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Abstract In recent years, the usual BPHZ algorithm for renormalization in pertur-
bative quantum field theory has been interpreted, after dimensional regularization,
as a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs,
with values in a Rota-Baxter algebra of amplitudes. We associate in this paper
to any such algebra a universal semigroup (different in nature from the Connes-
Marcolli “cosmical Galois group”). Its action on the physical amplitudes associated
to Feynman graphs produces the expected operations: Bogoliubov’s preparation
map, extraction of divergences, renormalization. In this process a key role is played
by commutative and noncommutative quasi-shuffle bialgebras whose universal
properties are instrumental in encoding the renormalization process.

1 Introduction

In the early 2000s, the usual BPHZ algorithm for renormalization in perturbative
quantum field theory has been interpreted, after dimensional regularization, as a
Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs,
with values in a Rota-Baxter algebra of amplitudes [6, 7, 12]. This idea was later
shown to be meaningful in a broad variety of contexts: in the theory of dynamical
systems, in analysis and numerical analysis (Rayleigh-Schrödinger series) or, more
recently, in the theory of regularity structures and the study of very irregular
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stochastic differential equations or stochastic partial differential equations, see e.g.
[4, 21, 28, 29, 31].

In this context, P. Cartier suggested the existence of a hidden universal sym-
metry group (the “cosmical Galois group”) that would underlie renormalization.
Using geometrical tools such as universal singular frames, Connes and Marcolli
constructed a candidate group in 2004 [8]. Their construction was translated in
the langage of Hopf algebras in [13] and the group shown to coincide with the
prounipotent group of group-like elements in the completion with respect to the
grading of the descent algebra -a Hopf algebra that, as an algebra, is the free
associative algebra generated by the Dynkin operators [34].

However, the action of this group or of the descent algebra on the Hopf
algebras of Feynman diagrams showing up in pQFT does not actually perform
renormalization. It captures nicely certain phenomena related to Lie theory and
the behaviour of the Dynkin operators: for example, the structure of certain
renormalization group equations and the algebraic properties of beta functions (see
the original article by Connes and Marcolli [8] and the detailed algebraic and
combinatorial analysis of these phenomena in [35]. Further insights on the role of
(generalized) Dynkin operators in the theory of differential equations can be found
in [32]). However, the group and the descent algebra act on Feynman diagrams and
do not encode operations that occur at the level of the target algebra of amplitudes.
They fail therefore to capture typical renormalization operations such as projections
on divergent or regular components of amplitudes. Substraction maps, for example,
cannot be encoded in it, and neither are more advanced operations such as the
construction of the counterterm.

In the present article, we follow a different approach that complements Connes-
Marcolli’s and its Hopf algebraic and combinatorial interpretation by showing show
how a semigroup of operators can be associated to the algebra of coefficients of a
given regularization and renormalization scheme in pQFT. Its construction relies
heavily on the universal properties of commutative and noncommutative quasi-
shuffle algebras. This semigroup acts in a natural way on regularized amplitudes
and perform the expected operations: preparation map, extraction of counterterms,
renormalization. Notice that many of our results and constructions do not require
the algebra of coefficients to be commutative.

Let us sketch up the ideas and results. Concretely we deal with conilpotent
bialgebras H = k ⊕ H+. These bialgebras are Hopf algebras and the coalgebra
structure on H induces a convolution product on the space L(H,A) of linear
morphisms from H to an associative algebra A. If A is unital, then the subset
U(H,A) of linear morphisms that send the unit 1H of H on the unit 1A of A is a
group for the convolution and, if A is commutative, the subset C(H,A) of characters
(i.e. algebra morphisms) is a subgroup of U(H,A).

In pQFT, the algebra A is often called the algebra of (regularized) amplitudes,
and we will often use this terminology. In this context, the renormalization process
equips the target unital algebra A with a projection operator p+ such that

A = Imp+ ⊕ Imp− = A+ ⊕ A−,



Renormalization: A Quasi-shuffle Approach 601

where p− = Id−p+ and A+ and A− are subalgebras. Here, p− should be thought
of as a projection on the “divergent part”, so that p+ substract divergences. For
example, in dimensional regularization, A identifies with the algebra of Laurent
series,C[[ε, ε−1], and p− (resp. p+) is the projection on ε−1C[ε−1] (resp.C[[ε]]).
As was first observed by Ebrahimi-Fard, building on previous results by Brouder
and Kreimer, these data define a Rota-Baxter algebra structure on A andL(H,A).

The choice of the subtraction operator is not always unique – for example
when using momentum subtraction schemes. How this phenomenon impacts the
combinatorics and Rota-Baxter structures was investigated in [10]. Although we do
not investigate it further here, the tools we develop in the present article should be
useful in that context since they put forward the idea that one should study for its
own the combinatorial structure of the target algebra of amplitudesA, independently
of the choice of a particular subtraction map p+.

It is then well-know that, given p+, there exists a unique Birkhoff decomposition
of any morphism ϕ ∈ U(H,A)

ϕ− ∗ ϕ = ϕ+ ϕ+, ϕ− ∈ U(H,A)

where ϕ+(H+) ⊂ A+ and ϕ−(H+) ⊂ A−. Moreover, if A is commutative, this
decomposition is defined in the subgroup C(H,A). The classical proofs of this
result are recursive, using the filtration onH (they rely ultimately on the Bogoliubov
recursion [14]).

We propose to develop here a “universal” framework to handle the combinatorics
of renormalization and to give in this framework explicit, and in some sense
universal, formulas for ϕ+ and ϕ−. To do so, we consider the quasi-shuffle Hopf
algebra QSh(A) over an algebra A, that is, the standard tensor coalgebra over
A equipped with the quasi-shuffle (or stuffle) product. Using the properties of
the functor QSh (including the surprising property, for any Hopf algebra H to
be canonically embedded into QSh(H+)), we compute then the inverse and the
Birkhoff decomposition of a fundamental element j ∈ U(QSh(A),A) defined by

j (1) = 1A, j (a1) = a1, j (a1 ⊗ . . . ⊗ as) = 0 if s ≥ 2.

We show then the existence of an action of U(QSh(A),A) on U(H,A). More
precisely we define a map

U(QSh(A),A) × U(H,A) → U(H,A)

(f, ϕ) 	→ f 
 ϕ,

such that

j 
 ϕ = ϕ and (f ∗ g) 
 ϕ = (f 
 ϕ) ∗ (g 
 ϕ),



602 F. Menous and F. Patras

and obtain explicit formulas such as:

1. If j∗−1 is the inverse of j , then ϕ∗−1 = j∗−1 
 ϕ.
2. If j− ∗ j = j+ (Birkhoff decomposition), then ϕ− ∗ϕ = ϕ+ where ϕ± = j± 
ϕ.

The article is organized as follows. After a preliminary section fixing notations
and recalling general properties of Hopf algebras, Sect. 3 analyses the algebraic
properties of algebras of regularized amplitudes and explains how they give rise
to quasi-shuffle algebra structures. Section 4 introduces Hoffman’s quasi-shuffle
functor (i.e. the notion of quasi-shuffle algebra over an algebra -in the commutative
case, it is the left adjoint to the forgetful functor from quasi-shuffle algebras to
commutative algebras). Section 5 investigates its categorical properties, including
a surprising right adjoint property (Theorem 1). Section 6 studies, using these
techniques, the map j (mapping a cofree coalgebra to its cogenerating vector space).
This is the key to latter applications to renormalization which are the purpose of
Sect. 7, as well as the construction, for each algebra of amplitudes, of a “universal
semigroup” in which the operations characteristic of renormalization are encoded.
The last two sections survey various applications, in particular to Dynamics and
Analysis.

2 Notation and Hopf Algebra Fundamentals

Everywhere in the article, algebraic structures are defined over a fixed ground field k

of characteristic 0.We fix here the notations relative to bialgebras and Hopf algebras,
following [17] (see also [5, 26] and [37]) and refer to these articles and surveys for
details and generalities on the subject. Recall that a bialgebra B is an associative
algebra with unit and a coassociative coalgebra with counit such that the product is a
morphism of coalgebras (or, equivalently, the coproduct is a morphism of algebras).
We will usually write m the product, Δ the coproduct, u : k → B the unit and
η : B → k the counit. When ambiguities might arise we put an index (and denote
e.g. mB the product instead of m).

We use freely the Sweedler notation and write

Δh =
∑

h(1) ⊗ h(2). (1)

Thanks to coassociativity, we can define recursively and without any ambiguity the
linear morphisms Δ[n] : B → B⊗n (n ≥ 1) by Δ[1] = Id and, for n ≥ 1,

Δ[n+1] = (Id⊗Δ[n]) ◦ Δ = (Δ[n] ⊗ Id) ◦ Δ = (Δ[k] ⊗ Δ[n+1−k]) ◦ Δ (1 ≤ k ≤ n)

(2)

and write

Δ[n]h =
∑

h(1) ⊗ . . . ⊗ h(n) (3)
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In the same way, for n ≥ 1, we define m[n] : B⊗n → B by m[1] = Id and

m[n+1] = m ◦ (Id⊗m[n]) = m ◦ (m[n] ⊗ Id) (4)

The reduced coproduct Δ′ on H+ := Ker η is defined by

Δ′h = Δh − 1 ⊗ h − h ⊗ 1 (5)

Its iterates (defined as for Δ) are written Δ′[n]. A bialgebra is conilpotent (or, more
precisely, locally conilpotent) is for any h ∈ H+ there exists a n ≥ 1 (depending on
h) such that Δ′[n](h) = 0.

A bialgebra H is a Hopf algebra if there exists an antipode S, that is to say a
linear map S : H → H such that:

m ◦ (Id⊗S) ◦ Δ = m ◦ (S ⊗ Id) ◦ Δ = u ◦ η : H → H (6)

In this article, we will consider only conilpotent bialgebras, which are automatically
Hopf algebras.

Given a connected bialgebra H and an algebra A with product mA and unit
uA, the coalgebra structure of H induces an associative convolution product on the
vector spaceL(H,A) of k–linear maps:

∀(f, g) ∈ L(H,A) × L(H,A), f ∗ g = mA ◦ (f ⊗ g) ◦ Δ (7)

with a unit given by uA ◦ η, such that (L(H,A), ∗, uA ◦ η) is an associative unital
algebra.

Lemma 1 Let H be a conilpotent bialgebra (and therefore a Hopf algebra) and set

U(H,A) = {f ∈ L(H,A) ; f (1H) = 1A} (8)

then U(H,A) is a group for the convolution product.

Proof U(H,A) is obviously stable for the convolution product. Following [17], we
will remind why any element f ∈ U(H,A) as a unique inverse f ∗−1 in U(H,A).
One can write formally

f ∗−1 = (uA ◦ η − (uA ◦ η − f ))∗−1 = uA ◦ η +
∑

k≥1

(uA ◦ η − f )∗k (9)

This series seems to be infinite but, because of the conilpotency assumption, for any
h ∈ H ′

(uA ◦ η − f )∗k(h) = (−1)km[k]
A ◦ f ⊗k ◦ Δ′[k](h) (10)

vanishes for k large enough.
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When this result is applied to Id : H → H ∈ U(H,H), then its convolution
inverse is the antipode S (this is the usual way of proving that any conilpotent
bialgebra is a Hopf algebra).

Notation 1 If B ⊂ A is a subalgebra of A which is not unital, then we write

U(H,B) = {f ∈ L(H,A) ; f (1H) = 1A and f (H+) ⊂ B}

This is a subgroup of U(H,A).

Let now C(H,A) be the subset of L(H,A) whose elements are algebra
morphisms (also called characters over A). Of course,

C(H,A) ⊂ U(H,A)

but this shall not be a subgroup: if A is not commutative, there is no reason why
it should be stable for the convolution product. Nonetheless if A is commutative,
the product from A ⊗ A to A is an algebra map: it follows that the convolution of
algebra morphisms is an algebra morphism and C(H,A) is a subgroup ofU(H,A).

Moreover if f ∈ U(H,A) is an algebra map, then its inverse f ∗−1 in U(H,A)

is an antialgebra map given by f ∗−1 = f ◦ S:

f ∗ f ◦ S = mA ◦ (f ⊗ f ◦ S) ◦ Δ

= mA ◦ (f ⊗ f ) ◦ (Id⊗S) ◦ Δ

= f ◦ m ◦ (Id⊗S) ◦ Δ

= f ◦ u ◦ η

= uA ◦ η,

(11)

where we recall that the antipode is an antialgebra morphism:

S(gh) = S(h)S(g).

3 From Renormalization to Quasi-shuffle Algebras

The fundamental ideas of renormalization in pQFT were already alluded at in the
introduction, we recall them very briefly and refer to textbooks for details (this first
paragraph is mainly motivational, we will move immediately after to an algebraic
framework that can be understood without mastering the quantum field theoretical
background). Starting from a given quantumfield theory, one expands perturbatively
the quantities of interest (such as Green’s functions). This expansion is indexed by
Feynman diagrams, and to each of these diagrams is associated a quantity computed
by means of certain integrals. Very often, these integrals are divergent and need to
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be regularized and renormalized. Typically, a quantity such as

φ(c) :=
∫ ∞

0

dy

y + c

is divergent, but becomes convergent up to the introduction of an arbitrary small
regularizing parameter ε (for dimensional reasons, one also introduces a mass
term μ)

φ(c; ε) :=
∫ ∞

0

μεdy

(y + c)1+ε
= 1

ε
+ log(μ/c) + O(ε).

In that toy model case, close to the dimensional regularization method, the
“regularized amplitude” φ(c; ε) lives in A = C[[ε, ε−1] and is renormalized by
removing the divergency 1

ε
(the component of the expansion in ε−1C[ε−1]).

These ideas are axiomatized using the notion of Rota–Baxter algebras as follows.
Following [11], let p+ an idempotent of L(A,A) where A is a unital algebra (in
our toy model example, p+ would stand for the projection on C[[ε]]). If we have
for x, y in A:

p+(x)p+(y) + p+(xy) = p+(xp+(y)) + p+(p+(x)y), (12)

then p+ is a Rota-Baxter operator, (A, p+) is a Rota-Baxter algebra and if p− =
Id−p+, A+ = Imp+ and A− = Imp− then

• A = A+ ⊕ A−.
• p− satisfies the same relation.
• A+ and A− are subalgebras.

Conversely if A = A+ ⊕ A− and A+ and A− are subalgebras, then the projection
p+ on A+ parallel to A− defines a Rota-Baxter algebra (A, p+).

The idempotency condition is not required to define a Rota–Baxter algebra. In
general:

Definition 1 ARota–Baxter (RB) algebra is an associative algebraA equippedwith
a linear endomorphism R such that

∀x, y ∈ A,R(x)R(y) = R(R(x)y + xR(y) − xy).

It is an idempotent RB algebra if R is idempotent (in that case we will set p+ :=
R to emphasize that we are in the framework typical for renormalization). It is a
commutative Rota–Baxter algebra if it is commutative as an algebra.

The notion of Rota–Baxter algebra is actually slightly more general: a Rota–
Baxter algebra of weight θ is defined by the identity

∀x, y ∈ A,R(x)R(y) = R(R(x)y + xR(y) + θxy).
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We restrict here the definition to the weight −1 case, which is the one meaningful
for renormalization.

Using Rota–Baxter algebras of amplitudes, the principle of renormalization in
physics can be formulated algebraically in the following way.

Proposition 1 Let H be a conilpotent bialgebra and (A, p+) an idempotent Rota-
Baxter algebra (so that A = A− ⊕ A+). Then for any ϕ ∈ U(H,A) there exists a
unique pair (ϕ+, ϕ−) ∈ U(H,A+) × U(H,A−) such that

ϕ− ∗ ϕ = ϕ+ (13)

Moreover, if A is commutative and ϕ is a character, then ϕ+ and ϕ− are also
characters. This factorization is called the Birkhoff decomposition of ϕ.

Proof Let us postpone the assertion on characters and prove the existence and
unicity -notions such as the one of Bogoliubov’s preparation map will be useful
later. As A+ and A− are subalgebras of A,U(H,A+) andU(H,A−) are subgroups
of U(H,A). If such a factorization exists, then it is unique : If ϕ = ϕ∗−1− ∗ ϕ+ =
ψ∗−1− ∗ ψ+, then

φ = ψ+ ∗ ϕ∗−1+ = ψ− ∗ ϕ∗−1− ∈ U(H,A+) ∩ U(H,A−)

thus for h ∈ H+, φ(h) ∈ A+ ∩ A− = 0. We finally get that

ψ+ ∗ ϕ∗−1+ = ψ− ∗ ϕ∗−1− = uA ◦ η

and ϕ+ = ψ+, ϕ− = ψ−.
Let us prove now that the factorization exists. Let ϕ ∈ U(H,A), we must have

ϕ+(1H) = ϕ−(1H) = 1A. Let ϕ̄ ∈ U(H,A) the Bogoliubov preparation map
defined recursively on the increasing sequence of vector spaces H+

n := KerΔ′[n]
(n ≥ 1) by

ϕ̄(h) = ϕ(h) − mA ◦ (p− ⊗ Id) ◦ (ϕ̄ ⊗ ϕ) ◦ Δ′(h) (14)

(since H is conilpotent, H+ = ∪nH
+
n ). Now if ϕ+ and ϕ− are the elements of

U(H,A) defined on H+ by

ϕ+(h) = p+ ◦ ϕ̄(h) , ϕ−(h) = −p− ◦ ϕ̄(h) (ϕ̄(h) = ϕ+(h) − ϕ−(h)),

then

ϕ+ ∈ U(H,A+) , ϕ− ∈ U(H,A−) , ϕ− ∗ ϕ = ϕ+

We turn now to another algebraic structure, induced by the one of RB algebras,
but weaker – the one we will be concerned later on: quasi-shuffle algebras.
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Concretely, the target algebras of amplitudes (such as the algebra of Laurent
series) happen to be quasi-shuffle algebras, whereas the algebras of linear forms on
Feynman diagrams with values in a commutative RB algebra of amplitudes happen
to be noncommutative quasi-shuffle algebras.

Indeed, a RB algebra is always equipped with an associative product, the RB
double product 	, defined by:

x 	 y := R(x)y + xR(y) − xy (15)

so that: R(x)R(y) = R(x 	 y). Setting x ≺ y := xR(y), x � y := R(x)y, one gets

(xy) ≺ z = xyR(z) = x(y ≺ z),

(x ≺ y) ≺ z = xR(y)R(z) = x ≺ (y 	 z),

(x � y) ≺ z = R(x)yR(z) = x � (y ≺ z),

and so on. These observations give rise to the axioms of noncommutative quasi-
shuffle algebras (NQSh, also called tridendriform, algebras). On an historical note,
we learned recently from K. Ebrahimi-Fard that the following axioms and relations
seem to have first appeared in the context of stochastic calculus, namely in the work
of Karandikar in the early 1980s on matrix semimartingales, see e.g. [24]. See also
[18] for details and other references.

Definition 2 A noncommutative quasi-shuffle algebra (NQSh algebra) is a nonuni-
tal associative algebra (with product written •) equipped with two other products
≺,� such that, for all x, y, z ∈ A:

(x ≺ y) ≺ z = x ≺ (y 	 z), (x � y) ≺ z = x � (y ≺ z) (16)

(x 	 y) � z = x � (y � z), (x ≺ y) • z = x • (y � z) (17)

(x � y) • z = x � (y • z), (x • y) ≺ z = x • (y ≺ z). (18)

where x 	 y := x ≺ y + x � y + x • y.

Notice that (x •y)•z = x • (y •z) and (16)+ (17)+ (18) imply the associativity
of 	:

(x 	 y) 	 z = x 	 (y 	 z). (19)

When the RB algebra is commutative, the relations between the three products
≺,�, • simplify (since x ≺ y = xR(y) = y � x) and one arrives at the definition:
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Definition 3 A quasi-shuffle (QSh) algebra A is a nonunital commutative algebra
(with product written •) equipped with another product ≺ such that

(x ≺ y) ≺ z = x ≺ (y 	 z) (20)

(x • y) ≺ z = x • (y ≺ z). (21)

where x 	 y := x ≺ y + y ≺ x + x • y.

We also set for further use x � y := y ≺ x (this makes a QSh algebra a NQSh
algebra). The product 	 is automatically associative and commutative and defines
another commutative algebra structure on A.

It is sometimes convenient to equip NQSh and QSh algebras with a unit. The
phenomenon is exactly similar to the case of shuffle algebras [36]. Given a NQSh
algebra, one sets B := k ⊕ A, and the products ≺, �, • have a partial extension to
B defined by, for x ∈ A:

1 • x = x • 1 := 0, 1 ≺ x := 0, x ≺ 1 := x, 1 � x := x, x � 1 := 0.

The products 1 ≺ 1, 1 � 1 and 1 • 1 cannot be defined consistently, but one sets 1 	

1 := 1, making B a unital commutative algebra for 	. The categories of NQSh/QSh
and unital NQSh/QSh algebras are equivalent (under the operation of adding or
removing a copy of the ground field).

Formally, the relations between RB algebras and NQSh algebras are encoded by
the Lemma:

Lemma 2 The identities x ≺ y := xR(y), x � y := R(x)y, x • y := xy induce
a forgetful functor from RB algebras to NQSh algebras, resp. from commutative RB
algebras to QSh algebras.

We already alluded to the fact that, in a given quantum field theory, the set of
linear forms from the linear span of Feynman diagrams (or equivalently algebra
maps from the polynomial algebra they generate) to a commutative RB algebra of
amplitudes carries naturally the structure of a noncommutative RB algebra. In the
context of QSh algebras, this result generalizes as follows:

Proposition 2 Let C be a (coassociative) coalgebra with coproduct Δ and A be a
NQSh algebra. Then the set of linear maps Hom(C,A) is naturally equipped with
the structure of a NQSh algebra by the products:

f ≺ g(c) := f (c(1)) ≺ g(c(2)),

f � g(c) := f (c(1)) � g(c(2)),

f • g(c) := f (c(1)) • g(c(2)),

where we used Sweedler’s notation Δ(c) = c(1) ⊗ c(2).
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The proposition follows from the fact that the relations defining NQSh algebras
are non-symmetric (in the sense that they do not involve permutations: for example,
in the equation (x ≺ y) ≺ z = x ≺ (y 	 z), the letters x, y, z appear in the same
order in the left and right hand side, and similarly for the other defining relations).

4 The Quasi-shuffle Hopf AlgebraQSh(A)

For details on the constructions in this section, we refer the reader to [18, 22, 23].
Let A be an associative algebra. We write QSh(A) for the graded vector space
QSh(A) = ⊕

n≥0 QSh(A)n = k ⊕ ⊕
n≥1 QSh(A)n =: k ⊕ QSh+(A) where, for

n ≥ 1, QSh(A)n = A⊗n and QSh(A)0 = k (notice that when A is unital, one has
to distinguish between 1 ∈ k = QSh(A)0 and 1A ∈ A ⊂ QSh(A)1). We denote
l(a) = n the length of an element a of QSh(A)n.

For convenience, an element a = a1 ⊗ . . .⊗ an of QSh(A) will be called a word
and will be written a1 . . . an (it should not be confused with the product of the ai in
A). We will reserve the tensor product notation for the tensor product of elements
of QSh(A) (so that for example, a1a2 ⊗ a3 ∈ QSh(A)2 ⊗ QSh(A)1). Also, we
distinguish between the concatenation product of words (written ·: a1a2a3 · b1b2 =
a1a2a3b1b2) and the product in A by writing a ·A b the product of a and b in A

(whereas a · b would stand for the word ab of length 2).
The graded vector space QSh+(A) (resp. QSh(A)) is given a graded (resp.

unital) NQSh algebra structure by induction on the length of tensors such that for
all a, b ∈ A, for all v,w ∈ QSh(A):

av ≺ bw = a(v 	 bw),

av � bw = b(av 	 w),

av • bw = (a.Ab)(v 	 w),

where − := 	 =≺ + � +• is usually called the quasi-shuffle (or stuffle) product
(by definition: ∀v ∈ QSh(A), 1− v = v = v − 1). Notice that this product − can
be defined directly by the two equivalent inductions

av − bw := a(v − bw) + b(av − w) + a ·A b(v −w)

or

va −wb := (v − bw)a + (av − w)b + (v − w)a ·A b.

When A is commutative, QSh(A) is a unital quasi-shuffle algebra
For example:

a1a2 − b = a1a2b + a1ba2 + ba1a2 + a1(a2 ·A b) + (a1 ·A b)a2 (22)
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Notice at last that, under the action of the four products ≺,�, 	, •, the image of
QSh(A)r ⊗ QSh(A)s is contained in

⊕r+s
t=max(r,s) QSh(A)t

One can also define:

• a counit η : QSh(A) → k by η(1) := 1 and for s ≥ 1, η(a1 . . . as) = 0,
• a coproduct (called deconcatenation coproduct) Δ : QSh(A) → QSh(A) ⊗

QSh(A) such that Δ(1) = 1 ⊗ 1 and for s ≥ 1 and a = a1 . . . as ∈ QSh(A)s ,

Δ(a) = a ⊗ 1 + 1 ⊗ a +
s−1∑

r=1

(a1 . . . ar) ⊗ (ar+1 . . . as) (23)

making QSh(A) a graded coalgebra. It is a matter of fact to check that QSh(A)

is a unital conilpotent bialgebra (and thus a Hopf algebra, see e.g. [5]), which is
called the quasi-shuffle or stuffle Hopf algebra onA (this terminology, that we adopt,
is convenient, usual, but slightly misleading because when A is only associative,
QSh(A) is a unital noncommutative quasi-shuffle algebra).

5 Operations and Universal Properties

Let us focus now in the first part of this section on the case relevant to renormal-
ization, that is when A is commutative but not necessarily unital. It follows then
from standard arguments in universal algebra that, given a quasi-shuffle algebra B,
morphisms of quasi-shuffle algebras from QSh+(A) to B are naturally in bijection
with morphisms of (non unital) algebras from A to B:

HomQSh(QSh+(A), B) ∼= HomAlg(A,B).

In categorical terms (see [18] for a direct and elementary proof):

Proposition 3 (Quasi-shuffle PBW theorem) The left adjoint U of the forgetful
functor from the category of quasi-shuffle algebras QSh to the category of non
unital commutative algebras Com, or “quasi-shuffle enveloping algebra” functor
from Com to QSh, is Hoffman’s quasi-shuffle algebra functor A 	−→ QSh+(A).

It is interesting to analyse the concrete meaning of this Proposition. Let us
consider first the counit of the adjunction, that is the quasi-shuffle algebra map from
QSh+(A) to A, when A is a quasi-shuffle algebra. By definition of ≺, the element
a1 . . . an ∈ QSh(A)n can be rewritten (in QSh(A)) a1 ≺ (a2 ≺ . . . (an−1 ≺ an)).
The trick goes back to Schützenberger who used it in his seminal but not enough
acknowledged study of shuffle algebras [36]. It follows that the counit of the
adjunction maps a1 . . . an ∈ QSh(A)n to a1 ≺ (a2 ≺ . . . (an−1 ≺ an)) (computed
now in A).
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Let us move now to the case when A is a commutative RB algebra.
Then, A is in particular a quasi-shuffle algebra with a ≺ b := aR(b).
The counit of the same adjunction is then the map that sends a1 . . . an ∈
QSh(A)n to a1R(a2R(a3 . . . R(an−1R(an))). In particular, an is mapped to
aR(aR(a . . . R(aR(a))) -a term that is known to play a key role in renormalization,
see in particular [14].

This relatively standard adjunction analysis can be completed in the case we are
interested in (maps from QSh+(A) to B, when B is a quasi-shuffle algebra), due to
the existence of a Hopf algebra structure on QSh(A). According to Proposition 2,
we have first that

Lemma 3 Let A be an associative algebra and B a NQSh algebra, the vector space
of linear morphisms L(QSh(A),B) is a NQSh algebra.

Furthermore, by properties that hold for arbitrary maps from a conilpotent
Hopf algebra to an algebra, if B is unital, the set of linear maps that map the
unit of QSh(A) to the unit of B, U(QSh(A),B) is a group for the product 	.
Moreover, when B is commutative, the subset of algebra maps from QSh(A) to
B, C(QSh(A),B), is a subgroup.

Next, notice that the functor QSh is compatible with Hopf algebra structures: an
algebra map l from A to B induces a map QSh(l) of quasi-shuffle algebras from
QSh(A) to QSh(B) defined by

QSh(l)(1) = 1 and QSh(l)(a1 . . . ar) = l(a1) . . . l(ar ) (r ≥ 1)

and therefore Δ ◦ QSh(l) = (QSh(l) ⊗ QSh(l)) ◦ Δ. In particular, QSh(l) is a
Hopf algebra morphism.

The last universal property of the QSh functor that we would like to emphasize
is more intriguing and does not seem to have been noticed before. Whereas QSh is
naturally a left adjoint, it also happens indeed to be a right adjoint, a property that
will prove essential in our later developments.

Theorem 1 Let H be a conilpotent Hopf algebra and A be a unital associative
algebra, then we have a natural isomorphism between (unital) algebra maps from
H to A and Hopf algebra maps from H to QSh(A):

HomAlg(H,A) ∼= HomHopf (H,QSh(A)).

Indeed, QSh(A) is, as a coalgebra, the cofree coalgebra over A (viewed as a
vector space) in the category of conilpotent coalgebras. These properties are dual to
the ones of tensor algebras (more familiar, but equivalent up to the fact that the dual
of a coalgebra is an algebra but the converse is not always true -this is the reason
for the conilpotency hypothesis): the tensor algebra over a vector space V is, when
equipped with the concatenation product, the free associative algebra over V . There
is therefore a natural isomorphism between linear maps from the kernel C+ of the
counit of a coaugmented conilpotent coalgebra C to A and coalgebra maps from C
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to QSh(A)

L(C+, A) ∼= HomCoalg(C,QSh(A)).

Coaugmented means that there is a coalgebra map from the ground field to C,
insuring that C decomposes as the direct sum of k and of the kernel of the counit (as
happens for a Hopf algebra, for which the composition of the unit and the counit is
a projection on the ground field orthogonally to the kernel of the counit).

The isomorphism is given explicitly as follows: it maps φ ∈ L(C+, A) to φ̃ :=
∞∑
i=0

φ⊗n ◦ Δ′[n] (where φ⊗0 ◦ Δ′[0] stands for the composition of the counit of C

with the unit of QSh(A)). In particular, the map φ factorizes as (the restriction to
C+ of) j ◦ φ̃, where j ∈ L(QSh(A),A) is defined by j (1) = 1A, j (a1) = a1 and
j (a1 . . . ar) = 0 if r ≥ 2.

To prove the Theorem, it is therefore enough to show that, when a linear map
φ from H+ to A is the restriction to H+ of an algebra map from H to A, then
the induced map φ̃ is also an algebra map (since we already know it is a coalgebra
map). Concretely, we have to prove that, for h, h′ ∈ H+, φ̃(hh′) = φ̃(h)− φ̃(h′).
The Theorem will then follow if we prove that

∞∑

n=1

φ⊗n ◦ Δ′[n]
(hh′) =

∞∑

p=1

φ⊗p ◦ Δ′[p]
(h)−

∞∑

q=1

φ⊗p ◦ Δ′[q]
(h′).

Using that φ and that Δ are algebra maps, this follows from the following Lemma
(where, to avoid ambiguities, we use the notation Δ′[p]

(h) = h′
(1,p) ⊗ · · · ⊗ h′

(p,p))
by identification of the terms in the left and right hand side.

Lemma 4 We have, for the iterated coproduct and h ∈ H+,

Δ[n](h) =
n∑

i=1

∑

f∈Inj (i,n)

f∗(h′
(1,i) ⊗ · · · ⊗ h′

(i,i)),

where Inj (i, n) stands for the set of increasing injections from [i] := {1, . . . , i} to
[n] and

f∗(h′
(1,i) ⊗ · · · ⊗ h′

(i,i)) = l(1) ⊗ · · · ⊗ l(n)

with l(q) := h′
(p,i) if q = f (p) and l(q) := 1 if q is not in the image of f .

For example, Δ[1](h) = Δ′[1](h) = h = h′
(1,1),

Δ[2](h) = Δ(h) = h′
(1,1) ⊗ 1 + 1 ⊗ h′

(1,1) + h′
(1,2) ⊗ h′

(2,2)
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and

Δ[2](hk) = Δ[2](h)Δ[2](k)

= (h′
(1,1) ⊗ 1 + 1 ⊗ h′

(1,1) + h′
(1,2) ⊗ h′

(2,2))

× (k′
(1,1) ⊗ 1 + 1 ⊗ k′

(1,1) + k′
(1,2) ⊗ k′

(2,2)),

so that

Δ′[2](hk) = h′
(1,1)⊗k′

(1,1)+k′
(1,1)⊗h′

(1,1)+h′
(1,1)k

′
(1,2)⊗k′

(2,2)+k′
(1,2)⊗h′

(1,1)k
′
(2,2)

+h′
(1,2)k

′
(1,1) ⊗ h′

(2,2) + h′
(1,2) ⊗ h′

(2,2)k
′
(1,1) + h′

(1,2)k
′
(1,2) ⊗ h′

(2,2)k
′
(2,2),

where one recognizes the tensor degree 2 component of

(Δ′[1](h) + Δ′[2](h))− (Δ′[1](k) + Δ′[2](k)).

The Theorem has an important corollary, that we state also as a Theorem in view
of its importance for our approach to renormalization.

Theorem 2 Let H be a conilpotent bialgebra, then, the unit, written ι, of the
adjunction in the previous Theorem, (ι(1) := 1 and ∀h ∈ H+, ι(h) = ∑

k≥1
Δ′[k]

(h))

defines an injective Hopf algebra morphism from H to QSh(H+). In particular,
any conilpotent (resp. conilpotent commutative) Hopf algebra embeds into a
noncommutative quasi-shuffle (resp. a quasi-shuffle) Hopf algebra.

We let the reader check the following Lemma, that will be important later in the
article and makes Theorem 1 more precise:

Lemma 5 The map j ∈ L(QSh(A),A) is a morphism of algebras.

6 The Map j ∈ U(QSh(A),A)

We shall now illustrate the ideas of the previous section on the map j ∈
U(QSh(A),A) (recall it is defined by j (1) = 1A, j (a1) = a1 and j (a1 . . . ar) = 0
if r ≥ 2). In a sense, this will be the only computation of inverse and of Birkhoff
decomposition we will need. This map j plays a fundamental role. We already
saw that it appears in the adjunction L(C+, A) ∼= HomCoalg(C,QSh(A)). It will
also appear later to be the unit of a semigroup structure on U(QSh(A),A) to be
introduced in the next section.

For the inverse, we get j∗−1:

j∗−1 = uA ◦ η +
∑

k≥1

(uA ◦ η − j)∗k
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Which means that j∗−1(1) = 1A and for a = a1 . . . as ∈ QSh(A)+,

j∗−1(a) =
∑

k≥1

(−1)km[k]
A ◦ j⊗k ◦ Δ′[k]

(a)

=
∑

k≥1

(−1)k
∑

a1·...·ak=a

ai∈QSh(A)+

m
[k]
A ◦ j⊗k(a1 ⊗ . . . ⊗ ak)

= (−1)sm[s]
A (a1 ⊗ . . . ⊗ as)

= (−1)sa1 ·A . . . ·A as = j ◦ S(a)

(24)

where

S(a) =
∑

k≥1

(−1)km[k] ◦ Δ′[k](a)

=
∑

k≥1

(−1)k
∑

a1·...·ak=a

ai∈QSh(A)+

a1 − . . . − ak. (25)

Note that the previous sums run over all the possible factorizations in nonempty
words of a for the concatenation product.

If (A, p+) is a Rota-Baxter algebra then the Bogoliubov preparation map j̄

associated to j , see Eq. (14), is such that j̄ (1) = 1A and can be defined recursively
on vector spaces QSh(A)n (n ≥ 1) by

j̄ (h) = j (h) − mA ◦ (p− ⊗ Id) ◦ (j̄ ⊗ j) ◦ Δ′(h) (26)

Let us begin the recursion on the length of the sequence. If a = a1 then j̄ (a1) =
j (a1) = a1. Now, if a = a1 · a2 = a1a2,

j̄ (a1a2) = j (a1a2)−mA◦(p−⊗Id)◦(j̄⊗j)((a1)⊗(a2)) = −p−(a1)·Aa2 (27)

and

j̄ (a1a2a3) = −mA ◦ (p− ⊗ Id) ◦ (j̄ ⊗ j)((a1a2) ⊗ (a3))

= p−(p−(a1) ·A a2) ·A a3
(28)

Thus, for r ≥ 2,

j̄ (a1 . . . ar ) = −p−(j̄ (a1 . . . ar−1)) ·A ar (29)

It is then easy to prove that in general (see e.g. [14] for a systematic study of
combinatorial approaches and closed solutions to the Bogoliubov recursion)

Proposition 4 The Birkhoff decomposition

(j+, j−) ∈ U(QSh(A),A+) × U(QSh(A),A−)
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such that

j− ∗ j = j+

is given by the formula: for r ≥ 1 and a = a1 ⊗ . . . ⊗ ar ∈ QSh(A)+,

{
j+(a) = p+(j̄ (a)) = (−1)r−1p+(p−(. . . (p−(a1) ·A a2) . . . ·A ar−1) ·A ar)

j−(a) = −p−(j̄ (a)) = (−1)rp−(p−(. . . (p−(a1) ·A a2) . . . ·A ar−1) ·A ar)

(30)

Moreover, if A is commutative then C(QSh(A),A) is a group and j+ and j− are
characters.

Proof Let us prove the last assumption, when A is commutative. Since j is a
character it is sufficient to prove that j− is a character. By induction on t ≥ 0
we will show that for two tensors a and b in QSh(A), if l(a) + l(b) = t , then

j−(a− b) = j−(a)j−(b) (31)

This identity is trivial for t = 0 and t = 1 since at least one of the sequences is the
empty sequence. This also trivial for any t if one of the sequences is empty. Now
suppose that t ≥ 2 and that a = a1 . . . ar ∈ QSh(A)r and b = b1 . . . bs ∈ QSh(A)s
with r ≥ 1, s ≥ 1 and r + s = t . Let ã = a1 . . . ar−1 ∈ QSh(A)r−1 (ã = 1 if
r = 1) and b̃ = b1 . . . bs−1 ∈ QSh(A)s−1 (b̃ = 1 if s = 1), then:

a − b = (ã− b) · ar + (a− b̃) · bs + (ã− b̃) · (ar ·A bs)

Now we have

j−(a) = −p−(j−(ã)·Aar ) = −p−(x) and j−(b) = −p−(j−(b̃)·Abs) = −p−(y),

where x := j−(ã) ·A ar and y := j−(b̃) ·A bs . Thanks to the Rota-Baxter identity,
and omitting ·A in the following computations in A,

j−(a)j−(b) = p−(x)p−(y)

= p−(xp−(y)) + p−(p−(x)y) − p−(xy)

= p−(j−(ã)arp−(j−(b̃)bs)) + p−(p−(j−(ã)ar)j−(b̃)bs)

−p−(j−(ã)arj−(b̃)bs)
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but as A is commutative, by induction we get

j−(a)j−(b) = −p−(j−(ã)j−(b)ar) − p−(j−(a)j−(b̃)bs) − p−(j−(ã)j−(b̃)arbs)

= −p−(j−(ã− b)ar) − p−(j−(a− b̃)bs) − p−(j−(ã− b̃)arbs)

= j−((ã− b) · ar) + j−((a− b̃) · bs) + j−((ã− b̃) · (arbs))

= j−((ã− b) · ar + (a− b̃) · bs + (ã− b̃) · (arbs))

= j−(a− b)

In the sequel, when there is no ambiguity, we shall omit the notation ·A when
applying formula (30).

As we will see these formulas are almost sufficient to compute the Birkhoff
decomposition for any conilpotent bialgebra.

7 The Universal Semigroup and Renormalization

Let A be a unital algebra. Then, by adjunction we know that

U(QSh(A),A) ∼= HomCoalg(QSh(A),QSh(A)).

In particular, the composition of coalgebra endomorphisms of QSh(A) equips
U(QSh(A),A) with a semigroup structure.

Definition 4 The universal semigroup associated to a unital algebra A is the set
U(QSh(A),A) equipped with the associative unital product induced by composi-
tion of coalgebra endomorphisms of QSh(A): for f and g in U(QSh(A),A)

f 
 g := f ◦ QSh(g) ◦ ι.

Its unit is the map j :

f 
 j = f ◦ QSh(j) ◦ ι = f ◦ Id = f.

This semigroup structure generalizes to an action on linear maps from a Hopf
algebra to A as follows.

Definition 5 Let H be a conilpotent bialgebra. For ϕ ∈ U(H,A) and f ∈
U(QSh(A),A) we set

f 
 ϕ := f ◦ QSh(ϕ) ◦ ι.

This morphism f 
 ϕ is linear from H to A and unital:

f 
 ϕ(1H) = f ◦ QSh(ϕ) ◦ ι(1H) = f ◦ QSh(ϕ)(1) = f (1) = 1A.
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We get a left action of U(QSh(A),A) onU(H,A):


 : U(QSh(A),A) × U(H,A) → U(H,A).

Moreover, when A is commutative, if ϕ ∈ C(H,A) and f ∈ C(QSh(A),A) it is
clear, by composition of algebra morphisms, that f 
 ϕ ∈ C(H,A).

That j acts as the identity map on U(H,A) follows from: for h ∈ H+,

j 
 ϕ(h) = j ◦ QSh(ϕ)

⎛

⎝h +
∑

k≥2

∑
h′

(1) ⊗ . . . ⊗ h′
(k)

⎞

⎠

= j

⎛

⎝ϕ(h) +
∑

k≥2

ϕ(h′
(1)) · . . . · ϕ(h′

(k))

⎞

⎠

= ϕ(h)

(32)

Proposition 5 The action 
 and the convolution product ∗ (recall that QSh(A) is
a Hopf algebra) satisfy the distributivity relation: For f and g in U(QSh(A),A)

and ϕ in U(H,A),

(f ∗ g) 
 ϕ = (f 
 ϕ) ∗ (g 
 ϕ).

Indeed,

(f ∗ g) 
 ϕ = mA ◦ (f ⊗ g) ◦ Δ ◦ QSh(ϕ) ◦ ι

= mA ◦ (f ⊗ g) ◦ (QSh(ϕ) ⊗ QSh(ϕ)) ◦ Δ ◦ ι

= mA ◦ (f ⊗ g) ◦ (QSh(ϕ) ⊗ QSh(ϕ)) ◦ (ι ⊗ ι) ◦ Δ

= mA(f 
 ϕ ⊗ g 
 ϕ) ◦ Δ

= (f 
 ϕ) ∗ (g 
 ϕ)

(33)

Note that, in the case H = QSh(A), U(QSh(A),A) is equipped with two
products ∗ and 
 that look similar, in their interactions, to the product and
composition of power series.

Remark 1 These constructions generalize as follows. Let B be another unital
algebra. For ϕ ∈ U(H,A) and f ∈ U(QSh(A),B) we define

f 
 ϕ = f ◦ QSh(ϕ) ◦ ι.

The morphism f 
 ϕ is linear from H to B and

f 
 ϕ(1H) = f ◦ QSh(ϕ) ◦ ι(1H) = f ◦ QSh(ϕ)(1) = f (1) = 1B.
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thus f 
ϕ ∈ U(H,B). Moreover, when A and B are commutative, if ϕ ∈ C(H,A)

and f ∈ C(QSh(A),B) it is clear, by composition of algebra morphisms that f 

ϕ ∈ C(H,B).

Corollary 1 Let ϕ ∈ U(H,A), then its convolution inverse if given by

ϕ∗−1 = j∗−1 
 ϕ.

Indeed, since j 
 ϕ = ϕ, if ψ := j∗−1 
 ϕ, then

ψ ∗ ϕ = (j∗−1 
 ϕ) ∗ (j 
 ϕ) = (j∗−1 ∗ j) 
 ϕ = (uA ◦ η) 
 ϕ = uA ◦ η.

For example, if h ∈ H+ with Δ′[4](h) = 0, then

ι(h) = h +
∑

h′
(1) ⊗ h′

(2) +
∑

h′
(1) ⊗ h′

(2) ⊗ h′
(3)

so,

QSh(ϕ) ◦ ι(h) = ϕ(h) +
∑

ϕ(h′
(1)) · ϕ(h′

(2)) +
∑

ϕ(h′
(1)) · ϕ(h′

(2)) · ϕ(h′
(3))

and finally

ϕ∗−1(h) = j∗−1◦QSh(ϕ)◦ι(h) = −ϕ(h)+
∑

ϕ(h′
(1))ϕ(h′

(2))−
∑

ϕ(h′
(1))ϕ(h′

(2))ϕ(h′
(3))

We recover the usual formula for the inverse.

Theorem 3 Assume now that A is an idempotent Rota–Baxter algebra. Let ϕ ∈
U(H,A). Then the Birkhoff-Rota-Baxter decomposition of ϕ is given by

ϕ− = j− 
 ϕ, ϕ+ = j+ 
 ϕ.

Proof Indeed, since j 
 ϕ = ϕ, we have

ϕ− ∗ ϕ = (j− 
 ϕ) ∗ (j 
 ϕ) = (j− ∗ j) 
 ϕ = j+ 
 ϕ = ϕ+

and, of course, ϕ± ∈ U(H,A±).

For example, if h ∈ H ′ with Δ′[4](h) = 0, then

ϕ+(h) = p+(ϕ(h)) − ∑
p+(p−(ϕ(h′

(1)))ϕ(h′
(2))) + ∑

p+(p−(p−(ϕ(h′
(1)))ϕ(h′

(2)))ϕ(h′
(3)))

ϕ−(h) = −p−(ϕ(h)) + ∑
p−(p−(ϕ(h′

(1)))ϕ(h′
(2))) − ∑

p−(p−(p−(ϕ(h′
(1)))ϕ(h′

(2)))ϕ(h′
(3)))

Needless to say that if A is commutative, these computations works in the
subgroup C(H,A).
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Once these formulas are given, we get formulas in the different contexts where
renormalization, or rather Birkhoff decomposition, is needed. We end this paper
with two sections that illustrate how these formulas could be used:

• to perform inversion and Birkhoff decomposition of diffeomorphisms that
correspond to characters on the Fa di Bruno Hopf algebra,

• to perform the Birkhoff decomposition with the same formula in various cofree
Hopf algebras that differ by their algebra structures, but for which the map ι is
the same as these Hopf algebras are tensor coalgebras.

8 Renormalizing Diffeomorphisms in pQFT and Dynamics

Let us focus in this section on the example of the Fa di Bruno Hopf algebra HFdB
(see [3, 17, 19, 28]) whose group of characters corresponds to the group of formal
identity-tangent diffeomorphisms. We will first express the reduced coproduct and
then the map ι from this Hopf algebra to its associated quasi-shuffle Hopf algebra
and then focus on the Birkhoff decomposition of characters with values in the
Laurent series that appear in several areas, as a factorisation of diffeomorphisms
for the composition.

Recall that the decomposition is unique: the same results could be obtained by
induction using the classical renormalization process (the Bogoliubov recursion).
One advantage of the present approach is to encode the combinatorics of renormal-
ization into a universal framework, probably similar to the one P. Cartier suggested
when advocating the existence of a “Galois group” underlying renormalization.
Compare in particular our approach with [6, 12, 14].

Consider the group of formal identity tangent diffeomorphisms with coefficients
in a commutative C–algebra A:

G(A) = {f (x) = x +
∑

n≥1

fnx
n+1 ∈ A[[x]]}

with its product μ : G(A) × G(A) → G(A):

μ(f, g) = f ◦ g.

For n ≥ 0, the functionals on G(A) defined by

an(f ) = 1

(n + 1)! (∂
n+1
x f )(0) = fn an : G(A) → A

are called de Fa di Bruno coordinates on the groupG(A) and a0 = 1 being the unit,
they generates a graded unital commutative algebra

HFdB = C[a1, . . . , an, . . .] (gr(an) = n)
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The action of these functionals on a product in G(A) defines a coproduct on HFdB
that turns to be a graded connected Hopf algebra (see [17] for details). For n ≥ 0,
the coproduct is defined by

an ◦ μ = m ◦ Δ(an) (34)

where m is the usual product in A, and the antipode reads

S ◦ an = an ◦ inv

where inv(ϕ) = ϕ◦−1 is the composition inverse of ϕ.
For example if f (x) = x + ∑

n≥1 fnx
n+1 and g(x) = x + ∑

n≥1 gnx
n+1 then if

h(x) = f ◦ g(x) = x + ∑
n≥1 hnx

n+1,

a0(h) = 1 = a0(f )a0(g) → Δa0 = a0 ⊗ a0

a1(h) = f1 + h1 → Δa1 = a1 ⊗ a0 + a0 ⊗ a1

a2(h) = f2 + 2f1g1 + g2 → Δa2 = a2 ⊗ a0 + 2a1 ⊗ a1 + a0 ⊗ a2.

More generally, using classical formulas on the composition of diffeomorphisms
(see [3, 9, 19, 30]), we have

Δ(an) =
n∑

k=0

∑

l0+...lk=n−k

li≥0

ak ⊗ al0 . . . alk (35)

Let us consider sequences of positive integers

N = {n = (n1, . . . , ns) ∈ (N∗)s, s ≥ 1}

For n = (n1, . . . , ns) ∈ N, we denote

‖n‖ = n1 + . . . + ns, l(n) = s, an = an1 . . . ans

and, if n ≥ 1,

Nn = {n ∈ N ; ‖n‖ = n}

With these notations, the reduced coproduct (with a0 = 1) reads

Δ′(an) =
n−1∑

k=1

∑

n∈Nn−k

(
k + 1
l(n)

)
ak ⊗ an (36)

and when iterating the coproduct, we get,
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Proposition 6 For n ≥ 1,

ι(an) =
∑

n∈Nn

∑

n1...nt=n

t≥1,l(n1)=1

λ(n1, . . . ,nt )an1 ⊗ · · · ⊗ ant (37)

where the sums run over all the decompositions in non empty sequences n1 . . .nt =
n and

λ(n1, . . . ,nt ) =
t∏

i=2

(
‖n1 . . .ni−1‖ + 1

l(ni )

)

Note that we kept in formula (37) the tensor product notation to avoid confusion
since we deal with words whose letters are monomials. The proof is simply based
on the recursive definition of reduced iterated coproduct and already provides a
formula for the composition inverse of a diffeomorphism in G(A).

Corollary 2 Let f (x) = x+∑
n≥1 fnx

n+1 ∈ G(A), we can consider its associated
character defined by ϕ(an) = fn and then, using our previous formulas, the
coefficients of the composition inverse g of f are given by

gn = ϕ∗−1(an) =
∑

n=(n1,...,ns)∈Nn

⎛
⎜⎜⎜⎝

∑

n1...nt =n

t≥1,l(n1)=1

(−1)tλ(n1, . . . ,nt )

⎞
⎟⎟⎟⎠ fn1 . . . fns

This result, as the following one, uses the obvious isomorphism between G(A)

and C(HFdB, A). One can also compute the Birkhoff decomposition in the group
of formal identity-tangent diffeomorphism with coefficients in the a Rota-Baxter
algebra of Laurent series A = C[[ε, ε−1] with its usual projections p+ and p− on
the regular and polar parts of such series. Any element

f (x) = x +
∑

n≥1

fn(ε)x
n+1 , fn(ε) ∈ C[[ε, ε−1]

can be decomposed as f− ◦ f = f+ with

f−(x) = x +
∑

n≥1

f−,n(ε)x
n+1 f−,n(ε) ∈ ε−1C[ε−1]

f+(x) = x +
∑

n≥1

f+,n(ε)x
n+1 f+,n(ε) ∈ C[[ε]].

Using Proposition 6, we get for n ≥ 1,
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Proposition 7 The coefficients of the Birkhoff decomposition of a formal identity-
tangent diffeomorphism are given by

ϕ+(an) =
∑

n∈Nn

∑

n1 ...nt =n

t≥1,l(n1)=1

λ(n1, . . . ,nt )(−1)t−1p+(p−(. . . (p−(ϕ(an1 ))ϕ(an2 )) . . .)ϕ(ant ))

ϕ−(an) =
∑

n∈Nn

∑

n1 ...nt =n

t≥1,l(n1)=1

λ(n1, . . . ,nt )(−1)tp−(p−(. . . (p−(ϕ(an1))ϕ(an2)) . . .)ϕ(ant ))

(38)

where ϕ, ϕ+ and ϕ− are the characters associated to f , f+ and f− (ϕ(an) = fn).

Let us explain how such diffeomorphisms appear in various area, where there
Birkhoff decomposition makes sense.

Such a factorization appears first classically in quantum field theory: after
dimensional regularization, the unrenormalized effective coupling constants are the
image by a formal identity-tangent diffeomorphism of the coupling constants of the
theory (see [7, 9] for a Hopf algebraic approach). Moreover, the coefficients of this
diffeomorphism are Laurent series in the parameter ε associated to the dimensional
regularization process and the Birkhoff decomposition of this diffeomorphism gives
directly the bare coupling constants and the renormalized coupling constants.

As proved in [7], in the case of the massless φ3
6 theory, the unrenormalized

effective coupling constant can be written as a diffeomorphism f (x) = x +∑
n≥1 fn(ε)x

n+1 where x is the initial coupling constant. From the physical point
of view, the decomposition f− ◦ f = f+ is such that, x + ∑

n≥1 f+,n(0)xn+1 is the
renormalized effective constant of the theory.

Such diffeomorphisms (and the need for renormalization) also appear in the
classification of dynamical systems, especially when dealing with dynamical sys-
tems that cannot be analytically of formally linearized. Let us illustrate this on a
very simple example (see [31] for a general approach). The following autonomous
analytic dynamical system

{
ẋ = αx

ż = βz + b(x)z2

can be considered as a perturbation of the linear system

{
ẋ = αx

ẏ = βy

so that one could expect that a change of coordinate (x, y) = ψ(x, z) =(
x, f (x, z)

)
allows to go from one system to the other one, that is to linearize

the first system. In this simple case (see [31] for details) the solution should be
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f (x, z) = z
1−a(x)z

where

αxa′(x) + βa(x) + b(x) = 0

that yields formally, if b(x) = ∑
n≥0 bnx

n,

a(x) = −
∑

n≥0

bn

αn + β
xn.

This series could be ill-defined whenever there exists n0 such that αn0 + β = 0.
This happens for example with n = 0 for (α, β) = (1, 0) and, in this case, we
could regularize by considering the system with linear part (α, β) = (1+ε, ε). As a
function of z, f (x, z) is then an identity-tangent diffeomorphismwhose coefficients
are inC[[x]][[ε, ε−1]:

f (x, z) = z

1 − a(x)z
= z+

∑

n≥1

a(x)nzn+1, a(x) =− b(0)

ε
−

∑

n≥1

bn

n(1 + ε) + ε
xn.

This very simple case can be handled directly and, after Birkhoff decomposition,
the regular part in ε is

f+(x, z) = z

1 − a+(x)z
= z +

∑

n≥1

a+(x)nzn+1, a+(x) = −
∑

n≥1

bn

n(1 + ε) + ε
xn

and, for ε = 0, the corresponding change of coordinate conjugates the system

{
ẋ = x

ż = b(x)z2

to
{

ẋ = x

ẏ = b(0)y2 .

This approach can be generalized to more general systems for which the Birkhoff
decomposition is not so obvious, so that formula (38) could be useful. For instance,
the same process of regularization/factorization allows to conjugate the system

{
ẋ = x

ż = ∑
k≥1 bk(x)zk+1
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to a system

{
ẋ = x

ẏ = ∑
k≥1 cky

k+1

which is called a “normal form”, with coefficients ck that do not depend any more
on x.

Diffeomorphisms in higher dimension (and thus the correspondingHopf algebra)
appear as well in physics (with more than one coupling constant) and in dynamics:
let us consider vector fields given by ν series u(x) = (u1(x), . . . , uν(x)) ∈ C≥2{x}
of ν variables x = (x1, . . . , xν) that can be seen as “perturbations” of linear vector
fields (λ1x1, . . . , λνxν):

dxi

dt
= λixi + ui(x) = Xi(x), i = 1, . . . , ν. (39)

The linearization problem consists in finding an identity-tangent diffeomorphism
ϕ in dimension ν such that the change of coordinates x = ϕ(y) transforms the
previous object into its linear part. For differential equations, this reads, for i =
1, . . . , ν:

dxi

dt
=

ν∑

j=1

dyj

dt

∂ϕi

∂yj

(y) =
ν∑

j=1

λj yj
∂ϕi

∂yj

(y) = λiϕi(y) + ui(ϕ(y)) = λixi + ui(x).

(40)

When trying to solve these so-called “homological equations”, some obstructions
can occur, independently on any assumption on the analycity of ϕ. These equa-
tions cannot be formally systematically solved when some combinations m1λ1 +
. . . mνλν − λi vanish (here i ∈ {1, . . . , ν}, mj ≥ 0,

∑
mj � 2):

Such cancellations, which are called resonances, prevent from linearizing the
differential and one can once again use regularization of the linear part and Birkhoff
decomposition to get a change of coordinate that conjugate the vector field to a
so-called normal form, see [31].

9 Tensor Coalgebras, MZVs, Analysis

If X be an alphabet (that is a set), its associated tensor vector space T (X) inherits
a coalgebra structure related to the concatenation. If we note tensors products as
words x = x1 ⊗ · · · ⊗ xs = x1 . . . xs ,

Δ(x) = 1 ⊗ x +
∑

x1x2=x

x1 ⊗ x2 + x ⊗ 1
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where the central sum, that corresponds to the reduced coproduct, is over nonempty
words x1, x2 whose concatenation is x.

The quasi-shuffle Hopf algebras QSh(A) are examples of such coalgebras
(choose simply a linear basis X of A!). There are however many Hopf algebras
with such a coalgebra structure that differ as algebras – but the associated map ι

and the associated formula for the Birkhoff decomposition of characters, does not
depend on the algebra structure. For the map ι, we obviously get:

ι(x) =
∑

x1x2...xt=x

t≥1 ; xi �=∅

x1 ⊗ x2 ⊗ · · · ⊗ xt (41)

and if ϕ is a character from a Hopf algebra with such a coalgebra structure, with
values in a commutative Rota-Baxter algebra (A, p+), the factorization ϕ−∗ϕ = ϕ+
is given for any x ∈ T (X) by

ϕ+(x) =
∑

x1x2...xt=x

t≥1 ; xi �=∅

(−1)t−1p+(p−(. . . (p−(ϕ(x1))ϕ(x2)) . . .)ϕ(xt ))

ϕ−(x) =
∑

x1x2...xt =x

t≥1 ; xi �=∅

(−1)tp−(p−(. . . (p−(ϕ(x1))ϕ(x2)) . . .)ϕ(xt ))
(42)

Let us list some example where this formula appear or can be used.

Example 1 (Renormalization af Multiple Zeta Values (MZV)) In [20, Section 3]
Guo and Zhang consider regularized MZV as characters on a quasi-shuffle algebra
HM = T (M) whose quasi-shuffle product stems from the additive semigroup
structure of the alphabet

M =
{

[ s
r
] ; (s, r) ∈ Z × R

+∗
}

.

They propose then a directional regularization of MZV defined on words

Z([ s1
r1

] . . . [ sk
rk

]; ε) =
∑

n1>···>nk>0

en1r1ε . . . enkrkε

n
s1
1 . . . n

sk
k

that defines a character on HM with values in an algebra of Laurent series. The
formula they give for the Birkhoff decomposition (Theorem 3.8 in [20]) coincide
Eq. (42).

Example 2 (Rooted ladders) As a toy model for applications in physics [9, section
4.2] considers a character on the polynomial commutative Hopf algebra H lad of
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ladder trees. If the ladder tree with n nodes is tn, then

Δ(tn) = tn ⊗ 1 +
n−1∑

k=1

tk ⊗ tn−k + 1 ⊗ tn.

It is a matter of fact to identify the coalgebra structure of H lad with the tensor
deconcatenation coalgebra T ({x}) over an alphabet with one letter, where tn
corresponds to the word x . . . x︸ ︷︷ ︸

n

. Formula (42) can be applied to the character

mapping the tree tn to an n-fold Chen’s iterated integral defined recursively by

ψ(p; ε, μ)(tn) = με

∫ ∞

p

ψ(x; ε, μ)(tn−1)
dx

x1+ε
= e−nε log(p/μ)

n!εn
= fn(ε)

with values in the Laurent series in ε. We get for the couterterms:

ψ−(p; ε, μ)(tn) =
∑

n1+···+nt =n

t≥1 , ni>0

(−1)t (−1)tp−(p−(. . . (p−(fn1(ε))fn2(ε)) . . .)fnt (ε))

(43)

Example 3 (Differential equations) When dealing with differential equations and
associated diffeomorphisms (flow, conjugacy map), characters on shuffle Hopf
algebras appear almost naturally. For instance, such characters correspond to:

• the coefficients of word series in [33],
• “symmetral moulds” in mould calculus (see [15, 16])
• or Chen’s iterated integrals (see for instance [25, 27]).

Let us just give the example of a simple differential equation related to mould
calculus (see [29]). Let b(x, y) = ∑

n≥0 xnbn(y) ∈ y2C[[x, y]] and d ∈ N. If one
looks for a formal identity tangent diffeomorphism ϕ(x, y) in y, with coefficients in
C[[x]] such that, if y is a solution of

(Eb,d) x1−d∂xy = b(x, y)

then z = ϕ(x, y) is a solution of

(E0,d) x1−d∂xz = 0.

One can try to compute this diffeomorphism as a “mould series”:

ϕd(x, y) = y +
∑

s≥1

∑

n1,...ns∈N
Vd(n1, . . . , ns)Bns . . .Bn1 .y (Bn = bn(y)∂y)

(44)
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where Vd is a character on the shuffle algebra T (N), with values in C[[x]].
Whenever d is a positive integer, this character can be computed and for any word
(n1, . . . , ns)

Vd(n1, . . . , ns) = (−1)sxn1+...+ns+sd

(ň1 + d)(ň2 + 2d) . . . (ňs + sd)
(ňi = n1+. . .+ni). (45)

The map ϕd(x, y) ∈ C[[x, y]] is then well defined and conjugates (Eb,d) to
(E0,d). For d = 0, there may be divisions by 0 and, in this case, one can consider
d = ε as a real parameter and use the expansion xε = ∑ (ε logx))n

n! so that the
character Vε has its values in B[[ε]][ε−1] where B = C[[log x, x]. If one uses the
same formula (42) to perform the Birkhoff decomposition, the regular character
Vε,+, evaluated at ε = 0 allows to find a diffeomorphism (as in Eq. (44)) that
conjugates x∂xy = b(x, y) to x∂xz = 0 with a price to pay: it contains monomials
in x and log x. See [29] for details.

Not also that the same ideas can be used for the the even-odd factorization of
characters in combinatorial Hopf algebras (see [1, 2] and [12]).
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