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Abstract We study the propagation of the analytic wave front set for solutions to
the Schrödinger equation associated with perturbations of the free Laplacian.

1 Introduction

We are interested in the analytic singularities of the distributions u = u(t, x) that are
solutions in R × R

n to the Schrödinger equation,

(Sch) :
{
i ∂u

∂t = Pu;
u|t=0 = u0,

where P = P(x,Dx) is a second-order symmetric differential operator on R
n with

analytic coefficients (typically a perturbation of the Laplace operator P0 := − 1
2�),

and u0 is in L2(Rn) or, more generally, in some Sobolev space.
For such a problem, it is quite natural to wonder if the analyticity of u0 implies that

of u(t) at time t �= 0. But actually this is not true, as it can be seen from the example
where P = P0 and u0 = (−2iπ)− n

2 e−i|x|2/2. In this case, using that the distributional
kernel of e−itP0 is (2iπ t)− n

2 ei|x−y|2/2t , one can see thatu(t) just coincideswithv(t − 1),
where v solves the same Schrödinger equation with initial date v(0) = δ (the Dirac
measure at x = 0). In particular, u(1) = δ is singular, while u(0) is analytic. Such a
phenomenon is called “infinite propagation speed of singularities”, and a question
one may ask is: Is there any way to read the singularities of u(t) easily on u0?
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As we shall see, the answer is essentially yes, in the sense that (under some
non-trapping conditions) the analytic wave front set of eitP0u(t) propagates in a very
precise way (while that of u(t) does not at all!).

As an example, in the particular case P = P0 + V where V = V (x) is an analytic
function tending to 0 at infinity (and thus, in that case, u(t) = e−itPu0), we will prove
that, for all t ∈ R, one has,

WFa(e
itP0u(t)) = WFa(u0)

or, equivalently,
WFa(u(t)) = WFa(e

−itP0u0).

Here, WFa stands for the analytic wave front set, and the details of the proofs of the
results we present here can be found in [7, 8] (see also [6] for related results).

2 Assumptions and Results

Let

P = 1

2

n∑
j,k=1

Djaj,k(x)Dk + 1

2

n∑
j=1

(aj(x)Dj + Djaj(x)) + a0(x)

on H = L2(Rn), where Dj = −i∂xj , and assume that the coefficients {aα(x)} satisfy
to the following hypothesis. For ν > 0 we denote

�ν = {
z ∈ C

n
∣∣ |Im z| < ν〈Re z〉}.

Assumption A For each α, aα(x) ∈ C∞(Rn) is real-valued and can be extended to
a holomorphic function on �ν with some ν > 0. Moreover, for x ∈ R

n, the matrix
(aj,k(x))1≤j,k≤n is symmetric and positive definite, and there exists σ > 0 such that,

∣∣aj,k(x) − δj,k
∣∣ ≤ C0〈x〉−σ , j, k = 1, . . . , n,∣∣aj(x)∣∣ ≤ C0〈x〉1−σ , j = 1, . . . , n,∣∣a0(x)∣∣ ≤ C0〈x〉2−σ ,

for x ∈ �ν and with some constant C0 > 0.

The case σ > 1 will be referred to as the short range case, while the case σ ∈ (0, 1]
as the long range case.

We denote by p(x, ξ) := 1
2

∑n
j,k=1 aj,k(x)ξjξk the principal symbol of P, and by

P0 := − 1
2� the free Laplace operator. For any (x, ξ) ∈ R

2n, we also denote by
(y(t; x, ξ), η(t; x, ξ)) = exptHp(x, ξ) the solution to the Hamilton system,
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dy

dt
= ∂p

∂ξ
(y, η),

dη

dt
= −∂p

∂x
(y, η), (2.1)

with initial condition (y(0), η(0)) = (x, ξ).
We say that a point (x, ξ) ∈ T ∗

R
n\0 is forward non-trapping (respectively back-

ward non-trapping) when |y(t, x, ξ)| → ∞ as t → +∞ (resp. as t → −∞).
In that case, one can prove the existence of η+(x, ξ) ∈ R

n (resp. η−(x, ξ)) such
that η(t, x, ξ) → η+(x, ξ) as t → +∞ (resp. η(t, x, ξ) → η−(x, ξ) as t → −∞).

If in addition σ > 1 (short range case), then one can also prove the existence of
y±(x, ξ) ∈ R

n such that,

|y+(x, ξ) + tη+(x, ξ) − y(t, x, ξ)| → 0 as t → +∞,

(resp. |y−(x, ξ) + tξ−(x, ξ) − y(t, x, ξ)| → 0 as t → −∞).
A proof of these two facts can be found, e.g., in [1], Lemma2.2 (indeed, though

only the short range case is treated, the proof given for the existence of η±(x, ξ) still
works in the long range case).

Denoting by NT+ (resp. NT−) the set of forward (resp. backward) non-trapping
points, we define the applications,

S± : NT± → R
2n

by
S±(x, ξ) := (y±(x, ξ), η±(x, ξ)).

They respectively correspond to the forward and backward classical wave maps. For
any distribution u ∈ D′(Rn), we denote by WFa(u) the analytic wave front set of u
(see, e.g., [13]), that can be described by introducing the FBI transform T defined
by,

Tu(z, h) =
∫

e−(z−y)2/2hu(y)dy,

where z ∈ C
n and h > 0 is a small extra-parameter. Then,Tv belongs to the Sjöstrand

space Hloc
�0

with �0(z) := |Im z|2/2 (see [13]), and a point (x, ξ) is not in WFa(u)
if and only if there exists some δ > 0 such that Tu = O(e(�0(z)−δ)/h) uniformly for z
close enough to x − iξ and h > 0 small enough (in this case, we also use the notation:
Tu ∼ 0 in H�0,x−iξ ). By Cauchy-formula, this is also equivalent to the existence of
some δ′ > 0 such that ‖e−�0/hTu‖L2() = O(e−δ′/h) for some complex neighborhood
 of x − iξ .

In the short range case, our main result is,

Theorem 2.1 Suppose Assumption A with σ > 1, and let u0 ∈ L2(Rn). Then,

(i) For any t < 0, one has,

WFa(e
−itPu0) ∩ NT+ = S−1

+ (WFa(e
−itP0u0)); (2.2)
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(ii) For any t > 0, one has,

WFa(e
−itPu0) ∩ NT− = S−1

− (WFa(e
−itP0u0)). (2.3)

Remark 2.2 In the particular case where the metric is globally non-trapping, this
result gives a complete characterization of the analytic wave front set of u(t) in terms
of that of e−itP0u0.

Remark 2.3 By substituting eitPu0 to u0, and −t to t, this result implies that one has,

∀t > 0, WFa(e
itP0u(t)) = S+(WFa(u0) ∩ NT+);

∀t < 0, WFa(e
itP0u(t)) = S−(WFa(u0) ∩ NT−).

In particular, this set does not depend on t > 0 (resp. t < 0).

In the important case where aj,k = δj,k , then one has NT± = R
2n\0 and S± = Id ,

and we obtain the following immediate corollary:

Corollary 2.4 Suppose Assumption A with σ > 1 and aj,k = δj,k for all pair (j, k).
Then, for all t ∈ R and all u0 ∈ L2(Rn), one has,

WFa(e
−itPu0) = WFa(e

−itP0u0).

Remark 2.5 In the C∞ setting, analogous results have been obtained Hassell and
Wunsch in [2]. They involve a notion of “scattering wave front set” in a more general
context of manifolds. In the case of Rn, this notion mainly coincides with that of
WF(eitP0u) (see also [3, 4, 9–12, 14] for related questions).

Remark 2.6 Using the FBI transform (see, e.g., [5, 13]) and the expression of the
distributional kernel of e−itP0 , one can see that a point (x0, ξ0) ∈ R

2n\0 is not in
WFa(e−itP0u0) if and only if there exists some δ > 0 such that the quantity,

Tu0(x, ξ : h) :=
∫

ei(x−hy)ξ/h−(x−hy)2/2heiy
2/2tu0(y)dy,

is O(e−δ/h), uniformly for h > 0 small enough and (x, ξ) in a neighborhood of
(− 1

t ξ0,
1
t x0).

In the long range case (0 < σ ≤ 1), the maps S± are not defined anymore, and
one need tomodify the free evolution near infinity in order to be able to define similar
maps.

For h > 0 sufficiently small and (x, ξ) ∈ R
2n, we denote by p̃(x, ξ ; h) the quantity,

p̃(x, ξ) := 1

2

∑
j,k

aj,k(x)ξjξk + h
∑
j

aj(x)ξj + h2a0(x),
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andby (̃y(t, x, ξ ; h), η̃(t, x, ξ ; h)) := exp tHp̃(x, ξ) the correspondingHamiltonflow.
Then, we have the preliminary result,

Lemma 2.7 For any δ0 > 0, there exist two h-dependent smooth functions,

W± : R± × {ξ ∈ R
n ; |ξ | > δ0} → R,

that are solutions to,

∂W±
∂t

(t, ξ) = p̃(∇ξW±(t, ξ), ξ ; h), (2.4)

and such that, for any ±t > 0 and (x, ξ) ∈ NT±, the quantity,

ỹ(t/h, x, ξ) − ∇ξW±(t/h, η̃(t/h, x, ξ)) + ∇ξW±(0, η±(x, ξ)) (2.5)

admits a limit ỹ±(x, ξ) ∈ R
n independent of t as h → 0+.

Remark 2.8 Actually, Eq. (2.4) must be satisfied up to short range terms only, in
order to have (2.5). For instance, in the previous short range case, one can take
W±(t, ξ) = tξ 2/2, that gives ỹ±(x, ξ) = y±(x, ξ).

Using the notations of the previous lemma, we set,

S̃±(x, ξ) := (̃y±(x, ξ), η±(x, ξ)), ((x, ξ) ∈ NT±);
z±(x, ξ) := ỹ±(x, ξ) − iη±(x, ξ);
W̃±(t, ξ) := W±(t, ξ) − W±(0, ξ).

(2.6)

Then, the result for the long range case is,

Theorem 2.9 Suppose Assumption A with 0 < σ ≤ 1, and let u0 ∈ L2(Rn). Then,
with the notations (2.6), one has,

(i) For any t < 0 and (x, ξ) ∈ NT+, one has the equivalence,

(x, ξ) /∈ WFa(e
−itPu0) ⇐⇒ eiW̃+(−t/h,hDz)/hTu0 ∼ 0 in H�0,z+(x,ξ);

(ii) For any t > 0 and (x, ξ) ∈ NT−, one has the equivalence,

(x, ξ) /∈ WFa(e
−itPu0) ⇐⇒ eiW̃−(−t/h,hDz)/hTu0 ∼ 0 in H�0,z−(x,ξ);

Remark 2.10 Here, the operator eiW̃±(−t/h,hDz)/h appearing in the statement is not
defined by the Spectral Theorem, but rather as a Fourier integral operator acting on
Sjöstrand’s spaces (see [8]).
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Remark 2.11 Actually, W± can be constructed in such a way that the quantity
W±

1 (t, ξ) := W̃±(−t/h, hDx)/h does not depend on h, and in principle, the fact that
eiW̃±(−t/h,hDz)/hTu0 ∼ 0 in H�0,z±(x,ξ) essentially means that S̃±(x, ξ) /∈
WFa(eiW

±
1 (−t,Dx)u0) (and in this sense, the result is very similar to that of the C∞

setting appearing in [11]). However, in order to define eiW
±
1 (−t,Dx) properly one needs

to extend W̃± to all values of ξ ∈ R
n, and this requires the use of cut-off functions. In

the analytic setting, this introduces technical difficulties that can probably be over-
come by the use of analytic pseudodifferential operators on the real domain (see
[13]).

3 Sketch of Proof

We explain the proof for the forward non-trapping case only (the backward non-
trapping case being similar), and we start by considering the short range case with a
flat metric (that is, aj,k = δj,k for all j, k, and thus S±(x, ξ) = (x, ξ)).

Replacing u0 by eitPu0, and then changing t to −t, we see that we have to prove
that for any t > 0, one has

WFa(u0) = WFa(e
itP0e−itPu0).

Following [10], we set v(t) := eitP0e−itPu0, that solves the system,

i
∂v

∂t
= L(t)v ; v(0) = u0. (3.1)

Here,
L(t) = eitP0(P − P0)e

−itP0 = L2(t) + L1(t) + L0(t), (3.2)

with,

L2(t) := 1

2

n∑
j,k=1

Dj(a
W
j,k(x + tDx) − δj,k)Dk

L1(t) := 1

2

n∑
�=1

(aW� (x + tDx)D� + D�a
W
� (x + tDx))

L0(t) := aW0 (x + tDx),

where we have denoted by aW (x,Dx) the usual Weyl-quantization of a symbol
a(x, ξ), defined by,

aW (x,Dx)u(x) = 1

(2π)n

∫
ei(x−y)ξa((x + y)/2, ξ)u(y)dydξ.
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Observe that, in the flat case, one has L2(t) = 0. The expressions for Lj(t), 0 ≤ j ≤ 2
can be proved directly (using the fact that e±iP0 is just the multiplication by e±iξ 2/2

in the Fourier variables), but they also result from the standard Egorov theorem (that
becomes exact in this case).

Since the FBI transform T is a convolution operator, we immediately observe
that TDxj = DzjT . However, in order to study the action of L(t) after transformation
by T , we need the following key-lemma that will allow us to enter the framework
of Sjöstrand’s microlocal analytic theory. Mainly, this lemma tells us that, if f is
holomorphic near �ν , then, the operator T̃ := T ◦ f W (x + thDx) is a FBI transform
with the same phase as T , but with some symbol f̃ (t, z, x; h).
Lemma 3.1 ([7], Lemma3.1) Let f be a holomorphic function on �ν , verifying
f (x) = O(〈x〉ρ) for some ρ ∈ R, uniformly on�ν . Let also K1 and K2 be two compact
subsets of Rn, with 0 /∈ K2. Then, there exists a function f̃ (t, z, x; h) of the form,

f̃ (t, z, x; h) =
1/Ch∑
k=0

hkfk(t, z, x), (3.3)

where fk is defined, smooth with respect to t and holomorphic with respect to
(z, x) near � := Rt × {(z, x) ; Re z ∈ K1, |Re (z − x)| + |Im x| ≤ δ0, Im z ∈ K2}
with δ0 > 0 small enough, and such that, for any u ∈ L2(Rn), one has,

Tf W (x + thDx)u(z, h) =
∫

|x−Re z|<δ0

e−(z−x)2/2hf̃ (t, z, x, h)u(x)dx

+O(〈t〉ρ+e(�0(z)−ε)/h),

for some ε = ε(u) > 0 and uniformly with respect to h > 0 small enough, z in
a small enough neighborhood of K := K1 + iK2, and t ∈ R. (Here, we have set
ρ+ = max(ρ, 0).)

Moreover, the f ′
k s verify,

f0(t, z, x) = f (x + it(z − x)) ;
|∂α

z,xfk(t, z, x)| ≤ Ck+|α|+1(k + |α|)!〈t〉ρ,

for some constant C > 0, and uniformly with respect to k ∈ Z+, α ∈ Z
2n+ , and

(t, z, x) ∈ �.

Thanks to this lemma, and using again Sjöstrand’s theory of microlocal analytic
singularities [13], we deduce the existence of an analytic second-order (that is, with
a symbolO(h−2)) pseudodifferential operatorQ(t, h) onHloc

�0
(Cn\{Im z = 0}), such

that,
TL(t) = Q(t, h)T .

Moreover, in the flat case,Q(t, h) becomes of the first order, and its symbol is mainly
given by,
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q(t, h; z, ζ ) ∼ h−1
n∑

�=1

a�(z + iζ + th−1ζ )ζ� + a0(z + iζ + th−1ζ ).

Actually, using Lemma3.1, an exact formula can be obtained for the symbol of
Q(t, h), that coincides with the previous expression up to O(1)-terms as h → 0+.
We refer to [7], Sect. 4, for more details.

Then, applying T to (3.1), multiplying it by h2, and changing the time-scale by
setting s := t/h, we obtain the new evolution equation,

ih
∂Tv

∂s
= B(s, h)Tv ; Tv(0) = Tu0, (3.4)

where B(s, h) is an analytic pseudodifferential operator of order -1 (still in the sense
of [13]), acting on Hloc

�0
(Cn\{Im z = 0}), with symbol b(s, h) verifying,

b(s, h) ∼
∑
k≥1

hkbk(s)

(in the sense of analytic symbols), with

b1(s; z, ζ ) = O(〈s〉1−σ );
bk(s; z, ζ ) = O(〈s〉2−σ ) for k ≥ 2, (3.5)

uniformly with respect to s> 0, and locally uniformly with respect to z ∈ C
n\

{Im z= 0} and ζ close enough to −Im z (note that, in particular, for k ≥ 2 and
s = O(h−1), one also has: hbk = O(〈s〉1−σ ).)

Let us recall from [13] that the quantization of such a symbol b(s, h; z, ζ ) onHloc
�0

is given by,

B(s, h)w(z; h) = 1

(2πh)n

∫
γ (z)

ei(z−y)ζ/hb(s, h; z, ζ )w(y)dydζ,

where γ (z) is a complex contour of the form,

γ (z) : ζ = −Im z + iR(z − y) ; |y − z| < r,

with R > 0 is fixed large enough, and r > 0 can be taken arbitrarily small. In partic-
ular, we deduce from (3.5) that B(s, h) can be written as,

B(s, h) = hB1(s, h),

where B1(s, h) admit a symbol uniformly O(〈s〉1−σ + h〈s〉2−σ ), for s > 0, z in a
compact subset of Cn\{Im z = 0}, and (y, ζ ) ∈ γ (z).
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Then, for z0 ∈ C
n\{Im z = 0} and ε0 > 0, if we set,

L2�0
(z0, ε0) := L2({|z − z0| < ε0}; e−2�0/hdRe z d Im z) ∩ H�0(|z − z0| < ε0),

we see that B1(s, h) is a bounded operator from L2�0
(z0, ε0) to L2

�̃0
(z0, ε0/2), and its

norm can be easily estimated in terms of the supremum of its symbol. Thus, here we
obtain,

‖B1(s)‖L(
L2�0

(z0,ε0);L2�0
(z0,ε0/2)

) = O(〈s〉1−σ + h〈s〉2−σ ) = O(〈s〉1−σ ), (3.6)

uniformly with respect to h > 0 small enough and |s| ≤ T0/h (T0 > 0 fixed
arbitrarily).

Now, let us denote by �̃0 = �̃0(z, z) a smooth real-valued function defined near
z = z0, such that |�̃0 − �0| and |∇(z,z)(�̃0 − �0)| are small enough, and verifying,

�̃0 ≥ �0 in {|z − z0| ≤ ε0}; (3.7)

�̃0 = �0 in {|z − z0| ≤ ε0/4}; (3.8)

�̃0 > �0 + ε1 in {|z − z0| ≥ ε0/2}, (3.9)

for some ε1 > 0. By modifying the contour defining B1(s) (see [13], Remarque 4.4),
we know that B1(s) is also bounded from L2

�̃0
(z0, ε0) to L2

�̃0
(z0, ε0/2), and its norm

on these space verifies the same estimate (3.6) as on L2�0
.

Setting w = Tv, Eq. (3.4) gives,

i∂sw(s) = B1(s, h)w(s) in H�0(|z − z0| < ε0), (3.10)

with ε0 > 0 fixed small enough, and thus,

∂s‖w(s)‖2L2
�̃0

(z0,ε0/2)
= 2Im 〈B1(s)w(s), w(s)〉L2

�̃0
(z0,ε0/2).

Using Cauchy–Schwarz inequality and (3.6), we obtain,

∣∣∣∣∂s‖w(s)‖2L2
�̃0

(z0,ε0/2)

∣∣∣∣ = O(〈s〉1−σ )‖w(s)‖2L2
�̃0

(z0,ε0)
. (3.11)

On the other hand, using (3.9) and the fact that ‖v(t)‖L2 = ‖u0‖L2 does not depend
on t, we also have the estimate,

‖w(s)‖2L2
�̃0

(z0,ε0)
= ‖w(s)‖2L2

�̃0
(z0,ε0/2)

+ O(e−ε1/h),
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that, inserted into (3.11), gives,

∣∣∣∣∂s‖w(s)‖2L2
�̃0

(z0,ε0/2)

∣∣∣∣ ≤ C〈s〉1−σ ‖w(s)‖2L2
�̃0

(z0,ε0/2)
+ Ce−ε1/h,

with some constant C > 0. Setting g(s) := C
∫ s
0 〈s′〉1−σds′, and using Gronwall’s

lemma, we finally obtain,

‖w(s)‖2L2
�̃0

(z0,ε0/2)
≤ eg(s)‖w(0)‖2L2

�̃0
(z0,ε0/2)

+ C
∫ s

0
eg(s)−g(s′)−ε1/hds′;

‖w(0)‖2L2
�̃0

(z0,ε0/2)
≤ eg(s)‖w(s)‖2L2

�̃0
(z0,ε0/2)

+ C
∫ s

0
eg(s

′)−ε1/hds′.

Then, replacing s by t/h and observing that g(s) = O(〈s〉2−σ ) = O(hσ−2) = o(h−1),
the equivalence (x0, ξ0) /∈ WFa(u0) ⇐⇒ (x0, ξ0) /∈ WFa(u(t)) follows immediately,
and the result is proved in this case.

Now, let us still consider the case where the perturbation is short range, but the
metric is not necessarily flat anymore. Then, the result we have to prove is the
following: for any t > 0 and (x0, ξ0) ∈ NT+, one has the equivalence,

(x0, ξ0) ∈ WFa(u0) ⇐⇒ S+(x0, ξ0) ∈ WFa(e
itP0e−itPu0).

Proceeding as in the flat case, we arrive again at Eq. (3.4), but this time B(s, h) is of
order 0, and can be written as,

B(s, h) = B0(s, h) + hB1(s, h),

where B1 is as before, and the symbol of B0 is,

b0(s; z, ζ ) = 1

2

n∑
j,k=1

(aj,k(z + iζ + sζ ) − δj,k)ζjζk .

Then, in order to get rid of B0(s), we construct a Fourier integral operator F(s, h) on
H�0,z0 , verifying, {

ih∂sF(s, h) − B0(s, h)F(s, h) ∼ O(h);
F |s=0 = I .

More precisely, we look for F(s, h) of the form,

F(s)v(z) = 1

(2πh)n

∫
γs(z)

ei(ψ(s,z,η)−yη)/hv(y)dydη, (3.12)

where γs(z) is a convenient contour and ψ is a holomorphic function that must solve
the system (eikonal equation),
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{
∂sψ + b0(s, z,∇zψ) = 0;
ψ |s=0 = z.η.

(3.13)

The construction of ψ(s) for small s just follows from standard Hamilton-Jacobi
theory, and the extension to larger values of s can be made by using the classical flow
Rs of b0(s), that is related to the Hamilton flow of p through the formula,

Rs = κ ◦ exp(−sHp0) ◦ exp sHp ◦ κ−1, (3.14)

where κ(x, ξ) = (x − iξ, ξ) is the complex canonical transformation associated with
T . We refer to [7], Sect. 6, for the detailed construction.

In that way, we find a solution ψ(s, ζ, η) of (3.13), defined for s ∈ R, z close to
z0 := x0 − iξ0 (where (x0, ξ0) ∈ NT+ is fixed arbitrarily), and η close to ξ0. One also
has the relation,

(z,∇zψ(s, z, η)) = Rs(∇ηψ(s, z, η), η), (3.15)

whichmeans thatψ is a generating function of the complex canonical transformation
Rs. In other words, the operator F(s, h) defined by (3.12) quantizes the canonical
relation Rs, and, setting zs := πzRs(z0, ξ0) (where πz : (z, ζ ) �→ z), one can show
that for any ε0 > 0 small, F(s, h) acts as,

F(s) : H�0(|z − z0| < ε0) → H�0(|z − zs| < ε1), (3.16)

for some ε1 = ε1(ε0) > 0. A priori, ε1 also depends on s, but as a matter of fact, since
Rs tends to R∞ := κ ◦ S+ ◦ κ−1 on a neighborhood of (z0, ξ0) as s → +∞, one can
prove that F(s; h) admits a limit F∞(h) that is a FIO quantizing R∞. Then, the action
(3.16) remains valid for 0 ≤ s ≤ +∞ (with z∞ := πzR∞(z0, ξ0)), ε1 can be taken
independent of s, and the norm of F(s) is uniformly bounded both with respect to h
and s ≥ 0.

Now, by construction, for s ∈ R, F(s) verifies,

ih∂sF(s) − B0(s)F(s) = hF1(s),

where F1(s) : H�0(|z − z0| < ε0) → H�0(|z − zs| < ε1) is of the form,

F1(s)v(z) = 1

(2πh)n

∫
γs(z)

ei(ψ(s,z,η)−yη)/hf1(s, z, η; h)v(y)dydη,

with f1 is an analytic symbol that is O(〈s〉−1−σ ) as s → ∞.
In the same way, for any y close enough to z0, we can define a Fourier integral

operator F̃(s) of the form,

F̃(s)v(y) := 1

(2πh)n

∫
γ̃s(y)

ei(yη−ψ(s,z,η))/hv(z)dzdη,
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(where γ̃s(y) is again a convenient contour), such that F̃(s) maps H�0(|z − zs| < ε0)

into H�0(|z − z0| < ε1), and verifies,

ih∂sF̃(s) + F̃(s)B = hF̃1(s), (3.17)

where F̃1(s) : H�0(|z − zs| < ε0) → H�0(|z − z0| < ε1) is a FIO with same phase
as F̃(s) and symbol f̃1 = O(〈s〉−1−σ ).

Now, setting,
w̃(s) = F̃(s)Tu(hs) ∈ H�0(|z − z0| < ε1),

by (3.4) and (3.17), we see that w̃ verifies,

i∂sw̃(s) =
[
F̃(s)B1(s) + F̃1(s)

]
Tu(hs).

Moreover, sinceA(s) := F(s)F̃(s) is an elliptic pseudodifferential operator onH�0,zs ,
by taking a parametrix Ã(s), we have,

Tu(hs) = Ã(s)F(s)w(s) in H�0(|z − zs| < ε), (3.18)

(for some ε > 0 independent of s), and thus, we obtain,

i∂sw̃(s) = B̃1(s)w̃(s). (3.19)

in H�0(|z − z0| < ε′), where B̃1(s) :=
[
F̃(s)B1(s) + F̃1(s)

]
Ã(s)F(s) is a pseudod-

ifferential operator on H�0(|z − z0| < ε′) with the same properties as B1(s) when
s → +∞.

Thus, we are reduced to a situation completely similar to that of the flat case, and,
if for instance (x0, ξ0) /∈ WFa(u0), the same arguments show that,

‖w(s)‖L2�0
(z0,δ) ≤ Ce−δ/h,

for some positive constant δ independent of h > 0 small enough and s ∈ [0,T/h].
As a consequence, using (3.18) and the fact that Ã(s)F(s) is uniformly bounded from
L2�0

(z0, δ) to L2�0
(zs, δ′) for some δ′ > 0, we obtain (with some new constantC > 0),

‖Tu(hs)‖L2�0
(zs,δ′) ≤ Ce−δ/h.

Replacing s by t/h with t > 0 fixed, and observing that zt/h tends to κ ◦ S+(x0, ξ0)
as h → 0+, we conclude that S+(x0, ξ0) /∈ WFa(u(t)). The converse can be seen in
the same way, and thus Theorem2.1 is proved.

In the long range case, the construction of W± results from standard Hamilton-
Jacobi theory, and the proof is very similar, except that we now have to handle
expressions like
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eiW̃±(s,hDz)/hv(z; h) :=
∫

γ (s,z)
ei(z−y)ζ/h+iW̃±(s,ζ )/hv(y)dydz,

where γ (s, z) is a good contour in the sense of [13], with some uniformity as s → ∞.
Then, one can show that eiW̃±(s,hDz)/h is aFourier integral operator actingofSjöstrand’s
spaces H�0 , in the sense that one has,

eiW̃±(s,hDz)/h : H�0(s(z0, ε1)) → H�0(s(Zs(z0), ε2)),

with ε1, ε2 > 0 small enough, and where we have set,

s(Z, ε) := {z ∈ C
n ; 〈s〉−1|Re (z − Z)| + |Im (z − Z)| < ε}.

We refer to [8] for more details.
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