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Abstract This paper studies the one-dimensional parabolic Anderson model driven
by a Gaussian noise which is white in time and has the covariance of a fractional
Brownian motion with Hurst parameter H ∈ ( 1

4 , 1
2 ) in the space variable. We derive

the Wiener chaos expansion of the solution and a Feynman-Kac formula for the
moments of the solution. These results allow us to establish sharp lower and upper
asymptotic bounds for the nth moment of the solution.
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1 Introduction

A recent paper [9] studies the stochastic heat equation for (t, x) ∈ (0,∞) × R

∂u

∂t
= κ

2

∂2u

∂x2
+ σ(u) Ẇ , (1)

where Ẇ is a centered Gaussian noise which is white in time and behaves as
fractional Brownian motion with Hurst parameter 1/4 < H < 1/2 in space, and
σ may be a nonlinear function with some smoothness.

However, the specific case σ(u) = u, i.e.

∂u

∂t
= κ

2

∂2u

∂x2
+ u Ẇ (2)

deserves some specific treatment due to its simplicity. Indeed, this linear equation
turns out to be a continuous version of the parabolic Anderson model, and is
related to challenging systems in random environment like KPZ equation [3, 6]
or polymers [1, 4]. The localization and intermittency properties of (2) have thus
been thoroughly studied for equations driven by a space-time white noise (see [13]
for a nice survey), while a recent trend consists in extending this kind of result to
equations driven by very general Gaussian noises [5, 8, 10, 11]. However, the rough
noise Ẇ presented in this work is not covered by the aforementioned references.

To fill this gap, we first tackle the existence and uniqueness problem. Although
the existence and uniqueness of the solution in the general nonlinear case (1) has
been established in [9], in this linear case (2), one can implement a rather simple
procedure involving Fourier transforms. Since this point of view is interesting in its
own right and is short enough, we develop it in Sect. 3.1. In Sect. 3.2, we study the
random field solution using chaos expansion. Following the approach introduced in
[8, 10], we obtain an explicit formula for the kernels of the Wiener chaos expansion
and we show its convergence, and thus obtain the existence and uniqueness of the
solution. It is worth noting these methods treat different classes of initial data which
are more general than in [9] and different from [2].

We then move to a Feynman-Kac type representation for the moments of the
solution. In fact, we cannot expect a Feynman-Kac formula for the solution, because
the covariance is rougher than the space-time white noise case, and this type of
formula requires smoother covariance structures (see, for instance, [11]). However,
by means of Fourier analysis techniques as in [8, 10], we are able to obtain a
Feynman-Kac formula for the moments that involves a fractional derivative of the
Brownian local time.

Finally, the previous considerations allow us to handle, in the last section of
the paper, the intermittency properties of the solution. More precisely, we show
sharp lower bounds for the moments of the solution of the form E[u(t, x)n] ≥
exp(Cn1+ 1

H t), for all t ≥ 0, x ∈ R and n ≥ 2, where C is independent of t ≥ 0,
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x ∈ R and n. These bounds entail the intermittency phenomenon and match the
corresponding estimates for the case H > 1

2 obtained in [10]. After the completion
of this work, three of the authors have studied the parabolic Anderson model in
more details in [12]. Existence and uniqueness results are extended to wider class
of initial data. In particular, exact long term asymptotics for the moments of the
solution of the form lim sup 1

t
sup|x|>αt logE(|u(t, x)|p) are obtained.

2 Preliminaries

Let us start by introducing our basic notation on Fourier transforms of functions.
The space of Schwartz functions is denoted by S. Its dual, the space of tempered
distributions, is S′. The Fourier transform of a function u ∈ S is defined with the
normalization

Fu(ξ) =
∫
R

e−iξxu(x)dx,

so that the inverse Fourier transform is given by F−1u(ξ) = (2π)−1Fu(−ξ). The
Fourier transform of a tempered distribution can also be defined (see [18]).

Let D((0,∞) × R) denote the space of real-valued infinitely differentiable
functions with compact support on (0,∞) × R. Taking into account the spectral
representation of the covariance function of the fractional Brownian motion in the
case H < 1

2 proved in [17, Theorem 3.1], we represent our noise W by a zero-mean
Gaussian family {W(ϕ), ϕ ∈ D((0,∞) × R)} defined on a complete probability
space (	,F, P), whose covariance structure is given by

E
[
W(ϕ) W(ψ)

] = c1,H

∫
R+×R

Fϕ(s, ξ)Fψ(s, ξ) |ξ |1−2H dsdξ, (3)

where the Fourier transformsFϕ,Fψ are understood as Fourier transforms in space
only and

c1,H = 1

2π
�(2H + 1) sin(πH) . (4)

We denote by H the Hilbert space obtained by completion of D((0,∞)×R) with
respect to the inner product

〈ϕ,ψ〉H = c1,H

∫
R+×R

Fϕ(s, ξ)Fψ(s, ξ)|ξ |1−2Hdξds . (5)

The next proposition is from Theorem 3.1 and Proposition 3.4 in [17].
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Proposition 2.1 If H0 denotes the class of functions ϕ ∈ L2(R+ × R) such that

∫
R+×R

|Fϕ(s, ξ)|2|ξ |1−2Hdξds < ∞ ,

then H0 is not complete and the inclusion H0 ⊂ H is strict.

We recall that the Gaussian family W can be extended to H and this produces
an isonormal Gaussian process, for which Malliavin calculus can be applied. We
refer to [16] and [7] for a detailed account of the Malliavin calculus with respect
to a Gaussian process. On our Gaussian space, the smooth and cylindrical random
variables F are of the form

F = f (W(φ1), . . . ,W(φn)) ,

with φi ∈ H, f ∈ C∞
p (Rn) (namely f and all its partial derivatives have polynomial

growth). For this kind of random variable, the derivative operator D in the sense of
Malliavin calculus is the H-valued random variable defined by

DF =
n∑

j=1

∂f

∂xj

(W(φ1), . . . ,W(φn))φj .

The operator D is closable from L2(	) into L2(	;H) and we define the Sobolev
space D

1,2 as the closure of the space of smooth and cylindrical random variables
under the norm

‖DF‖1,2 =
√

E[F 2] + E[‖DF‖2
H] .

We denote by δ the adjoint of the derivative operator (called divergence operator)
given by the duality formula

E
[
δ(u)F

] = E
[〈DF, u〉H

]
, (6)

for any F ∈ D
1,2 and any element u ∈ L2(	;H) in the domain of δ.

For any integer n ≥ 0 we denote by Hn the nth Wiener chaos of W . We recall
that H0 is simply R and for n ≥ 1, Hn is the closed linear subspace of L2(	)

generated by the random variables {Hn(W(φ)), φ ∈ H, ‖φ‖H = 1}, where Hn is
the nth Hermite polynomial. For any n ≥ 1, we denote by H⊗n (resp. H�n) the nth
tensor product (resp. the nth symmetric tensor product) of H. Then, the mapping
In(φ

⊗n) = Hn(W(φ)) can be extended to a linear isometry between H�n (equipped
with the modified norm

√
n!‖ · ‖H⊗n ) and Hn.
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Consider now a random variable F ∈ L2(	) which is measurable with respect
to the σ -field F generated by W . This random variable can be expressed as

F = E
[
F
]+

∞∑
n=1

In(fn), (7)

where the series converges in L2(	), and the elements fn ∈ H�n, n ≥ 1, are
determined by F . This identity is called the Wiener chaos expansion of F .

The Skorohod integral (or divergence) of a random field u can be com-
puted by using the Wiener chaos expansion. More precisely, suppose that u =
{u(t, x), (t, x) ∈ R+ × R} is a random field such that for each (t, x), u(t, x) is
an F-measurable and square-integrable random variable. Then, for each (t, x) we
have a Wiener chaos expansion of the form

u(t, x) = E
[
u(t, x)

]+
∞∑

n=1

In(fn(·, t, x)). (8)

Suppose that E[‖u‖2
H] is finite. Then, we can interpret u as a square-integrable

random function with values in H and the kernels fn in the expansion (8) are
functions in H⊗(n+1) which are symmetric in the first n variables. In this situation, u
belongs to the domain of the divergence operator (that is, u is Skorohod integrable
with respect to W ) if and only if the following series converges in L2(	)

δ(u) =
∫ ∞

0

∫
Rd

u(t, x) δW(t, x) = W(E[u]) +
∞∑

n=1

In+1(f̃n), (9)

where f̃n denotes the symmetrization of fn in all its n + 1 variables.
For each t ≥ 0, let Ft be the σ -field generated by W up to time t . Define the

predictable σ -field as the σ -field of subsets of 	 × R+ × R generated by the
collection of sets {A × (s, t] × B, where 0 ≤ s < t , A ∈ Fs and B is a Borel
set in R. Denote by �H the space of predictable processes g defined on R+ × R

such that almost surely g ∈ H and E[‖g‖2
H] < ∞. Then, if g ∈ �H , the Skorohod

integral of g with respect to W coincides with the Itô integral defined in [9] and we
have the isometry

E

⎡
⎣
(∫

R+

∫
R

g(s, x)W(ds, dx)

)2
⎤
⎦ = E‖g‖2

H . (10)

Now we are ready to state the definition of the solution to Eq. (2). Denote by pt(x)

the heat kernel on the real line related to κ
2 �. We denote by ∗ the convolution

operation.
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Definition 2.2 Let u = {u(t, x), 0 ≤ t ≤ T , x ∈ R} be a real-valued predictable
stochastic process such that for all t ∈ [0, T ] and x ∈ R the process {pt−s(x −
y)u(s, y) 1[0,t ](s), s ≥ 0, y ∈ R} belongs to �H . We say that u is a mild solution
of (2) if for all t ∈ [0, T ] and x ∈ R we have

u(t, x) = pt ∗ u0(x) +
∫ t

0

∫
R

pt−s(x − y)u(s, y)W(ds, dy) a.s., (11)

where and in what follows the stochastic integral is always understood in the sense
of Itô and coincides with the Skorohod integral defined by (6).

3 Existence and Uniqueness

In this section we prove the existence and uniqueness result for the solution to
Eq. (2) by means of two different methods: one is via Fourier transform and the
other is via chaos expansion.

3.1 Existence and Uniqueness via Fourier Transform

In this subsection we discuss the existence and uniqueness of Eq. (2) using
techniques of Fourier analysis.

Let Ḣ
1
2 −H

0 be the set of functions f ∈ L2(R) such that
∫
R

|Ff (ξ)|2|ξ |1−2H

dξ < ∞. This space is the time independent analogue to the space H0 introduced

in Proposition 2.1. We know that Ḣ
1
2 −H

0 is not complete with the seminorm[∫
R

|Ff (ξ)|2|ξ |1−2Hdξ
] 1

2
(see [17]). However, it is not difficult to check that

the space Ḣ
1
2 −H

0 is complete for the seminorm ‖f ‖2
V(H)

:= ∫
R

|Ff (ξ)|2(1 +
|ξ |1−2H)dξ .

In the next theorem we show the existence and uniqueness result assuming that

the initial condition belongs to Ḣ
1
2 −H

0 and using estimates based on the Fourier
transform in the space variable. To this purpose, we introduce the space VT (H) as

the completion of the set of elementary Ḣ
1
2 −H

0 -valued stochastic processes

u(t) =
n−1∑
i=0

1(ti ,ti+1](t)ui , t ∈ [0, T ] ,
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where 0 = t0 < t1 < · · · < tn = T is a partition of [0, T ] and ui ∈ Ḣ
1
2 −H

0 , with
respect to the seminorm

‖u‖2
VT (H) := sup

t∈[0,T ]
E‖u(t, ·)‖2

V(H). (12)

We now state a convolution lemma.

Proposition 3.1 Consider a function u0 ∈ Ḣ
1
2 −H

0 and 1
4 < H < 1

2 . For any
v ∈ VT (H) we set �(v) = V in the following way:

�(v) := V (t, x) = pt ∗u0(x)+
∫ t

0

∫
R

pt−s(x −y)v(s, y)W(ds, dy), t ∈ [0, T ], x ∈ R.

Then � is well-defined as a map from VT (H) to VT (H). Furthermore, there exist
two positive constants c1, c2 such that the following estimate holds true on [0, T ]:

‖V (t, ·)‖2
V(H) ≤ c1 ‖u0‖2

V(H) + c2

∫ t

0
(t − s)2H−3/2‖v(s, ·)‖2

V(H) ds . (13)

Proof Let v be a process in VT (H) and set V = �(v). The stochastic integral
appearing in the definition of �(v) exists as an Itô (or Skorohod) integral, because
the process {pt−s(x − y)v(s, y), 1[0,t ](s), s ≥ 0, y ∈ R} is predictable and square
integrable. We focus on the bound (13) for V .

Notice that the Fourier transform of V can be computed easily. Indeed, setting
v0(t, x) = pt ∗ u0(x) and invoking a stochastic version of Fubini’s theorem, which
can be easily proved in our framework, we get

FV (t, ξ) = Fv0(t, ξ) +
∫ t

0

∫
R

(∫
R

eixξ pt−s(x − y) dx

)
v(s, y)W(ds, dy) .

According to the expression of Fpt , we obtain

FV (t, ξ) = Fv0(t, ξ) +
∫ t

0

∫
R

e−iξye− κ
2 (t−s)ξ2

v(s, y)W(ds, dy) .

We now evaluate the quantity E[∫
R

|FV (t, ξ)|2|ξ |1−2Hdξ ] in the definition of
‖V ‖VT (H) given by (12). We thus write

E
[∫

R

|FV (t, ξ )|2|ξ |1−2Hdξ

]
≤ 2

∫
R

|Fv0(t, ξ )|2|ξ |1−2Hdξ

+ 2
∫
R

E

[∣∣∣
∫ t

0

∫
R

e−iξye− κ
2 (t−s)ξ 2

v(s, y)W(ds, dy)

∣∣∣2
]

|ξ |1−2Hdξ := 2 (I1 + I2) ,

and we handle the terms I1 and I2 separately.
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The term I1 can be easily bounded by using that u0 ∈ Ḣ
1
2 −H

0 and recalling
v0 = pt ∗ u0. That is,

I1 =
∫
R

|Fu0(ξ)|2e−κt |ξ |2 |ξ |1−2Hdξ ≤ C ‖u0‖2
V(H).

We thus focus on the estimation of I2, and we set fξ (s, η) = e−iξηe− κ
2 (t−s)ξ2

v(s, η).
Applying the isometry property (10) we have:

E

[∣∣∣
∫ t

0

∫
R

e−iξye− κ
2 (t−s)ξ2

v(s, y)W(ds, dy)

∣∣∣2
]

= c1,H

∫ t

0

∫
R

E
[
|Fηfξ (s, η)|2

]
|η|1−2H dsdη,

where Fη is the Fourier transform with respect to η. It is obvious that the Fourier
transform of e−iξyV (y) is FV (η + ξ). Thus we have

I2 = C

∫ t

0

∫
R

∫
R

e−κ(t−s)ξ2
E
[
|Fv(s, η + ξ)|2

]
|η|1−2H |ξ |1−2H dηdξds

= C

∫ t

0

∫
R

∫
R

e−κ(t−s)ξ2
E
[
|Fv(s, η)|2

]
|η − ξ |1−2H |ξ |1−2H dηdξds .

We now bound |η − ξ |1−2H by |η|1−2H + |ξ |1−2H , which yields I2 ≤ I21 + I22
with:

I21 = C

∫ t

0

∫
R

∫
R

e−κ(t−s)ξ2
E
[
|Fv(s, η)|2

]
|η|1−2H |ξ |1−2H dηdξds

I22 = C

∫ t

0

∫
R

∫
R

e−κ(t−s)ξ2
E
[
|Fv(s, η)|2

]
|ξ |2−4H dηdξds .

Performing the change of variable ξ → (t − s)−1/2ξ and then trivially bounding the
integrals of the form

∫
R

|ξ |βe−κξ2
dξ by constants, we end up with

I21 ≤ C

∫ t

0
(t − s)H−1

∫
R

E
[
|Fv(s, η)|2

]
|η|1−2H dη ds

I22 ≤ C

∫ t

0
(t − s)2H−3/2

∫
R

E
[
|Fv(s, η)|2

]
dη ds.

Observe that for H ∈ ( 1
4 , 1

2 ) the term (t−s)2H−3/2 is more singular than (t−s)H−1,
but we still have 2H − 3

2 > −1 (this is where we need to impose H > 1/4).
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Summarizing our consideration up to now, we have thus obtained

∫
R

E
[
|FV (t, ξ )|2

]
|ξ |1−2Hdξ

≤ C1,T ‖u0‖2
V(H) + C2,T

∫ t

0
(t − s)2H−3/2

∫
R

E
[
|Fv(s, ξ )|2

]
(1 + |ξ |1−2H) dξ ds,

(14)

for two strictly positive constants C1,T , C2,T .
The term E[∫

R
|FV (t, ξ)|2dξ ] in the definition of ‖V ‖VT (H) can be bounded

with the same computations as above, and we find

∫
R

E
[
|FV (t, ξ)|2

]
dξ

≤ C1,T ‖u0‖2
V(H) +C2,T

∫ t

0
(t −s)H−1

∫
R

E
[
|Fv(s, ξ)|2

]
(1+|ξ |1−2H) dη ds .

(15)

Hence, gathering our estimates (14) and (15), our bound (13) is easily obtained,
which finishes the proof. ��

As in the forthcoming general case, Proposition 3.1 is the key to the existence
and uniqueness result for Eq. (2).

Theorem 3.2 Suppose that u0 is an element of Ḣ
1
2 −H

0 and 1
4 < H < 1

2 . Fix T > 0.
Then there is a unique process u in the space VT (H) such that for all t ∈ [0, T ],

u(t, ·) = pt ∗ u0 +
∫ t

0

∫
R

pt−s(· − y)u(s, y)W(ds, dy). (16)

Proof The proof follows from the standard Picard iteration scheme, where we just
set un+1 = �(un). Details are left to the reader for the sake of conciseness. ��

3.2 Existence and Uniqueness via Chaos Expansions

Next, we provide another way to prove the existence and uniqueness of the
solution to Eq. (2), by means of chaos expansions. This will enable us to obtain
moment estimates. Before stating our main theorem in this direction, let us label an
elementary lemma borrowed from [10] for further use.

Lemma 3.3 For m ≥ 1 let α ∈ (−1 + ε, 1)m with ε > 0 and set |α| = ∑m
i=1 αi .

For t ∈ [0, T ], the m-th dimensional simplex over [0, t] is denoted by Tm(t) =
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{(r1, r2, . . . , rm) ∈ R
m : 0 < r1 < · · · < rm < t}. Then there is a constant c > 0

such that

Jm(t, α) :=
∫

Tm(t)

m∏
i=1

(ri − ri−1)
αi dr ≤ cmt |α|+m

�(|α| + m + 1)
,

where by convention, r0 = 0.

Let us now state a new existence and uniqueness theorem for our equation of
interest (2).

Theorem 3.4 Suppose that 1
4 < H < 1

2 and that the initial condition u0 satisfies

∫
R

(1 + |ξ | 1
2 −H )|Fu0(ξ)|dξ < ∞ . (17)

Then there exists a unique solution to Eq. (2), that is, there is a unique process u such
that the Itô (or Skorohod) integral of the process {pt−s(x − y)u(s, y)1[0,t ](s), s ≥
0, y ∈ R} exists for any (t, x) ∈ [0, T ] × R and relation (11) holds true.

Remark 3.5

(i) The formulation of Theorem 3.4 yields the definition of our solution u for all
(t, x) ∈ [0, T ]×R. This is in contrast with Theorem 3.2 which gives a solution

sitting in Ḣ
1
2 −H

0 for every value of t , and thus defined a.e. in x only.
(ii) Obviously a constant can be considered as a tempered distribution. Condi-

tion (17) is satisfied by constant functions.

Remark 3.6 In the later paper [12], the existence and uniqueness in Theorem 3.4 is
obtained under a more general initial condition. Since the proof of Theorem 3.4 for
condition (17) is easier and shorter, we present the proof as follows.

Proof of Theorem 3.4 Suppose that u = {u(t, x), t ≥ 0, x ∈ R
d } is a solution

to Eq. (11) in �H . Then according to (7), for any fixed (t, x) the random variable
u(t, x) admits the following Wiener chaos expansion

u(t, x) =
∞∑

n=0

In(fn(·, t, x)) , (18)

where for each (t, x), fn(·, t, x) is a symmetric element in H⊗n. Hence, thanks to (9)
and using an iteration procedure, one can find an explicit formula for the kernels fn

for n ≥ 1. Indeed, we have:

fn(s1, x1, . . . , sn, xn, t, x)

= 1

n!pt−sσ(n)
(x − xσ(n)) · · · psσ(2)−sσ(1)

(xσ(2) − xσ(1))psσ(1)
u0(xσ(1)) , (19)
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where σ denotes the permutation of {1, 2, . . . , n} such that 0 < sσ(1) < · · · <

sσ(n) < t (see, for instance, formula (4.4) in [8] or formula (3.3) in [10]). Then,
to show the existence and uniqueness of the solution it suffices to prove that for all
(t, x) we have

∞∑
n=0

n!‖fn(·, t, x)‖2
H⊗n < ∞ . (20)

The remainder of the proof is devoted to prove relation (20).
Starting from relation (19), some elementary Fourier computations show that

Ffn(s1, ξ1, . . . , sn, ξn, t, x) = cn
H

n!
∫
R

n∏
i=1

e− κ
2 (sσ(i+1)−sσ(i))|ξσ(i)+···+ξσ(1)−ζ |2

× e−ix(ξσ(n)+···+ξσ(1)−ζ )Fu0(ζ )e− κsσ(1)|ζ |2
2 dζ,

where we have set sσ(n+1) = t . Hence, owing to formula (5) for the norm in H (in
its Fourier mode version), we have

n!‖fn(·, t, x)‖2
H⊗n = c2n

H

n!
∫

[0,t]n

∫
Rn

∣∣∣∣
∫
R

n∏
i=1

e− κ
2 (sσ (i+1)−sσ (i))|ξi+···+ξ1−ζ |2e−ix(ξσ (n)+···+ξσ (1)−ζ )

Fu0(ζ )e− κsσ (1) |ζ |2
2 dζ

∣∣∣∣
2

×
n∏

i=1

|ξi |1−2Hdξds , (21)

where dξ denotes dξ1 · · · dξn and similarly for ds. Then using the change of variable
ξi +· · ·+ξ1 = ηi , for all i = 1, 2, . . . , n and a linearization of the above expression,
we obtain

n!‖fn(·, t, x)‖2
H⊗n = c2n

H

n!
∫

[0,t]n

∫
Rn

∫
R2

n∏
i=1

e− κ
2 (sσ (i+1)−sσ (i))(|ηi−ζ |2+|ηi−ζ ′ |2)Fu0(ζ )Fu0(ζ ′)

× eix(ζ−ζ ′)e− κsσ (1)(|ζ |2+|ζ ′|2 )

2

n∏
i=1

|ηi − ηi−1|1−2H dζdζ ′dηds ,

where we have set η0 = 0. Then we use Cauchy-Schwarz inequality and bound the
term exp(−κsσ(1)(|ζ |2 + |ζ ′|2)/2) by 1 to get

n!‖fn(·, t, x)‖2
H⊗n ≤ c2n

H

n!
∫
R2

⎛
⎝
∫

[0,t]n

∫
Rn

n∏
i=1

e−κ(sσ(i+1)−sσ(i))|ηi−ζ |2
n∏

i=1

|ηi − ηi−1|1−2H dηds

⎞
⎠

1
2

×
⎛
⎝
∫

[0,t]n

∫
Rn

n∏
i=1

e−κ(sσ(i+1)−sσ(i))|ηi−ζ ′ |2
n∏

i=1

|ηi − ηi−1|1−2Hdηds

⎞
⎠

1
2 ∣∣Fu0(ζ )

∣∣ ∣∣Fu0(ζ
′)
∣∣ dζdζ ′.
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Arranging the integrals again, performing the change of variables ηi := ηi − ζ and
invoking the trivial bound |ηi − ηi−1|1−2H ≤ |ηi−1|1−2H + |ηi |1−2H , this yields

n!‖fn(·, t, x)‖2
H⊗n ≤ c2n

H

n!

(∫
R

L
1
2
n,t (ζ )

∣∣Fu0(ζ )
∣∣ dζ

)2

, (22)

where Ln,t (ζ ) is

∫
[0,t]n

∫
Rn

n∏
i=1

e−κ(sσ (i+1)−sσ (i))|ηi |2 (|ζ |1−2H + |η1|1−2H ) ×
n∏

i=2

(|ηi |1−2H + |ηi−1|1−2H )dηds.

Let us expand the product
∏n

i=2(|ηi |1−2H + |ηi−1|1−2H) in the integral defining
Ln,t (ζ ). We obtain an expression of the form

∑
α∈Dn

∏n
i=1 |ηi |αi , where Dn is a

subset of multi-indices of length n−1. The complete description of Dn is omitted for
the sake of conciseness, and we will just use the following facts: Card(Dn) = 2n−1

and for any α ∈ Dn we have

|α| ≡
n∑

i=1

αi = (n−1)(1−2H), and αi ∈ {0, 1−2H, 2(1−2H)}, i = 1, . . . , n.

This simple expansion yields the following bound

Ln,t (ζ ) ≤ |ζ |1−2H
∑

α∈Dn

∫
[0,t ]n

∫
Rn

n∏
i=1

e−κ(sσ(i+1)−sσ(i))|ηi |2
n∏

i=1

|ηi |αi dηds

+
∑
α∈Dn

∫
[0,t ]n

∫
Rn

n∏
i=1

e−κ(sσ(i+1)−sσ(i))|ηi |2 |η1|1−2H

n∏
i=1

|ηi |αi dηds .

Perform the change of variable ξi = (κ(sσ(i+1) − sσ(i)))
1/2ηi in the above integral,

and notice that
∫
R

e−ξ2 |ξ |αi dξ is bounded by a constant for αi > −1. Changing the
integral over [0, t]n into an integral over the simplex, we get

Ln,t (ζ ) ≤ C|ζ |1−2Hn!cn
H

∑
α∈Dn

∫
Tn(t)

n∏
i=1

(κ(si+1 − si ))
− 1

2 (1+αi)ds.

+Cn!cn
H

∑
α∈Dn

∫
Tn(t)

(κ(s2 − s1))
− 2−2H+α1

2

n∏
i=2

(κ(si+1 − si ))
− 1

2 (1+αi)ds.

We observe that whenever 1
4 < H < 1

2 , we have 1
2 (1 + αi) < 1 for all i =

2, . . . n, and it is easy to see that α1 is at most 1 − 2H so 1
2 (2 − 2H + α1) < 1.

Condition H > 1/4 comes from the requirement that when α1 = 1 − 2H , we
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need 1
2 (2 − 2H + α1) = 1

2 (3 − 4H) < 1. Thanks to Lemma 3.3 and recalling that∑n
i=1 αi = (n − 1)(1 − 2H) for all α ∈ Dn, we thus conclude that

Ln,t (ζ ) ≤ C(1 + t
1
2 −H κ

1
2 −H |ζ |1−2H)n!cncn

H tnH κnH−n

�(nH + 1)
.

Plugging this expression into (22), we end up with

n!‖fn(·, t, x)‖2
H⊗n ≤ Ccn

H cntnHκnH−n

�(nH + 1)

(∫
R

(1 + t
1
2 −H κ

1
2 −H |ζ | 1

2 −H )
∣∣Fu0(ζ )

∣∣ dζ

)2

.

(23)

The proof of (20) is now easily completed thanks to the asymptotic behavior of
the Gamma function and our assumption of u0. This finishes the existence and
uniqueness proof. ��

4 Moment Formula and Bounds

In this section we derive the Feynman-Kac formula for the moments of the solution
to Eq. (2) and the upper and lower bounds for the moments of the solution to Eq. (2)
which allow us to conclude on the intermittency of the solution. We proceed by first
getting an approximation result for u, and then deriving the upper and lower bounds
for the approximation.

4.1 Approximation of the Solution

The approximation of the solution we consider is based on the following approxi-
mation of the noise W . For each ε > 0 and ϕ ∈ H, we define

Wε(ϕ) =
∫ ∞

0

∫
R

[ρε ∗ ϕ](s, x)W(ds, dy) =
∫ ∞

0

∫
R

∫
R

ϕ(s, x)ρε(x − y)W(ds, dy)dx ,

(24)

where ρε(x) = (2πε)− 1
2 e−x2/(2ε). Notice that the covariance of Wε can be read

(either in Fourier or direct coordinates) as:

E
[
Wε(ϕ)Wε(ψ)

] = c1,H

∫ ∞

0

∫
R

Fϕ(s, ξ)Fψ(s, ξ) e−ε|ξ |2|ξ |1−2Hdξds (25)

= c1,H

∫ ∞

0

∫
R

∫
R

ϕ(s, x)fε(x − y)ψ(s, y) dxdyds,



490 Y. Hu et al.

for every ϕ,ψ in H, where fε is given by fε(x) = F−1(e−ε|ξ |2|ξ |1−2H). In other
words, Wε is still a white noise in time but its space covariance is now given by fε .
Note that fε is a real positive-definite function, but is not necessarily positive. The
noise Wε induces an approximation to the mild formulation of Eq. (2), namely

uε(t, x) = pt ∗ u0(x) +
∫ t

0

∫
R

pt−s(x − y)uε(s, y) Wε(ds, dy), (26)

where the integral is understood (as in Sect. 3.1) in the Itô sense. We will start by a
formula for the moments of uε .

Proposition 4.1 Let Wε be the noise defined by (24), and assume 1
4 < H < 1

2 .

Assume u0 is such that
∫
R
(1 + |ξ | 1

2 −H )|Fu0(ξ)|dξ < ∞. Then

(i) Equation (26) admits a unique solution.
(ii) For any integer n ≥ 2 and (t, x) ∈ [0, T ] × R, we have

E
[
un

ε(t, x)
] = EB

⎡
⎢⎣

n∏
j=1

u0(x + B
j
κt ) exp

⎛
⎝c1,H

∑
1≤j �=k≤n

V
ε,j,k
t,x

⎞
⎠
⎤
⎥⎦ , (27)

with

V
ε,j,k
t,x =

∫ t

0
fε(B

j
κr − Bk

κr )dr =
∫ t

0

∫
R

e−ε|ξ |2|ξ |1−2Heiξ(B
j
κr−Bk

κr ) dξdr.

(28)

In formula (28), {Bj ; j = 1, . . . , n} is a family of n independent standard
Brownian motions which are also independent of W and EB denotes the
expected value with respect to the randomness in B only.

(iii) The quantity E[un
ε(t, x)] is uniformly bounded in ε. More generally, for any

a > 0 we have

sup
ε>0

EB

⎡
⎢⎣exp

⎛
⎝a

∑
1≤j �=k≤n

V
ε,j,k
t,x

⎞
⎠
⎤
⎥⎦ ≡ ca < ∞.

Proof The proof of item (i) is almost identical to the proof of Theorem 3.4, and is
omitted for the sake of conciseness. Moreover, in the proof of (ii) and (iii), we may
take u0(x) ≡ 1 for simplicity.

In order to check item (ii), set

Aε
t,x(r, y) = ρε(B

x
κ(t−r) − y), and αε

t,x = ‖Aε
t,x‖2

H. (29)
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Then one can prove, similarly to Proposition 5.2 in [8], that uε admits a Feynman-
Kac representation of the form

uε(t, x) = EB

[
exp

(
W(Aε

t,x) − 1

2
αε

t,x

)]
. (30)

Now fix an integer n ≥ 2. According to (30) we have

E
[
un

ε (t, x)
] = EW

⎡
⎣ n∏

j=1

EB

[
exp

(
W(A

ε,Bj

t,x ) − 1

2
α

ε,Bj

t,x

)]⎤
⎦ ,

where for any j = 1, . . . , n, A
ε,Bj

t,x and α
ε,Bj

t,x are evaluations of (29) using the

Brownian motion Bj . Therefore, since W(A
ε,Bj

t,x ) is a Gaussian random variable
conditionally on B, we obtain

E
[
un

ε(t, x)
] = EB

⎡
⎢⎣exp

⎛
⎝1

2
‖

n∑
j=1

A
ε,Bj

t,x ‖2
H − 1

2

n∑
j=1

α
ε,Bj

t,x

⎞
⎠
⎤
⎥⎦

= EB

⎡
⎢⎣exp

⎛
⎝1

2
‖

n∑
j=1

A
ε,Bj

t,x ‖2
H − 1

2

n∑
j=1

‖Aε,Bj

t,x ‖2
H

⎞
⎠
⎤
⎥⎦

= EB

⎡
⎢⎣exp

⎛
⎝ ∑

1≤i<j≤n

〈Aε,Bi

t,x , A
ε,Bj

t,x 〉H
⎞
⎠
⎤
⎥⎦ .

The evaluation of 〈Aε,Bi

t,x , A
ε,Bj

t,x 〉H easily yields our claim (27), the last details being
left to the patient reader.

Let us now prove item (iii), namely

sup
ε>0

sup
t∈[0,T ],x∈R

E
[
un

ε (t, x)
]
< ∞ . (31)

To this aim, notice first from the expression (27) that E
[
un

ε(t, x)
]

does not depend
on x ∈ R (since u0(x) ≡ 1) so that the supt∈[0,T ],x∈R in (31) can be reduced to a
sup in t only. Next, still resorting to formula (27), it is readily seen that it suffices to
show that for two independent Brownian motions B and B̃, we have

sup
ε>0,t∈[0,T ]

EB

[
exp

(
c F ε

t

)]
< ∞, with Fε

t ≡
∫ t

0

∫
R

e−ε|ξ |2 |ξ |1−2H eiξ(Bκr −B̃κr )dξdr,

(32)
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for any positive constant c. In order to prove (32), we expand the exponential and
write:

EB

[
exp(c F ε

t )
] =

∞∑
l=0

EB

[
(c F ε

t )l
]

l! . (33)

Next, we have

EB

[(
Fε

t

)l] = EB

⎡
⎣
∫

[0,t ]l

∫
Rl

l∏
j=1

e
−iξj (Bκrj

−B̃κrj
)−ε|ξj |2 |ξj |1−2Hdξdr

⎤
⎦

≤
∫

[0,t ]l

∫
Rl

l∏
j=1

e−κ(t−rσ(j))|ξj+···+ξ1|2 |ξj |1−2H dξdr ,

where σ is the permutation on {1, 2, . . . , l} such that t ≥ rσ(l) ≥ · · · ≥ rσ(1). We
have thus gone back to an expression which is very similar to (21). We now proceed
as in the proof of Theorem 3.4 to show that (31) holds true from Eq. (33). ��

Starting from Proposition 4.1, let us take limits in order to get the moment
formula for the solution u to Eq. (2).

Theorem 4.2 Assume 1
4 < H < 1

2 and consider n ≥ 1, j, k ∈ {1, . . . , n} with

j �= k. For (t, x) ∈ [0, T ] × R, denote by V
j,k
t,x the limit in L2(	) as ε → 0 of

V
ε,j,k
t,x =

∫ t

0

∫
R

e−ε|ξ |2|ξ |1−2Heiξ(B
j
κr−Bk

κr )dξdr.

Then E
[
un

ε(t, x)
]
converges as ε → 0 to E[un(t, x)], which is given by

E[un(t, x)] = EB

⎡
⎢⎣

n∏
j=1

u0(B
j
κt + x) exp

⎛
⎝c1,H

∑
1≤j �=k≤n

V
j,k
t,x

⎞
⎠
⎤
⎥⎦ . (34)

We note that in a recent paper [12], the moment formula for general covariance
function is obtained. However we present the proof here for the sake of complete-
ness.

Proof As in Proposition 4.1, we will prove the theorem for u0 ≡ 1 for simplicity.
For any p ≥ 1 and 1 ≤ j < k ≤ n, we can easily prove that V

ε,j,k
t,x converges in

Lp(	) to V
j,k
t,x defined by

V
j,k
t,x =

∫ t

0

∫
R

|ξ |1−2Heiξ(B
j
κr−Bk

κr )dξdr. (35)
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Indeed, this is due to the fact that e−ε|ξ |2|ξ |1−2Heiξ(B
j
κr−Bk

κr ) converges to

|ξ |1−2Heiξ(B
j
κr−Bk

κr ) in the dξ ⊗ dr ⊗ dP sense, plus standard uniform integrability
arguments. Now, taking into account relation (27), Proposition 4.1 (iii), the
fact that V

ε,j,k
t,x converges to V

j,k
t,x in L2(	) as ε → 0, and the inequality

|ex − ey | ≤ (ex + ey)|x − y|, we obtain

EB

∣∣∣∣∣∣exp

⎛
⎝c1,H

∑
1≤j �=k≤n

V
ε,j,k
t,x

⎞
⎠− exp

⎛
⎝c1,H

∑
1≤j �=k≤n

V
j,k
t,x

⎞
⎠
∣∣∣∣∣∣

≤ sup
ε>0

2

⎛
⎜⎝EB

∣∣∣∣∣∣exp

⎛
⎝2c1,H

∑
1≤j �=k≤n

V
ε,j,k
t,x

⎞
⎠+ exp

⎛
⎝2c1,H

∑
1≤j �=k≤n

V
j,k
t,x

⎞
⎠
∣∣∣∣∣∣
2
⎞
⎟⎠

1
2

×
⎛
⎜⎝EB

∣∣∣∣∣∣c1,H

∑
1≤j �=k≤n

V
ε,j,k
t,x − c1,H

∑
1≤j �=k≤n

V
j,k
t,x

∣∣∣∣∣∣
2
⎞
⎟⎠

1
2

,

which implies

lim
ε→0

E
[
un

ε(t, x)
] = lim

ε→0
EB

⎡
⎢⎣exp

⎛
⎝c1,H

∑
1≤j �=k≤n

V
ε,j,k
t,x

⎞
⎠
⎤
⎥⎦

= EB

⎡
⎢⎣exp

⎛
⎝c1,H

∑
1≤j �=k≤n

V
j,k
t,x

⎞
⎠
⎤
⎥⎦ . (36)

To end the proof, let us now identify the right hand side of (36) with E[un(t, x)],
where u is the solution to Eq. (2). For ε, ε′ > 0 we write

E
[
uε(t, x) uε′(t, x)

] = EB

[
exp

(
〈Aε,B1

t,x , A
ε′,B2

t,x 〉H
)]

,

where we recall that A
ε,B
t,x is defined by relation (29). As for (36) we can show

that the above E
[
uε(t, x) uε′(t, x)

]
converges as ε, ε′ tend to zero. So, uε(t, x)

converges in L2 to some limit v(t, x). For any positive integer k notice the identity

E|uε(t, x) − uε′(t, x)|2k =
2k∑

j=0

(−1)j (2k)!
j !(2k − j)!E

[
uε(t, x)2k−juε′(t, x)j

]
. (37)
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We can find the limit of E

[
uε(t, x)2k−juε′(t, x)j

]
and then show that (37)

converges to 0 as ε and ε′ tend to 0. It is now clear that uε(t, x) converges to
v(t, x) in Lp for all p ≥ 1. Moreover, E[vn(t, x)] is equal to the right hand side
of (36). Finally, for any smooth random variable F which is a linear combination
of W( 1[a,b](s)ϕ(x)), where ϕ is a C∞ function with compact support, using the
duality relation (6), we have

E
[
Fuε(t, x)

] = E
[
F
]+ E

[〈Y ε,DF 〉H
]
, (38)

where

Y t,x(s, z) =
(∫

R

pt−s(x − y) pε(y − z)uε(s, y) dy

)
1[0,t ](s).

Letting ε tend to zero in Eq. (38), after some easy calculation we get

E[Fvt,x] = E[F ] + E
[〈DF, vpt−·(x − ·)〉H

]
.

This equation is valid for any F ∈ D
1,2 by approximation. So the above equation

implies that the process v is the solution of Eq. (2), and by the uniqueness of the
solution we have v = u. ��

4.2 Intermittency Estimates

In this subsection we prove some upper and lower bounds on the moments of the
solution which entail the intermittency phenomenon.

Theorem 4.3 Let 1
4 < H < 1

2 , and consider the solution u to Eq. (2). For simplicity
we assume that the initial condition is u0(x) ≡ 1. Let n ≥ 2 be an integer, x ∈ R

and t ≥ 0. Then there exist some positive constants c1, c2, c3 independent of n, t

and κ with 0 < c1 < c2 < ∞ satisfying

exp(c1n
1+ 1

H κ1− 1
H t) ≤ E

[
un(t, x)

] ≤ c3 exp
(
c2n

1+ 1
H κ1− 1

H t
)
. (39)

Remark 4.4 It is interesting to point out from the above inequalities that when
κ ↓ 0, the moments of u go to infinity. This is because the equation ∂u

∂t
= u Ẇ has

no classical solution due to the singularity of the noise Ẇ in spatial variable x.

Proof of Theorem 4.3 We divide this proof into upper and lower bound estimates.
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Step 1: Upper bound. Recall from Eq. (18) that for (t, x) ∈ R+ × R, u(t, x) can
be written as: u(t, x) = ∑∞

m=0 Im(fm(·, t, x)). Moreover, as a consequence of the
hypercontractivity property on a fixed chaos we have (see [16, p. 62])

‖Im(fm(·, t, x))‖Ln(	) ≤ (n − 1)
m
2 ‖Im(fm(·, t, x))‖L2(	) ,

and substituting the above right hand side by the bound (23), we end up with

‖Im(fm(·, t, x))‖Ln(	) ≤ n
m
2 ‖Im(fm(·, t, x))‖L2(	) ≤ c

n
2 n

m
2 t

mH
2 κ

Hm−m
2

�(mH/2 + 1)
.

Therefore from by the asymptotic bound of Mittag-Leffler function∑
n≥0 xn/�(αn + 1) ≤ c1 exp(c2x

1/a) (see [14], Formula (1.8.10)), we get:

‖u(t, x)‖Ln(	) ≤
∞∑

m=0

‖Jm(t, x)‖Ln(	) ≤
∞∑

m=0

c
m
2 n

m
2 t

mH
2 κ

Hm−m
2

(
�(mH + 1)

) 1
2

≤ c1 exp
(
c2tn

1
H κ

H−1
H

)
,

from which the upper bound in our theorem is easily deduced.
Step 2: Lower bound for uε . For the lower bound, we start from the moment formula
(27) for the approximate solution, and write

E
[
un

ε (t, x)
]

= EB

⎡
⎢⎢⎢⎣exp

⎛
⎜⎜⎝c1,H

⎡
⎢⎣
∫ t

0

∫
R

e−ε|ξ |2
∣∣∣∣∣∣

n∑
j=1

e−iB
j
κr ξ

∣∣∣∣∣∣
2

|ξ |1−2Hdξdr − nt

∫
R

e−ε|ξ |2 |ξ |1−2Hdξ

⎤
⎥⎦
⎞
⎟⎟⎠

⎤
⎥⎥⎥⎦ .

In order to estimate the expression above, notice first that the obvious change of
variable λ = ε1/2ξ yields

∫
R

e−ε|ξ |2|ξ |1−2Hdξ = Cε−(1−H) for some constant C.
Now for an additional arbitrary parameter η > 0, consider the set

Aη =
{

ω; sup
1≤j≤n

sup
0≤r≤t

|Bj
κr (ω)| ≤ π

3η

}
.

Observe that classical small balls inequalities for a Brownian motion (see (1.3) in
[15]) yield P(Aη) ≥ c1e

−c2η
2nκt for a large enough η. In addition, if we assume

that Aη is realized and |ξ | ≤ η, some elementary trigonometric identities show that
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the following deterministic bound hold true: |∑n
j=1 e−iB

j
κr ξ | ≥ n

2 . Gathering those
considerations, we thus get

E
[
un

ε (t, x)
] ≥ exp

(
c1n

2
∫ t

0

∫ η

0
e−ε|ξ |2 |ξ |1−2H dξdr − c2ntεH−1

)
P
(
Aη

)

≥ C exp

(
c1n

2tε−(1−H)

∫ ε1/2η

0
e−|ξ |2 |ξ |1−2H dξ − c2ntε−(1−H) − c3nκtη2

)
.

We now choose the parameter η such that κη2 = ε−(1−H), which means in particular

that η → ∞ as ε → 0. It is then easily seen that
∫ ε1/2η

0 e−|ξ |2 |ξ |1−2Hdξ is of order
εH(1−H) in this regime, and some elementary algebraic manipulations entail

E
[
un

ε (t, x)
] ≥ C exp

(
c1n

2tκH−1ε−(1−H)2 − c2ntε−(1−H)
)

≥ C exp
(
c3tκ

1− 1
H n1+ 1

H

)
,

where the last inequality is obtained by choosing ε−(1−H) = c κ
H−1
H n

1
H in order

to optimize the second expression. We have thus reached the desired lower bound

in (39) for the approximation uε in the regime ε = c κ
1
H n

− 1
H(1−H) .

Step 3: Lower bound for u. To complete the proof, we need to show that for all
sufficiently small ε, E

[
un

ε(t, x)
] ≤ E[un(t, x)]. We thus start from Eq. (27) and use

the series expansion of the exponential function as in (33). We get

E
[
un

ε(t, x)
] =

∞∑
m=0

cm
1,H

m! EB

⎡
⎢⎣
⎛
⎝ ∑

1≤j �=k≤n

V
ε,j,k
t,x

⎞
⎠

m
⎤
⎥⎦ , (40)

where we recall that V
ε,j,k
t,x is defined by (28). Furthermore, expanding the mth

power above, we have

EB

⎡
⎢⎣
⎛
⎝ ∑

1≤j �=k≤n

V
ε,j,k
t,x

⎞
⎠

m
⎤
⎥⎦ =

∑
α∈Kn,m

∫
[0,t]m

∫
Rm

e−ε
∑m

l=1 |ξl |2 EB

[
eiBα(ξ)

] m∏
l=1

|ξl |1−2H dξdr ,

where Kn,m is a set of multi-indices defined by

Kn,m =
{
α = (j1, . . . , jm, k1, . . . , km) ∈ {1, . . . , n}2m; jl < kl for all l = 1, . . . , n

}
,
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and Bα(ξ) is a shorthand for the linear combination
∑m

l=1 ξl(B
jl
κrl − B

kl
κrl ). The

important point here is that EBeiBα(ξ) is positive for any α ∈ Kn,m. We thus get the
following inequality, valid for all m ≥ 1

EB

⎡
⎢⎣
⎛
⎝ ∑

1≤j �=k≤n

V
ε,j,k
t,x

⎞
⎠

m
⎤
⎥⎦ ≤

∑
α∈Kn,m

∫
[0,t ]m

∫
Rm

EB

[
eiBα(ξ)

] m∏
l=1

|ξl |1−2H dξdr

= EB

⎡
⎢⎣
⎛
⎝ ∑

1≤j �=k≤n

V
j,k
t,x

⎞
⎠

m
⎤
⎥⎦ ,

where V
j,k
t,x is defined by (35). Plugging this inequality back into (40) and recalling

expression (34) for E[un(t, x)], we easily deduce that E[un
ε(t, x)] ≤ E[un(t, x)],

which finishes the proof. ��
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