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Abstract We relate composition and substitution in pre- and post-Lie algebras to
algebraic geometry. The Connes-Kreimer Hopf algebras and MKW Hopf algebras
are then coordinate rings of the infinite-dimensional affine varieties consisting of
series of trees, resp. Lie series of ordered trees. Furthermore we describe the Hopf
algebras which are coordinate rings of the automorphism groups of these varieties,
which govern the substitution law in pre- and post-Lie algebras.

1 Introduction

Pre-Lie algebras were first introduced in two different papers from 1963. Murray
Gerstenhaber [13] studies deformations of algebras and Ernest Vinberg [29] prob-
lems in differential geometry. The same year John Butcher [2] published the first in a
series of papers studying algebraic structures of numerical integration, culminating
in his seminal paper [3] where B-series, the convolution product and the antipode of
the Butcher–Connes–Kreimer Hopf algebra are introduced.

Post-Lie algebras are generalisations of pre-Lie algebras introduced in the last
decade. Bruno Vallette [28] introduced the post-Lie operad as the Koszul dual of
the commutative trialgebra operad. Simultaneously post-Lie algebras appear in the
study of numerical integration on Lie groups and manifolds [21, 25]. In a differential
geometric picture a pre-Lie algebra is the algebraic structure of the flat and torsion
free connection on a locally Euclidean space, whereas post-Lie algebras appear
naturally as the algebraic structure of the flat, constant torsion connection given by
the Maurer–Cartan form on a Lie group [24]. Recently it is shown that the sections
of an anchored vector bundle admits a post-Lie structure if and only if the bundle is
an action Lie algebroid [22].
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B-series is a fundamental tool in the study of flow-maps (e.g. numerical integra-
tion) on Euclidean spaces. The generalised Lie-Butcher LB-series are combining
B-series with Lie series and have been introduced for studying integration on Lie
groups and manifolds.

In this paper we study B-series and LB-series from an algebraic geometry point
of view. The space of B-series and LB-series can be defined as completions of
the free pre- and post-Lie algebras. We study (L)B-series as an algebraic variety,
where the coordinate ring has a natural Hopf algebra structure. In particular we
are interested in the so-called substitution law. Substitutions for pre-Lie algebras
were first introduced in numerical analysis [6]. The algebraic structure of pre-
Lie substitutions and the underlying substitution Hopf algebra were introduced
in [4]. For the post-Lie case, recursive formulae for substitution were given in [18].
However, the corresponding Hopf algebra of substitution for post-Lie algebras was
not understood at that time.

In the present work we show that the algebraic geometry view gives a natural
way to understand both the Hopf algebra of composition and the Hopf algebra of
substitution for pre- and post-Lie algebras.

The paper is organised as follows. In Part 1 we study fundamental algebraic
properties of the enveloping algebra of Lie-, pre-Lie and post-Lie algebras for
the general setting that these algebras A are endowed with a decreasing filtration
A = A1 ⊇ A2 ⊇ · · · . This seems to be the general setting where we can define
the exponential and logarithm maps, and define the (generalised) Butcher product
for pre- and post-Lie algebras. Part 2 elaborates an algebraic geometric setting,
where the pre- or post-Lie algebra forms an algebraic variety and the corresponding
coordinate ring acquires the structure of a Hopf algebra. This yields the Hopf algebra
of substitutions in the free post-Lie algebra. Finally, we provide a recursive formula
for the coproduct in this substitution Hopf algebra.

Part 1: The Non-algebro Geometric Setting

In this part we have no type of finiteness condition on the Lie algebras, and pre- and
post-Lie algebras. Especially in the first Sect. 2 the material will be largely familiar
to the established reader.

2 The Exponential and Logarithm Maps for Lie Algebras

We work in the most general setting where we can define the exponential and
logarithm maps. In Sect. 2.2 we assume the Lie algebra comes with a decreasing
filtration, and is complete with respect to this filtration. We define the completed
enveloping algebra, and discuss its properties. This is the natural general setting for
the exponential and logarithm maps which we recall in Sect. 2.3.
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2.1 The Euler Idempotent

The setting in this subsection is any Lie algebraL, finite or infinite dimensional over
a field k of characteristic zero. Let U(L) be its enveloping algebra. This is a Hopf
algebra with unit η, counit ε and coproduct

� : U(L) → U(L) ⊗k U(L)

defined by �(�) = 1 ⊗ � + � ⊗ 1 for any � ∈ L, and extended to all of U(L) by
requiring � to be an algebra homomorphism.

For any algebra A with multiplication map μA : A ⊗ A → A, we have the
convolution product � on Homk(U(L),A). For f, g ∈ Homk(U(L),A) it is defined
as

f � g = μA ◦ (f ⊗ g) ◦ �U(L).

Let 1 be the identity map on U(L), and J = 1 − η ◦ ε. The Eulerian idempotent
e : U(L) → U(L) is defined by

e = log�(1) = log�(η ◦ ε + J ) = J − J �2

2
+ J �3

3
− · · · .

Proposition 2.1 The image of e : U(L) → U(L) isL ⊆ U(L), and e is the identity
restricted to L.

Proof This is a special case of the canonical decomposition stated in 0.4.3 in [27].
See also Proposition 3.7, and part (i) of its proof in [27]. �	

Let Symc(L) be the free cocommutative conilpotent coalgebra on L. It is the
subcoalgebra of the tensor coalgebra T c(L) consisting of the symmetrized tensors

∑

σ∈Sn

lσ (1) ⊗ lσ (2) ⊗ · · · lσ (n) ∈ L⊗n, l1, . . . ln ∈ L. (1)

The above proposition gives a linear map U(L)
e−→ L. Since U(L) is a cocommu-

tative coalgebra, there is then a homomorphism of cocommutative coalgebras

U(L)
α−→ Symc(L). (2)

We now have the following strong version of the Poincaré-Birkhoff-Witt theorem.

Proposition 2.2 The map U(L)
α−→ Symc(L) is an isomorphism of coalgebras.

In order to show this we expand more on the Euler idempotent.
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Again for l1, . . . , ln ∈ L denote by (l1, . . . , ln) the symmetrized product inU(L):

1

n!
∑

σ∈Sn

lσ (1)lσ (2) · · · lσ (n), (3)

and let Un(L) ⊆ U(L) be the subspace generated by all these symmetrized
products.

Proposition 2.3 Consider the map given by convolution of the Eulerian idempo-
tent:

e�p

p! : U(L) → U(L).

a. The map above is zero on Uq(L) when q 
= p and the identity on Up(L).
b. The sum of these maps

exp�p(e) = η ◦ ε + e + e�2

2
+ e�3

3! + · · ·

is the identity map on U(L). (Note that the map is well defined since the maps
e�p/p! vanish on any element in U(L) for p sufficiently large.)

From the above we get a decomposition

U(L) =
⊕

n≥0

Un(L).

Proof This is the canonical decomposition stated in 0.4.3 in [27], see also Proposi-
tion 3.7 and its proof in [27]. �	
Proof of Proposition 2.2 Note that since e vanishes on Un(L) for n ≥ 2, by the
way one constructs the map α, it sends the symmetrizer (l1, . . . , ln) ∈ Un(L) to the
symmetrizer (3) in Symc

n(L). This shows α is surjective. But there is also a linear
map, the surjective section β : Symc

n(L) → Un(L) sending the symmetrizer (3) to
the symmetric product (l1, . . . , ln). This shows that α must also be injective. �	

2.2 Filtered Lie Algebras

Now the setting is that the Lie algebra L comes with a filtration

L = L1 ⊇ L2 ⊇ L3 ⊇ · · ·
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such that [Li,Lj ] ⊆ Li+j . Examples of such may be derived from any Lie algebra
over k:

1. The lower central series gives such a filtration with L2 = [L,L] and Lp+1 =
[Lp,L].

2. The polynomials L[h] = ⊕n≥1Lhn.
3. The power series L[[h]] = 
n≥1Lhn.

Let Symn(L) be the symmetric product of L, that is the natural quotient of L⊗n

which is the coinvariants (L⊗n)Sn for the action of the symmetric group Sn. By the
definition of Symc(L) in (1) there are maps

Symc
n(L) ↪→ L⊗n → Symn(L),

and the composition is a linear isomorphism. We get a filtration on Symn(L) by
letting

Fp(Symn(L)) =
∑

i1+···+in≥p

Li1 · · · Lin .

The filtration on L gives an associated graded Lie algebra grL = ⊕i≥1Li/Li+1.
The filtration on Symn(L) also induces an associated graded vector space.

Lemma 2.4 There is an isomorphism of associated graded vector spaces

Symn(grL)
∼=−→ gr Symn(L). (4)

Proof Note first that there is a natural map (where d denotes the grading induced
by the graded Lie algebra grL)

Symn(grL)d → FdSymn(L)/Fd+1Symn(L). (5)

It is also clear by how the filtration is defined that any element on the right may be
lifted to some element on the left, and so this map is surjective. We must then show
that it is injective.

Choose splittings L/Li+1 si−→ L of L → L/Li+1 for i = 1, . . . p, and let
Li = si (L

i/Li+1). Then we have a direct sum decomposition

L = L1 ⊕ L2 ⊕ · · · ⊕ Lp ⊕ · · · .

This gives an isomorphism L
∼=−→ grL which again gives a graded isomorphism

Symn(L)
∼=−→ Symn(grL). (6)
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Since in general Symn(A ⊕ B) is equal to ⊕iSymi (A) ⊗ Symn−i (B) we get that

Symn(L) = ⊕i1,...,ipSi1(L1) ⊗ · · · ⊗ Sip (Lp), (7)

where we sum over all compositions where
∑

ij = n.

Claim

FdSn(L) = ⊕i1,...,ipSi1(L1) ⊗ · · · ⊗ Sip (Lp),

where we sum over all
∑

ij = n and
∑

j · ij ≥ d .

This shows that the composition of (6) and (5) is an isomorphism. Therefore the
map in (5) is an isomorphism.

Proof of Claim. Clearly we have an inclusion ⊇. Conversely let a ∈ FdSymn(L).
Then a is a sum of products ar1 · · · arq where arj ∈ Lrj and

∑
rj ≥ d . But then

each arj ∈ ⊕t≥rj Lt , and so by the direct sum decomposition in (7), each ar1 · · · arq

lives in the right side of the claimed equality, and so does a. �	
We have the enveloping algebra U(L) and the enveloping algebra of the

associated graded algebra U(grL). The augmentation ideal U(L)+ is the kernel
kerU(L)

ε−→ k of the counit. The enveloping algebra U(L) now gets a filtration of
ideals by letting F 1 = U(L)+ and

Fp+1 = Fp · U(L)+ + (Lp+1),

where (Lp+1) is the ideal generated by Lp+1. This filtration induces again a graded
algebra

grU(L) =
⊕

i

F i/F i+1.

There is also another version, the graded product algebra, which we will encounter
later

gr
U(L) =
∏

i

F i/F i+1.

Proposition 2.5 The natural map of graded algebras

U(grL)
∼=−→ grU(L),

is an isomorphism.

Proof The filtrations on each Symc
n(L) induces a filtration on Symc(L). Via the

isomorphism α of (2) and the explicit form given in the proof of Proposition 2.2 the
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filtrations on U(L) and on Symc
n(L) correspond. Hence

grα : grU(L)
∼=−→ gr Symc

n(L)

is an isomorphism of vector spaces. There is also an isomorphism β and a
commutative diagram

−−−→
⏐
⏐
�

⏐
⏐
�

−−−→

By Lemma 2.4 the right vertical map is an isomorphism and so also the left vertical
map. �	

The cofiltration

· · · � U(L)/Fn � U(L)/Fn−1 � · · ·

induces the completion

Û(L) = lim←−
p

U(L)/Fp.

This algebra also comes with the filtration F̂ p. Let L̂ = lim←−
p

L/Lp.

Lemma 2.6 The completed algebras are equal:

Û(L̂) = Û(L),

and so this algebra only depends on the completion L̂.

Proof The natural map L → L̂ induces a natural map U(L)
γ−→ U(L̂). Since L

and L̂ have the same associated graded Lie algebras, the two downward maps in the
commutative diagram

grU(L) grU(L̂)

U(grL)
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are isomorphisms, showing that the upper horizontal map is an isomorphism. But
given the natural map γ this easily implies that the map of quotients

U(L)/Fp+1U(L)
γ p

−→ U(L̂)/Fp+1U(L̂)

is an isomorphism, and so the completions are isomorphic. �	
We denote the d’th graded part of the enveloping algebra U(grL) by U(grL)d .

The following gives an idea of the “size” of Û(L).

Lemma 2.7

gr
Û(L) = Û(grL) =
∏

d∈Z
U(grL)d .

Proof The left graded product is

gr
Û(L) =
∏

p≥0

Fp/Fp+1.

But by Proposition 2.5 Fp/Fp+1 ∼= U(grL)p and so the above statement follows.
�	

Example 2.8 Let V = ⊕i≥1Vi be a graded vector space with Vi of degree i, and let
Lie(V ) be the free Lie algebra on V . It then has a grading Lie(V ) = ⊕d≥1Lie(V )d
coming from the grading on V , and so a filtration Fp = ⊕d≥pLie(V )d . The
enveloping algebra U(Lie(V )) is the tensor algebra T (V ). The completed envelop-
ing algebra is

Û(Lie(V )) = T̂ (V ) :=
∏

d

T (V )d .

Let Lp be the quotient L/Lp+1, which is a nilpotent filtered Lie algebra. We
get enveloping algebras U(Lp) with filtrations FjU(Lp) of ideals, and quotient
algebras

Uj (Lp) = U(Lp)/F j+1U(Lp).

Lemma 2.9

Û(L) = lim←−
j,p

Uj (Lp).
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Proof First note that if j ≤ p then Up(Lp) � Uj(Lp) surjects. If j ≥ p, then
Uj(Lj ) � Uj(Lp) surjects. Hence it is enough to show that the natural map

U(L)/Fp+1 → U(Lp)/Fp+1U(Lp) = Up(Lp)

is an isomorphism. This follows since we have an isomorphism of associated graded
vector spaces:

(gr (U(L)/Fp+1))≤p = (grU(L))≤p
∼= U(grL)≤p

= U(grLp)≤p
∼= (grU(Lp))≤p

= (grU(Lp)/Fp+1)≤p

�	

2.3 The Exponential and Logarithm

The coproduct� on U(L) will send

Fp �−→ 1 ⊗ Fp + F 1 ⊗ Fp−1 + · · · + Fp ⊗ 1.

Thus we get a map

Û(L) → U(L)/F 2p−1 �−→ U(L)/Fp ⊗ U(L)/Fp.

Let

Û(L)⊗̂Û(L) := lim←−
p

U(L)/Fp ⊗ U(L)/Fp

be the completed tensor product We then get a completed coproduct

Û(L)
�−→ Û(L)⊗̂Û(L).

Note that the tensor product

Û(L) ⊗ Û(L) ⊆ Û(L)⊗̂Û(L).

An element g of Û(L) is grouplike if �(g) = g ⊗g in Û(L)⊗ Û (L). We denote
the set of grouplike elements by G(Û(L)). They are all of the form 1+ s where s is
in the augmentation ideal

Û(L)+ = ker(Û(L)
ε−→ k).
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The exponential map

Û(L)+
exp−→ 1 + Û (L)+

is given by

exp(x) = 1 + x + x2

2! + x3

3! + · · · .

The logarithm map

1 + Û (L)+
log−→ Û (L)+

is defined by

log(1 + s) = s − s2

2
+ s3

3
− · · · .

Proposition 2.10 The maps

Û(L)+
exp
�
log

1 + Û (L)+

give inverse bijections. They restrict to inverse bijections

L̂
exp
�
log

G(Û(L))

between the completed Lie algebra and the grouplike elements.

Proof That log(exp(x)) = x and exp(log(1+s)) = 1+s, are formal manipulations.
If � ∈ L̂ it is again a formal manipulation that

�(exp(�)) = exp(�) · exp(�),

and so exp(�) is a grouplike element.
The maps exp and log can also be defined on the tensor products and give inverse

bijections

Û(L)+⊗̂Û(L) + Û(L)⊗̂Û (L)+
exp
�
log

1 ⊗ 1 + Û (L)+⊗̂Û(L) + Û (L)⊗̂Û(L)+.
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Now let s ∈ G(Û(L)) be a grouplike element. Since � = �
Û(L)

is an algebra
homomorphism

exp(�(log(s))) = �(exp(log s)) = �(s) = s ⊗ s.

Since 1 ⊗ s and s ⊗ 1 are commuting elements we also have

exp(log(s) ⊗ 1 + 1 ⊗ log(s)) = (exp(log(s)) ⊗ 1) · (1 ⊗ exp(log(s))) = s ⊗ s.

Taking logarithms of these two equations, we obtain

�(log(s)) = log(s) ⊗ 1 + 1 ⊗ log(s),

and so log(s) is in L̂. �	

3 Exponentials and Logarithms for Pre- and Post-Lie
Algebras

For pre- and post-Lie algebras their enveloping algebra comes with two products •
and ∗. This gives two possible exponential and logarithmmaps. This is precisely the
setting that enables us to define a map from formal vector fields to formal flows. It
also gives the general setting for defining the Butcher product.

3.1 Filtered Pre- and Post-Lie Algebras

Given a linear binary operation on a k-vector space A

∗ : A ⊗k A → A

the associator is defined as:

a∗(x, y, z) = x ∗ (y ∗ z) − (x ∗ y) ∗ z.

Definition 3.1 A post-Lie algebra (P, [, ],�) is a Lie algebra (P, [, ]) together
with a linear binary map � such that

• x � [y, z] = [x � y, z] + [y, x � z]
• [x, y] � z = a�(x, y, z) − a�(y, x, z)
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It is then straightforward to verify that the following bracket

[[x, y]] = x � y − y � x + [x, y]

defines another Lie algebra structure on P .
A pre-Lie algebra is a post-Lie algebra P such that bracket [, ] is zero, so P with

this bracket is the abelian Lie algebra.

Example 3.2 Let XRn be the vector fields on the manifold R
n. It comes with the

natural Levi-Cevita connection ∇. Write f = ∑n
i=1 f i∂i and g = ∑n

i=1 gi∂i for
two vector fields, where ∂i = ∂/∂xi . Let

f � g = ∇f g =
∑

i,j

f j (∂jg
i)∂i .

Then XRn is a pre-Lie algebra with this operation. Hence also a post-Lie algebra
with trivial Lie-bracket [, ] equal to zero.
Example 3.3 Let M be a manifold and XM the vector fields on M . Let g be a finite
dimensional Lie algebra and λ : g → XM be a morphism of Lie algebras. Denote
by �0(M, g) the space of smooth maps M → g. This is a Lie algebra by

[x, y](u) = [x(u), y(u)].

The vector fields XM act on the functions �0(M, k) by differentiation: For f ∈
XM and φ ∈ �0(M, k) we get f φ ∈ �0(M, k). Hence XM acts on �0(M, g) =
�0(M, k) ⊗k g.

Now define the operation

�0(M, g) × �0(M, g)
�−→ �0(M, g)

x � y �→ [u �→ (λ(x(u))y)(u)].

Then �0(M, g), [, ],� becomes a post-Lie algebra by [24, Prop.2.10].
If G × M → M is an action of a Lie group G on M then for each u ∈ M we get

a map G → M and on tangent spaces g → TuM . This gives a map to the tangent
bundle of M: g × M → T M and map of Lie algebras g → XM . Hence in this
setting we get by the above a post-Lie algebra �0(M, g).

If M = G and G × G → G is the Lie group operation, then �0(G, g) naturally
identifies with the vector fields XG by left multiplication, and so these vector fields
becomes a post-Lie algebra. In the special case that G = R

n with group operation
R

n ×R
n → R

n sending (a, b) �→ a + b, we get the pre-Lie algebra of Example 3.2
above.
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We now assume that P is a filtered post-Lie algebra: We have a decreasing
filtration

P = P 1 ⊇ P 2 ⊇ · · · ,

such that

[Pp, P q ] ⊆ Pp+q , Pp � Pq ⊆ Pp+q ,

Then we will also have [[Pp, P q ]] ⊆ Pp+q . If u and v are two elements of P such
that u − v ∈ Pn+1, we say they are equal up to order n.

Again examples of this can be constructed for any post-Lie algebra over a field k

by letting P 1 = P and

Pp+1 := Pp � P + P � Pp + [P,Pp].

Alternatively we may form the polynomials P [h] = ⊕n≥1Phn, or the power series
P [[h]] = 
n≥1Phn.

In [10] the enveloping algebra U(P) of the post-Lie algebra was introduced.
It is both the enveloping algebra for the Lie algebra [, ] and as such comes with
associative product •, and is the enveloping algebra for the Lie algebra [[, ]] and
as such comes with associative product ∗. The triangle product also extends to a
product� on U(P) but this is not associative.

3.2 The Map from Fields to Flows

By Example 3.2 above the formal power series of vector field XRn[[h]] is a pre-Lie
algebra, and from the last part of Example 3.3 we get a post-Lie algebra XG[[h]] of
series of vector fields. Using this perspective there are several natural ways to think
of filtered post-Lie algebras and the related objects.

• The elements of P may be thought of as formal vector fields, in which case we
write Pf ield .

• The grouplike elements of Û(P ) may be thought of as formal flows.
• The elements of P may be thought of as principal parts of formal flows, see

below, in which case we write Pf low.

Let us explain how these are related. In the rest of this subsection we assume that
P = P̂ is complete with respect to the filtration. The exponential map

Pf ield
exp∗
−→ Û(P ) (8)
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sends a vector field to a formal flow, a grouplike element in Û (P ). (Note that the
notion of a grouplike element in Û(P ) only depends on the shuffle coproduct.)

We may take the logarithm

G(Û(P ))
log•
−→ P. (9)

So if B ∈ G(Û(P )) we get b = log•(B). We think of b also as a formal flow,
the principal part or first order part of the formal flow B. It determines B by B =
exp•(b). Note that in (8) the exponential is with respect to the ∗ operation, while
in (9) the logarithm is with respect to the • operation.

When P is a pre-Lie algebra A, then Û (P ) is the completed symmetric algebra
Ŝym(A) and log• is simply the projection Ŝym(A) → A. If B is a Butcher series
parametrized by forests (see Sect. 6.3), then b is the Butcher series parametrized
by trees. Thus b determines the flow, but the full series B is necessary to compute
pull-backs of functions along the flow.

We thus get a bijection

� : Pf ield
log• ◦ exp∗
−−−−−−→ Pf low (10)

which maps vector fields to principal part flows. This map is closely related
to the Magnus expansion [8]. Magnus expresses the exact flow as exp∗(tv) =
exp•(�(tv)), from which a differential equation for �(tv) can be derived.

Example 3.4 Consider the manifold Rn and let XRn be the vector fields on Rn. Let
f = ∑

i≥0 fih
i on R

n be a power series of vector fields where each fi ∈ XRn. It

induces the flow series exp∗(hf ) in Û(XRn[[h]]). Since XRn is a pre-Lie algebra,
the completed enveloping algebra is Ŝym(XRn[[h]]). Thus the series

exp∗(hf ) = 1 +
∑

i≥d≥1

Fi,dhi

where the Fi,d ∈ Symd (XRn[[h]]) are d’th order differential operators. (Note that

the principal part b is the d = 1 part.) It determines a flow �
f

h : Rn → R
n sending

a point P to P(h). For any smooth function φ : Rn → R the pullback of φ along
the flow is the composition φ ◦ �

f
h : Rn → R and is given by

exp∗(hf )φ = 1 +
∑

i≥d≥1

Fi,d (φ)hi,

see [17, Section 4.1] or [23, Section 2.1]. In particular when φ is a coordinate
function xp we get the coordinate xp(h) of P(h) as given by

xp(h) = exp∗(hf )xp =
∑

i≥d≥1

Fi,dxphi = xp +
∑

i

Fi,1xphi
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since higher derivatives of xp vanish. This shows concretely geometrically why the
flow is determined by its principal part.

For a given principal flow b ∈ Pf low computing its inverse image by themap (10)
above, which is the vector field log∗ ◦ exp•(b) is called backward error in numerical
analysis [14, 19].

For a, a′ ∈ Pf ield let

a ∗+a′ = log∗(exp∗(a) ∗ exp∗(a′)),

a product which is computed using the Baker-Campbell-Hausdorff (BCH) formula
for the Lie algebra [[, ]]. With this product Pf ield becomes a pro-unipotent group.
Transporting this product to Pf low using the bijection � in (10), we get for b, b′ ∈
Pf low a product

b � b′ = log•(exp•(b) ∗ exp•(b′)),

the composition product for principal flows.

Example 3.5 We continue Example 3.4. Let g = ∑
i≥0 gih

i be another power series
of vector fields, exp∗(hg) its flow series, and �

g
h : Rn → R

n the flow it determines.

Let c be the principal part of exp∗(hg). The composition of the flows �
g

h ◦ �
f

h is
the flow sending φ to

exp∗(hg)(exp∗(hf )φ) = (exp∗(hg) ∗ exp∗(hf ))φ.

The principal part of the composed flow is

log•(exp∗(hg) ∗ exp∗(hf )) = log•(exp•(c) ∗ exp•(b)) = c � b,

the Butcher product of c and b.

Denote by •+ the product in Pf low given by the BCH-formula for the Lie bracket
[, ],

x •+ y := log•(exp•(x) • exp•(y)).

Proposition 3.6 For x, y in the post-Lie algebra Pf low we have

x � y = x •+ (
exp•(x) � y

)
.

Proof From [10, Prop.3.3] the product A ∗ B = ∑
�(A) A(1)(A(2) � B). Since

exp•(x) is a group-like element it follows that:

exp•(x) ∗ exp•(y) = exp•(x) • (
exp•(x) � exp•(y)

)
.
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By [10, Prop.3.1] A � BC = ∑
�(A)(A(1) � B)(A(2) � C) and so again using that

exp•(x) is group-like and the expansion of exp•(y):

exp•(x) � exp•(y) = exp• (
exp•(x) � y

)
.

Hence

x � y = log• (
exp•(x) • (

exp•(x) � exp•(y)
)) = log• (

exp•(x) • exp•(exp•(x) � y)
)
.

�	
In the pre-Lie case [, ] = 0, therefore •+ = + and we obtain the formula derived

in [9]

x � y = x + exp•(x)� y.

3.3 Substitution

Let EndpostLie(P ) = HompostLie(P, P ) be the endomorphisms of P as a post-
Lie algebra. (In the special case that P is a pre-Lie algebra, this is simply the
endomorphisms of P as a pre-Lie algebra.) It is a monoid, but not generally a vector
space. It acts on the post-Lie algebra P .

Since the action respects the brackets [, ], [[, ]] and �, it also acts on the
enveloping algebra U(P) and its completion Û(P ), and respects the products ∗
and •. Hence the exponential maps exp∗ and exp• are equivariant for this action,
and similarly the logarithms log∗ and log•. So the formal flow map

� : Pfield −→ Pflow

is equivariant for the action. The action on Pflow (which is technically the same as
the action on Pfield), is called substitution and is usually studied in a more specific
context, as we do in Sect. 7. An element φ ∈ EndpostLie(P ) comes from sending a
field f to a perturbed field f ′, and one then sees how this affects the exact flow or
approximate flow maps given by numerical algorithms.

Part 2: The Algebraic Geometric Setting

In this part we have certain finiteness assumptions on the Lie algebras and pre-
and post-Lie algebras, and so may consider them and binary operations on them in
the setting of varieties. The first three subsections of the next Sect. 4 will be quite
familiar to the reader who knows basic algebraic geometry.
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4 Affine Varieties and Group Actions

We assume the reader is familiar with basic algebraic geometry of varieties and
morphisms, like presented in [16, Chap.1] or [7, Chap.1,5]. We nevertheless briefly
recall basic notions. A notable and not so standard feature is that we in the last
subsection define infinite dimensional varieties and morphisms between them.

4.1 Basics on Affine Varieties

Let k be a field and S = k[x1, . . . , xn] the polynomial ring. The affine n-space is

A
n
k = {(a1, . . . , an) | ai ∈ k}.

An ideal I ⊆ S defines an affine variety in An
k :

X = Z(I) = {p ∈ A
n
k | f (p) = 0, for f ∈ I }.

Given an affine variety X ⊆ A
n
k , its associated ideal is

I(X) = {f ∈ S | f (p) = 0, for p ∈ X}.

Note that if X = Z(I) then I ⊆ I(X), and I(X) is the largest ideal defining the
variety X. The correspondence

ideals in k[x1, . . . , xn]
Z
�
I

subsets of An
k

is a Galois connection. Thus we get a one-to-one correspondence

image of I 1−1←→ image of Z
= varieties in A

n
k

.

Remark 4.1 When the field k is algebraically closed, Hilbert’s Nullstellensatz says
that the image of I is precisely the radical ideals in the polynomial ring. In general
however the image of I is only contained in the radical ideals.

The coordinate ring of a variety X is the ring A(X) = k[x1, . . . , xn]/I(X). A
morphism of affine varieties f : X → Y where X ⊆ A

n
k and Y ⊆ A

m
k is a a map

sending a point a = (a1, . . . , an) to a point (f1(a), . . . , fm(a)) where the fi are
polynomials in S. This gives rise to a homomorphism of coordinate rings

f � : A(Y ) −→ A(X)

yi −→ fi(x), i = 1, . . . ,m
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In fact this is a one-one correspondence:

{morphisms f : X → Y } 1−1←→ {algebra homomorphisms f � : A(Y ) → A(X)}.

The zero-dimensional affine spaceA0
k is simply a point, and its coordinate ring is

k. Therefore to give a point p ∈ A
n
k is equivalent to give an algebra homomorphism

k[x1, . . . , xn] → k.

Remark 4.2 We may replace k by any commutative ring k. The affine space An
k
is

then k
n. The coordinate ring of this affine space is k[x1, . . . , xn]. A point p ∈ A

n
k

still corresponds to an algebra homomorphism k[x1, . . . , xn] → k. Varieties in A
n
k

may be defined in the same way, and there is still a Galois connection between
ideals in k[x1, . . . , xn] and subsets of An

k
, and a one-one correspondence between

morphisms of varieties and coordinate rings.

The affine space A
n
k comes with the Zariski topology, whose closed sets are

the affine varieties in A
n
k and whose open sets are the complements of these. This

induces also the Zariski topology on any affine subvariety X in A
n
k .

If X and Y are affine varieties in A
n
k and A

m
k respectively, their product X × Y

is an affine variety in A
n+m
k whose ideal is the ideal in k[x1, . . . , xn, y1, . . . , ym]

generated by I(X) + I(Y ). Its coordinate ring is

A(X × Y ) = A(X) ⊗k A(Y ).

If A is a ring and f 
= 0 in A, we have the localized ring Af whose elements are
all a/f n where a ∈ A. Two such elements a/f n and b/f m are equal if f k(f ma −
f nb) = 0 for some k. If A is an integral domain, this is equivalent to f ma −f nb =
0. Note that the localization Af is isomorphic to the quotient ring A[x]/(xf − 1).
Hence ifA is a finitely generated k-algebra,Af is also a finitely generated k-algebra.
A consequence of this is the following: Let X be an affine variety in An

k whose ideal
is I = I(X) contained in k[x1, . . . , xn], and let f be a polynomial function. The
open subset

D(f ) = {p ∈ X | f (p) 
= 0} ⊆ X

is then in bijection to the variety X′ ∈ A
n+1
k defined by the ideal I + (xn+1f − 1).

This bijection is actually a homeomorphism in the Zariski topology. The coordinate
ring

A(X′) = A(X)[xn+1]/(xn+1f − 1) ∼= A(X)f .

Hence we identify Af as the coordinate ring of the open subset D(f ) and can
consider D(f ) as an affine variety. Henceforth we shall drop the adjective affine
for a variety, since all our varieties will be affine.
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4.2 Coordinate Free Descriptions of Varieties

For flexibility of argument, it may be desirable to consider varieties in a coordinate
free context.

Let V and W be dual finite dimensional vector spaces. So V = Homk(W, k) =
W∗, and then W is naturally isomorphic to V ∗ = (W∗)∗. We consider V as an
affine space (this means that we are forgetting the structure of vector space on V ).
Its coordinate ring is the symmetric algebra Sym(W). Note that any polynomial
f ∈ Sym(W) may be evaluated on any point v ∈ V , since v : W → k gives maps
Symd (W) → Symd(k) = k and thereby a map Sym(W) = ⊕dSymd (W) → k.

Given an ideal I in Sym(W), the associated affine variety is

X = {v ∈ V | f (v) = 0, for f ∈ I } ⊆ V.

Given a variety X ⊆ V we associate the ideal

I(X) = {f ∈ Sym(W) | f (v) = 0, for v ∈ X} ⊆ Sym(W).

The coordinate ring of X is A(X) = Sym(W)/I(X).
Let W 1 and W 2 be two vector spaces, with dual spaces V 1 and V 2. A map

f : X1 → X2 between varieties in these spaces is a map which is given by
polynomials once a coordinate system is fixed for V 1 and V 2. Such a map then gives
a homomorphism of coordinate rings f � : Sym(W 2)/I (X2) → Sym(W 1)/I (X1),
and this gives a one-one correspondence between morphisms f between X1 and X2

and algebra homomorphisms f � between their coordinate rings.

4.3 Affine Spaces and Monoid Actions

The vector space of linear operators on V is denoted End(V ). It is an affine space
with End(V ) ∼= A

n×n
k , and with coordinate ring Sym(End(V )∗). We then have an

action

End(V ) × V → V (11)

(φ, v) �→ φ(v).

This is a morphism of varieties. Explicitly, if V has basis e1, . . . , en an element in
End(V ) may be represented by a matrix A and the map is given by:

(A, (v1, . . . , vn)t ) �→ A · (v1, . . . , vn)t ,

which is given by polynomials.
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The morphism of varieties (11) then corresponds to the algebra homomorphism
on coordinate rings

Sym(V ∗) → Sym(End(V )∗) ⊗k Sym(V ∗).

With a basis for V , the coordinate ring Sym(End(V )∗) is isomorphic to the
polynomial ring k[tij ]i,j=1,...,n, where the tij are coordinate functions on End(V ),
and the coordinate ring Sym(V ∗) is isomorphic to k[x1, . . . , xn] where the xi are
coordinate functions on V . The map above on coordinate rings is then given by

xi �→
∑

j

tij xj .

We may also consider the set GL(V ) ⊆ End(V ) of invertible linear operators.
This is the open subset D(det(tij )) of End(V ) defined by the nonvanishing of the
determinant. Hence, fixing a basis of V , its coordinate ring is the localized ring
k[tij ]det((tij )), by the last part of Sect. 4.1. The set SL(V ) ⊆ End(V ) are the linear
operators with determinant 1. This is a closed subset of End(V ) defined by the
polynomial equation det((tij )) − 1 = 0. Hence the coordinate ring of SL(V ) is the
quotient ring k[tij ]/(det((tij )) − 1).

Now given an affine monoid variety M , that is an affine variety with a product
morphismμ : M ×M → M which is associative and unital. Then we get an algebra
homomorphism of coordinate rings

A(M)
�−→ A(M) ⊗k A(M).

Since the following diagram commutes

⏐
⏐
�

⏐
⏐
�

M × M × M
μ×1

M × M

1×μ μ

M × M
μ

M,

we get a commutative diagram of coordinate rings:

�
⏐

�
⏐

A(M) ⊗k A(M) ⊗k A(M) ⊗1 A(M) ⊗ A(M)

1⊗

A(M) ⊗k A(M) A(M).

The zero-dimensional affine space A0
k is simply a point, and its coordinate ring is k.

A character on A(M) is an algebra homomorphism A(M) → k. On varieties this
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gives a morphism P = A
0
k → M , or a point in the monoid variety. In particular

the unit in M corresponds to a character A(M)
ε−→ k, the counit. Thus the algebra

A(M) with � and ε becomes a bialgebra.
The monoid may act on a variety X via a morphism of varieties

M × X → X. (12)

On coordinate rings we get a homomorphism of algebras,

A(X) → A(M) ⊗k A(X), (13)

making A(X) into a comodule algebra over the bialgebra A(M).
In coordinate systems the morphism (12) may be written:

(m1, . . . ,mr) × (x1, . . . , xn) �→ (f1(m, x), f2(m, x), . . .).

If X is an affine space V and the action comes from a morphism of monoid varieties
M → End(V ), the action by M is linear on V . Then fi(m, v) = ∑

j fij (m)vj . The
homomorphism on coordinate rings (recall that V = W∗)

Sym(W) → A(M) ⊗k Sym(W)

is then induced from a morphism

W → A(M) ⊗k W

xj �→
∑

i

fij (u) ⊗k xi

where the xj ’s are the coordinate functions on V and u are the coordinate functions
on M .

We can also consider an affine group variety G with a morphism G → GL(V )

and get a group action G × V → V . The inverse morphism for the group, induces
an antipode on the coordinate ring A(G) making it a commutative Hopf algebra.

4.4 Infinite Dimensional Affine Varieties and Monoid Actions

The infinite dimensional affine space A
∞
k is

∏
i≥1 k. Its elements are infinite

sequences (a1, a2, . . .) where the ai are in k. Its coordinate ring is the polynomial
ring in infinitely many variables S = k[xi, i ∈ N].

An ideal I in S, defines an affine variety

X = V (I) = {a ∈ A
∞
k | f (a) = 0, for f ∈ I }.
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Note that a polynomial f in S always involves only a finite number of the variables,
so the evaluation f (a) is meaningful. Given an affine variety X, let its ideal be:

I(X) = {f ∈ S | f (a) = 0 for a ∈ X}.

The coordinate ring A(X) of X is the quotient ring S/I(X). The affine subvarieties
of A∞

k form the closed subsets in the Zariski topology on A∞
k , and this then induces

the Zariski topology on any subvariety of A∞
k .

A morphism f : X → Y of two varieties, is a map such that f (a) =
(f1(a), f2(a), . . .) where each fi is a polynomial function (and so involves only
a finite number of the coordinates of a).

Letting k[yi, i ∈ N] be the coordinate ring of affine space where Y lives, we get
a morphism of coordinate rings

f � : A(Y ) → A(X)

yi �→ fi(x)

This gives a one-one correspondence

{morphisms f : X → Y } ↔ {algebra homomorphisms f � : A(Y ) → A(X)}.

For flexibility of argument, it is desirable to have a coordinate free definition
of these varieties also. The following includes then both the finite and infinite-
dimensional case in a coordinate free way.

Let W be a vector space with a countable basis. We get the symmetric algebra
Sym(W). Let V = Homk(W, k) be the dual vector space, which will be our affine
space. Given an ideal I in Sym(W), the associated affine variety is

X = V (I) = {v ∈ V | f (v) = 0, for f ∈ I }.

The evaluation of f on v is here as explained in Sect. 4.2. Given a variety X we
associate the ideal

I(X) = {f ∈ Sym(W) | f (v) = 0, for v ∈ X}.

Its coordinate ring is A(X) = Sym(W)/I(X). We shall shortly define morphism
between varieties. In order for these to be given by polynomial maps, we will need
filtrations on our vector spaces. Given a filtration by finite dimensional vector spaces

〈0〉 = W0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆ W.

On the dual space V we get a decreasing filtration by V i = ker((W)∗ → (Wi−1)
∗).

The affine variety V/V i ∼= (Wi−1)
∗ has coordinate ring Sym(Wi−1). If X is a

variety in V its image Xi in the finite affine space V/V i need not be Zariski
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closed. Let Xi be its closure. This is an affine variety in V/V i whose ideal is
I(X) ∩ Sym(Wi−1).

A map f : X1 → X2 between varieties in these spaces is a morphism of varieties
if there exists decreasing filtrations

V1 = V 1
1 ⊇ V 2

1 ⊇ · · · , V2 = V 1
2 ⊇ V 2

2 ⊇ · · ·

with finite dimensional quotient spaces, such that for any i we have a commutative
diagram

⏐
⏐
�

⏐
⏐
�

X1
f

X2

X1 ,i X2 ,i

and the lower map is a morphism between varieties in V1/V i
1 and V2/V i

2 .
We then get a homomorphisms of coordinate rings

f
�
i : Sym(W 2

i )/I(X2,i) → Sym(W 1
i )/I(X1,i), (14)

and the direct limit of these gives a homomorphism of coordinate rings

f � : Sym(W 2)/I(X2) → Sym(W 1)/I(X1). (15)

Conversely given an algebra homomorphism f � above. Let

W 2
1 ⊆ W 2

2 ⊆ W 2
3 ⊆ · · ·

be a filtration. Write W 1 = ⊕i∈Nkwi in terms of a basis. The image of W 2
i will

involve only a finite number of the wi . Let W 1
i be the f.d. subvector space generated

by these wi . Then we get maps (14), giving morphisms

⏐
⏐
�

⏐
⏐
�

X1,i+1 X2,i+1

X1,i X2,i .

In the limit we then get a morphism of varieties f : X1 → X2. This gives a one-
one correspondence between morphisms of varieties f : X1 → X2 and algebra
homomorphisms f �.

LetX1 andX2 be varieties in the affine spaces V 1 and V 2. Their productX1×X2

is a variety in the affine space V 1 × V 2 which is the dual space of W 1 ⊕ W 2. Its
coordinate ring is A(X1 × X2) = A(X1) ⊗k A(X2).
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If M is an affine monoid variety (possibly infinite dimensional) its coordinate
ring A(M) becomes a commutative bialgebra. If M is an affine group variety, then
A(M) is a Hopf algebra. We can again further consider an action on the affine space

M × V → V.

It corresponds to a homomorphism of coordinate rings

Sym(W) → A(M) ⊗k Sym(W),

making Sym(W) into a comodule algebra overA(M). If the action by M is linear on
V , the algebra homomorphism above is induced by a linear map W → A(M)⊗k W .

5 Filtered Algebras with Finite Dimensional Quotients

In this section we assume the quotients Lp = L/Lp+1 from Sect. 2.2 are finite
dimensional vector spaces. This enables us to define the dual Hopf algebra Uc(K)

of the enveloping algebra U(L). This Hopf algebra naturally identifies as the
coordinate ring of the completed Lie algebra L̂. In Sect. 5.3 the Baker-Campbell-
Hausdorff product on the variety L is shown to correspond to the natural coproduct
on the dual Hopf algebra Uc(K). In the last Sect. 5.4 the Lie-Butcher product on a
post-Lie algebra is also shown to correspond to the natural coproduct on the dual
Hopf algebra.

5.1 Filtered Lie Algebras with Finite Dimensional Quotients

Recall that Lp is the quotientL/Lp+1 from Sect. 2.2. The setting in this section is k

is a field of characteristic zero, and that these quotients Lp are finite dimensional as
k-vector spaces. We assume that the Lie algebra L is complete with respect to this
cofiltration, so we have the inverse limit

L = L̂ = lim←−
p

Lp.

The dual Kp = Homk(Lp, k) is a finite dimensional Lie coalgebra. Let K =
lim−→
p

Kp be the direct limit. Recall that the quotient algebra

Uj (Lp) = U(Lp)/F j+1U(Lp).
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The dual Uj(Lp)∗ is a finite dimensional coalgebra Uc
j (Kp), and we have

inclusions

⏐
⏐
�

⏐
⏐
�

Uc
j (Kp)

⊆
Uc

j+1(K
p)

⊆ ⊆

Uc
j (Kp+1) ⊆

Uc
j+1(K

p+1).

We have the direct limits

Uc(Kp) := lim−→
j

Uc
j (Kp), Uc(K) := lim−→

j,p

Uc
j (Kp).

Lemma 5.1 Let T c(K) be the tensor coalgebra. It is a Hopf algebra with the shuffle
product. Then Uc(K) is a Hopf sub-algebra of T c(K).

Proof Uj(Lp) is a quotient algebra of T (Lp) and T (L), and so Uc
j (Kp) is

a subcoalgebra of T c(Kp) and T c(K). The coproduct on U(Lp), the shuffle
coproduct, does not descend to a coproduct on Uj (Lp). But we have a well defined
map

U2j (Lp) → Uj (Lp) ⊗ Uj(Lp)

compatible with the shuffle coproduct on T (Lp). Dualizing this we get

Uc
j (Kp) ⊗ Uc

j (Kp) → Uc
2j (Kp)

and taking colimits, we get Uc(K) as a subalgebra of T c(K) with respect to the
shuffle product. �	
Proposition 5.2 There are isomorphisms

a. L ∼= Homk(K, k) of Lie algebras,
b. Û(L) ∼= Homk(U

c(K), k) of algebras.
c. The coproduct on Uc(K) is dual to the completed product on Û(L)

Uc(K)
�•−→ Uc(K) ⊗ Uc(K), Û(L)⊗̂Û(L)

•−→ Û(L).

Proof

a. Since L is the completion of the Lp, it is clear that there is a map of Lie algebras
Homk(K, k) → L. We need only show that this is an isomorphism of vector
spaces.
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It is a general fact that for any object N in a category C and any indexed
diagram F : J → C then

Hom(lim−→F(−),N) ∼= lim←−Hom(F (−),N).

Applying this to the category of k-vector spaces enriched in k-vector spaces
(meaning that the Hom-sets are k-vector spaces), we get

Homk(K, k) = Homk(lim−→Kp,L) = lim←−Hom(Kp, k) = lim←− Lp = L̂.

b. This follows as in a. above.
c. This follows again by the above. Since tensor products commute with colimits

we have

Uc(K) ⊗ Uc(K) = lim−→
p,j

Uc
j (Kp) ⊗ Uc

j (Kp).

Then

Homk(U
c(K) ⊗ Uc(K), k) =Homk(lim−→Uc

j (Kp) ⊗ Uc
j (Kp), k)

=lim←−
p,j

Uj (Lp) ⊗ Uj(Lp) = Û (L)⊗̂Û(L).

�	
The coalgebra Uc(K) is a Hopf algebra with the shuffle product. It has unit η

and counit ε. Denote by � the convolution product on this Hopf algebra, and by 1
the identity map. Write 1 = η ◦ ε + J . The Euler idempotent

e : Uc(K) → Uc(K)

is the convolution logarithm

e = log�(1) = log�(η ◦ ε + J ) = J − J �2/2 + J �3/3 − · · · .

Proposition 5.3 The image of Uc(K)
e−→ Uc(K) is K . This inclusion of K ⊆

Uc(K) is a section of the natural map Uc(K) → K .

Proof This follows the same argument as Proposition 2.1. �	
This gives a map K → Uc(K). Since Uc(K) is a commutative algebra under

the shuffle product, we get a map from the free commutative algebra Sym(K) →
Uc(K).
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Proposition 5.4 This map

ψ : Sym(K)
∼=−→ Uc(K) (16)

is an isomorphism of commutative algebras. (We later denote the shuffle product by
�.)

Proof By Proposition 2.2 there is an isomorphism of coalgebras

U(Lp)
∼=−→ Symc(Lp)

and the filtrations on these coalgebras correspond. Hence we get an isomorphism

Uj(Lp)
∼=−→ Symc,j (Lp).

Dualizing this we get

Symj (K
p)

∼=−→ Uc
j (Kp).

Taking the colimits of this we get the statement. �	
In Homk(U

c(K), k) there are two distinguished subsets. The characters are
the algebra homomorphisms HomAlg(U

c(K), k). Via the isomorphism of Propo-
sition 5.2 they corresponds to the grouplike elements of Û(L). The infinitesimal
characters are the linear maps α : Uc(K) → k such that

α(uv) = ε(u)α(v) + α(u)ε(v).

We denote these as HomInf (Uc(K), k).

Lemma 5.5 Via the isomorphism in Proposition 5.2b. these characters correspond
naturally to the following:

a. HomInf (Uc(K), k) ∼= Homk(K, k) ∼= L.
b. HomAlg(Uc(K), k) ∼= G(Û(L)).

Proof

a. The map Uc(K)
φ−→ K from Proposition 5.3 has kernel k ⊕ Uc(K)�2+ , by

Proposition 5.4 above, where � denotes the shuffle product. We then see that
any linear map K → k induces by composition an infinitesimal character on
Uc(K). Conversely given an infinitesimal character α : Uc(K) → k then both k

and Uc(K)�2+ are seen to be in the kernel, and so such a map is induced from a
linear map K → k by composition with φ.
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b. That s : Uc(K) → k is an algebra homomorphism is equivalent to the
commutativity of the diagram

Uc(K) ⊗ Uc(K)

s⊗s

Uc(K)

s

k ⊗k k k

.

(17)

But this means that by the map

Û(L) → Û(L)⊗̂Û(L)

s �→ s ⊗ s.

Conversely given a grouplike element s ∈ Û(L), it corresponds by Proposi-
tion 5.2b. to s : Uc(K) → k, and it being grouplike means precisely that the
diagram (17) commutes. �	
On Homk(U

c(K), k) we also have the convolution product, which we again
denote by �. Note that by the isomorphism in Proposition 5.2, this corresponds to
the product on Û(L). Let Homk(U

c(K), k)+ consist of the α with α(1) = 0. We
then get the exponential map (we write this map without a � superscript since it is a
product on the dual space)

Homk(U
c(K), k)+

exp−→ ε + Homk(U
c(K), k)+

given by

exp(α) = ε + α + α�2/2! + α�3/3! + · · · .

This is well defined since Uc(K) is a conilpotent coalgebra and α(1) = 0.
Correspondingly we get

ε + Homk(U
c(K), k)+

log−→ Homk(U
c(K), k)+

given by

log(ε + α) = α − α�2

2
+ α�3

3
− · · · .

Lemma 5.6 The maps

Homk(U
c(K), k)+

exp
�
log

ε + Homk(U
c(K), k)+
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give inverse bijections. They restrict to the inverse bijections

HomInf (Uc(K), k)
exp
�
log

HomAlg(Uc(K), k).

Proof Using the identification of Proposition 5.2 the exp and log maps above
correspond to the exp and log maps in Proposition 2.10. �	

Since Sym(K) is the free symmetric algebra on K , there is a bijection

HomAlg(Sym(K), k)
∼=−→ Homk(K, k). The following shows that all the various

maps correspond.

Proposition 5.7 The following diagram commutes, showing that the various hori-
zontal bijections correspond to each other:

∥
∥
∥

�
⏐
⏐

⏐
⏐
�

⏐
⏐
�

Homk(K, k)
∼= HomAlg(Sym(K), k)

ψ∗

Homk(K, k)
exp HomAlg(U

c(K), k)

∼= ∼=

L
exp

G(Û(L))

Proof That the lower diagram commutes is clear by the proof of Lemma 5.6. The
middle (resp. top) map sends K → k to the unique algebra homomorphism φ (resp.
φ′) such that the following diagrams commute

K Uc(K)

φ

k

, K Sym(K)

φ

k

.

Since the following diagram commutes where ψ is the isomorphism of algebras

K Sym(K)

ψ

Uc(K)

,

the commutativity of the upper diagram in the statement of the proposition follows.
�	
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5.2 Actions of Endomorphisms

Let E = EndLie co(K) be the endomorphisms of K as a Lie co-algebra, which also
respect the filtration on K .

Proposition 5.8 The Euler map in Proposition 5.3 is equivariant for the endomor-
phism action. Hence the isomorphism � : Sym(K) → Uc(K) is equivariant for the
action of the endomorphism group E.

Proof The coproduct on Uc(K) is clearly equivariant for E and similarly the
product on Uc(K) is equivariant, since Uc(K) is a subalgebra of T c(K) for the
shuffle product. Then if f, g : Uc(K) → Uc(K) are two equivariant maps, their
convolution product f � g is also equivariant.

Since 1 and η ◦ ε are equivariant for E, the difference J = 1 − η ◦ ε is so also.
The Euler map e = J −J �2/2+J �3/3−· · · must then be equivariant for the action
of E.

Since the image of the Euler map is K , the inclusion K ↪→ Uc(K) is equivariant
also, and so is the map � above. �	

As a consequence of this the action of E on K induces an action on the dual Lie
algebra L respecting its filtration. By Proposition 5.2 this again induces a diagram
of actions of the following sets

⏐
⏐
�

⏐
⏐
�

E × Û(L) Û(L)

E × L L. (18)

5.2.1 The Free Lie Algebra

Now let V = ⊕i≥1Vi be a positively graded vector space with finite dimensional
parts Vi . We consider the special case of the above that L is the completion L̂ie(V )

of the free Lie algebra on V . Note that Lie(V ) is a graded Lie algebra with finite
dimensional graded parts. The enveloping algebra U(Lie(V )) is the tensor algebra
T (V ).

The graded dual vector space is V � = ⊕V ∗
i and the graded dual Lie co-algebra

is Lie(V )�. The Hopf algebra Uc(Lie(V )�) is the shuffle Hopf algebra T (V�).
Since Lie(V ) is the free Lie algebra on V , the endomorphisms E identifies

as (note that here it is essential that we consider endomorphisms respecting the
filtration)

EndLie co(Lie(V )�,Lie(V )�) = HomLie(Lie(V ), L̂ie(V )). (19)

This is a variety with coordinate ring EV = Sym(V ⊗ Lie(V )�), which is a
bialgebra. Furthermore the diagram (18) with L = L̂ie(V ) in this case will be a
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morphism of varieties: Both E,L and Û(L) come with filtrations and all maps are
given by polynomial maps. So we get a dual diagram of coordinate rings

⏐
⏐
�

⏐
⏐
�

Sym(Lie(V ) ) EV ⊗ Sym(Lie(V ) )

Sym(T (V ) ) EV ⊗ Sym(T (V ) )

.

But since the action of E is linear on L̂ie(V ) and T̂ (V ), this gives a diagram

⏐
⏐
�

⏐
⏐
�

Lie(V ) EV ⊗ Lie(V )

T c(V ) EV ⊗ T c(V )

,

and so the isomorphism Sym(Lie(V )�)
∼=−→ T c(V�) is an isomorphism of

comodules over the algebra EV .

5.3 Baker-Campbell-Hausdorff on Coordinate Rings

The space K has a countable basis and so we may consider Sym(K) as the
coordinate ring of the variety L = Homk(K, k). By the isomorphism ψ :
Sym(K)

∼=−→ Uc(K) of Proposition 5.4 we may think of Uc(K) as this coordinate
ring. Then also Uc(K) ⊗k Uc(K) is the coordinate ring of L × L.

The coproduct (whose dual is the product on Û(L))

Uc(K)
�•−→ Uc(K) ⊗k Uc(K),

will then correspond to a morphism of varietiesL×L → L. The following explains
what it is.

Proposition 5.9 The map L × L → L given by

(a, b) �→ log•(exp•(a) • exp•(b))

is a morphism of varieties, and on coordinate rings it corresponds to the coproduct

Uc(K)
�•−→ Uc(K) ⊗ Uc(K).

This above product on L is the Baker-Campbell-Hausdorff product.
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Example 5.10 Let V = ⊕i≥1Vi be a graded vector space with finite dimensional
graded parts. Let Lie(V ) be the free Lie algebra on V , which comes with a natural
grading. The enveloping algebra U(Lie(V )) is the tensor algebra T (V ). The dual
Lie coalgebra is the graded dual K = Lie(V )�, and Uc(K) is the graded dual
tensor coalgebra T (V �) which comes with the shuffle product. Thus the shuffle
algebra T (V�) identifies as the coordinate ring of the Lie series, the completion
L̂ie(V ) of the free Lie algebra on V .

The coproduct on T (V �) is the deconcatenation coproduct. This can then be
considered as an extremely simple codification of the Baker-Campbell-Hausdorff
formula for Lie series in the completion L̂ie(V ).

Proof If X → Y is a morphism of varieties and A(Y )
φ−→ A(X) the corresponding

homomorphism of coordinate rings, then the point p in X corresponding to the

algebra homomorphism A(X)
p∗

−→ k maps to the point q in Y corresponding to the

algebra homomorphism A(Y )
q∗

−→ k given by q∗ = φ ◦ p∗.
Now given points a and b in L = Homk(K, k). They correspond to algebra

homomorphisms from the coordinate ring Uc(K)
ã,b̃−→ k, the unique such extending

a and b, and these are ã = exp(a) and b̃ = exp(b). The pair (a, b) ∈ L × L

corresponds to the homomorphism on coordinate rings

exp(a) ⊗ exp(b) : Uc(K) ⊗ Uc(K)
ã⊗b̃−→ k ⊗k k = k.

Now via the coproduct, which is the homomorphism of coordinate rings,

Uc(K)
�•−→ Uc(K) ⊗ Uc(K)

this maps to the algebra homomorphism exp(a) • exp(b) : Uc(K) → k. This is the
algebra homomorphism corresponding to the following point in L:

log•(exp(a) • exp(b)) : K → k.

�	

5.4 Filtered Pre- and Post-Lie Algebras with Finite
Dimensional Quotients

We now assume that the filtered quotients P/Pp+1, which again are post-Lie
algebras, are all finite dimensional. Let their duals be Qp = Homk(P/Pp+1, k)

and Q = lim−→
p

Qp, which is a post-Lie coalgebra. We shall assume P = P̂ is

complete with respect to this filtration. Then P = Hom(Q, k), and Sym(Q) is the
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coordinate ring of P . There are two Lie algebra structures on P , given by [, ] and
[[, ]] of Definition 3.1. These correspond to the products • and ∗ on the enveloping
algebra of P . We shall use the first product •, giving the coproduct �• on Uc(Q).
For this coproduct Proposition 5.4 gives an isomorphism

ψ• : Sym(Q)
∼=−→ Uc(Q). (20)

Due to the formula in Proposition 3.6 the product

P × P
�−→P

on each quotient P/P i , is given by polynomial expressions. It thus corresponds to
a homomorphism of coordinate rings

Sym(Q)
��−→ Sym(Q) ⊗ Sym(Q). (21)

Proposition 5.11 Via the isomorphism ψ• in (20) the coproduct �� above corre-
sponds to the coproduct

Uc(Q)
�∗−→ Uc(Q) ⊗ Uc(Q),

which is the dual of the product ∗ on U(P).

Remark 5.12 In order to identify the homomorphism of coordinate rings as the
coproduct �∗ it is essential that one uses the isomorphism ψ• of (20). If one uses

another isomorphism Sym(Q)
∼=−→ Uc(Q) like the isomorphism ψ∗ derived from

the coproduct �∗, the statement is not correct. See also the end of the last remark
below.

Remark 5.13 (The Connes-Kreimer Hopf algebra) For the free pre-Lie algebra TC

(see the next Sect. 6) this identifies the Connes-Kreimer Hopf algebra HCK as the
coordinate ring Sym(T

�
C ) of the Butcher series T̂C under the Butcher product.

As a variety the Butcher series T̂C is endowed with the Zariski topology, and the
Butcher product is continuous for this topology. In [1] another finer topology on T̂C

is considered when the field k = R or C.

Remark 5.14 (The MKW Hopf algebra) For the free post-Lie algebra PC (see
Sect. 6) it identifies the MKW Hopf algebra T (OT�

C ) as the coordinate ring

Sym(Lie(OTC)�) of the Lie-Butcher series P̂C = L̂ie(OTC). A (principal) Lie-

Butcher series � ∈ P̂C corresponds to an element Lie(OTC)� �−→ k. This lifts via

the isomorphism ψ• of (20) to a character of the shuffle algebra T (OT�
C )

�̃−→ k.
That the lifting from (principal) LB series to character of the MKW Hopf algebra
must be done using the inclusion Lie(OTC)� ↪→ T (OT�

C ) via the Euler map of
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Proposition 5.3 associated to the coproduct �•, is a technical point which has not
been made explicit previously.

Proof of Proposition 5.11 Given points a, b ∈ P . They correspond to linear maps

Q
a,b−→ k. Via the isomorphism ψ• these extend to algebra homomorphisms

Uc(Q)
ã,b̃−→ k, where ã = exp•(a) and b̃ = exp•(b). The pair (a, b) ∈ P × P

then corresponds to a homomorphism of coordinate rings

exp•(a) ⊗ exp•(b) : Uc(Q) ⊗ Uc(Q)
ã⊗b̃−→ k ⊗k k = k.

Now via the coproduct associated to ∗, which is the homomorphism of coordinate
rings,

Uc(Q)
�∗−→ Uc(Q) ⊗ Uc(Q)

this maps to the algebra homomorphism exp•(a) ∗ exp•(b) : Uc(Q) → k. This is
the algebra homomorphism corresponding to the following point in P :

log•(exp•(a) ∗ exp•(b)) : Q → k.

�	

6 Free Pre- and Post-Lie Algebras

This section recalls free pre- and post-Lie algebras, and the notion of substitution in
these algebras. We also briefly recall the notions of Butcher and Lie-Butcher series.

6.1 Free Post-Lie Algebras

We consider the set of rooted planar trees, or ordered trees:

OT = { , , , , , , , · · · },

and let kOT be the k-vector space with these trees as basis. It comes with an
operation �, called grafting. For two trees t and s we define t � s to be the sum
of all trees obtained by attaching the root of t with a new edge onto a vertex of s,
with this new edge as the leftmost branch into the vertex of s.

If C is a set, we can color the vertices of OT with the elements of C. We then
get the set OTC of labelled planar trees. The free post-Lie algebra on C is the free
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Lie algebra PC = Lie(OTC) on the set of C-labelled planar trees. The grafting
operation is extended to the free Lie algebra Lie(OTC) by using the relations from
Definition 3.1. Note that PC has a natural grading by letting PC,d be the subspace
generated by all bracketed expressions of trees with a total number of d vertices. In
particular PC is filtered.

The enveloping algebra of PC identifies as the tensor algebra T (OTC). It was
introduced and studied in [25], see also [23] for more on the computational aspect
in this algebra. Its completion identifies as

T̂ (OTC) =
∏

d≥0

T (OTC)d.

6.2 Free Pre-Lie Algebras

Here we consider instead (non-ordered) rooted trees

T = { , , , , , = , · · · }.

On the vector space kT we can similarly define grafting �. Given a set C we get
the set TC of trees labelled by C. The free pre-Lie algebra is AC = kTC , [5]. Its
enveloping algebra is the symmetric algebra Sym(TC), called the Grossman-Larson
algebra, and comes with the ordinary symmetric product · and the product ∗, [26].

6.3 Butcher and Lie-Butcher Series

Recall the pre-Lie algebra XRn of vector fields from Example 3.2, and the
corresponding power series XRn[[h]]. Let f ∈ XRn be a vector field and A• the free
pre-Lie algebra on one generator •. By sending • �→ f we get a homomorphism of
pre-Lie algebras A• → XRn which sends a tree τ to the associated elementary
differential f τ , see [15, Section III.1]. If f ∈ XRn[[h]] we similarly get a
homomorphism of pre-Lie algebras A• → XRn[[h]]. The natural grading on A•
by number of vertices of trees |τ | of a tree τ , gives a filtration and we get a map of
complete pre-Lie algebras Â• → XRn[[h]]. If we let • → f · h where f ∈ XRn is
a vector field, then

∑

τ∈T

α(τ )τ �→
∑

τ∈T

α(τ )f τ h|τ |

and the latter is called a Butcher series. Often this terminology is also used about
the abstract form on the left side above.
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In the general setting of a Lie groupG. By Example 3.3,XG is a post-Lie algebra,
and so is also the power seriesXG[[h]]. Let f ∈ XG be a vector field and P• the free
post-Lie algebra on one generator •. By sending • �→ f we get a homomorphism
of post-Lie algebras P• → XG which sends a tree τ to the associated elementary
differential f τ , see [18, Subsection 2.2]. We also get a map of enveloping algebras
T (OT•) → U(XG) which sends a forest ω to an associated differential operator
f ω. The natural grading on P• by number of vertices of trees |τ | of a tree τ , gives a
filtration. Sending • �→ f ·h we get a homomorphism of complete post-Lie algebras
P̂• → XG[[h]]. The image of an element from P̂• is a Lie-Butcher series in XG[[h]].
Note that there is however not a really natural basis for P• = Lie(OT•). Therefore
one usually consider instead the map from the completed enveloping algebra to the
power series of differential operators (F• below denotes ordered forests of ordered
trees)

T̂ (OT•) → U(XG[[h]])
∑

ω∈F•
β(ω)ω �→

∑

ω∈F•
β(ω)f ωh|ω|

and the latter is a Lie-Butcher series. The abstract form to the left is also often called
a LB-series.

6.4 Substitution

In the above setting, we get by Sect. 3.2 a commutative diagram of flow maps

⏐
⏐
�

⏐
⏐
�

P̂•,field
P

P̂•,flow

XG[[h]]field
XG XG[[h]]flow.

The field f is mapped to the flow �XG(f ). By perturbing the vector field f →
f + δ, it is sent to a flow �XM(f + δ). We assume the perturbation δ is expressed
in terms of the elementary differentials of f , and so it comes from a perturbation
• → • + δ′ = s. Since Hom(•, P•) = EndpostLie(P•) this gives an endomorphism
of the post-Lie algebra. We are now interested in the effect of this endomorphism
on the flow, called substitution of the perturbed vector field, and we are interested in
the algebraic aspects of this action. We study this for the free post-Lie algebra PC ,
but most of the discussions below are of a general nature, and applies equally well
to the free pre-Lie algebra, and generalises the results of [4].
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7 Action of the Endomorphism Group and Substitution in
Free Post-Lie Algebras

Substitution in the free pre-Lie or free post-Lie algebras on one generator gives, by
dualizing, the operation of co-substitution in their coordinate rings, which are the
Connes-Kreimer and the MKWHopf algebras. In [4] they show that co-substitution
on the Connes-Kreimer algebra is governed by a bialgebraH such that the Connes-
Kreimer algebra HCK is a comodule bialgebra over this bialgebra H. Moreover
HCK and H are isomorphic as commutative algebras. This is the notion of two
bialgebras in cointeraction, a situation further studied in [12, 20], and [11].

In this section we do the analog for theMKWHopf algebra, and in a more general
setting, since we consider free pre- and post-Lie algebras on any finite number
of generators. In this case HCK and H are no longer isomorphic as commutative
algebras. As we shall see the situation is understood very well by using the algebraic
geometric setting and considering the MKW Hopf algebra as the coordinate ring of
the free post-Lie algebra. The main results of [4] also follow, and are understood
better, by the approach we develop here.

7.1 A Bialgebra of Endomorphisms

Let C be a finite dimensional vector space over the field k, and PC the free post-
Lie algebra on this vector space. It is a graded vector space PC = ⊕

d≥1 PC,d

graded by the number of vertices in bracketed expressions of trees, and so has finite
dimensional graded pieces. It has a graded dual

P
�
C = ⊕dHomk(PC,d, k).

Let {l} be a basis for PC . It gives a dual basis {l∗} for P
�
C . The dual of P

�
C is the

completion

P̂C = Homk(P
�
C , k) = lim←−

d

PC,≤d .

It is naturally a post-Lie algebra and comes with a decreasing filtration P̂ d+1
C =

ker(P̂C → PC,≤d).
Due to the freeness of PC we have:

Homk(C, PC) = HompostLie(PC, PC) = EndpostLie(PC).

Denote the above vector space as EC . If we let {c} be a basis for C, the graded dual
E

�
C = C ⊗k P

�
C has a basis {ac(l) := c ⊗ l∗}.
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The dual of E
�
C is ÊC = Homk(E

�
C , k) which may be written as C∗ ⊗k P̂C . This

is an affine space with coordinate ring

EC := Sym(E
�
C ) = Sym(Homk(C, PC)�) = Sym(C ⊗k P

�
C ).

The filtration on P̂C induces also a filtration on ÊC .
A map of post-Lie algebras φ : PC → P̂C induces a map of post-Lie algebras

φ̂ : P̂C → P̂C . We then get the inclusion

ÊC = HompostLie(PC, P̂C) ⊆ HompostLie(P̂C, P̂C).

If φ,ψ ∈ ÊC , we get a composition ψ ◦ φ̂, which we by abuse of notation write as
ψ ◦ φ. This makes ÊC into a monoid of affine varieties:

ÊC × ÊC
◦−→ ÊC.

It induces a homomorphism on coordinate rings:

EC
�◦−→ EC ⊗ EC.

This coproduct is coassociative, since ◦ on ÊC is associative. Thus EC becomes a
bialgebra.

Note that when C = 〈•〉 is one-dimensional, then

E• = Sym(P�• ) ∼= T c(OT�• )

as algebras, using Proposition 5.4. The coproduct �◦ considered on the shuffle
algebra is, however, neither deconcatenation nor the Grossman-Larson coproduct.
For the free pre-Lie algebraA• instead of P•, a description of this coproduct is given
in [4, Section 4.1/4.2].

7.1.1 Hopf Algebras of Endomorphisms

The augmentation map PC → C gives maps

Homk(C, PC) → Homk(C,C)

and dually

Homk(C,C)� ⊆ Homk(C, PC)� ∼= C ⊗k P
�
C .

Recall that ac(d) are the basis elements of Homk(C,C)� (the coordinate functions
on Homk(C,C)), where c and d range over a basis for C. We can then invert D =
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det(ac(d)) in the coordinate ring EC . This gives a Hopf algebra E×
C which is the

localized ring (EC)D . Another possibility is to divide EC by the ideal generated by
D − 1. This gives a Hopf algebra E1C = EC/(D − 1). A third possibility is to divide
EC out by the ideal generated by the ac(d) − δc,d . This gives a Hopf algebra EIdC . In
the case C = {•} and P• is replaced with the free pre-Lie alegbra A•, both the latter
cases give the Hopf algebraH in [4, Subsection 4.1/4.2].

7.2 The Action on the Free Post-Lie Algebra

The monoid EC acts on PC , and ÊC acts on P̂C . So we get a morphism of affine
varieties

ÊC × P̂C
�−→ P̂C (22)

called substitution.
Let HC = Sym(P

�
C ) be the coordinate ring of P̂C . We get a homomorphism of

coordinate rings called co-substitution

HC
��−→ EC ⊗ HC. (23)

Note that the map in (22) is linear in the second factor so the algebra homomor-
phism (23) comes from a linear map

P
�
C → EC ⊗ P

�
C .

The action � gives a commutative diagram

⏐
⏐
�

⏐
⏐
�

�

ÊC × ÊC × P̂C
1×

ÊC × P̂C

◦×1

ÊC × P̂C P̂C

which dually gives a diagram

�
⏐
⏐

�
⏐
⏐

EC ⊗ EC ⊗ EC ⊗

EC ⊗

This makes HC into a comodule over EC , in fact a comodule algebra, since all
maps are homomorphisms of algebras. The Butcher product � on P̂C is dual to



360 G. Fløystad and H. Munthe-Kaas

the coproduct �� : HC → HC ⊗ HC by Proposition 5.11. Since ÊC gives an
endomorphism of post-Lie algebra we have for a ∈ ÊC and u, v ∈ P̂C :

a � (u�v) = (a � u)�(a � v).

In diagrams

�
⏐
⏐

⏐
⏐
�

ÊC × ÊC × P̂C × P̂C
1×τ×1

ÊC × P̂C × ÊC × P̂C
×

P̂C × P̂C

diag×1×1

ÊC × P̂C × P̂C
1×

ÊC × P̂C P̂C

which dually gives a diagram

⏐
⏐
�

�
⏐
⏐

This makesHC into a comodule Hopf algebra over EC . We also have

a � (u � v) = (a � u) � (a � v)

giving corresponding commutative diagrams, making HC into a comodule algebra
over EC .

7.2.1 The Identification with the Tensor Algebra

The tensor algebra T (OTC) is the enveloping algebra of PC = Lie(OTC). The
endomorphism of post-Lie co-algebras EndpostLie-co(P

�
C ) identifies by Eq. (19) as

ÊC = HompostLie(C, P̂C). It is an endomorphism submonoid of EndLie(P
�
C )

By Sect. 5.2.1 the isomorphism HC = Sym(P
�
C )

∼=−→ T c(OT�
C ) is equivariant

for the action of ÊC and induces a commutative diagram

⏐
⏐
�

⏐
⏐
�∼= ∼=

T c(OTC ) EC ⊗ T c(OTC ) (24)

Thus all the statements above in Sect. 7.2 may be phrased with T c(OT�
C ) instead of

HC as comodule over EC .
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7.3 The Universal Substitution

Let K be a commutative k-algebra. We then get P
�
C,K = K ⊗k P

�
C , and

correspondingly we get

E
�
C,K, HC,K = Sym(P

�
C,K), EC,K = Sym(E

�
C,K).

Let the completion P̂C,K = Hom(P
�
C,K,K). (Note that this is not K ⊗k P̂C but

rather larger than this.) Similarly we get ÊC,K . The homomorphism of coordinate
rings HC,K → EC,K ⊗K HC,K corresponds to a map of affine K-varieties (see
Remark 4.2)

ÊC,K × P̂C,K → P̂C,K . (25)

A K-point A in the affine variety ÊC,K then corresponds to an algebra homo-

morphism EC,K
A∗−→ K , and K-points p ∈ P̂C,K corresponds to algebra

homomorphismsHC,K
p∗

−→ K .
In particular the map obtained from (25), using A ∈ ÊC,K :

P̂C,K
A�−→ P̂C,K (26)

corresponds to the morphism on coordinate rings

HC,K → HC,K ⊗K EC,K
1⊗A∗−→ HC,K ⊗K K = HC,K (27)

which due to (26) being linear, comes from a K-linear map

P
�
C,K → P

�
C,K.

Now we let K be the commutative algebra EC = Sym(E
�
C ). Then

EC,K = K ⊗k Sym(E
�
C ) = Sym(E

�
C ) ⊗ Sym(E

�
C ).

There is a canonical algebra homomorphism

EC,K
μ−→ K (28)

which is simply the product

Sym(E
�
C ) ⊗k Sym(E

�
C )

μ−→ Sym(E
�
C ).
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Definition 7.1 Corresponding to the algebra homomorphism μ of (28) is the point
U in ÊC,K = Homk(CK, P̂C,K). This is the universal map (here we use the
completed tensor product):

C → C ⊗ (P
�
C ⊗̂PC) (29)

sending

c �→ c ⊗
∑

l basis
element of PC

l∗ ⊗ l =
∑

l

ac(l) ⊗ l

Using this, (26) becomes the universal substitution, the K-linear map

P̂C,K
U�−→ P̂C,K .

Let H = Hom(C, PC)�, the degree one part of K = EC , and PC,H = H ⊗k PC .
Note that the universal map (29) is a map from C to P̂C,H .

If a ∈ ÊC is a specific endomorphism, it corresponds to an algebra homomor-
phism (character)

K = EC
α−→ k

ac(l) = c ⊗ l∗ �→ α(c ⊗ l∗).

Then U� induces the substitution P̂C
a�−→ P̂C by sending each coefficient ac(l) ∈ K

to α(c ⊗ l∗) ∈ k.

The co-substitutionHC
��−→ EC ⊗ HC of (23) induces a homomorphism

EC ⊗ HC → EC ⊗ EC ⊗ HC → EC ⊗ HC

which is seen to coincidewith the homomorphism (27) whenK = EC . The universal
substitution therefore corresponds to the map on coordinate rings which is the co-
substitution map, suitably lifted.

Recall that the tensor algebra T (OTC) identifies as the forests of ordered trees
OFC . We may then write T c(OT�

C ) = OF�C . By the diagram (24) the co-substitution

HC,K
��−→ HC,K identifies as a map OF�C,K

UT
�−→ OF�C,K and we get a commutative

diagram and its dual
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OFC,K

UT

OFC,K

PC,K

U
PC,K

, P̂C,K
U

P̂C,K

ÔFC,K
U ÔFC,K

.

We may restrict this to ordered trees and get

OF�C,K

U
T
�−→ OT�

C,K, ÔTC,K
U�−→ ÔFC,K.

We may also restrict and get

CK → P̂C,K → ÔFC,K,

with dual map

Ut : OF�C,K → P
�
C,K → C∗

K (30)

For use in Sect. 7.4.1, note that (29) sendsC to P̂C,H whereH = Homk(C, PC)� ⊆
K is the graded dual of EC . A consequence is that OF�C ⊆ OF�C,K is mapped to
C∗

H ⊆ C∗
K by Ut .

7.4 Recursion Formula

The universal substitution is described in [18], and we recall it. By attaching the
trees in a forest to a root c ∈ C, there is a natural isomorphism

OTC
∼= OFC ⊗ C

and dually

OF�C ⊗ C∗ ∼=−→ OT�
C (31)

Here we denote the image of ω ⊗ ρ as ω � ρ.

Proposition 7.2 ([18]) The following gives a partial recursion formula for U
T

� , the
universal co-substitution followed by the projection onto the dual ordered trees:

U
T

� (ω) =
∑

��(ω)

UT
� (ω(1)) � Ut(w(2)).
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Proof Recall the following general fact. Two maps V
φ−→ W and W∗ ψ−→ V ∗ are

dual iff for all v ∈ V and w∗ ∈ W∗ the pairings

〈v,ψ(w∗)〉 = 〈φ(v),w∗〉.

We apply this to φ = U� and

ψ : OF�C,K

��−→ OF�C,K⊗OF�C,K

UT
� ⊗Ut

−→ OF�C,K ⊗ C∗
K

�−→ OT�
C,K.

We must then show that

∑

��(ω)

〈t, UT
� (ω(1)) � Ut (w(2))〉 = 〈U�(t), ω〉

So let t = f � c. Using first the above fact on the map (31) and its dual:

∑

��(ω)

〈t, UT
� (ω(1)) � Ut(w(2))〉 =

∑

��(ω)

〈f ⊗ c,UT
� (ω(1)) ⊗ Ut(ω(2))〉

=
∑

��(ω)

〈f,UT
� (ω(1))〉 · 〈c,Ut (ω(2))〉

=
∑

��(ω)

〈U�(f ), ω(1)〉 · 〈U(c), ω(2)〉

=〈U�(f ) ⊗ U(c),��(ω)〉
=〈U�(f ) � U(c), ω〉
=〈U�(f � c), ω〉 = 〈U�(t), ω〉

�	
We now get the general recursion formula, Theorem 3.7, in [18].

Proposition 7.3

UT
� (ω) =

∑

�•(ω)

UT
� (ω1) · U

T

� (ω2).

Proof Given a forest f · t where t is a tree. We will show

〈U�(f t), ω〉 =
∑

�•(ω)

〈f t, UT
� (ω1) · UT

� (ω2)〉.
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We have:

〈U�(f t), ω〉 = 〈U�(f ) · U�(t), ω〉.

Since concatenation and deconcatenation are dual maps, this is

=
∑

�•(ω)

〈U�(f ) ⊗ U�(t), ω1 ⊗ ω2〉

=
∑

�•(ω)

〈U�(f ), ω1〉 · 〈U�(t), ω2〉

=
∑

�•(ω)

〈f,UT
� (ω1)〉 · 〈t, UT

� (ω2)〉.

Since U
T

� (ω2) is a dual tree, this is:

=
∑

�•(ω)

〈f t, UT
� (ω1) · U

T

� (ω2)〉.

�	

7.4.1 The Case of One Free Generator

Now consider the case that C = 〈•〉 is a one-dimensional vector space. Recall
the isomorphism ψ : E• ∼= T (OT�• ) as algebras but the coproduct on this is
different from H• ∼= T (OT�• ). To signify the difference, we denote the former by
T ◦(OT�• ). It is the free algebra on the alphabet a•(t) where the t are ordered trees.
Multiplication on E• = Sym(P�• ) corresponds to the shuffle product on T ◦(OT�• ).

The coproduct

H•
��−→ E• ⊗k H•

may then by Sect. 7.2.1 be written as

T (OT�• )
��−→ T ◦(OT�• ) ⊗k T (OT�• ) = K ⊗k T (OT�• ).

The two bialgebras T (OT�• ) and T ◦(OT�• ) are said to be in cointeraction, a notion
studied in [4, 12, 20], and [11].

The element Ut(ω(2)) is in C∗
K

∼= K . By the comment following (30) it is in

C∗
H = Homk(•, P•)� ⊗k •∗ ∼= P�• .
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Then Ut (ω(2)) is simply the image of ω(2) by the natural projection T (OT�• ) →
P�• . We may consider Ut (ω(2)) as an element of K ∼= T ◦(OT�• ) via the
isomorphism ψ above. We are then using the Euler idempotent map

T (OT�• )
π−→ T (OT�• ) ∼= T ◦(OT�• ),

so that Ut(ω(2)) = π(ω(2)).
Let B+ be the operation of attaching a root to a forest in order to make it

a tree. By a decorated shuffle � below we mean taking the shuffle product of
the corresponding factors in K = T ◦(OT�• ). By the decorated · product we
mean concatenating the corresponding factors in T (OT�• ). Then we may write the
recursion of Proposition 7.3 as:

Proposition 7.4

��(ω) =�13 ·24��(ω1) ⊗ U
T

� (ω2)

=�135 ·24��(ω1) ⊗ B+(��(ω
(1)
2 )) ⊗ π(ω

(2)
2 )
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