

l(w, α) =
m∑

i=1

[l1(θ1) − l2(θ2)] (30)

where l1(t) = ln(1+exp(t)), l2(t) = t, θ1 = wT xi +α, and θ2 = yi(wT xi +α). In
addition, the Taylor expansion of a differentiable and continuous function f(x)
at point a is expressed as:
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Algorithm 3. Privacy-Preserving Collaborative Logistic Regression of OFAA
Input:

Input N databases D1, D2, D3, · · · , DN ;
Output:

Output global optimal parameter (w, α);
1: Initialize k = 0 ;
2: Initialize (wk, αk) = 0;
3: while | Δ(wk, αk) |> η
4: for i = 1 : N
5: Let l(w, α)i =

∑J
j=0

∑
φ∈Φj

∑
sk∈Di

λφskφ(w, α);

6: for j = 0 : J
7: Let ΔS = 2(J + 1) ‖ λΦj ‖max;

8: Let λ′
Φj

= λΦj + Lap(x|0,
ΔS

ε
);

9: end for;
10: Let l̂(w, α)i =

∑J
j=0

∑
φ∈Φj

∑
sk∈Di

λφ′sk
φ(w, α);

11: Download weighted parameters from central server,
and update (wik, αik) = (wk, αk);

12: Compute (w∗
ik, α∗

ik) = arg min l̂(w, α)i;
13: Upload (w∗

ik, α∗
ik) to central server;

14: end for;
15: Central server computes weighted averaging param-

eter (wk, αk);
16: k = k + 1;
17: return (w, α) = (wk, αk);

∞∑

n=0

f (n)(a)
n!

(x − a)n (31)

where f (n)(a) is the nth derivative of function f evaluated at point a. If we apply
Taylor expansion to l(w, α), we will have the following:

l(w, α) =
m∑

i=1

∞∑

n=0

[
l
(n)
1 (θ′

1)
n!

(θ1 − θ′
1)

n − l
(n)
2 (θ′

2)
n!

(θ2 − θ′
2)

n] (32)

where l
(n)
1 (θ′

1) is the nth derivative of function θ1 evaluated at point θ′
1, and

l
(n)
2 (θ′

2) is the nth derivative of function θ2 evaluated at point θ′
2. Note that

l
(n)
2 = 0 for n > 1. As a result, we can simplify Eq. (32) by setting θ′

1 = θ′
2 = 0,

and we will have the following:

l(w, α) =
m∑

i=1

∞∑

n=0

l
(n)
1 (0)
n!

(wT xi + α)n −
m∑

i=1

(yiwT xi + α) (33)

Up to now, we have derived the polynomial expression of the objective function
l(w, α). However, we cannot apply Eq. (33) directly due to the infinite summa-
tion. We can remove higher order polynomial terms of the Taylor expansion and
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only keep terms with orders n ≤ 2. Then the approximate polynomial form of
Eq. (33) is expressed as:

l(w, α) =
m∑

i=1

2∑

n=0

l
(n)
1 (0)
n!

(wT xi + α)n −
m∑

i=1

(yiwT xi + α) (34)

and calculation of the derivative shows that l
(0)
1 (0) = ln2, l

(1)
1 (0) = 1/2, and

l
(0)
2 (0) = 1/4. With these derivative results, we can calculate the scale in Algo-
rithm 3. As described in Algorithm 3, for the polynomial expression with different
order j, we will choose the according ΔS = 2(J + 1) ‖ λΦj

‖max as the scale of
the Laplace distribution. Taking j = 1 as an example, ΔS is expressed as:

ΔS = 2max(
f0
1 (0)
1!

d∑

i=1

xi + α + yi

d∑

i=1

xi + α) ∗ 3

≤ 9
2
d

(35)

where d is the number of attributes of data records. As a result, we can inject the
noise into the coefficients of the first order polynomial term with Laplace distri-

bution Lap(x|0,
9d

2ε
) according to Algorithm 3, and inject noise to the polynomial

form of other orders with the same approach.

4 Experiments

In this section, we evaluate the performance of the two proposed approaches
OFPA and OFAA, and compare them with regular logistic regression without
privacy protection denoted as LR NoPrivacy which is trained as a single party
who holds the entire dataset. All experiments are conducted using Python 2.7
on a Macbook with a 2.2 GHz Intel Core i7 CPU and 16 GB RAM.

We choose two real datasets for experiments, Bank Marketing [19] used to
predict whether the client will subscribe a term deposit and Default of Credit
Card Clients [27] for predicting whether a credit owner will default or not. The
Bank Marketing dataset contains 45211 records and 17 attributes, including bank
client attributes (e.g., age), current campaign attributes (e.g., contact commu-
nication type), and social and economic context attributes (e.g., employment
variation rate). For the Default of Credit Card Clients dataset, it contains 30000
records and 24 attributes, including credit card owner attributes (e.g., gender),
history of past payment, amount of bill statement attributes, and amount of
previous payment attributes. Since several attributes in both datasets are cate-
gorical variables, we encode such categorical values into integers for our model
training using LabelEncoder [1]. Without loss of generality, we assume three par-
ties are included intending to collaboratively learn the logistic regression model,
which hold 40%, 30% and 10% of each dataset separately, while the remained
20% of each dataset is treated as test set.
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We conduct logistic regression on each dataset by varying three different
parameters, namely the privacy budget ε, dataset cardinality, and dataset dimen-

sionality. According to Eq. (19), if p(yi = 1|xi) =
ew

T xi+α

1 + ewT xi+α
> 0.5, we make

prediction to be 1, and otherwise to be 0. The accuracy of logistic regression
models is measured by misclassification rate, which is defined as the fraction of
data records that are incorrectly classified. Additionally, in each experiment, the
logistic regression model is trained 40 epochs 10 times, and the average results
are reported.

4.1 Classification Accuracy vs. Privacy Budget

To explore how privacy budget ε affects the performance of the proposed algo-
rithms, experiments are performed by varying ε from 0.1 to 3.2. Figure 2 shows
the misclassification rate of each algorithm against the privacy budget ε. The
accuracy of LR NoPrivacy almost stays stable on both datasets. Both OFPA and
OFAA produce less misclassifications with increasing ε, since a larger ε means
that a smaller amount of noise is added to the objective function. Furthermore,
it shows that the performance of OFPA is slightly better than OFAA, but both
of them are robust against the varied ε and close to regular logistic regression.
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Fig. 2. Classification accuracy vs. privacy budget.

4.2 Classification Accuracy vs. Dataset Cardinality

To evaluate the classification accuracy against the variation of dataset cardi-
nality, we generate random subsets of the two original datasets with sampling
rate from 0.2 to 1, while keeping ε as 0.8. As shown in Fig. 3, the accuracy
of LR NoPrivacy slightly outperforms that of OFPA and OFAA, but the per-
formance of OFPA and OFAA improves rapidly with the increase of dataset
cardinality. More importantly, the misclassification rate of OFPA and OFAA is
comparable with LR NoPrivacy when we use the full dataset, indicating that
our proposed algorithms can make accurate predictions while protecting data
privacy.
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Fig. 3. Classification accuracy vs. dataset cardinality.

4.3 Classification Accuracy vs. Dataset Dimensionality

To demonstrate the effectiveness of the proposed algorithms against the change
of dataset dimensionality, we vary the dimensions of Bank Marketing dataset
from 5 to 17, and change the dimensionality of Default of Credit Card Clients
from 8 to 24, while setting ε as 0.8. Figure 4 shows that although the performance
of LR NoPrivacy still performs slightly better than that of OFPA and OFAA,
the accuracy of our proposed approaches improves with the increasing of dataset
dimensionality.
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Fig. 4. Classification accuracy vs. dataset dimensionality.

4.4 Training Time vs. Privacy Budget

In order to evaluate how noise injection affects the training time, we train each
logistic regression model with 40 epochs 10 times. The average training time is
reported in Fig. 5. It shows that time cost of training LR NoPrivacy is less than
that of OFPA and OFAA, which is reasonable since the latter needs more time
to stabilize the noisy model. Note that the training of logistic model using OFAA
is slower than that of OFPA, since the injected noise in OFPA is constant, but
we have to generate more noise to perform OFAA.
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5 Related Work

Dwork et al. first proposed the notion of ε-differential privacy [7], and provided
Laplace mechanism to achieve it. Later, differential privacy has been developed
as a platform to deal with privacy analysis and extensive work employed it
to address different types of tasks. For example, Friedman et al. [9] achieved
ε-differential privacy decision tree to predict adult incomes. Bhaskar et al. [3]
reported a differential privacy solution for frequent pattern mining. Other types
of work preserving differential privacy have also been done, including support
vector machines [16], recommendation system [18], and neural networks [2]. Dif-
ferential privacy related to logistic regression has also been demonstrated. For
instance, Chaudhuri et al. [6] enforced ε-differential privacy for logistic regres-
sion analysis, but the cost function considered is not of standard regression form.
Zhang et al. [28] proposed to approximate the objective function while adding
noise to it; however, the addition noise level is high because noise is determined
by the global approximation form. In general, all of the above work focus on
single party training without considering the multiparty setting.

Some research work has been done on privacy-preserving learning from
multiparty data. Pathak et al. [21] proposed a differentially private algorithm
based on parameter averaging through secure multiparty computation. Rajku-
mar et al. [22] designed a privacy-preserving multiparty learning scheme, which is
enforced by private exchange of gradient information to minimize empirical risks
incrementally. In addition, other works using different forms of noise scaling to
achieve differential privacy over distributed data have also been reported [11,25].
Different from previous work, we propose a weighted sharing scheme which will
help increase the accuracy of model. In addition, we propose to approximate the
objection and then inject noise to each degree separately, providing a more effi-
cient, more concise and faster method to complete data training. Furthermore,
the schemes designed here feature easy extension to other machine learning tasks.

6 Conclusion

In this paper, we proposed two differentially private approaches for collabora-
tively training logistic regression classifiers among multiple parties. The proposed
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approaches enable users to enjoy well-trained logistic regression classifiers based
on distributed datasets without disclosing their raw data to each other. Exper-
imental results show that the effectiveness, robustness, and training cost of the
proposed algorithms are close to that of regular logistic regression on the aggre-
gate dataset without privacy protection. Although this work mainly focuses on
logistic regression, the proposed schemes can also be extended to other classifi-
cation problems in the context of collaborative learning.
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Abstract. The increasing massive data generated by various sources has
given birth to big data analytics. Solving large-scale nonlinear program-
ming problems (NLPs) is one important big data analytics task that has
applications in many domains such as transport and logistics. However,
NLPs are usually too computationally expensive for resource-constrained
users. Fortunately, cloud computing provides an alternative and econom-
ical service for resource-constrained users to outsource their computation
tasks to the cloud. However, one major concern with outsourcing NLPs is
the leakage of user’s private information contained in NLP formulations
and results. Although much work has been done on privacy-preserving
outsourcing of computation tasks, little attention has been paid to NLPs.
In this paper, we for the first time investigate secure outsourcing of gen-
eral large-scale NLPs with nonlinear constraints. A secure and efficient
transformation scheme at the user side is proposed to protect user’s pri-
vate information; at the cloud side, generalized reduced gradient method
is applied to effectively solve the transformed large-scale NLPs. The pro-
posed protocol is implemented on a cloud computing testbed. Experi-
mental evaluations demonstrate that significant time can be saved for
users and the proposed mechanism has the potential for practical use.

1 Introduction

Cloud computing has gained an increasing popularity in both academia and
industry communities, and been widely used due to its huge computing power,
on-demand scalability and low usage cost [15]. It offers many services to users,
such as data storage, data management and computing resources via the Inter-
net. Besides personal uses such as data storage service represented by Dropbox,
cloud computing also has enterprise applications such as big data analytics and
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business intelligence. One fundamental feature of cloud computing is computa-
tion outsourcing, allowing users to perform computations at the resource-rich
cloud side and no longer be limited by limited local resources.

Despite the tremendous benefits, outsourcing computation to the cloud also
introduces security and privacy concerns. The first concern is data privacy
including both input data privacy and output data privacy [14,16,20]. The out-
sourcing paradigm deprives users’ direct control over the systems where their
data is hosted and computed. The data input to the cloud may contain sensi-
tive information such as medical records and financial asset status. The leakage
of these data will breach users’ privacy. To protect data against unauthorized
leakage, data has to be encrypted before outsourcing. Another concern is the
verifiability of results returned from the cloud. Usually users cannot oversee
all details of the computations in the cloud. There do exist some motives for
the cloud service provider to behave dishonestly and deliver incorrect results to
users. One motive is that since intensive computing resources are usually needed
to perform outsoursed computation tasks, the cloud service provider might not
do all the needed computations to save computing resources. If the cloud server
is under outside attacks during the computing process or suffering from internal
software failures, the correctness of returned results will also be at risk. Conse-
quently, the verifiability of results returned from cloud should be provided. A
third concern is that the computation at the cloud should be efficient; otherwise
there is no need for users to outsource computations to the cloud. The time
needed by the client to offload the computation to the cloud should be much
less than the time needed by the client to solve the computation task by itself
[5,6,16,21].

In this paper, we investigate privacy-preserving outsourcing of large-scale
NLPs with nonlinear constraints. NLP is a general optimization problem [2,3].
For instance, finding the optimal investment portfolio is a typical NLP opti-
mization problem subjecting to nonlinear constraints, where an investor wants
to maximize expected return and minimize risk simultaneously for investment.
In the deep learning area, researchers are always making efforts to find the opti-
mal solution for loss function, which can also be formulated as an NLP with
nonlinear constraints [18]. NLPs with nonlinear constraints are also common in
various industry domains, such as the minimum cost of transport and logistics,
optimal design, emission-constrained minimum fuel, and so forth [2,3]. It is very
challenging for resource-limited users to solve large-scale NLPs with nonlinear
constraints, since it requires intensive computation resources.

In this work, we propose a privacy-preserving and efficient mechanism to
offload large-scale NLPs with nonlinear constraints to the cloud. To the best
of our knowledge, privacy-preserving outsourcing of NLPs with nonlinear con-
straints has never been studied before and this paper is the first. We first for-
mulate the private NLP with nonlinear constraints as a set of matrices and
vectors. Then the user generates random vectors and matrices and performs
mathematical transformation to protect the original NLP formulation. It is
proved that the transformed NLP with nonlinear constraints is computationally
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indistinguishable from the original one, which means that the cloud cannot infer
any useful information about the original NLP from the transformed NLP. At
the cloud side, the generalized reduced gradient method is employed to solve
the encrypted NLP, which is experimentally demonstrated to be efficient and
practical. Finally, the user can verify the correctness of the returned solution to
NLP.

The contributions of this paper can be summarized as follows:

– For the first time, we propose an efficient and practical privacy-preserving
mechanism for outsourcing large-scale NLPs with nonlinear constraints to
the cloud.

– For the proposed solution, we mathematically prove that the input privacy
and output privacy of users can be protected. The solution also provides
verifiability of cloud-returned results.

– The proposed mechanism is implemented, and its performance is evaluated
through experiments. The results show high efficiency and practicality of the
proposed mechanism.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 introduces system model and security definitions. Section 4 presents
how to use transformation schemes to protect the original NLP and formal proofs
are given. Section 5 applies the generalized reduced gradient method to solve the
outsourced NLP with nonlinear constraints. Section 6 shows evaluation results.
Section 7 concludes this paper.

2 Related Work

Much work has been done on privacy-preserving outsourcing of computation-
intensive tasks to the cloud. Some work focused on outsourcing arbitrary com-
putation functions [1,8,11], mainly using fully homomorphic encryption (FHE)
schemes such as [10]. Although theoretical guarantees of privacy can be achieved
with FHE, current FHE schemes have very high computation cost, making them
impractical for large-scale computations such as large-scale NLPs addressed in
this paper. Other work designed secure outsourcing protocols for specific prob-
lems, such as linear programming [19], system of equations [20], distributed linear
programming [17], quadratic programming [21], and linear regression [4]. Out-
sourcing basic mathematical computations has also been studied, such as matrix
determinant computation [13], matrix inversion [14], and modular exponentia-
tions [7]. However, previous work mostly focused on linear systems and some
other particular problems. Outsourcing NLPs has received little attention

Very recently, we also studied securely outsourcing NLPs in our previous work
[9], but that work only considers NLPs with linear equality constraints. Differ-
ent from it, this paper addresses NLPs with nonlinear inequality and equality
constraints which are more complicated and general.
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3 Problem Formulation

3.1 NLPs Formulation

The general form of NLP is expressed as follows [2,3]:

P1 : Minimize f(x)
subject to gi(x) = 0, i = 1, · · · ,m (1)

hj(x) ≤ bj , j = 1, · · · , l

ak ≤ xk ≤ uk, k = 1, · · · n

where x = (x1, x2, · · · , xn) is an n dimensional vector of variables, f(x) is a non-
linear objective function, gi(x) = 0 are m equality constraints, and hj(x) ≤ bj

are l inequality constraints. In this paper, the NLP is considered as feasible indi-
cating that there exists at least one point x∗ satisfying all of the inequality and
equality constraints. Also, it should be noted that the inequality and equality
constraints are both of nonlinear form in this paper. NLPs appear many practi-
cal applications, such as machine learning, finance budget allocation, and some
decision-making problems. Taking the typical support vector machine (SVM)
classification as an example. It is known that SVM consists of linear and non-
linear form according to the selection of classification functions. A large portion
of the classification tasks require using the nonlinear form of hyperplanes due to
the complexity of data. As a result, the training of the SVM classifier is trans-
formed to solve the nonlinear function subjecting to nonlinear constraints, where
nonlinear function is the loss function of SVM model, and nonlinear constraints
are nonlinear forms of hyperplanes.
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Fig. 1. System model for outsourcing large-scale NLPs with nonlinear constraints.
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3.2 System Model

The outsourcing model has two parties, the user and the cloud server, as illus-
trated in Fig. 1. The user has an NLP problem to solve. However, the user cannot
solve this large-scale problem due to his limited computation power. Thus, he
outsources the NLP problem to the cloud server. In order to protect the original
NLP problem Φ from being known to the cloud, the user generates a private key
K to encrypt the problem Φ, and sends the encrypted NLP problem Φ(K) to the
cloud server. The cloud server solves Φ(K) using the generalized reduced gradi-
ent method, and returns the solution back to the user. During the computing
process, the cloud server is supposed to learn nothing or very little information
about the original NLP problem. When the user receives the solution for Φ(K)
from the server, the user verifies its correctness. If it is incorrect, the user will
reject it; if it is correct, the user will accept it and decrypt it with the private
key K to get the solution for the original NLP problem Φ.

3.3 Security Model and Goal

The security concerns and threats are mainly from the untrusted cloud server.
A malicious cloud server may try to learn about the original NLP problem. It
may also not follow the correct computing process of the problem and derive a
wrong solution. As a result, the security goal is two-fold: hiding the original NLP
problem from the cloud in order to protect the user’s privacy, and providing a
verification mechanism for the user to check the correctness of returned result
so that the cloud server cannot cheat.

3.4 Security Requirements

This section gives a formal security definition for the outsourcing protocol. Let
us first look at the scope of private information within this context. In the orig-
inal NLP problem P1, the coefficient matrices of the equality and inequality
constraints contain sensitive information. The positions of elements in the coef-
ficient matrices may also contain private information, e.g. the node distribution
graph of an optimal digital circuit layout path. In addition, the solution x∗ of
the original NLP problem P1 should also be protected.

The concept of computational indistinguishability is used in this paper to
design a secure outsourcing protocol.

Definition 1: A randomized algorithm A satisfies computational indistinguisha-
bility if and only if for any two databases D and D′, for every probabilistic
polynomial-time adversary machine M, there exists a negligible function neg(·)
such that [12]:

|Pr[MA(D)] − Pr[MA(D′)]| ≤ neg(·) (2)

where the notation MA(D) (similarly for MA(D′)) means that adversary
machines have access to the database and try to extract private information from
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the data. Definition 1 measures the information leakage level of the encryption
scheme that encrypts the original NLP problem. If computational indistinguisha-
bility is achieved, the cloud server cannot learn anything significant about the
original NLP problem.

4 NLP Transformation

4.1 Input Privacy Protection

In order to protect the coefficient matrices and vectors of the constraints as
shown in the general form of NLP P1, they are encrypted by the user’s privacy
key K.

Protecting Equality Constraints. Suppose the coefficient matrix and the
vector of the equality constraints in P1 are denoted as G ∈ R

m×n and b ∈
R

m×1, respectively. G and b can be efficiently hidden by employing matrix
multiplications. In particular, the user can protect the equality constraint matrix
and vectors as follows:

Ĝ = PQG

b̂ = PQb
(3)

where P ∈ R
m×m is a diagonal matrix, with the elements defined as follows:

Pi,j =

{
ri i = j

0 i �= j
(4)

Here the value of ri comes from the uniform distribution defined as:

ri =

{
r − N < r < N

0 otherwise
(5)

Q ∈ R
m×m in Eq. (3) is a positive constant diagonal matrix, which is expressed

as:

Qi,j =

{
C i = j

0 i �= j
(6)

It can be seen from Eq. (3) that the matrices G and b are masked by the
multiplying a random diagonal matrix P and a constant diagonal matrix Q. It
should be noted that the rank of matrix G stays the same due to the full rank of
P and Q. From the encryption form, one cannot extract any useful information
without releasing P and Q. We will give detailed mathematical analysis of the
above transformation in the next section.
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Inequality Constraints Protection. The coefficient matrix of the inequality
constraints is denoted as H ∈ R

l×n. A similar approach can be used to encrypt
H as follows:

Ĥ = TSH (7)

where T ∈ R
l×l is a diagonal matrix with elements generated following the

uniform distribution defined in Eq. (5) and S ∈ R
l×l is set to be a diagonal

constant matrix.

4.2 Output Privacy Protection

The above matrix multiplication mechanism is able to protect the input privacy,
but the output privacy has not been addressed yet. The user sends the NLP to
the cloud server, and will receive a solution x∗ back from the cloud. The result
x∗ might contain sensitive information, e.g., the asset allocation strategy in a
financial company. In fact, the output privacy can be easily protected by vector
addition. We can just replace the original variable vector x with the following:

z = x + r (8)

where the elements of vector r are also taken from the uniform distribution
defined in Eq. (5). After completing the protection of the input and output
privacy, we can rewrite the original problem P1 as the following:

P2 : Minimize f(z)
subject to ĝi(z) = 0, i = 1, · · · ,m (9)

ĥj(z) ≤ b̂j , j = 1, · · · , l

âk ≤ zk ≤ ûk, k = 1, · · · n

where Ĝ = PQG, b̂ = PQb, Ĥ = TSH, z = x + r, âk = ak + rk, and
ûk = uk + rk.

4.3 Structure Privacy Protection

The above matrix transformations can protect the element values within the
input and output matrix; however, the structure of the input and output matrix
(i.e., positions of non-zero elements) still needs to be protected, which might also
contain sensitive information. For example, the circuit layout is of vital impor-
tance in the area of electronics design, and one of the common methods is to
construct matrices according to the node distribution. Thus, it is easy to recover
the original circuit layout if we know the circuit matrices. As a result, the posi-
tion of the elements in a matrix sometimes will contain sensitive and valuable
information which needs to be hidden. Next we will introduce a matrix permu-
tation mechanism to protect the position information of the original matrix.
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Algorithm 1. Key generation.
Input:

Input size n;
Output:

Random uniformly distributed vector r;
Random uniformly distributed matrix S;
Constant matrix M;
Random permutation matrix W;

1: Generate a uniformly distributed random vector r according to Eq. (5);
2: Generate uniformly distributed diagonal matrices S according to Eq. (5);
3: Generate constant diagonal matrix M according to Eq. (6);
4: Set S = {1, 2, 3, · · · , n};
5: for j = 1 to n
6: select i randomly from i ∈ (1, j);
7: swap S(i) and S(j);
8: end for
9: for i = 1 to n

10: for j = 1 to n
11: ϕ outputs the ith element from S with ϕ(i);
12: σ outputs value with σϕ(i),j ;
13: set W (i, j) = σϕ(i),j ;
14: end for
15: end for
16: return r, S, M, W;

The permutation of a matrix starts from permuting a set S. Consider a two
line notation representing an original set S and its permutation set S′ denoted
as [2]: {

s1, s2, s3 · · · , sn

s′
1, s

′
2, s

′
3 · · · , s′

n

}
(10)

Here the upper line is the elements of the original set S and the bottom line is
the elements from the permutation set S′. Note that S and S′ have the same
elements but with different orders. Here we define s′

i = θ(si) to represent the
function mapping from Eq. (10), indicating that for an upper line element si as
the input, the output will be the corresponding element s′

i in the bottom line.
Then the permutation matrix can be obtained as follows:

M(i, j) = σθ(i),j 1 ≤ i, j ≤ n (11)

where σi,j is the Kronecker delta function, which is commonly used in engineering
field and defined as [5]:

σi,j =

{
0 i �= j

1 i = j
(12)

and θ(i) is defined as above, outputting the ith element of the permutation
set. Then we can protect the position information of matrix Ĝ and Ĥ with the
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following expression:
G′ = XĜY

H′ = XĤY
(13)

where X and Y are random permutation matrices generated from Eq. (11). It
can be seen that matrices X and Y are used to randomly permute the positions
of rows and columns of the matrix, respectively. Since the permutation matrices
are randomly generated, they will permute the original matrix to random-order
rows and columns. As a result, the cloud server will not be able to learn any
structure information from the reordered matrices.

Up to now, we have finished transforming the original NLP, and the problem
P3 can be rewritten as:

P3 : Minimize f(z)
subject to g′

i(z) = 0, i = 1, · · · ,m (14)
h′

j(z) ≤ b′
j , j = 1, · · · , l

âk ≤ zk ≤ ûk, k = 1, · · · n

where G′ = XĜY, H′ = XĤY, and b′ = Xb̂.
Both key generation and matrix transformation are performed by the user

locally, and the procedures are summarized in Algorithms 1 and 2, respectively.

Algorithm 2. Transformation mechanism.
Input:

Objective function f(x);
Equality coefficient matrix G and inequality coefficient vector b;
Inequality coefficient matrix H;

Output:
Encrypted objective function f(z);
Encrypted matrix G′ and vector b′;
Encrypted matrix H′;

1: Generate a random vector r from Algorithm 1 to obtain z = x+r, f(z) = f(x+r);
2: Generate two random diagonal matrices P and T from Algorithm 1 ;
3: Generate two constant diagonal matrices Q and S from Algorithm 1 ;
4: Calculate Ĝ = PQG and b̂ = PQb;
5: Calculate Ĥ = TSH;
6: Generate matrices X and Y from line 4 to 15 in Algorithm 1 , corresponding to

matrix W;
7: Calculate G′ = XĜY and b′ = Xb̂;
8: Calculate H′ = XĤY;
9: return f(z),G′,b′,H′;
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4.4 Privacy Analysis

In order to show why the aforementioned transformation schemes can protect
input privacy and output privacy, next we will derive a theorem proving that
the input matrix and the output vector are computationally indistinguishable
from a randomly generated matrix and vector, respectively.

Theorem 1. Let the elements of R ∈ R
m×n and r ∈ R

n×1 be generated from
the uniform distribution defined in Eq. (5). Then the matrices Ĝ = PQG and
Ĥ = TSH are computationally indistinguishable from a random matrix R, and
vector z = x + r is computationally indistinguishable from a random vector r.

Proof: Firstly, to prove the computational indistinguishability between matrices
Ĝ and R, we need to show for any probabilistic polynomial-time adversary
machines M having access to database MA, it can only tell the difference between
Ĝi,j and Ri,j with negligible success probability, where Ĝi,j is the element in the
ith row and jth column of Ĝ and Ri,j is the element in the ith row and jth
column of R. Suppose the adversary machine M sending inquiry to database D,
it will output Pr[MA(D)], which is the probability of the element coming from
a specific database D. It is obvious that if M determines the element coming
from a specific database D with full confidence, it will output 1. Suppose the
element Ĝi,j is chosen from Ĝ by adversary machine M , the success probability
to identify it from Ĝ is expressed as the following:

Pr[MA(Ĝi,j)] =
1
2
Pr[−N < Ĝi,j < N ]

+ Pr[Ĝi,j ≤ −N ] + Pr[Ĝi,j ≥ N ]

=
1
2
[1 − Pr[Ĝi,j ≤ −N ]] − Pr[Ĝi,j ≥ N ]]

+ Pr[Ĝi,j ≤ −N ] + Pr[Ĝi,j ≥ N ]

(15)

Here is brief explanation of the above expression, if the inquiry Ĝi,j by M is
within the range (−N,N), the probability of it coming from Ĝ is 1/2 since
it is possible for both R and Ĝ owing elements falling in the range (−N,N).
However, if the inquiry Ĝi,j by M is out of the range (−N,N), it must be from
matrix Ĝi,j that the probability is 1. To calculate Eq. (15), we first have that

Pr[Ĝi,j ≥ N ] = Pr[Qi,iPi,iGi,j ≥ N ]

= Pr[Pi,iGi,j ≥ N

C
]

= αPr[Pi,i ≥ N

CGi,j
] + (1 − α)Pr[Pi,i ≤ N

CGi,j
]

≤ αPr[Pi,i ≥ N

CL
] + (1 − α)Pr[Pi,i ≤ −N

CL
]

= 1 − 1
CL

(16)
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where Pi,i and Qi,i is the element in ith row and ith column of matrix P and
Q, respectively; L is the maximum value of elements in Ĝ, C is the constant in
Q defined in Eq. (6), α is the probability for the element Gi,j to be positive and
1 − α is the probability for the element Gi,j to be negative.

In addition, we can similarly obtain :

Pr[Ĝi,j ≤ −N ] = 1 − 1
CL

(17)

Thus, the success probability for adversary machine M determining Ĝi,j

chosen from matrix Ĝ in Eq. (15) will be:

Pr[MA(Ĝi,j)] ≤ 3
2

− 1
CL

(18)

The success probability for Ri,j to be identified by the distinguisher M is
expressed as follows :

Pr[MA(R̂i,j)] =
1
2

(19)

The comparison of Eqs. (18) and (19) will lead to

|Pr[MA(Ĝi,j)] − Pr[MA(R̂i,j)]| ≤ CL − 1
CL

(20)

By comparing Eqs. (20) and (2), we can define

neg(C) =
CL − 1

CL
(21)

Since we can choose any positive constant C, we can choose a value of C that
makes CL be close to 1, which will make Eq. (21) be a negligible value. As such,
the encrypted matrix Ĝ and random generated R meet the property of com-
putational indistinguishability. Similarly, we can also prove the computational
indistinguishability between Ĥ, R, and z, r, respectively. The proof is complete.

It can be concluded from Theorem 1 that even if the adversary machines
have full access to the data, it still cannot learn any useful information. As a
result, sending the encrypted data via the transformation mechanism to the cloud
will not release any private information, proving the security of the proposed
protocol.

5 Secure Outsourcing Algorithm for Encrypted NLPs

In this section, we will design an efficient outsourcing algorithm to solve the
encrypted large-scale NLPs. To solve large-scale NLPs, the generalized reduced
gradient (GRG) method [2,9] is employed to get the optimal solution of P3. The
strategy of GRG is based on an iterative way to repeatedly generate feasible
improving directions optimizing NLPs.
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5.1 Gradient Decent Method for Unconstrained NLPs

Before delving into details of the GRG to solve large-scale NLPs subjecting
to a system of constraints, we first introduce how to find the optimal solution
of an unconstrained objective function. A popular and widely used algorithm
for solving unconstrained problem is gradient decent method. Suppose f(z) is
convex and differentiable within the neighborhood of z0. The decent method is
to produce a sequence of zk (k = 0, 1, 2, ...) which can continuously decrease the
objective function, expressed as:

zk+1 = zk + λd (22)

where d is called search direction, k = 0, 1, 2, ... is iteration number, and λ is
termed as step length.

The decent method means that for every iteration of the algorithm, we must
have

f(zk+1) < f(zk) (23)

except when zk is already an optimal solution of the objective function.
The convexity of the objective function indicates that the search direction d

must satisfy the following expression:

∇f(zk)d < 0 (24)

It can be seen from Eq.(24) that search direction d must form an acute angle
with the negative gradient, thus as such it is called as a decent direction. As a
result, an obvious choice for d is along the negative gradient direction −∇f(zk).
Once the selection of the search direction is completed, next step is to determine
step size as the following:

λ = arg mins≥0 f(z + sd) (25)

An exact line search method can be used to solve the one variable optimiza-
tion task, just as Eq. (25). However, the above gradient decent method cannot
be applied to P3 due to the existence of constraints. The reason is that if we
directly move zk along the negative gradient direction zk+1 = zk −λ∇f(zk), the
feasibility of the constraints may be destroyed. As a result, it occurs to us that
we have to figure out a way to generate a series of feasible directions gradually
approaching the optimal solution of the constrained large-scale NLPs, which will
be shown as next section.

5.2 Generalized Reduced Gradient Method for Constrained NLPs

GRG method is robust and efficient in solving large-scale nonlinear problems
practically. The constraints in P3 includes both equality and inequality equa-
tions. In fact, we can make all of the inequality constraints ĥj(z) ≤ b̂j , j =
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1, · · · , l to equality constraints by introducing a bunch of slack variables as fol-
lows:

ĥj(z) + sj − b̂j = 0, j = 1, · · · , l

sj ≥ 0, j = 1, · · · , l
(26)

Thus we can rewrite P3 in the following general form:

P4 : Minimize f(z, s)
subject to êi(z, s) = 0, i = 1, · · · ,m, · · · ,m + l

âk ≤ zk ≤ ûk, k = 1, · · · n (27)
0 ≤ sp < ∞, p = 1, · · · l

where êi(z, s) = 0 is the combination of equality and inequality constraints in
P3. For simplicity of notation, we can use y = (z, s) to represent the variable
vector, and v ≤ y ≤ w to denote the range of the variables. It should be noted
that for some slack variables, the corresponding components of w can be set as
infinite.

As described before, the constraints are of nonlinear forms. To make the
logic more clear and algorithm more understandable, we will first describe how
to solve the linear constraints and then extend to the nonlinear forms of the
constraints. Suppose the equality constraints in P4 are in the linear form that
Ey = c,y ≥ 0, where E ∈ R

(m+l)×n and c ∈ R
(m+l)×1. In addition, an non-

degeneracy assumption is made here that every m + l columns of the matrix E
are linearly independent and every basic solution to the constraints has at least
m + l strictly positive values. This assumption can be easily satisfied since we
can apply elementary transformation of matrix which will reduce the matrix be
composed of independent columns or rows. With this assumption, every feasible
point to the constraints will have at most n−m− l variables with values setting
to zero. For any feasible point y, it can be partitioned into two groups that
y = (yB ,yN ), where yB has the dimension m + l termed as basic variables, and
yN with dimension n−m− l is called as non-basic variable. Accordingly, matrix
E can be decomposed as E = [EB ,EN ], where EB and EN are the columns
corresponding to yB and yN , respectively.

From the algebra we know that for each stage, the optimization of this prob-
lem is only dependent on the non-basic variables yN , since basic variable vector
yB can be uniquely determined from yN . A simple modification of the gradi-
ent decent method will provide a feasible improving direction d to optimize the
objective function. A feasible improving direction d at the point y must follow:

Ed = 0, (a)

∇f(y)Td < 0, (b)
(28)

where ∇f(y)T is the gradient vector of objective function f(y) at point y.
Equation (28a) means that if a feasible point y moves along the direction d,
the feasibility of the constraints will not be damaged. Equation (28b) indicates
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that moving along d will make the objective function f(y) approach the opti-
mal point. The reduced gradient method as the following will find such moving
direction d that satisfies Eq.(28).

The gradient vector corresponding to yN (also called as reduced gradient)
can be found by the following expression:

rT = ∇Nf(y)T − ∇Bf(y)TE−1
B EN (29)

where ∇Nf(y)T is the gradient vector of ∇f(y)T that corresponds to yN and
∇Bf(y)T is the gradient vector corresponding to yB . From above reduced gradi-
ent, we can construct the feasible moving direction dN that will move yN +λdN

in the feasible working space, where dN can be determined as the following:

dNi =

{
− ri ri ≤ 0
− yNiri ri > 0

(30)

where dNi is the ith element of dN , ri is the ith element of rT , and yNi is the ith
element of yN . Equation (30) provides the rules for finding improving feasible
direction for non-basic variables yN . Once the improving feasible direction for
yN is determined, we can get the corresponding moving direction dB for yB by
expanding Eq. (28a):

ENdN + EBdB = 0

dB = −E−1
B ENdN

(31)

Eq. (31) shows that dB can be uniquely calculated from dN , and the moving
direction is composed that d = [dB ,dN ]. It can be proved that d = [dB ,dN ]
satisfies Eqs. (28a) and (28b), indicating both feasibility and improvability will
be achieved for d.

The reduced gradient method dealing with the linear constraints can be gen-
eralized and extended to address the nonlinear constraints. Similar to linear
constraints, we first partition the variables into basic and non-basic variable
vector as y = (yB ,yN ), and the corresponding Jacobi matrix of ê(y) in P4 can
also be grouped into:

∂ê
∂y

= (
∂ê

∂yB

,
∂ê

∂yN

) (32)

and a nondegeneracy assumption is made here that for any point y,
∂ê

∂yB

∈
R

(m+l)×(m+l) is nonsingular.
For the case of nonlinear constraints, the reduced gradient rT with respect

to yN is expressed as:

rT = ∇Nf(y)T − ∇Bf(y)T (
∂ê

∂yB

)−1 ∂ê
∂yN

(33)

Now we specify the direction dN as follows:

dNi =

⎧⎪⎨
⎪⎩

0 yNiri > 0 and yNi = vi

0 yNiri < 0 and yNi = wi

− yNiri otherwise
(34)
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where vi is the lower bound of the variable yi and wi is the upper bound of
the variable yi. However, the difference with the linear form is that yN moves a
straight line along dN , the nonlinear form of the constraints requires yN move
nonlinearly to continuously walk in the feasible space formed by the constraints.
To address this, we can first move yN along the direction defined by Eq. (34),
then a correction procedure is employed making yN return to working space
to satisfy the feasibility of the constraints. Once a tentative move along dN is
made, the following iterative method can be used for the correction. Supposing
yk is the current feasible point, we first move the non-basic variable vector
yN(k+1) = yNk + λdNk, to return point y = (yBk,yN(k+1)) near yk back to the
constraint space, we can solve the following equation:

ê(yBk,yN(k+1)) = 0 (35)

for yBk where yN(k+1) is fixed. This is done by the following iterative procedure,
which is described in Algorithm 3 from line 11 to 14:

yBkj+1
= yBkj

− (
∂ê(yBkj

,yN(k+1))
∂yBk

)−1ê(yBkj
,yN(k+1)) (36)

where yBkj
is the basic variable vector of yB in the jth iteration step according

to Eq. (36). When this iterative process produces a feasible point yB(k+1), we
have to check if following conditions are satisfied:

f(yB(k+1),yN(k+1)) < f(yBk,yNk)

v ≤ yB(k+1),yN(k+1) ≤ w
(37)

If Eq. (37) holds true, it indicates that the new point is feasible and improvable.
Then we set yk+1 = (yB(k+1),yN(k+1)) as a new approaching point, otherwise we
will decrease the step length λ when we first make the tentative move for yNk

and repeat the above iterative process. The procedure of generalized reduced
gradient method is summarized as Algorithm 3.

Regrading verification of the correctness of the returned result, the users can
apply KKT conditions of P3 [8] to check if the return result is valid or not.

6 Performance Evaluation

In this section, we evaluate the performance of our proposed secure outsourcing
protocol for large-scale NLPs with nonlinear constraints. For the experimental
setup, the client side is implemented on a computer with Intel(R) Core(TM)
i5-5200 U CPU processor running at 2.2 GHz, 8 GB memory. For the cloud side,
the experiment is conducted on a computer with Intel(R) Core(TM) i7-4770 U
CPU processor running at 3.40 GHz, 16 GB memory. We implement the proposed
protocol including both the client and cloud side processed in Python 2.7. We
also ignore the communication latency between users and the cloud for this
experiment, since the computation dominates running time as demonstrated by
our experiments.
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Algorithm 3. Secure outsourcing scheme for large-scale NLPs
Input:

Starting point y0 that ê(y0) = 0;
Output:

Optimal result y∗ for P4;
1: Initialize k = 0;
2: Decompose y0 = (yB0,yN0);

3: Calculate Jacobi matrix of ê(y0) and decompose the Jacobi matrix
∂ê

∂y
=

(
∂ê

∂yB

,
∂ê

∂yN

) corresponding to (yB0,yN0);

4: Compute dN0 from Eq. (34);
5: while ‖ dNk ‖1> ε
6: Choose λ > 0 and compute yN(k+1) = yNk + λdNk;
7: If not v ≤ yN(k+1) ≤ w :

λ = 1/2λ;
8: go to (6) and repeat;
9: Initialize j = 0;

10: Let yBj = yBk;
11: while ‖ ê(yBj ,yN(k+1)) ‖1> ε

12: Let E = (
∂ê(yBj ,yN(k+1))

∂yBk

)−1;

13: yB(j+1) = yBj − Eê(yBj ,yN(k+1));
14: j = j + 1;
15: end while;
16: If Eq. (37) holds true:
17: yB(k+1) = yBj ;
18: yk+1 = (yB(k+1),yN(k+1));
19: else:
20: go to (6) and repeat;
21: k = k + 1;
22: Calculate dNk from Eq. (34);
23: end while;
24: Let y∗ = (yBk,yNk);
25: return y∗;

We randomly generate a set of test cases that cover the small and large sized
NLPs with nonlinear constraints, where the number of variables is increased
from 1000 to 16000. The objective function here is randomly generated second-
degree polynomial function, and nonlinear constraints are randomly generated
with first-degree polynomial functions for equality constraints and second-degree
polynomial functions for inequality constraints, respectively. All these test cases
are carefully designed so that there are feasible under corresponding nonlinear
constraints.

For the experiments, we first solve the original NLP in the client side, then
solve the encrypted NLP in cloud side. Table 1 shows the experiment results, and
each entry in this table represents the mean of 20 trials. As illustrated in this
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table, the size of original NLPs is reported in the first three columns. Besides,
several parameters are adopted to evaluate the performance of proposed protocol.
Toriginal is defined as the time to solve original NLP by client side. The time to
solve encrypted NLP is divided into time for the cloud server Tcloud and time
for the client Tclient. Tcloud is defined as the time that cloud used to operate the
encrypted NLP by the cloud server. Tclient is the time cost to encrypt and decrypt
the original NLP by the client. Furthermore, we propose to assess the practical
efficiency by two metrics calculated from Toriginal, Tclient and Tcloud. The speedup
is calculated as Toriginal

Tclient
, representing time savings for the client to outsource

the NLP to the cloud using proposed protocol. The speedup is expected to be
greater than 1, otherwise there is no necessity for the client to outsource NLP
to the cloud server. The cloud efficiency is measured as Toriginal

Tcloud
, indicating the

time savings enabled by the cloud. It is expected that the encryption of the
problem should not introduce great overhead for solving the large-scale NLP.
Moreover, due to more powerful computation capabilities of cloud server, the
cloud efficiency is expected be grater than 1.

It can be seen that from the Table 1 that the encryption can be finished in a
very short time by the client. For instance, the time consumption of the encryp-
tion for the problem with 16000 variables is only 166.68 s. However, the time cost
to find the optimal solution by the cloud server is much longer but reasonable,
and increases rapidly with growing number of variables. As shown in the penul-
timate column of the table, the speedup of proposed protocol increases dramat-
ically when the size of the problem gets larger. Hence, a substantial amount of
time can be saved for the client by proposed protocol. For example, the speedup
is 49.66 for the problem with 16000 variables, indicating 97.9% of time is saved
for the client. The cloud efficiency is shown in the last column, and it can be
seen that the cloud efficiency increases with the increasing size of the problem,
indicating the powerful computation capabilities of cloud server. Consequently,
the experiment results demonstrate our proposed secure outsourcing protocol is
practical and efficient.

Table 1. Performance evaluation

Test cases Original NLP Encrypted NLP Speedup Cloud

efficiency

# # vari-

ables

# equality

constraints

# inequality

constraints

Toriginal(sec) Tcloud(sec) Tclient(sec)
Toriginal
Tclient

Toriginal
Tcloud

1 1000 300 300 3.17 2.28 0.09 35.22 1.39

2 2000 600 600 27.61 18.66 0.72 38.34 1.48

3 4000 1200 1200 182.05 112.38 4.48 40.62 1.62

4 8000 2400 2400 1236.42 695.79 36.50 34.33 1.77

5 12000 3600 3600 2777.04 1368.55 75.32 37.02 2.03

6 16000 4800 4800 8245.51 3720.11 166.68 49.66 2.21
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7 Conclusion

In this paper, for the first time, we design an efficient and practical protocol for
securely outsourcing large-scale NLPs with nonlinear constraints. The transfor-
mation technique is applied to protect the sensitive input/output information.
In addition, we adopt the generalized reduced gradient method to solve the
transformed NLP. A set of large-scale simulations are performed to evaluate
the performance of proposed mechanism, and results demonstrate its high prac-
ticality and efficiency. It is expected that the proposed protocol can not only
be deployed independently, but also serves as a building block to solve more
sophisticated problems in the real world.
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Abstract. With the widely application of cloud computing, more and
more data owners prefer to outsource their data on the remote cloud
servers to reduce the overhead. Searchable encryption is proposed in
an urgently need for searching on the encrypted data. In this paper,
we present a tree-based privacy-preserving and efficient multi-keyword
ranked search scheme supporting verification and dynamic update. Con-
sidering the effect of the keywords location on the weight in most doc-
uments, the traditional TF × IDF algorithm can be optimized with
location information to get more accurate similarity score. To improve
the efficiency, we combine the vector space model and binary tree to
construct a tree-based index structure. And the index tree is encrypted
by secure kNN computation. Finally, We analyze the security against
two threat model, and implement the experiment on the real paper set
to evaluate the performance.

Keywords: Keyword location · Searchable symmetric encryption
Tree-based index · Verification · Dynamic update

1 Introduction

In recent years, cloud computing has sprung up in various fields due to its unique
advantages. More and more data owners choose to outsource their large amounts
of local data to remote cloud servers to reduce their storage and computation
overhead.

Despite those benefits, data stored on the cloud servers, especially the sensi-
tive information, faces serious security risks and privacy challenges since cloud
servers are honest-but-curious. A general way to reduce this leakage is encrypt-
ing the data before outsourcing. However, encryption will bring other difficulties.
For example, if we want to search an exact document on the server, we have to
download all the encrypted data and decrypt it locally which lead to large stor-
age and computation cost. Therefore, searching on encrypted data becomes a
valuable research issue.
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R. Beyah et al. (Eds.): SecureComm 2018, LNICST 254, pp. 588–604, 2018.

https://doi.org/10.1007/978-3-030-01701-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01701-9_32&domain=pdf
https://doi.org/10.1007/978-3-030-01701-9_32


A Verifiable and Dynamic Multi-keyword Ranked Search Scheme 589

Searchable encryption is proposed to settle these problems since it can guar-
antee the security and usability of data. These years, lots of works has been
proposed on this field, such as single keyword search, multi-keyword search,
ranked search. Furthermore, verification and dynamic update are added to fulfill
the functionality.

In this paper, we present a tree-based secure and efficient multi-keyword
ranked search scheme supporting verification and dynamic update. Our paper
takes the keyword location into account. In plaintext area, the information
retrieval mechanism is first returning all the results whose title contains the
keywords and later returning the results whose body contains them. That is to
say the keyword location will greatly influence the similarity of the documents
with query request. However, in ciphertext, traditional TF value only consider
the number of the keywords in a document. Introducing the location information
in the TF value will counts. Moreover, the length of the paper also have impact
on the similarity. We construct a tree-based index structure to improve the effi-
ciency of search. Moreover, the verification and dynamic update function are also
designed based on the tree-base index structure. We choose to implement the
experiment on the data set of paper for its typical fixed format which composed
of title, abstract, body, conclusion and preferences so that we can easily assign
the different significance to the keyword in different part. Our Contribution can
be summarized as follows:

(1) We present a tree-based secure and efficient multi-keyword ranked search
scheme supporting verification and dynamic update.

(2) We introduce the keyword location and length of document to optimize the
TF × IDF algorithm to improve the accuracy.

(3) We analyze the security against two threat model, and implement the exper-
iment on the real paper set to evaluate the performance.

The rest of this paper is organized as follows. Section 2 gives the related
word on searchable encryption. Section 3 gives a brief introduction of the scheme.
Section 4 describes the scheme in detail. Section 5 presents the performance anal-
ysis. Finally, we conclude in Sect. 6.

2 Related Work

Song et al. [15] first proposed a solution for searching single keyword on encrypted
data with sequential scan which was provably secure but in high cost. Boneh [1]
first proposed public key searchable encryption scheme. Based on these scheme,
a great deal of improvement had been produced.

Single Keyword Search. Goh [8] defined a secure index using a bloom filter and
pseudo-random functions which will introduce false positive results. Chang and
Mitzenmacher [4] developed two index schemes using dictionaries. Li et al. [14]
developed a single keyword search scheme to support fuzzy search.

Multi-keyword Search. Lots of research [2,9,19] achieve the conjunctive multi-
keyword search. Boneh et al. [2] proposed a public-key scheme and supported
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conjunctive and disconjunctive search like subset and range query. Wang et al.
[19] designed a inverted index based public-key searchable encryption scheme.
They used private set intersection to support conjunctive multi-keyword search.
Wang et al. [21] utilized the bloom filter with LSH and construct two schemes
using homomorphic encryption and pseudorandom padding to deal with high-
dimensional feature-rich data.

Rank Search. Rank search is proposed to deal with the drawbacks of boolean
search. Wang et al. [20] used inverted index and TF × IDF to construct a
order-preserving symmetric encryption. However this scheme only support single
keyword search. Cao et al. [3] first proposed a basic multi-keyword ranked search
scheme (MRSE) using secure inner product computation which had low overhead
on computation and communication. However, this scheme ignored the different
importance of the keywords. Fu et al. [7] proposed a scheme supporting both
fuzzy and rank search by processing stemming algorithm, LSH and bloom filter.
Sun et al. [17] developed the scheme by MDB-tree index structure. Chen et al.
[5] used k-means algorithm to construct the hierarchical cluster index tree. Xia
et al. [22] designed a special KBB index tree to provide efficient multi-keyword
ranked search which we refer to in this paper.

Dynamic Search. In practice, the data on the server could not be immutable.
Therefore, update should be considered. Goh [8] realized the update based on
the bloom filter. Kamara et al. [11] constructed a new dynamic encrypted index
to give a dynamic SSE scheme. Later, they improved the scheme by KBB tree in
[10]. Wang et al. [21] provide efficient index dynamic over homomorphic encryp-
tion and pseudorandom padding. Wan and Deng [18] applied update based on
bilinear-map accumulation tree. Lai and Chow [12] developed a dynamic sym-
metric structured encryption scheme with random binary tree.

Verifiable Search. Wan and Deng [18] gave a solution to apply verification based
on homomorphic MAC. Sun et al. [17] combined MDB-tree and Merkle hash
tree to realize. And later proposed public and private verification scheme based
on bilinear-map accumulation [16].

3 Problem Formulation

3.1 System Model and Threat Model

System Model. The system model involves three entities: data owner, cloud
server and data user, as shown in Fig. 1.

Data Owner: The data owner owns the plaintext dataset F locally. First data
owner encrypts the plaintext document collection F by symmetric encryption
algorithm, and generates the secure index tree T to improve the search efficiency.
Later, outsource the index tree to the cloud server along with the encrypted
document collection C. And the secret keys for document encryption and secure
kNN algorithm are sent to the data user via a secure channel. When data owner
wants to update the data on the cloud, update request will be sends to cloud.
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Fig. 1. The architecture of our scheme.

Cloud Server: The cloud server is responsible for the data storage. The encrypted
document collection and encrypted index tree from data owner are stored on
the cloud. After receiving the search trapdoor from the data user, cloud server
traverses the secure index tree to search for the relevant documents and sends
back the top-k most similar results to the data user. Meanwhile the cloud server
also sends back information to the data user for verification. When receiving
the update request from data owner, the cloud server uses the information from
data owner to update the document collection and index tree.

Data User: The data user who has access to the data can upload a search request
consisting of some of keywords in the keyword dictionary. The data user uses
the secret key to generate a query trapdoor and sends it to the cloud. When
receiving the results from cloud server, data user can decrypts the results with
the symmetric key locally. The verification proof returned can be used to verify
the correctness, completeness and freshness of the results.

Threat Model. We assume the data user is authorized and trusted so that
we don’t consider the leakage in the data user side. Nor do we consider the
leakage of secret key on the channel of key distribution. But the cloud server is
assumed to be honest-but-curious. In other words, the cloud server will follow
the processes honestly but will be curious to the content of data, keywords and
other additional information. We mainly consider two threat models.

Known Ciphertext Model. In this model, the cloud server only knows encrypted
information, specifically, the encrypted document collection C, the encrypted
tree-based index I and the encrypted trapdoor.

Known Background Model. In this model, the cloud server knows additional
backgrounds, such as the document frequency and keyword frequency. These
information will be used to conduct statistical attack to infer the keywords in
the query request.
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3.2 Design Goals

To achieve a privacy-preserving, efficient, dynamic and verifiable multi-keyword
ranked search scheme over encrypted data on the cloud, we propose the following
design goals:

Search Efficiency. The time cost of search should be appropriate to the large
amount of data. Tree-based structure is a great way to achieve it.

Dynamic Update. The scheme should support dynamic update, including inser-
tion, deletion and modification.

Result Verifiable. The scheme can verify whether the returned results are what
the data user want or not. (1) Correctness. The results should satisfy the query
request and all originated from data owner with unmodified version. (2) Com-
pleteness. The results should contain all the search results which match the query
request. (3) Freshness. The results should be the freshest and unmodified.

Privacy. The scheme can prevent the data or any other information from being
analyzed by cloud server. (1) Data privacy. The server cannot recover the plain-
text documents by analyzing the ciphertext. Cryptography is always used to
protect the data. (2) Index and query privacy. The index and query are rep-
resented by vectors which contain the information of keywords such as the TF
value in the index and the IDF value in the trapdoor which should be pro-
tected. (3) Keyword privacy. The cloud server could not make out the specific
keywords. (4) Trapdoor unlinkability. The trapdoor need to be indistinguishable
for the same query.

3.3 Notations

See Table 1.

Table 1. The notations in our scheme.

F The plaintext document collection stored in data owner side, which
contains N documents, and denoted as F = {f1, f2, . . . , fN}

W The dictionary of n keywords shared between data owner and data user,
denoted as W = {w1, w2, . . . , wn}

C The encrypted document collection stored in cloud server side, denoted
as C = {c1, c2, . . . , cN}

T The unencrypted index tree generated from the document collection C

I The encrypted index tree generated from tree T

Q The query vector submitted by data user contains m keywords in W ,
denoted as Q = {q1, q2, . . . , qm}

TD The trapdoor generated from the query vector Q and will upload to
cloud server

R The top-k encrypted document search results returned from cloud server
for decryption and verification

PR The plaintext document results decrypted by R
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3.4 Preliminaries

Vector Space Model with TF × IDF. Vector space model is one of the most widely
used models for information retrieval whose basic idea is to represent the doc-
ument and query as a vector. Each dimension of the vector corresponds to a
keyword, and the value is the weight of the keyword, which can be calculated
using the TF × IDF mechanism [23]. The term frequency, TF , the frequency
of the word in the document which reveals the significance of the word. The
inverse document frequency, IDF , is the number of documents which contain
the word among the document collection. And the TF × IDF algorithm uses
the product of TF and IDF to measure the correlation between the keywords
and document:

S =
∑

wi∈Q

TFfi,wi
× IDFwi

=
∑

wi∈Q

ln(1 + Nf,wi
)√∑

wi∈W (ln(1 + Nf,wi
))2

× ln(1 + N/Nwi
)√∑

wi∈W (ln(1 + N/Nwi
))2

(1)

where Nfi,wi
is the number of keyword wi in document fi. N is the total number

of documents in collection, Nwi
is the number of documents that contain the

keyword wi.
This method is intuitive, also the processing speed is fast. However, it neglects

many other characteristics. Fully considering the effect of the word location and
the document length on the weight, we optimize the algorithm by introducing
them into TF × IDF . The optimized TF × IDF is denoted as:

S =
∑

wi∈Q

TF
′
fi,wi

× IDFwi

=
∑

wi∈Q

nwi

Lfi
× ∑k

1(γfj
× tfj,wi

)
√∑

wi∈W (nwi

Lfi
× ∑k

1(γfj
× tfj,wi

))2
× IDFwi

(2)

where the document can be divided into k parts, γfj
is the weighting coefficient

of the jth part of the document, and the sum of the coefficient is 1, tfj,wi
is the

number of keyword wi in the jth part, nwi
is the number of the keyword wi, Lfi

is the length of the whole document fi.

Tree-Based Index Construction. As shown in Fig. 2, we construct the indexes to
a binary tree based on the Xia’s scheme [22]. This tree-based index structure
can greatly improve the efficiency of search.

In this structure, each node u in the tree is defined as:

u = (ID, Pl, Pr,D, h). (3)
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Fig. 2. Index tree.

where ID is the identity of the node, Pl and Pr is the pointers to the left and
right child node, D is the index vector whose dimensions are the TF weight of
keywords, and h is the hash value of node u for verification. Each leaf node is
linked to a document. The building process is shown in Algorithm1.

Algorithm 1. BuildTree(F )

Input: the plaintext documents F , the encrypted indexes I
Output: the index tree T
1: for each document fi in F do
2: Initial the leaf node. u.ID = ID(fi),u.Pl = null,u.Pr = null,u.D[i] =

TFfi,wi
for i ∈ [1, n]

3: end for
4: while the root node is not generated do
5: Generate the parent node for each two nodes u

′
and u

′′
. u.ID =

ID(u),u.Pl = u
′
,u.Pr = u

′′
,u.D[i] = max{u

′
.D[i], u

′′
.D[i]} for i ∈ [1, n]

6: end while
7: return the tree T

4 The Proposed Scheme

4.1 Detail Scheme

The detail scheme is as follows.

Algorithm 2. Search(u)

Input: index tree node u, trapdoor TD, threshold TH
Output: k documents R
1: compute the relevance score S = u.D · TD
2: if the node u is not a leaf node then
3: if S > TH then
4: Search(u.Pl)
5: Search(u.Pr)
6: end if
7: else
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8: if S > TH then
9: insert the node and the score into r

10: if length(R) > k then
11: sort R and delete the result with minimum score
12: TH = min{R}
13: end if
14: end if
15: end if
16: return R

– {SK, sk} ← Initial(1l). This algorithm generates the secret keys for encrypt-
ing the documents, indexes and query. The data owner generates the secret
key sk for encrypting and decrypting the documents, and the secret key SK
for encrypting indexes. SK is composed of three elements, one (n + U + 1)-
bit vector as S, and two (n + U + 1) × (n + U + 1) invertible matrices as
{M1,M2}, where U is a random number of dummy keywords to insert. Thus,
SK = {S,M1,M2}.

– C ← Enc(F, sk). The data owner uses a symmetric encryption algorithm
such as AES to encrypt the plain document collection F .

– I ← BuildIndex(F, SK). It is used to generate the encrypted index for each
document. The data owner generates a n bit index vector for each document
fi in document collection F . Then, every vector is extended to (n + U + 1)-
bit vector pi. The (n + j)th bit where j ∈ [1, U ], is set to a random number
ε(j). And the (n + U + 1)th bit is set as 1. Then, call the algorithm T ←
BuildTree(F ) to construct a index tree. Next, the index vector pi on each
node of the tree is split into two random vectors {pi

′
, pi

′′} by the secret vector
S for splitting. Namely, if S[j] = 0, we set pi

′
[j] = pi

′′
[j] = pi[j]; if S[j] = 1,

we set pi
′
[j] and pi

′′
[j] as random numbers and pi

′
[j] + pi

′′
[j] = pi[j]. The

index is encrypted as Ii = {MT
1 pi

′
,MT

2 pi
′′}.

– TD ← Trapdoor(Q,SK). The data user generates a n bit index vector for
the search query Q, in which each dimensions are set to the IDFwi

of the
keywords wi, and for other keywords, Q[i] = 0. Then, the query vector is
extended to (n + U + 1)-bit vector q. Choose a random number v out of U ,
the v random positions in [n, n + U ] are set to 1, others are set to 0. And
the (n + U + 1)th bit is set to a random number t(t ∈ [0, 1]). Scale the first
n+U -bit, denoted as Q

′
, by a random number r, then the query q = (rQ

′
, t).

Next, the query vector q is split into two random vectors {q
′
, q

′′} by the
secret vector S for splitting. Namely, if S[j] = 1, we set q

′
[j] = q

′′
[j] = q[j];

if S[j] = 0, we set q
′
[j] and q

′′
[j] as random numbers and q

′
[j] + q

′′
[j] = q[j].

Then, the trapdoor is encrypted as TD = {M−1
1 q

′
,M−1

2 q
′′}.

– R ← Search(I, TD). This algorithm uses indexes and trapdoor to calculate
the similarity to get the top-k research results, showed in Algorithm 2. After
receiving the trapdoor TD from the data user, the cloud server calculates the
relevance score between TD and the index vector stored in each node to get
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the top k relevant results. The relevance score is calculated as:

S = Ii · TD

= (MT
1 pi

′
) · (M−1

1 q
′
) + (MT

2 pi
′′
) · (M−1

2 q
′′
)

= pi
′ · q

′
+ pi

′′ · q
′′

= pi · q

(4)

– PR ← Dec(R, sk). The data user uses the secret key sk transmitted from the
data owner by a secret channel to decrypt the secret results R and get the
plaintext results PR.

4.2 Result Verification

Algorithm 3. hash tree construction

1: for each leaf node do
2: u.h = hash(u.ID||Φ(fi)) // Φ(fi) means the content of the document.
3: end for
4: for each nonleaf node do
5: u.h = hash(u.ID||hpl

||hpr
)

6: if the node is root node then // signature
7: σr = Sign(u.h||ts) // ts is the timestamp
8: end if
9: end for

Algorithm 4. minimum hash sub-tree

Input: returned results R, index tree T
Output: minimum hash sub-tree mintree
1: for each node u in R do
2: insert u into mintree
3: while u is not root node do
4: insert u’s father node and u’s brother node into mintree
5: u = u.parent
6: end while
7: end for
8: return mintree

Algorithm 5. Verify

Input: minimum hash sub-tree mintree, returned results R
1: if the signature of root node is true then // freshness and authentic
2: if verification of each node in mintree is true then // authentic
3: recompute the hash value of nodes in R
4: if the value after recomputing = the value in mintree then
5: re-search the mintree using the same trapdoor // correctness
6: if the re-search result = R then // correctness and completeness
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7: return True
8: end if
9: end if

10: end if
11: end if

We refer to the Merkle tree to design our verification scheme. The data owner
construct the hash tree based on the index tree using Algorithm3. For example,
in Fig. 2, the hash value of leaf node f1 is hash(f1.ID||Φ(f1)), and the non-leaf
node r11.h = hash(f1.h||f2.h) and the root node r.h = hash(r21.h||r22.h). And
generate the signature of the root node by signature algorithm like RSA signa-
ture algorithm. Then cloud server will return necessary proof for verification with
the results. The proof includes the signature of the root node σr and the mini-
mum hash sub-tree mintree generated by Algorithm 4. In Fig. 2, if the returned
result is f2, the proof is (σr, f2, r11, r21, r, f1, r12, r22). After receiving the proof
and results, data user verifies the results to be completeness, correctness and
freshness by Algorithm 5.

4.3 Dynamic Update

Since the data stored at the cloud server may be deleted and modified, new
documents may be added, the scheme should support dynamic update. There are
two aspects should be take into consideration. One is the keywords dictionary.
This can be settled by keeping some blank space in the document vector in
advance. We have a premiss that the dictionary is relatively fixed and with
small increments. Therefore, this process can satisfy most of the situations and
the overhead is relatively low.

The other is the update of file collection which will influence both the
encrypted index tree and the encrypted file collection. The data owner preserves
a plaintext index tree locally, and generates sufficient information for updating
in an encrypted way showed in Algorithm6. Enlightened by the minimum hash
sub-tree, we will neither need to re-construct whole encrypted index tree nor to
proceed BuildIndex on whole tree, which will reduce the efficiency since this
algorithm contains many matrix operation.

Algorithm 6. Update proof

Input: the update file fupd

1: flag = {insert, delete,modify}
2: encrypt the file fupd to cupd

3: if flag = insert then
4: insert the cupd into the leaf nodes
5: end if
6: if flag = delete then
7: search and set the node of cupd to null
8: end if
9: if flag = modify then
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10: search and update the node of cupd

11: end if
12: re-build a new index tree
13: construct minimum sub-tree tupd for cupd by Algorithm 4
14: return {tupd, f lag, cupd}

After receiving the information for updating, the cloud server use the infor-
mation uupd to update the corresponding nodes in the index tree and document
cupd to update the file collection. This process is showed below.

Algorithm 7. Update

Input: updated file cupd, sub-tree tupd, update operation flag
1: if flag = insert then
2: insert the cupd into the Collection C
3: end if
4: if flag = delete then
5: search and delete the document
6: end if
7: if flag = modify then
8: search and replace the document to cupd

9: end if
10: replace corresponding nodes in T to tupd

5 Performance Analysis

In order to estimate the performance, we implement the scheme on real data
set using C# language on a Windows 7 server with Inter(R) Core(TM) i5-6500
3.20 GHz.

For ease of experiment, we choose the formatted paper set as our study object
for they have typically fixed format such as title, abstract, body, conclusion and
preferences. The data set contains 4529 papers with 2964 keywords. We refer to
the parameter setting under the plaintext in other works and set the parameter as
shown in Table 2. We analyze our scheme from precision, security and efficiency.

Table 2. The parameter in data labelling.

γ0 0.45 Title

γ1 0.35 Abstract

γ2 0.1 Body

γ3 0.07 Conclusion

γ4 0.03 References
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5.1 Precision

Precision is the fraction of real retrieved documents among all the returned
document. Since the similarity score of a document will be greatly influenced
and randomized, the process will produce false positive results and reduce the
precision of the results. The precision is defined as: Precision = k

′
/k, where k

′
is

the number of real documents and k is the number of returned top-k documents.
The results are shown in Fig. 3.

Fig. 3. The precision of search.

5.2 Security Analysis

Known Ciphertext Model. In this model, the cloud server can only obtain
the encrypted document and encrypted index. The adversary distinguishes two
documents mainly depending on the index generation I ← BuildIndex(F, SK)
and document encryption C ← Enc(F, sk). The document vector is (n + U + 1)-
bit. The first n-bit are the weight of the keywords. The U -bit are randomly
chosen, and the last bit is set to 1.

For index generation, the documents are first split into two vectors and the
number is set randomly if the number in S is “1”. Assume the number of “1”
in first n-bit and the last bit is μ1 and each dimension of F is ηf , there are
(2ηf )μ ·(2ηf )U possible values. Then the two vector are encrypted by two random
(n + U + 1) × (n + U + 1)-bit matrixes. Assume each elements in matrixes is
ηM -bit, there are (2ηM )(n+U+1)2×2 possible values for two matrixes. Thus the
probability that indexes of two document are the same can be computed as
follows:

Pd =
1

(2ηf )μ1 · (2ηf )U · (2ηM )(n+U+1)2×2

=
1

2μ1ηf+Uηf+2ηM (n+U+1)2

(5)

The larger μ1, U , ηf and ηM are, the more difficult to distinguish. If we choose
ηf = 1024, Pd < 1/21024 can be negligible. As a result, the encrypted indexes
are indistinguishable.
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For document encryption, since we choose the symmetric encryption with
semantic secure, the encrypted documents are secure against known ciphertext
model.

Known Background Model. In this model, the adversary can obtain some
statistical information to infer the keywords or any other information.

The trapdoor is a n + U + 1-bit vector. The first n-bit represents whether
the keyword exists in the query or not. U -bit dimension is included v out of U
bit “1” and the other bits are “0”. The last bit is set to a ηt-bit random number
t. First the vector is scaled by a ηr-bit random number r which have 2ηr possible
values. Then the vector is split into two vector by a (n + U + 1)-bit S with μ0

“0”. Assume each dimension in first (n + U)-bit is ηq bits, there are (2ηq )μ0 ·2ηt .
Then the two query vector are encrypted by two random matrixes. As a result
the probability that two trapdoors are the same is computed as follows:

Pq =
1

2ηr · 2ηt · (2ηq )μ0
(6)

It can be proved to be indistinguishable by setting large number of ηr, ηt, ηq

and μ0. For example, if ηr = 1024, Pq < 1/21024 and can be negligible.

Privacy

– Data privacy. Document collection is encrypted by a traditional symmetric
encryption algorithm like AES which has been proved to be semantically
secure.

– Index and trapdoor privacy. In our scheme, index I and trapdoor TD are
encrypted by secure kNN algorithm. And the dummy keywords, the vector
S for splitting and two matrixes M1,M2 for encrypting are all generated
randomly which hide the plaintext in each dimension. As long as the secret
key SK = {S,M1,M2} is kept confidential, the cloud server can not identify
the index or trapdoor by analyzing the ciphertext. It has been proved to be
secure in the known ciphertext model [3].

– Query unlinkability. The random number r, t and v randomly chosen εi pro-
tect the search pattern and make the trapdoor indistinguishable even for the
same search query. And thus, the similarity score will be different for each
query and the cloud server cannot identify the relationship.

– keyword privacy. By introducing the random number εi in the index vector
to randomize the similarity score, the keyword privacy can be well protected
under known background model.

5.3 Efficiency Analysis

Index Construction. The index tree construction includes two process, build-
ing and encrypting by secure kNN algorithm. In building process, the tree is
generated by all the documents in collection. The complexity of building is lin-
ear to the number of document O(N). Since encrypting process includes a split
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Fig. 4. The time cost of index tree construction. (a) For the different number of doc-
uments in collection with the fixed keyword dictionary n = 1000. (b) For the different
number of keywords in dictionary with the fixed document collection N = 1000.

vector and two secret matrix, the complexity of encryption process depends
on the number of keyword dictionary O(n2). As a result, the time cost of index
construction is mainly influenced by the number of document collection and key-
word dictionary. The time cost are shown in Fig. 4. Since the process is one-time
computation on the data owner, the time cost is acceptable.

Trapdoor Generation. The complexity of trapdoor generation depends on the
split vector and secret matrix. Thus the complexity is related to the number of
keyword dictionary O(n2). And the number of keyword query has little influence
of the time cost. The time cost is shown in Fig. 5.

Search. The search process can be briefly summarized as the product of each
tree node and query vector. Thus the complexity of search mainly depends on
the number of tree nodes and the number of keyword in dictionary. Actually,
we don’t need to compute the similarity score for every nodes. Based on the
tree structure, we can compare the similarity score of nonleaf node with the
threshold and eliminate the nodes which will apparently not be included in the
final results. The time cost is shown in Fig. 6.

Fig. 5. The time cost of trapdoor generation. (a) For the different number of keywords
in dictionary with the fixed keywords in query m = 5. (b) For the different number of
keywords in query with the fixed keyword dictionary n = 500.
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Fig. 6. The time cost of search. (a) For the different number of documents in collection
with n = 500, m = 5 and k = 20. (b) For the different number of keywords in dictionary
with N = 1000, m = 5 and k = 20. (c) For the different number of keywords in query
with N = 1000, n = 500 and k = 20. (d) For the different number of return documents
with N = 1000, m = 5 and n = 500.

6 Conclusion and Future Work

In this paper, we present a privacy-preserving, efficient ranked multi-keyword
search scheme. We first focus on the formatted data set such as paper, project
plan and so on. So that the keyword location and document length are introduced
into the computation of TF value in our search scheme. A tree structure for index
is designed to improve the efficiency of search. And we extend the functionality to
implement verification and dynamic update. We give an analysis of the security
against two threat model and apply our scheme on real paper set to analyze the
performance (Table 3).

Table 3. The comparison among our scheme and related work.

Scheme Verifiability Dynamism Construction TF× IDF

Our paper
√ √

Binary tree Location & length

[22] × √
KBB-tree Tradition

[6] × × MDB-tree & interest model Tradition

[17]
√ × MDB-tree Tradition
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This work still have further improvements. Inspired by Li et al. [13], the
query can be extended to support operations with “AND”, “OR”, “NOT” by
well designed parameters. And we can extend the scheme to support semantic-
based sentence query. Furthermore, the nodes in the tree can be well designed
such as clustering and partition to have a much better efficiency improvement.
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