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Abstract. This paper presents a music generation method based on
the extraction of a semiotic structure from a template piece followed by
generation into this semiotic structure using a statistical model of a cor-
pus. To describe the semiotic structure of a template piece, a pattern
discovery method is applied, covering the template piece with signifi-
cant patterns using melodic viewpoints at varying levels of abstraction.
Melodies are generated into this structure using a stochastic optimiza-
tion method. A selection of melodies was performed in a public concert,
and audience evaluation results show that the method generates good
coherent melodies.

1 Introduction

In recent years the topic of computational music generation has experienced
a dynamic renewal of interest, though automation of music composition has
intrigued people for hundreds of years. Even before the age of computers the idea
of automatic music composition existed. A classical example of the automatic
composition idea is the Musikalisches Würfelspiel or musical dice game, like the
one published in 1792 that was attributed to Mozart [16].

Statistical models of symbolic music have been prevalent in computational
modelling of musical style, since they can easily capture local musical features by
training on large corpora rather than hand coding of stylistic rules [1,7,12,15].
The lasting impact of statistical models on the topic of music generation spans
from the earliest Markov models [5] to new variants of statistical models based
on deep learning [4] and grammatical methods [21].

An issue faced by all methods for music generation is the coherence problem:
ensuring that music material repeats or recalls in a more abstract sense material
presented earlier in the piece. Nearly all forms of music involve repetition [18],
either at the surface or deeper structural levels, and repetition imparts meaning
to music [19]. Though early knowledge-based methods [13] explicitly considered
repetition, the problem of achieving coherence in music generated from machine
learning models remains largely unsolved.

A natural way to describe the coherence of a piece of music is by construct-
ing a semiotic structure, defined as a representation of similar segments by a
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limited set of arbitrary symbols, each symbol representing an equivalence class
of segments [3]. A key observation is that a semiotic structure can be “inverted”,
generating new music by instantiating the symbols and retaining the abstract
equivalence structure though having completely new music material [9]. The pro-
cedure can therefore be seen as generation by transformation: retaining abstract
aspects of a template piece while modifying specific material.

Progress on the coherence problem was made recently in the music genera-
tion method of Collins et al. [6], where similar segments are identified by pat-
terns indicating transposed repetitions in Chopin mazurkas. These “geometric”
patterns are only suitable for carefully selected examples, because repetition in
music need not be restricted to rigid transpositions. Consider, as an illustration,
the simple melodic fragment of Fig. 1. Though the two indicated phrases are
clearly related, apparent in the score and to any listener, this is not by shar-
ing an interval sequence, but rather an abstract contour sequence. The method
described in this paper is able to naturally handle such musical phenomena with
heterogeneous patterns discovered automatically using various viewpoints.

Fig. 1. First two phrases of the melody Begiztatua nuen (http://bdb.bertsozale.eus/en/
web/doinutegia/view/137-begiztatua-nuen-euskaldun-makila). The two phrases are
related by an abstract melodic contour relation and there is no transposition that
carries one into the other.

The style chosen to model is the folk style of bertsos. These are improvised
Basque songs, sung by bertsolaris, that respect various melodic and rhyming pat-
terns and have fixed rhythmic structures. They can be classified into traditional
folk melodies, new melodies, and melodies that are specifically composed. Bertso
melodies usually have repeated and similar phrases, making them a challenge for
statistical models and a good style for exploring the coherence problem. In this
paper rhythmic aspects are conserved, so that generated melodies can be used
with lyrics created for the original melody.

The corpus used for this study is the Bertso Doinutegia, a collection of bertso
melodies compiled by Joanito Dorronsoro and published for the first time in 1995
[14]. It currently contains 2379 melodies and is maintained and updated every
year by Xenpelar Dokumentazio Zentroa1 with new melodies that were used in
competitions and exhibitions. Scores in the collection were encoded in Finale
and exported to MIDI. Metadata associated with each song includes the melody
name, the name or type of the strophe, type of the melody, composer, bertsolari
who has used it, name and location of the person who has collected the melody,
1 http://bdb.bertsozale.eus/es/.

http://bdb.bertsozale.eus/en/web/doinutegia/view/137-begiztatua-nuen-euskaldun-makila
http://bdb.bertsozale.eus/en/web/doinutegia/view/137-begiztatua-nuen-euskaldun-makila
http://bdb.bertsozale.eus/es/
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and year of the collection. Some of the melodies in the collection have links to
recordings of exhibitions or competitions where those melodies were used.

2 Methods

The transformation process presented in this paper has five main components:
viewpoint representation; pattern discovery applied to a template piece to iden-
tify similar segments; pattern ranking and covering to form the semiotic struc-
ture; statistical model construction; and generation from the statistical model.

2.1 Viewpoint Representation

To describe the template piece on different levels of abstraction a multiple view-
point representation [9,12] is used. A viewpoint τ is a function that maps an
event sequence e1, . . . , e� to a more abstract derived sequence τ(e1), . . . , τ(e�),
comprising elements in the codomain of the function τ .

Table 1. Viewpoints used in this study.

Viewpoint Codomain

pitch {50, 52, 53, . . . , 83}
dur {1, 2, 3, . . .}
onset {0, 1, 2, . . .}
intpc {0, . . . , 11}
int {−14,−12,−11, . . . , 14, 15, 17}
3pc {d, eq, u}
5pc {ld, sd, eq, su, lu}
d3pc {d, eq, u}

Table 1 presents five melodic viewpoints pitch, int, intpc, 3pc and 5pc, and
three rhythmic viewpoints dur, onset, and d3pc. The viewpoint pitch represents
the MIDI number of each event; the viewpoint int computes the interval between
an event and the preceding one; the viewpoint intpc computes the pitch class
interval (interval modulo 12) between an event and the previous one. The three-
point contour viewpoint 3pc computes the melodic contour between two events:
upward (u), downward (d) or equal (eq); and the five-point contour viewpoint
5pc computes whether the contour between two contiguous events is more than
a scale step down (ld), is one scale step down (sd), is more than a scale step
up (lu), is one scale step up (su), or stays equal (eq). The three-point duration
contour viewpoint d3pc computes if the duration of a note is shorter (d) than
the previous one, longer (u) or equal (eq). The viewpoint representation of an
example segment, using several viewpoints of Table 1, is shown in Fig. 2.
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Fig. 2. A fragment from the melody Abiatu da bere bidean (http://bdb.bertsozale.
eus/en/web/doinutegia/view/2627-abiatu-da-bere-bidean) and its viewpoint represen-
tation. Two patterns are highlighted.

To represent the interaction between melodic and rhythmic viewpoints,
melodic viewpoints are linked with the rhythmic viewpoint d3pc. A linked view-
point τ1 ⊗ τ2 represents events as pairs of values from its constituent viewpoints
τ1 and τ2. Each new linked viewpoint is used to represent the template piece
independently; using the four melodic viewpoints of Table 1 we get four different
linked viewpoints: pitch ⊗ d3pc, intpc ⊗ d3pc, 3pc ⊗ d3pc, and 5pc ⊗ d3pc. An
example representation of one of these (5pc ⊗ d3pc) can be seen in Fig. 2. To
establish the semiotic structure, pattern discovery is performed on the template
piece for each linked viewpoint independently.

2.2 Patterns and Semiotic Structure

To construct a semiotic structure of a template piece it is necessary to identify
interesting repeated patterns which provide a dense covering of the template
piece. Patterns are defined as sequences of event features described using view-
points, and an event sequence instantiates a pattern if the components of the
pattern are instantiated by successive events in the sequence. More precisely, a
pattern of length m is a structure τ:(v1, . . . , vm), where τ is a viewpoint and the
vi are elements of the codomain of τ . For example, in Fig. 2 two simple patterns,
each instantiated twice, are highlighted; 3pc:(u, d) and d3pc:(d, eq, u, eq).

Patterns in a template piece can be found by applying a sequential pattern
discovery method [2,8] to each viewpoint representation of the template piece,
identifying all patterns occurring more than once. This resulting list is then
sorted according to an interestingness measure of patterns, and the ones that
will form the coherence structure are chosen using a covering algorithm. These
steps are described in the remainder of this section.

Pattern Distinctiveness and Ranking. Pattern interestingness is very
important: in a given piece many patterns may exist but not all patterns are
statistically or perceptually significant to a listener. For example, the 3pc pat-
tern shown in Fig. 2 would likely be instantiated many times in any template

http://bdb.bertsozale.eus/en/web/doinutegia/view/2627-abiatu-da-bere-bidean
http://bdb.bertsozale.eus/en/web/doinutegia/view/2627-abiatu-da-bere-bidean
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piece, but its occurrences (simply three notes with an up-down contour motion)
are probably not structurally related or distinctive to the template piece, while
the d3pc pattern is more interesting. In order to build a good semiotic structure
of the template piece, distinctive and interesting repetitions can be identified
using a statistical method which provides the probability of seeing an indicated
pattern at least the observed number of times in a template piece. Then a pattern
is interesting if it occurs more frequently than expected. This is a standard model
for assessing discovered motifs in music informatics [11] and bioinformatics [17].

More precisely, we derive a function I measuring the interest of a pattern.
First, we note that the background probability p of finding a pattern P = τ :
(v1, . . . , vm) in a segment of exactly m events can be computed using a zero-order
model of the corpus:

p =
m∏

i=1

c(vi)
c

,

where c(vi) is the total number of occurrences of vi (for viewpoint τ) in the
corpus, and c is the total number of places in the corpus where the viewpoint τ is
defined. Then the binomial distribution B

(
k;n, p

)
gives the probability of finding

the pattern exactly k times in n events, and therefore interest of the pattern
increases with the negative log probability of finding k or more occurrences of
the pattern in a template piece:

I(P ) = − lnB≥
(
k;n, p

)
, (1)

where B≥ is the upper tail of the binomial distribution, with n = �−m+1 being
the maximum number of positions where the pattern could possibly occur in the
template piece.

Template Covering. Following pattern discovery, the template piece is covered
by patterns, trying to use the most interesting patterns but also striving for a
dense covering. Though finding a covering jointly optimal in those requirements
is intractable, a greedy method can be used to rapidly find a reasonable semiotic
structure. In the greedy covering method used in this study, discovered patterns
are sorted from most to least interesting using Eq. 1, then this sorted list is
processed to choose the patterns that fit into the positions of the template piece
that have not yet been covered by any pattern, not allowing overlap between
pattern instances.

Example. Figure 3 shows the pattern structure of the template Erletxoak
lorean2 after the covering process is shown, with patterns represented by the
viewpoints pitch ⊗ d3pc and 3pc ⊗ d3pc. Above each pattern is the viewpoint
name, the pattern label, and the I value in brackets.

2 http://bdb.bertsozale.eus/en/web/doinutegia/view/241-erletxoak-lorean-orain-
kantatuko-det-ii.

http://bdb.bertsozale.eus/en/web/doinutegia/view/241-erletxoak-lorean-orain-kantatuko-det-ii
http://bdb.bertsozale.eus/en/web/doinutegia/view/241-erletxoak-lorean-orain-kantatuko-det-ii
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The template is a short piece with four phrases, having two sections in an
overall ABA′B structure. The music is syllabic with each phrase having 13 notes,
in the key of Gm, briefly visiting B�M in the third phrase (established at the high
F�). The B phrase is perfectly captured by a discovered pitch pattern, and though
a few notes at the beginning of A and A′ have not been covered by patterns,
the discovered three-point contour pattern successfully captures the similarity
between the second and fourth phrases. Note that there is no rigid transposition
that relates these two phrases, but they have similar melodic contours that are
related by more abstract viewpoint patterns.

Fig. 3. Schema of a semiotic structure for the template piece Erletxoak lorean.

2.3 Statistical Model

The semiotic structure defines the structural coherence within the template piece
that will be conserved. To generate into the structure, surface material is gener-
ated using a statistical model of the bertso corpus. In this work a trigram statis-
tical model is built from a corpus to generate musical material into a template
described by a semiotic structure. The exact probability of a piece using a trigram
viewpoint model can be computed as described in [9]. Letting vi = τ(ei|ei−1) be
the viewpoint τ value of event ei in the context of its preceding event ei−1, the
probability of a piece e = e1, . . . , e� is computed as:

P(e) =
�∏

i=3

P(vi|vi−1, vi−2) × P(ei|vi, ei−1). (2)

To elaborate, the product of all features in the sequence according to a trigram
model is represented by the first term. Trigram probabilities of the viewpoint τ
are computed from the entire corpus. The second term is the probability of the
particular event given the feature, defined as a uniform distribution over events
having the property vi:

P(ei|vi, ei−1) = |{x ∈ ξ : τ(x|ei−1) = vi}|−1,

where ξ is the set of possible pitches (see Table 1).
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The model above can be applied for any viewpoint. To select a viewpoint for
modelling stylistic aspects of the bertso corpus in this study, every melodic view-
point presented in Sect. 2.1 was evaluated with leave-one-out cross validation.
Probabilities of every piece, according to Eq. 2, were computed. Applied to the
entire corpus of 2379 melodies, the product of all these probabilities gives a mea-
sure of the fit of the model to the corpus. The negative base-2 logarithm of this
product is called the cross-entropy and lower cross-entropies are preferred. Every
melodic viewpoint was tested, as were two linked melodic viewpoints intpc ⊗ 5pc
and intpc ⊗ 3pc. The results of this procedure are shown in Table 2, which shows
that the interval viewpoint int has the lowest cross-entropy on the corpus and is
a good viewpoint to use for generation.

Table 2. Cross-entropy of different viewpoints, determined by leave-one-out cross val-
idation on the corpus.

Viewpoint Trigram model

3pc 4.45

pitch 2.62

int 2.55

intpc 3.83

5pc 3.38

intpc ⊗ 5pc 2.71

intpc ⊗ 3pc 3.13

2.4 Generation

To generate new pieces, a semiotic structure is used along with the trigram
statistical model to generate new melodies. Generated sequences having high
probability are assumed to retain more aspects of the music style under con-
sideration than sequences with low probability. The process of optimization is
concerned with drawing high probability sequences from statistical models.

A stochastic hill climbing optimization method is used to obtain high proba-
bility melodies. The method starts with a random piece that respects the coher-
ence structure extracted from the template piece, using pitches from a pitch set
ξ′ that defines the admissible pitches for the generated piece. This set is typ-
ically the scale defined by the desired tonality of the generated piece and will
be a subset of the complete pitch domain ξ. This initial piece is created with
a left-to-right random walk, which samples a new note in every position of the
template, and every time a complete pattern is instantiated, all of the future
locations of the pattern are also instantiated, in this way conserving the original
relation between them. The piece is then iteratively modified: in each iteration
of the process a random location i in the current piece e is chosen. A pitch ei

is uniformly sampled from ξ′ and is substituted into that position, producing
a new piece e′ with an updated probability P(e′). If P(e′) > P(e), then e′ is
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taken as the new current piece. Every time a position is changed, the pattern to
which that note belongs is identified, and all other instances of that pattern are
also updated. Thus at every iteration the generated piece conserves the semiotic
structure. The optimization process is iterated up to 104 times, and after each
update the probability of the new piece is computed using Eq. 2. If the new
probability is higher than the last saved one the change is retained.

3 Results

To illustrate the generality of the method, new melodies are generated using two
different templates, and properties of generated melodies are discussed. For the
second template, two songs were performed and evaluated by an audience in a
live concert setting in a jazz club in London.

3.1 Illustration on a Full Piece

The template used is Erletxoak lorean, which was discussed earlier in Fig. 3.
The pitch vocabulary used is ξ′ = {66, 67, 69, 70, 72, 74, 75, 77} and two differ-
ent viewpoints were used for the statistical model (Eq. 2): 5pc and int. The
three transformations shown in Fig. 4 conserve the semiotic structure shown in
Fig. 3. The first transformation contains within the B phrase a leap down by a
diminished seventh, which though perhaps difficult to sing is interesting and is
resolved properly by a step up. The A and A′ phrases are somewhat reserved in
their ambitus, though A contains an interesting ascending broken triad. The sec-
ond transformation follows an overall smooth melodic contour and is a singable
melody with internal coherence. Its shortcoming might be identified within the
A′ phrase which has a non-idiomatic leap which further exposes an F� and F�
together in close proximity. This could be corrected by including another seg-
mental viewpoint to ensure that the scale of each phrase is internally coherent.
The final transformation of Fig. 4, generated with the int viewpoint as the sta-
tistical model, corrects to some extent the problems with excessive leaps of the
general 5pc model, but is confined to a rather small ambitus.

3.2 London Concert and Listener Evaluation

A small suite of pieces was performed live in a public concert named “Meet
the Computer Composer” at the Vortex Jazz Club in London on September 28,
2016. A bertso melody Txoriak eta txoriburuak was sung (by the first author
IG) along with two generations that used the original as a template. The full
scores of all three melodies can be seen in Fig. 5. Following the bertso tradition
of new lyrics to existing melodies, the three melodies were sung each with the
same new lyrics that were specially written for the concert.
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Fig. 4. Three transformations of the template piece Erletxoak lorean. Top: its semiotic
structure with the number of notes in each pattern and their I value. The first two
transformations use a 5pc statistical model and the bottom one uses an int model.

An audience questionnaire (Table 3, top) was given at the beginning of the
concert to all the members of the audience, where they would note which one
of the three melodies they thought was the original, and how confident they
were in their decision. A total of 52 questionnaires (from approximately 100 dis-
tributed) was returned. In Table 3 the results obtained from the questionnaires
can be seen. The majority (55%) of respondents incorrectly identified one of the
two transformations as the original piece, though the 44% identifying correctly
the original had overall higher confidence in their decision. Regarding transfor-
mation 1, it must be noted that this was the first of three pieces performed, and
the singer had not yet achieved perfect intonation: this no doubt affected the
lower (15%, with 37.5% not confident in their response) audience result for that
transformation.



486 I. Goienetxea and D. Conklin

Fig. 5. Three pieces performed at the London concert (http://bdb.bertsozale.eus/en/
web/doinutegia/view/1564-txoriak-eta-txoriburuak).

Table 3. Top: the audience questionnaire distributed at the London concert. Bottom:
results obtained. The original piece was the third melody sung.

Which piece is the original?

�1 �2 �3

How confident are you on a scale of 1 to 5? (1=not confident, 5=very confident)

�1 �2 �3 �4 �5

transformation 1 transformation 2 original

is original? 8 (15%) 21 (40%) 23 (44%)

confidence 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

% 37.5 50 0 12.5 0 38 28.6 23.8 4.8 4.8 26 23.8 23.8 23.8 8.7

http://bdb.bertsozale.eus/en/web/doinutegia/view/1564-txoriak-eta-txoriburuak
http://bdb.bertsozale.eus/en/web/doinutegia/view/1564-txoriak-eta-txoriburuak
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4 Conclusions and Future Work

In this paper a method for transforming bertso melodies conserving the internal
coherence of a template piece is presented. The basis of the method is a trigram
statistical model combined with the strong constraints provided by a semiotic
structure, which is identified using a sequential pattern discovery algorithm fol-
lowed by a pattern ranking and covering method. New musical content is created
using the statistical model which iteratively changes a template piece to improve
the final result.

The generation method presented in this paper extends the method of Collins
et al. [6] in some important ways. Not restricted to patterns conserving exact
intervals, the method here allows a heterogeneous semiotic structure comprising
a variety of abstract viewpoints. The generated pieces are not single random
walks from a model, rather some effort is made to generate high probability
solutions which are expected to be more stylistically valid. The method can be
extended to polyphony and some initial work in those directions has been com-
pleted for counterpoint generation in the style of Palestrina [20] and multilayer
textures in electronic dance music [10].
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