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Abstract. This paper distinguishes malware families from a specific
category (i.e., ransomware) via dynamic analysis. We collect samples
from four ransomware families and use Cuckoo sandbox environment, to
observe their runtime behaviour. This study aims to provide new insight
into malware family classification by comparing possible runtime fea-
tures, and application of different extraction and selection techniques on
them. As we try many extraction models on call traces such as bag-of-
words, ngram sequences and wildcard patterns, we also look for other
behavioural features such as files, registry and mutex artefacts. While
wildcard patterns on call traces are designed to overcome advanced eva-
sion strategies such as the insertion of junk API calls (causing ngram
searches to fail), for the models generating too many features, we adapt
new feature selection techniques with a classwise fashion to avoid unfair
representation of families in the feature set which leads to poor detection
performance. To our knowledge, no research paper has applied a classwise
approach to the multi-class malware family identification. With a 96.05%
correct classification ratio for four families, this study outperforms most
studies applying similar techniques.
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1 Introduction

According to McAfee’s recent report [13], the number of total malware samples
has already exceeded 680M, out of which 63M new instances were released in the
last quarter of 2017. Despite the widespread use of Anti-Virus (AV) systems for
a long time, new malware families and its variants continue to infect computers,
smartphones and even small IoT devices. The recent Mirai and WannaCry cases
have once again shown how the malware problem can harm our economy at large
scales and can stop our critical infrastructures within hours.

There have been many studies trying to solve the malware problem by using
different static [5,19,26] and dynamic analyses techniques [6,8,24]. Despite the
advantage of full code coverage, static techniques mainly suffer from evasion
techniques such as repackaging, obfuscation and polymorphism. To overcome
these challenges, dynamic techniques can be used as they focus on actual runtime
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behaviour of malware. In this study, we aim to contribute to the state-of-the-
art by proposing how improvements of dynamic techniques can in-turn mean
protection of millions of more devices. Although the priority of end-users would
be the protection of their devices via malware detection, we focus on family
classification—as a more challenging task—which can provide more insight for
security companies and researchers to understand the recent trends and how
families evolve.

Thus, this study distinguishes malware families from the same category by
analysing the runtime behaviour with different feature extraction models and
selection techniques. Our study makes the following contributions:

1. Design and implementation of a scalable dynamic analysis frame-
work that can identify different families from the same category (i.e., ran-
somware) by using call traces and other behavioural artefacts such as files,
registry edits, mutex names.

2. Comparing different feature extraction models from API and system
calls such as bags-of-words, ngrams or wildcard patterns.

3. Applying new feature selections and adapting them to a class-wise man-
ner to avoid the domination of a selected feature set by specific families.

2 Related Work

A dynamic analysis technique by Salaehi et al. [17] detects malware by using API
calls with their arguments. After the generation of traces via WINAPIOverride32
tool for 826 malicious and 385 benign samples, the features are selected via
document frequencies to create binary vectors for each sample. With 10-fold
cross-validation, the authors observed 98.4% accuracy by using Adaboost meta-
classifier of Weka. Another similar study by Uppal et al. [23] also uses API calls
with ngram models without arguments. The authors use odds ratio to select the
features. Similar to the previous study, the authors train the classifiers with a
10-fold cross validation resulting in 98.5% accuracy for SVM and 4-grams. Based
on their methodology sections, both studies seem to be subject to overfitting bias
since the feature selection is applied prior to the cross-validation phase.

Instead of malware detection, MEDUSA [14] classifies metamorphic engines
by using the frequencies of API calls. The authors use statistical measures to
distinguish metamorphic families by creating signature vectors for each. These
vectors are created based on the average frequencies of selected critical API
calls for the given family. Furthermore, there are studies [11,15] achieving cat-
egory and family identification by using API calls in different ways and adding
other feature sources such as DNS requests and accessed files to their classi-
fications. For instance, Pirscoveanu et al. [15] distinguish malware types (i.e.,
trojan, worm, adware, and rootkit) via API sequences, API frequencies and
their counter behaviour such as level of DNS requests. Their experiments yield
0.896 True Positive Rate (TPR) for the identification of four categories. Hansen
et al. [11] detect malware and distinguishes their families by using similar fea-
ture models by including API arguments. The study achieves 0.864 TPR for five
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families that have different functionalities and components which issues the cat-
egory bias for the results. Both studies generate the runtime features by Cuckoo
Sandbox [2] and achieve the best results with Random Forest classifier. Another
study by Tsyganok et al. [22] propose a dynamic analysis framework supposed to
be resilient against evasion mechanisms such as polymorphic and metamorphic
malware. The study uses WinAPI calls and files as features. To decide for the
similarity of two samples, they extract Longest Common Subsequences (LCS)
from the call traces.

Lastly, Canali et al. [7] offer a systematic approach to demonstrate how differ-
ent feature extraction models—applied on API calls—can influence the accuracy
of the detection. They provide a benchmark and elaborate the computational
limitations of different models such as bags-of-words, ngram sequences and tuple
models which care only about the order of the calls regardless of the distance in
between. However, since the authors do not define a threshold distance for their
tuple model, its maximum cardinality is very limited compared to other models
and performs poorly in some configurations.

Although many studies have tried various feature models to detect malware,
there is a lack of a comprehensive approach that assesses the value of different
behavioural artefacts and feature extraction/selection models for the classifica-
tion of malware families from the same category.

3 Problem Definition

Our study aims to demonstrate new and diverse experiment settings in order to
answer these four key research questions.

– RQ1: Can API and system calls be used to differentiate malware
families from the same category? (i.e., ransomware). We investigate
the usability of API and system calls as features to distinguish families from
the same category. All samples are picked as ransomware to minimise the
behavioural bias of different categories since we expect them to show similar
characteristics such as encryption of the files in the system and displaying
payment instructions for the ransom.

– RQ2: Which feature models extracted from API and system calls
perform better for family classification and are more resilient
against evasion mechanisms such as junk API calls? By different
extraction models on call traces such as bag-of-words, ngrams, wildcard pat-
terns with or without arguments, we explore the drawbacks and advantages of
them regarding the accuracy, scalability and resiliency to evasion techniques.

– RQ3: To what extent other behavioural artefacts can be used to
classify malware families? In addition to API and system calls, we do
classifications by using more coarse-grained artefacts such as files accessed,
registry keys obtained, mutexes created or Dynamic-Link Libraries (DLL)
loaded. Although the call traces can provide the same information through
the function arguments, we try to understand the usability of these artefacts
without the noise of call traces.
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Fig. 1. Design of the experiment framework

– RQ4: Which configuration settings regarding feature selections and
classifier algorithms yield better results? Since some models generate
too many features beyond the limits of classifiers that can handle, we have
used different feature selection techniques which is an important factor affect-
ing the accuracy. Moreover, each classifier can perform differently. Thus, we
aim to understand optimum settings that provide better results.

4 Methodology

Our experiment framework consists of three stages: 1-Sample Collection, 2-
Feature Extraction and 3-Classification, as seen in Fig. 1. We first collect and
label samples from different families, followed by the generation of their runtime
behaviour in Cuckoo sandbox to extract the features. After applying feature
selections on different models, we represent the samples as (binary) feature vec-
tors to be sent to Weka [10] classifiers.

4.1 Dataset Collection

To collect samples, we firstly queried for recent 10–11 well-known ransomware
families [1] via VirusTotal API. The queries were designed to return the samples
with similar characteristics concerning file type (portable exe), first submission
date/year, and file size to avoid any bias issues. However, these queries with
family names do not provide reliable evidence about the family belongings since
VirusTotal returns any files if at least one of the 82 AV engines labels it with the
searched keyword. To address this problem, we used AVClass [20] which extracts
the most common family name from AV labels and picked four ransomware
families that gave the highest number of samples which were cerber, crysis,
hydracrypt and wannacry.
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Table 1. Number of samples for each family in training and test portions

Cerber Crysis HydraCrypt WannaCry Total

Training 48 47 24 39 159

Test 24 23 11 19 77

Although the initial queries returned more than a thousand samples, the
number of usable samples dropped to hundreds (see Table 1) after filtering with
AVClass. In other words: to eliminate any concerns about the soundness of the
study, we favoured more meaningful samples and preferred to experiment with
the samples that AV engines have a consensus on the family.

Next, we split the samples into training and test portions randomly with a 2:1
ratio as a commonly used ratio in malware domain. We used separate portions
instead of cross-validation since its proper application with a feature selection
phase requires an extra effort to avoid overfitting.

4.2 Behaviour Generation

After dataset collection, we observed and collected the runtime behaviour of
the samples. Due to advantages of VM-based sandbox approach such as ease
of collecting many features at the same time or handling process trees, we used
Cuckoo [2] analysis environment. It enabled us to monitor API calls, files, registry
keys and mutexes accessed by the submitted samples. Setting up Windows XP-
SP3 as the experiment environment, we ran samples within for 120 s which
generated JSON reports as behavioural logs.

4.3 Feature Models

We used call traces, files accessed, registry keys and mutexes as features while
putting special effort on call traces with different extraction models since these
calls represent the most valuable runtime features that even most of the evasion
techniques including metamorphism cannot avoid.

Call Traces. Windows API and its subset system calls are used in different
ways for malware detection (i.e., frequency-based approaches, bag-of-words and
ngram models [14,17,23]). This study compares the accuracy and scalability
aspect of both API calls and system calls.

The simplest feature model extracted from both API calls and system calls
was the bag-of-words model without function arguments whereas bag-of-words
with function arguments generated the highest number of features (see Table 2).
Furthermore, we extracted ngrams as call sequences for a fine-grained represen-
tation of malicious behaviour. Although ngram extraction with function argu-
ments was computationally infeasible with available resources, we successfully
extracted 2-grams and 3-grams of both API calls and system calls.
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Table 2. Number of unique features in different models

Feature model # of features

API calls 210

API calls with args 1907098

API calls 2grams 2690

API calls w.card 2calls 6635/45769

API calls 3grams 10823

Sys calls 35

Sys calls with args 958474

Sys calls 2grams 321

Sys calls w.card 2calls 651/1369

Sys calls 3grams 1396

Sys calls w.card 3calls 6748/50653

Files accessed 55581

Dll loaded 166

Registry keys 4785

Mutexes 101

Wildcards models (A/B) represent the
features found (A) and permutations
generated (B).

To address samples bypassing ngrams by junk calls, our study proposes
wildcard-based search models on call traces to catch the malicious activity hid-
den behind the broken call sequences. To search wildcard strings efficiently, we
firstly assigned base-36 ID numbers to each API function (instead of using longer
function names). Then, by using these IDs, we generated regular expressions as
features that represent possible permutations of functions for the required size
(2-calls, 3-calls) with an adjustable distance buffer between two functions. We
set the distance buffer as 4 junk calls because larger distances could result in too
many false positives while increasing the search cost unnecessarily.

We generated ngrams and wildcard patterns for 2-calls, 3-calls without argu-
ments whereas function arguments are only used by the bag-of-words model. To
illustrate all call trace-based models, a short fabricated trace and extractable
features from this trace are given in Figs. 2 and 3.

Files. Malware can create new files or read/write the existing ones. We also
used file names accessed by the samples during the execution as features to
distinguish different families.

Registry Keys. Registry database of Windows systems provides additional
artefacts for the executed programs which are frequently used for forensic
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GetFileType(0) //Assigned ID:A1
NtClose(0xb0) //Assigned ID:B2
RegCloseKey(0xa4) //Assigned ID:C3
NtTerminateProcess(0,0,1) //Assigned ID:D4

Fig. 2. A short example of call trace

A1:{GetFileType,NtClose..} //API calls
A2:{GetFileType(0),NtClose(0xb0)..} //API calls with args
A3:{GetFileTypeNtClose,NtCloseRegCloseKey..} //API calls ngram (2)
A4:{A1[0-9A-Z-]{0,12}B2, B2[0-9A-Z-]{0,12}C3..} //API calls w.card (2)
S1:{NtClose, NtTerminateProcess} //Sys calls
S2:{NtClose(0xb0), NtTerminateProcess(0,0,1)} //Sys calls with args
S3:{NtCloseNtTerminateProcess} //Sys calls ngram (2)
S4:{B2[0-9A-Z-]{0,12}D4} //Sys calls w.card (2)

Fig. 3. Feature examples extracted from the short trace (2)

analysis. While a few studies focus on the registry-based malware detection,
there are malware [4] in the wild hiding themselves in the registry without caus-
ing any file artefacts. Moreover, specific registry operations can indicate hiding
attempts from the analysis environments (e.g., checking the existence of VM
environment) which we explore by extracting registry keys accessed as features.

Mutexes. Mutexes of operating systems represent the program objects man-
aging the shared resources by different threads. Since these resources can be
required by malware as well, we explore the use of created mutex names by the
samples to identify malware families [3].

Dynamic-Link Libraries (DLL). Another feature used is the DLL files loaded
during the execution of samples. Even though this feature type provides an
overview of API calls without any details, it can be useful to understand the
value of a more coarse-grained approach without any noise.

4.4 Feature Selection

For the models generating too many features beyond the limits that classifiers
can handle such as calls with function arguments and wildcard/ngram mod-
els (see Table 2), we eliminated noisy and non-informative features via selection
techniques. Despite the use of different techniques in malware domain such as
Document Frequency Threshold [16], Fisher Score and Chi-Square scores [18,21],
Information Gain (IG) [12,17,27] (adapted from text-categorisation) represents
the most dominantly used selection technique. Thus, we performed our experi-
ments by applying Information Gain (IG) [25], and our novel feature selection
technique Normalised Angular Distance (NAD)—which is explained below—
with their classwise adaptations.
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Normalised Angular Distance (NAD). As a new feature selection technique
based on our work [9], NAD uses the representation of features in a vector
space where each dimension corresponds to the class likelihoods of the features
which can be expressed as P (f |Ci) and defined as the proportion of the samples
containing the feature f for the given family class Ci.

This method relies on the assumption that feature vectors have equal class
likelihoods for each class are not distinguishing and have no value to be selected.
As the distinguishing power of a feature increases, the ratio of the difference
between class likelihoods should increase as well, which our approach aims to
measure via angular distance between the feature vector and the reference vector
that has equal class-likelihoods.

After the representation of the features in vector space, by using the Eq. 1,
the method firstly calculates α the angular distance between the feature vector
f and any reference vector that has equal likelihoods for all classes such as
r = (1, 1, 1, 1).

α = cos−1 f · r
||f || · ||r|| (1)

However, regardless of the vector magnitudes, the angle will be the same for
the features that have the same likelihood ratios such as f1 = (0.1, 0.2, 0.3, 0.4)
and f2 = (0.01, 0.02, 0.03, 0.04) which can result in the selection of noisy and
sparse features. In order to manage this trade-off between being more common
and more distinguishing, the method takes into account the magnitude of the
feature vector as a normalisation factor with a degree parameter k to adjust
the weight of the magnitude for the final score. During our experiments, we set
k = 2 which could be experimented with a range of [1.5, 4].

NAD(f) = α × ||f ||1/k (2)

Classwise Selections. To prevent the domination of features from specific
family classes and deliver a fair representation of each class in the selected feature
set, we modified Information Gain and Normalised Angular Distance scores
with a class-wise fashion. Although there are studies [16,28] proposing class-
wise selection techniques to solve the issue, we offer a more practical solution
which is adaptable to any naive solution. Firstly, we create separately ranked
lists for each family class as seen in Eq. 3 for NAD which scores only the features
with the highest class likelihood for the given class in the list. Then, we build
our final feature set with the features ranked in each class list by ensuring that
for every n number of features there will be n/|C| features from each family class
to create an equally distributed feature set for the classifiers.

CWNAD(f, C) =
{

NAD(f), if C = argmaxCiP (f |Ci)

0, otherwise
(3)



Classification of Malware Families Based on Runtime Behaviour 41

11%

22%

33%

44%

56%

67%

78%

89%

100%
API Calls

API Calls 2grams

API Calls 3grams

API Calls w.card 2calls

API Calls with args

Sys Calls

Sys Calls 2grams

Sys Calls 3grams Sys Calls w.card 2calls

Sys Calls w.card 3calls

Sys Calls with args

Dlls loaded

Files accessed

Mutexes

Registry Keys
K-NN
Random Forest
SVM
Neural Networks

(a) Classifiers (Classwise NAD used)

11%

22%

33%

44%

56%

67%

78%

89%

100%
API Calls 2grams

API Calls 3grams

API Calls w.card 2calls

API Calls with args

Sys Calls 3grams Sys Calls w.card 3calls

Sys Calls with args

Files accessed

Registry Keys

IG
NAD
CW-IG
CW-NAD

(b) Feature selections (N. Networks used)

Fig. 4. Weighted TPRs of feature models for different classifiers and selections

4.5 Classifications

After extracting features from Cuckoo reports and selecting features for nec-
essary models, we created binary-feature vectors with a size of 1000 for each
sample where the ones represent the existence of a feature for the given sam-
ple and zeros represent the absence of that feature. Created feature matrices
for each training and test portions are later sent to Weka [10] classifiers. As
classifier algorithms, we experimented with k-Nearest Neighbour (k=3), Support
Vector Machines (with SMO functions and poly-kernel), Random Forests (no.
of trees=100) and Neural Networks (default settings of Multilayer Perceptron).

5 Results and Discussion

Although we have defined the correct classification ratio as the key performance
metric, we assess the results from the scalability aspect as well. At some points
of the discussion, we will be using accuracy and weighted TPR interchangeably.
We experimented with 16 different feature models, 4 feature selection techniques
and 4 classifier algorithms on a dataset consisting of 236 samples. Due to the
excessive number of combinations caused by different settings, we discuss the
results with the setting yielding better results on average which is Classwise
NAD (selection technique) and Neural Networks (classifier) (see Fig. 4(b) and
4(a)).

5.1 Call Traces

All feature models relying on call traces are promising with the accuracy results
varying from 88.16% to 96.05%. Despite the small variations of different clas-
sifiers, any model using API and system call traces perform well enough to
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Table 3. Accuracy results of different classifiers with Classwise NAD

Feature Model K-NN RF SVM NN Average

API calls 85.53% 93.42% 93.42% 93.42% 91.45%

API calls 2grams 89.47% 94.74% 93.42% 93.42% 92.76%

API calls w.card 2calls 90.79% 96.05% 96.05% 96.05% 94.74%

API calls 3grams 86.84% 89.47% 86.84% 90.79% 88.49%

API calls with args 86.84% 93.42% 92.11% 94.74% 91.78%

Sys. calls 88.16% 88.16% 85.53% 92.11% 88.49%

Sys calls 2grams 94.74% 93.42% 92.11% 94.74% 93.75%

Sys calls w.card 2calls 86.84% 94.74% 94.74% 96.05% 93.09%

Sys calls 3grams 92.11% 92.11% 93.42% 90.79% 92.11%

Sys calls w.card 3calls 88.16% 90.79% 88.16% 88.16% 88.82%

Sys calls with args 85.53% 90.79% 90.79% 92.11% 89.81%

DLLs loaded 85.53% 92.11% 88.16% 92.11% 89.48%

Files accessed 73.68% 78.95% 77.63% 75.00% 76.32%

Mutexes 55.26% 59.21% 59.21% 55.26% 57.24%

Registry keys 88.16% 88.16% 86.84% 89.47% 88.16%

Average 87.89% 93.42% 92.37% 93.68%

distinguish the malware families (RQ1). Regarding the comparison of API and
system calls, API calls perform better on average although the system calls have
scalability advantages with a less number of features.

Bag-of-Words Model. With 210 API and 35 system functions extracted, the
simplest model of call traces is the bag-of-words model not using function argu-
ments. Despite the lack of information such as function arguments and order
between the calls, bag-of-words model on API calls has yielded 93.42% accuracy
and followed by system calls with a 92.11%.

With Arguments. Feature models using function arguments generate the high-
est number of features (i.e., 1.9M unique features from API and 958 K from sys-
tem call traces) which makes them infeasible for ngrams/wildcards (n-calls) due
to the number of possible features (∼106n). Regarding the accuracy, API calls
(94.74%) performs slightly better than system calls (92.11%) with Neural Net-
works and Classwise NAD settings. One benefit of function arguments is having
more insight about the calls whereas standalone function names do not reveal
much information about the intention of the called functions.

Another point is that due to the large feature space, these models demon-
strate how the feature selection techniques can suffer from unfair representation
without classwise adaptations. Since the features extracted have unbalanced dis-
tributions (e.g., feature distributions of API calls with arguments can be seen
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Fig. 5. Extraction distributions of features for API Calls with args (1.9M extracted)

Fig. 6. Crysis-based selection distributions for API Calls with args (10K selected)

in Fig. 5), naive versions of Information Gain and Normalised Angular Distance
inevitably favour one class for the selected feature sets. Figure 6 illustrates how
the selection can differ for naive and classwise techniques on the basis of Cry-
sis family. Figure 4(b) shows how the selection bias of naive techniques causes
classifiers to perform poorly compared to the classwise selections.

Ngrams. Call sequences are expected to represent the malicious intentions bet-
ter than the bag-of-words model while this is the case for most models (except
API 3-grams). Based on the average results (see Table 3), both 2-grams (93.75%)
and 3-grams (92.11%) of system calls have performed better than API 2-grams
(92.76%) and 3-grams (88.49%) which conclude that the malicious characteris-
tics are identified better via system calls due to possible existence of noisy and
junk calls on API traces. Concerning scalability, the limited number of unique
sequences found on traces makes ngrams more scalable than the feature models
with arguments (see Table 2).

Wildcard Searches. These models are designed to have resiliency against the
evasion mechanisms such as the insertion of junk API calls. The wildcard model
running on API calls for 2-calls and with the distance buffer of 4-calls has yielded
the best results of all models with an accuracy of 96.05% for three classifiers.
Compared to the 2-grams of API calls, it is a legitimate assumption that there are
samples in our dataset inserting junk API calls caught by the wildcard model. For
system calls of which wildcard models seem to have slightly worse performance
than the ngrams correspondents, the results are reasonable because of following
issues. Firstly, as malware developers may not prefer to inject specifically junk
system call functions, the distance buffer that we set (4-calls) corresponds to
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much wider distances for system calls due to the elimination of non-system calls
in between. Secondly, the application of wildcard models on such a small feature
space (35 unique system calls in total) can cause false positives.

In term of scalability, we use hash tables for the storage of features in any
model to count and analyse them for the given trace (N) with a O(N) time
complexity. However, for the wildcard models: to check the match of wildcard
features for the given call trace, we run regular expressions for each feature
which means an additional O(N) complexity layer that needs be to multiplied
by the number of wildcard permutations for one sample trace. Moreover, since
we generate all the possible permutations as wildcard features at the beginning,
P (n, r) becomes infeasible with r > 3 and n for the cardinality of hundreds.

For RQ2, we can conclude that the wildcard model of APIs for 2-calls yields
the best accuracy of the experiments, while 2-grams and 3-grams of system
calls perform slightly better than the others. Although the wildcard models
show resilience against possible junk API calls, the results imply that either the
insertion of junk system calls is not practised by malware developers or larger
buffer distances (due to the elimination of non-system calls at the beginning) for
a small feature space such as system calls cause false positives.

5.2 Other Artefacts

Other feature models relying on registry keys and DLLs loaded have also pro-
duced promising results whereas the files accessed and mutexes have performed
poorly. DLLs and registry keys used during the analyses have yielded 89.45%
and 88.16% accuracy on average respectively. The files accessed has produced
76.32% correct classification ratio, while the mutex names represent the worst
performing model with a 57.24% (RQ3).

5.3 Optimum Settings and Comparison

As a response to our RQ4, regarding classifier algorithms, Neural Networks and
Random Forest have performed quite well with classwise selection techniques.
Experiment results manifest that unfair representation of classes by the selected
feature sets is an important issue that needs to be addressed by selection tech-
niques. While both classwise adaptations produce significantly more accurate
results than the naive ones (see Fig. 4(b)), experiment results demonstrate that
our selection technique NAD is able to compete with IG without any significant
difference (t-tests are applied). With Neural Networks and Classwise NAD set-
tings, the wildcard model of API calls for 2-calls is the best performing feature
model of which detailed class-based performance metrics can be seen in Table 4.
Despite the selection of all samples from the same malware category, this study
outperforms the majority of similar studies identifying malware categories [15]
or families [11] from different categories.
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Table 4. Class-based performance metrics and comparison with related work

TPR FPR Prec. Recall F-M ROC

Cerber 0.957 0.019 0.957 0.957 0.957 0.993

Crysis 1 0.038 0.92 1 0.958 0.995

Hydracrypt 0.909 0 1 0.909 0.952 0.996

Wannacry 0.947 0 1 0.947 0.973 0.999

Our study (weighted) 0.961 0.017 0.963 0.961 0.961 0.995

Hansen et al. [11] 0.864 0.035 0.872 N/A 0.864 0.978

Pirscoveanu et al. [15] 0.896 0.049 0.907 N/A 0.898 0.980

5.4 Discussion and Future Work

As this study provides insights into which type of behavioural information can
be used for family classification, and to what extent, it also reveals the benefits
and drawbacks of different feature extraction models from the same information
(e.g., call traces) such as bag-of-words, ngrams, and adjustable and computation-
ally optimised wildcard search models. In addition to the introduction of a new
feature selection technique, the study shows how naive selection techniques for
high-dimensional models without classwise adaptation causes poor performance.
Additionally, this study minimises the potential bias of different categories by
selecting all samples from the same category which is an issue that most studies
do not address.

While this research focuses on the performance comparison of different fea-
ture models and selection techniques, there are other factors defining the success
on which we do not have much control. The first issue is various VirusTotal fam-
ily labels of AV engines. Even though the queries made by family names return
too many file hashes, filtering them with a labelling tool [20] reduces the number
of usable samples significantly. As we apply supervised-learning techniques and
our classifiers use the most common VirusTotal family names as training labels,
the performance of the classifiers are still dependent on the way how these AV
engines analyse and label these samples.

Our research relies on analysis reports generated by Cuckoo sandbox.
Although Cuckoo integrates some mechanisms to avoid the detection of anal-
ysis environment by samples and we have eliminated the samples that do not
execute, there may be samples hiding the malicious behaviour and acting like
legitimate software. Since the study relies on the sandbox approach as a dynamic
analysis technique, we are not fully aware of these samples possibly modifying
behaviour within the analysis environment. As a future work, we plan to inte-
grate code coverage mechanisms that can measure the confidence of observed
behaviour or other heuristics to detect such behaviour modification attempts.
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6 Conclusion

In this study, we have implemented a malware family classifier that uses the
runtime behaviours collected by Cuckoo Sandbox as features. Although the focus
is the exploration of feature models that can be extracted from call traces such
as the application of bag-of-words, ngrams or wildcard search models to the API
and system call functions, we have also investigated the value of other artefacts
such as registry keys, files and mutexes as features. Our experiments have shown
that any feature model relying on call traces and DLL libraries and registry keys
used during the execution yield promising results which are mostly above 88%.
Two other feature models, files accessed (76.32%) and mutexes (57.24%) have
produced less accurate results.

In addition to the application of Information Gain during our experiments,
we have also adapted a new feature selection technique Normalised Angular
Distance, to family classification as an example of the multi-class classification
problem. We have also demonstrated that the adaptation of these feature selec-
tion techniques with classwise fashion yields better results since they do not
suffer from the unfair representation of specific families.

Acknowledgements. We want to thank VirusTotal community for providing a pri-
vate API to our research that enabled us to search for and download the ransomware
samples.
Cuckoo reports (1.4GB) of the samples and framework’s source code: Reports: https://
goo.gl/e8jbXq
Source code: https://bitbucket.org/msgeden/familyclassifier
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