
Heavy Tailed Random Matrices: How
They Differ from the GOE, and Open
Problems

Alice Guionnet

Abstract Since the pioneering works of Wishart and Wigner on random matrices,
matrices with independent entries with finite moments have been intensively
studied. Not only it was shown that their spectral measure converges to the semi-
circle law, but fluctuations both global and local were analyzed in fine details. More
recently, the domain of universality of these results was investigated, in particular
by Erdos-Yau et al and Tao-Vu et al. This survey article takes the opposite point
of view by considering matrices which are not in the domain of universality of
Wigner matrices: they have independent entries but with heavy tails. We discuss
the properties of these matrices. They are very different from Wigner matrices: the
limit law of the spectral measure is not the semi-circle distribution anymore, the
global fluctuations are stronger and the local fluctuations may undergo a transition
and remain rather mysterious.

1 Introduction

Random matrices were introduced by Wishart [36] in the twenties to study large
arrays of data and then in the 1950s by Wigner [35] to model Hamiltonians of
quantum systems. In both cases, it appeared natural to assume the dimension of
the matrices to be large. Moreover, it is natural to take the entries as independent
as possible within the known constraints of the model. A typical model for such
a matrix is to take a symmetric matrix filled with independent equidistributed
Gaussian random variables: the so-called Gaussian orthogonal ensemble (GOE).
To fix the ideas, the matrix will be N × N with independent centered Gaussian
entries with variance 1/N (and variance 2/N on the diagonal). The properties of
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the spectrum and the eigenvectors of such matrices were studied in details, thanks to
the fact that the law of such matrices is invariant under multiplication by orthogonal
matrices and that the law of the eigenvalues has a simple expression as particles
in Coulomb-gas interaction. Understanding how the details of the model could
influence the spectral properties of the random matrices then became a central
question. Assuming the entries to be still independent, it was shown that if the
entries have sufficiently light tails, the fluctuations of the extreme eigenvalues are
similar to that of the GOE [30] and in the bulk [21]. A series of remarkable works
then focussed on obtaining optimal assumptions on the tails, which are a finite fourth
(respectively the second) moment to observe the same fluctuations [18, 20, 25, 33].
However, there are matrices of interest which do not belong to this domain of
universality. Typically, these matrices will have most entries which are very tiny, but
a finite number of entries per row or column will be of order one. This is in contrast
with light tails matrices where all entries are of order 1/

√
N . An example is given

by the adjacency matrix of an Erdös-Rényi graph whose entries are independent
Bernoulli variables which are equal to one with probability c/N for some finite
constant c. Such matrices are much less known. We shall in this note outline the
main results and open problems related to such matrices. Roughly, the convergence
of the empirical measure of the eigenvalues can be derived under rather general
assumptions, but the limiting measure is not anymore the semi-circle law and is
not compactly supported [6, 7, 37]. Under slightly more demanding hypotheses, the
central limit theorem around this convergence can be derived: fluctuations occur
in larger scale than for light tail matrices, in fact the usual central limit rescaling
by a square root of the dimension is needed as soon as the moment of order two
of the entries is infinite [9]. Local law could be derived only for α-stable entries
[12, 13]. It shows a transition in the regime where α < 1: for small eigenvalues
the eigenvectors are delocalized whereas for large eigenvalues they are localized,
again a phenomenon which does not occur for light tail matrices. Even words in
independent heavy tail matrices behave differently: they are not asymptotically
free in general and one need a new non-commutative framework, namely traffic
distributions, to analyze them.

In the sequel, a Wigner matrix will be a symmetric matrix with centered
independent equidistributed entries. The case of Hermitian matrices with complex
entries is similar but will not be treated here for simplicity. We will denote X a
Wigner matrix with light tails and A a Wigner matrix with heavy tails.

2 Macroscopic Limit

Going back to Wigner [35], it was shown that the spectral measure of random
matrices with light tail entries converges towards the same asymptotic law: the
semi-circle law. In this section, we discuss the convergence of the spectral measure
of random matrices with heavy tails matrices and show that it converges towards
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different limiting measures. Let us be more precise. Let XN be a symmetric matrix
so that (XN

ij )i≤j are independent and such that

E[XN
ij ] = 0, lim

N→∞ max
1≤i,j≤N

|NE[|XN
ij |2] − 1| = 0. (1)

Assume moreover that for all k ∈ N we have

Bk := sup
N∈N

sup
(i,j)∈{1,··· ,N}2

E[|√NXN
ij |k] < ∞. (2)

Then, Wigner proved the almost sure convergence

lim
N→∞

1

N
Tr
(
(XN)k

)
=
{
0 if k is odd,
Ck

2
otherwise,

(3)

where Ck/2 =

⎛
⎝ k

k
2

⎞
⎠

k
2+1

are the Catalan numbers. The proof is based on an expansion

of the trace of moments of matrices in terms of the entries, together with the
observation that the indices which will contribute to the first order of this expansion
can be described by rooted trees. Based on the fact that the Catalan numbers are the
moments of the semi-circle distribution

σ(dx) = 1

2π

√
4 − x21|x|≤2dx. (4)

one can use density arguments (see e.g. [4]) to show that as soon as B3 (in fact
“B2+ε”) is finite, the eigenvalues (λ1, · · · , λN) of XN satisfy the almost sure
convergence

lim
N→∞

1

N

N∑
i=1

f (λi) =
∫

f (x)dσ(x) (5)

where f is a bounded continuous function.
In contrast, the limit my be different as soon as B2+ε is infinite. The new

hypothesis is that all moments are of order 1/N : Assume that E[AN
ij ] = 0 and

lim
N→∞ NE[(AN

ij )2k] = Mk, ∀k ∈ N . (6)



418 A. Guionnet

Note that this includes the case of the adjacency matrix of a Erdös-Rényi graph with
Mk = c for all k. Then, Zakharevich [37] showed that N−1 Tr((AN)p) goes to zero
if p is odd and

lim
N→∞E

[
1

N
Tr((AN)2k)

]
=

∑
G=(V ,E)∈Tk

∑
P∈Pk(G)

∏
e∈E

Mm(P,e)/2 . (7)

where Tk is the set of rooted trees with at most k edges, Pk(G) the set of closed
paths on G with 2k steps, going through all edges of G, starting from the root
and m(P, e) the (even) number of times that the path goes through the edge e.
The probability measure with the above moments is very different from the semi-
circle law: in general it has unbounded support. One can generalize this result to the
case where the entries have no moments at all by using convergence of the Stieltjes
transform Gμ(z) = ∫

(z − x)−1dμ(x). Assume that the law μN of AN
ij satisfies

lim
N→∞ N

(∫
(e−iux2 − 1)dμN(x)

)
= �(u) (8)

with � such that there exists g onR+, with g(y) bounded by Cyκ for some κ > −1,
such that for u ∈ C

−,

�(u) =
∫ ∞

0
g(y)e

iy
u dy. (9)

An example is given by α stable laws with �(u) = c(iu)α/2 and g(y) = Cyα/2−1

for some constants c, C. Another example is provided by the adjacency matrix of
Erdös-Rényi graph with �(u) = c(eiu−1) and g a Bessel function [9]. Then, it was
shown in [7, 9] that GN(z)= 1

N
Tr(z − AN)−1 converges almost surely towards G

given by, for z ∈ C
+

G(z) = i

∫
eitzeρz(t)dt (10)

where ρz : R+ → {x + iy; x ≤ 0} is the unique solution analytic in z ∈ C
+ of the

equation

ρz(t) =
∫ ∞

0
g(y)e

iy
t
z+ρz(

y
t
)dy (11)

This entails the convergence of the spectral measure ofAN as in (5), with σ replaced
by a probability measure with Stieltjes transform given by (10). To give some
heuristics of the proof of such convergence, let us take z ∈ C\R. Then, Schur
complement formula reads

(z − A)−1
ii = 1

z − Aii − 〈Ai, (z − A(i))−1Ai〉
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where Ai = (Aij )j 
=i and A(i) is the (N − 1) × (N − 1) matrix obtained from A by
removing the ith row and column. Aii goes to zero with N , but

〈Ai, (z − A(i))−1Ai〉 �
∑
j 
=i

A2
ij (z − A(i))−1

jj

is a non trivial random variable in the heavy tail case. We can compute its Fourier
transform thanks to our hypothesis (8), and deduce fractional moments of the
resolvent as follows. Observe that for β > 0, there exists a constant Cβ such that
for all z = a + ib, b < 0

1

zβ
= Cβ

∫ ∞

0
dxxβ−1e−ixz .

As a consequence, we can guess thanks to (8) that

E[((z − A)−1
ii )β ] � Cβ

∫ ∞

0
dxxβ−1e−ixz

E[e−ix
∑

j 
=i A2
ij (z−A(i))−1

jj ]

� Cβ

∫ ∞

0
dxxβ−1e−ixze

1
N

∑
�(x(z−A(i))−1

jj ) � Cβ

∫ ∞

0
dxxβ−1e−ixzeρN

z (x)

with the order parameter ρN
z (x) := E[ 1

N

∑
�(x(z − A(i))−1

jj )]. Here, we used
self-averaging of the order parameter. We next can get an equation for the order
parameter thanks to hypothesis (9) which implies, again by Schur complement
formula, that

ρN
z (x) �

∫ ∞

0
g(y)e

iy
t z+ρN

z (
y
t )dy .

Hence, if the above heuristics are true, we get convergence of fractional moments of
the resolvent as soon as the equation for ρz as a unique solution, to which the order
parameter ρN

z converges. In particular, the Stieltjes transform

GN(z) = 1

N

N∑
i=1

1

z − λi

= 1

N

N∑
i=1

(z − A)−1
ii

converges towards C1
∫∞
0 dxxβ−1e−ixzeρz(x). The above arguments were made

rigorous in [7–9].
It is quite difficult to study the limiting probability measure whose Stieljes

transform is given by the intricate fixed point Eq. (10). It is known that it has
unbounded support. The case of α-stable laws is easier: they have a smooth density
except possibly at finitely many points [6], their density at the origin can be
computed and this law can be interpreted as the spectral measure of the adjacency
matrix of the PWIT [11]. But in general, simple properties such as the existence of
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an absolutely continuous part are difficult, see e.g. [17] in the case of the Erdös-
Rényi graph.

3 Central Limit Theorem for Linear Statistics

One can push the previous arguments to study the fluctuations of the linear statistics.
Let us first consider light tails matrices, in fact matrices satisfying (2) and the
fluctuations of

MN
k :=

N∑
i=1

(
λk

i − E[λk
i ]
)

(12)

Then, it was shown in [5], see also [24] for the Gaussian case, that MN
k converges

in distribution towards a Gaussian variable whose covariance depends on the fourth
moment of the entries. Again, such convergence can be generalized to heavier tails
by replacing taking as test functions smooth enough bounded test functions instead
of moment: it was indeed shown, see [27, 31], that

∑N
i=1 f (λi) − E[∑N

i=1 f (λi)]
converges in distribution to a Gaussian variable provided f is C1/2+ε, ε > 0. One
can also recenter with respect to N

∫
f (x)dσ(x), see e.g. [9], inducing in general a

non trivial mean to the limiting Gaussian variable.
Hence, we see that the spectral measure of light tails matrices fluctuates much

less than the empirical measure of independent variables which is of order 1/
√

N

and not 1/N . The situation changes drastically when one considers heavy tails
matrices, and in fact as soon as the fourth moment of the entries is infinite. If one
considers α stable laws with α ∈ (2, 4), the fluctuations are of order N−1+α/4 [10].
For heavy tails matrices satisfying (6) or (8), the fluctuations are of size 1/

√
N [9],

as for independent variables. Test functions are assumed to be smooth enough in
these cases, and centering in general holds with respect to expectation (additional
hypothesis concerning the errors in (6) or (8) are required otherwise). To give some
heuristics of the proof of such central limit theorem, let us take f = (z − .)−1 for
z ∈ C\R. Then, recall that Schur complement formula shows that

(z − A)−1
ii � 1

z − YN
i (z)

with YN
i (z) =

∑
j 
=i

A2
ij (z − A(i))−1

jj .

The (YN
i (z))1≤i≤N converge (jointly for finite marginals) towards independent α/2-

stable laws with parameter ρz given by (11). Hence, the diagonal elements of the
resolvent behave like independent equidistributed random variables, so that their
sum, once renormalized by

√
N , converges towards a Gaussian variable.
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4 Local Law

In order to get more local information, one would like to be able to take less smooth
functions in the previous result, in fact functions which are supported in intervals
going to zero as N goes to infinity. This idea was first developed for light tails
matrices by Erdös-Schlein-Yau [22]. It reads as follows. Assume that μ, the law of
the entries, have stretched exponential decay, i.e. there exists α > 0 and C < ∞
such that for all t ≥ 0

μ(|x| ≥ √
N

−1
t) ≤ Ce−tα . (13)

Let for I ⊂]−2, 2[,NI be the number of eigenvalues in I . Then for all κ ∈ (0, 2),all

η >
(logN)4

N
sufficiently small, there exists c > 0 such that we have for all δ ≤ cκ ,

P

(
sup

|E|≤2−κ

∣∣∣∣
N[E−η,E+η]

2Nη
− ρsc(E)

∣∣∣∣ >
(logN)c√

ηN
|I |
)

≤ N− log logN . (14)

Such estimates were shown to hold under much weaker hypothesis afterwards and
it was extended to the neighborhood of {−2} and {2}, the boundary of the support
of the semi-circle, see e.g. [19, 20, 26] or [32]. This allowed to prove that the
eigenvalues are rigid, that is do not fluctuate much around their deterministic limit.
Indeed, if we now order the eigenvalues λ1 ≤ λ2 · · · ≤ λN and let γ N

i be the ith
quantile given by σ([−2, γ N

i ]) = i/N , then, with probability greater than 1−N−N ,
for all i

|λi − γ N
i | ≤ (logN)2N−2/3 min{(N − i)−1/3, i−1/3} .

Of course, one can not expect the eigenvalues to be as rigid in the heavy tails
case since this would contradict the central limit theorems of the previous section.
However, one could still expect the local law to be true inside the bulk: in [9],
corresponding to entries decaying like x−α for some α ∈ (2, 4), it was shown that
global fluctuations hold in the scale N−α/4 whereas local law inside the bulk was
derived in [1]. Hence, in this case, large eigenvalues should be less rigid, creating
large fluctuations. For heavier tails, local laws have not yet been established except
for the case of α-stable entries [12]. The following result was proved if the Aij are
α-stable variables: for all t ∈ R,

E[exp(itA11)] = exp(− 1

N
wα|t|α), (15)
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for some 0 < α < 2 and wα = π/(sin(πα/2)�(α)). We let μα be the equilibrium
measure and put

ρ =

⎧
⎪⎨
⎪⎩

1
2 if 8

5 ≤ α < 2
α

8−3α if 1 < α < 8
5

α
2+3α if 0 < α ≤ 1.

(16)

Then, there exists a finite set Eα ⊂ R such that if K ⊂ R\Eα is a compact set and
δ > 0, the following holds. There are constants c0, c1 > 0 such that for all integers
N ≥ 1, if I ⊂ K is an interval of length |I | ≥ c1N

−ρ(logN)2, then

∣∣NI − Nμα(I)
∣∣ ≤ δN |I |, (17)

with probability at least 1 − 2 exp
(
−c0Nδ2|I |2

)
.

In both light and heavy tails, the main point is to estimate the Stieltjes transform
GN(z) = 1

N

∑N
i=1(z−λi)

−1 for z going to the real axis: z = E + iη with η of order
nearly as good as N−1 for light tails, N−ρ for heavy tails. This is done by showing
that GN is characterized approximately by a closed set of equations. In the case
of lights tails, one has simply a quadratic equation for GN and needs to show that
the error terms remain small as z approaches the real line. In the heavy tails case,
the equations are much more complicated, see (10), and therefore more difficult to
handle. Even in the α-stable case it is not clear what should be the optimal local law.
We believe ρ should be at least equal to 1/2 for all α ∈ (1, 2). Similar questions are
completely open for other heavy tails matrices.

5 Localization and Delocalization of the Eigenvectors

Based on the local law, it was shown that the eigenvectors of Wigner matrices with
light entries (for instance with sub exponential tail) are strongly delocalized [22, 23],
for any p ∈ (2,∞] and ε > 0, with high probability,

max
1≤k≤N

‖uk‖p = O(N1/p−1/2+ε), (18)

where for u ∈ R
n, ‖u‖p = (∑n

i=1 |ui |p
)1/p and ‖u‖∞ = max |ui |. This

phenomenon seems to be quite robust and continues to hold even if a fraction of the
entries vanish. For instance, if the entries vanish outside a band around the diagonal
of width W , it is conjectured that the eigenvectors remain delocalized as long as
W � √

N , but start being localized when W � √
N . Universality was shown for

W � N , see [15].
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It was shown in [12] that the eigenvectors of matrices with α-stable entries are
also delocalized if α ∈ (1, 2): there is a finite set Eα such if K ⊂ R\Eα is a compact
set, for any ε > 0, with high probability,

max
{‖uk‖∞ : 1 ≤ k ≤ N,λk ∈ K

} = O(N−δ+ε), (19)

where δ = (α − 1)/((2α) ∨ (8 − 3α)). Since ‖u‖p ≤ ‖u‖1−2/p∞ ‖u‖2/p2 , it implies
that the Lp-norm of the eigenvectors is O(N2δ/p−δ+o(1)). Notice that when α → 2,
then δ → 1/4 and it does not match with (18): we expect that this result could be
improved.

However, for α ∈ (0, 1), we observe a new phenomenon, closer to what
can be observed for random Schrodinger operators, see e.g. [3]: eigenvectors are
delocalized if they correspond to eigenvalues which are small, but are localized if
they correspond to large eigenvalues. In [14], Bouchaud and Cizeau conjectured
the existence of a mobility edge, Eα > 0 where this transition occurs (a value for
Eα is predicted in [34]). However, the sense of localization/delocalization has to be
precised. In [12, 13], we considered

PI (k) = 1

|�I |
∑
u∈�I

〈u, ek〉2,QI = N

N∑
k=1

PI (k)2 ∈ [1, N].

and showed that for α ∈ (0, 2/3), for I = [E − η,E + η] with η going to zero with
N , QI goes to infinity if E is large enough, whereas it is bounded for small enough
E. This localization/delocalization of the eigenvectors should be related with the
local fluctuations of the spectrum. Bouchaud and Cizeau conjectured that the small
eigenvalues should behave like the eigenvalues of the Gaussian ensemble when α ∈
(1, 2). Also, for α ∈ (0, 1) and large eigenvalues, one expects a Poisson distribution.
However, for the two remaining regimes, they predict something between Poisson
and Sine-kernel. In [34], the authors predict a phase transition at a mobility edge
between the localized and delocalized regimes. While this article was under print, it
was shown in [2] that in the regime of delocalization, the local statistics are given
by the GOE statistics and that, then, the eigenvectors are completely delocalized in
the sense that (19) holds with the optimal rate δ = 1/2.

6 Heavy-Tailed Operators in Free Probability

Another important feature of random matrices is their role in free probability, as a
toy example of matrices whose large dimension limit are free. Free probability is
a theory of non-commutative variables equipped with a notion of freeness. Let us
consider self-adjoint non-commutative variables X1, . . . , Xd . We equip the set of
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polynomials in these non-commutative variables with the involution

(zXi1Xi2 · · ·Xik )
∗ = z̄Xik · · ·Xi1 .

Distributions of d self adjoint variables are simply linear functions τ on this set of
polynomials in non-commutative variables such that

τ (PP ∗) ≥ 0, τ (1) = 1, τ (PQ) = τ (QP) ,

for all choices of polynomials P,Q. Freeness is a condition on the joint distribution
of non-commutative variables. For instance, we say that X1, . . . , Xd are free under
τ iff

τ (P1(Xi1) · · · P�(Xi�)) = 0 (20)

as soon as τ (Pj (Xj )) = 0 for all j and ij 
= ij+1, 1 ≤ j ≤ � − 1. The
latter property was introduced by Voiculescu and named freeness, as it is related
with the usual notion of free generators of a group. Taking d independent Wigner
matrices XN

1 , . . . ,XN
d with light tails, one finds that for all choices of i1, . . . , ik ∈

{1, . . . , d}k ,

lim
N→∞

1

N
Tr(XN

i1
· · ·XN

ik
) = σd(Xi1 · · · Xik ) a.s

where σd is uniquely described by saying that the moments of a single Xi are
given by the Catalan numbers, and their joint moments satisfy (20). Voiculescu
also showed that matrices Yj = UjDjU

∗
j with deterministic matrices Dj and

independent Haar distributed orthogonal matrices satisfy at the large N limit the
freeness property (20). Hence, matrices become asymptotically free if the position
of their eigenvectors are “sufficiently” independent. One could then wonder whether
Wigner matrices with heavy tails are also asymptotically free. All these matrices
share the invariance by multiplication by permutation matrices. It is clear that
matrices conjugated by independent permutation matrices are not asymptotically
free. Indeed, for instance if one takes two diagonal matrices with given spectral
measure, it will have a different joint law if it is conjugated by unitary matrices
than if it is conjugated by permutations (which does not change the law) since
then they will commute. Similarly, it is not enough to know the spectral measure
of a heavy tail matrix to derive the joint law of several of them. In the one matrix
case, this could already be guessed in view of the additional parameter ρz. In fact,
this parameter appears naturally as the large N limit of 1

N

∑N
k=1 �(t(z − A)−1

ii )

which is not a function of the spectral measure. To remedy this point, another non-
commutative framework was introduced by C. Male: the distribution of traffics
and their free product [28]. Traffics distributions are now linear maps of a set
of functionals that generalize the non-commutative polynomials, called graph
polynomials. Namely, if we are given d N × N self-adjoint random matrices
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(AN
1 , . . . , AN

d ), a finite connected graph G = (V ,E) and γ a map from E into
{1, . . . , d}, we define the observables given by

�AN (G, γ ) = E

⎡
⎣ 1

N

∑
φ:V �→{1,...,N}

∏
e=(v,w)∈E

Aγ (e)(φ(w), φ(v))

⎤
⎦ ,

where the sum is taken over all maps and N ≥ |V |. For instance if G is a cycle
V = {v1, . . . , vk}, E = {e� = (v�, v�+1)}1≤�≤k with vk+1 = v1, we get the trace
of the word Aγ(e1) · · · Aγ(ek). If V is as before, but E = {e� = (v�, v�+1)}1≤�≤k ∪
{e�+k = (v�, v�+1)}1≤�≤k while γ (e�) = 1 for � ≤ k and 2 for � ≥ k + 1, we get
the trace of the kth moment of the Hadamard productAN

1 ◦ AN
2 . More generally, we

can obtain all the the normalized trace of Hadamard products of polynomials in the
matrices AN

1 , . . . , AN
d

E

[
1

N
Tr(P1(A

N
1 , . . . , AN

d ) ◦ · · · ◦ Pk(A
N
1 , . . . , AN

d ))

]
.

The collection of all �AN (G, γ ) defines the distribution of the traffics
(AN

1 , . . . , AN
d ). A sequence (AN

1 , . . . , AN
d ) of matrices converges in traffics iff

�AN (G, γ ) converges for all finite connected graphs G and all map γ . The model
of heavy Wigner matrices was the initial motivation to introduce it: matrices
satisfying (6) can be seen to converge in traffic. Traffic distribution comes together
with the notion of traffic independence, which is more complicated than freeness
in the sense that it involves non algebraic (combinatorial) formulas (see [28,
Definition 3.10]). However, it prescribes uniquely the traffic distribution of two
families A and B from the traffic distributions of A and B. One can see that traffic
independence does not imply free independence. Let us consider two asymptotically
traffic independent families of matrices AN and BN (that is with traffic distribution
which converges towards a distribution of two traffic independent families). If

κ(AN, P ) = 1

N
Tr
[
P(AN) ◦ P ∗(AN)

]− | 1
N

TrP(AN)|2

does not go to zero for some polynomial P and the same hold for BN , then AN

and BN are not asymptotically freely independent [28, Section 3.3]. This criterion
applies for heavy Wigner matrices, which shows in particular that heavy Wigner
matrices are not asymptotically freely independent, and not asymptotically freely
independent with diagonal matrices. On the contrary, if κ(AN, P ) and κ(BN, P )

tend to zero for all polynomial P , then AN and BN are asymptotically free
independent [16, Section 3.2]. This is the case of adjacencymatrices of Erdos-Renyi
matrices with parameter cN

N
when cN goes to infinity [29]. Traffic independence

is difficult to manipulate, still we can deduce from it a system of equations
which characterizes the limiting distribution of independent heavy Wignerand
deterministic diagonal matrices. It involves again limits of normalized trace of
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Hadamard products of polynomials in matrices. It implies another characterization
of the spectrum of a single heavy Wigner matrix in term of the maps G(λ)k =
1
N

∑
i

[
(λ − X)−1

ii

]k [29].
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