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Abstract This chapter proposes a novel strategy (the so-called Driving Assistance
system for Optimal Trip Planning, DAOTP) for electric vehicles (EV), which works
based on a multi-objective optimization approach. DAOTP provides an optimal driv-
ing strategy (ODS) corresponding to minimum energy consumption, travel time, and
discomfort. Since these objectives are conflicting with each other, a multi-objective
optimization tool is adopted to solve the problem. Based on the current trip informa-
tion, first a set of Pareto-optimal solutions (ODSs) is obtained, and then a preferred
ODS is selected from them corresponding to a higher level information or using
problem-specific multi-criterion aspects for implementation. DAOTP works using
route information obtained through GPS (Global Positioning System), Internet, etc.
Route information includes the road surface type, weather conditions, trip start and
end points, etc. In this chapter, the DAOTP system architecture, concerned MOOP,
and the related EV models are presented in details. A brief explanation of multi-
objective genetic algorithm that solves the present MOOP is given. The operation
of DAOTP is elaborately presented with an application in a simple urban micro-
trip planning. After that, the application of DAOTP for highway and complex trip
planning are presented. The DAOTP results found in high-speed driving cycles are
analyzed. The effectiveness of DAOTP is presented considering some sample trips,
and its results are analyzed with varied route characteristics and trip complexity.
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1 Introduction

As the time passes, research efforts are bringing more and more improvements to the
vehicular sector. These improvements are broadly classified into two categories. One
involves the hardware of the vehicle. Other improvements, which belong to the Intel-
ligent Transportation System domain, are for driver assistance. The primary goal is to
ease the driving experience and properly manage available resources. Some aspects
are automatic fixed-distance following navigation and route guidance, operational
cost reduction, obstacle avoidance, maintaining the lane, parking assistance, improv-
ing comfort and safety, and so on. Some of the various strategies and initiatives that
were adopted in the past are described as follows.

In the Automated Highway Systems (AHS), multiple vehicles are coupled elec-
tronically for controlling them automatically toward driving at the same speed and
safe following distances [81, 91]. AHS forms a semi-autonomous platoon by con-
trolling the vehicles longitudinally as well as tangentially [7]. In a semi-autonomous
platoon, one vehicle (preferably which is in the front) is driven actively, and the other
vehicles are followed automatically. Under the project KONVOI, funded by Ger-
man’s Federal Ministry of Economics and Technology, an Advanced Driver Assis-
tance System (ADAS) was developed to automatically control the longitudinal and
lateral movement of the vehicles behind the actively driven preceding vehicle [57].
ADAS includes six primary components: GPS (Global Positioning System) [41],
UMTS (Universal Mobile Telecommunications System) for vehicle–infrastructure
communication [91], DIS (Driver Information System) [93], AG (Automated Guid-
ance) [75], WLAN (Wireless Local Area Network) for vehicle–vehicle communica-
tion [45], and ACC (Adaptive Cruise Control) [99]. All these modules are connected
to a central server. Details of various AHS and ADAS forms and related undertaken
projects can be found in [5]. Such systems are primarily suitable for traffic control
and safety. AHS and ADAS do not focus on any direct energy management of the
vehicle, and can be adopted irrespective of the vehicle type.

There are various navigation systems that help drivers by providing an eco-driving
or eco-routing functionality. Vexia’s ecoNav solution [94] assists the driver by prov-
ing the fuel consumption rate that is determined based on the characteristics of vehicle
and driving behavior. Garmin’s ecoRoute software [38] finds a fuel-efficient route on
the basis of road information and vehicle characteristics. The Freightliner Predictive
Cruise Control [86] minimizes the fuel consumption rate by fine-tuning the vehi-
cle speed corresponding to the route driving cycle. Like AHS, the above navigation
systems can be adopted irrespective of vehicle type.

Traditionally, routing has focused on exploring shortest paths in a network based
on the costs of positive and static edges that represent the distance between two nodes.
Contrary to other vehicles, solving routing problems for EV is a challenging work
because of the negative edge cost due to regenerative braking, vehicle weight, and
limited battery capacity (resulting in the cost of a path being no longer just the sum of
its edge costs). Considering these challenges, an attempt was made in [30, 76] to find
a solution for energy-optimal routing for EVs. Recently, a few industrial initiatives
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were undertaken to deal with the routing issues of EV [13]. NAVTEQ ADAS [69]
deals with finding routes that can minimize ICEV fuel consumption and EFV energy
consumption by considering additional route information such as altitude, slopes,
and curves.

A European Commission-sponsored research project called “Intelligent Dynam-
ics for fully Electric Vehicles” (ID4EV) [77] was initiated to establish an intelligent
system which is most energy-efficient and HMI (Human–Machine Interface) capa-
bility, and safe braking and chassis systems as well as intelligent functionalities and
new Human–Machine Interface (HMI) concepts for the needs of EVs, as for such
system it is important for FEVs to have wide acceptability [48]. Various aspects of
ID4EV projects can be found in [106].

Another way of driving assistance is the adoption of cooperative driving (a type of
AHS), where a flexible platooning is formed among the vehicles which are available
within a short distance over a couple of lanes [53]. The cooperative driving technology
is based on two studies: Super Smart Vehicle System (SSVS) [87] and inter-vehicle
communications with infrared rays from [35]. This driving assistance is primarily
focused on the compatibility of safety and efficiency of road traffic.

Similar to other vehicles, EVs possess an inadequate energy storage that results
in a short driving range. Moreover, refueling of EV is time consuming due to the
long charging time of the battery. In addition, inadequate battery charging stations
in contrast to fueling stations of Internal Combustion Engine (ICE)-based vehicles
is a critical issue for EVs. As a consequence, efficient usage of battery energy is
crucial for EVs. On the other hand, that is not so important for ICE vehicles. Thus,
in order to extend the EV range by minimizing energy consumptions, it is required
to adopt an optimal driving strategy (ODS) during driving. Additionally, due to the
above-stated shortcomings, an appropriate trip plan corresponding to the present
battery state-of-charge (SOC) is required prior to the journey start. Many times, due
to unanticipated circumstances, deviation from the previous trip plan is happening.
The driver needs to deviate from the preplanned trip during the journey. In such
conditions, an online assistance is helpful to the drivers toward replanning the rest
of the journey. Various issues are required to consider during trip planning such
as whether with the remaining battery charge can reach to destination or not [96],
what driving strategy to be followed corresponding to the road type for comfortable
journey and minimum battery charge depletion [40, 42] and shortest trip duration
[60], and what extent the trip expenditure (e.g., cost of charging) can be reduced
[82].

A driving strategy refers to the value(s) of all or any of the parameters, namely,
speed, acceleration, acceleration duration, deceleration, and deceleration to be
applied by the driver during running a vehicle. In order to maintain the above issues,
drivers are required to assist during trip performing by suggesting the optimal driving
strategy to be followed and corresponding EV range and trip end battery SOC to be
expected. An optimal driving strategy can be determined by taking into considera-
tion concurrently three conflicting objectives such as minimum energy consumption,
minimum trip time, and maximum driving comfort.
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In this regard, the above-stated driving assistance systems are useful but not suf-
ficient for an EV to compete or become comparable to the other vehicle types. In
addition to knowing that an EV is a zero emission vehicle and comparatively more
efficient such a driving assistance for optimal trip planning is extremely necessary
to instill more confidence in EV drivers and to increase the interest of the general
public in EVs. From a psychological standpoint, a reliable trip plan with accurate
range estimation provided to drivers may bemore significant than actually increasing
the range of an electric mobility system [34]. Realizing such motivation, researchers
propose various new methods and intelligent strategies. For example, due to the lim-
ited battery capacity, the driver was assisted by providing a locality-based optimal
charging station planning. In [32], the number of charging stations was estimated
using a weighted Voronoi diagram compliant with a conventional standard charg-
ing station capacity. An optimum charging method was proposed in [84], which
includes an individual charging plan for each vehicle while reducing the electric-
ity cost, avoiding distribution grid congestion, and fulfilling the individual vehicle
owner’s necessities.

With the intention of increasing the EV energy efficiency and range autonomy,
Demestichas et al. [25] introduce an autonomous route planning method based on
advanced machine learning techniques which monitors the energy consumption con-
tinuously. An EV suitability ADAS was designed for traffic estimation and selection
of optimal route in [25, 26] suitable for EVswas designed and implementedwith traf-
fic estimation and optimal route selection capabilities. It helps the driver to make an
appropriate routing decision so as to energy saving and residual range enhancement.

In order to find the best route, a fleetmanagement planning for EVwas proposed in
[63]. It considers energy consumption based on the road architecture, environmental
conditions, vehicle characteristics, driving behavior, traffic situations, and locations
of electric charging stations. An advanced EV fleet management architecture was
presented in [63], where the best routewas decided based on electric power consump-
tion considering information about the road topology (elevation variations, source,
destination, etc.), weather conditions, vehicle characteristics, driver profile, traffic
conditions, and electric charging station locations. A generalized multi-commodity
network flow (GMCNF) model analogous to space exploration logistics [50] was
proposed in [17] for finding the best route on the basis of energy consumption and
battery charging time.

However, from the previous studies in the literature, it was found that majority of
driving assistance systems deal with energy consumption. In most of the systems,
energy consumption and trip time are treated separately, and a correlation between
them was tried to establish [27]. An energy-driven and context-aware route planning
framework for EV is found in [95]. An optimal route is decided here by minimizing
the cost function which comprises the trip time and energy consumption. However,
there is no such driving assisting systems that consider energy consumption, trip time,
and driving comfort simultaneously. In [28], the authors made an attempt to find a
driving strategy for ICE vehicles by simultaneous consideration of total travel time,
and fuel consumption, and driving discomfort. Indeed, consideration of these three
factors is important. The present chapter explores the need for and the requirements of
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considering these three aspects simultaneously for optimal trip planning. It describes
the related problem and a possible way of implementing in practical application for
an EV. A novel framework, Driving Assistance for Optimal Trip Planning (DAOTP),
is proposed to guide the driver for trip planning and to drive the EV in an efficient
manner. The framework of DAOTP is context-aware as well as energy-efficient since
it incorporates real-time traffic and route data, and accounts for multiple driving
aspects including trip time, comfort driving, and energy efficiency.

The present DAOTP system first finds a set of Pareto-optimal solutions (ODSs)
to the driver after solving a multi-objective optimization problem based on the cur-
rent route and environmental data. The trip end battery SOC and total trip time
corresponding to those optimal driving strategies for a specified trip length are also
shown.

ApreferredODS is selected from themcorresponding to a higher level information
or using problem-specific multi-criterion aspects for implementation.

2 Proposed System of Driving Assistance for Optimal Trip
Planning (DAOTP) for an EV

An EV driving assistance system is proposed here. The system presents a number of
optimal driving strategies to the driver along with the corresponding driving range,
trip end SOC, and total trip time [52]. It works based on a multi-objective concept,
where multiple conflicting objectives are considered simultaneously to fix the opti-
mal decision variable(s). Figure 1 demonstrates the architecture of DAOTP system.
The system consists of two modules namely HMI (Human–machine interface) and
DAOTP. HMI is used to interface between the driver and the DAOTP system with
the help of GPS/Internet or other media.

DAOTP assists the driver by endowing with the following information regarding
ODS at the time of executing and prior to a trip.

1. Reference acceleration(s)/deceleration(s)
2. Reference trip speed
3. Predicted range corresponding to the present battery SOC
4. Predicted Battery SOC and time at trip completion

The EV trip has three modes: acceleration, constant speed, and deceleration.
DAOTP system deals with the first two zones. Since during deceleration, there is a
gain of energy through the regenerative system finding an optimal driving strategy
for deceleration is not considered here. There is an availability of many studies [15,
16, 100] suggesting how to regenerate maximum energy during deceleration of an
EV. Such strategies can be easily incorporated into DAOTP system. In the present
study, the electric motor brakes the EV at a constant rate that has a weak dependence
on the vehicle speed. In order to estimate trip time prior to the trip, it was required
to pick a constant deceleration value for different speed zones.
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Fig. 1 Schematic layout of DAOTP system architecture

2.1 Working Methodology of DAOTP System

According to the driver’s trip start and end locations, the HMI in association with
GPS and Internet finds different routes if they exist. The HMI can be attached to
the dashboard or mobile through a wireless link like a smartphone. Unless there is
a specific choice by the driver, an optimum route is generally selected based on less
number of stops, short route distance, good road conditions, less traffic at the time of
journey, etc., and such information may be obtained based on past statistical data of
route traffic and present traffic conditions. There are separate transportation studies
(scheduling and routing problems) [10] that consider how to select an optimal route
corresponding to multiple stops, time scheduling, multiple vehicles, etc. The present
chapter does not include such optimization problems. The objective of the proposed
DAOTP is different from that of scheduling and routing problems. Once a route is
specified, DAOTP receives various route data through GPS and/or other resources
using HMI. Additionally, the system receives the current battery SOC, EV auxiliary
load, etc., with the help of appropriate measuring devices [73] and data acquisition
system. Execution of DAOTP is carried out by solving the associated MOOP based
on the received data for the chosen route. Once the DATOP execution is completed,
a set of solutions (ODS) and corresponding various predicted information (such as
range, trip end SOC, and trip time) is presented to the driver for making a suitable trip
planning. The driver may choose an appropriate ODS from the solution set based on
the present circumstances or his desire. Otherwise, any decision-making technique
may be adapted to select a preferred one. The driver is recommended to follow
the preferred ODS for driving to the further ODS as evaluated in the subsequent
DAOTP execution. The subsequent execution of DAOTP is performed on the basis
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of current route data corresponding to the original or updated trip start/end location
(destination) and battery SOC.

Various higher level information may be considered by driver for making a deci-
sion to choose a preferred solution, such as remaining trip length, trip time, road
condition(s), speed limit(s), traffic clogging, etc. Prior knowledge of the range and
total trip time for multiple ODSs provides enough flexibility to the drivers to adopt
a most suitable ODS that consumes minimum energy resulting in a better range. It
is particularly beneficial in a circumstance of low battery change where the driver
wants to get to a charging station. Therefore, the key motivation behind DAOTP
development is to predict the EV range and trip time for optimal speeds.

During the running of the EV, DAOTP collects various data from different sources
after a certain time step. It does so repeatedly considering that trip conditions may
change quickly and unpredictably. Based on these updated data, DAOTP executes
again and presents a new set of solutions for the rest of the trip. If there are no
considerable changes, these solutions would be almost identical to that suggested
in the previous time step. That new solutions assist the driver to drive the vehicle
accordingly so that he/she can complete the entire trip in an efficient manner while
accounting for continuously changing trip conditions. This online functionality of
DAOTP accounts for any unanticipated driving circumstances and any variation from
the current ODS.

Various inputs to be provided by the driver to DAOTP are as follows:

• Immediate destination.
• Either select a route after getting a feedback from GPS for different possible
routes depending on his/her choice or allow the system to choose the route having
a shorter distance, less traffic congestion, and fewer stops.

• Maximum allowable trip time.
• Information on auxiliary energy consumption.
It may be noted that certain data, such as auxiliary energy consumption, are relayed
directly to DAOTP and do not require active input from the driver. The driver may
choose to increase or decrease the auxiliary energy consumption before DAOTP,
like switching the air conditioning off, in order to see what effect it has on the
solutions, and he/she may increase or decrease the auxiliary energy consumption
during the trip.
Various step-by-step roles of HMI through GPS/Internet in DAOTP are presented
as follows:

• Identify the present location of EV, and then suggests different possible routes to
reach the destination.

• Calculate the number of stops in the entire trip for the chosen route and other related
route information such as trip distance, traffic congestion, weather condition (wind
velocity and direction, rainfall or others), and road conditions (road gradient and
quality).

• Based on route information, divide the entire trip into smaller “micro-trips”. Iden-
tify different parts of each micro-trip based on the upper and lower speed limits
associated with each part. The upper and lower speed limits already take into con-
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sideration the road type and profile (e.g., sharp bending, steep gradient, etc.). The
magnitude of upper and lower speed limits can be used to define the driving cycle
type.

For ease of understanding, the working method of DAOTP is described for a
micro-trip. The range and trip time calculations on a trip are described in Sect. 5.

3 Micro-trip and Route Characteristics

A micro-trip may be defined as an excursion between two successive locations of
travel route at which the vehicle is definitely stopped [3, 44]. In general, an entire trip
comprises several micro-trips. The length (range) of a micro-trip is defined by the
distance covered the two stop points of vehicle, and may be called the start and end
points of that micro-trip, respectively. A typical micro-trip consists of the following
modes or phases:

(i) Initial acceleration phase—acceleration(s) to change speed from vref_previous_trip
(end reference speed of the previous micro-trip) to vref1_micro - trip (reference
speed of the current (first part) micro-trip) if vref_previous_trip < vref_micro - trip.

(ii) Constant speed change—keep runningwith vref_micro - trip, whichmust bewithin
the speed limit.

(iii) Speed limit change—if there is a change in the speed limit during the micro-
trip (in case of multiple parts, as shown in Fig. 2), then deceleration(s) to
change speed from vref1_micro - trip (reference speed of the first micro-trip part) to
vref2_micro - trip (reference speed of the second micro-trip part) before the vehicle
reaches the new speed limit zone if vref2_micro - trip < vref1_micro - trip, and continue
to drive vehicle at vref2_micro - trip during the speed limit zone or acceleration(s)
to change speed from vref1_micro - trip to vref2_micro - trip after the vehicle reaches
the new speed limit zone if vref2_micro - trip > vref1_micro - trip.

(iv) Final deceleration phase—deceleration from vref2_micro - trip (reference speed of
the current (end part) micro-trip) to vref_next trip (reference speed at the starting
of next micro-trip) if vref_micro - trip > vref_next_trip.

According to safety and differentiation of the type of trip, micro-trip comprises
one or multiple types of road. Based on the lower and upper speed limits, roads are
classified into four different types [8, 74] namely neighborhood (8–40 km/h), urban
(40–56 km/h), highway (56–88.5 km/h), and interstate (88.5–112.6 km/h). The min-
imum and maximum speed limits of each driving cycle need to be strictly followed
by the driver. Thus, the proposed DAOTP system must provide valid solutions for
each driving cycle. Accordingly, its performance for each driving cycle was studied
independently.

Figure 2 demonstrates the velocity profile of a typical complex micro-trip that
consists of three parts. The first and third parts of the micro-trip correspond to a low-
speed driving cycle and the second part corresponds to a high-speed driving cycle.
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Fig. 2 Velocity versus distance plot of a typical micro-trip

The vehicle reference speeds, vref1_micro - trip and vref3_micro - trip, belong to first and third
parts of the micro-trip, respectively, whereas vref2_micro - trip is the reference speed
associated with the part of the micro-trip. According to the definition of a micro-trip,
vref_previous_trip and vref_next trip in Fig. 2 are zero. According to the rule of traffic lights,
at each light, the vehicle has to stop at a red signal light until the signal becomes green.
Points A and B (in Fig. 2) are considered as two successive red signals. They could
also represent a stop sign. Besides the driving strategy characteristics (DSC) such as
speed, acceleration(s), and the respective durations, other environmental and physical
factors (information thatmaybegleaned throughvariousHMI inputs) associatedwith
micro-trip route are the route characteristic parameters (such as road gradient, quality
of road surface, air density, wind velocity and its direction, etc.), passenger weight,
auxiliary load, start and end location of the micro-trip, road speed limits, initial SOC,
etc. The route characteristic parameters are normally defined based on the distance
covered and can be obtained through GPS or Internet sources. The other parameters
are case-based depending on the driver’s desire. For example, a road gradient varies
with road length. To determine its value at a particular location on the road, one has
to refer to how much distance is covered by the vehicle from a reference point, in
general, the start point of micro-trip. Other parameters are dependent on the driver’s
desires. For example, the driver decides when the air conditioning is running and
when it is not.

4 Control System

The control system is the interconnection of components that gives the desired output.
Driving a car with the desired speed is the example of closed-loop control system.
Here the system (presented in Fig. 3) compares the speed of the car with the desired
speed. If any deviation in speed from desired speed, then the controller may increase
or decrease the speed so that the deviation becomes zero. The sensor is used to
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Fig. 3 Basic block diagram of EV speed control system

measure the controlled variables of the system and fed to the input. Then the control
system compares the reference inputs (speed/acceleration) with a present output,
which is fed by the sensor from the output.

The PI (proportional and integral) controller is used to control the EV acceleration
and also maintains a constant speed of EV. The PI controller works during accelera-
tion of EV for changing the speed and when the desired speed is reached, the integral
action is switched off. Then only proportional action is activated and maintains a
constant speed. The reference speed (vref) and the reference acceleration (aref) are
used as the input of the controller. The output speed (v) and acceleration (a) are fed
back to the input of controller in opposite phase to get desired output and stabilize
the system.

5 Range and Trip Time Calculation

Asmentioned previously, knowing the range, trip time, and final SOC value is essen-
tial for the driver to properly plan a trip. Existing methods for range calculation are
summarized as follows. Battery State-of-Charge methods primarily concentrate on
precisely calculating the battery SOC (which is similar to the fuel gage on a ICE
vehicle) so as to find an estimation of how much battery charge remains. The range
to be completed by the residual battery energy can be approximately determined
based on the previous knowledge of what distance was covered by depleting how
much battery charge. Various studies on battery SOCmethod based range estimation
[6, 14, 29, 46, 80, 83, 85, 101] are found in the literature. This information, while
important, is inadequate by itself since the battery’s residual energy can be utilized
in many different ways according to the driver’s preferences. However, it should be
optimally utilized to accomplish the driver’s purpose. No such appropriate driving
strategy is available to the driver to properly utilize the residual battery energy. In
addition, since road conditions may vary in course of trip performing, the existing
methods are unable to capture such changeable effects as they are intrinsically aver-
aging methods. Energy-based methods calculate the energy utilization based on the
current or recent trip and vehicle data Based on the amount of energy consumption
rate, the EV range is predicted for the remaining battery charge. An approach to
predict the residual driving range and driving time of ICE vehicles using Artificial
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Neural Network (ANN) was found in [20]. In that approach, fuel capacity (remain-
ing fuel), engine speed, vehicle velocity and weight, and road slope were considered
as the inputs. Though this approach offers valuable information in the course of trip
performing based on instantaneous driving parameters, the anticipated range is not
known to the driver prior to trip started. Moreover, that approach does not suggest
any optimum trip parameters. In [79], an ANN based technique was proposed to
calculate the energy utilization for both pure and plug-in hybrid EVs in real-world
driving situation. This technique considered various inputs such as average speed,
average acceleration, total distance traveled, total duration, etc., to envisage the road
category and traffic congestion and, finally the predicted EV energy consumption rate
was found to deviate from themeasured value y in the range of 20–30 to 70–80%. The
authors recommend that as the energy consumption rate and total available energy
are known, an accurate EV range prediction can be made using this technique. Once
more, the driver does not have knowledge of the anticipated range for the specified
conditions stated in the article to devise a driving strategy. An approach to envis-
age the power for the instant future requirement in EV was proposed in [54]. This
approach considers the data from previous power consumption history, acceleration
and speed, and road information obtained from a pre-downloaded map. Though the
primary motivation of this study was the safety of battery, value of immediate power
requirement could be used to calculate the range as well. But this approach is a
passive method as the power requirement prediction depends on the driver’s actions,
and it does not suggest how to formulate a driving strategy.

There are three driving modes in which a vehicle can travel a distance. Two are
during the vehicle’s acceleration and deceleration and the other is when the vehicle
is running at a constant speed. The methodology of finding the estimated distance
traveled by a vehicle in these driving modes is presented in the following.

The range (distance) that can be traveled by an EV during constant speed mode is

Rg � vre f × Tv (1)

where vref is the (uniform) speed at which the vehicle is moving and Tv is the corre-
sponding duration. But, in practice, it is very difficult to maintain the vehicle’s real
speed exactly at vref , always. Thus vref is also considered as the commanded/desired
speed. Once the accelerator is pressed and its position maintained, it takes some time
(acceleration period) for the real vehicle speed, v, to get to vref . Thus, the instanta-
neous speed error is calculated as

ev � vre f − v (2)

In steady state, vref and v are close enough to be considered equal from a vehicular
standpoint. These two parameterswere inputs to the speed controller. Now to cover an
Rg with less stored battery energy consumption per unit time, the value vref becomes
low.But, it results in a highT to obtain the same range.On theother hand, a decrease of
T means consuming more energy. Thus to find an optimal vref to cover Rg efficiently,
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two contradictory objectives namely minimization of total energy consumption and
driving time are required to be solved simultaneously [89].

On the other hand, the range that can be covered by an EV during acceleration is

Rg � vinit Ta +
1

2
are f × T 2

a (3)

where aref is the (uniform) acceleration (also called commanded or desired acceler-
ation) at which the vehicle speed increasing to vref and Ta is the driving time during
which aref can be plausibly retained by the battery. The instantaneous acceleration
error is defined as the difference between the commanded acceleration and the real
vehicle acceleration, a

f � are f − a (4)

Both aref and a were inputs to the acceleration controller. Like optimal velocity,
to find optimal acceleration(s), both the acceleration time and energy consumed for
the acceleration are required to be minimized concurrently [68], and after solving
suchMOOP, it was revealed that a better optimization result is noticed usingmultiple
accelerations compared to a single acceleration. Such analogous results were also
observed in [49, 62]. Besides the above objectives, it is necessary to have sufficient
comfort during driving. A discomfort journey may result in various health problems
[42].

The range covered by an EV during deceleration is

Rg � vre f Td − 1

2
adec × T 2

d . (5)

where Td is the duration for vref to reach a termination value (normally a low value,
say 1 m/s). The EV deceleration was controlled by the speed controller rather than
the acceleration controller.

In practice, a trip consists of several such driving modes. The total range (R)
overcome by an EV in a typical trip is the summation of all Rg in these three driving
modes and the total trip time is the summation of all corresponding T . In order to
maximize the EV range and minimize the trip time by means of efficiently using
the stored battery energy, the primary concern is to identify the optimal values of
vref , aref , and adec. Various extraneous driving-specific parameters that affect vref , aref ,
and adec can be categorized into three groups: dynamic parameters, static parameters,
and navigation control parameters [106]. For the sake of simplicity and reducing the
model complexity, inherent model-specific parameters such as driveline dynamics,
etc., were not considered, whereas route specific parameters that tend to change
during a trip (gradient, elevation, wind, and road surface) were considered in this
study. Neglecting these latter parameters can lead to large error in the results due
to their more significant contribution to the overall energy consumption [40, 59, 97,
103].
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6 Multi-objective Optimization

Optimization is one of the most frequent and persistent problems in real-world sys-
tems including engineering. Through this technique, one can reach to an extreme
solution corresponding to either maximum or minimum of any objective subject to
certain constraints. Contrary to single objective optimization, MOO plays an impor-
tant role in decision-making toward making a preference among several options
related to multiple contradictory objectives. Multiple contradictory objectives are
normally found in most of the real-world problems. If all objectives are equally
important, extreme value principle (as used in single objective optimization) cannot
be adopted to arrive a solution. In such case, a number of solutions may be created
based on a negotiation among the objectives. Such negotiation does not allow to
consider a solution that is optimal corresponding to simply one objective. Thus, it is
required to obtain a set of solutions, among them the designer is allowed to choose
one that will fulfill the original intention. Selection of a solution among multiple
availabilities is also known as multiple criterion decision-making (MCDM). Thus,
the primary motivation for solving truly MOOPs is to find a set of non-dominated
solutions. The front formed by the optimal non-dominated solutions is called Pareto-
optimal front. The Pareto-front is formed by the solutions in which any change in
any of the decision variables aimed at improving a particular performance index will
produce deterioration in some of the other performance indices.

In general, a multi-objective problem (MOP) comprises of n number of input
parameters (called decision variables, x1,…,n), k number of objective functions
(y1,…,k), m inequality constraints, and j equality constraint. Objective functions and
constraints are functions of the decision variables. The optimization goal is as fol-
lows:

Maximize/minimize y � f
(
x1,...,n

) � (
f2

(
x1,...,n

)
, f1

(
x1,...,n

)
, . . . , fk

(
x1,...,n

))

(6)

subject to e
(
x1,...,n

) � (
e1

(
x1,...,n

)
, e1

(
x1,...,n

)
, . . . , em

(
x1,...,n

)) ≤ 0,

h
(
x1,...,n

) � (
h1

(
x1,...,n

)
, h1

(
x1,...,n

)
, . . . , h j

(
x1,...,n

)) � 0,

where x1, x2, . . . , xn ∈ X

y � (y1, y2, . . . , yk) ∈ Y

x L
i ≤ xi ≤ xU

i , i � 1, 2, . . . , n

The decision space and objective space are denoted by X and Y , respectively. x L
i

and xU
i are the lower and upper bounds of each decision variable, xi which form

X. The feasible solutions must satisfy the variable’s upper and lower limits and the
constraints, e(x) and h(x).
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Even though it is sufficient to know the objective ranges and Pareto-optimal shape
in order to make a decision, it is essential to select a distinct preferred solution since
it will be ultimately used for execution in a driving condition, and the corresponding
task is very crucial. According to the categorization made by Veldhuizen and Lamont
[92], the articulation of preferences may be carried out either before (a priori) or after
(a posteriori) or during (progressive) the optimization search. In this work, two a
posteriori-based MCDM techniques were adopted. Reference point based technique
[64] identifies a preferred solution based on a reference point. Whereas in the second
technique, first a knee-zone [11] on the Pareto-front is identified on the basis of trade-
off among the objectives, then based on the higher level information, a preferred
solution is selected from the knee-zone.

Various characteristics relating to theproblemdomainmaybe considered todecide
the reference point. Ideal point is widely used as a reference point in many multi-
objective problems. The set of optimal values obtained through optimization process
considering each objective independently is referred to the ideal point which is con-
sidered here as a reference point in decision-making process. In the present work,
a preferred solution among the Pareto-optimal set is identified on the basis of the
minimum (Euclidean) distance from the reference point. Sometimes it is noticed that
there is a typical portion of the Pareto-optimal front where a small improvement
in one objective would lead to a large deterioration in any of the other objectives
is treated as the knee-zone. The knee-value of the ith solution in the knee-zone is
mathematically defined by Eq. (7) for a MOOP having two conflicting objectives.

κi �
f (i−1)
1 − f (i)1

f (i−1)
2 − f (i)2

+ f (i+1)2 − f (i)2

f (i+1)1 − f (i)1

2
(7)

where the objectives f 1 and f 2 are considered to be maximized and minimized,
respectively.

A solution is said to a stronger knee point if its knee-value is higher than that
of the others and vice versa. It is obvious that the knee-zone is most likely to be
interesting to the decision maker exclusive of any user’s preferences knowledge.

6.1 Non-dominated Sorting Multi-objective Genetic
Algorithm (NSGA-II)

Nowadays interest in using of EAs in solving MOOP is increasing by realizing that
classical methods possess number drawbacks. Some classical methods are unable to
generate the Pareto-front with all possible solutions, particularly in nonconvex-type
problems. Sometimes in-depth problem information is needed which is difficult to
acquire. Moreover longer computational time for repeated simulation run to iden-
tify the Pareto-optimal solution independently is an inherent difficulty of classical
methods.
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Fig. 4 A schematic presentation of NSGA-II [24]

In contrary, Evolutionarymethods are population-based algorithms and have been
successfully implemented inmany real-world problems having intrinsic complexities
in calculating the analytical Pareto-optimal fronts. Earlier efforts of EA implemen-
tation in the field of present application [12, 39, 72] confirm its efficacy. In various
other real-world problems, EAs are also found to be successfully implemented [22,
28–32, 65, 67, 71, 78]. By realizing that, in the present work, a well-established evo-
lutionary algorithm (EA),NSGA-II (a non-dominated sortingmulti-objective genetic
algorithm) [24] is considered and its working principle is presented as follows.

Figure 4 demonstrates the working principle of NSGA-II considering binary-
coded genetic algorithm (GA). The present demonstration assumes a population size
equals six. Present NSGA-II architecture considers crowded tournament selection,
polynomialmutation scheme, and simulated binary crossover (SBX). After eachGA-
generation, six new non-dominated solutions are created. A solution treated as the
winner in the tournament should have either lowest rank or larger crowding distance
in case of multiple solutions of the same rank.

A generation is started by creating an offspring population Qt based on the parent
population Pt. After that, a collective population, Rt of size 2N is created by combing
Pt and Qt. Rt is then allowed for non-dominated sorting for solution classification
based on their ranks. A front is formed by the solutions having the same rank. Figure 4
demonstrates such kind of three fronts (F1, F2, and F3). As the constant population
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Fig. 5 A schematic representation of a crowding distance sorting approach [24], b clustering
approach [105]

size (= 5) is required to be maintained, forming of the new population (Pt+1) is
carried out by picking solutions from the different fronts one-by-one starting with
the lower rank. The fronts from which no solution is picked are just removed. It may
happen that there is a possibility of having more solutions in the final front than the
number of solutions just required to reach the population size (= 5) of Pt+1. Such a
condition happens with F2 as shown in Fig. 4. In that situation, a niche-preserving
strategy (namely crowding distance sorting and clustering approach) is applied to
select the required number of solutions from the last front. Considering Pt+1 as the
parent population, Pt, next Qt was created using the genetic operators, and the same
iteration (generation) is allowed to continue until the generation number reaches to
a designer specified value.

The crowding distance of an individual is calculated by determining the cuboid
length which is equivalent to the summation of the distances of two neighboring
solutions from the individual in each objective as demonstrated in Fig. 5a. The
mathematical expression to calculate crowding distance (cdi) is presented in Fig. 4,
where M is the number of objectives (f i,…,M). Preference of an individual is made
with higher crowding distance value.

A schematic representation of the clustering technique is presented in Fig. 5b.
In this technique, initially, each solution of the front is treated as the center of the
individual cluster. Then two clusters whose distance (which is the Euclidean distance
between their centroid) isminimum among that of all cluster pairs aremerged to form
a single larger cluster, and thereby reducing a cluster from the previous ones. The
same procedure of merging two clusters is continued until the number of clusters
reaches to the desired number of solutions. For a larger cluster, the solution closest
to its centroid is considered and all others are removed.

7 Formulation of Multi-objective Problem for Optimal
Trip Planning

Different issues that come to driver’s mind while trip planning using EV are men-
tioned in Sect. 1. In order to know whether EV can reach the destination, an accu-
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rate range prediction is necessary. Without considering other reasons (such as EV
mechanical structure, road condition, weather, etc.), jerk is responsible for a com-
fortable journey, and it is required to be minimum during the course of the journey.
To reduce the trip time, speed and rates acceleration/deceleration are to be kept high.
Reduction of journey cost is achieved byminimizing the overall energy consumption.

Previous studies [9, 18, 55] reveal that deriving harshness have a significant effect
on fuel consumptions. In [33], the authors suggest that appropriate changing of
driving behavior can reduce the energy consumption considerably. In another study
[37], it was suggested that improvement of regenerative braking energy can also be
possible by adopting an appropriate deceleration rate.Moreover, the deceleration rate
also influences the regenerative braking energy [37]. In some recent works [48, 51,
62, 89], it was revealed that energy requirement during speed changes with constant
acceleration rate is found to be more compared to that with multiple acceleration
rates. But, the use of multiple acceleration rates increases the jerk that leads to the
discomfort [28].

From the above discussions, it is understood that speed, acceleration/deceleration
rates, and their durations are the controllable parameters involved to design a trip
planning. Whereas, the output parameters (objectives) which are depended on the
controllable parameters are cost (energy consumption), range (distance traveled), trip
time, and journey comfort. Variousworkswere carried out considering theminimiza-
tion of trip time as the main objective [60]. A method for prediction of short-term
travel duration was proposed based on sensor data from the road in [104]. More-
over, an appropriate driving strategy which highly depends on the road condition is
also imperative and it is realized from various studies [9, 18, 33, 55, 88]. Moreover,
in order to properly utilize the EV battery’s stored energy, it is important that the
formulated driving strategy negotiates the predicted range in an optimal manner.

Thus, the driving notion of the driver would be to accelerate the vehicle to reach
a speed in the shortest time with adequate comfort while expending the minimum
amount of energy possible. In other sense, it indicates that driver would like to
accelerate the EV comfortably to a chosen speed with both minimum energy and
minimum time. But, these objectives are contradictory to each other, meaning that
the improvement of one objective deteriorates the other and vice versa [27, 28].

7.1 Problem Definition

The corresponding MOOP that arises is defined as follows:

Minimization of trip time
(
TT rip

) � fT
(
vre f , are f , kp, ki

)
(8)

Minimization of Energy consumsion (E) � fB
(
vre f , are f , kp, ki

)
(9)

Minimization of average jerk
(
JAvg

) � f JT otal

(
a1,2,...,K

re f , t1,2,3,...K−1, kp, ki

)
(10)
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subject to

vdc
min ≤ vre f ≤ vdc

max (11)

amin ≤ a1,2,...,K
re f ≤ amax (12)

0.01 ≤ kpa ≤ 0.3 (13)

0.01 ≤ kia ≤ 3.0 (14)

0.01 ≤ kpv ≤ 0.3 (15)

vdc
min and vdc

min are the minimum and maximum EV speed (v) limits, respectively.
Speed limits depend on the driving cycle (dc) that is currently followed [74] and
various safety issues concerning traffic congestion, road condition, weather, location
importance such as school, hospital, etc., and so on [2, 56, 66]. amin and amax
are the minimum and maximum allowable EV accelerations, a related to the EV
specification, traffic congestion, road condition, weather, etc. Depending on the EV
model type considered, amin and amax are taken as 0.1 and 3.0m/s2, respectively. kpa

and kia are the proportional and integral gains, respectively, of acceleration controller.
kpa was considered to vary in the range 0.01–0.3 and kfa is in the range 0.01, 3.0.
The lower and upper values of kpv, velocity controller proportional gain are taken as
0.01 and 0.3, respectively.

In this chapter, the present optimization problem is solved using NSGA-II con-
sidering crowding distance approach as a niching strategy discussed in Sect. 6 in
finding optimal driving strategies for EV. Since the present application is a con-
strained optimization problem, the non-dominated solutions are identified based on
the superiority approach of the feasible individuals [23].

8 Formulation of Objectives

The proposed DAOTP system is formulated here considering EV model topology
introduced in [36, 58, 100]. For the sake of reducing complexity, a simplified model
was used. The EV model comprises three major related components: electric motor,
battery, and the vehicle dynamics. The acceleration and speed of electric motor were
controlled using a proportional–integral (PI) controller and a proportional controller,
respectively. The EV model takes the inputs, reference acceleration, aref , and speed,
vref . The model outputs the objective values after performing several iterations with
a certain time step in a simulation process. The simulation was terminated when
the reference speed, vref , was zero indicating the completion of trip, corresponding
to n loop iterations. Various model parameters considered for the present study are
enlisted Table 1.
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Table 1 EV model parameters

Type DC brushed

Electric motor

Motor moment of inertia coefficient, I 0.05

Copper losses, kc 0.3

Iron losses, ki 0.01

Windage losses, kw 0.000005

constant electronics losses, Conl 600

Proportional controller gain for speed, KP 2.0

Critical motor speed, wc (rpm) 733

Maximum motor speed, wmax (rpm) 1326

Battery

Capacity, Cap (A h) 53

Initial state-of-charge, SOCinit 1.0

Number of cells in parallel, NP 1

Number of cells in series, NS 76

Type Lithium-Ion

Voltage, VP (V) 394

Battery efficiency, bateff 0.99

Battery long transient capacitance, CTransient_L
(MF)

0.22375

Battery long transient resistance, RTransient_L
(m�)

0.9968

Battery short transient capacitance, CTransient_S
(MF)

0.03518

Battery short transient resistance, RTransient_S
(m�)

0.9338

Battery series resistance, RSeries (m�) 1.4932

Vehicle

Air density, ρair (kgm3) 1.143

Frontal Drag coefficient, CD 0.19

Back Drag coefficient, CD_back 0.3

Frontal area, Af (m2) 1.8

Back area, Ab (m2) 1.4

Gravitational acceleration, g (ms2) 9.81

Mass including passengers and drivers, m (kg) 1460

Overall gear ratio/tire radius, G (m−1) 37

Rolling resistance coefficient, μ 0.014

Transmission Single-speed

transmission efficiency, geff 0.95

Regenerative braking factor, Rgen 0.5



168 M. Khanra et al.

8.1 Electric Motor Model

The motor model’s inputs Various parameters such as battery voltage, VP, reference
acceleration, aref , vehicle real acceleration, a, reference speed, vref , vehicle real
speed, v, and rotational speed, w, are considered as the inputs to the motor model.
The outputs are the battery current, IP, and electric motor torque, τ .

The speed error defined in Eq. (2) is rewritten for the ith loop iteration as

e(i) � vre f − v(i) (16)

The acceleration error defined in Eq. (4) is rewritten for the ith loop as

f (i) � are f − a(i) (17)

The switching function, SF of the motor is determined as follows:

SF(i) � kp f (i) + ki fint(i), if e(i) < fsa · vre f

SF(i) � K P · e(i) and fint(i) � 0, otherwise (18)

where f sa, switching factor from speed to acceleration controller was taken to be 0.02.
fint(i) is the integral of acceleration error which is defined by fint(i − 1) + f (i) ∗ dt
and fint(0) � 0.

The switching function value found using Eq. (18) is saturated as follows to
calculate the motor torque.

SF(i) �
1

−1
SF(i)

⎫
⎪⎬

⎪⎭

if SF(i) > 1

if SF(i) < −1

otherwise

(19)

The torque needed from the motor is

τ (i) � SF(i) · τmax(i) (20)

where τmax is the maximum torque that can be safely developed by the motor and its
value is decided according to Eq. (21).

τmax(i) � 140

τmax(i) � 9.1274

τmax(i) � 102000
w(i−1)

⎫
⎪⎪⎬

⎪⎪⎭
if

w(i − 1) ≤ wc

w(i − 1) ≥ wmax
wc < w(i − 1) < wmax

(21)

The units are N-m. The motor current, IM (i) is

IM (i) � τ (i) · w(i)

VP (i − 1)
(22)
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Now, the motor efficiency, effmotor, is calculated by Eq. (23).

e f f motor (i) � τ (i) · w(i)

τ (i) · w(i) + τ (i)2 · kc + w(i) · ki + w(i)3 · kw + Conl
(23)

The above-calculated motor efficiency was saturated as follows:

e f f motor (i) �
1

−1
e f f motor (i)

⎫
⎪⎬

⎪⎭

if e f f motor (i) > 1

if e f f motor (i) < −1

otherwise

(24)

The effective motor current IM_e f f (i) is derived from the motor current, IM (i) and
considering the effmotor and conveff (converter efficiency), as follows:

IM_e f f (i) � IM (i)
conve f f ·e f f motor (i−1)

IM_e f f (i) � IM (i) · conve f f · e f f motor (i − 1) · Rgen

⎫
⎪⎬

⎪⎭
if

SF(i) > 0 and vre f �� 0

SF(i) < 0
(25)

The regenerative braking factor, Rgen, is the fraction of the total available regen-
erative energy that is converted to battery energy.

8.2 Battery Model

The lithium-ion battery model presented in [19] is adopted here. Battery current, IP,
is the input of batterymodel. Themodel’s outputs areVP, and battery state-of-charge,
SOC.

Considering the maximum and minimum limits of battery current, the battery
current to be calculated using the revised motor current is as follows:

IP (i) �
IM_max
IM_min

IM_e f f (i)

⎫
⎪⎪⎬

⎪⎪⎭

if IM_e f f (i) > IM_max

if IM_e f f (i) < IM_min
otherwise

(26)

Here, IM_max and IM_min are considered as 400 and −400 A. Considering the
battery efficiency and mode of EV speed change (acceleration/deceleration), the
effective battery current, IP_e f f (i) can be derived from battery current, IP (i) defined
in Eq. (26) as follows:

IP_e f f (i) � IP (i)
bate f f

IP_e f f (i) � IP (i) · bate f f

⎫
⎬

⎭
if

SF(i) > 0

SF(i) ≤ 0
(27)
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The current flowing through an individual cell is

Icell (i) � IP_e f f (i)

NP
(28)

The battery SOC is calculated as

SOC(i) � SOC(i − 1) −
∫

Icell (i)

Cap
dt (29)

The initial value of SOC(i) is the so-called initial state of charge of the battery,
SOCinit . The battery voltage is

VP (i) � NS Vcell (i) (30)

where Vcell is the voltage of an individual cell. Based on the Kirchhoff’s Current
Law, the voltage of CTransient_L is calculated as

d

dt

(
VC_L (i)

) � Icell (i)

CT ransient_L
− VC_L (i)

CT ransient_L RT ransient_L
(31)

and the voltage of CTransient_S is

d

dt

(
VC_S(i)

) � Icell (i)

CT ransient_S
− VC_S(i)

CT ransient_S RT ransient_S
(32)

The open-circuit voltage is calculated as

VOC (i) � −1.031e(−35SOC(i)) + 3.685 + 0.2156SOC(i) − 0.1178SOC(i)2 + 0.3201SOC(i)3 (33)

The voltage of an individual cell is determined as

Vcell (i) � VOC (i) − VC_S(i) − VC_L (i) − Icell (i)RSeries (34)

8.3 Vehicle Dynamics Model

The electric motor torque, τ , the model input, and the model’s outputs are a, v, and
R, and the rotational speed, w. The aerodynamic drag force acting on the EV is

FD(i) � 1

2
ρair A f CDv(i)2 (35)

The frictional force between the road and wheel is

Frr (i) � μmg (36)
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The traction force supplied by the motor is

Ft (i) � τ (i)G · ge f f (37)

Force caused by road gradient is

Fgra(i) � sin

(
grad · �

180

)
· mg (38)

Force caused by the vehicle inertia is

Finertia(i) � I · m · a(i) (39)

Considering thewind velocity and its direction (with respect to vehiclemovement)
effect into the drag force [40], and assuming all the braking force come from the
electric motor, the acceleration is

a(i) �
τ (i) · G · ge f f + 1

2 ρair AbCD_back

(
v(i) − vwind·cos(θwind

)
)2 −μmg − sin

(
grad·�
180

)
· mg − I · m · a(i)

m
,

if vwind > v(i) and 270◦ < θwind < 90◦ (40)

a(i) �
τ (i) · G · ge f f − 1

2 ρair A f CD

(
v(i) − vwind·cos(θwind

)
)2 −μmg − sin

(
grad·�
180

)
· mg − I · m · a(i)

m
,

Otherwise (41)

where θwind (in degree) (0◦ < θwind < 360◦) is the wind velocity angle measured
with respect to the EV movement direction, grad (in degree) is the road gradient (it
becomes negative if the road is downhill, and positive if the road is uphill), ρair is
the air density at the EV’s current location.

The EV speed can be calculated using.

v(i) � vi−1 +
∫

a(i) dt (42)

ω is given by

ω(i) � v(i)G (43)

The distance traveled by EV, x(i) is given by

R(i) � R(i − 1) + v(i) dt (44)

The objective functions are defined as follows:

TT rip � n · dt (45)
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E �
n∑

i�1

IP (i)VP (i) (46)

ji � a(i + 1) − a(i)

dt
(47)

JAvg �
∑nd

i�1 ji
nd

(48)

where ji is the jerk experienced for a time step, dt due to change of acceleration. JAvg

is the average jerk value calculated based on jerks (ji) that are found to be greater
than the desired value, Jdesire (i.e., ji > jdesire). This automatically excludes very low
values of jerk due to controller or simulation conditions.

8.4 EV Simulation

The EV simulation is carried out starting from its present speed (vinit) with multiple
accelerations for a time period (Dacc) to reach to the desired reference speed (vref ).
Once the speed reaches close to vref (say 99%), switching fromacceleration controller
to speed controller is made, and vice versa depending on the driving mode. The EV
jerkwas recorded at the end of each time interval. The EV energy consumption (Eacc),
total jerk (JTotal), trip time, TTrip and range (Ra) were calculated at the simulation
end. By plotting the values of different objectives, a non-dominated front (i.e., Pareto
front) was obtained. The termination criteria of the EV simulation was to satisfy any
one of the following:

SOC ≤ 0.2

x ≥ RangeT rip − 10

vEnd of trip ≤ 5 kph

⎫
⎪⎬

⎪⎭
(49)

According to the Road Safety Authority (RSA), to stop or slow down a vehicle,
braking should be applied while accounting for a minimum stopping distance from
the stopping point or from the location of the start of a speed limit lower than the
present one. The total stopping distance (TSD) is normally the summation of the
driver’s reaction distance and the braking distance, and it also depends on the dryness
or wetness of the road surface [31]. TSD increases exponentially with the current
vehicle speed. For the sake of simplicity, a linear relationship is considered here.
In the present context, when the residual trip distance is less than a minimum TSD
(Trip End Safety Distance for braking (TESDB) approached to stop the vehicle), the
current EV speed reference becomes vEnd of trip. TESDB is calculated using Eq. (50).

T E SDB � dec_ f actor_sa f ety
v2ref_trip end

2 · adec
(50)
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where adec (m/s2) is calculated using Eq. (51) based on vdi f f _dec (m/s), the dif-
ference between the desired speed after deceleration and the current EV speed.
dec_factor_safety is the safety parameter used during deceleration mode to ensure
that the vehicle slows down or stops within the allowable distance. The deceleration
(adec) was assumed depending on vdiff_dec as follows:

adec � 2.3

adec � 2.25

adec � 2.35

if

⎧
⎪⎪⎨

⎪⎪⎩

100 ≤ vdi f f _dec ≤ 129

50 ≤ vdi f f _dec ≤ 100

0 ≤ vdi f f _dec ≤ 50

(51)

According to the micro-trip presented in Fig. 2, vref_trip end in Eq. (50) refers to
vref3.

9 Results and Discussions

9.1 Neighborhood Micro-trip Planning

The results of the DAOTP system in the present work are presented based on a few
assumptions as follows. The speed limits are chosen only based on the correspond-
ing driving cycle followed by EV. The safety factors such as safe following distance,
etc., related to traffic congestion, road condition, weather, location importance, etc.,
are not considered while fixing the EV speed limits for the sake of simplicity. Other
assumptions concerning accelerations limits, model parameters, etc., have beenmen-
tioned in the previous sections. In this study, other trip parameter values considered
are depicted in Table 2.

Moreover, the applied micro-trip is simple in the sense that it follows only one
driving cycle type for the entire trip length. The velocity profile versus distance of
a simple micro-trip consisting of one driving cycle type is presented in Fig. 6. The
simple micro-trip consists of one acceleration mode followed by a constant speed
model within the speed limits of the driving cycle, and after that, the EV comes to a

Table 2 Values of different
parameters considered during
simulation process

Parameters Value

dt (in, s) 0.01

Auxiliary load (in, J/s) 10500

SOCinit 1.0

Jdesire 1.0

K 2

dec_factor_safety 1.25



174 M. Khanra et al.

Range

Start End

A Bd1 d2d

aref

vref

vinit=0 vend=0

V
el
oc

ity

Distance

Fig. 6 Velocity versus distance plot of a simple micro-trip consisting of one driving cycle

Table 3 Values of GA parameters

GA Parameters Value

N 250

Mutation probability 1/length of chromosome

Crossover probability 0.985

No. of bits used for each variable 20

Random seed 0.4

Number of generation 100

stop during the deceleration mode. The values of GA parameters presented in Table 3
are used for MOO process throughout this chapter unless otherwise stated.

In an urban area, depending on the vehicle speed limits, two driving cycle types,
neighborhood (verf is varying from 8 to 40 km/h), and urban (vref is varying from 40
to 56 km/h) are applicable.

Figure 7 presents the Pareto fronts achieved by DAOTP after solving the MOOP
(defined in Sect. 7) for minimization of energy consumption, trip time, and average
jerk in the neighborhood driving cycle are presented in Fig. 7. In this figure, the
Pareto fronts are shown for six different trip lengths (ranging from 0.5 to 20 km)
keeping the other parameters related to the route (presented in Table 4) fixed. The
wind angle is measured based on the same coordinate system as followed by the
vehicle. That is, if the direction of the wind and the vehicle are the same, the wind
angle equals zero.

In Fig. 7, Pareto front spans in all three objectives (energy, trip time, and average
jerk) were observed to be dissimilar for dissimilar trip length, as anticipated. With
increasing the trip length, the Pareto fronts are found to be migrated gradually move
away from the origin. Among the six chosen trip lengths, some optimal solutions of
trip lengths especially, 5, 8, and 10 km are found to be of a very low average jerk
(less than 4 m/s3), longer trip time and more energy consumption. On the other hand,
few solutions of trip length (in particular, 0.5 and 5 km) possess a very high average
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Fig. 7 Pareto-optimal fronts obtained in solvingMOOP defined in Sect. 7 in neighborhood driving

Table 4 Route characteristic data

Sr. No. Distance Route characteristic parameters

Road gradient

From To Value Angle (°)

1 0 Trip end 0 –

Rolling frictional coefficient of
road surface

2 0 Trip end 0.015 –

Density of air

3 0 Trip end 1.143 –

Wind velocity (km/h)

4 0 Trip end 0 0

jerk value (more than 100 m/s3) with short trip time and low energy consumption.
It is obvious that such kind of solutions having extreme objective values is not to
be attractive to the driver. By realizing this, Pareto-optimal solutions are screened
by limiting the average jerk values in the range, 4–100 m/s3, and the revised fronts
are shown in Fig. 8. It is interesting to observe that as the trip length increases,
less number of solutions outside the above mentioned average jerk limit belong to
the Pareto front. This is to be expected since the definition of average jerk involves
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Fig. 8 Revised Pareto-optimal fronts based on average jerk limits (4m/s3 <average jerk<100m/s3)
in neighborhood driving cycle for different simple micro-trip length

dividing by the number of times (nd) the jerk exceeds a certain limit (Jdesire) according
to Eq. (48). Since there is only one acceleration mode for all the micro-trips in Fig. 8,
the average jerk is expected to generally decrease as the trip length increases. nd

increases, but ji is found to be low when the EV runs at a constant speed.
The amount of energy stored in a battery is realized by knowing its SOC, and

it can easily measure and presented to the driver through a suitable device based
on based on multi-modal electrochemical impedance spectroscopy [73] and also
easily interpreted by the driver. Thus, instead of actual energy utilization, it is more
expedient for a driver to know the associated residual battery SOC. For that reason,
the optimization results are discussed here in terms of SOC value at the end of the
trip (SOC) and the trip time.

In Fig. 9, plot of SOC versus trip time for the 0.5 km micro-trip is presented.
It is observed that after a certain trip time, SOC is found to be decreasing with
increasing trip time because of a low jerk. It is evident that though the average jerk
is low, such kind of solutions is not attractive at all. Instead solutions with a high
SOC or a low trip time will be more interesting. A dotted ellipse in Fig. 9 shows
the most attractive portion of the SOC-trip time plot and the corresponding solutions
are replotted in Fig. 10. Though these solutions are non-dominated with respect
to the original (three) objectives, are not non-dominated with respect to SOC and
trip time. As a result, a one-to-one SOC-trip time plot is not anticipated. Figure 10
shows that SOC decreases with increasing time because the energy consumption is
inversely varying with time. The variation of energy consumption with SOC is also
demonstrated in Fig. 10. The energy consumption is found to be linearly varyingwith
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Fig. 9 Variation of end SOC with trip time in 0.5 km range

Fig. 10 Range-SOC-time plot corresponding to a micro-tip of 0.5 km

SOC with a gradient of −15.6. The empirical linear equation with a corresponding
the coefficient of determination (R2) value is depicted in the Fig. 10.

Similar studies on the variation of SOC with trip timewere conducted for the other
trip lengths. Figure 11 is similar to Fig. 9 except that the solutions correspond to the
5 kmmicro-trip. Considering the interesting part of the plot based on the relationship
between SOC and time, the trip end SOC (SOC) versus trip time plot is presented in
Fig. 12. It also shows the energy consumption of the interesting solutions. The linear
relationship of energy with SOC is depicted in the Fig. 12 and has a high R2 value,
just like Fig. 10. Moreover, after analyzing the energy and trip end SOC relationships
of trip lengths 0.5 and 5 km as shown in Figs. 10 and 12, as well as that found in
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Fig. 11 Variation of trip end SOC with trip time for 5 km trip

Fig. 12 Energy–SOC–time plot corresponding to a micro-tip of 5 km

other trip lengths, it was found that the slopes and intercepts are very close up to
a trip length of 10 km with standard deviations, 0.22 and 0.20, respectively. After
taking a mean value of both slope and intercept, a generalized linear relationship
among (kWh) and SOC (0–100%) the optimal solutions defined in Eq. (52) may be
applicable up to 10 km trip length for the present EV model.

E � −15.4245SOC + 15.464 (52)

After 10 km trip length, the slope and intercept were found to be different and
less than that in Eq. (52).

Figure 10 and Fig. 12 present the initial twenty knee-points evaluated using Eq. (7)
for the trip lengths 0.5 km and 5 km, respectively. The reference point based preferred
solutions for these trip lengths are also depicted in Fig. 10 and Fig. 12, respectively.
The ideal (reference) point based preferred solution is found to be one of the twenty



Driving Assistance for Optimal Trip Planning … 179

knee points, and it is observed in both the trip lengths. However, it is not always true.
An example is the case of 8 km trip length (not shown in the chapter).

Values of the three objectives, decision variables, and SOC are shown in Table 5.
As mentioned in Sect. 8, a deceleration safety factor (presented in Table 2) was
considered during braking the EV to ensure that the vehicle stopped before or close
to the trip end location. Now, depending on the EV speed the TESDB is varied. Thus,
instead of the same trip length (assumed prior to the trip), each solution possesses
a different distance but always close to the desired trip length. The actual range
covered corresponding to the optimal solution is also enlisted in Table 5. Prior to the
initiation of the journey, DAOTP evaluates the optimal driving strategies in different
driving modes for the entire trip in an offline mode based on the route information
and battery SOC. According to the DAOTP predictions, the driver makes a decision
for his/her trip planning. After starting the trip, DAOTP begins evaluating the new
(revised) optimal driving strategy in every (certain) time interval according to the
current EV state and route characteristic data in online mode till the trip ends. This
online suggestion of DAOTP accounts for any deviation from the initial optimal
driving strategy due to unforeseen circumstances or a lack of concentration by the
driver. In such circumstances, the driver will be notified right after a time interval
by comparing the previous and present DAOTP predictions. The subsequent driving
strategies will be very similar to the previous strategy if the deviation applied driving
strategy from the predicted is minor.

In both the trip lengths (0.5 and 5 km), it was found that the optimal speed is close
to the maximum speed limit of neighborhood driving cycle (40 km/h). The variation
of EV speed with trip end SOC of the Pareto-optimal solutions found in 0.5 km
trip is presented in Fig. 13. About 94% of the solutions possess the speed around
40 km/h, which is the speed limit. From Table 5, it was noticed that in both trip
lengths, the first acceleration value is found to be higher than the second acceleration
value. On the other hand, the first acceleration’s duration was found to be lower than
that of the second acceleration. The variations of EV accelerations and acceleration
durations with trip end SOC found in the 0.5 km trip length are presented Fig. 14.
In Fig. 14, the first accelerations of nearly all Pareto-optimal solutions are observed
to be similar, and possessed a high value (close to the upper limit of the acceleration
range presented in Eq. (12)). On the other hand, the second acceleration is increasing
with increasing the trip end SOCwith a second-order polynomial relationship (with a
coefficient of determination, R2 �0.9773) defined byEq. (53). Similarly, the duration
of first acceleration of the Pareto-optimal solutions was found to be a constant value
close to 1.65 s and that of the second acceleration to be varying with trip end SOC
according to Eq. (54) with a coefficient of determination, R2 �0.95.

a2 � 5.279 × 106SOC2 − 1.051 × 107SOC + 5.236 × 106 (53)

t2 � 1.01 × 108SOC2 − 2.01 × 108SOC + 9.99 × 107 (54)

After conducting the similar innovation study for trip length 5 km, it was observed
that the first acceleration value and corresponding duration of the Pareto-optimal
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Fig. 13 Variation of EV speed with SOC in 0.5 km range

Fig. 14 Variations of EV accelerations and acceleration durations with SOC in 0.5 km range

solutions are found to be the same as observed in the case of trip length, 0.5 km. The
relationships of the second acceleration and its duration with trip end SOC are also
found to be a second-order polynomial defined by Eqs. (55) and (56) corresponding
to the coefficients of determination (R2), 0.9865 and 0.9826, respectively. The differ-
ence between the coefficient values of the corresponding relationships of trip length
0.5 and 5 km are found to be negligible. This suggests that the acceleration strategies
are found to be almost similar nature irrespective of the trip length in neighborhood
micro-trips. This implies that the migration of the Pareto fronts in Fig. 9 that was
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Fig. 15 Variation of kp with trip end SOC in 0.5 km range

alluded to previously in this section is solely due to the duration of constant speed
mode dictated by the trip length.

a2 � 6.458 × 106SOC2 − 1.246 × 107SOC + 6.007 × 106 (55)

t2 � 1.046 × 108SOC2 − 2.016 × 108SOC + 9.715 × 107 (56)

After analyzing the variations of kp and ki with trip end SOC, as presented in
Figs. 15 and 16, respectively, it was noticed that most of solutions are lie within a
particular region. In the case of trip length 0.5 km, kp is varying from 0.2 to 0.25
and ki, from 0.3 to 0.8; 67% and 62%, respectively, of the entire solutions are within
these ranges. Similarly, kp and ki values of most of the Pareto-optimal solutions
obtained in higher trip lengths vary with certain ranges. However, from Table 5, a
comparatively high value of both kp and ki was found in the preferred solution with
higher trip length.

Table 6 shows the energy savings that are achieved on various trips. The % energy
savings are evaluated based on the minimum and maximum energy consumptions of
the interesting solutions as found after optimization process. Such energy savings can
be obtained by sacrificing the corresponding trip duration. The maximum and mini-
mum energy consumption, the lowest value of trip end SOC, and its effective range
found among the optimal solutions corresponding to a trip length are also enlisted
in Table 6. Like energy saving, the % trip time in the fourth column of Table 6 are
also calculated corresponding to the minimum and maximum time required to com-
plete the trips. From Table 6, it was observed that the energy saving reduces with
increasing the trip length. However, the energy saving per unit trip time lost is getting
more as the trip length increases (e.g., 0.46 and 1.06, in trip length 0.5 and 10 km,
respectively). The following describes a scenario that highlights the versatility of the
proposed DAOTP system and possible energy savings among the obtained Pareto
front solutions in exchange for sacrificing trip time. For the sake of demonstration,
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Fig. 16 Variation of ki with trip end SOC in 0.5 km trip length

Table 6 Energy saving corresponding to time lost for different neighborhood micro-trip length

Trip length
(km)

Maximum
energy con-
sumption
(kwh)

Minimum
energy con-
sumption
(kwh)

Energy
saving (%)

Trip time
lost (%)

Lowest
SOC (%)

Effective
SOC range
(%)

0.5 0.07326 0.06507 12.581 27.14 99.5062 0.1022

1 0.13717 0.12221 12.237 21.14 99.1587 0.0986

2 0.25265 0.23817 6.078 9.76 98.464 0.096

5 0.60166 0.58616 2.644 40.22 96.3635 0.1034

8 0.96582 0.93420 3.385 2.67 94.169 0.1985

10 1.23428 1.16499 5.947 5.59 92.5536 0.4233

the solutions having maximum energy consumption are supposed to be suboptimal,
considered to be obtained without DAOTP. On the other hand, the solutions hav-
ing minimum energy consumption are considered to be the best DAOTP solutions.
This demonstration should not be confused with selection criteria (decision-making
techniques/driver preference) of a DAOTP solution for implementation.

In a downtown area where the neighborhood driving cycle is normally followed,
the vehicle is required to stop frequently due to more traffic congestion and traffic
lights. As a result, to cover a trip length, the vehicle breaks the entire trip length into
multiple micro-trips, the beginning and end of which correspond to two successive
stops. After analyzing the data presented in Table 6, it was found that there will
be 6.82% (= (0.07326×2 − 0.13717)×100/0.13717) more energy consumption if
the EV runs 1 km with a stop after every 0.5 km compared to traveling the same
distance at a stretch without adopting the optimized driving strategy. This energy
consumption can be reduced to 5.12% ((0.06507×2 − 0.13717) ×100/0.13717) if
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DAOTP results are followed during the journeywith breaks. So, there will be a saving
of up to 1.70%. (=6.82–5.12). For more number of stops in a trip length, the saving
is more. For instance, the extra energy loss to travel 5 km distance with a stop after
every 0.5 km traveled instead of a continuous journey and without adopting DAOTP
results is 21.76%. This excess energy consumption comes down to 8.15% if DAOTP
results are adopted and the saving of energy will be up to 13.61%. corresponding to
2.722% per km. If in both cases (continuous and journey with stops) DAOTP results
are utilized, the amount of energy loss will be reduced from 21.76% to 11%, and
6.82% to 6.48%, for trip lengths 5 km and 1 km, respectively, with a stop after every
0.5 km. The above study reveals that the benefits of adopting DAOTP system during
performing a trip with EV.

9.2 Urban Micro-trip Planning

Similar studies were conducted on DAOTP application in urban micro-trips (speed
range 40–56 km/h) for the same six trip lengths as considered in neighborhood
driving cycle. The nature of Pareto fronts found was found similar to that of the
neighborhood driving cycle. The interesting solutions in a Pareto frontwere identified
following the concept based on the problem-specific information that was adopted
in the neighborhood driving cycle. The relationship between E and SOC was found
to also be linear. The generalized linear relationship derived after averaging the
slope and intercept found in six trip lengths is presented in Eq. (57). The standard
deviations of the slope and intercept in different trip lengths were found at 0.25 and
0.24, respectively. These are slightly lower than the slope and intercept values for
neighborhood trips.

E � −14.871SOC + 14.995 (57)

The preferred solution was found out using the reference point technique based
on the ideal point. In Table 7, values of optimum decision variable of the preferred
solutions found in urban micro-trips of lengths 0.5 and 5 km, along with the cor-
responding objectives, actual range covered and the respective ideal point used are
listed. After comparing the data of Tables 5 and 7, a similarity in the optimization
results was for the optimal speed, both the acceleration values and the first accel-
eration duration for both the trip lengths. However, in urban driving cycles, it was
found that for the 0.5 km trip length, the optimal value of the second acceleration
duration is low compared to that in the neighborhood driving cycle. This happens
because since the trip length is short so that before reaching the optimal speed, the
EV covers the trip length. Due to this reason, a smooth plot of the second accelera-
tion duration with trip end SOC (as seen in the neighborhood driving cycle, Fig. 14
corresponding to trip length, 0.5 km) may not be expected through a similar nature
of the relationship of the second acceleration value with trip end SOC was observed.
As the trip length increases, similar results as observed in the neighborhood driving
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cycle can be anticipated in the urban driving cycle as well. Moreover, a significant
difference in the kp and ki was found. In the higher speed driving cycle, the optimum
values of those variables reduce with increasing trip length.

The above DAOTP results are found based on the route characteristic data pre-
sented in Table 4 and considering an initial battery SOC of 100%. Changes of route
characteristic parameters and a different initial battery SOC may affect the DAOTP
results. The effectiveness of route characteristic parameters, such as road gradient,
road surface condition, wind velocity, elevation, and battery initial SOC on DAOTP
results are investigated in highway micro-trips planning.

9.3 Highway and Interstate Micro-trip Planning

Results for high-speed driving cycles are presented here for seven trip lengths ranging
from 1 to 50 km. The trips are considered based on the structure of a simple micro-
trip as shown in Fig. 6. The same EV model and related model parameter values
as mentioned above are adopted here. By solving the associated MOOP (presented
in Sect. 7 of the first part), a smooth Pareto front surface was found for each trip
length in both high-speed driving cycles, highway and interstate, as shown in Figs. 17
and 18, respectively. This is unlike the results found in Figs. 7 and 8 for low-speed
driving cycles. During the optimization process, the same GA parameters presented
in Table 2 along with the other mentioned assumptions are also considered. From
these figures, it was observed that the span of each objective (the difference between
the minimum and maximum values) such as TTrip, E, and JAvg in the Pareto fronts
are increasing with increasing the trip length.

In the Pareto fronts found in low driving cycles, it was observed that there exist
many solutions having a low average jerk value (less than 4 m/s3) that corresponds
to a high trip time and energy consumption or a very high average jerk value (more
than 100 m/s3) with a low trip time and energy consumption. Moreover, by plotting
the trip end SOC (SOC) with the TTrip of optimal solutions, even after sorting based
on the restricted average jerk values (4 m/s3 <JAvg <100 m/s3), it was noticed that
after a certain trip time there were some solutions in the Pareto-optimal set that pos-
sess an uninteresting feature, i.e., the battery SOC is decreasing with increasing trip
time. The presence of such uninteresting features was observed for even higher trip
lengths, till 10 km. However, for higher trip lengths, the number of such solutions
reduces significantly. Such adverse characteristics were not found in the optimal
solutions obtained after MOO (multi-objective optimization) for high-speed driving
cycles, according to Figs. 17 and 18. Figure 17 and Fig. 18 present the Pareto fronts
obtained by the minimization of trip time, energy, and average jerk for a simple
micro-tip with different lengths for highway and interstate driving cycles, respec-
tively. Therefore, for high-speed driving cycles, Pareto-optimal solutions after MOO
do not require any such sorting based on problem-specific higher level information.
The SOC versus TTrip plots are drawn directly after optimization as shown in Figs. 19
and 20 corresponding to the highway and interstate driving cycles, respectively. From
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Fig. 17 Pareto-optimal fronts obtained in solving MOOP defined in Sect. 7 in highway driving

Fig. 18 Pareto-optimal fronts obtained in solving MOOP defined in Sect. 7 in interstate driving

Figs. 19 and 20, it was noticed that the lowest Pareto front SOC of any driving cycle
is always found to be higher with higher trip length. Contrary to that, the lowest
Pareto front trip time of a driving cycle is always noticed to be lower with higher trip
length. Such finding is evident since the time requirement and energy consumption
are required to be more for a longer trip. This observation suggests the obtained opti-
mization results are meaningful and realistic. In order to demonstrate the optimized
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Fig. 19 Variation of trip end SOC with trip time for a highway driving cycle

Fig. 20 Variation of trip end SOC with trip time in interstate driving cycle

driving strategy characteristics (DSC), a simple micro-trip consisting of one driving
cycle (whose velocity profile versus distance is demonstrated in Fig. 6 is considered
here. The plots of trip end SOC and trip time for the simple micro-tip of 20 km for
highway and interstate driving cycles are shown in Figs. 21 and 22, respectively.
Both the figures also demonstrate the corresponding energy consumption, E. The
first few best knee-points and the preferred solution obtained using reference point
based DM technique are pointed out in the SOC-TTrip plot.

As in low-speed driving cycles, a linear relationship between E and SOC for both
highway and interstate driving cycles is found and these are defined in Eqs. (58) and
(59), respectively.
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Fig. 21 Energy-trip end SOC–Trip time plot corresponding to minimization of trip time, energy
and average jerk in a simple highway micro-tip of 20 km length

Fig. 22 Energy-trip end SOC–Trip time plot corresponding to minimization of trip time, energy
and average jerk in a simple interstate micro-tip of 20 km length

E � −14.35SOC + 14.594 (58)

E � −13.782SOC + 14.164 (59)

The slope and intercepts of Eq. (58) are calculated by taking the mean of the slope
and intercept values found for different trip lengths in Fig. 17. The corresponding
STDs (standard deviations) are 0.198 and 0.215, respectively. Similarly, the slope



190 M. Khanra et al.

and intercepts of Eq. (59) are determined for Fig. 18 and the corresponding STDs are
0.220 and 0.172, respectively. Comparing the relationships between E and SOC for
all four driving cycles, it was found that both the slope and intercepts of the linear
(average) empirical relation are decreasing with increasing EV speed (vref). Such
findings suggest that in low-speed driving cycles, the SOC decreases with respect to
energy consumption at a lower rate compared to that in high-speed driving cycles,
which follows typical battery discharge characteristics [4, 61]. This confirms the
reliability and meaningful nature of optimization results expected from the proposed
DAOTP system.

In Table 8, the values of objective functions (energy consumption, trip time, and
average jerk) corresponding to the preferred solutions (representing the optimal driv-
ing strategy) obtained through the DAOTP system for high-speed driving cycles for
a trip length of 20 km are presented. Table 8 also shows the values of related decision
variables (driving characteristics namely EV speed, acceleration(s) and correspond-
ing duration(s), and controller gains), and SOC. Here, two acceleration rates (k=2)
are assumed during acceleration mode. In contrast to low-speed driving cycles, the
optimal speeds were not found to be very close to the upper driving cycle speed limit.
Here, it is interesting to note that the optimal speed has a tendency to lie close to
the upper driving cycle speed limit as it is varying from high to low. The motivation
of such findings can be enlightened by taking into consideration the dependency of
motor power and efficiency on speed is explained in [58, 90]. At a low speed, the
electric motor efficiency is very low. At medium speeds, it is almost as a constant.
At high speeds, the efficiency starts to deteriorate. In order to minimize the trip
time, the EV speed is required to be high. Coincidentally, the upper speed limit of
a low-speed driving cycle is positioned in the EV speed range that yields the max-
imum motor efficiency. On the other hand, since power consumption increases in a
quadratic manner with EV speed (v) and the maximum speed of a low-speed driving
cycle is not too high, MOGA selects the optimal speed closer to the upper limit of
the low-speed driving cycle. On the other hand, at high EV speeds, though the trip
time reduces, the motor shows low efficiency in addition to the power consumption
being extremely high as it is a function of v2. Therefore, solutions close to the upper
limit of the high-speed driving cycle are not selected by MOGA. For these reasons,
it is observed that the optimal solution is found further and further away from the
upper speed limit of a driving cycle when it changes from low to high speed. As in
low-speed driving cycles, a high value of the first acceleration (a1) is also observed
in high-speed driving cycles. On the other hand, for low-speed driving cycles the
value of the second acceleration (a2) was found to be significantly lower than a1.
Though the same result was observed for a highway driving cycles, the a2 value in
the interstate driving cycle was found to be comparatively higher than that in low-
speed driving cycles (sometimes, close to a1). But in those cases, t2 was found to
be opposite in nature. The above findings on optimal DSC are only based on the
route characteristic parameters depicted in Table 4. Such findings may be different
according to the changes of route characteristic parameters and initial battery SOC.
In the following, variations of DAOTP results with these parameters are analyzed for
the same trip and driving cycle.
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10 Effect of Initial SOC on DAOTP Results

Trip planning is carried out based on the initial battery SOC�1.0. The EV can
attain its maximum range with an optimal driving strategy since the battery energy
is maximum. Therefore, a driver can plan a trip with greater confidence, especially
if the trip length is below the maximum range. In certain situations, a full battery
SOC before starting a trip may not be possible. Besides this, the study of the effect
of initial SOC on DAOTP results [52] is important in the sense that if the vehicle
is unexpectedly required to stop or to modify the original trip plan or due to some
unforeseen reason, the original DAOTP results may no longer be valid. In that case,
the remainder of the tripmust be planned oncemore based on the current SOC, which
would be different from the initial SOC before the trip was initiated. This scenario is
not to be confused with the general operation of DAOTP, which continuously updates
itself. That is, once the trip is planned, DAOTP updates itself after each time interval,
but the optimal driving strategy remains the same provided the route characteristics
also remain the same.

The battery energy depleted in terms of SOC difference between before and after
the trip performed is presented in Figs. 23 and 24 in highway and interstate driving
cycles, respectively. The results are taken considering a trip length of 20 km. From
both the figures, it was observed that the rate of decreasing SOC is more when the
initial battery SOC is low compare to high initial SOC irrespective of driving cycle
type. For instance, to complete the 20 km interstate trip in 800 s, the SOC drops are
found to be 44.565%, 29.288%, 21.356%, and 16.480% corresponding to the initial
battery SOCs 0.4, 0.6, 0.8 and 1.0, respectively as found in Fig. 24. Considering
the same trip length and initial SOC values (0.4, 0.6, 0.8 and 1.0), the SOC drops
are found as 39.47%, 25.825%, 18.96, and 14.54%, respectively, for a highway for
a trip time of 900 s, as shown in Fig. 23. These results offer the conclusion that
SOC significantly depends on the initial battery SOC. The amount of SOC dropped
with initial battery SOC follows an intricate relationship which is not studied here.
Moreover, a unique relationship does not exist for all driving cycles. The width of the
Pareto-optimal front corresponding to both SOC and trip time in a driving cycle does
vary with the initial SOC value. Figures 23 and 24 also show the distance (range)
covered by EV with initial SOC�0.4. It is observed that all the solutions in the
Pareto front are found to cover the 20 km trip length for a highway driving cycle.
However, for the interstate driving cycle, some solutions are found that are not able
to complete the entire trip. The SOC values of those solutions with trip time less than
600 min decrease below the limiting SOC value of 0.2 (a typical value to protect
the battery and it offers a safety factor) before completing the desired trip length of
20 km. The above findings argued that an averagingmethod (a naive predictor) on the
basis of previous experiences of past trip may suggest incorrect results where SOC
consumption in concerned, specifically if it is a different driving cycle type. For most
of the cases, the initial SOC of the present trip may not be the same as adopted in the
previous trip. Moreover, changing the route characteristic information increases the
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Fig. 23 SOC change with trip time for a highway driving cycle

Fig. 24 SOC change with trip time in interstate driving cycle

probability of yielding inaccurate trip planning results. These issues are discussed in
the subsequent section.



194 M. Khanra et al.

Table 9 Road gradient distribution of the micro-trip route

Sr. No. Distance (km) Gradient

From To

1 0 2 0

2 2 8 Gradient value

3 8 12 0

4 12 18 −Gradient value

5 18 20 0

11 Influence of Route Characteristics on DAOTP Results

The influences of various route characteristic parameters on the DAOTP results are
presented here [52]. Among various route characteristic parameters, the present study
considers the most influential and common ones. These are the road gradient, wind
velocity and direction, road surface, and air density due to change of elevation.

11.1 Road Gradient

In order to investigate the road gradient influence on DAOTP results, eight different
road gradient values ranging from 0 to 3° are taken. The route architecture cor-
responding to each micro-trip follows the road gradient distribution presented in
Table 9. Each route consists of both road gradient effects that may be encountered
during a trip, uphill and downhill, denoted by positive and negative signs, respec-
tively, in Table 9. Each gradient zone extends for an equal length, 6 km, in the trip.
This is representative of a round trip, wherein the driver ends up at the starting point
after trip, meaning there is no net change in elevation due to the road gradient.

Figure 25a, b demonstrate the influence of road gradients on DAOTP outcomes
for highway and interstate driving cycles, respectively. It is quite obvious that more
energy is consumed to maintain a constant vehicle speed in a road with positive
gradient. In contrast, brakingmay be required in a roadwith negative gradient to keep
a constant speed. However, during braking, there is a scope to recover the EV kinetic
energy to some extent through regeneration techniques. The energy recuperation
efficiency of a regenerative braking system depends on many factors such as vehicle
speed, battery SOC, battery temperature, motor available braking torque, braking
force, braking behavior [37], etc. and has a complex nature [43]. In the present study,
the regenerative braking factor, Regen (defined by the fraction of the total available
regenerative energy that is converted to battery energy), is considered as 0.5, which is
a typical value for EVs. The deceleration rate is considered according to the vehicle
speed defined in Eq. (51).

Although the positive and negative road gradient exist for the same fraction of
the trip, the DAOTP results with the road gradient effect are found to be different
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Fig. 25 Variation of trip end SOC with trip time for different road gradients to cover a trip length
of 20 km in a Highway and b Interstate driving cycles

from that with zero gradient for both the driving cycles. For the highway driving
cycle, a small gradient (≤2°) improves the trip end SOC, except very small gradient
(0.1) or without any gradient. For high gradients (>2°), the trip end SOC deteriorates
significantly,meaningmore energy consumption during positive gradient than energy
recovery through regeneration during negative gradient. These results highly depend
on the regenerative braking system used and road gradient distribution of the rout.
The influence of road gradient on network-wide vehicle energy consumption can be
found in [59]. The same effects on the DAOTP results with road gradient were found
for the interstate driving cycle.However, thePareto front characteristic corresponding
to different road gradient with respect to that of zero road gradient is not similar for
highway and interstate driving cycles.
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11.2 Wind Speed and Its Direction

In order to demonstrate the wind effect on DAOTP results, two wind speeds (10
and 30 km/h) blowing in two different directions (0° and 135° with respect to the
EV driving direction) are considered. The results obtained with wind are compared
with those obtained without wind. The Pareto fronts are presented in Fig. 26a, b.
Figure 26a, b show the comparative results for highway and interstate driving cycles,
respectively.

Generally, an energy saving is anticipated when the wind blowing in the direction
of vehicle speed. In contrast, high energy consumption is needed while the wind flow
is against the vehicle speed. A similar notion is also observed in the results presented
in Fig. 26. However, the effect of wind on energy consumption variations follows
a complex relationship. Various parameters such as vehicle speed, wind speed, and
its direction, vehicle driving modes, etc. have an effect on the energy consumption.
After analyzing the results, it was observed improvement rate of energy consumption
is comparatively less than the deterioration rate of that. The reason behind such kind
of phenomenon is that drag force is proportional to the squared of vehicle effective
speed, as shown inEq. (35). However, an unexpected observation for highway driving
cycles was noticed in the casewhen thewind is in the same direction as the vehicle, as
shown in Fig. 26a. It was noticed that some solutions in the Pareto front, particularly
those having a high trip time, exhibit a trip end SOC that is less than that found
without any wind. Moreover, as the wind speed increases, more solutions are found
to follow this behavior. Through further simulations (not presented in this chapter),
it was found that when the wind speed is very high (>50 km/h), the solutions follow
the behavior as observed in Fig. 26b. Similar findings were noticed in low-speed
driving cycles. The reason may be due to the fact that wind in the same direction as
the vehicle speed reduces the net drag force. As a result, it accelerates the vehicle
more per unit time step which yields more jerk. In the present MOOP, one of the
objectives is to minimize the average jerk (calculated using Eq. (48)), so MOGA
does not select those solutions experiencing more jerk. In low-speed driving cycles
(low vref ), the acceleration duration is shorter than that in high-speed driving cycles
and a short acceleration duration yields a comparatively a high average jerk. For this
reason, such results are observed in the optimal solutions when applying the DAOTP
system to low-speed driving cycles.

Practically, wind follows a turbulent behavior in on-road environment. Due to that
the wind effect on energy consumption becomes complicated in nature [97]. Thus,
the nature of the results considering wind turbulence effects is difficult to predict
[21, 98].
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Fig. 26 Effect of wind on DAOTP results to cover a trip length of 20 km in a Highway and b
Interstate driving cycles
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Table 10 Road surface rolling frictional coefficient distribution of the micro-trip route

Sr. No. Distance (km) Friction coefficient of
road surface

From To

1 0 10 0.015

2 10 20 M

11.3 Road Surface

The properties of the road surface that affect the objectives, trip time, energy con-
sumption, and jerk, are surface irregularity and rolling friction coefficient, μ [48].
So far, the above studies were carried out for a constant road surface with μ = 0.015.
The factor, irregularity, particularly restricts the speed limit of a route with the goal
of avoiding jerk and accidents. This results in affecting the vehicle energy consump-
tion. The effect of this factor can be simply tackled by constraining the speed limit
of a route before finding optimum driving strategy. Thus, the influence of road sur-
face irregularity on the DAOTP results is not investigated here. The effect of the
rolling friction coefficient on the DAOTP results is investigated by comparing the
SOC with respect to trip time plot found for six different friction coefficients. This
study is carried out with a micro-trip of length 20 km having the first 10 km length
with μ=0.015 and the remaining 10 km length with a different μ value, as shown in
Table 10. Figure 27a, b demonstrate SOC with the trip end time for highway and inter-
state driving cycles, respectively, for different μ values. From these figures, it was
noticed that SOC was found to be reduced as rolling frictional coefficient increases.
Furthermore, it was noticed that for low value of μ (0.015), a little increase in μ

results to a high loss of SOC. But, when μ is 0.02 or above, a uniform loss of SOC
with increasing μ was found.

The friction coefficient between the tire and the roadway depends on the mate-
rial used to make the road (such as asphalt, basalt, concrete, epoxy, etc.), the road
surface condition (such as dry, wet, etc.), and the natural deterioration of the road
surface roughness due to traffic and climate [47]. There are well-established meth-
ods to measure the road surface friction coefficients [1]. A detailed study on vehicle
fuel consumption due to friction resistance can be found in [70]. These studies are
applicable for any vehicle type.

11.4 Elevation

The elevation primarily affects the temperature and pressure of air at that location.
This results in changing the air density thereby affecting the drag force acting on
the EV. A high elevation with respect to sea level decreases the air density. The
above studies were carried out for a constant air density, ρair �1.143 kg/m3. In
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Fig. 27 Effect of road rolling friction coefficient on DAOTP results to cover a trip length of 20 km
for a Highway and b Interstate driving cycles

order to analyze the effect of air density on the DAOTP results, a micro-trip is
considered where the ρair of a part of the route is varied, as shown in Table 11. In
order to understand the effect of road elevation only, the road gradient is assumed
here constant, though normally in a trip, the elevation effect is always present in
association with road gradient. The results for three air density values are presented
in Fig. 28a, b for highway and interstate driving cycles, respectively. In both high-
speed driving cycles, an improvement in trip end SOC was observed by reducing the
air density. The effect of air density was not found to be more significant comparing
to other route parameters.

As the elevation increases, the air becomes thinner. Since air is needed for com-
bustion, and due to the unavailability of air at higher altitudes, diesel engine produces
a lesser amount of power. For, In high altitude in theory gasoline engines requires less
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Table 11 Air density distribution of the micro-trip route

Sr. No. Distance (km) Density of air (due to
elevation)

From To

1 0 2 1.143

2 2 18 ρair

3 18 20 1.143

fuel due to lower throttle friction fromwider throttle opening. In [103], a study on fuel
consumption due to the impact of elevation of a gasoline passenger car was carried
out. It was found that the reduction of energy consumption was different in different
driving cycles and different elevations. Moreover, the impact of higher elevation was
not apparent and there is not always a decrease in fuel consumption, as also observed
in Fig. 28a. Interestingly enough, EVs (powered by batteries and electric motors)
are nearly immune to power losses due to elevation in this respect. Moreover, as air
gets thinner at higher altitude, the drag force reduces, and corresponding the energy
consumption.

12 Influence of Micro-trip Complexity on DAOTP Results

A complex micro-trip is defined as a micro-trip consisting of two or more driv-
ing cycles. Here, the DAOTP results are investigated for a complex micro-trip that
consists of two neighborhood portions and one highway portion. The influence of
micro-trip complexity on DAOTP results are analyzed by comparing the trip end
SOC versus trip time of optimal solutions from a complex micro-trip with those
found in simple micro-trip consisting of either a neighborhood or a highway driving
cycle. The positions and lengths of the different portions are shown in Table 12,
keeping the total trip length at 20 km. Figure 29 presents the demonstrative DAOTP
results for the different complex micro-trips. These are formulated by considering
different lengths of the highway portion in order to know how complex micro-trip
results vary with composition. In the Fig. 29 legend, the first and last entries corre-
spond to purely neighborhood and purely highway micro-trips, respectively, based
on the formulas used in Table 12. From Fig. 29, it was found that as the length of
the highway portion increases, the Pareto front width in terms of both objectives is
expanded. The trip end SOC is found to be increasing in both directions whereas the
trip time always decreasing as the highway portion’s length increases. Using the ideal
point based reference point technique of a finding preferred solution, the optimal trip
end SOC are 0.855346, 0.856298, 0.858101, 0.863259, and 0.865352 for highway
driving cycle lengths 0, 5, 10, 15, and 20 km, respectively. There is a polynomial
relationship observed between the trip end SOC and the highway portion length.
Such a relationship is not applicable to any kind of complex micro-trip. Practically,
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Fig. 28 Effect of air density
on DAOTP results to cover a
trip length of 20 km in a
Highway and b Interstate
driving cycles

depending on the complexity, the types of driving cycle involved, their lengths, and
their positions in the micro-trip, this relationship changes.

The DAOTP system presented in this chapter directs the driver not only for
proper driving but also it allows the EV to function each components efficiently
with their highest efficiency level. Consequently, it lowers the energy consumption
and enhances the service life of EV components and safety as well. Thereby, EV
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Table 12 Architecture of complex trip

Sr. No. Micro-trip distance (km) Driving cycle

From To

1 0 (Total trip length −
Length of highway)/2

Neighborhood

2 (Total trip length −
Length of highway)/2

Length of highway Highway

3 (Total trip length −
Length of highway)/2

Total trip length Neighborhood

Fig. 29 Variation of trip end SOC with trip time for different complex micro-trips

operating costs becomes reduced. Moreover, the overall driving experience is also
improved by adopting the assistances offered byDATOP system. Present driver assis-
tance systems (DAS) may offer useful energy utilization for EVs through finding a
low cost path to the destination but they do not assist the driver how to operate the
EV components competently. The most significant benefit of DAOTP compared to
existing ADAS is that it assists the driver by supporting an optimal driving strategy
to follow throughout the entire trip. By doing so, it can guarantee the trip completion
without of the possibility of exhausting the battery energy unexpectedly before the
trip is completed. Otherwise, it gives a caution prior to the trip or well before the
complete battery charge depleted to a take an alternative decision such as to find a
charging station. Consequently, a high level of assurance towards successfully per-
forming the trip is built up in driver’s mind. Thus, use of DAOTP certainly promotes
the popularization of environmentally friendly EVs by growing the reliability of EVs
in the public’s perception, which is not found so far.
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In the present article, jerk that hinders the comfortable journey is assumed to be
generated due to changes of acceleration/deceleration rate. Besides this, there are
other causes of experiencing jerk, such as driveline dynamics, indiscretion of road,
variation of wind speed, etc. that are not considered here. Jerk generated due to such
causesmaybeminimizedby takingprecautions such as restricting the speed limit, etc.
The proposed DAOTP can be integrated with existing DAS such as AHS (Automated
Highway Systems), ADAS (Advanced Driver Assistance System), Navigation and
Routing devices [102], etc.

13 Summary and Conclusions

A novel and easy to implement driving assistance strategy for EVs, DAOTP is pre-
sented here. The proposed DAOTP approach is unique and is superior to existing
methods because of its multi-faceted approach. It is model-specific, which means it
considers all the characteristics of the vehicle in question and ensures that the hard-
ware such as the electric motor is operated in the most efficient regime. If there are
conflicts amongst different hardware regimes, the algorithm chooses a globally opti-
mal solution on the basis of efficiency trade-offs amongst all the hardware involved.
This means that the stored energy is used in an efficient manner making DAOTP an
energy management strategy as well. The key feature of DAOTP is trip planning:
providing the driver with several optimal driving strategies to negotiate a trip so as
to optimize various conflicting objectives such as minimum discomfort, energy con-
sumption, and time. Not only does this provides an efficient and comfortable ride,
but also instills some measure of confidence in the driver that the EV will be able
to reach the destination given the current SOC status. The multi-objective approach
gives the driver the ultimate freedom to decide which objectives are more important.
This choice is bound to vary from driver to driver and DAOTP takes this into con-
sideration. Finally, DAOTP is an online system, which means not only does it give
the driver prior knowledge about the driving strategy for a given trip, it also updates
itself based on current road and trip conditions, some of which may be unforeseen.
The result is that the driver always has knowledge of the optimal driving strategy
for the remainder of the trip, which may be different from the first predicted driving
strategy prior to the commencement of the trip.

In the present chapter, the proposed DAOTP architecture for an EV and the role of
each component associated with this system are described. The DAOTP executes by
solving a multi-objective optimization problem involving minimizations of trip time,
energy consumption, and average jerk. The models of these objectives are presented
considering the three EV components, battery, electric motor, and vehicle dynamics.
A multi-objective genetic algorithm is utilized to solve the multi-objective problem.
The DAOTP system is applied first in low-speed driving cycles considering a simple
micro-trip. Trip planning, starting from identifying a route based on trip starting point
and destination, how to receive the route characteristic data through HMI using GPS
and Internet, utilizing these data, producing a set of Pareto-optimal solution after
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solving the multi-objective problem, then identifying the set of interesting solutions
based on a sorting process using problem-specific information, and finally select-
ing a preferred solution based on a decision-making technique or driver’s choice
for implementation, is systematically presented. It has been observed that an opti-
mized driving strategy may substantially reduce EV energy consumption. Analyzing
DAOTP results for low-speed driving cycles in different trip lengths clearly indicates
its importance for implementation in EV.

The results of the DAOTP system for a micro-trip in high-speed driving cycles
were presented later. The optimal driving strategies were determined through amulti-
objective optimization of minimizing total trip time, energy consumption, and the
average jerk during speed changing. The influence of various route parameters and
the initial SOC on the DAOTP results were investigated through the analysis of the
trip end SOC with respect to the trip time of the optimal solutions obtained after the
optimization process.

Effects of initial battery SOC, wind, road gradient and elevation on energy con-
sumption, trip time and jerk are carried out here, and the research findings suggest that
based on the naïve predictors that use previous trip performing experience planning
of current trips may not be an optimum one. Moreover, naïve predictors are unable to
provide energy-driving parameters. The present DAOTP systems considers the route
characteristics and driver’s preference while providing an optimal driving strategy
that leads to an energy-efficient trip with minimum trip time and discomfort. Exten-
sive analysis of the results suggests that the proposed approach is reliable as well as
efficient. It is concluded that approaches based on previous experience is not suffi-
cient for EV trip planning, and the present DAOTP system is a substitute to address
this necessitate.
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