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Abstract. In constructive music theory, such as Schenkerian analysis
and the Generative Theory of Tonal Music (GTTM), the hierarchical
importance of pitch events is conveniently represented by a tree struc-
ture. Although a tree is easy to recognize and has high visibility, such an
intuitive representation can hardly be treated in mathematical formal-
ization. Especially in GTTM, the conjunction height of two branches is
often arbitrary, contrary to the notion of hierarchy. Since a tree is a kind
of graph, and a graph is often represented by a matrix, we show the linear
algebraic representation of trees, specifying conjunction heights. There-
after, we explain the ‘reachability’ between pitch events (corresponding
to information about reduction) by the multiplication of matrices. In
addition we discuss multiplication with vectors representing a sequence
of harmonic functions, and suggest the notion of stability. Finally, we
discuss operations between matrices to model compositional processes
with simple algebraic operations.
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1 Introduction

Schenkerian analysis suggested a layered structural importance of pitch events
and showed the existence of an innate skeleton of music in a hierarchical way.
As a more modern theory of this structural hierarchy, the Generative Theory of
Tonal Music (GTTM) [5] aims at constructing two kinds of tree: Time-span tree
and Prolongational tree, and the deriving process has been automated [1,7].

The time-span tree in Fig. 1 shows that the C' is more salient than the suc-
ceeding F and F'f, but surrenders to the final event G. Such a tree is roughly
represented by a sequence

(CH(ETFY)) (DG
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Fig. 1. Time-span tree.

where the parentheses mean a bifurcation and the dagger ‘f’ specifies the choice
of the more salient branch between the two. Thus, the formula corresponds to
the tree in Fig. 1. But, this representation with parentheses and daggers lacks
information on the duration of pitch events.

Even when we add the information on duration for each pitch event, the tree
cannot be fixed uniquely, as there remains the arbitrariness as to the height of
junction point of branches. Matsubara et al. [8,10] have tried to fix the junction
height, regarding the number of beats, e.g., 2" beats < L™ < 2"*! beats (Fig. 2),
however, when they tried to include cadential retention the height still remained
ambiguous.

Fig. 2. Junction height by the number of beats [8].

We have proposed the notion of Maximum Time-span (MTS) of each pitch
event, as the longest temporal interval during which the event is most salient
[2,11]. If a pitch event does not have branching, i.e., there is no more subordinate
pitch event and is a leaf of the tree, its MTS is the original pitch length. At the
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other extreme, the MTS of the event that reaches the top of the tree is the whole
length of the music piece. Here, we can write the MTS of Fig. 1 as in Fig. 3.

Fif s—

Fig. 3. MTS for the tree.

We can naively represent the tree in a matrix as in Fig. 4, left-hand side,
where a pitch event in the column is connected to the one in each row with
the height indicated by the matrix cell value. Or, the height is relativized if
we regard the entire height should be 1, as in the right-hand side of the figure.
(We arbitrarily show the top event to be connected to itself. This allows the
maximum time-span for each pitch event to be read from the row of that pitch
event. This choice is justified further in the representation explained in Sect. 2.)

C E Ft D G ¢ FE Ft D G
(o 0 0 0 0 2 c 0 0 0 0 1/2
E 1 0 0 0 O E |1/4 0 0O 0 0
Fgl o 5 0 0 O Ft 0 1/8 0 0 0
D 0 0 0 0 1 D 0 0 0 0 1/4
G 0O 0 0 0 4 G 0 0 0 0 1

Fig. 4. Height information by MTS and its relative representation.

But, these matrices in Fig.4 do not possess sufficient non-zero diagonal ele-
ments, i.e., their rank is lower than their size, and are not regular; that is, the
matrices are not algebraically tractable. In this paper, we revise the above rep-
resentation and propose a musically meaningful matrix. In the following Sect. 2,
we formally define a matrix for a music piece. In Sect.3 we also introduce the
multiplication by a vector of harmonic functions and in that process we discuss
the notion of stability of a tree. In Sect.4 we discuss the meaning of multipli-
cation of matrices. In Sect.5 we summarize our contribution and discuss the
future direction, especially for new arrangement/composition methods by alge-
braic operations.

2 Tree Representation

In this section, we formally define the numeric values of matrices. If two consec-
utive pitch events have the durations d; and ds, and the first one is more salient
than the second (i.e., more fundamental in the melodic structure, in the sense
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Fig. 5. Relation between branch length and MTS.

used by Lehrdahl and Jackendoff [5]), the MTS would be mts; = d; + da and
mtso = do. This situation is depicted in Fig. 5.

In Fig. 5, each branch length, that is [; and ls, is proportional to its MTS
though the angles versus the horizontal line are not fixed and thus arbitrary.
Nevertheless, notice that the junction height correctly reflects the relation of
the lengths of two branches when they are mapped to a hypothetical vertical
axis. The matrix below each figure in Fig.5 represents the tree configuration.
For example, the (2,1)-element of the left matrix shows that the second pitch
event (e2) is connected to the first (e;) with the height relative to I3 — 5.

Let the above be the base case of recursive construction of a tree. Then, given
two subtrees in matrices M7 and My we consider to connect them in one tree, as
follows. First, there are the most salient pitch events p; and p; in M; and M,
respectively, and let their branch lengths be [; and ;. The whole tree, consisting
of the two subtrees, becomes such a disjoint union of matrices:

.'lj

If p; is more salient than p;, the branch lengths for p; would be added to [;
as l} = l; +1;. Thus, we revise the new matrix as in the left-hand side of Fig. 6.
In the case p; is more salient than p; the revision would be l} =l;+1; and all [;
are replaced with [; as in the right-hand side of Fig. 6.

Example. Let a sequence of two pitch events p; and ps be connected by right
branching, with the branch lengths of [; and ls, respectively. Also, let p3 and py
be connected by left branching and have the lengths of I3 and I, respectively.
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Fig. 6. The result of combining two subtrees by left branching (left) and right branching
(right).

L 0lo o i 0 0 li—0h
li—Ilsl |0 0 li—1o I 0 0

0 0|l3 la—1Is 0 0 I3 la—1Is

0 0|0 I 0 0 0 I

Fig. 7. Example of disjoint union.

Then, the initial disjoint union becomes the left-hand side of Fig. 7. Now suppose
py4 is more salient than p;. Then, the top of the tree becomes left branching, and
thus Iy = Iy + Iy appears at (1,4)-position, and remaining I, are all replaced
with 4, as in the right-hand side of Fig. 7. (This is equivalent to adding I; to all
the existing non-zero elements in the column for py.) Note that the adequacy of
(1,4)-element is justified as in Fig. 8. O

3 Reachability and Harmonic Stability

3.1 Reachability

The matrix representation described above gives two kinds of information: the
branching of the tree (i.e., which time-spans are connected to which ones, and
which is the dominating time-span); and the height of the branching in relation
to the durations of the time-spans. In this section, we are concerned only with
the connections and since this information is conveyed by whether a value is 0
or not, we simplify here by using only the values 0 and 1 in the matrix. We call
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Fig. 8. Relation between four branches.

this a topology matriz derived from the tree representation. For example, let
p; (i=1,...,n) be a sequence of the pitch events of a given piece, and then the
topology corresponds to the tree in Fig. 1 is shown as follows.

b1 D2 P3 P4 D5

m/1 0 0 0 1
m|l1 1 0 0 o0
M=ps| 0 1 1 0 0
|0 0 0 1 1
ps\0 0 0 0 1

In the above matrix, the i-th row represents the connections from the i-th pitch
event, e.g., the second pitch event py is attached to p; ((2,1)-element) as well
as po itself ((2,2)-element).

The reduction hypothesis in GTTM is the idea that we can retrieve the fun-
damental structure of a given piece of music, pruning those non-salient branches
from the time-span tree; such pruning process is called reduction and the lineage
of reduced trees is called reduction path. Our objective is to represent not just
the connections in the matrix, but the entire reduction path for pitch events. We
now consider how the reduction path for pitch events can be represented and

used in a matrix.
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In matrix M = (¢;;), ¢;; > 0 and ¢ > 0 where ¢ < j < k imply that p;
is connected to p; and p; is connected to p,. Thus, p; can reach p; via p; by
two steps, or equivalently, p; is reduced to p; and then to p;. We can represent
these remote connections explicitly in the matrix through multiplication of the
matrix by itself. To ensure that the resultant matrix is also a topology matrix,
using only the values 0 and 1, we use Boolean addition for ‘4’ (14+1 = 1) in
the matrix multiplication. For example, the following M? indicates the reachable
pitch events within 2 steps in M ; the squared-1’s mean the elements appear after
the multiplication.

10001\ 2 1000 1

11000 1100[1]

M?>=101100]| ={[1]110 0
00011 00011
00001 0000 1

The reachability of all pitch events is shown by M = M* where for length
n for the given piece k (< n) is the height of the tree, i.e., the number of the
maximum branching from the top node to a leaf, and M*+D = M* In our
current example, M = M3 since M3 = M 4. as follows

1000 1
1100 1

M*=11110[1]].
0001 1
0000 1

In a reachability matrix, the i-th row shows all the transitively accessible
pitch events from the i-th pitch event. In M3, the third pitch event ps can,
besides reaching ps itself, reach p; ((3,1)-element), ps ((3,2)-element), and ps
((3,5)-element), which are all the events above p3 in the reduction process. On
the contrary, a column indicates all the dominated pitch events. the first column
vector (1,1,1,0,0) of M? means that p; is reached from py and p3 as well as p;
itself. In other words, p; dominates (is more salient than) ps and ps.

3.2 Harmonic Stability

The reachability can help to distinguish ‘stable’ from ‘unstable’ configurations in
a prolongational tree, though stableness has not been clearly defined in Lerdahl

and Jackendoff’s theory. We illustrate this through a discussion of two cases from
GTTM.

Mozart K.331. In Fig. 9, the first part of the theme of the first movement of
Mozart’s piano sonata in A Major K.331, is shown.

In Lerdahl and Jackendoff’s time-span reduction, the V at the end of the first
phrase is connected to the opening I and the I at the beginning of the second
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Fig. 9. The theme of K.331 [5, p. 141].

phrase is connected to the closing cadence. In outline, the matrix representation
of this is as follows.

b - Vy Iy - VI

vii\io ... e 1

Lerdahl and Jackendoff consider the options for converting this time-span
tree into a prolongational tree, as illustrated in Fig.10. The central dominant
may be attached to the cadence or the central tonic may be attached to the
beginning tonic. Lerdahl and Jackendoff claim that the second is the better
option. While the reasons are musically clear, they are not rigorously defined.

Here, we discuss the notion of reachable harmonic function. Each tonic and
dominant in a piece of music is considered to play an important role in con-
structing a stable music structure. From the reachability matrix, we can find the
sequence of harmonic functions which make up the reduction path to each pitch
event. We propose that the more these sequences resemble complete and stable
harmonic sequences, such as I V I, the more stable the overall structure is. For
example, we can find harmonic functions in Fig. 9 as

(Ila"' 7V1712a"' 7V'I)'

If we multiply this vector by a reachability matrix, we can find which I's and V’s
reach which other I’s and V’s. In the matrix-vector multiplication, we take ‘4’
to concatenate harmonic functions into harmonic sequences, indicating which
other harmonic functions are reachable.

Below, we show the three reachability matrices for the K.331 example,
and their multiplication by the appropriate vector of harmonic functions. (1)
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Fig. 10. Stability comparison in K.331 by Mozart [5, p. 141, 223].
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corresponds to the time-span tree, (2) to the case where the central tonic is
attached to the initial tonic, and (3) where the central dominant is attached to

the cadence.
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Iy AN V-l Iy AN V-l Iy AN V-l

Fig. 11. All the possible prolongational trees of K.331; left (1), mid (2), and right (3).

All three prolongational trees are shown in Fig. 11.

The two central harmonic sequences in the resultant vector change with the
changed branching. The branching which Lerdahl and Jackendoff reject for the
prolongational tree (3) produces a sequence which begins with the dominant V7,
which is less stable than one beginning with the tonic I5. The preferred branching
(2) is the same as the result for the time-span tree except that the tonic which
starts both middle sequences is the initial tonic Iy, putting all the main pitch
events of the theme in the context of the overall motion from the initial to the
final tonic (I; to V-I).

==&

Fig. 12. The time-span tree of St. Anthony Chorale, register simplified [5, p. 205], with
red lines indicating the branches in the prolongational tree which are different from
the time-span tree.

St. Anthony’s Chorale. In their introduction to prolongational reduction,
Lerdahl and Jackendoff present both time-span and prolongational trees for
the theme of Brahms’ variations on the ‘St. Anthony Chorale’ [5, pp. 203-210)
(Fig. 12). We have represented both these trees by matrices and calculated the
results of multiplying them by the vector of harmonic functions, according to
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our own analysis of the harmony. As examples, we show the results of matrix
calculations corresponding to the pitch events marked a—f in Fig. 12.

:ITIVIviIbecomesIIVI

:IIV VIbecomesIII
:VVIbecomes IV I
:VV;IVIbecomesIV VyI

: VIVS IVS V V I becomes I V IV§ IVS ii§ V I
: VIVS IS V VIbecomes IV I§ii§ VI

Q0 o

= O

There is not space to show the complete results here, so we report only
the significant differences. Of the 65 sequences in the complete resultant vector,
39 are different for the prolongational tree compared to the time-span tree.
The most common change (13 cases, including two with a further change) is in
sequences which, in the case of the time-span tree, began with V, corresponding
to the V after the double bar. Because this is attached to the initial tonic in the
prolongational tree, these sequences now begin with I. As discussed above, we
believe this may be an indicator of a more stable tree. The next most common
change is to replace instances of vi V I by just I (6 cases). The progression vi V is
allowed by some harmonic theories (e.g., [9]) but not by others (e.g. [4]), and in
any case it is not common, so this change too could be regarded as contributing
to greater stability. On the other hand, the next most common change (4 cases)
replaces vi V I by vi I, which is worse. In 4 other cases V is omitted from I V I
sequences to yield only repetitions of the tonic, which makes little difference to
stability. In 3 cases the progression vi I is replaced by just I, counterbalancing
the introduction of the questionable progression vi I in the cases referred to
previously. The remaining cases are smaller in number: replacing IV® V by IV
ii® V, which improves stability (2 cases); replacing vii® /V V I by vii’"/V I,
which is worse because the diminished seventh does not resolve regularly (2
cases); replacing IS V I by 1§ ii® V I, which is irregular (2 cases); adding IV
after 1 V7/IV, which is better because it gives the resolution of the applied
dominant seventh V7 /IV (2 cases); replacing I V§ by V IV$, which is neutral (1
case); and replacing I vi I by T V vi I, which is also neutral (1 case).

In summary, a majority of the changes in harmonic sequences in the result
of multiplying the reachability matrix of the preferred prolongational tree by
the vector of harmonic functions can be explained as producing a harmonically
more stable tree than the time-span tree in both of these examples. However,
the theory of what constitutes harmonic stability, especially in this context, is
not well developed and requires further research.

4 Discussion on Multiplication of Matrices

We now return to the matrix representation which gives information about the
height of branching also (i.e., matrices using not just 0 and 1) and consider
how this kind of matrix can be multiplied to produce a kind of reachability
matrix (i.e., one which gives information about the entire reduction path for
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pitch events) which preserves information about duration and branch height. In
the case of topology matrices discussed above, in order to preserve the property
that matrices contained only the values 0 and 1, we modified the normal matrix
multiplication operation to use Boolean addition. Similarly, in order to preserve
information about duration and branch height, it is necessary to modify matrix
multiplication in this case.

This can be achieved by defining the multiplication and addition operations
to be used in matrix multiplication as follows. For the elements of two matrices
A = (a;;) and B = (b;;), let a;; *b;; = min(a,j, bi;) and a;; @ b;; = max(a,;, bi;).
Obviously, these are commutative and associative. Since all the elements in the
matrices are equal to or larger than zero, xx0 =0, zxx =z, y®d 0 =1y, and

yoy=y.
Proposition 1. (zx (z—y))® (y * (x —y)) = x — y where z > y.

Proof. Sincex >z —y, z*x(z—y) =z —y. Mfor—y>ythenyx(z—y) =y
and thus (r —y) @y = ¢ — y. Otherwise, x —y < y, then y* (r —y) =z —y and
-y e-—y =z—-y O

This proposition shows that in the matrix representation of a fundamental
binary tree, either one of x and y is superordinate and the height information
becomes |z — y|.

Proposition 2. All the diagonal elements remain as the same values when a
matriz is multiplied by itself.

Proof. Let A = (a;;) and note that a;; > 0 (i # j) implies aj; = 0. Then

.. . . n
(i,4)-element in A2 is equal to ijl Qij * Q5 = Qi * Qi = Qg O

This multiplication gives information about reachability, as before. For exam-
ple, in the tree represented in the matrix below, the second pitch event can reach
the fourth, as non-zero (2,4)-element appears by the multiplication.

Lo 00 li—0\" L 00 -l
ll—lz l2 0 0 o ll—lz lg 0 (ll—lg)*(l4—ll)

0 0 l3l—Il3] —| 0 01 Iy — I

0 00 I 0 00 ly

However, it is not clear what the value min(l; — l3,l4 — l1), calculated by
the height times the height, means in musical terms. Also, while the result of
multiplying or repeatedly multiplying a matrix by itself is always a valid reach-
ability matrix, this is not true when multiplying two different matrices. We have
examined the base cases of right- and left-branching trees of two pitch events
with equal maximum time span of their heads. Multiplying two trees of this kind
which have the same branching results in a copy of the left multiplicand when
the duration of its first pitch event is less than or equal to the duration of the
first pitch event in the other tree, and in other cases by either a copy of the right
multiplicand or an invalid matrix which mixes elements from the two matrices,
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depending on the relation of the durations to each other and to the time-span
of the head. Multiplying matrices with different branching produces an invalid
matrix with non-zero values in all elements. A possible musical interpretation
is that the resultant matrices indicate a distribution of possible trees resulting
from the combination of the two multiplicands, but we have yet to investigate
this in detail.

5 Conclusion

In this paper, we proposed a linear algebraic representation for the tree structure
of music. The significance of this work is two-fold.

First, we have shown that the matrix uniquely fixes the configuration of
the tree. Thus far, time-span trees and prolongational trees in GTTM include
an ambiguity at conjunction heights of branches. We have revised the issue by
the notion of maximum time-span (MTS), and assumed that each branch has a
height relative to a virtual vertical axis in accordance with its MTS. We placed
each branch height at the diagonal element and the difference of the height of
two branches at the junction element in the matrix, and thus, trees have come
under the rigorous mathematical domain for algebraic operations [3].

Second, rewriting those elements in matrices by Boolean values, we have
defined the class of topology matrices which represent connectivity according
to graph theory. Multiplying a topology matrix with itself until saturated to
obtain the transitive closure results in a reachability matrix, which shows the
reachability from each leaf pitch event to other higher-level pitch events. When
we multiply the reachability matrix by a vector of harmonic functions, we arrive
at a representation of the harmonic functions which govern each pitch event in
the reduction.

We have applied this representation in an exploration of stability, hypoth-
esizing that more stable prolongational reductions have more typical harmonic
progressions in the sequence of harmonic functions which govern each pitch event.
Further work is required to more rigorously define what stability means and how
it can be calculated from a matrix and vector of harmonic functions. Prolonga-
tional trees are intended to represent tension and relaxation in right and left
branching, respectively, so theories of harmony and tonal pitch space [6] which
also include notions of distance from and to harmonies should be explored.

Future developments of our formalization are as follows. Our earlier works
concerned tree operations to determine the similarity of two pieces of music
and to generate new music by a tree-combination morphing process. The alge-
braic operations on matrix representations have the potential to lead to a new
methodology for arrangement and composition. For example, join and meet of
two trees are realized by addition of two matrices, where in the join opera-
tion we should redefine a;; + b;; = maz(a;;, b;;) whereas in the meet operation
a;; + bi; = min(as;, bij). In addition, if we would like to reverse the tree chrono-
logically, that is, each left/right-branching is reversed, we can represent the ret-
rograde by the transposition of the original matrix. Furthermore, as outlined
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above, we can consider the possibility of multiplication of two different matrices,
producing a new piece from given two pieces.

Acknowledgements. This work is supported by JSPS Kaken 16H01744 and
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