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Preface

On May 14–26, 2012, and May 20–24, 2013, two workshops took place at the
Northwestern University Mathematics Department, as part of the emphasis year in
microlocal analysis. The main subjects of the workshops were algebraic and ana-
lytic microlocal analysis, respectively. The organizers of the algebraic workshop in
2012 were Dmitry Tamarkin and Boris Tsygan, while the analytic workshop in
2013 was organized by Michael Hitrik and Steve Zelditch. This volume consists of
articles expanding on some mini-courses and talks presented at the workshops.
Altogether, they span over a large variety of topics, ranging from foundational
material discussed in the mini-courses to advanced research level papers.

We shall now proceed to give a description of the chapters of the volume. When
doing so, we shall discuss separately contributions of the authors corresponding to
each of the two workshops.

Algebraic Microlocal Analysis

The contributions of Losev, Schapira, Tamarkin, and Tsygan are devoted to alge-
braic microlocal analysis. The discipline started in 1959 when Mikio Sato intro-
duced hyperfunctions. This is the starting point of Schapira’s article.
A hyperfunction on R is a boundary value of an analytic function, that is, a complex
analytic function on C=R up to an analytic function on C. More generally, for a real
analytic manifold M which is the real part of a complex analytic manifold M, the
sheaf of hyperfunctions on M is the cohomology of OX with supports in M, twisted
by the orientation sheaf. Distributions are examples of hyperfunctions. Sato defined
the microlocal version of hyperfunctions, namely the sheaf of microfunctions that
lives not onM but on the cotangent bundle T�M. This sheaf is obtained from OX by
another fundamental sheaf-theoretic construction, namely by microlocalization
(which is the Fourier-Sato transform of specialization). A hyperfunction defines a
microfunction whose support is a closed conical subset of T�M. This support is
called the microsupport of the original hyperfunction.
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Next, we turn to explaining how to interpret solutions of linear PDE in terms of
homological algebra of sheaves. Given a differential operator P and a solution u of
Pu ¼ 0; the formula Q 7!Qu defines a homomorphism of D-modules D=DP ! O
where D is the ring of all differential operators and O could be any space of

(generalized) functions containing u: Set M ¼ D=DP: The short complex O!P O
computes Ext�ðM;OÞ because it can be interpreted as

HomDðD!�P D;OÞ:

This suggests the definition of the complex of sheaves, or rather its image in the
derived category of sheaves,

SolðMÞ ¼ RHomðM;OXÞ

for any sheaf M of DX-modules where DX is the sheaf of algebras of holomorphic
differential operators and OX is the sheaf of holomorphic functions. As above, OX

can be replaced by any reasonable sheaf of (generalized) functions.

Remark 1 Note that a DX-module is a generalization of a bundle with a flat con-
nection. For the latter, one can define the De Rham complex which is a complex of
sheaves on X. This easily generalizes to any DX-module. The De Rham complex
DR�ðMÞ is very close to the sheaf of solutions, in fact it is the same up to some
duality. (Of course one of the functors is contravariant and the other is covariant).

A complex M of DX-modules (with an additional condition, namely the exis-
tence of a good filtration) naturally gives rise to a microlocal object, namely a sheaf
of OT�X-modules grðMÞ. This is due to the fact that the sheaf of algebras of
differential operators DX is filtered by order, and its associated graded is OT�X The
support of the cohomology of grðMÞ is a conical closed subset SSðMÞ of T�X

which is called the singular support of M. When M is of the form D!�P D then

grðMÞ is given by OT�X !rðPÞ OT�X where rðPÞ is the principal symbol of P: The
singular support is therefore the characteristic variety of P, i.e., the subset of T�X
where rðPÞ is degenerate.

When one studies a real analytic differential operator P on a real analytic M as

above, one can interpret the complex OM !P OM as SolðMÞ �CX CM where

M ¼ DX !�P DX .
So far, we have seen two prominent applications of homological algebra of

sheaves in microlocal analysis. One is due to the fact that, when M is real analytic
and X is its complexification, hyperfunctions and microfunctions on M can be
obtained by standard sheaf-theoretical constructions from the sheaf OX of holo-
morphic functions. The other is due to the fact that, for a complex analytic manifold
X, a sheaf M of DX-modules defines a sheaf of CX-modules, via one of the two
related constructions Sol or DR�. The latter suggests that, for a sheaf F on a
manifold M, one can define its microsupport in T�M: This was carried out by
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Kashiwara and Schapira for any C1 manifold M (in which case the relation
between D-modules and sheaves is far from direct). The microsupport lSuppðFÞ is
a conical closed subset of T�M: A fundamental theorem says that when F ¼
SolðMÞ on a complex manifold X, then lSuppðFÞ ¼ SSðMÞ. If N is a subman-
ifold of M, lSuppðCNÞ is the conormal bundle of N.

Given the link between D-modules and sheaves, one could expect that a sheaf F
on M defines a sheaf on T�M, similarly to a DX-module M defining an OT�X-
module grðMÞ: What actually happens that two sheaves F and G on M define the
sheaf lhomðF ;GÞ on T�M. This sheaf is supported on lSuppðFÞ\ lSuppðGÞ: Its
(derived) direct image to M is the usual (derived) sheaf of morphisms
RHomðF ;GÞ:

In light of the above, we see that a real analytic differential operator P is elliptic
if and only if

SSðMÞ\lSuppðCMÞ � T�
MM

This gives the motivation for the definition due to Schapira and Schneiders: An
elliptic pair on a complex manifold X is an R-constructible sheaf F together with a
DX-module M such that

SSðMÞ\ lSuppðFÞ � T�
MM: ð1Þ

The complex OM !P OM generalizes to DR�ðMÞ �CX F . Schapira and
Schneiders proved that, when the intersection in (1) is compact, then
RCðM;DR�ðMÞ �CX FÞ has finite-dimensional total cohomology (Theorem 1.5.1
and Corollary 1.5.2; a key result is the generalization of the elliptic regularity
theorem). Therefore, the Euler characteristic of this complex is well defined, an
invariant that generalizes the index of a real analytic elliptic differential operator
P. Schapira and Schneiders proved that this invariant can be computed as the
integral of some cohomology class ovet T�X: They conjectured a formula for this
cohomology class in terms of the Chern character of grðMÞ, the Todd class of
TX , and the microlocal Euler class of F (see below). This conjecture was proved by
Bressler, Nest, and Tsygan.

The above is the topic of Schapira’s lecture 1. Lecture 2 discussed trace-like
invariants of objects such as D-modules and R-constructible sheaves. A recipient of
such invariants is microlocal cohomology of X, i.e., cohomology with given support
of T�X with coefficients in the sheaf p�1ðxXÞ where xX is the dualizing sheaf on X.
In other words, when X is oriented, the microlocal cohomology is the middle
cohomology of X with supports in a given (conical closed) subset K. For an
R-constructible sheaf F with microsupport contained in K, one defines its
microlocal Euler class leuðFÞ in H0

KðT�X; p�1ðxXÞÞ; for a coherent DX-moduleM
with singular support contained in K0, one defines its characteristic class hhEðMÞ in
H0

K0 ðT�X; p�1ðxXÞÞ: Note that, if K\K0 is compact, then leuðFÞ ^ hhEðMÞ is in
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Htop
c ðT�XÞ; the theorem of Schapira and Schneiders says that the Euler character-

istic of the elliptic pair ðM;FÞ is the integral of this class over T�X:
Lecture 2 starts with the definition of Hochschild homology. For an associate

algebra A, its Hochschild homology HHðAÞ can be interpreted as a universal
trace-like invariant of A. In particular, HH0ðAÞ ¼ A=½A;A� and for any finitely
generated projective module M over A, its Hattori-Stallings trace is a well-defined
element of HH0ðAÞ: In fact, HH0 does not change when one passes to a matrix
algebra, and, ifM is the image of an idempotent e, the class of e in the quotient HH0

is well defined.
Hochschild homology is naturally defined in greater generality than for asso-

ciative algebras, namely for differential graded categories. In this generality, the
Hochschild homology class of an object is even easier to define; it is in fact almost
tautological. The question now becomes to compute this homology in the following
examples: (a) the dg category ShKðXÞ of (R-constructible) complexes of sheaves on
X with microsupport in K and (b) the dg category DX �mod0K of perfect complexes
of DX-modules with singular support in K0. The construction of hhEðMÞ does in
fact come from a morphism

HHðDX �modK0 Þ ! H�
K0 ðT�X; p�1xXÞ

This map is very plausibly an isomorphism. In contrast to this, as far as we
know, there is nothing of the sort that is known in case a). The question how to
describe HHðShKðXÞÞ is rather central not only in microlocal analysis but in
symplectic topology and also in Langlands duality theory.

Remark 2 The above is very interesting when one replaces the Hochschild
homology by other invariants of dg categories, such as the (negative, periodic)
cyclic homology, or algebraic K theory, or perhaps some sort of a universal, or
motivic, invariant. If H is such an invariant then the dg functor

Ell pairsðXÞ ! PerfðCÞ; ðM;FÞ 7!RCðDR�ðMÞ �CX FÞ ð2Þ

induces a map

HðEll pairsðXÞÞ ! HðPerfðCÞÞ!	 HðCÞ ð3Þ

A generalized Schapira–Schneiders theorem would provide a formula for this
map. The works of Beilinson [1] and Patel [3], and a very recent preprint of
Groechenig [2], are closely related to the where cases M ¼ OX and F any con-
structible sheaf on M, resp. F ¼ CX and M a coherent algebraic DX-module.

Lecture 3 is devoted to a sheaf-theoretic interpretation of new classes of func-
tions and distributions, as well as to its applications. These new classes are tem-
pered C1 functions, tempered distributions, and Whitney C1 functions on a real
analytic manifold X. On a complex analytic manifold X one also defines tempered
and Whitney analytic functions. That they can be interpreted in terms of sheaves is
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quite nontrivial because growth properties of functions are not local. But it had been
shown that tempered functions and distributions form sheaves on the subanalytic
site of X. An alternative and closely related sheaf-theoretical description of these
classes of (generalized) functions is in terms of indsheaves of Kashiwara and
Schapira.

To explain the applications of these techniques to D-modules, recall the functor
DR� from DX-modules to sheaves. Kashiwara proved that this is an equivalence of
derived categories between regular holonomic DX-modules and C-constructible
sheaves. This is called the Riemann–Hilbert correspondence because it assigns to a
bundle with a flat connection the sheaf of its De Rham complexes whose degree
zero cohomology is the sheaf of flat sections. When one considers all (possibly
irregular) holonomic DX-modules, the De Rham functor has no chance of being an

equivalence because, for example, on X ¼ C
� the flat connection d

dz þ 1
z2

� �
dz has a

global flat section exp 1
z

� �
and cannot be distinguished from d

dz dz:

To establish a Riemann–Hilbert correspondence for all holonomic DX-modules,
one introduces two new ideas. First, one considers solutions with values in tem-
pered holomorphic functions. Second, one introduces the new variable t. In a series
of recent works a Riemann–Hilbert correspondence was established between all
holonomic DX-modules and enhanced sheaves on X (see references in 3.4 and 3.5).

To make a link between Schapira’s lectures and other algebraic contributions in
this volume, let us start by returning to microlocalization of differential operators.
We already mentioned that grðDXÞ lives naturally on the cotangent bundle. In what
sense does DX itself live on the cotangent bundle? In fact, one can define the sheaf
of algebras of microdifferential operators ET�X whose direct image to X is DX This
sheaf plays a crucial role in constructing the microlocal class hhE in lecture 2. There
is another, more algebraic way to pass to a sheaf on T�X. If one replaces differential
operators DX by �h-differential operators D�h

X (also called the Rees ring of DX), then
one can replace ET�X by the sheaf AT�X , the canonical deformation quantization of
T�X. Locally, this sheaf is isomorphic to OT�X ½½�h�� with noncommutative multi-
plication which coincides with the standard one modulo �h: Deformation quanti-
zation is beyond the scope of Schapira’s lectures in this volume (it is the subject of
a large series of his joint works with Kashiwara).

Note also that the idea of introducing an extra variable to define enhanced
sheaves (see above) was inspired by Tamarkin’s contribution in this volume, which
itself was inspired by the work of D’Agnolo, Dito, Polesello, and Schapira on
deformation quantization.

Now note that deformation quantization can be defined for arbitrary symplectic
(and, more generally, Poisson) manifolds. When one looks at constructions of
symplectic topology such as Floer cohomology and Fukaya theory, one observes
that many of them seem to be microlocal in nature, in the sense that they are based
in a significant part on such microlocal notions as Lagrangian submanifolds,
Maslov index, etc. In the early eighties, Feigin asked a question whether these
constructions, or their analogues, can be carried out microlocally, for example in
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terms of some (enhanced) version of the category of modules over the canonical
deformation quantization algebra. First steps in this direction were carried out by
Bressler and Soibelman and by Kapustin and Witten. An answer for T�X (in terms
of constructible sheaves on X) was given by Nadler and Zaslow.

Tamarkin’s paper in this volume provides another version of an answer for T�X.
He defines a category of sheaves on X 
 R (note the extra variable) satisfying
certain condition on their microsupport. A direct link to symplectic topology is not
at all clear. What is established is that his category satisfies the same key properties
as the Fukaya category.

More precisely, for two objects F and G, HOMðF ;GÞ is a module over the
Novikov ring K. For any object F , its microsupport lSuppðFÞ is defined. Under
some compactness assumptions, HOMðF ;GÞ ¼ 0 if microsupports of F and G do
not intersect. For any Hamiltonian isotopy U which is the identity outside a
compact, a functor TU is defined. One has lSuppðTUFÞ ¼ UðlSuppðFÞÞ: Finally,
HOMðTUðFÞ;GÞ!	 HOMðF ;GÞ modulo K-torsion. In particular, if HOMðF ;GÞ is
not a torsion K-module then lSuppðFÞ cannot be displaced from lSuppðGÞ by a
Hamiltonian isotopy (under a compactness condition).

Note also that Tamarkin’s construction for a two-dimensional torus gives the
answer similar to the Fukaya category as computed by Polishchuk and Zaslow. This
is not part of Tamarkin’s paper, but it is reviewed in Tsygan’s contribution.

Tsygan’s contribution to this volume should be viewed as related by a conjec-
tural Riemann–Hilbert functor to Tamarkin’s (or rather to the sequel [4] dealing
with an arbitrary symplectic manifold). Instead of enhanced sheaves, it is based on
enhanced modules over the canonical deformation quantization. For a symplectic
manifold M; enhanced modules are dg modules over the sheaf of dg algebras A�

M
with an extra structure. To describe this structure, note that the fundamental
groupoid …1ðMÞ acts onA� up to inner automorphisms (as defined in Section 5); the
modules are required to have a compatible action of …1ðMÞ: For two such modules
V� and W�; the standard complex computing ExtA�ðV�;W�Þ acquires an A1 action
of …1ðMÞ and therefore becomes an 1-local system on M. (This is an expression
of the standard fact that inner automorphisms act on Ext trivially).

As in the Fukaya category, one associates an object to a Lagrangian submanifold
L of M, subject to some topological conditions. It may be worthwhile to describe it
here in more detail, in order to clarify a connection with other contributions to this
volume (algebraic and otherwise).

For this, let us come back to deformation quantization. As a version of what we
did above, one can define it for M ¼ T�X in terms of asymptotics of the product of
(pseudo)differential operators depending on �h. Given a Lagrangian submanifold L
of T�X; one can extend this definition to asymptotics of these operators acting on
(�h-dependent) Lagrangian distributions with wave front L: One gets a sheaf of
modules over the canonical deformation quantization algebra AM supported on L
(this construction is reviewed in section 15). Actually, it gives rise to a dg module
over a dg algebra, call it B�

L; which is intermediate between AM and A�
M . It also

carries an action of …1ðLÞ, of the type that we described above. To construct a
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module over A�
M with an action of …1ðMÞ from a module over B�

L; with the action of
…1ðMÞ, one uses the standard procedure of induction.

The bigger algebra A�
M could be understood as describing asymptotics of the

product of all �h-dependent Fourier integral operators. Its construction is based on
Fedosov’s technique of deformation quantization. Including asymptotics of FIO and
Lagrangian distributions, or Guillemin and Sternberg’s geometric asymptotics, into
Fedosov’s theory was suggested by Karabegov in the late nineties.

Losev’s contribution to this volume is a survey on deformation quantization of
certain algebraic varieties, namely symplectic resolutions of singularities V=C
where V is a complex symplectic space and C is a finite group of symplectomor-
phisms. These resolutions are not so easy to describe; the first example is T�

P
1

which is a resolution of C2=ðZ=2Þ: The latter can be identified with the nilpotent
cone in sl2; and the map to it from T�P1 is the moment map for the standard sl2
action. One way to approach these resolutions is to observe that they are Morita
equivalent to an easily understood noncommutative algebra, namely the smash (or
cross) product C½V �#C of C and C½V �: In fact, this algebra is the algebra of
endomorphisms of a bundle, called the Procesi bundle, on the resolution. Now one
can consider deformations of the smash product. The first tool of studying defor-
mations of algebras is Hochschild cohomology (not homology discussed above).
This cohomology is not hard to compute in our case, and all deformations can be
classified. The easiest one is the smash product of C by the Weyl algebra of V , but
there are more interesting deformations, namely symplectic reflection algebras of
Etingof and Ginzburg. Now, one can do two things: using Morita equivalence,
define a deformation of the symplectic resolution, or, observing that the idempotent
e ¼ 1

jCj
P

c2C c deforms to an idempotent, and that

eðC½V �#CÞe!	 C½V�C;

obtain a deformation of C½V�C. The latter deformation is called a spherical sym-
plectic reflection algebra.

Let us try to describe what we have in a little more analytic terms: Consider all
the differential operators, plus a finite group of invertible FIOs. We can of course
just generate an algebra of operators by them. But it turns out that there is a new,
perhaps more interesting, product on this algebra. We get a new operator algebra A
containing an idempotent e (the average of elements of the finite group). Elements
of the subalgebra eAe have symbols that are functions not on the cotangent bundle
but on a more nontrivial symplectic manifold.

Remark 3 Let us also note that the big algebra A� from Tsygan’s article is an
attempt to construct an asymptotic version of the algebra generated by differential
operators and all FIO.

As explained in the article, symplectic resolutions can be obtained by
Hamiltonian reduction. A particular example, the Hilbert scheme HilbnðC2Þ of
ideals of codimension n of C½x; y�; is obtained by Hamiltonian reduction from the
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cotangent bundle of the variety of framed representations of the one-loop quiver.
The spherical symplectic reflection algebra can be obtained by quantum
Hamiltonian reduction (Theorem 3.14). This is used to study its representation
theory. Knowing representation theory of the spherical algebra on the one hand, and
interpreting it as deformation quantization of the symplectic resolution on the other,
is akin to saying that these representation operators have symbols that are functions
on the resolutions, as mentioned above. To what extent one can advance this
analogy, and how it could be used either in analysis or in this area of algebra, is not
clear at the moment.

The article in this volume by no means cover all interesting developments in
algebraic microlocal analysis. For example, a very extensive area of microlocal
analysis in positive characteristic is virtually not discussed (except briefly in
Losev’s contribution).

Analytic Microlocal Analysis

The chapter by Robert Berman concerns a determinantal point process on a pro-
jective complex manifold whose underlying kernel is the Bergman kernel associ-
ated to a high power of a complex line bundle equipped with a Hermitian metric,
which need not be positively curved. It is shown, in particular, that in the large
particle number limit, the points concentrate in a droplet given by the support of an
equilibrium measure and that the fluctuations around mean of smooth linear
statistics are asymptotically normal and governed by a Gaussian free field.

The chapter by Bo Berndtsson studies geodesics in the space of positively
curved metrics on a complex line bundle over a Kähler manifold and geodesics in
the finite-dimensional space of Hermitian forms on the space of holomorphic
sections of high powers of the line bundle and establishes certain finite-dimensional
approximation results, in terms of associated spectral measures.

In their chapter, Yaiza Canzani, and John Toth study the nodal sets of eigen-
functions of the Laplacian on a compact real analytic two-dimensional manifold, in
the semiclassical limit. An accurate upper bound is established on the number of
intersections of the nodal sets with certain curves.

The chapter by Michael Christ proves optimal off-diagonal decay bounds for the
Bergman kernels associated to high powers of a complex line bundle over a
compact complex manifold, equipped with a positively curved C1 Hermitian
metric. The following chapter, also by Christ, addresses the related question by
Steve Zelditch of whether the exponentially fast decay of the Bergman kernel away
from the diagonal, associated to a high power of a positively curved complex line
bundle, implies that the corresponding curvature form is real analytic. The question
is answered in the affirmative in a special case when the underlying manifold is the
complex n-dimensional space.

The chapter by Michael Hitrik and Johannes Sjöstrand consists of two separate
parts devoted to a package of results that form the core of Analytic Microlocal
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Analysis: analytic pseudo-differential operators, FBI (or Bargmann) transforms to
the complex domain, associated exponentially weighted spaces of analytic func-
tions and Bergman projections, I-Lagrangian submanifolds and canonical relations,
analytic Fourier integral operators in the complex domain, and conjugation of
Toeplitz operators to analytic pseudo-differential operators.

There exist only partial expositions of this foundational material in the literature
at present. The foundational text is J. Sjöstrand’s 1982 Astérisque book,
Singularités analytiques microlocales. This classic text presents some of the theory
in a general context but much of the general theory can only be found in various
articles of Sjöstrand, and much remains to be written in a systematic way.

The first part of the chapter gives a systematic exposition of the theory in the
case of quadratic phase functions, i.e., the Bargmann–Fock metaplectic represen-
tation. The second part of the chapter is at a more advanced level and in some sense
is a revision and extension of the Astérisque book cited above. The ideal would be
to have a full exposition of the FBI package of results as in the Bargmann–Fock
case but at the same level of generality as this chapter, but that would be a very
arduous and lengthy project which remains for the future.

The chapter by Gilles Lebeau gives a detailed exposition of a theorem of L.
Boutet de Monvel on the convergence in the complex domain of a series of
eigenfunctions of the Laplacian on a real analytic compact manifold.

The purpose of the chapter by André Martinez, Shu Nakamura, and Vania
Sordoni is to provide an overview of the work done by the authors, devoted to the
propagation of singularities for second-order perturbations of the Laplacian in the
real analytic category.

The chapter by Steve Zelditch and Peng Zhou studies spectral asymptotics for
Toeplitz operators on high powers of a positively curved complex line bundle over
a Kähler manifold and proves a two-term pointwise Weyl law for the kernels of
spectral projections of the operator onto sums of eigenspaces of spectral width
inversely proportional to the high power of the line bundle.

In his chapter, Maciej Zworski provides a novel definition of scattering reso-
nances for Schrödinger operators. Namely, it is shown that the resonances can be
defined as viscosity limits of eigenvalues of the operator obtained by perturbing the
Schrödinger operator by a quadratic complex absorbing potential.

We would like to express our sincere gratitude to all the authors for their inspired
lectures at the workshops and their contributions to this volume.

Los Angeles, USA Michael Hitrik
Evanston, USA Dmitry Tamarkin
July 2018 Boris Tsygan

Steve Zelditch
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Algebraic Microlocal Analysis



Procesi Bundles and Symplectic
Reflection Algebras

Ivan Losev

Abstract In this survey we describe an interplay between Procesi bundles on
symplectic resolutions of quotient singularities and Symplectic reflection alge-
bras. Procesi bundles were constructed by Haiman and, in a greater generality,
by Bezrukavnikov and Kaledin. Symplectic reflection algebras are deformations
of skew-group algebras defined in complete generality by Etingof and Ginzburg.
We construct and classify Procesi bundles, prove an isomorphism between spherical
Symplectic reflection algebras, give a proof of wreath Macdonald positivity and of
localization theorems for cyclotomic Rational Cherednik algebras.
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1 Introduction

1.1 Procesi Bundles: Hilbert Scheme Case

A Procesi bundle is a vector bundle of rank n! on the Hilbert scheme Hilbn(C2)

whose existence was predicted by Procesi and proved by Haiman, [34]. This bundle
was used by Haiman to prove a famous n! conjecture in Combinatorics that, in turn,
settles another famous conjecture: Schur positivity of Macdonald polynomials.
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1.1.1 n! Theorem

Consider the Vandermond determinant �(x), where we write x for (x1, . . . , xn), it
is given by �(x) = det(x j−1

i )ni, j=1. Consider the space ∂� spanned by all partial
derivatives of �. This space is graded and carries an action of the symmetric group
Sn (by permuting the variables x1, . . . , xn). A deeper fact is that dim ∂� = n! (and
∂� ∼= CSn as an Sn-module), in fact, ∂� coincides with the space of the Sn-
harmonic polynomials, i.e., all polynomials annihilated by all elements of C[∂]Sn

without constant term.
One can ask if there is a two-variable generalization of that fact. We have several

two-variable versions of �, one for each Young diagram λ with n boxes. Namely,
let (a1, b1), . . . , (an, bn) be the coordinates of the boxes in λ, e.g., λ = (3, 2) gives
pairs (0, 0), (1, 0), (2, 0), (0, 1), (1, 1).

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1)

Then set �λ(x, y) := det(x
a j

i y
b j

i )ni, j=1 so that, for λ = (n), we get �λ(x, y) =
�(x), for λ = (1n), we get�λ(x, y) = �(y), while, for λ = (2, 1), we get�λ(x, y)
= x1y2 + x2y3 + x3y1 − x2y1 − x3y2 − x1y3.

Theorem 1.1 (Haiman’s n! theorem). The space ∂�λ spanned by the partial deriva-
tives of �λ is isomorphic to CSn as anSn-module (whereSn acts by permuting the
pairs (x1, y1), . . . , (xn, yn)) and, in particular, has dimension n!.

This is a beautiful result with an elementary statement and an extremely involved
proof, [34].

1.1.2 Macdonald Positivity

Before describing some ideas of the proof that are relevant to the present survey,
let us describe an application toMacdonald polynomials, particularly important and
interesting symmetric polynomials with coefficients in Q(q, t). It will be more con-
venient for us to speak about representations of Sn rather than about symmetric
polynomials (they are related via taking the Frobenius character) and to deal with
Haiman’s modified Macdonald polynomials.

Definition 1.2 The modified Macdonald polynomial H̃λ is the Frobenius charac-
ter of a bigraded Sn-module Pλ := ⊕

i, j∈Z
Pλ[i, j] subject to the following three

conditions

(a) The class of Pλ ⊗ ∑n
i=0(−1)i

∧i
C

n[1, 0] is expressed via the irreducibles Vμ

with μ � λ (in the K0 of the bigraded Sn-modules).
(b) Pλ ⊗ ∑n

i=0(−1)i
∧i

C
n[0, 1] is expressed via the irreducibles Vμ with μ � λt .

(c) The trivial module V(n) occurs in Pλ once and in degree (0, 0).
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Here μ � λ is the usual dominance order on the set of Young diagrams (meaning
that

∑k
i=1 μi �

∑k
i=1 λi ) and λt denotes the transpose of λ.

It is not clear from this definition that the representations Pλ exist (the statement
on the level of virtual representations is easier but also non-trivial, this was known
before Haiman’s work).

Theorem 1.3 (Haiman’sMacdonald positivity theorem).A bigradedSn-module Pλ

exists (and is unique) for any λ. Moreover, Pλ coincides with ∂�λ, where ∂�λ is
is given the structure of a bigraded Sn-module as the quotient of C[∂x , ∂ y] (via
f �→ f �λ).

1.1.3 Hilbert Schemes and Procesi Bundles

The proofs of the two theorems above given in [34] are based on the geometry of the
Hilbert schemes Hilbn(C2) of points in C

2. A basic reference for Hilbert schemes
of points on smooth surfaces is [53]. As a set, Hilbn(C2) consists of the ideals
J ⊂ C[x, y] of codimension n. It turns out that Hilbn(C2) is a smooth algebraic
variety of dimension 2n. It admits a morphism (called the Hilbert-Chow map) to the
variety Symn(C

2) of the unordered n-tuples of points inC
2: to an ideal J one assigns

its support, where points are counted with multiplicities. Of course, Symn(C
2) is

nothing else but the quotient space (C2)⊕n/Sn , the affine algebraic variety whose
algebra of functions is the invariant algebra C[x, y]Sn . The Hilbert-Chow map is a
resolution of singularities.

Note that the two-dimensional torus (C×)2 acts on Hilbn(C2) and on Symn(C
2),

the action is induced from the following action on C
2: (t, s).(a, b) := (t−1a, s−1b).

The fixed points of this action on Hilbn(C2) correspond to the monomial ideals
(=ideals generated by monomials) in C[x, y], they are in a natural one-to-one corre-
spondence with Young diagrams (as before we fill a Young diagram with monomials
and take the ideal spanned by all monomials that do not appear in the diagram). Let
zλ denote the fixed point corresponding to a Young diagram λ.

Following Haiman, consider the isospectral Hilbert scheme In , the reduced Carte-
sian product C

2n ×Symn(C
2) Hilbn(C2), let η : In → Hilbn(C2) be the natural mor-

phism. It is finite of generic degree n!. The main technical result of Haiman, [34], is
that In is Cohen-Macaulay and Gorenstein. SoP := η∗OIn is a rank n! vector bundle
on Hilbn(C2) (the Procesi bundle). By the construction, each fiber of this bundle
carries an algebra structure that is a quotient of C[x, y]. Let us write Pλ for the fiber
of P in zλ, this is an algebra that carries a natural bi-grading because the bundle P
is (C×)2-equivariant by the construction. On the other hand, ∂�λ is a quotient of
C[∂x , ∂ y] by an ideal and so is also an algebra. The latter algebra is bigraded. Haiman
has shown that Pλ

∼= ∂�λ, an isomorphism of bigraded algebras. This finishes the
proof of Theorem 1.1.

Let us proceed to Theorem 1.3. The class in (a) of Definition 1.2 is that of the
fiber at zλ of the Koszul complex
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P ← hx ⊗ P ← �2hx ⊗ P ← . . . , (1)

wherehx is the span of x1, . . . , xn viewed as endomorphisms ofP . Haiman has shown
that In is flat over Spec(C[x]) (withmorphism In → Spec(C[x, y]) → Spec(C[x])).
It follows that (1) is a resolution of P/hxP . Now (a) follows from the claim that, for
any Young diagram λ, the support of the isotypic Vλ-component in P/hxP contains
only points zμ with μ � λ. This was checked by Haiman. Part (b) is analogous, while
(c) follows directly from the construction.

There are several other proofs of Theorem 1.3 available. Two of them use the
geometry of Hilbert schemes and Procesi bundle, [8, 29]. We will discuss (a some-
what modified) approach from [8] in detail in Sect. 5.

1.2 Quotient Singularities and Symplectic Resolutions

1.2.1 Setting

Let V be a finite dimensional vector space over C equipped with a symplectic form
� ∈ ∧2 V ∗. Let � be a finite subgroup of Sp(V ). The invariant algebra C[V ]� is
a graded Poisson algebra (as a subalgebra of C[V ]) and the corresponding quotient
V/� = Spec(C[V ]�) is a singular Poisson affine variety that comeswith aC

×-action
induced from the action on V by dilations: t.v := t−1v.

1.2.2 Symplectic Resolutions

One can ask if there is a resolution of singularities of V/� that is nicely compatible
with the Poisson structure (and with theC

×-action). This compatibility is formalized
in the notion of a (conical) symplectic resolution.

Definition 1.4 Let X0 be a singular normal affine Poisson variety such that the
regular locus Xreg

0 is symplectic. We say that a variety X equipped with a morphism
ρ : X → X0 is a symplectic resolution of X0 if X is symplectic (with form ω), ρ is
a resolution of singularities and ρ : ρ−1(Xreg

0 ) → Xreg
0 is a symplectomorphism.

Definition 1.5 Further, suppose that X0 is equipped with a C
×-action such that

• the corresponding gradingC[X0] = ⊕
i∈Z

C[X0]i is positive,meaning thatC[X0]i
= {0} for i < 0 and C[X ]0 = C,

• and the Poisson bracket on C[X0] has degree −d for some fixed d ∈ Z>0:
{C[X0]i , C[X0] j } ⊂ C[X0]i+ j−d for all i, j .

We say that a symplectic resolution X is conical if it is equipped with a C
×-action

making ρ equivariant.
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The variety X0 = V/� is normal and carries a natural C
×-action (by dilations)

as in Definition 1.5 with d = 2. Also note that the C
×-action on X automatically

satisfies t.ω = t−dω. Finally, note that, under assumptions of Definition 1.4, we have
C[X ] = C[X0].

1.2.3 Symplectic Resolutions for Quotient Singularities

In the previous subsection, we have already seen an example of (V, �) such that
V/� admits a conical symplectic resolution: V = (C2)⊕n, � = Sn , in this case one
can take X = Hilbn(C2) together with the Hilbert-Chowmorphism, see [53, Section
1].

There are other examples as well. Let �1 be a finite subgroup of SL2(C), such
subgroups are classified (up to conjugacy) by Dynkin diagrams of ADE types. Say,
the cyclic subgroupZ/(� + 1)Z (embedded into SL2(C) via n �→ diag(ηn, η−n)with
η := exp(2π

√−1/(� + 1))) corresponds to the diagram A�. The quotient singularity

C
2/�1 admits a distinguished minimal resolution to be denoted by C̃2/�1. This

resolution is conical symplectic, see, e.g., [53, Section 4.1].
The examples of Sn and �1 can be “joined” together. Consider the group �n :=

Sn � �n
1 . It acts on Vn := (C2)⊕n: the symmetric group permutes the summands,

while each copy of �1 acts on its own summand. The quotient singularities Vn/�n

admit symplectic resolutions. For example, one can take X := Hilbn(C̃2/�1). But
there are other conical symplectic resolutions of Vn/�n , conjecturally, they are all
constructed as Nakajima quiver varieties, we will recall the construction of these
varieties in Sect. 3.1.4.

To finish this section, let us point out that, presently, two more pairs (V, �) such
that V/� admits a symplectic resolutions are known, see [4, 5]. In this paper, we
are not interested in these cases.

1.3 Procesi Bundles: General Case

1.3.1 Smash-Product Algebra

One nice feature of quotient singularities V/� is that they always have a nice res-
olution of singularities which is, however, noncommutative algebraic rather than
algebro-geometric: the smash-product algebra C[V ]#� (a general notion of non-
commutative resolutions of singularities is due to Bondal-Orlov, [13], and van den
Bergh, [60]).

As a vector space, C[V ]#� is the tensor product C[V ] ⊗ C�, and the product on
C[V ]#� is given by

( f1 ⊗ γ1) · ( f2 ⊗ γ2) = f1γ1( f2) ⊗ γ1γ2, f1, f2 ∈ C[V ], γ1, γ2 ∈ �,
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whereγ1( f2) denotes the image of f2 under the action ofγ1. The definition is arranged
in such a way that a C[V ]#�-module is the same thing as a �-equivariant C[V ]-
module. Note that the algebra C[V ]#� is graded, for a homogeneous element f of
degree n, the degree of f ⊗ γ is n.

Let us explain what we mean when we say that C[V ]#� is a resolution of singu-
larities of V/�. Note thatC[V ]� can be recovered fromC[V ]#� in two different but
relatedways. First, we have an embeddingC[V ]� ↪→ C[V ]#� given by f �→ f ⊗ 1.
The image lies in the center (this is easy) and actually coincides with the center (a
bit harder). Second, consider the element e ∈ C�, e := |�|−1 ∑

γ∈� γ, the averaging
idempotent. Consider the subspace e(C[V ]#�)e ⊂ C[V ]#�. It is obviously closed
under multiplication, and e is a unit with respect to the multiplication there. So
e(C[V ]#�)e is an algebra, to be called the spherical subalgebra of C[V ]#�. It is
isomorphic to C[V ]� , an isomorphism is given by f �→ e f .

Thanks to the realization of C[V ]� as a spherical subalgebra, we can consider
the functor M �→ eM : C[V ]#� -mod → C[V ]� -mod (an analog of the morphism
ρ). Note that the algebra C[V ]#� has finite homological dimension (because C[V ]
does) and so is “smooth”. The algebra C[V ]#� is finite over C[V ]� which can be
thought as an analog of ρ being proper. Also, after replacing C[V ]#�, C[V ]� with
sheaves OV reg#�,OV reg/� on V reg/�, where

V reg := {v ∈ V |�v = {1}}, (2)

the functor M �→ eM becomes a category equivalence. This is an analog of ρ being
birational.

1.3.2 Procesi Bundle: An Axiomatic Description

Now let X be a conical symplectic resolution ofV/�.Wewant to relate X toC[V ]#�.
Definition 1.6 A Procesi bundle P on X is a C

×-equivariant vector bundle on
X together with an isomorphism EndOX (P)

∼−→ C[V ]#� of graded algebras over
C[X ] = C[V ]� such that Exti (P,P) = 0 for i > 0.

Note that the isomorphism EndOX (P)
∼−→ C[V ]#� gives a fiberwise �-action on

P . The invariant sheaf eP is a vector bundle of rank 1. We say that P is normalized
if eP = OX (as a C

×-equivariant vector bundle). We can normalize an arbitrary Pro-
cesi bundle by tensoring it with (eP)∗. Below we only consider normalized Procesi
bundles.

In particular, Haiman’s Procesi bundle on X = Hilbn(C2) fits the definition, this
is essentially a part of [33, Theorem 5.3.2] (and is normalized). The existence of a
Procesi bundle on a general X was proved by Bezrukavnikov and Kaledin in [11].
We will see that the number of different Procesi bundles on a symplectic resolution
of C

2n/�n equals 2|W | if n > 1, whereW is the Weyl group of the Dynkin diagram
corresponding to �1. For example, when �1 = Z/�Z, we get W = S� and so the
number of different Procesi bundles is 2�!.
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1.4 Symplectic Reflection Algebras

1.4.1 Definition

Symplectic reflection algebras were introduced by Etingof and Ginzburg in [21].
Those are filtered deformations of C[V ]#�.

By a symplectic reflection in� onemeans an elementγwith rk(γ − 1V ) = 2.Note
that the rank has to be even: the image of γ − 1V is a symplectic subspace of V . By S
we denote the set of all symplectic reflections in �, it is a union of conjugacy classes,
S = �r

i=1Si . Now pick t ∈ C and c = (c1, . . . , cr ) ∈ C
r . We define the algebra Ht,c

as the quotient of T (V )#� by the relations

u ⊗ v − v ⊗ u = t�(u, v) +
r∑

i=1

ci
∑

s∈Si
�(πsu,πsv)s, u, v ∈ V . (3)

Here we write πs for the projection V � im(s − 1V ) corresponding to the decom-
position V = im(s − 1V ) ⊕ ker(s − 1V ).

As Etingof and Ginzburg checked in [21], the algebra Ht,c satisfies the PBW
property: if we filter Ht,c by setting deg� = 0, deg V = 1, then gr Ht,c = C[V ]#�
(here we identify V with V ∗ bymeans of� so thatC[V ] ∼= S(V )).Moreover, wewill
see that Ht,c satisfies a certain universality property so this deformation of C[V ]#�
is forced on us, in a way.

1.4.2 Connection to Procesi Bundles

It may seem that Symplectic reflection algebras and Procesi bundles are not related.
This is not so. It turns out that the algebra Ht,c is the endomorphism algebra of a
suitably understood deformation of a Procesi bundleP . This connection is beneficial
for studying both. On the Procesi side, it allows to classify Procesi bundles, [46],
and prove the Macdonald positivity in the case of groups �n with �1 = Z/�Z, [8].
On the symplectic reflection side, it allows to relate the algebras Ht,c to quantized
Nakajima quiver varieties, see [20, 45] and references therein, which then allows
to study the representation theory of Ht,c ([12]) and to prove versions of Beilinson-
Bernstein localization theorems, [25, 40]. Connections between Procesi bundles and
Symplectic reflection algebras is the subject of this survey.

1.5 Notation and Conventions

Let us list some notation used in the paper.
Quantizations and deformations.We use the following conventions for quantizations.
For a Poisson algebra A, we writeA� for its formal quantization. When A is graded,
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we writeA for its filtered quantization. The notationD� is usually used for a formal
quantization of a variety, while D usually denotes a filtered quantization.

When X is a conical symplectic resolution of singularities, we write X̃ for its
universal conical deformation (over H 2

DR(X)) and D̃� stands for the canonical quan-
tization of X̃ .
Symplectic reflection groups and algebras. We write �1 for a finite subgroup of
SL2(C) and �n for the semidirect product Sn � �n

1 . This semi-direct product acts
on Vn := C

2n . In the case when �1 = {1}, we usually write Vn for T ∗
C

n−1, where
C

n−1 is the reflection representation of Sn .
For a group� acting on a space V by linear symplectomorphisms, by S we denote

the set of symplectic reflections in �. By e we denote the averaging idempotent
of �. By H we denote the universal symplectic reflection algebra of (V, �). Its
specializations are denoted by Ht,c.
Quotients and reductions. LetG be a group acting on a variety X . IfG is finite and X
is quasi-projective, then the quotient is denoted by X/G (note that this quotient may
fail to exist when X is not quasi-projective). If G is reductive and X is affine, then
X//G stands for the categorical quotient. A GIT quotient of X under the G-action
with stability condition θ is denoted by X//θG.

When X is Poisson, and the G-action is Hamiltonian, we write X///λG for
μ−1(λ)//G and X///θ

λG for μ−1(λ)//θG.
Miscellaneous notation.

⊗̂ the completed tensor product of complete topological vector spaces/ modules.
(a1, . . . , ak) the two-sided ideal in an associative algebra generated by elements a1, . . . , ak .
A∧χ the completion of a commutative (or “almost commutative”) algebra A with respect

to the maximal ideal of a point χ ∈ Spec(A).
A(V ) the Weyl algebra of a symplectic vector space V .
D(X) the algebra of differential operators on a smooth variety X .
Fq the finite field with q elements.
grA the associated graded vector space of a filtered vector space A.
Hi
DR(X) the i th De Rham cohomology of X with coefficients in C.

OX the structure sheaf of a scheme X .
R�(A) := ⊕

i∈Z
�
iA�i :the Rees C[�]-module of a filtered vector space A.

Sn the symmetric group in n letters.
S(V ) the symmetric algebra of a vector space V .
Sp(V ) the symplectic linear group of a symplectic vector space V .
�(S) global sections of a sheaf S.

2 Quantizations

In this section we review the quantization formalism. In Sect. 2.1 we discuss quan-
tizations of Poisson algebras. There are two formalisms here: filtered quantizations
and formal quantizations. We introduce both of them, discuss a relation between
them and then give examples.
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Then, in Sect. 2.2, we proceed to quantizations of non-necessarily affine Poisson
algebraic varieties. Here we quantize the structure sheaf. We explain that to quantize
an affine variety is the same thing as to quantize its algebra of functions. Then
we mention a theorem of Bezrukavnikov and Kaledin classifying quantizations of
symplectic varieties under certain cohomology vanishing conditions.

After that we proceed to modules over quantizations. We define coherent and
quasi-coherent sheaves of modules and outline their basic properties. For a coher-
ent sheaf of modules, we define its support. Then we discuss global section and
localization functors and their derived analogs.

We finish this section by discussing Frobenius constant quantizations in positive
characteristic.

2.1 Algebra Level

Here we will review formalisms of quantizations of Poisson algebras. Let A be a
Poisson algebra (commutative, associative and with a unit).

2.1.1 Formal Quantizations

First, let us discuss formal quantizations. By a formal quantization of A we mean an
associativeC[[�]]-algebraA� equippedwith an algebra isomorphismπ : A�/(�)

∼−→
A such that

(i) A�
∼= A[[�]] as a C[[�]]-module and this isomorphism intertwines π and the

natural projection A[[�]] → A.
(ii) We have π( 1

�
[a, b]) ≡ {π(a),π(b)} (note that π([a, b]) = [π(a),π(b)] = 0 and

so 1
�
[a, b] makes sense).

Condition (i) can be stated equivalently as follows: A� is flat over C[[�]] and is
complete and separated in the �-adic topology.

2.1.2 Filtered Quantizations

Second, we will need the formalism of filtered quantizations. Suppose that A is
equipped with an algebra grading, A = ⊕

i∈Z
Ai , that is compatible with {·, ·} in the

following way: {Ai , A j } ⊂ Ai+ j−1.
First, we consider the case when the grading on A is non-negative: Ai = {0}

for i < 0. Then, by a filtered quantization of A one means a Z�0-filtered algebra

A = ⋃
i�0 A�i together with a graded algebra isomorphism π : grA ∼−→ A such

that, for a ∈ A�i , b ∈ A� j , one has {π(a + A�i−1),π(b + A� j−1)} = π([a, b] +
A�i+ j−2) (note that [a, b] ∈ A�i+ j−1 because grA is commutative).
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2.1.3 Relation Between the Two Formalisms

Let us explain a connection between the two formalisms (that will also motivate
the definition of a filtered quantization in the case when the grading on A has neg-
ative components). Take a filtered quantization A of A. Form the Rees algebra
R�(A) := ⊕

i�0 A�i�
i that is equippedwith a graded algebra structure as a subalge-

bra in A[�]. We have natural identifications R�(A)/(�) ∼= A, R�(A)/(� − 1) ∼= A.
The �-adic completion R�(A)∧� := lim←−n→+∞ R�(A)/(�n) satisfies (i) and (ii) and

so is a formal quantization of A. Moreover, it comes with a C
×-action by algebra

automorphisms such that t.� = t�, t ∈ C
×: the action is given by t.

∑+∞
i=0 ai�

i :=∑+∞
i=0 t

i ai�i . Clearly, the induced action on A coincides with the action coming from
the grading. Conversely, suppose we have a formal quantization A� of A equipped
with aC

×-action by algebra automorphisms such that t.� = t� and the epimorphism
π isC

×-equivariant. Assume, further, that the action is pro-rational meaning that it is
rational on all quotientsA�/(�n). Consider the subspaceA�, f in ⊂ A� consisting of
all C

×-finite elements, i.e., those elements that are contained in some finite dimen-
sional C

×-stable subspace. This is a C
×-stable C[�]-subalgebra of A�. It is easy to

see that π induces an isomorphismA�, f in/(�) ∼= A. ThenA := A�, f in/(� − 1) is a
filtered quantization.

2.1.4 Filtered Quantizations, General Case

Let us proceed to the case when the grading on A is not necessarily non-negative.
We can still consider a formal quantization A� with a C

×-action as above, the sub-
algebra A�, f in ⊂ A� and the quotient A := A�, f in/(� − 1). It is still a filtered
quantization in the sense explained above (with the difference that now we have
a Z-filtration rather than a Z�0-filtration) but, moreover, the filtration on A has
a special property: it is complete and separated meaning that a natural homomor-
phism A → lim←−n→−∞ A/A�n is an isomorphism. By a filtered quantization of A
we now mean a Z-filtered algebra A, where the filtration is complete and sepa-
rated, together with an isomorphism π : grA ∼−→ A of graded algebras such that
{π(a + A�i−1),π(b + A� j−1)} = π([a, b] + A�i+ j−2).

Our conclusion is that the following two formalisms are equivalent: filtered quanti-
zations and formal quantizations with a pro-rationalC×-action. To get from a filtered
quantizationA to a formal one, one takes R�(A)∧� . To get from a formal quantization
A� to a filtered one, one takes A�, f in/(� − 1).

2.1.5 Examples

Let us proceed to examples. In examples, one usually getsZ�0-filtered quantizations,
more general Z-filtered or formal quantizations arise in various constructions (such
as (micro)localization or completion).
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Example 2.1 Let g be a Lie algebra. Then, by the PBW theorem, the universal
enveloping algebra U (g) is a filtered quantization of S(g).

Example 2.2 Let Y be an affine algebraic variety. The algebra D(Y ) of linear differ-
ential operators onY (togetherwith the filtration by the order of differential operators)
is a filtered quantization of C[T ∗Y ].
Remark 2.3 Often one needs to deal with a more general compatibility condition
between the grading and the bracket: {Ai , A j } ⊂ Ai+ j−d for some fixed d > 0. In
this case, one canmodify the definitions of formal and filtered quantizations. Namely,
in the definition of a formal quantization one can require that [A�,A�] ⊂ �

dA� and
π( 1

�d [a, b]) = {π(a),π(b)}. The definition of a filtered quantization can be modified
similarly.

Example 2.4 Let V be a symplectic vector space and � ∈ Sp(V ) be a finite group.
Consider A = S(V )� with Poisson bracket {·, ·} restricted from S(V ). In the notation
of Remark 2.3, d = 2. As was essentially checked in [21], the spherical subalgebra
eH1,ce (with a filtration restricted from H1,c) is a quantization of S(V )� for any
parameter c When � = {1V }, we recover the usual Weyl algebra, A(V ), of V .

To check that eH1,ce is a quantization carefully we note that the proof of Theorem
1.6 in loc.cit. shows that the bracket on S(V )� coming from the filtered deformation
eH1,ce coincides with a{·, ·}, where a is a nonzero number independent of c. Then
we notice that for c = 0 we get eH1,ce = A(V )� and so a = 1.

In fact, in the previous example we often can also achieve d = 1. Namely, if
−1V ∈ �, then all degrees in S(V )� are even and so we can consider the grading
A = ⊕

i�0 Ai with Ai consisting of all homogeneous elements with usual degree 2i .
We introduce afiltration on eH1,ce in a similarway (this filtration is not restricted from
H1,c). Then we get a filtered quantization according to our original definition. When
� = �n , we only have−1V /∈ � if� = Z/�Z for odd �. For� = Z/�Z (and any �), V
splits as h ⊕ h∗, where h = C

n . We can grade S(V ) by setting deg h∗ = 0, deg h = 1
and take the induced grading on S(V )� and the induced filtration on H1,c.

2.2 Sheaf Level

Above, we were dealing with Poisson algebras or, basically equivalently, with affine
Poisson algebraic varieties. Now we are going to consider general Poisson varieties
(or schemes). Recall that by a Poisson variety one means a variety X such that the
structure sheaf OX is equipped with a Poisson bracket (meaning that all algebras of
sections are Poisson and the restriction homomorphisms respect the Poisson brack-
ets). In this case a quantization of X will be a (formal or filtered) quantization ofOX

in the sense explained below in this section.
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2.2.1 Formal Quantizations

We start with a formal setting. A quantization D� of X is a sheaf of C[[�]]-algebras
on X (in the Zariski topology) together with an isomorphismπ : D�/(�)

∼−→ OX such
that

(a) D� is flat over C[[�]] (equivalently, there are no nonzero local sections anni-
hilated by �) and complete and separated in the �-adic topology (meaning that
D�

∼−→ lim←−n→+∞ D�/(�n), where the inverse limit is taken in the category of
sheaves).

(b) π( 1
�
[a, b]) = {π(a),π(b)} for any local sections a, b of D�.

2.2.2 Motivation: Star-Products

The origins of this definition are in the deformation quantization introduced in [2].
Let us adopt this definition to our situation. Let A be a Poisson algebra. By a star-
product on A one means a bilinear map ∗ : A ⊗ A → A[[�]] subject to the following
conditions:

(1) The C[[�]]-bilinear extension of ∗ to A[[�]] is associative and 1 ∈ A is a unit.
(2) a ∗ b ≡ ab mod �A[[�]], a ∗ b − b ∗ a ≡ �{a, b}mod �

2A[[�]].
Of course, A[[�]] together with ∗ is a formal quantization of A in the sense of the pre-
vious section. Conversely, any formal quantization A� is isomorphic to (A[[�]], ∗).

Traditionally, one imposes an additional restriction on ∗: the locality axiom
that requires that the coefficients Di in the �-adic expansion of ∗ (a ∗ b = ∑∞

i=0
Di (a, b)�i ) are bidifferential operators. If ∗ is local, then it naturally extends to any
localization A[a−1]. So, if A = C[X ] for X affine, then a local star-product defines
a quantization of OX .

Let us provide an example of a local star-product. Consider A = C[x, y] with
standard Poisson bracket: {xi , x j } = {yi , y j }, {yi , x j } = δi j . Then set

f ∗ g = m ◦ exp(�
n∑

i=1

∂yi ⊗ ∂xi ) f ⊗ g, (4)

where μ : A ⊗ A → A is the usual commutative product. For example, we have xi ∗
x j = xi x j , yi ∗ y j = yi y j , xi ∗ y j = xi y j , y j ∗ xi = xi y j + �δi j . In this case, A[�]
is closed with respect to ∗ and is identified with R�(D(Cn)).

2.2.3 Algebra versus Sheaf Setting in the Affine Case

It turns out that any formal quantization A� of C[X ] for an affine variety X defines
a quantization of X . The reason is that we can localize elements of C[X ] inA�. The
construction is as follows. Pick f ∈ C[X ] and lift it to f̂ ∈ A�. The operator ad f̂
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is nilpotent in A�/(�n) for any n and so the set { f̂ n} ⊂ A�/(�n) satisfies the Ore
conditions, hence the localization A�/(�n)[ f̂ −1] makes sense. It is easy to see that
these localizations do not depend on the choice of the lift f̂ and form an inverse
system. We set A�[ f −1] := lim←−n→+∞ A�/(�n)[ f̂ −1].
Exercise 2.5 Check that there is a unique sheaf D� in the Zariski topology on X
such thatD�(X f ) = A�[ f −1] for any f ∈ C[X ] and that this sheaf is a quantization
of X .

So we see that there is a natural bijection between the quantizations of X and
of C[X ] (to get from a quantization of X to that of C[X ] we just take the global
sections). Thanks to this, we can view a quantization of a general variety X as glued
from affine pieces.

2.2.4 Filtered Quantizations

Let us proceed to the filtered setting. Suppose that X is equipped with a C
×-action

such that the Poisson bracket has degree−1. Obviously, for an arbitrary openU ⊂ X ,
the algebra C[U ] does not need to be graded. However, it is graded when U is C

×-
stable. By a conical topology on X we mean the topology, where “open” means
Zariski open and C

×-stable. One can ask whether this topology is sufficiently rich,
for example, whether any point has an open affine neighborhood.

Theorem 2.6 ([59], Section 3). Suppose X is normal. Then any point in X has an
open affine neighborhood in the conical topology.

Below we always assume that X is normal. Note that OX is a sheaf of graded
algebras in the conical topology. By a filtered quantization of X we mean a sheaf D
of filtered algebras (in the conical topology on X ) equipped with an isomorphism
π : grD ∼−→ OX of graded algebras such that the filtration on D is complete and
separated and π is compatible with the Poisson brackets as in Sect. 2.1.2.

We still have a one-to-one correspondence between filtered quantizations and
formal quantizations with C

×-actions. This works just as in Sect. 2.1.3 (note that
D�, f in makes sense as a sheaf in conical topology).

2.2.5 Quantization in Families

Let X be a smooth scheme over a scheme S. It still makes sense to speak about
closed and non-degenerate forms in �2(X/S). By a symplectic S-scheme we mean
a smooth S-scheme X together with a closed non-degenerate form ωS ∈ �2(X/S).
Note that from ω one can recover an OS-linear Poisson bracket on X .

By a formal quantizationD� of X wemean a sheaf ofOS -algebras on X satisfying
conditions (a),(b) in Sect. 2.2.1.
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Note that the definition above still makes sense when S is a formal scheme and
X is a formal S-scheme.

2.2.6 Classification Theorem

Let us finish this section with a classification theorem due to Bezrukavnikov and
Kaledin, [10] (with a ramification given in [45]).

Theorem 2.7 Let X be a smooth symplectic variety. Suppose H 1(X,OX ) =
H 2(X,OX ) = 0 (this holds when X is affine, for example). Then the formal quanti-
zations of X are parameterized by H 2

DR(X, C)[[�]]. If X has aC
×-action compatible

with the bracket (where we have d = 1), then the filtered quantizations are in one-
to-one correspondence with H 2

DR(X, C).

Even without the cohomology vanishing assumption, there is a so called period
map Per from the set Quant(X) of formal quantizations of X (considered up to an
isomorphism) to H 2

DR(X)[[�]]. When the vanishing condition holds, this map is a
bijection. The classification of filtered quantizations follows from the observation
that once a quantization admits a C

×-action by automorphisms, its period lies in
H 2

DR(X) ⊂ H 2
DR(X)[[�]] (and if the vanishing holds, the converse is also true), see

[45, Section 2.3].
Assume until the end of the section that the vanishing condition holds.
A formal quantization D� having a C

×-action by automorphisms and satisfy-
ing Per(D�) = 0 has a nice property: it is even. When X is affine this means that
the quantization can be realized by a star-product f ∗ g = ∑∞

i=0 Di ( f, g)�i with
deg Di = −i and Di ( f, g) = (−1)i Di (g, f ). For general X , being even means that
there is an antiautomorphism � ofD� that commutes with the C

×-action, is the iden-
tity modulo �, and maps � to −�. A classical example of an even quantization is as
follows. Let Y be a smooth algebraic variety and X = T ∗Y . Then we consider the
differential operators twisted by half the canonical bundle, DKY /2

Y . The corresponding
formal quantization of T ∗Y is even.

Let us finish this subsection with the discussion of the universal quantization. The
variety X has a universal symplectic deformation X̂ over the formal disc S that is
the formal neighborhood of 0 in H 2

DR(X) (provided Hi (X,OX ) = 0 for i = 1, 2),
see [36]. The universality means that any other formal symplectic deformation of
X is obtained from X̂ by pull-back. Further, there is a canonical quantization D̂� of
X̂/S. All quantizations of X are obtained by pulling back D̂�. More precisely, we
can view D̂� as a sheaf of C[[H 2

DR(X), �]]-algebras on X (via the sheaf-theoretic
pull-back) and then we can obtain quantizations of X by base change to C[[�]].

In the case when X , in addition, has a C
×-action rescaling the symplectic form,

we can consider the universal C
×-equivariant deformation X̃ over H 2

DR(X) as well
as its canonical quantization D̃�.
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2.3 Modules Over Quantizations

Let X be a Poisson variety (or scheme). We are going to define coherent and quasi-
coherent modules over filtered and formal quantizations of X (to be denoted by D
and D�, respectively).

2.3.1 Coherent Modules Over Formal Quantizations

By definition, a sheafM� of D�-modules on X is called coherent ifM�/�M� is a
coherent OX -module and M� is complete and separated in �-adic topology.

Let X be affine and letA� := �(D�). LetN� be a finitely generatedA�-module.
Then it is easy to see that N� is complete and separated in the �-adic topology.
It follows that D� ⊗A�

N� is a coherent D�-module. Conversely, for a coherent
D�-module M�, the global sections �(M�) is a finitely generated A�-module.

Lemma 2.8 Let X be affine. Then the functors D� ⊗A�
• and �(•) are mutu-

ally quasi-inverse equivalences between the categories of coherentD�-modules and
finitely generated A�-modules.

Proof Note that these functors define compatible equivalences between the cate-
gories of coherentD�/(�n)-modules and of finitely generatedA�/(�n)-modules for
any n (which is proved in the same way as the classical statement for n = 1). Then
we use that all objects we consider are complete and separated in the �-adic topology.

�
Clearly, ifU ⊂ X is a Zariski open subset andM� is a coherentD�-module, then

M�|U is a coherent D�-module. Cover X with open affine subvarieties, X = ⋃
Xi .

SetAi
�

:= �(D�|Xi ),N i
�

:= �(D�|Xi ). ThenM� gives rise to gluing isomorphisms
between the localizations of N i

�
,N j

�
to Xi ∩ X j subject to the usual cocycle con-

dition. Conversely, a collection of finitely generated Ai
�
-modules N i

�
with gluing

isomorphisms subject to the cocycle condition gives rise to a coherent D�-module.
In particular, as in Algebraic geometry, being coherent is a local condition.

Also from Lemma 2.8 we easily see that a subsheaf and a quotient sheaf of a
coherentD�-module are coherent themselves. So the category Coh(D�) of coherent
D�-modules is an abelian category.

2.3.2 Quasi-Coherent Modules Over Formal Quantizations

By a quasi-coherent D�-module we mean a direct limit of coherent D�-modules.
Lemma2.8 implies that,when X is affine, the category of quasi-coherentD�-modules
is equivalent to the category of �(D�)-modules.

Analogously to the classical algebro-geometric result, the category QCoh(D�) of
quasi-coherentD�-modules has enough injective objects. Note that the natural func-
tor from Db(Coh(D�)) to the full subcategory in Db(QCoh(D�)) of all complexes
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with coherent homology is a category equivalence.This is because anyquasi-coherent
complex is a union of coherent subcomplexes, as in the usual Algebro-geometric
situation.

2.3.3 Modules Over Filtered Quantizations

Let us proceed to modules over filtered quantizations. Let M be a sheaf of D-
modules. We say that M is coherent if it can be equipped with a global complete
and separated filtration compatible with that on D and such that grM is a coherent
sheaf on X (such a filtration is usually called good). The �-adic completion of the
Rees sheaf R�(M) is then a C

×-equivariant coherent D�-module. Conversely, if
we take a C

×-equivariant coherentD�-moduleM�, take the C
×-finite partM�, f in ,

then M�, f in/(� − 1) is a coherent D-modules.

Lemma 2.9 Consider the full subcategory CohC
×
(D�)tor consisting of all modules

that are torsion over C[[�]]. Then taking quotient by � − 1 gives rise to an equiva-
lence CohC

×
(D�)/CohC

×
(D�)tor

∼−→ Coh(D).

Proof Let us produce a quasi-inverse functor. Of course, the R�(D)-module R�(M)

depends on the choice of a good filtration. Let F,F′ be two good filtrations. Then one
can find positive integers d1, d2 such that Fi−d1 M ⊂ F′

i M ⊂ Fi+d2 M the inclusion
of subsheaves (of vector spaces) in M (it is enough to check this claim for local
sections over open subsets from an affine cover, where it is easy). It follows that
modulo �-torsion the sheaf R�(M) is independent of the choice of a good filtration.
Our quasi-inverse functor sends M to the �-adic completion of R�(M). To check
that this is indeed a quasi-inverse functor is standard. �

2.3.4 Supports

For a coherent D�-module M� we have the notion of support. By definition,
Supp(M�) := Supp(M�/�M�), this is a closed subvariety in X .

Now let M ∈ Coh(D). Then we can take a good filtration on M and set
Supp(M) := Supp(grM). By the argument in the proof of Lemma 2.9, the sup-
port ofM is well-defined, i.e., it does not depend on the choice of a good filtration.

2.3.5 Global Sections and Localization

LetD be afilteredquantizationof X .Wehavenatural functorsCoh(D) → �(D) -mod
of taking global sections (to be denoted by �) as well as a functor in the opposite
direction Loc : �(D) -mod → Coh(D), M �→ D ⊗�(D) M .

Let us discuss a situation when these functors behave particularly nicely. Namely,
let X be a conical symplectic resolution of singularities of an affine variety X0. Note



Procesi Bundles and Symplectic Reflection Algebras 19

that, by theGrauert-Riemenschneider theorem, the higher cohomology ofOX vanish.
This has the following corollary (the proof is left to the reader).

Lemma 2.10 We have Hi (D) = 0 for i > 0. Moreover, �(D) is a quantization of
X0.

Thanks to this lemma, it makes sense to consider derived functors R� :
D(Coh(D)) → D(�(D) -mod) and L Loc : D(�(D) -mod) → D(Coh(D)). In fact,
R� is given by the LCech complex and so restricts to bounded (to the left and to the
right) derived categories. The functor L Loc restricts to D−’s. Lemma 2.10 implies
that R� ◦ L Loc is the identity on D−(�(D) -mod). Furthermore, if �(D) has finite
homological dimension, then L Loc maps Db(�(D) -mod) to Db(Coh(D)) and is
left inverse to R�. It is likely (and is proved in many cases, see, e.g., [49]) that R�

and L Loc are mutually quasi-inverse equivalences in this case.

2.4 Frobenius Constant Quantizations

Above, we were dealing with the case when the ground field is C. Everything works
the same for any algebraically closed field of characteristic 0. In this section we are
going to work over an algebraically closed field F of positive characteristic.

The notions of filtered and formal quantizations still make sense, both for algebras
and for varieties. But in positive characteristic we have an important special class of
quantizations: Frobenius constant ones.

2.4.1 Basic Example

Let us start our discussion with an example of a quantization: the Weyl algebra
A(V ), where V is a symplectic F-vector space. A new feature is that this algebra
is finite over its center. Namely, for v ∈ V ⊂ A(V ), the element v p ∈ A(V ) lies
in the center. We have a semi-linear map ι : V → A(V ) given by v �→ v p on v ∈
V with central image that extends to a ring homomorphism S(V ) → A(V ). The
semi-linearity condition is ι(av) = Fr(a)ι(v), where Fr : F → F is the Frobenius
automorphism. Let V (1) denote the F-vector space identified with V as an abelian
group but with new multiplication by scalars: a.v = Fr−1(a)v. So ι becomes an
algebra homomorphismwhen viewed as amap S(V (1)) → A(V ), its image is usually
called the p-center, in our case it coincides with the whole center. Another important
feature of this example is that A(V ) is an Azumaya algebra over V (1), i.e., A(V ) is a
vector bundle over Spec(S(V (1))) and all (geometric) fibers are matrix algebras (of
rank pdim V/2).
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2.4.2 Definition

The notion of a Frobenius constant quantization that appeared in [11] generalizes the
example in Sect. 2.4.1. We will give the definition in the filtered setting and only for
symplectic varieties—wewill only need it in this case. Let X be a smooth symplectic
F-variety equippedwith anF

×-action rescaling the symplectic form (by the character
t �→ td ). Let X (1) be the F-variety that is identified with X as a scheme over Spec(Z)

but with twisted multiplication by scalars in the structure sheaf just as in Sect. 2.4.1.
We have a natural morphism Fr : X → X (1) of F-varieties and hence we have a sheaf
Fr∗(OX ) on X (1). This is a coherent sheaf of algebras and a vector bundle of rank
pdim X .

Definition 2.11 A Frobenius constant quantization is a filtered sheafD of Azumaya
algebras on X (1) together with an isomorphism grD ∼−→ Fr∗ OX of graded algebras
(in conical topology) that satisfies our usual compatibility condition on Poisson
brackets.

It is not difficult to show that a Frobenius constant quantization gives rise to a fil-
tered quantization of X . But, as wewill see Sect. 3.3.3, not every filtered quantization
arises this way.

2.4.3 Differential Operators

Let us give another example that should be thought as a global analog of Sect. 2.4.1.
Let Y be a smooth F-variety. Consider the sheaf DY of differential operators on Y .
Let ξ be a vector field on an open subset Y ′ ⊂ Y . Define a vector field ξ[p] as follows.
For every open affine subvariety Y 0 ⊂ Y ′, we can regard ξ as a derivation of F[Y 0].
The map ξ p : F[Y 0] → F[Y 0] is again a derivation. The corresponding vector field
on Y ′ (that is easily seen to be well-defined) is what we denote by ξ[p]. It is easy to
see that f p, for a function f on Y , and ξ p − ξ[p], for a vector field ξ (here ξ p is taken
with respect to the product on DY ), are central. The maps f �→ f p, ξ �→ ξ p − ξ[p]
give rise to a sheaf of algebras homomorphism π∗O(T ∗Y )(1) → Fr∗ DY , where we
write π for the projection (T ∗Y )(1) = T ∗(Y (1)) → Y (1). The sheaf DY then becomes
a Frobenius constant quantization of T ∗Y .

To finish this section, let us mention that, under some restrictions on X , there is
a classification of Frobenius constant quantizations, see [9].

3 Hamiltonian Reductions

In this section we recall the notions of the classical and quantum Hamiltonian reduc-
tion. The classical Hamiltonian reduction produces a new Poisson variety from an
existing Poisson variety with suitable symmetries. The quantum Hamiltonian reduc-
tion does the same on the level of quantizations.
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We start by discussing classical Hamiltonian reductions, Sect. 3.1. First, we recall
Hamiltonian actions andmoment maps. Thenwe define classical Hamiltonian reduc-
tions in the settings of categorical quotients and of GIT quotients.We then proceed to
the construction and basic properties of Nakajima quiver varieties that are our main
examples of Hamiltonian reductions. Next, we explain how quotient singularities
Vn/�n are realized as quiver varieties. Finally, we construct symplectic resolutions
of singularities for Vn/�n and establish, following Namikawa, some isomorphisms
between some of these resolutions.

In Sect. 3.2 we proceed to quantum Hamiltonian reductions. We define them on
the level of algebras and on the level of sheaves and compare the two levels. After that
we state one of the main results of this survey: an isomorphism between spherical
SRA for wreath-product groups and quantum Hamiltonian reductions. We finish this
section by discussing a quantum version of Namikawa’s Weyl group action.

Section 3.3 deals with Hamiltonian reductions for Frobenius constant quantiza-
tion. We first recall some basic results on GIT in positive characteristic. Then we
discuss Nakajima quiver varieties in sufficiently large positive characteristic. Finally,
we prove, following Bezrukavnikov, Finkelberg and Ginzburg, that the quantum
Hamiltonian reduction of a Frobenius constant quantization at an integral value of
the quantum comoment map is Frobenius constant.

3.1 Classical Hamiltonian Reduction

3.1.1 Hamiltonian Group Actions

Let X be a Poisson variety (over an algebraically closed field) and let G be an
algebraic group acting on X . The action induces a Lie algebra homomorphism g →
Vect(X), the image of ξ ∈ g under this homomorphism will be denoted by ξX . We
say that the G-action on X is Hamiltonian, if there is a G-equivariant linear map
g → C[X ], ξ �→ Hξ , such that {Hξ, ·} = ξX . Note that this map is automatically a
Lie algebra homomorphism. This map is called the comoment map, the dual map
μ : X → g∗ is the moment map.

Let us provide two examples of Hamiltonian actions.

Example 3.1 LetY be a smooth variety,G act onY . Then X := T ∗Y carries a natural
G-action. This action is Hamiltonian with Hξ = ξY (viewed as a function on X ).

Example 3.2 Let V be a vector space (with symplectic form �) and let G act on V
by linear symplectomorphisms. The action is Hamiltonian with Hξ(v) = 1

2�(ξv, v).

Below we will need a standard property of Hamiltonian actions.

Lemma 3.3 Let x ∈ X. Then im dxμ ⊂ g∗ coincides with the annihilator of gx :=
Lie(Gx ). In particular, μ is a submersion at x if and only if Gx is finite.
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3.1.2 Hamiltonian Reduction

Let A be a Poisson algebra and g be a Lie algebra equipped with a Lie algebra
homomorphism g → A, ξ �→ Hξ . Consider the ideal I := A{Hξ, ξ ∈ g}. The adjoint
action of g on A preserves this ideal so we can take the invariants A///0g := (A/I )g.
This algebra comes with a natural Poisson bracket: {a + I, b + I } := {a, b} + I (but
A/I has no Poisson bracket!).

This construction has several ramifications. First, let λ : g → C be a charac-
ter (i.e., a function vanishing on [g, g]). Then we can set A///λg := (A/A{Hξ −
〈λ, ξ〉})g. Also we can set A///g := (A/A{Hξ, ξ ∈ [g, g]})g. The latter is a Poisson
S(g/[g, g])-algebra whose specialization at λ ∈ (g/[g, g])∗ coincides with A///λg
provided that the g-action on A/A{Hξ, ξ ∈ [g, g]} is completely reducible.

Let us proceed to a geometric incarnation of this construction. Suppose the base
field is of characteristic 0. To ensure a good behavior of quotients assume that G is
a reductive group. Let X be an affine Poisson variety equipped with a Hamiltonian
G-action. Then we can take A := C[X ] together with the comoment map ξ �→ Hξ .
We set A///0G := (A/I )G , this algebra coincides withA///0gwhen G is connected.
It is finitely generated by the Hilbert theorem, here we use that G is reductive.
The variety (or scheme) Spec(A///0G) is nothing else but the categorical quotient
X///0G := μ−1(0)//G.

Here is a corollary of Lemma 3.3.

Corollary 3.4 Suppose that X is smooth and symplectic and that the G-action on
μ−1(0) is free. Then X///0G is smooth and symplectic of dimensiondim X − 2 dimG.

Proof The variety μ−1(0) is smooth by Lemma 3.3. That the quotient is smooth of
required dimension is a straightforward corollary of the Luna slice theorem, see, e.g.,
[57, Section 6.3].

The form on X///0G can be recovered as follows. Let � denote the form on X , ι :
μ−1(0) ↪→ X denote the inclusion map and π : μ−1(0) → X///0G be the projection.
Then there is a unique 2-form �red on X///0G such that π∗�red = ι∗� and this is
the form we need. �

3.1.3 GIT Hamiltonian Reduction

We will be mostly interested in Hamiltonian reductions for linear actions G � V .
The assumptions of Corollary 3.4 are not satisfied in this case. However, if one uses
GIT quotients instead of the usual categorical quotients, one can often get a smooth
symplectic variety that will be a resolution of the usual reduction V///0G.

Let us recall the construction of a GIT quotient. Let G be a reductive alge-
braic group acting on an affine algebraic variety X . Fix a character θ : G → C

×.
We use the additive notation for the multiplication of characters. Then consider
the space C[X ]G,nθ of nθ-semiinvariants: C[X ]G,nθ := { f ∈ C[X ]|g. f := θ(g)n f }
(recall that g. f (x) := f (g−1x)). Consider the graded algebra

⊕
n�0 C[X ]G,nθ,
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where degC[X ]G,nθ := n. Then we set X//θG := Proj(
⊕

n�0 C[X ]G,nθ), this is a
projective variety over X//G. Note that we no longer have a morphism X → X//θG.
Instead, consider the open subset of θ-semistable points X θ−ss , a point x ∈ X is called
semistable if there is f ∈ C[X ]G,nθ for n > 0 with f (x) �= 0. We clearly have a nat-
ural morphism X θ−ss → X//θG that makes the following diagram commutative

X

Xθ−ss

X//G

X//θG

⊆

The variety X//θG is glued from the varieties of the form X f //G, where
f ∈ C[X ]G,nθ with some n > 0. The intersection of X f //G, Xg//G inside X//θG
is identified with X fg//G, where the inclusions X fg//G ↪→ X f //G, Xg//G are
induced from the inclusions X fg ↪→ X f , Xg by passing to the quotients.

In the setting of Sect. 3.1.2, we set X///θ
0G := μ−1(0)θ−ss//G. This is a Poisson

variety (the bracket comes from gluing together the brackets on the open subvari-
eties X f ///0G) equipped with a projective morphism X///θ

0G → X///0G of Poisson
varieties. If X is smooth and symplectic, and the G-action on μ−1(0)θ−ss is free, then
X///θ

0G is smooth and symplectic of dimension dim X − 2 dimG. The symplectic
form on X///θ

0G is recovered similarly to the case of X///0G considered above.

3.1.4 Nakajima Quiver Varieties:Construction

Now we are going to introduce an important special class of varieties constructed by
means of Hamiltonian reduction: Nakajima quiver varieties, introduced in [51], see
also [54].

By a quiver, wemean an oriented graph. Formally, it can be presented as a quadru-
ple Q = (Q0, Q1, t, h), where Q0, Q1 are finite sets of vertices and arrows, respec-
tively, and t, h : Q1 → Q0 are maps that to an arrow a assign its tale and head.

Let us proceed to (framed) representations of Q. Fix two elements v,w ∈ Z
Q0
�0

and set Vi := C
vi ,Wi := C

wi , i ∈ Q0. Consider the space

R(= R(Q, v, w)) :=
⊕

a∈Q1

HomC(Vt (a), Vh(a)) ⊕
⊕

i∈Q0

HomC(Wi , Vi ).

An element of R can be thought as a collection of linear maps, one for each arrow,
between the corresponding vector spaces, together with collections of vectors in each
Vi . This description suggests a group of symmetry of R: we setG := ∏

i∈Q0
GL(Vi ),

this group acts by changing bases in the spaces Vi .
A character of G is of the form g = (gi )i∈Q0 �→ ∏

i∈Q0
det(gi )θi , where θ =

(θi )i∈Q0 ∈ Z
Q0 . We will identify the character group of G with Z

Q0 .
A Nakajima quiver variety Mθ

λ(v,w) is, by definition, the reduction T ∗R///θ
λG.

Here λ is a character of g, it can be thought as an element of C
Q0 via λ(x) :=
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∑
i∈Q0

λi tr(xi ). The moment map μ : T ∗R → ⊕
i∈Q0

End(Vi ) = g(∼= g∗) is explic-
itly given as follows:

(xa, xa∗ , ik, jk)a∈Q1,k∈Q0 �→
∑

a∈Q1

(xaxa∗ − xa∗xa) −
∑

k∈Q0

jkik,

where xa ∈ Hom(Vt (a), Vh(a)), xa∗ ∈ Hom(Vh(a), Vt (a)), ik ∈ Hom(Vk,Wk), jk ∈
Hom(Wk, Vk).

We also would like to remark that the quiver variety is independent of the choice
of an orientation of Q. Indeed, let Q′ be a quiver obtained from Q by changing the
orientation of a single arrow a and let R′ be the corresponding representation space.
Then we have an isomorphism T ∗R ∼= T ∗R′ that sends xa to x ′

a∗ , xa∗ to −x ′
a and

does not change the other components. This is a G-equivariant symplectomorphism
that intertwines the moment maps and hence inducing a symplectomorphism of the
corresponding Nakajima quiver varieties.

When λ = 0, we have a C
×-action on Mθ

0(v,w) that rescales the Poisson struc-
ture. For example, one can take the action induced by the dilation action on T ∗R, that
is, t.v := t−1v, t ∈ C

×, v ∈ T ∗R to be called the dilation action as well. Then the
Poisson bracket onMθ

0(v,w) has degree−2.We can also have an action such that the
Poisson bracket has degree −1 coming from t.(r, r∗) := (r, t−1r∗), r ∈ R, r∗ ∈ R.

3.1.5 Nakajima Quiver Varieties: Structural Results

Let us explain some structural results regarding the quiver varieties and the corre-
sponding moment maps. We will need algebro-geometric properties of μ−1(λ) and
of M0

λ(v,w) due to Crawley-Boevey and also a criterion for the freeness of the
G-action on μ−1(λ)θ−ss due to Nakajima.

Theorem 3.5 (Crawley-Boevey, [19]). The scheme M0
λ(v,w) is reduced and nor-

mal.

We now want to provide a criterium for μ : T ∗R → g∗ to be flat proved in [18].
Define the symmetrized Tits form C

Q0 × C
Q0 → C:

(v1, v2) :=
∑

a∈Q1

(v1
t (a)v

2
h(a) + v1

h(a)v
2
t (a)) − 2

∑

i∈Q0

v1
i v

2
i

and quadratic maps p, pw : C
Q0 → C by

p(v) := 1 − 1

2
(v, v), pw(v) := w · v − 1

2
(v, v).
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Theorem 3.6 (Crawley-Boevey, [18]). The following two conditions are equivalent:

(i) μ is flat.
(ii) pw(v) � pw(v0) + ∑k

i=1 p(v
i ) for any decomposition v = v0 + v1 + . . . + vk

with vi ∈ Z
Q0
�0 for i = 1, . . . , k.

Theorem 3.7 (Crawley-Boevey, [18]). Suppose that, for a proper decomposition
v = v0 + v1 + · · · + vk , we have pw(v) > pw(v0) + ∑k

i=1 p(v
i ). Then μ−1(0) is

irreducible and a generic G-orbit there is closed and free.

Let us proceed to a criterion for the action of G on μ−1(λ)θ−ss to be free. We
can view Q as a Dynkin diagram and form the corresponding Kac-Moody algebra
g(Q). Then C

Q0 gets identified with the dual of the Cartan of g(Q) in such a way
that the coordinate vector εi , i ∈ Q0, becomes a simple root. Then, [51], the action
ofG on μ−1(λ)θ−ss is free if and only if there are no roots v′ of g(Q) such that v′ � v

(component-wise) and v′ · θ = v′ · λ = 0.
The equations v′ · θ = 0, where v′ is a root satisfying v′ � v, v′ · λ = 0 split

the character lattice into the union of cones. It is a classical fact from GIT, that
when θ, θ′ are generic and inside one cone, we have μ−1(λ)θ−ss = μ−1(λ)θ

′−ss . So
Mθ

λ(v,w) = Mθ′
λ (v,w).

3.1.6 Hilbn(C
2) and C

2n/Sn as Quiver Varieties

Let Q be a quiver with a single vertex and a single loop (a.k.a. the Jordan quiver).
We are going to show that Hilbn(C2) is identified with M−1

0 (n, 1) and C
2n/Sn is

identified with M0
0(n, 1) (and the Hilbert-Chow map from Sect. 1.1.3 becomes the

natural morphismM−1
0 (n, 1) → M0

0(n, 1) from Sect. 3.1.3).
An identificationM−1

0 (n, 1) ∼= Hilbn(C2) is an easier part.Wehave R = End(Cn)

⊕ C
n . Using the trace pairing, we identify R∗ with End(Cn) ⊕ C

n∗ so that T ∗R =
End(Cn)⊕2 ⊕ C

n ⊕ C
n∗.Wewrite (A, B, i, j) for a typical point of T ∗R. Identifying

g with g∗ again using the trace pairing, we can write the moment map μ : T ∗R → g
as μ(A, B, i, j) = [A, B] + i j .

Using the Hilbert-Mumford theorem from Invariant theory, see, e.g.,
[57, Section5.3], one shows that (T ∗R)θ−ss = {(A, B, i, j)|C〈A, B〉i = C

n}. Then it
is a nice LinearAlgebra exercise to show that if [A, B] + i j = 0 andC〈A, B〉i = C

n ,
then j = 0. This is based on an even nicer linear algebra fact: A, B ∈ End(Cn)

with rk[A, B] � 1 are upper-triangular in some basis. So μ−1(0)θ−ss//G = {(A, B,

i)|[A, B] = 0, C[A, B]i = C
n}/G that recovers the classical description of

Hilbn(C2), see [53, Theorem 1.14].
An identificationM0

0(n, 1) ∼= C
2n/Sn is more subtle. An easy part is to construct

a morphism ι : C
2n/Sn → M0

0(n, 1): we send (x, y) ∈ C
2n to (diag(x), diag(y),

0, 0) ∈ μ−1(0) and this induces a morphism of quotients. Then one checks that
ι is a closed embedding. For this, one uses a classical result of Weyl to see that
polynomials of the form ι∗Fm,n , where Fm,n(A, B, i, j) := tr(AnBm) generate the
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algebra C[x, y]Sn . It remains to prove that ι is surjective. This follows from the
second linear algebra fact mentioned in the previous paragraph.

Lemma 3.8 The isomorphismM0
0(n, 1) ∼= C

2n/Sn intertwines the Poisson brack-
ets.

Proof Consider the principal open subsets

Rreg = {(A, i)|A has distinct e-values}, C
n,reg := {(x1, . . . , xn)|xi �= x j , for i �= j}.

Note that under the above embedding C
2n ↪→ T ∗R, we have T ∗

C
n,reg ↪→ T ∗Rreg .

Moreover, the pull-back of the symplectic form from T ∗Rreg to T ∗
C

n,reg coincides
with the natural symplectic form on the latter. Using the description of the sym-
plectic form on the reduction, we conclude that the induced morphism of quotients
T ∗

C
n,reg/Sn → T ∗Rreg///00G is a symplectomorphism. But T ∗Rreg///G0 embeds as

an open subset into M0
0(n, 1) and the symplectomorphism above is the restriction

of the isomorphism C
2n/Sn

∼−→ M0
0(n, 1) to T ∗

C
n,reg/Sn . The claim of the lemma

follows. �

3.1.7 McKay Correspondence

Let �1 be a finite subgroup of SL2(C). It turns out that the singular Poisson variety
Vn/�n (where recall Vn = C

2n) and its symplectic resolutions also can be realized
as Nakajima quiver varieties.

The first step in this isomorphism is the McKay correspondence: a way to label
the finite subgroups of SL2(C) by Dynkin diagrams. Let �1 be a finite subgroup
of SL2(C) and let N0, . . . , Nr be the irreducible representations of �1, where N0

is the trivial representation. Let us define the McKay graph of �1: its vertices are
0, 1, . . . , r and the number of edges (we consider a non-oriented graph) between
i and j is dim Hom�(C2 ⊗ Ni , N j ), note that this is well-defined because C

2 is a
self-dual representation of � and so the number of edges between i and j is the same
as between j and i . McKay proved the following facts:

(i) The resulting graph is an extended Dynkin graph of types A, D, E and 0 is the
extending vertex.

(ii) The vector (dim Ni )
r
i=0 is the indecomposable imaginary root δ of the corre-

sponding affine Kac-Moody algebra.

3.1.8 C
2/�1 as a Quiver Variety

Let Q be the McKay graph of �1 with an arbitrary orientation. Then there is an
isomorphismM0

0(δ, 0) ∼= C
2/�1.

Let us explain how this is established following [17, Section 8]. For this, we will
need the representation varieties.
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Let A be a finitely generated associative algebra and V be a vector space. Then the
set X := Hom(A,End(V )) of algebra homomorphisms is an algebraic variety. More
precisely, if A is the quotient of C〈x1, . . . , xn〉 by relations Fα(x1, . . . , xn), where α
runs over an indexing set I, then X = {(A1, . . . , An) ∈ End(V )|Fα(A1, . . . , An) =
0,α ∈ I}. The group G := GL(V ) naturally acts on X and so we can form the
quotient X//G (called the representation variety). Recall that, in general, the points
of X//G correspond to the closed G-orbits on X , in our case an orbit is closed if its
element is a semisimple representation.

This construction has various ramifications. For example, we can consider a
semisimple finite dimensional subalgebra A0 ⊂ A and an A0-module V . This leads
to the variety X of A0-linear homomomorphisms A → End(V ) acted on by the group
G of A0-linear automorphisms of V . In this situation we still can speak about repre-
sentation varieties. We will realize M0

0(δ, 0), C
2/�1 as the representation varieties

of this kind and then show that the algebras involved are Morita equivalent, this will
yield an isomorphism of interest.

Let us start with C
2/�1. Set A := C[x, y]#�1, A0 := C�1 ⊂ A and V := C�1,

a regular representation. Then one can show that C2/�1 is the representation variety
for this triple.

Let us proceed toM0
0(δ, 0). Let Q̄ be the double quiver of Q. It is obtained from Q

by adding the inverse arrow to each arrow in Q. Formally, Q̄0 = Q0, Q̄1 = Q1 � Q∗
1,

where Q∗
1 is in bijection with Q1, a �→ a∗, in such a way that t (a∗) = h(a), h(a∗) =

t (a). Then form the path algebraCQ̄ of Q̄, it has a basis consisting of the paths in Q̄,
the multiplication is given by concatenation (if two paths cannot be concatenated, the
product is zero). This algebra is graded by the length of a path, where, by convention,
the degree 0 paths are just vertices so the corresponding graded component CQ̄0 is
C

Q0 .
Let us consider the quotient �0(Q) of CQ̄ called the preprojective algebra. It is

given by the following relation:

∑

a∈Q1

[a, a∗] = 0.

Note that C
Q0 naturally embeds into �0(Q). It is easy to see that M0

0(δ, 0) is the
representation variety for the triple (�0(Q), C

Q0 ,
⊕

i∈Q0
C

δi ).
It turns out that there is an idempotent f ∈ C�1 such that f (C[x, y]#�1) f ∼=

�0(Q). Namely, take primitive idempotents fi , i = 0, . . . , r, in the matrix sum-
mands of C�1. Set f := ∑

i∈Q0
fi . Obviously, f (C�1) f ∼= C

Q0 . Further, the con-
struction of Q implies that f (Span(x, y) ⊗ C�1) f ∼= CQ̄1. These identifications
induce an isomorphism f (C〈x, y〉#�1) f ∼= CQ̄. Under this isomorphism, the ideal
f (xy − yx) f becomes (

∑
a∈Q1

[a, a∗]), see [17, Section 2]. Also note that the C
Q0 -

module
⊕

i∈Q0
C

δi is nothing else but f C�1. Finally, note that f defines a Morita
equivalence betweenC[x, y]#�1,�

0(Q). An isomorphismC
2/�1

∼= M0
0(δ, 0) now

follows from the next lemma, whose proof is left to the reader.
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Lemma 3.9 Let A0 ⊂ A and V be as above and let f ∈ A0 be an idempotent
giving a Morita equivalence. Then the representation varieties for (A, A0, V ) and
( f A f, f A0 f, f V ) are naturally isomorphic.

Note that the algebras C[x, y]#�1 and �0(Q) are graded and an isomorphism
�0(Q) ∼= C[x, y]#�1 preserves the grading. From here one easily deduces that the
isomorphism C

2/�1
∼= M0

0(δ, 0) is equivariant with respect to the dilation C
×-

actions.

3.1.9 Vn/�n as a Quiver Variety

Let us proceed now to the case of an arbitrary n. Let ε0 ∈ C
Q0 be the coordinate

vector at the extending vertex.

Proposition 3.10 Wehave aC
×-equivariant isomorphismM0

0(nδ, ε0) ∼= Vn/�n (of
Poisson schemes).

Proof We have a diagonal embedding T ∗R(Q, δ, 0)⊕n → T ∗R(Q, nδ, ε0), com-
pare to Sect. 3.1.6, that restricts to μ−1

1 (0)n ↪→ μ−1(0), where μ1 stands for the
moment map T ∗R(Q, δ, 0) → gl(δ)∗. This gives rise to a Sn-invariant morphism
M0

0(δ, 0)
n → M0

0(nδ, ε0) andhence to amorphism ι : C
2n/�n = (C2/�1)

n/Sn →
M0

0(nδ, ε0). One can show that this morphism is bijective. Also it is C
×-equivariant,

where the C
×-actions on C

2n/�n,M0
0(nδ, ε0) are induced from the dilation actions

on C
2n, T ∗R(Q, nδ, ε0). It follows that ι is finite. By Theorem 3.5, M0

0(nδ, ε0) is
normal and this implies that ι is an isomorphism.

We can make the isomorphism ι Poisson if we rescale it using the C
×-actions.

This is a consequence of the following lemma. �

Lemma 3.11 ([21, Lemma 2.23]) Let V be a symplectic vector space and � ⊂
Sp(V ) be a finite subgroup such that V is symplectically irreducible, i.e., there are
no proper symplectic �-stable subspace in V . Then there are no nonzero brackets
(=skew-symmetric bi-derivations) of degree < −2 on C[V ]� . Further, the space of
brackets of degree −2 is one-dimensional.

One can ask why we use M0
0(nδ, ε0) instead of M0

0(nδ, 0) in the proposition.
The reason is that the moment map for T ∗R(nδ, ε0) is flat, this can be checked using
Theorem 3.6.

3.1.10 Symplectic Resolutions of Vn/�n

Here we will study symplectic resolutions of Vn/�n constructed as non-affine Naka-
jima quiver varieties for generic stability conditions θ.

Let us consider the case n = 1 first. Let Ḡ denote the quotient of G = GL(δ)
modulo the one-dimensional torus Tconst := {(x idCδi )

r
i=0, x ∈ C

×}. Note that the
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G-action on R := R(Q, δ, 0) factors through Ḡ. Analogously to Nakajima’s result
explained in Sect. 3.1.5, the group Ḡ acts freely onμ−1(0)θ−ss if and only if θ · α �= 0
for every Dynkin root of Q (these are the roots α ∈ C

Q0 with α0 = 0). For such θ,
we get a conical symplectic resolutionMθ

0(δ, 0) → M0
0(δ, 0), this can be deduced,

for example, from Theorem 3.7. Of course, all these resolutions are isomorphic to

the minimal resolution C̃2/�1: there are just no other symplectic resolutions.
Let us proceed to the case n > 1. We get a projective morphism Mθ

0(nδ, ε0) →
M0

0(nδ, ε0). Theorem 3.7 no longer applies, in fact, μ−1(0) has n + 1 irreducible
components by [23, Section 3.2]. Still,Mθ

0(nδ, ε0) → M0
0(nδ, ε0) is a resolution of

singularities. One just needs to check that the fiber over a generic point inM0
0(nδ, ε0)

consists of a single point. A generic closed G-orbit in μ−1(0) has a point of the form
r1 ⊕ . . . ⊕ rn , where r1, . . . , rn are pair-wise non-isomorphic simple representations
of�0(Q) of dimension δ. Then one can analyze the structure of theG-action near that
orbit using a symplectic slice theorem, see, for example, [19, Section 4] or Sect. 4.3.3
below. This analysis shows that there is a unique semistable G-orbit containing Gr
in its closure. So we see that Mθ(nδ, ε0) → M0

0(nδ, ε0) is a conical symplectic
resolution.

3.1.11 Isomorphic Resolutions

Now let us discuss how many resolutions we get. The stability condition θ is generic
if θ · δ �= 0 and θ · v �= 0 for v of the form v = α + mδ, where α is a Dynkin root
and |m| < n. So we get resolutions labeled by the open cones in the complement
to these hyperplanes in R

n . However, some of these resolutions are isomorphic:
there is an action of W × Z/2Z on Z

Q0 such that, for θ, θ′ lying in one orbit, the
resolutionsMθ

0(nδ, ε0) → M0
0(nδ, ε0),Mθ′

0 (nδ, ε0) → M0
0(nδ, ε0) are isomorphic

(hereW denotes theWeyl group of theDynkin diagramobtained from Q by removing
the vertex 0). This is a special case of a construction due to Namikawa, [55], that we
are going to explain now.

Let X → X0 be an arbitrary conical symplectic resolution. The variety X0 has
finitely many symplectic leaves, [37]. Let L1, . . . ,Lk be the leaves of codimension
2. Take formal slices S∧

1 , . . . ,S∧
k through L1, . . . ,Lk . The slices are formal neigh-

borhoods of 0 in Kleinian singularitiesS1, . . . ,Sk . From these Kleinian singularities
one produces Weyl groups W̃1, . . . , W̃k (of the same types as the singularities) act-
ing on the spaces H 2(Sk, C) identified with their reflection representations h̃i . The
fundamental group π1(Li ) acts on the irreducible components of the exceptional
divisor in Si . Hence it also acts on W̃i (by diagram automorphisms) and on h̃i . Set
Wi := W̃ π1(Li )

i , hi := h̃Li
i so thatWi is a crystallographic reflection group and hi is its

reflection representation. There is a natural restriction map H 2(X) → h := ⊕
i hi .

Namikawa proved that this map is surjective. Furthermore, he has constructed a
W := ∏

i Wi -action on H 2
DR(X) that makes the map equivariant and is trivial on the

kernel.
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Let us return to our situation. The symplectic leaves in V/� are in one-to-one
correspondence with conjugacy classes of stabilizers of points in V . The leaf corre-
sponding to �′ ⊂ � is the image of V �′,reg := {v ∈ V |�v = �′} under the quotient
morphism π : V → V/�. The leaf is identified with V �′,reg/N�(�′). So, in the case
when V = Vn and � = �n , we get two leaves of codimension 2 (provided �1 �= {1},
in that caseweget just one leaf of codimension2).Oneof them, sayL1, corresponds to
�1 ⊂ �n (the stabilizer of a point of the form (0, p1, . . . , pn−1), where p1, . . . , pn−1

are pairwise different points of C
2). The other, say L2, corresponds to S2 (the sta-

bilizer of (p1, p1, p2, . . . , pn−1)). The fundamental group actions from the previous
paragraph are easily seen to be trivial. So we get W1 = W,W2 = Z/2Z. Further,
H 2(X) = C

Q0 and h1 = {(xi )i∈Q0 |x · δ = 0}, h2 = Cδ. The groupW2 acts onCδ by
±1, while h1 is identified with the Cartan space for W1 via (xi )i∈Q0 �→ ∑r

i=1 xiω
∨
i ,

where we write ω∨
i for the fundamental coweights.

Let us remark that the W -action can be recovered by using the quiver variety
setting as well, see [45, 48] for more detail.

3.2 Quantum Hamiltonian Reduction

Here we will explain a quantum counterpart of the constructions of the previous
section.

3.2.1 Quantum Hamiltonian Reduction: Algebra Level

Let A be an associative algebra, g a Lie algebra and 	 : g → A be a Lie algebra
homomorphism. Then, for a characterλ of g, set Iλ := A{x − 〈λ, x〉, x ∈ g}, this is a
left ideal inA that is stable under the adjoint action of g. We setA///λg := (A/Iλ)

g.
This space has a natural associative product given by (a + Iλ)(b + Iλ) := ab + Iλ.
With this product, A///λg becomes naturally isomorphic to EndA(A/Iλ)

opp, an
element a + Iλ gets mapped to the unique endomorphism sending 1 + Iλ to a +
Iλ. We also have a universal variant of quantum Hamiltonian reduction: A///g :=
(A/A	([g, g]))g.

Now supposeA is a filtered quantization ofC[X ], where X is an an affine Poisson
variety (we assume that the bracket on C[X ] has degree −1). Suppose that G acts
on X in a Hamiltonian way and the functions μ∗(ξ) have degree 1 for all ξ ∈ g. By a
quantization of the Hamiltonian G-action on C[X ] we mean a rational G-action on
A together with a G-equivariant map 	 : g → A such that

(i) the filtration on A is G-stable and the isomorphism grA ∼= C[X ] is G-
equivariant,

(ii) 	(ξ) lies in A�1 and coincides with μ∗(ξ) modulo A�0,
(iii) and [	(ξ), ·] = ξA, where ξA is the derivation ofA coming from the G-action.
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Note that gr Iλ ⊃ I := C[X ]μ∗(g) and so we have a surjective homomorphism
C[X///0G] � grA///λG. We want to get a sufficient condition for gr Iλ = I for
all λ.

Lemma 3.12 Let ξ1, . . . , ξn be a basis in g. Suppose μ∗(ξ1), . . . ,μ∗(ξn) form a
regular sequence. Then gr Iλ = I for any λ.

Proof The proof is based on the observation that the 1st homology in the Koszul
complex associated to μ∗(ξ1), . . . ,μ∗(ξn) is zero. In other words, if f1, . . . , fn ∈
C[X ] are such that

∑n
i=1 fiμ∗(ξi ) = 0, then there are fi j ∈ C[X ] with fi j = − f ji

and fi = ∑n
j=1 fi jμ∗(ξ j ). Details of the proof are left to the reader. �

So if G is reductive and the assumptions of Lemma 3.12 hold, then A///λg is a
filtered quantization of C[X///0G].

We can also give the definition of a quantization of a Hamiltonian action in the
setting of formal quantizations. One should modify (i)-(iii) as follows. In (i) one
requires the G-action to be C[[�]]-linear and the isomorphismA�/�A�

∼= C[X ] has
to be G-equivariant. In (ii), one requires that 	(ξ) coincides with μ∗(ξ) modulo
�. In (iii) one requires 1

�
[	(ξ), ·] = ξA�

. We then can consider reductions of the
form A�///λ(�)G, where λ(�) is an element in (g∗G)[[�]]. If G is reductive, and the
elements μ∗(ξi ) − 〈λ(0), ξi 〉, i = 1, . . . , n, form a regular sequence in C[X ], then
A�///λ(�)G is a formal quantization of C[X///λ(0)G].

3.2.2 Quantum Hamiltonian Reduction: Sheaf Level

Let X be a smooth affine symplectic algebraic variety equipped with a Hamiltonian
action of G and let θ be a character of G. Assume that, for a basis ξ1, . . . , ξn of g,
the elements μ∗(ξ1), . . . ,μ∗(ξn) form a regular sequence at all points of μ−1(0)θ−ss .
LetD� be a formal quantization ofOX . Our goal is to define a (formal) quantization
D�///θ

λ(�)G of X///θ
0G (so λ(0) = 0).

Recall that it is enough to define the following data:

(1) For an open affine covering X///θ
λG := ⋃

i Yi , the algebras of sections �(Yi ,
D�///θ

λ(�)G) that quantize Yi ,
(2) and identifications �(Yi ,D�///θ

λ(�)G)Yi∩Y j
∼= �(Y j ,D�///θ

λ(�)G)Yi∩Y j satisfying
cocycle conditions.

Recall thatwe can choose an open covering by settingYi := X fi ///0G, where polyno-
mials fi ∈ C[X ]G,ni θ are such that X θ−ss = ⋃

i X fi . Then we set �(Yi ,D�///θ
λ(�)G)

:= �(X fi ,D�)///λ(�)G. The sections of the corresponding sheaf onYi ∩ Y j are easily
seen to be �(X fi ∩ X f j ,D�)///λ(�)G and this yields the gluing maps.

Now let us discuss the period map mentioned in Sect. 2.2.6. Suppose that the
G-action on μ−1(0)θ−ss is free so that X///θ

0G is smooth and symplectic. In this
case we have a period map associated to the quantization of D�///θ

λ(�)G. Assume,
for simplicity, that λ(�) := λ� for λ ∈ g∗G—this is the most interesting case, for
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example, it is the only case that appears when we work with the filtered setting.
Further, assume that D� is canonical, i.e., has period 0. Recall that this means the
existence of a parity anti-automorphism, let us denote it by �. Finally, assume that
	 is symmeterized, meaning that � ◦ 	 = 	, this can be achieved by modifying 	.
Then the period ofD�///θ

λ�
G equals to the Chern class associated to λ (if λ integrates

to a character of G, then it defines the line bundle on X///θ
0G, in general, we extend

the notion of a Chern class by linearity). This was essentially checked in [45, Sections
3.2, 5.4].

3.2.3 Algebra Versus Sheaf Level

We need to relate the sheaf D�///θ
λ(�)G to the algebra D�///λ(�)G. What one could

expect is that the algebra is the global sections (or even better, the derived global
sections) of the sheaf. Let us provide some sufficient conditions for this to hold.

Proposition 3.13 Assume, for simplicity, that λ(0) = 0. Further, suppose that the
following holds.

(1) The moment map μ is flat.
(2) X///0G is a normal reduced scheme.
(3) X///θ

0G → X///0G is a resolution of singularities.

Then R�(D�///θ
λ(�)G) ∼= D�///λ(�)G.

Proof By (3) and theGrauert-Riemmenschneider theorem, the higher cohomologyof
OX///θ

0G
vanish. This implies that the higher cohomology ofD�///θ

λ(�)G vanish.More-
over, �(D�///θ

λ(�)G)/(�) ∼= C[X///θ
0G]. By (2) and (3), the right hand side is natu-

rally identified withC[X///0G]. By (1), (D///λ(�)G)/(�) = C[X///0G]. Besides, we
have a natural homomorphism D///λ(�)G → �(D�///θ

λ(�)G). Modulo �, this homo-
morphism is the identity. The source algebra is complete and separated in the �-adic
topology, and the target algebra is flat overC[[�]]. It follows that the homomorphism
D///λ(�)G → �(D�///θ

λ(�)G) is an isomorphism. �

3.2.4 Isomorphism Theorem

Recall a C
×-equivariant isomorphism C

2n/�n
∼= M0(nδ, ε0) of Poisson varieties.

The left hand side admits a family of quantizations, eH1,ce, and so does the right
hand side, there quantizations are the quantum Hamiltonian reductions D(R)///λG,
where we use the symmetrized quantum comoment map 	(ξ) = 1

2 (ξR + ξR∗). In
fact, these two families are the same. Let us state a precise result to be proved in
Sect. 4.3 (using Procesi bundles). We write c for

1

|�1|

⎛

⎝1 +
∑

γ∈�1\{1}
c(γ)γ

⎞

⎠ ∈ C�n,
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where c(γ) := ci for γ ∈ Si (recall that S0 is the conjugacy class of a reflection in
Sn ⊂ �n and S1, . . . , Sr are conjugacy classes of elements of �1 ⊂ �n).

Theorem 3.14 We have a filtered algebra isomorphism eH1,ce ∼= D(R)///λG that
is the identity on the level of associated graded algebras (we consider the filtration on
D(R)///λG induced from the Bernstein filtration on D(R), where deg R = deg R∗ =
1). Here λ := ∑r

i=0 λi tri is recovered from c by the following formulas:

λi := trNi c, i = 1, . . . , r, λ0 := trN0 c − 1

2
(c0 + 1), (5)

where in the n = 1 case one needs to put c0 = 1.

For n = 1, this theorem was proved by Holland in [35]. The case of �1 = {1} was
handled in [21, 23] ([21] proved a weaker statement and then in [23] the proof
was completed). The case of cyclic �1 was done in [27, 56]. In [20] the proof was
completed: they considered the case when Q is a bipartite graph. Let us note that in
these papers formulas look different from (5): they use the quantum comoment map
	(ξ) = ξR . A uniform and more conceptual proof was given in [45] using Procesi
bundles, it will be sketched in Section 4.3.

Theorem 3.14 is of crucial importance for the representation theory of the algebras
H1,c. It turns out that the representation theory of the algebras D(R)///λG (actually,
of sheaves DR///θ

λG) is easier to study. The main ingredient here is the geometry
of the quiver varietiesMθ(v, ε0). Using this, in [12], the author and Bezrukavnikov
have proved a conjecture of Etingof, [22], on the number of the finite dimensional
irreducible representations of H1,c.

3.2.5 Automorphisms

Here we are going to explain a quantum version of Namikawa’s construction recalled
in Sect. 3.1.11. In the complete generality this construction was given in [16, Section
3.3].

Let X be a conical symplectic resolution of X0. Let X̃ be its universal deformation
over H 2

DR(X) and let D̃� be the canonical quantization of X̃ . Let Ã� denote the C
×-

finite part of �(D̃�). Then Namikawa’s Weyl group W acts on Ã� by graded C[�]-
algebra automorphisms preserving H 2

DR(X)∗. Moreover, the action on H 2
DR(X)∗ is

as explained in Sect. 3.1.11.
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3.3 Quantum Hamiltonian Reduction for Frobenius
Constant Quantizations

In this section, we will consider the situation in characteristic p. Our main result is
that a quantum GIT Hamitlonian reduction under a free Hamiltonian action is again
Frobenius constant.

3.3.1 GIT in Characteristic p

The definition of a reductive group (one with trivial unipotent radical) makes sense
in all characteristics. A crucial difficulty of dealing with reductive groups in positive
characteristic is that their rational representations are no longer completely reducible,
in general. The groups for which the complete reducibility holds are called linearly
reductive. Tori are still linearly reductive independently of the characteristic. We
need to deal with GIT for reductive groups (such as products of GL’s) and so we
need to explain how this works in positive characteristic.

It turns out that reductive groups satisfy a weaker condition than being linearly
reductive, they are geometrically reductive. This was conjectured by Mumford and
proved by Haboush, [32]. To state the condition of being geometrically reductive,
let us reformulate the linear reductivity first: a group G is called linearly reductive,
if, for any linear G-action on a vector space V and any fixed point v ∈ V , there is
f ∈ (V ∗)G with f (v) �= 0. A group G is called geometrically reductive if instead of
f ∈ (V ∗)G , one can find f ∈ Sr (V ∗)G (for some r > 0) with f (v) �= 0.
This condition is enough for many applications. For example, if X is an affine

algebraic variety acted on by a reductive (and hence geometrically reductive) group
G, then F[X ]G is finitely generated. So we can consider the quotient morphism
X → X//G. This morphism is surjective and separates the closed orbits. Moreover,
if X ′ ⊂ X is a G-stable subvariety, then the natural morphism X ′//G → X//G is
injective with closed image.

The claim about the properties of the quotient morphism in the previous paragraph
can be deduced from the following lemma, [50, Lemma A.1.2].

Lemma 3.15 Let G be a geometrically reductive group acting on a finitely generated
commutative F-algebra R rationally and by algebra automorphisms. Let I ⊂ R be
a G-stable ideal and f ∈ (R/I )G. Then there is n such that f pn lies in the image of
RG in (R/I )G.

In characteristic p, we can still speak about unstable and semistable points for
reductive group actions on vector spaces, about GIT quotients, etc.

Another very useful and powerful result of Invariant theory in characteristic 0
is Luna’s étale slice theorem, see, e.g., [57, Sect. 6.3]. There is a version of this
theorem in characteristic p due to Bardsley and Richardson, see [1]. We will need a
consequence of this theorem dealing with free actions.
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Recall that, in characteristic 0, an action of an algebraic group G on a variety X is
called free if the stabilizers of all points are trivial. In characteristic p one should give
this definition more carefully: the stabilizer may be a nontrivial finite group scheme
with a single point. An example is provided by the left action of G on G(1), we will
discuss a closely related question in the next subsection. We have the following three
equivalent definitions of a free action.

• For every x ∈ X , the stabilizer Gx equals {1} as a group scheme.
• For every x ∈ X , the orbit map G → X corresponding to x is an isomorphism of
algebraic varieties.

• For every x ∈ X ,Gx coincides with {1} as a set and the stabilizer of x in g is trivial.
The following is a weak version of the slice theorem that we need.

Lemma 3.16 Let X be a smooth affine variety equipped with a free action of a
reductive algebraic group G. Then the quotient morphism X → X/G is a principal
G-bundle in étale topology.

3.3.2 Quiver Varieties

Let us now discuss Nakajima quiver varieties in characteristic p � 0. We have a
finite localization R of Z with the following properties:

(1) R together with the G-action and μ are defined over R.
(2) μ−1(0)θ−ss and the G-bundle μ−1(0)θ−ss → μ−1(0)θ−ss/G are defined over R.

For anR-algebraR′, let RR′ ,GR′ ,μR′ etc. denote theR′-forms of the corresponding
objects. Let us write XR for anR-form of μ−1(0)θ−ss/G. After a finite localization
of R, we can achieve that XR is a symplectic scheme over Spec(R) with C ⊗R

�(XR,OXR
)

∼−→ C[XC] and Hi (XR,OXR
) = 0 for i > 0.

For R′, we can take F := Fp when p is large enough. So we get a symplec-
tic F-variety Mθ

0(nδ, 1)F that is naturally identified with T ∗RF///θ
0GF as well as

with Spec(F) ×Spec(R) XR. For p � 0, we get F[XF] = F ⊗R �(XR,OXR
) and

Hi (XF,OXF
) = 0.

We can take a finite algebraic extension ofR and assume that the �n-module C
2n

is defined overR. Now we claim that (again for p � 0)Mθ
0(nδ, 1)F is a symplectic

resolution of F
2n/�n . This follows from the claim that both�(XR,OXR

),R[x, y]�n

are R-forms of C[x, y]�n so they coincide after some finite localization of R.

3.3.3 Quantum Hamiltonian Reduction

Now suppose that R is a symplectic vector space overF,G is a reductive group overF

acting on R and θ is a character ofG.We suppose thatG acts freely onμ−1(0)θ−ss .We
are going to define a Frobenius constant quantization DR///θ

λG of T ∗R///θ
0G, where

λ ∈ Hom(G, F
×) ⊗Z Fp ↪→ g∗G . The associated filtered quantization of T ∗R///θ

0G
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will be a quantization obtained by quantum Hamiltonian reduction, see Sect. 3.2.2.
We note that for λ /∈ Hom(G, F

×) we do not get a Frobenius constant quantization
of T ∗R///θ

0G.
Consider the Frobenius twist G(1). It is a group and the morphism Fr : G → G(1)

is a group epimorphism. Its kernel (a.k.a. the Frobenius kernel) G1 is a finite group
scheme whose Lie algebra coincides with g.

The action of G on R induces an action of G(1) on R(1). The G(1)-action
on T ∗R(1) is Hamiltonian with moment map μ(1) : T ∗R(1) → g(1)∗ induced by
μ. Consider the sheaf DR///θ

λG1 (a subquotient of DR) on T ∗R(1)θ−ss . One can

show, see [7, Section 3.6], that it is supported on
(
μ(1)

)−1
(0), here we use that

λ ∈ Hom(G, F
×) ⊗Z Fp. Moreover, it is a G(1)-equivariant Azumaya algebra on

(
μ(1)

)−1
(0). The descent of this algebra to (T ∗R///θ

0G)(1) = T ∗R(1)///θ
0G

(1) is an
Azumaya algebra with a filtration induced from that on DR . We have a natural
homomorphism gr(DR///θ

λG1) → Fr∗ OT ∗R///θ
0G1

. To show that it is an isomorphism
one uses that the action ofG1 is free (that yields the required cohomology vanishing).
This isomorphism implies gr(DR///θ

λG)
∼−→ Fr∗ OT ∗R///θ

0G
. So DR///θ

λG is indeed a
Frobenius constant quantization.

Note that if λ /∈ Hom(G, F
×) ⊗Z Fp, then DR///θ

λG1 is supported on a nonzero
fiber of μ(1), see [7, Section 3.6] for details, and so DR///θ

λG is no longer a Frobenius
constant quantization of X///θ

0G.

4 Existence and classification of Procesi bundles

In this section we construct and classify Procesi bundles on X = Mθ(nδ, ε0) and
also prove Theorem 3.14.

In Sect. 4.1 we construct a Procesi bundle on X . The case n = 1 is relatively easy,
it was done in [38]. For n > 1, we follow [11]. A key step here is to construct a
special Frobenius constant quantization of XF, where F is an algebraically closed
field of large enough positive characteristic. This quantization provides a suitable
version of derived McKay equivalence and using this equivalence we can produce a
Procesi bundle over F. Then we lift it to characteristic 0.

In Sect. 4.2 we prove that Symplectic reflection algebras satisfy PBW property
and, in some sense, the family of SRA Ht,c is universal with this property. The proof
is based on computing relevant graded components in the Hochschild cohomology
of SV #�.

Theorem 3.14 is proved in Sect. 4.3. Using the Procesi bundle, we show that each
algebra D(R)///λG is isomorphic to some eH1,ce. Then the task is to show that the
correspondence between the parametersλ and the parameters c is as in Theorem3.14.
We first do this for n = 1. Then we reduce the case of n > 1 to n = 1 by studying
completions of the algebras involved. This allows to show that the map between the
parameters is conjugate to that in Theorem 3.14 up to a conjugation under an action
of the group W × Z/2Z, where W is the Weyl group of the finite part of the quiver
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Q. But from Sect. 3.2.5 we know that this action lifts to an action on the universal
reduction D(R)///G by automorphisms. This completes the proof of Theorem 3.14.

Then, in Sect. 4.4, we classify Procesi bundles. Namely, we show that, when
n > 1, there are 2|W | different Procesi bundles on X . For this, we use Theorem 3.14
to produce this number of bundles. And then we use techniques used in the proof to
show that the number cannot exceed 2|W |. Further, we show that each X carries a
distinguished Procesi bundle.

4.1 Construction of Procesi Bundles

4.1.1 Baby Case: n = 1

In this case it is easy to construct a vector bundle of required rank on X . Namely, for
i = 0, . . . , r , letUi be the G-module C

δi and let Ui be the corresponding vector bun-
dle on X . We set P := ⊕r

i=0 U
δi
i . It follows from results of Kapranov and Vasserot,

[38], that this bundle satisfies the axioms of a Procesi bundle.

4.1.2 Procesi Bundles and Derived McKay Equivalence

Before we proceed to constructing Procesi bundles in general, let us explain
their connection to derived Mckay equivalences, i.e., equivalences Db(Coh X)

∼−→
Db(K[Vn]#�n), here K stands for the base field.

Proposition 4.1 Let P be a Procesi bundle on X. Then the functor RHomOX (P, •)

is a derived equivalence Db(Coh X) → Db(K[Vn]#� -mod).

The proof is based on the following more general result (Calabi-Yau trick) of (in
this form) Bezrukavnikov and Kaledin.

Proposition 4.2 ([11, Proposition 2.2]). Let X be a smooth variety, projective over
an affine variety, with trivial canonical class. Furthermore, let A be an Azumaya
algebra over X such that �(A) has finite homological dimension and Hi (X,A) = 0
for i > 0. Then the functor R� : Db(Coh(X,A)) → Db(�(A) -mod) is an equiva-
lence.

Proposition 4.1 follows from Proposition 4.2 with A = End(P).
Now suppose that we have a derived equivalence ι : Db(Coh(X))

∼−→ Db(K[V ]#
�n -mod). Assume P ′ := ι−1(K[V ]#�n) is a vector bundle. Then EndOX (P ′) =
K[V ]#� and Exti (P ′,P ′) = 0 for i > 0. SoP ′ is, basically, a Procesi bundle (it also
needs to be K

×-equivariant, but we will see below that this always can be achieved).
In fact, this is roughly, how the construction of a Procesi bundle will work, although
it is more involved and technical.
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4.1.3 Quantization of X

Here and in Sect. 4.1.4 everything is going to be over an algebraically closed field F

of characteristic p � 0. The first step in the construction of a Procesi bundle is to
produce a Frobenius constant quantization of X with special properties.

Proposition 4.3 There is a Frobenius constant quantization D of X such that
�(D) = A(Vn)

�n (an isomorphism of filtered algebras over F[X (1)] = F[V (1)
n ]�n ).

Note that this proposition can be thought as a special case of the characteristic p
version of Theorem 3.14. Here �(D) is an analog of D(R)///λG (indeed, the latter
is the algebra of global sections of some filtered quantization of XC, see Proposition
3.13), while A(Vn)

�n is the characteristic p analog of eH1,0e.
In fact, the following is true.

Lemma 4.4 Theorem 3.14 (for c = 0) implies Proposition 4.3.

Proof First, let us see that we get an isomorphism �(D) ∼= A(Vn)
�n of filtered alge-

bras that is the identity on the associated graded algebra. SetD := D(R)///θ
λG, where

λ is the parameter corresponding to c = 0.
The algebra A(Vn,C)�n is finitely generated and so an isomorphism in Theo-

rem 3.14 is defined over some finitely generated subring R of C. We can enlarge
R and assume that we are in the situation described in Sect. 3.3.2. We can form
filtered quantizationsD′

C
,D′

R,D′
F
of XC, XR, X . BothD′

C
,D′

F
are obtained as suit-

able completions of base changes of D′
R (completions are necessary because of

our condition on the filtration in the definition of a filtered quantization, see 2.2.4).
In particular, D(RC)///λGC = (�(DC) =)C ⊗R �(D′

R), while�(D) = (�(D′
F
) =)

F ⊗R �(D′
R).

So we can reduce an isomorphism from Theorem 3.14 (for c = 0) mod p � 0
and get an isomorphism �(D) ∼= A(Vn)

�n . What remains to show is that this isomor-
phism is F[V (1)

n ]�n -linear. The first step here is to show that F[V (1)
n ]�n is the center of

A(Vn)
�n . It is enough to check that F[V (1)

n ]�n coincides with the center of the Poisson
algebra F[Vn]�n . Here we just note that the Poisson center of F[Vn]�n is finite and
birational over F[V (1)

n ]�n and use that the latter algebra is normal. So the isomor-
phism �(D) ∼= A(Vn)

�n induces an automorphism of F[V (1)
n ]�n . This isomorphism

preserves the filtration and is trivial on the level of associated graded algebras.
The second step is to show that the algebra F[V (1)

n ]�n has no nontrivial automor-
phisms ϕ with such properties. Let us define a derivation ψ of F[V (1)

n ]�n that should
be thought as lnϕ. The degrees of generators of F[V (1)

n ]�n are bounded from above
for all p � 0 and so are degrees of relations between them. Observe that it is only
enough to define a derivation on generators and it will be well-defined as long as it
sends all relations to 0. Now to construct ψ we note that ϕ − 1 decreases degrees,
and hence ψ := lnϕ makes sense as long as p is sufficiently large. The derivation ψ
lifts to F[V (1)

n ] because the quotient morphism V (1)
n → V (1)

n /�n is ramified in codi-
mension bigger than 1. Since it decreases degrees, we see that ψ has the form ∂v for
some v ∈ F

2n(1). But, if �1 �= {1}, the vector v cannot be �n-equivariant and so ∂v
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does not preserveF[V (1)
n ]�n . When�1 = {1}, there is a�n-invariant vector. However,

in this case we can modify our construction: consider the reflection representation
h of Sn instead of the permutation representation C

n . We need to replace R with
sln ⊕ C

n . Theorem 3.14 gets modified accordingly. �

However, the easiest way to prove Theorem 3.14 is by using Procesi bundles (at
least for non-cyclic �1 or general c, the case c = 0 may be easier). So we need some
roundabout way to constructD. In [11] the question of existence ofDwas reduced to
n = 1.More precisely, let V sr denote the set of all v ∈ Vn such that dim V �v > 2. Let
us write X1 := ρ−1(V sr

n /�n). This is an open subset in X with codimX X \ X1 > 1.
First, Bezrukavnikov and Kaledin produce a Frobenius constant quantization D1 of
X1 with �(D1) = A(Vn)

�n . This requires the existence of such a quantization in the
case when n = 1. The latter case can be handled using Theorem 3.14 proved in this
case by Holland (that can be alternatively proved using the existence of a Procesi
bundle in the case n = 1). When D1 is constructed, Bezrukavnikov and Kaledin use
the inequality codim X \ X1 > 1 to show that D1 uniquely extends to a Frobenius
constant quantization D of X , automatically with �(D) = A(Vn)

�n .

4.1.4 Construction of a Procesi Bundle: Characteristic p

Let D be as in the previous subsection. We will produce a Procesi bundle on X (1)

starting fromD. Since X (1) ∼= X (an isomorphism of F-varieties), this will automat-
ically establish a Procesi bundle on X . The isomorphism X (1) ∼= X follows from the
observation that X is defined over Fp and Fr is an isomorphism of F fixing Fp.

By Proposition 4.2, we have a derived equivalence Db(Coh(X (1),D))
∼−→ Db

(A(Vn)
�n -mod). Also we have an abelian equivalence A(Vn)

�n -mod
∼−→ A(Vn)#

�n -mod = A(Vn) -mod�n . Composing the two equivalences, we get

Db(Coh(X,D))
∼−→ Db(A(Vn) -mod #�n), (6)

while what we need is a derived McKay equivalence

Db(Coh X (1))
∼−→ Db(F[V (1)

n ] -mod #�n). (7)

Recall thatD is an Azumaya algebra on X , whileA(Vn) is a�n-equivariant Azumaya
algebra on V (1)

n . If we had a splitting and a �n-equivariant splitting, respectively, we
would get (7) from (6). However, this is obviously not the case: A(Vn) admits no
splitting at all.

This can be fixed by passing to completions at 0. Namely, let X (1)∧0 denote the
formal neighborhood of (ρ(1))−1(0) in X (1). It was checked in [11, Section 6.3] that
the restriction ofD to X (1)∧0 splits. Also it was checked that the restriction of A(Vn)

to the formal neighborhood of 0 in F
2n(1)∧0 admits a �n-equivariant splitting. So, we

get an equivalence
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ι : Db(Coh(X (1)∧0))
∼−→ Db(F[V (1)

n ]∧0#�n -mod)

that makes the following diagram commutative (all arrows are equivalences of tri-
angulated categories and all arrows but R� come from abelian equivalences):

Db(Coh(X(1)∧0))

Db(Coh(X(1)∧0 ,D)) Db(A(Vn)∧0Γn -mod) Db(A(Vn)∧0#Γn -mod)

Db(F[V (1)
n ]∧0#Γn -mod)

B∗ ⊗ •

RΓ

Here B denotes a splitting bundle for the restriction of D to X (1)∧0 .
Set P ′ := ι−1(F[V (1)

n ]∧0#�n). We claim that P ′ is a vector bundle on X (1)∧0 .
Indeed, the image of F[V (1)

n ]∧0#�n in A(Vn)
∧0�n -mod is a projective genera-

tor and so is a direct summand in the sum of several copies of A(Vn)
∧0�n . But

R�−1(A(Vn)
∧0�n ) = B∗. So P ′ is a direct summand in a vector bundle (the sum of

several copies of B∗) and hence is a vector bundle itself.
So we get a vector bundle P ′ on X (1)∧0 that satisfies End(P ′) ∼= F[V (1)

n ]∧0#�n,

Exti (P ′,P ′) = 0 for i > 0. The latter vanishing implies that P ′ is equivariant with
respect to the F

×-action on X (1)∧0 , see [61]. From here it follows that P ′ can be
extended to X (1) (this is because F

× contracts X (1) to the zero fiber, see [11, Section
2.3]). Moreover, we can modify the equivariant structure on P ′ and achieve that the
isomorphism End(P ′) ∼= F[V (1)

n ]∧0#�n is F
×-equivariant, see [46, Section 3.1]. It

follows that P is a Procesi bundle.

4.1.5 Construction of a Procesi Bundle: Lifting to Characteristic 0

Recall the R-scheme XR from Sect. 3.3.2. We may assume R is regular. Taking
an algebraic extension of R, we get a maximal ideal m such that there is a Procesi
bundle PF on XF, where F is an algebraic closure of F0 := R/m. We may assume
that PF is defined over F0, let PF0 be the corresponding form. LetR∧ be the m-adic
completion of R. Since Exti (PF0 ,PF0) = 0 for i = 1, 2, we see that PF0 uniquely
deforms to a Gm-equivariant vector bundle on the formal neighborhood of XF0 in
XR∧ (see [11, Section 2.3]).

Let us show that the Gm-finite part of End(PR∧) isR∧[Vn]#�n . Consider the for-
mal neighborhood Z of Xreg

F0
in Xreg

R∧ . Note that Ext1(PF0 |Xreg
0

,PF0 |Xreg
0

) = 0, see, for
example, [12, Appendix]. So the restriction of PR∧ to Z coincides with η∗O(R∧2n)reg ,
where η denotes the quotient morphism R∧2n → R∧2n/�n . This implies the claim
about endomorphisms.

Since PR∧ is Gm-equivariant and the Gm-action is contracting, it extends from
a formal neighborhood of XF0 in XR to XR∧ . So we get a Procesi bundle on XK ,
where K = Frac(R∧). But being a finite extension of the p-adic field, K embeds
into C and so we get a Procesi bundle on X .
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4.2 Symplectic Reflection Algebras

4.2.1 Flatness and Universality

Let V be a symplectic vector space with form � and � ⊂ Sp(V ) be a finite group
of symplectomorphisms. We write S for the set of symplectic reflections in �, it is a
union of conjugacy classes: S = S0 � S1 � . . . � Sr . We pick independent variables
t, c0, . . . , cr .

Recall the universal Symplectic reflection algebra H, the quotient of T (V )#
�[t, c0, . . . , cr ] by the relations (3). Let us write cuniv for the vector space with
basis t, c0, . . . , cr so that H is a graded S(cuniv)-algebra.

Theorem 4.5 The algebra H is a free graded S(cuniv)-module. Moreover, assume
that � is symplectically irreducible. Then H is universal with this property in the
following sense. Let c′ be a vector space and H′ be a graded S(c′)-algebra (with
deg c′ = 2) that is a free graded S(c′)-module and H′/(c′) = S(V )#�. Then there is
a unique linear map ν : cuniv → c′ and unique isomorphism S(c′) ⊗S(cuniv) H

∼−→ H′
of graded S(c′)-algebras that induces the identity isomorphism of S(V )#�n.

When �1 �= {1}, then the action of the group �n on Vn = C
2n is symplectically

irreducible.When�1 = {1}, themoduleC
2n over�n is not symplectically irreducible,

so we replace C
2n with Vn = h ⊕ h∗, where h is the reflection representation ofSn .

Note that we did the same in Sect. 4.1.3.

4.2.2 Hochschild Cohomology

Before we prove this theorem we will need to get some information about Hochshild
cohomology of S(V )#�. We need this because the Hochschild cohomology controls
deformations of S(V )#�.

Let A be a graded algebra. We want to describe graded deformations of A. The
Hochschild cohomology group HHi (A) inherits the grading from A, let HHi (A) j

denote the j th graded component. The general deformation theory implies the fol-
lowing.

Lemma 4.6 Assume that dimHH2(A)−2 < ∞ andHHi (A) j = 0 for i + j < 0. Set
Puniv := (HH 2(A)−2)∗. Then there is a free graded S(Puniv)-algebra Auniv (with
deg Puniv = 2) such that Auniv/(Puniv) = A that is a universal graded deformation
of A in the same sense as in Theorem 4.5.

What we are going to do is to compute the relevant graded components of
HH•(SV #�). The vanishing result is easy and the computation of Puniv is more
subtle.

First, we use the fact that HHi (A, M) = ExtiA⊗Aopp (A, M) (where M is an A-
bimodule) to see that
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HHi (S(V )#�, S(V )#�) = HHi (S(V ), S(V )#�)�. (8)

We have a �-action on HHi (S(V ), S(V )#�) because both S(V )-bimodules S(V ),

S(V )#� are �-equivariant. We have S(V )#� = ⊕
γ∈� S(V )γ of S(V )-bimodules,

where S(V )γ is identified with S(V ) as a left S(V )-module and the right action is
given by f · a := f γ(a).

Let us compute HHi (S(V ), S(V )γ) in degrees we are interested in: j < −i and
also j = −2 for i = 2.We have γ = diag(γ1, . . . , γn), where we view γi as elements
of cyclic groups acting on C. Then we have an isomorphism of bigraded spaces

⊕

i

HHi (S(V ), S(V )γ) ∼=
n⊗

�=1

⊕

i

HHi (C[x], C[x]γ�). (9)

For an arbitrary γ�, we have HHi (C[x], C[x]γ�) = 0 when i > 1. When γ� = 1, we
have HH0(C[x], C[x]) = C[x] and HH1(C[x], C[x]) = C[x]{1}, where {1} indi-
cates the grading shift by 1 so that HH1(C[x], C[x]) is a free module generated
in degree −1. When γ� �= 1, then HH0(C[x], C[x]γ�) = 0 and HH1(C[x], C[x]) =
C{1}.

This computation easily implies that HHi (S(V ), S(V )#�) j = 0 when i + j <

0. Now let explain how to compute
(
HH2(S(V ), S(V )#�)−2

)�
. If HH2(S(V ),

S(V )γ)−2 �= 0, then either γ = 1 or γ is a symplectic reflection. When γ =
1, then HH2(S(V ), S(V )γ)−2 = ∧2 V . When γ is a symplectic reflection, then
HH2(S(V ), S(V )γ)−2 = C. An element γ1 ∈ � maps S(V )γ to S(V )(γ1γγ−1

1 ). The
action of � on HH2(S(V ), S(V )γ)−2 = ∧2 V is a natural one. When γ is a sym-
plectic reflection, then the action of Z�(γ) on HH2(S(V ), S(V )γ)−2 = C is trivial.
From here we deduce that

dimHH2(S(V )#�, S(V )#�)−2 = r + 2,

as claimed.

4.2.3 Proof of Theorem 4.5

Let us write Huniv for the universal deformation, we need to prove that Huniv
∼−→ H.

First of all, note that degree 0 and 1 components of Huniv are the same as in
S(V )#�. So we have natural embeddings �, V ↪→ Huniv . It is easy to see that
cuniv, V, � generateHuniv . This gives rise to an epimorphism S(cuniv) ⊗ T (V )#� �
Huniv . Further, for u, v ∈ V ⊂ Huniv , we have [u, v] ∈ (cuniv). The degree 2 of
(cuniv) is cuniv ⊗ C�. So we get [u, v] = κ(u, v) in Huniv , where κ is a map∧2 V → cuniv ⊗ C�. A computation done in [21, Section 2] shows that, sinceHuniv

is free over S(cuniv), we get
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κ = t� +
r∑

i=0

ci
∑

s∈Si
�s(u, v)s.

This completes the proof of Theorem 4.5.

4.3 Proof of the Isomorphism Theorem

We will prove an isomorphism of eHe and the universal Hamiltonian reduction
A := A�(T ∗R)///G, where A�(T ∗R) is the Rees algebra of D(R) (with modified
grading so that deg T ∗R = 1, deg � = 2). Here we take R := R(Q, nδ, ε0) for n > 1
and R := R(Q, δ, 0) for n = 1. In the case when n > 1, we take G := GL(nδ). For
n = 1, forG, we take the quotient of GL(δ) by the one-dimensional central subgroup
of constant elements.

Both eHe,A are graded algebras.The algebra eHe is over S(cuniv)withdeg cuniv =
2. The algebra A is over S(cred), where cred := g/[g, g] ⊕ C�. We will prove that
there is a graded algebra isomorphism eHe

∼−→ A that maps cuniv to cred and induces
the identity automorphism eHe/(cuniv) = C[Vn]�n = A/(cred). Further, we will
explain why the corresponding isomorphism cuniv ∼= cred maps � to t and gives (5) on
the hyperplanes t = 1 and � = 1. In other words, the isomorphism ν : cuniv → cred
is the inverse of the following map

� �→ t, εi �→ 1

|�1| trNi c̃, i �= 0, ε0 �→ 1

|�1| trN0 c̃ − 1

2
(c0 + t), (n > 1)

� �→ t, εi �→ 1

|�1| trNi c̃, i �= 0, ε0 �→ 1

|�1| trN0 c̃ − t, (n = 1) (10)

Here the notation is as follows.Wewrite c̃ := t + ∑r
i=1 ci

∑
γ∈S0i γ and εi ∈ g/[g, g]

is specified by tri ε j := δi j .

4.3.1 Application of a Procesi Bundle

An isomorphism eHe ∼= A is produced as follows. The algebraH has better universal-
ity properties than eHe does1. We will produce a graded S(cred)-algebra Ã deform-
ing C[Vn]#�n with eÃe = A. This will give rise to a linear map ν : cuniv → cred
and to an isomorphism S(cred) ⊗S(cuniv) H ∼= Ã and hence also to an isomorphism
S(cred) ⊗S(cuniv) eHe ∼= A. The algebra Ã will be constructed from a Procesi bundle
P on X = Mθ(nδ, ε0).

1After this survey was written, I have proved that eHe is a universal graded deformation ofC[Vn]�n

compatible with the Poisson bracket in a suitable sense, which can be used to prove the isomorphism
theorem without appealing to Procesi bundles, see [42, Section 3] for details.
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First, let us produce a sheaf version of A. Consider the variety X̃ := T ∗R///θG,
this is a deformation of X over g∗G . Thenwe consider its formal quantization obtained
by Hamiltonian reduction, the sheaf D̃� := A�(T ∗R)∧�///θG. The algebra A coin-
cides with the C

×-finite part of �(D̃�). Now let us take a Procesi bundle P on X .
Since Exti (P,P) = 0, the bundleP deforms to a uniqueC

×-equivariant vector bun-
dle on the formal neighborhood of X in X̃ . But theC

×-action contracts X̃ to X . SoP
extends to a unique C

×-equivariant bundle P̃ on X̃ . The extension P̃ again satisfies
the Ext-vanishing conditions and so further extends to a unique C

×-equivariant right
D̃�-module P̃�.

Consider the endomorphism algebra EndD̃opp
�

(P̃�). Modulo (cred), this algebra

coincides with EndOX (P) = C[Vn]#�n . Let Ã be the C
×-finite part of EndD̃opp

�

(P̃�).

It is the endomorphism algebra of the right D̃�, f in-module P̃�, f in . The algebra Ã is a
graded S(cred)-algebra with Ã/(cred) = C[Vn]#�n , where cred lives in degree 2. We
conclude that there is a unique map νP : cuniv → cred with Ã ∼= S(cred) ⊗S(cuniv) H.
Then, automatically, we have

A(= eÃe) ∼= S(cred) ⊗S(cuniv) eHe. (11)

We will study the linear maps ν : cuniv → cred such that (11) holds. We will see that

(a) any such ν is an isomorphism,
(b) that there are |W | options for ν when n = 1 and 2|W | options else,
(c) and that one can choose ν as in (10).

(c) will complete the proof of Theorem 3.14, while (b) will be used to classify the
Procesi bundles.

First of all, let us point out that ν(t) = �. Indeed, the Poisson bracket on
C[M0

0(nδ, ε0)] induced by the deformation A equals �{·, ·}, where {·, ·} is the stan-
dard bracket given by the Hamiltonian reduction (more precisely, if we specialize
to (�′,λ) ∈ C ⊕ g∗G , then the bracket induced by the corresponding filtered defor-
mation is �

′{·, ·}). Similarly, the bracket on C[Vn]�n induced by eHe coincides with
t{·, ·}, see Example 2.4. Since the isomorphismM0

0(nδ, ε0) ∼= Vn/�n is Poisson, the
equality ν(t) = � follows.

4.3.2 Case n = 1

We start by proving (a)–(c) for n = 1.
Let us prove (c). First of all, recall that X can be constructed as the moduli space

of the C[x, y]#�1-modules isomorphic to C�1 as �1-modules that admit a cyclic
vector. The universal bundle on X is a Procesi bundle. Moreover, from [17, Section
8], it follows that X̃ is the moduli space of the H/(t)-modules isomorphic to C�1

and admitting a cyclic vector. The corresponding isomorphism cred/C� ∼= cuniv/Ct
is induced from ν.
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To show that ν then is given by (10) we consider the loci of parameters λ and
c where the homological dimensions of A1,λ := A(T ∗R)///λG, eH1,ce are infinite.
Both are given by the union of hyperplanes of the form λ · β = 0, where β runs over
the set of the roots of Q \ {0} (when we speak of the parameter λ for the algebra
eH1,ce we mean the parameter computed in Theorem 3.14). The claim for eH1,ce
follows from [17, Theorem 0.4], and that on A1,λ then follows from [45, Section 5]
(from an isomorphism of A1,λ with a central reduction of a suitable W-algebra) or
from [14].

The same considerations as in the previous paragraph imply (a). To prove (b) one
now needs to describe the group A of the automorphisms of A(∼= eHe) satisfying
the following:

• they preserve the grading,
• they preserve cred as a subset of A,
• they are the identity modulo cred .

We have a natural homomorphism A → GL(cred) that is easily seen to be injective.
From the isomorphism with a W-algebra mentioned above, one sees that W ⊂ A
(recall that the W -action on g∗G was described in Sect. 3.1.11). With some more
work, see [45, Proposition 6.4.5], one shows that actually W = A. This implies (b).

4.3.3 Completions

The case of a general n is reduced to n = 1 using suitable completions of the algebras
A,H. Let us explain what completions we use as well as general results on their
structure.

First, let us describe completions of algebras of the formA := A�(V )///G, where
V is a symplectic vector space and G is a reductive group acting on V by symplec-
tomorphisms. Let b ∈ V///0G. The point b defines a maximal ideal m ⊂ A. So we
can form the b-adic completion A∧b := lim←−n→+∞ A/mn . Let v ∈ V be a point with
closed G-orbit mapping to b. Let us write A�(V )∧Gv for the completion of A�(V )

with respect to the ideal of Gv. Then it is easy to see that A∧b ∼= A�(V )∧Gv ///G.
The algebraA�(V )∧Gv can be described using a suitable version of the slice theorem.
More precisely, it follows, for example, from [19, Section 4] that the formal neigh-
borhood V ∧Gv is equivariantly symplectomorphic to the neighborhood of the base
G/K in (T ∗G ×U )///0K , where K := Gv,U := (TvGv)⊥/TvGv. This statement
quantizes:A�(V )∧Gv ∼= (D�(G) ⊗C[�] A�(U ))///0K , this can be proved similarly to
[47, Theorem 2.3.1]. From here one deduces that

A∧b ∼= C[[g∗G]]⊗̂C[[k∗K ]]
(
A�(U )∧0///K

)
,

where a homomorphism C[[k∗K ]] → C[[g∗G]] is induced from the restriction map
g∗G → k∗K .

On the other hand, take a symplectic vector space V ′ and a finite subgroup � ⊂
Sp(V ). From these data we can form the symplectic reflection algebra H. Pick b ∈
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V ′/�. We can produce the completion H∧b : the point b defines a natural maximal
ideal in C[V ′]#�, we take its preimage in H and complete with respect to that
preimage. The algebraH∧b can also be described in terms of a “smaller” algebra of the
same type, [41, Theorem 1.2.1]. More precisely, let� be the stabilizer corresponding
to b and let H stand for the SRA corresponding to the pair (�, V ′), an algebra over
S(cuniv). ThenH∧b ∼= Z(�, �,H∧0), where Z(�, �, •) is the centralizer algebra from
[6, Section 3.2], it is isomorphic to Mat|�/�|(•). A consequence we need is that
eH∧b e ∼= eH∧0e. The algebra H can be described as follows. Let us write V+ for
a unique �-stable complement to V ′� in V ′. Consider the SRA H+ over S(cuniv),
where cuniv is the parameter space for �. The inclusion � ↪→ � gives rise to a natural
map cuniv → cuniv . Then H = At (V ′�) ⊗C[t] (S(cuniv) ⊗S(cuniv) H

+).

4.3.4 Completions at Leaves of Codimension 2

We are going to use the completions ofA and eHe at points lying in the codimension
2 symplectic leaves. Recall from Sect. 3.1.11 that when n > 1 and �1 �= {1}, we
have two such leaves. One corresponds to � = �1 ⊂ �n , the other to S2 ⊂ �n . Let
H1+,H2+ be the corresponding SRA’s. The corresponding parameter spaces are
c1univ = Span(c1, . . . , cr , t) and c2univ = Span(c0, t). When �1 = {1}, we have just
one leaf of codimension 2, it corresponds to S2.

Now let us describe the completions on the Hamiltonian reduction side. Let
v1, v2 be elements from closed G-orbits in μ−1(0) ∈ T ∗R whose images b1, b2

in M0
0(nδ, ε0), Vn/�n lie in the two leaves. We can take the points v1, v2 as fol-

lows. We have a natural embedding μ−1
1 (0)n ↪→ μ−1(0) from the proof of Proposi-

tion 3.10. Take pairwise different elements v1, . . . , vn ∈ μ−1(0) with closed GL(δ)-
orbits. Then we can take v1 = (v1, . . . , vn−1, 0) ∈ T ∗R(nδ, 0) ⊂ T ∗R and v2 =
(v1, . . . , vn−2, vn−1, vn−1).

Let us describe the completion A∧b1 . We have K1(= Gv1) = (C×)n−1 × GL(δ).
So the space k∗K1

1 coincides C
n−1 ⊕ C

Q0 . The restriction map C
Q0 = g∗G → k∗K1

1 =
C

n−1 ⊕ C
Q0 sends λ to (λ · δ, . . . ,λ · δ,λ). The symplectic part U of the normal

space T ∗R/Tv1Gv1 splits into the direct sum of the trivial module C
2(n−1), of the

(C×)n−1-module (T ∗
C)⊕n−1, and of the GL(δ)-module T ∗R(δ, ε0). So

A�(U )///K1
∼= C[z1, . . . , zn−1] ⊗ A�(C2(n−1)) ⊗C[�] A�(T ∗R(δ, ε0))///GL(δ),

where z1, . . . , zn−1 are homogeneous elements of degree 2, the images of the natural
basis in Lie(C×(n−1)) under the comoment map.

Let us write GL(δ) for the quotient of GL(δ) by the one-dimensional torus
of constant elements. Set g∗G

0 := g∗G/Cδ, clearly, g∗G
0 = gl(δ)∗GL(δ). Set A1 :=

A�(T ∗R(δ, 0))///GL(δ). It is easy to see that A�(T ∗R(δ, ε0))///GL(δ) = C[g∗G]
⊗C[g∗G

0 ] A1. From here and the description of the map k∗K1
1 → g∗G given above, we

deduce that
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C[g∗G] ⊗
C[k∗K1

1 ] A�(U )///K1
∼= A�(C2n−2) ⊗C[�] (C[g∗G] ⊗C[g∗G

0 ] A1).

It follows that

A∧b1 ∼= A∧0
�

(C2n−2)⊗̂C[[�]](C[[c∗red ]]⊗̂C[[c1∗red ]]A
1∧0), (12)

where we write c1red for {λ ∈ C
Q0 |λ · δ = 0} ⊕ C�.

Let us now deal with A∧b2 . We have K2(= Gv2) = (C×)n−2 × GL(2). The map
g∗G → k∗K2

2 sends λ to the n − 1-tuple with equal coordinates λ · δ. The symplectic
part U 2 of the normal space T ∗R/Tv2Gv2 is the sum of the trivial module C

2(n−1),
the (C×)n−2-module (T ∗

C)⊕2 and the GL(2)-module T ∗(sl2 ⊕ C
2). Let c2red denote

the span of
∑

i∈Q0
δiεi and �. Set A2 := A�(T ∗(sl2 ⊕ C

2))///GL(2), we can view
it as an algebra over S(c2red) (where a natural generator of gl2/[gl2, gl2] corresponds
to

∑
i∈Q0

δiεi ). As above, we have

C[g∗G] ⊗
C[k∗K2

2 ] A�(U 2)///K2
∼= S(cred) ⊗S(c2red )

(A�(C2n−2) ⊗C[�] A2)

and we get the following description of A∧b2 :

A∧b2 ∼= A∧0
�

(C2n−2)⊗̂C[[�]](C[[c∗red ]]⊗̂C[[c2∗red ]]A
2∧0). (13)

4.3.5 Reduction to n = 1

Using (12) we see that (11) yields an isomorphism of completions A∧b1 ∼= e1H∧b1 e1

and hence an isomorphism

A∧0
�

(C2(n−1))⊗̂C[[�]](C[[c∗red ]]⊗̂C[[c1∗red ]]A
1∧0) ∼=

A∧0
�

(C2(n−1))⊗̂C[[�]](C[[c∗red ]] ⊗C[[c∗
univ]] C[[c∗univ]] ⊗C[[c1∗univ]] e

1H1∧0e1).

It was checked in [45, Section 6.5] that this isomorphism restricts to

S(cred) ⊗S(c1red )
A1 ∼= S(cred) ⊗S(c1univ)

e1H1e1

that preserves the grading and is the identity modulo (cred). From here it is easy to
deduce that ν maps c1univ to c1red and restricts to one of W -conjugates of the map in
(10) for n = 1.

Let us proceed to the second leaf. Similarly to Sect. 4.3.2, one can show that
A�(T ∗(sl2 ⊕ C

2))///GL(2) ∼= e2H2e2, where the isomorphism sends the element∑
i∈Q0

δiεi to ±(c0 + t)/2. It follows that ν maps c2univ to c2red and induces one
of two maps in the previous sentence. It follows that ν is an isomorphism that is
W × Z/2Z-conjugate to the map given by (10) for n > 1. Since W × Z/2Z-action
comes from automorphisms, that preserve the grading, map cred to cred , and are the
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identity modulo (cred) (see Sect. 3.2.5), claims (b) and (c) follow. This completes the
proof of Theorem 3.14.

4.4 Classification of Procesi bundles

Here we are going to prove that the number of different Procesi bundles on X equals
2|W | for n > 1 and |W | for n = 1. Throughout the section we only consider nor-
malized Procesi bundles.

4.4.1 Upper Bound

Recall that a Procesi bundle P on X defines a linear isomorphism νP : cuniv → cred .
We claim that if νP1 = νP2 , then P1 ∼= P2. Indeed, we have

�(P̃1
�, f in) = End(P̃1

�, f in)e ∼= End(P̃2
�, f in)e = �(P̃2

�, f in) (14)

(an isomorphism of graded rightH-modules). Note that H 1(X̃ , P̃ i ) = 0 because P̃ i

is a direct summand of End(P̃ i ) and the latter sheaf has no higher cohomology. It
follows that �(P̃ i

�
)/��(P̃ i

�
)

∼−→ �(P̃ i ). Taking the quotient of (14) by �, we get an
isomorphism �(P̃1) ∼= �(P̃2) of graded C[X̃ ]-modules. We claim that this implies
that the vector bundles P̃1, P̃2 areC

×-equivariantly isomorphic. Indeed, consider the
resolution of singularities morphism ρ̃ : X̃ → X̃0. This morphism is birational over
any p ∈ c∗red . Moreover, for a Zariski generic p, the morphism ρp is an isomorphism,
indeed, μ−1(p)θ−ss = μ−1(p). It follows that the restrictions of bundles P̃1, P̃2 to
some Zariski open subset in X̃ with codimension of complement bigger than 1 are
isomorphic. It follows that P̃1 ∼= P̃2 and hence P1 ∼= P2.

We have seen above that νP can only be one of 2|W | (for n > 1) or |W | (for
n = 1) maps. This implies the upper bound on the number of Procesi bundles.

4.4.2 Lower Bound

Let us show that there are 2|W | different Procesi bundles in the case of n > 1.
Recall that one can construct a Procesi bundlePD once one has a Frobenius constant
quantization D of XF with �(D) = A(Vn,F)�n . Note that the action of W × Z/2Z

on A is defined over some algebraic extension of Z. So, as before, it can be reduced
moduloq forq = p�, p � 0. LetDλ be the Frobenius constant quantization obtained
byHamiltonian reductionwith parameterλ ∈ F

Q0
p . The parameterλ constructed from

c = 0 belongs toF
Q0
p . Above, we have remarked that�(Dλ) ∼= A(Vn,F)�n . Moreover,

for q � 0, the stabilizer of this parameter in W × Z/2Z is trivial. So we get 2|W |
different Frobenius constant quantizations with required global sections. Procesi
bundles produced by them are different as well, as was checked in [46, Section 3.3].
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4.4.3 Canonical Procesi Bundle

By a canonical Procesi bundle we mean P such that νP is as in (10). According
to [46, Section 4.2], this bundle has the following property: the subbundle P�n−1

coincides with the rank n|�1| bundle T on X = Mθ(nδ, ε0) induced by the G-
module

⊕
i∈Q0

(Cnδi )⊕δi . We will write Pθ for this bundle. Recall that for w ∈ W ×
Z/2Zwe get an isomorphismMθ(nδ, ε0) ∼= Mwθ(nδ, ε0) that yields themap cred =
H 2(Mθ(nδ, ε0)) ⊕ C → H 2(Mwθ(nδ, ε0)) ⊕ C = cred equal to w. It follows that
νw∗Pθ = wν. So every other Procesi bundle on Mθ(nδ, ε0) is obtained as a push-
forward of the canonical Procesi bundle Pwθ on Mwθ(nδ, ε0).

Note that when P is a Procesi bundle, then so is P∗. Indeed, EndOX (P∗,P∗) ∼=
EndOX (P,P)opp. The algebra C[Vn]#�n is identified with its opposite via v �→
v, γ �→ γ−1, v ∈ V ∗

n , γ ∈ �n and this gives a Procesi bundle structure on P∗. We
have νPθ∗ = w0σνP∗ , where w0 is the longest element in W and σ is the image of 1
in Z/2Z, see [46, Remark 4.4].

5 Macdonald positivity and categories O

In this section we provide some applications of results of Sect. 4.
In Sect. 5.1, we will produce equivalences between categories Db(H1,c) and

Db(Coh(Dλ)) (over C). Here and below in this section we writeDλ for the quantum
Hamiltonian reduction (in a filtered setting, see Sect. 3.2.2 for the formal setting)

Dλ := DR///θ
λG,

of the microlocal sheaf of differential operators DR on T ∗R. Here we consider
the conical topology for the dilation action of C

× on R∗ (so that R is fixed). So
Dλ is a sheaf in conical topology on Mθ(nδ, ε0) whose global sections algebra is
D(R)///λG ∼= eH1,ce, this follows from Proposition 3.13 combined with Theorem
3.14.

Starting from Sect. 5.2, we will only consider the groups �n with cyclic �1. Here
�n is a complex reflection group and the corresponding algebra Ht,c (called aRational
Cherednik algebra) in this case admits a triangular decomposition. This decompo-
sition allows to define Verma modules and, for t = 1, category O for H1,c that has
a so called highest weight structure. We can also define the category O for Dλ,
this will be a subcategory in Coh(Dλ). We will show that the derived equivalence
Db(H1,c -mod) ∼= Db(Coh(Dλ)) restricts to categories O. This was used in [25] to
establish [58, Conjecture 5.6] for the groups �n .

In Sect. 5.3 we prove Theorem 1.3 and also its generalization to the groups �n

due to Bezrukavnikov and Finkelberg. The proof is based on studying the algebras
H0,c and their Verma modules.

Finally, in Sect. 5.4 we prove an analog of the Beilinson-Bernstein localization
theorem, [3], for the Rational Cherednik algebras associated to the groups �n . More



50 I. Losev

precisely, we answer the question when the derived equivalence Db(Coh(Dλ) →
Db(H1,c -mod) restricts to an equivalence Coh(Dλ) → H1,c -mod.

5.1 Derived equivalence

5.1.1 Deformed Derived Mckay Correspondence

Similarly to Sect. 4.1.2, the functor R�(P ⊗OX •) defines an equivalence
Db(Coh X)

∼−→ Db(C[Vn]#�n -mod) with quasi-inverse P∗ ⊗L
C[Vn ]#�n

•. These
equivalence automatically upgrade to the categories of C

×-equivariant objects:
Db(CohC

×
X) ∼= Db(C[Vn]#�n -modC

×
) defined in the same way.

Now let us consider the deformation P̃� of P to a right C
×-equivariant D̃�-

module. It gives a functor F̃ := R�(P̃�, f in ⊗D̃�, f in
•) : Db(CohC

×
(D̃�, f in)) → Db

(H -modC
×
). This functor has left adjoint and right inverse G̃ = P̃∗

�, f in ⊗L
H •. So

we get the adjunction morphism G̃ ◦ F̃ → id. One can show (see [25, Section 5] for
details) that since thismorphism is an isomorphismmodulo cuniv , it is an isomorphism
itself.

5.1.2 Specialization

The equivalence F̃ can be specialized to a numerical parameter. In particular, we
get equivalences Db(Coh(Dλ)) → Db(H1,c -mod), where λ is recovered from c as
in Theorem 3.14. This is done in two steps. First, one gets a derived equivalence
between CohC

×
(R�1/2(Dλ)) and R�1/2(H1,c) -modC

×
, the corresponding sheaf and

algebra are obtained from D̃�, f in,H by base change (and the equivalence we need
comes from the corresponding base change of P̃�, f in). To do the second step we
recall that H1,c -mod is the quotient R�1/2(H1,c) -modC

×
by the full subcategory of

the C[�]-torsion modules and the similar claim holds for Coh(Dλ), see Lemma
2.9. It follows that Db(H1,c -mod) is the quotient of Db(R�1/2(H1,c) -modC

×
) by the

category of all complexeswhose homology areC[�]-torsion and a similar claimholds
forDλ. Since the equivalence Db(R�1/2(H1,c) -modC

×
) ∼= Db(CohC

×
(R�1/2(Dλ))) is

C[�]-linear by the construction, they induce

Db(H1,c -mod) ∼= Db(Coh(Dλ)). (15)

5.1.3 Application: Shift Equivalences

The equivalences (15) can be applied to producing a result that only concerns the
symplectic reflection algebras. Namely, we say that parameters c, c′ for H? have
integral difference if λ − λ′ ∈ Z

Q0 for the corresponding parameters λ. Recall that
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we can view χ ∈ Z
Q0 as a character of G. So χ defines a line bundle on X , explicitly,

Oχ = π∗(Oμ−1(0)θ−ss )G,χ. This line bundle can be quantized to a Dλ+χ-Dλ-bimodule
to be denoted by Dλ,χ. Explicitly,

Dλ,χ := π∗(Dss/Dss{	(x) − 〈λ, x〉})G,χ.

This bundle carries a natural filtration and an isomorphism grDλ,χ
∼= Oχ follows

from the flatness of the moment map.
Note that there is a natural (multiplication) homomorphism Dλ+χ,χ′ ⊗Dλ+χ

Dλ,χ

→ Dλ,χ+χ′ that becomes the isomorphism Oχ′ ⊗ Oχ → Oχ+χ′ after passing to the
associated graded. So the multiplication homomorphism itself is an isomorphism. It
follows that a functor Dλ,χ ⊗Dλ

• : Coh(Dλ) → Coh(Dλ+χ) is a category equiva-
lence.We conclude that categories Db(H1,c -mod) and Db(H1,c′ -mod) are equivalent
provided c, c′ have integral difference2.

5.2 CategoryO

Starting from now on, we assume that �1 is a cyclic group Z/�Z. Recall that in this
case the space Vn (equal toC

2n when � > 1 andC
2(n−1) when � = 1) splits as h ⊕ h∗,

where h is a standard reflection representation of the group �n . The embeddings
h, h∗ ↪→ H extend to algebra embeddings S(h), S(h∗) ↪→ H. These embeddings
give rise to the triangular decomposition H = S(h∗) ⊗ S(cuniv)�n ⊗ S(h). We can
also consider the specialization H1,c = S(h∗) ⊗ C�n ⊗ S(h) (here and below c is a
numerical parameter) of this decomposition.

5.2.1 Category O for H1,c

By definition, the category O for H1,c consists of all H1,c-modules M such that

(i) h acts locally nilpotently on M .
(ii) M is finitely generated over H1,c.

Note that, modulo (i), the condition (ii) is equivalent to

(ii′) M is finitely generated over S(h∗).
An example of an object in the categoryO is a Vermamodule constructed as follows.
Pick an irreducible representation τ of�n and view it as a S(h)#�n-module bymaking
h act by 0. Then set �1,c(τ ) := H1,c ⊗S(h)#�n τ . As a S(h∗)#W -module, �1,c(τ ) is
naturally identified with S(h∗) ⊗ τ (the algebra S(h∗) acts by multiplications from
the left, and W acts diagonally).

2After this surveywaswritten, I have established a shift equivalence for general symplectic reflection
groups, [44]. The proof follows the scheme outlined in this section: Procesi bundles on symplectic
resolutions are replaced with their generalizations, Procesi sheaves on Q-factorial terminalizations.



52 I. Losev

The algebra H1,c carries an Euler grading given by deg h = −1, deg h∗ = 1,
degW = 0. This grading is internal: we have an element h ∈ H1,c with [h, a] = da
for a ∈ H1,c of degree d. Explicitly, the element h is given by

m∑

i=1

xi yi +
∑

s∈S

c(s)

1 − λs
s.

Here the notation is as follows.Wewrite y1, . . . , ym for a basis in h (of course,m = n
for � > 1 and m = n − 1 for � = 1) and x1, . . . , xm for the dual basis in h∗. By S
we, as usual, denote the set of reflections in �n and c(s) stands for ci if s ∈ Si (note
that the formula for h is different from the usual formula for the Euler element, see,
e.g., [6, Section 2.1], because our c(s) is rescaled). Finally, λs is the eigenvalue of s
in h∗ different from 1.

Using the element h, we can show that every Verma module �1,c(τ ) has a unique
simple quotient. These quotients form a complete collection of the simple objects in
O. Also one can show that every object in O has finite length. These claims are left
as exercises to the reader.

5.2.2 Category O for Dλ

We have a C
×-action on D(R) induced by the C

×-action on R given by t.r := t−1r .
This action is Hamiltonian, the corresponding quantum comoment map 	 : C →
D(R) sends 1 to the Euler vector field. The action descends to a Hamiltonian C

×-
action on Dλ for any λ.

Consider the corresponding Hamiltonian C
×-action on X = Mθ

0(nδ, ε0). Recall
that the resolution of singularities morphism X → (h ⊕ h∗)/�n becomes C

×-
equivariant if we equip the target variety with the C

×-action induced by t.(a, b) =
(t−1a, tb), a ∈ h, b ∈ h∗. This action has finitely many fixed points that are in a natu-
ral bijection with the irreducible representations of�n , see [30, Section 5.1]. Namely,
XC

×
is in a natural bijection withM0

p(nδ, ε0)
C

×
, where p ∈ g∗G is generic. Indeed,

M0
p(nδ, ε0) = Mθ

p(nδ, ε0) and the sets Mθ
p(nδ, ε0)

C
×
are identified for all p by

continuity. Let c be a parameter corresponding to p (meaning that ν(0, c) = (0, p)).
Then we can consider the Verma module �0,c(τ ) := H0,c ⊗S(h)#�n τ . The subal-
gebra S(h∗)�n is easily seen to be central. Let us write S(h∗)�n+ for the augmenta-
tion ideal in S(h∗)�n . Following [28], consider the baby Verma module �0,c(τ ) :=
�0,c(τ )/S(h∗)�n+ �0,c(τ ) ∼= S(h∗)/(S(h∗)�n+ ) ⊗ τ (the last isomorphism is that of
S(h∗)#�n-modules). This module is easily seen to be indecomposable so it has a
central character that is a point of Spec(Z(H0,c)) = M0

p(nδ, ε0). Clearly, this point

is fixed by C
× and this defines a map Irr(�n) → M0

p(nδ, ε0)
C

×
, τ �→ zτ , that was

shown to be a bijection in [30].
Fix some p ∈ g∗G . Consider the attracting locus Yp ⊂ Mθ

p(nδ, ε0) for the C
×-

action. Since this action has finitely many fixed points, we see that Yp is a lagrangian



Procesi Bundles and Symplectic Reflection Algebras 53

subvariety with irreducible components indexed by Irr(�n). Namely, to τ ∈ Irr(�n)

we assign the attracting locusYp(τ ) := {z ∈ Mθ
p(nδ, ε0)| limt→0 t.z = zτ }. The irre-

ducible components of Yp are the closures Yp(τ ). When p is Zariski generic, the
subvarietes Yp(τ ) are already closed.

By the categoryOloc forDλ wemean the full categoryof coherentDλ-modules that
are supported on Y (see Sect. 2.3.4) and admit aC

×-equivariant structure compatible
with the C

×-action on Dλ. Such categories were systematically studied in [15]. In
particular, it was shown that all modules in Oloc have finite length and are indexed
byMθ

0(nδ, ε0)
C

×
, see [15, Sections 3.3, 5.3].

5.2.3 Choice of Identification XC
× ∼= Irr(�n)

We note that despite our identification of XC
×
with Irr(�n) is natural, there are other

natural choices as well. The choice we have made is good for working with the
category O. We could also consider the category O∗, where the modules are locally
nilpotent for h∗, not for h (and are still finitely generated over H1,c). Consequently, we
need to use the opposite Hamiltonian C

×-action on X,M0
p(nδ, ε0) and Verma mod-

ules �∗
0,c(τ ) := H0,c ⊗S(h∗)#�n τ . Let us explain how the bijection XC

× ∼= Irr(�n)

changes.
All simple constituents of �0,c(τ ) are isomorphic modules of dimension |�n|

(indeed,H0,c is the endomorphismalgebra of the rank |�n |bundle P̃p onM0
p(nδ, ε0)).

Let us denote this simple module by L0,c(τ ). This module is graded, the highest
graded component is τ . Let us determine the lowest graded component in L0,c(τ ).
This component coincides with the lowest graded component in �0,c(τ ) that is the
tensor product of τ with the lowest degree component in C[h]/(C[h]�n )+. It is easy
to see that the latter is �toph. Abusing the notation, we will denote τ ⊗ �toph by
τ t . When �1 = {1} we can use the standard identification of Irr(Sn) with the set of
Young diagrams of n boxes. In this case, �toph is the sign representation ofSn and
τ t indeed corresponds to the transposed Young diagram of τ .

The previous paragraph shows that there is an epimorphism �∗
0,c(τ

t ) � L p(τ ).
So our new bijection sends the point zτ ∈ XC

×
to τ t .

Wealso note that the identification XC
× ∼= Irr(�n), τ �→ zτ ,depends on the choice

of a Procesi bundle P but we are not going to use this.

5.2.4 Highest Weight Structures

Let us recall the definition of a highest weight category. Let C be an abelian cate-
gory that is equivalent to the category of modules over a finite dimensional algebra,
equivalently, the category C has finitely many simples, enough projectives and finite
dimensional Hom’s (and hence every object has finite length). Let T denote an index-
ing set of the simple objects in C, we write L(τ ) for the simple object indexed by
τ ∈ T and P(τ ) for its projective cover. The additional structure of a highest weight
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category is a partial order � on T and a collection of so called standard objects
�(τ ), τ ∈ T , satisfying the following axioms:

(1) HomC(�(τ ),�(τ ′)) �= 0 implies τ � τ ′,
(2) EndC(�(τ )) = C.
(3) P(τ ) � �(τ ) and the kernel admits a filtration with quotients �(τ ′) for τ ′ > τ .

Remark 5.1 Let us point out that the standard objects are uniquely recovered from
the partial order. Namely, consider the category C�τ that is the Serre span of the
simples L(τ ′) with τ ′ � τ . Then �(τ ) is the projective cover of L(τ ) in C�τ .

Both categories O,Oloc that were described above are highest weight, see [24,
Sections 2.6,3.2] for O and [15, Section 5.3] for Oloc. The standard objects �(λ)

are the Verma modules. The order can be introduced as follows. Recall the element

h ∈ H1,c introduced in Sect. 5.2.1. It acts on τ ⊂ �(τ ) by
∑

s∈S

c(s)

1 − λs
s. The latter

element in C�n is central and so acts on τ by a scalar, denote that scalar by cτ . Then
we set τ � τ ′ if cτ − cτ ′ ∈ Z�0.

Let us provide a formula for cτ . We start with � = 1. Then a classical computation
shows that cτ = c0 cont(τ )/2, where the integer cont(τ ) is defined as follows. For the
boxb ∈ τ lying in x th columnand yth row,we set cont(b) := x − y. Then cont(τ ) :=∑

b∈τ cont(b). Now let us proceed to � > 1. In this case, the irreducible representa-
tions of �n are parameterized by the �-multipartitions (τ (1), . . . , τ (�)) of n. Define
elements λ1, . . . ,λ� by requiring that λi , i = 1, . . . , � − 1, is recovered from c as in
Theorem3.14 and

∑�
i=1 λi = 0. For a boxb ∈ τ ( j) setdc(b) := c0� cont(b)/2 + �λ j .

Then, up to a summand independent of τ , we have cτ = ∑
b∈τ dc(b), see [58, Propo-

sition 6.2] or [25, 2.3.5] (in both papers the notation is different from what we use).
In fact, one can take a weaker ordering on Irr(�n)makingO into a highest weight

category. Namely, according to [31], for two boxes b, b′ in j th and j ′th diagrams
respectively we say that b � b′ if dc(b) − dc(b′) is congruent to j − j ′ modulo � and
is in Z�0. Then λ � λ′ if one can order boxes b1, . . . , bn of λ and b′

1, . . . , b
′
n of λ′

in such a way that bi � b′
i for all i .

Let us proceed to the categoriesOloc. They are highest weight with respect to the
order � (we will often write �θ to indicate the dependence on θ) defined as follows.
We first define a pre-order �′ by setting τ �′ τ ′ if zτ ∈ Y τ ′ and then define � as the
transitive closure of �′.

Example 5.2 When � = 1 and θ < 0, the bijection between the C
×
h -fixed points and

partitions is the standard one. A combinatorial description of �θ follows from [52,
Section 4]: we have τ �θ τ ′ if τ � τ ′ as Young diagrams.

In the case when � > 1 an a priori stronger order (that automatically also makes
Oloc into a highest weight category) was described by Gordon in [30, Section 7] in
combinatorial terms. The standard modules are recovered from �θ as before. Below
we will see that they can be described using the deformations of the Procesi bundle.
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5.2.5 Derived Equivalence

Here we are going to produce a derived equivalence Db(O) ∼= Db(Oloc).
Inside Db(H1,c -mod) we can consider the full subcategory Db

O(H1,c -mod) con-
sisting of all complexes whose homology lie in the category O. We then have a
natural functor Db(O) → Db

O(H1,c -mod). This functor is an equivalence by [22,
Proposition 4.4]. We can also consider the category Db

O(Coh(Dλ)), the functor
Db(Oloc) → Db

O(Coh(Dλ)) is an equivalence as well, this follows from [15, Corol-
lary 5.13] and [16, Corollary 5.17].

The equivalence Db(H1,c -mod)
∼−→ Db(Coh(Dλ)) is compatible with the sup-

ports in the following sense. Recall that we have two commuting C
×-actions. The

Hamiltonian torus will be denoted by C
×
h , while, for the contracting torus (which

is present even when �1 is not cyclic), we will write C
×
c . Pick a closed subvari-

ety Y0 ⊂ (h ⊕ h∗)/�n that is stable under the C
×
c -action. Consider the full sub-

category Db
Y0

(H1,c -mod) in Db(H1,c) of all complexes with homology supported
on Y0. Set Y := ρ−1(Y0), where, recall, ρ stands for the resolution of singular-
ities morphism ρ : X → Vn/�n and consider the subcategory Db

Y (Coh(Dλ)) ⊂
Db(Coh(Dλ)). Then the equivalence Db(Coh(Dλ)) ∼= Db(H1,c -mod) restricts to
Db

Y (Coh(Dλ)) ∼= Db
Y0

(H1,c -mod).
Note that the bundle P on X is (C×)2-equivariant. Therefore the deformation

P̃� is (C×)2-equivariant as well. It follows that the equivalence Db(Coh(Dλ)) ∼=
Db(H1,c -mod) preserves complexes whose homology admit C

×
h -equivariant lift-

ings. Combined with the previous paragraph, this means that we get an equivalence
Db

O(H1,c -mod) ∼= Db
O(Coh(Dλ)) and hence an equivalence Db(O) ∼= Db(Oloc).

This was used in [25, Section 5] to prove a conjecture of Rouquier, [58, Conjec-
ture 5.6]. Namely, suppose that we have parameters c, c′ such that the correspond-
ing parameters λ,λ′ have integral difference. Then we have an abelian equivalence
Coh(Dλ)

∼−→ Coh(Dλ′), given by tensoringwith the bimoduleDλ,λ′−λ. This bimodule
is C

×
h -equivariant, this follows from the construction. Also it is clear that tensoring

withDλ,λ′−λ preserves the supports. Sowe conclude thatOloc
λ

∼−→ Oloc
λ′ . It follows that

the categories Oc and Oc′ are derived equivalent that was conjectured by Rouquier
(in the generality of all Cherednik algebras)3.

5.3 Macdonald positivity

Consider the H-module �(λ) := H ⊗S(h)#�n λ. Recall the derived equivalence

Db(Coh(D̃�, f in))
∼−→ Db(H -mod) given by

F := �(P̃�, f in ⊗D̃�, f in
•)

3The case of general complex reflection groups was done in [43] after this survey was written using
different techniques.
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and its inverse G. It turns out that the study of the objects G(�(λ)) leads to the proof
of the Macdonald positivity. The proof that we provide below is morally similar to
but different from the original proof in [8].

5.3.1 Flatness

Akey step in the proof is to establish the flatness overC[h] of an arbitrary Procesi bun-
dleP , where we viewP (C[h] acts onP via the inclusion C[h] ↪→ S(h ⊕ h∗)#�n =
EndOX (P)). This will imply that the Koszul complex

P ← h∗ ⊗ P ← �2h∗ ⊗ P ← . . . ← �nh∗ ⊗ P

is a resolution of P/h∗P . The proof of the flatness is taken from the proof of [8,
Lemma 3.7].

Note that, since �n is a complex reflection group, C[h] is free over C[h]�n . So it
is enough to show that P is flat over C[h]�n .

Let us recall how P was constructed, see Sect. 4.1.4 (construction of one Procesi
bundle in characteristic p � 0), Sect. 4.1.5 (construction of one Procesi bundle in
characteristic 0), Sect. 4.4.2 (construction of all Procesi bundles).

(1) We start with a suitable Frobenius constant quantizationD of XF, where F is an
algebraically closed field of characteristic 0.

(2) Then we take a splitting bundle B of D|X (1)∧0
F

.

(3) We form a bundle P ′ on X (1)∧0
F

that is the sum of indecomposable summands
of S∗ with suitable multiplicities. Then we extend this bundle to X (1)

F
and get a

Procesi bundle P (1)
F

on X (1)
F
.

(4) Since X (1)
F

∼= XF as F-varieties, we can view P (1)
F

as a bundle PF on X .
(5) Then we lift PF to characteristic 0.

The procedure in (5) implies that if PF is flat over F[h]�n , then P is flat over
C[h]�n (the reader is welcome to verify the technical details). Obviously, PF is flat
over F[h]�n if and only if P (1)

F
is flat over F[h(1)]�n . The latter is equivalent to B∗

being flat over F[[h(1)]]�n , which, in turn, is equivalent to the claim that D is a flat
F[h(1)]�n -module. But grD ∼= FrX∗ OXF

. So it is enough to verify that OXF
is flat

over F[h(1)]�n . Since F[h]�n is flat over F[h(1)]�n , we reduce to proving that XF is
flat over hF/�n , equivalently, all fibers of XF → hF/�n have the same dimension,
equivalently, the zero fiber has dimension dim h. But the zero fiber of this map is
precisely the contracting variety for the Hamiltonian F

×-action and so is lagrangian.
This completes the proof.

Similarly,P is flat overC[h∗]. Also let us recall, see 4.4.3, thatP∗ can be equipped
with a structure of the Procesi bundle, for which we need to convert the right S(h ⊕
h∗)#�n-module into a left S(h ⊕ h∗)#�n using a natural anti-automorphism of S(h ⊕
h∗)#�n . This shows that P∗ is a flat right module over both C[h] and C[h∗]. This is
what we are going to use below.
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5.3.2 Upper Triangularity

Let θ be a generic stability condition and take X = X θ. This gives rise to the partial
order �θ on the set Irr(�n) described in Sect. 5.2.2. Recall that we write zτ for the
C

×
h -fixed point in X corresponding to τ as explained in Sect. 5.2.2. We write Yτ for

the C
×
h -contracting component of zτ , a lagrangian subvariety in X θ. Further, write

eτ for a primitive idempotent in C�n corresponding to τ so that τ ∼= (C�n)eτ .

Proposition 5.3 Let P be the canonical Procesi bundle on X θ. Then the sheaf
(P∗/P∗h)eτ is supported on

⋃
τ ′�θτ Yτ ′ .

Proof Consider the deformation P̃∗ of P∗ to X̃ . It is flat over C[g∗G, h∗]. Therefore
P̃∗/P̃∗h is flat over C[g∗G]. It follows that Supp((P∗/P∗h)eτ ) ⊂
C

×
c Supp(P∗

p/P∗
ph)eτ for a generic p ∈ g∗G . But (P∗

p/P∗
ph)eτ is nothing else but

e�0,c(τ ). We claim that Supp�0,c(τ ) ⊂ Yp,τ . Indeed, we have shown in Sect. 5.2.2
that�0,c(τ )/S(h∗)�n+ �0,c(τ ) is supported in z p,τ , the point inM0

p(nδ, ε0)
C

×
h indexed

by τ . If Supp�0,c(τ ) �⊂ Yp,τ , then there is τ ′ �= τ with z p,τ ′ ∈ Supp�0,c(τ ) (because
the latter is closed and contained in Yp). The support of �0,c(τ ) is disconnected and
so the module �0,c(τ ) is indecomposable. From here one deduces that z p,τ ′ lies in
the support of �0,c(τ )/S(h∗)�n+ �0,c(τ ), contradiction.

Now the inclusion
Supp

(
(P∗/P∗h)eτ

) ⊂
⋃

τ ′�θτ

Yτ ′

follows from
C×Yp,τ ∩ X θ ⊂

⋃

τ ′�θτ

Yτ ′ ,

see [8, Lemma 3.8]. �

In fact, e�0,c(τ ) = C[Yp,τ ] but we do not need this fact.

5.3.3 Wreath-Macdonald Positivity

Now we are ready to prove the Macdonald positivity theorem, Theorem 1.3, and its
“wreath-generalization” due to Bezrukavnikov and Finkelberg.

First of all, Proposition 5.3 implies that if the fiber of [P∗/P∗h]eτ in zτ ′ is nonzero,
then τ ′ �θ τ . It follows that if τ ∗ is a constituent of the fiber (P∗/P∗h)zτ ′ , then
τ �θ τ ′. But sinceP∗ is a flat rightC[h]-module,we see that the class of [P∗/P∗h∗]zτ ′
in the K0 of bigraded �n-modules coincides with that of the Koszul resolution

P∗
zτ ′ ← P∗

zτ ′ ⊗ h ← . . .
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Taking the duals, we see that if τ occurs in the class

Pzτ ′ ⊗
dim h∑

i=0

(−1)i�ih∗,

then τ ′ �θ τ . When �1 = {1}, this yields (a) from Definition 1.2.
Toget (b) in that definition (and itswreath-generalization),we consider [P∗/P∗h∗]

eτ . This sheaf is supported on the union of repelling components for C
×
h and can

have nonzero fibers only in the fixed points zτ ′ with zτ ′ �θ zτ t meaning τ t �θ τ ′. In
other words, if τ appears in

Pzτ ′ ⊗
dim h∑

i=0

(−1)i�ih,

then τ t �θ τ ′. When �1 = {1}, this yields (b) in Definition 1.2. (c) there follows
because P is normalized.

5.4 Localization theorem

Let P1,λ denote the the right Dλ-module obtained by specializing P̃�. One can ask
when (i.e., for which λ) the functor �(P1,λ ⊗Dλ

•) : Oloc
λ → Oc is a category equiv-

alence. The following result answers this question.

Theorem 5.4 Suppose that there is an order � on Irr(�n) refining �θ and making
bothOloc

λ ,Oc into highest weight categories. Then � : Coh(Dλ) → H1,c -mod,Oloc
λ→ Oc are equivalences of categories.

This theorem can be viewed as an analog of the Beilinson-Bernstein localization
theorem, [3], from the Lie representation theory.

(Sketch of proof). It is enough to prove that � gives an equivalence between the
categories O, see [40, Section 3.3]. So below in the proof we only deal with the
categories O.

Set �loc(λ) := [P∗
1,λ/P∗

1,λh]eλ. Further, let F stand for R�(P1,λ ⊗Dλ
•). The

flatness of P over S(h) from the previous subsection implies that

F�loc
λ (τ ) = �c(τ ). (16)

We have �loc
λ (τ ) ∈ Oloc

�θλ
. The condition on the orders implies that �loc

λ (τ ) is the

standard object inOloc
λ . Now the claim of Theorem 5.4 follows from the next general

claim. �
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Lemma 5.5 LetC1, C2 be twohighestweight categorieswith the same indexingposet
T . Suppose that F : Db(C1) → Db(C2) is a derived equivalence mapping �1(τ ) to
�2(τ ) for any τ ∈ T . Then F is induced from an abelian equivalence C1 → C2.

Theorem 5.4 generalizes results of [26, 39] for �1 = {1} to the case of general
cyclic �1.
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Three Lectures on Algebraic Microlocal
Analysis
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Abstract This is a survey talk with some historical comments. I will first explain
the notions of Sato’s hyperfunctions and microfunctions, at the origin of the story,
and I will describe the Sato’s microlocalization functor which was first motivated by
problems of analysis. Then I will briefly recall the main features of the microlocal
theory of sheaves with emphasize on the functor μhom which will be an essential
tool in the sequel. Then, I will construct the microlocal Euler class associated with
trace kernels. This construction applies in particular to constructible sheaves on real
manifolds and D-modules (or more generally, elliptic pairs) on complex manifolds.
Finally, I will first recall the construction of the sheaves of holomorphic functions
with temperate growth or with exponential decay. These are not sheaves on the usual
topology, but ind-sheaves, or else, sheaves on the subanalytic site. I will explain how
these objects appear naturally in the study of irregular holonomic D-modules.
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1 Lecture 1: Microlocalization of Sheaves

Abstract This first talk is a survey talk with some historical comments and I refer
to [54] for a more detailed overview.

I will first explain the notions of Sato’s hyperfunctions and microfunctions, at the
origin of the story, and I will describe the Sato’s microlocalization functor which was
first motivated by problems of Analysis (see [52]). Then I will briefly recall the main
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features of the microlocal theory of sheaves of [24] with emphasize on the functor
μhom which will be the main tool for the second talk.

1.1 Generalized Functions

In the sixties, people were used to work with various spaces of generalized functions
constructed with the tools of functional analysis. Sato’s construction of hyperfunc-
tions in 59–60 is at the opposite of this practice: he uses purely algebraic tools and
complex analysis. The importance of Sato’s definition is twofold: first, it is purely
algebraic (starting with the analytic object OX ), and second it highlights the link
between real and complex geometry. (See [50] and see [53] for an exposition of
Sato’s work.)

Consider first the case where M is an open subset of the real line R and let X
be an open neighborhood of M in the complex line C satisfying X ∩ R = M . The
space B(M) of hyperfunctions on M is given by

B(M) = O(X \ M)/O(X).

It is easily proved, using the solution of the Cousin problem, that this space depends
only on M , not on the choice of X , and that the correspondence U �→ B(U ) (U
open in M) defines a flabby sheaf BM on M .

With Sato’s definition, the boundary values always exist and are no more a limit
in any classical sense.

Example 1.1 (i) The Dirac function at 0 is

δ(0) = 1

2iπ

(
1

x − i0
− 1

x + i0

)
.

Indeed, if ϕ is a C0-function on R with compact support, one has

ϕ(0) = lim
ε

>−→0

1

2iπ

∫
R

(
ϕ(x)

x − iε
− ϕ(x)

x + iε

)
dx .

(ii) The holomorphic function exp(1/z) defined on C \ {0} has a boundary value as
a hyperfunction (supported by {0}) not as a distribution.

On a real analytic manifold M of dimension n, the sheaf BM was originally
defined as

BM = Hn
M(OX ) ⊗ orM

where X is a complexification ofM and orM is the orientation sheaf on M . Since X is
oriented, Poincaré’s duality gives the isomorphism D′

X (CM) � orM [−n] (see (1.3)
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below for the definition of D′
M ). On the other hand, it is shown (by Sato) that

R�M(OX ) [n] is concentrated in degree 0. Hence, an equivalent definition of hyper-
functions is given by

BM = RHom
CX

(D′
X (CM),OX ). (1.1)

Let us define the notion of “boundary value” in this settings. Consider a subanalytic
open subset � of X and denote by � its closure. Assume that:

{
D′

X (C�) � C�,

M ⊂ �.

The morphismC� −→ CM defines by duality the morphism D′
X (CM) −→ D′

X (C�) �
C�. Applying the functor RHom ( • ,OX ), we get the boundary value morphism

b : O(�) −→ B(M). (1.2)

When considering operations on hyperfunctions such as integral transforms, one is
naturally lead to consider more general sheaves of generalized functions such as
RHom (G,OX ) where G is a constructible sheaf. We shall come back on this point
later.

Similarly as in dimension one, we can represent the sheaf BM by using Čech
cohomology of coverings of X \ M . For example, let X be a Stein open subset ofCn

and set M = R
n ∩ X . Denote by x the coordinates on R

n and by x + iy the coor-
dinates on C

n . One can cover Cn \ Rn by n + 1 open half-spaces Vi = 〈y, ξi 〉 > 0
(i = 1, . . . , n + 1). For J ⊂ {1, . . . , n + 1} set VJ = ⋂

j∈J Vj . Assuming n > 1,
we have the isomorphism Hn

M(X;OX ) � Hn−1(X \ M;OX ). Therefore, setting
UJ = VJ ∩ X , one has

B(M) �
∑
|J |=n

OX (UJ )/
∑

|K |=n−1

OX (UK ).

On a real analytic manifold M , any hyperfunction u ∈ �(M;B) is a (non unique)
sum of boundary values of holomorphic functions defined in tubes with edge M .
Such a decomposition leads to the so-called Edge of the Wedge theorem and was
intensively studied in the seventies (see [4, 39]).

Then comes naturally the following problem: how to recognize the directions
associated with these tubes? The answer is given by Sato’s microlocalization functor.
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1.2 Microlocalization

Unless otherwise specified, all manifolds are real, say of class C∞ and k denotes a
commutative unital ring with finite global homological dimension.

We denote by kM the constant sheaf on M with stalk k, by Db(kM) the bounded
derived category of sheaves of k-modules on M and byDb

cc(kM) the full triangulated
subcategory of Db(kM) consisting of cohomologically constructible objects. If M is
real analytic, we denote by Db

R-c(kM) the triangulated category of R-constructible
sheaves.

We denote by ωM the dualizing complex on M . Then ωM � orM [dim M] where
orM is the orientation sheaf and dim M the dimension of M . We shall use the duality
functors

D′
M F = RHom (F,kM), DM F = RHom (F,ωM). (1.3)

For a locally closed subset A of M , we denote by kMA the sheaf which is the
constant sheaf on A with stalk k and which is 0 on M \ A. If there is no risk of
confusion, we simply denote it by kA.
Fourier-Sato Transform

The classical Fourier transform interchanges (generalized) functions on a vector
space V and (generalized) functions on the dual vector space V ∗. The idea of extend-
ing this formalism to sheaves, hence to replacing an isomorphism of spaces with an
equivalence of categories, seems to have appeared first in Mikio Sato’s construction
of microfunctions in the 70s.

Let τ : E −→ M be a finite dimensional real vector bundle over a real manifold
M with fiber dimension n and let π : E∗ −→ M be the dual vector bundle. Denote by
p1 and p2 the first and second projection defined on E ×M E∗, and define:

P = {(x, y) ∈ E ×M E∗; 〈x, y〉 ≥ 0},
P ′ = {(x, y) ∈ E ×M E∗; 〈x, y〉 ≤ 0}.

Consider the diagram:

E ×M E∗

p1 p2

E

τ

E∗

π

M.

Denote by Db
R+(kE ) the full triangulated subcategory of Db(kE ) consisting of conic

sheaves, that is, objects with locally constant cohomology on the orbits of R+.



Three Lectures on Algebraic Microlocal Analysis 67

Definition 1.2 Let F ∈ Db
R+(kE ), G ∈ Db

R+(kE∗). One sets:

F∧ = Rp2!(p
−1
1 F)P ′ � Rp2∗(R�P p

−1
1 F),

G∨ = Rp1∗(R�P ′ p!
2G) � Rp1!(p

!
2G)P .

The main result of the theory is the following.

Theorem 1.3 The two functors (·)∧ and (·)∨ are inverse to each other, hence define
an equivalence of categories Db

R+(kE ) � Db
R+(kE∗).

Example 1.4 (i) Let γ be a closed proper convex cone in E with M ⊂ γ. Then:

(kγ)
∧ � kIntγ◦ .

Here γ◦ is the polar cone to γ, a closed convex cone in E∗ and Intγ◦ denotes its
interior.
(ii) Let γ be an open convex cone in E . Then:

(kγ)
∧ � kγ◦a ⊗ orE∗/M [−n].

Here λa = −λ, the image of λ by the antipodal map.
(iii) Let (x) = (x ′, x ′′) be coordinates on R

n with (x ′) = (x1, . . . , xp) and (x ′′) =
(xp+1, . . . , xn). Denote by (y) = (y′, y′′) the dual coordinates on (Rn)∗. Set

γ = {x; x ′2 − x ′′2 ≥ 0}, λ = {y; y′2 − y′′2 ≤ 0}.

Then (kγ)
∧ � kλ[−p]. (See [26].)

Specialization

Let ι : N ↪→ M be the embedding of a closed submanifold N of M . Denote by
τM : TNM −→ N the normal bundle to N .

If F is a sheaf on M , its restriction to N , denoted F |N , may be viewed as a
global object, namely the direct image by τM of a sheaf νM F on TNM , called the
specialization of F along N . Intuitively, TNM is the set of light rays issued from N
in M and the germ of νN F at a normal vector (x; v) ∈ TNM is the germ at x of the
restriction of F along the light ray v.

One constructs a new manifold M̃N , called the normal deformation of M along
N , together with the maps

TNM
s

τM

M̃N

p

�
j

p̃

N
ι

M

, t : M̃N −→ R,

� = t−1(R>0),

TNM � t−1(0).

(1.4)
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Locally, after choosing a local coordinate system (x ′, x ′′) on M such that N = {x ′ =
0}, we have M̃N = M × R, t : M̃N −→ R is the projection, p(x ′, x ′′, t) = (t x ′, x ′′).

Let S ⊂ M be a locally closed subset. TheWhitney normal coneCN (S) is a closed
conic subset of TNM given by

CN (S) = p̃−1(S) ∩ TNM

where, for a set A, A denotes the closure of A. One defines the specialization functor

νN : Db(kM) −→ Db(kTN M)

by a similar formula, namely:

νN F := s−1 j∗ p̃−1F.

Clearly, νN F ∈ Db
R+(kTN M), that is, νN F is a conic sheaf for theR+-action on TNM .

Moreover,

RτM ∗νN F � νN F |N � F |N .

For an open cone V ⊂ TNM , one has

H j (V ; νN F) � lim−→
U

H j (U ; F)

where U ranges through the family of open subsets of M such that

CN (M \U ) ∩ V = ∅.

N

V

U

Microlocalization

Denote by πM : T ∗
N M −→ N the conormal bundle to N in M , that is, the dual bundle

to τM : TNM −→ N .
If F is a sheaf on M , the sheaf of sections of F supported by N , denoted R�N F ,

may be viewed as a global object, namely the direct image by πM of a sheaf μM F
on T ∗

N M . Intuitively, T ∗
N M is the set of “walls” (half-spaces) in M passing through

N and the germ of μN F at a conormal vector (x; ξ) ∈ T ∗
N M is the germ at x of the
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sheaf of sections of F supported by closed tubes with edge N and which are almost
the half-space associated with ξ.

More precisely, the microlocalization of F along N , denoted μN F , is the Fourier-
Sato transform of νN F , hence is an object of Db

R+(kT ∗
N M). It satisfies:

RπM ∗μN F � μN F |N � R�N F.

For a convex open cone V ⊂ T ∗
N M , one has

H j (V ;μN F) � lim−→
U,Z

H j
U∩Z (U ; F),

where U ranges over the family of open subsets of M such that U ∩ N = πM(V )

and Z ranges over the family of closed subsets of M such that CM(Z) ⊂ V ◦ where
V ◦ is the polar cone to V .

N

V ◦

U ∩ Z

Back to Hyperfunctions

Assume now that M is a real analytic manifold and X is a complexification of M .
First notice the isomorphisms

M ×X T ∗X � C ⊗
R
T ∗M � T ∗M ⊕ √−1T ∗M.

One deduces the isomorphism

T ∗
M X � √−1T ∗M. (1.5)

The sheaf CM on T ∗
M X of Sato’s microfunctions (see [52]) is defined as

CM := μM(OX ) ⊗ π−1
M ωM .

It is shown that this object is concentrated in degree 0. Therefore, we have an iso-
morphism

spec : BM
∼−→ πM ∗CM
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and Sato defines the analytic wave front set of a hyperfunction u ∈ �(M;BM) as
the support of spec(u) ∈ �(T ∗

M X;CM).
Consider a closed convex proper cone Z ⊂ T ∗

M X which contains the zero-section
M . Then spec(u) ⊂ Z if and only if u is the boundary value of a holomorphic function
defined in a tuboid U with profile the interior of the polar tube to Za (where Za is
the image of Z by the antipodal map), that is, satisfying

CM(X \U ) ∩ IntZ◦a = ∅.

Moreover, the sheaf CM is conically flabby. Therefore, any hyperfunction may be
decomposed as a sum of boundary values of holomorphic functions fi ’s defined
in suitable tuboids Ui and if we have hyperfunctions ui (i = 1, . . . N ) satisfying∑

j u j = 0, there exist hyperfunctions ui j (i, j = 1, . . . N ) such that

ui j = −u ji , ui =
∑
j

ui j and spec(ui j ) ⊂ spec(ui ) ∩ spec(u j ).

When translating this result in terms of boundary values of holomorphic functions,
we get the so-called “Edge of the wedge theorem”, already mentioned.

Sato’s introduction of the sheaf CM was the starting point of an intense activity
in the domain of linear partial differential equations after Hörmander adapted Sato’s
ideas to classical analysis with the help of the (usual) Fourier transform. See [14] and
also [4, 58] for related constructions. Note that the appearance of

√−1 in the usual
Fourier transform may be understood as following from the isomorphism (1.5).

1.3 Microsupport

The microsupport of sheaves (also called “singular support”) has been introduced
in [22] and developed in [23, 24]. Roughly speaking, themicrosupport of F describes
the codirections of non propagation of F . The idea of microsupport takes its origin
in the study of linear PDE and particularly in the study of hyperbolic systems.

Definition 1.5 Let F ∈ Db(kM) and let p ∈ T ∗M . One says that p /∈ SS(F) if there
exists an open neighborhood U of p such that for any x0 ∈ M and any real C1-
function ϕ on M defined in a neighborhood of x0 with (x0; dϕ(x0)) ∈ U , one has
(R�{x;ϕ(x)≥ϕ(x0)}F)x0 � 0.

In other words, p /∈ SS(F) if the sheaf F has no cohomology supported by “half-
spaces” whose conormals are contained in a neighborhood of p.

• By its construction, the microsupport is R+-conic, that is, invariant by the action
of R+ on T ∗M .

• SS(F) ∩ T ∗
MM = πM(SS(F)) = Supp(F).
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• The microsupport satisfies the triangular inequality: if F1 −→ F2 −→ F3
+1−−→ is a

distinguished triangle inDb(kM), then SS(Fi ) ⊂ SS(Fj ) ∪ SS(Fk) for all i, j, k ∈
{1, 2, 3} with j �= k.

Example 1.6 (i) If F is a non-zero local system on M and M is connected, then
SS(F) = T ∗

MM .
(ii) If N is a closed submanifold of M and F = kN , then SS(F) = T ∗

N M , the conor-
mal bundle to N in M .
(iii) Let ϕ be a C1-function such that dϕ(x) �= 0 whenever ϕ(x) = 0. LetU = {x ∈
M;ϕ(x) > 0} and let Z = {x ∈ M;ϕ(x) ≥ 0}. Then

SS(kU ) = U ×M T ∗
MM ∪ {(x;λdϕ(x));ϕ(x) = 0,λ ≤ 0},

SS(kZ ) = Z ×M T ∗
MM ∪ {(x;λdϕ(x));ϕ(x) = 0,λ ≥ 0}.

For a precise definition of being co-isotropic (one also says involutive), we refer
to [24, Def. 6.5.1].

Theorem 1.7 Let F ∈ Db(kM). Then its microsupport SS(F) is co-isotropic.

Assume now that (X,OX ) is a complex manifold and denote as usual by DX

the sheaf of rings of finite order differential operators on X . For a coherent DX -
moduleM , one denotes by char(M ) its characteristic variety, a closed conic complex
analytic subvariety of T ∗X . One also sets for short

Sol(M ) := RHom D (M ,OX ).

After identifying X with its real underlying manifold, the link between the micro-
support of sheaves and the characteristic variety of coherent D-modules is given
by

Theorem 1.8 Let M be a coherent D-module. Then SS(Sol(M )) = char(M ).

The inclusion SS(Sol(M )) ⊂ char(M ) is the most useful in practice. Its proof
only makes use of the Cauchy-Kowalevsky theorem in its precise form given by
Petrovsky and Leray (see [14, § 9.4]) and of purely algebraic arguments. As a corol-
lary of Theorems 1.7 and 1.8, one recovers the fact that the characteristic variety of
a coherent DX -module is co-isotropic, a theorem of [52] which also have a purely
algebraic proof due to Gabber [10].

1.4 The Functor µhom

We denote by δ : M −→ M × M the diagonal embedding and we set � = δ(M). For
short, we also denote by δ the isomorphism
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δ : T ∗M ∼−→ T ∗
�(M × M), (x; ξ) �→ (x, x; ξ,−ξ).

Let us briefly recall the main properties of the functor μhom, a variant of Sato’s
microlocalization functor.

μhom : Db(kM)op × Db(kM) −→ Db(kT ∗M),

μhom(G, F) := δ−1μ�RHom (q−1
2 G, q !

1F)

where qi (i = 1, 2) denotes the i th projection on M × M . Note that

RπM ∗μhom(G, F) � RHom (G, F),

μhom(kN , F) � μN (F) for N a closed submanifold of M,

suppμhom(G, F) ⊂ SS(G) ∩ SS(F),

μhom(G, F) � μ�(F
L
�DMG) if G is constructible.

In some sense, μhom is the sheaf of microlocal morphisms. More precisely, for
p ∈ T ∗M , we have;

H 0μhom(G, F)p � HomDb(kM ;p)(G, F)

where the category Db(kM ; p) is the localization of Db(kM) by the subcategory of
sheaves whose microsupport does not contain p.

There is an interesting phenomena which holds with μhom and not with RHom .
Indeed, assume M is real analytic. Then, although the category Db

R-c(kM) of con-
structible sheaves does not admit a Serre functor, it admits a kind of microlocal Serre
functor, as shown by the isomorphism, functorial with respect to F and G (see [24,
Prop. 8.4.14]):

DT ∗Mμhom(F,G) � μhom(G, F) ⊗ π−1
M ωM .

This confirms the fact that to fully understand constructible sheaves, it is natural
to look at them microlocally, that is, in T ∗M . This is also in accordance with the
“philosophy” of Mirror Symmetry which interchanges the category of coherent OX -
modules on a complexmanifold X with theFukaya category on a symplecticmanifold
Y . In case of Y = T ∗M , the Fukaya category is equivalent to the category of R-
constructible sheaves on M , according to Nadler-Zaslow [43, 44] (see also [9] for
related results.)

1.5 An Application: Elliptic Pairs

Denote by Ṫ ∗M the set T ∗M \ T ∗
MM and denote by π̇M the restriction of

πM : T ∗M −→ M to Ṫ ∗M . If H ∈ Db
R+(kT ∗M) is a conic sheaf on T ∗M , there is

the Sato’s distinguished triangle
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RπM !H −→ Rπ∗H −→ Rπ̇M∗H
+1−→ .

Applying this result with H = μhom(G, F) and assuming G is constructible, we
get the distinguished triangle

D′
MG

L⊗ F −→ RHom (G, F) −→ Rπ̇M∗μhom(G, F).

Theorem 1.9 (The Petrovsky theorem for sheaves.) Assume that G is constructible
and SS(G) ∩ SS(F) ⊂ T ∗

MM. Then the natural morphism

RHom (G,kM)
L⊗ F −→ RHom (G, F)

is an isomorphism.

Let us apply this result when X is a complex manifold and k = C. For G ∈
Db

R-c(CX ), set

AG = OX ⊗ G, BG := RHom (D′
XG,OX ).

Note that if X is the complexification of a real analytic manifold M and we choose
G = CM , we recover the sheaf of real analytic functions and the sheaf of hyperunc-
tions:

ACM = AM , BCM = BM .

Now letM ∈ Db
coh(DX ). According to [55], one says that the pair (G,M ) is elliptic

if char(M ) ∩ SS(G) ⊂ T ∗
X X .

Corollary 1.10 [55] Let (M ,G) be an elliptic pair.

(a) We have the canonical isomorphism:

RHom D X
(M ,AG) ∼−→ RHom D X

(M ,BG). (1.6)

(b) Assume moreover that Supp(M ) ∩ Supp(G) is compact andM admits a good
filtration. Then the cohomology of the complex RHomD X

(M ,AG) is finite
dimensional.

To prove the part (b) of the corollary, one represents the left hand side of the
global sections of (1.6) by a complex of topological vector spaces of type DFN and
the right hand side by a complex of topological vector spaces of type FN.
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2 Lecture 2: Microlocal Euler Classes and Hochschild
Homology

Abstract This is a joint work with Masaki Kashiwara (see [31]). On a complex
manifold (X,OX ), the Hochschild homology is a powerful tool to construct char-
acteristic classes of coherent modules and to get index theorems. Here, I will show
how to adapt this formalism to a wide class of sheaves on a real manifold M by
using the functor μhom of microlocalization. This construction applies in particular
to constructible sheaves on real manifolds and D-modules on complex manifolds,
or more generally to elliptic pairs.

2.1 Hochschild Homology on Complex Manifolds

Hochschild homology of O-modules has given rise to a vast literature. Let us quote
in particular [6, 7, 15, 47].

Consider a complex manifold (X,OX ) and denote by ωhol
X the dualizing complex

in the category of OX -modules, that is, ωhol
X = �X [dX ], where dX is the complex

dimension of X and �X is the sheaf of holomorphic forms of degree dX . We shall

use the classical six operations forO-modules, f ∗, R f∗, f !, R f!,
L⊗O and RHom O .

In particular we have the two duality functors

D′
O ( • ) = RHom O X

( • ,OX ),

DO ( • ) = RHom O X
( • ,ωhol

X )

as well as the external product that we denote by
L
�O . Denote by δ : X ↪→ X × X

the diagonal embedding and let � = δ(X). We set

O� := δ∗OX , ω
hol,⊗−1

X := D′
Oωhol

X , ω
hol,⊗−1

� := δ∗ω
hol,⊗−1

X . (2.1)

It is well-known that

ω
hol,⊗−1

� � RHom O X×X
(O�,OX×X ). (2.2)

The Hochschild homology of OX is usually defined by

HH (OX ) = δ−1
(
O�

L⊗O X×X O�

)
. (2.3)

Note the isomorphisms
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HH (OX )

∼ ∼

δ∗δ∗OX
∼

δ!δ!ωhol
X

and the canonical isomorphisms

δ∗δ∗OX � δ−1RHom O X×X

(
ω
hol,⊗−1

� ,O�

)
,

δ!δ!ωhol
X � δ−1RHom O X×X

(
O�,ωhol

�

)
.

For a closed subset S of X , we set:

HH
0
S(OX ) = H 0(X;R�SHH (OX )). (2.4)

LetF ∈ Db
coh(OX ). ThemorphismsD′

OF
L⊗O X F −→ OX andDOF

L⊗O X F −→
ωhol
X give by adjunction the morphisms

D′
OF

L
�O X×X

F −→ O�, DOF
L
�O X×X

F −→ ωhol
�

and then by duality the morphisms

ω
hol,⊗−1

� −→ D′
OF

L
�O X×X

F −→ O�, O� −→ DOF
L
�O X×X

F −→ ωhol
�

and the composition defines the Hochschild classes of F :

hhO (F ) ∈ H 0
supp(F )(X; δ−1δ∗OX ), h̃hO (F ) ∈ H 0

supp(F )(X; δ!δ!ωX ). (2.5)

One can compose Hochschild homology and the Hochschild class commutes
with the composition of kernels. More precisely, consider complex manifolds Xi

(i = 1, 2, 3).

• We write Xi j := Xi × X j (1 ≤ i, j ≤ 3), X123 = X1 × X2 × X3, X1223 = X1 ×
X2 × X2 × X3, etc.

• We denote by qi the projection Xi j −→ Xi or the projection X123 −→ Xi and by qi j
the projection X123 −→ Xi j .

Let Ki j ∈ Db
coh(OXi j ) (i = 1, 2, j = i + 1). One sets

K12 ◦
2
K23 = Rq13!(q

∗
12K12

L⊗O X123
q∗
23K23).

Theorem 2.1 (a) There is a natural morphism
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HH (OX12) ◦
2
HH (OX23) −→ HH (OX13).

(b) Let Si j ⊂ Xi j be a closed subset (i = 1, 2, j = i + 1). Assume that q13 is proper
over S12 ×X2 S23 and set S13 = q13(S12 ×X2 S23). Then the morphism above
induces a map

◦
2
: HH

0
S12(OX12) ⊗HH

0
S23(OX23) −→ HH

0
S13(OX13).

(c) Let Ki j be as above and assume that supp(Ki j ) ⊂ Si j . Set K13 = K12 ◦
2
K23 and

K̃13 = (K12 ⊗ ω
hol⊗−1

2 ) ◦
2
K23. Then K13 and K̃13 belong to Db

coh(OX13) and we

have the equalities in HH
0
S13(OX13):

hhO (K13) = hhO (K12) ◦
2
hhO (K23), h̃hO (K̃13) = h̃hO (K12) ◦

2
h̃hO (K23).

This theoremshows in particular that theHochschild class commuteswith external
product, inverse image and proper direct image.

Theorem 2.1 seems to be well-known from the specialists although it is difficult
to find a precise statement (see however [7, 48]). The construction of the Hochschild
homology as well as Theorem 2.1 (including complete proofs) have been extended
when replacing OX with a so-called DQ-algebroid stack AX in [30].

Coming back to OX -modules, the Hodge cohomology of OX is given by:

HD(OX ) :=
dX⊕
i=0

�i
X [i], an object of Db(OX ). (2.6)

There is a commutative diagram constructed by Kashiwara in [20] in which αX is the
HKR (Hochschild-Kostant-Rosenberg) isomorphism and βX is a kind of dual HKR
isomorphism:

δ∗δ∗OX

∼αX

∼
td

δ!δ!ωhol
X

HD(OX )
∼
τ

HD(OX ).

∼ βX

(2.7)

IfF ∈ Db
coh(OX ), the Chern character of F is the image by αX of hhO (F ).

In [20] Kashiwara made the conjecture that the arrow τ making the diagram
commutative is given by the cup product by the Todd class of X . This conjecture
has recently been proved by Ramadoss [47] in the algebraic case (after preliminary
important results by Markarian) and Grivaux [11] in the analytic case (and with a
very simple proof). Since the morphism βX commutes with proper direct images, we
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get a new and functorial approach to the Riemann-Roch-Hirzebruch-Grothendieck
theorem.

2.2 Microlocal Homology

We keep the notations of Lecture I. In particular ωM denotes the dualizing complex
on M and D′

M is the duality functor. We set

ω� := δ∗ωM , ω
⊗−1

M := D′
MωM , ω

⊗−1

� := δ∗ω
⊗−1

M . (2.8)

Let Mi (i = 1, 2, 3) be manifolds.

• For short, wewrite as aboveMi j := Mi × Mj (1 ≤ i, j ≤ 3),M123 = M1 × M2 ×
M3, etc.

• We will often write for short ki instead of kMi and k�i instead of k�Mi
, πi instead

of πMi , etc.
• We denote by qi the projectionMi j −→ Mi or the projectionM123 −→ Mi and by qi j
the projection M123 −→ Mi j . Similarly, we denote by pi the projection T ∗Mi j −→
T ∗Mi or the projection T ∗M123 −→ T ∗Mi and by pi j the projection T ∗M123 −→
T ∗Mi j .

• We also need to introduce the maps p ja or pi ja , the composition of p j or pi j and
the antipodal map on T ∗Mj .

We consider the operations of composition of kernels. For Ki j ∈ Db(kMi j ) (i =
1, 2, j = i + 1), we set

K1 ◦
2
K2 := Rq13!δ

−1
2 (K1

L
�K2) � Rq13!(q

−1
12 K1

L⊗ q−1
23 K2),

K1 ∗
2
K2 := Rq13∗

(
δ!
2(K1

L
�K2) ⊗ q−1

2 ω2
)
.

Wehave a naturalmorphism K1 ◦ K2 −→ K1 ∗ K2. It is an isomorphism if p−1
12aSS(K1)

∩ p−1
23aSS(K2) −→ T ∗M13 is proper.
We also define the composition of kernels on cotangent bundles. For Li ∈

Db(kT ∗
Mi j

) (i = 1, 2, j = i + 1), we set

L1
a◦
2
L2 := Rp13a !(p

−1
12a L1

L⊗ p−1
23a L2).

For K1, F1 ∈ Db(kM12) and K2, F2 ∈ Db(kM23) there exists a canonical morphism:

μhom(K1, F1)
a◦
2
μhom(K2, F2) −→ μhom(K1 ∗

2
K2, F1 ◦

2
F2). (2.9)



78 P. Schapira

We also define the corresponding operations for subsets of cotangent bundles.

Let A ⊂ T ∗M12 and B ⊂ T ∗M23. We set A
a◦
2
B = p13(A

a×
2
B) where A

a×
2
B =

p−1
12a (A) ∩ p−1

23 (B).
If there is no risk of confusion, we simply denote by δa the map:

δa : T ∗M T ∗(M × M) , (x; ξ) �→ (x, x; ξ,−ξ).

Definition 2.2 Let � be a closed conic subset of T ∗M . We set

MH(kM) := (δa)−1μhom(k�M ,ω�M ),

MH
0
�(kM) := H 0

�(T ∗M;MH(kM)).

We call MH(kM) the microlocal homology of M .

We have isomorphisms

MH(kM) � (δa)−1μ�(ω�) � π−1
M ωM

and the isomorphism MH(kM) � π−1
M ωM plays the role of the HKR isomorphism

in the complex case.
Wehave the analogue of Theorem2.1 (a) and (b). (For the part (c), seeTheorem2.6

below.)
Let i = 1, 2, j = i + 1 and let �i j be a closed conic subset of T ∗Mi j . Assume

that

�12
a×
2

�23 is proper over T
∗M13. (2.10)

Note that this hypothesis is equivalent to

{
p−1
12a (�12) ∩ p−1

23a (�23) ∩ (T ∗
M1

M1 × T ∗M2 × T ∗
M3

M3) ⊂ T ∗
M123

M123,

q13 is proper on π12(�12) ×M2 π23(�23).

Set

�13 = �12
a◦
2
�23. (2.11)

Theorem 2.3 (a) There is a natural morphism

MH(kM12) ◦
2
MH(kM23) −→ MH(kM13). (2.12)

(b) Let �i j ⊂ T ∗Mi j be as above and assume (2.10). Then the morphism (2.12)
induces a map
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◦
2
: MH

0
�12

(kM12) ⊗MH
0
�23

(kM23) −→ MH
0
�13

(kM13). (2.13)

The constructionof themorphism (2.12) uses (2.9),whichmakes the computations
not easy. Fortunately, we have the following result.

Proposition 2.4 Let Mi (i = 1, 2, 3) be manifolds and let �i j be a closed conic
subset of T ∗Mi j ( i j = 12, 13, 23). We have a commutative diagram

MH(k12)
a◦
2
MH(k23)

�
MH(k13)

�
π−1
12 ω12

a◦
2
π−1
23 ω23 π−1

13 ω13.

(2.14)

Here the bottom horizontal arrow is induced by

p−1
12aπ

−1
12 ω12 ⊗ p−1

23aπ
−1
23aω23 � π−1

1 ω1�ωT ∗M2�π−1
3 ω3

and

Rp13a !
(
π−1
1 ω1�ωT ∗M2�π−1

M3
ω3

)−→ π−1
1 ω1�π−1

3 ω3.

Remark 2.5 (i) If we consider that the isomorphism MH(kM) � π−1ωM is a real
analogue of the Hochschild-Kostant-Rosenberg isomorphism, then the commuta-
tivity of Diagram (2.14) says that, contrarily to the complex case, the real HKR
isomorphism commutes with inverse and direct images.
(ii) As a particular case of Proposition 2.4, we get canonical isomorphisms

MH(kM) ⊗MH(kM) � π−1ωM ⊗ π−1ωM � ωT ∗M .

Hence, MH(kM) behaves as a “square root” of the dualizing complex.

2.3 Trace Kernels and Microlocal Euler Classes

A trace kernel (K , u, v) onM is the data of K ∈ Db(kM×M) togetherwithmorphisms
(u, v)

k�
u−→ K

v−→ ω�.

Setting SS�(K ) := SS(K ) ∩ T ∗
�(M × M), the morphism u gives an element of

H 0
SS�(K )(T

∗M;μhom(k�, K )) whose image by v is the microlocal Euler class of
K
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μeuM(K ) ∈ MH
0
SS�(K )(kM)) � H 0

SS�(K )(T
∗M;π−1ωM).

If M = pt, a trace kernel K is nothing but an object of Db(k) together with linear
maps k −→ K −→ k. The composition gives the element μeu(K ) of k. If k is a field
of characteristic zero and K = L ⊗ L∗ where L is a bounded complex of k-modules
with finite dimensional cohomology and L∗ is its dual, one recovers the classical
Euler-Poincaré index of L , that is, μeu(K ) = χ(L).

Let i = 1, 2, j = i + 1 and let �i i j j be a closed conic subset of T ∗Mii j j . Assume
that

�1122
a×
22

�2233 is proper over T
∗M1133. (2.15)

Set �1133 = �1122
a◦
22

�2233 and �i j = �i i j j ∩ T ∗
�i j

Mii j j .

Theorem 2.6 Let Ki j be a trace kernel on Mi j with SS(Ki j ) ⊂ �i i j j . Assume (2.15),

set K̃23 = ω⊗−1
�2

◦
2
K23 � (ω⊗−1

2 �k233)
L⊗ K23 and set K13 = K12 ◦

22
K̃23. Then

(a) K13 is a trace kernel on M13,
(b) μeuM13

(K13) = μeuM12
(K12)

a◦
2
μeuM23

(K23) as elements of MH
0
�13

(k13).

As an application, one can perform the external product, the proper direct image
and the non characteristic inverse image of trace kernels and compute theirmicrolocal
Euler classes.

Consider in particular the case where �1 and �2 are two closed conic subsets of
T ∗M satisfying the transversality condition

�1 ∩ �a
2 ⊂ T ∗

MM. (2.16)

Then applying Theorem 2.6 and composing the external product with the restriction
to the diagonal, we get a convolution map:

� : MH�1(kM) × MH�2(kM) −→ MH�1+�2(kM).

Proposition 2.7 Let Ki be a trace kernel with SS�(Ki ) ⊂ �i (i = 1, 2) and

assume (2.15). Then the object K1
L⊗ (kM

L
�ω⊗−1

M )
L⊗ K2 is a trace kernel on M

and

μeuM(K1
L⊗ (kM�ω⊗−1

M )
L⊗ K2) = μeuM(K1) � μeuM(K2).

In particular if suppK1 ∩ suppK2 is compact, we have
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μeu
(
R�(M × M; K1

L⊗ (kM�ω⊗−1
M )

L⊗ K2)
) =

∫
M

(μeu(K1) � μeu(K2))|M

=
∫
T ∗M

μeu(K1) ∪ μeu(K2).

We shall apply this result to elliptic pairs.

2.4 Microlocal Euler Class of Constructible Sheaves

Let us denote by Db
cc(kM) the full triangulated subcategory of Db(kM) consisting of

cohomologically constructible sheaves and let G ∈ Db
cc(kM).

The evaluation morphism G
L⊗ DMG −→ ωM gives by adjunction the morphism

G
L
�DMG −→ ω�. By duality, one gets the morphism k� −→ G

L
�DMG. To summa-

rize, we have the morphisms in Db
cc(kM×M):

k� −→ G
L
�DG −→ ω�. (2.17)

Denote by TK(G) the trace kernel so constructed. If G is R-constructible, the class
μeuM(TK(G)) is nothing but the Lagrangian cycle of G constructed by Kashi-
wara [19]. In the sequel, if there is no risk of confusion, we simply denote this
class by μeuM(G).

One recovers the classical functorial properties ofLagrangian cycles. Let f : M −→
N be a morphism of manifolds. To f one associates the maps

T ∗M
fd←− M ×N T ∗N

fπ−→ T ∗N .

There are natural morphisms

fμ : fπ ! f
−1
d π−1

M ωM −→ π−1
N ωN ,

f μ : fd ! f
−1
π π−1

N ωN −→ π−1
M ωM .

• Let F ∈ Db
R-c(kM) and assume f is proper on supp(F), or equivalently, fπ is

proper on f −1
d SS(F). Then μeu(R f∗F) = fμμeu(F),

• Let G ∈ Db
R-c(kN ) and assume that f is non characteristic for G, that is, fd is

proper on f −1
π SS(G). Then μeu( f −1G) = f μμeu(G).
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2.5 Microlocal Euler Class of D-Modules

In this section, we denote by X a complexmanifold of complex dimension dX and the
base ringk is the fieldC. One denotes byDX the sheaf ofCX -algebras of (finite order)
holomorphic differential operators on X and refer to [21] for a detailed exposition
of the theory of D-modules.

We also denote byDb
coh(DX ) the full triangulated subcategory ofDb(DX ) consist-

ing of objects with coherent cohomology. We denote by DD : Db(DX ) −→ Db(DX )

the duality functor for left D-modules:

DDM := RHom D X
(M ,DX ) ⊗O X

ω
hol,⊗−1

X .

We denote by • � • the external product for D-modules:

M�N := DX×X ⊗D X�D X
(M�N ).

Let � be the diagonal of X × X . The leftDX×X -module HdX
[�](OX×X ) (the algebraic

cohomology with support in�) is denoted as usual byB�. We also introduceB∨
� :=

B� [2dX ]. For a coherent DX -module M , we have the isomorphism

RHom D X
(M ,M ) � RHom D X×X

(B�,M�DDM ) [dX ].

We get the morphisms

B� −→ M�DDM [dX ] −→ B∨
� (2.18)

where the second morphism is deduced by duality.
Denote by ET ∗X the sheaf on T ∗X of microdifferential operators of [52]. For a

coherent DX -module M set

M E := ET ∗X ⊗π−1D X
π−1M .

Recall that, denoting by char(M ) the characteristic variety of M , we have
char(M ) = supp(M E ). Set

C� := BE
�, C ∨

� := (B∨
�)E .

Let � be a closed conic subset of T ∗X . One sets

H H (ET ∗X ) = (δa)−1RHom E X×X
(C�,C ∨

� ),

HH
0
�(ET ∗X ) = H 0

�(T ∗X;H H (ET ∗X )).

One callsH H (ET ∗X ) the Hochschild homology of ET ∗X .
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We deduce from (2.18) the morphisms

C� −→ (M�DDM )E [dX ] −→ C ∨
� (2.19)

which define the Hochschild class of M :

hhE (M ) ∈ HH
0
char(M )(ET ∗X ). (2.20)

We shall make a link between the Hochschild class of M and the microlocal Euler
class of a trace kernel attached to the sheaf of holomorphic solutions ofM . We have

�X×X [−dX ] L⊗D X×X B� � C�,

�X×X [−dX ] L⊗D X×X B
∨
� � ω�.

Now remark that forN1,N2 ∈ Db
coh(DX ), we have a natural morphism

RHom π−1D X
(π−1N1,N

E
2 ) −→ μhom(�X

L⊗D X N1,�X
L⊗D X N2).

One deduces the morphisms

RHom E X×X
(C�,C ∨

� ) � RHom π−1D X×X
(π−1B�, (B∨

�)E )

−→ μhom(�X×X
L⊗D X×X B�

⊗−1
,�X×X

L⊗D X×X B�)

� μhom(C�,ω�).

Since all the arrows above are isomorphisms, we get

H H (ET ∗X ) � MH(CX ).

Recall that the Hochschild homology of ET ∗X has been already calculated in [5].
By this isomorphism, hhE (M ) belongs to MH

0
char(M )(CX ) and this class coin-

cides with that already introduced in [55].

Applying the functor�X×X [−dX ] L⊗D X×X
• to the morphisms in (2.18) we get the

morphisms

C� −→ �X×X
L⊗D X×X

(M�DDM ) −→ ω�. (2.21)

For M ∈ Db
coh(DX ), we set

TK(M ) := �X×X
L⊗D X×X

(M�DDM ).
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Then TK(M ) is a trace kernel by (2.21) and μeuM(TK(M )) is supported by
char(M ) by Theorem 1.8.

Proposition 2.8 TheHochschild class ofM is themicrolocal Euler class of the trace
kernel associated toM , that is, hhE (M ) = μeuX (TK(M )) in H 0

char(M )(T
∗X;π−1

ωX ).

2.6 Microlocal Euler Class of Elliptic Pairs

Let X be a complexmanifold,M an object ofDb
coh(DX ) andG an object ofDb

R-c(CX ).
The pair (M ,G) is called an elliptic pair in [55] if char(M ) ∩ SS(G) ⊂ T ∗

X X . From
now on, we assume that (M ,G) is an elliptic pair. We set

TK(M ,G) := �X×X
L⊗D X×X

(
(M ⊗ G)�(DDM ⊗D′

XG)
)
. (2.22)

It follows from the preceding results that TK(M ,G) is a trace kernel and

μeuX

(
TK(M ,G)

) = μeuX (M ) � μeuX (G). (2.23)

Applying Corollary 1.10(a), we get the natural isomorphism

RHom D X
(M ,D′

XG ⊗OX ) ∼−→ RHom D X
(M ⊗ G,OX ). (2.24)

Assumemoreover that Supp(M ) ∩ Supp(G) is compact.ApplyingCorollary1.10(b),
we get that the cohomology of the complex

Sol(M ⊗ G) := RHomD X
(M ⊗ G,OX )

is finite dimensional. Moreover

R�(X × X;TK(M ,G)) � Sol(M ⊗ G) ⊗ Sol(M ⊗ G)∗.

Applying Proposition 2.7, we get

χ
(
RHom D X

(M ⊗ G,OX )
) =

∫
X
(hhE (M ) � μeuX (G))|X

=
∫
T ∗X

(hhE (M ) ∪ μeuX (G)).

This formula has many applications, as far as one is able to calculate μeuX (M ).
Assume that M is endowed with a good filtration and char(M ) ⊂ �. Set
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g̃rM := OT ∗X ⊗π−1grD X
π−1grM

σ�(M ) = Ch�(g̃rM ) ∈
⊕
j

H 2 j
� (T ∗X;CT ∗X ),

μCh�(M ) = σ�(M ) ∪ π∗TdX (T ∗X) for a left D-module,

μCh�(M ) = σ�(M ) ∪ π∗TdX (T X) for a right D-module,

where Ch is the Chern character and Td is the Todd class. Note that μCh commutes
with proper direct images (Laumon’s version of the RR theorem forD-modules [36])
and non characteristic inverse images. In [55] we made the conjecture that

μeu�(M ) = [μCh�(M )]2dX

This conjecture has been proved in [3] by Bressler-Nest-Tsygan and generalized
in [2].

Example 2.9 (i) If X is a complex compact manifold, one recovers the Riemann-
Roch theorem: one takes G = CX and if F is a coherent OX -module, one sets
M = DX ⊗O X

F .
(ii) If M is a compact real analytic manifold and X is a complexification of M , one
recovers the Atiyah-Singer theorem by choosing G = D′

XCM .

3 Lecture 3: Ind-Sheaves and Applications to D-Modules

Abstract I will first recall the constructions of [25, 27] of the sheaves of temperate
or Whitney holomorphic functions. These are not sheaves on the usual topology, but
sheaves on the subanalytic site or better, ind-sheaves. Then I will explain how these
objects appear naturally in the study of irregular holonomic D-modules.

3.1 Ind-Sheaves

Ind-objects

References are made to [51] or to [29] for an exposition. We keep the notations of
the preceding lectures.

Let C be an abelian category (in a given universeU ). One denotes by C ∧,add the
big category of additive functors from C op to Mod(Z). This big category is abelian
and the functor h∧ : C −→ C ∧ makes C a full abelian subcategory of C ∧,add . This
functor is left exact, but not exact in general.
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An ind-object in C is an object A ∈ C ∧ which is isomorphic to “lim−→”α for some

functor α : I −→ C with I filtrant and small. One denotes by Ind(C ) the full additive
subcategory of C ∧,add consisting of ind-objects.

Theorem 3.1 (i) The category Ind(C ) is abelian.
(ii) The natural functor C −→ Ind(C ) is fully faithful and exact and the natural

functor Ind(C ) −→ C ∧,add is fully faithful and left exact.
(iii) The category Ind(C ) admits exact small filtrant inductive limits and the functor

Ind(C ) −→ C ∧,add commutes with such limits.
(iv) Assume that C admits small projective limits. Then the category Ind(C ) admits

small projective limits, and the functorC −→ Ind(C ) commuteswith such limits.

Example 3.2 Assume that k is a field and denote by Modf(k) the category of finite
dimensional k-vector spaces. Let I(k) denote the category of ind-objects of Mod(k).
Define β : Mod(k) −→ I(k) by setting β(V ) = “lim−→”W , where W ranges over the
family of finite-dimensional vector subspaces of V . In other words, β(V ) is the
functor from Mod(k)op to Mod(Z) given by M �→ lim−→

W

Hom k(M,W ). Therefore,

lim−→
W⊂V,W∈Modf (k)

Homk(L ,W ) � HomI(k)(L , “lim−→”
W⊂V,W∈Modf (k)

W )

= HomI(k)(L ,β(V )).

If V is infinite-dimensional, β(V ) is not representable in Mod(k). Moreover,
HomI(k)(k, V/β(V )) � 0.

It is proved in [29] that the category Ind(C ) for C = Mod(k) does not have
enough injectives.

Definition 3.3 An object A ∈ Ind(C ) is quasi-injective if the functor HomInd(C )

( • , A) is exact on the category C .

It is proved in loc. cit. that if C has enough injectives, then Ind(C ) has enough
quasi-injectives.

Ind-Sheaves

References are made to [27].
Let X be a locally compact space countable at infinity. Recall that Mod(kX )

denotes the abelian category of sheaves of k-modules on X . We denote byModc(kX )

the full subcategory consisting of sheaves with compact support. We set for short:

I(kX ) := Ind(Modc(kX ))

and call an object of this category an indsheaf on X .

Theorem 3.4 The prestack U �→ I(kU ), U open in X, is a stack.
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The following example explains why we have considered sheaves with compact
supports.

Example 3.5 Let X = R, let F = kX ,Gn = k[n,+∞[,G = “lim−→”
n

Gn . ThenG|U = 0

in Ind(Mod(kU )) for any relatively compact open subsetU of X . On the other hand,
HomInd(Mod(kX ))(kX ,G) � lim−→

n

HomkX
(kX ,Gn) � k.

We have two pairs (αX , ιX ) and (βX ,αX ) of adjoint functors

Mod(kX )

βX

ιX

I(kX ).αX

The functor ιX is the natural one. If F has compact support, ιX (F) = F after identi-
fying a category C to a full subcategory of Ind(C ). The functor αX associates lim−→

i

Fi

(Fi ∈ Modc(kX ), i ∈ I , I small and filtrant) to the object “lim−→”
i

Fi . If k is a field,

βX (F) is the functor G �→ �(X; H 0(D′
XG) ⊗ F).

• ιX is exact, fully faithful, and commutes with lim←− ,
• αX is exact and commutes with lim←− and lim−→ ,
• βX is right exact, fully faithful and commutes with lim−→ ,
• αX is left adjoint to ιX ,
• αX is right adjoint to βX ,
• αX ◦ ιX � idMod(kX ) and αX ◦ βX � idMod(kX ).

Example 3.6 Let U ⊂ X be an open subset, S ⊂ X a closed subset. Then

βX (kU ) � “lim−→”
V

kV , V open , V ⊂⊂ U,

βX (kS) � “lim−→”
V

kV , V open , S ⊂ V .

Let a ∈ X and consider the skyscraper sheaf k{a}. Then βX (k{a}) −→ k{a} is an
epimorphism in I(kX ) and defining Na by the exact sequence:

0 −→ Na −→ βX (k{a}) −→ k{a} −→ 0

we get that HomI(kX )(kU , Na) � 0 for all open neighborhood U of a.

We shall not recall here the construction of the derived category of indsheaves, nor
the six operations on such “sheaves”.
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3.2 Sheaves on the Subanalytic Site

The subanalytic site was introduced in [27, Chapt 7] and the results on sheaves on
this site were obtained as particular cases of more general results on indsheaves,
which makes the reading not so easy. A direct and more elementary study of sheaves
on the subanalytic site is performed in [45, 46].

Let M be a real analytic manifold. One denotes by R-C(kM) the abelian category
ofR-constructible sheaves on M and byR-Cc(kM) the full subcategory consisting of
sheaves with compact support. There is an equivalence Db(R-C(kM)) � Db

R-c(kM)

where this last category is the full triangulated subcategory of Db(kM) consisting
of R-constructible sheaves. (This classical result has first been proved by Kashi-
wara [18].)

We denote by OpM the category whose objects are the open subsets of M and the
morphisms are the inclusions of open subsets. One defines a Grothendieck topology
on OpM by deciding that a family {Ui }i∈I of subobjects of U ∈ OpM is a covering
of U if it is a covering in the usual sense.

Definition 3.7 Denote by OpMsa
the full subcategory of OpM consisting of subana-

lytic and relatively compact open subsets. The site Msa is obtained by deciding that
a family {Ui }i∈I of subobjects ofU ∈ OpMsa

is a covering ofU if there exists a finite
subset J ⊂ I such that

⋃
j∈J U j = U .

Let us denote by

ρsa : M −→ Msa (3.1)

the natural morphism of sites. Here again, we have two pairs of adjoint functors
(ρ−1

sa , ρsa∗) and (ρsa !, ρ−1
sa ):

Mod(kM)
ρsa !

ρsa∗

Mod(kMsa ).ρ−1
sa

For F ∈ Mod(kM), ρsa !F is the sheaf associated to the presheaf U �→ F(U ), U ∈
OpMsa

.

Proposition 3.8 The restriction of the functor ρsa∗ to the categoryR-C(kM) is exact
and fully faithful.

By this result, we shall consider the category R-C(kM) as a full subcategory of
Mod(kM) as well as a full subcategory of Mod(kMsa ). Set

IR−c(kM) = Ind(R-Cc(kM)).

Theorem 3.9 The natural functor αMsa : IR−c(kM) −→ Mod(kMsa ) is an equivalence
of categories.
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In other words, ind-R-constructible sheaves are “usual sheaves” on the suban-
alytic site. By this result, the embedding R-Cc(kM) ↪→ Modc(kM) gives a functor
IM : Mod(kMsa ) −→ I(kM). Hence, we have a quasi-commutative diagram of cate-
gories

Mod(kM)
ιM I(kM)

ModR-c(kM)
ρsa∗ Mod(kMsa )

IM

(3.2)

in which all arrows are exact and fully faithful. One shall be aware that the diagram:

Mod(kM)
ιM

ρsa∗

I(kM)

NC

Mod(kMsa )

IM

(3.3)

is not commutative. Moreover, ιM is exact and ρsa∗ is not right exact in general.
One denotes by “lim−→” the inductive limit in the category Mod(kMsa ). One shall

be aware that the functor IM commutes with inductive limits but ρsa∗ does not.

3.3 Moderate and Formal Cohomology

From now on, k = C. As usual, we denote by C∞
M (resp. C ω

M ) the sheaf of com-
plex functions of class C∞ (resp. real analytic), by DbM (resp. BM ) the sheaf of
Schwartz’s distributions (resp. Sato’s hyperfunctions), and by DM the sheaf of ana-
lytic finite-order differential operators. We also use the notation AM = C ω

M .

Definition 3.10 LetU ∈ OpMsa
and let f ∈ C∞

M (U ). One says that f has polynomial
growth at p ∈ M if it satisfies the following condition. For a local coordinate system
(x1, . . . , xn) around p, there exist a sufficiently small compact neighborhood K of
p and a positive integer N such that

supx∈K∩U
(
dist(x, K \U )

)N | f (x)| < ∞ . (3.4)

It is obvious that f has polynomial growth at any point of U . We say that f is
temperate at p if all its derivatives have polynomial growth at p. We say that f is
temperate if it is temperate at any point.

For U ∈ OpMsa
, denote by C∞,tp

M (U ) the subspace of C∞
M (U ) consisting of tem-

pered functions.
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Denote byDbtpM(U ) the space of tempered distributions onU , defined by the exact
sequence

0 −→ �M\U (M;DbM) −→ �(M;DbM) −→ DbtpM(U ) −→ 0.

Using Lojasiewicz’s inequalities [37] (see also [38]), one easily proves that

• the presheaf U �→ C∞,tp
M (U ) is a sheaf on Msa,

• the presheaf U �→ DbtpM(U ) is a sheaf on Msa.

One denotes by C∞,tp
Msa

the first one and calls it the sheaf of temperate C∞-functions.

One denotes byDbtpMsa
the second one and calls it the sheaf of temperate distributions.

Let F ∈ Db
R-c(CM). One has the isomorphism

ρ−1
sa RHom (F,DbtpMsa

) � thom(F,DbM) (3.5)

where the right-hand side was defined by Kashiwara as the main tool for his proof
of the Riemann-Hilbert correspondence in [17, 18].

For a closed subanalytic subset S in M , denote by I ∞
M,S the subsheaf of C∞

M
consisting of functions which vanish up to infinite order on S. In [25], one introduces
the sheaf:

CU
w⊗ C∞

M := V �→ �(V ;I ∞
V,V \U )

and shows how to extend this construction and define an exact functor •
w⊗ C∞

M on
ModR-c(CM). One denotes by C∞,w

M the sheaf on Msa given by

C∞,w
M (U ) = �(M; H 0(D′

MkU )
w⊗ C∞

M ),U ∈ OpMsa
.

IfD′
MCU � CU ,C

∞,w
M (U ) is the space ofWhitney functions onU , that is the quotient

C∞(M)/I ∞
M,M\U . It is thus natural to call C

∞,w
M the sheaf of Whitney C∞-functions

on Msa.
Note that the sheaf ρsa∗DM does not operate on the sheaves C∞,tp

M , DbtM , C
∞,w
M

but ρsa !DM does.
Now let X be a complex manifold. We still denote by X the real underlying

manifold and we denote by X the complex manifold conjugate to X . One defines
the sheaf of temperate holomorphic functions Otp

Xsa
as the Dolbeault complex with

coefficients in C∞,tp
Xsa

. More precisely

Otp
Xsa

= RHom ρsa !D X
(ρsa !OX , C∞,tp

Xsa
). (3.6)

One proves the isomorphism

Otp
Xsa

� RHom ρsa !D X
(ρsa !OX ,DbtpXsa

). (3.7)
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Similarly, one defines the sheaf

Ow
Xsa

= RHom ρsa !D X
(ρsa !OX ,C∞,w

Xsa
). (3.8)

Note that the object Otp
Xsa

, Ow
Xsa

and Rρsa∗OX are not concentrated in degree zero
in dimension > 1. Indeed, with the subanalytic topology, only finite coverings are
allowed. If one considers for example the open setU ⊂ C

n , the difference of an open
ball of radius R > 0 and a closed ball of radius r with 0 < r < R, then the Dolbeault
complex will not be exact after any finite covering.

In order that OX remains concentrated in degree 0, we shall better consider ind-
sheaves and we shall embed the category Db(CXsa ) into the category Db(I(CX )) by
the exact functor IX . (Recall that Diagram (3.3) is not commutative.) Hence we con-
sider subanalytic sheaves as indsheaves. In the category Db(I(CX )) we have thus the
morphisms of sheaves

Oω
X −→ Ow

X −→ Otp
X −→ OX .

Here Ow
X and Otp

X are the images of Ow
Xsa

and Otp
Xsa

by the functor IX (there are still
not concentrated in degree 0), we have kept the same notation for OX and its image
in Mod(I(CX )) by the functor ιX , and we have set

Oω
X := βX (OX ).

We call Ow
X and Otp

X the sheaves of temperate and Whitney holomorphic functions,
respectively.

Example 3.11 Let Z be a closed complex analytic subset of the complex manifold
X . We have the isomorphisms

αXRHom I(CX )(D
′
CZ ,Oω

X ) � OX |Z ,

αXRHom I(CX )(D
′
CZ ,Ow

X ) � OX̂ |Z (formal completion along Z ),

αXRHom I(CX )(CZ ,Otp
X ) � R�[Z ](OX ) (algebraic cohomology),

αXRHom I(CX )(CZ ,OX ) � R�Z (OX ).

Example 3.12 let M be a real analytic manifold and X a complexification of M . We
have the isomorphisms

αXRHom I(CX )(D
′
CM ,Oω

X ) � AM ,

αXRHom I(CX )(D
′
CM ,Ow

X ) � C∞
M ,

αXRHom I(CX )(D
′
CM ,Otp

X ) � DbM ,

αXRHom I(CX )(D
′
CM ,OX ) � BM .
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Notice that with this approach, the sheaf DbM of Schwartz’s distributions is con-
structed similarly as the sheaf of Sato’s hyperfunctions. In particular, functional
analysis is not used in the construction.

Remark 3.13 The subanalytic topology allows us to define functions whose growth
at the boundary is bounded by some power of the inverse of the distance to the
boundary, but not to make precise this power. In order to define such sheaves, we
have recently defined with S. Guillermou in [12] the linear subanalytic topology Msal

on a real analyticmanifoldM . The open sets of this topology are those ofMsa, namely
OpMsa

, but there are less coverings. Roughly speaking, a finite covering {Ui }i∈I is a
linear covering of U = ⋃

i Ui if there is a constant C such that for any x ∈ M

d(x, M \
⋃
i∈I

Ui ) ≤ C · max
i∈I d(x, M \Ui ). (3.9)

Here d is a distance on M which is locally equivalent to the Euclidian distance onRn .
One proves that the family of linear coverings satisfies the axioms of Grothendieck
topologies. One denotes by Msal the site so defined and by ρsal : Msa −→ Msal the
natural morphism of sites. One of the main results of the theory is that the functor
Rρsal∗ : D+(kMsa ) −→ D+(kMsal) admits a right adjoint ρ!

sal : D+(kMsal) −→ D+(kMsa ).
Moreover, if U ∈ OpMsa

has Lipschitz boundary, then Rρsal∗CU is concentrated
in degree 0. It follows that if F is a presheaf on Msa such that the sequence
0 −→ F(U1 ∪U2) −→ F(U1) ⊕ F(U2) −→ F(U1 ∩U2) −→ 0 is exact for any linear
covering (U1,U2) ofU1 ∪U2, then there exists F ∈ D+(kMsa ) such that R�(U ; F) �
F(U ) for all U ∈ OpMsa

with Lipschitz boundaries.
This topology allows us to define the subsheaf C∞,s

Msal
of C∞

Msal
consisting of functions

tempered of order s. On a complex manifold X we may thus endow the sheaf Otp
Xsa

with a natural filtration (in the derived sense). We refer to loc. cit. for more details.

3.4 Applications to D-Modules I

Let us show on an example extracted of [28] the possible role of the sheaf O t
X in the

study of irregular holonomic D-modules.
Let X be a complex manifold and let M be a holonomic D-module. We set for

short

Sol0(M ) = HomD X
(M ,OX ),

Sol0,t (M ) = Hom βXD X
(βXM ,O t

X ).

We shall compare these two objects in a simple example in whichM is not regular.
Let X = C endowed with the holomorphic coordinate z and let P = z2∂z + 1. We
consider the DX -module M := DX exp(1/z) � DX/DX · P .
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Notice first that O t
X is concentrated in degree 0 (since dim X = 1) and it is a sub-

indsheaf ofOX . It follows that the morphism Sol0,t (M ) −→ Sol0(M ) is a monomor-
phism. Moreover,

Sol0(M ) � CX,X\{0} · exp(1/z).

It follows that for V ⊂ X a connected open subset, we have �(V ;Sol0,t (M )) �= 0
if and only if V ⊂ X \ {0} and exp(1/z)|V is tempered.

Let B̄ε denote the closed ball with center (ε, 0) and radius ε and setUε = X \ B̄ε.
Then one proves that exp(1/z) is temperate (in a neighborhood of 0) on an open

subanalytic subset V ⊂ X \ {0} if and only if Re(1/z) is bounded on V , that is, if
and only if V ⊂ Uε for some ε > 0. We get

Proposition 3.14 One has the isomorphism

“lim−→”
ε>0

CXUε
∼−→ Sol0,t (M ). (3.10)

Unfortunately, the functor Solt (as well as its derived functor) is not fully faithful
since the D-modules M := DX exp(1/z) and N := DX exp(2/z) have the same
indsheaves of temperate holomorphic solutions although they are not isomorphic.1

Proposition 3.14 has been generalized to the study of holonomic modules in
dimension one in [41].

3.5 Applications to D-Modules II

For F ∈ Db
R-c(CX ), set (see (3.5)):

F
w⊗ OX := RHom D X

(OX , F
w⊗ C∞

X ),

thom(F,OX ) := RHom D X
(OX , thom(F,DbX )).

Let F ∈ Db
R-c(CX ) and M ∈ Db

coh(D). Recall that we have set ωhol
X := �X [dX ].

Set for short

W (M , F) := RHom D (M , F
w⊗ OX ),

T (F,M ) := thom(F,ωhol
X )

L⊗D M .

There is a natural morphism

W (M , F) ⊗ T (F,M ) −→ ωhol
X , (3.11)

1This difficulty is overcome in [8] by adding a variable.
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functorial in F and M . For G ∈ Db
R-c(CX ) one gets a pairing

RHom (G,W (M , F)) ⊗R�c(X;G ⊗ T (F,M )) (3.12)

−→ R�c(X;W (M , F) ⊗ T (F,M ))

−→ R�c(X;ωhol
X ) −→ C.

Denote by Db(FN ) the derived category of the quasi-abelian category of Fréchet
nuclear C-vector spaces and define similarly the category Db(DFN ), where now
DFN stands for “dual of Fréchet nuclear”.

Theorem 3.15 ([25, Theorem 6.1]) Let F,G ∈ Db
R-c(CX ) andM ∈ Db

coh(D). Then
the two complexes

RHom (G,W (M , F)) ∈ Db(FN ) and R�c(X;G ⊗ T (F,M )) ∈ Db(DFN )

are dual to each other through (3.12), functorially in F,G and M .

Now we assume that M ∈ Db
hol(DX ) and we consider the following assertions.

(a) W (M , F) = RHom D (M , F
w⊗ OX ) is R-constructible,

(b) T (F,M ) = thom(F,ωhol
X )

L⊗D M is R-constructible,
(c) the two complexes in (a) and (b) are dual to each other in the categoryDb

R-c(CX ),
that is, W (M , F) � DXT (F,M ).

It was conjectured2 in [28] that (b) is always satisfied. Based on the work of
Mochizuki [40] (see also [34, 35, 49]), partial results in this direction have been
obtained in [42].

On the other hand, one deduces easily from Theorem 3.15 that (a) and (b) are
equivalent and imply (c). Finally, it follows immediately from [16, 18] that (b),
hence (a) and (c), are true when F ∈ Db

C-c(CX ).

Corollary 3.16 Assume that F ∈ Db
C-c(CX ) and X is compact. Then the com-

plexes R�(X;W (M , F)) and R�(X; T (F,M )) have finite-dimensional cohomol-
ogy and (3.12) induces a perfect pairing for all i ∈ Z

H−iR�(X;W (M , F)) ⊗ HiR�(X; T (F,M )) −→ C,

functorial in F and M .

In [1], S. Bloch andH. Esnault prove directly a similar result on an algebraic curve
X when assuming that M is a meromorphic connection with poles on a divisor D.
They interpret the duality pairing by considering sections of the type γ ⊗ ε, where
γ is a cycle with boundary on D and ε is a horizontal section of the connection on γ

2This result is now proved in [33, Th. 2.5.13].
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with exponential decay on D. Their work has been extended to higher dimension by
M. Hien [13].

It would be interesting to make a link with these results and Corollary 3.16.

Remark 3.17 After this paper has been written, important progress have been made
in the study of irregular holonomicD-modules. See [8, 32] and see [33] for a survey.
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Microlocal Condition
for Non-displaceability

Dmitry Tamarkin

To Boris Tsygan on his 50th birthday

Abstract We formulate a sufficient condition for non-displaceability (by
Hamiltonian symplectomorphisms which are identity outside of a compact) of a
pair of subsets in a cotangent bundle. This condition is based on micro-local analysis
of sheaves on manifolds by Kashiwara–Schapira. This condition is used to prove that
the real projective space and the Clifford torus inside the complex projective space
are mutually non-displaceable.

1 Introduction

Let M be a symplectic manifold and A, B ⊂ M its compact subsets. A and B are
called non-displaceable if A ∩ X (B) �= ∅, where X is any Hamiltonian symplecto-
morphism of M which is identity outside of a compact. Given such A and B, it is, in
general, a non-trivial problem to decide, whether they are displaceable or not (see,
for example, [3] and the literature therein). In non-trivial cases (when, say, A and B
can be displaced by a diffeomorphism), all the methods known so far use different
versions of Floer cohomology.

In this paper we introduce a sufficient condition for non-displaceability in the case
when M = T ∗X with the standard symplectic structure. Our approach is based on
Kashiwara–Shapira’s microlocal theory of sheaves on manifolds and is independent
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of Floer’s theory. We apply our condition in the following setting. Let our symplectic
manifold beCPN with the standard symplectic structure and let our subsets beRPN ⊂
CP

N andTN ⊂ CP
N , whereTN is the Clifford torus consisting of all points (z0 : z1 :

· · · : zN ) such that |z0| = |z1| = · · · = |zN |. Let A and B be arbitrarily chosen from
the two subsets specified, we show that such A and B are non-displaceable. Same
result has been proven in [3] using Hamiltonian Floer theory. Non-displaceability of
Clifford tori has been proven in [4] via computing Floer cohomology.

Observe that our condition applies despite CP
N �= T ∗X . We use a certain

Lagrangian correspondence between T ∗SU(N ) and CP
N × (CPN )opp, where the

symplectic form on (CPN )opp equals the opposite to that on CP
N , see Sect. 4.0.1.

This way our original problem gets reduced to non-displaceability of certain subsets
in T ∗SU(N ).

Let us now get back to the non-displaceability condition for subsets in a sym-
plectic manifold T ∗X , where X is a smooth manifold. Fix a ground field K. We
start with a category D(X) which is defined as a full subcategory of the unbounded
derived category of sheaves of K-vector spaces on X × R, consisting of all objects
F ∈ D(X × R) satisfying the following condition: for any open U ⊂ X and any
c ∈ R ∪ {∞}, R�c(U × (−∞, c); F) = 0. The category D(X) admits a microlocal
definition. Let ∂t be the vector field on X × R corresponding to the infinitesimal
shifts alongR. Let�≤0 ⊂ T ∗(X × R) be the subset consisting of all 1-forms η satis-
fying i∂tη ≤ 0. Let C≤0 ⊂ D(X × R) be the full subcategory consisting of all objects
microsupported on �≤0. One can show thatD(X) is the left orthogonal complement
to C≤0.

One can show that the embedding C≤0 ⊂ D(X × R) admits a left adjoint. There-
fore, D(X) can be identified with a quotient D(X × R)/C≤0. This motivates us
to define microsupports of objects from D(X) as conic closed subsets of �>0 :=
T ∗(X × R)\�≤0. Thus, we set SSD(F) := SS(F) ∩�>0 for any F ∈ D(X).

Let us identify T ∗(X × R) = T ∗X × T ∗R. Let A ⊂ T ∗X be a subset. Define
Cone(A) ⊂ �>0 to consist of all points (η,α) ∈ T ∗X × T ∗R such that i∂tα > 0
(meaning that (η,α) ∈ �>0) and

η

i∂tα
∈ A.

LetDA(X) ⊂ D(X) be the full subcategory consisting of all F ∈ D(X) such that
SSD(F) ⊂ Cone(A). This way we can link subsets of T ∗X with the categoryD(X).

Let c ∈ R, let Tc : X × R→ X × R be the shift by c: Tc(x, t) = (x, t + c). One
sees that Tc(Cone(A)) = Cone(A). Therefore, the endofunctor Tc∗ : D(X × R)→
D(X × R) preserves DA(X) for all A. For any c > 0, one can construct a natural
transformation τc : Id→ Tc∗ of endofunctors on DA(X) for any A, see Sect. 2.2.2.

We can now formulate the non-displaceablity condition (Theorem 3.1).
Let A, B ⊂ T ∗X be compact subsets. Suppose there exist FA ∈ DA(X); FB ∈

DB(X) such that for any c ≥ 0, the natural map R hom(FA; FB)→ R hom(FA;
Tc∗FB), induced by τc, does not vanish. Then A and B are non-displaceable.
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Remark. For c ∈ R set Hc(FA, FB) := Hc := R hom(FA; Tc∗FB). For any d ≥
0, the natural transformation τd induces a map τc,c+d : Hc → Hc+d .

Let H(FA, FB) := H ⊂∏
c∈R Hc be defined as a subset consisting of all collec-

tions hc ∈ Hc such that there exists a sequence c1 < c2 < · · · < cn < · · · ; cn →∞
such that hc = 0 for all c /∈ {c1, c2, . . . , cn, . . .}. The maps τc,c+d induce maps
τd : H → H for all d ≥ 0. This way we get an action of the semigroup R≥0 on
H . This implies that Novikov’s ring, which is a group ring of R≥0, acts on H . There
are indications that thus defined module over Novikov’s ring H is related to Floer
cohomology of the pair A, B. In this language, our nondisplaceability condition
means that H(FA, FB) has a non-trivial non-torsion part.

Remark. It seems likely that under an appropriate version of Riemann–Hilbert
correspondence our picture should become similar to the setting of [9]. This paper
can be considered as an attempt to translate [9] into the language of constructible
sheaves.

Remark. There is some similarity between our theory and the approach from [7,
8] where the authors identify the derived category of constructible sheaves on X with
a certain version of the Fukaya category on T ∗X . The authors use exact Lagrangian
submanifolds of T ∗X which are close to being conic, whereas wework with compact
subsets of T ∗X , some of them being non-exact Lagrangian submanifolds.

Let us now briefly describe the way our non-displaceability condition is applied to
the above mentioned exampleRPN ,TN ⊂ CP

N . As was explained, the problem can
be reduced to proving non-displaceability of certain subsets of T ∗SU(N ). Given such
a subset, say A, it is, in general, a non-trivial problem to construct a non-zero object
F ∈ DA(SU(N )). Our major tool here is a certain object S ∈ D(G × h) which is
defined uniquely up-to a unique isomorphism by certain microlocal conditions to be
now specified. Here G = SU(N ) and h is the Cartan subalgebra of g, the Lie algebra
of SU(N ).

Let C+ ⊂ h be the positive Weyl chamber. For every A ∈ g there exists a unique
element ‖A‖ ∈ h such that ‖A‖ is conjugated with A. Let us identify T ∗(G × h) =
G × h× g∗ × h∗ (via interpreting g∗ as the space of right-invariant 1-forms on G).
Let us identify g∗ = g, h∗ = h by means of the Killing form. Let �S ⊂ G × h×
g× h = �S ⊂ G × h× g∗ × h∗ consist of all points of the form (g, X,ω, η), where
η = ‖ω‖. Let also i0 : G → G × h be the embedding i0(g) = (g, 0). We then define
S as an object of D(G × h) such that SS(S) ⊂ �S and i−10 S ∼= Ke, whereKe is the
skyscraper at the unit e ∈ G. One can show that this way S is determined uniquely
up-to a unique isomorphism. It turns out that the required objects FA ∈ DA(X), FB ∈
DB(X), . . . , can be easily expressed in terms of S.

Our next task is to compute the graded vector spaces R hom(FA, Tc∗FB) and to
make sure that the maps τc : R hom(FA, FB)→ R hom(FA, Tc∗FB) are not zero for
all c ≥ 0. This problem gets gradually reduced to finding an explicit description of
the restriction i−1e S ∈ D(h), where ie : h→ G × h, ie(X) = (e, X), and e ∈ G is
the unit.

Remark. Let C− := −C+, let C◦− ⊂ C− be the interior. It turns out that the stalks
of (i−1e S|C−) have a transparent topological meaning (however, this meaning won’t
be used in our proofs). Let X ∈ C−; let O(X) := S|e×X [− dim h].
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On the other hand, let us consider the smooth loop space �G. For γ : [0, 1] → G
being a smooth loop, we set ‖γ‖ ∈ C+,

‖γ‖ :=
1∫

0

‖γ′(t)‖dt,

where γ′(t) ∈ g is the t-derivative of γ. Let �X ⊂ �(G) be the subspace consisting
of all loops γ such that ‖γ‖ ≤ −X (here Y ≤ −X means< Y + X,C+ >≤ 0, where
<,> is the restriction of the positive definite invariant form on g onto h). It can be
shown that O(X) ∼= H•(�X ).

In regard with this setting, one can ask the following question (which will be
probably discussed in a subsequent paper). We have an obvious concatenation map
�X ×�Y → �X+Y whence a productO(X)⊗O(Y )→ O(X + Y ). One can show
that this product is commutative so that the spaces O() form a filtered commutative
algebra. It can be shown that this algebra can be obtained in the following algebro-
geometric way. Let FL be the projective K-variety of complete flags in K

N . Fix a
regular nilpotent operator n : KN → K

N (that is, n consists of one Jordan block).
Let Pet ⊂ FL(N ) be the closed subvariety consisting of all flags 0 = V0 ⊂ V1 ⊂
· · · VN = K

N satisfying nVi ⊂ Vi+1 for all i < N . This variety was discovered by
Peterson, see e.g. [6].

Let L ∈ h be the lattice formed by all elements X such that eX is in the center of
G. Given l ∈ L we canonically have a line bubble Ll on FL. It turns out that for all
l ∈ L ∩ C+ we have an isomorphism O(l) = �(Pet; Ll |Pet), and this isomorphism
is compatible with the natural product on both sides.

A related result is proven in [5], where, among other interesting results, the authors
identify H•(�(G)) with the algebra of functions on a certain affine open subset of
Pet.

Let us now go over the content of the paper. In Sects. 2, 3 we formulate and prove
the non-displaceability condition.

In Sect. 4we start applying the non-displaceability condition toRPN ,TN ⊂ CP
N .

Finally, the problem is reduced to the existence of an object uO ∈ D(G) satisfying
certain properties (see Proposition 4.4).

In Sect. 5 the object uO gets constructed out ofS (where we use certain properties
of S to be proven in the subsequent sections).

The rest of the paper is devoted to constructing and studying S. In Sect. 6 we
construct an object S and prove its uniqueness.

In Sect. 7 we compute an isomorphism type ofS|z×C◦− where z is any element in
the center of G. In essense, the computation is a version of Bott’s computation of
H•(�(G)) using Morse theory.

The goal of Sect. 8 is to extend the result of the previous section to z × h. This
is done by means of establishing a certain periodicity property of S with respect to
shifts along h by elements of the lattice L = {X ∈ h|eX ∈ Z}, where Z ⊂ G is the
center. Namely, we show thatS is, what we call, a strict B-sheaf. (see Sect. 8.2). We
show that any strict B-sheaf can be recovered from its restriction onto Z× C◦−. By
virtue of this statement we are able to identify the isomorphism type of S|Z×G .
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There are two appendices. In the first one we introduce the notation used when
workingwith SU(N ) and its Lie algebra.We also included a couple of useful Lemmas
(which, most likely, can be found elsewhere in the literature). These Lemmas are
mainly used when constructing and studyingS. The notation is used systematically
starting from Sect. 5.

In the second appendix we list, for the reader’s convenience, the rules for com-
puting the microsupport from [1]. These rules are used throughout the paper.

Strictly speaking, these rules are proved in [1] for the bounded derived category.
However, one sees that they carry over directly to the unbounded derived category,
in which case we use them.

2 Generalities

2.1 Unbounded Derived Category

2.1.1

Fix a ground field K. The Abelian category ShM of sheaves of K-vector spaces
on a smooth manifold M is of finite injective dimension. Therefore, one has a
simple model of the unbounded derived category D(M), namely one can take
unbounded complexes of injective sheaves on M ; given two such complexes, we
define homD(M)(I1, I2) := H 0 hom•(I1, I2). This definition is stable under quasi-
isomorphisms precisely because of finite injective dimension of ShM . The main
results of the formalism of 6 functors remain valid for D(X) (excluding the Verdier
duality).

2.1.2

We still have a notion of singular support of an object of D(M) and it is defined in
the same way as in [1] The results on functorial properties of singular support from
Chaps. 5, 6 of [1] are still valid for the unbounded derived category, and we will
freely use them. For the convenience of the reader the results from [1] used in this
paper are listed in Sect. 11

2.2 Sheaves on X × R

Let X be a smooth manifold. We will work with the manifold X × R. Let t be the
coordinate on R and let V = ∂/∂t be the vector field corresponding to the infinites-
imal shift along R. Let �≤0 ⊂ T ∗(X × R) be the closed subset consisting of all
1-forms ω with (ω, V ) ≤ 0. Let �>0 ⊂ T ∗(X × R) be the complement to �≤0, i.e.
the set of all 1-forms ω such that (ω, V ) > 0.
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Let C≤0(X) ⊂ D(X × R) be the full subcategory of objects microsupported on
�≤0. Let D(X) := D(X × R)/C≤0(X).

Proposition 2.1 The embedding C≤0(X)→ D(X × R) has a left adjoint. There-
fore,D(X) is equivalent to the left orthogonal complement to C≤0(X) in D(X × R).

Proof Let p1 : X × R× R→ X × R; p2 : X × R× R→ R; a : X × R× R→
R be given by p1(x, t1, t2) = (x, t1); p2(x, t1, t2) = t2; a(x, t1, t2) = t1 + t2. For
F ∈ D(X × R) and S ∈ D(R) set F ∗R S := Ra!(p−11 F ⊗ p−12 S).

It is clear that F ∗R K0
∼= F where K0 is the skyscraper at 0 ∈ R.

We have a natural map K[0,∞) → K0 in D(R).
For an F ∈ D(X × R), consider the induced map

F ∗R K[0,∞) → F ∗R K0 = F. (1)

(1) Let us show that F ∗R K[0,∞) is in the left orthogonal complement to C≤0(X).
Indeed, let G ∈ C≤0(X). Let U ⊂ X be an open subset and let (a, b) ⊂ R. Any

object F ∈ D(X × R) can be produced from objects of the typeKU×(a,b) for various
U and (a, b) by taking direct limit. Therefore, without loss of generality, one can
assume F = KU×(a,b). One then has

R homX×R(F ∗R K[0,∞);G) =

= R homX×R(KU×(a,b) ∗R K[0,∞);G)

= R homX×R(KU×[a,∞)[−1];G)

= Cone(R�(U × R;G)
r→ R�(U × (−∞; a);G)).

The map r is an isomorphism because G ∈ C≤0. Therefore, Cone(r) = 0, whence
the statement.

(2) Cone of the map (1) is in C≤0(X). Indeed, consider the cone of the map
K[0,∞) → K0. This cone is isomorphic to K(0,∞)[1]. One then has to check that
F ∗R K(0,∞) ∈ C≤0(X). One can represent F as an inductive limit of compactly sup-
ported objects. Therefore, without loss of generality, one can assume F is compactly
supported. One then can estimate the microsupport of F ∗R K[0,∞) using functorial
properties of microsupport. Indeed, let us identify

T ∗(X × R× R) = T ∗X × T ∗(R× R).

Let us also identify T ∗(R× R) = R
4 so that a point (t1, t2, k1, k2) ∈ R

4 corre-
sponds to the 1-form k1dt1 + k2dt2 at the point (t1, t2) ∈ R× R. We then have

p−11 F ⊗ p−12 K(0,∞) = F � K(0,∞);
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SS(F � K(0,∞))

⊂ {(ω, t1, t2, k1, k2) ∈ T ∗X × R
4|(t2, k2) ∈ SS(K(0,∞))}.

This means that either t2 = 0 and k2 ≤ 0 or t2 > 0 and k2 = 0.
As F is compactly supported, it follows that the map a is proper on the support

of F � K(0,∞).

Therefore, SSRa!(F � K(0,∞)) is contained in the set of all points (ω, t, k) ∈
T ∗X × R

2 such that there exists a point (ω, t1, t2, k1, k2) ∈ SS(F � K(0,∞)) such
that t = t1 + t2; k1 = k2 = k. This implies that k ≤ 0, therefore,

F ∗R K(0,∞) = Ra!(F � K(0,∞)) ∈ C≤0(X),

as was required.
The statements (1) and (2) imply that we have an exact triangle

→ F ∗R K(0,∞) → F ∗R K[0,∞) → F → F ∗R K(0,∞)[1] → · · · ,

where F ∗R K(0,∞)[1] is in C≤0(X) and F ∗R K[0,∞) is in the left orthogonal com-
plement toC≤0(X). Therefore, F �→ F ∗R K(0,∞)[1] is the left adjoint functor to the
embedding C≤0(X)→ D(X × R). �

Thus, we have proven

Proposition 2.2 An object F ∈ D(X × R) is in the left orthogonal complement to
C≤0(X) iff the map (1) is an isomorphism.

2.2.1

From now on we identify D(X) with a full subcategory of D(X × R) which is the
left orthogonal complement to C≤0(X). Thus, the arrow (1) is an isomorphism for
any F ∈ D(X) ⊂ D(X × R) (and only for objects from D(X)).

2.2.2

Let Tc : X × R→ X × R be the shift along R by c: Tc(x, t) = (x, t + c). We have
Tc∗F = F ∗R Kc. If F ∈ D, we have

Tc∗F ∼= F ∗R K[0,∞) ∗R Kc
∼= F ∗R K[c,∞). (2)

One can easily check that Tc∗F ∈ D(X); for example, this follows from an isomor-
phism

F ∗R K[c,∞)
∼= Tc∗F ∗R K[0,∞),
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which is the case for any F ∈ D(X × R).
For all c ≥ d we then have a natural map Td∗F → Tc∗F which is induced by the

embedding [c,∞) ⊂ [d,∞) and we use the identification (2). This implies that we
have natural transformations τdc : Td∗ → Tc∗ of endofunctors onD(X) for all d ≤ c.
It is clear that τdcτed = τec for all e ≤ d ≤ c.

2.2.3

Call an object F ∈ D(X) a torsion object if there exists c > 0 such that the natural
map τ0c : F → Tc∗F is zero in D(X).

2.2.4

Still thinking of D(X) as a quotient D(X × R)/C≤0(X), the microsupport of an
object F ∈ D(X) is naturally defined as a closed subset of �>0 ⊂ T ∗(X × R).
Denote this microsupport by SSD(F) ⊂ �>0.

Let us see what this means in terms of the identification of D(X) with a full
subcategory of D(X) which is the left orthogonal complement to C≤(X). Let F ∈
D(X) ⊂ D(X × R). We then have SSD(F) = SS(F) ∩�>0, where SS(F) is the
microsupport of F which is viewed as an object of D(X × R).

2.2.5

Let us identify T ∗R = R× R so that (t0, k) ∈ R× R corresponds to the 1-form kdt
at the point t0 ∈ R. We then have an induced identification T ∗(X × R) = T ∗X ×
R× R.

Let A ⊂ T ∗X be a subset. Define the conificationCone(A) ⊂ �>0 to consist of all
points (ω, t, k) ∈ T ∗X × R× R such that k > 0, (x,ω/k) ∈ A. LetDA(X) ⊂ D(X)

be the full subcategory consisting of all objects F ∈ D(X) such that SSD(F) ⊂
Cone(A).

3 Non-displaceability Condition

Let X be a compact manifold. Let L1, L2 ⊂ T ∗X be compact subsets. Call L1, L2

mutually non-displaceable if for every Hamiltonian symplectomorphism � of T ∗X
which is identity outside of a compact, �(L1) ∩ L2 �= ∅. Our goal is to prove
Theorem 3.1 Suppose there exist objects Fi ∈ DLi (X), i = 1, 2 such that for all
c > 0 the natural map

τc : R hom(F1, F2)→ R hom(F1, TcF2)
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is not zero. Then L1 and L2 are mutually non-displaceable.

The proof will occupy the whole section.

3.1 Disjoint Supports

Our goal is to prove:

Theorem 3.2 let Fi ∈ DAi (X), where i = 1, 2, Ai ⊂ T ∗X are compact sets and
A1 ∩ A2 = ∅. We then have R homD(X)(F1, F2) = 0.

3.1.1 Lemma

Let M be a smooth manifold let E be a finite-dimensional real vector space of
dimension≥ 1.Let p : M × E → M be the projection.Let F ∈ D(M × E). Letω ∈
T ∗M ,ω �= 0. LetU ⊂ T ∗M be a neighborhood ofω. Let V ⊂ E∗ be a neighborhood
of 0 in the dual vector space. Let us identify T ∗(M × E) = T ∗M × E × E∗.

Lemma 3.3 Suppose that
F is non-singular on the set

U × E × V ⊂ T ∗M × E × E∗ = T ∗(M × E)

Then Rp!F and Rp∗F are non-singular at ω.

Proof We will only prove Lemma for Rp!F ; the proof for Rp∗F is similar.
Fix a Euclidean inner product <,> on E . Without loss of generality one can

assume that V = B ⊂ E∗ is an open unit ball.
Let θ : [0,∞)→ [0, 1) be a function such that:

• θ′(x) > 0 for all x ≥ 0;
• there exists an ε > 0 such that for all x ∈ [0, ε] we have θ(x) = x .
• there exists an M > 0 such that for all x > M , θ(x) = 1− 1/x .

Let B := {v ∈ E | |v| < 1}. Let Z : E → B be the embedding given by

Z(v) = θ(|v|)
|v| v.

It follows that Z is a diffeomorphism. Let J : B → E be the open embedding.
Let us split p : M × E → M as

M × E
Id×Z→ M × B

Id× j→ M × E
p→ X.
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Denote z := Id× Z ; j := Id× J . We have Rp!F = Rp! j!z!F . We then see that p
is proper on the support of j!z!F . Let us estimate SS(z!F).

Let a(x) : [0, 1)→ [0,∞) be the inverse function to θ. It follows that a(x) = x
for x < ε and there exists δ > 0 such that for all x ∈ (1− δ; 1), a(x) = 1/(1− x).
We then get Z−1v = (a(|v|)/|v|)v. The condition of Lemma implies that for all
ω ∈ U and for all c ∈ B we have (ω, v, c) /∈ SS(F), where v ∈ E . Let

SUB = {(ω, v, c)|ω ∈ U ; v ∈ E; c ∈ B} ⊂ T ∗(M × E).

We then see that the set (Z−1)∗SUB ⊂ T ∗(X × B);

(Z−1)∗SUB = {(ω, v,
∑

j

c j d((a(|v|)/|v|)v j )},

where ω ∈ U , v ∈ B, and |c| < 1. Let us now estimate SS( j!z!F). According to
Sect. 11.0.7, we have

SS( j!z!F) ⊂ SS(z!F)+̂N ∗(X × B)a,

where on the RHS we have a Witney sum of the following conic subsets of T ∗(M ×
E):

– we identify SS(z!F) with a conic subset of T ∗(M × E) as follows: SS(z!F) ⊂
T ∗(M × B) ⊂ T ∗(M × E);

– N ∗(M × B)a is the exterior conormal cone to the boundary of M × B ⊂ M × E .
We have

N ∗(M × B)a = {(ω, b, tb) ∈ T ∗M × E × E ||b| = 1; t ≥ 0},

where we identify T ∗M × E × E = T ∗M × E × E∗.
By definition one has:

SS(z!F)+̂N ∗(M × B)a = SS(z!F) ∪�,

where � consists of all points of the form (ω, b, η) ∈ T ∗M × E × E where

– ω ∈ T ∗x0M ; so let us choose a neighborhood Ux0 of x0 in M and identify T ∗U =
U × R

dim M ; let us denote points of T ∗U by (x, ζ), x ∈ U ; ζ ∈ R
dim X ;

– b ∈ ∂B and there exists a sequence of points (xk,ωk, bk, ηk) ∈ SS(Z !F) ∩
T ∗(Ux0 × B); (βk; tk) ∈ ∂B × R≥0 where xk → x0; bk → b; βk → b; ωk → ω;
ηk + 2tk

∑
j β j dv j → η; tk(|βk − bk | + |xk − x0|)→ 0.

Wewill show that (x0, b,ω, 0) /∈ � for any b ∈ ∂B. Let us prove the statement by
contradiction. Indeed, without loss of generality, one can assume that (xk,ωk) ∈ U ,
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therefore, (bk, ηk) /∈ Z−1∗(E × V ). As V ⊂ E∗ is an open unit ball, this means that
(bk, ηk) is of the form

ηk =
∑

j

c j
k d(a(|bk |)b j

k/|bk |)

and |ck | ≥ 1. as bk → b, |bk | → 1 and without loss of generality one can assume
|bk | > 1− δ so that a(|bk |) = 1/(1− |bk |). Thus

ηk =
∑

j

c j
k d(b j

k/(|bk |(1− |bk |))

Let Rk = |bk |. We then have

ηk =< ck, dbk > /(Rk(1− Rk))+ < ck, bk >
2Rk − 1

R3
k (1− Rk)2

< bk, dbk >

so that

< ηk, ηk >=< ck, ck > /(R2
k (1− Rk)

2)+ < ck, bk >2 (2Rk − 1)2

R4
k (1− Rk)4

+2 < ck, bk >2 2Rk − 1

R4
k (1− Rk)3

>< ck, ck > /(R2
k (1− Rk)

2) > 1/(1− Rk)
2

as long as Rk > 1/2which is the case for all k large enough,without loss of generality
we can assume that Rk > 1/2 for all k. Thus, |ηk | > 1/(1− Rk).

Therefore,

|ηk + 2tk
∑

j

β
j
k dv

j
k | ≥ |ηk | − 2|tk ||β| > 1/(1− Rk)− 2tk

By assumption |ηk + 2tk
∑

j β
j
k dv

j
k | → 0, hence

1/(1− Rk)− 2tk → 0

and 2tk(1− Rk)→ 1. On the other hand, we have

tk(|bk − βk |) ≥ tk(1− Rk),

because |βk | = 1 and |bk | = Rk . Therefore, tk(1− Rk)→ 0.Wehave a contradiction
which shows that as long as (x,ω) ∈ U , (x,ω, e, 0) /∈ SS( j!Z !F). Since the map
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p : X × E → X is proper on the support of j!Z !F (i.e. X × B)we know that (x,ω) /∈
SS(Rp! j!Z !F) which proves Lemma �
Corollary 3.4 Let F ∈ D(X × E) and let p : X × E → X,κ : T ∗X × E × E∗ →
T ∗X × E∗ be the projections. Let I : T ∗X → T ∗X × E∗ be the embedding given
by I (x,ω) = (x,ω, 0). We then have

SS(Rp!F), SS(Rp∗F) ⊂ I−1κ(SS(F)),

where the bar means the closure.

Proof Clear. �

3.1.2 Kernels and Convolutions

Let X1, X2, X3 be manifolds. We are going to define a functor

D(X1 × X2 × R)× D(X2 × X3 × R)→ D(X1 × X3 × R).

Let
pi j : X1 × X2 × X3 × R× R→ Xi × X j × R (3)

be the following maps

p12(x1, x2, x3, t1, t2) = (x1, x2, t1);

p23(x1, x2, x3, t1, t2) = (x2, x3, t2);

p13(x1, x2, x3, t1, t2) = (x1, x3, t1 + t2).

Let A ∈ D(X1 × X2 × R) and B ∈ D(X2 × X3 × R). Set

A •X2 B := Rp13!(p−112 A ⊗ p−123 B),

A •X2 B ∈ D(X1 × X3 × R).
Let now Xk , k = 1, 2, 3, 4, are manifolds and let Ak ∈ D(Xk × Xk+1 × R), k =

1, 2, 3. We then have a natural isomorphism

(A1 •X2 A2) •X3 A3
∼= A1 •X2 (A2 •X3 A3).

Let A ∈ D(X × R) and S ∈ D(R). Let pt be a point. We then have A ∗R S ∼=
A •pt S ∼= S •pt A.

Let A ∈ D(X1 × X2) and B ∈ D(X2 × X3 × R). Then A •X2 B ∈ D(X1 × X3 ×
R). Indeed, according to Proposition 2.2, we need to check that the natural map
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K[0,∞) ∗R (A •X2 B)→ K0 ∗R (A •X2 B)

is an isomorphism.
It follows that this map is isomorphic to a map

(K[0,∞) •pt A) •X2 B → (K0 •pt A) •X2 B

which is, in turn, induced by the natural map

K[0,∞) •pt A→ K0 •pt A

which is an isomorphism because A ∈ D(X1 × X2).
In particular, it follows that

•X2 : D(X1 × X2)×D(X2 × X3)→ D(X1 × X3).

3.1.3 Fourier Transform

Let E = R
n be a real vector space and let E∗ be the dual space. LetG ⊂ E × E∗ × R

be a closed subset G = {(X, P, t)| < X, P > +t ≥ 0}, where <,>: E × E∗ → R

is the pairing. One sees that KG ∈ D(E × E∗). Let � ⊂ E∗ × E × R be a closed
subset G = {(P, X, t)|− < P, X > +t ≥ 0}. Again, we have K� ∈ D(E∗ × E ×
R).

Define functors F : D(E)→ D(E∗); � : D(E∗)→ D(E) as follows. Set

F(A) := A •E KG;

�(B) := B •E∗ K�.

F,� are called ‘Fourier transform’.
Let us study the composition � ◦ F : D(E)→ D(E). We have an isomorphism

� ◦ F(A) ∼= A •E (KG •E∗ K�).

Let us compute KG •E∗ K� . Let

q : E × E∗ × E × R× R→ E × E × R

be given by q(X1, P, X2, t1, t2) = (X1, X2, t1 + t2). By definition, we have

KG •E∗ K� = Rq!KK ,

where
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K = {(X1, P, X2, t1, t2)|t1+ < X1, P >≥ 0; t2− < X2, P >≥ 0}

Let us decompose q = q1q2, where

q2 : E × E∗ × E × R× R→ E × E∗ × E × R

q2(X1, P, X2, t1, t2) = (X1, P, X2, t1 + t2); and

q1 : E × E∗ × E × R→ E × E × R,

q1(X1, P, X2, t) = (X1, X2, t).

We see that q2(K ) = L := {(X1, P, X2, t)|t+ < X1 − X2, P >≥ 0}. Furthermore,
the map q2|K : K → L is proper; it is also a Serre fibration with a contractible fiber.
Therefore, we have an isomorphism Rq2!KK

∼= KL .
Let us now compute Rq1!KL . Let � ⊂ E × E∗ × E × R be given by

� = {(X1, P, X2, t)|X1 = X2; t ≥ 0}.

We have � ⊂ L so that we have an induced map

KL → K�.

It is easy to check that the induced map

Rq1!KL → Rq1!K�

is an isomorphism.
We also have an isomorphism Rq1!K�

∼= K{(X1,X2,t)|X1=X2;t≥0}[−n].
Thus, we have an isomorphism

Rq!KK = K{(X1,X2,t)|X1=X2;t≥0}[−n]

For any A ∈ D(E × R), we have an isomorphism

A •E K{(X1,X2,t)|X1=X2;t≥0} ∼= A ∗R K[0,∞).

Thus we have an isomorphism of functors

�(F(·)) ∼= (·) ∗R K[0,∞)[−n]

The functor on the RHS acts on D(E) as the shift by −n. Thus we have established
an isomorphism of functors � ◦ F ∼= Id[−n]. Analogously, we can prove F ◦� ∼=
Id[−n]. We have proven:
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Theorem 3.5 �[n] and F are mutually inverse equivalences of D(E) and D(E∗).

3.1.4

Let us now study the effect of the Fourier transform on the microsupports. Let

a : T ∗E = E × E∗ → T ∗E∗ = E∗ × E

be given by a(X, P) = (−P, X). It is clear that a is a symplectomorphism.

Theorem 3.6 Let A ⊂ T ∗E be a closed subset and S ∈ DA(E). Then F(S) ∈
Da(A)(E∗).

Let B ∈ T ∗E∗ be a closed subset and S ∈ DB(E∗). Then �(S) ∈ Da−1(B)(E).

Proof By definition, we have

F(S) = Rp13!(p−112 S ⊗ p−123 KG).

Here the maps pi j are the same as in (3) for X1 = pt; X2 = E ; X3 = E∗.
The condition S ∈ DA(E)means that SS(S) is contained in the set�0 of all points

(x, t,ω, k) ∈ E × R× E∗ × R = T ∗(E × R),

where either k ≤ 0 or k > 0 and (x,ω/k) ∈ A.
Therefore,

SS(p−112 S) ⊂ �1 := {(X, P, t1, t2,ω, 0, k, 0)|(X, t,ω, k) ∈ �0}.

As G ⊂ E × E∗ × R is defined by the equation t+ < X, P >≥ 0, we know that
SS(KG) consists of all points of the form

(X, P, t, kP, kX, k) ∈ E × E∗ × R× E∗ × E × R

where t+ < X, P >≥ 0, k ≥ 0 and k > 0 implies t+ < X, P >= 0.
Therefore

SS(p−123 KG) = �2 := {(X, P, t1, t2, k1P, k1X, 0, k1)|(X, P, t2, k1P, k1X, k1) ∈ SS(KG)}.

We see that �1 ∩ −�2 is contained in the zero section of T ∗(E × E∗ × R× R).
Therefore,

SS((p−112 S)⊗ (p−123 KG))

is contained in the set of all poits of the form ω1 + ω2 where ωi ∈ �i and ω1,ω2 are
in the same fiber of T ∗(E × E∗ × R× R).
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We have
SS(p−112 S ⊗ p−123 KG) ⊂ �3,

where �3 consists of all points of the form

(X, P, t1, t2,ω + k1P, k1X, k, k1)

where:

– if k > 0, then (X,ω/k) ∈ A;
– t2+ < X, P >≥ 0;
– k1 ≥ 0;
– if k1 > 0, then t2+ < X, P >= 0.

Let I : E × E∗ × R× R→ E × E∗ × R× R be given by

I (X, P, t1, t2) = (X, P, t1 + t2; t2).

Let π : E × E∗ × R× R→ E∗ × R be given by π(X, P, t1, t2) = (P, t1). We then
have p13 = π I ;

Rp13!(p−112 S ⊗ p−123 KG) ∼= Rπ! I!(p−112 S ⊗ p−123 KG).

It is easy to see that
SSI!(p−112 S ⊗ p−123 KG)

is contained in the set �4 of of all points (X, P, t1 + t2, t2,ω, η, k, k1 − k) where
(X, P, t1, t2,ω, η, k, k1) ∈ �3.

Suppose that a point (P, ξ) ∈ E∗ × E = T ∗E∗ does not belong to a(A), that is
(−ξ, P) /∈ A. We will prove that Rπ! I!(p−112 S ⊗ p−123 KG) is non-singular at any point
of the form (P, t, ξ, 1) ∈ E∗ × R× E × R = T ∗(E∗ × R) (this means precisely
that Rπ! I!(p−112 S ⊗ p−123 KG) ∈ Da(A)(E∗).)

According to Lemma 3.3, it suffices to find an ε > 0 such that any point of the
form

(X, P ′, t1, t2,ω, η, k ′, k ′1)

with |P ′ − P| < ε; |ω| < ε; |η − ξ| < ε; |k ′ − 1| < ε; |k ′1| < ε is not in�4. Assume
it is, then there should exist a point (X, P ′, t1, t2,ω + k1P ′, k1X, k, k1) ∈ �3 such
that |P ′ − P| < ε; |ω + k1P ′| < ε; |k1X − ξ| < ε; |k − 1| < ε; |k ′ − k| < ε. If ε is
small enough, we have k, k1 > 0 and (X,ω/k) ∈ A. For any δ > 0, there exists a
ε > 0 such that these conditions imply:

|ω + P| < δ; |X − ξ| < δ. (4)

However,we know that (ξ;−P) = a−1(P, ξ) /∈ A. As A is closed, for δ small
enough, there will be no points in A satisfying (4).



Microlocal Condition for Non-displaceability 115

The proof of Part 2 is similar. �

3.1.5 Lemma

Lemma 3.7 Let S ∈ DA(X) where A is a compact. Then SS(S) ∩�≤0(X) ⊂ T ∗X×R
(X × R). That is S is non-singular at every point of the form (x, t,ω, kdt), where
either k ≤ 0 and ω �= 0 or k < 0.

Proof Choose a point x0 ∈ X , coordinates xi near x0 so that x0 has zero coordinates
and let U be a small neighborhood of x0 given by |xi | < 1 for all i . Consider the
set A ∩ T ∗U . This set is contained in the set B := {(x,∑ aidxi )||ai | ≤ M}, for
some M > 0 large enough. Let ψ : R→ (−1, 1) be an increasing surjective smooth
function whose derivative is bounded (say ψ(x) = (2/π)arctan(x)). Fix a constant
C > 0 such that 0 < ψ′(x) ≤ C for all x .

We then have a diffeomorphism � : E := R
n → U , �(X1, X2, . . . , Xn) =

(ψ(X1),ψ(X2), . . . ,ψ(Xn)). It then follows that the set �−1B consists of all points
(X,

∑
aidψ(Xi )), where |ai | < M . But

∑
aidψ(Xi ) =∑

aiψ′(Xi )dXi . We know
that |aiψ′(Xi )| < CM =: M1. Let V ⊂ E∗ be given by {∑i bi d X

i ||bi | ≤ M1} so
that �−1B is contained in the set E × V ⊂ E × E∗ = T ∗E .

Let S ∈ DA(X). It follows that G := �−1(S|U×R) ∈ DE×V (E). Our task now
reduces to showing: let G ∈ DE×V (E). Then G is nonsingular at a point
(X, t,ω, kdt) ∈ E × R× E∗ × R if either k < 0 or k = 0 and ω �= 0.

The statement will be proven using the Fourier transform.
First, we have an isomorphismG = �(F(G))[n]. Next, Theorem 3.6 implies that

H := F(G) ∈ DV×E (E∗). Let W ⊂ E∗\V be an open subset such that its closure
is also a subset of E∗\V . We then see that the restriction H |W×R is both in C≤0(U )

(clear) and in the left orthogonal complement to C≤0(U ) (follows from (Proposition
2.2)). Therefore, H |W×R = 0. Hence H is supported on V × R ⊂ E∗ × R. Let us
now study �(H)[n] = G. We have

�(H) = Rp13!(p−112 H ⊗ p−123 K{(P,X,t)|t−<X,P>≥0}),

where pi j are the same as in (3) with X1 = pt; X2 = E∗; X3 = E . We need to show
that if (X, t,ω, k) ∈ SS(�(H)) and k ≤ 0, then k = 0 andω = 0.

We have

SS(p−112 H) ⊂ �1 = {(P, X, t1, t2,π, 0, k1, 0)|P ∈ V };

SS(p−123 K{(P,X,t)|t−<X,P>≥0}) ⊂ �2 = {(P, X, t1, t2,−kX,−kP, 0, k)|k ≥ 0}

Let ωi ∈ �i belong to the fiber of T ∗(E∗ × E × R× R) over a point (P, X, t1, t2).
It is clear that ω1 + ω2 = 0 implies that ω2 = ω1 = 0. Therefore, we have

SS(p−112 H ⊗ p−123 K{(P,X,t)|t−<X,P>≥0})
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⊂ �3 = {(P, X, t1, t2,π − kX,−kP, k1, k)|k ≥ 0; P ∈ V }

Let us decompose p13 = pI , where I : E∗ × E × R× R→ E∗ × E × R× R

is given by I (P, X, t1, t2) = (P, X, t1 + t2, t2) and p(P, X, T1, T2) = (P, T1). We
then see that

SS(I!(p−112 H ⊗ p−123 K{(P,X,t)|t−<X,P>≥0})) ⊂ �4,

where �4 consists of all points of the form (P, X, t1, t2,π − kX,−kP, k1, k − k1),
where (P, X, t1, t2,π − kX,−kP, k1, k) ∈ �3.

Assume

(X ′, t,ω, k ′) ∈ SS(Rp! I!(p−112 H ⊗ p−123 K{(P,X,t)|t−<X,P>≥0}))

and k ′ ≤ 0. We are to show k ′ = 0,ω = 0.
According to Lemma 3.3 for any ε > 0 there should exist a point (P, X, t1, t2,π −

kX,−kP, k1, k − k1) ∈ �4 such that | − kP − ω| < ε; |k1 − k ′| < ε; |k − k1| < ε,
P ∈ V , k ≥ 0, k ′ ≤ 0. Therefore,−k ′ ≤ k − k ′ = |k − k ′| ≤ |k − k1| + |k1 − k ′| <
2ε. Similarly, k < 2ε. Since ε can be made arbitrarily small, k ′ = 0. Next, |ω| <
ε+ |k||P|. As V is bounded, there exists D > 0 such that |P| < D. Thus, |ω| <
ε(1+ 2D) for any ε > 0. Therefore, ω = 0. �

3.1.6

Choose F1, F2 in the left orthogonal complement to C≤0(X).
Consider the following sheaf on X × R:

H := Rp2∗RHom(p−11 F1; a!F2),

where p1, p2, a : X × R× R→ X × R are given by: pi (x, t1, t2) = (x, ti ); a(x, t1,
t2) = (x, t1 + t2).

Let q : X × R→ R be the projection.

Lemma 3.8 One has (1) R hom(F1, F2) = R homR(K0; Rq∗H);
(2) R homR(KR; Rq∗H) = 0;
(3) Rq∗H is locally constant along R.

Proof Let S ∈ D(R). We have

R homR(S; Rq∗H) = R homR(S; Rπ∗Hom(p−11 F1; a!F2)),

where π = qp2 : X × R× R→ R; π(x, t1, t2) = t2.
Next,

R homR(S; Rπ∗Hom(p−11 F1; a!F2))

∼= R homX×R(Ra!(π−1S ⊗ p−11 F1); F2)
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∼= R homX×R(F1 ∗R S; F2).

Thus,
R hom(S; Rq∗H) ∼= R homX×R(F1 ∗R S; F2).

Let us now prove (1)
We have:

R homR(K0; Rq∗H) = R homX×R(F1 ∗R K0; F2) = R hom(F1, F2).

(2) We have

R homR(KR; Rq∗H) = R homX×R(F1 ∗R KR; F2)

As F1 ∈ D(X), we have an isomorphism

F1 ∗R K[0,∞) ∗R KR→ F1 ∗R KR.

However, one can easily check that K[0,∞) ∗R KR = 0.Therefore,

F1 ∗R K[0,∞) ∗R KR = 0,

whence the statement.
(3) Let us identify T ∗(X × R) = T ∗X × R

2; T ∗(X × R× R) = T ∗X × R
4 so

that (ω, t, k) ∈ T ∗X × R
2 corresponds to a point (ω, η) ∈ T ∗X × T ∗R, where η is

a 1-form kdt at the point t ∈ R; analogously, we let (ω, t1, t2, k1, k2) correspond to a
point (ω, ζ) ∈ T ∗X × T ∗(R× R) where ζ = k1dt1 + k2dt2 is a 1-form at the point
(t1, t2) ∈ R

2.

According to Lemma 3.7, We know that

SS(F1) ∩ {(ω, t, k)|k ≤ 0} ⊂ T ∗X×R(X × R).

Since F1 ∈ DA1(X), we have

SS(F1) ∩ {(ω, t, k)|k > 0} ⊂ {(ω, t, k)|k > 0; (x,ω/k) ∈ A1}.

Thus,
SS(F1) ⊂ {(kω, t, k)|k ≥ 0;ω ∈ A1}

Analogously,
SS(F2) ⊂ {(kω, t, k)|k ≥ 0;ω ∈ A2}.

Therefore,

SS(p−11 F1) ⊂ {(k1ω1, t1, t2, k1, 0)|k1 ≥ 0;ω1 ∈ A1};
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SS(a!F2) ⊂ {(k2ω2, t1, t2, k2, k2)|k2 ≥ 0;ω2 ∈ A2}.

In order to estimate SSRHom(p−11 F1; a!F2)one shouldfirst check that SS(p−11 F1)

∩ SS(a!F2) ⊂ T ∗X×R×R(X × R× R). This is indeed so, because every point p in
SS(p−11 F1) ∩ SS(a!F2) is of the form

p = (k1ω1, t1, t2, k1, 0) = (k2ω2, t1, t2, k2, k2).

which implies k1 = k2 = 0, hence k1ω1 = k2ω2 = 0. Therefore, one has

SSRHom(p−11 F1; a!F2) ⊂ {(k2ω1 − k1ω2, t1, t2; k2 − k1; k2)|k1, k2 ≥ 0;ω1 ∈ A1;ω2 ∈ A2},

where it is also assumed that ω1,ω2 belong to the same fiber of T ∗X . Let q ′ : X ×
R× R→ R× R be the projection. Consider an object

G := Rq ′∗RHom(p−11 F1; a!F2)

so that Rq∗H = Rq∗Rp2∗RHom(p−11 F1; a!F2) = Rp′2∗G, where p′2 : R× R→ R

is the projection along the first factor; p′1(t1, t2) = t2.
As the map q ′ is proper, the microsupport of G can be estimated as

SS(G) ⊂ {(t1, t2, k2 − k1, k2)|k1, k2 ≥ 0; ∃ωi ∈ Ai : k1ω1 = k2ω2},

where again it is assumed that ωi are in the same fiber of T ∗X . Denote the set on
the RHS by � ⊂ R

4 = T ∗(R× R). Let us now estimate SS(Rq∗H) = Rp′2∗G using
Corollary 3.4.

Let us first prove that (t, 1) /∈ SS(q∗H), where we identify T ∗R = R× R.
Assuming the opposite implies that for any ε > 0 there should exist (t1, t2, k2 −
k1, k2) ∈ � such that |k2 − k1| < ε; |k2 − 1| < ε. As A1, A2 are compact and do
not intersect, it is clear that for ε small enough we have k1A1 ∩ k2A2 = ∅ which
contradicts to (t1, t2, k2 − k1, k2) ∈ �.

Let us now show that Rq∗H is non-singular at any point (t,−1). Similar to above,
assuming the contrary implies that for any ε > 0 there should exist (t1, t2, k2 −
k1, k2) ∈ � such that |k2 + 1| < ε. As k2 ≥ 0, this leads to contradiction. �

3.1.7 Proof of Theorem 3.2

It now follows that Rq∗H is a constant sheaf on R with R�(R, Rq∗H) = 0, i.e.
Rq∗H = 0. Hence R hom(F1, F2) = 0 by Lemma 3.8 (1).

This proves Theorem 3.2.
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3.2 Hamiltonian Shifts

Let � : T ∗X → T ∗X be a Hamiltonian symplectomorphism which is equal to iden-
tity outside of a compact. Let L ⊂ T ∗X be a compact subset.

Theorem 3.9 There exist:
a collection of endofunctors Tn : D(X)→ D(X),, 1 ≤ n ≤ N for some N, and

a collection of transformations of functors tk : T2k → T2k+1 (for all k with 2k + 1 ≤
N). sk : T2k+2 → T2k+1 (for all k with 2k + 2 ≤ N);

Such that
(1) TN = Id;
(2) T1(DL(X)) ⊂ D�(L)(X);
(3) For all k and for all F ∈ D(X), we have Cone(tk(F)) and Cone(sk(F)) are

torsion sheaves (see Sect.2.2.3)

3.2.1 Singular Support of Convolutions

Let A ∈ T ∗X and B ⊂ T ∗(X × Y ) = T ∗X × T ∗Y be compact subsets. Let C ⊂
T ∗Y ;

C := A • B = {p ∈ T ∗Y |∃q ∈ A : (−q, p) ∈ B}.

3.2.2 Lemma

Lemma 3.10 Let A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · ⊃ A be a collection of compact sets
such that

⋂
i Ai = A. Let U ⊃ C be an open neighborhood. There exists an N > 0

such that for all n > N, An • B ⊂ U.

Proof Assume not and pick points bn ∈ (An • B)\U . One then has points an ∈ An

such that (−an, bn) ∈ B. As B is compact, one can choose a convergent subsequence
ank → a and bnk → b. It follows that (−a, b) ∈ B. We see that a ∈ Ank for all k,
hence a ∈ A. Therefore, b ∈ C . On the other hand, as bnk /∈ U , b /∈ U , we have a
contradiction. �

3.2.3

Let A, B,C are compact sets as above.

Proposition 3.11 Let F ∈ DA(X); K ∈ DB(X × Y ). Then F • K ∈ DC(Y ).

Proof It suffices to prove: let (y0, η0) /∈ C .Then F • K is nonsingular at (y0, t, η0, 1)

for all t ∈ R.
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Let us identify of T ∗(X × Y × R× R) = T ∗X × T ∗Y × T ∗(R× R) = T ∗X ×
T ∗Y × R

4, where we identify T ∗(R× R) = R
4 in the same way as above: a point

(t1, t2, k1, k2) ∈ R
4 corresponds to a 1-form k1dt1 + k2dt2 at the point (t1, t2) ∈ R

2.
Let us estimate themicrosupport of F • K := p13!(p−112 F ⊗ p−123 K ), where pi j are

the same as in (3) with X1 = pt; X2 = X ; X3 = Y .We have p−112 F is microsupported
within the set SF consisting of all points of the form

(k1ω1, 0y, t1, t2, k1, 0),

where 0y ∈ T ∗Y Y , (x,ω1) ∈ A; k1 ≥ 0 (as follows from Lemma 3.7). Analogously,
The sheaf p−123 K is microsupported on the set SK consisting of all points of the form

(k2ω2, k2η2, t1, t2, 0, k2),

where k2 ≥ 0, (ω2, η2) ∈ B.
One sees that SK ∩ −SF ⊂ T ∗X×Y×R×R(X × Y × R× R). Therefore, p−112 F ⊗

p−123 K is microsupported within the set of all points of the form

(k1ω1 + k2ω2, k2η2, t1, t2, k1, k2),

where k1, k2 ≥ 0; ω1 ∈ A; (ω2, η2) ∈ B.
Let Q : X × Y × R× R→ Y × R× R, a : Y × R× R→ Y × R be given by

Q(x, y, t1, t2) = (y, t1, t2);

a(y, t1, t2) = (y, t1 + t2)

so that p13 = aQ.
We see that the map Q is proper on the support of p−112 F ⊗ p−123 K . It then follows

that the sheaf � := RQ!(p−112 F ⊗ p−123 K ) is microsupported on the set SQ of all
points

(k2η2, t1, t2, k1, k2)

such that k1, k2 ≥ 0 and there exist ω1 ∈ A, (ω2, η2) ∈ B such that ω1 and ω2 are in
the same fiber of T ∗X and k1ω1 + k2ω2 = 0

Let us now estimate the microsupport of Ra!�. We will use Corollary 3.4. Let us
use an isomorphism I : Y × R× R→ Y × R× R, where

I (y, t1, t2) = (y, t1 + t2; t2).

Let p2 : Y × R× R→ Y × R be given by p2(y, t1, t2) = (y, t1) so that we have

a = p2 I
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and Ra!� = Rp2! I!�. We see that the sheaf I!� is microsupported on the set �1

consisting of all points of the form

(k2η2, t1, t2, k1, k2 − k1)

such that k1, k2 ≥ 0 and there exist ω1 ∈ A, (ω2, η2) ∈ B such that ω1 and ω2 are
in the same fiber of T ∗X and k1ω1 + k2ω2 = 0. Let us now use Corollary 3.4 in
order to estimate SSRp2! I!�. Let η ∈ T ∗Y ; η /∈ C . We need to show that Rp2! I!� is
non-singular at any point of the form

(η, t, 1) ∈ T ∗Y × R× R = T ∗Y × T ∗R.

Assuming the contrary, for any δ > 0 there should exist a point (k2η2, T1, T2, k1, k2 −
k1) ∈ �1 such that |η − k2η2| < δ and |k1 − 1|, |k2 − k1| < δ. Given ε > 0, one can
choose δ > 0 such that under the conditions specified, |1− k1/k2| < ε. Let Aε =
[1− ε, 1+ ε].A’. We then see that there should exist ω2 ∈ T ∗X such that (ω2, η2) ∈
B and−ω2 ∈ Aε (because−ω2 = k1/k2ω1 and ω1 ∈ A). Thus, η2 ∈ Aε • B. We see
that the sets A1/n , n = 1, 2, . . . are compact and

⋂
n A1/n = A. Let U ⊃ C be an

open neighborhood.
By Lemma 3.10, there exists an N such that A1/N • B ⊂ U i.e. for all ε ≤ 1/N

we have η2 ∈ U . Taking into account the inequality |η − k2η2| < δ and letting δ
arbitrarily small, we see that η ∈ U . As U is any open neighborhood of C , we
conclude η ∈ C . We get a contradiction. �

3.2.4

If � = �1�2 · · ·�N and the statement of the Theorem is true for each �k , it is
true for �. In other words, if Z is the set of Hamiltonian symplectomorphisms of
T ∗X which are identity outside of a compact and if Z generates the whole group
of Hamiltonian symplectomorphisms of T ∗X which are identity outside a compact,
then it suffices to prove Theorem for all � ∈ Z .

Let us now choose an appropriate Z . Call a symplectomorphism � : X → X
small if

(1) There exists a Darboux chartU ⊂ T ∗X withDarboux coordinates x, P , where
xi are local coordinates on x , Pi = ∂/∂xi , |xi | < 1 and for some fixed

π ∈ R
n, (5)

|Pi − πi | < 1 for all i . Let pi := Pi − πi . For x ∈ R
n we set |x | := maxi |xi |. We

demand that � should be identity outside a subset V ⊂ U , |x | < 1/2, |p| < 1/2.
(2) Let (x ′, p′) = �(x, p). Then (x, p′) form a non-degenerate coordinate system

on U so that (x, p′) map U diffeomorphically onto a domain W ⊂ R
2n .

It is well known that the set Z formed by small symplectomorphisms satisfies the
conditions.
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3.2.5 Small Symplectomorphisms in Terms of Generating Functions

The coordinates (x, p) define an embedding U ⊂ R
2n . Let us extend �|U to a map

� : R2n → R
2n by setting �(x, p0) = (x, p0) for all (x, p0) /∈ U . We see that �

is a diffeomorphism because it maps U diffeomorphically to itself, as well as the
complement to U . Hence, � : R2n → R

2n is a symplectomorphism with respect to
the standard symplectic structure.

As above let �(x, p) = (x ′, p′). Let � : R2n → R
2n where �(x, p) = (x, p′).

Lemma 3.12 � is a diffeomorphism.

Proof (a) � has a non-zero Jacobian everywhere. Indeed, if |x | < 1, |p| < 1 this is
postulated by (2); otherwise � = Id in a neighborhood of (x, p).

(b) � is an injection. Suppose �(x1, p1) = �(x2, p2). Then x1 = x2 = x and
p′(x, p1) = p′(x, p2). Consider several cases:

(1) |x | ≥ 1, then p′(x, p1) = p1; p′(x, p2) = p2 and p1 = p2;
(2) |x | < 1; |p1| < 1. If |p2| < 1, then p1 = p2 by Condition (2). If |p2| ≥ 1,

then p′(x, p2) = p2; |p′(x, p2)| ≥ 1 and |p′(x, p1)| < 1 because � preservesU , so
p′(x1, p1) �= p′(x2, p2);

(3) |x | < 1 and |p2| < 1— similar to (2);
4) |x | < 1 and |p1|, |p2| = 1. Then p′(x, pi ) = pi , therefore p1 = p2.

(c)� is surjective. We know that�(x, p) = (x, p) if |x | > 1 or |p| > 1. Assume
that, on the contrary, (x0, p0) does not belong to the image of �. It follows
that |x0| < 1; |p0| < 1. For R > 0 consider the sphere SR given by the equation∑

i (x
i )2 +∑

i (p
i )2 = R2. Choose R so large that (x, p) ∈ SR implies |x | > 1 or

|p| > 1. We then have �|SR = Id. It also follows SR cannot be homotopized to a
point in R

2n\(x0, p0) (because (x0, p0) is inside the open ball bounded by SR). On
the other hand it can: Let γ : SR × [0, 1] → R

2n be any homotopy which contracts
SR to a point. Then � ◦ γ is a required homotopy. This is a contradiction. �

Lemma 3.13 There exists a smooth function S(x, p′) on R
2n such that

(1) (x ′, p′) = �(x, p) iff for all i :

pi = (p′)i + ∂S

∂xi
;

(x ′)i = xi + ∂S

∂(p′)i
;

(2) S = 0 if |x | ≥ 1/2 or |p′| ≥ 1/2;
(3)

max|x |≤1/2,|p′ |≤1/2 |x
i + ∂S/∂(p′)i | ≤ 1/2

Proof Consider the following 1-form on R
2n:

∑
pidxi +∑

(x ′)i d(p′)i . This form
is closed, hence exact. So one can write
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∑
pidxi +

∑
(x ′)i d(p′)i = d(S(x, p′)+ < x, p′ >)

by virtue of Lemma 3.12. This equation is equivalent to the part (1) of this Lemma.
Weknow that� = Id if |x | ≥ 1/2 or |p| ≥ 1/2. Therefore,�, being bijective, pre-

serves the region {(x, p)||x |, |p| < 1/2}. Therefore, if |p′(x, p)| ≥ 1/2, then either
|x | ≥ 1/2 or |p| ≥ 1/2, hence p′(x, p) = p; x ′(x, p) = x anddS(x, p′) = 0 as soon
as |x | ≥ 1/2 or |p′| ≥ 1/2. As the specified region is connected, S is a constant in
this region, and one can choose S to be 0 as long as |x | ≥ 1/2 or |p′| ≥ 1/2. This
proves (2).

It also follows that if |x | ≤ 1/2 and |p′(x, p)| ≤ 1/2 then |p| ≤ 1/2, because
otherwise �(x, p) = (x, p) and p′ = p, which is a contradiction. This implies (3).

�

3.2.6

Let J be the set of all smooth functions S(x, p′) on R
2n such that S is supported

on the set {(x, p′)||x | ≤ 1/2, |p′| ≤ 1/2} and the inequality (3) from Lemma 3.13
is satisfied. Our ultimate goal is: given such an S, we would like to construct certain
kernels in D(Rn × R

n) and then D(X × X).
Let π ∈ R

n (this parameter has the same meaning as in (5). Let S ∈ J . We will
start with constructing an appropriate object �S,π ∈ D(Rn × R

n) and estimating its
microsupport.

Let �π(x1, x2, p′) := −S(x1, p′)− < x1 − x2, p′ + π >. We can decompose

d�π = dx1�π + dx2�π + dp′�π.

Let �π(S) ⊂ T ∗Rn × T ∗Rn consist of all points (x1, p1, x2, p2) satisfying: there
exists p′ such that dp′�π(x1, x2, p′) = 0 and p1 = dx1�π(x1, x2, p′); p2 = dx2
�π(x1, x2, p′).

Remark. Let us take S as in Lemma 3.13. The set�π(S) then consists of all points
(x1, P1, x2, P2) such that �(x1;−P1 − π) = (x2, P2 − π). That is, if |P1 + π| < 1,
then (x2, P2) = �(x1,−P1); if |P1 + π| ≥ 1, then x2 = x1, P2 = −P1, where we
use notation from Sect. 3.2.4.

We are now passing to constructing an object �S,π ∈ D(�π(S)). Consider the
following subset CS,π ⊂ R

n × R
n × R

n × R;

{(x1, x2, p′, t, )|t +�π ≥ 0},

Let q : Rn × R
n × R

n × R→ R
n × R

n × R be given by

q(x1, x2, p
′, t) = (x1, x2, t).

Set �S,π := Rq!KCS,π
.
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Lemma 3.14 Assume S ∈ J . Then �S,π ∈ D�π(S)(R
n × R

n).

Proof It is straightforward to check that �S,π is in the left orthogonal complement
to C≤0(Rn × R

n).
Let us now estimate the microsupport of �S,π . Let us choose a large positive

number C and consider objects

FC := Rq!K{(x1,x2,p′,t)|t+�π(x1,x2,p′)≥0;|p′ |<C}

so that �S,π = Llim−→C→∞FC .
We will prove: let (x1, x2, t,ω1,ω2, k) ∈ T ∗(Rn × R

n × R) be a singular point
of FC . Then one of the following 3 statements is true:

– k = ω1 = ω2 = 0;
– k > 0 and |ωi/k| ≥ C − |π|, i = 1, 2.
– (x1, x2,ω1,ω2) ∈ �π(S)

This implies Lemma, as C can be chosen arbitrarily large.
Let us estimate the microsupport of the sheaf

K{(x1,x2,p′,t)|t+�π(x1,x2,p′)≥0;|p′ |<C}

we see that it is contained within the set of all points of the form

(x1, x2, p
′, t, kd�π(x1, x2, p

′)+
∑

aid(p′)i ),

where |p′| ≤ C andai ≤ 0 if (p′)i = −C ;ai = 0 if |(p′)i | < C , andai ≥ 0 if (p′)i =
C ; also, k ≥ 0 and if k > 0, then t +�π(x1, x2, p′) = 0.

Let us now estimate the singular support of the sheaf

Rq!K{(x,x ′,p,t)|t+�π(x1,x2,p′)≥0;|p′ |<C}.

As q is proper on the support of this sheaf, we see that

Rq!K{(x,x ′,p,t)|t+�π(x1,x2,p′);|p′ |<C}

is microsupported on the set of points

(x1, x2, t,ω1,ω2, k),

where there exists p′, |p′| ≤ C such that

ωi = kdxi �π(x1, x2, p
′) (6)

where k ≥ 0 and if k > 0 then there exists p′ such that
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∂�π

∂(p′)i
(x1, x2, p

′) ≥ 0 if (p′)i = −C;

∂�π

∂(p′)i
(x1, x2, p

′) = 0 if |(p′)i | < C; (7)

∂�π

∂(p′)i
(x1, x2, p

′) ≤ 0 if (p′)i = C.

Let us first consider the case C > 1/2, |p′| = C , and k > 0. Observe that if
|p′| > 1/2, then S(x, p′) = 0; �π = − < x1 − x2, p′ + π >. Eq. (6) then implies:
If C > 1/2 and |p′| = C , then ω1 = −k(p′ + π); ω2 = k(p′ + π). Hence: if k > 0
and |p| = C , then |ω1|/k, |ω2|/k ≥ C − |π|.

If k > 0 and |p| < C , then (x1, x2,ω1,ω2) ∈ �π(S) by (6) and (7).
If k = 0, then ω1 = ω2 = 0. Finally, k is always non-negative. This proves the

statement. �

3.2.7

Let A, B ⊂ R
n × R

n × R be the following open subsets:

A = {(x1, x2, t ′)||x1| > 1/2}

B = {(x1, x2, t ′)||x1| < 3/5; |x2| > 4/5}

Lemma 3.15 For every S ∈ J we have: (1) �S,π|A ∼= K{x1=x2;t≥0}[−n];
(2) �S,π|B = 0.

Proof (1) We have S(x1, p′) = 0 for all x1 > 1/2. Therefore,

�S|A = Rq!K{t−〈x1−x2,p′+π〉≥0} ∼= K{x1=x2;t≥0}[−n].

The last isomorphism has been established in Sect. 3.1.3.
(2) Let |x1| < 3/5, |x2| > 4/5, and consider the equation

∂p′�π(x1, x2, p
′) = 0.

We have

∂p′(−S(x1, p
′)− < x1 − x2, p

′ + π >) = −x1 − ∂p′ S(x1, p
′)+ x2 = x2 − y,

where
y = x1 + ∂p′ S(x1, p

′)
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if |p′| ≤ 1/2 then |y| ≤ 1/2 as S ∈ J . If |p′| ≥ 1/2, then y = x and |y| < 3/5.
Thus, in any case |y| < 3/5, therefore,x2 − y �= 0 because |x2| > 4/5.

Thus for all p′,
∂p′�π(x1, x2, p

′) �= 0.

(2) Fix (x1, x2) ∈ B. Set G(p′) := �π(x1, x2, p′). We know that dG(p′) �= 0 for
all p′. For |p′| > 1/2, G(p′) = − < x1 − x2, p′ + π >=< c, p′ > +K for some
constants c �= 0 and K .

We need to show that given a function G satisfying these conditions, one has:
Rq!K{(t,p):t+G(p)≥0} = 0, where q : Rn × R→ R is the projection.

Let Y ⊂ R
n be the hyperplane < c, p > +K = −M for M >> 0. Let Fτ be the

flow of the gradient vector field of G. We then get a map

� : Y × R→ R
n,

�(y, τ ) = Fτ (y)

The map � is clearly a diffeomorphism and G(�(y, τ )) = τ − M . Thus, under dif-
feomorphism �, the function G(p′) gets transformed into τ − M . Therefore it suf-
fices to show the statement for G being a linear function on R

n , in which case the
statement is clear. �

3.2.8

Using the above Lemmawewill now construct a kernel inD(X × X)where X is as in
Sect. 3.2.4. Observe that A ∪ B contains the set C := {(x, x ′, t)||x | > 4/5 or |x ′| >
4/5} and the above Lemma implies that �S,π|C ∼= K{x=x ′,t≥0}.

Recall (Sect. 3.2.4) that we have a Darboux chartU ⊂ T ∗X . LetU1 be the projec-
tion of U onto X . U1 is identified with the cube |x | < 1 in R

n . Let V ⊂ U1 ⊂ X be
given by the equation |x | < 1 and K ⊂ V by the equation |x | < 4/5. We then have
a sheaf �S,π|V×V×R and a compact K ⊂ V such that on W := V × V × R\(K ×
K × R) we have an identification �S,π|W = K{(x1,x2,t)∈W |x1=x2;t≥0}[−n]

One can nowextend�S,π to a sheaf on X ××X × R by setting LS|X×R×X×R\W =
K{(x,x ′,t)|x=x ′;t≥0}. Denote thus obtained sheaf by LS . Let �� = {(−ω,�(ω)} ⊂
T ∗X × T ∗X .

Proposition 3.16 We have LS ∈ D��
(X × X).

Proof Follows easily from Lemma 3.14 and Remark before this Lemma. �

3.2.9

Let S+(x, p) be a function on R
2n defined as follows: if S(x, p) ≤ 0, then we set

S+(x, p) = 0; if S(x, p) ≥ 0, then we set S+(x, p) = S(x, p).
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Lemma 3.17 For every S ∈ J and any π ∈ R
n we have: (1) �S+,π|A ∼= K{x1=x2;t≥0}

[−n];
(2) �S+,π|B = 0.

Proof There exists a sequence of smooth functions gn(x) on R with the following
properties: (1) each function gn(x) is non-decreasing; furthermore, 0 ≤ g′n(x) ≤ 1
for all n and x ;

(2) for every x , the sequence gn(x) is non-decreasing;
(3) for x ≤ 0, gn(x) = 0;
(4) for x ≥ 1/n, g′n(x) = 1.
Fix such a sequence of functions.
For S ∈ J consider functions Sn(x, p) = gn(S(x, p)). Let us check that Sn ∈ J .

Indeed, Sn are supported on the set |x | ≤ 1/2, |p| ≤ 1/2 because gn(0) = 0. Next,
we have |xi + ∂S/∂ pi | ≤ 1/2 for all x with |x | ≤ 1/2, i.e

∂S/∂ pi ∈ [−xi − 1/2;−xi + 1/2]

The interval on the RHS contains zero, therefore is closed under multiplication by
any number λ ∈ [0, 1].

We have

∂Sn/∂ p
i = g′n(S)∂S/∂ pi ∈ [−xi − 1/2;−xi + 1/2]

precisely because 0 ≤ g′n < 1. Thus, Sn ∈ J .
Next, we see that S1(x) ≤ S2(x) ≤ · · · ≤ Sn(x) ≤ · · · and that Sn(x) converges

uniformly to S+(x). It then follows that we have induced maps �S1,π → �S2,π →
· · ·�Sn ,π → · · · and we have an isomorphism

Llim−→n
�Sn ,π → �S+,π.

Since the sheaves �Sn ,π satisfy the Lemma, so does �S+,π . �

This implies that in the same way as above, �S+,π can be extended to X × X × R

in the same way as �S,π and we denote thus obtained sheaf by LS+,π .

3.2.10 Proof of the Theorem 3.9

We will prove an equivalent statement as in Sect. 3.2.4
Define a functor T : D(X × R)→ D(X × R) by setting T (F) = F • LS (see

Sect. 3.1.2). Because of Lemma 3.16 and Proposition 3.11 we see that if F ∈ DL(X),
then T F ∈ D�(L)(X).

Next, we have natural maps

LS,π
i→ LS+,π

j← L0,π
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Note that L0,π = K{(x1,x2,t)|x1=x2,t≥0}. In order to finish the proof of the theorem,
it suffices to show that the cones of the induced maps F • LS,π → F • LS+,π and
F = F • L0,π → F • LS+,π are torsion sheaves for all F ∈ D(X). This easily follows
from the fact that the cones of the maps LS,π → LS+,π and L0,π → LS+,π are torsion
objects in D(X × X × R). This fact can be seen from the following: each of the
cones in question is supported on the set {(x1, x2, t)|m ≤ t ≤ M} where m is the
minimum of S and M is the maximum of S. Any sheaf G with such a property is
necessarily torsion, because the supports of G and Tc∗G are disjoint for c >> 0 and
R hom(G, Tc∗G) = 0. This proves Theorem 3.9.

3.2.11 Proof of Theorem 3.1

Let F1, F2 ∈ D(X) and let f : F1→ F2. Call f an isomorphism up-to torsion if the
cone of f is a torsion object. Call F1 and F2 isomorphic up-to torsion if they can be
connected by a chain of isomorphisms up-to torsion.

It is easy to see that if F1 and F2 are isomorphic up-to torsion and for some
G ∈ D(X), the natural map R hom(G, F1)→ R hom(G, Tc∗F1) is zero for some
c > 0, then the map R hom(G, F2)→ R hom(G, Td∗F2) is zero for some d > 0.

Suppose L1 and L2 are displaceable compact Lagrangians in T ∗X , i.e. for some
symplectomorphism� of T ∗X such that� is identity outside of a compact, we have
L1 ∩�(L2) = ∅. Let Fi ∈ DLi (X). Theorem 3.1 is equivalent to the statement: for
some c > 0, the natural map R hom(F1, F2)→ R hom(F1, Tc∗F2) is zero.

This statement can be proven as follows. By Theorem 3.9, there exists an object
F3 ∈ D�(L2)(X) such that F3 and F2 are isomorphic up-to torsion. Therefore, it
suffices to show that the natural map

R hom(F1, F3)→ R hom(F1, Tc∗F3)

is zero for some c > 0. But Theorem 3.2 asserts that R hom(F1, F3) = R hom(F1,

TcF3) = 0, whence the statement.

4 Non-dispaceability of Certain Lagrangian Submanifolds
in CP

n

ConsiderCPN with the standard symplectic structure.Wehave the following standard
Lagrangian subvarieties inCPN : the Clifford torus T ⊂ CP

N consisting of all points
with homogeneous coordinates (z0 : z1 : z2 : · · · : zN ) such that |z0| = |z1| = · · · =
|zN | > 0. Another Lagrangian subvariety wewill consider isRPN ⊂ CP

N . Ourmain
goal is to prove

Theorem 4.1 (1) T is non-displaceable from itself;
(2) RPN is non-displaceable from itself;
(3) T and RP

N are non-displaceable from one another.
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4.0.1

Let us first of all explain how Theorem 3.1 can be applied.
Let G = SU(N ) Realize CPN−1 as a coadjoint orbit CPN = O ⊂ g∗, where g =

su(N ) is the Lie algebra of G. We identify g with the real vector space of N × N
skew-hermitian matrices. We have an invariant positive definite inner product on g
by the formula < A, B >= −Tr(AB). This way we get an identification g ∼= g∗.

The orbitO ⊂ g∗ ∼= g is the orbit of the following diagonal skew-hermitianmatrix

iλ(PV − (1/N )I ) ∈ g

where V ⊂ C
N is a one-dimensional sub-space, PV is the orthogonal projector onto

V , λ ∈ R, λ �= 0 is a fixed real number. For simplicity we will only work with λ > 0.
However, the case λ < 0 is absolutely similar.

Consider T ∗G. We have a diffeomorphism IR : T ∗G → G × g∗ where we iden-
tify g∗ with right-invariant forms on G. Any element X ∈ g gives rise to a function
on fX on g∗. We have a standard Poisson structure on g∗ determined by the condition

{ fX , fY } = f[X,Y ]. The canonical projection pR : T ∗G IR→ G × g∗ → g∗ is then a
Poisson map.

Let gop be the Lie algebra whose underlying vector space is g but [X,Y ]gop =
−[X,Y ]g,We thenhave an identification IL : T ∗G → G × (gop)∗,wherewe identify
(gop)∗ with left-invariant forms on G. The composition IR I

−1
L : G × (gop)∗ → G ×

g∗ is as follows: IR I−1L (g, A) = (g,Ad∗g−1(A)).

Indeed, the conjugate map (IR I
−1
L )∗ : G × g→ G × gop is given by (IR I

−1
L )∗

(g, X) = (g,Adg−1X).
Respectively, IL I

−1
R : G × g∗ → G× (gop)∗ is givenby IL I−1R (g, A)= (g,Ad∗gA).

One can easily check that the product pL × pR : T ∗G → (gop)∗ × g∗ is a Poisson
map.

We know that Oop ⊂ g∗ is a symplectic leaf, hence a co-isotropic sub-variety.
Therefore, so is M := p−1R O ⊂ T ∗G.

LetOop ⊂ (g∗)op be the image ofO ⊂ g∗ under the identification of vector spaces
g∗ = (gop)∗.

We then see that M = p−1L Oop = p−1R O. Indeed, we know that IL I
−1
R (g, A) =

(g,AdgA) and A ∈ O iff AdgA ∈ O.
Hence, we have M = (pL × pR)−1(Oop ×O). Given any Poisson fibration f :

X → Y and a coisotropic subvariety N ⊂ Y , the subvariety f −1N ⊂ X is also co-
isotropic. Let n ∈ f −1N and let V ∈ Tn f −1N be a co-isotropic vector (i.e V = XH

where H is a function in a neighborhood of n and H | f −1N = 0), we then see that
f∗V ∈ T f (n)N is also a co-isotropic vector.
Let us apply this observation to our case. We see that Oop ×O has only zero co-

isotropic vectors. Therefore, all co-isotropic vectors in T M are tangent to fibers of the
map pL × pR : M → Oop ×O. Comparison of dimensions shows that the inverse
is also true: co-isotropic vectors in T M are precisely those tangent to the fibers of the
map pL × pR . Thus, co-isotropic foliation to M is the tangent foliation to pL × pR .
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We know that this implies an induced symplectic structure onOop ×O. As the map
pL × pR is Poisson, it follows that the induced Poisson structure coincides with
that induced by the inclusion Oop ×O ↪→ gop × g. The corresponding symplectic
2 form is equal to (−ω;ω) where ω is Kirillov’s symplectic form on O and we use
the identification of manifolds Oop = O.

Let I : M → T ∗G be the inclusion and P = pL × pR : M → Oop ×O. It then
follows that I ∗ωT ∗G = P∗ωOop×O.

It follows that if L ⊂ Oop ×O is a Lagrangian manifold, then so is I P−1L ⊂
T ∗G.

Another important observation: let H be a function on Oop ×O and let H ′ be a
function on T ∗G such that H ′|M = P−1H .

(1) Then the Hamiltonian vector field XH ′ is tangent to M ;
(2) given any function f on Oop ×O we have

XH ′ P
−1 f = P−1XH f.

Let et XH ′ be the Hamiltonian flow of H ′ and et XH the Hamiltonian flow of H . It
then follows that for any point m ∈ M , PetXH ′ (m) = et XH (P(m)).

These observations imply:

Proposition 4.2 Let L1, L2 ⊂ Oop ×O be subsets such that I P−1L1, I P−1L2 ⊂
T ∗G are non-displaceable. Then so are L1, L2.

Proof Suppose L1 and L2 are displaceable. Then there exist functions H1, . . . , Hk on
Oop ×O such that eXH1 · · · eXHk L1 ∩ L2 = ∅. Choose compactly supported functions
H ′1, . . . , H ′k on T ∗G such that H ′i |M = P−1Hi . One then has

PeXH ′1 · · · eXH ′k m = eXH1 · · · eXHk Pm

for every m ∈ M . Therefore,

I P−1L1 ∩ eXH ′1 · · · eXH ′m P−1L2 = ∅,

i.e the Lagrangians I P−1L1 and I P−1L2 are displaceable, whence the statement �

Let � ⊂ Oop ×O be the diagonal. � is clearly Lagrangian.
It then follows that Theorem 4.1 follows from the following one:

Theorem 4.3 (1) I P−1� and I P−1(T× T) are non-displaceble;
(2) I P−1� and I P−1(RPN × RP

N ) are non-displaceable;
(3) I P−1(RPN × RP

N ) and I P−1(T× T) are non-displaceable

4.0.2

We will prove Theorem 4.3 using Theorem 3.1.
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Our main tool will be a certain object uO ∈ D(G) which will be now introduced.
We need a notation. Let S ∈ D(G). Let F ∈ D(G). Let m : G × G × R→ G ×

R be the map induced by the product on G. Set F ∗G S := Rm !(F � S) (this is
nothing else but a convolution). One can easily check that F ∗G S ∈ D(G) (use
Proposition 2.2).

Proposition 4.4 There exists an object uO ∈ DI P−1�(G) with the following prop-
erties:

(1) there exists a neighborhood of the unit U ⊂ G; e ∈ U with the following
property:

for every g ∈ G and every object F ∈ D(G) such that F is supported on gU and
R�(G, F) = 0, the object F ∗G uO is a torsion object;

(2) The object uO is not a torsion object.

The proof of this Proposition is rather long, so we will first show how this Propo-
sition (along with Theorem 3.1) implies Theorem 4.3.

4.0.3

Lemma 4.5 Let h ⊂ g be the standard Cartan subalgebra consisting of the diag-
onal traceless skew-hermitian matrices. Let k := so(N ) ⊂ su(N ). We then have
T = (g/h)∗ ∩O; RPN = (g/k)∗ ∩O.

Proof The symplectomorphism f : CPN → O is as follows. Given a line l ∈ C
N

we set f (l) := i(λPL − λ/N I ), where λ > 0 is a fixed positive real number. Let
v = (v1, v2, . . . , vN ) ∈ l; v �= 0. We then have

f (l)pq = (iλ/|v|2)vpvq − iλ/Nδpq ,

where δpq is the Kronecker symbol.
Thus, f (l) ∈ O ∩ (g/h)∗ iff f (l)pp = 0 for all p, i.e. |vp|2/|v|2 = 1/N , i.e.

|v1|2 = |v2|2 = · · · |vN |2, i.e. l ∈ T.
Analogously, f (l) ∈ (g/k)∗ iff f (l)pq ∈ iR for all p, q, i.e vpvq ∈ R for all p, q.

Let vp0 �= 0. Then vq = tq/vp0 for some tq ∈ R and for all q. Let t = (t1, t2, . . . , tN )

then v = t/vp0 and l ∈ RP
N ⊂ CP

N . The inverse can be easily checked as well. �

Proposition 4.6 Let T ⊂ SU(N ) be the subgroup of diagonal matrices and let
SO(N ) ⊂ SU(N ) be the subgroup of special orthogonal matrices.

We then have
(1) KT ∗G uO ∈ DI P−1(T×T)(G);
(2) KSO(N ) ∗G uO ∈ DI P−1(RPN×RPN )(G).

Proof Let us prove (1). First of all, one can easily check thatKT ∗G uO ∈ D(G)using
Proposition 2.2. It only remains to show that KT ∗G uO is microsupported on the
set {(g, t, kω, k)|k ≥ 0;ω ∈ I P−1T× T}. We have KT ∗G uO = Rm !(KT � uO),
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where m : G × G × R→ G × R is induced by the product on G. Let also M :
G × G → G be the product on G Let g1, g2 ∈ G. We then have an induced map

Mg1,g2∗ : T(g1,g2)G × G → Tg1g2G

Let (g1, g2, X1, X2) ∈ G × G × g× g = T (G × G). One then has Mg1,g2∗(g1, g2,
X1, X2) = (g1g2, X1 + Adg1X2). The dual map

M∗g1,g2 : T ∗g1g2G → T ∗(g1,g2)G × G

is as follows
M∗g1,g2(g1g2,ω) = (g1, g2,ω;Ad∗g1ω).

Finally, the map

m∗g1,g2,t : T ∗(g1g2,t)(G × R)→ T ∗(g1,g2,t)(G × G × R)

is given by
m∗g1,g2,t (g1g2, t,ω, k) = (g1, g2, t,ω,Ad∗g1ω, k). (8)

The map m being proper, we know that the object Rm !(KT � uO) is microsup-
ported on the set of all points of the form

(g1g2, t,ω, k) (9)

where
m∗g1,g2,t (g1g2, t,ω, k) ∈ SS(KT � uO),

i.e
(g1,ω) ∈ SS(KT ); (10)

(g2, t,Ad
∗
g1

ω, k) ∈ SS(uO). (11)

We have,
SS(KT ) ⊂ {(g,ω1) ∈ G × g∗|g ∈ T ;ω1 ∈ (g/t)∗}; (12)

SS(uO) ⊂ {(g, t, kω2, k)|k ≥ 0; (g,ω2) ∈ I P−1�}, (13)

as follows from Lemma 3.7. The condition (g,ω2) ∈ I P−1�means that ω2 ∈ O and
PLω2 = PRω2, i.e ω2 = Ad∗gω2.

Therefore
(g1g2, t,ω, k) ∈ SSRm !(KT � uO)

only if (compare (11) and (13)):
k ≥ 0 (14)
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Ad∗g1ω = kω2, (15)

where
ω2 ∈ O (16)

and
Ad∗g2ω2 = ω2. (17)

We should also have (compare (10) and (12)):

g1 ∈ T (18)

and
ω ∈ (g/h)∗. (19)

Let us now show that (g1g2,ω, k) is of the form (g1g2, kω1, k), where k ≥ 0 and
(g1g2,ω

1) ∈ I P−1(T× T). The latter means that (PL × PR)(g1g2,ω
1) ∈ Oop ×O

i.e. both ω1 and Ad∗g1g2ω
1 belong to T = O ∩ (g/h)∗. We have k ≥ 0 (see (14).

If k = 0, then ω = Ad∗
g−11

kω2 = 0 and (g1g2,ω, k) = (g1g2, 0, 0), the condition is
fulfilled.

Let now k > 0. We have ω = kAd∗
g−11

ω2 (see (15)) so that ω1 = Ad∗
g−11

ω2.

As ω2 ∈ O (see (16)), it follows that ω1 = Ad∗
g−11

ω2 ∈ O. We also have ω2 =
ω/k ∈ (g/h)∗ (see (19).

Next, let us consider
Ad∗g1g2ω

1 = Ad∗g1g2Ad
∗
g−11

ω2

= Ad∗g2ω2 = ω2

(the latter equality comes from(17), andwehave already shown thatω2 ∈ O ∩ (g/t)∗.
This proves the statement (1). The statement (2) can be proven in precisely the

same way. �

4.1

Our goal is to prove the following statements

Proposition 4.7 The object KT ∗G uO ∈ D(G) is isomorphic up to torsion to the
object uO ⊗K H∗(T,K).

Proposition 4.8 Suppose thatK is a field of characteristic 2. The object KSO(N ) ∗G
uO ∈ D(G) is isomorphic up-to torsion to uO ⊗K H∗(SO(N ),K).
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4.1.1

These Propositions imply Theorem 4.3. Let K have characteristic 2 and let each
of objects F1 and F2 be either KT ∗G uO or KSO(N ) ∗G uO. Taking into account
Proposition 4.6 and Theorem 3.1, it suffices to show that for any c > 0, the induced
map R hom(F1, F2)→ R hom(F1; Tc∗F2) does not vanish (for all choices of F1 and
F2). By virtue of the just formulated Propositions, this follows from uO being non-
torsion which is promised in Proposition 4.4. Thus, Theorem 4.3 is now reduced to
Propositions 4.4, 4.7, and 4.8. We will first deduced the last two Propositions from
the first one, and, finally, we will prove Proposition 4.4.

4.1.2

In order to prove Propositions 4.7 and 4.8 we need to develop corollaries from
Proposition 4.4(1).

LetCU be the full subcategoryof D(G)generatedby all objects F as inProposition
4.4(1) and their finite extensions.

Lemma 4.9 Let Q := [0, 1]M, M ≥ 0. Let π : Q → G be any continuous map. Let
F ∈ D(Q), R�(Q, F) = 0. Then Rπ!F ∈ CU .

Proof The case M = 0 is obvious. Let M > 0. Let Q0 := [0, 1/2] × [0, 1]M−1 and
let Q1 = [1/2, 1] × [0, 1]M−1.

(1) We will first prove that F can be obtained by a finite number of extensions
from objects X1, X2, . . . , Xm , where each Xi is supported on either Q0 or Q1 and
R�(Q, Xi ) = 0. Call such objects and their extensions admissible. Thus, we are to
show that F is admissible.

Let I := Q1 ∩ Q2. Let ik : Qk → Q and i : I → Q be inclusions. Realize F as a
complex of soft sheaves on Q Let Fk := F |Gk and FI := F |I . Each of these objects
is also a complex of soft sheaves.

We then have an isomorphism

F → Cone(i1∗F1 ⊕ i2∗F2 → i∗FI )

Let pk : Qk → pt and pI : I → pt be the natural projections. Let Vk := pk∗Fk =
pk!Fk ; let VI := pI∗FI = pI !FI . Vk and VI are just complexes of K-vector spaces.
We then have maps

ak : p−1k Vk → Fk; aI : p−1I VI → FI ;

bk : ik∗ p−1k Vk → i I∗ p−1I VI

We then have the following commutative diagram of complexes of sheaves
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i1∗F1 ⊕ i2∗F2 i I∗FI

i1∗ p−11 V1 ⊕ i2∗ p−12 V2
b1⊕b2

a1⊕a2

i I∗ p−1I VI

Let � be the total complex of this diagram. � can be obtained by successive
extensions from the following objects

Cone(ik∗ p−1k Vk → ik∗Fk);

Cone(i I∗ p−1I VI → i I∗FI );

each of these objects is admissible. Hence � is admissible.
Next, we have a natural map

�→ Cone(i1∗ p−11 V1 ⊕ i2∗ p−12 V2 → i I∗ p−1I VI )

The cone of this map is quasi-isomorphic to F . Thus, in order to show that F is
admissible, it suffices to show that

Cone(i1∗ p−11 V1 ⊕ i2∗ p−12 V2 → i I∗ p−1I VI )

is admissible.
Let us study the arrow i1∗ p−11 V1 ⊕ i2∗ p−12 V2 → i I∗ p−1I VI . This arrow is induced

by the natural maps V1→ VI and V2 → VI . The cone of the induced map f :
V1 ⊕ V2 → VI is quasi-isomorphic to R�(Q, F) = 0. Therefore, f is a quasi-
isomorphism and we have an induced quasi-isomorphism

Cone(i1∗ p−11 V1 ⊕ i2∗ p−12 V2 → i I∗ p−1I (V1 ⊕ V2))→ Cone(i1∗ p−11 V1 ⊕ i2∗ p−12 V2 → i I∗ p−1I VI ).

The object on the left hand side is isomorphic to

Cone(i1∗ p−11 V1→ i I∗ p−1I V1)⊕ Cone(i2∗ p−12 V2 → i I∗ p−1I V1).

We see that this object is a direct sum of admissible objects, hence is itself admissible,
therefore the object

Cone(i1∗ p−11 V1 ⊕ i2∗ p−12 V2 → i I∗ p−1I VI )

is also admissible, whence the statement.
(2) Choose a positive integer M and subdivide Q into 2M small cubes, denote

these small cubes by qi , i = 1, . . . 2M . Call an object X ∈ D(Q) M-admissible if
either
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(a) X is supported on one of qi and R�(Q, X) = 0 or (b) X can be obtained from
objects as in a) by a finite number of extensions.

By repeatedly applying the statement from (1)we see that every object F ∈ D(Q)

such that R�(Q, F) = 0 is M-admissible.
(3) For M large enough one has: for every i there exists gi ∈ G such that π(qi ) ⊂

giU . This implies that given any object X ∈ D(Q) supported on qi and satisfying
R�(Q, X) = 0, one has Rπ!X ∈ CU . Therefore, every M-admissible object is in
CU , including F . �

Corollary 4.10 Let U be a neighborhood of unit in G such that U is diffeomorphic
to an open ball. Then CU = C, where C ⊂ D(G) is the full subcategory formed
by finite extensions of objects of the form Rπ!X, where π : Q → G, X ∈ D(Q),
R�(Q, X) = 0.

Corollary 4.11 Let F ∈ C and X ∈ D(G). One then has F ∗G X ∈ C; X ∗G
F ∈ C.

Proof Choose a small open ballU ∈ G, e ∈ U , small means that there exists another
open ball V ⊂ G such that U ·U ⊂ V . It is not hard to see that any X ∈ D(G)

can be realized as a finite extension of objects Xi , where each Xi is supported on
giU for some U . Without loss of generality, one then can assume that X = Xi .
Therefore, X ∗G F is supported on giU 2 ⊂ gi V . One also sees that R�(G, X ∗G
F) = R�(G, X)⊗ R�(G, F) = 0. Thus, X ∗G F ∈ CV .

The case of F ∗G X can be proven in a similar way. �

4.1.3

Call a map f : F → H in D(G) a C-isomorphism if the cone of f is in C .
Call two objects F, H ∈ D(G) C-isomorphic if they can be joined by a chain of
C-isomorphisms.

Corollary 4.12 if F1 and F2 are C-isomorphic and H1 and H2 are C-isomorphic,
then F1 ∗G H1 and F2 ∗G H2 are C-isomorphic

4.1.4

We have

Claim 4.13 If F and H are C-isomorphic, then F ∗G uO and H ∗G uO are isomo-
prhic up-to torsion

Proof Indeed, C = CU , where U is the same as in Proposition 4.4. The statement
follows immediately from part (1) of this Proposition. �
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4.2 Proof of Proposition 4.7

Let Sk ⊂ SU(N ) be the one-parametric subgroup consisting of all matrices of the
form diag(1, 1, . . . , eiφ; e−iφ, 1, . . . , 1), where eiφ is at the kth position. We then
have T = S1S2 · · · SN−1; KT = KS1 ∗G KS2 ∗G · · · ∗G KSN−1 .

It is clear that the statement of Proposition follows from

Lemma 4.14 For any k, KSk is C-isomorphic to Ke ⊕Ke[−1]
Indeed, Corollary 4.12 will then imply that KT is C-isomorphic to (Ke ⊕

Ke[−1])∗N−1 = Ke ⊗K H •(T,K). Therefore, by Claim 4.13, the objects KT ∗ uO
and (Ke ⊗K H •(T,K))) ∗ uO = uO ⊗K H •(T,K) are isomorphic up-to torsion.

It now remains to prove Lemma.

4.2.1 Proof of Lemma 4.14

As all subgroups Sk are conjugated in G, it suffices to prove Lemma for S1. One then
has S1 ⊂ SU(2) ⊂ SU(N ), where the embedding SU(2) ⊂ SU(N ) is induced by the
standard decomposition C

N = C
2 ⊕ C

N−2. Let U be an open neighborhood of unit
in SU(N ) and let U ′ := U ∩ SU(2). Let ι : SU(2) ⊂ SU(N ) be the inclusion. It is
clear that i∗CU ′ ⊂ CU , hence if two objects F1, F2 ∈ D(SU(2)) are C-isomorphic,
then so are i∗F1 and i∗F2. Therefore, in order to prove Lemma, it suffices to show
that KS1 and Ke ⊕Ke[−1] viewed as objects of D(SU(2)) are C -isomorphic.

Let B ⊂ su(2) consist of all matrices of the form iM , where M is a Hermitian
matrix whose eigenvalues have absolute value of at most π. Let Bπ ⊂ B be the subset
of all matrices iM , where the eigenvalues of M are precisely π and −π. It is clear
the B is diffeomorphic to a 3-dimensional closed ball and Bπ ⊂ B is the boundary
2-sphere.

Let I : [−π;π] → B be given by I (φ) = idiag(φ;−φ).
We then have a diagram

[−π;π] i1
B

i2 SU(2)

{−π,π}
a1

k1
Bπ

a2

k3 {−I }
a3

where i2 is inducedby the exponentialmap su(2)→ SU(2);a1, k1, a2, a3 are obvious
inclusions; k3 is the projection. We then have

KS1 = Cone(R(i2i1)!K[−π;−π] ⊕ a3!K−I → R(i2i1a1)!K{−π,π}). (20)

The arrow in this equation is induced by natural maps

α : R(i2i1)!K[−π;−π] → R(i2i1a1)!K{−π,π})
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and
β : a3!K−I → R(i2i1a1)!K{−π,π} = R(a3k3k1)!K{−π,π}

where α is induced by the natural map

K[−π;−π] → a1!K{−π,π}

induced by the embedding {−π,π} ⊂ [−π,π].
The map β is induced by the natural map

K−I → (k3k1)!K{−π,π} = (k3k1)∗(k3k1)−1K{−π,π}.

We have a C-isomorphism

γ : Ri2!KB → R(i2i1a1)!K[−π,π]

Therefore the object in (20) is C-isomorphic to

Cone(Ri2!KB ⊕K−I
α1⊕β→ R(i2i1a1)!K{−π,π}) (21)

where α1 = αγ.
The map α1 : Ri2!KB → R(i2i1a1)!K{−π,π} can be factored as

Ri2!KB → R(i2a2)!KBπ
→ R(i2i1a1)!K{−π,π}.

Observe that Bπ = CP
1 and that R(i2a2)!KBπ

∼= H∗(Bπ,K)⊗K K−I . Next
R(i2i1a1)!K{−π,π} = K−I ⊕K−I . The map R(i2a2)!KBπ

→ R(i2i1a1)!K{−π,π} fac-
tors as

R(i2a2)!KBπ = a3!K−I ⊗K H∗(CP1)→ a3!K−I
β→ a3!(K−I ⊕K−I ) = R(i2i1a1)!K{−π,π}

Thus we see that α1 factors as α1 = βu. It is well known that in this case we have
a quasi-isomorphism

Cone(α1 ⊕ β) ∼= Cone(0⊕ β).

meaning that the object in (21) is isomorphic to Ri2!KB ⊕K−I [−1] (because
Cone(β) ∼= K−I [−1]).

Let ε : 0 ∈ B be the zero matrix. one then has a C-isomorphism Ri2!KB →
Ri2!ε!K0 = Ke. Analogously, by choosing a point 0′ ∈ Bπ , one gets aC-isomorphism
Ri2!KB → K−I . Therefore, the object in (21) isC-isomorphic toKe ⊕K−I [−1] and
K−I is C-isomorphic with Ke (via Ri2!KB). Thus, the object in (21), hence KS1 is
C-isomorphic to Ke ⊕Ke[−1]. Lemma is proven.
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4.3 Proof of Proposition 4.8

In this subsection we fix char K = 2.
We have standard embeddings

SO(2) ⊂ SO(3) ⊂ · · · ⊂ · · · SO(N ) ⊂ SU(N )

where the embedding SO(k) ⊂ SO(N ) is induced by the embedding R
k ↪→ R

N ;
(x1, x2, . . . , xk) �→ (x1, x2, . . . , xk, 0, . . . , 0).

We will prove the following statement.

Lemma 4.15 The sheaf KSO(k)∈D(SU(N )) is C-isomorphic toKSO(k−1)⊕KSO(k−1)
[1− k], for all k ≥ 2.

It is clear that this Lemma implies the Proposition. Let us now prove Lemma.

4.3.1

We have an embedding SO(k) ⊂ SU(k) ⊂ SU(N ) and, in the same way as in the
proof of Lemma 4.14, it suffices to prove thatKSO(k) is C-isomorphic toKSO(k−1) ⊕
KSO(k−1)[1− k] in D(SU(k)).

4.3.2

Let M := SU(k)/SO(k − 1), let 
 : SU(k)→ M be the canonical projection.
For any smooth manifold Y , let C(Y ) ⊂ D(Y ) be the full subcategory formed

by finite extensions of objects of the form Rp!X where p : Q → Y is a continuous
map, Q = [0, 1]M , M ≥ 0, X ∈ D(Q); R�(Q, X) = 0.

Lemma 4.16 If F ∈ C(M), then 
−1F ∈ C(SU(k)).

Proof Let p : Q → M be a continuous map.
 is a locally trivial fibration with fiber
SO(k − 1), let
Q : SU(k)×M Q → Q be the pull-backof this fibrationwith respect
to themap p : Q → M . The fibration
Q is trivial, hencewe have a homeomorphism

SO(k − 1)× Q ∼= SU(k)×M Q.

We then have natural maps

π : SO(k − 1)× Q ∼= SU(k)×M Q → SU(k);

Let q ′ : SO(k − 1)× Q → SO(k − 1), q : SO(k − 1)× Q → Q, be projections.
Let X ∈ D(Q), R�(Q, X) = 0. We then have 
−1Rp!X = Rπ!q−1X .

Let us cover
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SO(k − 1) =
n⋃

i=1
Qi ,

where each Qi ⊂ SO(k − 1) is a closed subset homeomorphic to a cube. One then
can represent the sheaf KSU(k−1) (actually any object of D(SU(k − 1)) as a finite
extension formed by objects Yi ∈ D(SU(k − 1)) such that each Yi is supported on
Qli for some li . Let Zi ∈ D(Qli ), Zi = Yi |Qli

. The object q−1X is then a finite
extension of objects of the form

q−1X ⊗ (q ′)−1Yi

Let πi : Qli × Q → SO(k − 1)× Q → SU(k) be the through map. Let qi :
Qli × Q → Q, pi : Qli × Q → Qli be projections.

We then have Rπ!q−1X is a finite extension formed by objects

Rπ!(q−1X ⊗ (q ′)−1Yi ) ∼= Rπi !(q−1i X ⊗ p−1i Zi ) ∈ C(SU(k)).

Therefore, 
−1Rπ!X ∈ C(SU(k)), whence the statement. �

4.3.3

We have an identification SO(k)/SO(k − 1) = Sk . We have the natural map Sk =
SO(k)/SO(k − 1)→ SU(k)/SO(k − 1) = M .

This map is an embedding; denote the image of this embedding S ⊂ M . Let
e ∈ Sk−1 be the image of the unit of SO(k). Fix the standard basis (e1, e2, . . . , ek)
in R

k . Then Sk gets identified with the unit sphere in R
k and e = ek . The point e

determines a point on S, to be also denoted by e.
Lemma 4.16 implies that Lemma 4.15 follows from the following statement:

Lemma 4.17 The object KS is C(M)-equivalent to Ke ⊕Ke[1− k].
Proof Aswas explained above, S is identifiedwith the unit sphere inRk . Let V ⊂ R

k

be an orthogonal complement to ek . Let us denote e := ek and ε = −e. Let B ⊂ V
be the ball of radius π. We have a surjective map P : B → S: let f = φn ∈ B,
where 0 ≤ φ ≤ π and n ∈ B. Set P(φn) = cos(φ)e + sin(φ)n. It follows that P is
1-to 1 on the interior of B and that P takes the boundary of B to the point ε ∈ S.

Let c : B P→ S→ M be the through map Let ∂B ⊂ B be the boundary. We have a
commutative diagram

B
c

M

∂B

i

p
ε

ι

(22)

One has
KS
∼= Cone(Rc!KB ⊕ ι!Kε

f0→ ι!Rp!K∂B), (23)
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where f0 = α⊕ β; the map α : Rc!KB → ι!Rp!K∂B = Rc!i∗K∂B is induced by the
canonical map

KB → i∗K∂B,

and the map
β : ι!Ke → ι!Rp!K∂B

is induced by the canonical map

Kε → Rp∗K∂B = Rp!K∂B .

Let M : B → SO(k) as follows:

– M(φn) is identity on any vector which is orthogonal to both n and e;
– M(φn)e = cos(φ)e + sin(φ)n;
– M(φn)n = − sin(φ)e + cos(φ)n.

One then sees that the composition

B
M→ SO(k)


→ S

equals P : B → S. Thus, P = 
M . One can also rewrite:

M(φn) = I + (eiφ − 1)pr(e+in)/
√
2 + (e−iφ − 1)pr(e−in)/

√
2,

where pr is the orthogonal projector.
For 0 ≤ α ≤ π/4, set

μ(α,φn) = I + (eiφ − 1)P(cosαe+i sinαn) + (e−iφ − 1)P(sinαe−cosαin)

One sees that:
μ : [0,π/4] × B → SU(k);

μ(α, 0) = I ;

μ(α,πn) ∈ SO(k);

μ(π/4,φn) = M(φn);

μ(α,πn)e = −e.

Let ν : [0;π/4] × B
μ→ SU(k)→ M be the through map. It then follows that

ν(α,πn) = ε.
We have a commutative diagram
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B
i [0;π/4] × B

ν
M

∂B
i0

k0

[0,π/4] × ∂B
π

k1

ε

ι

(24)

Here i(b) = (π/4, b) for all b ∈ B; i0(b) = (π/4, b) for all b ∈ ∂B.
We have c = νi ; πi0 = p (where p is as in diagram (22)).
In a way similar to above we can construct a map

f : Rν!K[0;π/4]×B ⊕ i!Kε → ι!Rπ!K[0;π/4]×∂B

The diagram (24) gives rise to a commutative diagram in D(M):

Rc!KB ⊕ ι!Kε
f0

ι!Rp!K∂B

Rν!K[0;π/4]×B ⊕ ι!Kε
f

a

ι!Rπ!K[0;π/4]×∂B

(25)

in which the right vertical arrow is an isomorphism; the left vertical arrow is a direct
sum of the identity arrow ι!Ke and the natural arrow

a : Rν!K[0;π/4]×B → Rν!Ri!KB = Rc!KB .

This diagram defines uniquely a map A : Cone( f )→ Cone( f0) (because the right-
most arrow in diagram (25) is an isomorphism) the cone of this map is isomorphic
to the cone of the map a. It easily follows that Cone(a) ∈ C(M), therefore, A is a
C(M)-isomorphism.

Consider now the diagram (25) where all ingredients are the same except that
the map i : B → [0;π/4] × B gets replaced with the map i1 : B → [0;π/4] × B,
where i1(b) = (0, b). Let us compute c1 := νi1 : B → M . We have

μ(0,φn) = I + (1− eiφ)pre + (1− e−iφ)prn; (26)

c1(φn) = Pμ(0,φn). (27)

We then have a commutative diagram obtained from diagram (22) by replacement
c with c1. Hence we have a map

KS
∼= Cone(Rc1!KB ⊕ ι!Ke

f1→ ι!Rp!K∂B), (28)

constructed in the same way as the map f0 in (23).
In the same way as above one can show that Cone( f1) is C(M)-isomorphic to

Cone( f ), hence to Cone( f0), hence to KS .
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Let us now work with Cone( f1).
(1) Equations (26) and (27) imply that c1(rn) = c1(−rn) for any rn ∈ B. Let

B/2 be the quotient of B in which b ∈ B gets identified with −b. Let δ : B → B/2
be the projection. We then have a unique map c2 : B/2→ M such that c1 = δc2.
Let ∂B/2 is the image of ∂B in B/2. Of course, ∂B ∼= Sk−2 and ∂B/2 ∼= RP

k−2.
We have a natural quotient map δ1 : ∂B → ∂B/2. These maps fit into the following
commutative diagram:

B
δ

B/2
c2

M

∂B

i

δ1
∂B/2

i1

p1
ε

ι

One then can construct an arrow

f2 : Rc2!KB/2 ⊕Kε → ι!(p1δ1)!K∂B

in the same way as above. Similar to above, there exists a natural map

Cone( f2)→ Cone( f1)

whose cone is isomorphic to the cone of the natural map

Rc2!KB/2 → Rc2!Rδ!KB . (29)

Let us show that the cone of this map is in C(M).
Indeed, choose a covering ∂B =⋃m

k=1 Ck where Ck , and all non-empty intre-
sections of these sets are closed sets homeomorphic to the closed disk of the same
dimension as dimension of ∂B and Ck ∩ −Ck = ∅.

Consider the set of all multiple non-empty intersections of the sets Ck and denote
elements of this set by C ′1,C ′2, . . . ,C ′M . Each of these sets is homeomorphic to a
closed disk of the same dimension as dimension of ∂B and for each i ,C ′i ∩ −C ′i = ∅.

Let Bk ⊂ B be the cones of C ′k :

Bk = {rn|0 ≤ r ≤ π; n ∈ C ′k}.

It is clear that Bk cover B and that Bk ∩ −Bk = {0}.
Let Bk/2 be the images of Bk in B/2. The map δ|Bk : Bk → Bk/2 is a homeo-

morphism. It follows that KB/2 is a finite extension of objects, each of them being
of the form KBk/2. It then suffices to show that the cone of the natural map

c2!δ!KBk∪−Bk = c2!δ!δ−1KBk/2 → c2!KBk/2 ∈ C(M)

We have
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δ!KBk∪−Bk = δ!(Cone(KBk ⊕KBk → K0))

= Cone(KBk/2 ⊕KBk/2 → K0)

The natural map δ!KBk∪−Bk → KBk/2 is given by the natural map

Cone(KBk/2 ⊕KBk/2 → K0)→ KBk/2 (30)

induced by
Id⊕ Id : KBk/2 ⊕KBk/2 → KBk/2

Therefore, the cone of the map (30) is isomorphic to the cone of the natural map

KBk/2 → K0

Denote this cone by F ′ and let F := F ′|Bk/2. It follows that R�(Bk/2, F) = 0. Let
P : Bk/2→ B/2→ M be the trough map. Our task is now reduced to showing that
RP!F ∈ C(M). This follows from the fact that Bk/2 is homeomorphic to a unit cube.

Thus, the cone of the map (29) is in C(M), therefore Cone( f1) and Cone( f2) are
C(M) isomorphic.

Let us now study Cone( f2). The map f2 is a direct sum of two maps: one of them
is the natural map g : Rc2!KB/2 → ι!(p1δ1)!K∂B = Rc2!i1!δ1!K∂B and the other is
the natural map

h : Kε → ι!(p1δ1)!K∂B (31)

The map g factors as

Rc2!KB/2
g1→ Rc2!i1!K∂B/2

l→ Rc2!i1!δ1!K∂B (32)

We have Rc2!K∂B/2 = ι!Rp1!K∂B/2
∼= H∗(∂B/2,K)⊗K ι!Kε;

Rc2!i1!δ!K∂B = ι!Rp!K∂B = H∗(∂B;K)⊗K ι!Kε.

The map l in (32) is induced by the map

δ∗1 : H∗(∂B/2;K)→ H∗(∂B;K).

Recall that ∂B ∼= Sk−2; ∂B/2 ∼= RP
k−2 and δ1 is the quotient map. As char K = 2,

it follows that the map δ∗1 factors as

H∗(∂B/2;K)
n1→ K

n2→ H∗(∂B;K),

where the arrow n1 is induced by any embedding pt→ ∂B/2 and the arrow n2 is
induced by the projection ∂B → pt. This means that l = l2l1, where
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l1 : Rc2!K∂B/2 → ι!Kε

is induced by n1, and
l2 : Kε → Rc2!i1!δ1!K∂B

is induced by n2. Let us now consider the map h in (31). As was explained above,
ι!(p1δ1)!K∂B

∼= H∗(∂B;K)⊗K ι!Kε and the map h is induced by the map K→
H∗(∂B;K) induced by the projection ∂B → pt. That is h = l2

These observations show that the map g = l2l1g1 = hl1g1 factors through h. This
implies that

Cone( f2) = Cone(g ⊕ h) = Cone(0⊕ h) = Rc2!KB/2 ⊕ Cone(h) = Rc2!KB/2 ⊕ ι!Kε[1− k]

As was explained above, Rc2!KB/2 isC-isomorphic to Rc!KB . Let x ∈ ∂B. We then
have natural C-isomorphisms

Rc!KB → Rc!K0 = Ke

and
Rc!KB → Rc!K0′ = Kε

hence, Rc2!KB/2 is C-isomorphic with both Ke and Kε, as well as with Rc2!KB/2.
Thus,

Rc2!KB/2 ⊕ ι!Kε[1− k]

is C-isomorphic with Ke ⊕Ke[1− k], hence so is Cone( f2). This proves Lemma.
�

5 Proof of Proposition 4.4: Constructing uO

The rest of this paper will be devoted to proving Proposition 4.4. In this section we
will construct the object uO. In the subsequent sections we will check it satisfies all
the required properties.

5.1 Constructing uO

Our construction is based on a certain object S ∈ D(G × h). This object is intro-
duced and studied in the subsequent Sect. 6. It is defined as any object satisfying the
conditions in Theorem 6.1.
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5.1.1 Convolution on h

Let X,Y are manifolds. Let a : X × h× Y × h→ X × Y × h be given by
a(x, A1, y, A2) = (x, y, A1 + A2). Let F ∈ D(X × h) andG ∈ D(Y × h). Set F ∗h
G := Ra!(F × G).

5.1.2

Let L := O ∩ C+. We have L = λe1, where λ > 0.
Let γL ∈ D(h× R) be given by γL = K{(A,t)|t+<A,L>≥0}. Let I0 : G × R→ G ×

h× R be given by I0(g, t) = (g, 0, t). Set

uO = I−10 (S ∗h γL).

Let us first of all prove that uO ∈ DI P−1�(G). Using Proposition 2.2 it is easy to
show that uO is in the left orthogonal complement to C≤0(G). Let us now estimate
SS(uO).

Let p3 : G × h× R→ G × h; p1 : G × h× R→ h× R; p2 : G × h× R→
G × R be the projections.

One can show that

uO = Rp2!(p−11 K{(A,t)|t≥<A,L>} ⊗ p−13 S)

As usual let us identify

T ∗(G × h× R) = G × h× R× g∗ × h∗ × R

We see that p−11 K{(A,t)|t≥<A,L>} is microsupported on the set

�1 := {(g, A, t, 0,−kL; k)|k ≥ 0}.

The object p−12 S is microsupported on the set

�2 := {(g, A, t,ω, η, 0)},

where (g, A,ω, η) ∈ �S (See Eq.51 for the definition of �S).
One sees that if ζ j ∈ � j ∩ T ∗(g,A,t)(G × h× R) and ζ1 + ζ2 = 0, then k = 0 and

ζ1 = 0, hence ζ2 = 0. Therefore, the object

� := p−11 K{(A,t)|t≥<A,L>} ⊗ p−13 S

is microsupported on the set

�3 := {(g, A, t,ω1 + ω2; η1 + ω2; k1 + k2)|(g, A, t,ω j ; η j ; k j ) ∈ � j }
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We have

�3 = {(g, A, t,ω; η − kL; k)|k ≥ 0; (g, A,ω, η) ∈ �}

Let us now apply Corollary 3.4 to the projection p2 (so that E = h).
Let

π : G × h× R× g∗ × h∗ × R→ G × R× g∗ × h∗ × R.

Let us find π(�3) We see that

π(�3) ⊂ {(g, t,ω, η − kL; k)|k ≥ 0,Adgω = ω; η = |ω|} =: �4.

The set�4 is closed. Therefore, SS(Rp2!�) is confined within the set of all points
of the form {(g, t,ω, k)|(g, t,ω, 0, k) ∈ �4} Thus ‖ω‖ = kL , Adgω = ω and k ≥ 0.
If k = 0. thenω = 0 andwe have (g, t, 0, 0) ∈ SS(Rp2!�). If k > 0, then setω = kζ.
We then have |ζ| = L (which means that ζ ∈ O) and Adgζ = ζ. This is the same as
to say (g, ζ) ∈ I P−1O. This proves the statement

5.2 Proof of Proposition 4.4 (1)

5.2.1 The Map τc : uO → Tc∗uO

We will rewrite this map in a way more convenient to us.
Let c > 0. We then have an obvious map τ

γ
c : γL → Tc∗γL ;

Tc∗uO = I−10 (S ∗h Tc∗γL)

The natural map τc : uO → Tc∗uO (coming from the fact that uO ∈ D(G)), in
terms of the above identifications, is given by the map

I−10 (S ∗h γL)→ I−10 (S ∗h Tc∗γL)

which is induced by the map τ
γ
L .

Let A1, A2 ∈ h. For A ∈ h setUA = {A1 ∈ h|A1 << A}. Set VA := KUA [dim h].
We then have a natural map

eA : KA → VA. (33)

It is defined as follows. Let us identify R
N−1 = h, where

(x1, x2, . . . , xN−1) �→
∑

xk fk .
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Let A =∑
tk fk Upon this identification, UA = {(x1, x2, . . . , xN−1)|xk < tk} and

VA = �k(K(−∞,tk )[1]); KA = �kKtk . The map eA is defined as a product of maps
εk : Ktk → K(−∞;tk )[1] which represents the class of the extension

0→ K(−∞;tk ) → K(−∞,tk ] → Ktk → 0.

Let A ∈ C+, we then have c =< A, L >≥ 0 because A, L ∈ C+.

Lemma 5.1 Let A ∈ h be such that < A, L >= c
The natural map

KA ∗h γL
eA→ VA ∗h γL

is an isomorphism.

Proof Clear �

Let now A ∈ C+. Since A, L ∈ C+, it follows that c =< A, L >≥ 0. We also
have a natural isomorphism

KA ∗h γL
∼= Tc∗γL .

Let us combine this isomorphismwith that of the Lemma,wewill get an isomorphism

VA ∗ γL
∼= Tc∗γL

By substituting A = 0, we get an isomorphism

V0 ∗ γL
∼= γL .

Upon these identifications, the map τ
γ
c corresponds to a map

τ V
A : V0 → VA

induced by the inclusion U0 ⊂ UA.
Thus, the map τc : uO → TcuO is isomorphic to the map

I−10 (S ∗h V0 ∗h γL)→ I−10 (S ∗h VA ∗h γL)

induced by the natural map τ V
A : V0 → VA. As h is an abelian Lie group, we can

rewrite the above map as

I−10 (V0 ∗h S ∗h γL)→ I−10 (VA ∗h S ∗h γL). (34)

5.2.2

Let ∗G×h denote the convolution on D(G × h).
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Taking into account the expression (34) for τc, the Proposition 4.4(1) can be
deduced from the following Proposition:

Proposition 5.2 Let U and F ∈ D(G) be as in Proposition 4.4(1). Then there exists
A ∈ C+ such that the natural map

(F � V0) ∗G×h S→ (F � VA) ∗G×h S (35)

induced by the map τ V
A : V0 → VA, is zero in D(G × h)

Thus, Proposition 4.4(1) is now reduced to Proposition 5.2

5.3 Proof of Proposition 5.2

Let H be any sheaf on h. Letα : h→ h be the antipodemap.We then have H ∗h S =
Rp2!(p−11 α∗H ⊗ a−1S), where as usual p1 : G × h× h→ h is given by

p1(g, A1, A2) = A1;

and p2 : G × h× h→ G × h is given by p2(g, A1, A2) = (g, A2). Set Hα := α∗H .
We then have

Rp2!(p−11 Hα ⊗ a−1S) = Rp2!((p−11 Hα)⊗ (S ∗G S)),

where we have used the isomorphism (64). Next,

Rp2!((p−11 Hα)⊗ (S ∗G S)) ∼= [Rp!(π−1Hα ⊗S)] ∗G S,

where π : G × h→ h; p : G × h→ G are projections.
One then has

Rp!(π−1Hα ⊗S) = I−10 (H ∗h S).

Let SA := I−10 (VA ∗h S). We then have a natural map τ S
A : S0 → SA.

We have VA ∗h S ∼= SA ∗G S and

(F � VA) ∗G×h S ∼= F ∗G (SA ∗G S) = (F ∗G SA) ∗G S

The map (35) is then induced by the map τ S
A .

Thus, Proposition 5.2 is now reduced to

Proposition 5.3 There exist: a neighborhood U ⊂ G of the unit e ∈ G and A ∈ C+
such that the natural map

F ∗G S0 → F ∗G SA
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induced by τ S
A is zero for any F ∈ D(G) which is supported on gU for some g ∈ G

and satisfies R�(G, F) = 0.

Proof We have a natural mapKA → VA, as in (33). Hence, we have an induced map

I−10 (KA ∗h S)→ I−10 (VA ∗h S) =: SA. (36)

One sees that this map is actually an isomorphism. Indeed, one can easily show that
for any object F ∈ D(G × h) such that SS(F) ⊂ T ∗G × h× C+ ⊂ T ∗G × T ∗h,
the map

I−10 (KA ∗h F)→ I−10 (VA ∗h F)

induced by the map (33), is an isomorphism, and S is of this type by virtue of
Theorem 6.1.

One also sees that I−10 (KA ∗h S) = I−1−AS, where I−A : G → G × h; I−Ag =
(G,−A). Taking into account (36), we obtain an isomorphism

SA ∼= I−1−AS.

Let us choose a small A, A >> 0.
As was shown in the course of proving Theorem 6.1, for 0 << A << b we have

SA = I−1−AS ∼= KUA .

where UA = {eX |‖X‖ << A} ⊂ G. We also know that S0 = Ke.
Without loss of generality one can assume that for some A ∈ C+; A << b, U ⊂

UA/10. Let h ∈ U so that h = eX , where ‖X‖ << A/10. We have (F ∗G SA)|gh =
R�c({ghr−1|r ∈ UA}; F)[dimG]. It follows that gU ⊂ {ghr−1|r ∈ UA} (Indeed, let
gh′ ∈ gU so that h′ = eX

′
, ‖X ′‖ << A/10. We have h′ = hr−1, r = (h′)−1h. By

Lemma 10.4, r = eZ , where ‖Z‖ ≤ ‖ − X ′‖ + ‖X‖ << A. So r ∈ UA). Therefore,
(F ∗G SA)|gh = R�(gU, F)[dimG] = 0. Thus, F ∗G SA is supported away from
gU . But F ∗G S0 = F is supported on gU . Therefore, R hom(F ∗G S0; F ∗G SA) =
0 which proves the statement. �

Thus, we have proven Proposition 4.4 (1). The rest of the paper is devoted to
proving the second part of the Proposition.

5.4

Recall that we have a sheaf γL := K{(A,t)|t+<A,L>≥0} on h× R. Let ι : R→ h× R

be given by ι(t) = (0, t). We have a natural isomorphism

K[0,∞][− dim h] = ι!γL



Microlocal Condition for Non-displaceability 151

hence a natural map
K0×[0,∞)[− dim h] → γL . (37)

This map induces a map

I−10 (S ∗h K0×[0,∞))[− dim h] → KI−10 (S∗hγL ) = uO (38)

where I0 : G × R→ G × h× R, I0(g, t) = (g, 0, t) Next, one has

I−10 (S ∗h K0×[0,∞)) = i−10 S � K[0,∞)

where i0 : G → G × h, i0(g) = (g, 0). We know that i−10 S = Ke, thus we have an
isomorphism

I−10 (S ∗h K0×[0,∞)) = Ke×[0,∞)

The map (38) then can be rewritten as:

Ke×[0,∞][− dim h] → uO (39)

Proposition 5.4 Let � ∈ DG×O(G) The natural map

homG×R(uO;�)→ R homG×R(K(e,0)[− dim h];�)

induced by the map (39) is an isomorphism.

Proof We have
uO = Rp2!(p−13 S⊗ p−11 K{(A,t)|t≥(A,L)});

Ke×[0,∞) = I−10 (S ∗h K0×[0,∞))

= Rp2!(p−13 S⊗ p−11 K0×[0,∞))

where p1 : G × h× R→ h× R; p2 : G × h× R→ G × R; p3 : G × h× R→
G × h are projections.

Let X ∈ D(h× R). We then have

R hom(Rp2!(p−13 S⊗ p−11 X);�)

= R hom(p−13 S⊗ p−11 X; p!2�)

= R hom(p−11 X; RHom(p−13 S; p!2�)

= R homh×R(X; Rp1∗RHom(p−13 S; p!2�)). (40)
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Let us estimate the microsupport of the sheaf

Rp1∗RHom(p−13 S; p!2�).

We know that SS(S) ⊂ {(g, A,ω, |ω|) ∈ G × h× g∗ × h∗}. Therefore,

SS(p−13 S) ⊂ �1 := {(g, A, t,ω1, |ω1|, 0)} ⊂ G × h× R× g∗ × h∗ × R.

Analogously,

SS(p!2�) ⊂ �2 = {(g, A, t, kω, 0, k)|k ≥ 0,ω ∈ O}

One sees that if (g, A, t,ωi , ηi , ki ) ∈ �i and ω2 = ω1, η2 = η1, k1 = k2, then 0 =
k1 = k2, hence ω2 = ω1 = 0; also 0 = η2 = η1. Therefore,

SS(RHom(p−13 S; p!2�)) ⊂ �3 := {(g, A, t, ω2 − ω1; η2 − η1; k2 − k1)|(g, A, t, ωi , ηi , ki ) ∈ �i }

= {(g, A, t, kω − ω1;−|ω1|; k)|k ≥ 0;ω ∈ O}

As the map p1 is proper, one has

SS(Rp1∗RHom(p−13 S; p!2�)) ⊂ �4 := {(A, t, η, k)|∃g ∈ G : (g, A, t, 0, η, k) ∈ �3}.

We see that
�4 = {(A, t,−k|ω|, k)} = {(A, t,−kL , k)}.

Let π : h× R→ R; π(A, t) = t− < A, L >. It then follows that Rp1∗RHom
(p−13 S; p!2�) is locally constant along the fibers of π i.e. there exists a sheaf � on
R such that

Rp1∗RHom(p−13 S; p!2�) = π!�

Taking into account (40) the statement is reduced to showing that the natural map

R homh×R(K{(A,t)|t≥<A,L>};π!�)→ R homh×R(K0×[0,∞);π!�)

is an isomorphism for any sheaf � ∈ D(R). This is equivalent to showing that the
map

Rπ!K0×[0,∞)[− dim h] → Rπ!K{(A,t)|t≥<A,L>}

induced by the map (37) is an isomorphism, which is easy. �

It then follows that for all c ∈ R, we have an isomorphism

R hom(uO; Tc∗uO) ∼= R hom(Ke×[0,∞)[− dim h]; Tc∗uO)
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Let i : R→ G × R; i(t) = (e, t). We then have

R hom(Ke×[0,∞); Tc∗uO) = R hom(K[0,∞); i !Tc∗uO).

One sees that the submanifold i(R) ⊂ G × R is non-characteristic for Tc∗uO
(because SS(Tc∗uO) ⊂ {(g, t, kω, k), k ≥ 0;ω ∈ O}). Therefore, according to
Sect. 11.0.5, we have an isomorphism

i−1Tc∗uO[− dimG] ∼= i !Tc∗uO.

Thus, we have an isomorphism

ρ : R hom(uO; Tc∗uO) ∼= R hom(K[0,∞)[− dim h]; i−1Tc∗uO[− dimG])

For c > 0 the natural maps

R hom(uO; uO)→ R hom(uO; Tc∗uO)

and

R hom(K[0,∞)[− dim h]; i−1uO[− dimG])→ R hom(K[0,∞)[− dim h]; i−1Tc∗uO[− dimG])

commute with our isomorphism.
Proposition (4.4) (2) reduces to

Proposition 5.5 For any c > 0, the natural map

R hom(K[0,∞)[− dim h]; i−1uO[− dimG])→ R hom(K[0,∞)[− dim h]; i−1TcuO[− dimG])
(41)

is non-zero.

5.4.1

Let I : h→ G × h be given by I (A) = (e, A). Let Se := I !S = I−1S[− dimG].
We then have

i−1uO = I−10 (Se ∗h γL)[dimG] (42)

This equation dictates us to find an explicit expression for Se. It turns out to be
more convenient to work with a slightly different object. Namely, let Z ⊂ G be the
center of G. Let IZ : Z× h→ G × h be the obvious embedding. Set S := I !ZS =
I−1Z S[− dimG]. We will identify this object up-to an isomorphism.



154 D. Tamarkin

5.5 Identifying S

We will now give an explicit description of the object S up-to isomorphism. The
proof of this result will be given in the subsequent sections of the paper.

5.5.1 Object Y

Wefirst define an objectY ∈ D(Z× h) as follows. LetL ⊂ h be the lattice consisting
of all A ∈ h such that eA ∈ Z.

For a subset J ⊂ {1, 2, . . . , N − 1} and l ∈ L let K (J, l) ⊂ el × h ⊂ Z× h be
defined as follows:

K (J, l) := {(el, x) ∈ Z× h|∀ j ∈ J :< x − l, e j >≥ 0}.

Let V (J, l) := KK (J,l)[D(l)], where D(l) is an integer defined in (Sect. 7.5.5). That
is, decompose l =∑

lkek , where e1, e2, . . . , en is a basis in h as in (96). Then
D(l) =∑

lk Dk , where Dk = k(N − k) and N = dim h+ 1. Let LJ = {l ∈ L|∀i /∈
J :< l, f j >≤ 0} Let � J := ⊕

l∈LJ

V (J, l).

Let J1 ⊂ J2. Construct a map

IJ1 J2 : � J1 → � J2 .

It is defined as the direct sum of the natural maps

V (J1, l)→ V (J2, l)

for all l ∈ LJ1 ⊂ LJ2 . These maps come from the closed embeddings K (J2, l) ⊂
K (J1, l).

Let Subsets be the poset (hence the category) of all subsets of {1, 2, . . . , N − 1}.
We then see that � is a functor from Subsets to the category of sheaves on Z× h.
We then construct the standard complex Y• such that

Yk :=
⊕

I,|I |=k
� I (43)

and the differential dk : Yk → Yk+1 is given by

dk =
∑

(−1)σ(J1,J2) IJ1 J2 , (44)

where the sum is taken over all pairs J1 ⊂ J2 such that |J1| = k and |J2| = k + 1.
The set J2\J1 then consists of a single element e and σ(J1 J2) is defined as the number
of elements in J2 which are less than e.
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5.5.2 Object S

Let I ⊂ {1, 2, . . . , N − 1} be a subset. Denote eI :=∑

i∈I
ei ∈ h. Let also G(I ) be a

graded vector space as in Lemma 8.2.
For any l ∈ h, let Tl : Z× h→ Z× h be the shift by l: Tl(z, A) := (z, A + l)

Theorem 5.6 We have an isomorphism

S ∼=
⊕

I

G I [D(−2πeI )] ⊗ T−2πeI ∗Y, (45)

Proof of this theorem is obtained as a result of a study of the object S in Sects. 6–9.
Given this description of S, we can now compute i−1uO.

5.6 Computing i−1uO

Let O be the orbit of L ∈ g∗, where L = λe1, λ > 0. For each z ∈ Z, let us define
objects Vz ∈ D(R) by the formula:

Vz :=
⊕

l∈Lz;∀ j �=1:<l, f j>≤0
K[<l,L>;∞)[D(l)− dim h], (46)

whereLz := {l ∈ L|el = z}. For every d > 0wehave naturalmaps τd : Vz → Td∗Vz ,
where Td is the shift by d. The map τd is induced by the obvious maps

K[<l,L>;∞) → K[<l,L>+d;∞) = Td∗K[<l,L>,∞).

Theorem 5.7 (1) We have an isomorphism

i−1uO ∼=
⊕

I

G I [D(−2πeI )] ⊗ T<−2πeI ,L>∗Ve2πeI [dimG] (47)

(2) The natural map i−1uO → i−1Td∗uO is induced by the maps τd .

Proof Let Lc = {l ∈ L; el = c}. Let Lc
J = L

c ∩ LJ . Let Yc ∈ D(h); Yc = Y|c×h.
It follows from (45) and (42) that we have an isomorphism

i−1uO ∼=
⊕

I

G I [D(−2πeI )] ⊗ I−10 (T−2πeI ∗Y|e×h ∗h γL)[dimG].

Let Uz := I−10 Y|z×h ∗h γL . We then have
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I−10 [T−2πeI ∗Y|e×h ∗h γl] = I−10 [Ye2πeI ∗h T−2πeI ∗γl]

= I−10 [Ye2πeI ∗h T<−2πeI ,L>∗γL ]

= T<−2πeI ,L>∗Ue2πeI ,

where for a real number t , we define a map Tt : G × R→ G × R to be the shift
along R by t , whereas for A ∈ h, TA is the shift by A along h in G × h.

We then have an isomorphism

i−1uO ∼=
⊕

I

G I [D(−2πeI )] ⊗ T<−2πeI ,L>∗Ue2πeI [dimG] (48)

One also sees that the natural map

i−1uO → i−1Td∗uO

for d > 0 corresponds under this isomorphism to the natural map induced by the
maps

τd : Uc → Td∗Uc, (49)

in turn induced by the natural map γL → Td∗γL coming from the embedding

{(t, A)|t ≥ − < A, L > +d} ⊂ {(t, A)|t ≥ − < A, L >}

(we have γL = K{t≥−<A,L>} and Td∗γL = K{(t,A)|t≥−<A,L>+d})).
Let us compute Uz for z ∈ Z. We will actually see that Uz

∼= Vz .

Lemma 5.8 We have I−10 ((V (J, l)|el×h) ∗h γL) = 0 for all J �= {1}.
Proof Let V ′(J, l) := V (J, l)|el×h.

We have γL = K{(A,t)|t+<A,L>≥0}. The inequality t+ < A, L >≥ 0 is equivalent
to t/λ+ < A, e1 >≥ 0. Set T = t/λ. Then our statement can be reformulated as:

V ′(J, l) ∗h K{(A,T )|T+<A,e1>≥0} = RP!((V ′(J, l) � KR)⊗K{(A,T )|T≥<A,e1>}) = 0,

where P : h× R→ R is the projection. This is equivalent to showing that for any
T ∈ R,

R�c(h; V ′(J, l)⊗K{A∈h|T≥(A,e1)}) = 0.

Let x j : h→ R; x j =< A, e j >. We then have

V ′(J, l)⊗K{A∈h|T≥<A,e1>} = KS[D(l)],

where S = {A ∈ h|x1(A) ≤ T ; ∀ j ∈ J : x j (A) ≥ x j (l)}.
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Suppose there exists j ∈ J , j �= 1. Decompose h = R. f j × E , where E is the
span of all fi , i �= j (recall that f j form the basis dual to e1, e2, . . . , eN−1). Thus,
h = R× E . Then KS[D(l)] = K[0,∞) � A for some A ∈ D(E). Let π : h→ E be
the projection. Then Rπ!KS[D(l)] = 0 because R�c(R,K[0,∞)) = 0. If J = ∅, then
S = {A ∈ h|x1(A) ≤ T }. It is easy to see that R�c(h,KS[D(l)]) = 0. This exhausts
all subsets J �= {1}. �

It now follows that I−10 (� J ∗h γL) = 0 for all J �= {1} Therefore, we have an iso-
morphism

Uz = I−10 (�z ∗h γL)[dimG] ∼= I−10 (�{1}z ∗h γL)[−1][dimG]

∼=
⊕

l∈Lz
{1}

I−10 [V ({1}; l))z ∗h γL ][−1][dimG],

where the subscript z hear and below means the restriction onto z × h ⊂ Z× h. Let
us compute

I−10 [V ({1}; l)z ∗h γL ] = RP!(K(A,t);x1(A)≥x1(l) ⊗K{(A,t)|λx1(A)≤t})[D(l)],

where P : h× R→ Z× R is the projection. We have

RP!(K{(A,t);x1(A)≥x1(l)} ⊗K{(A,t)|λx1(A)≤t})

= RP!(K{(A,t);x1(l)≤x1(A)≤t/λ}) = K[λx1(l),∞)[1− dim h]

Thus,
I−10 [V ({1}; l)c ∗h γL ] ∼= K[λx1(l),∞)[1− dim h][D(l)]

Let d ≥ 0. We need to compute the map

τd : I−10 [V ({1}; l)c ∗h γL ] → Td∗ I−10 [V ({1}; l)c ∗h γL ]

induced by the natural map
γL → Td∗γL .

It is easy to see that the map τd is isomorphic to the natural map

K[λx1(l),∞)[1− dim h] → Td∗K[λx1(l),∞)[1− dim h]

= K[λx1(l)+d,∞)[1− dim h],

induced by the embedding
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[λx1(l)+ d,∞) ⊂ [λx1(l),∞).

Thus, we have,
Uz =

⊕

l∈Lz
{1}

K[λx1(l),∞)}[D(l)][− dim h]

=
⊕

l∈Lz;∀ j �=1:<l, f j> ≤0
K[λ<l,e1>,∞)[D(l)− dim h].

Thus, we see that Uz
∼= Vz . It is now straightforward to check that the maps τd on

both sides do match �
Let us substitute (46) into (47). We will get

i−1uO ∼=
⊕

I

G(I )⊗ υ(I )[− dim h+ dimG],

where
υ(I ) =

⊕

l∈Le2πeI ;∀ j �=1:<l, f j>≤0
K[<l−2πeI ,L>;∞)[D(l − 2πeI )].

Let us replace l with l + 2πeI . We will get an ultimate formula

υI =
⊕

l∈L0;∀ j �=1:<l+2πeI , f j>≤0
K[<l,L>;∞)[D(l)]. (50)

The map τd : i−1uO → Td∗i−1uO, d ≤ 0 is induced by natural maps τd : υI →
Td∗υI which are produced by the embeddings Td [< l, L >;∞)) ⊂ [< l, L >;∞).

5.6.1 Proof of Proposition 5.5

We have

R hom(K[0,∞)[− dim h]; Td∗i−1uO[− dimG]) =
⊕

I

G(I )⊗ HI (d),

where
HI (d) := R hom(K[0,∞); Td∗υI ) ∼=

⊕

l∈SI (d)

K[D(l)],

and

SI (d) := {l ∈ L0|∀ j �= 1 :< l + 2πeI , f j >≤ 0;< l, L > +d ≥ 0}.
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The map (41) is induced by maps τd : HI (0)→ Hi (d),which are in turn induced
by the maps τd : υ→ Td∗υ. It is not hard to see that the map τd : HI (0)→ HI (d)

is induced by the inclusion SI (0) ⊂ SI (d). As SI (0) is not empty, the maps τd :
HI (0)→ HI (d) do not vanish for any d ≥ 0, which proves the Proposition.

6 An Object S

We will freely use notations from Sect. 10.
The object S will be characterized microlocally. Let us first define a subset

�S ∈ T ∗(G × h) (51)

which will serve as a microsupport of S. Define �S as a set of all points

(g, A,ω, η) ∈ G × h× g× h = T ∗(G × h)

satisfying:
(1) g(Vk(ω)) ⊂ Vk(ω), that is Adgω = ω;
(2) det g|Vk (ω) = e−i<ek ,A>;
(3) η = ‖ω‖. The notation Vk(ω) is introduced in the beginning of Sect. 10, see

(97).
Finally, let us denote for A ∈ h, IA : G → G × h the embedding IA(g) = (g, A).
We now formulate

Theorem 6.1 There exists an object S ∈ D(G × h) such that
(1) SS(S) ⊂ �S;
(2) I−10 S = KeG .

6.1 Proof of Theorem 6.1

6.1.1

Let U1,U2 ⊂ h be open convex sets. Let a : h× h→ h be addition. The map a
induces a map U1 ×U2 → U1 +U2 which is well known to be a trivial smooth
fibration whose fiber and base are diffeomorphic to h.

Let Fk ∈ D(G ×Uk), k = 1, 2. Let M : G ×U1 × G ×U2 → G ×U1 ×U2 be
the map induced by the product on G. Set F1 ∗G F2 := RM!(F1 � F2).

Let a : G ×U1 ×U2 → G × (U1 +U2) be induced by the addition on h.

Lemma 6.2 Suppose that SS(Fk) ⊂ �S ∩ T ∗(G ×Uk). Then (1) The natural map

a−1Ra∗(F1 ∗G F2)→ F1 ∗G F2
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is an isomorphism;
(2) SS(Ra∗(F1 ∗G F2)) ⊂ �S ∩ T ∗(G × (U1 +U2)).

Proof Let us first estimate the microsupport of F1 ∗G F2 = RM!(F1 � F2). Since
the map M is proper, we know that a point

ζ := (g, A1, A2,ω, η1, η2) ∈ G ×U1 ×U2 × g∗ × h∗ × h∗ = T ∗(G ×U1 ×U2)

belongs to SSRM!(F1 � F2) only if there exist g1, g2 ∈ G such that M(g1, A1, g2,
A2) = (g, A1, A2) (i.e. g = g1g2) and

M∗ζ|(g1,A1,g2,A2) ∈ SS(F1 � F2).

We have
M∗ζ|(g1,A1,g2,A2) = (g1, A1,ω, η1, g2, A2,Ad

∗
g1

ω, η2).

We then have (g1, A1,ω, η1), (g2, A2,Ad∗g1ω, η2) ∈ �S. Therefore, Ad∗g1ω = ω,
and we have

(gk, Ak,ω, ηk) ∈ �S.

This implies η1 = η2 = ‖ω‖. This means that any 1-form in SS(RM!(F1 � F2))

vanishes on fibers of a. This proves part 1).
Let us now estimate SSRa∗(F1 ∗G F2). We know that ζ ∈ SSRa∗(F1 ∗G F2),

where ζ ∈ T ∗(g,A)(G × (U1 +U2)), iff for every point (g, A1, A2) ∈ G ×U1 ×U2

such that A1 + A2 = A, we have

a∗ζ|(g,A1,A2) ∈ SS(a−1Ra∗(F1 ∗G F2)).

Let ζ = (g, A,ω, η), then a∗ζ|(g,A1,A2) = (g, A1, A2,ω, η, η). Using the isomor-
phism a−1Ra∗(F1 ∗G F2)→ F1 ∗G F2. and the above estimate for SS(F1 ∗G F2),
we get: there exist g1, g2 ∈ G such that g = g1g2 and

(gk, Ak,ω, η) ∈ �S.

It remains to show that (g1g2, A1 + A2,ω, η) ∈ �S. Indeed, we have η = ‖ω‖.
Next, Ad∗gkω = ω, therefore, Ad∗g1g2ω = ω.

Finally,
det g1g2|Vk (ω) = det g1|Vk (ω) det g2|Vk (ω)

= e−i<A1,edk (ω)>e−i<A2,edk (ω)>

e−i<A1+A2,edk (ω)>. �
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6.1.2

Let b ∈ C◦+; b ≤ e1/100. Let V
−
b := {A ∈ C◦−| − A << b}, where C◦+ is the interior

of the positive Weyl chamber and C◦− = −C◦+, see Sect. 10. let W−b ⊂ G × V−b ;

W−b := {(eX , A); A ∈ V−b ; ‖X‖ << −A}.

Set F− ∈ D(G × V−b );
F− := KW−b [dimG].

6.1.3

We will identify TG = G × g; T ∗G = G × g∗ = G × g via identifying g with the
space of all right invariant vector fields on G and g∗ = g with the space of all right
invariant 1-forms on G. Analogously, we will identify T (G × h) = G × h× g× h
and T ∗(G × h) = G × h× g∗ × h∗ == G × h× g× h.

Lemma 6.3 Themicrosupport of F− is contained in the set of all points (eX , A,ω, η)

∈ G × V−1b × g∗ × h∗, where
(1) ‖X‖ ≤ −A;
(2) [X,ω] = 0;
(3) TrX |Vk (ω) = −i < A, edk >;
(4) η = ‖ω‖

Proof Let U ⊂ g× V−b ; U = {(X, A)|‖X‖ << −A}. Let

exp : g× V−1b → G × V−1b

be the exponential map. We see that exp mapsU diffeomorphically onto W−b , hence
we have an induced diffeomorphism exp : T ∗U → T ∗W−b . It also follows that F− =
exp∗KU [dimG] and that SS(F−) = exp(SS(KU )).

Let us estimate SS(KU ). U ⊂ g× V−b is an open convex subset. It follows that a
point (X, A,ω, η) ∈ g× V−b × g∗ × h∗ is in the microsupport of KU iff (1) ‖X‖ ≤
−A;

(2) for all (X ′, A′) ∈ U , < X ′,ω > + < A′, η > < < X,ω > + < A, η >.
Fix A′, then X ′ ∈ g is an arbitrary element such that ‖X ′‖ << −A. Lemma 10.1

implies that
sup < X ′,ω >=< −A′; ‖ω‖ >

Thus, Condition (2) is equivalent to

< −A′, ‖ω‖ > + < A′, η >≤ < X,ω > + < A, η > (52)

for all A′ ∈ V−b . Plug A′ = A. We will get
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< −A, ‖ω‖ >≤< X,ω > .

On the other hand < X,ω >≤< ‖X‖, ‖ω‖ >≤< −A, ‖ω‖ >. This implies that

< −A, ‖ω‖ >=< X,ω > . (53)

According to Lemma 10.1, for all k,

TrX |Vk (ω) = −i < A, edk (ω) > .

Let us plug (53) into (52). We will get

< −A′, ‖ω‖ > + < A′, η >≤ < −A, |ω| > + < A, η >

for all A′ ∈ V−b . As A ∈ V−b and V−b is open, this is only possible if η = ‖ω‖. �

Corollary 6.4 We have SS(F−) ⊂ �S ∩ T ∗(G × V−b ).

6.1.4

Let U ⊂ G × V−b × V−b be given by

U := {(eX , A1, A2)|‖X‖ << −A1 − A2}

Lemma 6.5 We have an isomorphism

F− ∗G F− ∼= KU [dimG].

Proof Let jU1 : U1 ↪→ G × V−b × V−b be an open set defined by U1 = M(W−b ×
W−b ). It follows that we have an isomorphism

jU1!((F
− ∗G F−)|U1)→ F− ∗G F−.

We have
U1 = {(eX1eX2 , A1, A2)|Ak ∈ V−b ; ‖Xk‖ << −Ak}.

According to Lemma 10.4, we have eX1eX2 = eY , where ‖Y‖ ≤ ‖X1‖ + ‖X2‖ <<

−A1 − A2. Thus U1 ⊂ U.

Let jU : U → G × V−b × V−b be the open embedding. We then have an isomor-
phism

jU !((F− ∗G F−)|U )→ F− ∗G F− (54)
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Let us now study F− ∗G F−|U . Let us estimate the microsupport of this object.
Similar to proof of Lemma 6.2, we see that a point

(g, A1, A2,ω, η1, η2) ∈ G × V−b × V−b × g∗ × h∗ × h∗ = T ∗(G × V−b × V−b )

(55)
is in SS(F− ∗G F−|U ) iff

(1) (g, A1, A2) ∈ U ;
(2) there exist X1, X2 ∈ g such that g = eX1eX2 and (eXk , Ak,ω, ηk) ∈ SS(F−)

for k = 1, 2.
According to Lemma 6.3, we have

‖Xk‖ ≤ −Ak;

TrXk |Vl (ω) = −i < Al , edl > .

Hence, eY = eX1eX2 preserves the spaces Vl(ω). As ‖Y‖ << ‖X1‖ + ‖X2‖ ≤
e1/(50N ), it follows that all eigenvalues of −iY have absolute value of less than
1/(50N ). It then follows that Y does preserve the spaces Vl(ω) as well, and TrY |Vl (ω)

has absolute value of at most 1/50.
We also have

det eY |Vl (ω) = det eX1 |Vl (ω)e
X2 |Vl (ω) = e−i<A1+A2,edl (ω)>.

We have | < A1 + A2, edl (ω) > | ≤ 1/50, therefore,

TrY |Vl (ω) = −i < A1 + A2, edl (ω) > . (56)

Assume ω �= 0. Then there exists a subspace Vl(ω) which is proper, i.e. 0 <

dl(ω) < N . On the other hand, we have (eY , A1, A2) ∈ U , meaning that eY = eY
′
,

where ‖Y ′‖ << −A1 − A2. We then have ‖Y‖, ‖Y ′‖ < e1/(50N ) which implies
Y = Y ′ and‖Y‖ << A1 + A2. This clearly contradicts to (56). Therefore, it is impos-
sible thatω �= 0, henceω = 0. It then follows that in (55), η1 = η2 = ‖ω‖ = 0. Thus,
we have proven that F− ∗G F−|U is microsupported on the zero-section, hence is
locally constant. However, under the exponential map,U is a diffeomorphic image of
an open convex set {(X, A1, A2)|Ak ∈ V−b ; ‖X‖ << −A1 + A2} ⊂ g× V−b × V−b .
Therefore, U is diffeomorphic to RdimU and F− ∗G F− is constant on U .

Let Z := R�c(U ; F− ∗G F−). We then have a natural isomorphism F− ∗G
F−|U ∼= ZU [dimU ]. Because of an isomorphism (54), we have an induced iso-
morphism

R�c(U ; F− ∗G F−)→ R�c(G × V−b × V−b ; F− ∗G F−)

∼= R�c(G × Vb; F−)⊗ R�c(G × Vb; F−)
∼= K[− dimG × V−b ] ⊗K[− dimG × V−b ][2 dimG] = K[− dimU + dimG].
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This implies the statement. �

Let a : G × V−b × V−b → G × 2V−b be the additionmap. The just proven Lemma
as well as Lemma 6.2 imply that the natural map a−1Ra∗(F− ∗G F−)→ F− ∗G F−
is an isomorphism and that

Ra∗(F− ∗G F−) ∼= K{(eX ,A)|A∈2V−b ;‖X‖<<−A}[dimG].

We then have an induced isomorphism

ι : Ra∗F− ∗G F−|G×V−b ∼= F−. (57)

6.1.5

Let M > 0 and let F−M ∈ D(G × (V−b )M);

F−M := F− ∗G F− ∗G · · · ∗G F−,

where F− occurs M times.
Let aM : G × (V−b )M)→ G × MV−b be the addition map. Lemma 6.2 implies

that the natural map
a−1M RaM∗F−M → F−M

is an isomorphism.
Let �−M := RaM∗F−M .
Let us construct a map

IM : �−M |G×(M−1)V−b → �−M−1,

where M ≥ 2, as follows.
Let W ⊂ (V−b )2 be an open convex subset consisting of all points of the form

(v1, v2), where v1 + v2 ∈ V−b . Let WM := (V−b )M−2 ×W ⊂ (V−b )M .
Let us decompose

αM := aM |G×WM : G ×WM = G × (V−b )M−2 ×W
a2→ G × (V−b )M−2 × V−b

aM−1→ (M − 1)V−b .

It follows that αM(WM) = G × (M − 1)V−b . We have a natural isomorphism

RaM∗F−M |G×(V−b )M−1 = RαM∗F−M |G×WM
∼= RaM−1∗Ra2∗F−M |G×WM .

We have
Ra2∗F−M |G×WM

∼= F−M−2 ∗G (Rα∗F− ∗G F−|W ),
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where α : G ×W → G × V−b is the addition map. We have an isomorphism (see
(57))

Rα∗(F− ∗G F−|W ) ∼= (Ra∗(F− ∗G F−∗))|V−b
ι∼= F−.

Hence, we have isomorphisms

Ra2∗(F−M |G×WM ) ∼= F−M−1

IM : RaM∗F−M |G×(V−b )M−1
∼= RaM−1∗F−M−1.

Thus, we have objects �−M ∈ D(G × MV−b ) and isomorphisms

IM : �−M |(M−1)V−b → �−M−1.

It then follows that there exists an object �− ∈ D(G × C◦−) (note that C◦− =⋃
M MV−b ) along with isomorphisms

JM : �−|MV−b → �−M

which are compatible with IM in the obvious way.
Let �− ∈ D(G × C◦−) be another object endowed with isomorphisms J ′M :

�−|MV−b → �−M so that J ′M are compatible with IM . Then there exists a (non-
canonical) isomorphism �− → �− which is compatible with the isomorphisms
JM , J ′M .

Lemma 6.2 implies that SS(�−M) ⊂ �S ∩ T ∗(G × MV−b ). Therefore,

SS(�−) ⊂ �S ∩ T ∗(G × C◦−).

6.1.6

Lemma 6.2 implies that we have an isomorphism

A−1RA∗(�− ∗G �−)→ �− ∗G �−

where A : G × C◦− × C◦− → G × C◦− is the addition.
Let us restrict this isomorphism to G × MV−b × V−b . We will then get an isomor-

phism
A−1(RA∗�− ∗G �−|(M+1)V−b )→ �−M ∗G F− = A−1�−M+1.

Thus, we have an isomorphism

J ′M+1 : RA∗�− ∗G �−|(M+1)V−b ∼= �−M+1
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One can easily check that these isomorphisms are compatible with IM hence, there
exists an isomorphism

J : RA∗(�− ∗G �−) ∼= �−

which is compatible with isomorphisms JM , J ′M . Therefore, we have an isomorphism

I : �− ∗G �− ∼= A−1�−. (58)

6.1.7

Let X± ∈ D(G), X+ := K{e−X |‖X‖≤b/2}; X− := K{eX |‖X‖<<b/2}[dimG]. We have an
isomorphism X− ∼= �−|G×(−b/2).

Lemma 6.6 We have an isomorphism X− ∗G X+ ∼= Ke.

Proof Let us first compute the microsupport of X− ∗G X+. We will prove the fol-
lowing: SS(X− ∗G X+) is contained in the set of all points of the form(eY ,ω) ∈
G × g∗,where Y ∈ g; ‖Y‖ ≤ (e1 + eN−1)/200, [Y,ω] = 0 and < Y,ω >= 0.

Let us first estimate SS(X−). Let exp : g× G be the exponential map. We
then see that X− = exp∗KU [dimG], where U ⊂ g is an open convex subset
U = {X |‖X‖ << b/2}.

We know that SS(KU ) consists of all points of the form (X,ω) ⊂ g× g∗, where
‖X‖ ≤ b/2 and

< X ′,ω > < < X,ω >

for all X ′ << b/2. Lemma 10.1 implies that this is equivalent to < b/2, ‖ω‖ >≤<

X,ω > (because
sup

X ′<<b/2
< X ′,ω >=< b/2, ‖ω‖ >);

on the other hand
< X,ω >≤< ‖b/2‖, ‖ω‖ >

by the same Lemma 10.1. Therefore < X,ω >=< ‖b/2‖, ‖ω‖ >. As ‖X‖ ≤ b/2
this implies [X,ω] = 0;

TrX |Vk (ω) = i < b, edk (ω) > /2. (59)

As [X,ω] = 0, we see that SS(X−) consists of all points (eX ,ω), where ‖X‖ ≤
b/2 and [X,ω] = 0 and we have (59).

Analogously, X+ = exp∗KK , where K ⊂ g is a convex compact K = {X |‖ −
X‖ ≤ b/2}. Therefore, SS(KK ) consists of all points (X1,ω1), where‖ − X1‖ ≤ b/2
and < X ′,ω1 >≥< X1,ω1 > for all X ′ ∈ K . I.e. < −X ′,ω1 >≤< −X1,ω1 >. In
the same way as above, we conclude that this is equivalent to < −X1,ω1 >=<

b/2, ‖ω1‖ > which in turn is equivalent to ‖ − X1‖ ≤ b/2; [X1,ω1] = 0;
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Tr(−X1)|Vk (ω1) = i < b/2, edk (ω1) > . (60)

Thus, SS(X+) consists of all points of the form (eX1 ,ω1), where [X1,ω1] = 0;
‖ − X1‖ ≤ b/2 and (60) is the case. Observe that we have ‖ − X1‖ ≤ e1/200 which
means ‖X1‖ ≤ eN−1/200.

We know that the microsupport of X− ∗G X+ = Rm !(X− � X+) is contained
in the set of all points of the form (g1g2,ω) where g1, g2 ∈ G; (g1,ω) ∈ SS(X−);
(g2,Ad∗g1ω) ∈ SS(X+). This means that SS(X− ∗G X+) consists of all points of the
form

(eXeX1 ,ω),

where (eX ,ω) ∈ SS(X−) and (eX1 ,ω) ∈ SS(X+) (because [X,ω] = [X1,ω] = 0).
According to Lemma 10.4, eXeX1 = eY , where ‖Y‖ ≤ ‖X‖ + ‖X1‖ ≤ (e1 + eN−1)/
200. It follows that eY Vk(ω) ⊂ Vk(ω) and

det eY |Vk (ω) = ei<b/2−b/2,‖ω‖> = 1,

see (59), (60). As ‖Y‖ ≤ b, this implies TrY |Vk (ω) = 0. This in turn implies that
< Y,ω >= 0, which we wanted.

Let c := (e1 + eN−1)/200. LetW := {X ∈ g; ‖X‖ << 2c}. The exponentialmap
gives rise to an open embedding exp : W → G. The object X− ∗G X+ is supported
within exp(W ). Consider E ∈ D(W ); E := exp−1(X−∗G)X+). It suffices to show
that E ∼= K0.

We see that E is microsupported within the set (X,ω), where ‖X‖ ≤ c, [ω, X ] =
0, (ω, X) = 0. Let D be the dilation vector field on g. That is D is a section of T g =
g× g ; D : g→ g× g; D(X) = (X, X). It then follows that every point (x,ω) ∈
SS(E) satisfies iDx (ω) = 0. Let X ∈ g; X �= 0. Let RX := (R>0.X) ∩W be an open
segment. It then follows that E |RX is a constant sheaf. However, RX does necessarily
contain points Y ∈ RX such that ‖Y‖ >> c, meaning that E |Y = 0, and E |RX = 0.
Hence E is supported at 0 and it suffices to show that E |0 ∼= K.

We have

E |0 = (X− ∗G X+)|e = R�c(G;K{eX |‖X‖<<b/2} ⊗K{eX |‖X‖≤b/2})[dimG]

= R�c(G;K{eX |‖X‖<<b/2})[dimG] = K,

because the open set {eX |‖X‖ << b/2} is diffeomorphic to an open ball. �

6.1.8

Let T : C◦− → C◦− be the shift by −b/2. T (l) = l − b/2.
Let us restrict the isomorphism (58) onto G × V−b × (−b/2). We will get an

isomorphism
�− ∗G X− ∼= A−1�−|G×V−b ×(−b/2)
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= T−1�−.

Taking the convolution with X+ and using the previous Lemma, we will get an
isomorphism

�− ∼= (T−1�) ∗G X+. (61)

Let TM : (C◦− + Mb/2)→ C◦− be the shift by −Mb/2. Set

�M := T−1M � ∗G (X+)∗
M
G ,

�M ∈ D(G × (C◦− + Mb/2)).

We have an isomorphism

iM : �M |C◦−+(M−1)b/2 ∼= T−1M−1[(T−1�− ∗G X+) ∗G (X+)∗
M−1
G ]

∼= T−1M−1((�
− ∗G (X+)∗

M−1
G ) = �M−1

where on the last step we have used the isomorphism (61). Similar to above, there
exists an object S ∈ D(G × h) and isomorphisms S|C−+Mb/2 → �M which are
compatible with isomorphisms iM . Lemma 6.2 readily implies that SS(S) ⊂ �S.
Let us computeS|G×0. We have 0 ∈ C◦− − b/2. Therefore, we have an isomorphism

S|G×0 ∼= �−1 |G×0 ∼= �−|G×−b/2 ∗G X+ ∼= X− ∗G X+ ∼= Ke.

This proves that the object S satisfies all the conditions of Theorem 6.1.

6.1.9 Uniqueness

Theorem 6.7 Let S1,S2 satisfy the conditions of Theorem 6.1. Then S1 and S2

are canonically isomorphic.

Proof According to Lemma 6.2 (take U1 = U2 = h), we have an isomorphism

a−1Ra∗(S1 ∗G S2)→ S1 ∗G S2. (62)

Let I1, I2 : h→ h× h be as follows: I1(A) = (A, 0); I2(A) = (0, A). Applying
functors I−11 , I−12 to (62) and taking into account the isomorphisms I−10 Si

∼= KeG ,
we will get the following isomorphisms

Ra∗(S1 ∗G S2)→ S2; Ra∗(S1 ∗G S2)→ S1, (63)

whence an isomorphism S1→ S2. �
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From now on we will denote by S any object satisfying Theorem 6.1 (they are all
canonically isomorphic).

Equations (62), (63) imply that we have an isomorphism

S ∗G S→ a−1S. (64)

6.1.10

One can prove even more general result. Let ϒ ⊂ T ∗(G × h) consist of all points
(G, A,ω, ‖ω‖) ∈ G × h× g×h = T ∗(G × h). Of course,�S ⊂ ϒ . LetCϒ ⊂ D(G
× h) be the full subcategory consisting of all objects F microsupported on ϒ . Let
i0 : G → G × h be the embedding i0(g) = (g, 0). We have a functor i−10 : Cϒ →
D(G). We also have a functor� : D(G)→ Cϒ ;�(F) = F ∗G S (it is easy to show
that SS(F ∗G S) ⊂ ϒ).

Theorem 6.8 The functors i−10 anb � are mutually quasi-inverse equivalences.

Proof Let F ∈ Cϒ and consider F ∗G S ∈ D(G × h× h). As above, let a : G ×
h× h→ G × h be the addition. Similar to above, one can show that the natural map

a−1Ra∗(F ∗G S)→ F ∗G S (65)

is an isomorphism.Let i1, i2 : G × h→ G × h× hbegivenby i1(g, A) = (g, A, 0);
i2(g, A) = (g, 0, A). In the same spirit as above, we can apply i−11 , i−12 to (65). We
will get functorial isomorphisms

Ra∗(F ∗G S)→ F = Id(F), Ra∗(F ∗G S)→ i−10 F ∗G S = �i−10 F,

whence an isomorphism of functors IdD(G)
∼= �i−10 .

Let us consider the composition in the opposite order:

i−10 �(F) = F ∗G (S|G×0) = F ∗G KeG = F.

This way we get an isomorphism IdD(G×h)
∼= i−10 �. �

6.1.11 Lemma

These Lemma will be used in the sequel. Let A ∈ h. Let IA : G → G × h be given
by IA(g) = (g, A). Let SA := I−1A S. Let TA : h→ h; TA(A1) = A + A1 be the shift
by A.

Lemma 6.9 We have an isomorphism T−1A S ∼= SA ∗G S.

Proof Apply the functor I−1A to (62). �
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7 Study ofS|Z×C◦−

Let Z ⊂ SU(N ) be the center consisting of all matrices of the form ζ.I , where ζ is
an N th root of unit.

We denote by jC◦− : C◦− → h the open embedding. We will denote by the same
symbol the induced embeddings Z× C◦− → Z× h; G × C◦− → G × h.

We start with studying the object j−1C◦−S.

7.1 Microsupport of j−1
C◦−

S

One has the following improvement on Theorem 6.1.

Lemma 7.1 The object j−1C◦−S is microsupported within the set of points of the form
(g, A,ω, η) ∈ G × C◦− × g∗ × h∗ such that there exists an X ∈ g satisfying:

(1) g = eX ;
(2) ‖X‖ ≤ −A;
(3) [X,ω] = 0;
(4) TrX |Vk (ω) = −i < A, edk >;
(5) η = ‖ω‖.

Proof As was shown in the proof of Theorem 6.1, we have C◦− =
⋃

M
MVb and

S|G×MVb
∼= �−M .

The object �−M is defined by

a−1M �−M ∼= F− ∗G F− ∗G · · · ∗G F−

(total M copies of F− and we use the same notation as in Sect. 6.1.)
The object F− ∗G F− ∗G · · · ∗G F− (M times) is the same as

Rm !(F−)�M ,

where m : (G × V−b )M → G × (V−b )M is induced by the product on G. The map m
is proper, so we can estimate the microsupport of Rm !(F−)�M in the standard way.
Using Lemma 6.3, we conclude that Rm !(F−)�M is microsupported within the set
of points of the form

(eX1eX2 · · · eXM ; A1, A2, . . . , AM ;ω, η1, η2, . . . , ηM),

where (Xk, Ak,ω, ηk) ∈ SS(F−) (we use the the equality [Xk,ω] = 0).
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By Lemma 6.3, η1 = η2 = · · · = ηM = ‖ω‖. This implies that the object �−M is
microsupported within the set of all points of the form

(eX1eX2 · · · eXM ; A1 + A2 + · · · + AM ;ω, ‖ω‖),

where (eXk ; Ak;ω; ‖ω‖) ∈ SS(F−) for all k.
Lemma 6.3 says that [Xk,ω] = 0. By Lemma 10.5, there exists X ∈ g such that

eX = eX1eX2 · · · eXM ; [X,ω] = 0;

TrX |Vk (ω) =
∑

k

TrXk |Vk (ω);

‖X‖ ≤ ‖X1‖ + ‖X2‖ + · · · + ‖XM‖

According to Lemma 6.3,

∑

k

TrXk |Vk (ω) = −i <
∑

k

Ak; edk >;

∑

k

‖Xk‖ ≤ −
∑

k

Ak .

This implies the statement. �

Let S := S|Z×h∗ . Let us estimate the microsupport of j−1C◦− S using the above
Lemma.

Proposition 7.2 The object j−1C◦− S is microsupported within the set of all points of
the form (z; A; η) ⊂ Z× C◦− × h∗, where there exists B ∈ C− such that

(1) e−B = z;
(2) B ≥ A (i.e. ∀k :< B − A, ek >≥ 0);
(3) η ∈ C+ (i.e. ∀k :< η, fk >≥ 0); if < η, fk > > 0, then < B − A, ek >= 0.

Proof Let I : Z× C◦− ↪→ G × C◦− be the embedding. We have j−1C◦− S = I−1 j−1C◦−S

[− dimG]. The just proven Lemma implies that j−1C◦−S is non-singular with respect

to the embedding I (i.e. given a point ζ ∈ SS( j−1C◦−S) where ζ ∈ T ∗x (G × C◦−), x ∈
Z× C◦−, and I ∗ζ = 0, one then has ζ = 0).

Therefore, the microsupport I−1 j−1C◦−S[− dimG] consists of all points of the form
I ∗ζ, where ζ ∈ SS( j−1C◦−S), ζ ∈ T ∗x (G × C◦−), x ∈ Z× C◦−.

Thus the microsupport I−1 j−1C◦−S is contained in the set of all points of the form

(eX , A, η) ∈ Z× C◦− × h∗,
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where there exists ω ∈ g∗ such that (eX , A,ω, η) ∈ SS j−1C◦−S. According to the pre-
vious Lemma, this implies that ‖X‖ ≤ −A; ‖ω‖ = η (so η ∈ C+).

Thismeans that η = i(λ1(ω),λ2(ω), . . . ,λN (ω)), whereλ1(ω) ≥ λ2(ω) ≥ · · · ≥
λN (ω) is the spectrum of −iω (with multiplicities).

It is clear that the flag V•(ω) contains a k-dimensional subspace iff λk(ω) >

λk+1(ω) which is the same as < η, fk > > 0.
Denote this k-dimensional subspace by V k . We then know that XV k ⊂ V k and

TrX |V k = −i < A, ek >. On the other hand we know that

Tr− i X |V k ≤< ‖X‖, ek >,

for any X ∈ g. Hence,
< −A, ek >≤< ‖X‖, ek > .

As ‖X‖ ≤ −A, this means that < −A, ek >=< ‖X‖, ek >.
Let us now set B := −‖X‖. We see that thus defined B satisfies all the conditions.

�

7.1.1

Let us reformulate the just proven Proposition.
Let � ⊂ C− be a discrete subset.
Let X (�) ⊂ C◦− × C+ ⊂ T ∗C◦− consist of all points (A, η) such that there exists

a B ∈ � satisfying:
(1) B ≥ A;
(2) If < η, fk > > 0, then < B − A, ek >= 0.
For z ∈ Z let Sz ∈ D(C◦−) be the restriction

Sz := j−1C◦− (S|z×C◦−) = S|z×C◦− .

Let L−z := {B ∈ C−|e−B = z}. L−z is an intersection of a discrete lattice in hwith
C−, hence is itself discrete.

Proposition 7.2 can be now reformulated as:

Proposition 7.3 We have SS(Sz) ⊂ X (L−z ).

7.2 Sheaves with Microsupport of the Form X(�)

Fix a discrete subset � ⊂ C−. One can number elements of � in such a way that
� = {m1,m2, . . . ,mn, . . .} and mn is a maximum of �\{m1,m2, . . . ,mn−1} with
respect to the partial order on C−.

For x ∈ C− we set U−x ⊂ C◦− to consist of all y ∈ C◦− such that y << x .
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Proposition 7.4 Let F ∈ D(C◦−) be microsupported on the set X (�). Then there
exists an inductive system of objects in D(C◦−):

F = F0 → F1→ F2 → · · · Fn → · · · ,

such that (1) L lim−→n
Fn = 0;

(2) We have isomorphisms

Mn ⊗K KU−mn
→ Cone(Fn−1→ Fn),

for certain graded vector spaces Mn.

7.2.1 Lemma

Lemma 7.5 Let U ⊂ V ⊂ R
n be open convex sets. Let γ ⊂ R

nbe an open proper
cone. Let γ◦ ⊂ R

n be the dual closed cone; γ◦ = {v| < γ, v >≥ 0}. Suppose that
V ⊂ U − γ. Let F ∈ D(V ) be such that SS(F) ⊂ V × γ◦. Then the restriction map
R�(V, F)→ R�(U, F) is an isomorphism

Proof Let X ⊂ U × V to consists of all pairs (u, v) ∈ U × V such that v − u ∈ −γ.
Let φ : X × (0, 1)→ V ; F(u, v) = (1− t)u + tv. We see that φ is a smooth

fibration with contractible fiber of dimension n + 1. Therefore, the object φ−1F is
microsupported on the set of those 1-forms which are φ-pullbacks of 1-forms in the
microsupport of F . Let E := R

n . Identify T ∗V = V × E∗;

T ∗(X × (0, 1)) = X × (0, 1)× E∗ × E∗ × R.

We then have SS(F) ⊂ V × γ◦;

SS(φ−1F) ⊂ {(u, v, t, (1− t)η; tη;< v − u, η >)},

where η ∈ γ◦.
Here we have used the formula

< η, d((1− t)u + tv) = (1− t) < η, du > +t < η, dv > + < η, (v − u) > dt.

As v − u ∈ −γ, η ∈ γ◦, we see that

SS(φ−1F) ⊂ {(u, v, t, η1, η2, k)|k ≤ 0}.

Let S ⊂ X × (0, 1) be any open subset such that for any (u, v) ∈ X , the set of all
t ∈ (0, 1) such that (u, v, t) ∈ S is of the form (0, T (u, v)) for some T (u, v) > 0. It
then follows that the restriction map
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R�(X,φ−1F)→ R�(S;φ−1F)

is an isomorphism.
Let now S := φ−1U . It is easy to see that all the conditions are satisfied. It also

follows that the projection φU : S→ U induced by φ is a smooth fibration with
contractible fiber.

We have a commutative diagram

R�(V, F) R�(U, F)

R�(X × (0, 1);φ−1F) R�(S;φ−1F)

(66)

Coming from the Cartesian square

S X × (0, 1)

U V

.

As the fibrations S→ U and X × (0, 1)→ V have contractible fibers, the vertical
arrows in (66) are isomorphisms. So is the low horizontal arrow. Hence the upper
vertical arrow is also an isomorphism. �

7.2.2

Lemma 7.6 We have
R hom(KU−x ;KU−y ) ∼= K

if x ≤ y. Othewise R hom(KU−x ;KU−y ) = 0.

Proof If x ≤ y, we have an isomorphism

R hom(KU−x ;KU−y ) = R hom(KU−x ;KU−x ) = K

because U−x is a convex hence contractible set.
If it is not true that x ≤ y, then x does not belong to the closure of U−y and there

exists a convex neighborhood W of x in h such that W still does not intersect the
closure of U−y . Let V := U−x ∩W . According to the previous Lemma, we have an
isomorphism

R hom(KU−x ;KU−y )→ R hom(KV ;KU−y ) = 0.

Indeed, KU−y is microsupported within the set C◦− × C+. The dual cone to C+ is
γ := {x |x ≥ 0} and U−x = V − γ. �
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7.2.3 Lemma

Let E1, E be real finitely-dimensional vector spaces and letU ⊂ E1 × E be an open
convex set. Let γ ⊂ E∗ be a closed proper cone such that γ is the closure of its
interior Int γ. Let δ ⊂ E be the dual closed cone. Let x, y ∈ E , y − x ∈ Int δ. Let
V ⊂ E1 be an open subset such that V × ((x + δ) ∩ (y − Int δ)) ⊂ U . Let H :=
V × ((x + δ) ∩ (y − Int δ)).

Let us identify T ∗U = U × E∗1 × E∗. Let F ∈ D(U ) be such that SS(F) ⊂ U ×
E∗1 × γ.

Lemma 7.7 We have Rhom(KH ; F) = 0.

Proof Choose vectors e ∈ Int γ and f ∈ Int δ. We have < e, f > > 0. Let E ′ :=
Ker e. We have E = R. f ⊕ E ′; E∗ = R.e ⊕ (E ′)∗. Let ε > 0. Let Tε : E → E be
given by Tε|E ′ = Id; Tε( f ) = ε f . Let δε := Tεδ.

There exists a sequence of points yn ∈ E2, εn ∈ (0, 1) such that

(x + δ) ∩ (yn − δεn ) ⊂ (x + δ) ∩ (ym − Int δεm )

for all n < m and

⋃

n

(x + δ) ∩ (yn − Int δεn ) = (x + δ) ∩ (y − Int δ).

We then have
K(x+δ)∩(y−Int δ) = lim−→n

K(x+δ)∩(yn−Int δεn ).

Therefore, it suffices to show that

R hom(KV×((x+δ)∩(yn−Int δεn )); F) = 0.

More precisely, given z ∈ E , ε ∈ (0, 1), and any open W1 ⊂ V such that the closure
of W1 is contained in V and (x + δ) ∩ (z − δε) ⊂ (x + δ) ∩ (y − Int δ), we will
show

R hom(KW1×(x+δ∩z−Int δε); F) = 0

It follows that there exists an open convex W2 ⊂ E such that W1 ×W2 ⊂ U and

(x + δ) ∩ (z − δε) ⊂ W2.

Indeed, let V be the closure of V . Then V × ((x + δ) ∩ (z − δε)) ⊂ U . As both
sets in this product are compact and U is open, there exists a neighborhood W2 of
(x + δ) ∩ (z − δε) such that V ×W2 ⊂ U .

There exists z′ ∈ (z + Int δε) ∩W2 such that (x + δ) ∩ (z′ − δε) ⊂ W2 Let Z :=
(z′ − Int δε) ∩W2 so that z ∈ Z and for any u ∈ Z , (x + δ) ∩ (u − Int δε) ⊂ W2

(because (u − Int δε) ⊂ (z′ − Int δε)).
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Let G ⊂ W2 × Z be the following locally closed subset:

G = {(w, u)|w ∈ x + δ ∩ u − Int δε}.

Let p : W1 ×W2 × Z → W1 ×W2 and q : W1 ×W2 × Z → W1 × Z .
Let � := F |W1×W2 .
We will show Rq∗Hom(KW1×G; p!�) = 0. by computing microsupports.
Let us first study SS(KG), where KG ∈ D(W2 × Z).
We have

KG = KG1 ⊗KG2 ,

where G1,G2 ⊂ W2 × Z , G1= (x + δ ∩W2)× Z ; G2={(w, u)|w−u ∈ − Int δε}.
We have SS(KG1) is contained within the set of all points (w, u, η, 0) ∈ W2 ×

Z × E∗2 × E∗2 , where η ∈ γ.
Similarly, SS(KG2) is contained within the set of all points (w, u, ζ,−ζ), where

ζ ∈ γ1/ε (γ1/ε := T1/veγ is the dual cone to δε).
Therefore, KG is microsupported within the set of all points of the form

(w, u, η + ζ,−ζ),

where w, u, η, ζ are as above.
Hence SS(KW1×G) is contained within the set of all points of the form

(w1, w2, u, 0, η + ζ,−ζ) ∈ W1 ×W2 × Z × E∗1 × E∗2 × E∗2 .

The object p!� is microsupported within the set of all points of the form

(w1, w2, u,α,κ, 0) ∈ W1 ×W2 × Z × E∗1 × E∗2 × E∗2 ,

where α ∈ E∗1 is arbitrary and κ /∈ Int γ.
It follows that Hom(KW1×G; p!�) is microsupported within the set of all points

of the form
(w1, w2, u,α,κ− η − ζ; ζ),

where η, ζ,κ are same as before.
The map q is proper on the support of Hom(KW1×G; p!�), because the latter is

contained within the set

W1 × ((x + δ) ∩ (z′ − δε))× Z ,

and (x + δ) ∩ (z′ − δε) ⊂ W2 is compact. Therefore, Rq∗Hom(KW1×G; p!�) is con-
tained within the set of all points of the form

(w, u,α, ζ) ∈ W1 × Z × E∗1 × E∗2 ,
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where α is arbitrary, ζ ∈ γ1/ε, and there exist κ, η as above, such that κ− η − ζ = 0.
The latter is only possible if ζ = 0 (otherwise ζ + η ∈ Int γ because

γ1/ε ⊂ {0} ∪ Int γ.

Thus, Rq∗Hom(KW1×G; p!�) is microsupported within the set of all points of the
form (w, u,α, 0), i.e. is locally constant along Z . There exists a convex open subset
U0 ⊂ Z , U0 ⊂ x − δ. It follows that G ∩ (W2 ×U0) = ∅. Therefore,

Rq∗Hom(KW1×G; p!�)|W1×U0 = 0.

This implies that
Rq∗Hom(KW1×G; p!�) = 0,

because Z is convex, and our object is locally constant along Z .
Therefore,

0 = R hom(KW1×z; Rq∗Hom(KW1×G; p!�)

= R hom(KW1×G ⊗KW1×W2×z; p!�)

= R hom(KW1×(x+δ∩z−Int δε)×z; p!�)

= R hom(KW1×(x+δ∩z−Int δε);�),

as was required. �

7.2.4 Lemma

Lemma 7.8 Let x, y ∈ C−, y > x. Let Ix := {k| < x, fk >< 0}. There exists k ∈ Ix
such that < y − x, ek >> 0.

Proof Assume the contrary, i.e. < y − x, ek >= 0 for all k ∈ Ix . Let z = y − x
and let zk =< z, ek > so that zk = 0 for all k ∈ Ix . If l /∈ Ix , then zl ≥ 0 and <

z, fl >=< y, fl >≤ 0. On the other hand, < z, fl >= 2zl − zl−1 − zl+1 (we set
z0 = zN = 0). For l /∈ Ix let [a, b] ⊂ [1, N − 1] be the largest interval containing l
and not intersecting with Ix . We then have zA−1 = zB+1 = 0;

0 ≥ −zA ≥ zA − zA+1 ≥ zA+1 − zA+2 ≥ · · · ≥ zB ≥ 0

(because for any l /∈ Ix , 2zl − zl−1 − zl+1 ≤ 0). This implies that zA = zA+1 = · · · =
zB = 0. Hence, zl = 0 for all l, z = 0, and y = x , which contradicts to y > x . �
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7.2.5 Lemma

Lemma 7.9 Let F ∈ D(C◦−) be such that SS(F) ⊂ X (�) and assume that for all
l ∈ �, R�(U−l ; F) = 0. Then F = 0.

Proof Consider open subsets ofC◦− of the formU ∩U−x whereU is open and convex
and x ∈ C−. These sets form a base of topology of C◦−. Thus, it suffices to show
R�(U ∩U−x ; F) = 0 for all such U,U−x . By Lemma 7.5, we have an isomorphism

R�(U−x ; F)→ R�(U ∩U−x ; F).

Thus, it suffices to show that R�(U−x ; F) = 0 for all x .
Given x ∈ C−, let �x := {l ∈ �|l ≥ x}. Let Nx = |�x |. Let us prove the state-

ment by induction with respect to Nx .
If Nx = 0, then there are no points in X (�)which project to x . Hence x /∈ SuppF .

Therefore, there exists a convex neighborhood of U of x such that F |U = 0. There-
fore, we have an isomorphism

R�(U−x ; F)
∼→ R�(U ∩U−x ; F) = 0.

Suppose now that R�(U−x ; F) for all x with Nx < n. Prove that the same is true
for all x with Nx ≤ n. Let S ⊂ C− be the set of all points y such that �y = �x . Let
tk := supy∈S < y, ek >. As S ∈ C−, tk ≥ 0. Let

x ′ :=
N−1∑

k=1
tk fk .

Let us show x ′ ∈ C−. This is equivalent to < x ′; fl >≤ 0 for all l. We have <

x ′, fl >= 2 < x ′, el > − < x ′, el−1 > − < x ′; el+1 >. We have

2 < x ′, el >= sup
y∈S

2 < y, el >≤ sup
y∈S

< y, el−1 > + < y, el+1 >

≤< x ′, el−1 > + < x ′, el+1 > .

Thus, x ′ ∈ C−. It then easily follows that x ′ ∈ S.
It is clear that x ′ ≥ x . Let us show that the restriction map R�(U−x ′ ; F)→

R�(Ux ; F) is an isomorphism. If x ′ = x , there is nothing to prove, so assume x ′ > x .
Let I := {t x + (1− t)x ′|0 ≤ t < 1}. Let K := {k| < x ′ − x, ek >> 0}. Ler U ′ be
a convex neighborhood of 0 in h. Let U := C◦− ∩U ′. We then see that

(1) I +U ⊂ C◦− is convex and open;
(2) For U ′ small enough the following is true. Given any y ∈ I +U , we have

�y = �x ; for any l ∈ �y and for any k ∈ K , < l − y, ek >> 0.
The restriction maps
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R�(U−x ′ ; F)→ R�(I +U ; F);

R�(U−x ; F)→ R�(x +U ; F)

are isomorphisms by Lemma 7.5. Hence it suffices to show that the restriction map

R�(I +U ; F)→ R�(x +U ; F) (67)

is an isomorphism.
It follows from the definition of X (�) that F |I+U is microsupported within the

set of all points (y, η) ∈ (I +U )× h∗ such that< η, fk >= 0 for all k ∈ K . Hence,
< η, x ′ − x >= 0. This implies that that (67) is an isomorphism.

We can now assume x = x ′. By the construction of x = x ′, given any point y ∈
C−, y > x , the set �y is a proper subset of �x . If x ∈ � there is nothing to prove.
Assume x /∈ �. Let Ix := {k| < x, fk >< 0}. By Lemma 7.8 for any l ∈ �x there
exists k ∈ Ix such that < l − x, ek >> 0. It follows that there exists a neighborhood
U ′ of x inC− such that for all y ∈ U ′,�y ⊂ �x and for all l ∈ �y there exists k ∈ Ix
such that< l − y, ek >> 0. LetU = U ′ ∩ C◦−. It follows that F |U ismicrosupported
within the set of all points of the form

(u, η) ∈ U × h∗,

where < η, fk >= 0 for some k ∈ Ix .
Let V ⊂ h be the R-span of all fk , k ∈ K .
It follows that there exists ε > 0 such that x +∑

k∈Ix tk fk ∈ U ′ if for all k ∈ Ix ,
tk ∈ [0, ε]. Indeed, letU ′ = W ∩ C−, whereW is a neighborhood of x in h. It is clear
that for ε small enough, x +∑

k∈Ix tk fk ∈ W . As< x, fk >< 0 for all k ∈ Ix , for all ε
small enough and for all k ′ ∈ Ix wehave:< x +∑

k∈Ix tk fk, fk ′ >< 0. Ifλ /∈ Ix , then
< x +∑

k∈Ix tk fk, fλ >=∑
k∈Ix tk < fk, fλ >≤ 0, because < fk, fλ >≤ 0 for all

k �= λ. Thus,
x +

∑

k∈Ix
tk fk ∈ C−.

Fix ε > 0 as above. There also exists ε1 > 0 such that

x +
∑

k∈Ix
tk fk +

N−1∑

λ=1
aλeλ ∈ C◦−

as long as tk ∈ [0, ε] and 0 > aλ > −ε1.
Let Uε1 := {x +

∑
aλeλ|0 > aλ > −ε1} ⊂ h;

Mε := {
∑

k∈Ix
tk fk |0 < tk < ε} ⊂ V.
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Let A : h× V → h be the addition map. There exists an open convex neigh-
borhood U ∈ h× V of Uε1 × Mε such that A(U) ⊂ U . Let α : U → A(U) ⊂ U be
the map induced by A. As U is convex, α : U → A(U) is a smooth fibration. Let
� := α!(F |A(U)). It follows that SS(�) consists of pull-backs of 1-forms fromSS(F).
Thus, SS(�) is contained in the set of all points of the form

(A, u, η,κ) ∈ h× V × h∗ × V∗,

where (A, u) ∈ U and there exists k ∈ Ix such that < κ, fk >= 0. By Lemma 7.7,
we have

R hom(KUε1×G;�) = 0,

where G = {∑k∈K tk fk |0 ≤ tk < ε}.
For L ⊂ Ix , let GL := {∑l∈L tl fl |0 < tl < ε}. Set G∅ := {0}. We have a natural

map
KUε1×G → KUε1×G∅ .

The cone of this map is obtained from sheaves KUε1×GL , L �= ∅, by means of suc-
cessive extensions.

We also have

R hom(KUε1×GL ;�) = R�(A(Uε1 × GL);�).

We have
A(Uε1 × GL) ⊂ U−x+∑

l∈L ε fl
.

By Lemma 7.5 the restriction map

R�(U−x+∑
l∈L ε fl
; F)→ R�(A(Uε1 ,GL); F)

is an isomorphism. As x +∑
l∈L ε fl > x for L �= ∅, we have

R�(U−x+∑
l∈L ε fl
; F) = 0

and
R hom(KUε1×GL ;�) = 0

for all L �= ∅. Therefore

R hom(Cone(KUε1×G → KUε1×G∅);�) = 0.

Therefore
0 = R hom(KUε1×G∅ ;�) = R hom(U−x ; F)
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�7.2.6 Proof of Proposition 7.4

Let us construct objects Fn ∈ D(C◦−) by induction. Set F0 = F . SetMn := R�(U−mn
;

Fn−1) and
Fn := Cone(αn : Mn ⊗KU−mn

→ Fn−1),

where αn is the natural map.
We have structure maps in : Fn−1→ Fn so that the sheaves Fn form an inductive

system. This system stabilizes on any compact K ⊂ C◦− because for n large enough,
K ∩U−mn

= ∅.
Let G := Llim−→n

Fn . It follows that SS(G) ⊂ X (�) (because SS(Fn) ⊂ X (�)).
Let Un be a neighborhood of mn in C◦− such that the closure of Un in C◦− is

compact. We have
R�(U−mn

;G) ∼= R�(U−mn
∩Un;G)

∼= R�(U−mn
∩Un; FN ) ∼= R�(U−mn

; FN )

for N large enough.
Let Si := R�(U−mn

; Fi ) As follows from Lemma 7.6, Si = Si+1 for all i ≥ n;
also, by construction, Sn = 0. Thus SN = 0 for N ≥ n. Therefore,

R�(U−mn
;G) = 0

for all n and G = 0 by Lemma 7.9.
Next, Cone(Fn → Fn−1) is isomorphic to Mn ⊗KU−mn

. This proves the proposi-
tion.

7.3 Invariant Definition of the Spaces Mn

The goal of this section is to define spacesMn fromProposition 7.4 in amore invariant
way.

7.3.1 Lemma

As in the previous Lemma, let x ∈ C− and let Ix := {k| < x, fk >< 0}. As was
shown in the previous Lemma, there exists ε > 0 such that x +∑

k∈Ix tk fk ∈ C− as
long as all tk ∈ [0, ε]. Fix such a ε > 0.

Set

V := V (x, ε) := {y ∈ C◦−|∀k ∈ Ix :< y − x, ek >∈ [0, ε); ∀l /∈ Ix :< y − x, el >< 0.}
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Lemma 7.10 (1) We have

R hom(KV ;KU−x ) ∼= K[−|Ix |].

(2) Let y ∈ C−. Suppose there exists k ∈ {1, 2, . . . , N − 1} such that either k ∈ Ix
and < y − x, ek >/∈ [0, ε] or k /∈ Ix and < y, ek > < < x, ek >. Then

R hom(KV ;KU−y ) = 0.

Proof For L ⊂ Ix set
fL := ε

∑

l∈L
fl .

For every k ∈ Ix we have a natural map

KU−x+ f Ix−{k}
→ KU−x+ f Ix

.

Let Ck be the corresponding 2-term complex, we put KU−x+ f Ix
into degree 0.

Consider the complex
D :=

⊗

k∈Ix
Ck

We have
D−i =

⊕

L

KU−x+ fL
,

where the sum is taken over all |Ix | − i-element subsets L of Ix .
In particular D0 = KU−x+ f Ix

. As V ⊂ U−x+ f Ix
is a closed subset, we have a natural

map
KU−x+ f Ix

→ KV .

This map defines a map of complexes D→ KV which is a quasi-isomrorphism.
Therefore, we have an isomorphism

R hom(KV ;KU−y )→ R hom(D;KU−y ).

Let y = x , then, according toLemma7.6, R hom(KU−x+ fL
;KU−x ) = 0 for all L �= ∅.

For L = ∅, we have
R hom(KU−x ;KU−x ) = K.

Therefore, we have an isomorphism

R hom(D,KU−x ) ∼= K[−|Ix |].
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Let now y ∈ C− and k ∈ Ix be such that < y − x, ek >/∈ [0, ε].
Let Dk :=⊗

l �=k
Cl so that we have D = Dk ⊗ Ck . I.e

D ∼= Cone(Dk ⊗KU−x+ f Ix−{k}
→ Dk ⊗KU−x+ f Ix

), (68)

where the map is induced by the natural map

KU−x+ f Ix−{k}
→ KU−x+ f Ix

.

We have
D−ik ⊗KU−x+ f Ix−{k}

=
⊕

L

KU−x+ fL
,

where the sum is taken over all |Ix | − i − 1-element subsets L ⊂ Ix − {k}.
Analogously,

D−ik ⊗KU−x+ f Ix
=

⊕

L

KU−x+ fL

where the sum is taken over all |Ix | − i-element subsets L ⊂ Ix such that k ∈ L .
In view of these identifications, the −i th degree component of the map in (68) is

induced by the natural maps

KUx+ fL
→ KUx+ fL∪{k} .

If < y − x, ek >/∈ [0, ε], then these maps induce isomorphism

R hom(KUx+ fL∪{k} ;KU−y )→ R hom(KUx+ fL
;KU−y )

Hence, the map in (68) induces an isomorphism

R hom(Dk ⊗KU−x+ f Ix
;KU−y )→ R hom(Dk ⊗KU−x+ f Ix−{k}

;KU−y )

Therefore,
R hom(D,KU−y ) = 0,

as was stated.
If there exists k /∈ Ix such that < y, ek > < < x, ek >, then it follows that

R hom(KU−x+ fL
;Ky) = 0 for all L (because it is not true that x + fL ≤ y). �

7.3.2

Lemma 7.11 Let l ∈ �. There exists ε > 0 such that for any l ′ ∈ �, l ′ �= l:
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– either there exists k ∈ Il such that < l ′ − l, ek >/∈ [0, ε]
– or there exists k /∈ Il such that < l ′, ek ><< l, ek >.

Proof If there exists k ∈ {1, 2, . . . , N − 1} such that < l ′ − l, ek >< 0, then one
of the conditions is satisfied. If such a k does not exist, then l ′ ≥ l. There are only
finitely many l ′ ∈ � with this property. Hence, the statement follows from Lemma
7.8. �

7.3.3

Let mn be a numbering of � as in Proposition 7.4. Let ε be as in the proof of the
previous Lemma.

Lemma 7.12 Let ε′ ∈ (0, ε). We have

Mn
∼= R hom(KV (mn ,ε′); F)[|Imn |]

Proof Follows from Proposition 7.4 and two previous Lemmas. �

7.4 The Sheaf Sz

Proposition 7.4 and Lemma 7.12 applies to j−1C◦− Sz with � = L
−
z . We would like to

rewrite the expression from Lemma 7.12 in a more convenient way.
Let x ∈ h and I ⊂ {1, 2, . . . , N − 1}. let W (I, x) ⊂ h be given by

W (I, x, ε) = {y : ∀k ∈ I :< y − x, ek >∈ [0, ε); ∀k /∈ I :< y − x, ek >< 0}.

For x ∈ C− and ε as in Sect. 7.3.1, we have

V := V (x, ε) = W (Ix , x, ε) ∩ C◦−,

Set W := W (Ix , x, ε). Set I := Ix .
For any F ∈ D(h) we have an induced map of sheaves

R homh(KW ; F)→ R homh(KV ; F) = R homC◦−(KV ; j−1C◦− F). (69)

Lemma 7.13 Suppose that SS(F) ⊂ h× C+. Then the map (69) is an isomorphism

Proof For z ∈ h setUz = {y ∈ h|y << z}. Lemma 7.5 implies that for any z ∈ C−,
the restriction map

R hom(KUz ; F)→ R hom(KU−z ; F)
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is an isomorphism.
For k ∈ I consider the following 2-term complex C ′k

KUx+ f I−{k} → KUx+ f I
,

where we use the notation from proof of Lemma 7.10. Let

D′ :=
⊗

k∈I
C ′k . (70)

Similar to D, we have a quasi-isomorphism

D′ → KW .

We also have
(D′)−i =

⊕

L

KUx+ fL
,

where the sum is taken over all |I | − i-element subsets of I . We have natural maps
Ck → C ′k which induce maps D→ D′. The latter map is induced by maps

KU−x+ fL
→ KUx+ fL

According to Lemma 7.5, the induced map

R hom(KUx+ fL
; F)→ R hom(KU−x+ fL

; F)

is an isomorphism for all F such that SS(F) ⊂ h× C+. This implies the statement.
�

7.4.1

Lemma 7.14 Let F ∈ D(h) be constant along fibers of projection h→ h/R. fk for
some k. Then for all I ⊂ {1, 2, . . . , N − 1} such that k ∈ I and for all ε > 0, we
have

R hom(KW (I,x,ε); F) = 0

Proof Follows easily from the quasi-isomorphism D′ → KW (I,x,ε). �
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7.5 Periodicity

Let us get back to the object j−1C◦− Sz . In this case � = L
−
z . There exists ε > 0 such

that the condition of Lemma 7.11 is satisfied for all l ∈ L
−
z . Fix such a ε throughout.

Proposition 7.4 applies to F = Sz . by Lemma 7.12 and (69) we have an isomorphism

Mn = R hom(KV (mn ,ε);Sz)[−|Imn |] = R hom(KW (Imn ,mn ,ε);Sz)[−|Imn |].

For z ∈ h and I ⊂ {1, 2, . . . , N − 1} and F ∈ D(h)

�I ;z(F) := R hom(KW (I,z,ε); F)[|I |]

Our goal is to prove the following theorem

Theorem 7.15 For anym ∈ h, any I ⊂ {1, 2, . . . , N − 1} and any k ∈ I there exists
a quasi-isomorphism

�I ;mSz → �I ;m−2πekSze−2πek [−Dk]

where Dk = 2k(N − k).

The rest of the current subsection will be devoted to proving this Theorem.
In the next two subsections we will prove the main auxiliary result towards the

proof.

7.5.1 Sheaves S|G×−2πek

Recall that S ∈ D(G × h). Let �k := S|G×−2πek , so that �k ∈ D(G).

Lemma 7.16 We have an isomorphism�k = KWk , where Wk ⊂ G is an open subset
consisting of all points of the form

Wk = {e−Y |‖Y‖ < 2πek}.

Proof As follows from the proof of Theorem 6.1 �k can be constructed as follows.
Let us decompose −2πek = A1 + A2 + · · · AM , where Ai ∈ V−b . For A ∈ C◦− set
U (A) ⊂ G; U (A) := {eX |X ∈ g; ‖X‖ << −A}. One then has

�k
∼= KUA1

∗G KUA2
∗G · · · ∗G KUAM

[M dim g]

Let g ∈ G. It follows that �k |g �= 0 only if there exist Xk ∈ g; ‖Xk‖ << −Ak

such that g = eX1eX2 · · · eXM . According to Lemma 10.4, this implies that g = eY ,
where ‖Y‖ << −(A1 + · · · + AM) = 2πek . Thus, fibers of �k at any point outside
of Wk are zeros.

Let H := �k |Wk . It then suffices to prove that H ∼= K[dim g].
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Let us find SS(H). Observe that the exponential map identifies Wk with {X ∈
g|‖X‖ << 2πek}. Lemma 7.1 implies that (g,ω) ∈ SS(H) only if there exists X ∈ g
such that g = eX ; ‖X‖ ≤ 2πek , [X,ω] = 0; < ‖X‖ − 2πek, edr (ω) >= 0 for all r .
As g ∈ U−2πek and ‖X‖ ≤ 2πek we must have ‖X‖ << 2πek , so that < ‖X‖ −
2πek, el >< 0 for all l. This means that ω = 0.

Thus, H is a constant sheaf.
Let us now find H |e. We have H |e = Se|−2πek .
However, as follows from Proposition 7.2, Se is constant in the domain consisting

of all A ∈ C− such that there is no l ∈ L
−
0 , l �= 0, A ≥ l. Both −2πek and −e1/100

lie in this domain. Thus we have an isomorphism

Se|−2πek = Se|−e1/100 = K[dim g].

This finishes the proof. �

Let us compute Hk := R hom(Ke−2πek ;�k).
Let us choose a small neighborhoodU of e−2πek inG so thatU = {e−Xe−2πek |‖X‖

<< b}. Let us describe the setUk := U ∩Wk . Let g ∈ U ∩Wk . As g ∈ Wk , we have
g = e−Y where ‖Y‖ << 2πek which simply means that λ1(Y ) < 2π(N − k)/N ;
λN (Y ) > −2πk/N , where

λ1(Y ) ≥ λ2(Y ) ≥ · · · ≥ λN (Y )

is the spectrum of a Hermitian matrix Y/ i .
As g ∈ U , there must exist X , ‖X‖ << b such that e−Y = e−Xe−2πek , or

eY = e2πek eX .

Observe that e2πek = e−2πk/N Id. Therefore, one can number the spectrum of X/ i
in such a way that λ j (X)− 2πk/N − λ j (Y ) ∈ 2πZ, j = 1 . . . N . In other words,
there exist integers mi such that λ j (Y ) = −2πk/N + λ j (X)+ 2πmi , where mi are
integers.

As−2πk/N < λ j (Y ) < 2π(N − k/N ) and λ j (X) are small we see that m j = 0
or m j = 1. Since Tr(Y ) = Tr(X) = 0,

∑
m j = k. Since λ1(Y ) ≥ λ2(Y ) ≥ · · · , we

conclude that m1 = · · · = mk = 1; mk+1 = mk+2 = · · ·mN = 0. We then see that

0 > λ1(X) ≥ λ2(X) ≥ · · · ≥ λk(X);

λk+1(X) ≥ · · · ≥ λN (X) > 0.

In other words, the set Wk consists of all elements of the form e−2πek e−X
where‖X‖ << b and X/ i has k negative eigenvalues and N − k positive eigenval-
ues (and no 0 eigenvalues). Let Hk ⊂ g be an open subset consisting of all matrices
A such that A/ i has k negative and N − k positive eigenvalues. It now follows that
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R homG(Ke−2πek ;�k) ∼= R homg(K0;KHk [dim g]).

Let M◦ ⊂ M ⊂ E ⊂ G(k, N )× g be defined as follows:

E = {(V, X)|XV ⊂ V };

M = {(V, X)|XV ⊂ V ; X/ i |V ≥ 0; X/ i |V⊥ ≤ 0};

M◦ = {(V, X)|XV ⊂ V ; X/ i |V > 0; X/ i |V⊥ < 0}.

It follows that M ⊂ E ⊂ G(k, N )× g are closed embeddings and that M◦ ⊂ M
is an open embedding. The projection π : E → g is proper. The natural projection
pE : E → G(k, N ) is a complex unitary bundle; E = S ⊗ S ⊕ S⊥ ⊗ S⊥, where S
is the k-dimensional tautological bundle over G(k, N ).

Let j : M◦ → E be the open inclusion. Then kHk = Rπ! j!KM◦ = Rπ∗ j!KM◦ .
Therefore,

R homg(K0;KHk [dim g]) = R homg(K0; Rπ∗ j!KM◦ [dim g])

= R homM(π−1K0; j!KM◦ [dim g])

Let i : G(k, N )→ E ; i(V ) = (V, 0) be the zero section. We then have

R homg(K0;KHk [dim g]) = R homM(i∗KG(k,N ); j!KM◦ [dim g]).

It is easy to see that the natural map

R homM (i∗KG(k,N ); j!KM◦ [dim g])→ R homM (i∗KG(k,N );KE [dim g]) = R�(G(k, N ); i !KE )[dim g]

is a quasi-isomorphism. We have a natural isomorphism i !KE
∼= orE [− dimR E]

where orE is the sheaf of orientations on E which is canonically trivial on every
complex bundle. Thus i !kE [dim g] = KG(k,N )[− dim E + dim g] = KG(k,N )[dimG
(k, N )] ∼= DG(k,N ), where DG(k,N ) is the dualizing sheaf onG(k, N ). Finally we have
R�(G(k, N ); D) ∼= H∗(G(k, N ); k). Thus we have established
Proposition 7.17 There is a natural isomorphism

R−• hom(Ke−2πek ;�k) ∼= H•G(k, N ).

7.5.2

Let Dk := dimR G(k, N ) = 2k(N − k). Let β ∈ HDk (G(k, N )) be the fundamental
class.
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According to the previousProposition, the elementβ defines amap Bk : Ke−2πek →
�k[−Dk] in D(G). Let Ck := ConeBk .

Proposition 7.18 The singular support of the sheaf Ck is confined within the set

{(g,ω)| < |ω|, fk >= 0}

Proof First, consider the case g �= e−2πek .
Then (g,ω) ∈ SS(Ck) iff (g,ω) ∈ SS(�k). The sheaf�k ismicrosupportedwithin

the set
(eX ,ω),

where ‖ − X‖ ≤ 2πek and if < ω, f j >�= 0, then < ‖ − X‖, e j >= 2π < ek, e j >

for all j .
Therefore, it suffices to show that < ‖ − X‖/2π, ek > < < ek, ek >. Assume

the contrary and let η := ‖ − X‖/2π. Let ηl :=< η, el >; εl =< ek, el >. Set η0 =
ηN = ε0 = εN = 0. We have 0 ≤< η, fl >= 2ηl − ηl−1 − ηl+1. Therefore, ηl −
ηl−1 ≥ ηl+1 − ηl . These convexity inequalities imply

ηl ≥ l/kηk

for all l ≤ k;
ηl ≥ (N − l)/(N − k)ηk,

for all l ≥ k.
If ηk = εk , these inequalities mean that ηl ≥ εl for all l. However, we know that

η ≤ ε. Hence, η = ε and ‖ − X‖ = 2πek , hence eX = e−2πek which is a contradic-
tion.

Thus, < ‖ − X‖, ek > < < 2πek, ek >, therefore, < η, fk >= 0.
Let us now consider the case g = e−2πek . It suffices to consider the restriction

�k |U∩Wk as in the previous theorem. Let V := {X ∈ g||X | << b} We then have
an identification I : V → U ; X �→ e−Xe−2πek . we know that I−1�k

∼= Rπ∗KM◦

[dim g]|Vk an the mapKe−2πek → �k[dk] is induced by a certain mapK0 → Rπ∗KM◦

[dim g]. Namely, this map comes from the identification

hom(K0; Rπ∗KM◦ [dim g])→ hom(KG(k,N );KM◦ [dim g])→ hom(KG(k,N );KE [dim g])

= H∗(G(k, N )).

Note that the sheavesK0 and Rπ∗KM◦ are dilation invariant, sowemay study their
Fourier-Sato transforms. Let us find (Rπ∗KM◦)

∨. Let E∗ ∼= E be the dual bundle over
G(k, N ); let M∗ ⊂ E∗ be the closed cone dual to the open convex cone M◦ ⊂ E .
Upon the identification E∗ = E by means of the scalar product, we identify M∗
with the set of all pairs (X, V ) ∈ g× G(k, N ) such that XV = V and the smallest
eigenvalue of X/ i |V is greater or equal to the largest eigenvalues of X/ i |V⊥ .
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Let P : g× G(k, N )→ E∗ be the map dual to π : E → g. Let pg : g× G(k, N )

→ g be the projection. We then have

Rπ∗K∨M◦ = pg!P−1KM∗ [− dimR E/G(k, N )]

We then see that
P−1KM∗ = KZ ,

where Z ⊂ g× G(k, N );

Z = {(X, V )|XV ⊂ V ;λminX |V ≥ λmaxX |V⊥}.

Thus, Rπ∗KM◦ [dim g]∨ = Rpg!KZ [dim g− dim E/G(k, N )] = Rpg!KZ [dimG
(k, N )]. Next, K∨0 = Kg. The map Bk induces a map of Fourier-Sato transforms:

B∨ : Kg→ Rpg!KZ

Let us specify this map. By the conjugacy (since pg is proper), one can instead
specify a map

B∨conj : p−1g Kg = Kg×G(k,N ) → KZ .

One can show that this map is simply the natural map induced by the closed embed-
ding Z ⊂ g× G(k, N ).

Let us now consider an open set U ⊂ g consisting of all X ∈ g such that
λk(X) > λk+1(X). We then see that the projection Z ×g U → U is a homeomor-
phism. Therefore, ConeB∨|U = 0 that is ConeB∨ = (ConeB)∨ is supported on the
complement ofU which is precisely the set of all X ∈ g such that < ‖X‖, fk >= 0.
This proves the statement. �

7.5.3

Let l ∈ h. Let Tl : G × h→ G × h be the shift in l: Tl(g, X) = (g, X + l). We know
that T−1l S = S|G×l ∗G S (Lemma 6.9). Therefore, the maps Bk induce maps

B ′k : Ke−2πek ∗G S→ S|G×e−2πek ∗G S[−Dk] = T−1−2πekS[−Dk], (71)

where Dk = dimG(k, N ). The previous Proposition implies that

Corollary 7.19 ConeBk ′ is locally constant on the fibers of the projection G × h→
G × h/ fk .

Proof We have
ConeBk ′ ∼= Ck ′ ∗G S.
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Using the previous Proposition as well as Theorem 6.1 one can easily show that
1-forms from SS(Ck ′ ∗G S) do vanish on the fibers of the projection G × h→ G ×
h/ fk . �

Let z ∈ Z and restrict (71) onto ze−2πek ∈ G. We will get a map

Bg
k : Sz → T−1−2πekSze−2πek [−Dk].

It follows that ConeBg
k is also constant along the fibers of the projection h→ h/ fk .

7.5.4

The map Bg
k induces a map

�I,m(Sz)→ �I,mT
−1
−2πekSze−2πek [−Dk].

for all I and m. This is the same as a map

�I,mSz → �I,m−2πekSze−2πek [−Dk]. (72)

Proposition 7.20 If k ∈ I , the above map is a quasi-isomorphism.

Proof Follows from Lemma 7.14. �

Theorem 7.15 now follows directly from the previous Proposition.

7.5.5 Corollary from Theorem 7.15

Let u ∈ h, u = 2π
∑

xi ei , set D(u) := −∑
xk Dk .

We then see:

Corollary 7.21 Let z ∈ Z, m ∈ Lz ∩ C−. Then there exists an isomorphism

�m,ImSz
∼= �0,ImSe[D(m)]. (73)

Proof Follows directly from Theorem 7.15. �

7.6 Computing �0,ISe

Let I := { j1 < j2 < · · · < jr }. Let FL(I ) be the partial flag manifold with dimen-
sions of the subspaces being j1, j2, . . . , jr . We will show
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Proposition 7.22
�0,ISe

∼= H •(FL(I )).

Proof Let b be as in Sect. 6. Let Z ∈ C◦−;−Z << b. One can choose ε so small that
Z +∑

k ak fk ∈ C◦− if 0 ≤ ak ≤ ε.
For A ∈ h, set SA := S|G×A. We have

�0,ISe = R homh(KW (I,0,ε);Se)[|I |]

For δ > 0, let
W (I, 0, ε, δ) ⊂ h

be the set of all points A such that for all k ∈ I , < A, ek >∈ [0, ε); for all k /∈ I ,
−δ << A, ek >< 0.

We have a natural map KW (I,0,ε,δ) → KW (I,0,ε). Using the complex D′ from 70
one can easily prove that for any object in D(h) whose microsupport is contained
within h× C+, in particular, for Se, the natural map

R homh(KW (I,0,ε);Se)→ R homh(KW (I,0,ε,δ);Se)

is an isomorphism.
One can choose ε, δ so small that Z +W (I, 0, ε, δ) ⊂ Vb ∩ C◦−. Set W :=

W (I, 0, ε, δ).
By definition, we have:

R hom(KW ;Se)

= R homG×h(Ke � KW ;S).

We have a endofunctors on D(G × h): E± : F �→ S±Z ∗G F . The composition

E+E−(F) = SZ ∗G S−Z ∗G F = SZ−Z ∗G F = S0 ∗G F = F

is isomorphic to the identity (we have use an isomorphism SZ1 ∗G SZ2 = SZ1+Z2

which follows directly from (64).) Thus, E+E− ∼= Id; likewise E−E+ ∼= Id, so E±
are quasi-inverse autoequivalences of D(G × h). Hence, we have

R homG×h(Ke � KW ;S) = R homG×h(SZ � KW ; T−1Z S)

= R homG×h(SZ � KZ+W ;S),

where the last equality follows from Lemma 6.9. As Z +W ⊂ C◦− ∩ Vb, we have:

R hom(KW ;Se) = R homG×(C◦−∩Vb)(SZ � KZ+W ;S|G×(C◦−∩Vb))
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Let V := C◦− ∩ Vb. As follows from the proof of Theorem 6.1, we have

S|G×V = K{(eX ,v)|‖X‖<<−v}[dim g],

Analogously, SZ := {eX |‖X‖ << −Z}[dim g].
Let VZ ⊂ g, VZ := {X |‖X‖ << −Z}. Let � ⊂ g× h;

� := {(X, A)|‖X‖ << −A}.

We then have
�I,0Se = R homg×h(KVZ � KZ+W ;K�)[‖I‖]

Let O be the closure of � in g× h. As � is an open proper cone, we have

K� = RHom(KO;Kg×h).

Therefore,

�I,0Se = R homg×h((KVZ � KZ+W )⊗KO;Kg×h)[|I |]

Let A := (VZ × (Z +W )) ∩O so that

(KVZ � KZ+W )⊗KO = KA.

Let p : g× h→ g be the projection. We have Kg×h = p!Kg[− dim h]. Hence, by
the conjugacy,

�I,0Se = R homg(Rp!KA;Kg)[− dim h+ |I |]. (74)

Let X ∈ g and consider

(Rp!KA)|X = R�c(h;KA∩X×h).

Let Xk =< ‖X‖, ek >; Zk =< Z , ek >. We see that A ∩ X × h is non-empty
only if X ∈ VZ , i.e. Xk + Zk < 0 for all k. In this case we see that A ∩ X × h
consists of all points of the form (X, Z +∑N

k=1 tk fk), where 0 ≤ tk < ε for all k ∈ I ;
−δ < tk < 0 for all k /∈ I ; Zk + tk + Xk ≤ 0 for all k. Let L be the set of all k ∈ I
such that Zk + Xk > −ε. One then sees that these conditions are equivalent to

0 ≤ tk ≤ −Xk − Zk

for all k ∈ L;

0 ≤ tk < ε
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for all k ∈ I\L;

−δ < tk < 0.

for all k /∈ I .
It follows that R�c(h;KA∩X×h) = 0 if L �= I . Thus, the object Rp!KA is sup-

ported on an open subset Eε ⊂ g consisting of all points X such that Xk + Zk < 0
for all k /∈ I and −ε < Xk + Zk < 0 for all k ∈ I .

Let Fε := Eε × h ∩ A. It follows that the natural map Rp!KFε
→ Rp!KA is an

isomorphism.
One also has a natural isomorphism

Rp!KFε
= KEε

[|I | − N + 1] = KEε
[|I | − dim h].

We can substitute this into (74):

�I,0Se = R homg(KEε
;Kg)

which can be rewritten as
�I,0Se[‖I‖] = H •(Eε),

because Eε ⊂ g is an open subset.

Lemma 7.23 For ε > 0 small enough, we get:

∀Y ∈ Eε; ∀i /∈ I :< Y, fi >< 0.

Proof We have < Y, fi >=< X + ∑
t j f j , fi ><< X, fi > + ti < fi , fi >,

because < fi , f j >≤ 0 for all i �= j . Next,

< X, fi > +ti < fi , fi >≤< X, fi > +2ε < 0

for ε small enough. �

This implies that for any X ∈ Eε and for every k ∈ I , we have a well-defined
k-dimensional eigenspace space V k(X) spanned by the eigenvectors of X/ i with
top k eigenvalues. The spaces V •(X) form a flag from FL(I ). Thus we have a map
P : Eε → FL(I ); P(X) := V •(X).

Let E → FL(I ) be the vector bundle whose fiber at V • ∈ FL(I ) consists of all
unitary matrices preserving V •. One can easily check that Eε ⊂ E is an open convex
subset. Therefore, P induces an isomorphism H •(Eε) = H •(FL(I )) so that

�I,0Se[|I |] ∼= H •(FL(I )).

�
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7.6.1 The Sheaf j−1
C◦−

S, up to an Isomorphism

Let us combine Proposition 7.4, Corollary 7.21, and Proposition 7.22. We will then
get the following statement:

Proposition 7.24 Let g ∈ Z. There exists an inductive system of sheaves on C−:

j−1C◦− Sg = F0 → F1→ · · · → Fn → · · ·

such that

Llim−→n
Fn = 0;

Cone(Fn−1→ Fn) ∼= KU−mn
⊗ H∗(FL(Imn ))[D(mn)],

where the sequence m1,m2, . . . ,mn, . . . consists of all elements of Lg ∩ C−, each
term occurring once.

It turns out that this Proposition allows us to recover the isomorpism type of
j−1C◦− Sg .

Let An := KU−mn
⊗ H∗(FL(I cmn

))[D(mn)].
Lemma 7.25 There exist maps

in : An → F0

such that for every n the triangle

⊕

n′≤n
An′ → F0 → Fn (75)

is exact.

Proof Let us prove the statement by induction in n.For n = 1 we have a natural map
i1 : A1→ j−1C◦− Sg = F0 whose cone is F1; this proves the base.

Let us now proceed to the induction step.
Suppose we have aready constructed an exact triangle as in (75) for some n. Let

us apply to this triangle the functor R hom(An+1, ·).
We will then get an exact sequence

R0 hom(An+1; j−1C◦− Sg)→ R0 hom(An+1; Fn)→
⊕

n′≤n
R1 hom(An+1; An′). (76)

Observe that the last arrow in this sequence is 0: becauseofLemma7.6 andbecause
all the spacesMi are concentrated in the evendegrees, therefore, Rodd hom(Ai , A j ) =
0 for all i, j .
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Therefore, the left arrow in (76) is surjective. Next, we have a map En+1 : An+1 =
Cone(Fn → Fn+1)→ Fn . Let in+1 : An+1→ Sg be the lifting of En+1 (which exists
precisely because of surjectivity of the left arrow in (76). It is straightforward to see
that so chosen in+1 satisfies the conditions �

Theorem 7.26 There exists an isomorphism

⊕

l∈Lg∩C−
Al → j−1C◦− Sg,

where Al := KU−l ⊗ H∗(FL(Il))[D(l)].
Proof Indeed, the previous Lemma implies that the map

⊕
n in :

⊕
n An → j−1C− Sg

is an isomorphism, whence the statement. �

8 B-Sheaves

For a manifold X let ComplexesX be the dg-category of complexes of sheaves on
X .

Suppose X is equipped with an action of the monoid L−. Let Tl : X → X be the
translation by l ∈ L−. In all our examples all Tl will be open embeddings.

Let F ∈ ComplexesX and l ∈ L−. Set A(l) := AF (l) := hom(F, T−1l F). These
complexes obviously form a L−-graded dg-algebra to be denoted by A = AF .

Let B be another L−-graded dg-algebra. We define a B-sheaf structure on F as
a L−-graded dg-algebra homomorphism B → AF . B-sheaves form a triangulated
dg-category in the obvious way.

We will only use algebras B of a special type. Namely, We will assume that:

– B(l) is concentrated in degrees ≤ −D(l);
– the cohomology H •(B(l)) is concentrated in degree−D(l) and is one dimensional;
– one can choose generators bl ∈ H−D(l)(B(l)) which are stable under the product
induced by the product on B.

Call such a B homotopically standard.
Let b be aL−-graded dg-algebra defined by setting b(l) = k[D(l)]. Let 1l := 1 ∈

k[D(l)]−D(l) be generators.
We then define the product on b by setting 1l1m = 1l+m . It follows that we have

a unique L−-graded dg-algebra homomorphism B → b such that the induced map
H •(B)→ H •(b) = b sends bl to 1l .

We call a B-sheaf Facyclic if it is acyclic as a complex of sheaves on X (i.e. for
each x ∈ X the complex of fibers Fx is acyclic).

Following [2] we can produce the derived dg-category by taking the quotient with
respect to the full subcategory of acyclic objects.

However, in our situation one can prove
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Proposition 8.1 The category of B-sheaves has enough injective objects.

Remark. By an injective object we mean any B-sheaf X such that for any acyclic
B-sheaf Z , the complex hom(Z , X) is acyclic.

Proof Let A be a B-sheaf. Let βA be another B-sheaf such that βA :=∏
l∈L− hom

(B(l); T−1l A) We then get a B-structure on βA and a natural map of B-sheaves
A→ βA. Let now A→ A′ be a termwise injective map in the category of complexes
of sheaves on X (we forget the B-structure) such that A′ is injective. We then have
a termwise injective map of B-sheaves

A ↪→ β(A) ↪→ βA′

One sees that βA′ is injective: given any B- sheaf T on X we have

hom(T,βA′) = hom(T, A′),

where hom on the RHS is in the category of complexes of sheaves on X . As A′ is
injective, we see that hom(T, A′) ∼ 0 as long as T is acyclic. �

Aswe know, in this case, the derived category is equivalent to the full subcategory
of injective objects.

We will only need the homotopy category of the derived cateogory of B-sheaves.
Denote this category by DBShX .

Let f : X1→ X2 be a L−-equivariant map We then have a right derived functor
of f∗: R f∗ : DBShX1 → DBShX2 : if we choose the category of injective B-sheaves
on X1 as a model for DBShX2 then R f∗ is given by the termwise application of the
functor f∗. Similarly, one defines functors R f!, f −1. One can also define a functor
f ! as a right adjoint to R f!, but we won’t need this functor.
Recall that we have a natural map p : B → b. This map induces an obvious

functor p−1 from the category of b-sheaves to the category of B-sheaves on X and
one sees that this map has a right adjoint p∗. This functor admits a right derived
π := Rp∗ : DBShX → DbShX . This functor is an equivalence.

8.0.1 A B-Sheaf Structure on the Sheaves S and S

Let S ∈ D(G × h) be as in Theorem 6.1. Choose an injective representative
for S, to be denoted by the same symbol S. Define a diagonal L−-action on
G × h by setting l.(g, A) := (elg, A + l). For l ∈ L− consider the complex B ′(l) :=
homG×h(S; T−1l S) and compute its cohomology:

H •(B ′(l)) = R• hom(S; T−1l S).

Let i0 : G → G × h, i0(g) = (g, 0). By Theorem (6.8) we have
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R• hom(S; T−1l S) = R• homG(i−10 S; i−10 T−1l S).

We know that i−10 S = KeG . Thus,

R• homG(S; T−1l S) = R• homG(Ke; i−10 T−1l S).

As T−1l S is non-singular along i0(G) ⊂ G × h, we have an isomoprphism
i−10 T−1l S ∼= i !0T

−1
l S[dim h] = i !0T

!
l S[dim h]. Thus,

R• homG(Ke; i−10 T−1l S[dim h]) = R• homG(Ke; i !0T !l S[dim h])

= i !(e,0)T
!
l S[dim h] = i !

(el ,l)S[dim h]

= i !lSl [dim h].

Here i(e,0); i(el ,l) denote embeddings of the points specified intoG × h, and, likewise,
il is the embedding of the point l into h.

Theorem 7.26 implies that H<D(l)i !lSel = 0 and HD(l)i !lSel is one dimensional.
Indeed, one sees that given l ′ ∈ C−, we have: i !lKU−l′

∼= K[− dim h] for all l ′ ≥ l;
otherwise i !lKU−l′ = 0. Therefore,

i !lSel [dim h] ∼=
⊕

l ′∈Lel ,l
′≥l

H •(FL(Il ′))[D(l ′)],

and the lowest degree contribution comes from H 0(FL(Il))[D(l)] = K[D(l)].
Set B(l) := τ≤−D(l)B ′(l). It then follows that B is a homotopically standard L−-

graded algebra. We thus automatically get a B-sheaf structure on S. Let IZ : Z×
h→ G × h be the embedding. This embedding is L−-equivariant, where L−-action
on Z× h is defined by

Tl(c, A) = (elc; A + c).

Hence we get a B-sheaf structure on S := I !ZS (asS is injective and IZ is a closed
embedding one can compute I !Z by taking sections supported on Z× h ⊂ G × h.

8.1 A B-Sheaf j−1
C◦−

S on Z × C◦−

Let jC◦− : Z× C◦− → Z× h be the open embedding. The L−-action on Z× h pre-
serves Z× C◦−, thus making the embedding jC◦− to be L−-equivariant.

We then have a B-sheaf j−1C◦− S. Let p : B → b be the canonical map. Let us choose
an injective model for Rp∗S, to be still denoted by S.

Let us study the b-structure on j−1C◦− S. Let I ⊂ {1, 2, . . . , N − 1}. Let eI :=∑
i∈I ei .
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According to Theorem 7.26 we have a map

i I : H∗(FL(I ))[D(−2πeI )] ⊗Ke−2πeI ×U−−2πeI → j−1C◦− S

Set H(I ) := H •(FL(I )). For I ⊂ J we have a tautological projection

FL(J )→ FL(I )

hence an inducedmap H(I )→ H(J ). Hence H is a functor from the poset of subsets
of {1, 2, . . . , N − 1} to the category of graded vector spaces.

One can show that this functor is actually free, i.e:

Lemma 8.2 There exist graded vector spaces G(I ), where I ⊂ {1, 2, . . . , N − 1}
such that we have decompositions

H(I ) =
⊕

J⊂I
G(J ), (77)

which are compatiblewith the structuremaps H(I1)→ H(I2), I1 ⊂ I2 in the obvious
way.

Proof Let us use Schubert cellular decomposition of partial flag varietiesFL(I ). Let
f ⊂ FL(I ) be the flag such that fr ⊂ C

N consists of all points (v1, v2, . . . , vN ) ∈ C
N

such that vk = 0 for all k > ir .
Let H := GLN (C). Let P(I ) ⊂ H be the standard parabolic subgroup, namely

the stabilizer of f . We have FL(I ) = H/P(I ). Let W ⊂ G be the standard Weyl
group. For any w ∈ W/W ∩ P(I ) let [w] ∈ H/P(I ) be the image of [w] and
let CI,w := Cw := B.[w] where B ⊂ H is the standard Borel subgroup of upper-
triangular matrices. It is well known that the cells Cw, w ∈ W/W ∩ P(I ) form a
cellular decomposition of FL(I ). We have dimR Cw = 2DI (w), where DI (w) is
defined as follows. Let πI : {1, 2, . . . , N } → {1, 2, . . . , |I |} be defined by letting
πI (k) be the minimal number r such that ir ≥ k.

In particular, for any M ∈ P(I ), we have Mi j = 0 as long as πI (i) > πI ( j). Let
w′ ∈ W be any representative of w ∈ W/W ∩ P(I ).

One then has that DI (w) is equal to the number of all pairs (i, j) such that
i, j ∈ {1, 2, . . . , N }, i < j and πI (w

−1(i)) > πI (w
−1 j).

Thus we have a basis of H∗(FL(I )) labelled by the cells Cw. Let cw ∈ H2DI (w)

FL(I ) be the class corresponding to Cw.
We see that the map pI J : FL(I )→ FL(J ) is cellular. We have pI JCw ⊂ Cw′

where w′ is the image of w ∈ W/W ∩ P(I ) in W/W ∩ P(J ). One sees that
dimCw′ ≤ dimCw. It then follows that pI J∗cw = cw′ is DI (w) = DJ (w

′). Other-
wise pI J∗(cw) = 0.

Let us describe the dual map p∗I J . Let cw ∈ H •(FL(I ) be the element dual to
cw. Let us identify W/W ∩ P(I ) with the set V (I ) of partitions {1, 2, . . . , N } =
A1 � A2 � A|I | where |Ar | = ir − ir−1 and we assume i0 = 0, i|I | = N . We have a
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map QJ I : V (J )→ V (I ) defined as follows. Pick t ≤ N . Let im = jt−1; iM = jt .
Order At and subdivide it into several subsets, such that the first subset consist of the
first im+1 − im elements of At ; the second subset consists of the next im+2 − im+1
elements of At , etc. This way we get a partition QJ I A. One sees that QJ I = p∗I J .
For A ∈ V (I ) let ∼A be an equivalence relation on I given by i1 ∼A i2 if for all
j1 < j2, j1, j2 ∈ [i1, i2], A j1 < A j2 . Call A ∈ V (I ) elementary if ∼A is trivial. One
then can set G(I ) to be the span of all elementary A ∈ V (I ). �

Let us now consider through maps

jI : G(I )⊗Ke−2πeI ×U−−2πeI
[D(−2πeI )] → H(I )⊗Ke−2πeI ×U−−2πeI

[D(−2πeI )] → j−1C◦−
S.

Introduce a notation: for l ∈ L−, set Ul := el ×U−l ⊂ Z× C◦−. Denote GI :=
G(I )⊗Ke−2πeI ×U−2πeI [D(−2πeI )]. The b-structure on j−1C◦− S gives rise to maps

Tl∗GI ⊗ b(l)→ Tl∗ j−1C◦− S ⊗ b(l)→ Tl∗T−1l j−1C◦− S = j−1C◦− S

for all l ∈ L−. Take the direct sum:

ι :
⊕

I⊂{1,2,...,N−1};l∈L−
Tl∗GI [D(l)] → j−1C◦− S (78)

(we have replaced b(l) = k[D(l)]). The sheaf on the LHS has an obvious structure
of a b-sheaf and the map ι is a map of b-sheaves.

Furthermore the b-sheaf on the LHS splits into a direct sum of b-sheaves

S
I :=

⊕

l∈L−
Tl∗GI [D(l)] (79)

thus we have a map of b-sheaves

ι :
⊕

I⊂{1,2,...,N−1}
S
I → S (80)

For future purposes, let us rewrite the definition of SI . We have

S
I :=

⊕

l∈L−
Tl∗GI [D(l)]

= GI [D(−2πeI )] ⊗ [
⊕

l∈L−
KU−2πeI+l [D(l)]]

= GI [D(−2πeI )] ⊗ T−2πeI ∗[
⊕

l∈L−
KUl [D(l)]]
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Let
X :=

⊕

l∈L−
KUl [D(l)] (81)

with the obvious b-structure. We then have an isomorphism of b-sheaves:

S
I ∼= GI [D(−2πeI )] ⊗ T−2πeI ∗X . (82)

Proposition 8.3 The map (80) is a quasi-isomorphism.

Proof For any z ∈ Z and any F ∈ D(Z× C◦−) we set Fz ∈ D(C◦−); Fz := F |z×C◦− .
We have induced maps

ιz :
⊕

I

S
I
z → j−1C◦− Sz,

and it suffices to show that these maps are isomorphisms for all z ∈ Z. We know
(Proposition 7.3) that SS( j−1C◦− Sz) ⊂ X (Lz−). One can easily check that SI

z ∈ X (Lz−)
for all I . As follows from Proposition 7.4 and Lemma 7.12, it suffices to show that
the induced maps

R homC◦−(KVx,ε;
⊕

I

S
I
z )→ R homC◦−(KVx,ε; j−1C◦− Sz) (83)

are isomorphisms for ε > 0 small enough and for all x ∈ L
z−. Let F ∈ D(Z× C◦−)

and x ∈ L−. Set
�x (F) := R hom(KVx,ε; F |ex ).

Let now F be a b-sheaf on Z× h. The b-structure gives rise to maps

�x (F)→ �x+l(F)[−D(l)],

for all l ∈ L−. Set δF (x) := �x (F)[−D(x)]. Introduce a partial order � on L− by
setting l1 � l2 if l2 − l1 ∈ L−. We see that δF is a functor from this poset, viewed as a
category, to the category of gradedK-vector spaces. As follows from Corollary 7.21
and Proposition 7.22, we have δS(l) = H •(FL(Il)). Let l1 � l2. As follows from
the proof of Proposition 7.22, the induced map δS(l1)→ δS(l2) is induced by the
projectionFL(Il2)→ FL(Il1) coming from the embedding Il1 ⊂ Il2 . It then follows
from Lemma 8.2 that δS , as a functor, is freely generated by subspaces

G(I ) ⊂ H •(FL(I )) = δS(−2πeI ) (84)

for all I ⊂ {1, 2, . . . , N − 1}.
One can easily check that δ⊕IS

I is freely generated by the subspaces
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G(I ) = δS(I )(−2πeI ) ⊂ δ⊕IS
I (−2πeI ). (85)

The map ι preserves the generating subspaces (84), (85). Hence, the maps (83)
are isomorphisms, which proves the Proposition. �

8.2 Strict B-Sheaves

Let F be a B-sheaf onh. Letvk ∈ B(−ek)be a representative ofuk ∈ HD(−ek )B(−ek).
We then have induced maps

ak : F → T−1−ek F[D(−ek)]

induced by vk .
Let

Conk := Cone ak; (86)

let pk : h→ h/R fk . We call F strict if
(1) for all k, the natural map p−1k Rpk∗Conk → Conk is an isomorphism in D(h)

(that is, Conk is constant along fibers of pk);
(2) F is microsupported on h× C+ ⊂ h× h∗.

Denote the full subcategory of DBShh consisting of all strict B-sheaves on h by
DBShstricth .

Analogously, let F be a sheaf on C◦−. Let us define ak and Conk in the same way
as above.

Let C◦−/R fk be the image of C◦− under the map C◦− → h→ h/R fk . Let pk :
C◦− → C◦−/R fk be the projection.

As above, let us call F strict if

(1) the natural map p−1k Rpk∗Conk → Conk is an isomorphism in D(C◦−) for all
k;

(2) F is microsupported on C◦− × C+ ⊂ C◦− × h∗.

Denote the full subcategory of DBShC◦− consisting of all strict B-sheaves on C◦−
by DBShstrictC◦− .

Let λ ∈ h and consider a shifted open set C◦− + λ ⊂ h. We then have a notion of
a B-sheaf and of a strict B-sheaf on C◦− + λ via an identification C◦− + λ ∼= C◦− via
the shift Tλ. Hence we have categories DBShC◦−+λ; DBShstrictC◦−+λ.

8.2.1

Let λ ∈ h and let jλ : C◦− + λ→ h be an open embedding. We then see that the
functor j−1λ transforms strict sheaves on h into strict sheaves on C◦− + λ
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Theorem 8.4 The functor

j−1λ : DBShstricth → DBShstrictC◦−+λ

is an equivalence.

8.3 Proof of the Theorem

8.3.1 First Reductions

Without loss of generality one can put λ = 0. We also set j := j0.
Let π : B → b be the projection. As the functor Rπ∗ is an equivalence, without

loss of generality, one can assume B = b.
Let I ⊂ {1, 2, . . . , N − 1}. Let C(I, h) ⊂ DbShh be the full subcategory consist-

ing of all sheaves F satisfying:
(1) for all i ∈ I , we have: Coni (F) = 0;
(2) for all i /∈ I the natural map p−1i Rpi∗F → F is an isomorphism.
It is clear that every object of C(I, h) is strict.
Let us define the category C(I,C◦−) in a similar way.

Lemma 8.5 Every strict b-sheaf on C− (resp. h) is quasi-isomorphic to a complex
of objects from

⊔
I C(I, h) (resp.

⊔
I C(I,C◦−)).

Proof We will prove Lemma for strict sheaves on C◦−. The proof for h is similar.
Let us first consider a through map

πI : C◦− → h→ h/(R < f j > j /∈I )

let CI be the image of πI .
We also have a through map

σI : R<0 < ei >i∈I ↪→ h→ h/(R < f j > j /∈I )

Sublemma 8.6 The map σI is an open embedding whose image is the same as the
image of πI

Proof (of sublemma) It is easy to see that the vectors f j , j /∈ I ; ei ; i ∈ I form a basis
of h. Therefore, the vectors ei ; i ∈ I (more precisely, their images) form a basis of
h/(R < f j > j /∈I ). Let x ∈ C◦−. Let us expand

x =
∑

i∈I
ai ei +

∑

j /∈I
b j f j

Then pI (x) =∑
i∈I ai ei .
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We have: for all j /∈ I :

< x, f j >=
∑

k /∈I
bk < f j , fk >≤ 0.

Let J := {1, 2, . . . , N − 1}\I and let us decompose J into intervals as follows:
J = J1 � J2 � · · · � Js where each Jt = [kt ; lt ], kt ≤ lt < kt+1 − 1. Set btk = bk if
k ∈ Jt ; otherwise set btk = 0. We then have 2btk − btk−1 − btk+1 ≤ 0 for all k ∈ Jt .
Let Dt

k := btk − btk−1. We then know that Dt
k+1 ≥ Dt

k if k, k + 1 ∈ Jt . We then have
bk = Dt

kl
+ · · · + Dt

k . Assume bk > 0. Then Dt
k > 0 (because Dt

kl
≤ Dt

kl+1 ≤ · · · ≤
Dt

k). Hence, 0 ≤ Dt
k ≤ Dt

k+1 ≤ · · · and 0 < btk < btk+1 < · · · < bklt+1 = 0. Contra-
diction. Thus, btk ≤ 0 for all k. Therefore, for all k, bk ≤ 0.

For every i ∈ I we have

0 >< x, fi >= ai +
∑

j /∈I
b j < fi , f j > .

Hence,
< x, fi > −

∑

i∈I
bi < fi , f j >= a j .

For i ∈ I , j /∈ I , we have i �= j and < fi ; f j >≤ 0. As bi ≤ 0, we see that 0 ><

x, f j >≥ a j . Hence, Image (πk) ⊂ Image (σk). Let us prove the inverse inclusion.
Let g :=∑

i∈I ai ei − b
∑

j /∈I f j We see that for a j > 0 and 0 < b << 1,we have
g ∈ C◦− and πk(g) =∑

i∈I ai ei . �

Let �I := R<0 < ei >i∈I .
We then have a surjection PI : C◦− → �I . It is easy to see that PI is a trivial

bundle whose fiber is homeomorphic toRN−1−|I |. Let J ⊂ I . It follows that we have
projections PI J : �I → �J so that PJ = PI J PI .

Let F be a strict sheaf on C◦−. Let FJ := P−1J PJ∗F . It is easy to see that FJ is a
strict sheaf on C◦−. For J ⊂ I we have a natural map FJ → FI . Let Subsets be the
poset of all subsets of {1, 2, . . . , N − 1}; view this subset as a category. We then see
that I �→ FI is a functor from Subsets to the dg category of B-sheaves whose image
lies in the full subcategory of strict B-sheaves.

For a subset I ⊂ {1, 2, . . . , N − 1} consider the standard complex

K (I, F) =
⊕

J :J⊂I
FJ ⊗�top(K[I\J ])[|I\J |]

with the standard differential. We then see that (1) K (I, F) is a strict B-sheaf onC◦−;
(2) p−1I RpI∗K (I, F)→ K (I, F) is an isomorphism;
(3) Let J ⊂ I and J �= I . Then RpJ∗K (I, F) = 0.
(2) and (3) imply that
(4) for any J which intersects I , RpJ∗K (I, F) = 0.
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Let k ∈ I . Then we know that p−1k Rpk∗Conk → Conk is an isomorphism. On the
other hand, 4) implies that Rpk∗Conk(K (I, F)) = 0 Hence,

(5) Conk K (I, F) = 0 for all k /∈ I .
Thus, K (I, F) ∈ C(I,C◦−), which proves Lemma for C◦−. The proof for h is sim-

ilar. �

8.3.2

It is clear that the functor j−1 takes C(I, h) to C(I,C◦−) for all I .
We will prove:

Lemma 8.7 Let X be a b-sheaf on h and let Y ∈ C(h; I ) for some I ⊂ {1, 2, . . . ,
N − 1}. Then the natural map

R homDbShh(X,Y )→ R homDbShC◦−
( j−1X; j−1Y )

is an isomorphism

Proof We see that j! j−1X is a b-sheaf on h and that

R homDbShC◦−
( j−1X; j−1Y ) = R homDbShh( j! j−1X; Y ).

We also have a natural map j! j−1X → X of b-sheaves on h. Let Z be the cone
of this map. The statement of the Lemma is equivalent to R homDbShh(Z ,Y ) = 0

For every k ∈ I we have a structure map

Z → T−1−2πek Z [D(−2πek)] (87)

Sublemma 8.8 The natural map

R homDbShh(T−1−2πek Z [D(−2πek)]; Y )→ R homDbShh(Z; Y )

is an isomorphism.

Proof (of Sublemma) Let W be the cone of the map (87). We are to show that
R homDbShh(W,Y ) = 0. It follows that the structure map W → T−1−ekW [D(−ek)] is
homotopy equivalent to 0.

Choose an injective representative of Y and consider a L−- graded complex
H(l) := hom(W ; T−1l Y ). This complex is a L−-graded b-bimodule. We also have a
L−-graded b-bimodule structure on b. We then have

R homDbShh(W,Y ) = R homb−bimod(b; H).

Let Rk := 1⊗ 1−ek ∈ b⊗ b; Lk = 1−ek ⊗ 1 ∈ b⊗ b. We then see that the action of
Rk on H is a quasi-isomorphism, whereas the action of Lk is homotopy equivalent
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to 0. Hence the action of Rk − Lk on H is a quasi-isomorphism. The action of
Rk − Lk on b is zero. Hence an induced action of Rk − Lk on R homb−bimod(b; H)

is simultaneously 0 and an isomorphism, meaning that R homb−bimod(b; H) = 0,
whence the statement �

Let g = −∑

i∈I
2πei . Consider an inductive system of b-sheaves on h:

Z → T−1g [D(g)]Z → T−12g [D(2g)]Z → · · · → T−1ng [D(ng)]Z → · · ·

and let L(Z) be the derived direct limit of this system. We have a natural map
Z → L(Z). The previous Lemma easily implies that the induced map

R homDbShh(L(Z); Y )→ R homDbShh(Z; Y )

is an isomorphism.
It also follows that the natural map

R hom(L(Z); Y )→ R hom(RpI !L(Z); RpI !Y )

is an isomorphism (because Y is locally constant along fibers of pI ). Thus, the
statement of our Lemma reduces to showing that

RpI !L(Z) = 0

Let x ∈ hI and show that RpI !L(Z)|x = 0. We have

RpI !L(Z)|x = R�c(p
−1
I x; L(Z)|p−1I x )

Let Ux ⊂ h; Ux := p−1I x . By definition, we have

R�c(p
−1
I x; L(Z)|p−1I x ) = lim−→n

R�c(Ux+ng; Z |Ux+ng
[D(ng)])

where the spaces R�c(Ux+ng; Z |Ux+ng
) form an inductive system by means of the

structure maps Z → T−1g Z [D(g)]. Next, we have

R�c(Ux+ng; Z |Ux+ng
) = Cone[R�c(Ux+ng ∩ C◦−; X |Ux+ng

)→ R�c(Ux+ng; X |Ux+ng
)].

We have maps

Ux → Ux+g → Ux+2g → · · · → Ux+ng → · · ·

induced by the shifts Tg. Let U :=⋃
n T
−1
ng (Ux+ng ∩ C◦−). We then have

Ux+ng ∩ C◦− ⊂ TngU ⊂ Ux+ng.
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It follows that U consists of all vectors v =∑
i∈I xi ei +

∑
j /∈I y j f j , where

x =
∑

i∈I
xi ei (88)

and for all l /∈ I ,
<

∑

j /∈I
y j f j , fl >< 0. (89)

It also follows that the natural maps

lim−→n
R�c(Ux+ng ∩ C◦−; X |Ux+ng

][D(ng))→ lim−→n
R�c(TngU ; X |Ux+ng

[D(ng)])
(90)

is an isomorphism. Indeed, set Zn := T−1ng Z |TngU [D(ng)], Zn ∈ D(U ). The objects
Zn form an inductive system. Set Un := T−1ng (Ux+ng ∩ C◦−) ⊂ U . We see that U0 ⊂
U1 ⊂ U2 ⊂ · · · and ⋃

n Un = U We then see that our inductive systems and their
map can be rewritten as

lim−→n
R�c(Un; Zn)→ lim−→n

R�c(U ; Zn)

Let Kn := U\Un . We then see that ∩nKn = 0 and that the cone of the above map
is isomorphic to

lim−→n
R�c(Kn; Zn|Kn ). (91)

We see that for each m, the natural map

R�c(Km; Zm |Km )→ lim−→n
R�c(Kn; Zn|Kn ).

factors as

R�c(Km; Zm |Km ) = lim−→n>m
R�c(Km\Kn; Zm |Km )→ lim−→n

R�c(Kn; Zn|Kn )

hence it is 0, whichmeans that the space (91) is 0 and themap (90) is an isomorphism.
Therefore, our original statement now reduces to showing that

Cone(R�c(TngU ; X |Ux+ng
)→ R�c(Ux+ng : X |Ux+ng

)) = 0 (92)

for all n > 0.
let A := R < f j > j �=I . We have an identification

α : A→ Ux+ng, a �→
∑

i∈I
xi ei + ng + a,

where xi are the same as in (88). Let B ⊂ A be an open subset specified by the
condition (89). It follows that α(B) = TngU . Let Y ∈ D(A), Y := α−1X |Ux+ng

. We
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can rewrite (92) as
Cone(R�c(B,Y )→ R�c(A,Y ))

Let us estimate the microsupport of Y . We know that SS(X) ⊂ h× C+. Using
Proposition (11.8) one can show that Y is microsupported on the set A × β∗(C+),
where β∗ : h∗ → A∗ is dual to the embedding β : A→ h; β( f j ) = f j . let ε j ∈ A∗
be the basis dual to f j . One sees that

β∗(C+) = R≥0 < ε j > j /∈I .

Let γ ⊂ A be the dual cone to β∗(C+); γ = R>0 < f j > j /∈I . One can check
B + γ = A. As SS(Y ) ⊂ A × β∗(C+), the Lemma follows. �

It now follows that the functor j−1 : DbShh→ DbShC◦− is conservative (the
natural map R hom(F,G)→ R hom( j−1F; j−1G) is an isomorphism). We only
need to check the essential surjectivity of j−1. It suffices to check that for each I ⊂
{1, 2, . . . , N − 1}, the functor j−1 : C(I, h)→ C(I,C◦−) is essentially surjective. Let
F ∈ C(I,C◦−) and consider a b-sheaf G := Rp!I RpI !L( j!F) := Rp−1I RpI !L( j!F)

[N − 1− |I |], where L is the same as in the proof of Lemma. One easily checks that
j−1G ∼= F . This completes the proof of the theorem.

8.3.3

Let us check that the b- sheaf S is strict. Indeed, it follows that the structure map

b−2πek : S → T−1−2πekS

is induced by the correponding map

bS−2πek : S→ T−1−2πekS = S|G×−2πek ∗G S

which is in turn induced by the map

β−ek : Ke → S|G×−ek
as in Proposition 7.18. let Bk := Conebk . We then get

ConebS−2πek = Bk ∗S.

According to Proposition 7.18, SS(Bk) ⊂ {(g,ω)| :< ‖ω‖, fk >= 0} Standard
computation shows that the sheaf Bk ∗S is microsupported on the set

{(g, A,ω, η)|(η, fk) = 0}
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meaning that ConebS−2πek = Bk ∗S is constant along the fibers of the projection
G × h→ G × (h/ fk). Hence, Coneb−2πek = i−1bS−2πek is constant along the fibers
of the projection

Z× h→ Z× h/ fk

It then follows that the sheaf j−1C◦− S is a strict b-sheaf onC◦−.We know (see (80) that

j−1C◦− S
∼=⊕

I⊂{1,2,...,N−1} SI |C◦− . It then easily follows that each SI is a strict b-sheaf

on C◦−. Indeed, ConebSk =
⊕

I Coneb
SI
k . Let C := ConebSk and CI := Coneb

S ′I
k . Let

pk : Z× C◦− → Z× C◦−/ fk . One then sees that the natural map

p−1k Rpk∗C → C

is isomorphic to the direct sum of natural maps

p−1k pk∗CI → CI

As themap p−1k Rpk∗C → C is an isomorphism, so is each of its direct summands,
i.e. allmaps p−1k pk∗CI → CI are isomorphismsmeaning that all sheavesS ′I are strict.

Remark. One can also prove that the sheaves SI are strict directly from the
definition (79).

According to Theorem 8.4, there exist strict b-sheaves on Z× h, to be denoted by
SI such that i !C◦−SI

∼= SI and the sheaves SI are unique up-to a unique isomorphism.
Same theorem implies that we should have an isomorphism

S ∼=
⊕

I

SI .

9 Identifying the Sheaf S

One can check that the b- sheafX on Z× C◦− as in (81) is strict. Indeed, this follows
from the fact that the b- sheaf S∅ = G∅ ⊗ X is strict, or it can be checked directly.

It then follows that there exists a strict b-sheaf Y on Z× h such that j−1C◦−Y = X .
As SI

∼= GI [D(−2πeI )] ⊗ T−2πeI ∗X , it then follows that we have an isomorphism
SI
∼= GI [D(−2πeI )] ⊗ T−2πeI ∗Y which is induced by the obvious isomorphism

GI [D(−2πeI )] ⊗ T−2πeI ∗X |(C◦−−2πeI ) = GI [D(−2πeI )] ⊗ T−2πeI ∗Y|(C◦−−2πeI ).

Thus, we have an isomorphism

S ∼=
⊕

I

G I [D(−2πeI )] ⊗ T−2πeI ∗Y . (93)
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It now remains to identify the b-sheaf Y .

9.1 Identifying Y

9.1.1

For a subset J ⊂ {1, 2, . . . , N − 1} and l ∈ L let K (J, l) ⊂ el × h ⊂ Z× h be
defined as follows:

K (J, l) := {(el, x) ∈ Z× h|∀ j ∈ J :< x − l, e j >≥ 0}.

Let V (J, l) := KK (J,l)[D(l)]. Let LJ = {l ∈ L|∀i /∈ J :< l, f j >≤ 0} Let � J :=⊕

l∈LJ

V (J, l). Let us endow � J with a b-structure. Let λ ∈ L−. We have

T−1λ V (J, l) = KT−1λ K (J,l)[D(l)];

T−1λ K (J, l ′) = {(el ′ , x)|∀ j ∈ J : eλel
′ = el;< x + λ− l, e j >≥ 0}

= K (J, l − λ).

Thus,
T−1λ V (J, l) = KK (J,l−λ)[D(l)] = V (J, l − λ)[D(λ)].

It is clear that if l ∈ LJ , then l + λ ∈ LJ . We then can define the map bλ : � J ⊗
b(λ)→ T−1λ � J as a direct sum of maps

V (J, l)⊗ b(λ) = V (J, l)[D(λ)] = T−1λ V (J, l + λ).

Let us now check that � J are strict b-sheaves.
Let j /∈ J . Then it is clear that � J is constant along the fibers of the map p j :

Z× h→ Z× h/ f j . Therefore so is the cone of b−e j . Let j ∈ J . it is then easy to
see that the map b−e j is an isomorphism, whence the statement.

Let J1 ⊂ J2. Construct a map of b-sheaves

IJ1 J2 : � J1 → � J2 .

It is defined as the direct sum of the natural maps

V (J1, l)→ V (J2, l)
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for all l ∈ LJ1 ⊂ LJ2 . These maps come from the closed embeddings K (J2, l) ⊂
K (J1, l).

Let Subsets be the poset (hence the category) of all subsets of {1, 2, . . . , N − 1}.
We then see that � is a functor from Subsets to the category of b-sheaves on Z× h.
We then construct the standard complex �• such that

�k :=
⊕

I,|I |=k
� I (94)

and the differential dk : �k → �k+1 is given by

dk =
∑

(−1)σ(J1,J2) IJ1 J2 , (95)

where the sum is taken over all pairs J1 ⊂ J2 such that |J1| = k and |J2| = k + 1.
The set J2\J1 then consists of a single element e and σ(J1 J2) is defined as the number
of elements in J2 which are less than e.

The constructed complex defines an object in DBShstrictZ×h, to be denoted by �.
We will show � ∼= Y . To this end it suffices to prove:

Lemma 9.1 We have j−1C◦−� ∼= X .

Proof We have a natural map ι : X → j−1C◦−�0 = j−1C◦−�∅. Indeed,

X =
⊕

l∈L−
KUl [D(l)]

and
j−1C◦−�∅ =

⊕

l∈L−
Kel×C◦− [D(l)].

The map ι is defined as a direct sum of the obvious maps

KUl [D(l)] → Kel×C◦− [D(l)]

coming from the open embeddings Ul ⊂ el × C◦−.
It is clear that I∅,J ι = 0 for all nonempty J . Hence the map ι defines a map

X → j−1C◦−�. Let us show that this map is an isomorphism.
For each l ∈ L set

�n
l :=

⊕

J |l∈LJ ;|J |=n
V (J, l)[D(l)].

It is clear that for each l, �•l ⊂ � is a subcomplex (in the category of complexes of
sheaves on Z× h) and

� =
⊕

l∈L
�l
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The map ι takes values in
⊕

l∈L− j−1C◦−�l and splits into a direct sum of maps

ιl : KUl → j−1C◦−�l .

We thus need to show that (1) complexes j−1C◦−�l are acyclic for all l /∈ L−;
(2) the maps ιl are quasi-isomorphisms.
Let us first study the complexes �l . Let us identify h = R

N−1 by means of the
basis f1, f2, . . . , fN−1. Let X j : Z× h→ Z× R be defined by

X j (c, A) = (c, x j (A)),

where A =∑
j x j (A) f j . Let li =< l, fi >. Let Jl := {i |li > 0}. It follows that l ∈

LJ iff J ⊃ Jl . We also have

V (J, l) = Tl∗(
⊗

j∈J
X−1j Ke×[0,∞) ⊗

⊗

i /∈J
X−1j Ke×R)[D(l)],

where e ∈ Z is the unit. Let E be the following complex of sheaves on Z× R:

Ke×R→ Ke×[0,∞).

We then have an isomorphism of complexes

�l = (Tl∗
⊗

j∈Jl
X−1j Ke×[0,∞) ⊗

⊗

i /∈Jl
X−1i E)[D(l)+ |Jl |].

Wehave aquasi-isomorphismKe×(−∞,0) → E which induces aquasi-isomorphism

�l
∼= (Tl∗

⊗

j∈Jl
X−1j Ke×[0,∞) ⊗

⊗

i /∈Jl
X−1i Ke×(−∞,0))[D(l)+ |Jl |]

= Tl∗KWJ [D(l)+ |Jl |],

where

WJ = {(e, A) ∈ Z× h| j ∈ J ⇒ x j (A) ≥ 0; i /∈ J ⇒ xi (A) < 0}

Let us now prove (1) It follows that �l is supported on the set Tl(WJl ) = WJl +
(el , l). It suffices to prove that Tl(WJl ) ∩ Z× C◦− = 0. Suppose z′ ∈ Tl(WJl ) ∩ Z×
C◦−. Let z′ = (el , z), z ∈ h.

Let z = A + l, (el , A) ∈ WJl . Let A j = (A, f j ) and l j = (l, f j ).We also set A0 =
AN = l0 = lN = 0. Set x j := x j (A). We then know that l j > 0 for all j ∈ Jl ; l j ≤ 0
otherwise. We also have

A j =< A, f j >=< A, 2e j − e j−1 − e j+1 >= 2x j − x j−1 − x j+1.
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As A + l ∈ C◦−, we have A j + l j < 0. Therefore, if j ∈ J , then A j < 0, thus
2x j − x j−1 − x j+1 < 0. We also know that if j ∈ J , then x j ≥ 0.

If j /∈ J , then we know that x j ≤ 0. For j ∈ J let j1 < j be the largest number
such that j1 /∈ J , if it does not exist, set j1 = 0. Similarly, let j2 > j be the smallest
number such that j2 /∈ J , if it does not exist set j2 = N .

We then have x j1 ≤ 0; x j2 ≤ 0; for all j such that j1 < j < j2; 2x j − x j−1 −
x j+1 < 0, hence x j − x j−1 < x j+1 − x j , and x j ≥ 0.

Therefore, we have

0 ≤ x j1+1 − x j1 < x j1+2 − x j1+1 < · · · < x j2 − x j2−1 ≤ 0.

Observe that j2 − j1 ≥ 2, therefore, we get 0 < 0, which is a contradiction. Thus,
indeed, j−1C◦−�l

∼= 0 for all l /∈ L−.
(2) If l ∈ L−, then Jl = ∅ and we have a quasi-isomorphismK(el ,x)|x<<l [D(l)] →

�l . Therefore we have an induced quasi-isomorphismKUl [D(l)] → j−1C◦−�l . One can
easily check that this map is isomorphic to ι, whence the statement. �

From now on we set Y = �.
Let us summarize our results:

Theorem 9.2 LetY = �, where� is as in (94), (95). Then we have an isomorphism
(93)

This theorem is equivalent to Theorem 5.6.

10 Appendix 1: SU(N) and its Lie Algebra: Notations and
a Couple of Lemmas

Let us introduce notation we will use when working with G = SU(N ). Let g be
the Lie algebra of G; it is naturally identified with the space of all skew-hermitian
traceless N × N matrices. Let h ⊂ g be the Cartan subalgebra of g consisting of all
diagonal matrices from g. The abelian Lie algebra h consists of all matrices of the
form idiag(λ1,λ2, . . . ,λN ), where λi ∈ R and

∑
i λi = 0.

Let C+ ⊂ h be the positive Weyl chamber consisting of all matrices idiag(λ1,λ2,

. . . ,λN ) with λ1 ≥ λ2 ≥ · · · ≥ λN . For every X ∈ g there exists a unique element
‖X‖ ∈ C+ such that X is conjugate with ‖X‖.

We have an invariant positive definite inner product <,> on g such that <

X,Y >= −Tr(XY ). By means of this product we identify g = g∗, h = h∗.
We will use the basis of roots in h∗ which consists of vectors f1, f2, . . . , fN−1,

where
fk(idiag(λ1,λ2, . . . ,λN )) = λk − λk+1.

Via identification h = h∗, the vector fk ∈ h∗ corresponds to a vector in h denoted
by the same symbol, and we have
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fk = idiag(0, 0, . . . , 0, 1,−1, 0, . . . , 0)

where 1 is at the kth position.
We also have the dual basis of coroots e1, e2, . . . , eN determined by

< fk, el >= δkl . One has

ek = idiag((N − k)/N , (N − k)/N , . . . , (N − k)/N ,−k/N ,−k/N , . . . ,−k/N )

(96)
where there are total k entries equal to (N − k)/N . One can check that fk = 2ek −
ek−1 − ek+1 for k = 1, 2, . . . , N − 1 and we assume e0 = eN = 0.

One can rewrite ek = idiag(1, 1, . . . , 1, 0, 0, . . . , 0)− ik/Ndiag(1, 1, 1, . . . , 1),
where it is assumed that we have k entries of 1 in diag(1, 1, . . . , 1, 0, 0, . . . , 0). In
particular, we have

< ek, idiag(λ1,λ2, . . . ,λn) >= λ1 + λ2 + · · · + λk .

One also sees that C+ consists of all X ∈ h such that < X, fk >≥ 0. Therefore,

C+ = {
N∑

k=1
Lkek |Lk ≥ 0}.

We have a partial order on h: X ≥ Y means < X − Y, ek >≥ 0 for all k.
We also write X >> Y if < X − Y, ek >> 0 for all k.
Let ω ∈ g. The matrix−iω is hermitian and let λ1(ω) > λ2(ω) > · · · > λr (ω) be

eigenvalues of −iω. Let V k(ω) be the eigenspace of −iω of eigenvalue λk . Let

Vk(ω) = V 1(ω)⊕ V 2(ω)⊕ · · · ⊕ V k(ω).

We then get a partial flag

0 ⊂ V1(ω) ⊂ · · · ⊂ Vr (ω) = C
N . (97)

Let dk(ω) := dim Vk(ω).

10.0.1

In the future, we will need

Lemma 10.1 Let X,ω ∈ g. Let ‖X‖ = idiag(A1, A2, . . . , AN ) ∈ C+ and let

0 ⊂ V1(ω) ⊂ · · · ⊂ Vr (ω) = C
N

be the flag as in (97).
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Then
< ω, X >≤ (‖ω‖, ‖X‖).

The equality takes place iff
(a) [X,ω] = 0 (hence XVk(ω) ⊂ Vk(ω) for all k, and
(b)TrX |Vk = i(A1 + A2 + · · · Adk (ω)) = i < edk (ω); ‖X‖ >.

Proof Let μk = λk(ω)− λk+1(ω); k < r . Let us also set μr = λr (ω). We then have

ω = i
r∑

k=1
μkprVk (ω),

where pr denotes the orthogonal projector;

< ω, X >=
r−1∑

k=1
μkTr(−i XprVk (ω)).

We know that Tr(−i XprVk (ω)) ≤ A1 + A2 + · · · + Adk (ω) (this is a particular case
of the general fact: given an hermitianmatrix Y onCN (in our case−i X ) and a vector
subspace V ⊂ C

N of dimension n the value of Tr(YprV ) does not exceed the sum
of top n eigenvalues of Y ).

Hence

< ω, X >≤
r−1∑

k=1
μk(A1 + · · · + Adk (ω)) =

r∑

j=1
A j

∑

k| j≤dk (ω)

μk

=
r∑

j=1
A jλ j (ω) =< ‖ω‖, ‖X‖ > .

The equality is only possible if for all k Tr(−i XprVk (ω)) = A1 + · · · Adk (ω). As
A1, . . . , Adk (ω) are top dk(ω) eigenvalues of −i X , the equality occurs iff Vk(ω) is
the span of eigenvectors of−i X with eigenvalues A1, . . . , Adk (ω), which implies the
statement b) of Lemma. �

10.0.2

Lemma 10.2 Let X,Y ∈ g. We have ‖X + Y‖ ≤ ‖X‖ + ‖Y‖.
Proof We need to show that for every k,

< ‖X + Y‖, ek >≤< ‖X‖, ek > + < ‖Y‖, ek > .
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For a Hermitian operator A on a finite-dimensional Hermitian vector space V we
set n(A) := max|v|=1 < Av, v >, where <,> is the hermitian inner product on V .
We see that

n(A + B) ≤ n(A)+ n(B) (98)

and that n(A) equals the maximal eigenvalue of A.
Let εk be the standard representation of g on �k

C
N . Let X ∈ g and let λ1 ≥

λ2 ≥ · · · ≥ λN be the spectrum of a Hermitian matrix−i X . This means that ‖X‖ =
idiag(λ1,λ2, . . . ,λN ).

Eigenvalues of −iεk(X) are of the form λi1 + λi2 + · · · + λik where i1 < i2 <

. . . < ik . Therefore, the maximal eigenvalue of −iεk(X) is λ1 + λ2 + . . .+ λk , i.e.

n(−iεk(X)) =< ‖X‖, ek > .

As follows from (98),

n(−iεk(X + Y )) ≤ n(−iεk(X))+ n(−iεk(Y )),

hence
< ‖X + Y‖, ek >≤< ‖X‖, ek > + < ‖Y‖, ek >,

as was required. �

10.0.3

Let [a, b] ⊂ R, a ≤ b, be a segment. Let g ∈ SU(N ).Write g ∼ [a, b] if every eigen-
value of g is of the form eiφ, where φ ∈ [a, b].
Lemma 10.3 Let gk ∼ [ak, bk], k = 1, 2. Then g1g2 ∼ [a1 + a2, b1 + b2].
Proof If b1 + b2 − (a1 + a2) ≥ 2π, there is nothing to prove, because x ∼ [a1 +
a2, b1 + b2] for any element x ∈ SU(N ). Let now b1 + b2 − (a1 + a2) < 2π. Let
ck = (ak + bk)/2 and dk = (bk − ak)/2. We have d1 + d2 < π, hence dk < π, k =
1, 2.

Let hk = e−ickgk . We have hk ∼ [−dk, dk]. Let S ⊂ C
N be the unit sphere. Let ρ

be the standard metric on S; ρ(v,w) = arccos Re < v,w >; ρ(v,w) ∈ [0,π]. For
g ∈ SU(N ), set

N(g) := max
v∈S ρ(gv, v).

It follows N(g1g2) ≤ N(g1)+ N(g2) for all g1, g2 ∈ SU(N ).
Let us estimateN(hk). Let e1, e2, . . . , eN be an eigenbasis of hk .We have hk(es) =

eiαks es , where αks ∈ [−dk, dk]. Let v =∑
s vses , v ∈ S, so that 1 =∑

s |vs |2. We
have

hkv =
∑

s

vse
iαks es;
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< hkv, v >=
∑

s

|vs |2eiαks ;

Re < hkv, v >=
∑

s

|vs |2 cosαks .

As αks ∈ [−dk, dk] and 0 ≤ dk < π, we have cosαks ≥ cos dk . Therefore,

Re < hkv, v >≥
∑

s

|vs |2 cos dk = cos dk .

Therefore,
N(hk) = ρ(hkv, v) = arccos Re < hkv, v >≤ dk .

Therefore, N(h1h2) ≤ N(h1)+ N(h2) ≤ d1 + d2. It then follows that h1h2 ∼
[−d1 − d2; d1 + d2]. Indeed, assuming the contrary, we have an eigenvalue eiφ of
h1h2, where d1 + d2 < |φ| ≤ π. let h1h2v = eiφv, |v| = 1. We then have
ρ(h1h2v, v) = |φ| > d1 + d2, which is a contradiction.

Finally, we have g1g2 = ec1+c2h1h2, which implies that

g1g2 ∼ [c1 + c2 − d1 − d2; c1 + c2 + d1 + d2] = [a1 + a2; b1 + b2].

�

10.0.4

Fix b ∈ C◦+; b < e1/(100N ). Here and below ◦ means the interior.

Lemma 10.4 Let X,Y ∈ g and ‖X‖, ‖Y‖ ≤ b. Then eXeY = eZ , where ‖Z‖ ≤
‖X‖ + ‖Y‖.
Proof We have

e1 = ((N − 1)/N ,−1/N ,−1/N , . . . ,−1/N ) = (1, 0, 0, . . . , 0)− 1/N (1, 1, . . . , 1).

Let b = idiag(b1, b2, . . . , bN ). Since b ∈ C◦+, we have b1 > b2 > · · · > bN . We
have < b, ek ><< e1/(100N ), ek > for all k. In particular, b1 =< b, e1 >≤ (N −
1/N ) · (1/100N ) < 1/(100N ); b1 + b2 + · · · + bN−1 = (b, eN−1) ≤< e1, eN−1 >

/(100N ) = 1/(100N 2) < 1/(100N ). As
∑

k bk = 0, we have bN > −1/(100N ).
Thus,∀k, |bk | ≤ 1/(100N ). Let ‖X‖= idiag(X1, X2, . . . , XN ). As ‖X‖≤ b, |Xk | ≤
1/(100N ).

Therefore, one has eX ∼ [−1/(100N ); 1/(100N )]. Analogously, eY ∼ [−1/
(100N ); 1/(100N )]. Lemma 10.3 implies that

eXeY = [−2/(100N ); 2/(100N )] = [−1/(50N ); 1/(50N )].
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Let u1, u2, . . . , uN be the eigenbasis for eXeY . It then follows that eXeY = eiφs us ,
where |φs | ≤ 1/(50N ). We have 1 = det(eXeY ) = ei

∑
s φs .Therefore

∑
s φs = 2πn,

n ∈ Z. However, |∑s φs | ≤ 1/50 < 2π. Hence, n = 0 and
∑

s φs = 0. Let Z be a
skew-hermitian matrix defined by Zus = iφsus . As

∑
s φs = 0, Z ∈ su(N ) = g. We

also have eXeY = eZ . Let us prove that ‖Z‖ ≤ ‖X‖ + ‖Y‖.
Let�k (resp. εk) be the standard representation ofG = SU(N ) (resp. g = su(N ))

on �k
C

N . We then have
eεk (Z) = eεk (X)eεk (Y ).

Let ‖Z‖ = idiag(Z1, Z2, . . . , ZN ). As was shown above, we have |Z j | ≤
1/(50N ).

We then see that the spectrum of εk(Z) consists of all numbers of the form

i(Z j1 + Z j2 + · · · Z jk ),

where j1 < j2 < · · · < jk . We have

|Z j1 + Z j2 + · · · Z jk | ≤ k/(50N ) ≤ 1/50. (99)

Let ‖X‖ = idiag(X1, X2, . . . , XN ). the spectrum of eλk (X) consists of numbers
of the form

ei(X j1+X j2+···+X jk ),

where j1 < j2 < . . . < jk . Therefore

eλk (X) ∼ [XN−k+1 + XN−k+2 + · · · + XN ; X1 + X2 + · · · + Xk].

We have XN−k+1 + XN−k+2 + · · · + XN = −(X1 + X2 + · · · + XN−k) = − < X,

eN−k >. Therefore,

eλk (X) ∼ [− < ‖X‖, eN−k >;< ‖X‖, ek >].

Analogously,
eλk (Y ) ∼ [− < ‖Y‖, eN−k >;< ‖Y‖, ek >].

By Lemma 10.3, we have

eλk (Z) = eλk (X)eλk (Y ) ∼ [− < ‖X‖ + ‖Y‖, eN−k >;< ‖X‖ + ‖Y‖, ek >].

As was shown above, we have |X j |, |Y j | ≤ 1/(100N ) for all j . Therefore, | <
‖X‖, eN−k > | ≤ (N − k)/(100N ) < 1/100. Analogously

| < ‖X‖, ek > |, | < ‖Y‖, ek > |,< ‖Y‖, eN−k < 1/100.

Therefore



Microlocal Condition for Non-displaceability 219

[− < ‖X‖ + ‖Y‖, eN−k;< ‖X‖ + ‖Y‖, ek >] ⊂ [−1/50; 1/50].

According to (99), all eigenvalues of λk(Z) are of the form i t , |t | ≤ 1/50. It now
follows that all eigenvalues of λk(Z) are of the form i t , where

t ∈ [− < ‖X‖ + ‖Y‖, eN−k >;< ‖X‖ + ‖Y‖, ek >].

(otherwise, eiλk (Z) is not of the form eit , where t ∈ [− < ‖X‖ + ‖Y‖, eN−k >;<
‖X‖ + ‖Y‖, ek >], as follows from our estimates). In particular,

< ‖Z‖, ek >= Z1 + Z2 + · · · + Zk ∈ [− < ‖X‖ + ‖Y‖, eN−k;< ‖X‖ + ‖Y‖, ek >],

whence
< ‖Z‖, ek >≤< ‖X‖ + ‖Y‖, ek > .

As k is arbitrary, it follows that ‖Z‖ ≤ ‖X‖ + ‖Y‖. �

For our future purposes we will need a stronger result.

10.0.5

Lemma 10.5 Let X1, X2, . . . Xn ∈ g; ‖Xi‖ ≤ b. Let V1 ⊂ V2 ⊂ · · · Vr = C
N be a

flag which is preserved by all Xi . Then there exists an X ∈ g such that:
(1) eX1eX2 · · · eXn = eX ;
(2) XVk ⊂ Vk and TrX |Vk =

∑
k TrXk |Vk for all k;

(3) ‖X‖ ≤∑
k ‖Xi‖

Proof (1) Fix an Ad- invariant Hilbert norm N on g (such an N is unique up-to a
scalar multiple). It follows that N(Z) ≤ N(Y1)+ N(Y2), the equality being possible
only if Y1 and Y2 are proportional with non-negative coefficient (indeed: N(Z) is the
length of the geodesic from the unit to eZ ; N(Y1)+ N(Y2) is the length of a broken
line, the equality is possible only if this broken line is actually a geodesic).

(2) Suppose Y1, Y2 ∈ g; ‖Y1‖, ‖Y2‖ ≤ b. According to Lemma 10.4 there exists a
unique Z := Z(Y1, Y2) ∈ g; ‖Z‖ ≤ ‖Y1‖ + ‖Y2‖ such that eZ = eY1eY2 . We see that
eZVk = Vk , hence (eZ − Id)Vk ⊂ Vk . We can express Z as a convergent series in
powers of eZ − Id, therefore, ZVk ⊂ Vk . The equality

det eZ |Vk = det eY1 |Vk det e
Y2 |Vk

implies that eTrZ |Vk = eTr(Y1+Y2)|Vk . As ‖Z‖ ≤ 2b, this implies that TrZ |Vk = Tr(Y1 +
Y2)|Vk .

(3) Let (Y1,Y2, · · · Yn) be a sequence of elements Yi ∈ g; |Yi | ≤ b. Let

Sk(Y1,Y2, . . . ,Yn) := (Y1, . . . ,Yk−1, Z/2, Z/2,Yk+2, . . . ,Yn),
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where k = 1, 2, . . . , n − 1, Z = Z(Yk,Yk+1) is as explained above.
Let X ⊂ gn be the set consisting of all sequences of the form

Sk1 Sk2 · · · SkR (X1, X2, . . . , Xn)

for all R and all k1, k2, . . . , kR . Let μ be the infimum of N(Y1)+ N(Y2)+ · · ·N(Yn)
where (Y1,Y2, . . . ,Yn) ∈ X .

Let (Y1(k),Y2(k), . . . ,Yn(k)) ∈ X , k = 1, 2, . . . , be a sequence such that
N(Y1(k))+ · · ·N(Yn(k))→ μ as k →∞. As |Yi (k)| ≤ b, one can choose a con-
vergent subsequence, hence without loss of generality, one can assume that our
sequence converges:

lim
k→∞ Yi (k) = Zi .

Then for all (Y1,Y2, . . . ,Yn) ∈ X ,

N(Y1)+ · · ·N(Yn) ≥ N(Z1)+ · · ·N(Zn).

Let us show that there exists Z ∈ g such that each Zi is proportional to Z with a
non-negative coefficient. If not then there are i < j such that

(1) for all i < k < j , Zk = 0;
(2) Zi and Z j are not proportional to each other with a non-negative coeffi-

cient. Let (Z ′1, . . . , Z ′n) = Tj−1 · · · Ti+1Ti (Z1, Z2, . . . , Zn). We then have N(Z ′1)+· · ·N(Z ′n) < N(Z1)+ · · ·N(Zn). Hence there exists a k such that

N(Y ′1)+ · · · + N(Y ′n) < N(Z1)+ N(Z2)+ · · · + N(Zn),

where
(Y ′1,Y

′
2, . . . ,Y

′
n) = Tj−1 · · · Ti (Y1(k),Y2(k), . . . ,Yn(k)).

But (Y ′1,Y ′2, . . . ,Y ′n) ∈ X , so we get a contradiction.
Thus all Zi are proportional with non-negative coefficients. Let us now set X =

Z1 + Z2 + . . . Zn . Such an X satisfies all the conditions. �

11 Appendix 2: Results From [1] on Functorial Properties
of Microsupport

Although the results to be quoted here are proved in [1] for the bounded derived
category, the same arguments work for the unbounded derived category, the proofs
are therefore omitted.
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11.0.1

Let S ⊂ X be a subset and x ∈ X . Following [1] Definition 5.3.6, one can define
subsets N (S) ⊂ T X and N ∗(S) ⊂ T ∗X . As explained on p 228, these subsets can
be characterized as follows. Let x ∈ X . A non-zero vector θ ∈ Tx X belongs to Nx (S)

if and only if, in a local chart near x , there exists an open cone γ containing θ and a
neighborhood U of x such that U ∩ ((S ∩U )+ γ) ⊂ S.

One then defines N ∗x (S) ⊂ T ∗x X as the dual cone to Nx (S). Finally one sets
N (S) = ∪x Nx S; N ∗(S) = ∪x N ∗x (S). If S ⊂ X is a closed submanifold, then
N ∗(S) = T ∗S (X).

Let now x ∈ X and let U be a neighborhood of x . Suppose that S ∩U is defined
by an inequality f > 0 (or f ≥ 0), where f : U → R is a smooth function and
dx f �= 0. In this case N ∗x (S) = R≥0 · dx f .

For a subset K ⊂ T ∗X we set Ka ⊂ T ∗X to consist of all vectors ω such that
−ω ∈ K .

Proposition 11.1 ([1], Proposition 5.3.8) Let X be a manifold, � an open subset
and Z a closed subsets. Then SS(K�) = N ∗(�)a; SS(KZ ) = N ∗(Z)

11.0.2

Proposition 11.2 ([1], Proposition 5.4.1) Let F ∈ D(X) and G ∈ D(Y ). Then

SS(F � G) ⊂ SS(F)× SS(G).

(Note that since our ground ring is a field K, the bifunctor � is exact).

11.0.3

Let q1 : X × Y → X ; q2 : X × Y → Y be the projections.

Proposition 11.3 ([1], Proposition 5.4.2) Let F ∈ D(X); G ∈ D(Y ). Then:

SSRHom(q−12 G; q−11 F) ⊂ SS(F)× SS(G)a,

where SS(G)a ⊂ T ∗Y consists of all points ω such that −ω ∈ SS(G).

11.0.4

Let f : Y → X be a morphism of manifolds. We have natural maps

( f t ) : T ∗X ×X Y → T ∗Y
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and fπ : T ∗x ×X Y → T ∗X .
Thus, T ∗X ×X Y is a correspondence between T ∗X and T ∗Y . Using this corre-

spondence, one can transport sets from T ∗Y to T ∗X and vice versa. Indeed, given
a subset A ⊂ T ∗Y one has a subset fπ( f t )−1A ⊂ T ∗X . Given a subset B ⊂ T ∗X ,
one has a subset ( f t ) f −1π (B) ⊂ T ∗Y .

Proposition 11.4 ([1], Proposition 5.4.4) Let f : Y → X be a morphism of mani-
folds, G ∈ D(Y ), and assume f is proper on Supp(G). Then

SS(R f∗G) ⊂ fπ(( f
t )−1(SS(G))).

Observe that under the hypothesis of this Proposition, the natural map R f!G →
R f∗G is an isomorphism. Therefore, the Proposition remains true upon replacement
of R f∗ with R f!.

11.0.5

Let f : Y → X be amorphism ofmanifolds and A ⊂ T ∗X a closed conic subset.We
say that f is non-characteristic for A if f −1π A ∩ T ∗Y X ⊂ Y ×X T ∗X X . Here T ∗Y X ⊂
T ∗X × XY is the kernel of ( f t ) viewed as a linear map of vector bundles.

Proposition 11.5 ([1], Proposition 5.4.13) Let F ∈ D(X) and assume f : Y → X
is non-characteristic for SS(F). Then

(i) SS( f −1F) ⊂ ( f t )( f −1π (SS(F)));

(ii) The natural morphism f −1F ⊗ ωY/X → f !F is an isomorphism.

11.0.6

Proposition 11.6 ([1], Proposition 5.4.14) Let F,G ∈ D(X).
(i) Assume SS(F) ∩ SS(G)a ⊂ T ∗X X. Then SS(F ⊗ G) ⊂ SS(F)+ SS(G);
(ii) Assume SS(F) ∩ SS(G) ⊂ T ∗X X. Then SS(RHom(G, F) ⊂ SS(F)− SS(G).

11.0.7

We need a notion of Witney sum of two conic closed subsets A, B ⊂ T ∗X . We will
reproduce a definition in terms of local coordinates from [1] Remark 6.2.8 (ii).

Let (x) be a system of local coordinates on X , (x, ξ) the associated coordinates
on T ∗X . Then xo, ξo ∈ A+̂B iff there exist sequences {(xn, ξn)} in A and {(yn, ηn)}
in B such that xn → xo, yn → yo, ξn + ηn → ξo, and |xn − yn||ξn| → 0.
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Proposition 11.7 ([1], Theorem 6.3.1) Let � be an open subset of X and j : �→
X the embedding. Let F ∈ D(X). Then SS(R j∗F) = SS(F)+̂N ∗(�); SS( j!F) ⊂
SS(F)+̂N ∗(�)a.

11.0.8

Let f : Y → X be a morphism of manifolds and A ⊂ T ∗X be a closed conic subset.
One can define a closed conic subset f #(A) ⊂ T ∗M ([1], Definition 6.2.3 (iv)).

Proposition 11.8 ([1], Corollary 6.4.4) Let F ∈ D(X). Then SS( f −1F) ⊂
f #(SS(F)).

In a particular case when f is a closed embedding, the set f #(A) admits an explicit
description in local coordinates [1], Remark 6.2.8, (i). That’s the only case we will
need.

Let (x ′, x ′′) be a system of local coordinates on X such that Y = {(x ′, 0)}. Then
(x ′′o ; x ′′o ) ∈ f #(A) iff there exists a sequence of points (x ′n, x ′′n , ξ′n, ξ′′n ) ∈ A such that
x ′n → 0; x ′′n → x ′′o ; ξ′′n → ξ′′o , and |x ′n||ξ′n| → 0.
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AMicrolocal Category Associated
to a Symplectic Manifold

Boris Tsygan

In memory of Boris Vasilievich Fedosov and Moshé Flato

Abstract For a symplectic manifold subject to certain topological conditions
a category enriched in A∞ local systems of modules over the Novikov ring is
constructed. The construction is based on the category of modules over Fedosov’s
deformation quantization algebra that have an additional structure, namely an action
of the fundamental groupoid up to inner automorphisms. Based in large part on the
ideas of Bressler-Soibelman, Feigin, and Karabegov, it motivated by the theory of
Lagrangian distributions and is related to other microlocal constructions of a cate-
gory starting from a symplectic manifold, such as those due to Nadler-Zaslow and
Tamarkin. In the case when our manifold is a flat two-torus, the answer is very close
to both the Tamarkin microlocal category and the Fukaya category as computed by
Polishchuk and Zaslow.

1 Introduction

There are several ways to construct a category which is an invariant of a symplec-
tic manifold. One is due to Fukaya and is based on Floer cohomology [11, 12].
A connection between the Fukaya theory and theory of constructible sheaves was
established by Nadler and Zaslow [29, 30]. Another construction of a category start-
ing from a symplectic manifold was carried out by Tamarkin [37, 38]. It is based on
microlocal theory of sheaves on manifolds developed by Kashiwara and Schapira in
[21].
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In this paper we describe yet another construction. It is based on microlocal
objects, as [37, 38] are. But instead of microlocal theory of sheaves we use asymp-
totics of pseudodifferential operators and Lagrangian distributions [15, 16], or rather
their algebraic version described by deformation quantization [1, 9, 31, 32].

1.1 Motivation from Morse Theory

1.1.1 The Classical Morse Filtration

First recall that, given a function f on a C∞ manifold X , one can study De Rham
cohomologyof X using afiltration of the sheafCX by subsheavesCX,t = C{ f (x)≥t} for
any real t . If f is a Morse function, the cohomology H •(X, CX,t/CX,t ′) is described
in terms of critical points of f .

1.1.2 The Filtered Local System of K-Modules

The above can be interpreted as follows. Let

� =
{ ∞∑

k=0

ak exp

(
1

i�
ck

)
|ak ∈ C; ck ≥ 0; ck → ∞

}

be the Novikov ring. Let K be its field of quotients which is defined the same way
as �, with the condition ck ≥ 0 replaced by ck ∈ R. Consider the trivial K-module
of rank one and the corresponding constant sheaf KX on X . Given a function f ,
consider the action of the fundamental groupoid π1(X) on KX such that any class of
a path x0 → x1 acts by multiplication by exp( 1

i� ( f (x0) − f (x1))).
For any real number t , denote by C∞

�t ,X the sheaf associated to the presheaf of
formal expressions

{ ∞∑
k=0

ak exp

(
1

i�
ϕk

)
|ak ∈ C∞

X ((�));ϕk ∈ C∞
X ;ϕk ≥ t;ϕk → ∞

}
(1.1.1)

Define C∞
K,X the same way but without the condition ϕk ≥ t.When t = 0, we denote

C∞
�t ,X by C∞

�,X .

The fundamental groupoid π1(X) acts on C∞
K,X (the simple exact meaning of this

statement is explained in Definition6.18). Horizontal sections are of the form

∑
k

ak exp

(
1

i�
(ck + f (x))

)
(1.1.2)
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where ak ∈ C((�)), ck ∈ R, and ck → ∞. Now consider the sheaf F t ( f ) of hori-
zontal sections that are in C∞

�t ,X . Note that exp(
1

i� (c + f )) is in F t ( f ) on an open
set if and only if c ≥ t − f on this open set. Therefore

H •(X,F t ( f )) = ⊕̂c H •(Uc,t )((�)) (1.1.3)

where Uc,t is the biggest open subset on which c ≥ t − f. We see that this cohomol-
ogy essentially contains all the information about the cohomology of Xt for various
t. The symbol ⊕̂ denotes the completed direct sum, i.e. the space of infinite sums

∞∑
k=1

Ak, Ak ∈ H •(Uck ,t )((�)), ck → ∞ (1.1.4)

1.1.3 The Twisted De Rham Complex

The language of local systems and of actions of the fundamental groupoid makes it
natural to look at flat connections.

Definition 1.1 Denote by �•
K,X , resp. �•

�t ,X , resp. �•
�,X , the sheaf of differential

forms with coefficients in C∞
K,X , resp. C∞

�t ,X , resp. C∞
�,X .

Consider the twisted De Rham complex

(�•
K,X , i�dDR + d f ∧) (1.1.5)

This complex is filtered by subcomplexes �•
�t ,X . The fundamental groupoid acts on

it preserving the differential (again, see Definition6.18 for the exact meaning of this).
Now, for traditional local systems of finite dimensional vector spaces, locally,

the cohomology of the De Rham complex is the same as the space of horizontal
sections. The latter is (again, locally) the same as the derived space of horizontal
sections, which is by definition the cohomology of the fundamental groupoid with
coefficients in functions. In the context of C∞

K,M -valued forms, the first of these
statements is false. In fact, the cohomology of the complex (1.1.5) is huge: regardless
of f , it is the sum of cohomologies of dDR + dϕ∧ for all ϕ. But if we consider the
local double complex of cochains of the fundamental groupoid with coefficients in
(1.1.5), we get the cohomology isomorphic to K. This is easy to see. In fact, we
can replace f by 0 in (1.1.5), since the two complexes are isomorphic by means of
multiplication by exp( 1

i� f ). The value of the local double complex on a coordinate
chart U becomes

C p,q = �
p
K
(U q+1)

for p, q ≥ 0. There are two differentials: one is dDR : C p,q → C p+1,q; the other is
δ : C p,q → C p,q+1 where for ω ∈ C p,q
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δω =
q∑

j=0

(−1) j p∗
j ω (1.1.6)

Here p j is the projection Xq+1 → Xq along the j th factor. But the differential δ
admits a contracting homotopy

hω = i∗
0ω (1.1.7)

where i0(x0, . . . , xq−1) = (0, x0, . . . , xq−1).Moreprecisely, [δ, h] = Id − r0 where
r0 = 0 for q > 0 or p > 0, and r0a = a(0) for p = q = 0.

The sheaf associated to the presheaf of local complexes C•,• inherits the action of
the fundamental groupoid. The easiest way to express this is to say that, if

C p,q
x = lim−→

x∈U

C p,q(U ), (1.1.8)

then there are operators
π1(x, y) × C p,q

y → C p,q
x (1.1.9)

that define an action. In a more general situation, when we start with a differential
graded module E• over �•

K,X with a compatible action of π1(X), they define an A∞
action. This is more or less the same for all practical purposes (cf. Sect. 6.1).

We summarize the above as follows. Starting from a function f we constructed a
filtered differential graded module E• over �•

K,X with a compatible action of π1(X),
namely the twisted De Rham complex (1.1.5). From that we passed to a filtered KX -
module with an (a priori A∞) action of π1(X). It is natural to call it an infinity local
system of K-modules. (Note that the complex is filtered but π1 does not preserve the
filtration). The goal of this paper is to generalize large parts of the above in the way
that we explain next.

1.2 Lagrangian Submanifolds

1.2.1 Review of the Results

Let M be a symplectic manifold and L0, L1 its Lagrangian submanifolds. Under
some topological assumptions that we will list below, we will construct an infinity-
local system of K-modules C•(L0, L1) on M. In examples, this infinity local system
is often filtered. The precise topological conditions that guarantee it being filtered
are given by Proposition 9.8. Complexes C•(L0, L1) have a structure of an A∞ -
category enriched in A∞ local systems of K-modules (we will develop this in detail
in a subsequent work). When M = T ∗ X , L0 = graph(0), and L1 = graph(d f ), we
recover the construction we discussed above (with some modification).
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The topological conditions, most probably much too conservative for large parts
of the construction, are as follows.

(1) The manifold M has an Sp4-structure (cf. Sect. 12.3). In other words, for an
almost complex structure compatible with ω, consider the first Chern class c1(M) of
the tangent bundle viewed as a complex vector bundle. Then 2c1(M) must be trivial
in H 2(M, Z/4Z). An Sp4 structure is a trivialization of 2c1(M).

(2) The image of the pairing of the class of the symplectic form with the image
of the Hurewicz morphism is zero: 〈π2(M), [ω]〉 = 0.

(The properties of Lagrangian submanifolds that are usually considered in Fukaya
theory, such as exactness, grading, and existence of a Spin structure, all make their
appearance in our considerations, as well as in [38]. Their exact role will be discussed
in a subsequent work).

The infinity local system will be constructed in several steps indicated below. The
meaning of all the terms used will be explained later in the introduction and/or in the
rest of the article. All steps are possible under some additional conditions.

(a) We will introduce a sheaf of algebrasAM with a flat connection on M.On this
sheaf, the fundamental groupoid π1(M) will act up to inner automorphisms. Denote
by A•

M the differential graded algebra of AM -valued forms, with the differential
given by the connection.

(b) Consider two modules V andW overAM with a compatible action of π1(M)

and a compatible connection. Denote by V•, W• the differential graded modules of
forms with values in V or W . Then the standard complex computing their Ext over
A•

M has a structure of a �•
K,M -module with a (twisted) A∞ action of π1(M).

(c) Given an�•
K,M -modulewith a (twisted) A∞ action ofπ1(M), wewill construct

an infinity local system as in (1.1.8).
(d) To constructmodulesV as in b), note thatwe can start with anAM -modulewith

a compatible connection and a compatible action of a bigger groupoid G̃M that maps
onto π1(M) in such a way that the kernel of this map acts by inner automorphisms.

(e) Given a Lagrangian submanifold L , we notice that there exists a subgroupoid
of G̃M |L on L , as well as an AM |L-module with a compatible connection and a
compatible action of this subgroupoid. Now we can get an object as in (d) by an
induction procedure.

We will now outline the steps (a)–(e) in more detail.

1.3 Deformation Quantization

1.3.1 The Twisted De Rham Complex, Deformation Quantization, and
Ext Functors

The fact that the twisted De Rham complex can be interpreted in terms of homo-
logical algebra had been known for a long time. Namely, let D�(X) be the ring of
C∞

�-differential operators, i.e. the subalgebra of all differential operators which
is generated, in any local coordinate system, by F(x1, . . . , xn) for all functions F
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and by i� ∂
∂x j

for all j . Here � can be any nonzero number, but it is easy to modify
this construction to make � a formal parameter (in which case D�(X) is the Rees
ring [2]). The algebra D�(X) acts on the space of functions on X . Denote the cor-
responding module by V0. Now note that a function f defines an automorphism of
D�(X), namely the conjugation with exp( 1

i� f ).When � is not a number but a formal
parameter, it is not clear how to define exp( 1

i� f ) but conjugation by it makes perfect
sense. Namely, in any coordinate system it sends F(x1, . . . , xn) to itself for all F
and i� ∂

∂x j
to i� ∂

∂x j
+ ∂ f

∂x j
for all j . It can be easily shown that Ext•D�

(V0, V f ) can
be computed by the twisted De Rham complex. When � is a nonzero number, this
complex is of course isomorphic to the standard De Rham complex. When � is a
formal parameter, this complex is

(�•(X)[�], i�dDR + d f ∧) (1.3.1)

When we formally invert � the cohomology of this differential becomes easier to
compute because we can use the spectral sequence associated to the filtration by
powers of �. The first differential in this spectral sequence is d f ∧ .When f has iso-
lated nondegenerate critical points, the cohomology of this differential, and therefore
the cohomology of the twisted De Rham complex, is concentrated in the top degree
n and its dimension over the field C((�)) of Laurent series is equal to the number of
critical points.

Now letAM be a deformation quantization ofC∞(M) (cf. [1]; we recall the defini-
tions in Sect. 3.2). When M = T ∗ X , there is the canonical deformation quantization
that is a certain completion ofD�(X). (Another, arguably more correct, deformation
is a completion of the algebra of �-differential operators on half-forms). The algebra
AM is a reasonable replacement of D�(X), although it is no longer an algebra over
C[�] but only over C[[�]]. In particular it does not allow any specialization at a
nonzero number �.

In mid-eighties, Boris Feigin suggested an idea based on the intuition from alge-
braic theory of D-modules [2]. According to this idea, and to a subsequent work [3]
of Bressler and Soibelman, one should associate to a Lagrangian submanifold L a
sheaf of AM -modules VL supported on L . Then Ext•(VL0 , VL1) should somehow
be a first approximation for a more interesting theory, namely the Floer cohomol-
ogy. The latter also sees intersection points of transversal Lagrangian submanifolds,
but in a much subtler way. Those intersection points define cochains (not necessarily
cocycles) of the Floer complex that are not of the same but of different degrees (given
by the Maslov index). Furthermore, the differential in the Floer complex may send
one such cochain to a linear combination of other points (in other words, there may
be instanton corrections). The standard homological algebra seems to be unable to
catch these effects.

Below we will outline several tools that, combined, seem to allow to construct a
category some (but not all) ofwhose objects come fromLagrangian submanifolds and
which is much closer to the Fukaya category than the bare category of AM -modules.
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1.3.2 The Fedosov Construction

The work of Fedosov [9] provided a simple and very efficient tool for working
with deformation quantization of symplectic manifolds. Recall that a local model
for deformation quantization is the Weyl algebra C∞(M)[[�]]with the Moyal–Weyl
product ∗. The key properties of this product are that it is Sp(2n, R)-invariant and
that

[ξ j , xk] = i�δ jk; [x j , xk] = [ξ j , ξk] = 0.

The local model for the Fedosov construction is as follows. Start with the space
Â of power series in formal variables x̂ j , ξ̂ j , and �, 1 ≤ j ≤ n. Turn it into an
algebra by introducing the Moyal–Weyl product. Now consider the algebra of Â-
valued differential forms on the Darboux chart with coordinates x j , ξ j . This algebra
is equipped with the differential given by formula

∇A =
n∑

j=1

((
∂

∂x j
− ∂

∂ x̂ j

)
dx j +
(

∂

∂ξ j
− ∂

∂ξ̂ j

)
dξ j

)
(1.3.2)

(cf. also (3.1.1)). The cohomology algebra of this differential is the usual deformation
quantization.

For a general symplectic manifold M , one replaces a deformation AM with the
algebra �•(M, ÂM) of ÂM -valued differential forms on M. Here ÂM is the bundle
of algebras with fiber Â. The differential on the algebra �•(M, ÂM) is a chosen
Fedosov connection. On any local Darboux chart, this algebra is isomorphic to the
one discussed in the previous paragraph.

Note that the usual intuition about flat connections does not work here. Namely,
there is no action of the fundamental groupoid (monodromy) preserving this flat
connection. In fact, even locally, the algebra of horizontal sections is not at all iso-
morphic to the fiber. This feature will change rather radically after a modification that
we introduce next. Much of what follows is based on the idea suggested to the author
by Alexander Karabegov: extend the work of Fedosov so that it will describe an
asymptotic version of Maslov’s theory of canonical operators and of Hörmander’s
theory of Lagrangian distributions (cf. [15, 16, 26]). Actually, the constructions
below require nothing but a systematic introduction into deformation quantization
of quantities of the form (1.3.3) below. They do however have very strong connec-
tions to [15, 16, 26]. We discuss these connections in Appendices (Sects. 12, 13, 15,
and 17). Note that exponentials (1.3.3) were considered in deformation quantization
since the introduction of the subject, in particular in [1, 7, 10].

1.3.3 The Extended Fedosov Construction

Let us start with a remark about what happens when one tries systematically to
introduce into deformation quantization quantities of the form
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exp

(
1

i�
ϕ

)
. (1.3.3)

Let us do this at the level of the algebra of formal series Â. All such quantities where
ϕ are power series starting with cubic terms become elements of a new algebra

automatically as soon as one replaces Â by a completion ̂̂A (cf. Sect. 4.1).We interpret
quantities (1.3.3) where ϕ are quadratic as elements of the 4-fold covering group
Sp4(2n, R) (see the remark below). To add elements (1.3.3) where ϕ is constant, we
tensor our algebra by the Novikov field K (as in Sect. 1.1.2).

Remark 1.2 Here is an explanation of the presence of Sp4 (cf. Sect. 12 for defini-
tions). The Lie algebra of derivations of the algebra Â has a subalgebra consisting of
elements 1

i� ad(q (̂x, ξ̂)) where q is a quadratic function. This Lie subalgebra is iso-
morphic to sp(2n), and its action is the standard action by linear coordinate changes.
Consider the Â-module C[[̂x, �]][�−1] on which x̂ acts by multiplication and ξ̂ by
i� ∂

∂ x̂ . On it, 1
i� x̂ j ξ̂k acts by x̂ j

∂
∂ x̂k

+ 1
2δ jk . Note that ad( 1

i� x̂ j ξ̂k) form a basis of the
subalgebra gl(n) inside sp(2n). We see that one can integrate the action of this Lie
subalgebra on themodule to an action of the group, put themost natural way to do this
is to pass to the two-fold cover ML(n, R) consisting of pairs {(g, ζ)| det(g) = ζ2}.
One cannot extend this group action to the full symplectic group. To achieve that,
we will have to extend the module considerably. But the group containing ML(n) is
not Sp(2n) but its universal two-fold cover Mp(2n). The group Sp4 contains Mp(2n)

as a normal subgroup with quotient Z/2Z. We pass to this bigger group because it
behaves better with respect to Lagrangian subspaces. For example, if a symplectic
manifold M has a real polarization, then M has an Sp4(2n)-structure but not nec-
essarily an Mp(2n)-structure. On a more basic level, the pre-image of GL(n, R) in
Sp4(2n, R) splits, i.e. is isomorphic to GL(n, R) × Z/4Z.

Finally,wedonot add elements (1.3.3)whereϕ are linear, for the following reason.
Note that ad( 1

i� ξ̂ j ) = ∂
∂ x̂ j

and ad( 1
i� x̂ j ) = − ∂

∂ξ̂ j
. Exponentials of these operators

should be shifts in formal variables x̂ j and ξ̂ j . But such shifts do not act on power
series. Instead, they should correspond to shifts acting fromonefiber of the associated
bundle of algebras to another. These shifts will be discussed in Sect. 1.4 below.
One does not need to add them, they will act automatically as long as topological
conditions (1), (2) from Sect. 1.2.1 are satisfied.

We get an algebraA containing ̂̂A,C[Sp4(2n)], andK as subalgebras. The associ-
ated bundle of algebrasAM carries a Fedosov connection∇A that extends the one on
ÂM . For all we know, the cohomology of the De Rham complex of this connection
is huge. But the bundle of algebras AM carries another structure that we are going
to discuss next.
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1.4 The Action of π1 up to Inner Automorphisms

It turns out that, if conditions (1) and (2) fromSect. 1.2.1 are satisfied, the fundamental
groupoid π1(M) acts on the bundle of algebras AM up to inner automorphisms. The
notion of such an action is defined in Sect. 5. Moreover, the Fedosov connection ∇A
extends to a flat connection up to inner derivations compatible with this action (cf.
Sect. 5.7.2).

All the requisite notions arewell-known and go back toGrothendieck. The version
that suits our purposes is developed here in Sect. 5. For the readers convenience we
introduce these notions gradually, starting with the case of a group acting on an
algebra, though the generality we need is that of a Lie groupoid acting on a sheaf
of algebras. The Lie groupoid in question will be the fundamental groupoid or its
extension by a bundle of Lie groups.

1.5 From an Action up to Inner Automorphisms to an A∞
Local System

In Sect. 6 we explain that, given an action of a groupoid G on a sheaf of algebrasA up
to inner automorphisms and given twoA-modulesV andW with a compatible action
of the groupoid, the standard complex C•(V,A,W) that computes Ext•A(V,W)

carries a (twisted) A∞ action of G.Wemake a similar argument whenA carries a flat
connection up to inner derivations. (Twisted A∞ actions are discussed in Sect. 16.
They are needed because the action in Sect. 1.4 is continuous only locally).

LetA•
M be the sheaf ofAM -valued forms on M. The above procedure starts with

two differential graded A-modules V•, W• with compatible actions of π1(M) and
produces the standard complex C•(V•,A•,W•) which is a sheaf of �•

K,M -modules
with a compatible twisted A∞ action of π1(M). Finally, for an open chart U in M ,
consider the double complex C•,•(V•,W•)(U ) where C p,q(U ) is the space of q-
cochains of π1(U ) with coefficients in the graded component C p(V•,A•,W•), as in
the second part of Sect. 1.1.3. Let

C•,•
x = lim−→

x∈U

C•,•(V•,W•)(U )

be the stalk at a point x . As we indicated in Sect. 1.1.3 (after (1.1.8)), these com-
plexes form an A∞ local system of K-modules. We denote this local system by
RHOM(V•,W•).

We sum up the construction up to this point in Sect. 8.
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1.6 Objects Constructed from Lagrangian Submanifolds

We proceed to construct a differential graded module VL as in Sect. 1.5 starting
from a Lagrangian submanifold L . This is done using an induction procedure that
is explained in Sect. 9, in particular in Sect. 9.2. In Sect. 10, we prove that the gen-
eral construction, when applied to M = R

2n , L0 = graph(0), and L1 = graph(d f ),
reproduces the one in Sect. 1.1.2, with the one important distinction. Namely, the
filtered A∞ local system RHOM(V•

L0
,V•

L1
) whose construction is outlined above is

a module over a trivial local system of differential graded algebras whose fiber is the
algebra

S• = C•(MPar(n), K) (1.6.1)

of cochains of the group MPar(n) with coefficients in the Novikov field K. Here
MPar(n) is the parabolic subgroup of the group Sp4(2n) which is the pre-image of
the stabilizer of the Lagrangian submanifold ξ1 = · · · = ξn = 0 in Sp(2n).We prove
that the general construction outlined in Sect. 1.5 is the tensor product of S• by the
filtered local system described in Sect. 1.1.2.

Remark 1.3 There probably exists a correct way of factoring out the maximal ideal
of S• and in particular recovering the exact answer as in Sect. 1.1.2. Note that the
algebra S• plays a vital role in the computation in Sect. 10. Namely, the vanishing
of the cohomology of MPar(n) with coefficients in a certain class of modules leads
to a vanishing result for all components involving a factor exp( 1

i�ϕ(x, x̂)) where
the quadratic part of ϕ with respect to x̂ is nonzero. Cf. Lemma10.7, Corollary10.8
(which we interpret as stationary phase statements of some sort).

1.6.1 The Example of a Two-Dimensional Torus

In Sect. 11, we compute RHOM(V•
L0

,V•
Lm

) where M = R
2/Z

2, L0 = {ξ = 0}, and
Lm = {ξ = mx}. The answer is the trivial bundle whose fiber is the space of matrices
indexed by k, � ∈ Z with coefficients in S•. If γ1, γ2 are the two generators of the
fundamental group π1(M)

∼→ Z
2, then the action of π1(M) on the matrix units Ek�

is given by

γ
q
1γ

p
2 : Ek� �→ exp

(
1

i�

(
mq2

2
+ q(� − k)

))
Ek+p,�+p−mq

As a consequence (Corollary11.3), horizontal sections of this local system have the
same algebraic expression as theta functions. This agrees with the computation of
the Fukaya category of M given by Polishchuk and Zaslow in [34].
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1.7 Microlocal Category of Sheaves

1.7.1 The Microlocal Category of Tamarkin

In [37], Tamarkin defined the category D(T ∗ X) for a manifold X . This is a full
subcategory of the differential graded category of complexes of sheaves on X × R.
Below are the key properties of the differential graded category D(T ∗ X).

(1) For c ≥ 0, there is a natural transformation τc : Id → (Tc)∗ where, for (x, t) ∈
X × R, Tc(x, t) = (x, t + c). One has τcτc′ = τc+c′ . Define

HOM(F ,G) =
∏
c≥0

′
RHom(F , (Tc)∗G)

where
∏′ is the subset of the direct product consisting of all elements (vc) such

that vc = 0 for all but countably many ck, k = 1, 2, . . ., satisfying ck → ∞. Then
HOM(F ,G) is a complex of modules over the Novikov ring �Z = {∑∞

k=0 ake− ck
i� }

where ak ∈ Z, ck ∈ R, ck ≥ 0, and ck → ∞.

Remark 1.4 For a general sheaf F there is no relation between its behavior on an
open subsetU and on the shift ofU by c in the t direction.ButTamarkin’s subcategory
has a remarkable property that the natural transformation τc exists. A key example
is provided by sheaves F f defined in the paragraph below.

(2) For every object F of D(T ∗ X), a closed subset μS(F) is defined, called the
microsupport ofF .Let f be a smooth function on X.DenoteF f = Z{t+ f (x)≥0}.Then
μS(F f ) = graph(d f ). (Observe that T ∗

c F f = F f −c; the morphism τc : F → Tc∗F
is the restriction to the subset {t − f − c ≥ 0} of Z{t− f ≥0}).

(3) For a Morse function f , the complex H O M(F0,F f ) is quasi-isomorphic to
the Morse complex of f.

(4)LetT2 be the standard 2-toruswith theflat symplectic structure.Onedefines the
category D(T2) of objects of D(T ∗

R
1) equivariant under certain projective action of

Z
2. For every Lagrangian submanifold of T2 of the form aξ + bx = c, a, b, c being

integers, one constructs an objectFa,b,c of D(T2). The full subcategory generated by
these objects is isomorphic to the full subcategory of the Fukaya category generated
by Lagrangian submanifolds aξ + bx = c as computed by Polishchuk–Zaslow in
[34].

Remark 1.5 The category D(T2) can be defined either as a partial case of the general
construction [38] or by an explicit procedure that we recall in Sect. 11.3.

(5) Theorem B. Let � be a Hamiltonian symplectomorphism of T ∗ X which is
equal to identity outside a compact subset. There exists a functor T� : D(T ∗ X) →
D(T ∗ X) such that, if μS(F) is compact, μS(T�(F)) ⊂ �(μS(F)). For everyF and
G, HOM(F ,G) and HOM(F , T�(G)) are isomorphic modulo �Z-torsion. Similarly
for HOM(F ,G) and HOM(T�(F),G).

(6) Theorem A. Let F and G be objects of D(T ∗ X) such that μS(F) and μS(G)

are compact and do not intersect. Then HOM(F ,G) = 0 modulo �Z-torsion.



236 B. Tsygan

For the sake of completeness, let us indicate how some of the above construc-
tions are carried out. For a sheaf F on X × R, let SS(F) be its singular support
as defined in [21]. Let D(T ∗ X) be the left orthogonal complement to the subcat-
egory of sheaves G such that SS(G) is contained in {τ ≤ 0}, where τ is the vari-
able dual to the coordinate t on R. The microsupport of an object F is defined by
μS(F) = {(x, ξ) ∈ T ∗ X |(x, ξ, t, 1) ∈ SS(F) for some t ∈ R}.

Tamarkin’s current work [38] generalizes the construction of D(T ∗ X) to any
symplectic manifold M .

1.7.2 Comparisons Between the Categories

As we can see, many properties of the category D(T ∗ X) are parallel to those of
categories such asA•

M -modules with an A∞ action of π1(M). These include (1) (the
second half), (3), and (4). Property (5) is very likely to hold. Properties (2) and (6)
need further study (see next remark).

The following idea probably allows to construct a functor from (AM , π1(M))-
modules on T ∗ X satisfying some conditions to sheaves on X × R. For such amodule
V•, assume that RHOM(V•

0 ,V•) is a filtered infinity local system as, for example,
in Proposition 9.8 if the latter is true. Denote the filtration by Filta, a ∈ R. Then the
stalk at (x, t) of the sheaf corresponding to V• should be the Filtt part of the complex
that computes local cohomology of this infinity local system at x (cf. [20]).

Remark 1.6 Our source of defining (AM , π1(M))-modules are oscillatory modules.
(Their original version was defined in [40]). Oscillatory modules as defined here
in Sect. 8.2 are actually complexes of sheaves. It is possible to relax the definition
somewhat and only require them to carry a differential ∇V satisfying ∇2

V = 1
i�ω

where ω is the symplectic form. (In other words, we can use the groupoid G̃M

as defined in Sect. 7.2.1 and not in Sect. 7.2.2). If we allow this, we seem to gain
much more generality. For example, it will be much easier to construct an oscillatory
module not only from a Lagrangian but from a coisotropic submanifold (as discussed
in [18]) and maybe for more general submanifolds. On the other hand, it seems that
the condition ∇2

V = 0 is indispensable (cf. Sect. 9.3.1) if one wants to define the
microlocal support μS(V•) (the latter is a version of the support of the differential
∇V ). Cf., for example, an explicit formula for ∇V given by (9.4.5).

Remark 1.7 Much of the motivation behind our approach came from [43]. We do
not know any rigorous link between the two works. It would be very interesting to
relate our methods to the study of asymptotics of eigenvalues of the Schrödinger
operator.

Acknowledgements I am grateful to Dima Tamarkin for fruitful discussions and for many
explanations of his works. As already indicated above, much of the present paper originated
from earlier ideas of Boris Feigin and Sasha Karabegov.
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2 RHom and the Twisted De Rham Complex

2.1 Deformation Quantization Algebra

Put
A = C∞(R2n)[[�]]

with the Moyal–Weyl product

( f ∗ g)(x, ξ) = exp

(
i�

2

(
∂

∂ξ

∂

∂y
− ∂

∂x

∂

∂η

))
( f (x, ξ)g(y, η))|x=y,ξ=η

For a function f (x) denote

V f = A

/∑
j

A

(
ξ j − ∂ f

∂x j

)

or, in a simplified notation,

V f = A/A(ξ − f ′(x))

Lemma 2.1 As a C[[�]]-module, V f is isomorphic to C∞(Rn)[[�]] on which x j

acts by multiplication and ξ j by i� ∂
∂x j

+ ∂ f
∂x j

.

2.2 The Complex Computing RHom(V0, V f )

Lemma 2.2 The complex (�•(Rn)[[�]], i�dDR + d f ∧) computes Ext•
A
(V0, V f )

Proof Fix a basis e1, . . . , en of C
n. Let e1, . . . , en be the dual basis of (Cn)∗. Let

Rk = A ⊗ ∧k(Cn). Define the differential

∂(a ⊗ e j1 ∧ . . . ∧ e jk ) =
k∑

p=1

(−1)paξ jp ⊗ e j1 ∧ . . . ∧ ê jp ∧ . . . ∧ e jk (2.2.1)

The complex (R•, ∂) is a free resolution of the module V0. The complex HomA

(R•, V f )) becomes
Ck = ∧k(Cn)∗ ⊗ V f ; (2.2.2)

d(e j1 ∧ . . . ∧ e jk ⊗ v) =
k∑

p=1

e j1 ∧ . . . ∧ e jk ∧ ep ⊗ ξpv (2.2.3)
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which is isomorphic to (�•(Rn)[[�]], i�dDR + d f ∧) because of
Lemma2.1. �

3 The Weyl Algebra and the Fedosov Connection

3.1 The Case of R
2n

Set
Â = C[[̂x1, . . . , x̂n, ξ̂1, . . . , ξ̂n, �]]

with the Moyal–Weyl product

( f ∗ g)(̂x, ξ̂) = exp

(
i�

2

(
∂

∂ξ̂

∂

∂ ŷ
− ∂

∂ x̂

∂

∂η̂

))
( f (̂x, ξ̂)g(ŷ, η̂))|x̂=ŷ ,̂ξ=η̂

Define the operator on Â-valued forms by

∇A =
(

∂

∂x
− ∂

∂ x̂

)
dx +
(

∂

∂ξ
− ∂

∂ξ̂

)
dξ (3.1.1)

This is the Fedosov connection (in the partial case of a flat space). One has ∇2
A

=
0; the complex (�•(R2n, Â),∇A) is quasi-isomorphic to C∞(R2n)[[�]]. The latter
embeds quasi-isomorphically to the former by means of

f �→ f (x + x̂, ξ + ξ̂). (3.1.2)

3.1.1 Infinitesimal Symmetries of the Deformation Quantization
Algebra on a Formal Neighborhood

Let Â = C[[̂x1, . . . , x̂n, ξ̂1, . . . , ξ̂n, �]] with the Moyal–Weyl product as in Sect. 2.1.
Put

g = Dercont(Â) = 1

i�
Â/

1

i�
C[[�]]; g̃ = 1

i�
Â

viewed as Lie algebras with the bracket a ∗ b − b ∗ a.

Introduce the grading
|̂xi | = |ξ̂i | = 1; |�| = 2. (3.1.3)

One has a central extension

0 → 1

i�
C[[�]] → g̃ → g → 0, (3.1.4)
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as well as

g =
∞∏

i=−1

gi ; g̃ =
∞∏

i=−2

g̃i . (3.1.5)

We will use the notation

g≥0 =
∞∏

i=0

gi ; g̃≥0 =
∞∏

i=0

g̃i . (3.1.6)

Note that
g0

∼→ sp(2n) (3.1.7)

and the action of this Lie algebra on Â is the standard action of sp by infinitesimal
linear coordinate changes.

3.1.2 DG Model for RHom(V0, V f )

Though this is not needed for the sequel, let us explain how modules V f can be
replaced by their DG analogs. Define

�•(R2n, V̂ f ) = �•(Rn)[[̂x, �]] (3.1.8)

with the differential

∇V =
(

∂

∂x
− ∂

∂ x̂

)
dx (3.1.9)

and the action of �•(R2n, Â) defined as follows: x and x̂ act by multiplication; ξ
acts by multiplication by f ′(x); ξ̂ acts by i� ∂

∂ x̂ + f ′(x + x̂) − f ′(x); dξ acts by
d f ′(x) = f ′′(x)dx .

It is easy to see that �•(R2n, Â) is the space of global sections of a sheaf of
differential graded algebras, and �•(R2n, V̂ f ) is the space of global sections of a
sheaf of differential gradedmodules supported on the Lagrangian submanifold L f =
{ξ = f ′(x)}. The formula v �→ v(x + x̂) defines a quasi-isomorphic embedding

V f → �(Rn, V̂ f )

compatible with the embedding of algebras C∞(R2n)[[�]] → �•(R2n, Â) defined in
(3.1.2).

Lemma 3.1 Let e∗, ê∗ and a∗ be three free graded commutative variables of degrees
1, 1, and 0 respectively. The cohomology

RHom�•(R2n ,Â)(�
•(R2n, V̂0),�

•(R2n, V̂ f ))
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is computed by the complex

�•(Rn, V̂ f )[e∗, ê∗][[a∗]],∇V + e∗ξ + ê∗ξ̂ + a∗dξ + (e∗ − ê∗)
∂

∂a∗

which is isomorphic to �•(Rn)[[̂x, �]][e∗, ê∗][[a∗]] with the differential

(
∂

∂x
− ∂

∂ x̂

)
dx + e∗ f ′(x) + a∗ f ′′(x)dx + ê∗

(
i�

∂

∂ x̂
+ f ′(x + x̂) − f ′(x)

)
+ (e∗ − ê∗) ∂

∂a∗

The latter complex is quasi-isomorphic to the one in Lemma2.2.

Proof TheDGmodule�•(Rn, V̂0) is the quotient of the freeDGmodule�•(R2n, Â)

by the differential graded submodule generated by ξ, dξ, and ξ̂. A Koszul complex
P = �•(R2n, Â)[e, ê, a] is a semi-free resolution of this quotient. The differential
extends ∇A, sends ev to ξv + av, êv to −ξ̂v + av, av to dξ · v, and is a coderivation
with respect to the action of C[e, ê, a]. The complex Hom�•(R2n ,Â)(R,�•(Rn, V̂ f ))

is isomorphic to both complexes above. It remains to show that the latter of those
complexes is quasi-isomorphic to (�•(R2n)[[�]], i�dDR + d f ∧). To this end, con-
sider the second complex in the statement of the lemma. Change the odd variables
to e∗ and e∗ − ê∗; note that we can factor out all positive powers of a∗ and e∗ − ê∗.
This is because the differential (e∗ − ê∗) ∂

∂a∗ is acyclic. We are left with the complex
�•(Rn)[[̂x, �]][e∗] with differential

(
∂

∂x
− ∂

∂ x̂

)
dx + e∗

(
i�

∂

∂ x̂
+ f ′(x + x̂)

)

Now change the even variables. Put y = x + x̂ and keep x̂ as the second variable.
As for the odd variables, put Dx = dx − i�e∗ and keep e∗ as the second variable.
The differential becomes (

i�
∂

∂y
+ f ′(y)

)
e∗ − ∂

∂ x̂
Dx .

We can factor out all positive powers of x̂ and of Dx because the differential ∂
∂ x̂ Dx

is acyclic. �

3.2 Deformation Quantization of Symplectic Manifolds

We recall from [1] that a deformation quantization of a symplectic manifold M is a
formal product

f ∗ g = f g +
∞∑

k=1

(i�)k Pk( f, g)
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where P : C∞(M) × C∞(M) → C∞(M) are bilinear bidifferential operators, f ∗
(g ∗ h) = ( f ∗ g) ∗ h in C∞(M)[[�]], 1 ∗ f = f ∗ 1 = f , and

P1( f, g) − P1(g, f ) = { f, g}.

An isomorphism between two deformation quantizations is a formal series

T ( f ) = f +
∞∑

k=1

(i�)k Tk( f )

where T ( f ) ∗ T (g) = T ( f ∗′ g) and Tk : C∞(M) → C∞(M) are linear differen-
tial operators. Below we review how to classify deformation quantizations up to
isomorphism using Fedosov connections.

3.3 The Bundle ̂AM

By ÂM we denote the bundle of algebras associated to the action of Sp(2n) on Â.

3.4 The Fedosov Connection

Definition 3.2 A Fedosov connection ∇ is a connection in the bundle of algebras
AM satisfying the following properties.

(1)
∇( f g) = ∇( f )g + f ∇(g)

for any local sections f and g of AM .

(2) ∇2 = 0
(3) In any local Darboux coordinates x, ξ on M and any formal Darboux coordi-

nates x̂, ξ̂ of A,

∇ = dDR −
(

∂

∂ x̂
dx − ∂

∂ξ̂
dξ

)
+ A≥0

where A≥0 is a one-form with coefficients in g≥0 (we use the notation of
(3.1.6)).

Note that sp(2n) embeds into g̃ as the space of 1
i� q (̂x, ξ̂) where q is a quadratic

polynomial.

Definition 3.3 A lifted Fedosov connection ∇̃ is a collection of g̃-valued one-forms
A j on local Darboux charts U j such that
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(1)
A j = −dg jkg

−1
jk + Ad(g jk)Ak

for any j and k.

(2) ∇2 is central.
(3) In any local Darboux coordinates x, ξ on M and any formal Darboux coordi-

nates x̂, ξ̂ of A,

∇ = dDR − 1

i�
ξ̂dx + 1

i�
x̂dξ + A≥0

where A≥0 is a one-form with coefficients in g̃≥0 (we use the notation of
(3.1.6)).

Any lifted Fedosov connection ∇̃ defines a Fedosov connection ∇ via the projec-
tion g̃ → g. In this case we call ∇̃ a lifting of ∇.

Let
G = Sp(2n, R) � exp(g≥1) (3.4.1)

This group acts on A by automorphisms. Let G M be the associated bundle of groups.
It acts by automorphisms on the bundle of algebras AM .

Definition 3.4 TwoFedosov connections are gauge equivalent if they are conjugated
by a section of G M .

Theorem 3.5 (1) For every

θ = 1

i�
ω +

∞∑
j=0

(i�) jθ j

where θ j are closed two-forms on M, there exists a lifted Fedosov connection ∇̃ such
that ∇̃2 = θ.

(2) Any Fedosov connection has a lifting. Two Fedosov connections are gauge
equivalent if and only if the curvatures of their liftings are cohomologous as 1

i�C[[�]]-
valued two-forms. In particular, any Fedosov connection is locally gauge equivalent
to the standard one.

(3) For any Fedosov connection, the kernel of ∇ : �0
M(AM) → �1

M(AM) is iso-
morphic to C∞

M [[�]] as a sheaf of algebras. Therefore any Fedosov connection defines
a deformation quantization of M.

(4) Any deformation quantization comes from some Fedosov connection. Two
deformation quantizations are isomorphic if and only if the corresponding Fedosov
connections are gauge equivalent.

This is mostly contained in [9]. The complete proof can be found in [31]. See also
[4].
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4 The Extended Fedosov Construction

4.1 The AlgebraA

First consider a larger completion of the Weyl algebra. Recall that the assignment

|̂x j | = |ξ̂ j | = 1; |�| = 2 (4.1.1)

turns Â into a complete graded algebra

Â =
∞∏

k=0

Âk (4.1.2)

Let Â[�−1]k be the space of elements of degree k in Â[�−1].
Now define ̂̂

A =
{ ∞∑

k=−N

ak |ak ∈ Â[�−1]k

}
(4.1.3)

where N runs through all integers. The product is the usual Moyal–Weyl product.
Now let Sp4(2n) be the group defined in Sect. 12.3 (in the case N = 4). This group

acts on ̂̂A through Sp(2n). Consider the cross product Sp4(2n) �
̂̂
A.

Remark 4.1 Here and everywhere by cross products we will mean their completed
versions. In other words, elements of the cross product are infinite sums

∑
gkak

where gk ∈ Sp4, ak ∈ A[�−1], and |ak | → ∞.

Definition 4.2

A =
{ ∞∑

k=0

ake
1

i� ck |ak ∈ Sp4(2n) �
̂̂
A; ck ∈ R; ck → ∞

}

Let A� be defined exactly as above, but with an extra condition ck ≥ 0. We will
sometimes write AK instead of A.

Note that we view Sp4(2n) as a discrete group.

4.1.1 The Novikov Ring

Define

� =
{ ∞∑

k=0

ake
1

i� ck |ak ∈ C((�)); ck ∈ R; ck ≥ 0; ck → ∞
}

(4.1.4)



244 B. Tsygan

K =
{ ∞∑

k=0

ake
1

i� ck |ak ∈ C((�)); ck ∈ R; ck → ∞
}

(4.1.5)

Clearly, A is an algebra over K.

4.2 The BundleAM

Since the action of Sp(2n) extends from Â to A, we get the associated bundle of
algebras AM on any symplectic manifold M .

4.3 The Extended Fedosov Connection

Note that the action of the Lie algebra g̃ extends to an action onA and therefore any
Fedosov connection ∇A extends canonically to a connection that we denote by ∇A.

5 Action up to Inner Automorphisms

5.1 Groups Acting up to Inner Automorphisms

Definition 5.1 Let � be a group and A an associative algebra. An action of � on A
up to inner automorphisms is the following data.

(1) Automorphisms Tg : A
∼→ A for all g ∈ �.

(2) Invertible elements c(g1, g2) of A for all g1, g2 in � such that

Tg1Tg2 = Ad(c(g1, g2))Tg1g2 (5.1.1)

c(g1, g2)c(g1g2, g3) = Tg1c(g2, g3)c(g1, g2g3) (5.1.2)

An equivalence between (T, c) and (T ′, c′) is a collection {b(g) ∈ A×|g ∈ G}
such that

T ′
g = Ad(b(g))Tg; c′(g1, g2) = b(g1)Tg1(bg2)c(g1, g2)b(g1g2)

−1 (5.1.3)

It {b′(g)} is an equivalence between (T, c) and (T ′, c′) and {b′′(g)} is an equivalence
between (T ′, c′) and (T ′′, c′′), then their composition is defined by b(g) = b′′(g)b′(g)

and is an equivalence between (T, c) and (T ′′, c′′).
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5.2 Derivations of Square Zero up to Inner Derivations

Definition 5.2 Let A be a graded algebra and let� be a group acting on A up to inner
automorphisms. A derivation of A of square zero up to inner derivations compatible
with the action of � is the following data.

(1) A derivation D of A of degree one;
(2) an element R of A of degree two;
(3) elements α(g) of A of degree one for every element g of �, such that

D2 = ad(R); DR = 0; Tg DT −1
g = D + ad(α(g));

Dα(g) + α(g)2 = Tg R − R;

α(g1) + Tg1α(g2) − Ad(c(g1, g2))α(g1g2) + Dc(g1, g2) · c(g1, g2)
−1 = 0.

Nowassume thatwe are given two sets of data: (T, c)with a compatible (D,α, R),
and (T ′, c′) with a compatible (D′,α′, R′). An equivalence

(T, c), (D,α, R)
∼→ (T ′, c′), (D′,α′, R′)

between them is an equivalence {b(g)} between the actions and an element β of A
of degree one such that

D′ = D + ad(β); (5.2.1)

α′(g) = −Db(g) · b(g)−1 + Adb(g)(α(g) + Tgβ); (5.2.2)

R′ = R + Dβ + β2 (5.2.3)

For two equivalences

(b′(g),β′) : (T, c), (D,α, R)
∼→ (T ′, c′), (D′,α′, R′)

and
(b′′(g),β′′) : (T ′, c′), (D′,α′, R′) ∼→ (T ′′, c′′), (D′′,α′′, R′′),

their composition is an equivalence

(b(g),β) : (T, c), (D,α, R)
∼→ (T ′′, c′′), (D′′,α′′, R′′)

given by
b(g) = b′′(g)b′(g); β = β′′ + β′. (5.2.4)

Remark 5.3 A graded algebra with D and R as in (1) and (2) subject to the first
two equations in (3) is called a curved differential graded algebra cf. [35]. In other
words, this is an A∞ algebra with the only nonzero operations being m0, m1, m2.
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Furthermore, (Tg,α(g)) are curved morphisms, i.e. A∞ morphisms with the only
nonzero operations T0, T1.

5.2.1 Lie Algebras Acting up to Inner Derivations

The above is a partial case of the following definition (that is not used in the sequel).

Definition 5.4 Consider an action of a group � on an algebra A given by the data
Tg, c(g1, g2). Let L be a Lie algebra. An action of L on A up to inner derivations
compatible with the action of � is the following data.

(1) A linear map D : L → Der(A), X �→ DX ;
(2) linear maps α : L → A for any g ∈ �, X �→ αX (g).

(3) a bilinear skew symmetric map R : L × L → A, satisfying

[DX , DY ] = D[X,Y ] + ad R(X, Y );

DX (R(Y, Z)) + DY (R(Z , X)) + DZ (R(X, Y )) =

= [DX , D[Y,Z ]] + [DY , D[Z ,X ]] + [DZ , D[X,Y ]];

Tg DX T −1
g = D + ad(αX (g));

DXαY (g) − DY αX (g) + [α(X, g),α(Y, g)] − α[X,Y ](g) = Tg R(X, Y ) − R(X, Y );

αX (g1) + Tg1αX (g2) − Ad(c(g1, g2))αX (g1g2) + DX c(g1, g2) · c(g1, g2)
−1 = 0.

More generally, let A be a graded algebra and L is a graded Lie algebra. The
above definition makes sense with the following changes: c(g1, g2) are of degree
zero; R andα are homogeneous of degree zero; and signs are present in the formulas.
Definition5.2 describes a partial casewhenL is a one-dimensional gradedLie algebra
concentrated in degree one.

5.3 Modules with Compatible Structures

For an algebra A with an action (Tg, c(g1, g2)) of a group G up to inner automor-
phisms and for an A-module V , a compatible action of G on V is a collection
{Tg : V → V |g ∈ G} of module automorphisms such that Tg1Tg2 = c(g1, g2)Tg1g2 .

Given a graded algebra A and a graded module V as above, consider a derivation
(DA,α, R) of square zero of A up to inner derivations compatible with the action of
G. A compatible derivation of V is a derivation DV : V • → V •+1 such that

D2
V = R; DV (av) = DA(a)v + (−1)|a|aDV (v); Tg DV T −1

g = DV + α(g)

(5.3.1)
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for all homogeneous a in A and v in V .
Given an equivalence

({b(g)},β) : (T, c), (D,α, R)
∼→ (T ′, c′), (D′,α′, R′)

together with an action and a derivation on an A-module V compatible with (T, c),
then

T ′
g = b(g)Tg; D′

V = DV + β (5.3.2)

define on V an action and a derivation compatible with (T ′, c′). This operation is
compatible with compositions of equivalences.

5.4 Quotient Groups Acting up to Inner Automorphisms

Assume given a surjection of groups G → � with kernel H . Assume that A is an
associative algebra together with a G-equivariant morphism of groups i : H → A×.

Consider an action of G on A by automorphisms, g �→ Tg. This is of course a partial
case of Sect. 5.1 with c(g1, g2) = 1. We assume that Tgh = Ad I (h) for h ∈ H .

Choose a section of G → � sending g ∈ � to g ∈ G. Put

Tg = Tg; c(g1, g2) = i(g1g2(g1g2)
−1) (5.4.1)

Furthermore, let D,β(g),R be a derivation of square zero up to inner derivations
compatible with the action of G. Assume that

β(h) = −D(ih)(ih)−1

for all h ∈ H. Put
D = D; α(g) = β(g); R = R (5.4.2)

Lemma 5.5 (1) Formulas (5.4.2) define a derivation of square zero up to inner
derivations compatible with the action of � given by (5.4.1). Given two different
sections s1 : g �→ g and s2 : g �→ g̃, formulas

b(g) = i (̃gg−1); β = 0

define an equivalence B(s2, s1) between corresponding derivations. One has

B(s3, s2)B(s2, s1) = B(s3, s1)

(2) Assume (V,Tg,DV ) is an A-module with a compatible action of G and with
a compatible derivation. Put DV = DV ; Tg = Tg. Then (V, Tg, DV ) is an A-module
with a compatible action of � and a compatible derivation.
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The proof is straightforward.
There is also an analogof the aboveLemma forLie algebra actions as inSect. 5.2.1.

5.5 The Case of Groupoids

Now let G be a groupoid with the set of objects X. Let A = {Ax |x ∈ X} be a family
of algebras. An action of G on A up to inner automorphisms is the data consisting of
operators Tg : Ax

∼← Ay for all g ∈ Gx,y and of invertible elements c(g1, g2) ∈ Ax

for all g1 ∈ Gx1,x2 and g2 ∈ Gx2,x3 such that (5.1.2) is true.Wegive the same definition
for a family A of graded algebras where we require c(g1, g2) to be of degree zero.

If A = {Ax } is a family of graded algebras with an action of G up to inner
derivations, a derivation of square zero up to inner derivations compatible with
the action of A is a family of derivations {Dx : Ax → Ax |x ∈ X} and of elements
{α(g) ∈ Ax1 |x1, x2 ∈ X, g ∈ Gx1,x2} such that

D2
x = ad(Rx ); Dx Rx = 0; Tg Dx2T

−1
g = Dx1 + ad(α(g));

Dα(g) + α(g)2 = Tg Rx2 − Rx1;

α(g1) + Tg1α(g2) − Ad(c(g1, g2))α(g1g2) + Dx1c(g1, g2) · c(g1, g2)
−1 = 0.

A similar definition can be given for a family of (graded) Lie algebras {Lx |x ∈ X}.
Now consider a family of subgroups {Hx ∈ Gx,x |x ∈ X}, a groupoid � with the

same set of objects X , and an epimorphism of groupoids G → � such that Hx =
Ker(Gx,x → �x,x ). Let {ix : Hx → A×

x } be a G-equivariant family of morphisms of
groups. Choose a section g �→ g of G → �.

Lemma 5.6 (1) Given an action {Tg} of G on A with c(g1, g2) = 1, formulas (5.4.1)
define an action of � on A up to inner automorphisms.

(2) Given a derivation of square zero (D,R,β) up to inner derivations compatible
with the action of G, assume that β(h) = −Di(h) · i(h)−1 for all x and all h ∈ Hx

Then formulas (5.4.2) define a derivation of square zero up to inner derivations
compatible with the action of �.

(3) For two different choices of sections s1, s2, same formulas as in Lemma5.5,
(1), define an equivalence B(s2, s1) between to derivations corresponding to two
sections (s1, s2). One has

B(s3, s2)B(s2, s1) = B(s3, s1).
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5.6 Modules with a Compatible Structure

For A and G as in Sect. 5.5, an A-module V with a compatible action of G is
a collection {Vx |x ∈ X} of Ax modules together with isomorphisms {Tg : Vx

∼←
Vy|x, y ∈ X; g ∈ Gx,y} satisfying

Tg(av) = Tg(a)Tg(v); Tg1Tg2 = c(g1, g2)Tg1g2

If A and V are graded and (DA,α(g), R) is a compatible derivation of square zero up
to inner derivations, a compatible derivation of V is a linear map DV : V • → V •+1

such that

D2
V = R; DV (av) = DA(a)v + (−1)|a|aDV (v); Tg DV T −1

g = DV + α(g)

for all homogeneous a ∈ Ax , v ∈ Vx .

There are analogs of Lemma5.5 that we leave to the reader.

5.7 The Case of Lie Groupoids

5.7.1 Lie Groupoids: Notation and Conventions

Recall that a groupoid with a set of morphisms G and the set of objects M is a
Lie groupoid [27] if G and M are (pro)manifolds and the source and target maps
s, t : G → M are smooth surjective submersions, and the composition, inverse, and
the map M → G, x �→ Idx , are smooth.

For two points x0 and x1 of M , Gx0,x1 = {g ∈ G|t (g) = x0, s(g) = x1}. This way,
the composition is a map Gx0,x1 × Gx1,x2 → Gx0,x2 . If

G ×M G = {(g, g′) ∈ G × G|s(g) = t (g′)},

then the multiplication can be described as a map

m : G ×M G → G.

We denote by G the sheaf of (pro)manifolds on M × M defined by G(W ) =
(s, t)−1(W ), W ⊂ M × M.

More generally, we have the map

projn : G ×M · · · ×M G → M × · · · × M

where the product is n-fold on the left and (n + 1)-fold on the right. In particular,
proj1 = (s, t). Put
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G(n)(W ) = proj−1
n (W ) (5.7.1)

This is a sheaf of pro-manifolds on Mn+1.

By OM we denote a sheaf of (graded) algebras on M that could be C∞
M , �•

M ,
or the sheaf of �-valued forms or functions that we will consider later. All that
we need is that OM be defined for every manifold M (of given type) and that for
every morphism f : M → N the inverse image f ∗ON be defined, together with the
morphisms f −1OM → f ∗OM and f ∗ON → OM subject to the usual identities.

By p j : Mn+1 → M we denote the projection onto the j th factor. LetA be a sheaf
of OM -algebras.

Definition 5.7 An action of G onA up to inner derivations is a morphism of sheaves
on M × M

G × p∗
2A → p∗

1A; (g, a) �→ Tga

and a morphism of sheaves on M × M × M

c : G(2) → p∗
1A

subject to
Tg1Tg2(a) = Ad c(g1, g2)Tg1g2(a)

in p∗
1A, for any local section a of p∗

3A and any two local sections g2 of p∗
23G and g1

of p∗
12G.

Remark 5.8 Given two local sections g1, g2 as above, by their composition we mean
the following. If g1 = g1(x1, x2, x3) ∈ Gx1,x2 and g2 = g2(x1, x2, x3) ∈ Gx2,x3 , then
(g1g2)(x1, x2, x3) = g1(x1, x2, x3)g2(x1, x2, x3) in Gx1,x3 . Similarly for c(g1, g2).

5.7.2 Flat Connections up to Inner Derivations

Here we assume that the role ofOM as above is played byO•
M , a differential graded

algebra with a differential d. A connection on a sheaf of graded O•
M -modules E

is a morphism of sheaves ∇ : E → E of degree one such that ∇(ae) = da · e +
(−1)|a|a∇e.

Wealso assume that for every f : M → N and every sheaf of gradedO•
N -modules

E , a natural connection f ∗∇ on f ∗E is defined, subject to the usual properties. For us
O•

M will be the sheaf of �-valued forms, and f ∗∇ will be a straightforward analog
of the standard inverse image of a connection that we will define in Sect. 8.1.

Definition 5.9 Let A• be a sheaf of graded O•
M -algebras with an action of G up to

inner automorphisms. A flat connection up to inner derivations compatible with the
action of G is the following data.

(1) A connection ∇ : A• → A•+1 which is a derivation.
(2) A section R of A2.
(3) A morphism of sheaves α : G → p∗

1A• of degree one, such that:
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∇2 = ad(R); ∇ R = 0; Tg(p∗
2∇)T −1

g = p∗
1∇ + ad(α(g));

(p∗
1∇)α(g) + α(g)2 = Tg(p∗

2 R) − p∗
1 R;

α(g1) + Tg1α(g2) − Ad(c(g1, g2))α(g1g2) + (p∗
1∇)c(g1, g2) · c(g1, g2)

−1 = 0.

We will often write α(g) = −∇g · g−1.

5.8 Modules with a Compatible Structure: The Lie Groupoid
Case

In the situation of Definition5.9, let (V•,∇V) be a differential graded A•-module
together with a morphism of sheaves M × M

G × p∗
2V → p∗

1V; (g, v) �→ Tgv

subject to:
Tg1Tg2(v) = c(g1, g2)Tg1g2(v)

in p∗
1V•, for any local section v of p∗

3V and any two local sections g2 of p∗
23G and g1

of p∗
12G;

Tg(av) = Tg(a)Tg(v)

in p∗
1V , for any local sections a of p∗

2A• and v of p∗
2V•;

∇2
V = R; ∇V(av) = ∇A(a)v + (−1)|a|a∇V(v)

for any homogeneous local sections a of A• and v of V•;

Tg(p∗
2 DV )T −1

g = π∗
1 DV + α(g)

5.8.1 The Action of the Quotient in the Lie Groupoid Case

Now consider two Lie groupoids G and � with the same manifold of objects M and
an epimorphism of groupoids G → � (over M.) Define Hx = Ker(Gx,x → �x,x )

and H = ∪x∈MHx . Consider the morphism : H → M. Define the sheaf of groups
H(U ) = s−1(U ) for U ⊂ M. Let i : H → A× be a G-equivariant morphism of
sheaves of groups. Choose a section g �→ g of G → �.

Lemma 5.10 (1) Given an action {Tg} ofG onAwith c(g1, g2) = 1, formulas (5.4.1)
define an action of � on A up to inner automorphisms.
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(2) Given a flat connection (D,R,β) up to inner derivations compatible with the
action of G, assume that β(h) = −Di(h) · i(h)−1 for all local sections of H. Then
formulas

∇ = D; α(g) = β(g); R = R

define a flat connection up to inner derivations compatible with the action of �.

(3) For two different choices of sections s1, s2, same formulas as in Lemma5.5,
(1), define an equivalence B(s2, s1) between to derivations corresponding to two
sections (s1, s2). One has

B(s3, s2)B(s2, s1) = B(s3, s1).

(4) LetV be a gradedA-module with a compatible actionT of G and a compatible
connection DV . Then formulas

Tg = Tg; ∇V = DV

define a compatible action of � and a compatible connection on V .

Remark 5.11 Note that the morphisms of sheaves c : �(2) → p∗
1A and α : � →

p∗
1A are discontinuous. For us � will be an étale groupoid, more precisely the fun-

damental groupoid of M. We can only make a choice of a continuous c and α on any
small coordinate chart, but that will be enough for our purposes. More precisely, this
will define to a twisted A∞ action as it is explained in Sect. 16.

6 From Actions up to Inner Automorphisms to A∞ Actions

It is a well-known fact that inner isomorphisms act on the Ext functors trivially.
Therefore, if a group acts on an algebra up to inner automorphisms, given compatible
actions on two A-modules V and W , the group acts on the cohomologyExt•A(V, W ).

In this section we prove a more precise version of this fact, namely we construct an
A∞ action of the group on the standard bar complex.

6.1 A∞ Actions

An A∞ action of a group G on a complex C• is a collection {T (g1, . . . , gn) ∈
Hom1−n(C•, C•)|g1, . . . , gn ∈ G, n > 0} satisfying

[d, T (g1, . . . , gn)] +
n−1∑
j=1

(−1) j T (g1, . . . , g j )T (g j+1, . . . , gn)− (6.1.1)
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n−1∑
j=1

(−1) j T (g1, . . . , g jg j+1, . . . , gn) = 0

We sometimes write Tg instead of T (g). The operators T (g) induce an action of G
on the cohomology of C•.

An A∞ morphism between two A∞ actions T and T ′ is a collection {φ(g1, . . . , gn)

∈ Hom−n(C•, C•)|g1, . . . , gn ∈ G, n ≥ 0} satisfying

[d,φ(g1, . . . , gn)] +
n−1∑
j=1

(−1) j T ′(g1, . . . , g j )φ(g j+1, . . . , gn)− (6.1.2)

−
n−1∑
j=1

(−1) j φ(g1, . . . , g j )T (g j+1, . . . , gn) −
n−1∑
j=1

(−1) j φ(g1, . . . , g j g j+1, . . . , gn) = 0

6.2 The Ext Functors

Let A be an associative algebra and V, W two A-modules. By C•(V, A, W ), or sim-
ply C•(V, W ), we denote the standard complex computing Ext• A(V, W ). Namely,

Cm(V, W ) =
∏

p+n=m

Hom(A⊗n,Hom p(V, W ));

the differential δ is defined by

(δϕ)(a1, . . . , an+1) = (−1)|ϕ||a1|a1ϕ(a2, . . . , an+1)+
n∑

j=1

(−1)
∑ j

i=1(|ai |+1)ϕ(a1, . . . , a j a j+1, . . . , an+1)+

(−1)
∑n+1

i=1 (|ai |+1)ϕ(a1, . . . , an)an+1

Lemma 6.1 (1) Let T be an automorphism of A together with compatible auto-
morphisms of V and W (i.e. invertible operators T such that T (av) = T (a)T (v)).
Put

(T ϕ)(a1, . . . , an) = T ϕ(T −1a1, . . . , T −1an)T
−1

Then ϕ �→ T ϕ is an automorphism of C•(V, W ).

(2) For an invertible element c of A of degree zero define
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(φ(c)ϕ)(a1, . . . , an) =

= −
n∑

j=0

(−1)
∑ j

i=1(|ai |+1)ϕ(a1, . . . , a j , c, c−1a j+1c, . . . , c−1anc)c−1

One has
[δ,φ(c)] = Ad(c) − Id

(3) More generally, for m invertible elements c1, . . . , cm of degree zero of A, define

(φ(c1, . . . , cm)ϕ)(a1, . . . , an) =

= −
∑

0≤ j1≤... jm≤n

(−1)
∑m

k=1

∑ jk
i=1(|ai |+1)ϕ(a1, . . . , a j1 , c1, c−1

1 a j1+1c1, . . . , c−1
1 a j2c1,

c2, (c1c2)
−1a j2+1(c1c2), . . . , (c1c2)

−1a j3(c1c2), . . . ,

cm, (c1 . . . cm)−1a jm+1(c1 . . . cm), . . . , (c1 . . . cm)−1an(c1 . . . cm))(c1 . . . cm)−1

One has
[d,φ(c1, . . . , cm)] + Adc1 φ(c2, . . . , cm)+

+
m−1∑
j=1

(−1) jφ(c1, . . . , c j c j+1, . . . , cm) + (−1)mφ(c1, . . . , cm−1) = 0

In other words: the group of automorphisms of (A, V, W ) acts on C•(V, A, W );
the subgroup of inner automorphisms acts homotopically trivially, in the sense that
there is an A∞ morphism, startingwith the identity, between this action and the trivial
action. Note that, as in (1) above, we denote by Adc both the inner automorphism of
A and the induced automorphism of C•(V, A, W ).

Lemma 6.2

φ(c1, . . . , cm)φ(d1, . . . , dn) =
∑

±φ(e1, . . . , en+m)

where the summation is over all (e1, . . . , en+m) such that:
(a) as a set, {e1, . . . , en+m} = {d1, . . . , dm, x1c1x−1

1 , . . . , xncn x−1
n }, with x j

defined below in (c);
(b) the order of elements d j is preserved; the order of the elements x j c j x

−1
j is the

same as the order of the elements c j ;
(c) x j is the product of all d−1

k where dk is to the left of x j c j x
−1
j .

For example,
φ(c)φ(d) = φ(c, d) − φ(d, d−1cd)
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6.2.1 A Lemma About A∞ Actions

Lemma 6.3 Let G̃ be a group and H its normal subgroup. Let G = G̃/H. Consider
a complex C• with the following data:

(1) An action of G̃, g �→ Tg for any g ∈ G̃.

(2) Operators �(c1, . . . , cm) : C• → C•−m, m ≥ 0, for all c1, . . . , cm ∈ H, sat-
isfying

[d,�(c1, . . . , cm)] + Tc1�(c2, . . . , cm)+

+
m−1∑
j=1

(−1) j�(c1, . . . , c j c j+1, . . . , cm) + (−1)m�(c1, . . . , cm−1) = 0

�(c1, . . . , cm)�(d1, . . . , dn) =
∑

±�(e1, . . . , en+m)

as in Lemma6.2. For any section g �→ g of the projection G̃ → G, there is an A∞
action of G on C• such that Tg = Tg.

Proof Consider the differential graded algebra B(H, G̃) generated by the group
algebra of G̃ and by elements �(c1, . . . , cm) of degree −m for all c1, . . . , cm in H ,
such that:

(a)
g�(c1, . . . , cm)g−1 = �(gc1g

−1, . . . , gcmg−1)

for any g ∈ G̃;
(b) the differential ∂ satisfies

∂�(c1, . . . , cm) + c1�(c2, . . . , cm)+

+
m−1∑
j=1

(−1) j�(c1, . . . , c j c j+1, . . . , cm) + (−1)m�(c1, . . . , cm−1) = 0

(c)
�(c1, . . . , cm)�(d1, . . . , dn) =

∑
±�(e1, . . . , en+m)

as in Lemma6.2. This differential graded algebra is quasi-isomorphic to k[G]. In
fact, as a complex it is the standard bar construction of H with coefficients in the
right module k[G̃]. The quasi-isomorphism is the morphism of algebras such that

�(c1, . . . , cm) �→ 0; g �→ projG(g), g ∈ G̃. (6.2.1)

There is (unique up to homotopy) morphism from the standard resolution CobarBar
(k[G]) toB(H, G̃) over k[G].Nowdefine T (g1, . . . , gn) to be the action of the image
of the generator (g1| . . . |gn) on C•. �
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6.2.2 The A∞ Action on the Standard Complex

Now assume that a group G acts on an algebra A up to inner automorphisms. Assume
that V and W are two A-modules with compatible actions. This means that there are
linear automorphisms Tg of V and W for any g ∈ G such that

Tg(av) = Tg(a)Tg(v); Tg1Tg2 = c(g1, g2)Tg1g2 (6.2.2)

(c(g1, g2) in the right hand side denotes the module action of the element of A).

Theorem 6.4 There is an A∞ action of G on C•(V, A, W ) such that T (g) is equal
to Tg as in Lemma6.1.

Proof Let G̃ = G �c A× be the group whose elements are expressions ag, g ∈ G
and A×, with the product

(a1g1)(a2g2) = a1Tg1(a2)c(g1, g2)(g1g2) (6.2.3)

and H = A×. The theorem follows immediately from Lemmas6.1, 6.2, and 6.3. �

Remark 6.5 The proof of Theorem6.4 actually leads to a rather simple recursive
formula for the A∞ action. Namely, the construction of a morphism

CobarBar(k[G]) → B(A×, G �c A×) (6.2.4)

(see the proof of Lemma6.3) is an inductive procedure in n for finding the image
of (g1| . . . |gn) under this morphism. Let us describe this procedure. Consider the
subalgebra B(A×, A×) of expressions c0�(c1, . . . , cm). This subalgebra is quasi-
isomorphic to k, the homotopy being

s(c0�(c1, . . . , cm)) = �(c0, c1, . . . , cm) (6.2.5)

Now define �(g1, . . . , gn) in B(A×, A×) recursively by

�1(g) = g; (6.2.6)

�(g1, . . . , gn+1) = (6.2.7)

s
n∑

j=1

(−1) j�(g1, . . . , g j )Tg1...g j �(g j+1, . . . , gn+1)c(g1 . . . g j , g j+1 . . . gn+1)

Here the product is described in Lemma6.2, and

Tg(c0�(c1, . . . , cm)) = (Tgc0�(Tgc1, . . . , Tgcm))
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The elements�(g1, . . . , gn) are some linear combinations of φ(c1, . . . , ck)where
c j are algebraic expressions in Th0c(h1, h2), hi being some products of gi .

Let ψ(g1, . . . , gn) be the image of �(g1, . . . , gn) under the morphism of algebras

B(A×, A×) → End(C•) (6.2.8)

sending g ∈ G to Tg , c ∈ A× to Ad(c), and �(g1, . . . , gn) to φ(g1, . . . , gn). Then

T (g1, . . . , gn) = ψ(g1, . . . , gn)Tg1...gn

For example,
T (g1, g2) = φ(c(g1, g2))Tg1g2

6.2.3 The Case of Groupoids

Let G be a groupoid with the set of objects X that acts on a family of algebras A =
{Ax |x ∈ X} up to inner automorphisms. Let V = {Vx |x ∈ X} and W = {Wx |x ∈ X}
two A-modules with compatible actions of G, i.e. with families Tg : Vx

∼← Vy and

Tg : Wx
∼← Wy , satisfying (6.2.2).

Given a family of complexes C• = {C•
x |x ∈ X}, an A∞ action of G on C• is a

collection of
T (g1, . . . , gn) : C•+1−n

xn+1

∼← C•
x1

for any g j ∈ Gx j ,x j+1 , j = 1, . . . , n, satisfying the identities in the beginning of
Sect. 6.1. Morphisms between A∞ actions are defined similarly.

Define
C•(V, A, W )x = C•(Vx , Ax , Wx )

Theorem 6.6 There is an A∞ action of G on C•(V, A, W ) such that T (g) is equal
to Tg as in Lemma6.1.

The proof is identical to the proof of Theorem6.4.

6.2.4 A∞ Action on the Standard Complex and Derivations

Let A be a graded algebra with an action of G up to inner automorphisms. Let D
be a compatible derivation of square zero up to inner derivations. If V and W are
two graded A-modules with compatible actions of G, we assume that both of them
carry a compatible derivation, i.e. an operator D : V → V or W → W of degree one
satisfying

D(av) = D(a)v + (−1)|a|aD(v); D2 = R; Tg DT −1
g = D + α(g) (6.2.9)
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Here R and α(g) stand for the action of corresponding elements of A. For any
homogeneous derivation E of A that acts on V and W compatibly, put

(Eϕ)(a1, . . . , an) = [E,ϕ(a1, . . . , an)]− (6.2.10)

−
n∑

j=1

(−1)
∑ j−1

i=1 |E |(|ai |+1)ϕ(a1, . . . , Ea j , . . . , an)

Put for any homogeneous element a of A put

(ιaϕ)(a1, . . . , an) =
n∑

j=0

(−1)
∑ j

i=1(|a|+1)(|ai |+1)ϕ(a1, . . . , a j , a, a j+1, . . . , an)

(6.2.11)

Lemma 6.7

[δ, E] = 0; [δ, ιa] = ad(a); [E, ιa] = (−1)|E |ιEa; [ιa, ιb] = 0.

Corollary 6.8
(δ + D − ιR)2 = 0

on C•(V, A, W ).

Remark 6.9 We will always view C•(V, A, W ) as the standard complex equipped
with the total differential δ + D − ιR .

We now define an A∞ action on this standard complex. We follow the proof of
Theorem6.4. The only change is a different choice of operators Tg and φ(c1, . . . , cn)

(see Lemma6.1, (3)).

Tg = exp(ια(g))Tg (6.2.12)

for every g ∈ G;
Ãd(c) = exp(−ιDc·c−1)Ad(c) (6.2.13)

for every c ∈ A× of degree zero.

Lemma 6.10 (a) [δ + D − ιR, Tg] = 0;
(b) Ãd(c1)Ãd(c2) = Ãd(c1c2);
(c) TgÃdcT −1

g = ÃdTgc;Tg1Tg2 = Ãd(c(g1, g2))Tg1,g2

Proof (a) is straightforward. Let us prove (b).

Tg(δ + D − ιR)T −1
g = eια(g) Tg(δ + D − ιR)T −1

g e−ια(g) =
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= eια(g) (δ + D + adα(g) −ιR+Dα(g)+α(g)2)e
−ια(g)

(we used the equations in Definition5.2). Now observe that

eια(g) De−ια(g) = D + ια(g);

eια(g)δe−ια(g) = δ − adα(g) +ια(g)2

which implies (a).
Now prove (b).

Ãdc1 Ãdc2 = exp(−ιDc1·c−1
1

)Adc1 exp(−ιDc2·c−1
2

)Adc2 =

= exp(−ιDc1·c−1
1 +Adc1 (Dc2·c−1

2 ))Adc1c2 =

= exp(−ιD(c1c2)·(c1c2)−1)Adc1c2 = Ãdc1c2

Next, observe that, because of the third equation in Definition5.2,

Tg(Dc · c−1) = Tg(Dc)Tg(c)
−1 = D(Tg(c))Tg(c)

−1 + [α(g), Tg(c)]Tg(c)
−1 =

= D(Tg(c))Tg(c)
−1 + α(g) − AdTg(c)(α(g))

which implies
TgÃdcTg−1 = eια(g) Tge−ιDc·c−1 Adc T −1

g e−ια(g) =

= exp(ια(g) − ιTg(Dc·c−1))AdTg(c) exp(−ια(g)) =

exp(ια(g) − ιTg(Dc·c−1) − ιTg(α(g)))AdTg(c) =

exp(−ιDTg(c)·Tg(c)−1)AdTg(c) = ÃdTg(c)

which is (b). Finally,

Tg1Tg2 = exp(ια(g1))Tg1 exp(ια(g2))Tg2 = exp(ια(g1)+Tg1α(g2))Tg1g2 =

+ exp(ια(g1)+Tg1α(g2))Adc(g1,g2) Tg1Tg2

while

Adc(g1,g2) Tg1g2 = exp(−ιDc(g1,g2)c(g1,g2)−1)Adc(g1,g2) exp(ια(g1g2))Tg1g2 =

= exp(−ιDc(g1,g2)c(g1,g2)−1 − ιAdc(g1 ,g2)(α(g1g2))Adc(g1,g2) Tg1Tg2
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which implies (c) because of the last equation in Definition5.2. �

Let a = (a1, . . . , an). Define:

Tga = (Tga1, . . . , Tgan); Adc a = (Adc a1, . . .Adc an); (6.2.14)

and

ιaa =
n∑

j=0

(−1)
∑ j

i=1(|a|+1)(|ai |+1)(a1, . . . , a j , a, a j+1, . . . , an) (6.2.15)

(for a homogeneous element a).
By analogy with (6.2.12), (6.2.13), set

Tg = exp(ια(g))Tg (6.2.16)

for every g ∈ G;
Ãd(c) = exp(−ιDc·c−1)Ad(c) (6.2.17)

for every c ∈ A× of degree zero.
Note that n could be equal to zero. In this case ιa(a) = 0, Tga = a, and

Ad(c)(a) = a.
For a1 = (a1, . . . , an1), a2 = (an1+1, . . . , an2), etc., put

ϕ(a1, a2, . . .) = ϕ(a1, . . . , an1 , an1+1, . . . , an2 , . . .)

Every choice of n1, . . . , nm+1 ≥ 0 such that n1 + . . . + nm+1 = n defines a pre-
sentation (a1, . . . , an) = (a1, . . . , am+1). Define

|ak | =
nk+1∑

i=nk+1

|ai |.

Put
(φ(c1, . . . , cm)ϕ)(a1, . . . , an) =

∑
n1,...,nm+1

(−1)N (n1,...,nm+1) (6.2.18)

ϕ(a1, c1, Ãd
−1
c1 a2, c2, Ãd(c1c2)

−1a3, . . . , cm, Ãd(c1c2 . . . cm)−1am+1)(c1c2 . . . cm)−1

Here

N (n1, . . . , nm+1) =
m∑

j=1

j∑
i=1

(|ai | + ni )

Lemma 6.11 The operators Tg, Ãd(c), and φ(c1, . . . , cm) satisfy all the relations
of Lemmas6.1 and 6.2.
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Proof Define for a = (a1, . . . , an) and for a homogenous derivation E

Ea =
n∑

j=1

(−1)|E |∑p< j |ap |(a1, . . . , Ea j , . . . , an) (6.2.19)

Also put

∂a =
n−1∑
j=1

(−1)
∑

p≤ j |ap |(a1, . . . , a j a j+1, . . . , an) (6.2.20)

Note that Lemma6.10 holds for Tg and Ãdc as in (6.2.16), (6.2.17) and for D, ι,
etc. as above, if one replaces δ by ∂. (In fact, a) can be easily checked, and the rest
follows formally from (a)). It is easy to deduce Lemma6.11 from this. �

We get a generalization of Theorem6.4:

Theorem 6.12 There is an A∞ action of G on C•(V, A, W ) such that T (g) is equal
to Tg as in (6.2.12).

6.2.5 Behavior with Respect to Equivalences

Now consider an equivalence between two actions up to inner automorphisms and
compatible derivations

b = ({b(g)},β) : (T, c), (D,α, R)
∼→ (T ′, c′), (D′,α′, R′) (6.2.21)

If V is a module with a derivation DV and an action Tg compatible with the action
on the left, let b∗V be V equipped with the derivation D′

V and with the action T ′
g

compatible with the action on the right (cf. (5.3.2)). Let

Bc = B(A×, G �c A×); Bc′ = B(A×, G �c′ A×)

(cf. definitions in Lemma6.3 and in Theorem6.4).

Lemma 6.13 The formulas

g �→ b(g)g, g ∈ G; c �→ c, c ∈ A×

define an isomorphism
G �c A× ∼← G �c′ A×

of groups over G. Together with

�(c1, . . . , cm) �→ �(c1, . . . , cm),
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they define an isomorphism of differential graded algebras

b† : Bc
∼← Bc′

over k[G].
Definition 6.14

b∗ = exp(ιβ) : C•(V, A, W )
∼← C•(b∗V, A,b∗W )

Proposition 6.15 If one views C•(V, A, W ) as a differential graded Bc′ -modules
via the morphism b†, then b∗ is a morphism of differential graded modules over Bc′ .
For two composable equivalences b1 and b2, one has

(b1b2)† = b†2b
†
1; (b1b2)∗ = b∗

2b
∗
1

Proof The statement follows from

Lemma 6.16 (a) Ãdb(g)Tg exp(ιβ) = exp(ιβ)T ′
g

(b) Ãdc exp(ιβ) = exp(ιβ)Ãd
′
c

To prove the lemma, observe

Ãdb(g)Tg exp(ιβ)T ′
g

−1 =

exp(−ιDb(g)·b(g)−1)Adb(g) exp(ια(g))Tg exp(ιβ)T ′
g
−1 exp(−ια′(g)) =

exp(−ιDb(g)·b(g)−1) exp(ιAdb(g) α(g)) exp(ιAdb(g) Tgβ) exp(−ια′(g)) = exp(ιβ)

because of (5.2.1). This proves (a). To prove (b), note that

Ãdc exp(ιβ)Ãd
−1
c = exp(−ιDc·c−1)Adc exp(ιβ)Ad−1

c exp(ιD′c·c−1) =

exp(−ιDc·c−1) exp(ιTcβ) exp(ιDc·c−1+β−Tcβ) = exp(ιβ) �

6.2.6 Behavior with Respect to Yoneda Product

Now let us describe the relation of the A∞ action on a quotient to Yoneda product

�: C•(V1, A, V2) ⊗ C•(V2, A, V3) → C•(V1, A, V3) (6.2.22)

given by

(ϕ � ψ)(a1, . . . , am+n) = (−1)(|ϕ|+m)σ j (|a j |+1)ϕ(a1, . . . , am)ψ(am+1, . . . , am+n)

(6.2.23)
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Lemma 6.17 The coproduct

	φ(c1, . . . , cm) =
m∑

j=1

φ(c1, . . . , c j ) ⊗ c1 . . . c jφ(c j+1, . . . , cm)

turns the algebra Bc into a differential graded bialgebra. The morphism (6.2.1) is a
bialgebra morphism. If we write 	a =∑ a(1) ⊗ a(2), then

a(ϕ � ψ) =
∑

a(1)ϕ � a(2)ψ

for a in Bc. Morphisms b† from Lemma6.13 are morphisms of bialgebras.

The proof is straightforward.

6.3 A∞ Action on the Standard Complex: The Case of Lie
Groupoids

6.3.1 A∞ Action of a Lie Groupoid

Consider a Lie groupoid G with the manifold of objects M. Let A• be a sheaf of
O•

M -algebras with an action of G up to inner automorphisms and with a compatible
flat connection up to inner derivations as in Sect. 5.7.2. Recall the presheaves G(n)

on Mn+1 (5.7.1). Let also
G(n)

jk = p−1
jk G (6.3.1)

where p jk : Mn+1 → M2 is the projection to the j th and kth components.

Definition 6.18 An A∞ action of G on a differential graded O•
M -module C• is a

collection of morphisms

T : G(n) → Hom1−n(p∗
n+1C•, p∗

1C•),

n ≥ 1, such that (6.1.1) holds for every g1, . . . , gn where g j is a local section of
G(n)

j, j+1.

An A∞ morphism of A∞ actions is a collection of morphisms

φ : G(n) → Hom−n(p∗
n+1C•, p∗

1C•),

n ≥ 0, such that (6.1.2) holds.
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6.3.2 Action on the Standard Complex

Let V• and W• be two graded A•-modules with compatible actions of G and with
compatible connections ∇. Sometimes, to distinguish, we denote the three connec-
tions by ∇A, ∇V , and ∇W respectively. Compatibility means, as usual, that

∇(av) = ∇(a)v + (−1)|a|a∇(v)

for a ∈ A• and v ∈ V•.

Definition 6.19 The standard complex C•(V•,A•,W•) is the complex of sheaves

Cm =
∏

p+n=m

Hom p
O•

M
(⊗n

O•
M
A•,HomO•

M
(V•,W•))

with the differential δ + ∇ + ιR (cf. (6.2.10), (6.2.11), and Corollary6.8).

Remark 6.20 In other words, C• is the standard complex computed over the algebra
of scalarsO•

M and sheaffied. An example arises whenA is a bundle of algebras with
a flat connection, V andW are bundles of modules with compatible flat connections,
OM is the differential graded algebra of forms, and V•, resp. W•, is the module of
V- (resp.W)-valued forms. In this case C•(V,A,W) is a bundle of complexes with
an induced flat connection, and C•(V•,W•) is the complex of forms with values
in this bundle. Our situation is different in only one regard. Namely, our O• will
be mainly the algebra of �-valued forms. Accordingly, the exact nature of local
cochains ϕ(a1, . . . , an; v) that we allow needs to be specified. We will do this in
Sect. 8.1.

Theorem 6.21 There is an A∞ action of G on C•(V•,A•,W•) such that T (g) is
equal to Tg as in (6.2.12).

Proof The operators T (g1, . . . , gn) are computed by a recursive procedure from
Remark6.5 where φ(c1, . . . , cn) are as in (6.2.18). The only difference is that the
morphism (6.2.8) sends c not to Ad(c) but to Ãd(c) (cf. (6.2.12), (6.2.13)). �

6.4 The Cochain Complex of an A∞ Action

Given a sheaf of O•
M -modules M• with an A∞ action of a Lie groupoid G, define

C•(M,M•) =
∞∏

n=0

�(Mn+1,Hom(G(n), p∗
1M•−n))

with the differential
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(d�)(g1, . . . , gn+1) = ∇M�(g1, . . . , gn+1) +
n∑

j=1

T (g1, . . . , g j )�(g j+1, . . . , gn+1)+

+
n∑

j=1

(−1) j�(g1, . . . , g jg j+1, . . . , gn+1) + (−1)n+1�(g1, . . . , gn)

Here g j is a local section of G(n)
j, j+1, cf. (6.3.1).

7 The A∞ Action of π1(M) on Standard Complexes of
A•

M-Modules

7.1 The Action of π1(M) up to Inner Automorphisms onA•
M

Assume that M is a symplectic manifold with a chosen Sp4 structure. In this section
we construct:

(1) a groupoid G̃M together with an epimorphism G̃M → π1(M) and a morphism
of groups

Ker(G̃x,x
p−→ π1(M)x,x )

i−→ A×
M,x ; (7.1.1)

(2) an action of G̃M on AM up to inner automorphisms such that any element h
of Ker(p) acts by conjugation with i(h);

(3) a flat connection onAM up to inner derivations compatible with the action of
G̃M , such that ∇ is a Fedosov connection ∇A whose lifting has curvature 1

i�ω.

A more straightforward construction works in general under the assumption that
M has an Sp4 structure and yields the connection with R = 1

i�ω. A construction
that is a little more involved yields a connection with R = 0 under an additional
restriction:

〈π2(M), [ω]〉 = 0 (7.1.2)

meaning that the class of the symplectic form vanishes on the image of the Hurewicz
homomorphism.

By Lemma5.6 we will conclude that

Proposition 7.1 The sheaf of algebras

A•
M = �•

M(A) (7.1.3)

of AM -valued forms on M carries an action of π1(M) up to inner automorphisms
and a compatible flat connection up to inner derivations such that ∇ is a Fedosov
connection ∇A whose lifting has curvature 1

i�ω.
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Now Theorem6.21 implies

Theorem 7.2 For any two differential graded A•
M -modules V•, W• with a compati-

ble action of π1(M) and a compatible connection, the standard complex
C•(V•,A•,W•) has a natural A∞ action of π1(M).

7.2 The Construction of the Groupoid ˜GM

There are two options for constructing the groupoid G̃ M and a flat connection up to
inner derivations.

7.2.1 The Connection with R = 1
i�ω

Assume that M is a symplectic manifold with an Sp4 structure. Let g jk be an
Sp4(2n, R)-cocycle whose projection to Sp is a cocycle representing the tangent
bundle. Let G̃M be the groupoid of the bundle represented by the cocycle g (viewed
as a twisted bundle with c = 1). Here the role of G (as in Sect. 14.2) is played by the
group G̃ as in Sect. 13.1.

Consider a lifted Fedosov connection with curvature 1
i�ω (cf. Theorem3.5). This

is a partial case of a connection defined in Sect. 14.2.2. Now we can define a flat
connection up to inner derivations as in Sect. 14.2.2. (Observe that 1

i�A is a Lie
subalgebra of the associative algebra A and Sp4(2n, R) is a subgroup of A×).

7.2.2 The Connection with R = 0

Consider the cocycle g jk as above in Sect. 7.2.1. Consider g̃ jk ∈ exp( 1
i�R) defined

by

g̃ jk = exp

(
1

i�
f jk

)
(7.2.1)

where
ω|U j = dα j ; α j − αk = d f jk (7.2.2)

Observe that

c jkl = exp

(
1

i�
( f jk + fkl − f jl)

)
(7.2.3)

takes values in exp( 1
i�R) and represents the class exp( 1

i� [ω]). Define G̃M to be the
groupoid constructed from g̃ jk, c jkl as in Sect. 14.2. If our lifted Fedosov connection
is represented by a collection of g̃-valued one-forms A j , then
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Ã j = 1

i�
α j + A j (7.2.4)

represents a flat connection in the twisted bundle given by g̃ jk, c jkl . Now we can
define a flat connection up to inner derivations exactly as we did in Sect. 7.2.1 for
which R = 0.

There is a short exact sequence of groups

1 → Sp4(2n, R) → (G̃M)x,x → π1(M, x) → 1 (7.2.5)

for any point x of M.

8 Resumé of the General Procedure

We summarize the construction that we described up to this point. This includes the
definition of objects and the construction of the infinity local system of morphisms
between two objects. Next (in Sect. 9.1) we will present a construction of a special
type of objects.

8.1 �•
K,M-Modules and Their Inverse Images

Recall the definition of the sheaf �•
K,M of K-valued forms on a manifold M (Defi-

nition1.1). We will be considering the following class of sheaves of �•
K,M -modules.

Start with a vector bundle E (finite or profinite) and a fiber bundle X on M. Local
sections of the module M•

E,X are countable sums

∑
ϕ,�

a�,ϕ exp

(
1

i�
ϕ

)
e� (8.1.1)

where a�,ϕ are local differential forms with coefficients in E , ϕ are local sections of
C∞

M , e� are formal symbols corresponding to local sections � of X, and ϕ → +∞.

For a smooth map M → N we define

f ∗M•
E,X = M•

f ∗ E, f ∗X (8.1.2)

We consider differentials of the following type onM•
E,X. Let E0 be a fiber of E and

let X be a fiber of X. Choose any local trivialization of the bundles E and X near x0.
Also choose any local coordinate systems on M near x0 and on X near �(x0). Then
we can identify local sections of E with local functions M → E0 and local sections
of X with local maps M → R

dimX. We require the differential to be of the form
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∇M
∑
ϕ,�

a�,ϕ exp

(
1

i�
ϕ

)
e� =
∑
ϕ,�

da�,ϕ exp

(
1

i�
ϕ

)
e�+ (8.1.3)

+
∑
ϕ,�

1

i�
ϕ′a�,ϕ exp

(
1

i�
ϕ

)
e�dx +

∑
ϕ,�

A(x,�(x))�′(x)a�,ϕ exp

(
1

i�
ϕ

)
e�dx+

+
∑
ϕ,�

B(x,�(x))a�,ϕ exp

(
1

i�
ϕ

)
e�

Here A and B are local End(E0)-valued functions on M × X. If ∇M is of the above
form for one choice of the local trivializations then it is true for any such choice. We
will use the shorthand

∇Me� = (A�′ + B)e� (8.1.4)

Let f : M → N be a smooth map. A differential ∇M on M•
E,X induces a dif-

ferential f ∗∇M on f ∗M•
E,X = M•

f ∗ E, f ∗X as follows. Let x be local coordinates on
M , y local coordinates on N , and let the map be locally of the form y = f (x). If

∇Me� = (A(y, �(y))� ′(y)dy + B(y, �(y))dy)e�

for any �, then

f ∗∇Me� = (A( f (x),�(x))�′(x)dx + B( f (x),�(x)) f ′(x)dx)e�

In other words: let p : X → M be the projection. Locally in X (near �(x)),
we require that there exist linear operators A(z) : TzXp(z) → End E p(z) and B(z) :
Tp(z)M → End E p(z) and a linear projection P(z) : TzX → TzXp(z), all smoothly
depending on z ∈ X, such that for any point x of M and for any η ∈ Tx M ,

∇Me�(x)(η) = (A(�(x))P(d�(x))η + B(�(x))η)e� (8.1.5)

Note that if ∇M satisfies this property for one choice of P then it satisfies it for any
other choice. This is because for any two projections P1 and P2, (P1 − P2)d�(x) :
Tx M → T�(x)X�(x) is a linear operator depending only on the value of �(x).

For f : M → N , if ∇M is locally determined by A(z), B(z), and P(z), so is
f ∗∇M.

8.2 Oscillatory Modules

Consider the bundle A•
M with the action of the groupoid G̃M up to inner auto-

morphisms and a compatible flat connection up to inner derivations as defined in
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Sect. 7.2.2. By definition, an oscillatory module V• is a graded module over A•
M of

the type defined in Sect. 8.1, with a compatible action of the groupoid G̃M and a
compatible flat connection as in Sect. 5.8.

8.3 �•
K,M-Modules with π1-Action

These modules are defined in Sect. 6.3.1 (in our case here,O•
M = �•

K,M as in Defini-
tion1.1). More generally, twisted (�•

K,M ,π1(M)) modules are defined in Sect. 16.3.
By Theorem6.21 and Lemma5.6, under the assumptions c1(M) = 0 and (7.1.2), the
standard complex (Definition6.19) of two oscillatory modules is a twisted �•

K,M -
module with π1-action. We denote this complex by C•(V•,A•,W•).

8.4 Infinity Local Systems of K-Modules

An infinity local systems ofK-modules on a manifold X is a collection of complexes
of K-modules C•

x , x ∈ X , together with linear maps

T (g1, . . . , gn) : C•
xn+1

→ C•+1−n
x1 (8.4.1)

for any g j ∈ π1(X)x j ,x j+1 , j = 1, . . . , n, subject to (6.1.1). In other words, this is
a system of complexes with an A∞ action of the fundamental groupoid π1(X), cf.
Sect. 6.2.3.

8.4.1 From Twisted (�•
K,M,π1(M)) Modules to Infinity Local Systems

IfM• is an �•
K,M -module with a twisted π1-action (as in Sects. 8.3, 16.3), then

C•
x = lim−→

x∈U

C•(U,M•) (8.4.2)

is an infinity local system ofK-modules. (cf. Sect. 6.4 for the definition of the cochain
complex C•(U,M•)). This is explained in detail in Sect. 16.3.2.

Definition 8.1 Given two oscillatory modules V• andW• on a symplectic manifold
M that has an Sp4 structure and satisfies (7.1.2), we denote by RHOM(V•,W•)
the infinity local system C• (cf. Sect. 8.4) constructed from the complex M• =
C•(V•,A•,W•) (cf. Sect. 8.3).
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9 Objects Constructed from Lagrangian Submanifolds

9.1 Induced Modules

9.1.1 The Case of Groups Acting on Algebras

Let i : B → A be a morphism of algebras and let j : P → G be a morphism of
groups. Assume that P acts on B by automorphisms and G acts on A by automor-
phisms. We denote these automorphisms by Sp, p ∈ P , and Tg, g ∈ G. We assume
that i(Tpb) = Tjp(ib) for any p and g. For simplicity, we consider here only true
actions, i.e. those for which c(g1, g2) = 1 and c(p1, p2) = 1.

LetW be a B-modulewith a compatible action of P denoted by Sp : W
∼→ W , p ∈

P. Define the induced module V as follows. First consider the A-module A ⊗B W.

Note that it carries a compatible action of P:

Sp(a ⊗ w) = Tjp(a)Sp(w). (9.1.1)

Now let V be the quotient of the space of formal linear combinations

∑
g∈G

Tgvg, vg ∈ A ⊗B W, (9.1.2)

by the linear span of Tg j (p)(a ⊗ w) − Tg Sp(a ⊗ w), g ∈ G, p ∈ P, a ∈ A, w ∈ W.

Define the A-module structure on V by

a
∑

Tggvg =
∑

Tg(T
−1
g a)vg (9.1.3)

and a compatible group action of G

Tg0

∑
Tgvg =

∑
Tg0gvg (9.1.4)

This is just another way of defining the induced module

V = (G � A) ⊗P�B W (9.1.5)

Now assume that A and B are graded algebras. Let {D : A → A; α(g)|g ∈ G; RA}
and {E : B → B; β(g)|g ∈ B; RB} be derivations of square zero of A and of B up
to inner derivations. We assume that these derivations are compatible with i and j ,
i.e.

i(E(b)) = D(i(b)); i(β(p)) = α( j p); i(RB) = RA. (9.1.6)

Let EW : W → W be a compatible derivation of W. Then A ⊗B W carries a deriva-
tion E A⊗B W compatible with the action of B;
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E A⊗B W (a ⊗ w) = DA(a) ⊗ w + (−1)|a|a ⊗ EW (w). (9.1.7)

This allows to define a derivation of the inducedmodule V compatible with the action
of G:

DV

(∑
Tgvg

)
=
∑

Tg(α(g−1)vg) +
∑

Tg E A⊗B W (vg) (9.1.8)

9.1.2 The Case of Groupoids

Now generalize the situation of Sect. 9.1.1 to the case when P is a groupoid with the
set of objects Y and G is a groupoid with the set of objects X. Denote by j : Y → X
the action of the morphism of groupoids j on objects. In this case A = {Ax |x ∈ X},
B = {By|y ∈ Y }, and W = {Wy|y ∈ Y }. Put

(A ⊗B W )y = A jy ⊗By Wy (9.1.9)

Formulas (9.1.1) and (9.1.7) define a compatible action of P and a compatible deriva-
tion on A ⊗B W.

Vx =
⎧⎨
⎩
∑

y∈Y,g∈Gx, j y

Tgvg|vg ∈ (A ⊗B W )y

⎫⎬
⎭ /〈Tg j (p)v − Tg(Spv)〉 (9.1.10)

Formulas (9.1.3), (9.1.4), (9.1.7), and (9.1.8) define on V an A-module structure, a
compatible action of G, and a compatible derivation.

9.1.3 The Case of Lie Groupoids

Now letG andP be Lie groupoidswith themanifolds of objects X andY respectively.
Let j : P → G be a morphism of Lie groupoids, i.e. a smooth map X → Y and a
smooth map P → G over X × X that preserves the composition and the unit. Let
B• be a sheaf of O•

Y -algebras and let A• be a sheaf of O•
X -algebras, together with

a morphism i : B• → j∗A•. Consider an action S of P on B• and an action T of
G on A•. We assume that the morphism i preserves the action of P . Furthermore,
let (∇B,β, RB) be a compatible flat connection up to inner derivations on B• and
let (∇A,α, RA) be a compatible flat connection up to inner derivations on A•. We
require the following compatibility conditions generalizing (9.1.6):

i(∇Bb) = ( j∗∇A)(ib) (9.1.11)

in j∗A• on Y , for any local section b of B•;

i(RB) = j∗(RA) (9.1.12)
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in j∗A•; and
i(β(p)) = α( j p) (9.1.13)

in j∗A• for any local section p of P .

Remark 9.1 The latter equation requires some explanation. It is not a priori clear
why, for a local section g of G, α(g) depends only on the restriction of g to Y × Y.

To ensure this, we will always assume that the form α(g) is obtained from a local
section g by the same procedure as the factor in front of e� in the right hand side of
(8.1.4) is obtained from a local section �.

Now assume that W• is a B•-module with a compatible action S of P and a
compatible connection ∇W . The module j∗A• ⊗B• W has a compatible action S of
P and a compatible connection ∇A⊗BW given by

Sp(a ⊗ w) = Tjp(a) ⊗ Spw; (9.1.14)

∇A⊗BW(a ⊗ w) = ∇A(a) ⊗ w + (−1)|a|a ⊗ ∇W(w) (9.1.15)

Now define the induced module V as follows. First, for any open subsets U of X and
U ′ of Y and any smooth map f : U → U ′, let G f be the inverse image of G under

U
∼→ graph( f ) ↪→ X × Y ↪→ X × X (9.1.16)

The space of local sections of V• over U is the space of formal linear combinations

∑
U,U ′

∑
f :U→U ′

∑
g∈G f (U )

Tgvg; vg ∈ (A• ⊗•
B W•)(U ′) (9.1.17)

factorized by the linear span of

Tg j (p)(a ⊗ w) − Tg(Sp(a ⊗ w)) (9.1.18)

for some h : U ′ → U ′′, f : U → U ′, g a local section ofG f (U ), and p a local section
of P|graph(h). We interpret g j (p) as a local section of Gh f .

Formulas

Tg0

∑
Tgvg =

∑
Tg0gvg; a

∑
Tgvg =

∑
Tg(Tg−1(a)vg); (9.1.19)

∇V
∑

Tgvg =
∑

Tgα(g−1)vg + Tg∇A⊗BW(vg) (9.1.20)

define an A•-module structure, a compatible action of G, and a compatible con-
nection on V•. Note that the last formula relies again on the assumption discussed
in Remark9.1. Indeed, we need to be sure that α(g−1)|graph( f ) depends only on
g|graph( f ).
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9.1.4 General Definition of an Induced Module

Finally, let us assume, analogously to what we did in Sect. 5.8.1, that there is a Lie
groupoid � on X and a Lie groupoid � on Y together with a morphism � → j∗�,
an epimorphism G → �, and an epimorphism P → � such that the diagram

P −−−−→ �⏐⏐� ⏐⏐�
j∗G −−−−→ j∗�

commutes. Let Hx = Ker(Gx,x → �x,x ) and Qy = Ker(Py,y → �y,y). Denote by
H, resp.Q, the sheaf of sections of the bundle of groupsH, resp.Q.We also assume
that there are morphisms of sheaves i : H → A× and i : Q → B× such that the
diagram

Q −−−−→ A×⏐⏐� ⏐⏐�
j∗H −−−−→ j∗B×

commutes. We also assume that the B•-module W• and the flat connection up to
inner derivations (∇B,β, RB) satisfies

Sqw = i(q)w; β(q) = −∇Bi(q) · (iq)−1

for any local sections q of Q and w of W•.

Definition 9.2 Under the assumptions above, the induced module is the quotient
of the module V• (9.1.19), (9.1.20) by the submodule generated by elements Thv −
i(h)v, h being any local section of H and v any local section of V•.

9.2 The Induced Oscillatory Module VL

9.2.1 The Algebra B and the Module ̂

̂VK

Recall the grading
|̂x j | = |ξ̂ j | = 1; |�| = 2 (9.2.1)

Now define

V̂ = C[[̂x, �]]; ̂̂V =
{ ∞∑

k=−N

vk |vk ∈ V̂[�−1]k

}
(9.2.2)



274 B. Tsygan

where N runs through all integers.

Definition 9.3 Put

̂̂
VK =
{ ∞∑

k=0

e
1

i� cm |vm ∈ ̂̂V; cm ∈ R; cm → ∞
}

(9.2.3)

̂̂
V� =
{ ∞∑

k=0

e
1

i� cm |vm ∈ ̂̂V; cm ≥ 0; cm → ∞
}

(9.2.4)

Now define the subalgebra B of A (Definition4.2) by

B = MPar(n) �
̂̂
A (9.2.5)

(cf. Sect. 12.1).

Lemma 9.4 The formulas

x̂ �→ x̂; ξ̂ �→ i�
∂

∂ x̂
;

[
b 0
0 b−1

]
�→ Tb, (Tb f )(̂x) = 1√

det(b)
f (b−1 x̂);

[
1 a
0 1

]
�→ exp

(
− i�

2
a

(
∂

∂ x̂

)2)

define an action of MPar(n) that together with the action of ̂̂A turns ̂̂VK into a
B-module.

Definition 9.5
V̂ = A⊗̂B̂̂V

Here by ⊗̂ we mean the completed tensor product. Namely,

A⊗̂B̂̂V = lim←−
N→∞

A ⊗B ̂̂V/ exp

(
N

i�

)
A� ⊗B ̂̂V

In Sect. 13 we interpret V̂ as an algebraic version of the metaplectic representation
(Proposition13.8).
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9.2.2 The Sheaf of Algebras BL and the Sheaf of Modules ̂

̂VL

Let L be a Lagrangian submanifold of M. Recall that we assume the existence of
an Sp4 structure on M. Consider the restriction to L of the Sp4(n)-valued cocycle
g̃ jk as in Sect. 7.2.1 or in Sect. 7.2.2 (it does not matter which one of them because
ω|L = 0). Consider the cohomologous MPar(n)-valued cocycle p̃ jk as in (12.1.4).

The group MPar(n, R) (cf. Sect. 12.1) acts on B by automorphisms. It also acts

on ̂̂VK compatibly. Let BL be the bundle of algebras and ̂̂VL the bundle of modules
on L associated to these actions and to the principal MPar-bundle defined by p jk .

Note that the Lie algebra g̃ (3.1.4) acts by derivations onB and on ̂̂VK. Therefore any

given Fedosov connection defines a connection on BL and on ̂̂VL . If the curvature of

this connection is 1
i�ω then the connection on ̂̂VL is flat.We denote these connections

by ∇B and ∇V.

Definition 9.6 By B•
L , resp. by

̂̂
V

•
L , we denote the differential graded algebra of

BL -valued K-forms with differential ∇B, resp. the differential graded module of̂̂
VL -valued K-forms with differential ∇V.

9.2.3 The Lie Groupoid PL

Recall the P̃-valued cocycle from Eq. (12.1.4) construct the groupoid PL as the
groupoid of the (twisted in general, but not in this case) bundle defined by this
cocycle as in Sect. 14.2. We have a short exact sequence of groups

1 → P̃ → (PL)x,x → π1(L , x) → 1 (9.2.6)

for every point x of L . Cf. Sect. 13.1 for the definition of P̃.

Definition 9.7 Let ̂̂V•
L be the B•

L -module with the compatible action of PL and the
compatible connection ∇V as in Definition9.6. The oscillatory module V•

L is the
A•

M -module with a compatible action of G̃M and a compatible connection induced

from ̂̂V•
L as in Definition9.2.

9.3 Filtrations

Proposition 9.8 Assume that L is a Lagrangian submanifold of M such that
〈[ω],π2(M, L)〉 = 0. Then there is a filtration FiltaV•

L , a ∈ R, on V•
L such that:

(1) FiltaV•
L ⊂ FiltbV•

L for a ≥ b;
(2) FiltaK · FiltbV•

L ⊂ Filta+bV•
L

(3) FiltaV•
L is preserved by ∇V and by the action of A•

M (but not necessarily by the
action of G̃M ).
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Here FiltaK consists of sums as in (4.1.5) with the additional condition ck ≥ a for
all k.

Proof Similarly to what we did in Sect. 14.1, for any chart T choose a one-form
αT on T such that dαT = ω|T , for any two charts T and T ′ a function fT T ′ on
T ×M T ′ such thatαT − αT ′ = d fT T ′ , and for any three chartsT, T ′, T ′′ put cT T ′T ′′ =
exp( 1

i� ( fT T ′ − fT T ′′ + fT ′T ′′)) which is a locally constant function on T ×M T ′ ×M

T ′′. We can choose them in such a way that they all vanish on L . For any path T from
x0 ∈ L to x1 in M , and for a small open Ux1 containing x0, we get an open subset UT

of M̃/L (homeomorphic to the image of Ux1 in M/L). Consider a cover of M̃/L by
such UT . We will define Filt0V•

L to be the linear span of those elements of V•
L that

are, under the trivialization with respect to a chart T , represented as exp( 1
i�ϕT )gT v

where v ∈ ̂̂V� (cf. (9.2.2)), gT ∈ Sp4(2n), and ϕT are some functions on UT . To
make this well defined, we must have

exp

(
1

i�
(ϕT − ϕT ′)

)
= exp

(
1

i�
fT T ′

)
cT ST ′

on UT ∩ UT ′ , for any T and T ′ as above and for any homotopy S between them. We
will find such ϕT if we show that the right hand side of the above formula (a) does
not depend on S and (b) defines a one-cocycle with respect to the cover of M̃/L by
UT . But, under our assumption, (b) follows immediately from Lemma14.2. As for
(a), for two different homotopies S and S′ between T and T ′,

cT ST ′cSS′T ′ = cT SS′cT S′T ′

But cSS′T ′ = cT SS′ = 1. Indeed, S ×M S′ ×M T = T and same is true for T ′, and c
vanishes when restricted to L . �

9.3.1 The Microsupport of a Filtered Module

Assume V• has a filtration as in Proposition9.8. Define

μSupp(V•) = suppH •
(

s

(
lim−→

a→0,a>0

Filt0V•/FiltaV•
)

,∇V

)
(9.3.1)

Here s denotes sheafification of a presheaf.
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9.4 The Case of R
2n

9.4.1 The Groupoid ˜GM

Sections of G̃M are in bijection with smooth functions g(x1, ξ1; x2, ξ2) on M × M
with values in G̃ (cf. Sect. 13.1). We will denote a section corresponding to g by a
formal symbol

σ(x1, ξ1; x2, ξ2) = exp

(
1

i�
(ξ2 − ξ1)̂x + (x1 − x2)ξ̂

)
g(x1, ξ1; x2, ξ2) (9.4.1)

The composition consists of formalmultiplication of exponentials andmultiplication
of elements of Sp4(2n).

9.4.2 The Flat Connection up to Inner Derivations on AM Compatible
with the Action of ˜GM

For a section σ as in (9.4.1),

−α(σ) = ∇G̃σ · σ−1 = dDRg · g−1 + 1

i�
(ξ2dx2 − ξ1dx1)+

(
− ξ̂1

i�
dx1 + x̂1

i�
dξ1

)
− Adg

(
− ξ̂2

i�
dx2 + x̂2

i�
dξ2

)

(by (7.2.4)).

9.4.3 The Sheaf V•
f

Denote by V•
f the oscillatory module corresponding to the Lagrangian submanifold

graph(d f ). One has
V•

f = V̂•
M = �•

K,M(V̂). (9.4.2)

(cf. Definition9.5). In other words, local sections of V•
f are V̂-valued K-forms on M

(cf. Definition9.5).

Remark 9.9 (a) Sections of ̂̂VL are identified with ̂̂V-valued functions on L as fol-
lows: if v(x, x̂) is a ̂̂V-valued function, then the corresponding section of ̂̂VL is

exp

(
1

i�
( f (x + x̂) − f ′(x )̂x)

)
v(x, x̂) (9.4.3)
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(b) A section w(x, dx, x̂) of (9.4.2) is identified with the section of V•
f given by

w = σ((x, ξ); (x, f ′(x))) exp

(
1

i�
( f (x + x̂) − f ′(x )̂x)

)
w(x, dx, x̂) (9.4.4)

where σ(x, ξ; x, f ′(x)) is as in (9.4.1)).

9.4.4 The Connection on V f

∇V = −ξ − f ′(x)

i�
dx +
(

∂

∂x
− ∂

∂ x̂
− 1

i�
f ′′(x )̂x

)
dx +
(

∂

∂ξ
+ 1

i�
x̂

)
dξ

(9.4.5)
Indeed, under the identification as in (b) in Sect. 9.4.3 above, the connection ∇|L
becomes

Ad exp

(
− 1

i�
( f (x + x̂) − f ′(x )̂x)

)(
− f ′(x)

i�
+ ∂

∂x
− ∂

∂ x̂
+ 1

i�
f ′′(x )̂x

)
dx

which is equal to

∇st =
(

∂

∂x
− ∂

∂ x̂

)
dx

Now, if we denote
σ f = σ(x, ξ; x, f ′(x)),

as well as

A = − 1

i�
ξdx − ∂

∂ x̂
dx + x̂

i�
dξ; p(x, ξ) = (x, f ′(x)),

then
∇V(σ f w) = σ f (A − p∗ A)σ f w + σ f ∇stw

Since

A − p∗ A = − 1

i�
ξdx − ∂

∂ x̂
dx + x̂

i�
dξ + 1

i�
f ′(x)dx + ∂

∂ x̂
dx − x̂

i�
f ′′(x)dx,

we conclude that (9.4.5) holds.

9.4.5 The Action of ̂

̂A on V f

The formal variables act as follows: x̂ by multiplication, and ξ̂ by i� ∂
∂ x̂ + f ′(x +

x̂) − f ′(x).
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Indeed, under the identification (b) from Sect. 9.4.3, ξ̂ acts by

Ad exp

(
− 1

i�
( f (x + x̂) − f ′(x )̂x)

)(
i�

∂

∂ x̂

)
= i�

∂

∂ x̂
+ f ′(x + x̂) − f ′(x)

and x̂ by

Ad exp

(
− 1

i�
( f (x + x̂) − f ′(x )̂x)

)
(̂x) = x̂

9.4.6 The Action of ˜GM on V f

A section σ as in (9.4.1) acts by

exp

(
− 1

i�
( f (x1 + x̂) − f ′(x1)̂x − f (x2 + x̂) + f ′(x2)̂x

)
g(x1, ξ1; x2, ξ2)

(9.4.6)
This is obvious, because of how we make the identification in (b), Sect. 9.4.3.

9.4.7 Comparison Between V•
f and V•

0

Corollary 9.10 One has an isomorphism

exp

(
1

i�
( f (x + x̂) − f ′(x )̂x)

)
: V•

0
∼→ V•

f

This follows immediately from the constructions above.
We see that, if we disregard the filtration, all modules V f are isomorphic. The

filtration is what distinguishes among them.

9.5 The Filtration and Microsupport

The filtration on V•
f that is constructed in Sect. 9.3 is defined as follows:

Filt0V•
f = �•

R2n (V�)

where
V� = Sp4(2n) · ̂̂V� (9.5.1)

The microsupport of V•
f is graph(d f ), as seen from formula for ∇V in Sect. 9.4.4.
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10 The Complex Computing RHom(V•
0 ,V•)

10.1 The Simplified Version

Let, as above, A = C[̂x, ξ̂, �] with the Moyal–Weyl product; G̃ = Sp4(2n); P̃ =
MPar(2n); A0 = C[G̃] � A[�−1]; B0 = C[P̃] � A[�−1]; V = C[̂x, �] on which ξ̂
acts by i� ∂

∂ x̂ and x̂ by multiplication; V0 = A0 ⊗B0 V[�−1] (Note that, since oper-
ators exp(ai�( ∂

∂ x̂ )2) are well defined on V, the group P̃ acts on V compatibly with
the action of A). In this simplified version all tensor products and cross products are
not completed. We start with computing Ext•A0

(V0,V0).

Proposition 10.1
Ext•A0

(V0,V0)
∼→ H •(P̃, C[�, �

−1]))

where H • stands for (discrete) group cohomology.

Proof First, by a version of Shapiro’s Lemma [6], we see that

Ext•A0
(V0,V0)

∼→ H •(P̃, C•(V, A,V0))

where C• in the right hand side is the standard complex computing Ext•
A
(V,V0).

Second, we have
V0 = ⊕λ∈G̃/P̃V0,λ

Anelement of P̃ sendsV0,λ toV0,pλ and thereforewehave a P̃-module decomposition

V0 = ⊕OVO

where
VO = ⊕λ∈OV0,λ

Lemma 10.2 For all O except the one-point orbit P̃,

H •(P̃, C•(V, A,VO)) = 0

This follows from results of Sect. 10.4.2. Finally,C[�, �
−1] → C•(V, A,V[�−1])

is a quasi-isomorphism and V[�−1] = VO where O is the one-point orbit. �
This proves the simplified case of Theorem10.9. The actual theorem is more

complicated because our actual module consists of forms with values in completed
V0, andwe take not only the complex of derivedmorphisms between thembut also the
derived invariants of the fundamental groupoid with values in the De Rham complex.
It is almost evident that taking derived invariants of the fundamental groupoid will
get rid of the dependence on a point (x, ξ) of our space and reduce the problem to
the above, after some completion and tensoring by the Novikov ring. The remainder
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of the section just makes this explicit (in addition to Sect. 10.4.2 that was mentioned
and used above). The main and only point is to construct explicitly a resolution of
the differential graded module V0 that carries an action of π1(R

2n).

10.2 The Statement of the Result

Here we state the general result for any V• (Proposition10.4). Let M = R
2n . Given

an oscillatory module V• on M , construct the following complex. Note first that
the group MPar(n, R) acts on the linear span of dx̂1, . . . , dx̂n through the projec-
tion MPar(n) → ML4(n) = {(b, z)|b ∈ GL(n), z ∈ C, z4 = det(b)2}. Introduce the
vector space

∧ (dx̂1, . . . , dx̂n)d
− 1

2 x̂ (10.2.1)

where
d

1
2 x̂ = (dx̂1 . . . dx̂n)

− 1
2

is a formal element on which a pair (A, z) in MPar (if we use notation from Defini-
tion12.7, (b)) acts via multiplication by z. Consider the space

∧ (dx̂1, . . . , dx̂n)d
− 1

2 x̂ ⊗ V• (10.2.2)

with the following structures.

10.2.1 The Differential

Define the differential on (10.2.2) as

∇̃V = 1

i�
(ξdx + ξ̂dx̂ − x̂dξ) + ∇V

One checks that ∇̃2 = 0. In fact,

1

i�
∇V(ξdx + ξ̂dx̂ − x̂dξ) + 1

(i�)2
(ξdx + ξ̂dx̂ − x̂dξ)2 =

1

i�
(−dξdx̂ + dξdx + dxdξ − dx̂dξ) = 0
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10.2.2 The Action of MPar

Denote by MPar(n, R)M the sheaf of smooth sections of the associated (in our case
trivial) bundle of groups with fiber MPar(n).

There is an obvious action of MPar(n, R)M on (10.2.2) but we have to modify it
to make it commute with the differential. Put

Rh = h + 1

i�
[ιdx̂ dx, h] (10.2.3)

Here [,] stands for the commutator of operators on (10.2.2);

ιdx̂ dx =
n∑

j=1

ιdx̂ j dx j ;

and ιdx̂ j is the graded derivation of ∧(dx̂1, . . . , dx̂n) that sends dx̂ j to one and dx̂k

to zero for k �= j. One checks immediately that

Rh1Rh2 = Rh1h2 (10.2.4)

Lemma 10.3
∇̃VRh = Rh∇̃V (10.2.5)

Proof For a local section h of MPar(n)M , define α(h) ∈ �1
M(AM) by

α(h) = −dh · h−1 + A−1 − Adh(A−1) (10.2.6)

where A−1 = 1
i� (−ξ̂dx + x̂dξ). Note that

∇V(Rhv) = −α(h)Rhv + Rh∇Vv; (10.2.7)

− 1

i�
(ξdx + ξ̂dx̂ − x̂dξ)(Rhv) = −α(h)Rhv − Rh

1

i�
(ξdx + ξ̂dx̂ − x̂dξ)v

(10.2.8)
The first equation is equivalent to the fact thatV• is a differential gradedA•

M -module.
The second is checked by a direct computation:

1

i�
[ξ̂dx + ξdx − x̂dξ, h] = − 1

i�
[̂xdξ, h];

1

i�
[ξ̂dx + ξdx − x̂dξ, [ιdx̂ dx, h]] = 1

i�
[[ξ̂dx + ξdx − x̂dξ, ιdx̂ ]dx, h]+

[ιdx̂ dx,
1

i�
[ξ̂dx + ξdx − x̂dξ, h]] = 1

i�
[ξ̂dx, h]
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(the second summand vanishes). Therefore

1

i�
[ξ̂dx + ξdx − x̂dξ,Rh] = 1

i�
[ξ̂dx − x̂dξ, h] = −[∇V , h].

Equation (10.2.5) immediately follows. �

Proposition 10.4 The standard complex computing group cohomology

C•(MPar(n)M ,∧(dx̂1, . . . , dx̂n)d
− 1

2 x̂ ⊗ V•)

is quasi-isomorphic to the complex C•(V•
0 ,A•

M ,V•).

More precisely,

C• = ⊕∞
m=0 Hom((MPar(n)M)m,∧(dx̂1, . . . , dx̂n)d

− 1
2 x̂ ⊗ V•);

(δD)(h1, . . . , hm+1) = (−1)m∇̃V D(h1, . . . , hm+1) + Rh1 D(h2, . . . , hm+1)+

+
m∑

j=1

(−1) j D(h1, . . . , h j h j+1, . . . , hm+1) + (−1)m+1D(h1, . . . , hm);

The following Sect. 10.3 is devoted to the proof of Proposition10.4.

10.3 The Resolution of V0 and the Computation of
RHom(V0,V)

10.3.1 A Resolution of V0

As above, let M = R
2n. First construct a resolution P

• that is only free over ̂̂AM , not
over AM . This resolution is a free module over

̂̂
A•

M = �•
M(̂̂AM) (10.3.1)

with the space of generators

∧(e1, . . . , en)v0; |v0| = 0; |e j | = −1

with the differential ∇P defined by the following properties:

∇Pv0 = 1

i�
(−ξdx + x̂dξ)v0; ∇e j = ξ̂ j ; (10.3.2)
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∇P(av) = ∇Aa · v + (−1)|a|a∇Pv

for any a in ̂̂A•
M and any v in P; and

∇P(βv0) = ∇Pβ · v + (−1)|β|β∇Pv0

for any β in ∧(e1, . . . , en). A simple computation shows that ∇2 = 0.
Next we construct a B•

M -free resolution of the B•
M
-module V̂•

M . Here, as always,
B•

M stands for forms with coefficients in the (trivial) bundle of algebras associated
to B, and V̂•

M stands for forms with coefficients in the bundle of modules associated

to ̂̂V , cf. Definition9.5. We first observe that P
• is in fact a A•-module, though not

free. Indeed, to define an B•
M -action, we have to define an MParM -action compatible

with the action of the smaller algebra and with the differential. We are going to do
this next.

10.3.2 The Action of MPar(n)M

The action of MPar(n)M extends from V̂•
M to P

• because of the following. The group
MPar also acts on ∧(e1, . . . , en). The latter action is induced by the linear action
on R

n which in our context is the easiest to describe as follows: identify e j with
ξ̂ j and therefore R

n with the linear span of ξ̂ j in Â. The action of MPar through
the composition MPar → GL → Sp on Â leaves this subspace invariant. This is the
action that we mean.

Recall again that an element of MPar(n) may be represented by a pair

([
b a
0 bt −1

]
, z

)
; det(b)2 = z4.

This element sends v0 to u−1v0. Combined with the above, we get an action of
MPar(n) on ∧(e1, . . . , en)v0.

Unfortunately, this action does not make P
• a differential graded BM -module. To

achieve that, we have to change the action as follows:

Rh = h +
[
1

i�
edx, h

]
(10.3.3)

Here edx =∑ j e j dx j . The commutator is just the commutator of operators on P
•.

This action, unlike the previous one, makes P
• a differential graded P

•-module,
which is equivalent to the following.

One has
∇P(Rhv) = −α(h)Rhv + Rh∇Pv (10.3.4)
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10.3.3 The Resolution P•

Now define

P• = B−•(MPar(n)M , P
•) = ⊕∞

m=0C[MPar(n)M ]⊗m⊗̂P
• (10.3.5)

The action of BM on P• is given by

h((h1, . . . , hm) ⊗ v) = (hh1, . . . , hm) ⊗ Rhv

(cf. (10.3.3));
a((h1, . . . , hm) ⊗ v) = (h1, . . . , hm) ⊗ av

for h in MPar(n)M and a in ̂̂AM .

This is the standard bar resolution of the MPar-module P
•. More precisely, the

differential is given by
∇P = ∇(0)

P + ∇(1)
P

∇(0)((h1, . . . , hm) ⊗ v) = (−1)m(h1, . . . , hm) ⊗ ∇Pv (10.3.6)

∇(1)((h1, . . . , hm) ⊗ v) =
m−1∑
j=1

(−1) j (h1, . . . , h j h j+1, . . . , hm) ⊗ v (10.3.7)

+(−1)m(h1, . . . , hm−1) ⊗ v

Finally, put
R• = A•

M⊗̂B•
M
P• (10.3.8)

10.4 The Complex Hom(R•,V•)

The complex
HomA•(R•,V•) (10.4.1)

is now straightforward to compute for any oscillatory module V on R
2n. It is

the complex of cochains of the group MPar(n)M with coefficients in the module
∧(e∗

1, . . . , e∗
n)v

∗
0 ⊗ V ,

HomA•(R•,V•) ∼→ C•(MPar(n)M ,∧(e∗
1, . . . , e∗

n)v
∗
0 ⊗ V) (10.4.2)

Here |e∗
j | = 1; |v∗

0 | = 0; the action of MPar on ∧(e∗
1, . . . , e∗

n)v
∗
0 is dual to the one

from Sect. 10.3.2. It is straightforward that this complex is identical to the one in
Proposition10.4.
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10.4.1 The Case V = V f

Now we are able to compute RHomA•
M
(V•

0 ,V•
f ). Recall (9.2.3)

̂̂
VK =
{ ∞∑

k=0

e
1

i� ck vk | ∈ ̂̂V; ck ∈ R; ck → ∞
}

Here we view this space with the following action of MPar(n, R) :
[

b 0
0 b−1

]
�→ Sb, (Sb f )(x) = f (b−1x);

[
1 a
0 1

]
�→ exp

(
− i�

2
a

∂

∂ x̂

2
)

Now define the MPar(n)-module

�
•,•
K

= ∧(dx̂1, . . . , dx̂n) ⊗ C[Sp4(n)] ⊗MPar(n)
̂̂
VK (10.4.3)

and the MPar(n)M -module of �•
K
forms with coefficients in (10.4.3).

Remark 10.5 Intuitively, �•,•
K

is the space of expressions

∑
J,K , j

exp

(
1

i�
ϕ j,J,K (x, ξ, x̂)

)
a j,J,K (x, ξ, x̂)dxJ d x̂K (10.4.4)

where linear term of ϕ j,J,K (x, ξ, x̂) with respect to x̂ is zero, and its quadratic term
may be infinite; more precisely, it is allowed to be not just a quadratic form but a
point of the Lagrangian Grassmannian.

The differential on ∧(dx̂1, . . . , dx̂n) ⊗ V̂•
K
) is

d f = ∂

∂ξ
dξ +
(

∂

∂x
− ∂

∂ x̂

)
dx + ∂

∂ x̂
d x̂ + 1

i�
( f ′(x + x̂) − f ′(x))dx̂ + 1

i�
( f ′(x) − f ′′(x )̂x)dx

(10.4.5)
One has

d f =
(
exp

(
− 1

i�
( f (x + x̂) − f ′(x )̂x

))
d0

(
exp

(
1

i�
( f (x + x̂) − f ′(x )̂x

))
(10.4.6)

Proposition 10.6 The standard complex C•A•
M
(V•

0 ,V•
f ) is quasi-isomorphic to the

complex
C•(MPar(n)M ,�

•,•
K

). (10.4.7)
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10.4.2 A Stationary Phase Statement

Lemma 10.7 For any positive integer p, consider R
p viewed as a discrete group.

One has
H •(Rp, C[Rp]) = 0.

Proof One has R
p ∼→⊕Q. Therefore R

p ∼→ Q ⊕ R
p. By Künneth formula,

H •(Rp, C[Rp]) ∼→ H •(Q, Q) ⊗ H •(Rp, C[Rp]).

But H 0(Q, Q) = 0. If k is the minimal integer such that H k(Rp, C[Rp]) �= 0,
Künneth formula tells that H k = 0, whence the contradiction. �

Corollary 10.8 Let � be an orbit of MPar(n, R) in the Lagrangian Grassmannian
�(n) that consists of more than one point.Then

H •(MPar(n), C[�]) = 0.

Proof Let N be the subgroup of MPar(n, R) consisting of pairs

([
1 a
0 1

]
, 1

)

(in other words, N = Ker(MPar(n) → GL4(n))). Choose a point in �. Denote its
stabilizer by Z . Then Z is a real vector subspace of N . Let W be a complementary
subspace to Z . Consider the Lyndon spectral sequence

E pq
2 = H p(N/Z , Hq(Z , C[�])) =⇒ H p+q(N , C[�]).

But �
∼→ Z as a Z -set, so H •(N , C[�]) = 0 by Lemma10.7. Now consider the

Lyndon spectral sequence

E pq
2 = H p(GL4(n), Hq(N , C[�])) =⇒ H p+q(MPar(n), C[�]).

The statement follows. �

10.5 The Computation of RHOM(V0,V f )

Let
S• = C•(MPar(n), K) (10.5.1)
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Theorem 10.9
RHOM•(V•

0 ,V•
f )

∼→ S•

with the action of a path from (x1ξ1) to (x2, ξ2) given by multiplication by
exp( 1

i� ( f (x1) − f (x2)).

Proof First one checks that all the structures for V•
0 and V•

f are conjugate by mul-
tiplication by exp( 1

i� ( f (x + x̂) − f ′(x )̂x)). So we can reduce the statement to the
case f = 0. The cohomology in question is computed by the complex

C•(π1(M), C•(MPar(n)M ,�•,•)). (10.5.2)

First compute the cohomology of π1(M). An argument identical to the one in Intro-
duction (starting before (1.1.6)) shows that this cohomology is isomorphic to

H •(MPar(n), C[Sp4]⊗̂C[MPar(n)]̂̂VK) (10.5.3)

(In other words, all dependence on x, ξ, and dx, dξ is eliminated). Now, by Corol-
lary10.8, all contributions from all Lagrangian submanifolds other than L0 = {ξ =
0} are also eliminated. Our cohomology is therefore computed by the complex

C•(MPar(n),∧(dx̂1, . . . , dx̂n) ⊗ ̂̂VK) (10.5.4)

of group cochains of MPar(n) with coefficients in the complex ∧(dx̂1, . . . , dx̂n) ⊗̂̂
VK of formal forms in x̂ with the differential ∂

∂ x̂ d x̂ . �

10.6 The Case of Sheaves

Here we compare the computation above to the analogous computation for the
microlocal category of sheaves as in Sect. 1.7.

Proposition 10.10 Let f and g be two C∞ functions on R
n. For a bounded con-

tractible open subset of R
n, the module of horizontal sections of the local system

RHOM(V•
g ,V•

f ) on U is a free S•-module with one generator J ( f, g) lying in

Filt− infU ( f −g). The composition is as follows:

J ( f, g)J (g, h) = exp

(
1

i�
c( f, g, h)

)
J ( f, h)

where
c( f, g, h) = inf

U
( f − h) − inf

U
( f − g) − inf

U
(g − h))
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Proof It is easy to see that

RHOM(V•
g ,V•

f )
∼→ RHOM(V•

0 ,V•
f −g)

Put

J ( f, g) = exp

(
1

i�
(( f − g)(x + x̂) − ( f − g)′(x )̂x − inf

U
( f − g)

)
(10.6.1)

The statement follows from Theorem10.9. �

Compare this to the following result of Tamarkin. Recall the definitions from
Sect. 1.7.1. Put

KZ =
{ ∞∑

k=0

ake− ck
i�

}

where ak ∈ Z, ck ∈ R, and ck → ∞. For any two objects F and G of D(T ∗
R

n), let
HOMK(F ,G) = KZ ⊗�Z

HOM(F ,G). Let Filtc HOMK = e
c

i� HOM .

Proposition 10.11 Let f and g be two C∞ functions on R
n. For a bounded con-

tractible open subset U of R
n, consider the objects F f and Fg of D(T ∗U ) as in

Sect.1.7.1. The complex HOMK(Fg,F f ) is quasi-isomorphic to a free KZ-module
with one generator J ( f, g) lying in Filt− infU ( f −g). The composition satisfies the same
formulas as in Proposition10.10.

Proof Recall that F f = Zt+ f ≥0. It is immediate that

HOMK(Fg,F f )
∼→ HOMK(F0,F f −g) (10.6.2)

Let J ( f, g) be the morphism Zt≥0 → Zt+ f −g−infU ( f −g)≥0 which is the restriction
to the subset {t + f − g − infU ( f − g) ≥ 0} ⊂ {t ≥ 0}. It is clear that the right
hand side of (10.6.2) is the free KZ-module generated by J ( f, g), that J ( f, g) is in
Filt− infU ( f −g), and that the composition is as in Proposition10.10. �

10.6.1 Matrix Units

Now put

Ef,g = exp

(
1

i�
inf
U

( f − g)

)
J ( f, g) ∈ HOMK(F ,G) (10.6.3)

in D(T ∗U ). Then
Ef,gEg,h = Ef,h (10.6.4)
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11 RHom and Theta Functions

11.1 Modules Associated to the Lagrangian Submanifold
ξ = mx

In this section, M = T
2 and M̃ = R

2 with the standard symplectic form ω = dξdx .

11.1.1 The Groupoid ˜GM

Local sections of G̃M are in bijection with smooth local functions g(x1, ξ1; x2, ξ2)
on M̃ × M̃ with values in G̃ for n = 1 (cf. Sect. 13.1). As in Sect. 9.4.1, we denote
a section corresponding to g by a formal symbol

σ(x1, ξ1; x2, ξ2) = exp

(
1

i�
(ξ2 − ξ1)̂x + (x1 − x2)ξ̂

)
g(x1, ξ1; x2, ξ2) (11.1.1)

These sections satisfy

σ(x1, ξ1; x2, ξ2) = exp

(
1

i�
(x1 − x2)

)
σ(x1, ξ1 + 1; x2, ξ2 + 1); (11.1.2)

σ(x1, ξ1; x2, ξ2) = σ(x1 + 1, ξ1; x2 + 1, ξ2). (11.1.3)

As in Sect. 9.4.1, the composition consists of formal multiplication of exponentials
and multiplication of elements of Sp4(2).

The flat connection up to inner derivations on G̃M is given exactly as in Sect. 9.4.4:
for a section σ as in (9.4.1),

−α(σ) = ∇G̃σ · σ−1 = dDRg · g−1 + 1

i�
(ξ2dx2 − ξ1dx1)+

(
− ξ̂1

i�
dx1 + x̂1

i�
dξ1

)
− Adg

(
− ξ̂2

i�
dx2 + x̂2

i�
dξ2

)

11.1.2 The Sheaf V•
Lm

Denote by V•
Lm

the oscillatory module corresponding to the Lagrangian submanifold
ξ = mx . Local sections of V•

Lm
are sums

v =
∑
k∈Z

vk (11.1.4)
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where vk is a local section of V•
m x2

2 +kx
on M̃ . In other words, vk is an �K-form on M̃

with coefficients in V̂ (Definition9.5). The connection∇V is given by (cf. Sect. 9.4.4)

∇Vvk =
(

−ξ − mx − k

i�
dx +
(

∂

∂x
− ∂

∂ x̂
− 1

i�
mx̂

)
dx +
(

∂

∂ξ
+ 1

i�
x̂

)
dξ

)
vk

(11.1.5)
The action of ̂̂AM is as follows (cf. Sect. 9.4.5): x̂ by multiplication, and ξ̂ by i� ∂

∂ x̂ +
mx̂ .

Remark 11.1 The component vk is an element of the formσ(x, ξ; x, ξ − mx − k)wk

where wk is a local section of the module VLm (cf. Sect. 9.2). Also note that sums
(11.1.4) may be infinite but we require that vk ∈ exp( 1

i� Nk)V̂� where Nk → ∞ as
|k| → ∞.

Components vk satisfy

vk(x, ξ) = vk+1(x, ξ + 1) = vk−m(x + 1, ξ). (11.1.6)

The action of G̃M on VLm is as follows:

σ(x1, ξ1; x2, ξ2)vk = exp

(
− 1

i�

(
mx2

1

2
+ kx1 − mx2

2

2
− kx2

))
g(x1, ξ1; x2, ξ2)vk

(11.1.7)
(cf. Sect. 9.4.6). It is easy to see directly that all the structures are compatible with
each other (of course this also follows from the fact that the above construction is
obtained by applying the general procedure of Sect. 15).

11.2 The Computation of RHOM(V•
L0

,V•
Lm

)

11.2.1 Matrices with Coefficients in S•

Let e�, resp. E , be the freemodule over�, resp.K, with generators ek, k ∈ Z.Recall
the differential graded algebra S from (10.5.1). Put also

S•
� = C•(MPar(n),�) (11.2.1)

Let

Matr(S) = lim←−
N→∞

Hom(E,S• ⊗ E)/ exp

(
1

i�
N

)
Hom(E,S•

� ⊗ E) (11.2.2)

Let Ek� be the matrix unit, i.e. the homomorphism sending ek to e� and e j to zero if
j �= k.
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11.2.2

Theorem 11.2 The sheaf of complexes RHOM•(V•
L0

,V•
Lm

) is quasi-isomorphic to
the sheaf of sections of the trivial bundle with fiber Matr(S•), with the action of
π1(M) as follows. Let γ1 and γ2 be the two generators of π1(M), namely γ1 the loop
ξ = ξ0, x = x0 + t and γ2 the loop x = x0, ξ = ξ0 + t. Then for a matrix unit Ek�

γ
q
1γ

p
2 : Ek� �→ exp

(
1

i�

(
mq2

2
+ q(� − k)

))
Ek+p,�+p−mq

Proof First construct theA•
M -free resolutionR•

L0
ofV•

L0
as in (10.3.8). Local sections

ofR•
L0
are sums (11.1.4)with the same relations (11.1.6)withm = 0; vk are elements

ofR•
k on M̃ which is constructed exactly asR• in (10.3.8) with the onlymodification:

Eq. (11.2.3) becomes

∇Pv0,k = 1

i�
(−(ξ + k)dx + x̂dξ)v0,k (11.2.3)

Now, local sections of HomA•
M
(R•

L0
,V•

Lm
) are sums

∑
k,� bk� where

bk� ∈ C•
k�;

here C•
k� is the complex (10.4.7) computed for the function

fk�(x, ξ) = mx2 + (� − k)x (11.2.4)

Local sections bk� satisfy the following:

bk�(x, ξ) = bk,�−m(x + 1, ξ) = bk+1,�+1(x, ξ + 1) (11.2.5)

(Note that all C•
k� are identical as graded spaces, with the differential dk� on C•

k� given
by

dk� = Ad

(
exp

(
− 1

i�

(
mx2

2
+ (� − k)x + mx̂2

2

)))
d00).

The action of the fundamental groupoid is as follows. A path γ : (x1, ξ1) → (x2, ξ2)
in M̃ preserves each C•

k� and acts on it by

(γb)k�(x1, ξ1) = exp

(
1

i�

(
mx2

1

2
+ (� − k)x1 − mx2

2

2
+ (� − k)x2

))
bk�(x2, ξ2)

(11.2.6)
because of (9.4.1) and because

( fk�(x1 + x̂) − f ′
k�(x2)̂x) − fk�(x2 + x̂) − f ′

k�(x2)̂x) =
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= mx2
1

2
+ (� − k)x1 − mx2

2

2
− (� − k)x2.

When x2 − x1 = q and ξ2 − ξ1 = p, the right hand side of (11.2.6) becomes

(γb)k+p,�+p−mq(x, ξ) = exp

(
1

i�

(
mq2

2
+ q(� − k)

))
bk�(x, ξ).

The statement now follows from Theorem10.9. �

Corollary 11.3 For m > 0, the space of horizontal sections of RHOM•(V•
L0

,V•
Lm

)

is m-dimensional over K with the basis

θa =
∑
q∈Z

∑
k∈Z

exp

(
1

i�
(mq2 + aq)

)
Ek,k+a−qm

where a = 0, 1, . . . , m − 1.

11.3 The Case of Sheaves

Following Tamarkin, we define the category D(T2). First define the following dif-
feomorphisms of R × R :

S1(x, t) = (x + 1, t); S2(x, t) = (x, t + x); (11.3.1)

One has
S2S1 = T1S1S2; T1S1 = S1T1; T1S2 = S2T1 (11.3.2)

where T1(x, t) = (x, t + 1). (In other words, we have an action of the Heisenberg
group Heis(3, Z) on R × R.)

Define objects of D(T2) as equivariant objects of D(R2), i.e. objectsF of D(R)2

together with isomorphisms

σ1 : F ∼→ S1∗F; σ2 : F ∼→ S2∗F (11.3.3)

in HOMK such that
σ2σ1τ1 = σ1σ2 (11.3.4)

or more precisely
(T1S1)∗σ2 · T1∗σ1 · τ1 = S2∗σ1 · σ2 (11.3.5)

as morphisms F → (S2S1)∗F = (T1S1S2)∗F .

Example 11.4 For an integer n, put
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Fm =
∏
k∈Z

F
m x2

2 +kx
(11.3.6)

In fact,
(Sq

1 S p
2 )(x, t) = (x + q, t + px);

(Sq
1 S p

2 )∗F
m x2

2 +kx
= Z{t+px+m (x+q)2

2 +k(x+q)≥0} = T ∗
m q2

2 +kq
F

m x2
2 +(k+mq+p)x

;

In other words, if
Lk = F

m x2
2 +kx

, (11.3.7)

then
Fm =
∏
k∈Z

Lk; (Sq
1 S p

2 )∗Lk =
(

Tmq2

2 +kq

)∗
Lk+mq+p (11.3.8)

11.4 Comparison Between the Categories

Consider the following automorphisms of the pair (G̃R2 , AR2). Let σ(x1, ξ1; x2, ξ2)
be as in (11.1.1). Define

(S1)σ(x1, ξ1; x2, ξ2) = σ(x1 + 1, ξ1; x2 + 1, ξ2). (11.4.1)

(S2σ)(x1, ξ1; x2, ξ2) = exp

(
1

i�
(x1 − x2)

)
σ(x1, ξ1 + 1; x2, ξ2 + 1); (11.4.2)

For a section a of AR2 , define

(S1a)(x, ξ, x̂, ξ̂) = a(x + 1, ξ, x̂, ξ̂); (S2a)(x, ξ, x̂, ξ̂) = a(x, ξ + 1, x̂, ξ̂)
(11.4.3)

It is easy to see that these maps preserve all the structures, i.e. the product onA, the
composition on G̃, the action of G̃ on A, and the flat connection up to inner deriva-
tions. Therefore for an oscillatory module V• on R

2, one can define new oscillatory
modules S∗

1V• and S∗
2V• as follows. As differential graded�•

K
-modules, they are the

inverse images of V• under the shifts (x, ξ) �→ (x + 1, ξ) and (x, ξ) �→ (x, ξ + 1);
the algebra AR2 and the groupoid G̃R2 act via automorphisms S1, S2. One has

(S p
2 )∗(Sq

1 )∗V•
m x2

2 +kx
= V•

m x2
2 +(k+mq−p)x

(11.4.4)

Note that the central subgroup {Tc|c ∈ Z} of Heis(Z) acts on HOM(F0,Fm). There-
fore the automorphisms σ1 and σ2 generate an action of Z

2.
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11.4.1 Matrix Units for Tori

Put

fm,k(x) = m
x2

2
+ kx (11.4.5)

Let m > 0. Define the matrix unit Ek� as follows. Let

E fm1 ,k , fm+m1 ,�
∈ HOMK(F f m1,k,F fm+m1 ,�

) (11.4.6)

be as in (10.6.3). Let ik , resp. prk , be the embedding of, resp. the projection onto, the
kth component in the decomposition in (11.3.6). Define Ek� as the composition

i� ◦ E fm1 ,k , fm+m1 ,�
◦ prk : Fm1 → F

m1
x2
2 +kx

→ F
(m+m1)

x2
2 +�x

→ Fm+m1

One has
HOMK(F fm1 ,k ,F fm+m1 ,�

) = KEkl

E j� = E jkEk�

Proposition 11.5 The action of the group Z
2 on HOM(F0,Fm) is as follows.

σ
q
1σ

p
2Ek� = exp

(
1

i�

(
m

q2

2
+ (� − k)q

))
E�+p,k+p−mq

Now let m < 0. There is a generator

Z( fm1,k, fm+m1,�) ∈ R
1 Hom(F fm1 ,k , (T− sup fm,�−k )∗F fm+m1 ,�

) (11.4.7)

obtained as follows. First, to simplify notation, assume m1 = k = 0, as well as
sup( fm,�) = 0 (the general case follows immediately). Replace F0 = Zt≥0 by the
complex

Zt<0 → Z (11.4.8)

The complex Hom(Zt<0 → Z, Zt≥ fm,�
) is isomorphic to Z ⊕ Z

(1,−1)−→ Z and com-
putes RHom(F f0,0 ,F fm,�

).

Put

Z fm1 ,k , fm+m1 ,�
= exp(

1

i�
sup( fm,�−k))Z( fm1,k, fm+m1,�) (11.4.9)

Define Zk� as the composition

i� ◦ Z fm1 ,k , fm+m1 ,�
◦ prk : Fm1 → F

m1
x2
2 +kx

→ F
(m+m1)

x2
2 +�x

→ Fm+m1
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We have thus defined

Ek�(m2, m1) ∈ HOM0
K
(Fm1 ,Fm2), m1 ≤ m2; (11.4.10)

Zk�(m2, m1) ∈ HOM1
K
(Fm1 ,Fm2), m1 > m2; (11.4.11)

They satisfy
E jk(m3, m2)Ek ′�(m2, m1) = δkk ′Ek�(m3, m1); (11.4.12)

E jk(m3, m2)Zk ′�(m2, m1) = δkk ′Zk�(m3, m1) (11.4.13)

if m1 > m3 and zero otherwise;

Z jk(m3, m2)Ek ′�(m2, m1) = δkk ′Zk�(m3, m1) (11.4.14)

if m1 > m3 and zero otherwise;

Z jk(m3, m2)Zk ′�(m2, m1) = 0 (11.4.15)

Proposition 11.6 The action of the group Z
2 on HOM(F0,Fm) is as follows.

σ
q
1σ

p
2Zk� = exp

(
1

i�

(
m

q2

2
+ (� − k)q

))
Z�+p,k+p−mq

It would be interesting to compare the above to other works, for example [14].

12 Appendix. Metaplectic and Metalinear Groups

We recall the classical material that is contained, for example, in [15, 36].

12.1 Metalinear Groups and Metalinear Structures

Recall [15] that the metalinear group is by definition

ML(n, R) = {(g, z)|g ∈ GL(n, R), z2 = det(g)} (12.1.1)

This is a twofold cover of GL(n, R). There is a morphism

det
1
2 : ML(n, R) → C

×; (g, z) �→ z. (12.1.2)
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Denote by MO(n) the preimage of O(n) in ML(n). Let also

MU(n) = {(u, ζ)|u ∈ U(n, C), ζ2 = det(u)} (12.1.3)

Definition 12.1 Let Mp(2n, R) be the universal twofold cover of Sp(2n, R). We
call this group the metaplectic group.

There is a commutative diagram

MO(n) −−−−→ ML(n, R)⏐⏐� ⏐⏐�
MU(n) −−−−→ Mp(2n, R)

where the horizontal embeddings are homotopy equivalences.
A metalinear structure on a real vector bundle E is a lifting of the transition

automorphisms gE
jk to an ML(n, R)-valued cocycle g̃E

jk . For a real bundle E with

a metalinear structure, the complex line bundle ∧ 1
2 E is by definition given by the

transition automorphisms det
1
2 (̃gE

jk), cf. (12.1.2).
Ametaplectic structure on a symplectic vector bundle E is a lifting of the transition

automorphisms gE
jk to an Mp(n, R)-valued cocycle g̃E

jk . A metalinear structure on a
manifold (resp. a metaplectic structure on a symplectic manifold) is by definition the
corresponding structure on its tangent bundle.

Lemma 12.2 A manifold X has a metalinear structure if and only if T ∗ X has a
metaplectic structure. If a symplectic manifold has a metaplectic structure then any
Lagrangian submanifold of M has a metalinear structure.

Proof The obstruction to existence of a metalinear, resp. metaplectic, structure is
as follows. Pick any transition isomorphisms g jk for the tangent bundle. Lift them
to a cochain g̃ jk with values in ML, resp. in Mp . Then compute the two-cocycle
a jk� = g̃ jk g̃k�g̃

−1
j� with values in Z/2Z. The cohomology class of this cocycle is the

obstruction. If M = T ∗ X , this cohomology class is determined by its restriction to
X . But on X the symplectic transition functions g jk for T M can be chosen as the
image of GL(n)-valued transition functions for T X under the embeddingGL → Sp .

This proves the first statement of the Lemma. Now, for a Lagrangian submanifold
L of M , the transition isomorphisms for T M |L are cohomologous to an Mp-valued
cocycle p jk : g jk = h j p jkh−1

k . Lift h j to Mp(2n) somehow. Put

p̃ jk = h̃−1
j g̃ jk h̃k . (12.1.4)

This is a cocycle cohomologous to g̃ jk |L . It takes values in the preimage of the
subgroup of Sp(2n) consisting of matrices preserving the Lagrangian submanifold
L0 = {ξ̂ = 0}. The image of this cocycle under the projection to GL via ML is a
cocycle defining the bundle T X. �
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12.2 The Maslov Class of a Lagrangian Submanifold

12.2.1 The Case c1(M) = 0

Consider the cohomology class of the two-cocycle a jk� constructed as in the proof of
Lemma12.2 above but when we use the universal cover S̃p(2n, R) instead of Mp(n).

This is now a class in H 2(M, Z) that represents c1(M), the first Chern class of T M
viewed as a complex bundle after we reduce the structure group Sp to the maximal
compact subgroup U (n). Indeed, S̃p is homotopy equivalent to

Ũ (n) = {(u, x)|u ∈ U (n), x ∈ R, det(u) = e2πi x }.

The proof of Lemma12.2 applied to this case establishes the following fact.
Consider the group

G̃L(n, R) = {(g, x)|x ∈ GL(n, R); x ∈ R; det(g) = e2πi x } (12.2.1)

(Of course G̃L, unlike Ũ or S̃p, has nothing to do with the universal cover).

Lemma 12.3 A trivialization of c1(M)defines a G̃L(n)-structure on any Lagrangian
submanifold L of M, i.e. a lifting of the transition automorphisms of T L to a G̃L(n)-
valued cocycle.

Assume that L is oriented. Then there is another G̃L(n)-structure on L , due
to the fact that SL(n) is a subgroup of G̃L(n). The two liftings differ by a class in
λ(L) ∈ H 1(L , Z).Wewill call this class the Maslov class of an oriented Lagrangian
submanifold of a symplectic manifold M with a trivialization of c1(M).

12.2.2 The Case 2c1(M) = 0

Now consider the group

Ũ (2)(n) = {(g, x)|g ∈ U (n); x ∈ R; det(g)2 = e2πi x } (12.2.2)

Note that

{(g, x)|x ∈ GL(n, R); x ∈ R; det(g)2 = e2πi x } ∼→ GL(n, R) × Z (12.2.3)

Arguing exactly as before, we get

Lemma 12.4 A trivialization of 2c1(M) defines a GL(n) × Z-structure on any
Lagrangian submanifold L of M.

Projecting to Z, we get a class μ(L) ∈ H 1(L , Z). We call μ(L) the Maslov class
of a Lagrangian submanifold of a symplectic manifold M with a trivialization of
2c1(M).
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Note that
μ(L) = 2λ(L) (12.2.4)

for a trivialization of c1, the induced trivialization of 2c1, and an oriented L .

Remark 12.5 Let �̃(n)be the universal cover of theLagrangianGrassmannian�(n).

Define the group S̃p
(2)

(2n, R) by the condition that the following square beCartesian.

S̃p
(2)

(2n, R) −−−−→ �̃(n)⏐⏐� ⏐⏐�
Sp(2n, R) −−−−→ �(n)

Then Ũ (2) is a homotopy equivalent subgroup of S̃p
(2)

(2n, R).

Example 12.6 For n = 1,U (1)
∼→ S1; also�(1)

∼→ S1.Under these identifications,
the projection U (1) → �(1) becomes the map ζ �→ ζ2.

12.3 The Groups SpN

Herewe use definitions and notation from [36]. For N ≥ 1, let�N (n) be the universal
N -fold cover of �(n). Define the group SpN (2n, R) by requiring the following
diagram to be Cartesian:

SpN (2n, R) −−−−→ �N (n)⏐⏐� ⏐⏐�
Sp(2n, R) −−−−→ �(n)

In other words, SpN (2n) = S̃p
(2)

(2n)/(Z/N ). Define also

U N (n) = {(u, ζ)|u ∈ U (n), ζ ∈ C, det(u)2 = ζN } = Ũ (2)/(Z/N )

This is a subgroup of SpN (n) and the embedding is a homotopy equivalence.
A SpN (2n)-structure on M is the same as a trivialization of 2c1(M) in H 2

(M, Z/N ).

The universal N -fold cover of Sp(2n) is a subgroup of Sp2N (2n). In particular,
the metaplectic group Mp(2n) is a subgroup of Sp4(2n). The latter is generated by
Mp(2n) and the central subgroup {±1,±i}. The intersection of the two is {±1}, the
kernel of Mp → Sp .

The following makes sense for any N . We fix N = 4 just to fix the notation for
the rest of the paper.
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Definition 12.7 (a) Define P(n, R) as the subgroup of Sp(2n, R) consisting of pairs

(A, z) where A =
[

b a
0 (b−1)t

]
is a symplectic matrix. In other words, P(n) is the

subgroup of Sp(2n) consisting of matrices preserving the Lagrangian submanifold
L0 = {ξ̂ = 0}.

(b) Define MPar(n, R) as the subgroup of Sp4(2n, R) consisting of pairs (A, z)

where A =
[

b a
0 (b−1)t

]
is a symplecticmatrix, z is a complex number, and det(b)2 =

z4. In other words, this is the lifting to Sp4(2n) of P(n).

Lemma 12.8 (a) MPar(n, R)
∼→ P(n, R) × {±1,±i}

(b) If a symplectic manifold M has an Sp4 structure and L is a Lagrangian
submanifold then formulas (12.1.4)define anMPar(n)-valued cocycle cohomologous
to the transition isomorphisms of T M |L .

(c) If M has a real polarization then it has an Sp4(2n)-structure.

Definition 12.9 The projection of the cohomology class from Lemma12.8, (b) to
H 1(L , Z/4Z) is called the Maslov class of L .

When the trivialization of 2c1(M)modulo 4 comes from a trivialization of 2c1(M)

then the Maslov class defined above is equal to exp( iπ
2 μ(L)) that was defined in

Sect. 12.2.2.

13 Appendix. The Algebraic Metaplectic Representation

Most of the material of this section is contained in [40]. Recall the algebra A from
Sect. 4.1 and the A-module from Definition9.5. In this section we give an interpre-
tation of this module in terms of the metaplectic representation.

13.1 Symmetries of the Deformation Quantization Algebra of
a Formal Neighborhood

Any continuous automorphism g of Â induces a symplectic linear transformation g0
of C

2n. Denote by G the group of those g whose linear part g0 preserves the real
structure. We have

G = Sp(2n, R) � exp(g≥1) (13.1.1)

Define the central extension

G̃ = exp

(
1

i�
C ⊕ C

)
× Sp4(2n, R) � exp(̃g≥1) (13.1.2)
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where S̃p(2n, R) is the universal cover of Sp(2n, R). One has an exact sequence

1 → Z

4
× exp

(
1

i�
C[[�]]
)

→ G̃ → G → 1 (13.1.3)

Define also P to be the subgroup of G consisting of elements g whose linear part
preserves the Lagrangian subspace

L0 = {ξ̂1 = . . . = ξ̂n = 0} (13.1.4)

Let P̃ be the preimage of P in G̃.

13.2 The Algebraic Fourier Transform

Let ŷ = (ŷ1, . . . , ŷn) be n formal variables. For a symmetric real n × n matrix a, put

H ŷ
a = exp

(
a ŷ2

2i�

)
Ĉ[[̂y, �]]((e c

i� |c ∈ C)) (13.2.1)

Here

Ĉ[[̂y, �]] =
{ ∞∑

k=−N

vk |vk ∈ C[[̂y]]((�))k

}
(13.2.2)

with respect to the grading (3.1.3); for any vector space V , we define

V ((e
c

i� |c ∈ C)) =
⎧⎨
⎩
∑

k∈N;Re(ck )→+∞
e

ck
i� vk

⎫⎬
⎭ , (13.2.3)

vk ∈ V . In particular, the operator of multiplication by h is automatically invertible.
For a nondegenerate a, define the Fourier transform (cf. [22])

F : H ŷ
a

∼→ Hη̂
−a−1 (13.2.4)

as follows. Heuristically,

(F f )(η̂) = e− πin
4

(2πi�)n/2

∫
e

ŷη̂
i� f (ŷ)d ŷ; (13.2.5)

To give the above formula a rigorous meaning, put
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F

(
f (ŷ) exp

(
a ŷ2

2i�

))
(η̂) = f

(
i�

∂

∂η̂

)
F

(
exp

(
aη̂2

2i�

))
=

f

(
i�

∂

∂η̂

)
e− πin

4

det(
√

ia)
exp

(−a−1η̂2

2i�

)
= e− πi p(a)

2

det
√|a| f

(
i�

∂

∂η̂

)
exp

(−a−1η̂2

2i�

)

Here p(a) is the number of positive eigenvalues of a. We used the branch of the
square root for which

√
x > 0 if x > 0; it is defined on the complex plane with the

line {x < 0, x ∈ R} removed. The final term in the above chain of equalities can be
viewed as the definition of the first term.

Remark 13.1 The definition of the Fourier transform F extends to elements of the
form

f(ŷ) = exp

(
a ŷ2

2i�
+ i ŷ̂z

)
f (ŷ) (13.2.6)

where a is nondegenerate and ẑ is another formal parameter:

F(f)(η̂) = F

(
exp

(
a ŷ2

2i�

)
f (ŷ)

)
(η̂ + ẑ) (13.2.7)

One has

F2(f)(ŷ) = i−nf(−ŷ); F ŷF−1 = i�
∂

∂η̂
; Fi�

∂

∂ ŷ
F−1 = −η̂ (13.2.8)

13.3 The Two-Dimensional Case

For the readers convenience, we first present the case n = 1.

H =
⊕
a∈R

Hx̂
a

⊕⊕
a∈R

FHx̂
a/ ∼ (13.3.1)

where

F f (̂x) exp

(
ax̂2

2i�

)
∼ e− πi

2 p(a)

√|a| f

(
i�

∂

∂ x̂

)
exp

(
−a−1 x̂2

2i�

)
(13.3.2)

for a �= 0. Here p(a) = 1 if a > 0 and p(a) = 0 otherwise.
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13.3.1 The Action of ̂

̂A onH

The algebra ̂̂A acts on the spaceH as follows. If f is in the first summand in (13.3.1),
then x̂ acts on it by multiplication and ξ̂ by i� ∂

∂ x̂ , the latter defined by

∂

∂ x̂

(
exp

(
ax̂2

2i�
f (̂x)

))
= exp

(
ax̂2

2i�

)(
∂

∂ x̂
+ ax̂

)
f (̂x).

As for Ff , x̂ sends it to −i�F ∂
∂ x̂ f and ξ̂ sends it to Fx̂f .

13.3.2 Some Operators on H

The operator F : H → H. Define for f (̂x) = exp( ax̂2

2i� ) f (̂x)

F : f �→ Ff �→ i−1f(−x̂)

The operator exp( ax̂2

2i� ) : H → H. (1)

exp

(
ax̂2

2i�

)
: exp
(

cx̂2

2i�

)
f (̂x) �→ exp

(
(a + c)̂x2

2i�

)
f (̂x)

for c ∈ R;
(2)

F exp

(
cx̂2

2i�

)
f (̂x) �→ e

−πi
2 p(c)

√|c| f

(
−i�

∂

∂ x̂
+ ax̂

)
exp

(
(a − c−1)̂x2

2i�

)

for c �= 0;
(3)

F exp

(
cx̂2

2i�

)
f (̂x) �→ i F f

(
x̂ − ai�

∂

∂ x̂

)
e− πi

2 (p(c)+p( −c
1−ac ))

√|1 − ac| exp

(
c

1 − ac

x̂2

2i�

)

for c �= a−1. These maps preserve the equivalence relation and therefor define oper-
ators on H.

13.3.3 The Action of Sp4(2, R) onH

The group Sp4(2, R) acts by the algebraic version of the metaplectic representation
that we are going to describe next.
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13.4 The Metaplectic Projective Representations of SL2(R)

Define the action of generators of SL2(R) by exactly the same formula as the usual
metaplectic representation

T :
[
1 0
a 1

]
�→ exp

(
ax̂2

2i�

)
;
[

0 1
−1 0

]
�→ F; (13.4.1)

[
b 0
0 b−1

]
�→ Tb; (Tb f )(x) = 1√

det(b)
f (b−1x) (13.4.2)

The corresponding representation of sl(2) is given by

X− = x̂2

2i�
; H = − x̂ ξ̂

i�
= − x̂ ∗ ξ̂

i�
− 1

2
; X+ = − ξ̂2

2i�
(13.4.3)

13.4.1 The Bruhat Relations

The following are well known to be the defining relations of SL2 (together with

the requirement that a �→
[
1 0
a 1

]
is a morphism from the additive group and b �→[

b 0
0 b−1

]
is a morphism from the multiplicative group).

[
0 1

−1 0

] [
1 0
a 1

] [
0 1

−1 0

]−1

=
[
1 −a
0 1

]
(13.4.4)

[
0 1

−1 0

] [
b 0
0 b−1

] [
0 1

−1 0

]−1

=
[

b−1 0
0 b

]
(13.4.5)

[
b 0
0 b−1

] [
1 0
a 1

] [
b 0
0 b−1

]−1

=
[

1 0
b−2a 1

]
(13.4.6)

[
1 0
a 1

] [
0 1

−1 0

] [
1 0

a−1 1

]
=
[

a−1 0
0 a

] [
1 a
0 1

]
(13.4.7)

for a �= 0.

Proposition 13.2 Formulas (13.4.1) define a representation of S̃L2 in which an
element of π1(SL2) acts by e

πi
2 c where c is its image in π1(�)

∼→ Z.

Proof All the Bruhat relations except (13.4.7) are true for operators T (g) defined in
(13.4.1), whereas
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Lemma 13.3

T

([
1 0
a 1

])
T

([
0 1

−1 0

])
T

([
1 0

a−1 1

])
=

=
√|a|√

a
e

πi
2 p(a)T

([
a−1 0
0 a

])
T

([
1 a
0 1

])
�

13.5 The Case of a General n

Now define
H =

⊕
I⊂{1,...,n}

⊕
a

FI,JHx̂/ ∼ (13.5.1)

where a runs through all symmetric n × n real matrices and the equivalence relation
is defined as follows. For every subset K of {1, 2, . . . , n}, define

FK :
⊕

a

FIHx̂ →
⊕

a

FI�KHx̂ (13.5.2)

(where � stand for the symmetric difference) as follows: if L is the complement of
I ∩ K , then

(FK FI f)(̂xI∩K , x̂L) = i−|I∩K |FI�K f(−x̂ I∩K , x̂L) (13.5.3)

Let J be the complement of I .

f (̂xI , x̂ J ) = exp

(
ax̂2

I + bx̂I x̂ J + cx̂2
J

2i�

)
f (̂xI , x̂ J ) (13.5.4)

such that aI is a nondegenerate symmetric matrix. Then

FK FI f ∼ FK
exp
(− πi

2 p(a)
)

√
det(|a|) f

(
i�

∂

∂ x̂ I

)
exp

(−a−1(̂xI + bx̂J )
2

2i�

)
(13.5.5)

for all K .

13.5.1 Operators on H

Clearly, the operators FK (13.5.2) preserve the equivalence relation and therefore
descend toH.
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13.5.2 The Action of ̂

̂A onH

The algebra ̂̂A acts on the space H as follows. On the summand FIHx̂
a ,

x̂ j FI f = −FI i�
∂

∂ x̂ j
f, j ∈ I ; x̂ j FI f = FI x̂ j f, j /∈ I ; (13.5.6)

ξ̂ j FI f = FI i�
∂

∂ x̂ j
f, j /∈ I ; ξ̂ j FI f = FI x̂ j f, j ∈ I. (13.5.7)

13.5.3 The Action of Sp4(2n) on H

This action is exactly as described in Sect. 13.3.3. In particular, Sp4(2n, R) acts by
the metaplectic representation as in Sect. 13.4:

T :
[
1 0
a 1

]
�→ exp

(
ax̂2

2i�

)
;
[

0 1
−1 0

]
�→ F; (13.5.8)

more generally, let FI be the matrix that is the direct sum of

[
0 1

−1 0

]
in coordinates

x̂ I , ξ̂I and the identity matrix in the rest of the Darboux coordinates maps to FI ;[
b 0
0 t b−1

]
�→ Tb; (Tb f )(x) = 1√

det(b)
f (b−1x) (13.5.9)

Remark 13.4 The construction of H mimics very closely the construction of the
orbit of 1 under the action of Sp4(2n) � C[̂x, ξ̂] on the space of distributions via
differential operators and the standard metaplectic representation.

Lemma 13.5 Assign to FI exp( ax̂2

2i� ) f (̂x) ∈ H the Lagrangian subspace FI ({ξ̂ =
ax̂}) where FI was defined after (13.5.8). This is a well-defined map H → �(n)

where �(n) is the Grassmannian of Lagrangian subspaces in R
2n. The space H

is identified with the space of finitely supported sections of a G̃-equivariant vector
bundle on �(n).

The Lagrangian Grassmannian is a homogeneous space of G̃ via the projection
G̃ → Sp4 → Sp . In fact,

�(n)
∼→ G̃/P̃.

Lemma 13.6 The lines CFI exp( ax̂2

2i� ) where a runs through real symmetric n × n
matrices and I through subsets of {1, . . . , n} form a line subbundle of H which is
isomorphic to the bundle on �(n) determined by the Čech one-cohomology class
(−1)μL where μL is the generator of H 1(�(n), Z) (the Maslov class).
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Lemma 13.7 The actions described in Sects.13.5.2 and 13.5.3 turn H into an A-
module.

13.6 The Algebraic Metaplectic Representation as an
Induced Module

Proposition 13.8
H ∼→ V̂ = A⊗̂B̂̂VK

(cf. Sect. 9.2.1).

14 Appendix. Twisted Bundles and Groupoids

14.1 Charts and Cocycles

Suppose we have a manifold X with two sheaves of groups C ⊂ G where C is
constant and central in G. Consider a class c ∈ H 2(X, C). A G-bundle on X twisted
by c is given by an equivalence class of gi j ∈ G(Ui ∩ U j ) for an open cover X = ∪Ui

such that
gi jg jk = ci jkgik (14.1.1)

where ci jk is a Čech cocycle representing c. Two data gi j and g′
i j are equivalent if

gi j = hig
′
i j h

−1
j bi j (14.1.2)

for some common refinement of the two covers, where hi ∈ G(Ui ) and bi j ∈ C(Ui ∩
U j ). Note that this definition makes all C-bundles equivalent.

By a chart we mean a map T → X where T is any topological space. A good
collection of charts on X is a collection of charts T → X , T ∈ T , such that for
every T0, . . . , Tp in T , every one-cocycle on T0 ×X . . . ×X Tp with values in the
pullback of G, and every one- or two-cocycle with values in the pullback of C , can
be trivialized.

Lemma 14.1 For any good collection of charts and any twisted bundle, one can
define

cT T ′T ′′ ∈ C(T ×X T ′ ×X T ′′); gT T ′ ∈ G(T ×X T ′) (14.1.3)

satisfying
cT T ′T ′′cT T ′′T ′′′ = cT T ′T ′′′cT ′T ′′T ′′′ (14.1.4)
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and
gT T ′gT ′T ′′ = cT T ′T ′′gT T ′′ (14.1.5)

in such a way that, if Ti are a good open cover, then cTi Tj Tk is cohomologous to ci jk

and gTi Tj is equivalent to gi j . The choice is unique up to equivalence in the following
sense:

cT T ′T ′′ = c′
T T ′T ′′bT T ′bT ′T ′′b−1

T T ′′ ; gT T ′ = hT g′
T T ′ h−1

T ′ bT T ′ (14.1.6)

for some bT T ′ ∈ C(T × T ′) and hT ∈ G(T ).

Proof Consider inverse images on charts T of an open cover {Ui } of X. Let

ci jk = αi j (T )α jk(T )αik(T )−1

be a trivialization of c on T . Choose trivializations

gi jαi j (T )−1 = hi (T )h j (T )−1

on T and
αi j (T )αi j (T

′) = βi (T, T ′)β j (T, T ′)−1

where αi j , βi j are sections of C and hi are sections of G. Put

cT T ′T ′′ = βi (T, T ′)βi (T
′, T ′′)βi (T, T ′′)−1 (14.1.7)

and
gT T ′ = hi (T )−1hi (T

′)βi (T, T ′) (14.1.8)

The relations above show that these do not depend on i. �

14.2 The Groupoid of a Twisted G-Bundle

LetG be aLie group andG the sheaf of smoothG-valued functions. LetC be a central
subgroup of G and C the sheaf of locally constant C-valued functions. Consider aC-
valued two-cohomology class represented by a cocycle ci jk and a twisted G-bundle
represented by a G-valued cochain g jk .

Define a groupoid on X as follows.
For x0 and x1 in X , define the set G̃x0,x1 .Let γ : [0, 1] → X be a smoothmap.View

it as a chart that we denote by T .An element of G̃x0,x1 is a class of an element gT ∈ G
with respect to the following equivalence relation. Consider two charts T and T ′
representing two smooth maps γ, γ′ : [0, 1] → X and a homotopy σ : [0, 1]2 → X
such that σ(0, s) = x0, σ(s, t) = x1, σ(t, 0) = γ(t), and σ(t, 1) = γ′(t). We will
view σ as a chart S. We call S a homotopy between S and S′. Now generate the
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equivalence relation by the following.

gT ∼ (gT T ′c−1
T T ′ S)(x0)gT ′(gT T ′c−1

T T ′ S)(x1)
−1 (14.2.1)

Lemma 14.2 Let S be a homotopy between T and T ′, S′ a homotopy between T ′
and T ′′, and S′′ a homotopy between T and T ′′. If we denote the right hand side of
(14.2.1) by a(S)gT , then a(S)a(S′) = 〈c, [�]〉a(S′′) where � is the sphere formed
by S, S′, and S′′.

Proof We have
a(S)a(S′)gT =

gT T ′gT ′T ′′c−1
T T ′ Sc−1

T ′T ′′ S′(x0)gT ′′(gT T ′gT ′T ′′c−1
T T ′ Sc−1

T ′T ′′ S′(x1))
−1

The right hand side is equal to

(gT T ′′cT T ′T ′′c−1
T T ′ Sc−1

T ′T ′′ S′)(x0)gT ′′(gT T ′′cT T ′T ′′c−1
T T ′ Sc−1

T ′T ′′ S′)(x1)
−1;

therefore

a(S)a(S′) = cT T ′T ′′cT T ′′ S′′

cT T ′ ScT ′T ′′ S′
(x0)(

cT T ′T ′′cT T ′′ S′′

cT T ′ ScT ′T ′′ S′
(x1))

−1a(S′′)

Applying the cocyclicity condition to the quadruple of charts T T ′T ′′S, we get

cT T ′T ′′cT T ′′ S′′

cT T ′ ScT ′T ′′ S′
= cT T ′′ S′′cT ′T ′′ S

cT T ′′ ScT ′T ′′ S′

Applying the same condition to T T ′′SS′′ and then to SS′S′′T ′′, we replace the right
hand side with cT SS′′cT ′′ SS′

cT ′′ S′ S′′cT ′ SS′
= cSS′ S′′cT SS′′

cT ′ SS′cT ′′ S′ S′′
.

But T ×X S ×X S′′ = T, T ′ ×X S ×X S′ = T ′, and T ′′ ×X S′ ×X S′′ = T ′′. There-
fore the values of cT SS′′ , etc. at x0 and x1 are the same. Therefore

a(S)a(S′) = cSS′ S′′(x0)cSS′ S′′(x1)
−1a(S′′)

But
cSS′ S′′(x0)cSS′ S′′(x1)

−1 = 〈c, [�]〉

for any two-cocycle c. To see this, note that the left hand side is 1 for any coboundary
c. On the other hand, if we enlarge S, S′, S′′ a little bit to make them an open cover
of �, take an element a of C , and define cSS′ S′′(x0) = a, cSS′ S′′(x1) = 1, the result
will be a = 〈c, [�]〉. �

Corollary 14.3 There is an epimorphism
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G̃x0,x1 → π1(x0, x1) (14.2.2)

When x0 = x1 = x, the kernel of this epimorphism is isomorphic to G/〈c,π2(X)〉.

14.2.1 Example: The Holonomy Groupoid of a Vector Bundle

Let E be a real oriented vector bundle of rank N . Let G = SON (R) and G̃ =
SpinN (R) its universal cover. Reduce the structure group of E to G using a Rie-
mannian metric. Let Ĩsom(E)x0,x1 be the set of equivalence classes of data (γ, ut )

whereγ : [0, 1] → X is a smoothmap,γ(0) = x0,γ(1) = x1, and ut : Eγ(t)
∼→ Eγ(0)

a metric-preserving linear isomorphism smoothly depending on t and satisfying
u0 = Id. An equivalence between (γ, ut ) and (γ′, u′

t ) is a smooth map σ : [0, 1] ×
[0, 1] → X such that σ(0, s) = x0, σ(1, s) = x1, σ(t, 0) = γ(t), σ(t, 1) = γ′(t),
and a linear metric-preserving isomorphism vt,s : Eσ(t,s)

∼→ Ex0 smooth in (t, s),
such that v0,s = Id, vt,0 = ut , vt,1 = u′

t , and v1,s = u1 = u′
1.

Lift the transition isomorphisms gE
i j of E to some g̃i j . Put ci jk = g̃i j g̃ jk g̃

−1
ik . This

cocycle represents the second Stiefel–Whitney class w2(E). Note that the groupoid
Ĩsom(E) is isomorphic to the groupoid G̃′ constructed from the twisted bundle
defined by g̃i j , ci jk . In fact, note that for the charts T and S defined by maps γ
and σ, there is a natural lifting g̃T S of gT S. Namely, g̃T S(γ(t)) is the class of the
path gT S(γ(τ )), 0 ≤ τ ≤ t. Similarly with g̃ST ′ . Identify with G̃ the set of equiva-
lence classes of (γ, ut ) with fixed γ (and with σ(t, s) = γ(t) in the definition of the
equivalence). Now, given an equivalence σ, v between γ, u and γ′, u′, gT ∈ G̃ gets
identified with g̃T S g̃ST ′ = g̃T T ′cT ST ′ .

Corollary 14.4 There is an epimorphism

Ĩsom(E)x0,x1 → π1(x0, x1) (14.2.3)

and every preimage is a homogeneous space Spin(N , R)/〈w2(E),π2(X)〉. (We iden-
tify Z/2 with the center of Spin(N , R)).

14.2.2 Connections on Twisted Bundles

As in Sect. 14.2, let G be a simply-connected (pro) Lie group and G the sheaf of
smooth G-valued functions. Let C be a central subgroup of G and C the sheaf of
smoothC-valued functions. In addition, fix some algebraA onwhich G acts by auto-
morphisms. Consider a twisted bundle defined by the data (gi j , ci jk). A connection
in this twisted bundle is a collection of A-valued forms on Ui such that

Adgi j (d + A j ) = d + Ai
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on every Ui j . Here Adg(d) = −dg · g−1. Note that, because ci jk are locally constant
and central, Adgi j Adg jk (d + Ak) = Adgik (d + Ak), so the conditions above are con-
sistent on Ui jk . The curvature R = d Ai + A2

i is a well-defined A-valued two-form.

14.2.3 The Flat Connection up to Inner Derivations

Here we will construct a flat connection up to inner derivations on the associated
bundle of algebras A compatible with the action of the groupoid G̃ of a twisted
bundle (cf. Sect. 14.2). We will start from a flat connection on the twisted bundle
itself.

First define special coordinate charts on G̃ as follows. Fix:

• two open charts U0 and U1 of X;
• two points x∗

0 ∈ U0 and x∗
1 ∈ U1;

• a path γ from x∗
0 to x∗

1 in X ;
• smooth maps τ0 : [0, 1] × U0 → U0 and τ1 : [0, 1] × U1 → U1, τ0(0, x0) = x0,

τ0(1, x0) = x∗
0 , τ1(0, x1) = x1, τ1(1, x1) = x∗

1 .

For every x0 ∈ U0 and x1 ∈ U1, we will denote the path t �→ τ0(t, x0) by τx0 and the
path t �→ τ1(t, x1) by τx1 . For the data as above, we construct a chart T in G̃ as a
map

U0 × U1 → G̃; (x0, x1) �→ τx0 ◦ γ ◦ τx1 : x0 → x1

(the composition of paths).
Now consider a flat connection in our twisted bundle. In a local trivialization, on

any open chart W , we write ∇V = d + AW . We can identify a local section of G̃ on
T with a G̃-valued function gT (x0, x1) on U0 × U1.

Definition 14.5
α(gT ) = −dgT · g−1

T − A0 + AdgT (A1)

where A0 = π∗
0(AU0) and A1 = π∗

1(AU1);

R = d A0 + A2
0.

Lemma 14.6 The above formulas define a flat connection up to inner derivations
on the associated bundle of algebras A compatible with the action of G̃.

15 Appendix. Modules Associated to Lagrangian
Submanifolds and Lagrangian Distributions

For any Lagrangian submanifold L of a symplectic manifold M with a given Sp4

structure we constructed a bundle of modules ̂̂VL with a flat connection ∇V (cf.
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Sect. 9.2.2). This is a bundle of ÂM -modules, and the connections ∇V and ∇A are
compatible. In particular, denote by AM the sheaf of algebras of horizontal sections
of ∇A and by VL the sheaf of horizontal sections of ∇V. Then VL is a sheaf of
AM -modules.

Now apply the same construction to L but instead of M take a tubular neighbor-
hood of L and identify it with the tubular neighborhood of L in T ∗L by Darboux–
Weinstein theorem. Use the Sp4 structure provided by the Lagrangian polarization
by fibers of T ∗L (cf. Lemma12.8). We get another AM -module that we denote by
V

(0)
L .

Lemma 15.1 VL is isomorphic to V
(0)
L twisted by the {±1,±i}-valued Maslov class

of L .

We denote this class by exp( πi
2 μ(L)).Note that μ(L) can be chosen as a Z-valued

cocycle only if 2c1(M) = 0.

15.1 The Asymptotic Construction of Hörmander and Maslov

Aswe have seen in Sect. 9.2.2, the oscillatory module V•
L is induced from the module

of forms with coefficients in ̂̂V. But it is the twisted version of the latter module
that serves as an asymptotic version of the classical construction of Lagrangian
distributions with wave front L .

Put

VL ,K = K⊗̂VL =
{ ∞∑

k=0

e
1

i� ck vk |vk ∈ VL; ck ∈ R; ck → ∞
}

(15.1.1)

Definition 15.2 Assume M = T ∗ X. Let V
η
L ,K be the twist of the sheaf VL ,K by the

Čech cohomology class exp(− 1
i�η) ∈ H 1(L , exp( 1

i�R)) where η is the class of the
form ξdx |L .

Let X = ∪Uα is a small open cover. Let L = ∪Wγ be a refinement of the cover
L = ∪(T ∗Uα ∩ L). In particular, a choice is made of γ �→ α = α(γ) such that Wγ ⊂
T ∗Uα ∩ L .

15.1.1 Quantization Procedure

First let us review our deformation quantization picture in the case M = T ∗ X.

First, we have the sheaf of algebras AT ∗ X . It can be described by products ∗α on
C∞(T ∗Uα)[[�]]

a ∗α b =
∞∑

k=0

(i�)k Pα,k(a, b) (15.1.2)
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and by transition functions

Gαβ(a) =
∞∑

k=0

(i�)k Tαβ,k(a) (15.1.3)

where Pα,k are bilinear bidifferential expressions, Tαβ,k are differential operators,
Pα,0( f, g) = f g, Pα,1( f, g) = 1

2 { f, g}, and Tαβ,0( f ) = f. One has Gαβ(a ∗β b) =
Gαβ(a) ∗α Gαβ(b).Actually in ourC∞ case, unlike the complex analytic or algebraic
case, Gαβ can be made the identity automorphisms, but this is not necessarily the
most natural choice.

The sheaf of modules V
η
L is described by the action

a ∗γ f =
∞∑

k=0

(i�)k Qγ,k(a, f ) (15.1.4)

where f ∈ |�| 1
2 (Wγ) and a ∈ C∞(Uα(γ)), and by the transition functions

Hγδ( f ) = exp

(
− 1

i�
ηγδ

) ∞∑
k=0

(i�)k Sγδ,k( f ) (15.1.5)

where Qγ,k are bidifferential and Sγδ,k are differential. Moreover, Qγδ,0(a, f ) = a f
and

Sγδ,0( f ) = exp

(
πi

2
μγδ(L)

)
f. (15.1.6)

One has
a ∗γ (b ∗γ f ) = (a ∗α(γ) b) ∗γ f

and
Sγδ(a ∗δ f ) = Tα(γ)α(δ)(a) ∗γ Sγδ( f )

Again, all higher Sγδ,k can be made zero, but this is not the most natural choice.
Let C∞

poly denote functions on T ∗ X that are polynomial on fibers. A quantization
procedure is the following.

(1) For any α, a map

Opα
�

: C∞
poly(T

∗(Uα)) → D(Uα, |�| 1
2
X ) (15.1.7)

such that
Opα

�
(a)Opα

�
(b) = Opα

�
(a ∗α b)

and
Opα

�
(Gαβ(a)) = Opβ(a)
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on Uα ∩ Uβ . (We can ask for exact equalities, not for asymptotic equalities like we
use below, when a and b are polynomial).

(2) A map

uγ
�

: |�| 1
2
c (Wγ) → |�| 1

2
c (Uα(γ)) (15.1.8)

for all � > 0, such that

Opα(γ)

�
(a)uγ

�
( f ) −

N∑
k=0

(i�)kuγ
�
(Qγ,k(a, f )) = O(hN+1)

and

uγ( f ) −
N∑

k=0

(i�)kuδ
�
(Sγ,δ,k( f )) = O(hN+1)

for all N .

Let us recall how a quantization procedure is carried out. For every γ choose a
phase function for L ∩ Wγ as follows. Let θ = (θ1, . . . , θk) be a coordinate system on
R

k .Choose a coordinate system x = (x1, . . . , xn) onUα(γ). Choose a phase function
for L ∩ Wγ , i.e. a function ϕ(x, θ) such that

L ∩ Wγ = {(ξ, x)|∃θ such that ξ = ϕx (x, θ) and ϕθ(x, θ) = 0} (15.1.9)

Here ϕx and ϕθ stand for partial derivatives. We assume that the n × (n + k) matrix
(ϕxx ,ϕxθ) is nondegenerate.

Example 15.3 Let n = 1.Assume that L = {ξ = ϕ′(x)}. Then we can choose k = 0
and ϕ = ϕ(x). Now let L = {x = −ψ′(ξ)}. Then we can take k = 1 and ϕ(x, θ) =
xθ + ψ(θ).

Example 15.4 More generally, one can always subdivide the coordinates into two
groups and write x = (x1, x2); ξ = (ξ1, ξ2) so that L ∩ Wγ will be of the form

ξ1 = Fx1(x1, ξ2); x2 = −Fξ1(x1, ξ2) (15.1.10)

In this case one can take ϕ(x1, x2, θ) = x2θ + F(x1, θ).

Note that the condition that the matrix of second derivatives is nondegenerate
means that θ in (15.1.9) is unique and therefore L ∩ Wγ can be identified with
{(x, θ)|ϕθ(x, θ) = 0}. (To do that, onemay need to pass to a finer open cover). More-
over, we can choose n out of n + k coordinates x, θ so that they will be coordinates
on {ϕθ = 0}. Namely, we can take any n coordinates such that the corresponding
square submatrix of (ϕxx ,ϕxθ) is nondegenerate. Denote these coordinates by z and
the other k coordinates by ζ. Choose a procedure for extending functions f (z) to
functions on {(x, θ)}. Namely, extend f (z) to f (z)ρ(z′) where ρ is a function with
small support near zero and ρ(z′) = 0.
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Given a phase function and a compactly supported half-form f = f (z)|dz| 1
2 ,

define uγ
�
( f ) as follows. Denote by f (x, θ) the extension of f (z) as above. Then

define

u�( f ) = e
−πik
4

(2π�)
k
2

∫
e− ϕ(x,θ)

i� f (x, θ)dθ|dx | 1
2 (15.1.11)

For the sake of completeness let us outline the proof of the fact that this is indeed a
quantization procedure as described above (it is contained essentially in [15, 16], as
well as in [32]).

First, as proven in [16], any two local phase functions differ by a coordinate
change

ϕ(x, θ) �→ ϕ(g(x), h(x, θ))

followed by iterated application of

ϕ(x, θ) �→ ϕ(x, θ) ± θ21

to one or the other phase function. Here θ1 is an extra variable. So we can assume
that our local phase functions are as in Example15.4, possibly with some θ21 added
or subtracted. We have two choices of subdivision x = (x1, x2). Namely, for Wγ we
will have

xγ
1 = (x1, x2); xγ

2 = (x3, x4);

for Wδ ,
xδ
1 = (x1, x3); xδ

2 = (x2, x4).

Let Fγ(x1, x2, ξ3, ξ4) and Fδ(x1, x3, ξ2, ξ4) be functions as in Example15.4. Let us
look for functions fγ and fδ such that (15.1.11) will give the same answer for the
charts Wγ and Wδ.

e− πi
4 (k3+k4)

(2π�)
k3+k4

2

∫
e− 1

i� (x3ξ3+x4ξ4+Fγ(x1,x2,ξ3,ξ4) fγ(x1, x2, ξ3, ξ4)dξ3dξ4 = (15.1.12)

= e− πi
4 (k2+k4)

(2π�)
k2+k4

2

∫
e− 1

i� (x2ξ2+x4ξ4+Fδ(x1,x3,ξ2,ξ4) fδ(x1, x3, ξ2, ξ4)dξ2dξ4

Applying the inverse Fourier transform we get

e−Fγ fγ = e− πi
4 (k2−k3)

(2π�)
k2+k3

2

∫
e

1
i� (−x2ξ2+x3ξ3−Fδ ) fδdξ2dx3 (15.1.13)

Compute the right hand side by the stationary phase method. The critical points
satisfy
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x2 = −∂Fδ

∂ξ2
; ξ3 = ∂Fδ

∂x3
(15.1.14)

In other words, the critical point (ξ2, x3) is such that (x1, x2, ξ1, ξ2) is in L .

fγ = εγδ exp(
1

i�
((x3ξ3 − Fδ) − (x2ξ2 − Fγ)))mod� (15.1.15)

or

fγ = εγδ exp

(
1

i�
(ϕδ − ϕγ)

)
mod� (15.1.16)

Here
εγδ = e− πi

4 (k2−k3)e− πi
4 (n−(γ,δ)−n+(γ,δ)) (15.1.17)

where n−(γ, δ), resp. n+(γ, δ), is the number of negative, resp. positive, eigenvalues
of the matrix of second derivatives of Fδ with respect to variables ξ2 and x3. We can
re-write (15.1.17) as

εγδ = exp
πi

2
(n+ − k2) (15.1.18)

where, as above, n+ is the number of positive eigenvalues of the matrix of second
derivatives of Fδ in variables x2, ξ3.

Example 15.5 Let Fγ(x) = ϕ(x) and Fδ(x, θ) = xθ − ψ(θ) as in Example15.3. Let
us compute εγδ

. One has k2 = 1. If ϕxx > 0 then n2 = 0. If ϕxx < 0 then n2 = 1.
Therefore

εγδ
= −1 for ϕxx > 0; εγδ

= 0 for ϕxx < 0.

Now compute εδγ . One has k2 = 0. If ϕxx > 0 then n2 = 1. If ϕxx < 0 then
n2 = 0. Therefore

εδγ = 1 for ϕxx > 0; εδγ = 0 for ϕxx < 0.

Nownote that dϕγ = ξdx |L on L ∩ Wγ and dϕδ = ξdx |L on L ∩ Wδ.Therefore,
if ηγδ = ϕγ − ϕδ on L ∩ Wγ ∩ Wδ , then (ηγδ) represents the cohomology class η
corresponding to the De Rham class of ξdx |L .

On the other hand, a choice of a local presentation (15.1.10) of L determines a
choice of lifting of transition isomorphisms as in (12.1.4). Indeed, in a tangent space
T(x,ξ)L to a point of L ∩ Wγ , let x̂ , ξ̂ be formal Darboux coordinates coming from
some local coordinate system. Choose a presentation

ξ̂1 = Ax̂1 + Bξ̂2; x̂2 = −Cx̂1 − Dξ̂2 (15.1.19)

Construct a symplectic matrix sending L0 = {ξ̂1 = ξ̂2 = 0} to T(x,ξ)L as follows. Let

p(A, B, C, D) : (̂x1, x̂2, ξ̂1, ξ̂2) �→ (̂x1, x̂2, Ax̂1 + Bx̂2, Cx̂1 + Dx̂2) (15.1.20)



A Microlocal Category Associated to a Symplectic Manifold 317

and
Fx̂2 : (̂x1, x̂2, ξ̂1, ξ̂2) �→ (̂x1,−ξ̂2, ξ̂1, x̂2) (15.1.21)

One has
T(x,ξ)L = Fx̂2 p(A, B, C, D)L0 (15.1.22)

Note also that both factors of the right hand side extend automatically to elements
in Sp4. Indeed, one can replace p(A, B, C, D) by the homotopy class of the path
p(t A, t B, tC, t D), 0 ≤ t ≤ 1, and Fx̂2 by the homotopy class of the path

(̂x1, x̂2, ξ̂1, ξ̂2) �→ (̂x1, x̂2 cos t − ξ̂2 sin t, ξ̂1, x̂2 sin t + ξ̂2 cos t), 0 ≤ t ≤ π

2

It is easy to see that theMaslov classμ corresponding to the lifted transition functions
thus defined is inverse to the one defined by (15.1.18).

16 Appendix. Twisted A∞ Modules and A∞ Functors

16.1 Differential Graded Categories of A∞ Functors

Our references for this Section are [23] and [24] (see also [8] and the survey [41]).
Let A and B be two differential graded (DG) categories. For two maps

f, g : Ob(A) → Ob(B)

define

C
•
f,g(A, B) =

∏
n≥1;x0,...,xn

Hom•(A(x0, x1) ⊗ . . . ⊗ A(xn−1, xn)[n], B( f (x0), g(xn)))

where the product is taken over all x0, . . . , xn ∈ Ob(A). Put

C•
f,g(A, B) =

∏
x0∈Ob(A)

B( f (x0), g(x0)) × C
•
f,g(A, B) (16.1.1)

Define the differential d by

(d1ϕ)(a1, . . . , an+1) =
n∑

j=1

(−1)
∑

p≤ j (|ap |+1)ϕ(a1, . . . , a j a j+1, . . . , an+1) (16.1.2)

(d1 = 0 on the first factor of (16.1.1));
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(d2ϕ)(a1, . . . , an) =
n∑

j=1

(−1)
∑

p< j (|ap |+1)ϕ(a1, . . . , dAa j , . . . , an+1) + dBϕ(a1, . . . , an)

(16.1.3)
Define

d = d1 + d2

Also define the product

C
•
f,g(A, B) ⊗ C

•
g,h(A, B) → C

•
f,h(A, B)

by

(ϕ � ψ)(a1, . . . , am+n) = (−1)|ψ|∑m
j=1(|a j |+1)ϕ(a1, . . . , am)ψ(am+1, . . . , am+n)

(16.1.4)
(Note that here m or n can be zero, which corresponds to the case of one or both
factors lying in the first factor of (16.1.1)).

Definition 16.1 An A∞ functor f : A → B is a map f : Ob(A) → Ob(B) together
with an element f of degree 1 in C

•
f,f(A, B) such that

d f + f � f = 0

A curved A∞ functor is defined the same way but now the cochain f is allowed to
be in C•

f,f(A, B).

Definition 16.2 Define the DG category C(A, B) as follows. Let objects be A∞
functors f : A → B; set

C•(A, B)( f, g) = C•
f,g(A, B)

with the differential

δϕ = dϕ + f � ϕ − (−1)|ϕ|ϕ � f

We define the composition to be the cup product.
Also, define the DG category C+(A, B) the same way as above but with objects

being curved A∞ functors.

16.1.1 Equivalence of Objects in a DG Category

LetC1 be the category with two objects 0 and 1 and twomutually inverse morphisms
g : 0 → 1 and g−1 : 1 → 0.

Definition 16.3 Two objects x, y of a DG category C are equivalent if there is an
A∞ functor C1 → C sending 0 to x and 1 to y.
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Lemma 16.4 The relation defined above is an equivalence relation.

Proof Let C2 be the category with three objects 0, 1, 2 and with unique morphism
between any two objects. There are functors i pq : C1 → C2 that send 0 to p and 1 to
q, 0 ≤ p < q ≤ 2. If we have one equivalence between x and y and another between
y and z, then we have a functor (cf. Definitions and Lemma16.7 below):

Cobar Bar k[i01C1] ∗k[1] Cobar Bar k[i12C1] → C (16.1.5)

that sends 0 to x, 1 to y, and 2 to z.Here ∗ stands for free product of categories; for any
categoryC, k[C] is its linearization, and k[1] is the category with one object 1 whose
ring of endomorphisms is k. But the left hand side of (16.1.5) is quasi-isomorphic
to k[i01C1] ∗k[1] k[i12C1] ∼→ C2. By the standard transfer of structure [24, 25, 28],
we get an A∞ morphism C2 → C that sends 0 to x, 1 to y, and 2 to z. Composing it
with i02, we get an equivalence between x and z. �

Definition 16.5 Two A∞ functors A → B are equivalent if they are equivalent as
objects in C(A, B).

16.1.2 The Bar Construction

The bar construction of a DG category A is a DG cocategory Bar(A) with the same
objects where

Bar(A)(x, y) =
⊕
n≥0

⊕
x1,...,xn

A(x, x1)[1] ⊗ A(x1, x2)[1] ⊗ · · · ⊗ A(xn, x)[1]

with the differential
d = d1 + d2;

d1(a1| · · · |an+1) =
n+1∑
i=1

±(a1| · · · |dai | · · · |an+1);

d2(a1| · · · |an+1) =
n∑

i=1

±(a1| · · · |ai ai+1| · · · |an+1)

The second sum is taken over n-tuples x1, . . . , xn of objects of A. The signs are
(−1)
∑

j<i (|ai |+1)+1 for the first sum and (−1)
∑

j≤i (|ai |+1) for the second. The comulti-
plication is given by

	(a1| · · · |an) =
n−1∑
i=1

(a1| · · · |ai ) ⊗ (ai+1| · · · |an)
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Dually, for a DG cocategory B one defines the DG category Cobar(B). The DG
category Cobar Bar(A) is a cofibrant resolution of A.

It is convenient for us to work with DG (co)categories without (co)units. For
example, this is the case for Bar(A) and Cobar(B) (we sum, by definition, over
all tensor products with at least one factor). Let A+ be the (co)category A with
the (co)units added, i.e. A+(x, y) = A(x, y) for x �= y and A+(x, x) = A(x, x) ⊕
kIdx . If A is a DG category then A+ is an augmented DG category with units, i.e.
there is a DG functor ε : A+ → kOb(A). (For a set I , kI is the DG category with the
set of objects I and with kI (x, y) = 0 for x �= y, kI (x, x) = k). Dually, one defines
the DG cocategory kOb(B) and the DG functor η : kOb(B) → B+ for a DG cocategory
B.

For DG (co)categories with (co)units, define A ⊗ B as follows: Ob(A ⊗ B) =
Ob(A) × Ob(B); (A ⊗ B)((x1, y1), (x2, y2)) = A(x1, y1) ⊗ B(x2, y2); the product
is defined as (a1 ⊗ b1)(a2 ⊗ b2) = (−1)|a2||b1|a1a2 ⊗ b1b2, and the coproduct in the
dualway. This tensor product, when applied to two (co)augmentedDG (co)categories
with (co)units, is again a (co)augmented DG (co)category with (co)units: the
(co)augmentation is given by ε ⊗ ε, resp. η ⊗ η.

Definition 16.6 For DG categories A and B without units, put

A ⊗ B = Ker(ε ⊗ ε : A+ ⊗ B+ → kOb(A) ⊗ kOb(B)).

Dually, for DG cocategories A and B without counits, put

A ⊗ B = Coker(η ⊗ η : kOb(A) ⊗ kOb(B) → A+ ⊗ B+).

The following is standard (and straightforward).

Lemma 16.7 There are natural bijections

ObC(A, B)
∼→ Hom(Cobar Bar(A), B);

ObC+(A, B)
∼→ Hom(Cobar Bar+(A), B)

In other words, an A∞ functor A → B is the same as a DG functor
Cobar Bar(A) → B. A curved A∞ functor A → B is the same as a DG functor
Cobar Bar+(A) → B.

16.1.3 The Adjunction Formula

Lemma 16.8 There are natural bijections

ObC(A,C(B, C))
∼→ HomDGcat(Cobar(Bar

+(A) ⊗ Bar(B)), C)
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ObC+(A,C+(B, C))
∼→ HomDGcat(Cobar(Bar

+(A) ⊗ Bar+(B)), C)

This (as well as Lemma16.7) follows from Lemmas16.10, 16.11, 16.12 below.

16.1.4 Convolution Categories

Let B be a DG cocategory and C a DG category. For

f, g : Ob(B) → Ob(C),

put
Convf,g(B, C) =

∏
x,y∈Ob(B)

Hom•(B(x, y), C( f x, gy))

Convf,g(B, C) =
∏

x,y∈Ob(B)

Hom•(B+(x, y), C( f x, gy))

The differential d is the usual one (induced by the differentials on B and C). Define
the product

Convf,g(B, C) ⊗ Convg,h(B, C) → Convf,h(B, C)

Convf,g(B, C) ⊗ Convg,h(B, C) → Convf,h(B, C)

as follows. If
	b =
∑

b(1) ⊗ b(2)

then
(ϕ � ψ)(b) =

∑
(−1)|ψ||b(1)|ϕ(b(1))ψ(b(2)) (16.1.6)

Definition 16.9 Define DG categories Conv(B, C) and Conv+(B, C) as follows.
Their objects are maps f : Ob(B) → Ob(C) together with elements f of degree one
in Convf,f(B, C) (resp. in Convf,f(B, C)) satisfying

d f + f � f = 0.

The complex of morphisms between f and g is Convf,g(B, C) with the differential

δϕ = dϕ + f � ϕ − (−1)|ϕ|ϕ � f

The composition is the cup product (16.1.6).

Lemma 16.10 There are natural isomorphisms of DG categories
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C(A, B)
∼→ Conv(Bar(A), B)

C+(A, B)
∼→ Conv+(Bar(A), B)

Lemma 16.11 There is a natural bijection

HomDGcat(Cobar(B), C)
∼→ Ob(Conv(B, C))

Lemma 16.12 There is a natural isomorphism of DG categories

Conv(B1,Conv(B2, C))
∼→ Conv(B1 ⊗ B2, C)

This is a reformulation of a result in [23].

16.1.5 An A∞ Functor to A∞ Modules

Let k be afield. By dgmod(k)wedenote the differential graded category of complexes
of modules over k. Let R be an associative algebra over k.

Definition 16.13 We denote the DG category C(Bar(R), dgmod(k)) by Mod∞(R)

and call it the DG category of A∞ modules over R.

Let X(R) be the category whose objects are pairs (B π−→ R,M) where B is a
differential graded algebra, π a quasi-isomorphism of DGA, and M a DG module

over B. A morphism (B π−→ R,M) → (B′ π′−→ R,M′) is a morphism B → B′ of
DGA over R together with a compatible morphism M → M′.

We will construct an A∞ functor

X(R) → Mod∞(R) (16.1.7)

Remark 16.14 An A∞ functor from a categoryX to a DG categoryA is by definition
an A∞ functor from the linearization of X (viewed as a DG category with zero
differential) to A.

Define the DG categoryB as follows. Its objects are the same as objects of X(R)

but repeated countably many times, i.e. an object ofB is a pair (x, n) where x is an
object of X(R) and n ∈ Z. The spaces of morphisms are as follows.

B((x, m), (y, n)) = 0 (16.1.8)

if m < n or m = n but x �= y. If m > n and

x = (B π−→ R,M), y = (B′ π′−→ R,M′), (16.1.9)
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then
B((x, m), (y, n)) = B′ × X(R)(x, y) (16.1.10)

By a′b we denote the pair (a′,b) where a′ ∈ B′ and b : x → y is a morphism in
X(R). We denote the underlying morphism B → B′ also by b. Put

B((x, n), (x, n)) = B (16.1.11)

We also denote the right hand side by BIdx. The composition is given by

(a′′b′)(a′b) = (a′′b′(a′))b′b (16.1.12)

Consider the following right DG module M over B. Define

M(x, n) = M

where x = (B → R,M). Define the action

M(x, m) ⊗ B((x, m), (y, n)) → M(y, n)

by
v ⊗ (a′b) = a′b(v)

Herewe denote byb the underlying action of themorphismb : x → y on themodule,
as well as on the algebra.

Define another DG categoryR exactly likeB above with the only difference that
we put

R((x, m), (y, n)) = R × X(R)(x, y) (16.1.13)

instead of (16.1.10) and
B((x, n), (x, n)) = R (16.1.14)

instead of (16.1.11).Wealso denote the right hand side byIdxR. Instead of (16.1.12),
the composition is given by

(a′′b′)(a′b) = (a′′a′)b′b (16.1.15)

Themorphismsπ : B → R induce a quasi-isomorphismofDGcategoriesB
π−→ R.

The transfer of structure argument makes M a right A∞ module over R as follows.

Fix a linearmapR i−→B that is inverse toπ at the level of cohomology. (This is where
we use the assumption that k is a field). Fix also homotopies for IdB − iπ and for
IdR − πi. (By this we mean collections of maps R(x, y) → B(x, y), etc., for any
objects x andy). Fromhis data one constructs an A∞ functorR → Bwhich is inverse
to π up to equivalence (cf. [24, 25, 28]). Furthermore, the map i and the homotopies
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can be chosen to be invariant under the action of Z on B and on R. Therefore the
A∞ functor is also Z-invariant. We denote it by T, and the corresponding twisting
cochain ρ by ρT.

This, in turn, defines the desired A∞ functor (16.1.7). In fact, for any object
x = (B → R,M), the value of this A∞ functor on x is the underlying complexM.

For g1, . . . , gp ∈ R, put

ρ(g1, . . . , gp) = ρT(g1Idx, . . . , gpIdx) (16.1.16)

where we view ρ jIdx as morphisms (x, 0) → (x, 0) in B. This makes each M an
A∞ module over R. Now consider morphisms

x0
b1←− x1

b2←− · · · bn←− xn (16.1.17)

in X(R), as well as corresponding morphisms

(x0, 0)
b1←− (x1, 1)

b2←− · · · bn←− (xn, n) (16.1.18)

inR. Now put

ρ(g1, . . . , gp) =
∑

±ρT(g1Idx0 , . . . , gp1Idx0 ,b1,

gp1+1Idx1 , . . . , gp2Idx1 , . . . ,bn, gpn+1Idxn , . . . , gpIdxn )

where the sum is taken over all 0 ≤ p1 ≤ . . . ≤ pn ≤ n. The sign rule: both g jIdxk

and bi are treated as odd (the former has degree (−1)|g j |+1 if R is graded).
It is straightforward to check that thus defined ρ, when viewed as a cochain

ρ(b1, . . . ,bn) ∈ Mod∞(R)(M0,Mn),

is an A∞ functor X(R) → Mod∞(R). (Here M j is the underlying DG module of
x j , viewed as a complex).

16.2 Twisted A∞ Modules on a Space

Let R be a sheaf of algebras on a topological space X. Fix an open cover U of X.

For two collections M = {MU |U ∈ U} and N = {NU |U ∈ U} of sheaves of RU -
modules, define the complex C•

M,N(U) as follows. Put
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C•
M,N(U) =

∞∏
p,q=0

∏
U0,...,Up∈U

Hom•−p−q(R⊗q ,Hom•(NUp ,MU0))(U0 ∩ . . . ∩ Up)

(16.2.1)
Define the differentials

(∂̌ϕ)U0...Up+1 =
p∑

j=1

(−1) jϕU0...Û j ...Up+1
; (16.2.2)

(∂ϕ)(g1, . . . , gq+1) = (−1)p|ϕ|
q∑

j=1

ϕ(g1, . . . , g jg j+1, . . . , gq+1) (16.2.3)

for local sections g1, . . . of R;

dϕ = ∂̌ϕ + ∂ϕ + dMϕ − (−1)|ϕ|ϕdN (16.2.4)

Define also the product

C•
M,N(U) ⊗ C•

N,P(U) → C•
M,P(U) (16.2.5)

by
(ϕ � ψ)U0...Up1+p2

(g1, . . . , gq1+q2) =

(−1)|ϕ|p2+(|ψ|+p2)q1ϕU0...Up1
(g1, . . . , gq1)ψUp1 ,...,Up1+p2

(gq1+1, . . . , gq1+q2)

Set
C•
M,N(X) = lim−→

U

C•
M,N(U) (16.2.6)

The differential and the cup product are well defined on the above complexes.

Definition 16.15 A twisted A∞ module M over R is a collection M = {MU |U ∈
U}, of sheaves ofRU -modules together with a cochain ρ of degree one in C•

M,M(X)

such that
dρ + ρ � ρ = 0.

The DG category TwMod∞(R) has twisted A∞ modules as objects. The complex
of morphisms betweenM = (M, ρ) andN = (N,σ) is the complex C•

M,N(X) with
the differential δϕ = dϕ + ρ � ϕ − (−1)|ϕ|ϕ � σ.

The above definition is an extension of the definition of twisted cochains from
[39]. Cf. also [5, 33, 42].

Remark 16.16 TheDG category of twisted A∞ modules is obtained almost verbatim
as a partial case of the left hand side of Lemma16.8. Formally, one could choose B to
be the category with one object whose complex of morphisms isR, and A = OpX to
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be the category of open subsets of X.More precisely,we perform all the computations
as if A were the category whose objects are open subsets Uα, and there is one
morphism Uα → Uβ for any two intersecting open subsets. This is not literally true
(there may be nonempty intersections Uα ∩ Uβ and Uβ ∩ Uγ but not Uα ∩ Uγ), but
all the formulas work. The above motivation may be given rigorous meaning using
the techniques of [13] or [5].

16.3 Twisted A∞ Modules over Groupoids

For q ≥ 0, we use notation U = (U (0), . . . , U (q)). We denote by Uq the set of all
such U where U j is in a given open cover U. For p + 1 such q-tuples U j0 , . . . , U jp ,
denote

U (k)
j0... jp

= U (k)
j0

∩ · · · ∩ U (k)
jp

(16.3.1)

for all 0 ≤ k ≤ q. Denote also

U j0... jp = (U (0)
j0... jp

, . . . , U (q)

j0... jp
). (16.3.2)

Let � be an étale groupoid on a manifold X (in our applications, � = π1(X)). For
M = {MU |U ∈ U} and N = {NU |U ∈ U} as in the beginning of Sect. 16.2, put

C•
M,N(U, �) =

∏
p,q≥0

∏
U0,...,Up∈Uq

Hom•−p−q(�(q),Hom•(NU (q)
p

,MU (0)
0

)(

q∏
k=0

U (k)
01...p)

HereMU (0)
0

stands for its inverse image under the map

∏
k

∩ jU
(k)
j →
∏

k

U (k)
0 → U (0)

0

The differential and the cup product are defined exactly as in (16.2.5), (16.2.3),
(16.2.2) (with U j replaced by U j ). Define

C•
M,N(X, �) = lim−→

U

C•
M,N(U, �) (16.3.3)

Definition 16.17 (a) Define the DG category TwMod∞(�) exactly as in Defini-
tion16.15 using complexes C•

M,N(X, �).

(b) The DG category
TwMod∞(�,�•

K,X )

is defined the same way but withMU being �•
K,U -modules as in Sect. 8.1.
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Remark 16.18 By
Loc∞,K(X)

we denote the DG category of A∞ representations of the fundamental groupoid
π1(X). This is the partial case of the above Definition16.17, (a) when � = π1(X),
the topology on X is discrete, and the ground ring is K. Objects of this DG category
are infinity local systems as in Sect. 8.4.

16.3.1 From A•
M -Modules with an Action of π1(M) up to Inner

Automorphisms to Twisted (�•
K,M,π1(M))-Modules

Given two A•
M -modules V• and W• with an action of π1(M) up to inner automor-

phisms, consider the standard complex

M = C•(V•,A•,W•).

As it is shown in Sect. 6.2.5, M has the following structure.
For a number of open subsets U ( j) indexed by j ∈ J , write Ui j = (U (i), U ( j)).

We have constructed:
(a) For every U (0) and U (1), an �•

K,U (0)×U (1) -module BU01 together with a quasi-
isomorphism

BU01 → Kπ1(M)|(U (0) × U (1)); (16.3.4)

(b) a morphism
p∗
01BU01 ⊗ p∗

12BU12 → p∗
02BU02 (16.3.5)

which commutes with the composition on π1(M) under (16.3.4);

(c) for any U ( j)
0 and U ( j)

1 , an isomorphism

b01 : BU0

∼← BU1 (16.3.6)

that commutes with (16.3.4) and (16.3.5) and satisfies

b01b12 = b02

on the intersections.
Now repeat the procedure from Sect. 16.1.5, together with Remark16.16, in the

above context. First note that the constructions of Sect. 16.1.5 can be carried out in
the case when R is a category (and all B are DG categories with the same objects).
Now act as if R were the category with objects U ( j), with

R(i, j) = π1(M)|(U (i) × U ( j))
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and the composition being the one onπ1.Now, let OpM be the categorywhose objects
are open subsets U j , exactly as discussed in Remark16.16. View the data (a), (b), (c)
above as a DG functor OpM → X(R). Applying formulas from Sect. 16.1.5, we get
an A∞ functor OpM → C(R, dgmod(K)), which is the same as an �•

K,M -module
with a twisted action of π1(M).

16.3.2 From Twisted (�•
K,X,π1(X)) Modules to Infinity Local Systems

Here we extend the construction from Sect. 8.4.1. Consider all open covers of the
type U = {Ux |x ∈ X}. For an objectM of TwMod∞(π1(X),�•

K,X ) choose a cover
U as above and define

Mx = lim−→
U⊂Ux

C•(U,MUx ) (16.3.7)

The A∞ operators T (g1, . . . , gn) are by definition ρU(g1, . . . , gn) where g j ∈
π1(X)x j−1,x j and U = (Ux0 , . . . , Uxn ). Let us show that different choices of U
lead to equivalent infinity local systems (in the sense of Definition16.5). Choose
two covers U′ and U′′. Apply (16.3.7) to all covers of the form U = {Ux |x ∈ X}
where for any x either Ux = U ′

x or Ux = U ′′
x . This data defines an A∞ functor

KC1 ⊗ Kπ1(X) → dgmod(K) (cf. Sect. 16.1.1). Let K(0), resp. K(1), be the full
subcategory of C1 with one object 0, resp. 1. When restricted to K(0), resp. to K(1),
our A∞ functor coincides with the infinity local system obtained from U′, resp.
from U′′. By the adjunction formula (Lemma16.8), the two infinity local systems are
equivalent.

Remark 16.19 It is easy to modify the above construction and obtain an A∞ functor

TwMod(�•
K,X ,π1(X)) → Loc∞,K(X).

Moreover, the right hand side is a monoidal category up to homotopy, and the
assignmentM,N �→ RHOM(M,N ) turns oscillatory modules, as well as �•

K,M -
moduleswith an action ofπ1(M) up to inner automorphisms, into a category enriched
over it. The main reason for this is Lemma6.17. We will provide the details in a sub-
sequent work.

17 Appendix. Jets and Twisted Bundles

Here we will describe the deformation quantization and the twisted bundle HM in
terms of bundles of jets.
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17.1 Jet Bundles

Let M be any manifold and let E be a complex vector bundle of rank N on M . Here
we recall the construction of the bundle whose fiber at a point x is the space of jets of
sections of E at x . This bundle has the canonical connection; its horizontal sections
are determined by sections s of E . The value of such a section at any x is the jet of s
at x .

Let {Uα} is an open cover and xα = (xα,1, . . . , xα,n) a local coordinate system on
Uα. For x ∈ Uα ∩ Uβ , we denote by xα, resp. xβ , its coordinates in the corresponding
coordinate system and write

xα = gαβ(xβ) (17.1.1)

Let hαβ : Uα ∩ Uβ → GLN be the transition isomorphisms of E . We identify a local
section of E on Uα ∩ Uβ with a C

N -valued function in the coordinates xβ .

Let C
N [[̂x]] = C

N [[̂x1, . . . , x̂n]]. For x ∈ Uα define Gβα(x) : C
N [[̂x]] →

C
N [[̂x]] by Gβα(x) : fα �→ fβ where

fβ (̂x) = hαβ(xβ + x̂) fα(gαβ(xβ + x̂) − xα) (17.1.2)

It is easy to see that different choices of covers and of local trivializations lead to
isomorphic bundles. We denote the bundle defined in (17.1.2) by Jets(�(E)).

The canonical flat connection is given in any local coordinate system by

∇can =
(

∂

∂xα
− ∂

∂ x̂

)
dxα (17.1.3)

If a local section of E is represented by a vector-valued function f (xα), it defines a
horizontal section which is given in local coordinates by f (xα + x̂).

17.2 Real Polarization

Recall that a real polarization is an integrable distribution of Lagrangian subspaces.
Let P be a real polarization on M . In this case, automatically 2c1(T M) = 0 modulo
4 (cf. [36]).

17.2.1 The Line Bundle L

Assume that ω admits a real polarization P (i.e. a foliation by Lagrangian subman-
ifolds). By TP we denote the quotient of T M by the subbundle of vectors tangent
to the leaves. Choose local Darboux coordinates ξα, xα such that x j,α are constant
along the leaves. Then the transition coordinate changes are of the form
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xα = gαβ(xβ); ξα = (g′
αβ(xβ)

t
)−1(ξβ + ϕαβ(xβ)) (17.2.1)

Assume that iω is a 2πiZ-valued cohomology class. Construct explicitly the line
bundle L such that c1(L) = iω. Adding some constants to ϕαβ , we may assume
that iϕαβ − iϕαγ + iϕβγ ∈ 2πiZ; define L to be the line bundle with transition
isomorphisms exp(iϕαβ). Formulas

Aα = −iξαdxα (17.2.2)

define a connection in this bundle, since

ξαdxα = ξβdxβ + dϕαβ;

the curvature of this connection is −iω.

17.2.2 The Jet Bundle Jets(�hor(�
1
2 ⊗ Lk))

Define for x ∈ Uα ∩ Uβ

Gβα(x) : C[[̂x]] → C[[̂x, �]]

by (Gβα fα)(̂x) = fβ (̂x) where

fβ (̂x) = det g′
αβ(xβ + x̂)

1
2 eikϕαβ(xβ+x̂) fα(gαβ(xβ + x̂) − xα) (17.2.3)

The square root of the determinant comes from the metalinear structure. The above
formula defines the transition functions for the bundle of jets ofP-horizontal sections
of the bundle (∧maxT ∗

P)
1
2 ⊗ Lk .

17.2.3 The Jet Bundle Rees Jets D(�hor(�
1
2 ⊗ L 1

� ))

Recall the construction of the Rees ring and the Rees module [2] of a filtered ring
and a filtered module. If A is a ring with an increasing filtration Fp A, p ≥ 0, and V
an A-module with a compatible filtration Fp, p ≥ 0, we put

Rees A = ⊕p≥0�
p Fp A; Rees V = ⊕p≥0�

p FpV . (17.2.4)

Rees f A =
∏
p≥0

�
p Fp A; Rees f V =

∏
p≥0

�
p FpV . (17.2.5)

When applied to the ring of formal differential operators with its filtration by order,
(17.2.4) produces the ring C[[̂x]][ξ̂, �] with the usual Heisenberg relations (ξ̂ j =
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i� ∂
∂ x̂ j

). When applied to the module of formal functions V = C[[̂x]]whose filtration
is given by F0V = V , it gives C[[̂x]][�]. The completed version (17.2.5) produces
the complete Weyl algebra C[[̂x, ξ̂, �]] and the complete module C[[̂x, �]].

Observe that in the expression Gβα(i� ∂
∂ x̂ )Gαβ one can substitute 1

i� for k. The
result will be given (in vector/matrix notation) by the following:

1

2

(
i�

∂

∂ x̂

)
(g′

αβ(xβ + x̂)
t
) + (g′

αβ(xβ + x̂)
t) (i� ∂

∂ x̂

)
− ϕ′

αβ(xβ + x̂)

Define the bundle of algebras Rees Jets D(�hor(�
1
2 ⊗ L 1

� )) whose fiber is
C[[̂x, �]][ξ̂] and whose transition isomorphisms are

Gβα(̂x) = gβα(xα + x̂) − xβ; (17.2.6)

Gβα(ξ̂) = g′
αβ(xβ + x̂)

t ∗ ξ̂ − ϕ′
αβ(xβ + x̂) (17.2.7)

(the multiplication in the left hand side is the (matrix) Moyal–Weyl multiplication).
We see that our bundle is the result of formally substituting 1

�
for k in the bundle of

jets of Rees rings of P-horizontal differential operators on (∧maxT ∗
P)

1
2 ⊗ Lk .

The above formula is the result of formally substituting k by 1
�
into the transition

functions for the bundle

Rees Jets D(�hor((∧maxT ∗
P)

1
2 ⊗ Lk)).

17.2.4 The Bundle of Algebras ̂AM and the Twisted Bundle
of Modules HM

Now apply to the bundle above the gauge transformation [32]

Ad exp

(
1

i�
ξα x̂

)
(17.2.8)

We get transition isomorphisms

Gβα(̂x) = gβα(xα + x̂) − xβ; (17.2.9)

Gβα(ξ̂) = g′
αβ(xβ + x̂)

t ∗ (ξ̂ + ξα) − ϕ′
αβ(xβ + x̂) − ξβ (17.2.10)

Unlike in (17.2.6) and (17.2.7), these transition isomorphisms preserve the maximal
ideal 〈̂x, ξ̂, �〉 and therefore extend to the complete Weyl algebra Â = C[[̂x, ξ̂, �]],
cf. Sect. 2.1. We use them to construct a bundle of algebras AM whose fiber is the
Weyl algebra Â.We see immediately that the bundle of algebras ÂM is a deformation
of the bundle of jets of functions on M.
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Moreover, after we apply the gauge transformation (17.2.8), the formula (17.2.11)
allows to replace k by 1

�
. We get new transition isomorphisms

fβ (̂x) = det g′
αβ(xβ + x̂)

1
2 e− 1

i� (ϕαβ(xβ+x̂)−ϕ′
αβ(xβ )̂x) fα(gαβ(xβ + x̂) − xα) (17.2.11)

that define a twisted bundle of modules HM whose fiber is the space H of the
formal metaplectic representation (cf. (13.5.1)). The cocycle c from the definition of
a twistedmodule (14.1.1) is exp( 1

i� (ϕαβ − ϕαγ + ϕβγ)). (The summand−ϕ′
αβ(xβ )̂x

in the exponent comes from the difference of ξα x̂ and ξβ x̂ that figure in the gauge
transformation).

In other words, the bundle of algebras ÂM can be formally described as

ÂM = Rees f Jets Dhor((∧ 1
2 T ∗

P)
1
2 ⊗ L 1

� ) (17.2.12)

HM = Rees f Jets�hor((∧ 1
2 T ∗

P)
1
2 ⊗ L 1

� ) (17.2.13)

(cf. (17.2.5) for the meaning of Rees f ). The latter is only a twisted bundle because
the transition functions of L stop being a one-cocycle when elevated to the power 1

�
.

17.2.5 The Canonical Connections

The bundle of horizontal sections of �
1
2 ⊗ Lk has a canonical connection that is

given by the formula

∇ =
(

∂

∂x
− ∂

∂ x̂

)
dx + ∂

∂ξ
dξ

in all local coordinate systems.
This connection induces a connection in Rees Jets D(�hor(�

1
2 ⊗ L 1

i� )) that is
given by the same formula. After the gauge transformation from Sect. 17.2.4 we get
flat connections

∇A =
(

∂

∂x
− ∂

∂ x̂

)
dx +
(

∂

∂ξ
− ∂

∂ξ̂

)
dξ (17.2.14)

in AM and

∇H = − 1

i�
ξdx +
(

∂

∂x
− ∂

∂ x̂

)
dx +
(

∂

∂ξ
+ 1

i�
x̂

)
dξ (17.2.15)
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17.3 Complex Polarization

The following is largely based on the approach to deformation quantization from
[19].

17.3.1 Kähler Potentials

Let M be a Kähler manifold. We can locally choose a Kähler potential, i.e. a real-
valued function � such that the symplectic form is given by

ω = −i∂∂�

A Kähler potential is unique up to a change � �→ � + ϕ + ϕ where ϕ is holomor-
phic.

Lemma 17.1 Put ζ j = i ∂�
∂z j

. Then

{z j , zk} = 0; {ζk, z j } = δ jk; {ζ j , ζk} = 0.

Proof Choose local holomorphic coordinates and put

A jk = ∂

∂z j

∂

∂zk
�(z, z)

We have
{z j , zk} = i(A−1)k j ;

{z j , ζk} = i
∑ ∂ζk

∂zl
{z j , zl} =

∑
Akl(A−1)l j = δ jk;

−{ζ j , ζk} =
∑( ∂ζ j

∂z p

∂ζk

∂zq
− ∂ζk

∂z p

∂ζ j

∂zq

)
{z p, zq} =

i
∑( ∂2�

∂z j∂z p
Akq − ∂2�

∂zk∂z p
A jq

)
(A−1)qp = i

(
∂2�

∂z j∂zk
− ∂2�

∂zk∂z j

)
= 0

�

17.3.2 The Line Bundle L

Choose an open cover {Uα} of M and a holomorphic coordinate system zα =
(zα,1, . . . , zα,n) on every Uα. We write
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zα = gαβ(zβ). (17.3.1)

Choose local Kähler potentials �α. We have

i�α − i�β = ϕαβ + ϕαβ (17.3.2)

where ϕαβ are holomorphic.
Let us startwith rewriting the transition isomorphisms in terms of the newcomplex

Darboux coordinates z, ζ. We have

i�α(zα) − i�β(zβ) = ϕαβ + ϕαβ(zβ)

Applying ∂
∂zβ

, we get

∂zα

∂zβ
i
∂�

∂zα
(zα) − i

∂�

∂zβ
(zβ) = ∂ϕαβ

∂zβ
(zβ)

or

ζα = (g′
αβ(zβ)−1)t

(
ζβ + ∂ϕαβ

∂zβ
(zβ)

)
(17.3.3)

Together with (17.3.1), this describes the rule for the change of new variables.
Assume that i(ϕαβ + ϕβγ − ϕαγ) is a 2πiZ-valued two-cocycle. the line bundle

L with transition functions exp(ϕαβ). The curvature of this connection is −iω.

17.3.3 The Jet Bundles

Assume that the canonical sheaf has a square root �
1
2 . We call this line bundle the

bundle of holomorphic half-forms on M. The transition isomorphisms of this line

bundle are denoted by det g′
αβ

1
2 .For any integer k, consider the bundle Jets(�hol(Lk ⊗

�
1
2 )) of jets of holomorphic sections of Lk ⊗ �

1
2 . The fiber of this bundle is C[[̂z]]

where ẑ = (̂z1, . . . , ẑn). The transition isomorphisms of the jet bundle take a power
series fα(̂z) to a power series fβ (̂z) according to the following formula.

fβ (̂z) = fα(gαβ(zβ + ẑ) − zα) det g′
αβ(zβ + ẑ)

1
2 exp(kϕαβ(zβ + ẑ)) (17.3.4)

Exactly as in Sect. 17.2.3, we can define the bundle of algebras whose fiber is
C[[̂z, �]][ζ̂] by transition isomorphisms

Gβα(̂z) = gβα(zα + ẑ) − zβ; (17.3.5)

Gβα(ζ̂) = g′
αβ(zβ + ẑ)t ∗ ζ̂ − ∂zβ

ϕαβ(zβ + ζ̂) (17.3.6)
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We see that our bundle is the result of formally substituting 1
�
for k in the bundle of

jets of Rees rings of holomorphic differential operators on �
1
2 ⊗ Lk (if we map ζ̂i to

i�∂̂z). On the other hand, because of (17.3.3), this bundle of algebras is a deformation
of the bundle of jets of C∞ functions on M. The gauge transformation

Ad exp

(
1

i�
ζ̂α̂z

)
(17.3.7)

produces new transition functions

Gβα(̂z) = gβα(zα + ẑ) − zβ; (17.3.8)

Gβα(ζ̂) = g′
αβ(zβ + ẑ)t ∗ (ζ̂ + ζα) − ∂zβ

ϕαβ(zβ + ζ̂) − ζβ (17.3.9)

that extend to ÂM = C[[̂z, ζ̂, �]]. The transition isomorphisms for the module of
jets (17.3.4) are now as follows (when we replace k by 1

�
) which now define only a

twisted module that we denote by HM .

fβ (̂z) = fα(gαβ(zβ + ẑ) − zα) det g′
αβ(zβ + ẑ)

1
2 exp

(
1

i�
ϕαβ(zβ + ẑ) − ∂zβ ϕαβ(zβ )̂z

)

As in the case of a real polarization, the canonical connections become

∇A =
(

∂

∂z
− ∂

∂ ẑ

)
dz +
(

∂

∂ζ
− ∂

∂ζ̂

)
dζ (17.3.10)

on AM and

∇H = − 1

i�
ζdz +
(

∂

∂z
− ∂

∂ ẑ

)
dz +
(

∂

∂ζ
+ 1

i�
ẑ

)
dζ (17.3.11)

onHM . We conclude that

ÂM
∼→ Rees f Jets Dhol(�

1
2 ⊗ L 1

� ) (17.3.12)

HM
∼→ Rees f Jets�hol(�

1
2 ⊗ L 1

� ) (17.3.13)
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Analytic Microlocal Analysis



Determinantal Point Processes and
Fermions on Polarized Complex
Manifolds: Bulk Universality

Robert J. Berman

Abstract We consider determinantal point processes on a compact complex
manifold X in the limit of many particles. The correlation kernels of the processes are
the Bergman kernels associated to a high power of a given Hermitian holomorphic
line bundle L over X. The empirical measure on X of the process, describing the
particle locations, converges in probability towards the pluripotential equilibrium
measure, expressed in term of the Monge–Ampère operator. The asymptotics of the
corresponding fluctuations in the bulk are shown to be asymptotically normal and
described by a Gaussian free field and applies to test functions (linear statistics)
which are merely Lipschitz continuous. Moreover, a scaling limit of the correlation
functions in the bulk is shown to be universal and expressed in terms of (the higher
dimensional analog of) the Ginibre ensemble. This geometric setting applies in par-
ticular to normal random matrix ensembles, the two dimensional Coulomb gas, free
fermions in a strong magnetic field and multivariate orthogonal polynomials.

1 Introduction

The systematic study of determinantal point processes was initiated by Macchi [56]
in the seventies who called them fermionic point processes, inspired by the prop-
erties of fermion gases in statistical (quantum) mechanics. For general reviews see
[47, 49, 75]. The theory concerns ensembles of “particle configurations” on a given
space X which exhibit repulsion. An important class of such processes are the deter-
minantal projection processes, which may be defined by a probability measure on
the N−fold product X N , the “configuration space of N particles on X”, with the
property that its density may be written as

ρ(N )(x1, ..., xN ) = 1

N ! det(K(xi , x j )), (1.1)
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where the kernel K is the integral kernel of an orthogonal projection operator onto a
vector space of dimension N . As a consequence the probability distributions vanish
for a configuration (x1, . . . , xN ) of points xi as soon as two points coincide, explain-
ing the repulsive behavior of the ensemble. As it turns out, in many situations such
ensembles are critical in the sense that they naturally appear in sequences with N ,

the number of particles, tending to infinity in such a way that a well-defined limiting
ensemble may be extracted. Moreover, large classes of such sequences of ensembles
often give rise to one and the same limit. This is the phenomenon of universality
(see [31] for a nice survey). Perhaps its most famous illustration is given by ensem-
bles of N × N Hermitian random matrices whose eigenvalues, in the large N limit,
determine a unique determinantal point process on the real line. This latter process
has also been conjectured to describe the statistics of the zeroes of the Riemann
zeta function, as well as statistics of quantum systems whose classical dynamics is
chaotic (references and more recent relations to random growth and tiling problems
may be found in [49]).

The present paper concerns a general class of such critical ensembles, where the
space X is a compact complexmanifold equipped with an holomorphic line bundle L
with a givenHermitianmetric locally represented as e−φ,whereφ is called a “weight”
on L . The kernelK defining the ensemble may then be identified with the orthogonal
projection onto the space of global holomorphic sections H 0(X, L) of L (with respect
to a local unitary frame of (L , e−φ)) and the corresponding determinantal probability
density on X N may be written as the squared point-wise norm of the normalized
Vandermonde type determinant (det S)(x1, . . . , xN ) associated to any given base
S = (s1, . . . , sN ) of sections in H 0(X, L):

ρ(N )(x1, . . . , xN ) = 1

ZN
|det(S)(x1, . . . , xN )|2φ (1.2)

In this setting the limit of a large number N of particles corresponds to the limit
when the line bundle L is replaced by a large tensor power, written as kL in additive
notation. When X is the complex projective space this setting is just a geometric for-
mulation of the theory of (weighted) multivariate orthogonal polynomials, with the
tensor power k corresponding to the degree of the polynomials (see Sect. 2). In math-
ematical physics terminology H 0(X, L) may be identified with the quantum ground
state space of a single fermion (complex spinor) on X subject to an exterior magnetic
field and the density in formula (1.2) is the squared probability amplitude for the
corresponding maximally filled many particle state, i.e. (det S) is the corresponding
Slater determinant.

Already in the simplest case when X is the complex projective line, i.e. the Rie-
mann sphere (viewed as the one-point compactification of C) the corresponding
ensemble is remarkably rich and admits at least three different well-known descrip-
tions in terms of (1) normal random matrices, (2) a free fermion gas, (3) a Coulomb
gas of repelling electric charges [77]. Compare the discussion in Sect. 2.

While there are quite recent result concerning this special case, both in mathemat-
ics and physics, there seems to be almost no previous general results in the higher
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dimensional situation studied in the present paper. For one reference see the recent
paper [67]. As it turns out, the main new feature that appears in higher dimensions
is that the role of the Laplace operator in one complex dimension (which expresses
the limiting expected density of particles) is played by the fully non-linear Monge–
Ampère operator, which is the subject of (complex) pluripotential theory [43, 51]. In
fact, one of the motivations for the present paper and the companion paper [18] is to
develop a Coulomb gas type descriptions of a gas of free fermions on complex man-
ifolds and conversely to provide a statistical mechanical interpretation of complex
pluripotential theory. An important feature of our approach is that it does not require
that φ be positively curved, i.e. that the corresponding magnetic two-form has any
definite sign properties. As will be explained below this means that the support of
the limiting one-point correlation functions will only cover a proper subset D of X,

which corresponds to the droplet appearing in the physical description of the Quan-
tum Hall Effect (QHE) describing fermions in large magnetic fields [52]. We will
here focus on the universality properties in the “bulk” of the droplet D leaving the
case of the boundary (edge) properties as challenging open problem for the future
(which from a physical point of view can be expected to be related to the properties
of the edge states playing a central role in the QHE).

Yet another motivation comes from approximation theory where configurations
(x1, . . . , xN ) appear as interpolation nodes on X and a configuration maximizing a
functional of the form (1.1) is known to have optimal interpolation properties in a
certain sense [42, 74]. Sequences of such configurations, with N tending to infinity,
then appear naturally in discretization schemes. Moreover, as shown very recently in
[11] any such optimal sequence equidistributes asymptotically on the corresponding
equilibrium measure. This fact should be compared with Theorem1.4 in the present
paper which shows that, with high probability, the same equidistribution property
holds for random configurations of the corresponding ensemble.

One final motivation comes from the study by Shiffman, Zelditch and coworkers
of random zeroes of holomorphic sections of positive line bundles, where many
statistical results have been obtained and where a key role is played by Bergman
kernels (cf. [22, 71, 72]).

1.1 Statement of the Main Results

Let L be a holomorphic line bundle over a compact complex manifold X. Denote by
H 0(X, L) the vector space of all global holomorphic sections on X with values in L
andwrite N := dim H 0(X, L). Fixing anHermitianmetric on L (locally represented
by e−φ(where the additive object φ is called a weight φ) and a suitable measure μ on
X induces an inner product on H 0(X, L) defined by

‖s‖2φ :=
∫

X
|s|2 e−φμ
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(abusing notation slightly; see Sect. 1.4). We will denote the corresponding Hilbert
space by H(X, L) and its Bergman kernel by K , which is the integral kernel of the
orthogonal projection C∞(X, L) → H 0(X, L) :

K (x, y) =
N∑

i=1

si (x) ⊗ si (y), (1.3)

where (si ) is an orthonormal bases inH(X, L).

As is essentially well-known this setup induces a probability measure γP on the
N−fold product X N whose density (w.r.t. μ⊗N ) is defined as the determinant of an
N × N matrix:

ρ(N )(x1, . . . , xN ) := 1

N ! det(K (xi , x j )e
− 1

2 (φ(xi )+φ(x j ))), (1.4)

The main object of study in the present paper is the large k asymptotics of the
probability space (X N , γP), when L is replaced by its kth tensor power (written as
kL in our additive notation) equipped with the induced weight kφ. In the following
a subindex k will be used to indicate the dependence on the parameter k. We will
always assume that L is big, i.e that

Nk := dim H 0(X, kL) = V kn + o(kn−1), V > 0

(where the constant V is usually called the volume of L). The main case of interest
appears when L is (very) ample, so that X may be embedded as algebraic manifold
in complex projective space and L is the restriction of the hyperplane line bundle.
Then (X, L) is called a polarized manifold and H 0(X, kL) gets identified with the
restriction to X of the space of all homogeneous polynomials of degree k.Moreover,
the main results in the present paper concern weighted measured (φ,μ) which for
which we introduce the (non-standard) terminology strongly regular. This will mean
that theweightφ is locally C1,1-smooth, i.e. it is differentiable and all of its first partial
derivatives are locally Lipschitz continuous, and the measure μ = ωn is the volume
form of a continuous metric ω on X. The reason that we assume that φ is merely C1,1-
smooth, rather than C2−smooth (or even C∞−smooth) is that this appears to be the
essentially optimal regularity class where the results below concerning universality
of the scaled correlation functions can be expected to hold. Moreover, since φ is not
assumed to be positively curvedwewill anyway have to workwith the corresponding
equilibrium weight φe in the proofs which is almost never C2−smooth, even if φ
is smooth (unless φ is positively curved; compare [13]). When X is the complex
projective space X := E

n and L the hyperplane line bundleO(1) (so that H 0(X, kL)

may be identified with the space of all polynomials of total degree at most k in C
n)

we also allow ωn to be the Lebesgue measure on the affine piece Cn as long as φ has
super logarithmic growth (formula 2.5).
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The notion of strongly regular weighted measures (φ,μ) on X that we shall focus
on in the present paper should be contrasted with the considerably more general
notion of weighted measures (φ,μ) satisfying the Bernstein–Markov property in
the sense of [11]. From the probabilistic point of view the latter property simply
means that the one-point correlation function ρ(1)

k of the corresponding determinantal
point process has sub-exponential growth in k. For example, the Bernstein–Markov
property is satisfied if φ is continuous and μ is a continuous volume form on a
complex or real algebraic variety. In particular, the latter property applies when μ is
Lebesguemeasure onRn, as in the setting of Hermitian randommatrices [30] (where
n = 1).

As a guide line, the Bernstein–Markov property of (φ,μ) is enough to establish
asymptotics in the “macroscopic regime”, such as convergence in probability towards
the corresponding equilibrium measure. In contrast, the results in the “microscopic
regime”, concerning length scales of the order k−1/2 on X, only hold in the strongly
regular case.

1.1.1 Correlation Functions and the Equilibrium Measure

As is well known all the m−point correlation functions ρ(m)
k , where 1 ≤ m ≤ Nk, of

the ensemble above may be expressed as (weighted) determinants of Kk(xi , x j ). In
particular,

ρ(1)
k (x) = Kk(x, x)e−kφ(x), ρ(2).c(x, y) = − |Kk(x, y)|2 e−kφ(x)e−kφ(y),

where ρ(2).c is the connected 2-point correlation function (see Sect. 6.1). As shown
in [13], in the strongly regular case,

1

Nk
ρ(1)

k ωn → μφe , (1.5)

weakly, when k → ∞, where μφe is the pluripotential equilibrium measure (of
(X,φ)), which may be written as the Monge–Ampère measure 1

V n! (ddcφe)
n of the

equilibrium weight φe and represented as

1

V n! (ddcφe)
n = 1S det

ω
(ddcφ)(x)

ωn

V n! ,

where S ⊂ X denotes the support of the equilibrium measure (see Sect. 3). We recall
that in the case of one complex dimension (i.e. n = 1) the support S is referred to
as the droplet in the physics literature on the Quantum Hall Effect (see [52, 77] and
Sect. 2 below).

As later shown in [11] the convergence (1.5) holds, in the weak topology, for
weighted measures (φ,μ) satisfying the Bernstein–Markov property. However, in
the strongly regular setting that we will concentrate on here point-wise convergence
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actually holds in the sense that there is a subset of X that will be called the weak bulk
(of (X,φ)) such that

1

Nk
ρ(1)

k (x) → 1

V
det
ω

(ddcφ)(x), x in the weak bulk

and converges to zero almost everywhere in the complement of the weak bulk. We
recall that in the randommatrix andCoulombgas literature the bulk of the equilibrium
measure is usually defined as the interior of the support S of the equilibriummeasure.
But the problem is that, for a general smooth weight φ, the set S may be extremely
irregular and, a priori, its interior could be empty. In contrast, the weak bulk always
has positive Lebesgue measure. The precise definition of the weak bulk is given in
Sect. 3 and uses that, by the results in [13], the equilibriumweight φe isC1,1−smooth
and hence the second derivatives exist almost everywhere.

The following theorem gives the scaling asymptotics of the Bergman kernel,
around a fixed point x in the weak bulk. It is expressed in terms of “normal” local
coordinates z centered at x and a“normal” trivialization of L , i.e such that

ω(z) = i

2

n∑
i=1

dzi ∧ dzi + · · · , φ(z) =
n∑

i=1

λi |zi |2 + · · · (1.6)

where the dots indicate “higher order terms”. Hence, λi are the eigenvalues of the
curvature form ddcφ w.r.t the metric ω and we denote the corresponding diagonal
matrix by λ.

Theorem 1.1 Assume that the weight φ is in C1,1
loc and that the volume form ωn

is continuous. Let x be a fixed point in the weak bulk and take “normal” local
coordinates z centered at x and a “normal” trivialization of L as above. Then

k−n Kk(k
−1/2z, k−1/2w) → det λ

πn
e〈λz,w〉 (1.7)

in the C∞−topology on compact subsets of Cn
z × C

n
w. In particular, the connected

2-point function has the following scaling asymptotics

−k−2nρ(2).c
k (k−1/2z, k−1/2w) →

(
det λ

πn

)2

e− ∑n
i=1 λi |zi −wi |2

uniformly on compacts of Cn
z × C

n
w.

In the case when φ isC∞−smooth and strictly positively curved (and in particular
the weak bulk coincides with all of X) the convergence (1.7) was shown in [22],
where itwas deduced from themicrolocal analysis of theBoutet deMonvel–Sjöstrand
parametrix for the corresponding Szegö kernel [25] following [79] (which also yields
an explicit control on the remainder terms). As emphasized in [22] the previous
theorem may on one hand be interpreted as a “localization” result, in the sense that
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the limit is expressed in terms of local data (the curvature of ddcφ at the fixed
point). On the other hand, it can be seen as a “universality” result (see [31] for a
general discussion of universality in mathematics and physics). Indeed, scaling the
coordinates further in order to make the Kähler metric ddcφ at the fixed point the
“yard stick” the limiting kernel becomes independent of the ensemble (and coincides
with theBergman kernel of Fock space).When n = 1 the corresponding limiting one-
dimensional determinantal point process was studied by Ginibre, who showed that it
appears from a scaling limit of random complex matrices with independent complex
Gaussian entries.

As a corollary the following analog of a well-known universality result for the
Hermitian random matrix model (where the limiting kernel is the sine kernel) is
obtained:

Corollary 1.2 Let φ be a function in C1,1
loc (C) with super logarithmic growth and

denote by ρ(·).·
k the eigenvalue correlation functions of the associated normal random

matrix model (see Sect.2.3). Then the following convergence holds when the rank
N = k + 1 of the matrices tends to infinity:

−
ρ(2).c

k

(
z0 + z√

ρ(1)
k (z0)

, z0 + w√
ρ(1)

k (z0)
,

)

(
ρ(1)

k (z0)
)2 → e−|z−w|2

uniformly on compacts of C × C, when z0 is a fixed point in the weak bulk (in the
eigenvalue plane C).

The remaining main results concern properties inside the bulk of (X,φ) which,
when the weight φ is C2−smooth, is defined as the interior of the support S of the
equilibrium measure. In general, the bulk (which always contains the weak bulk
appearing above) is defined as the largest open subset of S where

ωφ := ddcφ (1.8)

defines a continuous Kähler metric (i.e. a continuous strictly positive form). The next
theorem implies that the correlations are short range on macroscopic length scales
in the bulk:

Theorem 1.3 Assume that the weight φ is in C1,1
loc and that the volume form ωn

is continuous. Let E be a compact subset of the bulk. Then there is a constant C
(depending on E) such that the following estimate holds for all pairs (x, y) such that
either x or y is in E :

−k−2nρ(2).c
k (x, y) ≤ Ce−√

kd(x,y)/C

for all k, where d(x, y) is the distance function with respect to a fixed smooth metric
on X.
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1.1.2 Fluctuations of Linear Continuous Statistics

Consider the random measure (i.e. a measure valued random variable) defined by

(x1, . . . , xN ) �→
N∑

i=1

δxi , (1.9)

Its expected value is the one point correlation measure ρ(1)ωn. To get a real-valued
random variable one fixes a function u on X and defines the random variable N [u]
by contraction:

N [u](x1, . . . , xN ) := u(x1) + · · · + u(xN ),

often called a linear statistic in the statistical mechanics literature. In particular, if
u = 1E is the characteristic function of a subset E of X, thenN [u](x1, ..., xN ) counts
the number of xi contained in E . By (1.5) the expected value of the random measure
(1.9) divided by N converges weakly to the equilibrium measure of (X,φ). In fact,
one actually has convergence in probability, i.e. a (weak) “law of large numbers”:

Theorem 1.4 Assume that (φ,μ) has the Bernstein–Markov property and denote
by μφ the corresponding equilibrium measure (supported on the support of μ). Let
u be a bounded continuous function on (X,μ). Then

1

Nk
Nk[u] →

∫
X

μφu (1.10)

in probability when k tends to infinity at a rate of order o(k−n), i.e.

Probk({(x1, ..., xNk ) :
∣∣∣∣k−n(u(x1) + · · · + u(xNk )) −

∫
X

μφu

∣∣∣∣ > ε}) ≤ C

εkn

for some constant C independent of ε and k.

Note that it follows from basic integration theory that the convergence also holds
if u is the characteristic function of a, say smooth, domain E in X, as long as the
limiting equilibrium measure μφ is absolutely continuous (w.r.t. a smooth volume
form). In particular, this happens in the strongly regular case. Theorem1.4 follows
from the convergence of the expectations together with the following simple variance
estimate:

Var(Nk[u]) := E(Ñk[u])2) = O(kn)

for any u as above, where Ñk[u] is the “fluctuation”

Ñk[u] := Nk[u] − E(Nk[u])
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of the random variable Nk[u]. Before continuing we point out that by the large
deviation results in [18] the convergence in the previous theorem in fact holds at the
rate O(k−(n+1)).

Next, the fluctuations in the bulk are considered for functions u which are Lips-
chitz continuous, which equivalently means that differential du is point-wise defined
almost everywhere on X and in L∞

loc. In particular, given a continuous Riemannian
metric g on a (measurable) subset S ⊂ X the Dirichlet norm of u is finite and defined
by

‖du‖2(S,g) :=
∫

S
|du|2gdVg,

In the present setting g mainly arises as the Kähler metric in the bulk of S defined by
the Kähler form corresponding to φ (formula 1.8), when u is supported in the bulk
of S. But in fact, the corresponding Dirichlet norm is defined on S for any Lipschitz
continuous function u (see Sect. 3). The main result is the following Central Limit
Theorem (CLT), which may be interpreted as saying that the (scaled) fluctuations of
the random measure (1.9) converges in distribution to the Laplacian of the Gaussian
free field in the bulk (defined with respect to the Kähler metric ωφ) [70].

Theorem 1.5 Assume that the weight φ is in C1,1
loc and that the volume form ωn is

continuous. Denote by S the support of the equilibrium measure of (X,φ).

• Assume that u is a Lipschitz function on X supported in a compact subset of the
bulk. Then

lim
k→∞E(e−tk−(n−1)/2Ñk [u]) = exp

(
t2

8π
‖du‖2(S,ωφ)

)
(1.11)

in the C∞−topology when t is restricted to a compact subset of C. In particular,
the variance of N [u] has the following asymptotics

Vark(N [u]) = kn−1

4π
(‖du‖2(S,ωφ)) + o(kn−1)

and

k−(n−1)/2Ñk[u] := N (1+1/n)/2

∑N
i=1(u(xi ) − E(u(xi ))

N
(1.12)

(where N = Nk ∼ kn) converges in distribution, as N → ∞, to a centered normal
random variable with mean zero and variance 1

4π ‖du‖2ωφ
.

• For a general continuous function u on X whose differential u exists almost every-
where the following variance estimate holds:

kn−1

4π
(‖du‖2(S,ωφ)) + o(kn−1) ≤ Vark(N [u]) ≤ o(kn),
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Let us make some remarks:

• The assumptions on φ and u appear to be essentially sharp, in general (as discussed
in Sect. 1.3).

• The scaling by N (1+1/n)/2 in formula (1.12) gives a gain by a factor N 1/2n compared
to the classical case of the CLT for sample averages of independent random vari-
ables (appearing when the points xi are independent and identically distributed).
As explained in Sect. 7 the Large Deviation Principle established in [18] provides
a simple heuristic explanation for the scaling above and for the asymptotics of the
variance.

• The special case n = 1, i.e. when X is a Riemann surface, is singled out by
the fact that the variance of N [u] is bounded (i.e. no scaling is required) and its
leading asymptotics are independent of theweightφ, as follows from the conformal
invariance of the Dirichlet norm when n = 1.

• Due to the presence of second order phase transitions (when the weight φ is
perturbed), a central limit theorem for general smooth functions u - not supported
in the bulk - is not to be expected (see the discussion in Sect. 7.2).

Applying the previous theorem gives the following normalized version of the CLT
(using [76] when n > 1) :
Corollary 1.6 Assume that the weight φ is in C1,1

loc and that the volume form ωn

is continuous. Let u be a Lipschitz function on X such that ‖du‖2(S,ωφ) �= 0. When
n = 1 assume moreover that u is supported in a compact subset of the bulk. Then
the normalized random variable Ñk[u]/√Var(Nk[u]) converges in distribution to
the standard normal variable with mean zero and unit variance.

Just like Theorem1.1 the previous results may be interpreted as a universality
result (compare the discussion in [31]). The condition that ‖du‖2(S,ωφ) �= 0 is natural
since the CLT does not hold if u is a constant function (indeed, the variance then
vanishes for any k). The validity of the normalized CLT when n > 1 should be
contrasted with the failure of the normalized CLT in the “real setting” when n = 1
(see Sect. 1.2).

Remark 1.7 The previous results are actually shown to hold in amore general setting
where (kL , kφ) is replaced by (kL + F, kφ + φF ) were (F,φF ) is a Hermitian
holomorphic line bundle with suitable regularity properties. In fact, this flexibility
will allow us to pass directly from variance asymptotics to a central limit theorem.

1.2 Relation to Previous Results

The main point of the present paper is to apply techniques from complex geome-
try/pluripotential theory, in particular ∂-estimates, to determinantal point processes.
It should be emphasized that in the case of a smooth weight φ corresponding to
a smooth positively curved metric on L the asymptotic results on the correspond-
ing Bergman kernels are well-known and go back to the work of Tian, Bouche,
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Zelditch, Catlin and others. For the decay estimate in Theorem 1.3 in a Cn-setting
see [32, 55]. Note that by an example of M.Christ the rate of decay in Theorem1.3
is essentially optimal. The extension to smooth non-positively curved metrics and
the relation to equilibrium measures was initiated in [13, 16] and then developed to
less regular weights and measures in [11, 17]. In the smooth positively curved case
Bergman kernel asymptotics have already been applied and developed extensively by
Shiffman-Zelditch and their collaborators in the different context of random zeroes
of holomorphic sections (defined with respect to the Gaussian probability measure
on the Hilbert spaceH(X, kL)). For example, universality of the corresponding cor-
relation functions was proved in [22] and a central limit theorem (when n = 1) was
obtained in [72].

Let us next compare the results in the present paper with the results in the exten-
sively studied one-dimensional “real setting” appearing when the reference measure
μ is the Euclidean measure on R. The corresponding determinantal random point
process then coincides with the Hermitian random matrix model, with the points xi

representing the eigenvalues of the corresponding random matrices. In this setting
the corresponding bulk universality holds at length scales of the order k−1 and the
limiting kernel is then the sine kernel (the bulk is then usually defined as the maximal
open set in R where the corresponding equilibrium measure has a positive contin-
uous density; see [57] where mean-field theory methods are used and [29] for the
real-analytic case, where Riemann-Hilbert methods are used). For the convergence in
probability, towards the equilibriummeasure (which is a special case of Theorem1.4)
see [58] and references therein. The analog in the one-dimensional real setting of
the CLT in Theorem1.5 was obtained in the seminal work [48] for a sufficiently
smooth u and under the assumption that the weight φ be sufficiently smooth and that
the support S ⊂ R of the corresponding equilibrium measure be connected (which
is the case when, for example, φ(x) is strictly convex on R). The limiting variance
is then given by a Sobolev 1/2−type norm. The proof in [48] used the method of
Ward identities originating in Quantum Field Theory to compute the second order
asymptotics of the corresponding Laplace transform (appearing in formula 1.11).
The latter asymptotics is an analog of the classical Strong Szegö limit theorem for
Toeplitz determinants (concerning the case when μ is the invariant measure on S1).
Interestingly, as shown in [59] in the case when the support S ⊂ R has several com-
ponents the CLT does not hold in general (a counter-example is obtained in [59] for a
non-convex real analytic φwith u linear on the support). More precisely, as shown in
[59] the corresponding variance is bounded, but not convergent (it is asymptotically
periodic in N as indicated by the formal argument in [24]) and even the normalized
version of the CLT in Corollary 1.6 fails.

In the present complex setting, in the special case when X = C (and φ(z) has
super logarithmic growth), Theorem1.5 was obtained, independently, in [3] for real-
analytic φ and smooth u. The proof in [3] uses the method of cumulants, which is
related to the combinatorial approach for central limit theorems for general deter-
minantal point processes used in [76] (where certain estimates on the variance are
assumed, as recalled in the proof of Corollary1.6). Just as in the present paper, the
key analytic input in [3] is Bergman kernel asymptotics, obtained using the method
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introduced in [16] (see [2]). For the special case where φ = |z|2 in C a more general
form of Theorem 1.5 was obtained in [63] for any u which is C1−smooth, using
combinatorics of cumulants. In particular, it is not assumed in [63] that u be sup-
ported in the bulk, which leads to a boundary contribution in the formula for the
limiting variance.

1.3 Relations to Recent Developments and Outlook

The original version of the present paper appeared as a preprint on ArXiv in 2008
(which also contained some results on links to asymptotics of direct image bundles
that have been removed as they appear in [20]). Since then there has been various
new developments, as will be briefly recalled next. A central limit theorem allowing
general (smooth and bounded) u in the one-dimensional case of the complex plane
was established in [4] using the method of Ward identities (see Remark6.8). It was
assumed that φ be real analytic and the boundary S be a connected domain with real
analytic boundary and that �φ > 0 in a neighborhood of S. The corresponding lim-
iting variance can then by expressed as the Dirichlet norm of the harmonic extension
of u from S to all of C, which amounts to adding a boundary contribution to the
Dirichlet norm (as in [62]). As pointed out in Sect. 7 this can - at a heuristic level - be
explained in terms of the general Large Deviation Principle in [18] and related to the
absence of second order phase transitions. Very recently, the results in [4] concerning
X = C have been generalized to less regular data φ [7, 54] (with u assumed almost
C4−smooth; see Sect. 7.2). As for the scaling limits of the correlation function at the
boundary/edge of the support they were established in [5] under suitable regularity
and symmetry assumptions. It would be very interesting to consider the behavior at
the boundary in higher dimensions. This appears to be a very challenging problem as
it seems hard to say anything useful about the boundary regularity of the support S of
the equilibrium measure, in general. In the presence of toric and circular symmetry
results in this direction have been obtained recently in [61, 64, 78].

In another direction it was shown in [20] that a sharp version of the Central Limit
Theorem in Theorem1.5 holds on anyRiemann surfacewhen ddcφ is aKählermetric
with constant curvature. The sharpness means that the convergence of the Laplace
transforms of the corresponding laws (formula (1.11)) hold for any test function
u with finite Dirichlet norm, ‖du‖2 < ∞ (in the case of the Riemann sphere the
convergence in distribution of the laws was first shown in [62]). However, as pointed
out in [20], the corresponding statement fails in higher dimensions (for any given φ).

The point is that when n > 1, even if ‖du‖2 is assumed finite the local integrals of
e−u may, in general, diverge and hence the Laplace transform appearing in the left
hand side of formula (1.11), may diverge. From this point of view the assumption
that u be Lipschitz used in the present paper appears to be essentially optimal.

Let us also mention the recent work [6] where determinantal point processes
defined by real multivariate orthogonal polynomials are applied to numerical inte-
gration, using a Monte Carlo type approach. In particular, a CLT (analogous to
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Theorem1.5) is established in the “real setting” of a measure μ supported on the
unit-cube in Rn with u a C1−smooth function (supported in the interior of the unit-
cube). In the light of [6] the present results in particular provide a theoretical base for
numerical integration of functions u which are periodic inR2n (by identifying the fun-
damental domain with the Abelian variety X := C

n + iCn)/�, for � = Z
n + iZn).

But we shall not go further into this here.
It would also be interesting to study universality properties for general “beta

deformations” of the determinantal point processes considered here. Such random
point processes are obtained by raising the Slater determinant appearing in formula
(1.2) to the βth power, for a given real number β (by [18] the empirical measure still
converge in probability towards the equilibrium measure in the many particle limit).
In one complex dimension such powers were introduced by Laughlin [52] to explain
the experimentally observed fractional Quantum Hall Effect (where the fraction in
question appears as 1/β when β is a suitable positive integer). For very recent field
theoreticalworks on theQuantumHall Effect onRiemann surfaces see the survey [50]
and references therein. In another direction it was shown in [19] that letting β depend
on k, yields a probabilistic construction of Kähler–Einstein metrics ωK E on complex
algebraic varieties X. More precisely, this happens when β = ±1/k, where the sign
is the opposite sign of the Ricci curvature of ωK E . In statistical mechanical terms
this corresponds to looking at a limit of fixed non-zero temperature, which brings
entropy into the picture. It would be very interesting to understand the connections
between the latter probabilistic approach toKähler–Einsteinmetrics, using canonical
random point processes and the program of Ferrari–Klevtsov–Zelditch [38], which
is based on random Bergman metrics, i.e. probability measures on the symmetric
spaces GL(N ,C)/U (N ) rather than on the N fold symmetric products of X.

OrganizationAfter having introduced the notation and general setup belowwe illus-
trate in Sect. 2 the general geometric setup in the special case when X is complex
projective space, explaining the relations to orthogonal polynomials and Coulomb
and fermion gases. Then, in Sect. 3, we recall the definition of the pluripotential
equilibrium measure and define its (weak) bulk. In Sect. 4 we provide weighted
L2−estimates for ∂̄ formulated in terms of the equilibrium potential. The latter esti-
mates are then applied in Sect. 5 to obtain asymptotics for Bergman kernels and
correlations (proving in particular Theorems1.1 and 1.3). In Sect. 6 the main results
concerning asymptotics of linear statitistics are proved, using the asymptotics in
Sect. 5. An alternative proof of the CLT using second order expansions is also given,
for smooth data. In the final section an outlook on the relations between the CLT in
Theorem1.5, the Large Deviation Principle (LDP) in [18] and phase transitions is
given. This leads to a suggestive picture for a general CLT taking boundary contri-
butions into account, which is consistent with the one-dimensional results in [4, 7,
54, 62].
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1.4 Notation and General Setup

Weights on Line Bundles1

Let L be a holomorphic line bundle over a compact complex manifold X. We will
represent an Hermitian metric on L by its weight φ. In practice, φ may be defined
as certain collection of local functions. Namely, let sU be a local holomorphic triv-
ializing section of L over an open set U (i.e. sU (x) �= 0 for x in U ). Then locally,∣∣sU (z)

∣∣2
φ

=: e−φU (z). If α is a holomorphic section with values in L , then over U it

may be locally written as α = f U · sU ,where f U is a local holomorphic function. In
order to simplify the notation we will usually omit the dependence on the set U and
sU and simply say that f is a local holomorphic function representing the section α.

The point-wise norm of α may then be locally expressed as

|α|2φ = | f |2 e−φ, (1.13)

but it should be emphasized that it defines a global function on X.

The canonical curvature two-form of L is the global form on X, locally expressed
as ∂∂φ and the normalized curvature form

ωφ := i∂∂φ/2π =: ddcφ

(where dc := i(−∂ + ∂)/4π) represents the first Chern class c1(L) of L in the second
real de Rham cohomology group of X. The curvature form of a smooth weight is said
to be positive at the point x if the local Hermitian matrix

( ∂2φ
∂zi ∂ z̄ j

)
is positive definite

at the point x (i.e. ddcφx > 0). This means that the curvature is positive when φ(z) is
strictly plurisubharmonic (spsh) i.e. strictly subharmonic along local complex lines.
In differential geometric terms this means that the two-form ωφ defines a Kähler
metric, i.e. the corresponding symmetric two-tensorωφ(·, J ·) is a Riemannianmetric
compatible with the complex structure J on X. A line bundle is said to be ample (or
positive) if admits a smooth metric with positive curvature. More generally, a weight
ψ on L is called (possibly) singular if |ψ| is locally integrable. Then the curvature is
well-defined as a (1, 1)−current on X. The curvature current of a singular metric is
called positive if ψ may be locally represented by a plurisubharmonic function and
ψ will then simply be called a psh weight. A line bundle L is big if admits a psh
weigh ψ whose curvature current is bounded from below by a Kähler form.

Further fixing an Hermitian metric two-form ω on X with associated volume form
ωn gives a pair (φ,ωn) that will be called a weighted measure. It induces an inner
product on the space H 0(X, L) of holomorphic global sections of L by declaring

‖α‖2φ :=
∫

X
|α|2φ ωn, (1.14)

1General references for this section are the books [33, 60].
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The corresponding Hilbert space will be denoted byH(X, L) and its Bergman kernel
by K (x, y), which is a section of the pulled back line bundle L � L over X × X
(see Sect. 5).

The Hermitian line bundle (L ,φ) over X induces, in functorial way, Hermitian
line bundles over all products of X (and its conjugate X ) and we will usually keep
the notation φ for the corresponding weights. For example, we will write

|K (x, y)|2φ := |K (z, w)|2 e−φ(z)e−φ(w)

where the right hand side is strictly speaking only defined when both x and y are
contained in an open set U where L has been trivialized as above. When studying
asymptotics we will replace L by its k th tensor power, written as kL in additive
notation. The induced weight on kL may then be written as kφ. A subindex k will
indicate that the object is defined w.r.t the weight. kφ on kL for φ a fixed weight
on L .

Regularity assumptions. A weighted measure (φ,μ) will be called strongly regular
if the weight φ is locally C1,1-smooth (i.e. it is differentiable and all of its first
partial derivatives are locally Lipschitz continuous) and μ = ωn is the volume form
of a continuous metric ω on X. Moreover, if (X, L) = (En,O(1)), where is E

n

the complex projective space, viewed as a compactification of its affine piece C
n,

then we also allow ωn to be defined by the Lebesgue measure on C
n as long as the

corresponding weight function φ(z) on C
n has super logarithmic growth (formula

2.5 below) with φ ∈ C1,1
loc (C

n).

Probability notation. Given a probability space (Y, γ), i.e. a measure space where
γ(X) = 1, ameasurable functionN on (Y, γ) is called a random variable. Its integral
w.r.t to Y is denoted by E(N ) and called the expectation of N . Recall also that if
N takes values in a space Z then the pushforward of γ under N is called the law of
N on Z . A subindex k will indicate that the object is defined w.r.t. the probability
measure on Y = X Nk , defined by the density (1.4) induced by a weighted measure
(φ,μ).

Occasionally, we will also consider the probability measures defined by the
Bergman kernels Kkφ+φF associated to a sequence of Hermitian line bundles (kL +
F, kφ + φF ) (and afixed referencemeasureμ) andwewill thenwriteE = Ekφ+φF etc.

2 Examples

In this section we will illustrate our setup in the concrete case when X is the complex
projective space. But it may also be worth pointing out that another concrete setting
appears when X := C

n/� is a principally polarized torus (Abelian variety), in which
case H 0(X, kL) may be identified with the space of theta functions on C

n at level
k, which are �−quasi periodic. In particular, the latter setting gives a geometric
approach to the one-dimensional setting in [40].
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2.1 From Projective Space to Orthogonal Polynomials
and Vandermonde Determinants

It is a classical fact thatCn is compactified by the complex projective space X := E
n.

Let L be the hyperplane line bundleO(1) on En. Then H 0(X, kL) is the space of all
complex homogeneous polynomials of total degree k in C

n+1, which is isomorphic
to the vector spaceHk(C

n) of all polynomials inCn of total degree at most k. Indeed,
fix a global holomorphic section s of O(1), whose zero-set is En − C

n, the “hyper
plane at infinity”. Then any section sk of L⊗k over the open subset U := C

n may be
written as

sk(z) = pks⊗k

where pk is inHk(C
n) (concretely, this amounts to “dehomogenizing” sk).Moreover,

the point-wise norms with respect to a metric on kO(1) induced by a given locally
bounded metric h on O(1) become

|sk(z)|2h⊗k = |pk(z)|2 e−kφ(z) (2.1)

for some functionφ(z) onCn, that wewill call theweight function.As iswell-known,
this gives a correspondence between locally bounded metrics h onO(1) and weight
functions φ(z) of the form

φ(z) = φF S(z) + u(z) := ln(1 + |z|2) + u(z), (2.2)

where u is a locally bounded function on C
n. In particular, a subclass of weights

corresponding to smooth metrics onO(1) are obtained by taking u ∈ C∞
c (Cn). Note

that the metric hF S corresponding to φF S(z) is the Fubini-Study metric on O(1)
which is characterized (up to a constant) by its invariance under the SU (n)−action.
Its (normalized) curvature formωF S := ddcφF S is the called the Fubini-Studymetric
on E

n and a simple calculation shows that the corresponding volume form is given
by

(ωF S)n := (ddcφF S)
n/n! = e−(n+1)φF S

(
i

2

)n

dz ∧ dz̄

where ( i
2 )

ndz ∧ dz̄ denotes the Lebesgue measure on C
n. The global norm of sk

induced by the weighted measure (φ, (ωF S)n) may hence be represented as

‖sk‖2(φ,ωF S) :=
∫
Cn

|pk(z)|2 e−kφ(z)(ωF S)n. (2.3)

Alternatively, the weight φ itself induces a measure e−(n+1)φ(z)( i
2 )

ndz ∧ dz̄. The
corresponding norm is hence given by
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‖sk‖2φ :=
∫
Cn

|pk(z)|2 e−(k+n+1)(φ(z))

(
i

2

)n

dz ∧ dz̄

Note that the contribution from the factor e−(n+1)φ makes sure that the integrals are
finite.

The corresponding determinantal probability density (5.6) may in this case be
expressed explicitly as

1

Zkφ
|�(Nk )(z1, . . . , zNk )|2e−kφ(z1) · · · e−kφ(zNk ), (2.4)

where �(Nk )(z1, . . . , zNk ) is the higher dimensional Vandermonde determinant, i.e.
the Slater determinant det S corresponding to a bases S of multinomials and where
Zkφ is the corresponding normalizing factor (compare Lemma 5.1).

2.1.1 The Setting of Super Logarithmic Growth and Sections Vanishing
Along a Hypersurface

A variant of the previous setting arises if one insists on using the Lebesgue measure
as the integration measure defining the norms in (2.3). Then φ(z) has to have slightly
larger growth than in formula (2.2) in order to get finite norms. More precisely, we
then assume that φ has super logarithmic growth in the sense that

φ(z) ≥ (1 + ε) ln |z|2 , when |z| >> 1 (2.5)

for some positive number ε. It should be emphasized that such a weight φ does
not correspond to a locally bounded metric h on O(1). But as shown in [16] a
slight modification of the arguments apply to this super logarithmic setting, as well.
The key point is that the growth condition (2.5) forces the corresponding equilibrium
measure to be compactly supported inCn.Themodel case is whenφ(z) = |z|2 .Then
the equilibrium measure is (up to a multiplicative constant) the Lebesgue measure
on the unit ball.

Remark 2.1 Another variant of the geometric setting of a line bundle L → X
endowed with a, say smooth, weight φ is obtained by fixing a smooth complex
hypersurface Z in X (of codimension one). Let HkλZ be the subspace of H 0(X, kL)

consisting of all sections vanishing to order [kλ] along Z for a fixed sufficiently small
positive number λ. Then any continuous Hermitian metric ‖·‖ (with curvature form
ω) and a volume formωn on X induce by restriction, an inner product on the subspace
HkλZ . Hence, we can associate a sequence of determinantal point-processes to the
corresponding sequence of Hilbert spaces HkλZ . As shown in [18, Section5.5] the
laws of the corresponding sequence of empirical measures satisfy a large deviation
principle (LDP). The results in the present paper also extends with simple modi-
fications to the determinantal point processes associated to HkλZ (by replacing the
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equilibrium potentialφe used in the present paperwith the corresponding equilibrium
potential relative to λZ , obtained by imposing that ψ in formula 3.1 has a Lelong
number of at least λ along Z ). In fact, the setting of super logarithmic growth in Cn

can be fitted into this setting in the case when φ is of the special form

φ(z) = (1 + ε) log(1 + |z|2) + u(z), (2.6)

where u(z) extends smoothly from C
n to En. Indeed, one then let Z be a hyperplane

in X := E
n and identifies Cn with X − Z , in the usual way.

2.2 A Higher Dimensional Coulomb Type Gas

Continuing with the setting of multivariate orthogonal polynomials in Cn and intro-
ducing the Hamiltonian

Ekφ(z1, . . . , zN ) := Ek(z1, . . . , zNk ) + kφ(z1)/2 + · · · + kφ(zNk )/2,

where
Ek(z1, . . . , zNk ) = − log

∣∣�(Nk )(z1, . . . , zNk )
∣∣ ,

the corresponding probability density (2.4) may be written as a Boltzmann-Gibbs
density at inverse temperature β = 2 (in suitable units):

e−βEk (z1,...,zN )

Zkφ
, (2.7)

describing an ensemble of Nk identical particles in thermal equilibrium interacting
by the internal energy Ek(z1, . . . , zN ) and subject to the exterior potential kφ/2.
In particular, in the one-dimensional case, expanding the Vandermonde determinant
reveals that Ek(z1, . . . , zN ) is precisely the Coulomb interaction for Nk unit-charge
particles:

Ek(z1, . . . , zNk ) = −1

2

∑
1≤i, j≤N

log |zi − z j |2

(such a gas is also called a one component plasma in the physics literature). Using
mean field theory heuristics one would expect that the corresponding random point
processes satisfy a Large Deviation Principle (LDP) with a rate function E(μ) +∫

φμ defined on the space of all probability measures on Cn and with speed k N , i.e.
that

Prob

{
1

N

∑
δzi

∼= μ

}
∼ e−k N(E(μ)+∫

φμ)/Z

holds in the sense of large deviations. As shown in the companion paper [18]
this is indeed the case (see Sect. 7) and, in physical terms, it can be interpreted
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as a higher dimensional effective fermion-boson correspondence. This LDP is also
closely related to the fact that the corresponding equilibriummeasure M A(φe) (which
in the present paper is defined directly in terms of pluripotential theory in Sect. 3)
may be alternatively obtained as the unique minimizer of the total “macroscopic”
energy E(μ) + ∫

φμ appearing as the rate functional above; see [18] and reference
therein.

2.3 Random Normal Matrices

Consider the set of all normal matrices MN := {M ∈ gl(N ,C) : [M, M∗] = 0} as
a Riemannian subvariety of the space gl(N ,C) of all complex matrices of rank N
equipped with the Euclidean metric. A given weight function φ of super logarithmic
growth induces the following probability measure on MN

e−NTr(φ(M))dVMN /ZNφ (2.8)

where dVMN is the Riemannian volume measure ofMN and ZNφ is a normalizing
constant (usually called the partition function of the corresponding matrix model
[77]). Under the map which associates the (ordered) eigenvalues (z1, . . . , zN ) to a
matrix M the probability measure (2.8) is pushed forward to a probability measure
on C

N which turns out to coincide with the determinantal probability measure for
polynomials of degree N − 1 weighted by φ (when n = 1). The corresponding cor-
relation functions ρ(m)

k are hence usually called eigenvalue correlation functions in
this context. It should also be pointed out that the correlation functions corresponding
to the weighted set (φ,μ) where μ is the invariant measure supported on R (or the
unit-circle T ) coincide with eigenvalue correlation functions for random Hermitian
(or unitary) matrices, weighted by φ, which have been extensively studied (cf. [30,
48, 57] and references there in).

2.4 Free Fermions in a Magnetic Field

When n = 1 the weighted polynomials �+,m := zme−kφ(z)/2 where m = 0, . . . , k
each represent the quantum state of a single spin 1/2 quantum particle (=fermion)
confined to a plane subject to a magnetic field B perpendicular to the plane, where
the value of B at the point z is i

2π k ∂2φ(z)
∂z∂ z̄ in suitable units (and similarly in higher

dimensions; see [18, 73] and references therein). Moreover, the states form a linearly
independent set in the lowest possible energy level (i.e. the ground state). More
precisely, this latter fact means that �+,m is an eigenvector of finite norm with
eigenvalue 0 of the Pauli operator, which in complex notation may be written as
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(∂kφ + ∂∗
kφ)

2�+,m = 0,

where ∂kφ intertwines the space S+ := �0,0(C) of spin up and the space S− :=
�0,1(C) of spin down particles

∂kφ = ∂ + k

2
∂φ∧ : S+ → S−

and∂∗
kφ is its formal adjoint. Thismeans that the corresponding real “vector potential”

(i.e. U (1)−gauge field) for the magnetic two-form is given by k times

A := 1

2
(∂φ − ∂φ)),

where d A = i B. Hence, the particle state �+,m is said to have spin up, since it
has no spin down component in �0,1(C) (defined is the space of element of the
form gdz̄), where g ∈ C∞(C)). The corresponding many particle state of N free
fermions, should, according to the postulates of quantum mechanics for fermions,
be anti-symmetric under an exchange of two single particle states �m . Hence, it is
represented by the (Slater) determinant �(z1, . . . , xN ) := det(�+,i (z j )). In particu-
lar, the corresponding probability amplitude coincides (after normalization) with the
corresponding determinantal probability measure (compare Lemma5.1). The cor-
respondence between the free fermion representation and the Coulomb bas picture
above can, at a heuristic level, be explained by the process of bosonization (see [1,
18]).

Remark 2.2 The Pauli operator above is defined as the square of the Dirac operator
Dk A := (∂kφ + ∂∗

kφ) on the space S := S+ ⊕ S−of complex spinors, endowed with
the L2−norm induced by the Euclidean metric on C (this setup corresponds to
gyromagnetic ratio g = 2; see for example [73] and [28, Chapter 5] for a physics
reference). If one instead uses the metric induced by the curvature form B - assuming
that B is positive - then the square of the corresponding Pauli operator on may be
expressed as

D2
A =

(
1

4
∇∗

k A∇k A − k

)
⊕

(
1

4
∇A∇∗

A + k

)
, (2.9)

where the magnetic Schrödinger operator ∇∗
k A∇k A is the Landau Hamiltonian for

a non-spinning particle subject to the magnetic vector potential k A (in our general
setting this corresponds to taking the measure ωn to be the one induced by the ddcφ).

From the complex geometric point of view formula 2.9 is a special case of the
Bochner-Kodaira-Nakano formula [60]. In particular, in the case of constant positive
magnetic field, i.e. φ(z) = |z|2, the Pauli and the Landau operators are essentially
the same (up to an additive constant depending on the spin).
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3 The Pluripotential Equilibrium Measure

In this section we will give the pluripotential construction of the measure which
will arise as the limiting expected distribution of the empirical measure of the point
processes on X.

Let L → X be an ample line bundle over a compact complex manifold X. Given
a weight φ on L , that we first only assume is continuous, the corresponding “equi-
librium weight” φe is defined as the envelope

φe(x) := sup {ψ(x) : ψ ≤ φ on X} . (3.1)

where the sup is taken over all continuous pshweightsψ.Thenφe is also a continuous
psh weight on L [43] and we denote by D the corresponding coincidence set:

D := {φe = φ} ⊂ X

so that D = X preciselywhenφ is a pshweight.The equilibrium measure (associated
to the continuous weight φ) is in general defined as the Monge–Ampère measure
M A(φe) constructed in the seminal work of Bedford-Taylor in the local setting (see
[43] for the global setting). For a smooth psh weightψ this measure is simply defined
by

M A(ψ) := (ddcψ)n/n! =
(

i

2π

)n

det

(
∂2ψ

∂zi∂z j

)
dz1 ∧ dz1 ∧ ...dzn ∧ dzn (3.2)

As is well-known the equilibrium measure μφe is supported on D (see below). In the
case when φ is smooth (and not merely continuous) it was shown in [13] that φe is
C1,1− smooth and in particular the local derivatives ∂2ψ

∂zi ∂z j
exist almost everywhere

on X and are locally bounded. We may then simply define the equilibrium measure
in this setting by the following measure which has an L∞

loc−density

μφe := 1

V
M A(φe) := 1

V
(ddcφe)

n/n!

More precisely, the following theorem holds and is the specialization to ample line
bundles of a general result in [13] concerning big line bundle (see Theorem 3.4 and
Remark 3.6 there). It shows that if φ is class C1,1 on X, than φe is also in the class
C1,1:
Theorem 3.1 Suppose that L is an ample line bundle and that the given metric φ
on L is in the class C1,1. Then

(a) φe is in the class C1,1 on X.

(b) The Monge–Ampère measure of φe on X is absolutely continuous with respect
to any given volume form and coincides with the corresponding L∞

loc (n, n)−form
obtained by a point-wise calculation:
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(ddcφe)
n/n! = det(ddcφe)ωn (3.3)

(c) the following identity holds almost everywhere on the set D := {φe = φ} :

det(ddcφe) = det(ddcφ) (3.4)

More precisely, it holds for all points where the second order jet (φe − φ)(2) exists
and vanishes and in particular point-wise on

{(φe − φ)(2) = 0} ∩ {det(ddcφ) > 0} (3.5)

(d) Hence, the following identity between measures on X holds:

n!V μφe = (ddcφe)
n = 1D(ddcφ)n = 1D∩X (0)(ddcφ)n, (3.6)

where X (0) = {ddcφ > 0}.
We define the set

S := D ∩ X (0)

that we shall call the support of the equilibriummeasure μφe , in view of formula 3.6.
Next, we are going to define the weak bulk (of the equilibriummeasure associated to
φ). It may seem tempting to define it as the interior of the support S of the equilibrium
measure, but the problem is that there are essentially no general regularity results
for S - for example it is not clear that, in general, int(S) = S̄. In fact, it even not
clear that the interior int(S) is non-empty, in general! (see [69] for the construction
of examples where the coincidence set D can be extremely irregular, in the case
n = 1).

Definition 3.2 The set in formula 3.5 above is called the weak bulk (of (X,φ)).

When φ is assumed to be in C2
loc the bulk (of (X,φ)) is defined as the interior of the

support S of the equilibrium measure. For a general φ in C1,1
loc the bulk is defined as

the maximal open subset of the interior of S where ddcφe (or equivalently, ddcφ)

is represented by a continuous and strictly positive form (i.e. a continuous Kähler
metric).

The definitions are made so that, in the weak bulk, the density of the equilibrium
measure (w.r.t. ωn) exists and is equal to det(ddcφ) and vanishes a.e. on the com-
plement of the bulk. Moreover, the bulk is always contained in the weak bulk. We
note that for a general Lipschitz continuous function the Dirichlet norm ‖du‖2(S,ωφ)

is well-defined. Indeed, by the previous regularity theorem

‖du‖2(S,ωφ) = V
∫

X
|du|2ωφ

μφ

which is well-defined since ωφ > 0 almost everywhere with respect to μφ.
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Remark 3.3 In the general case when L is big one defines the weak bulk as above
on the augmented base locus of X (also called the Kähler locus), which is a (Zariski)
open subset of X.But for simplicity wewill mainly stick to the case when L is ample.

3.1 Remarks on Regularity Properties of the Support S

Even in the classical one-dimensional case where (X, L) = (E1,O(1)) and φ is
smooth, the equilibrium weight may not have second derivatives at some points. In
fact, when φ is radial this happens “generically” [13]. More generally, when (X, L)

is a toric or abelian variety and φ is invariant under the corresponding torus action
the envelope φe may be identified with the convexification of the function �(x) on
R

n corresponding to φ. For a generic such � the corresponding support S� has been
classified in dimension n ≤ 3 as a domain with piece-wise smooth boundary, with
explicit algebraic singularity type. The proof uses Arnold’s catastrophe theory of
Lagrangian singularities (motivated by the adhesion model in cosmology where S
arises in the Eulerian description of the “cosmic web”; see [23] and the appendix in
[45]). However, in the general complex geometric setting there are almost no general
results concerning the regularity properties of the support S. It would be interesting
to find general conditions ensuring that S is a topological domain (i.e int(S) = S̄)

with some additional regularity properties. Comparing with the extensively studied
Laplacian case appearing when n = 1 [27] suggests that a minimal requirement in
order to have reasonable regularity properties is the assumption that ddcφ > 0 on
the coincidence set D (which then coincides with the corresponding support set S).
For example, in the setting of sections vanishing along a hypersurface described in
Remark 2.1 it has recently been shown in [65] that the support S of the corresponding
equilibrium measure is a domain with smooth boundary under the assumption that
ddcφ > 0 on all of X and λ is sufficiently small (in fact, the complement of S is then
even diffeomorphic to a tubular neighborhood of Z). In particular, this result applies
in the setting of logarithmic growth in C

n as long as the weight φ(z) is smooth and
strictly plurisubharmonic and the number ε appearing in formula 2.6 is sufficiently
small. Anyway, it should be stressed that an important point in the present paper is
to avoid making any detailed regularity assumptions on the support S.

4 Weighted L2−Estimates for ∂

In this section we will generalize, by refining the results in [13], some well-known
estimates for the ∂−operator concerning psh weights to more general weights. More
precisely, we will assume that φ is a locally C1,1−smooth weight on the line bundle
L over X. When (X, L) = (En,O(1)) we also allow weights corresponding to a
weight function φ(z) in Cn with super logarithmic growth (see Sect. 2). But for sim-
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plicity we do not consider the latter situation in the proofs. The simple modifications
needed follow precisely as in the appendix in [16].

We will denote by K X the canonical line bundle of X, whose smooth sections are
(0, n)−forms on X. A weight φ on L induces, without choosing a volume form ωn

on X, an L2−norm on sections u of L + K X that we will write as

‖u‖2φ :=
∫

X
|u|2 e−φ

In the statement of the following theorem, we will use the fact that ddcφ defines a
positive form with locally bounded coefficients in the bulk (by the very definition of
the bulk).

Theorem 4.1 Let L be a big line bundle and φ a C1,1−smooth weight. Then for any
∂−closed (0, 1)−form g with values in L + K X and supported in the interior of the
bulk, there is a smooth section u with values in L + K X such that

∂u = g (4.1)

and ∫
X

|u|2 e−φ ≤
∫

X
|g|2ddcφ e−φ. (4.2)

In particular, the previous estimate holds for any u such that u is orthogonal to
H 0(X, L + K X ) (w.r.t the weight φ).

Proof Let ψ denote a general psh weight on L . By Theorem5.1 in [34] the theorem
holds with φ replaced by a (possibly singular) psh weight ψ if ddcφ is replaced
with the absolutely continuous part (ddcψ)c of the Lebesgue decomposition of the
positive form ddcψ. More precisely,

∫
X

|u|2 e−ψ ≤
∫

X
|g|2(ddcψ)c

e−ψ (4.3)

as long as the r.h.s is finite. Now set ψ = φe, the equilibrium weight corresponding
to φ. Since g is supposed to be supported in the bulk, the regularity Theorem 3.1,
gives ∫

X
|g|2(ddcφe)c

e−φe =
∫

X
|g|2(ddcφ) e−φ

and since g is, in fact, supposed to be supported in the pseudo-interior of the bulk
the latter integral is finite. Finally, using that φe ≤ φ on all of X finishes the proof
of the estimate (4.2). The last statement of the theorem now follows since the esti-
mate (4.2) in particular holds for the solution which minimizes the corresponding
L2−norm. �
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Remark 4.2 Given a bounded function f on X it follows immediately from the
inequality (4.2) that

∫
X

|u|2 e−(φ+ f ) ≤ C f

∫
X

|g|2ddcφ e−(φ+ f ), C f = e2‖ f ‖L∞(X)

In particular, the previous estimate holds when u is the solution to the Eq. (4.1) which
is minimal wrt the L2−norm on L induced by the weight φ + f.

The previous theorem is a generalization to non-psh weights φ of the fundamental
result of Hörmander-Kodaira. In turn, the next theorem is a generalization to non-psh
weights of a refinement of the Hörmander-Kodaira estimate which goes back to a
twisting trick in the work of Donelly-Fefferman. See [32, 55] for an analogous result
concerning psh weights in Cn .

Theorem 4.3 Let L be a big line bundle, φ a C1,1−smooth weight on L and v a
smooth function on E such that dv is supported in the interior of the bulk of (X,φ)

and

(i)
∣∣∣∂v

∣∣∣2
ddcφ

≤ 1/8 (i i) ddcv ≥ −ddcφ/2

there. Then ∫
X

|u|2 e−φe+v ≤ 2
∫

X

∣∣∣∂u
∣∣∣2
ddcφ

e−φe+v (4.4)

for any smooth section u of L + K X orthogonal to the space H 0(L + K X ), w.r.t
the weight φ, and such that ∂u is supported in the interior of the bulk of (X,φ).

Moreover, given a bounded function f on X the function v above may be replaced
by v + f at the expence of multiplying the right hand side in the inequality (4.4) by
C f := e2‖ f ‖L∞(X) .

Proof By assumption

〈u, h〉φ = 0, ∀h ∈ H 0(X, L + K X ).

Equivalently, writing uv := uev,

〈uv, h〉φ+v = 0, ∀h ∈ H 0(X, L + K X ). (4.5)

By Leibniz rule
∂uv = (∂u + ∂vu)ev, (4.6)

which by assumption is supported in the bulk of (X,φ).Hence, applying the estimate
(4.3) in the proof of the previous theorem to ψ = φe + v gives, since by assumption
i i (φe + v) is a psh weight

∫
X

|uv|2 e−(φe+v) ≤
∫

X

∣∣∣∂uv

∣∣∣2
ddc(φe+v)

e−(φe+v) ≤
∫

X

∣∣∣∂uv

∣∣∣2
1
2 ddcφ

e−(φ+v)
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for some solution uv of the corresponding ∂−equation and hence for uv as in formula
4.5 (we are also using that ∂u and ∂v are supported in the bulk of (X,φ) to replace
φe with φ in the r.h.s). Using φe ≤ φ, (4.6) and the “parallelogram law” then gives

∫
X

|u|2 e−φev ≤ 4
∫

X

( ∣∣∣∂u
∣∣∣2
ddcφ

+
∣∣∣∂vu

∣∣∣2
ddcφ

)
e−φe ev

By assumption (i) in the theorem the term in the r.h.s involving ∂vu may be absorbed
in the l.h.s. Finally, the last statement in the theorem follows from the estimate in
Remark4.2. �

Corollary 4.4 Let L be a big line bundle and let φ be a C1,1−smooth weight on and
ωn a fixed volume form on X. Let E be a given compact subset of the interior of the
bulk. Then there is a constant C (depending on E and F) such that the following
holds. If ψk is a sequence of functions such that dψk is supported in the interior of
the bulk of (X,φ) and

(i)
∣∣∣∂ψk

∣∣∣2
ddcφ

≤ 1/C (i i) ddcψk ≤ √
kddcφ/C

Then, for any sequence fk of smooth sections of kL such that ∂ fk is supported in the
interior of the bulk of (X,φ)

‖�k( fk) − fk‖2kφ+φF +√
kψk

≤ C
1

k

∥∥∥∂ fk

∥∥∥2

kφ+φF +√
kψk

,

where �k is the Bergman projection with respect to kφ (formula 5.1 and below).
Moreover, the constant C can be taken to depend on φF only through an upper
bound on the L∞−norm

∥∥(φF − φF0)
∥∥

L∞(X)
, where φF0 is a fixed smooth metric on

F.

Proof Replacing L with kL + F − K X , φ with kφ + φF and v with
√

kψk the
corollary follows from the previous theorem using standard properties of orthog-
onal projections. �

Proposition 4.5 The following local estimate holds for all u which are C1−smooth
(or more generally, Lipschitz continuous):

sup
|z|≤Rk−1/2

|u(z)|2 e−kφ(z) ≤ CRkn

(∫
|z|≤2Rk−1/2

(
|u|2 + 1

k

∣∣∣∂u
∣∣∣2

)
e−kφωn

)
(4.7)

Proof This is a generalization of the uniformity statement in Lemma5.3. It is proved
in essentially the same way, by replacing the mean value property of holomorphic
functions used to prove Lemma5.3 by the general Cauchy formula for a smooth
function u. It is also a consequence of Gårding’s inequality - see (the proof of)
Lemma3.1 in [15] for a more general inequality. �
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5 Asymptotics for Bergman Kernels and Correlations

5.1 Bergman Kernels

Recall thatH(X, L) denotes theHilbert space obtained by equipping the vector space
H 0(X, L)with the inner product corresponding to the norm induced by the weighted
measure (φ,ωn). Let (si ) be an orthonormal base forH(X, L). The Bergman kernel
of the Hilbert space H(X, L) may be defined as the holomorphic section

Kk(x, y) =
∑

i

si (x) ⊗ si (y). (5.1)

of the pulled back line bundle L � L over X × X . To see that is independent of the
choice of base (sI ) one notes that Kk represents the integral kernel of the orthogonal
projection �k from the space of all smooth sections with values in L ontoH(X, L).

The restriction of Kk to the diagonal is a section of L ⊗ L . Hence, its point wise
norm |Kk(x, x)|φ (= |Kk(x, x)| e−kφ(x)) defines a well-defined function on X that
will be denoted by ρ(1) (and later identified with the one point correlation function):

ρ(1)(x) :=
∑

i

|si (x)|2kφ . (5.2)

It has the following well-known extremal property:

ρ(1)(x) := sup
{|s(x)|2φ : s ∈ H(X, L), ‖s‖2φ ≤ 1

}
(5.3)

Moreover, integrating (5.2) shows that |Kk(x, x)|φ is a “dimensional density” of the
space H(X, L) : ∫

X
ρ(1)(x)ωn = dimH(X, L) := N (5.4)

In Sect. 6.1 we will consider a function on the N−fold product X N that may, abusing
notation slightly, be written as

ρ(N )(x1, . . . , xN ) = det
1≤i, j≤N

(K (xi , x j )e
− 1

2 (φ(xi )+φ(x j ))). (5.5)

To clarify the notation denote by L�N the pulled-back line bundle on X N with the
weight induced by the weight φ on L . Then the base S = (si ) in H 0(X, L) induces
an element det(S) in H 0(X N , L�N ) whose value at (x1, . . . , xN ) is defined as the
(Slater) determinant

det(S)(x1, .xN ) := det
1≤i, j≤N

(si (xi ))i, j ∈ Lx1 ⊗ · · · ⊗ LxN . (5.6)
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In particular, its point-wise norm is a function on X N which according to the following
lemma may be locally written in the form (5.5). The lemma also shows that after
division by N ! this function defines the density of a probability measure on X N . Its
proof is based on the following “integrating out” property of the Bergman kernel K ,
which is a direct consequence of the fact that K is a projection kernel:

|K (x, x)|φ =
∫

X
|K (x, y)|2φ ωn(y) (5.7)

Lemma 5.1 The following identities hold point-wise:

det
1≤i, j≤N

(K (xi , x j )e
− 1

2 (φ(xi )+φ(x j ))) = |det(S)(x1, . . . , xN )|2φ .

Integrating gives ∫
X N

|det(S)(x1, . . . , xN )|2φ ω⊗N
n = N !.

Proof The identities are formal consequences of the identity (5.7), as is well-known
in the random matrix literature. See for example [30]. The last identity can also be
proved directly using the following general identity [17, Lemma 5.3]:

∫
X N

|det(S)(x1, . . . , xN )|2φ ω⊗N
n = N ! det

1≤i, j≤N
(
〈
si , s j

〉
(ωn ,ϕ)

)i, j , (5.8)

given a base (si ) in H 0(X, L) and a bounded weight φ on L .

5.2 Scaling Asymptotics of Kk(x, y) in the Weak Bulk

In this section we fix a continuous metric ω on X. Given a point x in X we can take
“normal” local coordinates z centered at x and a “normal” trivialization of L , i.e
such that

ωx = i

2

n∑
i=1

dzi ∧ dzi + o(1) φ(0) = dφ(0) = 0 (5.9)

Moreover, if the second partial derivatives of φ exist at x then we may assume

(ddcφ)x = i

2π

n∑
i=1

λi dzi ∧ dzi

Hence, the λi are the eigenvalues of the curvature form ddcφ at x w.r.t the metric ω
and we denote the corresponding diagonal matrix by λ.
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For proofs of the following elementary local consequences of the regularity
properties of φ and φe see [16].

Lemma 5.2 Given a point x in X and “normal” local coordinates z centered at x
and a “normal” trivialization of L the following holds:

|φ(z)| ≤ C |z|2 , (5.10)

where C can be taken to be independent of the center x on any given compact subset
of X. Moreover, if the second partial derivatives of φ exist at z = 0, then for any
ε > 0, there is a δ > 0 such that

(|z| ≤ δ ⇒
∣∣∣∣∣φ(z) −

n∑
i=1

λi |zi |2
∣∣∣∣∣ ≤ ε |z|2 (5.11)

and for any fixed positive number R the following uniform convergence holds when
k tends to infinity

sup
|z|≤R

∣∣∣∣∣kφ

(
z√
k

)
−

n∑
i=1

λi |zi |2
∣∣∣∣∣ → 0. (5.12)

Finally, if the center x is in the weak bulk, then for any ε > 0, there is a δ > 0 such
that

(i i i) |z| ≤ δ ⇒ |φe(z) − φ(z)| ≤ ε |z|2 (5.13)

The next lemma only uses local properties of holomorphic functions and was
called local holomorphic Morse inequalities in [15]. See [16] for the proof when the
weight φ is merely C1,1−smooth.

Lemma 5.3 Fix a center x in X where the second derivatives of the weight φ exist
and normal coordinates z centered at x . Then

lim sup
k

k−nρ(1)
k (z/k1/2) ≤ det

ω
(ddcφ)(x).

Moreover, if |z| ≤R then the l.h.s. above is uniformly bounded by a constant CR

which is independent of the center x .

Now we can prove the following lower bound on the 1-point correlation function in
the weak bulk, which is a refinement of Lemma 4.4 in [13]:

Lemma 5.4 Fix a center x in the weak bulk and normal coordinates z centered
at x . Then

lim inf
k

k−nρ(1)
k (z/k1/2) ≥ det

ω
(ddcφ)(x)

Proof Step1: construction of a smooth extremal σk . Fix a point x in the weak bulk.
First note that there is a smooth section σk with values in kL + F such that
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(i) lim
k→∞

|σk |2kφ (z0/
√

k)

kn ‖σk‖2kφ+φF

=
(

1

2π

)n

det λ, (i i)
∥∥∥∂σk

∥∥∥2

kφe+φF

≤ Ce−k/C (5.14)

To see this first take normal trivializations of L and F and normal coordinates z
centered at x (i.e. x corresponds to z = 0).Next, by scaling the coordinates z we can
assume that

ωx0 = i

2

n∑
i=1

1

λi
dzi ∧ dzi , (ddcφ)x0 = i

2π

n∑
i=1

dzi ∧ dzi

Fix a smooth function χ which is equal to one when |z| ≤ δ/2 and supported where
|z| ≤ δ; the number δ will be assumed to be sufficiently small later on. Now σk(z)
is simply obtained as the local section with values in Lk represented by the function

χ(z)ek(z̄0·z− 1
2 z̄0·z0)

close to z = 0 and extended by zero to all of X.To see that (i) holds note first consider
the numerator

|σk |2kφ (z0/
√

k) = ez̄0·z0e−kφ(z0/
√

k) → 1,

when k tends to infinity, using (5.12). Next, write the the integrand in kn ‖σk‖2kφ+φF ,

in the form
χ(z)2kne−k(|z−z0/

√
k|2+(φ(z)−|z|2))((det λ)−1 + o(1))

and decompose the region of integration according to the following decomposition
of the radial values:

[0, δ] = [0, R/
√

k]
⊔

[R/
√

k, δ], (5.15)

where R is a fixed large number. In the first region, we have by (5.12),

sup
|z|≤R/

√
k

∣∣k(φ(z) − |z|2)∣∣ → 0

Hence, performing the change of variables z = z′/
√

k gives

lim
k→∞ kn ‖σk‖2kφ+φF ,[0,R/

√
k] = (det λ)−1

∫
[0,R]

e−|z′−z0|2
(

i

2

n∑
i=1

dz′
i ∧ dz′

i

)n

/n!

As fort the second region in (5.15) we have

∣∣∣z − z0/
√

k
∣∣∣2 + (φ(z) − |z|2) ≥ 1

2
|z|2 (5.16)

for R sufficiently large. Indeed, by (5.11)
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|z| ≤ δ ⇒ ∣∣(φ(z) − |z|2)∣∣ ≤ 1

4
|z|2 .

Moreover, ∣∣∣z − z0/
√

k
∣∣∣2 ≥ 1

4
|z|2 ,

for all k, if R is sufficiently large. Hence,

kn ‖σk‖2kφ+φF ,[R/
√

k,δ] ≤
∫

[R/
√

k,δ]
kne−k 1

2 |z|2 → 0,

since it is the tail of a convergent (Gaussian) integral (using the change of variables
z = z′/

√
k again). Finally, letting first k and then R tend to infinity finishes the proof

of (i) in (5.14).
Next, to prove (i i) in (5.14), first note that

∥∥∥∂σk

∥∥∥2

kφe+φF

≤ C ′
∫

δ/2≤|z|≤δ

e−k(|z−z0/
√

k|2+(φ(z)−|z|2)+φe(z)−φ(z)))ωn(0) (5.17)

as follows from the definition of χ. Now take δ so that, using (5.11) and (5.13) ,

|z| ≤ δ ⇒ φ(z) + (φe(z) − φ(z)) ≥ |z|2 /4 (5.18)

for δ sufficiently small. Combining (5.16) and (5.18) shows that the exponent in
(5.17) is at most− 1

4k |z|2 which proves (i i) in (5.14).
Step2: perturbation of σk to a holomorphic extremal αk .

This step is just a repetition (word for word) of the corresponding step in the proof
of Lemma4.4 in [13]. For completeness we recall it briefly here. Equip kL + F with
a “strictly positively curved modification” ψk of the metric kφe + φF as constructed
in [13]. Let gk = ∂σk and let αk be the following holomorphic section

αk := σk − uk,

where uk is the solution of the ∂-equation in the Hörmander-Kodaira Theorem4.1
with gk = ∂σk . Using properties of φe on then obtains the estimate

‖uk‖kφ+φF
≤ C ‖gk‖kφe+φF

(5.19)

and then (i i) in (5.14) in the right hand side gives

(a) ‖uk‖kφ+φF
≤ Ce−k/C , (b) |uk |2kφ+φF

(x) ≤ C ′kne−k/C ′
,

where (b) is a consequence of (a) (using Proposition4.5 at z = 0). Combining (a)

and (b) with (i) in (5.14) then proves that (i) in (5.14) holds with σk replaced by
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the holomorphic section αk . By the definition of ρ(1)
k this finishes the proof of the

lemma. �

Before turning to the proof of Theorem1.1 we also recall the following uniform
estimate (which follows from Lemma5.3 precisely as in Lemma5.2 (i) in [14]):

Lemma 5.5 Fix a center x in X and normal coordinates z and w centered at x with
z, w contained in a fixed compact set. Then

k−2n
∣∣Kk(z/k1/2, w/k1/2))

∣∣2
kφ+φF

≤ C

for some constant independent of the center x in X.

5.2.1 Proof of Theorem 1.1

Fix a point x0 in X and take coordinates z and w centered at x and normal trivializa-
tions of L and F as in the proof of the previous lemma, inducing
corresponding trivializations around (x, x) in X × X. Consider the holomorphic
functions fk(z, w) = k−n Kk(k−1/2z, k−1/2w̄) and f (z, w) = detω(ddcφ)(x0)ezw on
the polydisc on �R of radius R centered at the origin in C

2n. By Lemma5.5:

sup
�R

| fk | ≤ CR, (5.20)

Moreover, combining the upper and lower bounds in Lemmas5.3 and 5.4, respec-
tively, shows that fk tends to f on M := {(z, z̄) ∈ �R}. Now, by the bound (5.20)
fk has a convergent subsequence converging uniformly on �R to a holomorphic
function f∞ where necessarily f∞ = f on M. But since M is a maximally totally
real submanifold it follows that f∞ = f everywhere on�R . Since, the argument can
be repeated for any subsequence of fk this proves the uniform convergence in the
theorem. Finally, the convergence of higher derivatives is a standard consequence of
Cauchy estimates.

Remark 5.6 In fact, Theorem1.1 also follows in amore or less formal way (using the
method in [14]) from combining Lemma5.3 with the the special case of Lemma5.4
obtained by setting z = 0 (which was obtained in [13]). But the present method is
more explicit and hence gives a better control on the convergence, which might be
useful in other contexts.

5.3 Off-Diagonal Decay of Kk(x, y)

The next theorem is a refined version of Theorem1.3 stated in the introduction (the
dependence on the line bundle F will be important in the proof of Theorem1.5).
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Theorem 5.7 Let L be a big line bundle and Kk the Bergman kernel of the Hilbert
space H(kL + F). Let E be a compact subset of the interior of the bulk. Then there
is a constant C (depending on E) such that the following estimate holds for all pairs
(x, y) such that either x or y is in E:

k−2n |Kk(x, y)|2kφ+φF,t
≤ Ce−√

kd(x,y)/C

for all k, where d(x, y) is the distance function with respect to a fixed smooth metric
ω on X. Moreover, fixing a smooth reference weight φF0on L the constant C can
be taken to only depend on the continuous weight φF via an upper bound on the
L∞−norm

∥∥(φF − φF0)
∥∥

L∞(X)
.

Proof Fix a point x in X and take an element sk inHk such that

|sk |2 e−kφ = |Kk(x, ·)|2 e−kφ(x)e−kφ(·) (5.21)

Next, fix a point y in the set E appearing in the formulation of the theorem and
“normal” local coordinates z centered at y and a “normal” trivialization of L (see the
beginning of the section). In particular, φ(0) = ∂φ(0) = 0. Identify sk with a local
holomorphic function in the z−variable. By the mean value property of holomorphic
functions

sk(0) =
∫

χksk,

where χk = cnknχ(
√

kz) has unit mass and is expressed in terms of a radial smooth
function χ supported on the unit-ball (so that χk is supported on the scaled unit ball
of radius 1/

√
k). Writing χkφ := χkekφ(x) the relation (5.21) gives,

|sk |kφ (y) =
∣∣∣〈χkφ, sk

〉
kφ

∣∣∣ = ∣∣�k(χkφ)(x)
∣∣
kφ

(x)

using the definition of sk in the last equality. Decomposing �k(χkφ) = χkφ +
(�k(χkφ) − χkφ) and applying Theorem4.3 combined with Proposition4.5 now
yields the following estimate

|sk |kφ+√
kψk

(y) ≤ ∣∣χkφ

∣∣
kφ+√

kψk
(x) + Ck(n−1)/2

∥∥∥∂χkφ

∥∥∥
kφ+√

kψk

(5.22)

for any function ψk satisfying the assumptions in Theorem4.3. The idea now is take
ψk to be comparable to the distance to x . In the following we will denote by R a
sufficiently large (but fixed constant).

Case 1: d(x, y) ≥ 1/R. Set ψk = ψ for a fixed smooth function ψ on X such that
ψ(·) = 1/R when d(x, ·) ≥ 1/(2R) and ψ(·) = 0 for when d(x, ·) ≤ 1/(4R). For
R >> 1 (but fixed) the assumptions onψk in Theorem 4.3 are clearly satisfied (using
that y is in the interior of the bulk). Hence, the estimate (5.22) gives
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|sk |2kφ e
√

k/C(y) ≤ 0 + Ckn 1

k

∥∥∥∂χkφ

∥∥∥2

kφ+0
≤ C ′k2n

using that ψ = 0 on the support of χkφ and that
∣∣∣k∂φ

∣∣∣2 is uniformly bounded there

(since ∂φ is assumed to be Lipschitz continuous and vanishing when z = 0). Since
by definition sk is related to Kk by the relation (5.21) this proves the theorem in this
case.

Case 2: d(x, y) ≤ 1/R. In this case we may assume that x is contained in the
fixed coordinate neighborhood of y. By a translation of the coordinates z we now
assume that they are centered at x . Set

ψk(z) = 1

R
κ(|z|2 + 1/k)1/2

where κ corresponds to a smooth function on X which is equal to one on the “ball”
{d(, y) ≤ 2/C} and is supported in the set E . Accepting for for the moment that
the assumptions on ψk in Theorem4.3 are satisfied, the inequality (5.22) gives (with
z ↔ y)

|sk |2kφ e
√

k(|z|2+1/k)1/2)(z) ≤ ∣∣χkφ

∣∣2
kφ+1 (x) + C ′kn 1

k

∥∥∥∂χkφ

∥∥∥2

kφ+1
≤ C ′′k2n

using that
√

kψk ≥ √
k/

√
k on the support of χkφ in the first inequality. In particular,

|sk |2kφ (z) ≤ C ′k2ne−√
k|z|

which proves the theorem, since the distance function d(·, y) is comparable, close
to y, with the distance function induced by the local Euclidean metric.

Next, let us check that the assumptions on ψk in Theorem4.3 are indeed satisfied.
Differentiating gives

∂ψk = 1

R
(∂κ ·

(
|z|2 + 1/k)1/2 − κ

zdz̄

2(|z|2 + 1/k)1/2

)
(5.23)

Hence, ∣∣∣∂ψk

∣∣∣ ≤ 1

R
(C ′ + C ′′√k) (5.24)

so that (i) in Theorem4.3 holds for R >> 1. Next, note that fk := (|z|2 + 1/k)1/2

is a psh function. Hence, formula 5.23 combined with Leibniz rule gives

∂∂ψk ≥ ∂∂κ · fk + ∂κ ∧ ∂ fk + ∂κ ∧ ∂ fk

and (5.24) (which clearly also holds when ψk is replaced by fk) then shows that
assumption (i i) in Theorem4.3 holds, as well (even without taking R large).



Determinantal Point Processes and Fermions on Polarized Complex … 375

Finally, the last statement in the theorem, concerning the dependence on φF ,

follows immediately from writing φF = f + φF0 and repeating the previous proof
with kφ replaced with kφ + f and using the L2−estimate in Remark4.2. �

5.4 Fluctuations

Theorem 5.8 Let L be a big line bundle and Kk the Bergman kernel of H(X, kL +
F). Let u be a Lipschitz continuous function on X. Then

lim inf
k→∞

1

2

∫
X×X

k−(n−1) |Kk(x, y)|2kφ+φF
(u(x) − u(y))2 ≥ ‖du‖2(S,ωφ)

where equality holds, with lim inf replace by lim, if u is supported in a compact
subset of the bulk. Moreover, if φF satisfies the assumptions in the previous theorem,
then the left hand side above is uniformly bounded by a constant only depending on
φF through the L∞−norm of φF − φF0 .

Proof Let us start by the first point in the theorem, i.e. the case when u is compactly
supported in the bulk. Denote by E the support of u. First note that the integrand
vanishes if both x and y are in X − E . We rewrite the integral above as follows:

2Ik :=
∫

E×X∪X×E

∣∣∣k1/2(u(y) − u(x))

∣∣∣2 k−n |Kk(x, y)|2 e−kφ(x)e−kφ(x)ωn(x) ∧ ωn(y),

Decompose the integral above as Ak,R + Bk,R + Ck,R according to the following
three regions:

First region (1 ≤ d(x, y)): By symmetry we may assume that x ∈ E . But then
Theorem5.7 shows that Ak tends to zero only using that u is bounded.

Second region (Rk−1/2 ≤ d(x, y) ≤ 1): Again, by symmetry we may assume
that x ∈ E . Since u is Lipschitz continuous |u(y) − u(x)| ≤ Cd(x, y). Hence, by
Theorem 5.7

Bk,R ≤ C
∫

Rk−1/2≤{d(x,y)≤1

∣∣∣√kd(x, y)

∣∣∣2 kne−√
kd(x,y)/Cωn(x) ∧ ωn(y).

Performing a change of variables (with y fixed) then gives

Ik ≤ C
∫

X
(

∫
2
√

k≥|ζ|≥R/2
|ζ|2 e−|ζ|dζ...)ωn(x) → 0, (5.25)

when first k and then R tends to infinity. �
Third region (d(x, y) ≤ Rk−1/2):
By the previous discussion only the third region gives a contribution to the asymp-

totics of the integrals Ik :
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lim
k→∞ Ik := 0 + 0 + lim

R→∞ lim
k→∞ Ck,R,

assuming that the last limits exist, as well be shown next. To this end fix R > 0
and note that, using a partition of unity we may as well replace the total region of
integration X × X by U × U, where U is a given local coordinate neighborhood.
Moreover, the third region Ck,R may as well be replaced by the region C ′

k,R defined
by |x − y| ≤ Rk−1/2, expressed in terms of the Euclidean distance on U (just using
that A−1|x − y| ≤ d(x, y) ≤ A|x − y| on U for some positive constant A). Upon
removing a set of measure zero we may also assume that x is in the bulk (since E is
a compact set in the interior of the bulk) and that the first order derivatives of u exist
at x . Now take “normal coordinates” z and trivializations of L and F centered at x .

Then the integral over {x} × Y in C ′
k,R may be written as

∫
|z|≤R

gk(x, z)ωn(k
−1/2z), (5.26)

where, gk(x, z) :=

= ∣∣k1/2(u(k−1/2z) − u(0))
∣∣2 k−2n

∣∣Kk(0, k−1/2z)
∣∣2 e−kφ(k−1/2z)e−kφ(0)ωn(k

−1/2z)

(using the change of variables z → k−1/2z). Since u is assumed to be Lipschitz
continuous and differentiable at z = 0 we have

sup
|z|≤R

∣∣∣∣∣
(
k1/2(u(k−1/2z) − u(0))

) − (

n∑
i=1

ai zi + ai zi )

∣∣∣∣∣ → 0, ai := ∂u

∂zi
(0)

By the scaling asymptotics in Theorem1.1 and Lemma5.5 and the Lipschitz assump-
tion on u we have

|gk(x, z)| ≤ AR

and

lim
k→∞ gk(x, z) =

∫
|z|≤R

∣∣∣∣∣
n∑

i=1

ai zi + ai zi )

∣∣∣∣∣
2 (

det λ

πn

)2

e−〈λz,z〉 i

2
dz1 ∧ dz̄1 ∧ · · ·

As a consequence, computing the Gaussian integrals gives

lim
R→∞ lim

k→∞ gk(x, z) =
(
det λ

πn

)∑
i

2

∣∣∣∣ ∂

∂zi
u(0)

∣∣∣∣
2

λ−2
i cn,

where

cn =
(∫ ∞

0
se−sds

)n

= − d

dt
|t=1

∫ ∞

0
e−tsds = 1



Determinantal Point Processes and Fermions on Polarized Complex … 377

Hence, by the dominated convergence

I = 1

2
lim

R→∞ lim
k→∞ Ck,R = 1

π

∫
X

|∂u|2(ddcφ) (ddcφ)n/n!,

which concludes the proof of the convergence in theorem. To prove the last state-
ment of the theorem just note that the integrand may, as above, be estimated from
above by

C
∣∣∣√kd(x, y)

∣∣∣2 kne−√
kd(x,y)/C ,

where C only depends on the L∞−norm of |φF − φF0 |, according to Theorem5.8.
Integrating over x and y then concludes the proof, as above.

Finally, for a general Lipschitz continuous u the lower bound on the second point
of the theorem follows by restricting the integration to the third region above with x
restricted to the weak bulk. Indeed, letting first k → ∞ using the scaling asymptotics
in Theorem1.1 as above togetherwith Fatou’s lemma and then letting R → ∞, using
the monotone convergence theorem, gives the desired lower bound.

6 Asymptotics for Linear Statistics

Let us first recall the setup in Sect. 5. A line bundle L → X and a pair (φ,ωn) induces
a Hilbert space H(X, L) of dimension N with associated Bergman kernel K (x, y).

Recall also that, in general, a subindex k on an object indicates that it is defined with
respect to (kL , kφ). Hence, we will set k = 1 in the following definitions.

We define the associated ensemble (X N , γ) by letting γ be the probabilitymeasure
with the following density:

P(x1, . . . , xN ) := 1

N ! det(K (xi , x j )e
− 1

2 (φ(xi )+φ(x j ))).

ByLemma5.1 this is indeed awell-defined probabilitymeasure. Note that the ensem-
ble is symmetric in the sense that P(x1, . . . , xN ) is invariant under permutations of
the components xi .

6.1 Correlation Functions

Next, we recall the general formalism of correlation functions. But it should be
pointed out that in the present paper wewill mainly consider the correlation functions
in formula 6.1 below, that the reader could also take as definitions.

For a general symmetric ensemble (X N , γ) the m−point correlation measures on
Xm may be defined as N !/(N − m)! times the pushforward of γ to Xm under the
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projection (x1, . . . , xN ) �→ (x1, . . . , xm) (i.e. the m−dimensional marginal of γ).
The m−point correlation functions ρ(m) on Xm are then defined as the corresponding
densities. As is well-known [30, 75] the fact that the defining kernel K of the process
represents an orthogonal projection operator leads to the following quite remarkable
identities in the present context:

ρ(m)(x1, . . . , xm) = det
1≤i, j≤m

(K (xi , x j )e
− 1

2 (φ(xi )+φ(x j )))

A crucial role in the present paper is played by the so called connected 2−point
correlation function ρ(2),c which may be defined by

ρ(2).c(x, y) := ρ(2)(x, y) − ρ(1)(x)ρ(1)(y)

Hence, ρ(1) and ρ(2).c may be simply expressed as

ρ(1)(x) = |K (x, x)|φ , ρ(2).c(x, y) = − |K (x, y)|2φ . (6.1)

Remark 6.1 The present setup is essentially a special case of the general formal-
ism of determinantal random point processes [47, 49, 75]. It falls into the class of
such processes where the correlation kernel is the integral kernel of an orthogonal
projection operator.

6.2 Linear Statistics

A given (measurable) function u on (X,ωn) induces the following random variable
N [u] on (X N , dP) :

N [u](x1, . . . , xN ) := u(x1) + · · · + u(xN ).

Hence, if u is the characteristic function of a set � in X, then N [u](x1, . . . , xn)

simply counts the number of xi contained in �. However, we will mainly focus on
the case when u is continuous. For a given random variable X we will write its
fluctuation as the random variable

X̃ := X − E(X ),

so that E(X̃ ) = 0. Recall that the variance of a random variable X is defined as

Var(X ) := E((X̃ )2)

The following lemma is also essentially well-known.
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Lemma 6.2 The following formulas for the expectation and variance ofNk[u] hold:

(i) Eφ+tu(N [u]) = − d

dt
logEφ+tu(e

−tN [u]) =
∫

X

∣∣Kφ+tu(x, x)
∣∣
φ+tu u(x)

and

(i i) Varφ+tu(N [u])) = d2

d2t
logEφ+tu(e

−tN [u]) =

= 1

2

∫
X×X

∣∣Kφ+tu(x, y)
∣∣2
φ+tu (u(x) − u(y))2ωn(x) ∧ ωn(y).

Proof Without loss of generality we may as well calculate the derivatives at t = 0
(indeed, at a general t = t0 one then rewrites φ + (t0 + ε)u = (φ + t0u) + εu and
applies the previous case with φ replaced by φ + t0u). Set f (t) := − logE(e−tN [u])
Then it follows immediately that

d

dt |t=0
f (t) =

∫
X N

N∑
i=1

u(xi )ρ
(N )(x1, . . . , xN )ω⊗N

n =
∫

X
uρ(1)ωn,

which, combined with formula 6.1 proves the item (i). Similarly,

d2 f (t)

d2t |t=0
=

∫
X N

∑
1≤i, j≤N

u(xi )u(x j )ρ
(N )(x1, . . . , xN )ω⊗N

n

and hence splitting the sum over the indices (i, j) where i = j and i < j gives

d2 f (t)

d2t |t=0
=

∫
X

u2ρ(1)ωn +
∫

X2
u(x)u(y)ρ(2)(x, y)ωn

Invoking formula 6.1 for ρ(2)(x, y) thus gives that

d2 f (t)

d2t |t=0
=

∫
X

u2|K (x, x)|φωn +
∫

X2
u(x)u(y)

(
|K (x, x)|φ|K (y, y)|φ − |K (x, y)|2φ

)

Under the normalization that Eφ(N [u]) := ∫
uρ1ωn = 0 this means that

d2 f (t)

d2t |t=0
=

∫
X

u2|K (x, x)|φωn −
∫

X2
u(x)u(y)|K (x, y)|2φ.

The proof is now concluded by first rewriting u(x)u(y) = −(u(x) − u(y))2/2 +
u(x)2/2 + u(y)2/2 and then integrating over first x and then y and using that (by
the reproducing property) |K (x, x)|φ = ∫

X |K (x, y)|2φωn(y). �
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Remark 6.3 Let (si ) be an orthonormal base for H 0(X, L) w.r.t. (φ,ωn). Then
E(e−tN [u]) may be alternatively expressed as a Gram determinant:

E(e−tN [u]) = det
(〈

si , s j
〉
φ+tu

)
i, j

(6.2)

and hence form the point of view of Kähler geometry the functional u �→
− logE(e−tN [u]) can be viewed as a Donaldson Lk−functional (see [17, 20, 37]
and references therein). Formula6.2 follows immediately from writing

E(e−tN [u]) =
∫

X N |det(S)(x1, . . . , xN )|2φ+tu ω⊗N
n∫

X N |det(S)(x1, . . . , xN )|2φ ω⊗N
n

.

and applying the identity (5.8) to the weights φ and φ + tu.

Proposition 6.4 Suppose that u is a bounded function on X and (φ,μ) is a general
weighted measure. Then

(i) Vark(N [u])) = O(kn)

Moreover, if (φ,ωn) is strongly regular and u continuous, then

(i i) Vark(N [u])) = o(kn).

Proof By (i i) in Lemma6.2

Vark(N [u])) = 1

2

∫
X×X

|Kk(x, y)|2kφ (u(x) − u(y))2ωn(x) ∧ ωn(y)

The first item of the proposition follows immediately, since u is assumed bounded,
from combining (5.4) and (5.7)and using that Nk = O(kn) for any line bundle L .
The second item follows from [13] where it is shown that

∫
k−n |Kk(x, y)|2kφ f (x)g(y)ωn(x) ∧ ωn(y) →

∫
X

f gμφe ,

for any continuous functions f, g. �

6.3 A Law of Large Numbers (Proof of Theorem1.4)

By (i) in Lemma6.2 and [11, Thm B]:

Ek(k
−nN [u]) =

∫
X

|Kk |kφ uωn →
∫

X
uμφe .
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Moreover, by (i) in the previous proposition

Vark(k
−nN [u])) = O(k−n) → 0.

Hence, the theorem follows directly fromChebishevs inequality, just like in the usual
proof of the classical weak law of large numbers.

6.4 A Central Limit Theorem (Proof of Theorem1.5)

Proof We start by taking t ∈ R. Let Fk(t) := − logEk(e−tk−(n−1)/2Ñk [u]). By (i) in
Lemma6.2

dFk(t)

dt t=0
= k−(n−1)/2

Ek(Ñk) = 0, (6.3)

using the definition of Ñk in the last equality. Moreover, by (i i) in Lemma 6.2

d2Fk(t)

d2t
= −k−(n−1) 1

2

∫
X×X

∣∣Kkφ+thk (x, y)
∣∣2
kφ+thk

(hk(x) − hk(y))2

where hk = u − ck with ck = Ek(Nk). Next, note that the map ψ �→ ∣∣Kψ(x, y)
∣∣2
ψ
is

clearly invariant under ψ → ψ + c for any constant c. Hence, we get

d2Fk(t)

d2t
= −1

2

∫
X×X

∣∣Kkφ+tu(x, y)
∣∣2
kφ+tu (u(x) − u(y))2

Applying Theorem5.8 to kL + F where F is the trivial holomorphic line bundle
equipped with the weight k−(n−1)/2tu (taking for example φF0 ≡ 0) gives

lim
k→∞

d2Fk(t)

d2t
= −‖du‖2ddcφ (6.4)

for all t.Using that the second order derivatives ofFk(t) uniformbound are uniformly
bounded on any fixed interval (by the uniformity in Theorems5.8) and (6.3) the
theorem now follows by integrating over t. Indeed, sinceFk(t) and its first derivative
vanish at t = 0 we have

Fk(t) =
∫ ∫

d2Fk(s)

d2t
χ(v, s)dvds,

where χ is the characteristic function of the set of all (v, s) such that v ≤ s ≤ t.
Hence (6.4) gives



382 R. J. Berman

Fk(t) → a
∫ ∫

χ(v, s)dvds = a
t2

2
, a := a := −‖du‖2ddcφ (6.5)

which proves the point-wise version of the asymptotics (1.11) when t ∈ R.

Next, we set νk := k−(n−1)/2Ñk[u]∗(γk), which gives a sequence of compactly
supported probability measures on R, obtained by pushing forward the probability
measure γk . Then we may write

Fk(t) =
∫
R

νk(s)e
−ts

which gives a well-defined holomorphic function for all t in C with

| fk(t)| ≤ CR

for all t ∈ C such that |t | ≤ R. By (6.5) we have fk(t) → f (t), where f (t) is an
entire function, on the maximally totally real set R in C. Hence, the same normal
families argument as below formula 5.20 shows that uniform convergence actually
holds on compacts of C (even for all derivatives). Setting t = iξ with ξ ∈ R in
particular gives that the Fourier transforms ν̂k converges uniformly om compacts in
Rξ towards ν̂, where ν̂ (and hence ν) is a centered Gaussian. As is well-known this
latter convergence property is equivalent to convergence in distribution. �

Finally, the variance asymptotics then follows by evaluating the convergence of
the second derivatives at t = 0 and using Lemma6.2.

6.5 Proof of Corollary1.6 (The Normalized CLT)

The case when u is supported in the bulk follows directly from Theorem1.5. Next,
we recall that by [76] the normalized CLT holds, for a general determinantal point
processes, under the condition that Var(N (u)) → ∞(as N → ∞) and that there
exists a positive numbers δ and C such that

E(N (u)) ≤ C (Var(N (u)))δ .

Since E(N (u)) ∼ N ∼ kn the validity of these assumptions in the present setting,
when n ≥ 2, follows directly from the lower bound on the variance in Theorem1.5
(by taking δ = (n − 1)/n).
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6.6 An Alternative Proof of the CLT for Smooth Data
Using Second Order Expansions

We start by recalling the following result in [13] generalizing the seminal asymptotic
expansion of Zelditch and Catlin concerning the case when ddcφ > 0 on all of X
(see [10, 79]).

Theorem 6.5 Assume that φ is a smooth weight on the ample line bundle L , ωn a
smooth volume form on X and φF a smooth metric on a line bundle F. Then, on the
diagonal, the point-wise norm of the Bergman kernel Kk of H 0(X, kL + F) endowed
with the corresponding L2−norm admits a complete asymptotic expansion on any
compact subset of bulk. More precisely, the corresponding second order expansion
is given by

|Kk(x, x)|kφ+φF

ωn

n! =

= kn

n! ω
n
φ + kn−1

(n − 1)!
(

−1

2
Ricωφ + Ricω + ddcφF

)
∧ ωn−1

φ + O(kn−2),

(the formRic η := −ddc log ηn represents the normalizedRicci curvature of aKähler
metric η).

Remark 6.6 Strictly speaking the result in [13]was only formulatedwhen F is trivial
(which in fact will be enough for our purposes). But exactly the same proof applies
for a general F. Indeed, around any point where ωφ > 0 [10] gives the expansion for
a local version of the Bergman kernel (the contribution to the coefficients coming
from the line bundle F are computed in [10, Section2.5]). Then the local Bergman
kernel is shown to coincide with the global one in the bulk using Theorem 4.1 with
L replaced by kL + F − K X (just as in the proof of Step 2 in Lemma5.4).

In particular, by the previous theorem the following holds in the bulk:

(|Kk(x, x)|kφ+φF − Kk(x, x)|kφ

) ωn

n! = kn−1

(n − 1)!ddcφF ∧ (ddcφ)n−1 + O(kn−2),

(6.6)
Let us now specialize to the case when n = 1 and apply the previous result to the
trivial line bundle F endowed with the weight φF = tu for t ∈ R and u a smooth
function supported in the interior of the bulk. Then it is not hard to see that the
remainder term above is uniform in t, as long as |t | ≤ C (indeed, the proof in [10]
shows that the remainder term only depends on an upper bound on the local sup-norm
of the local derivatives of φF ).

Now, combining the asymptotics in (6.6) with the first formula in Lemma6.2
gives

− d

dt
logEkφ+tu(e

−tÑ [u]) =
∫

X
|Kk(x, x)|kφ+tuuω −

∫
X

|Kk(x, x)|kφuω =
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= t
∫

X
(uddcu + o(1),

where the remainder term tends to zero, uniformly in k and t.Hence, integrating over
t gives

− logEkφ+tu(e
−tÑ [u]) =

∫ t

0
sds

∫
X

uddcu = 1

2

∫
X

uddcu,

proving the asymptotics in formula 1.11 in this special case (which implies The-
orem1.5, just as before). In fact, the uniformity in t used above may be dis-
pensedwith. Indeed, by the convexity of t �→ g(t) := − logEkφ+tu(e−tÑ [u])we have
g′(0) ≤ g′(t) ≤ g′(1) so that the dominated convergence theorem may be applied.

Remark 6.7 It follows immediately fromTheorem6.5 that, for u as above, the expec-
tation of N (u) has a complete asymptotic expansion of the form

E(N (u)) =
∫

X
u

(
kn

n! ω
n
φ + kn−1

(n − 1)!
(

−1

2
Ricωφ + Ricω

)
∧ ωn−1

φ

)
+ O(kn−2).

Moreover, whenωφ > 0 on all of X integrating the asymptotics in Theorem6.5 yields
a complete asymptotic expansion of the partition function log Z Nk [φ] corresponding
to (φ,ωn) (see the notation Sect. 7.2):

− 1

Nkk
log Z Nk [φ] = F0[φ] + F1[φ]k−1 + · · · ,

where F0 and F1 are explicit functionals, well-known in Kähler geometry (F0 is the
primitive E of theMonge–Ampère operator, sometimes called the Aubin-Yau energy
and F1 is a twisted version of the K-energy functional [37]).

It seems likely that a similar argument applies when n > 1, using φF = k(n−1)/2t.
But then one has to verify that the remainder terms are uniform in k. Alternatively,
one could, at least formally, apply the first order asymptotics of Kk(x, x)|kφ̃ with the
perturbed weight

φ̃ := φ + k−1k(n−1)/2u (6.7)

Indeed, setting φt := φ + tu, handling the limit k → ∞ formally gives

k−(n−1)/2
(

Kk(x, x)|kφ̃ − Kk(x, x)kφ

)
≈ d

dt |t=0
k−n Kk(x, x)kφt ≈

≈ dμφt

dt |t=0
= 1

(n − 1)!ddcu ∧ (ddcφ)n−1

Anyway, an important feature of the proof of Theorem1.5 in the previous section
is that it only requires that u be Lipschitz continuous. In contrast, any argument
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based on the second order expansion in Theorem6.5 requires that u be, at least,
C2−smooth, ensuring that �u is point-wise defined.

Remark 6.8 The alternative proof above is similar to the method of proof in the real
setting in [48] and the second proof of the corresponding result in [3], also concerning
the case n = 1 (the first proof in [4] uses themethod of cumulants). The second proof,
which was only sketched in [3], uses the formal first order argument involving the
perturbed weight φ̃ above which was made rigorous in [4], for real analytic φ, using
the method of Ward identities. An important feature of the method in [4] is that it
also applies on the boundary of S giving the precise “edge contribution”. It would
be very interesting to extend the results in [4] (and the generalizations in [7, 54]) to
the case when n > 1, as further discussed in the following section.

7 Outlook on Relations to LDPs and Phase Transitions

7.1 From the LDP Towards a General CLT

Let us start with some general considerations. Consider an N−particle random point
processes (μ(N ), X N ) on a compact topological space X. Assume that the law of the
corresponding empirical measure

δN := 1

N

N∑
i=1

δxi

satisfies a large deviation principle (LDP) at a speed rN → ∞ and rate functional
E(μ) on P(X), symbolically expressed as

(δN )∗μ(N ) ∼ e−rN E(μ), N → ∞

(see [36] for the precisemeaning of a LDP). In particular, by the contraction principle,
this implies a LDP at the same speed rN for the real-valued random variable 〈δN , u〉
on (μ(N ), X N ) defined by a given continuous function u ∈ C0(X). It is well-known
that, in general, a LDP at a speed rN for a real-valued random variable implies,
under suitable further assumptions (that are unfortunately rather strong) a CLT of
the following form:

r1/2N (〈δN , u〉 − E(〈δN , u〉) → N (0,σu), (7.1)

in distribution, where the variance σu is given by

σu = −d2F(tu),

d2t |t=0
, (7.2)
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expressed in terms of the concave functional F(u) defined by the following limit:

F(u) := lim
N→∞F (N )(u), F (N )(u) := − logE(e−rN 〈u,δN 〉), (7.3)

where 1
rN

logE(e−rN t〈u,δN 〉) is thus a scaling of the moment generating function

logE(e−〈u,δN 〉) of the random variable 〈u, δN 〉 . The existence of the limit above fol-
lows from the LDP (by Varadhan’s lemma [36]) and the functionalF onC0(X) coin-
cides with the Legendre-Fenchel transform of the rate functional E(μ). For example,
by [26], the CLT follows from the LDP under the assumption that f (t) := F(tu)

is real-analytic and the convergence of F (N )(tu) towards f (t) can be extended to
complex valued t (which, in particular, requires the absence of phase transitions at
any order, as recalled below).

Conversely, we make the following simple observation:

Proposition 7.1 If the LDP holds with a speed rN and a CLT (as in formula 7.1)
holds, then the corresponding variance σu is given by

σu = − lim
N→∞

d2F (N )(tu),

d2t |t=0
.

Proof If the CLT holds then

g(N )(t) := logE(e−(rN )1/2(〈u,δN 〉−E〈u,δN 〉)) → a|t |2/2

in the C∞
loc−topology, where a ∈ R is the corresponding variance (by the argument

used in the end of the proof of Theorem1.5). In particular,

d2g(N )(t)

d2t |t=0
→ a.

But, g(N )(t) = −rN f (N )(r−1/2
N t) + E(〈u, δN 〉)t and hence d2g(N )(tu)

d2t |t=0
coincides

with − d2 f (N )(t)
d2t |t=0

, which concludes the proof. �

In the present setting the LDP for the laws of the empirical measure is established in
[18] at a speed

rN = k Nk

and the corresponding functional F (formula 7.3) may be expressed as

F(u) = E((φ + u)e),

where E is a primitive of complex Monge–Ampère operator, i.e. for any smooth
weight φ and smooth function u
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E((φ + tu))

dt |t=0
= 1

n!
∫

X
(ddcφ)nu

Moreover, by [17, Thm B], the functional F is Gateaux differentiable on C0(X) and
its differential at φ is represented by the corresponding equilibrium measure, i.e. for
any u ∈ C0(X)

dF(tu)

dt |t=0
= 1

n!
∫

X
(ddcφe)

nu (7.4)

Since the linear statistic N [u] is given by

N [u] := N 〈u, δN 〉

and N ∼ kn the general discussion above thus suggests that, under suitable assump-
tions, a CLT of the following form should hold:

N−(1−1/n)/2(N [u] − E(N [u]) → N (0,σu),

which is thus consistent with the CLT in Theorem1.5 and Corollary1.6.

Remark 7.2 As shown in [18], the LDP in the present setting follows from the
asymptotics (7.3) (established in the present setting in [17, Thm A]) together with
the Gärtner-Ellis theorem, using the differentiability of F . The corresponding rate
functional E on P(X) may then be defined as the Legendre-Fenchel transform on
P(X) of the functional F and the differentiability of F corresponds to the strict
convexity of E (on the convex subset {E < ∞} ⊂ P(X)). In fact, the LDP in [18]
holds in the very general setting where μ has the property that (φ,μ) satisfies the
Bernstein–Markov property for any continuous weight φ (i.e. the corresponding one-
point correlation density has sub-exponential growth). In particular, this is the case
in the purely real setting where X = R

n and φ has super logarithmic growth.

7.2 Relations to Phase Transitions

In the present setting the probability measure μ(N ) on X N may be represented as the
Gibbs measure

μ(N ) := e−βE N

Z N [φ]μ
⊗N
0 , Z N [φ] :=

∫
X N

e−βE N
μ⊗N

at inverse temperature β = 2, of the Hamiltonian

E (N ) := − log |det(S)(x1, . . . , xN )|kφ
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where Z N [φ] is the corresponding partition function (see Remark6.3). Accordingly,
the scaledmoment generating functionmay, in the terminology of statistical mechan-
ics, be represented as a difference of scaled free energies:

1

rN
logE(e−rN t〈u,δN 〉) = 1

k Nk
log Z N [φ + tu] − 1

k Nk
log Z N [φ].

The limiting functionalF(u) can thus be viewed as the thermodynamical free energy
functional, describing the leading asymptotics of the N−dependent free energies
F (N )(u), as N → ∞.We recall that, according to Ehrenfest’s classical classification
of phase transitions, a system is said to exhibit a phase transition of order m when
the m th derivative of the thermodynamical free energy has a discontinuity when
considering variations of the thermodynamical variable in question (assuming that
the lower order derivatives exist and are continuous). In the present setting the ther-
modynamical variable is the function u defining the linear statistic and we have the
following

Proposition 7.3 Given a smooth bounded function u ∈ C0(X) the thermodynamical
free energy t �→ F(tu) has continuous first order derivatives. Moreover, the right
and left second order derivatives exist at t = 0 and are given by

d2F(tu),

d2t |t=0±
= 1

(n − 1)!
∫

v±ddcu ∧ (ddcφe)
n−1 (7.5)

where the right and left derivatives

v± := d(φ + tu)e

dt |t=0±
(7.6)

exist, defining bounded functions on X.

Proof As recalled above the existence of thefirst order derivativeswhen X is compact
is the content of [17, ThmB] and the superlogarithmic settingwhen X = C

n is shown
in [18]. In order to study the second order derivatives first observe that t �→ (φ +
tu)e(x) is concave (indeed it is defined as the sup of linear functions). In particular, it
is locally Lipschitz continuous and hence the right and left derivatives v±, at t = 0,
indeed exist and are in L∞. Now, fixing t �= 0 and setting ψt := (φ + tu)e we have,
by formula 7.4,

dF(tu)

dt
− dF(0)

dt
=

∫
X

u
(
(ddcψt )

n − (ddcψ0)
n
)
/n!.

Expanding the bracket and integrating by parts this means that

t−1
(

dF(tu)

dt
− dF(0)

dt

)
=

∫
X

ddcu ∧ t−1(ψt − ψ0)
(
(ddcψt )

n−1... + (ddcψ0)
n−1

)
/n!.
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By the regularity results in [13, 16] ddcψt is a L∞−current which is uniformly
bounded in t (for bounded t) and by concavity the left and right limits v± of
t−1(ψt − ψ0) as t → 0± exist and are monotonic in t. Hence, applying the dom-
inated convergence theorem proves formula 7.5. �

This means that there is an absence of first order phase transitions in the present
setting. In the light of the discussion in the previous section it is tempting to speculate
that the linear statistic corresponding to a smooth bounded function u on X satisfies
a CLT, as in formula, if one assumes that d(φ+tu)e

dt |t=0
exists, i.e.

v+ = v−

(perhaps with additional regularity assumptions) and that the limit σu of the scaled
variances N 1/n−1VarN (u) is then given by

d2F(tu)

d2t |t=0
= − 1

(n − 1)!
∫

d(φ + tu)e

dt |t=0±
ddcu ∧ (ddcφe)

n−1 (7.7)

In the case when u is supported in the interior of the bulk this is consistent with
Theorem1.5. Indeed, then v± = u and an integration by parts thus reveals that the
integral above coincides with the variance in question. The speculation above is also
consistent with the results in [4, 7, 54] concerning the setting of super logarithmic
growth inC. Indeed, in themost general results appearing in [7, 54] it is, in particular,
assumed that�φ > 0 on a neighborhood of the support S and that the boundary of the
support has no singular points (cusps) in the sense of [27]. Under these assumptions
it can be shown that d(φ+tu)e

dt |t=0
exists and is given by the function ũ defined as u on

S and on X − S as the harmonic extension of u. The point is that, assuming that the
support Sφt varies continuously with t, the following holds in the complement of S :

0 = dμφt

dt |t=0
= ddc d(φ + tu)e

dt |t=0

In particular, one then has

d2F(tu),

d2t |t=0±
= −

∫
X

ũddcũ =
∫

X
dũ ∧ dcũ,

which indeed coincides with the formula for the variance in [4, 7, 54]. It would be
very interesting to extend the CLTs in [4, 7, 54] to higher dimensions n > 1 and show
that the limiting variance is given by formula 7.7. Under the regularity assumption
that φe admits a Monge–Ampère foliation by Riemann surfaces in the complement
Sc the role of ũ is then played by the extension of u which is harmonic along the
leaves Lα of the foliation and
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d2F(tu),

d2t |t=0±
= −

∫
dα

∫
Lα

dũ ∧ dcũ,

i.e. a certain superposition of the Dirichlet norms of ũ along the leaves. Even
though the regularity assumption used above is rather strong (in general it holds
if φe ∈ C3

loc(Sc) and (ddcφe)
n−1 is of rank n − 1 in Sc) there are certainly particular

geometrically settings where it is satisfied. For example, it applies in the setting of
[65] and in the equivariant settings in [61, 64, 78].

Even if the limit of the scaled variances N 1/n−1VarN (u) may not exist for a
general strongly regular weighted measure (φ,ωn) it seems natural to expect that the
sequence is always bounded. By Lemma 6.2 this would follow from the validity of
the following

Conjecture 1 Given a strongly regular weighted measure (φ,μ) there exists a con-
stant C such that

1

2

∫
X×X

k−(n−1) |Kk(x, y)|2kφ d(x, y)2μ ⊗ μ ≤ C,

where d(x, y) is the distance function corresponding to a given metric on X.

In the “real setting”, i.e. case when μ is supported on a real algebraic variety (or
on X := R

n in the super logarithmic setting) the estimate in the previous conjecture
was established in [12] (in the case X = Rwith φ real analytic the estimate is shown
in [59]). Moreover, by the second item in Proposition6.4 a weaker form of the
conjecture holds, where the constant C is replaced by o(k).
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Probability Measures Associated to
Geodesics in the Space of Kähler Metrics

Bo Berndtsson

Abstract We associate certain probability measures on R to geodesics in the space
HL of positively curved metrics on a line bundle L , and to geodesics in the finite
dimensional symmetric space of hermitian norms on H 0(X, kL). We prove that the
measures associated to the finite dimensional spaces converge weakly to the mea-
sures related to geodesics in HL as k goes to infinity. The convergence of second
order moments implies a recent result of Chen and Sun on geodesic distances in the
respective spaces, while the convergence of first order moments gives convergence
of Donaldson’s Z -functional to the Aubin–Yau energy. We also include a result on
approximation of infinite dimensional geodesics by Bergman kernels which gener-
alizes work of Phong and Sturm.

1 Introduction

Let X be a compact Kähler manifold and L an ample line bundle over X . If φ is a
hermitian metric on L with positive curvature, then

ωφ := i∂∂̄φ

is a Kähler metric on X with Kähler form in the Chern class of L , c(L), and we
let HL denote the space of all such Kähler potentials. By the work of Mabuchi,
Semmes and Donaldson (see [10, 13, 18]), HL can be given the structure of an
infinite dimensional, negatively curved Riemannian manifold, or even symmetric
space. With this space one can associate certain finite dimensional symmetric spaces
in the following way. Take a positive integer k and let Vk be the vector space of global
holomorphic sections of kL ,

Vk = H 0(X, kL).
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(Later we shall consider more generally vector spaces H 0(X, kL + F) where F
is a fixed line bundle, but for simplicity we omit F in this introduction.) The finite
dimensional symmetric spaces in question are then the spacesHk of hermitian norms
on Vk .

There are for any k natural maps

FS = FSk : Hk �→ HL ,

and
Hilb = Hilbk : HL �→ Hk,

and a basic idea in the study of Kähler metrics on X with Kähler form in c(L) is
that under these maps the finite dimensional spacesHk should approximateHL as k
goes to infinity. This will be explained a bit more closely in the next section of this
paper, see also [7, 10, 14] for excellent backgrounds to these ideas.

The most basic result in this direction is the result of Bouche, [3] and Tian, [21]
that for φ inHL

φk := FSk ◦ Hilbk(φ)

tends to φ together with its derivatives. It is natural to ask whether geodesics between
points inHL also can be approximated in some sense by geodesics coming from the
finite dimensional picture. This question was first raised by Arezzo and Tian in [1],
and then treated by Phong and Sturm in [14], where it is proved that any geodesic
in HL is a limit of FSk of geodesics in Hk , in an ‘almost uniform way’ (see below
for their precise statement). Later, this result has been refined in particular cases
(like toric varieties) to give convergence of derivatives as well by Song-Zelditch,
Rubinstein-Zelditch and Rubinstein, see [16, 17, 20]. (These works also treat more
general equations than the geodesic equation.)

In a recent very interesting paper, [7], Chen and Sun have shown that moreover
if φ0 and φ1 are two Kähler potentials in HL , then the geodesic distance, suitably
normalized, between Hilbk(φ0) and Hilbk(φ1) inHk tends to the geodesic distance
between φ0 and φ1 inHL . HenceHk approximatesHL as metric spaces in this sense.

In this paper we associate to geodesics, inHk andHL respectively, certain proba-
bility measures onR fromwhich many quantities related to the geodesic (like length,
energy) can be recovered. Themain result of the paper is that themeasures associated
to geodesics inHk converge to their counterparts inHL in the weak*-topology as k
goes to infinity. It follows that theirmoments converge, which applied to second order
moments implies the result of Chen and Sun on convergence of geodesic distance.

Let H 0
k and H 1

k be two points inHk , and let Ht
k be the geodesic inHk connecting

them. The tangent vector to this geodesic

At,k := (Ht
k )

−1 Ḣ t
k

is then an endomorphism of Vk . The geodesic condition means that it is actually
independent of t so we will omit the t in the subscript. Since Ak is hermitian for
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the scalar products in the curve all its eigenvalues are real. Let νk = νAk be the
normalized spectral measure of k−1Ak . By this we mean that

νk = d−1
k

∑
δλ j ,

where λ j are the eigenvalues of k−1Ak and dk is the dimension of Vk , so that νk are
probability measures on R.

The second order moment of νk is precisely the norm squared of the vector Ak

in the tangent space of Hk , divided by dk . Since this is independent of t and t goes
from 0 to 1, the second order moment equals the square of the normalized geodesic
distance between H 0

k and H 1
k . We shall also see in Sect. 2 that the first order moment

of νk equals the Donaldson functional

Z(H 0
k , H 1

k )/dk

from [11].
We next describe the corresponding objects for the infinite dimensional space

HL . Let φ0 and φ1 be two points in HL and let φt be the Monge–Ampère geodesic
joining them. By this we mean that φt is a curve of positively curved metrics on L
for t between 0 and 1. We extend the definition of φt to complex t in

� := {0 < Re t < 1}

by letting it be independent of the imaginary part of t . The geodesic equation is then

(i∂∂̄φt )
n+1 = 0

on � × X .
It was proved by Chen and Błocki, in [5, 6], that such a geodesic always exists

and is of class C1,1 in the sense that all (1, 1)-derivatives are uniformly bounded.
Recently it has also been proved by Lempert and Vivas that in general one can not
find a classical geodesic that is smooth up to the boundary, see [12]. A ‘geodesic in
HL ’ is therefore not necessarily a curve in HL (which consists of smooth metrics),
but we will adhere to the common terminology nevertheless. For each t fixed we can
now define a probability measure on R in the following way. Let first dVt be the
normalized volume measure on X induced by ωφt ,

dVt := (ωφt )
n/Vol,

where Vol is the volume of X

Vol =
∫

X
c(L)n.
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Since φ̇t is a continuous real valued function, we can consider the direct image (or
‘pushforward’) of dVt

μt = (−φ̇t )∗(dVt ) (1.1)

so that μt is a probability measure on R. Concretely, this means that if f is a contin-
uous function on R, then

∫

R

f (x)dμt (x) =
∫

X
f (−φ̇t )dVt .

We shall show in the next section that if φt is a Monge–Ampère geodesic, then
μ = μt is independent of t . This is then the measure that corresponds to the spectral
measures νk in the infinite dimensional setting, and our main results says that νk
converge to μ in the weak*-topology as k goes to infinity.

Theorem 1.1 Let φ0 and φ1 be two points in HL and let

Ht
k = Hilbk(φt )

for t = 0, 1 be the corresponding norms inHk . Let for t between 0 and 1 Ht
k be the

geodesic in Hk connecting these two norms and let νk be their normalized spectral
measures as defined above. Then

νk −→ μ,

in the weak*-topology, where μ = μt is defined in Theorem 1.1 .

Just like the spectral measures of the endomorphisms Ak contain part of the
properties of the corresponding geodesics inHk , part of the properties of theMonge–
Ampère geodesic can be read off from the measure μ. It is for instance immediately
clear that the second order moment of μ is equal to

∫

X
φ̇t

2
dVt/Vol

which is the length square of the tangent vector to the Monge–Ampère geodesic
(which is independent of t as it should be). Since the parameter interval is from 0
to 1 the length of the tangent vector is the length of the geodesic from φ0 to φ1. By
a theorem of Chen, [6], the length of the geodesic is equal to the geodesic distance,
so the convergence of second order moments implies the theorem of Chen and Sun,
[7] that normalized geodesic distance in Hk converges to geodesic distance in HL .
Similarly we shall see in the next section that the first order moment of μ is the
Aubin–Yau energy of the pair φ0 and φ1, and convergence of first order moments
therefore says that the Aubin–Yau energy is the limit of Donaldson’s Z -functional
(this is a much simpler result).
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The proof of our main result is given in Sect. 3; it is based on the curvature
estimates from [2]. The basic idea is as follows: The Monge–Ampère geodesic φt

induces a certain curve of norms in Hk , Hφt ,k . These are L2-norms on the space of
global sections, similar to the curves Hilbk(φt ) but defined slightly differently to fit
with the results of [2]. At the end points, t = 0, 1,

Hφt ,k = Ht
k := Hilbk(φt ),

and we define Ht
k for t between 0 and 1 to be the geodesic in Hk between these

endpoint values. The main result of [2] immediately implies that

Hφt ,k ≥ Ht
k

for t between 0 and 1, and by definition equality holds at the endpoints. Let

Tt,k := H−1
φt ,k

Ḣφt ,k

Differentiating with respect to t at t = 0, 1 we then get that

〈Aku, u〉H 0
k

≤ 〈T0,ku, u〉H 0
k

and
〈Aku, u〉H 1

k
≥ 〈T1,ku, u〉H 1

k

This means that we get estimates for the tangent vector to the finite dimensional
geodesic in terms of certain operators on Vk defined by theMonge–Ampère geodesic.
These operators are Toeplitz operators on Vk with symbol φ̇t , t = 0, 1 and their
spectral measures are essentially known to converge to μt = μ . Since Ak is pinched
between these two operators it is not hard to see that the spectral measures of Ak

have the same limit, which proves the theorem.
In a final section we will give a result on the uniform convergence of FSk of

finite dimensional geodesics to Monge–Ampère geodesics, generalizing the work of
Phong-Sturm mentioned earlier. This result is only a small variation of Theorem 6.1
from [2], but it has as a consequence the following theorem which is more natural
than Theorem 6.1 in [2] so it seems good to state it explicitly.

Theorem 1.2 Let φ0 and φ1 be two Kähler potentials in HL and let φt be the
Monge–Ampère geodesic joining them. Let

Ht
k = Hilbk(φt )

for t = 0, 1 and let Ht
k for t between 0 and 1 be the geodesic in Hk between these

two points. Let finally
Bt,k := FSk(H

t
k )
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for 0 ≤ t ≤ 1. Then

sup |k−1 log Bt,k − φt | ≤ C
log k

k
.

This theorem answers affirmatively a question raised by Arezzo and Tian in [1]
(question 2 in that paper). It strengthens the main result of Phong and Sturm, [14],
who proved that

lim
l→∞(sup

k≥l
k−1 log Bt,k)

∗ = φt

uniformly, where u∗ means the upper semicontinuous regularization of a function u.
The final parts of this work (the most important parts!) were carried out during

the conference on extremal Kähler metrics at BIRS June-July 2009. I am grateful to
the organizers for a very stimulating conference. I would also like to thank Jian Song
for suggesting that my curvature estimates might be relevant in connection with the
Chen-Sun theorem and for encouraging me to write down the details of the proof of
Theorem 1.2. Finally I am grateful to Xiuxiong Chen and Song Sun for explaining
me their result and to the referee for helpful comments.

2 Background and Definitions

In the first subsection we will give basic facts about the space HL and its finite
dimensional ‘quantizations’. Since this material is well known (see e.g. [10, 14] or
[7]) we will be brief and emphazise a few particularities that are relevant for this
paper.

2.1 HL,Hk and Its Variants

Let L be an ample line bundle over the compact manifold X . HL is the space of all
smooth metrics φ on L with

ωφ := i∂∂̄φ > 0.

HL is an open subset of an affine space and its tangent space at each point equals the
space of smooth real valued functions on X . The Riemannian norm on this tangent
space at the point φ is the L2-norm

‖ψ‖2 =
∫

X
|ψ|2ωn

φ/Vol.



Probability Measures Associated to Geodesics … 401

A geodesic inHL is a curve φt for a < t < b that satisfies the geodesic equation

d2

dt2
φt = |∂̄ d

dt
φt |2ωφt

. (2.1)

It is useful to extend the definition of φt to complex values of t in the strip

� = {t; a < Re t < b}

by taking it to be independent of the imaginary part of t . Then (2.1) can be written
equivalently on complex form

c(φt ) := φ̈t t̄ − |∂̄φ̇t |2ωφt
= 0,

where φ̇t = ∂φt/∂t . On the other hand the expression c(φt ) is related to the Monge–
Ampère operator through the formula

c(φt )idt ∧ dt̄ ∧ (ωφt )
n = (i∂∂̄φt )

n+1/(n + 1),

where on the right hand side we take the ∂∂̄-operator on � × X . Geodesics in HL

are therefore given by solutions to the homogeneous Monge–Ampère equation that
are independent of t . Notice that a geodesic will automatically satisfy

i∂∂̄φt ≥ 0,

and we shall refer to any curve with this property as a ‘subgeodesic’ even though
this term has no meaning in Riemannian geometry in general.

A fundamental theorem of Chen, with complements of Błocki, [5, 6], says that if
φ0 and φ1 are two points inHL they can be connected by a geodesic of class C1,1, i
e such that

(i∂∂̄φt )
n+1 = 0

and
∂∂̄φt

has bounded coefficients.
One associates withHL the vector spaces

Vk := H 0(X, kL)

of global holomorphic sections of kL for k positive integer. A metric φ in HL is
mapped to a hermitian norm Hilbk(φ) on Vk by

‖u‖2Hilbk (φ) :=
∫

X
|u|2e−kφωn

φ.
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It will also be useful for us to consider the vector spaces

H 0(X, KX + kL).

A metric φ on L also induces an hermitian norm, Hkφ on these spaces through

‖u‖2Hkφ
:=

∫

X
|u|2e−kφ. (2.2)

An important point is that |u|2e−kφ is a measure on X if u lies in H 0(X, KX + kL),
so the integral of this expression is naturally defined, without the introduction of any
extra measure like ωn

φ.
In order to treat both these types of spaces simultaneously we let F be an arbitrary

line bundle over X and consider spaces

H 0(X, KX + kL + F).

Norms on these spaces are then defined by

‖u‖2Hkφ+ψ
:=

∫

X
|u|2e−kφ−ψ,

where ψ is some metric on F . The two cases we discussed earlier then correspond
to F = −KX and

ψ = − logωn
φ,

and F = 0 respectively. In the first case

Hkφ+ψ = Hilbkφ

as defined above, but varying ψ we get similar spaces defined by arbitrary smooth
volume forms instead of ωn

φ.
Let now V be the space of holomorphic sections of some line bundle, G, over

X ; it may be any of the choices discussed above, and denote by HV the space of
hermitian norms on V . For such a hermitian norm, H , let s j be an orthonormal basis
for the space of sections H 0(X,G), and consider the Bergman kernel

BH =
∑

|s j |2.

The absolute values on the right hand side here are to be interpreted with respect to
some trivialization of G. When the trivialization changes, log BH transforms like a
metric on G since

|u|2/BH

is a well defined function if u is a section of G. By definition FS(H) is that metric



Probability Measures Associated to Geodesics … 403

FS(H) = log BH .

By the well known extremal characterization of Bergman kernels we have

BH (x) = sup
u∈H 0(X,G)

|u(x)|2
‖u‖2H

.

From this we can conclude that the Bergman kernel is a decreasing function of the
metric; if we change the metric to a larger one, the Bergman kernel becomes smaller.

Choosing a basis for V we can represent an element in HV by a matrix that we
slightly abusively also call H . A curve in HV then gets represented by a curve of
matrices Ht . Differentiating norms we get

d

dt
‖u‖2Ht = 〈Atu, u〉Ht ,

with

At = (Ht )−1 d

dt
Ht .

At is an endomorphism of V ; the tangent vector to the curve Ht . Its norm is

‖At‖2 = tr A∗
t At .

Here the * stands for the adjoint with respect to H , but since A is selfadjoint for this
scalar product, the norm of A is the sum of the squares of its eigenvalues.

Finally, the geodesic equation is

d

dt
At = 0.

It is easy to see that any two norms inHV can be joined by a geodesic. Explicitly,
we can find a basis s j of V which is orthonormal w r t H 0 and diagonalizes H 1

with eigenvalues eλ j . The geodesic is then represented (in this basis) by the diagonal
matrix Ht with eigenvalues etλ j . Hence, A = At is diagonalized by the same basis
and has eigenvalues λ j .

Just like in the case ofHL it is convenient to consider curves Ht defined also for
complex values of t in the strip �, by letting it be independent of the imaginary part
of t . We can then write the geodesic equation equivalently as

∂

∂ t̄
H−1 ∂

∂t
H = 0.

This suggests that the geodesic equation can be thought of as the zero-curvature
equation for a certain vector bundle. Let E be the trivial bundle over � with fiber V .
A curve inHV is then the same thing as a vector bundle metric on E , independent of
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the imaginary part of t , and we see that geodesics correspond to flat metrics on E .
In analogy with the case of curves inHL , we will call curves inHV that correspond
to vector bundle metrics of semipositive curvature ‘subgeodesics’ in HV .

A main role in the sequel is played by Theorem 2.1 in [2]. This theorem implies
that if φt is a subgeodesic inHL , i e satisfies

i∂∂̄φt ≥ 0,

then the induced curve from formula (2.2), Hφt , inHV for V = H 0(X, KX + L) has
semipositive curvature, so it is a subgeodesic inHV .

Since metrics with semipositive curvature are greater than flat metrics having the
same boundary values, this gives us a way of comparing L2-norms on V induced by
(sub)geodesics inHL to finite dimensional geodesics inHV (cf Proposition 3.1).

2.2 Measures Defined by Geodesics

Let us start with the case of a finite dimensional geodesic, Ht , in HV . As we have
seen in the previous subsection it can be represented by a diagonal matrix with
diagonal elements etλ j in a suitable basis, and its tangent vector A is then diagonal
with diagonal elements λ j . The measure we associate to the geodesic is then the
(normalized) spectral measure of A

νA = 1

d

∑
δλ j ,

with d the dimension of V . This is defined in terms of eigenvalues of the endomor-
phism A so it does not depend on the basis we have chosen.

Recall that for any pair of norms inHV , Donaldson [11] has defined a quantity

Z(H 1, H 0) = log
det H 1

det H 0

(the determinant is the determinant of a matrix representing the norm in some basis,
but since we consider quotients of determinants, Z does not depend on which basis).
Then

d

dt
Z(Ht , H 0) = tr A.

Hence we see that, since A is constant and we have chosen our parameter interval to
be [0, 1], that ∫

R

xdνA = tr A/d = Z(H 1, H 0)/d
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so first moments of the spectral measure gives the Donaldson Z -functional. Second
order moments are ∫

R

x2dνA = tr A2/d = ‖A‖2/d

which in the same way equals the square of the geodesic distance from H 0 to H 1,
again divided by d.

We next turn to the corresponding construction for HL . Let φt be a curve in HL

and to fix ideas we think of t as real now. We first assume that φt is smooth and
denote by

φ̇t = dφt

dt

the tangent vector (a smooth function on X ). For ease of notation we also set

ωt = ωφt .

Lemma 2.1 Let f be a compactly supported function on R of class C1. Then

d

dt

∫

X
f (φ̇t )ω

n
t =

∫

X
f ′(φ̇t )c(φt )ω

n
t .

Proof This is just a simple computation.

d

dt

∫

X
f (φ̇t )ω

n
t =

∫
f ′(φ̇t )

d2φt

dt2
ωn
t + n

∫

X
f (φ̇t )i∂∂̄φ̇t ∧ ωn−1

t .

By Stokes’ theorem applied to the last term this equals

∫
f ′(φ̇t )

d2φt

dt2
ωn
t − n

∫

X
f ′(φ̇t )i∂φ̇t ∧ ∂̄φ̇t ∧ ωn−1

t =
∫

X
f ′(φ̇t )c(φt )ω

n
t .

�
Since for smooth geodesics c(φt ) = 0 it follows that the integrals

∫

X
f (φ̇t )ω

n
t

do not depend on t . By approximation we can draw the same conclusion for (say)
geodesics of class C1.

Proposition 2.2 Letφt be a curve of metrics on L with semipositive curvature which
is of class C1 and satisfies

(i∂∂̄φt )
n+1 = 0

in the sense of currents. Then the integrals
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∫

X
f (φ̇t )ω

n
t

do not depend on t.

Proof Let K be a compact in�. We can then approximate φt over K × X by smooth
metrics φε

t such that
i∂∂̄φε

t ≥ 0

and ∫

K×X
(i∂∂̄φε

t )
n+1

tends to 0. In fact, the approximation can be carried out locally by convolution and
then patched together with a partition of unity - the patching causes no problem if
the initial metric is of class C1. The proposition then follows from the lemma. �
Remark: As pointed out in [8], this proposition follows from well known facts
if the geodesic is smooth and ωt > 0 for all t . In that case the geodesic defines
a foliation by graphs of holomorphic functions from the parameter space to X ,
along which φt is harmonic. Following the leaves of the foliation we get maps
Ft from X to itself that depend holomorphically on t and satisfy F∗

t (ωt ) = ω0 (i.e.
they are symplectomorphisms that carry the symplectic forms ωt to ω0). Moreover,
F∗
t (φ̇t ) = φ̇0, from which it follows directly (φ̇t )∗(ωt ) = (φ̇0)∗(ω0). In the special

case when t → Ft is the flow of a holomorphic vector field V one can also interpret
φ̇0 as the Hamiltonian of the imaginary part of V , and (φ̇0)∗(ω0) is then the moment
measure of the imaginary part of V . �

For a C1-geodesic we now consider the normalized volume measures on X

dVt = ωn
t /Vol

where

Vol =
∫

X
c(L)n

is the volume of X , and their direct image measures under the map −φ̇t

dμt = (−φ̇t )∗(dVt ).

These are probability measures on R, supported on a compact interval [−M, M],
M = sup |φ̇t | and concretely defined by

∫

R

f (x)dμt (x) =
∫

X
f (−φ̇t )ω

n
t /Vol.

By the proposition, they do in fact not depend on t , so dμ = dμt is a fixed probability
measure on R associated to the given geodesic.
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Recall that the Aubin–Yau energy of a pair of metrics in HL is defined in the
following way:

d

dt
E(φt ,φ0) = −

∫

X
φ̇tω

n
t ,

and E(φ0,φ0) = 0. From this we see that the first order moment of dμ

∫
xdμ(x) = −

∫

X
φ̇tω

n
t /Vol,

is preciseley the derivative of theAubin–Yau energy, which is constant for a geodesic,
and hence equal to the Aubin–Yau energy itself if the parameter interval is (0, 1).
This corresponds to the relation between the measures dνk and the Donaldson Z -
functional, and Theorem 1.1 in this case is just the familiar convergence of the
Z -functionals to the Aubin–Yau energy. Similarly, the second order moments

∫
x2dμ(x) =

∫

X
(φ̇t )

2ωn
t /Vol,

is the length of the tangent vector to φt squared, so second order moments give
geodesic distances. Notice finally that the proposition implies that all L p-norms of
φ̇t are constant along the curve, hence also the L∞-norm. More precisely, since
sup(−φ̇t ) is the supremum of the support of μ it follows that inf φ̇t (and sup φ̇t ) are
constant (where we mean essential sup and inf).

Remark Notice also that if we define the measures in the same way when φt is a
subgeodesic, then the integrals

∫

R

f (x)dμt (x)

increase with t if f is an increasing function. Intuitively, the measures μt move to
the right as t increases.

3 The Convergence of Spectral Measures

We first state a consequence of the main result from [2]. In the statement of the
proposition we shall use the notation

‖u‖2Hφ
=

∫

X
|u|2e−φ

for the hermitian norm on H 0(X, L + KX ) defined by a metric φ on L .
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Proposition 3.1 Let L be an ample line bundle over X and let φt for t = 0, 1 be two
elements of HL . Let for t = 0, 1 Ht be the norms Hφt on H 0(X, L + KX ) defined
by φ0 and φ1. Let for t between 0 and 1 Ht be the geodesic in the space of metrics
on H 0(X, L + KX ) joining H 0 and H 1. Let finally φt be any smooth subgeodesic
in HL connecting φ0 and φ1, i e any metric with nonnegative curvature on L over
X × �, smooth up to the boundary. Then

Ht ≤ Hφt . (3.1)

Proof If we regard Ht and Hφt as vector bundle metrics on the trivial vector bundle
over � with fiber H 0(X, L + KX ), then Theorem 2.1 of [2] implies that the second
of these metrics has nonnegative curvature. On the other hand the first metric has
zero curvature since Ht is a geodesic . Since the twometrics agree over the boundary
a comparison lemma from [15] or [18] gives inequality (3.1). �

We have been a little bit vague about what ‘smoothness’ means in the proposition.
The proof of Theorem 2.1 in [2] requires at least C2-regularity, but we claim that C1

regularity is sufficient in the proposition, which can be seen from regularization of
the metric (this can be done locally with the aid of a partition of unity in the case
that the metric is C1 from the start). This means that we can (and will) apply the
proposition to Monge–Ampère geodesics of class C1,1.

The next step is to differentiate the inequality (3.1) for t = 0, 1 (recall that equality
holds at the endpoints). If u lies in H 0(X, L + KX ) we get

d

dt
‖u‖2Ht = 〈Atu, u〉Ht ,

where
At = (Ht )−1 Ḣ t .

Since Ht is a geodesic, At = A is independent of t . The derivative of the right hand
side of (3.1) is

d

dt
‖u‖2Hφt

= 〈Ttu, u〉Hφt
,

where Tt is the Toeplitz operator on H 0(X, L + KX ) defined by

〈Ttu, u〉Hφt
= −

∫

X
φ̇t |u|2e−φt .

Since by Proposition 3.1
‖u‖Ht ≤ ‖u‖Hφt

with equality for t = 0 it follows that
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〈A0u, u〉H 0 = d

dt
|t=0‖u‖Ht ≤ d

dt
|t=0‖u‖Hφt

= 〈T0u, u〉H 0 ,

which means that
A = A0 ≤ T0 (3.2)

as operators on the space H 0(X, L + KX ) equipped with the Hilbert norm H 0.
Since equality between the norms also holds for t = 1, we get in a similar way

A ≥ T1 (3.3)

as operators on the space H 0(X, L + KX ) equipped with the Hilbert norm H 1.
We are now going to apply these estimates to multiples kL of the bundle L , but

in order to accommodate also the spaces H 0(X, kL) and L2-metrics of the form

∫

X
|u|2e−kφdV,

where dV is a smooth volume form, we need to generalize the set up first. Let
therefore F be an arbitrary line bundle over X and consider line bundles of the form

KX + F + kL .

The main examples will be F = 0 and F = −KX , and the reader may find it conve-
nient to focus on the case F = 0 first, in which case the argument below is easier, at
least notationally. Put now

Vk = H 0(X, kL + F + KX ).

Fix two metrics φ0 and φ1 inHL . Let χ be some fixed metric on L considered as
a bundle over X × �̄, i e a curve of metrics χt for t in �̄. Assume that its curvature
is bounded from below by a positive constant, so that

i∂∂̄X,t ≥ c(ωφ0 + idt ∧ dt̄),

that χt = φt for t equal to 0 and 1, and that finally χt depends only on Re t . Such a
metric χ can be found on the form

tφ1 + (1 − t)φ0 + κ(Re t)

where κ is a sufficiently convex function on the interval (0, 1) which equals 0 at the
endpoints.

Let also ψ be an arbitrary metric on F considered as a bundle over X × �̄,
independent of t , not necessarily with positive curvature, but smooth up to the
boundary. Choose a fixed positive constant a, sufficiently large so that
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ai∂∂̄χ + i∂∂̄ψ ≥ 0.

We next consider the vector spaces

H 0(X, KX + F + kL)

with the induced L2-metrics

‖u‖2k,t :=
∫

X
|u|2e−(k−a)φt−aχt−ψt .

Notice that themetric on the line bundle F + kL thatweusehere, (k − a)φ + aχ + ψ
has been chosen so that it has nonnegative curvature, meaning that we can apply the
results from (3.1), (3.2) and (3.3). We denote the Toeplitz operators arising from
differentiation of the norms at t = 0 and t = 1 by T0,k and T1,k now in order to keep
track on how they depend on k. By immediate calculation

〈Tk,t u, u〉k,t = −
∫

X
[(k − a)φ̇t + aχ̇t + ψ̇t ]|u|2e−(k−a)φt−aχt−ψt (3.4)

for t = 0, 1.
Let now Ht

k be the finite dimensional geodesic in the space of hermitian norms
on H 0(X, KX + F + kL) that connects ‖ · ‖k,t for t = 0 and t = 1. Let

Ak = (Ht
k )

−1 d

dt
Ht

k

be the tangent vector of the finite dimensional geodesic. By (3.2) and (3.3) we have
the inequalities

T0,k ≥ Ak (3.5)

with respect to the hermitian scalar product H 0
k and

T1,k ≤ Ak (3.6)

with respect to the hermitian scalar product H 1
k . Let λ j (k) be the eigenvalues of Ak

arranged in increasing order, and let τ t
j (k) be the eigenvalues of the two Toeplitz

operators, also arranged in increasing order. We then get immediately from (3.5) and
(3.6) that

τ 1
j (k) ≤ λ j (k) ≤ τ 0

j (k). (3.7)

The final step in the argument is the following theorem on the asymptotics of
Toeplitz operators; it is a variant of a theorem of Boutet de Monvel and Guillemin,
[4]. Since the theorem is essentially known, we defer its proof to an appendix.
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Theorem 3.2 Let L and F be line bundles over X with smooth metrics φ and ψ
respectively. Assume that φ has strictly positive curvature. Let ξ and ξk be continuous
real valued functions on X with ξk tending uniformly to 0. Define Toeplitz operators
with symbols ξ + ξk on the spaces

H 0(X, KX + kL + F)

by

〈Tku, u〉kφ+ψ =
∫

(ξ + ξk)|u|2e−kφ−ψ.

Let μk be the normalized spectral measure of Tk.
Then the sequence μk converges weakly to the measure

μ = ξ∗(ωn
φ/Vol),

the direct image of the normalized volume element on X defined by ωφ under the
map ξ.

We apply this theorem to the Toeplitz operator k−1Tk,t for t = 0, 1. Its symbol is
−φ̇t plus a term that goes uniformly to zero. In our operators k−1Tk,t the metric on
F can be taken to be ψ + a(χ − φ) if we take the metric on L to be φ. Theorem 3.2
therefore shows that the spectral measures dμk,t of k−1Tk,t converge to

dμt = (−φ̇t )∗(dVt ),

for t = 0, 1.
By the previous section these two measures are the same (for t = 0 and t = 1),

namely the measure dμ that we associated to the geodesic in HL . The inequality
(3.7) for the eigenvalues shows that

∫

R

f dμk,1 ≤
∫

R

f dνk ≤
∫

R

f dμk,0

if f is continuous and increasing (recall that νk is the spectral measure of Ak). It
follows that

lim
∫

R

f dνk =
∫

R

f dμ

for f continuous and increasing. Since anyC1-function can bewritten as a difference
of two increasing functions, the previous limit must hold for any C1-function too.
But this implies weak convergence of the measures since all the measures involved
are probability measures supported on a fixed compact interval. This finishes the
proof of our main result:
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Theorem 3.3 Let φ0 and φ1 be two points inHL and let ψt be two arbitrary smooth
metrics on the line bundle F for t equal to 0 and 1. Let

Vk = H 0(X, KX + F + kL)

and let Hk be the space of hermitian norms on Vk. Let Ht
k be the elements in Hk

defined by

‖u‖2Ht
k
=

∫

X
|u|2e−kφt−ψt

for t = 0, 1. Let for t between 0 and 1 Ht
k be the geodesic in Hk connecting these

two norms and let νk be its normalized spectral measures as defined above. Then

νk −→ μ,

in the weak*-topology, where μ = μt is defined in 1.1.

Note that this implies Theorem 1.1 since we can take F = −KX and choose ψt to
be equal to − logωn

φt
for t equal to 0 and 1. We also see that we can replace ωn

φt
by

any other smooth volume forms. We can also take F = 0. Then the proof simplifies:
The introduction of the auxiliary metrics is not necessary since we can work with
the metrics

‖u‖2Hφt
=

∫

X
|u|2e−kφ

directly, and we get the analogue of Theorem 1.1 for these metrics.
The basic observation in the proof is that the inequality between finite dimensional

geodesics and L2-norms coming fromMonge–Ampère geodesics in Proposition 3.1
also gives inequality for the first derivatives, since we have equality at the endpoint.
The next proposition (cf the sup norm estimate for φ̇t from [14]) is another instance
of this.

Proposition 3.4 With the same notation as in the previous theorem, and

Ak = (Ht
k )

−1 Ḣ t
k ,

let �(k) and λ(k) be the largest and smallest eigenvalues of k−1Ak. Then, for all k,

inf −φ̇t ≤ λ(k) ≤ �(k) ≤ sup−φ̇t .

Proof This follows immediately from (3.7), since the corresponding inequality for
the eigenvalues of the Toeplitz operators is immediate. �



Probability Measures Associated to Geodesics … 413

4 Approximation of Geodesics

Again we consider the spaces

Vk = H 0(X, KX + F + kL)

equipped with metrics

‖u‖2kφ+ψ :=
∫

X
|u|2e−kφ−ψ

Let
Bkφ+ψ =

∑
|s j |2,

where s j is an orthonormal basis for Vk . Since pointwise

|u|2/Bkφ+ψ

is a function if u is a section of KX + F + kL ,

log Bkφ+ψ

can be interpreted as a metric on KX + F + kL . In the proof below we will have use
for the following lemma (we formulate it for F = 0 and k = 1), which is a variant on
a well known theme. The basic underlying idea, to estimate Bergman kernels using
the Ohsawa-Takegoshi theorem is due to Demailly, see e.g. [9].

Lemma 4.1 Let ω0 be a fixed Kähler form on X. Let φ be a metric (not necessarily
smooth) on the line bundle L satisfying

i∂∂̄φ ≥ c0ω
0.

Let Hφ be the norm ∫

X
|u|2e−φ

for u in H 0(X, L + KX ), and let Bφ be its Bergman kernel. Then

Bφ ≥ δ0e
φωn

0

with δ0 a universal constant, if c0 is sufficiently large depending on X and ω0 (only).

Proof By the extremal characterization ofBergmankernels it suffices tofind a section
u of KX + L with

|u(x)|2e−φ(x) ≥ δ0ω
n
0

∫

X
|u|2e−φ
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Choose a coordinate neighbourhood U with local coordinates z centered at x which
is biholomorphic to the unit ball of Cn via the map z. By the Ohsawa-Takegoshi
extension theorem we can find a section satisfying the required estimate over
U . (L and KX are trivial over the ball and the Ohsawa-Takegoshi Theorem says
that we can extend the value 1 from the origin to the ball with an absolute L2-
estimate.) Let η be a cut-off function, equal to 1 in the ball of radius 1/2 and with
compact support in the unit ball. We then solve, using Hörmander’s L2-estimates

∂̄v = ∂̄η ∧ u =: g

with ∫

X
|v|2e−φ−2nη log |z| ≤ (C/c0)

∫

X
|g|2e−φ−2nη log |z|

(z is the local coordinate). This can be done since

i∂∂̄φ − 2nη log |z| ≥ c0ω
0/2

if c0 is large enough. Then v(x) = 0 since the integral in the left hand side is finite.
Then

u − v

is a global holomorphic section of KX + L satisfying the required estimate. �
Let φ0 and φ1 be two points inHL , and let ψ0 and ψ1 be any two smooth metrics

on F . We abbreviate by Ht
k the norms ‖ · ‖kφt+ψt for t equal to 0 or 1, and let for

t between 0 and 1 Ht
k be the geodesic in Hk , the space of hermitian norms on Vk ,

joining these two endpoints.

Theorem 4.2 For t equal to 0 and 1, let φt be two points in HL , and for t between
0 and 1 let φt be the geodesic in HL joining them. Let Bt,k be the Bergman kernels
for the norms in the finite dimensional geodesic Ht

k . Let τ be an arbitrary smooth
metric on KX + F over � × X. Then

sup
X

|k−1 log Bt,k − k−1τ − φt | ≤ Ck−1 log k

for 0 ≤ t ≤ 1

Proof Note that
i∂∂̄ log Bt,k ≥ 0.

This follows since Ht
k are geodesics. Perhaps the easiest way to see it (cf [14]) is to

use the explicit description

Bt,k =
∑

|e−tλ j ||s j |2
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which is immediate from the explicit formula for geodesics in Hk in Sect. 2. Since
log Bt,k is a metric on KX + F + kL ,

k−1(log Bt,k − τ )

is a metric on L . We shall now us themetricχ on L that we introduced in the previous
section; it has strictly positive curvature over � × X and coincides with φ0 and φ1

respectively when (Re )t is 0 or 1. Take a to be positive and consider

(k − a)k−1(log Bt,k − τ ) + aχ;

it is a smooth metric on kL and it has positive curvature if a is sufficiently large. By
standard Bergman kernel asymptotics it differs from φ0 and φ1 at most by C log k
when (Re )t equals 0 or 1. Hence

(k − a)k−1(log Bt,k − τ ) + aχ ≤ kφt + C log k

since the geodesic φt is the supremum of all positively curved metrics lying below
φ0 and φ1 on the boundary (cf [6]). Dividing by (k − a) we see that

k−1 log Bt,k − k−1τ − φt ≤ Ck−1 log k

since χ, τ and φt are all uniformly bounded. The crux of the proof is the opposite
estimate.

To estimate Bt,k from below we first compare it to the Bergman kernel

Bφt ,k,

which is defined using the hermitian norms

‖u‖2∗ =
∫

X
|u|2e−(k−a)φt−aχt−ψt ,

where the curveψt is chosen as in the previous section. Again, themetric (k − a)φt +
aχ + ψ that we use here has positive curvature if a is sufficiently large. These norms
coincide with Ht

k on the boundary and by Proposition 3.1 they are bigger than Ht
k in

the interior. This implies (by the extremal characterization of Bergman kernels) that
the respective Bergman kernels satisfy the opposite inequality, so we get

log Bt,k ≥ log Bφt ,k .

To complete the proof it therefore suffices to show that

Bφt ,k ≥ Cekφt+τ ,
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or equivalently
Bφt ,k ≥ Ce(k−a)φt+aχ+τ

But this follows from Lemma 4.1 since we can take a arbitrarily large so that

i∂∂̄(k − a)φt + aχ + τ

meets the curvature assumptions of that lemma. �
Remark: If F = 0 and τ is an arbitrary metric on KX , Theorem 4.2 is exactly
Theorem 6.1 in [2]. The main case is when F = −KX and we choose (τ = 0 and)
ψt = − logωφt for t = 0 and t = 1. Then

‖u‖2kφt+ψt
=

∫

X
|u|2e−kφtωn

φt

and we get Theorem 1.2 from the Introduction (this is the case studied in [14]).
Finally, taking F = −KX and ψt one fixed (arbitrary) smooth metric on −KX , we
get the counterpart of Theorem 1.2 for the norms

∫

X
|u|2e−kφt dV,

where dV is a fixed smooth volume form on X .

5 Appendix: Background on Toeplitz Operators

We consider Toeplitz operators Tk,ξ on the spaces

Vk = H 0(X, KX + F + kL)

with symbol ξ in C(X). Tk,ξ is defined by

〈Tk,ξu, u〉kφ+ψ =
∫

X
ξ|u|2e−kφ−ψ,

where the inner product is

〈v, u〉kφ+ψ =
∫

X
vūe−kφ−ψ.

In other words
Tk,ξu = Pk(ξu)

where Pk is the Bergman projection.
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Recall that if T is any hermitian endomorphism on an N -dimensional inner prod-
uct space, and if we order its eigenvalues

λ1 ≤ λ2 ≤ ...λn,

then
λ j = inf

V j⊂V,dimVj= j
‖T |Vj ‖.

From this it follows that if we perturb the operator T to T + S where ‖S‖ ≤ ε, then
the eigenvalues shift at most by ε. This means that if we consider the spectral measure
of

Tk,ξ+ξk

where ξk goes uniformly to 0, the limit of the spectral measures is the same as the
limit of the spectral measures of

Tk,ξ.

In other words, in the proof of Theorem 3.2 we may assume that ξk = 0. By the
same token, we may assume that ξ is smooth, since continuous functions can be
approximated by smooth functions. The most important part of the proof of Theorem
3.2 is the next lemma.

Lemma 5.1 Let dk = dim(Vk). Then

lim
1

dk
trTk,ξ =

∫

X
ξωn

φ/Vol.

Proof Let Bkφ+ψ be the Bergman kernel. Then

1

dk
trTk,ξ = 1

dk

∫

X
ξBkφ+ψe

−kφ−ψ.

But, by the formula for (first order) Bergman asymptotics

Bkφ+ψe
−kφ−ψ/dk

tends to ωn
φ/Vol, so the lemma follows. �

Lemma 5.2 Let ξ and η be smooth functions on X. Then

‖Tk,ξTk,η − Tk, ξη‖2 ≤ Ck−1.

Proof Note that if u is in Vk then

Tk,ξu − ξu =: vk
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is the L2-minimal solution to the ∂̄-equation

∂̄vk = ∂̄ξ ∧ u

(this is where we want ξ smooth). By Hörmander L2-estimates

‖Tk,ξu − ξu‖2kφ+ψ ≤ ‖∂̄ξ ∧ u‖2kφ+ψ ≤ Ck−1‖u‖2kφ+ψ

(the last inequality is because the pointwise norm ‖∂̄ξ‖2θ ≤ C/k when we measure
with respect to the Kähler metric θ = i∂∂̄(kφ + ψ)). Therefore, if u is of norm at
most 1,

‖Tk,ξTk,ηu − ξTk,ηu‖2 ≤ Ck−1,

‖ξTk,ηu − ξηu‖2 ≤ Ck−1

and
‖Tk, ξηu − ξηu‖2 ≤ Ck−1

and the lemma follows. �

Let μk be the normalized spectral measures of Tk,ξ . In order to study their weak
limits, it is enough to look at their moments

∫

R

x pdμk(x) = 1

dk
trT p

k,ξ.

By Lemma 7.2 and induction

‖T p
k,ξ − Tk,ξ p‖2 ≤ Ck−1.

Hence
1

dk
trT p

k,ξ = 1

dk
trTk,ξ p + O(k−1)

and

lim
1

dk
trTk,ξ p =

∫

X
ξ pωn

φ/Vol

by Lemma 7.1. Thus,

lim
∫

R

x pdμk(x) = 1

dk
trT p

k,ξ =
∫

X
ξ pωn

φ/Vol

for any power x p. Taking linear combinations we get the same thing for any poly-
nomial, and therefore for any continuous function. This completes the proof of
Theorem 3.2.

http://dx.doi.org/10.1007/978-3-030-01588-6_7
http://dx.doi.org/10.1007/978-3-030-01588-6_7
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Intersection Bounds for Nodal Sets
of Laplace Eigenfunctions

Yaiza Canzani and John A. Toth

Abstract Let (Mn, g) be a real analytic compact n-dimensional Riemannian mani-
fold and denote byϕλ the eigenfunctions of the Laplace operator�g with eigenvalue
λ2. We prove that if H ⊂ M is a real analytic closed curve for which there exist
λ0, C > 0 so that ‖ϕλ‖L2(H) ≥ e−Cλ for all λ > λ0, then

#{ϕ−1
λ (0) ∩ H} = O(λ).

The purpose of this paper is to study the local geometry of the nodal sets of Laplace
eigenfunctions. Let (M, g) be a compact real analytic Riemannian surface with no
boundary. Denote by ϕλ the real-valued eigenfunctions of the Laplace operator �g

satisfying

−�gϕλ = λ2ϕλ.

For normalization purposes we assume that ‖ϕλ‖L2(M) = 1. Our object of study is
the zero set of ϕλ as λ → ∞, which we denote by

Zϕλ
= ϕ−1

λ (0).

From a quantum mechanics point of view, the position of a quantum particle on
(M, g) of energy λ is described by the probability measure x �→ |ϕλ(x)|2dvg(x).
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Fig. 1 Figure: Nodal lines
of a high energy state,
λ ∼ 84, in the quarter
stadium [4] H

The set Zϕλ
is then interpreted as the least likely place for a quantum particle in the

energy state λ to be.
There are several results that aim to describe the geometric structure of Zϕλ

as
λ → ∞. For example, the zero sets are rectifiable so it is possible to study their
length. On a compact, real analytic, surface with no boundary it was proved by [12]
that there exist two positive constants c1 and c2 for which

c1 λ ≤ length(Zϕλ
) ≤ c2 λ as λ → ∞.

It is also known that the nodal set Zϕλ
spreads along the surface at a 1/λ scale in the

sense that there exists a positive constant C so that the intersection of any geodesic
ball of radiusC/λwith the zero set Zϕλ

is non-empty for all λ large enough. Onemay
also try to understand the structure of Zϕλ

by studying its complement. A connected
component of M\Zϕλ

is called a nodal domain, andCourant’s nodal domainTheorem
states that the number of nodal domains of ϕλ is bounded by λ2 for all λ. It is also
known that the inner radius of a nodal domain on a compact real analytic surface is
bounded above and below by a multiple of 1/λ (see [2, 21]).

So far we have only mentioned global results on the geometry of Zϕλ
as λ → ∞.

In this paper we are interested in understanding the structure of Zϕλ
from a local

point of view. To do this, Zelditch and the second author proposed in [23] to study
the number of intersections of Zϕλ

with a given fixed curve. Namely, consider a
real analytic closed curve H ⊂ M . In view of the aforementioned results one should
expect that

#{Zϕλ
∩ H} = OH (λ) as λ → ∞. (1)

Of course there are settings in which (1) will not be satisfied in the sense that there
are ‘bad’ curves for this problem in which the curve H is entirely contained in the
nodal set of infinitely many eigenfunctions. An example of such ‘bad’ curve is the
equator on the sphere alongwhichwehave that all odd spherical harmonics vanish. To
overcome dealing with this pathological set of curves, in [23] the authors introduced
the concept of a good curve (Fig. 1).

Definition 1 A curve H ⊂ M is said to be good if for some λ0 > 0 there exists
C > 0 such that for all λ ≥ λ0,
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‖ϕλ‖L2(H) ≥ e−Cλ. (2)

Using this concept it is proved in [23] that if� ⊂ R
2 is a real analytic bounded planar

domain, and H ⊂ � is an interior good curve, then (1) holds.
The goodness condition (2) is likely generic. It was proved in [23] that H = ∂�

is always a good curve, but in general it appears difficult to verify this condition.
In [17], Jung proved that geodesic circles in compact hyperbolic surfaces are good
curves, and also that the estimate (1) is satisfied for them. In [3], Bourgain and
Rudnick proved that on the flat 2-torus, if H is real analytic with nowhere vanishing
curvature, then H is good and (1) is also satisfied. For � ⊂ R

2 bounded, piecewise-
smooth convex domain with ergodic billiard flow, El-Hajj and Toth [13] proved that
if H is a closed real analytic interior curve with strictly positive geodesic curvature,
and (ϕ

λ j
)∞j=1 is a quantum ergodic sequence of Neumann or Dirichlet eigenfunctions

in �, then H is good and so #{Zϕ
λ j

∩ H} = O(λ j ) as j → ∞. The purpose of the

first part of this paper is to obtain upper bounds for #{Zϕλ
∩ H} on general compact

surfaces under the assumption that the curve H is good.

Theorem 1 Let (M, g) be a real analytic compact Riemannian surface and let
H ⊂ M be a real analytic closed good curve on M. Then,

#{Zϕλ
∩ H} = O(λ),

as λ → +∞.

We note that it follows directly from our proof that Theorem 1 still holds if one
imposes the weaker goodness condition ‖ϕλ‖L∞(H) ≥ e−Cλ as λ → ∞. However,
as a practical matter, such a pointwise condition is usually harder to verify than (2).

The idea of the proof of Theorem 1 uses holomorphic continuation of the heat
kernel E(t, x, y) = e−t�(t, x, y) in the outgoing x-variable at small time t = 1

λ
to

a Grauert tube complexification MC of M. Writing EC

λ (z, y) = EC(λ−1, z, y) with
(z, y) ∈ MC × M, one has the obvious identity EC

λ φλ = e−λφC

λ where φC

λ denotes
holomorphic continuation of the eigenfunction φλ to the Grauert tube MC. Thus, to
estimate φC

λ it suffices to compute asymptotics for the complexified heat kernel EC

λ .
The result we need here is given in Proposition 3 and is based on earlier work of
Golse–Leichtnam–Stenzel [18] and Cheeger-Gromov-Taylor [10]. Next, we restrict
z to a Grauert subtube HC of MC over a real curve H and apply a frequency function
argument to estimate from above the number of complex (and hence, real) zeros of
φC

λ in the tube HC. This analysis is carried out in Sect. 1.2.
Finally, we note that it is sometimes convenient (see [13] Theorem1) to use the

notion of weak goodness in place of the goodness assumption in Definition 1.

Definition 2 Given H ⊂ M be a real-analytic curve, we say that it is weakly good
for the eigenfunction sequence φλ provided for some λ0 > 0 there exists C > 0 such
that for all λ ≥ λ0,

sup
z∈HC

|φC

λ (z)| ≥ e−Cλ.

http://dx.doi.org/10.1007/978-3-030-01588-6_1
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In Sect. 2, using a Hadamard three circles argument, we show that Definitions 1
and 2 are equivalent.

Notation. Throughout thismanuscriptα ∈ N ×Ndenotes amultiindexα = (α1,α2).
We use the standard multiindex notation, |α| = α1 + α2, α! = α1α2 and ∂α

x :=
∂α1

x1 ∂α2
x2 .

We write injM for the injectivity radius of (M, g). For 0 < r < injM, we write Br (x)

for the geodesic ball centred at x ∈ M of radius r .

We thank Gilles Lebeau for helpful comments regarding Proposition 5. We also
thank Steve Zelditch for many helpful conversations regarding nodal intersections.

1 Intersection Bounds on Real Analytic Surfaces

In this section, we begin with some background material and then prove Theorem 1.
In Sect. 1.1 we give some background on the complexification of the heat kernel
with the necessary bounds near and far from the diagonal. In Sect. 1.2 we explain
how to obtain the bound on the number of zeros of an eigenfunction along H by
complexifying the eigenfunction and reproducing it using the heat operator.

1.1 Analytic Continuation

In this section we review how to analytically continue eigenfunctions to the com-
plexification of the real analytic manifold where they originally lived in. We refer to
[18] for further details.

Throughout this sectionwe assume (M, g) is a compact, real analytic, Riemannian
surface. By a theorem of Bruhat-Whitney, M has a unique complexification MC with
M ⊂ MC totally real that generalizes the complexification of R2 to C2. One defines
the plurisubharmonic exhaustion function

√
ρg on MC as the unique solution to the

complex Monge-Ampere equation{
(∂∂̄

√
ρ

g
)2 = δM,dvg

,

ι∗(i∂∂̄ρg) = g,

where ι : M → MC is the embedding given by the Bruhat-Whitney Theorem. For
example, in the simplest model case when M = R

2 and MC = C
2, it is easy to check

that
√

ρ
g
(z) = 2|Im z|. The open Grauert tube of radius ε is defined to be

MC

ε = {z ∈ MC : √
ρg(z) ≤ ε}.

There is a maximal εmax > 0 for which MC
ε is defined [18, Thm 1.5], and MC

ε is a
strictly pseudoconvex domain in MC for all ε ≤ εmax. We denote the space of germs
of holomorphic functions on an open subset U ⊂ MC by O(U ).
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For all ε ≤ εmax, we identify the radius ε ball bundle BεM ⊂ T M with B∗
ε M ⊂

T ∗M using the Riemannian metric. For x ∈ M and 0 < r < injM, we let expx :
Br (0) ⊂ T ∗

x M → M be the geodesic exponential map. We denote the lifted expo-
nential map to all of B∗

ε M by

Exp : B∗
ε M → M, Exp(x, ξ) = expx (ξ).

Since (M, g) is real-analytic, for fixed x ∈ M and 0 < r < injM, the geodesic
exponential map expx : Br (0) ⊂ T ∗

x M → M admits a holomorphic continuation
expCx : (Br (0))C → MC in the fiber ξ-variables with range contained in MC. For
0 < ε < εmax, we define the associated complexified lifted map by

ExpC : B∗
ε M → MC, ExpC(x, ξ) = expCx (iξ).

The complexifiedmap,ExpC, gives a diffeomorphismbetween B∗
ε M and MC

ε with the
property that (ExpC)∗(ρg) = | · |g.Consequently, B∗

ε M ∼= MC
ε as complexmanifolds

via ExpC. Also, the map

πM : MC

ε → M, πM (ExpC(x, ξ)) = x, (3)

is an analytic fibration. The fibers π−1
M

(M) correspond to imaginary directions over
the totally real submanifold M ⊂ MC

ε .

1.1.1 Complexified Normal Coordinates

In this section we review the results in Lemma 1.18 of [18] regarding the existence
of a holomorphic coordinate system h(x, ξ) on the complex manifold B∗

ε M . Fix
x0 ∈ M and 0 < r < injM. The map

η = r(x) �→ expx0(η) = x

is real analytic near the origin and so it can be holomorphically extended to the
complex manifold B∗

ε M in a neighbourhood of x0 by

η + iζ = h(x, ξ) �→ expCx0(η + iζ) = (x, ξ).

According toLemma1.18 of [18], this coordinate system satisfies h(x, 0) = r(x) and
h(x0, ξ) = iξ. Identifying the point (x, ξ) ∈ B∗

ε M with expCx (iξ) ∈ MC
ε as described

above, one has πM (x, ξ) = πM (ExpC(x, ξ)) = x = expx0(η).
As of now we adopt the following notation: for z = (x, ξ) ∈ MC

ε close to x0 we
write

Re z := Re h(x, ξ), and Im z := Im h(x, ξ). (4)
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For future purposes we remark that with this notation πM(z) is identified with Re z
since πM (z) = πM (x, ξ) = expx0(η) = expx0(Re h(x, ξ)) = expx0(Re z).

1.1.2 Complexified Distance

Consider the squared geodesic distance on M

r2(·, ·) : M × M → R.

For 0 < ε < εmax, there exists a connected open neighbourhood �̃ ⊂ MC
ε × MC

ε

of the diagonal � ⊂ M × M to which r2(·, ·) can be holomorphically extended
[18, Corollary 1.24].We denote the extension by r2

C
(·, ·) ∈ O(�̃).Moreover, one can

easily recover the exhaustion function
√

ρg(z) from rC; indeed, ρg(z) = −r2
C
(z, z̄)

for all z ∈ MC
ε .

1.1.3 Complexified Heat Operator

Consider the heat operator of (M, g) defined at time h by

Eh = eh�g : C∞(M) → C∞(M).

The Schwartz kernel of the heat operator can be written in the form

Eh(x, y) =
∞∑
j=0

e−hλ2
j ϕ j (x)ϕ j (y) for (x, y) ∈ M × M,

where {ϕ j } j is an orthonormal basis of L2(M) of eigenfunctions, �gϕ j = λ2
jϕ j . By

a recent result of Zelditch [24, Section11.1], the maximal geometric tube radius εmax

agrees with the maximal analytic tube radius in the sense that for all 0 < ε < εmax,
all the eigenfunctions ϕ j extend holomorphically to MC

ε (see also [18, Prop. 2.1]). It
is also known that the kernel E(·, ·; h) admits a holomorphic extension to MC

ε × MC
ε

for all 0 < ε < εmax and h ∈ (0, 1), [18, Prop. 2.4]. We denote the complexification
by EC

h (·, ·). In particular, if we write ϕC

j ∈ O(MC
ε ) for the holomorphic continuation

of the eigenfunctions, it is clear that

EC

h (z, y) =
∞∑
j=0

e−hλ2
j ϕC

j (z)ϕ j (y) for (z, y) ∈ MC

ε × M,

and therefore
(EC

h ϕ j )(z) = e−hλ2
j ϕC

j (z), z ∈ MC

ε . (5)
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To analyze the asymptotic behaviour of EC

h (z, y)with (z, y) ∈ MC
ε × M , we split

the kernel into two pieces where
(i) the point (πM z, y) ∈ M × M is close to the diagonal in terms of injM and the

Grauert tube radius ε,
(ii) the point (πM z, y) ∈ M × M is relatively far from the diagonal in terms of

injM and ε.

In the near-diagonal case (i), one has the following result of Golse, Leichtnam
and Stenzel.

Theorem 2 ([18, Theorem 0.1]) Let (M, g) be a compact real analytic Rieman-
nian surface. Fix 0 < ε < εmax and x ∈ M. Then, there exist positive constants
β = β(x, ε), D = D(x, ε), and an open neighbourhood Wx ⊂ MC

ε of x, such that

EC

h (z, w) = e− r2
C

(z,w)

4h NC(z, w; h) + O(e−β/h), h → 0+, (6)

for (z, w) ∈ Wx × Wx . Here,

NC(z, w; h) := 1

4πh

∑
0≤k≤D/h

uC

k (z, w)hk, (7)

where the uC

k ’s are analytic continuation of the coefficients appearing in the formal
solution of the heat equation on (M, g). The asymptotic sum

∑∞
k=1 uC

k (z, w) is a
classical symbol in the sense of Sjöstrand and the error term O(e−β/h) is uniform in
(z, w) ∈ Wx × Wx .

We make use of this fact in Proposition 3 below. To control the behaviour of the
complexified heat kernel for a pair of points (πM z, y) ∈ M × M that are relatively
close or far from the diagonal, we need the following result.

Proposition 3 There exist 0 < ε0 ≤ εmax and positive constants β, D, ε1, δ0 and
h0, depending only on ε0 > 0, such that for 0 < ε ≤ ε0, 0 < δ ≤ δ0 and (z, y) ∈
Mε × M, the following is true:

(i) When r(πM z, y) < δ and h ∈ (0, h0],

EC

h (z, y) = e− r2
C

(z,y)

4h NC(z, y; h) + O(e−β/h), (8)

where NC(z, y; h) is the polyhomogeneous sum in (7).
(ii) When r(πM z, y) > δ

2 and h ∈ (0, 1),

∣∣EC

h (z, y)
∣∣ ≤ C e− δ2

128h , (9)

where C is a positive constant depending only on (M, g).
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Proof For each x ∈ M consider the open neighbourhood of x , Wx ⊂ MC
ε0
as in (6).

Since M is compact in MC
ε0

there exists a finite covering {Wx j }k
j=1 so that M ⊂

∪ j≤k Wx j . For each Wx j let β j = β(x j , ε0) and D j = D(x j , ε0) be as in (6) and set

β := min
1≤ j≤k

β j and D := min
1≤ j≤k

D j . (10)

M

MC
ε1

MC
ε0

Wx1

Wx2
Wx3

z

π
M

z y

U

Next, choose 0 < ε1 ≤ ε0 so that MC
ε1

⊂ ∪ j≤k Wx j . Fix 0 < ε ≤ ε1. Since

M ⊂
⋃

{U : U ⊂ M is open and (π−1
M

(U ) ∩ MC

ε ) ⊂ Wx j for some j}

and M is compact, there is a finite covering of M = ∪N
�=1U� with the property that

for all � = 1, . . . , N there exists j� ∈ {1, . . . , k} such that (π−1
M

(U�) ∩ MC
ε ) ⊂ Wx j�

.
Let δ0 > 0 be the Lebesgue number corresponding to the covering {U�}N

�=1. That
is, if x, y ∈ M and r(x, y) < δ0, then there exists � ∈ {1, . . . , N } such that x, y ∈ U�.
Without loss of generality we assume δ0 ≤ 1

8 injM.
Let 0 < δ ≤ δ0, 0 < ε ≤ ε1, and consider (z, y) ∈ MC

ε × M . If r(πM z, y) < δ
then there exists � ∈ {1, . . . , N } for which both πM z and y belong to U�. By the
definition of U� we get z, y ∈ Wx j�

for some j� and we can use the heat kernel
expansion (6) to obtain (8) for β as defined above.

We next consider the case r(πM z, y) > δ
2 . Using the notation in [10, (A.2)] define

φh(s) := h− 1
2 e− s2

8h . In [10, Theorem 3.1] it is proved that for 0 < a ≤ injM, there
exists a constant C = C(a, M) > 0 such that for all h ∈ (0, 1], α ∈ Z

2+, and x, y ∈
M with r(x, y) > 2a,

sup
Ba(y)

∣∣∂α
x Eh(x, ·)∣∣ ≤ C(C |α|)|α| ψh

(
r(x, y) − 2a

)
, (11)

where ψh(r) := ∫ ∞
r φh(s)ds is defined as in [10, (2.2)].

Observe that there exists C ′ > 0 for which ψh(r) ≤ C ′e− r2

8h for h ∈ (0, 1). There-
fore, by possibly adjusting C in (11), we have for h ∈ (0, 1) and x, y ∈ M with
r(x, y) > 2a that

sup
Ba(y)

∣∣∂α
x Eh(x, ·)∣∣ ≤ C(C |α|)|α|e− (r(x,y)−2a)2

8h . (12)
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To complete the proof wemake a Taylor expansion around x = πM z with z ∈ MC
ε .

Assume that r(πM z, y) > δ/2 for some y ∈ M and seta = δ/8.Then r(πM z, y) > 4a
and so r(πM z, y) − 2a > 2a. From (12) it follows that

∣∣∂α
x Eh(πM z, y)

∣∣ ≤ C(C |α|)|α|e− a2

2h . (13)

Let 0 < ε ≤ εmax and suppose (z, y) ∈ MC
ε × M . Choose x0 ∈ M for which

z ∈ (BinjM(x0))ε, and write z = Re z + iIm z in the complexified normal coordinates
at x0 described in (4). By Taylor expansion at Im z = 0 we then know

EC

h (z, y) =
∑

α

(i Im z)|α|

α! · ∂α
x Eh(Re z, y). (14)

Since in complexified normal coordinates πM z is identified with Re z via πM z =
expx0(Re z), the proof follows from substituting the Cauchy estimates (13) in (14).
Using Stirling’s formula, it follows that to get convergence in (14) it suffices to work
with 0 < ε ≤ ε0 for 0 < ε0 ≤ min{ 1

Ce , εmax}. �
From now on, we always carry out our analysis in the complex Grauert tubes

MC
ε with 0 < ε ≤ ε1, where in view of Proposition 3, we have good control of the

complexified heat kernel, EC

h (·, y) for y ∈ M .

1.2 Bound for Good Curves

Since our arguments are semiclassical, by a slight abuse of notation we write ϕh for
ϕλ j with λ j = 1

h .
Without loss of generality, we assume that the length of H is |H | = 1 and let

q : [− 1
2 ,

1
2 ] → H be a real analytic arc-length parametrization of H with extension

q : [−1, 1] → H that is 1-periodic. In analogy with [13], we define the restricted
parametrized eigenfunctions

u H
h : [−1, 1] → C, uH

h := ϕh ◦ q.

For future reference, for ε > 0 sufficiently small, we define the height ε level curve

Hε := {qC(t); |Re t | ≤ 1

2
, |Im t | = ε}. (15)

For 0 < ε ≤ ε1/2, consider the complex strip around [−1, 1] given by

[−1, 1]Cε := {τ ∈ C : Re(τ ) ∈ [−1, 1] and Im(τ ) ∈ [−ε, ε]}.
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Consider also the holomorphic continuation of the functions uH
h defined as

uH,C
h : [−1, 1]Cε → C, uH,C

h := (ϕh ◦ q)C. (16)

We shall bound the number of zeros of uh in [− 1
2 ,

1
2 ] by the number of zeros of

uH,C
h inside a subset of [−1, 1]Cε that contains [− 1

2 ,
1
2 ]. Let Cε be a simply connected

domain with real analytic boundary satisfying

Cε ⊂ [−1, 1]Cε and [− 1
2 ,

1
2 ] ⊂ Cε.

By the Riemann mapping Theorem there exists a biholomorphism F : B1(0) ⊂
C → Cε. The map F has a natural extension to the closure of B1(0) while being a
diffeomorphism when restricted to the boundary ∂B1(0). The function uH,C

h ◦ F is
holomorphic in B1(0) and so one can apply Lemma 3.2 in [19] to count the number
of its zeros. Let r ∈ (0, 1) be chosen so that [− 1

2 ,
1
2 ] ⊂ F(Br (0)). By a slight modi-

fication of the argument in [19, Lemma 3.2] one can show that there exists a constant
cε > 0, depending only on H , r and ε, so that

#
{
τ ∈ Br (0) : (uH,C

h ◦ F)(τ ) = 0
}

≤ cε

‖∇(uH,C
h ◦ F)‖2L2(B1(0))

‖uH,C
h ◦ F‖2L2(∂B1(0))

.

Since uH,C
h ◦ F is harmonic, we may combine Green’s identity together with the

Cauchy-Schwartz inequality to get the bound

‖∇(uH,C
h ◦ F)‖2L2(B1(0))

≤ ‖uH,C
h ◦ F‖L2(∂B1(0))‖∂ν(u

H,C
h ◦ F)‖L2(∂B1(0)),

where ∂ν denotes the normal derivative along ∂B1(0). Using the Cauchy Riemann
equations we may turn the normal derivative of the real (resp. imaginary) part of
uH,C

h ◦ F into the tangential derivative of the imaginary (resp. real). After chang-
ing variables to work on ∂Cε = F(∂B1(0)), and using that [− 1

2 ,
1
2 ] ⊂ F(Br (0)), it

follows that

#

{
t ∈ [− 1

2 ,
1
2 ] : uH

h (t) = 0

}
≤ cε

‖∂T uH,C
h ‖L2(∂Cε)

‖uH,C
h ‖L2(∂Cε)

. (17)

Thus, to count zeros ofϕh along H, onemust bound the quotient ‖∂T uH,C
h ‖L2(∂Cε)/

‖uH,C
h ‖L2(∂Cε). Since we are considering the case of boundaryless compact surfaces,

in contrast to the planar domains case treated in [13], there are no potential layer for-
mulas. Instead,weuse the holomorphically-continuedheat kernel EC and the obvious
identity (5) to represent the holomorphically-continued eigenfunctions restricted to
the curve H. Indeed, from (5), we know that

uH,C
h = e

1
h (EC

h ϕh) ◦ qC. (18)
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Applying contour deformation and an eigenfunction localization argument, we prove
the following result.

Proposition 4 Let 0 < ε ≤ ε1. Identify ∂Cε with R/2πZ and define the frequency
cut-off function χR ∈ C∞

0 (T ∗(∂Cε)), depending only on the frequency variable, by
setting

χR (x,σ) =
{
1 |σ| ≤ R,

0 |σ| ≥ R + 1,

for all (x,σ) ∈ T ∗(∂Cε). Then, there exist positive constants h0 = h0(ε), and cR,ε =
cR,ε(R, ε) satisfying cR,ε � R as R → ∞, such that for h ∈ (0, h0]∥∥∥(1 − Oph(χR ))(h∂T )uH,C

h

∥∥∥
L2(∂Cε)

= O
(

Rh e− CR,ε
h

)
.

Proof Let κ : [−π,π] → ∂Cε be an arc-length parametrization of ∂Cε. For t, s ∈
[−π,π]we obtain the following formula for the Schwartz kernel of (1 − Oph(χR )) :
C∞(∂Cε) → C∞(∂Cε)

(1 − Oph(χR ))(t, s) = 1

2π

∑
k∈Z

∫
R

e
i
h (t−s+2πk)σ(1 − χR (σ))dσ, (19)

where to shorten notation we write χR (σ) for χR (κ(s),σ) (this is possible since χR

is a function of the fiber coordinates only). Using (18), (19), and integrating by parts
we get for t ∈ [−π,π] that

(1 − Oph(χR ))[h∂T u H,C
h (κ(t))] =

= i

2π

∑
k∈Z

∫ π

−π

∫
R

e
i
h (t−s+2πk)σσ(1 − χR (σ))u H,C

h (κ(s))dsdσ

= e
1
h

2π

∑
k∈Z

∫ π

−π

∫
R

∫
M

iσe
i
h (t−s+2πk)σ EC

h (qC(κ(s)), y)(1 − χR (σ)) ϕh(y) dvg(y) ds dσ.

For a > 0, σ ∈ R and s ∈ [−π,π], define

ωσ(s) = s − ia sgn(σ).

The curve κ ◦ ωσ is a contour deformation of κ (i.e ∂Cε). Choose a small enough
so that the image of κ ◦ ωσ is contained in [−1, 1]Cε . Since for all y ∈ M and σ ∈ R

the map τ �→ e− i
h τ ·σ EC

h (qC(κC(τ )), y) is holomorphic in τ ∈ [π,π]Cε , we apply the
Cauchy Theorem to shift the contour of integration in the s-variable and get for
t ∈ [−π,π]
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(1 − Oph(χR ))[h∂T u H,C
h (κ(t))] =

= e
1
h

2π

∑
k∈Z

∫ π

−π

∫
R

∫
M

iσe
i
h (t−ωσ(s)+2πk)σ EC

h (μσ(s), y) (1 − χR (σ)) ϕh(y) dvg(y) ds dσ,

where
μσ(s) := qC(κC(ωσ(s))).

Let ρ ∈ C∞
0 (R) be the cut-off function

ρ(r) =
{
1 r ∈ (− 1

2 ,
1
2 ),

0 r ∈ R\{(−1, 1)}. (20)

Choose δ = δ(ε) > 0 sufficiently small so that Proposition 3 applies. To simplify
notation, we introduce the cutoff function

ρδ(s, y;σ) := ρ
(
δ−2 r2(πM μσ(s), y)

)
for (s, y) ∈ [−π,π] × M. (21)

We use this function to further decompose the kernel into two pieces depending
on whether r(πM μσ(s), y) is relatively small (resp. large) in terms of injM and the
Grauert tube radius ε > 0. We apply the first (resp. second) estimates for EC

h in
Proposition 3 to control the two cases. More precisely, for t ∈ [−π,π], we write

2πe− 1
h (1 − Oph(χR ))[h∂T uH,C

h (κ(t))] = Ah,R(t) + Bh,R(t),

for

Ah,R(t) =
∑
k∈Z

∫ π

−π

∫
R

∫
M

iσe
i
h (t−ωσ(s)+2πk)σ EC

h (μσ(s), y)(1−χR (σ))ρδ(s, y; σ) ϕh(y) dy ds dσ,

and

Bh,R(t) =
∑
k∈Z

∫ π

−π

∫
R

∫
M

iσe
i
h (t−ωσ(s)+2πk)σ EC

h (μσ(s), y)(1−χR (σ))(1−ρδ(s, y; σ))ϕh(y)dy ds dσ.

We estimate the terms Ah,R(t) and Bh,R(t) separately. To deal with the near diag-
onal term Ah,R(t), we apply the asymptotic expansion (8) for the kernel of EC

h in
Proposition 3 to get

Ah,R(t) =
∑
k∈Z

∫ π

−π

∫
R

∫
M

e
i
h ψk (t,s,y,σ) iσ(1 − χR (σ))NC(μσ(s), y; h)ρδ(s, y; σ)ϕh(y) dy ds dσ

+ O
( ∫

|σ|>R
|σ|e− a|σ|+β

h dσ
)
,
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where the error term is uniform in t ∈ [−π,π] and the phase function

ψk(t, s, y,σ) := (t − ωσ(s) + 2πk)σ + i r2
C
(μσ(s), y)/4, (22)

for (s, t, y) ∈ [−π,π] × [−π,π] × M and (s, y;σ) ∈ supp ρδ. Note that the imag-
inary part of the phase ψk satisfies

Im [ψk(t, s, y,σ)] = a|σ| + Re( r2
C
(μσ(s), y))/4

≥ a|σ| + α,

forα := min{Re( r2
C
(μσ(s), y))/4 : (s, y) ∈ [−π,π] × M, r(πM μσ(s), y)) < δ}.

We observe that ∫
|σ|>R

|σ|e −a|σ|
h dσ = O(Rh e− a R

h ). (23)

Since for (t, s) ∈ [−π,π] × [−π,π], one has the lower bound |∂σψk(t, s, y,σ)| �
|k| as k → ∞, it then follows from (23) and successive integrations by parts in σ
that ∣∣Ah,R(t)

∣∣ = O
(

Rh e− a R+α
h

)
+ O(Rhe− a R+β

h ). (24)

On the other hand, when r(πM μσ(s), y) > δ/2, by Proposition 3 (ii) we know

EC(μσ(s), y, h) = O( e− δ2

128h ). By an application of the Cauchy-Schwarz inequality
in y ∈ M , it follows that

∣∣Bh,R(t)
∣∣ ≤ C

∫
|σ|>R

|σ|e− ρ|σ|+α
h e− δ2

128h dσ = O
(

Rh e− 1
h ( δ2

128+α+ρR)
)

. (25)

Finally, since 2πe− 1
h |(1 − Oph(χR ))u

H,C
h (κ(t))| ≤ ∣∣Ah,R(t)

∣∣ + ∣∣Bh,R(t)
∣∣, the

result follows from (24) and (25). �

1.2.1 Proof of Theorem 1

In view of Proposition 4, we can now complete the proof of Theorem 1. From (17),

# {q ∈ H : ϕh(q) = 0}

≤ cε

h

‖h∂T uH,C
h ‖L2(∂Cε)

‖uH,C
h ‖L2(∂Cε)

≤ cε

h

⎛
⎜⎝

∥∥∥Oph(χR )(h∂T ) uH,C
h

∥∥∥
L2(∂Cε)

‖uH,C
h ‖L2(Cε)

+

∥∥∥(1 − Oph(χR ))(h∂T ) uH,C
h

∥∥∥
L2(∂Cε)

‖uH,C
h ‖L2(∂Cε)

⎞
⎟⎠ .

(26)
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Since uH,C
h is holomorphic in the strip [−1, 1]Cε , by the Cauchy Integral formula

it follows that for t ∈ [− 1
2 ,

1
2 ]

uH
h (t) = 1

2πi

∫ π

−π

uH,C
h (κ(s))

κ(s) − t
ds

where we continue to write κ for the parametrization of ∂Cε. From the Cauchy-
Schwarz inequality, it follows that there is a constant c1 > 0 such that

‖uH
h ‖L∞([− 1

2 , 12 ]) ≤ c1 ‖uH,C
h ‖L2(∂Cε).

By the goodness condition this implies that there is c2 > 0 so that

‖uH,C
h ‖L2(∂Cε) ≥ c2 e− c0

h . (27)

Combining Proposition 4 with (27),

∥∥∥(1 − Oph(χR ))(h∂T ) uH,C
h

∥∥∥
L2(∂Cε)

‖uH,C
h ‖L2(∂Cε)

= OR,ε(Rh e
−cR,ε+c0

h ). (28)

with cR,ε � R as R → ∞.
Furthermore, since (Oph(χR ) ◦ (h∂T )) ∈ �

0,−∞
h (∂Cε), by L2-boundedness and

equation (27), ∥∥∥Oph(χR )(h∂T ) uH,C
h

∥∥∥
L2(∂Cε)

‖uH,C
h ‖L2(∂Cε)

= OR,ε(1). (29)

The proof follows from the estimates in (29) and (28) by choosing cR,ε large
enough so that −cR,ε + c0 < 0. �

2 Goodness Versus Weak Goodness

Proposition 5 Let H ⊂ Mn be a real analytic curve. Then, the weak goodness
assumption on H in Definition 2 is equivalent to the goodness assumption in Defi-
nition 1.

Proof Goodness clearly implies weak goodness since there must exist a point q ∈ H
at which |uh(q)| ≥ e−C/h .

Conversely, suppose H is weakly-good; that is,

sup
z∈HC

|uH,C
h (z)| ≥ e−C/h . (30)
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Let H, Hε1 and Hε2 with 0 < ε1 < ε2 be three level curves in the tube HC (see
(15) for definitions). Without loss of generality, we also assume that

sup
z∈Hε1

|uH,C
h (z)| = e−C/h .

By Hadamard three circles theorem, with 0 < θ < 1,

sup
z∈Hε1

|uH,C
h (z)| ≤ sup

z∈Hε2

|uH,C
h (z)|1−θ × sup

q∈H
|uH

h (q)|θ

≤ e2ε2(1−θ)/h · ‖uH
h ‖θ

L∞(H). (31)

In the last line we used a sup estimate for |uH,C
h |. For this, we recall that [24]

‖uH,C
h ‖L∞(HC

ε2
) = O(h

−n+1
4 eε2/h) = O(e2ε2/h).

Consequently, by the weak goodness assumption (30) and (31),

‖uH
h ‖L∞(H) ≥ e−C/h .

By continuity, we choose q0 ∈ H so that

|uH
h (q0)| = e−C/h .

By the standard bound for Laplace eigenfunctions, one also has that

‖∂suH
h ‖L∞(H) = O(h−(n+1)/2). (32)

Since by (32) the tangential derivative of uH
h along H has at most polynomial

growth in h−1, it follows by Taylor expansion along H centered at q0 that there is an
subinterval I (h) ⊂ H containing q0 of length e−C ′/h with C ′ > C > 0 such that for
q ∈ I (h),

|uH
h (q)| ≥ e−C ′′/h .

Consequently,
‖uH

h ‖L2(H) ≥ e−C ′′/h

and so, H is good. �
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Upper Bounds for Bergman Kernels
Associated to Positive Line Bundles with
Smooth Hermitian Metrics

Michael Christ

Abstract Off-diagonal upper bounds are established forBergmankernels associated
to powers Lλ of holomorphic line bundles L over compact complex manifolds,
asymptotically as the power λ tends to infinity. The line bundle is assumed to be
equipped with a Hermitian metric with positive curvature form, which is C∞ but not
necessarily real analytic. The bounds are of the form exp(−h(λ)

√
λ logλ) where h

tends to infinity at a non-universal rate. This form is best possible.

1 Introduction

1.1 The Setting

Let X be a connected compact complex manifold, without boundary. Let X be
equipped with a C∞ Hermitian metric g, along with the metrics on the bundles
B(p,q)(X) of forms of bidegree (p, q) induced by g, and the volume form on X
associated to the induced Riemannian metric. Denote by ρ(z, z′) the Riemannian
distance from z ∈ X to z′ ∈ X .

Let L be a positive holomorphic line bundle over X . Let L be equipped with a
C∞ Hermitian metric φ whose curvature is positive at every point. φ is not assumed
to be real analytic.

For each positive integer λ, let the line bundle Lλ be the tensor product of λ
copies of L . Lλ inherits from φ a Hermitian metric in a natural way; if v ∈ Lz then
the λ–fold tensor product v ⊗ v ⊗ · · · ⊗ v satisfies |v ⊗ v ⊗ · · · ⊗ v| = |v|λ.

Let L2
λ = L2(X, Lλ) be the Hilbert space of equivalence classes of all square

integrable Lebesgue measurable sections of Lλ. Likewise there are the Hilbert
spaces L2(X, B(0,q) ⊗ Lλ). Let H 2

λ be the closed subspace of L2
λ consisting of all
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holomorphic sections. TheBergman projection is defined to be the orthogonal projec-
tion Bλ from L2

λ onto H
2
λ . TheBergman kernel Bλ(z, z′) is the associated distribution-

kernel; Bλ(z, z′) is a complex linear endomorphism from the fiber Lλ
z′ to the fiber

Lλ
z .
Much is known concerning the nature of these Bergman kernels. In particular,

detailed asymptotic expansions are known near the diagonal z = z′, that is, when
ρ(z, z′) is bounded by a constant multiple of λ−1/2. See for instance [1, 6, 20, 23] as
well as the related work [5] of Boutet de Monvel and Sjöstrand on the Bergman and
Szegö kernels associated to domains in C

n+1. This paper is concerned with upper
bounds when z, z′ are far apart, that is, behavior for large λ when ρ(z, z′) is bounded
below by a positive quantity independent of λ. If φ and g are real analytic, then
for large λ, |Bλ(z, z′)| ≤ Cδe−cδλ whenever ρ(z, z′) ≥ δ > 0, where Cδ < ∞ and
cδ > 0 are independent of λ. This is interpreted in the theory of Bleher, Shiffman
and Zelditch [3, 4, 16] of random zeroes of sections of Lλ as an exponentially small
upper bound on the degree of correlation between zeros at distinct points.

1.2 Subexponential Off-Diagonal Decay

It was shown in [9] that this exponential decay fails to hold, in general, if φ is merely
infinitely differentiable.More quantitatively, for any function h satisfying h(t) → ∞
as t → +∞ there exists [9] an example for which

lim sup
λ→∞

sup
ρ(z,z′)≥δ

eh(λ)
√

λ logλ |Bλ(z, z
′)| = ∞ (1.1)

for some δ > 0. In this paper we establish an upper bound which dovetails with these
lower bounds.

Theorem 1 Let L be a positive holomorphic line bundle over a connected compact
complex manifold X. Let there be given a C∞ positive metric on L with strictly
positive curvature form, and a C∞ Hermitian metric on X. For any δ > 0 there exist
� < ∞ and a function h satisfying h(λ) → ∞ as λ → ∞ such that for all z, z′ ∈ X
satisfying ρ(z, z′) ≥ δ,

|Bλ(z, z
′)| ≤ e−h(λ)

√
λ logλ for all λ ≥ �. (1.2)

The analysis below of Bλ is based on its connection with the fundamental solution
of a partial differential operator, �λ. Denote by ∂̄λ the usual Dolbeault operator,
mapping sections of B(0,q) ⊗ Lλ to sections of B(0,q+1) ⊗ Lλ. Denote by ∂̄∗

λ its formal
adjoint, with respect to the Hilbert space structures L2

λ defined above. Define

�λ =
{

∂̄∗
λ∂̄λ + ∂̄λ∂̄

∗
λ for n > 1

∂̄λ∂̄
∗
λ for n = 1,

(1.3)
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acting on sections of B(0,1) ⊗ Lλ. For each λ, �λ is an elliptic second-order linear
system of partial differential operators with C∞ coefficients. When it is expressed
in local coordinates, its coefficients are O(λ2) in any CN norm.

Because the metric φ is positive, there exists a constant c > 0 such that for all
sufficiently large λ ∈ N,

〈�λu, u〉 ≥ cλ‖u‖2L2 (1.4)

for all twice continuously differentiable sections u of B(0,1) ⊗ Lλ. This bound is
deduced from a well-known integration by parts calculation [13]. Because of this
lower bound and because �λ is formally self-adjoint and elliptic, there exists a
unique self-adjoint bounded linear operator Gλ on L2(X, B(0,1) ⊗ Lλ) satisfying
�λ ◦ Gλ = I , the identity operator.

The operator Bλ is related to �λ by

Bλ = I − ∂̄∗
λ ◦ Gλ ◦ ∂̄λ. (1.5)

Thus the Bergman kernel is expressed in terms of certain derivatives of the
distribution-kernel for the operator Gλ. We denote this distribution-kernel by
Gλ(z, z′). Because Gλ(z, z′) is a solution of �λGλ = 0 with respect to the vari-
able z and its complex conjugate is a solution of the same equation with respect to
z′, elliptic regularity theory guarantees that Gλ(z, z′) is a C∞ function of (z, z′) on
the complement of the diagonal.

Wewill show thatGλ(z, z′) = O(e−h(λ)
√

λ logλ) for (z, z′) at any positive distance
from the diagonal. The corresponding bound holds for those partial derivatives that
express the distribution-kernel for ∂̄∗

λ ◦ Gλ ◦ ∂̄λ at (z, z′)will be an easy consequence.

For real analytic metrics, the Bergman kernel is O(e−cλ) away from the diagonal.
Combining the result established herewith that of [9], one knows that forC∞ metrics,

decay can in some instances be essentially as slow as e−h(λ)
√

λ logλ, but is never
slower. Zelditch has raised the question of which, or what, behavior is typical, and
which properties of a metric can be inferred from the off-diagonal decay rate of the
associated Bergman kernels. This issue is examined in [10, 24].

1.3 Orientation

A weaker upper bound |Bλ(z, z′)| ≤ e−c
√

λ, valid whenever ρ(z, z′) ≥ δ, is a simple
consequence of (1.4), and requires only C2 or even C1,1 regularity of φ. In the
context of global analysis on C

1, this was shown in [9]. For positive line bundles
over complex manifolds, it was noted by Berndtsson [2]. Closely related results are
found in works of Delin [11] and Lindholm [15]. The novelty in Theorem 1 is a
double improvement of the exponent, from c

√
λ to h(λ)

√
λ logλ.

To establish the weaker bound, consider any real-valued auxiliary weight ψ ∈
C2(X). For any ε > 0 and all sufficiently large λ,
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Re
(〈eε

√
λψ�λe

−ε
√

λψu, u〉)

≥ 〈�λu, u〉 − Cλ1/2ε‖∂̄λu‖ · ‖u‖ − Cλ1/2ε‖∂̄∗
λu‖ · ‖u‖ − Cλε2‖u‖2

≥ (c − Cε)λ‖u‖2L2

(1.6)

for all sections u ∈ C2(X, B(0,1)), where C depends on the C2 norm of ψ. This is
≥ ‖u‖2 for all sufficiently largeλ, provided that ε is chosen tobe sufficiently small as a
function of ‖ψ‖C2 . The inequality (1.6) can alternatively be interpreted as a weighted
inequality for the inverse operator �−1

λ , with weight e2ε
√

λψ . Whenever U,U ′ are
disjoint sets satisfying distance (U,U ′) ≥ δ > 0, by choosing ψ so that ψ ≥ 1 onU ′
andψ ≤ 0 onU we conclude that�−1

λ maps L2(U ) to L2(U ′), where these norms are

defined without reference to the auxiliary weight ψ, with operator norm O(e−c
√

λ)

where c > 0 depends on δ. The pointwise bound for Bλ(z, z′) for (z, z′) ∈ U ×U ′ is
a simple consequence, by a routine elliptic regularity bootstrapping argument which
will be used below in the main body of the proof. See the proof of Lemma 5.

The author is grateful to Maciej Zworski for useful comments on the exposition.

2 Unweighted Bounds and Twisted Operators

It will be convenient to work in an equivalent framework, in a coordinate patch
U ⊂ X over which L is holomorphically trivial, and in which norms are defined
by integrals without λ–dependent weights, but the underlying operators ∂̄λ, �λ are
twisted. This framework is more natural for discussion of regularity.

Let U be a small coordinate patch on X , over which L may be identified with
U × C. Functions and differential forms may be regarded as scalar–valued. For
each degree q, there is an operator ∂̄λ, which maps sections of B(0,q) ⊗ Lλ over
U to sections of B(0,q+1) ⊗ Lλ over U . ∂̄λ is naturally identified with the standard
Cauchy-Riemann operator ∂̄, which maps sections of B(0,q) to sections of B(0,q+1).

φ ∈ C∞ is R-valued, and the positive curvature assumption means precisely that
its complex Hessian matrix

(
∂2φ/∂z j∂ z̄k

)
is strictly positive definite at each point of

U . The C∞ Hermitian metric g given for X is interpreted as a C∞ Hermitian metric
on U , and gives rise to a volume form, expressed as a measure μ on U , which is a
smooth nonvanishingmultiple of Lebesguemeasure onCn . It also gives rise, for each
q, to a C∞ metric on B(0,q) over U . The L2 norm squared of a section of B(0,q) over
U , regarded as a scalar-valued function f , is expressed as

∫
U | f (z)|2e−2λφ(z) dμ(z),

where | f (z)| is measured according to g.
Substituting f e−λφ = u, the norm squared of f with respect to the weight φ

becomes ‖ f ‖2L2 = ∫
U |u(z)|2 dμ(z); there is no weight in this integral. Moreover

e−λφ∂̄ f = e−λφ∂̄(ueλφ) = ∂̄u + λa ∧ u (2.1)
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where a = ∂̄φ ∈ C∞. For each q define

D̄λ = e−λφ ◦ ∂̄ ◦ eλφ = ∂̄ + λa ∧ ·. (2.2)

This is a first-order linear partial differential operator with smooth coefficients, but
with a zero-th order term proportional to the large parameter λ. The formal adjoint(s)
D̄∗

λ are defined with respect to the given metric g and associated volume form. These
data are assumed to be onlyC∞, rather thanCω , but their potential lack of analyticity
is less significant than that ofφ because they are not multiplied by the large parameter
λ.

Define

�λ =
{
DλD

∗
λ + D

∗
λDλ for n > 1,

DλD
∗
λ for n = 1,

(2.3)

acting on (0, 1) forms over U . Under these identifications,

�λ = e−λφ ◦ �λ ◦ eλφ. (2.4)

The function
Gλ(z, w) = e−λφ(z)+λφ(w)Gλ(z, w) (2.5)

represents a fundamental solution for �λ with singularity at z = w, in the usual
sense. This is a section of the complex endomorphism bundle of B(0,1) over U ×U
minus the diagonal; in this local coordinate system, it is a matrix-valued function. Its
size |Gλ(z, w)| is defined with respect to given smooth metrics which do not depend
on λ, so upper bounds with respect to these metrics are uniformly equivalent to upper
bounds with respect to the standard metrics on these bundles.

Theorem 1 is therefore equivalent to an upper bound for all (z, w) inU ×U minus
the diagonal of the form

|Gλ(z, w)| ≤ e−A
√

λ logλ for all λ ≥ �(δ, A), whenever |z − w| ≥ δ (2.6)

with corresponding upper bounds for all first and second–order derivatives of Gλ

with respect to z, w in this same region.

3 A Near-Diagonal Upper Bound

Theorem 1, which is concerned with the nature of Gλ far from the diagonal, will
be derived from a description of Gλ much nearer the diagonal. The main point
is the manner in which the bounds depend on λ, A; these bounds are completely
independent of the exponent A, provided only that λ exceeds a certain threshold,
which does depend on A. The reasoning below will require bounds for derivatives
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of Gλ, as well as for Gλ itself. These bounds are more naturally expressed in terms
of the twisted kernels Gλ introduced above. ∇ will denote the gradient in C

n × C
n ,

with respect to both coordinates z, z′.

Proposition 2 There exist c0, A0 ∈ R
+ such that for any A ∈ [A0,∞) there exists

� = �(A) < ∞ such that for any λ ≥ � and any z, z′ ∈ U satisfying

A0λ
−1/2

√
logλ ≤ |z − z′| ≤ Aλ−1/2

√
logλ, (3.1)

Gλ(z, z′) satisfies

|Gλ(z, z
′)| + |∇z,z′Gλ(z, z

′)| ≤ e−c0λ|z−z′ |2 . (3.2)

As is well understood, there is a natural scale� λ−1/2 inherent in this situation. In
the model situation in which X = C

n and φ(z) ≡ 1
2 |z|2, |Gλ(z, z′)| � e−c0λ|z−z′ |2 |z −

z′|2−2n for n > 1, with the power of |z − z′| replaced by log(1/|z − z′|) for n = 1.
Proposition 2 asserts essentially that this model upper bound persists up to a distance
which is greater by amultiplicative factor of A

√
logλ than the natural scaled distance,

for arbitrarily large A. The lower bound |z − z′| ≥ A0λ
−1/2

√
logλ is an inessential

technicality introduced in order to simplify the statement and proof of the lemma;
otherwise the upper bound would have to be modified in order to take the unbounded
near-diagonal factor |z − z′|2−n into account.

In the next section we will show how Theorem 1 is an essentially formal con-
sequence of Proposition 2. We will then review and establish foundational results,
none of which involve significant novelty, before proving Proposition 2.

4 The Near-Diagonal Bound Implies
the Far-From-Diagonal Bound

‖T ‖op will denote the operator norm of T , as an operator on L2(X, B(0,1) ⊗ Lλ).
Recall that ρ denotes the Riemannian distance function on X2. The following obvious
statement is at the heart of the construction.

Lemma 3 Let T1, T2 be bounded linear operators on L2(X, B(0,q) ⊗ Lλ). Let ri > 0
and suppose that for i = 1, 2, the distribution-kernel associated to Ti is supported
in

{
(z, z′) ∈ X2 : ρ(z, z′) ≤ ri

}
. Then the distribution-kernel associated to T1 ◦ T2 is

supported in
{
(z, z′) ∈ X2 : ρ(z, z′) ≤ r1 + r2

}
.

This will be used to prove:

Lemma 4 Let A < ∞ and δ > 0. There exist C < ∞ and � < ∞ such that for
every λ ≥ � there exists a bounded linear map T from the space of L2 sections of
B(0,1) ⊗ Lλ to itself with these two properties: Firstly, the distribution-kernel for T
is supported in

{
(z, z′) : ρ(z, z′) ≤ δ

}
. Secondly,
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‖T ◦ �λ − I‖op ≤ e−Aλ1/2
√

logλ. (4.1)

Proof Choose an auxiliary function η ∈ C∞([0,∞)) that satisfies η(x) ≡ 1 for x ≤
1
2 , and η(x) ≡ 0 for all x ≥ 1. Let A < ∞. Let P be the operator with distribution-
kernel

K (z, w) = Gλ(z, w)η(A−2λ(logλ)−1ρ2(z, w)).

Letting �λ act with respect to the z variable, and applying Leibniz’s rule and the
chain rule,

|�λ(K (z, w) − Gλ(z, w))| ≤ Cλ2|Gλ(z, w)| + Cλ2|∇Gλ(z, w)|.

On the complement of the diagonal, �λK (z, w) is supported where ρ(z, w) �
Aλ−1/2(logλ)1/2. In this region, according to Proposition 2,

|Gλ(z, w)| + |∇Gλ(z, w)| ≤ CλCe−cλA2λ−1 logλ ≤ CλC−cA2
.

So in all,
|�λ(K (z, w) − Gλ(z, w))| ≤ λC−cA2

for all sufficiently large λ, uniformly for all pairs (z, w) in X2 minus the diagonal.
Since �λ ◦ Gλ = I , this is an upper bound for the operator norm of �λ ◦ P − I .
Since both�λ and P are formally self-adjoint, the same bound holds for P ◦ �λ − I .

Given δ > 0, choose N to be the largest integer such that N Aλ−1/2(logλ)1/2 ≤ δ.
Thus

N � A−1λ1/2(logλ)−1/2δ.

Set

E = I − �λ ◦ P and T = P ◦
N−1∑

j=0

E j

so that
�λ ◦ T = I − EN .

Because the distribution-kernel for P is supported where ρ(z, w) ≤ Aλ−1/2
√
logλ,

the distribution-kernel for T is supported where

ρ(z, w) ≤ N Aλ−1/2
√
logλ ≤ δ,

according to Lemma 3.
Since ‖E‖op = ‖�λ ◦ P − I‖op ≤ λC−cA2

,

‖EN‖op ≤ λ(C−cA2)N ≤ λ(C−cA2)c(A−1λ1/2(logλ)−1/2δ) ≤ e−c′Aλ1/2
√

logλ

for all sufficiently large A. �
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Proof of Theorem 1 Consider any z′ �= z′′ ∈ X . To prove the upper bound for
Bλ(z′, z′′), consider any L2 section f of B(0,1) ⊗ Lλ that is supported in B ′′ =
B(z′′, 1

4ρ(z′, z′′)) and satisfies‖ f ‖L2 ≤ 1.ChooseT as inLemma4,with distribution-
kernel supported within distance 1

2ρ(z′, z′′) of the diagonal. Then in B ′ = B(z′,
1
4ρ(z′, z′′)),

Gλ f = T�λGλ f + O
(
e−A

√
λ logλ‖Gλ f ‖

)

= T f + O
(
e−A

√
λ logλ‖ f ‖).

Since T has distribution-kernel supported within distance 1
2ρ(z, z′) of the diagonal,

T f ≡ 0 in B ′. Therefore

Gλ f = O(e−A
√

λ logλ‖ f ‖) in L2(B ′) norm .

Thus as an operator from L2(B ′′) to L2(B ′), Gλ has operator norm O(e−A
√

λ logλ).
Because Gλ(z, w) is a solution of elliptic linear partial differential equations with
C∞ coefficients with respect to both variables z, w, and because the coefficients of
those equations are O(λ2) in every CN norm, it follows from standard bootstrapping

arguments that for any N , Gλ ∈ CN (B ′ × B ′′), with norm O(e−A
√

λ logλ). Since the
Bergman kernel is the distribution-kernel for I − ∂̄∗

λGλ∂̄λ, this result with N = 2
includes the desired upper bound. �

5 Off-the-Shelf Upper Bounds

Thus far the argument has been purely formal. We now state two quantitative esti-
mates on which the proof of Proposition 2 will rely. One concerns metrics with
nearly minimal regularity; the other, real analytic metrics. The C∞ case is interme-
diate between these two.

5.1 Low Regularity Upper Bounds

Lemma 5 For each n ≥ 1 there exists N < ∞with the following property. Let L be
a positive holomorphic line bundle over a compact complex manifold X of dimension
n, equipped with a Hermitian metric φ of class CN . Let X likewise be equipped with
a Hermitian metric g of class CN . Let U,Gλ be as defined above. Then there exists
C < ∞ such that for all sufficiently large positive integers λ,

|Gλ(z, z
′)| + |∇Gλ(z, z

′)| ≤ (λ + |z − z′|−1)C (5.1)

for all z �= z′ ∈ U.
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Here ∇ denotes the gradient with respect to both variables z, z′.
Considerably sharper upper bounds can be established, but theywill not be needed

in the proof of Theorem 1.

Proof Let μ be any fixed smooth multiple of Lebesgue measure. Let r > 0 be small,
and consider two balls B ′, B ⊂ U of radii r satisfying |z − z′| ≥ r for all (z′, z) ∈
B ′ × B. For any square integrable (0, q) form f supported in B, consider the (0, q)

form F with domain B ′ defined by

F(z) =
∫

Gλ(z, w) f (w) dμ(w).

Then ‖F‖L2 = O(λ−1‖ f ‖L2). Since B ′ is at positive distance from B, F is annihi-
lated by �λ.

Now �λ is a second order elliptic differential operator, whose coefficients are
majorized by CNλ2 in any CN norm. Therefore a routine bootstrapping argument,
exploiting elliptic regularity, gives

‖F‖CN (B ′′) ≤ C ′
N (r−1 + λ)2N‖ f ‖L2

for any N < ∞, for any ball B ′′ ⊂ B ′ of radius r/2 whose distance to the boundary
of B ′ is comparable to r . Here C ′

N is a constant that may depend on X, L ,ϕ, g and
on the choice of coordinate patchU , but is independent of r,λ. Factors with order of
magnitude equal to powers of r−1 arise from Leibniz’s formula when �λ is applied
to products of F with auxiliary cutoff functions, chosen to satisfy natural bounds
dictated by scaling.

Because f was arbitrary and the upper bounds for F are proportional to the L2

norm of f , this conclusion can be equivalently restated as

‖∂α
z′Gλ(z

′, z)‖L2
z (B) ≤ Cα(r−1 + λ)Cα

for every multi-index α, where ∂α denotes an arbitrary partial derivative of order |α|
in the coordinates ofU , and where the notation L2

z (B) indicates that the L2(B) norm
is taken with respect to the variable z. For an arbitrary point z′ ∈ B ′, consider the
(0, q) form B � z �→ ∂α

z′Gλ(z′, z), with domain B. It is annihilated by the transpose
of�λ, which is another second order elliptic differential operator, whose coefficients
are likewise O(λ2) in any CN norm. �

This type of analysis is employed for instance in [8].
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5.2 High Regularity Upper Bounds

We work now in the unweighted twisted framework introduced above. Let B ⊂ C
n

be any fixed open ball of positive radius, and let B̃ � B be any relatively compact
subball.

Lemma 6 Let the ball B ⊂ C
n be equipped with a Cω Hermitian metric g. Let L be

any holomorphic line bundle over B, equipped with a positive Cω Hermitian metric
φ. There exist � < ∞ and c > 0 such that for any λ ≥ � and any solution u of
�λu ≡ 0 on B

|u(z)| ≤ e−cλ‖u‖L2(B) for all z ∈ B̃. (5.2)

Moreover, given a family of such metrics g,φ, c may be taken to be independent
of g,φ, provided that g,φ are uniformly Cω and that the metrics φ are uniformly
positive.

Positivity of φ means that in local coordinates,
∑n

i, j=1
∂2φ(z)
∂zi∂ z̄ j

ζi ζ̄ j ≥ a|ζ|2 for all
ζ ∈ C

n and all z, for some a > 0. We say that a family of metrics φ is uniformly
positive if a is bounded below by some positive constant uniformly for all elements
of the family in question. Likewise, we say that such a family is uniformly Cω if
there exists C < ∞ for which

∣∣ ∂αφ

∂(z, z̄)α
∣∣ ≤ C1+|α||α|! uniformly on B. (5.3)

for every multi-index α and all metrics φ. The same applies to g.
Naturally associated to the pair (L ,φ) are the dual bundle L∗, a strictly pseu-

doconvex domain D ⊂ L∗ defined in terms of φ, and the unit circle bundle Y in
L∗ which is the boundary of D, a Cauchy-Riemann manifold. Temporarily denote
by πD : D → X and πY : Y → X the associated projections. Sections of Lλ over
an open subset W ⊂ X are in natural one-to-one correspondence with scalar-valued
holomorphic functions defined on π−1

D (W ) whose restrictions to fibers are of mono-
mial form C � ζ �→ ζλ. Such sections can equivalently be identified with CR func-
tions defined on π−1

Y (W ), satisfying the corresponding identity. See for instance [6,
23] for this correspondence. In the next proof, this same construction is employed,
but in amore local formulation. For a coordinate patchW ⊂ X , Y |W can be identified
with a trivial bundleW × T. The CR structure on Y |W then induces a CR structure on
W × R

1 via the mapping (z, t) �→ (z, eit ). Sections of Lλ overW are thus identified
with CR functions on W × R of the form (z, t) �→ u(z)eiλt .

Proof of Lemma 6 This is a consequence of a fundamental result on analytic hypoel-
lipticity of related subelliptic partial differential equations. Consider first the case
n > 1. Identify a coordinate patch in X with a ball B ⊂ C

n , and work in B × R
1

with coordinates (z, t), and set U (z, t) = u(z)eiλt . Then

eiλt Dλu(z) = ∂̄bU (z, t),
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where ∂̄b, acting on forms f , is defined by

∂̄b f (z, t) = ∂ f

∂ z̄
+ i ∂̄φ(z) ∧ ∂ f

∂t
.

∂̄b is a Cauchy-Riemann operator associated to a strictly pseudoconvex CR structure
on B × R. See for instance Sect. 2 of [23], where essentially the same construction
appears, with B × S1 in place of B × R, and with the CR structure on B × S1 that
lifts to B × R

1 under the inverse of the mapping t �→ eit from R
1 to S1.

�λ is related to the Kohn Laplacian�b for this CR structure by the corresponding
equation

eiλt�λu(z) = �bU (z, t).

For n > 1,�b is analytic hypoelliptic on (0, 1) forms, for any real analytic strictly
pseudoconvex CR structure. This and/or closely related results are proved in [7, 12,
18, 19, 22]. Identifying B ⊂ C

n with a ball in R
2n , we regard B × R as a subset of

R
2n+1, hence as a totally real submanifold of C2n+1. Any real analytic function of

(z, t) ∈ B × R thus extends holomorphically to a neighborhood in C2n+1.
Analytic hypoellipticity of �b implies such extension, in a quantitative sense:

there exist a complex neighborhood � of B̃ × [−1, 1] and a constant C < ∞ such
that any bounded solution U of �bU = 0 in B × (−2, 2) extends to a bounded
holomorphic function in �, and moreover,

sup
�

|U | ≤ C sup
B×(−2,2)

|U |.

By analytic continuation, any holomorphic extension of u(z)eiλt must take the
product form ũ(z)eiλt . For positive λ we then set t = −i to deduce that

sup
B̃

|u|eλ ≤ C sup
B

|u|.

An examination of any of the proofs [18, 19, 22] of analytic hypoellipticity of�b

confirms that these provide uniform upper bounds, given uniform upper bounds on
the coefficients of ∂̄b in some fixed coordinate patch, and on the Hermitian metric
used to define ∂̄∗

b , and given that the hypothesis of strict pseudoconvexity holds in
a uniform way. In our setting, the latter amounts to uniform strict positivity of the
metric φ.

The case n = 1 requires an alternative treatment, because �b = ∂̄b∂̄
∗
b fails to

be analytic hypoelliptic for three-dimensional CR manifolds. Instead, a variant of
analytic hypoellipticity holds in two alternative (but equivalent) forms. One of these1

1The other alternative asserts that u is Cω , microlocally outside a conic neighborhood of one of
the two ray bundles whose union is the characteristic variety of ∂̄b. This implies holomorphic
extendibility to an appropriate wedge, and the above reasoning may then be repeated to gain the
factor exp(−cλ).



448 M. Christ

asserts that if ∂̄∂̄∗U = 0 then

sup
�

|∂̄∗U | ≤ C sup
B×(−2,2)

(|U | + |∂̄∗U |), (5.4)

with the same type of uniform dependence of the constantC on the data as for n > 1.
Together with the reasoning above, this yields the conclusion

sup
B̃

|D∗
λu| ≤ e−cλ sup

B
(|u| + |D∗

λu|). (5.5)

The bound for u itself now follows from Lemma 7 below. �
The justification of the above form of analytic hypoellipticity rests on several

facts and results, combined according to an outline introduced by Kohn [14] for the
analysis of related questions concerning (weakly) pseudoconvex three-dimensional
CRmanifolds. Denote by� = ∂̄b∂̄

∗
b theKohnLaplacian over a strictly pseudoconvex

three (real) dimensional CR manifold M . Assume that �u ∈ Cω in an open set.
(i) The analytic wave front set of u is contained in the characteristic variety of �.
(ii) This characteristic variety is a real line bundle over M , thus a union of two ray
bundles.
(iii) In a conic neighborhood of one of these two ray bundles, ∂̄b is of principal type
and satisfies (microlocally) the Poisson bracket hypothesis which ensures analytic
hypoellipticity [21], and therefore is microlocally analytic hypoelliptic. Themicrolo-
cal version of this theorem of Treves follows for instance by the techniques in [17].
Consequently since ∂̄b(∂̄

∗
bu) ∈ Cω , the analytic wave front set of ∂̄∗

bu is disjoint from
this ray bundle.
(iv) In a conic neighborhood of the complementary ray bundle,� has double charac-
teristics and satisfies the hypotheses of the theorem of Sjöstrand [18]; see also [12]
where more degenerate operators are analyzed by the same techniques. Therefore
the analytic wave front set of u, and hence also the analytic wave front set of ∂̄∗

bu,
are disjoint from this ray bundle.
(v) If a distribution has empty analytic wave front set, then it is analytic.
(vi) These steps can be made quantitative, where appropriate, to justify the stated
uniformity.

5.3 Exponential Localization for a First-Order Equation

Lemma 7 Let n = 1. Let U,U ′ be open subsets of X with U � U ′. There exists
c > 0 such that for all sufficiently large λ ≥ 0, and all (0, 1)–forms u ∈ C1(U ′),

‖u‖L2(U ) ≤ C‖D∗
λu‖L2(U ′) + Ce−cλ‖u‖L2(U ′).
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Proof It suffices to show that for each z0 ∈ U , there exists a neighborhood V of z0
such that ‖u‖L2(V ) satisfies the required upper bound. In a small open set, represent
D̄∗

λ as −eλφ(∂ + a)e−λφ where a ∈ C∞. In a sufficiently small neighborhood it is
possible to solve ∂α = a and thus to write D̄∗

λ = −e−αeλφ∂e−λφeα. Since multipli-
cation by e±α preserves L2 norms up to a bounded factor, it suffices to prove the
inequality with α ≡ 0.

It is possible to write, for all z, w in a sufficiently small neighborhood of z0,

φ(w) = ψ(z, w) + ϕ(z, w)

where ψ,ϕ are C∞ functions, ϕ(z, w) is an antiholomorphic function of w for each
z, and

Re (ψ(z, w)) ≥ Re (ψ(z, z)) + c|z − w|2 (5.6)

for a certain constant c > 0. Indeed, the Taylor series of order 2 for φ at z provides
a unique expansion

φ(z, w) = Re (Q(z, w)) + R(z, w)

where w �→ Q(z, w) is a quadratic holomorphic polynomial in w for each z, and
R(z, w) is real-valued and takes the form

R(z, w) =
∑

j,k

a j,k(z)(w j − z j )(w̄k − z̄k) + O(|z − w|)3

with a j,k real-valued and C∞. Moreover,
∑

j,k(z)a j,k(z)ζ j ζ̄k ≥ c|ζ|2 uniformly for

all z in a neighborhood of z0 and ζ ∈ C
d . Set ϕ(z, w) = Q(z, w). Then ϕ and

ψ(z, w) = φ(w) − ϕ(z, w) have the required properties.
For each z, when acting on functions of w,

D̄∗
λu(w) = −eλψ(z,w)

(
∂e−λψ(z,·))u(w).

Letη ∈ C∞(X)be a function supported in a neighborhoodof z0 which is contained
in a coordinate patch contained in a relatively compact subset of U ′, within which
the above expression for φ is valid; and η is identically equal to one in a smaller
neighborhood. Then ηu can be regarded as a function defined on C1. Let

v = D̄∗
λ(ηu) = η D̄∗

λu − u∂η.

Since
∂we

−λψ(z,w)(ηu)(w) = −e−λψ(z,w)v(w)

is a compactly supported continuous function defined on C
1, for each z sufficiently

close to z0 one may recover η(z)u(z) = u(z) by
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u(z) = −c0

∫

C1
v(w)(z̄ − w̄)−1eλ(ψ(z,z)−ψ(z,w)) dm(w) (5.7)

where m denotes Lebesgue measure on C1 and c0 is a certain constant. Now

∣∣eλ(ψ(z,z)−ψ(z,w))
∣∣ = eλ(Re (ψ(z,z)−ψ(z,w))) ≤ e−cλ|w−z|2 .

Therefore

|u(z)| ≤ C
∫

C1
|z − w|−1|v(w)|e−cλ|z−w|2 dm(w)

≤ C
∫

C1

(|η(w)D̄∗
λu(w)| + |u(w)∂η(w)|) |z − w|−1e−cλ|z−w|2 dm(w) .

Since |z − w| is bounded below by a positive quantity uniformly for all z in U and
w in the support of ∇η, the required bound follows. �

6 Proof of Proposition 2

6.1 Globalization

We introduce a variant situation inwhich X is replaced byCn and sections of B(0,1) ⊗
Lλ over X are replaced by sections of B(0,1)(Cn) over Cn . This variant will facilitate
λ–dependent coordinate changes to be made below.

Let ε > 0 be given. Let U be a relatively compact open subset of a coordinate
patch in X . Fix a holomorphic coordinate systemon that coordinate patch, and express
Dλ = e−λφ∂̄eλφ where φ ∈ C∞ is R-valued, and satisfies the positivity hypothesis

(
∂2φ

∂zi∂ z̄ j

)

i, j

≥ c(δi, j )i, j (6.1)

in the sense of Hermitian forms.
Sections of Lλ over U are thus identified with C–valued functions in such a

way that the L2 norm squared, over U , of such a section can be expressed as∫
U | f (z)|2a(z) dμ(z) where μ is Lebesgue measure on Cn , a ∈ C∞(Cn) is bounded
above inCN norm for all N by constants independent ofλ, z′, and a(z) is positive and
bounded below by a positive constant independent of λ, z, z′. Extend a to a strictly
positive C∞ function ã on Cn , still with uniform upper and lower bounds. Likewise
extend g to aC∞ Hermitian metric onCn , independent of λ. Assign to (0, k) forms f
defined on Cn the L2 norm squared

∫
Cn | f (z)|2ã(z) dμ(z) where | f (z)| is measured

using this extension of g.
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Fix an auxiliary function η ∈ C∞
0 (Cn), supported in {z : |z| < 4} and satisfying

η(z) ≡ 1 for |z| ≤ 2. For each z′ in a fixed relatively compact subset U � U ′, make
the affine coordinate change

B ×U � (ζ, z′) �→ (z, z′) = (z′ + ζ, z′) ∈ U ×U,

where B is the ball of radius ε0 centered at 0 ∈ C
n . In these coordinates, z′ is the

origin, ζ = 0. We will work in the variable z ∈ B, suppressing z′ in the notation; all
estimates will be uniform in z′ ∈ U , as the proof will show.

Let Q2 be the Taylor polynomial of degree 2 for φ at ζ = 0. Define

φ̃(ζ) = Q2(ζ) + η(ε−1
0 ζ)(φ(ζ) − Q2(ζ)).

Consider the modified operator e−λφ̃∂̄ζeλφ̃, which agrees with e−λφ∂̄ζeλφ for all
sufficiently small ζ, but has the advantage of being defined globally for ζ ∈ C

n . For
sufficiently large λ,

∇2φ̃(z) − ∇2φ(0) = O(ε0)

uniformly for all z ∈ C
n . Therefore it is possible to choose ε0 > 0 sufficiently small

that for all sufficiently large λ, the quadratic form defined by (∂2φ̃(z)/∂zi∂ z̄ j )ni, j=1
is bounded below by a strictly positive constant, independent of z and λ. This holds
uniformly in z′ ∈ U . Choose and fix such a value of ε0.

Consider the associated operator defined for n > 1 by

�̃λ = (
e−λφ̃∂̄eλφ̃

)(
e−λφ̃∂̄eλφ̃

)∗ + (
e−λφ̃∂̄eλφ̃

)∗(
e−λφ̃∂̄eλφ̃

)
,

and for n = 1 by

�̃λ = (
e−λφ̃∂̄eλφ̃

)(
e−λφ̃∂̄eλφ̃

)∗
,

where adjoints are interpreted with respect to the Hilbert space structure on L2(Cn)

introduced above.
For n > 1, for all sufficiently large λ, a well-known computation based on inte-

gration by parts [13] gives
〈�̃λu, u〉 ≥ cλ‖u‖2L2 (6.2)

for all twice continuously differentiable and compactly supported (0, 1) forms u,
where c > 0 is a positive constant.

For n = 1, for all sufficiently large λ,

[
e−λφ̃∂̄eλφ̃,

(
e−λφ̃∂̄eλφ̃

)∗] ≥ cλI, (6.3)

in the sense of operators on L2(Cn) with respect to the same Hilbert space structure.
Consequently (6.2) also holds for n = 1.
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Since �̃λ is a formally self-adjoint operator, it follows that there exists a bounded
linear operator G̃λ from L2(Cn, B(0,1)) to itself such that �̃λ ◦ G̃λ is the identity
operator on L2(Cn, B(0,1)), and the operator norm of G̃λ is O(λ−1) for all sufficiently
large λ.

This inverse is bounded in L2 operator norm, uniformly for all sufficiently large
λ, provided that ε0 is kept fixed. Lemma 5 also applies to this situation, so the
distribution-kernel G̃λ(z, 0) for G̃λ with singularity at z = 0 satisfies

|G̃λ(z, 0)| ≤ (λ + |z|−1)C (6.4)

for all sufficiently large λ, and the same holds for all of its partial derivatives. These
bounds are uniform in λ provided that λ is sufficiently large.

6.2 Gauge Change

Denote by p the harmonic part of the Taylor polynomial of φ̃ of degree 2 at w = 0.
That is, expand

φ̃(z) = φ̃(0) + Re

( n∑

k=1

αk zk +
n∑

i, j=1

βi, j zi z j

)
+

n∑

i, j=1

γi, j zi z̄ j + O(|z|3),

and set

p(z) = φ̃(0) + Re

( n∑

k=1

αk zk +
n∑

i, j=1

βi, j zi z j

)
.

Define

p̃(z) = Im

( n∑

k=1

αk zk +
n∑

i, j=1

βi, j zi z j

)
,

so that p + i p̃ is analytic and has real part p. Then [∂̄, eλ(p+i p̃)] = ∂̄(p + i p̃) ≡ 0
and consequently

e−λφ̃∂̄eλφ̃ = eiλ p̃e−λ(φ̃−p)∂̄eλ(φ̃−p)e−iλ p̃. (6.5)

Likewise

(
e−λφ̃∂̄eλφ̃

)∗ = (
eiλ p̃e−λ(φ̃−p)∂̄eλ(φ̃−p)e−iλ p̃

)∗ = eiλ p̃
(
e−λ(φ̃−p)∂̄eλ(φ̃−p)

)∗
e−iλ p̃

and consequently
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e−λφ̃∂̄eλφ̃
(
e−λφ̃∂̄eλφ̃

)∗ + (
e−λφ̃∂̄eλφ̃

)∗
e−λφ̃∂̄eλφ̃

= eiλ p̃
(
e−λ(φ̃−p)∂̄eλ(φ̃−p)(e−λ(φ̃−p)∂̄eλ(φ̃−p))∗

+ (
e−λ(φ̃−p)∂̄eλ(φ̃−p))∗

e−λ(φ̃−p)∂̄eλ(φ̃−p)
)
e−iλ p̃.

Hence upon replacement of φ̃ by φ̃ − p in the definition of �̃λ, a unitarily equiv-
alent operator on L2(Cn, B(0,1)) is obtained. Moreover, the absolute value of the
distribution-kernel for the inverse of this unitarily equivalent operator is identically
equal to |G̃λ|.

In deriving upper bounds for |Gλ(z, w)|, where Gλ is the distribution-kernel for
�−1

λ on X , wemay therefore assumewithout loss of generality that the pluriharmonic
part of the Taylor polynomial of degree 2 for φ at w vanishes identically. Likewise,
because ∂̄λ and ∂̄∗

λ have been conjugated by the unitary multiplicative factor ei p̃, the
same assumption can be made when deriving upper bounds for |∂̄λGλ(z, w)| and
|∂̄∗

λGλ(z, w)|.

6.3 Taylor Expansion and Dilation

Let φ̃ be as above, and suppose, as we may achieve through a gauge change, that
the pluriharmonic portion of the Taylor polynomial of degree 2 for φ̃ at 0 vanishes
identically, while the complex Hessian matrix of φ̃ is bounded below by a strictly
positive constant, and all partial derivatives of φ̃ are bounded above, uniformly in λ.

Let N be a large positive integer, independent of λ, to be chosen below. Define
PN to be the Taylor polynomial of degree N for ϕ̃, at ζ = 0. For any r > 0 satisfying
λ−1/2 ≤ r ≤ λ−1/4 define

ψ(z) = r−2PN (r z) + r−2(1 − η(z))(P2(r z) − PN (r z)). (6.6)

For all sufficiently large λ, the complex Hessian of ψ evaluated at an arbitrary point
z ∈ C

n , equals the complex Hessian of φ̃ evaluated at 0, plus O(r) = O(λ−1/4).
Moreover on {z : |z| < 3}, where 1 − η ≡ 0, ψ is real analytic, uniformly in λ

and in N provided that λ ≥ �(N ) where �(N ) is some appropriately large quantity
depending only on N and the data X, L ,φ, g. This uniformity, which is crucial to
our analysis, is a consequence of the normalizations φ̃(0) = 0, ∇φ(0) = 0 achieved
by subtracting the degree one Taylor polynomial2 of φ̃; indeed, for z in any bounded
set and N ≥ 2, PN (r z) = P2(r z) + O(r3|z|) so that

r−2PN (r z) = P2(z) + OM,N (r)

2Subtraction of the pluriharmonic second degree terms is natural, but is inessential here.
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in any CM norm on any bounded set. Once M, N are chosen, the term OM,N (r)
becomes arbitrarily small as λ becomes arbitrarily large.

In the same spirit, define a globalized locally analytic approximation g† to the
Hermitian metric g by

g†(z) = P̃N (r z) + (1 − η(z))(g(0) − P̃N (r z))

where P̃N is the Taylor polynomial of degree N for g at 0, in the natural sense. The
alternative expression

g†(z) = η(z)P̃N (r z) + (1 − η(z))g(0) = g(0) − η(z)(g(0) − PN (r z)) = g(0) + O(r)

demonstrates that g† is a globally well-defined Riemannian metric on Cn .
Define

κ = r2λ (6.7)

and
D̄ = e−κψ∂̄eκψ, (6.8)

that is, D̄u = e−κψ∂̄(eκψu), for (0, q) forms u defined on C
n . Define D̄∗ to be the

adjoint of D̄ with respect to the Hilbert space structures on L2 sections of B(0,q)(Cn)

specified by g†(z). Define

�† =
{
D̄D̄∗ + D̄∗D̄ for n > 1,

D̄D̄∗ for n = 1.

These are differential operators. On the region |z| < 3, in which η(z) ≡ 1, �† is
related to �λ as follows: If u(z) = v(r z) then

�†u(z) = r2�λv(r z) + O(λ−cN ) O(v, ∂̄λv, ∂̄∗
λv, ∂̄λ(bv), ∂̄∗

λ(bv)) (6.9)

where the error term denoted O(v, ∂̄λv, ∂̄∗
λv, ∂̄λ(bv), ∂̄∗

λ(bv)) is a linear combination
of v, ∂̄λ(v), ∂̄∗

λ(v), ∂̄λ(bv) and ∂̄∗
λ(bv) where all coefficients are bounded uniformly

in λ, z, and bv denotes either the wedge product or the interior product of v with
a real analytic (0, 1) form b. The factor of r2 is a consequence of the chain rule
and the substitution z �→ r z. The terms that are O(λ−cN ) result from approximating
g(r z) by its Taylor polynomial P̃N (r z), and likewise from approximating r−2ϕ̃(r z)
by r−2PN (r z), each time incurring an error that is O(|r z|N ) = O(λ−N/4) in any CK

norm for |z| ≤ 3. Moreover, in this region, these forms b are uniformly analytic as
λ → ∞.

Applying (6.9) with
u(z) = Gλ(r z, 0),
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using the upper bounds |Gλ(z, 0)| ≤ CλC and |∂̄λGλ(z, 0)| + |∂̄∗
λGλ(z, 0)| ≤ CλC

for |z| ≥ λ−1/2, and using the assumption λ−1/2 ≤ r ≤ λ−1/4, we conclude that

|�†u(z)| ≤ λ−cN

for 1
2 ≤ |z| ≤ 2, where c > 0 is independent of λ, z and of N , provided that λ ≥

�(N ).
Provided that κ = r2λ is sufficiently large, a routine integration by parts calcula-

tion, together with the uniform lower bound for the complex Hessian of ψ, give the
lower bound

〈�†u, u〉 ≥ cκ‖u‖2L2 (6.10)

for all C2 forms u of bidegree (0, 1) with compact support. The effect of the local-
ization and rescaling has been to replace λ by κ.

6.4 Conclusion of Proof of Proposition 2

Let N be a large positive integer. Suppose that λ is large, that λ−1/2 ≤ r ≤ λ−1/4,
and that κ = r2λ is large. Consider u(z) = Gλ(r z, 0), defined as above using Taylor
polynomials of order N . In the annular region 1

2 < |z| < 2, |u| ≤ λC and |�†u| ≤
λ−cN , provided that λ ≥ �(N ).

Let η̃ be a C∞ function which is identically equal to 1 in
{
z : 1

3 ≤ |z| ≤ 3
}
and

supported in
{
z : 1

4 < |z| < 4
}
. Provided that κ is sufficiently large, the global lower

bound (6.10) ensures that the equation �†v = η̃�†u is solvable in L2(Cn), and that
there exists a solution satisfying

‖v‖L2 ≤ Cκ−1‖η̃�†u‖L2 ≤ λ−cN , (6.11)

provided that λ ≥ �(N ).
Now �†(u − v) ≡ 0 where 1

2 < |z| < 2, so Lemma 6 can be applied to conclude
that

|(u − v)(z)| ≤ Ce−cκ = Ce−cr2λ for 3
4 ≤ |z| ≤ 4

3 . (6.12)

Therefore in this same region,

|Gλ(r z, 0)| ≤ Ce−cr2λ + Cλ−cN (6.13)

for all λ ≥ �(N ).
Equivalently, by choosing r = |z|−1, we find that there exists a constant B < ∞

such that for all λ ≥ �(N ) and all |ζ| ≥ Bλ−1/2,

|Gλ(ζ, 0)| ≤ Ce−cλ|ζ|2 + Cλ−cN = Ce−cλ|ζ|2 + Ce−cN logλ. (6.14)
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If A0 is sufficiently large, if A < ∞ is fixed, and if A0λ
−1/2

√
logλ ≤ |ζ| ≤

Aλ−1/2
√
logλ, choose N = A2 to obtain

|Gλ(ζ, 0)| ≤ Ce−cλ|ζ|2 . (6.15)

After reversing the change of variables made above, this is the desired bound
|Gλ(z, z′)| ≤ Ce−cλρ(z,z′)2 .

This analysis cannot be extended to a larger range of |ζ|, because bounds only
hold for λ ≥ �(N ) and a larger range would require that N depend on |ζ|, hence
that N depend on λ, introducing circularity into the reasoning.

Since Gλ(z, z′) is a solution on the complement of the diagonal z = z′ of homo-
geneous elliptic linear partial differential equations, separately with respect to each
of the two variables z, z′, and since the coefficients of these equations are O(λ2) in
any CM norm, it follows from routine bootstrapping arguments that each derivative
of Gλ satisfies the same upper bound with a possibly smaller value of the constant
c > 0. Each of the finitely many steps in the bootstrapping process loses at most a
factor of Cλ2. Since

λCe−A
√

λ logλ ≤ e−(A−1)
√

λ logλ

for all sufficiently large λ, the loss of finitely many such factors is of no importance
here. �
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Off-Diagonal Decay of Bergman Kernels:
On a Question of Zelditch

Michael Christ

Abstract We study the orthogonal projection from L2(Cd , e−2λφ) to its subspace of
entire holomorphic functions, as λ → ∞, for weights φ that depend only on Re(z)
and are uniformly strictly plurisubharmonic. We show that the associated Bergman
kernels are O(e−cλ) away from the diagonal, if and only if φ is real analytic.

1 Introduction

This paper investigates an inverse problem concerning asymptotic behavior of
Bergman kernels. Let X be a connected compact complex manifold, without bound-
ary. Let X be equipped with a C∞ Hermitian metric g, along with the metrics on the
bundles B(p,q)(X) of forms of bidegree (p, q) induced by g, and the volume form on
X associated to the induced Riemannian metric. Denote by ρ(z, z′) the Riemannian
distance from z ∈ X to z′ ∈ X .

Let L be a positive holomorphic line bundle over X . Let L be equipped with a
C∞ Hermitian metric φ whose curvature form is positive at every point.

For each positive integer λ, let the line bundle Lλ be the tensor product of λ copies
of L . Lλ inherits from φ a Hermitian metric so that the λ–fold tensor product of any
v ∈ Lz satisfies |v ⊗ v ⊗ · · · ⊗ v| = |v|λ.

Let L2(X, Lλ) be the Hilbert space of equivalence classes of all square integrable
Lebesgue measurable sections of Lλ. Let H 2(X, Lλ) be the closed subspace of
L2(X, Lλ) consisting of all holomorphic sections. The Bergman projection operator
Bλ is by definition the orthogonal projection from L2(X, Lλ) onto H 2(X, Lλ). The
Bergman kernel Bλ(z, z′) is the associated distribution-kernel; Bλ(z, z′) is a complex
linear endomorphism from the fiber Lλ

z′ to the fiber Lλ
z .
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The asymptotic behavior of the Bergman kernels as λ → ∞, on and within
distance O(λ−1/2) of the diagonal, has been intensively studied. This paper is con-
cerned instead with the large λ behavior at a positive distance from the diagonal. It
is well known that Bλ tends rapidly to zero as λ → ∞, away from the diagonal. For
real analytic g,φ there is decay at an exponential rate: provided that ρ(z, z′) ≥ δ > 0,

Bλ(z, z
′) = O(e−cλ) (1.1)

for some c = c(δ) > 0. For C∞ metrics g,φ,

Bλ(z, z
′) = O(e−A

√
λ logλ) (1.2)

for all A < ∞ [3], provided again that ρ(z, z′) ≥ δ. This rate of decay is optimal
[2]; if h(λ) → ∞ as λ → ∞ then there exist X, L ,φ, g with φ, g ∈ C∞ and points
z 	= z′ such that

lim sup
λ→∞

sup
ρ(z,z′)≥δ

eh(λ)
√

λ logλ |Bλ(z, z
′)| = ∞. (1.3)

Zelditch [5] has asked to what extent exponential decay (1.1) is tied to real ana-
lyticity of φ, and moreover whether exponential decay for even an arbitrarily sparse
sequence of values of λ tending to infinity implies analyticity. Sjöstrand [7] has
pointed out that exponential decay does hold for any structure that is real analytic on
the complement of a finite set. Nonetheless, this note answers Zelditch’s question in
the affirmative for a special class of structures that enjoy a real d-dimensional sym-
metry, but are otherwise essentially arbitrary. This is the same framework in which
examples of subexponential decay (1.3) were constructed [2]. An affirmative answer
within this limited framework is therefore of some interest.

This framework involves spaces of entire functions on Cd rather than sections of
positive line bundles. The two settings are closely related. It seems likely that our
results could be adapted to a certain class of compact toric manifolds, perhaps by a
simple transplantation of the auxiliary functions constructed here, but we have not
examined this question in detail.

2 The Framework

We work in C
d , with coordinates z = (z1, . . . , zd). Write z j = x j + iy j and x =

(x1, . . . , xd), y = (y1, . . . , yd) ∈ R
d . Write z = x + iy ∈ R

d + iRd .
Let X be the noncompact complex manifold X = C

d , and let L be the trivial line
bundle L = C

d × C
1. B(0,1) denotes the bundle of forms of bidegree (0, 1) over Cd .

X is equipped with its usual flat metric as a complex Euclidean space. Integration
overCd orRd will be performedwith respect to Lebesguemeasure. B(0,1) is equipped
with the usualmetric under which |ω̄J | = 1where ω̄J = dz̄ j1 ∧ · · · ∧ dz̄ jq , whenever
j1 < j2 < · · · < jq .
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The metric φ on L is represented by a C∞ real-valued function C
d � z �→ φ(z).

The norm of an element (z, t) ∈ C
d × C = L is e−φ(z)|t |; the norm of an element

(z, t) ∈ C
d × C = Lλ is e−λφ(z)|t |; L2(X, Lλ) is the Hilbert space of all Lebesgue

measurable functions f : Cd → C that satisfy

‖ f ‖2L2(X,Lλ)
=

∫
Cd

| f (z)|2e−2λφ(z) dm(z) < ∞.

The essential feature of the framework under discussion here is that φ(x + iy) is
a function of x alone. We therefore write φ ≡ φ(x). We assume that the curvature
form of φ is strictly positive, and uniformly bounded above and below. Thus there
exists C ∈ (0,∞) such that for all z ∈ C

d and all v ∈ C
d ,

C−1|v|2 ≤
d∑

j,k=1

∂2φ

∂z j∂ z̄k
(z) v j v̄k ≤ C |v|2 (2.1)

Because φ(x + iy) depends only on x , this simplifies to

C−1|v|2 ≤
d∑

j,k=1

∂2φ

∂x j∂xk
(x) v j vk ≤ C |v|2 for all x ∈ R

d and v ∈ R
d . (2.2)

Under this positivity assumption, the space H 2(X, Lλ) of all entire holomorphic
functions satisfying

∫∫
Cd | f (x + iy)|2e−2λφ(x) dx dy < ∞ is a closed subspace of

the space L2(X, Lλ) of all equivalence classes of Lebesgue measurable functions for
which the same integral is finite. The Bergman kernel Bλ represents the orthogonal
projection of L2(X, Lλ) onto H 2(X, Lλ). Bλ(z, z′) is a C∞ function off of the diag-
onal for all λ > 0. These objects are well-defined for all λ ∈ (0,∞); one need not
restrict to integer values.

Theorem 2.1 Let X = C
d . Let L be the trivial line bundle X × C. Let φ take the

form x + iy �→ φ(x), and let the real Hessian of φ be uniformly positive in the sense
(2.2). Let U ⊂ C

d be an open set, and suppose that for each δ > 0 there exist a
sequence λν tending to ∞ and c > 0 such that for all (z, z′) ∈ U ×U satisfying
|z − z′| ≥ δ and for all sufficiently large ν,

|Bλν
(z, z′)| ≤ e−cλν . (2.3)

Then φ is real analytic in U.

That is, the function x �→ φ(x) is real analytic on the projection of U onto R
d .

The author is grateful to an anonymous referee for a critical reading of the
manuscript and useful corrections.



462 M. Christ

3 Outline

Two constructions mediate between the Bergman projections and the metric φ. The
first is a family of holomorphic functions z �→ ψλ,ξ(z) which depend on an external
parameter ξ ∈ C

d , as well as on λ. Secondly, for each λ we consider a scalar-valued
holomorphic function ξ �→ Fλ(ξ), which is a Fourier-Laplace transform of e−λφ.

We link Fλ to φ, showing that if ξ �→ |Fλν
(ξ)| satisfies suitable lower bounds in

a suitable region for some sequence λν tending to infinity, then φ is real analytic.
We link Fλ to the Bergman projections by reasoning by contradiction. If |Fλν

(ξν)|
is anomalously small for a sequence λν → ∞, and if the Bergman kernels do have
exponential off-diagonal decay, then it is shown that ψλν ,ξν

nearly lies in the range
of the adjoint ∂̄∗ with respect to a suitable weighted L2 structure. Since it belongs to
the nullspace of ∂̄, this leads to a contradiction.

Complex zeroes of Fλ having suitably small imaginary parts were the key to
the construction in [2] of metrics φ for which the Bergman kernels decay slowly as
λ → ∞. Here we show that conversely, exponential decay not only precludes such
zeros, but also precludes exponentially small values of Fλ.

Fromamore technical perspective, the construction of [2]was executed only in the
lowest-dimensional case d = 1, but here matters are investigated in arbitrary dimen-
sions. Two new issues thereby arise. Firstly, while the formula defining Fλ extends
straightforwardly, its interpretation and relevance are not immediately clear. Sec-
ondly, in order to obtain auxiliary functions with suitable growth properties needed
to conclude thatFλ cannot take on any exponentially small values, we are led to solve
the divergence equation div(u) = f in R

d , for an unknown one-form u, in Hilbert
spaces defined by weighted L2 norms. The necessary condition for solvability of
div(u) = f with the specific f that arises, related to the functions ψλ,ξ , turns out to
be the vanishing of Fλ — so that the two new issues are intimately intertwined.

The analysis requires bounds with respect to weights e−� with � concave. Con-
cavity is the real analogue of plurisuperharmonicity, rather than of the standard
plurisubharmonicity of ∂̄ theory. This is at variance with the usual situation; indeed
the equation cannot be solved with satisfactory bounds for arbitrary (closed) data.
We expend some effort to establish solvability with the desired bounds.

4 Notations and Framework

Variables inCd will often be denoted by z = x + iy where x, y ∈ R
d . For z, w ∈ C

d

we will write

z · w =
d∑
j=1

z jw j , (4.1)

with no complex conjugation. x � y means that x, y are positive quantities whose
ratios x/y and y/x are bounded above by uniform constants.
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Lebesgue measure on either Cd or Rd will be denoted by m. w : Cd → (0,∞)

denotes a positive continuous function. L2(Cd , w) is the Hilbert space of all equiv-
alence classes of Lebesgue measurable scalar-valued functions with norm squared∫
Cd | f (z)|2w(z) dm(z). The same notation L2(Cd , w) is also used to denote the
Hilbert space of all equivalence classes of Lebesgue measurable (0, 1) forms with
norm squared

∫
Cd | f (z)|2w(z) dm(z), where |∑d

j=1 f j (z) dz̄ j |2 = ∑d
j=1 | f j (z)|2.

The Bergman projections Bλ associated to the weights e−2λφ are the orthogonal pro-
jections from L2(Cd , e−2λφ) to its closed subspace of entire holomorphic functions.

The following hypotheses concerning φ : Cd → Rwill be in force throughout the
paper.

φ ∈ C∞. (4.2)

φ(x + iy) depends on x alone. (4.3)

φ is strictly convex. (4.4)

C−1|t |2 ≤ ∑d
i, j=1

∂2φ
∂xi∂x j

ti t j ≤ C |t |2 (4.5)

uniformly for all x, t ∈ R
d , for some positive constant C . We will abuse notation

by using the symbol φ to denote two functions, one with domain C
d and one with

domain Rd , related by φ(x + iy) = φ(x). It will be clear from the context which of
the two is intended.

The Cauchy–Riemann operator ∂̄, mapping scalar-valued functions to (0, 1)–
forms, is defined by

∂̄ f =
d∑

k=1

∂ f

∂ z̄k
d z̄k . (4.6)

where
∂

∂ z̄k
= 1

2

( ∂

∂xk
+ i

∂

∂yk

)
. (4.7)

We also write

∂zk = ∂

∂zk
= 1

2

( ∂

∂xk
− i

∂

∂yk

)
. (4.8)

For w = e−λφ, the formal adjoint ∂̄∗
2λφ of ∂̄ is

∂̄∗
2λφ(

∑
j

f j d z̄ j ) = −
∑
j

(
e2λφ∂z j e

−2λφ
)
f j = −

∑
j

(
∂z j − λ∂x j φ

)
f j (4.9)

since φ depends only on x .
Most of the analysis focuses on C–valued functions, and (0, 1) forms, of the spe-

cial type z = x + iy �→ eiλξ·y f (x)where ξ ∈ C
d is a parameter. Forms and functions

not of this special formwill not appear until Sect. 6.4. z �→ eiλξ·y f (x) is holomorphic
if and only if
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0 = ∂̄(eiλξ·y f (x)) = 1
2e

iλξ·y
d∑
j=1

(∂x j − λξ j ) f d z̄ j . (4.10)

The operator ∂̄∗
2λφ can be applied to eiλξ·y f (x) even though such a function rarely

lies in L2(Cd , e−2λφ), by using the expression (4.9).
A pivotal question for our analysis is for which pairs (ξ,λ) the function eλξ·z is

close to the range of ∂̄∗
2λφ, in a suitable sense. Formulation of this closeness must

take into account the infinite L2(Cd , e−2λφ) norm of the function eλz·ξ .
Denote by div the divergence operator, which maps 1–forms with domain R

d to
scalar-valued functions with the same domain:

div(
∑
j

u j dx j ) =
∑
j

∂u j

∂x j
=

∑
j

∂x j u j . (4.11)

A form u and function f satisfy

∂̄∗
2λφ

(
eiλξ·yu(x)

) = eiλξ·y f (x) (4.12)

if and only if
− 1

2

∑
j

(∂x j + λξ j − 2λ∂x j φ)u j = f. (4.13)

For f (x) = 1
2e

λξ·x , this relation can be equivalently written as

− div(eλξ·x−2λφ(x)u) = 2eλξ·x−2λφ(x) f = e2λ(ξ·x−φ(x)). (4.14)

At issue will be the possible existence of pairs (ξ,λ) for which Eq. (4.12) with
right-hand side f (x) = 1

2e
λξ·x , or equivalently eλξ·x , admits an exact or approximate

solution u which enjoys suitable upper bounds. The range of the divergence opera-
tor consists, formally, of all functions satisfying

∫
Rd g(x) dm(x) = 0. Therefore the

discussion will turn on the approximate vanishing of
∫
Rd e2λ(ξ·x−φ(x)) dm(x).

This integral has an alternative interpretation as the analytic continuation to the
complex domain,with respect to ξ, of the functionRd � ξ �→ ‖eλx ·ξ‖2L2(Rd ,e−2λφ)

. That
interpretation does not seem to be directly useful for our purpose.

5 Preparations

Define
�(x) = �ξ,λ(x) = λ(Re ξ · x − φ(x)). (5.1)
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� depends only on the real part of ξ, and is real-valued. The Hessian matrix of �

is comparable to −λ times the identity matrix, uniformly in λ, ξ, x . Consequently
there exist a unique point x† ∈ R

d , depending on ξ,λ, satisfying

�(x†) = max
x∈Rd

�(x), (5.2)

and constants c1, c2 ∈ R
+ such that

e−c1λ|x−x†|2e2�(x†) ≤ e2�(x) ≤ e−c2λ|x−x†|2e2�(x†) (5.3)

uniformly for all ξ,λ, x .
Let a > 0 be an exponent, depending only on the dimension d, which is to be

chosen below to be sufficiently large that certain properties hold. The value of a is
otherwise of no importance. Define the auxiliary weight

γ(x) = a ln(1 + |x − x†|2). (5.4)

γ also depends on the parameter ξ, through x†. We require that a > d/2, which
ensures that

∫
Rd

e−γ(x) dm =
∫
Rd

(1 + |x − x†|2)−a dm(x) < ∞.

Therefore the function e2λ(ξ·x−φ(x)) satisfies
∫
Rd

|e2λ(ξ·x−φ(x))|2e−4�(x)−γ(x) dm(x) =
∫
Rd

e−γ(x) dm(x) < ∞, (5.5)

and this quantity is independent of ξ,λ even though γ depends through x† on the
real part of ξ.

We will solve the equation

− div(u) = e2λ(ξ·x−φ(x)) (5.6)

approximately, with u in the space of one-forms satisfying
∫
Rd |u(x)|2e−4�(x)−2γ(x)

dm(x) < ∞. This is the reverse of the usual situation; the weight� is concave rather
than convex, so the standard weighted theory [4], adapted from the complex case to
the real case, does not apply.

Let H1 be the Hilbert space of all equivalence classes of Lebesgue measurable
complex–valued (0, 1) forms defined on R

d , with norm

‖u‖2H1
=

∫
Rd

|u(x)|2e−4�(x)−2γ(x) dm(x). (5.7)
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LetH2 be the Hilbert space of all equivalence classes of Lebesgue measurable func-
tions f : Rd → C, with norm

‖ f ‖2H2
=

∫
Rd

| f (x)|2e−4�(x)−γ(x) dm(x). (5.8)

If a is sufficiently large then f (x) = e2λ(x ·ξ−φ(x)) satisfies

‖ f ‖2H2
=

∫
Rd

e4λ(x ·Re ξ−φ(x))e−4λ(x ·Re ξ−φ(x))e−γ(x) dm(x) =
∫
Rd

e−γ(x) dm(x) < ∞;

this norm is independent of ξ,λ. In particular, e2λ(x ·ξ−φ(x)) ∈ H2.
Regard div as an unbounded linear operator fromH1 toH2, whose domain is the

closure of the space of continuously differentiable compactly supported one-forms
with respect to the graph norm. The formal adjoint div∗ of div in this Hilbert space
setting is

div∗( f ) = eγ(x)
d∑
j=1

(−∂x j + 4∂x j � + ∂x j γ) f dx j . (5.9)

H2 ⊂ L1(Rd) by virtue of the Cauchy–Schwarz inequality and the rapid decay
of e4�, and thus

∫
Rd f dm is well-defined for all f ∈ H2. Define F ⊂ H2 to be the

set of all f ∈ H2 that satisfy ∫
Rd

f (x) = 0. (5.10)

F is a closed subspace of H2, of codimension one, which contains the image under
div of the set of all compactly supported continuously differentiable forms, and hence
by closedness contains the range of div.

Lemma 5.1 Let d ≥ 1. Let φ satisfy the hypotheses (4.2), (4.3), (4.4), (4.5). There
exist constants a,C < ∞ with the following properties. Let λ be sufficiently large,
let ξ ∈ C, and suppose that f ∈ H2 satisfies

∫
Rd f dm = 0. There exists a 1-form

u ∈ H1 satisfying

div(u) = f on R
d , (5.11)∫

Rd

|u(x)|2e−4�(x)−2γ(x) dm(x) ≤ C
∫
Rd

| f (x)|2e−4�(x)−γ(x) dm(x). (5.12)

Recall that a is the parameter that appears in the definition (5.4) of γ. It will be
essential for the ensuing argument that a,C may be chosen to be independent of
λ, ξ.

Only the real part of ξ enters into the formulation of Lemma 5.1, so throughout its
proof we will assume that ξ ∈ R

d . The main step in that proof will be the following
lemma, whose justification is deferred until Sect. 8.
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Lemma 5.2 Let φ satisfy the hypotheses (4.2), (4.3), (4.4), (4.5). If the exponent a
is chosen to be sufficiently large then there exists C < ∞ such that for all sufficiently
large λ and all ξ ∈ R

d , for any function f in the intersection of F with the domain
of div∗,

‖ f ‖H2 ≤ C‖ div∗ f ‖H1 . (5.13)

According to Lemmas 4.1.1 and 4.1.2 of [4], it follows that the range of div, as
a closed unbounded linear operator fromH1 toH2, equals F, and moreover that for
any f ∈ F there exists u in the intersection ofH1 with the domain of div satisfying
div(u) = f with ‖u‖H1 ≤ C‖ f ‖H2 , with C independent of ξ ∈ R

d and λ ∈ R
+

provided that λ is sufficiently large. Lemma 5.1 is thus a corollary of Lemma 5.2.
A solution of the divergence equation with additional desirable properties can be

obtained, and will be needed in the application below. Because the divergence equa-
tion is underdetermined, one cannot hope that arbitrary solutions will have favorable
properties; it is necessary to select an appropriate solution. To this end, consider the
operator T = div ◦ div∗.

For f in the intersection of F with the domain of T ,

‖T f ‖H2‖ f ‖H2 ≥ 〈T f, f 〉H2 = ‖ div∗ f ‖2H1
≥ C‖ f ‖2H2

.

Therefore ‖ f ‖H1 ≤ C‖T f ‖H1 . T is symmetric, and because of this inequality, maps
its domain inH2 onto F.

Lemma 5.3 Let φ satisfy the hypotheses (4.2), (4.3), (4.4), (4.5). Let the parameter
a be sufficiently large. Then for all sufficiently large λ ∈ R

+, all ξ ∈ C
d , and any

φ, f satisfying the hypotheses of Lemma 5.1, there exists a solution of div(u) = f
satisfying

∫
Rd

(|u(x)|2 + |∇u(x)|2)e−4�(x)−3γ(x) dm(x)

≤ CλC
∫
Rd

| f (x)|2e−4�(x)−γ(x) dm(x).

(5.14)

Proof Wehave shown that there exists a solutionh ∈ H2 of the equationdiv div∗(h) =
f . Define u = div∗(h). div div∗ is a second order elliptic differential operator, whose
coefficients are O(λ2 + |x |2), together with all of their derivatives. Cover Rd by a
union of suitable balls, so that if x belongs to a ball B in this cover then the radius
of B is comparable to λ−1(1 + |x − x†|)−1. This ensures that

max
B

e−4� ≤ C min
B

e−4�

for a finite constant C independent of λ, ξ, B. Apply standard elliptic regularity
estimates in each ball to obtain upper bounds for the second partial derivatives of
h, and sum the results. If the parameter a is chosen to be sufficiently large then the
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extra factor e−γ(x) on the left-hand side of the inequality, together with the factor
λC on the right-hand side, compensate for the resulting losses due to growth in the
coefficients as λ · (1 + |x |) → ∞. �

6 Absence of Near-Resonances

6.1 Exponential Decay Implies Absence of Near-Resonances

For ξ ∈ C
d and λ ∈ R

+ define

F(ξ,λ) =
∫
Rd

e2λ(ξ·x−φ(x)) dm(x). (6.1)

The goal of this section is to establish the following lemma, which links the
off-diagonal behavior of Bergman kernels with the function F . In Sect. 7 we will
establish a link between F and φ.

Proposition 6.1 Suppose that there exist sequences λν, Aν ∈ R
+ and ξν ∈ C

d such
that

λν → ∞, (6.2)

Aν → +∞, (6.3)

Re(ξν) → ξ∗ ∈ R
d , (6.4)

Im(ξν) → 0, (6.5)

|F(ξν,λν)| ≤ e−Aνλν . (6.6)

Define x∗ ∈ R
d by

∇φ(x∗) = ξ∗. (6.7)

Then there is no neighborhood of x∗ in C
d in which (Bλν

: ν ∈ N) decays exponen-
tially fast away from the diagonal.

6.2 Beginning of the Proof of Proposition 6.1

Proof Let (λν), (Aν), (ξν) be sequences with the stated properties. Suppose to
the contrary that there does exist a neighborhood W of x∗ in C

d in which (Bλν
:

ν ∈ N) decays exponentially fast away from the diagonal. That is, for any η > 0
there exist C, c ∈ (0,∞) such that for all (z, z′) ∈ W × W satisfying |z − z′| ≥ η,
|Bλν

(z, z′)| ≤ Ce−cλν .
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Writing z = x + iy ∈ R
d + iRd , define

ψν(z) = eλν z·ξν , (6.8)

fν(x) = e2λν (x ·ξν−φ(x)) (6.9)

�ν(x) = λν(x · Re ξν − φ(x)) (6.10)

where z · ξ = ∑d
j=1 z jξ j . Define xν ∈ R

d to be the unique solution of

∇φ(xν) = Re ξν; (6.11)

this is the quantity denoted by x† in (5.2). Thus the auxiliary function γ = γν intro-
duced in (5.4) takes the form

γν(x) = a ln(1 + |x − xν |2).

Since Re ξν → ξ∗ ∈ R
d , xν → x∗.

Introduce the scalar

bν =
(∫

Rd

e2�ν

)−1 ∫
Rd

fν =
(∫

Rd

e2�ν

)−1

F(ξν,λν). (6.12)

This quantity is asymptotically very small:

|bν | = O(λd
ν) · |F(ξν,λν)| = e−Aνλν/2. (6.13)

Now
∫
Rd ( fν − bνe2�ν ) dm = 0, and fν − bνe2�ν ∈ H2, so this function belongs

to the range of the divergence operator. Let uν be a complex-valued one-form with
domain R

d that satisfies the equation

div(uν) = fν − bνe
2�ν (6.14)

and the upper bounds for such a solution provided by Lemma 5.3:

∫
Rd

(|uν(x)|2 + |∇uν(x)|2
)
e−4�ν (x)−3γν (x) dm(x)

≤ CλC
ν

∫
Rd

| fν(x) − bνe
2�ν (x)|2e−4�(x)−γ(x) dm(x)

≤ CλC
ν

∫
Rd

| fν(x)|2e−4�ν (x)−γν (x) dm(x) + CλC
ν |

∫
Rd

fν dm|2

≤ CλC
ν

with C < ∞ independent of ν.
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Define
vν(z) = eiλν y·ξν e−λν (x ·ξν−2φ(x))uν(z). (6.15)

vν satisfies the equation

∂̄∗
2λνφ

vν(x + iy) = ψν(z) − bνe
iλν y·ξνeλν x ·(2Re ξν−ξν ) (6.16)

with upper bounds

∫
Rd

(|vν(x + iy)|2 + |∇vν(x + iy)|2)e−2λν x ·Re ξνe−2γν (x) dm(x)

≤ CλC
ν e

2λν | Im(ξν )|·|y|
(6.17)

uniformly for all y ∈ R
d .

Let V ⊂ C
d be a ball centered at x∗, independent of ν, to be chosen below. Then

‖ψν‖2L2(V,e−2λφ)
≥ λ−d

ν e2λν (xν ·Re ξν−φ(xν ))e−Cλν | Im(ξν )| (6.18)

for all sufficiently large ν, since xν → x∗ ∈ V . There is a corresponding upper bound
with the sign of the exponent reversed in the final exponential factor. This allows us
to express bounds for vν in terms of ψν : (6.18) and (6.17) together give

∫
Rd

|vν(x + iy)|2e−2λν ((x−xν )·Re ξν−(φ(x)−φ(xν ))−3γν (x)e−2λνφ(x) dm(x)

≤ CλC
ν e

Cλν | Im(ξν )|e2λν (xν ·Re ξν−φ(xν ))

≤ CλC
ν e

Cλν | Im(ξν )|‖ψν‖2L2(V,e−2λνφ)
. (6.19)

The left-hand side is the squared norm
∫
Rd |vν(x + iy)|2e−2λνφ(x) dm(x), modified

by incorporation into the integrand of an advantageous supplementary factor

e−2λν ((x−xν )·Re ξν−(φ(x)−φ(xν ))−3γν (x) ≥ ecλν |x−xν |2 .

This weight is of no help in overcoming the disadvantageous factor e2λν | Im(ξν )|·|y| on
the right-hand side when x ≈ xν but y 	= 0; overcoming that factor will be a crucial
issue. This supplementary factor will consequently be of no further use, and will now
be dropped, so (6.19) simplifies to

∫
Rd

(|vν(x + iy)|2 + |∇vν(x + iy)|2)e−2λνφ(x) dm(x)

≤ CλC
ν e

Cλν | Im(ξν )|‖ψν‖2L2(V,e−2λνφ)
.

(6.20)
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6.3 Localized Solutions Fν

With no loss of generality, change coordinates so that x∗ = 0, that is, xν → 0. Let
V be a small open neighborhood of 0 with the property that in V × V , the Bergman
kernels Bλν

are O(e−cελν ) as ν (and hence λν) tends to infinity, for all pairs of points
at distance from the diagonal greater than ε, for any ε > 0.

Let η ∈ C∞
0 (Cd) be identically equal to 1 in a neighborhood of 0, and be supported

in V . Consider the functions Fν : Cd → C defined by

Fν = ∂̄∗
2λνφ

(ηvν) . (6.21)

These are supported in V , a bounded set independent of ν. The relation (6.16) for
∂̄∗
2λνφ

vν gives

Fν = η ∂̄∗
2λνφ

vν + vν ∂η = ηψν − bνηe
iλν y·ξν eλν x ·(2Re ξν−ξν ) + vν ∂η (6.22)

with both sides evaluated at z = x + iy.
Let W � W ′ and V ′ be bounded open subsets of Cd such that 0 ∈ W , the closure

of W is contained in W ′, η ≡ 1 in a neighborhood of the closure of W ′, the closure
of V ′ is disjoint from the closure of W ′, and the support of ∇η is contained in V ′.
For all sufficiently large indices ν,

‖Fν − ηψν‖L2(Cd ,e−2λνφ) + ‖∇(Fν − ηψν)‖L2(Cd ,e−2λνφ)

≤ λC
ν e

Cλν | Im(ξν )|‖ψν‖L2(V,e−2λνφ), (6.23)

and

‖Fν − ηψν‖L2(W ′,e−2λνφ) + ‖∇(Fν − ηψν)‖L2(W ′,e−2λνφ)

≤ λC
ν e

λν (−cAν+C | Im(ξν )|)‖ψν‖L2(V,e−2λνφ). (6.24)

The second inequality holds because in W ′, ∇η vanishes identically and therefore
F − ηψ is equal to the constant bν multiplied by ∂̄eiλν y·ξν eλν x ·(2Re ξν−ξν ). Growth of
the second factor is amply compensated for by the factor bν = O(e−Aνλν/2).

In particular, since ∂̄ψν = 0,

‖∂̄Fν‖L2(Cd ,e−2λνφ) ≤ λC
ν e

Cλν | Im(ξν )|‖ψν‖L2(V,e−2λνφ) (6.25)

‖∂̄Fν‖L2(W ′,e−2λνφ) ≤ eλν (−cAν+C | Im(ξν )|)‖ψν‖L2(V,e−2λνφ). (6.26)
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6.4 Solution of a Final ∂̄ Equation

The hypothesis that theBergman kernels decay exponentially away from the diagonal
will be applied not to the functions ψν themselves, but rather, to functions Gν that
satisfy the approximate relation ψν ≈ −Bλν

Gν . These functions Gν will not be of
the product form eiλν y·ξν fν(x), and will be constructed by solving a final ∂̄ equation.
To prepare for their construction, choose a C∞ function φ̃ : Cd → R and a constant
ε > 0 with the following properties:

1. φ̃ is plurisubharmonic.
2. φ̃ ≤ φ.
3. φ̃ ≡ φ in a neighborhood of the support of ∇η.
3. There exists ε > 0 such that φ̃(z) ≤ φ(z) − ε for all z ∈ C

d \ V ′.

These exist, because φ is strictly plurisubharmonic. In particular, φ̃ < φ in a neigh-
borhood of x∗ = 0, with strict inequality.

The right-hand side in our ∂̄ equation will be ∂̄Fν . The norm of ∂̄Fν is still under
satisfactory control with respect to the modified weight φ̃:

‖∂̄Fν‖L2(Cd ,e−2λν φ̃)
≤ λC

ν e
Cλν | Im(ξν )|‖ψν‖L2(V,e−2λνφ) (6.27)

for all sufficiently large ν. Note that the norm on the left-hand side involves the
weight function φ̃, while φ appears on the right-hand side. This relies on (6.25)
and (6.26), the fact that φ̃ ≡ φ on the support of ∇η, the Cauchy–Riemann relation
∂̄ψν ≡ 0, and the crucial assumption that Aν → ∞ as ν → ∞, which guarantees
that the contribution of the term involving bν is exponentially small.

Lemma 6.2 Let φ̃ have the properties listed. There exists a constant C < ∞ such
that for each sufficiently large ν there exists a solution Gν of the equation

∂̄Gν = ∂̄Fν (6.28)

satisfying ∫
Cd

|Gν |2e−2λν φ̃e−γ dm ≤ C
∫
Cd

|∂̄Fν |2e−2λν φ̃ dm. (6.29)

Proof A direct application of the well-known weighted theory for the ∂̄ equation [4]
suffices. �

For each sufficiently large ν, choose a solutionGν of (6.28) satisfying (6.29), with
C independent of ν. Concerning these functions, two consequences of Lemma 6.2
together with (6.27) will be useful. Firstly, in the whole space Cd ,

∫
Cd

|Gν |2e−2λνφ dm ≤ CλC
ν e

Cλν | Im(ξν )|‖ψν‖2L2(V,e−2λνφ)
. (6.30)
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Secondly, in the complement of V ′ there is an improved upper bound

∫
Cd\V ′

|Gν |2e−2λνφ dm ≤ e−ελν eCλν | Im(ξν )|‖ψν‖2L2(V,e−2λνφ)
(6.31)

with the extra factor e−ελν on the right-hand side.

6.5 Arrival at a Contradiction

We now complete the proof of Proposition 6.1, modulo the deferred proof of
Lemma 5.2, by showing how its hypotheses, together with the assumption that the
Bergman kernels Bλν

decay exponentially fast away from the diagonal, lead to a
contradiction. Throughout the discussion, it is assumed that ν is sufficiently large.
An upper bound of the form “O(M) in W” indicates a function whose norm in
L2(W, e−2λνφ) is O(M), uniformly in ν.

Recalling that Fν = ∂̄∗
2λνφ

(ηvν) and that ∂̄Gν = ∂̄Fν , the equation

Gν = (Gν − ∂̄∗
2λνφ

(ηvν)) + ∂̄∗
2λνφ

(ηvν) (6.32)

expressesGν as the sumof an element of the nullspace of ∂̄ plus a function orthogonal
to that nullspace. Therefore

(I − Bλν
)Gν = ∂̄∗

2λνφ
(ηvν). (6.33)

Consequently
(I − Bλν

)Gν = ∂̄∗
2λνφ

vν in W (6.34)

since η ≡ 1 in W and ∂̄∗
2λνφ

is a local operator.

vν satisfies (6.16) ∂̄∗
2λνφ

vν = ψν − bνeiλν y·ξν eλν x ·(2Re ξν−ξν ), and bν is small in the
sense that |bν | ≤ e−cAνλν (6.13). Therefore

(I − Bλν
)Gν = ψν + O(e−cλν Aν ‖ψν‖L2(V,e−2λνφ)) in W. (6.35)

Using the strong bound provided by inequality (6.31) in the complement of V ′, and
in particular in W , this can be rewritten as

ψν = −Bλν
Gν + O

(
e−cλν eCλν | Im(ξν )|‖ψν‖L2(V,e−2λνφ)

)
inW. (6.36)

In this rewriting, we have expanded (I − Bλν
)Gν = Gν − Bλν

Gν and have incor-
porated the term Gν into the O(·) term, exploiting the factor e−ελν in (6.31) and
replacing ε by c, a positive constant independent of ν.
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Let 1V ′ denote the indicator function of V ′. Because Bλν
is a contraction on

L2(Cd , e−2λνφ),

‖Bλν
Gν‖L2(W,e−2λνφ) ≤ ‖Bλν

(1V ′Gν)‖L2(W,e−2λνφ) + ‖Bλν
(1Cd\V ′Gν)‖L2(Cd ,e−2λνφ)

≤ ‖Bλν
(1V ′Gν)‖L2(W,e−2λνφ) + ‖Gν‖L2(Cd\V ′,e−2λνφ)

≤ ‖Bλν
(1V ′Gν)‖L2(W,e−2λνφ) + e−cλν eCλν | Im(ξν )|‖ψν‖L2(V,e−2λνφ).

To obtain the final line we have again invoked (6.31) to controlGν in the complement
of V ′.

The sets W, V ′ were constructed to have disjoint closures, and so that both are
contained in a region in which the Bergman kernels Bλν

decay exponentially fast
away from the diagonal. Thus there exists c > 0 such that for all sufficiently large ν,

‖Bλν
(1V ′Gν)‖L2(W,e−2λνφ) ≤ e−cλν ‖Gν‖L2(V ′,e−2λνφ)

≤ e−cλν eCλν | Im(ξν )|‖ψν‖L2(V,e−2λνφ).

Inserting these bounds into (6.36) gives

‖ψν‖L2(W,e−2λνφ) ≤ e−cλν eCλν | Im(ξν )|‖ψν‖L2(V,e−2λνφ) (6.37)

with c > 0 independent of ν.
We have normalized φ so that φ(0) = 0 and ∇φ(0) = 0, so φ(x) � |x |2. It is thus

apparent from the explicit formula ψν(z) = eλν z·ξν and the assumption that xν → 0
that the functions ψν peak near 0 in the sense that

‖ψν‖L2(W,e−2λνφ) ≥ e−Cλν | Im(ξν )|‖ψν‖L2(V,e−2λνφ). (6.38)

Therefore (6.37) implies that

‖ψν‖L2(V,e−2λνφ) ≤ e−cλν eCλν | Im(ξν )|‖ψν‖L2(V,e−2λνφ) (6.39)

with c > 0 independent of ν. Since | Im(ξν)| → 0 as ν → ∞, and since none of the
functions ψν vanish identically, this is a contradiction for all sufficiently large ν. �

This completes the proof of Proposition 6.1, modulo the deferred proof of
Lemma 5.2 concerning solvability of the divergence equation. In Sect. 7 we complete
the proof of Theorem 2.1. In Sect. 8 we take up the proof of Lemma 5.2.

7 Conclusion of the Proof

The second of the two main steps of the proof links properties of F with analyticity
of the metric φ. The strong convexity of φ implies that the mapping x �→ ∇φ(x)
from R

d to R
d is a bijection. Define the function τ : Rd → R

d to be the inverse of
∇φ, that is,
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∇φ(τ (ξ)) = ξ. (7.1)

Section7 is devoted to the proof of the following result.

Proposition 7.1 Let (λν : ν ∈ N) be a sequence of positive real numbers tending to
infinity. Suppose that (Bλν

: ν ∈ N) decays exponentially fast away from the diago-
nal, in some neighborhood of a ∈ C

d . Then the function τ is real analytic in some
neighborhood of ξ = ∇φ(Re(a)).

Consequently under the hypotheses of Proposition 7.1, the inverse function ∇φ, and
hence φ itself, are real analytic in a corresponding neighborhood of Re(a).

By the hypothesis of exponentially fast decay in some neighborhood of a, we
mean that there exists � > 0 such that for each δ > 0 there exists c < ∞ such that

|Bλν
(z, z′)| ≤ e−cλν (7.2)

for all ordered pairs of elements of Cd satisfying |a − z| < �, |a − z′| < �, and
δ ≤ |z − z′|.

Let a ∈ C
d . By making the change of variables z �→ z − a and subtracting from

φ a real-valued affine function, we may assume without loss of generality that a = 0
and that φ : Rd → R satisfies φ(0) = ∇φ(0) = 0.

Lemma 7.2 Under the hypotheses of Proposition 7.1 with a = 0 and ∇φ(0) = 0,
there exist an open ball B ⊂ C

d centered at 0, a sequence of indices νk tending to
∞, and a real analytic function u : B → R such that

1
2λ

−1
νk

log |F(ξ,λνk )| → u(ξ) (7.3)

uniformly as a function of ξ ∈ B as k → ∞.

The functions
Fν(ξ) = F(ξ,λν) (7.4)

are all holomorphic in some common neighborhood of ξ = 0, independent of ν.
Moreover, straightforward estimation gives

|Fν(ξ)| ≤ eCλν (7.5)

for all ξ in that neighborhood and for all ν, with C < ∞ independent of ξ, ν.
Proof of Lemma 7.2 According to Proposition 6.1, there exists an open ball B

centered at 0 such that for every sufficiently large ν, Fν) has no zeros in B, and
moreover there exists C < ∞ such that

λ−1
ν log |Fν(ξ)| ≥ −C for all ξ ∈ B, (7.6)

uniformly in ν. Combining this with the upper bound (7.5) gives
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∣∣λ−1
ν log |Fν(ξ)|

∣∣ ≤ C (7.7)

uniformly for all ξ ∈ B, for all sufficiently large indices ν.
Since Fν is holomorphic and zero-free in B, uν = 1

2λ
−1
ν log |Fν | is pluriharmonic

there. Because these functions are uniformly bounded, they form a normal family.
Therefore after replacingB by a concentric ball of strictly smaller radius, there exist a
pluriharmonic function u inB and a sequence νk → ∞ such that uνk → u uniformly
on all compact subsets of B.

Being pluriharmonic, u is real analytic. ��
Lemma 7.3 The function u in the conclusion of Lemma 7.2 is

u(ξ) = ξ · τ (ξ) − φ ◦ τ (ξ). (7.8)

Proof Consider any ξ ∈ R
d . For large λ, F(ξ,λ) = ∫

Rd e2λ(ξ·t−φ(t)) dt can be calcu-
lated via the method of real stationary phase: Set τ = τ (ξ). As λ → +∞,

∫
Rd

e2λ(ξ·t−φ(t)) dt = cde
2λ(ξ·τ−φ(τ ))λ−d/2

(
det∇2φ(τ )

)−1/2

+ O
(
e2λ(ξ·τ−φ(τ ))λ−(d+2)/2

)
. (7.9)

Thus
λd/2

ν |F(ξ,λν)| = e2λν (ξ·τ−φ(τ ))
(
α(ξ) + O(λ−1

ν )
)

(7.10)

for a certain strictly positive α(ξ). Taking logarithms of both sides and dividing by
λν gives

uν(ξ) = ξ · τ (ξ) − φ ◦ τ (ξ) + O(λ−1
ν logλν) (7.11)

as ν → ∞. Restricting attention to the subsequence νk obtained above and letting
k → ∞ gives (7.8). �
Lemma 7.4 The function u(ξ) = ξ · τ (ξ) − φ(τ (ξ)) satisfies

∇u ◦ ∇φ(x) ≡ x . (7.12)

Proof Substitute ξ = ∇φ(x) to the equation for u as

u(∇φ(x)) = x · ∇φ(x) − φ(x). (7.13)

Apply ∇ = ∇x to both sides to obtain

(∇u ◦ ∇φ(x)) � ∇2φ(x) = ∇φ(x) + x � ∇2φ(x) − ∇φ(x) = x � ∇2φ(x) (7.14)

where � denotes the product of a vector with a matrix. The Hessian ∇2φ(x) is by the
positivity hypothesis an invertible matrix for each x , so the conclusion of the lemma
follows. �
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Lemma 7.5 Let τ be the inverse of the mapping R
d � x �→ ∇φ(x). If the function

u(ξ) = ξ · τ (ξ) − φ ◦ τ (ξ) is real analytic in a neighborhood of ξ0 then φ is real
analytic in a neighborhood of τ (ξ0).

Proof By (7.12), x �→ ∇u(x) is a locally invertible function. This function is the
gradient of a real analytic function, so is analytic. Therefore its inverse, x �→ ∇φ, is
also real analytic. Therefore φ itself is analytic. �

This completes the proof of Proposition 7.1, and with it the proof of the main
theorem, except for the deferred proof of Lemma 5.2.

8 Proof of Lemma 5.2

Recall from (5.1) and (5.4) the definitions �(x) = λ(Re ξ · x − φ(x)) and γ(x) =
a ln(1 + |x − x†|2), where x† denotes the unique point of Rd at which � attains its
maximum value. We seek to prove that

∫
Rd

| f (x)|2e−4�(x)−γ(x) dm(x) ≤ C
∫
Rd

| div∗ f (x)|2e−4�(x)−2γ(x) dm(x), (8.1)

under the assumptions that f is continuously differentiable, compactly supported,
and satisfies

∫
Rd f dm = 0. Substituting f (x)e−2�(x) = g(x), onehas

∫
Rd e2�g dm =

0. Using the expression (5.9) for div∗ gives
∫
Rd

| div∗ f (x)|2e−4�(x)−2γ(x) dm(x) =
∫
Rd

| div∗ e2�g|2e−4�−2γ dm

=
∫
Rd

|(−∇ + 2∇� + ∇γ)g|2 dm

=
∫
Rd

|e2�+γ∇e−2�−γg|2 dm.

Thus Lemma 5.2 is equivalent to

Lemma 8.1 There exists C < ∞ such that for every sufficiently large λ ∈ R
+,

every ξ ∈ C
d , and every continuously differentiable compactly supported function

g : Cd → C satisfying
∫
Rd e2�g dm = 0,

∫
Rd

|g(x)|2e−γ(x) dm(x) ≤ C
∫
Rd

|e2�+γ∇e−2�−γg|2 dm. (8.2)

The rest of Sect. 8 is devoted to a proof of Lemma 8.1. Define the conjugated
gradient

Sg = e2�+γ∇(e−2�−γg). (8.3)
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Introduce {
M� = max

x∈Rd
�(x) = �(x†)

�∗ = 2� + γ − 2M�.
(8.4)

Since φ is uniformly strictly convex, the Hessian matrix of �(x) = λ(Re ξ · x −
φ(x)) is uniformly comparable to −λ. Therefore for all sufficiently large λ ∈ R

+,

e4M� ≤ Cλd/2
∫
Rd

e4� dm ≤ Cλd/2
∫
Rd

e4�+γ dm. (8.5)

The second inequality holds because γ ≥ 0. Also define

I (x, u) =
∫ ∞

1
e�∗(x+su)sd−1 ds. (8.6)

Lemma 8.2 There exists C < ∞ such that for any sufficiently large λ ∈ R
+, any

ξ ∈ R
d , and any compactly supported continuously differentiable function g : Rd →

C satisfying
∫
Rd ge2� dm = 0, for any x ∈ R

d

|g(x)| ≤ Cλd/2
∫
Rd

|u| I (x, u) |Sg(x + u)| du. (8.7)

Proof For any x, y ∈ R
d ,

e−2�(x)−γ(x)g(x) = e−2�(y)−γ(y)g(y) +
∫ 1

0
(x − y) · ∇(e−2�−γg)(y + t (x − y)) dt

(8.8)
and therefore

e4�(y)+γ(y)e−2�(x)−γ(x)g(x)

= e2�(y)g(y) + e4�(y)+γ(y)
∫ 1

0
(x − y) · ∇(e−2�−γg)(y + t (x − y)) dt.

(8.9)

Integrating overRd with respect to dm(y) and invoking the condition
∫

ge2� dm = 0
gives

e−2�(x)−γ(x)g(x)
∫
Rd

e4�+γ dm

=
∫
Rd

e4�(y)+γ(y)
∫ 1

0
(x − y) · ∇(e−2�−γg)(y + t (x − y)) dt dm(y).

(8.10)



Off-Diagonal Decay of Bergman Kernels … 479

Using (8.5) to estimate the factor
∫
Rd e4�+γ on the left-hand side of this identity

gives the pointwise upper bound

|g(x)| ≤ Cλd/2e−4M�

∫
Rd

∫ 1

0
e2�(x)+γ(x)e4�(y)+γ(y)

|x − y| |∇(e−2�−γg)(y + t (x − y))| dt dm(y)

= Cλd/2
∫
Rd

∫ 1

0
e�

∗(x)+2�∗(y)−γ(y)−�∗(t x+(1−t)y) |x − y| |Sg(y + t (x − y))| dt dm(y)

≤ Cλd/2
∫
Rd

∫ 1

0
e�

∗(x)+2�∗(y)−�∗(t x+(1−t)y) |x − y| |Sg(y + t (x − y))| dt dm(y).

A factor of e−γ(y) was dropped to obtain the final inequality; this is valid since
γ ≥ 0. Substitute (t, y) ↔ (t, u) where t x + (1 − t)y = x + u, so that y = x +
(1 − t)−1u, and then substitute s = (1 − t)−1 to deduce that

|g(x)| ≤ Cλd/2
∫
Rd

( ∫ 1

0
e�

∗(x)+2�∗(x+(1−t)−1u)−�∗(x+u)(1 − t)−d−1 dt
)
|u| |Sg(x + u)| dm(u)

= Cλd/2
∫
Rd

( ∫ ∞
1

e�
∗(x)+2�∗(x+su)−�∗(x+u)sd−1 ds

)
|u| |Sg(x + u)| dm(u).

�∗ = 2� + γ − 2M� is a concave function for any sufficiently large λ since the
Hessian matrix of � is uniformly comparable to −λ while γ is independent of λ and
has bounded Hessian. Since

x + u = s−1(x + su) + (1 − s−1)x

is a convex linear combination of x + su and x , the concavity of �∗ implies that

�∗(x + u) ≥ s−1�∗(x + su) + (1 − s−1)�∗(x) (8.11)

for every s ∈ [1,∞) and x, u ∈ R
d . Using (8.11) to majorize −�∗(x + u) gives

�∗(x) + 2�∗(x + su) − �∗(x + u)

≤ �∗(x + su) + s−1�∗(x) + (1 − s−1)�∗(x + su).

(8.12)

Since �∗ = 2(� − M�) + γ is nonnegative, one concludes that

�∗(x) + 2�∗(x + su) − �∗(x + u) ≤ �∗(x + su). (8.13)

Insertion of this bound into the inner integral in the last bound for |g(x)| above gives
the conclusion of Lemma 8.2. �
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The factor |u|I (x, u) that appears on the right-hand side of the inequality in
Lemma 8.2 satisfies a useful upper bound.

Lemma 8.3

|u|I (x, u) ≤
{
C(1 + |x − x†|)d−1|u|1−d for all u, x

Ce−c|u|2 if |u| ≥ 2|x − x†|. (8.14)

Proof Recall that for all sufficiently large parameters λ, �∗ = � − M� + γ is real-
valued, nonpositive, and concave, and vanishes at x†. � has a negative definite
Hessian which is uniformly comparable to −λ, while γ is independent of λ and has
a Hessian which is bounded above and below. Therefore

�∗(x) ≤ −cλ|x − x†|2, (8.15)

uniformly in x,λ, ξ for all sufficiently large λ.
Define s̄ ∈ R to be the point at which |(x − x†) − su| is minimized, and let h be

its minimum value. Then

|I (x, u)| ≤
∫ ∞

−∞
e−cλ|h|2e−cλ|u|2|s−s̄|2 |s|d−1 ds ≤ |u|−d

∫ ∞

−∞
e−ct2 (|t | + |x − x†|)d−1 dt

for λ ≥ 1. The first bound stated in (8.14) follows directly.
If |u| ≥ 2|x − x†| then for all s ≥ 1,

�∗(x + su) ≤ −cλ|x + su − x†|2 ≤ −cλs2|u|2/4 (8.16)

and consequently by (8.13),

|I (x, u)| ≤
∫ ∞

1
e�∗(x+su)sd−1 ds ≤ e−c|u|2

for λ ≥ 1. �
Inserting the bound of Lemma 8.3 for |u|I (x, u) into (8.7), we conclude that

|g(x)| ≤ C(1 + |x − x†|)d−1λd/2
∫

|u|≤2|x−x†|
|u|1−d |Sg(x + u)| dm(u)

+ Cλd/2
∫
Rd

e−c|u|2 |Sg(x + u)| dm(u)

(8.17)

for certain constants C, c ∈ R
+. The second term on the right-hand side represents

the action on |Sg| of a bounded linear operator from L2(Rd) to L2(Rd), whose
operator norm is proportional to λd/2. Since the function u �→ |u|1−d is a positive
decreasing function of |u| and satisfies
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∫
|u|≤2|x−x†|

|u|1−d ≤ C |x − x†|,

one has

(1 + |x − x†|)d−1λd/2
∫

|u|≤2|x−x†|
|u|1−d |Sg(x + u)| dm(u)

≤ Cλd/2(1 + |x − x†|)dM(Sg)(x),
(8.18)

where M is the Hardy–Littlewoodmaximal function. Now M is bounded on L2(Rd),
while multiplication by (1 + |x − x†|)d defines a bounded operator from L2(Rd) to
the weighted space L2(Rd , w) with w(x) = (1 + |x − x†|)−2d . This completes the
proof of Lemma 8.2, and hence the proof of Lemma 8.1.
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Two Minicourses on Analytic Microlocal
Analysis

Michael Hitrik and Johannes Sjöstrand

In memory of Lars Gårding and Lars Hörmander

Abstract These notes correspond roughly to the two minicourses prepared by the
authors for the workshop on Analytic Microlocal Analysis, held at Northwestern
University in May 2013. The first part of the text gives an elementary introduction to
someglobal aspects of the theory ofmetaplectic FBI transforms,while the secondpart
develops the general techniques of the analytic microlocal analysis in exponentially
weighted spaces of holomorphic functions.

1 Introduction to Metaplectic FBI Transforms

1.1 Introduction

The metaplectic Fourier–Bros–Iagolnitzer (FBI) transform allows one to pass from
the standard Hilbert space L2(Rn) to an exponentially weighted space of holomor-
phic functions on Cn . Such transforms occur under various other names in the liter-
ature, such as the Bargmann, Segal, Gabor, and wave packet transforms, and from
the general point of view of microlocal analysis, these can all be viewed as Fourier
integral operators with complex phase. In this part of the text, the connection to ana-
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lytic microlocal analysis will be emphasized, and we shall therefore refer to these
transforms as FBI transforms, as they were used by J. Bros and D. Iagolnitzer to
give a definition of the analytic wave front set. Pseudodifferential operators can be
transported to the FBI transform side, and in this way, one obtains some flexible and
powerful techniques for their analysis, particularly in the analytic case. In this chapter,
we give an elementary introduction to the theory of metaplectic FBI transforms. In
Sect. 1.2 we discuss aspects of the geometry of positive complex Lagrangian planes
and some closely related complex canonical transformations, following Appendix A
of [5] and Chap.11 of [65]. In Sect. 1.3, following [70, 73], we introduce metaplec-
tic FBI transforms, derive a representation for the Bergman projection and establish
the unitarity of the FBI transform between L2(Rn) and a suitable weighted space
of holomorphic functions on Cn . See also [36, 78]. Section1.4 is concerned with
pseudodifferential operators on the FBI transform side. We discuss their mapping
properties and prove the metaplectic Egorov theorem, finishing with a brief dis-
cussion of the case of pseudodifferential operators with holomorphic symbols. Our
presentation here follows [70, 73] closely.

1.2 Complex Symplectic Linear Algebra. Positivity

We shall work in the complex space C2n = Cn
x × Cn

ξ , which is equipped with the
complex symplectic (2,0)-form

σ =
n∑

j=1
dξ j ∧ dx j , (x, ξ) ∈ C2n. (1.2.1)

The form σ is non-degenerate and closed, and we can write

σ(X, Y ) = J X · Y, J =
(

0 1
−1 0

)
, X, Y ∈ C2n. (1.2.2)

Here and in what follows we shall use the complex bilinear scalar product on Ck ,
given by X · Y = ∑k

j=1 X j Y j .
The corresponding real 2-forms

Re σ = σ + σ̄

2
, Im σ = σ − σ̄

2i
. (1.2.3)

are closed and non-degenerate, and hence give rise to real symplectic structures on
C2n .

Definition 1.2.1 A complex linear map κ : C2n → C2n is called a complex canon-
ical transformation if
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σ(κ(X),κ(Y )) = σ(X, Y ), X, Y ∈ C2n. (1.2.4)

If κ : C2n → C2n is a complex canonical transformation, then κ preserves the com-
plex volume form σn/n! on C2n , and therefore det κ = 1. If n = 1, the converse is
also true.

Let us consider the following configuration: Let � ⊆ C2n be a real subspace
which is I-Lagrangian in the sense that dimR � = 2n and Im σ|� = 0. Assume also
that � is R-symplectic: Re σ|� is non-degenerate. Such a subspace is automatically
maximally totally real, � ∩ i� = {0}, and we can write

C2n = � ⊕ i�.

Let � = �� : C2n → C2n be the unique antilinear map such that �|� = 1. Clearly,
we have

σ(�X, �Y ) = σ(X, Y ), X, Y ∈ C2n. (1.2.5)

Examples.

1. � = R2n , �X = X̄ , the complex conjugation.
2. Let � be a real valued quadratic form on Cn

x , such that the Levi matrix, ∂x̄∂x� =
(∂x̄ j ∂xk �)n

j,k=1, is non-degenerate.

Let us set

� = �� :=
{(

x,
2

i

∂�

∂x
(x)

)
; x ∈ Cn

}
. (1.2.6)

We claim that the linear subspace� is I-Lagrangian and R-symplectic. Indeed, using
x ∈ Cn to parametrize ��, we get

σ|��
=

n∑

k=1
d

(
2

i

∂�

∂xk

)
∧ dxk =

n∑

j,k=1

2

i

∂2�

∂ x̄ j∂xk
d x̄ j ∧ dxk . (1.2.7)

Using only the fact that� is real, we see that σ|��
is real, so that�� is I-Lagrangian.

Since the Levi form of � is non-degenerate, (1.2.7) also shows that σ|��
is non-

degenerate.
Let us now describe the involution �|��

explicitly. We have

�(x) = 1

2
�′′

xx x · x +�′′
x̄ x x · x̄ + 1

2
�′′

x̄ x̄ x̄ · x̄, (1.2.8)

and therefore,

�� =
{(

x,
2

i

(
�′′

xx x +�′′
x x̄ x̄

)) ; x ∈ Cn

}
. (1.2.9)

Using that ���
(X + iY ) = X − iY , X, Y ∈ ��, we see that � = ���

is given by
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(
y,

2

i

(
�′′

xx y +�′′
x x̄ x̄

)) 	→
(

x,
2

i

(
�′′

xx x +�′′
x x̄ ȳ

))
(1.2.10)

Notice that the map (1.2.10) is well-defined since det
(
�′′

x̄ x

) 
= 0.
Now let � ⊆ C2n be a C-Lagrangian subspace, i.e. a complex linear subspace

such that dimC � = n and σ|� = 0. If � ⊆ C2n is I-Lagrangian, R-symplectic as
above, with the associated involution �, we can introduce the Hermitian form

b(X, Y ) = 1

i
σ(X, �Y ), (X, Y ) ∈ �×�. (1.2.11)

Here the Hermitian property, b(X, Y ) = b(Y, X), follows from (1.2.5).

Remark. When � = R2n , the Hermitian form (1.2.11) was introduced in [31]. The
general case was considered in [65].

Proposition 1.2.2 The form b is non-degenerate if and only if the subspaces � and
� are transversal, i.e. � ∩� = {0}.
Proof Consider the radical of b,

Rad (b) = {X ∈ �; b(X, Y ) = 0 for all Y ∈ �}.

If 0 
= X ∈ Rad (b), then σ(�X, Y ) = 0 for all Y ∈ �, and therefore,�X ∈ �, since
� is Lagrangian. We see, using the fact that � is an antilinear involution, that the
vectors (1/2) (X + �X) and (1/2i) (X − �X) both belong to � ∩�, and at least
one of them is 
= 0, so that � ∩� 
= {0}. Conversely, � ∩� ⊆ Rad (b), and the
result follows. �

Example 1.2.3 Let � = R2n and assume that � is transversal to the fiber F =
{(0, ξ); ξ ∈ Cn}, � ∩ F = {0}. Then necessarily, � = �ϕ is of the form ξ =
ϕ′(x) = ϕ′′x , where ϕ is a holomorphic quadratic form on Cn

x . We can compute
the form b explicitly using this representation of �. When X = (x,ϕ′′x) ∈ �, we
get, using (1.2.11),

1

2
b(X, X) = (

Im ϕ′′
)

x · x̄ . (1.2.12)

Here

Imϕ′′ = 1

2i

(
ϕ′′ − (

ϕ′′
)∗)

.

Definition 1.2.4 Let � ⊆ C2n be C-Lagrangian and let � ⊆ C2n be I-Lagrangian,
R-symplectic, with the involution �. We say that � is �-positive (negative) if the
Hermitian form b is positive definite (negative definite) on �.

Proposition 1.2.5 Let � = R2n. Then � is �–positive if and only if � = �ϕ, where
Im ϕ′′ > 0.
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Proof If � = �ϕ with Im ϕ′′ > 0, then in view of (1.2.12), we see that � is �–
positive. Conversely, if � is �-positive, then � is transversal to the fiber F , so that
� = �ϕ, and Example1.2.3 applies again. �

Proposition 1.2.6 The set {� ⊆ C2n; � is C− Lagrangian and � is �− positive}
is a connected component in the set of all C-Lagrangian spaces that are transversal
to �.

Proof After applying a suitable linear complex canonical transformation, we may
assume that � = R2n . Proposition1.2.5 shows then that the set of all �-positive
C-Lagrangian spaces is a connected (even convex) and open subset of the set of
all C-Lagrangian spaces that are transversal to �. It is also closed, for if � is a
C-Lagrangian space transversal to �, such that the form b is positive semi-definite
on �, then b is necessarily positive definite on �, in view of Proposition1.2.2. We
conclude that the set of all �-positive C-Lagrangian spaces is a component in the
set of all C-Lagrangian spaces that are transversal to �. �

Let us return to the situation where � = ��, with � being a real quadratic form on
Cn

x . Assume that the Levi form of � is positive definite,

n∑

j,k=1

∂2�

∂ x̄ j∂xk
ξ̄ jξk > 0, ∀0 
= ξ ∈ Cn, (1.2.13)

i.e. the quadratic form � is strictly pluri-subharmonic.

Proposition 1.2.7 The fiber F = {(0, η); η ∈ Cn} is ��-negative.

Proof Using (1.2.10) we see that �(0, η) = (x, ξ), where ξ = 2
i �

′′
xx x , η = 2

i �
′′
x x̄ x̄ ,

which implies that

1

i
σ((0, η), (x, ξ)) = 1

i
η · x = −2�′′

x x̄ x̄ · x ≤ −1
C
|x |2 ≤ − 1

C̃
|η|2 .

�

Now the space �(F) : ξ = 2
i �

′′
xx x = 1

i ∂x
(
�′′

xx x · x
)
is C-Lagrangian and ��-

positive. Let us write
�(x) = �plh(x)+�herm(x),

where
�plh(x) = Re

(
�′′

xx x · x
)

is the pluri-harmonic part, and

�herm(x) = �′′
x̄ x x · x̄

is the positive definite Hermitian part. Using that
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∂x
(
�′′

xx x · x
) = 2∂x�plh(x),

we conclude that �(F) is of the form ��plh , where �(x)−�plh(x) ∼ |x |2.
Proposition 1.2.8 Assume that∂x̄∂x� > 0. A C-Lagrangian space� is��-positive
if and only if � = ��̃, where �̃ is pluri-harmonic quadratic and �− �̃ ∼ |x |2.

Proof If �̃ is pluri-harmonic quadratic and �− �̃ > 0 then clearly, ��̃ is C-
Lagrangian and transversal to ��. It follows that the set

{��̃; �̃ pluri-harmonic , �− �̃ > 0}

is an open connected subset of the set of all C–Lagrangian spaces that are transver-
sal to ��. It is also closed, for if �̃ is pluri-harmonic, �− �̃ ≥ 0, and ��̃ is
transversal to ��, then the quadratic form �− �̃ is necessarily positive definite.
(The transversality forces a non-strict inequality to become strict.) It follows that the
set {��̃; �̃ pluri-harmonic ,�− �̃ > 0} is a connected component of the set of all
C-Lagrangian spaces that are transversal to ��. It contains ��plh , as we saw above,
which is ��-positive. An application of Proposition1.2.6 allows us to conclude the
proof. �

Example. Let � = R2n , and let �± ⊆ C2n be C-Lagrangian spaces such that �+
is positive and �− is negative, with respect to �. Let us verify that there exists a
holomorphic quadratic form ϕ(x, y) on Cn

x × Cn
y such that

det ϕ′′xy 
= 0, Im ϕ′′yy > 0, (1.2.14)

and such that the complex linear canonical transformation

κϕ : C2n � (y,−ϕ′y(x, y)) 	→ (x,ϕ′x (x, y)) ∈ C2n

satisfies
κϕ(�+) = {(x, 0); x ∈ Cn}, (1.2.15)

and
κϕ(�−) = {(0, ξ); ξ ∈ Cn}. (1.2.16)

When showing the existence of the quadratic form ϕ(x, y), let us recall from Propo-
sition1.2.5 that�± has the form η = F±y, where F± is a complex symmetric matrix
such that ±Im F± > 0. Looking for ϕ in the form

ϕ(x, y) = 1

2
Ax · x + Bx · y + 1

2
Cy · y,

where the matrices A and C are symmetric and B is bijective, we observe first that
(1.2.16) is equivalent to the fact that
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κ−1ϕ ({(0, ξ); ξ ∈ Cn}) = {(y,−Cy); y ∈ Cn} = �−,

so we must have
C = −F−. (1.2.17)

The second condition in (1.2.14) is then satisfied, and we also see that

κ−1ϕ ({(x, 0); x ∈ Cn}) = {(y,−Bx − Cy); Ax + Bt y = 0}
= {(−(Bt )−1Ax,−Bx + C(Bt )−1Ax)}.

(1.2.18)

In order to have (1.2.15), thematrix A should necessarily be bijective, andwe assume
that this is the case. Writing y = −(Bt )−1Ax , x = −A−1Bt y, we then get from
(1.2.18),

κ−1ϕ ({(x, 0); x ∈ Cn}) = {(y, B A−1Bt y − C(Bt )−1AA−1Bt y)}
= {(y,

(
B A−1Bt − C

)
y)}.

The condition (1.2.15) therefore holds precisely when

B A−1Bt − C = F+. (1.2.19)

Using (1.2.17), we may rewrite (1.2.19) in the form

B A−1Bt = F+ − F−,

and observe that the matrix F+ − F− is invertible, since Im (F+ − F−) > 0. It
follows that A−1 = B−1(F+ − F−)(Bt )−1, and choosing the invertible symmetric
matrix A in the form

A = Bt (F+ − F−)−1 B,

we achieve (1.2.15). The general solution to (1.2.15), (1.2.16), satisfying (1.2.14), is
therefore of the form

ϕ(x, y) = 1

2
Bt (F+ − F−)−1 Bx · x + Bx · y − 1

2
F−y · y.

Here B is an arbitrary invertible matrix.

1.3 Metaplectic FBI Transforms and Bergman Kernels

Last time we discussed the geometry of complex Lagrangian planes in the complex-
ified phase space and that motivated us to look at complex canonical transformations
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of the form
κϕ : C2n � (y,−ϕ′y(x, y)) 	→ (x,ϕ′x (x, y)) ∈ C2n.

Here ϕ is a holomorphic quadratic form on Cn
x × Cn

y such that

det ϕ′′xy 
= 0, Im ϕ′′yy > 0. (1.3.1)

Definition 1.3.1 The metaplectic Fourier–Bros–Iagolnitzer (FBI) transform associ-
ated to the quadratic form ϕ satisfying (1.3.1) is the operator

T : S ′(Rn) → Hol(Cn), (1.3.2)

given by

T u(x; h) = Ch−
3n
4

∫
eiϕ(x,y)/hu(y) dy, 0 < h ≤ 1. (1.3.3)

To understand the growth properties of the entire function T u in the complex domain,
let us set

�(x) = sup
y∈Rn

(− Im ϕ(x, y)). (1.3.4)

Since Imϕ′′yy > 0, we see that the supremum in (1.3.4) is achieved at a unique point
y(x) ∈ Rn , which is the unique critical point of the function

Rn � y 	→ −Imϕ(x, y).

Letting vcy stand for the critical value, we get

�(x) = vcy∈Rn (−Imϕ(x, y)) = −Imϕ(x, y(x)), (1.3.5)

and by Taylor’s formula, we can write, for y ∈ Rn ,

−Imϕ(x, y) = �(x)− 1

2
Imϕ′′yy(y − y(x)) · (y − y(x)) ≤ �(x)− 1

C
|y − y(x)|2 .

It is therefore clear that for some M > 0 depending on the order of the distribution
u, we have

|T u(x; h)| ≤ Ch−M 〈x〉M e�(x)/h, x ∈ Cn. (1.3.6)

We also observe that the quadratic form �(x) = supy∈Rn (− Im ϕ(x, y)) is pluri-
subharmonic, being the supremum of a family of pluri-harmonic quadratic forms.

Example. Let ϕ(x, y) = i
2 (x − y)2. Then �(x) = 1

2 (Im x)2, and the canonical
transformation κϕ is given by

κϕ(y, η) = (y − iη, η).
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Remark. In microlocal analysis, microlocal properties of u ∈ S ′(Rn) near (y, η) ∈
T ∗Rn\{0} can be characterized using local properties of the holomorphic function T u
near πx

(
κϕ(y, η)

) ∈ Cn . Here πx : C2n
x,ξ � (x, ξ) → x ∈ Cn is the natural projection

map.We refer to [65] and to Sect. 2.6 of this text for further details. In this elementary
discussion, we shall only be concerned with global aspects of the metaplectic FBI
transforms.

The following proposition indicates that there is a dictionary between the real side
and the FBI transform side, where R2n corresponds to the linear manifold

�� =
{(

x,
2

i

∂�

∂x
(x)

)
; x ∈ Cn

}
⊆ C2n. (1.3.7)

Proposition 1.3.2 The complex canonical transformation

κϕ : C2n � (y,−ϕ′y(x, y)) 	→ (x,ϕ′x (x, y)) ∈ C2n (1.3.8)

maps R2n bijectively onto ��. The quadratic form � introduced in (1.3.4) is strictly
pluri-subharmonic.

Proof We claim that for any x ∈ Cn there is a unique (y(x), η(x)) ∈ R2n such that
πx ◦ κϕ(y(x), η(x)) = x . Indeed, if y ∈ Rn , then ϕ′y(x, y) is real if and only if
∇y(−Imϕ(x, y)) = 0, in other words, if and only if y = y(x), the critical point
in (1.3.5). The claim follows with η(x) = −ϕ′y(x, y(x)). We let next ξ(x) ∈ Cn be
such that κϕ(y(x), η(x)) = (x, ξ(x)), i.e. ξ(x) = ϕ′x (x, y(x)). Writing

�(x) = −Imϕ(x, y(x)) = i

2

(
ϕ(x, y(x))− ϕ(x, y(x))

)
,

we check, using the fact that ϕ′y(x, y(x)) and y(x) are real that

ξ(x) = 2

i

∂�

∂x
(x). (1.3.9)

It follows that κϕ(R2n) = ��, and since σ|R2n is non-degenerate, we obtain that
σ|��

is non-degenerate, or equivalently, the Levi form ∂x̄∂x� is non-degenerate.
Since we already know that � is pluri-subharmonic, we conclude that � is strictly
pluri-subharmonic. �

We shall now establish the following basic result, concerning the mapping properties
of the FBI transform on L2(Rn).

Theorem 1.3.3 If C > 0 is suitably chosen in (1.3.3), then T is unitary,

T : L2(Rn) → H�(Cn) := L2(Cn, e−2�/h L(dx)) ∩ Hol(Cn).

Here L(dx) is the Lebesgue measure on Cn.
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As a preparation for the proof, let us first derive an expression for the orthogonal
(Bergman) projection:

� : L2
�(Cn) → H�(Cn),

where L2
�(Cn) = L2(Cn, e−2�/h L(dx)) and H�(Cn) ⊆ L2

�(Cn) is the closed sub-
space of holomorphic functions. Let ψ(x, y) be the unique holomorphic quadratic
form on Cn

x × Cn
y such that ψ(x, x̄) = �(x). Here we may notice that the anti-

diagonal {(x, x̄); x ∈ Cn} is maximally totally real ⊆ Cn
x × Cn

y . Explicitly, we have

ψ(x, y) = 1

2
�′′

xx x · x +�x̄ x x · y + 1

2
�′′

x̄ x̄ y · y,

so that in particular, ψ′′
xy = �′′

x x̄ is non-degenerate. It also follows that when y = x̄ ,
we have

∂yψ = ∂x̄�, ∂xψ = ∂x�. (1.3.10)

These observations have the following useful consequence:

2Reψ(x, y)−�(x)−�(y) = −�′′
x̄ x (y − x) · (y − x) ∼ − |y − x |2 , (1.3.11)

on Cn
x × Cn

y . Here the last conclusion follows since � is strictly pluri-subharmonic,
and to verify the first equality in (1.3.11) it suffices to Taylor expand the quadratic
functions y 	→ �(y) and y 	→ ψ(x, ȳ) at the point y = x , and exploit (1.3.10) to
obtain some cancellations.

Proposition 1.3.4 The orthogonal projection � : L2
�(Cn) → H�(Cn) is given by

�u(x) = 2n det ψ′′
xy

(πh)n

∫

Cn

e2ψ(x,ȳ)/hu(y)e−2�(y)/h L(dy). (1.3.12)

Proof Let � be the operator given in (1.3.12). To see that

� = O(1) : L2
�(Cn) → H�(Cn), (1.3.13)

we consider the reduced kernel

�̃(x, y) = e−�(x)/h�(x, y)e�(y)/h, (1.3.14)

and observe that thanks to (1.3.11), we have

∣∣�̃(x, y)
∣∣ ≤ C

hn
e−|x−y|2/Ch .

The uniform boundedness of � on L2
� is therefore a consequence of Schur’s lemma,

and since the range of � consists of holomorphic functions, the property (1.3.13)
follows. The selfadjointness of� on L2

� follows sinceψ(x, ȳ) = ψ(y, x̄). We finally
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need to show the reproducing property of �,

�u = u, u ∈ H�(Cn). (1.3.15)

To see (1.3.15), we start by establishing the Fourier inversion formula in the complex
domain,

u(x) = 1

(2πh)n

∫∫

�(x)

e
i
h (x−y)·θu(y) dy ∧ dθ, u ∈ H�(Cn). (1.3.16)

Here dy ∧ dθ is a (2n, 0)–form in Cn
y × Cn

θ , and the integration in (1.3.16) is carried
out over the 2n-dimensional contour (chain)�(x), parametrized by y ∈ Cn and given
by

�(x) : Cn � y 	→ (y, θ) ∈ Cn × Cn, θ = 2

i

∂�

∂x
(x)+ iC(x − y). (1.3.17)

Here C � 1 is large enough. We have

dy ∧ dθ|�(x) =
(

C

i

)n

dy ∧ d ȳ (1.3.18)

is real and non-vanishing, and it what followswe shall tacitly assume that the orienta-
tion on �(x) has been chosen so that the form in (1.3.18) is a positive multiple of the
Lebesgue measure on Cn

y . Let us also notice that the unique critical point of the func-

tion Cn × Cn � (y, θ) 	→ −Im (x − y) · θ +�(y) is given by y = x , θ = 2
i

∂�
∂x (x),

with the critical value �(x), and the contour �(x) passes through the critical point
for all C . To see (1.3.16), we first observe that the contour �(x) is good [65], in the
sense that along �(x), we have in view of Taylor’s formula,

Re (i(x − y) · θ)+�(y)−�(x) ≤ − |x − y|2 ,

provided that C > 1 is large enough. The integral in (1.3.16) therefore converges
absolutely for all u ∈ Hol(Cn) such that |u(x)| ≤ Oh(1)〈x〉N0e�(x)/h , for some N0 >

0, and in particular, for all u ∈ H�. We also notice that it is independent of C � 1,
in view of Stokes’ formula.

Using (1.3.17), we see that the right hand side in (1.3.16) is given by

2nCn

(2πh)n

∫
e−C |x−y|2/he

2
h

∂�
∂x (x)·(x−y)u(y) L(dy). (1.3.19)

Here the Gaussian

Cn � y 	→ Cn

(πh)n
e−C |y|2/h
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is spherically symmetric of integral one, and therefore, by the mean value theorem
for holomorphic functions, here applied to the function

y 	→ e
2
h

∂�
∂x (x)·(x−y)u(y),

we conclude that the expression (1.3.19) is equal to u(x) — see also Lemma7.3.11
in [35]. This establishes the validity of (1.3.16), andwemayobserve that the argument
given above is in some sense simpler than the usual proof of Fourier’s inversion
formula in the real domain, since all the integrals involved converge absolutely,
thanks to the choice of a family of good contours, such as �(x) above.

We shall now finish the proof of Proposition1.3.4 by passing from (1.3.16) to
(1.3.12). To this end, we make a linear complex change of variables θ 	→ w, given
by

θ = 2

i

∂ψ

∂x

(
x + y

2
, w

)
= 2

i

(
�′′

xx

(
x + y

2

)
+�′′

x x̄w

)
.

It follows, since ψ is quadratic, that

2 (ψ(x, w)− ψ(y, w)) = i(x − y) · θ,

and we get therefore from (1.3.16),

u(x) = 1

(2πh)n

∫∫

�̃(x)

e
2
h (ψ(x,w)−ψ(y,w))

(
2

i

)n

(det�x x̄ ) u(y) dy ∧ dw. (1.3.20)

Here �̃(x) is the natural image of�(x), so that (y, w) ∈ �̃(x) preciselywhen (y, θ) ∈
�(x). The contour �̃(x) is good in the sense that along �̃(x), we have

2Re (ψ(x, w)− ψ(y, w))+�(y)−�(x) ≤ − |x − y|2 ,

and another good contour �̂(x) is given by w = ȳ. Indeed, we have in view of
(1.3.11),

2 Re (ψ(x, ȳ)− ψ(y, ȳ))+�(y)−�(x) ≤ − 1

C
|x − y|2 .

The good contour �̂(x) is homotopic to �̃(x), with the homotopy being within the
set of good contours, and we conclude, in view of Stokes’ formula, that

u(x) = det�x x̄

i n(πh)n

∫∫

�̂(x)

e
2
h (ψ(x,w)−ψ(y,w))u(y) dy ∧ dw = �u. (1.3.21)

This completes the proof of Proposition1.3.4. �
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We shall return to the proof of Theorem1.3.3, where, without loss of generality, we
may assume that

ϕ′′xx = Reϕ′′yy = 0,

so that we can write

ϕ(x, y) = Ax · y + i

2
By · y, B > 0, det A 
= 0. (1.3.22)

We shall first show that T : L2(Rn) → H�(Cn) is an isometry. To this end, we
observe that T u(A−1x; h) is equal to Ch−3n/4 times the semiclassical Fourier–
Laplace transform of u(y)e−By·y/2h , and therefore, by Parseval’s formula,

∫ ∣∣T u(A−1x; h)
∣∣2 dRe x = (2πh)nC2h−3n/2

∫
e−By·y/he−2Im x ·y/h |u(y)|2 dy.

Next, a computation using (1.3.22) shows that

�(x) = 1

2
B−1Im (Ax) · Im (Ax), (1.3.23)

and therefore
∫∫ ∣∣T u(A−1x; h)

∣∣2e−2�(A−1x)/h L(dx)

= (2π)nC2h−n/2
∫∫

e−(By·y+2ξ·y+B−1ξ·ξ)/h |u(y)|2 dy dξ.

We have By · y + 2ξ · y + B−1ξ · ξ = B−1(ξ + By) · (ξ + By), and therefore the
integral with respect to ξ in the right hand side is equal to (πh)n/2 (det B)1/2. On the
other hand, the left hand side is given by |det A|2 || T u ||2H�

, so that we get

|det A|2 || T u ||2H�
= 2nπ3n/2C2 (det B)1/2 || u ||2L2 .

Choosing
C = 2−n/2π−3n/4 (det B)−1/4 |det A| > 0, (1.3.24)

we conclude that T : L2(Rn) → H�(Cn) is an isometry.
We shall finally show that T T ∗ = 1 on H�(Cn). Here the Hilbert space adjoint

T ∗ of T : L2(Rn) → L2
�(Cn) is given by

T ∗v(y) = Ch−3n/4
∫

e−iϕ∗(x̄,y)/hv(x)e−2�(x)/h L(dx), (1.3.25)
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where ϕ∗(x, y) = ϕ(x̄, ȳ) is the holomorphic extension of Rn
x × Rn

y � (x, y) 	→
ϕ(x, y). We get, for v ∈ Hol(Cn), such that |v(x)| ≤ ON ,h(1)〈x〉−N e�(x)/h , for all
N ,

(T T ∗v)(x) = C2h−3n/2
∫∫

ei(ϕ(x,y)−ϕ∗(w̄,y))/hv(w)e−2�(w)/h L(dw) dy. (1.3.26)

The integral with respect to y can be computed by exact stationary phase and we get,
writing q(x, w̄, y) = ϕ(x, y)− ϕ∗(w̄, y),

∫
eiq(x,w̄,y)/h dy = hn/2

(
det

q ′′yy

2πi

)−1/2
eivcyq(x,w̄,y)/h . (1.3.27)

Here
i

2
vcy(q(x, z, y)) = i

2
vcy

(
ϕ(x, y)− ϕ∗(z, y)

)
(1.3.28)

is a holomorphic quadratic form on Cn
x × Cn

z , and when z = x̄ , we see using (1.3.22)
that the unique critical point y in (1.3.28) is real and that (1.3.28) is equal to �(x).
It follows that

i

2
vcy

(
ϕ(x, y)− ϕ∗(z, y)

) = ψ(x, z),

and using also that q ′′yy = 2i B, we obtain from (1.3.27) that

∫
eiq(x,w̄,y)/h dy = hn/2πn/2(det B)−1/2e2ψ(x,w̄)/h .

Returning to (1.3.26) and recalling the explicit expression for the constant C in
(1.3.24), we see that

(T T ∗v)(x) = C2h−3n/2hn/2πn/2(det B)−1/2
∫

e2ψ(x,w̄)/hv(w)e−2�(w)/h L(dw)

= 2−n(det B)−1 |det A|2
(πh)n

∫
e2ψ(x,w̄)/hv(w)e−2�(w)/h L(dw)= (�v)(x)= v(x),

where the penultimate equality follows from Proposition1.3.4. Here we have also
used that

det�′′
x x̄ = 4−n |det A|2 (det B)−1,

in view of (1.3.23). The proof of Theorem1.3.3 is complete.
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1.4 Pseudodifferential Operators on FBI Transform Side

Let � be a strictly pluri-subharmonic quadratic form on Cn , and let us recall the
linear IR-manifold �� ⊂ Cn

x × Cn
ξ , defined in (1.3.7). Introduce

S(��) = {a ∈ C∞(��); ∂αa = Oα(1), ∀α} (1.4.1)

Herewe identify�� linearlywithCn via the projectionmap�� � (x, ξ) 	→ x ∈ Cn .
If a ∈ S(��) and u ∈ Hol(Cn) is such that u = Oh,N (1)〈x〉−N e�(x)/h , for all N ≥ 0,
we put

Opw
h (a)u(x) = 1

(2πh)n

∫∫

�(x)

e
i
h (x−y)·θa

(
x + y

2
, θ

)
u(y) dy ∧ dθ. (1.4.2)

Here �(x) is the only possible integration contour given by

θ = 2

i

∂�

∂x

(
x + y

2

)
.

Along �(x), we get, by Taylor’s formula,

Re (i(x − y) · θ)−�(x)+�(y) =
〈
x − y,∇�

(
x + y

2

)〉

R2n
−�(x)+�(y) = 0,

and let us notice also that

dy ∧ dθ|�(x) = 1

i n
det (�′′

x x̄ )dy ∧ d ȳ.

It follows that the integral in (1.4.2) converges absolutely, and for a suitable constant
C 
= 0, we may write,

Opw
h (a)u(x) = C

hn

∫
K (x, y)u(y) L(dy), (1.4.3)

where

K (x, y) = e
2
h (x−y)· ∂�

∂x (
x+y
2 )a

(
x + y

2
,
2

i

∂�

∂x

(
x + y

2

))
.

It follows that∂x̄ K (x, y) = ∂ȳ K (x, y), and using an integration bypartswe conclude
that the function Opw

h (a)u(x) is holomorphic, since u is.

Theorem 1.4.1 Let a ∈ S(��). The operator Opw
h (a) extends to a bounded opera-

tor: H�(Cn) → H�(Cn), whose norm is O(1), as h → 0+.

Proof Following [73], we shall prove this result by means of a contour deformation
argument. When 0 ≤ t ≤ 1, let �t (x) be the 2n-dimensional contour, given by
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θ = 2

i

∂�

∂x

(
x + y

2

)
+ i t

x − y

〈x − y〉 . (1.4.4)

We also introduce the (2n + 1)-dimensional contour G(x) ⊂ Cn
y × Cn

θ , given by

G(x) =
⋃

0≤t≤1
�t (x).

We would like to replace the contour �(x) = �0(x) by �1(x) in (1.4.2), and to that
end, we let ã ∈ C∞(C2n

x,ξ) be an almost holomorphic extension of a ∈ S(��), so that
supp (̃a) ⊆ �� + neigh(0, C2n), all derivatives of ã are bounded, ã|��

= a, and

∣∣∂x̄,ξ̄ ã(x, ξ)
∣∣ ≤ ON (1)

∣∣∣∣ξ −
2

i

∂�

∂x
(x)

∣∣∣∣
N

, (1.4.5)

for all N ≥ 0. Let us recall that to construct ã, we may first make a complex linear
change of coordinates to replace�� byR2n and consider the problem of constructing
an almost holomorphic extension of a ∈ C∞(R2n), with ∂αa ∈ L∞(R2n) for all α.
To this end, following the classical construction by Hörmander, explained in [8], we
set

ã(X + iY ) =
∑

|α|≥0

∂αa(X)

α! (iY )αχ(t|α|Y ), (1.4.6)

where χ ∈ C∞
0 (R2n), χ = 1 near 0, and t j →∞ sufficiently rapidly, so that

∣∣∣∂β
X∂

γ
Y cα(X, Y )

∣∣∣ ≤ 2−|α|, |β| + |γ| ≤ |α| − 1.

Here cα(X, Y ) = (∂αa(X)/α!)(iY )αχ(t|α|Y ).
Returning to (1.4.2), we get by Stokes’ formula, assuming that u ∈ Hol(Cn), with

u(x) = Oh,N (1)〈x〉−N e�(x)/h , for all N ≥ 0,

Opw
h (a)u = I1u + I2u, (1.4.7)

where

I1u(x) = 1

(2πh)n

∫∫

�1(x)

e
i
h (x−y)·θã

(
x + y

2
, θ

)
u(y) dy ∧ dθ, (1.4.8)

and

I2u(x) = 1

(2πh)n

∫

G(x)

dy,θ

(
e

i
h (x−y)·θã

(
x + y

2
, θ

)
u(y)

)
∧ dy ∧ dθ. (1.4.9)
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We have dy ∧ dθ|�1(x) = O(1)L(dy), and it follows from (1.4.4) that the reduced
kernel of I1 satisfies

∣∣e−�(x)/h I1(x, y)e�(y)/h
∣∣ ≤ C

hn
e−

|x−y|2
h〈x−y〉 .

In order to conclude that I1 = O(1) : L2
�(Cn) → L2

�(Cn), in view of Schur’s lemma,
it suffices to check that

1

hn

∫
e−

|x |2
h〈x〉 L(dx) = O(1),

which is easily seen by considering the integrals over the regions where |x | ≤ 1 and
|x | ≥ 1. When estimating the contribution of I2, we write

dy,θ

(
e

i
h (x−y)·θã

(
x + y

2
, θ

)
u(y)

)
∧ dy ∧ dθ

= e
i
h (x−y)·θu(y)∂ȳ,θ̄

(
ã

(
x + y

2
, θ

))
∧ dy ∧ dθ,

and notice that in view of (1.4.5), we have along G(x),

∂ȳ,θ̄

(
ã

(
x + y

2
, θ

))
∧ dy ∧ dθ = ON (1)t N |x − y|N

〈x − y〉N dt L(dy), N ≥ 0.

It follows that the reduced kernel of I2 satisfies

∣∣e−�(x)/h I2(t, x, y)e�(y)/h
∣∣ ≤ C

hn
e−

t |x−y|2
h〈x−y〉 t N |x − y|N

〈x − y〉N ,

and by an application of Schur’s lemma, we see that in order to control the norm of
the operator

I2 : L2
�(Cn) → L2

�(Cn),

it suffices to estimate
1

hn

∫
e−

t |x |2
h〈x〉 t N |x |N

〈x〉N L(dx),

uniformly in t ∈ [0, 1]. In doing so, we consider first the contribution of the region
where |x | ≤ 1. We get

1

hn

∫

|x |≤1
e−

t |x |2
h〈x〉 t N |x |N

〈x〉N L(dx) = O(1)h−n
∫ 1

0
e− tr2

2h t N r N+2n−1dr

≤ O(1)h−n
∫ ∞
0

e−s2 t N
(
2h

t

)N/2+n
s N+2n−1 ds = O(1)hN/2t N/2−n = O(hN/2),
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uniformly in t ∈ [0, 1], for N large enough. Next, the contribution of the integral
over the region |x | ≥ 1 does not exceed a constant times

h−n
∫

|x |≥1
e−

t |x |
2h t N L(dx) = O(1)h−n

∫ ∞

1
e−

tr
2h t N r2n−1 dr

= O(1)hnt N−2n
∫ ∞

t/h
e−ρ/2ρ2n−1 dρ = O(1)hnt N−2nO

((
1+ t

h

)−M
)

,

for all M ≥ 0. If t ≤ h1/2, we use the factor t N−2n to get the bound O(hN/2), while
for t ≥ h1/2, we use the factor

O
((

1+ t

h

)−M
)
= O(hM/2),

to get the bound O(hn+M/2). We conclude, in view of (1.4.7) that

Opw
h (a)u(x) = 1

(2πh)n

∫∫

�1(x)

e
i
h (x−y)·θã

(
x + y

2
, θ

)
u(y) dy ∧ dθ + Ru,

(1.4.10)
where

R = O(h∞) : L2
�(Cn) → L2

�(Cn).

This completes the proof. �

We shall next discuss the link between the h-pseudodifferential operators on the FBI
transform side and the semiclassicalWeyl quantization onRn . We have the following
metaplectic Egorov theorem.

Theorem 1.4.2 Let T : L2(Rn) → H�(Cn) be a metaplectic FBI transform with
the associated canonical transformation

κT : R2n → ��.

If a ∈ S(��) then we have

T ∗Opw
h (a)T = Opw

h (a ◦ κT ).

Here the operator in the right hand side is the h-Weyl quantization of the symbol
a ◦ κT ∈ S(1) on Rn.

Proof The starting point is the following fact that can be verified by means of an
explicit computation: let � be a real linear form on R2n and let k be the linear form
on �� such that k ◦ κT = �. Then we have on S(Rn),

Opw
h (k) ◦ T = T ◦ Opw

h (l). (1.4.11)
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In the computation, it is convenient to use that if k(x, ξ) = x∗ · x + ξ∗ · ξ, x, ξ ∈ Cn ,
then

Opw
h (k) = k(x, h Dx ) = x∗ · x + ξ∗ · h Dx ,

and there is a similar formula for Opw
h (�). Now let us recall from [8] that the first order

operator �(x, h Dx ) = Opw
h (�) is essentially selfadjoint on L2(Rn) from S(Rn), and

ei�(x,h Dx )/h = Opw
h

(
ei�(x,ξ)/h

)
. (1.4.12)

It follows from (1.4.11) and the unitarity of T that k(x, h Dx ) is essentially selfad-
joint on H�(Cn) from TS(Rn), and therefore, the corresponding unitary groups are
intertwined by T ,

eik(x,h Dx )/h ◦ T = T ◦ eil(x,h Dx )/h .

Here we claim that in analogy with (1.4.12), we have

eik(x,h Dx )/h = Opw
h (eik(x,ξ)/h), (1.4.13)

where the right hand side is still given by the contour integral in (1.4.2). Indeed, let
us write, for u ∈ TS(Rn),

Opw
h

(
eik(x,ξ)/h

)
u(x) = 1

(2πh)n

∫∫

�(x)

e
i
h ((x−y+ξ∗)·θ+x∗·( x+y

2 ))u(y) dy ∧ dθ.

(1.4.14)

Here by Stokes’ theorem, the integration contour can be deformed to the following,

θ = 2

i

∂�

∂x
(x)+ iC(x − y + ξ∗),

for C � 1 large enough, and the expression (1.4.14) becomes

2nCn

(2πh)n

∫
e−C |x−y+ξ∗|2/he

2
h (x−y+ξ∗)· ∂�

∂x (x)+ i
h x∗·( x+y

2 )u(y) L(dy),

which, by the mean value theorem for holomorphic functions, is equal to

x 	→ e
i
h x∗·x e

i
2h x∗·ξ∗u(x + ξ∗) = eik(x,h Dx )/hu(x).

This establishes (1.4.13) and therefore, we get

Opw
h

(
e

i
h k(x,ξ)

)
◦ T = T ◦ Opw

h

(
e

i
h �(x,ξ)

)
. (1.4.15)

If a ∈ S(��) and b ∈ S(R2n) are related by b = a ◦ κT , then by Fourier’s inversion
formula, we can represent a and b as superpositions of bounded exponentials of the
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form eik(x,ξ)/h and eil(x,ξ)/h , respectively. Here the linear forms k and � are related
by � = k ◦ κT , and passing to the h–Weyl quantizations, we get, in view of (1.4.15),

Opw
h (a) ◦ T = T ◦ Opw

h (b). (1.4.16)

A density argument allows us to complete the proof. �

We shall finally make some remarks concerning pseudodifferential operators with
holomorphic symbols, referring to [65], as well as to the second part of this text,
for a much more extensive discussion. Let us assume that a(x, ξ) is a holomorphic
bounded function in a region of the form�� + W ⊂ Cn

x × Cn
ξ . Here W is a bounded

open neighborhood of 0 ∈ C2n . It follows from the proof of Theorem1.4.1 that in
this case we have, for u ∈ H�(Cn),

Opw
h (a)u(x) = 1

(2πh)n

∫∫

�C (x)

e
i
h (x−y)·θa

(
x + y

2
, θ

)
u(y) dy ∧ dθ, (1.4.17)

where the contour �C(x) is given by

θ = 2

i

∂�

∂x

(
x + y

2

)
+ i

C

(x − y)

〈x − y〉 ,

and C > 0 is large enough fixed, so that �C(x) ⊂ �� + W . The holomorphy of the
symbol allows us to consider weight functions different from � as well, and study
boundedness properties of Opw

h (a) in the corresponding exponentially weighted
spaces.

Following [73], we have the following result.

Theorem 1.4.3 Let �̃ ∈ C1,1(Cn) be such that �̃(x) = �(x)+ f (x), where f ∈
C1,1
0 (Cn) is such that || ∇ f ||L∞ , || ∇2 f ||L∞ are sufficiently small. We then have a

uniformly bounded operator

Opw
h (a) = O(1) : H�̃(Cn) → H�̃(Cn). (1.4.18)

Here we set H�̃(Cn) = Hol(Cn) ∩ L2(Cn, e−2�̃/h L(dx)).

Proof We make a deformation to the new contour and set

Opw
h (a)u(x) = 1

(2πh)n

∫∫

�̃C (x)

e
i
h (x−y)·θa

(
x + y

2
, θ

)
u(y) dy ∧ dθ, (1.4.19)

where

�̃C(x) = 2

i

∂�̃

∂x

(
x + y

2

)
+ i

C

x − y

〈x − y〉 . (1.4.20)

Along the contour �̃C(x), we have
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− �̃(x)+ Re (i(x − y) · θ)+ �̃(y)

= −�̃(x)+
〈
x − y,∇�̃

(
x + y

2

)〉

R2n
+ �̃(y)− 1

C

|x − y|2
〈x − y〉

= − f (x)+
〈
x − y,∇ f

(
x + y

2

)〉

R2n
+ f (y)− 1

C

|x − y|2
〈x − y〉 ,

and applying Taylor’s formula we see that this expression does not exceed

O(1)|| f ′′ ||L∞ |x − y|2
〈x − y〉 −

1

C

|x − y|2
〈x − y〉 ≤ − 1

2C

|x − y|2
〈x − y〉 ,

provided that || f ′′ ||L∞ is small enough. The proof can therefore be concluded as
before, by an application of Schur’s lemma. �

Remark. Let us notice that H�̃(Cn) = H�(Cn) as linear spaces, with the norms
being equivalent, but not uniformly as h → 0+. We observe also that the Lipschitz
IR-manifold ��̃ is close to ��, in the sense of Lipschitz graphs.

It turns out that the natural symbol associated to the operator in (1.4.18) is a|��̃
.

Indeed, we have the following fundamental quantization-multiplication formula, due
to [6, 69].

Proposition 1.4.4 We have

(
Opw

h (a)u, v
)

H�̃
=

∫
a

(
x,

2

i

∂�̃

∂x
(x)

)
u(x)v(x)e− 2

h �̃(x) L(dx)+O(h)|| u ||H�̃
|| v ||H�̃

,

for u, v ∈ H�̃(Cn).

Proof We represent the operator Opw
h (a) as in (1.4.19) with the contour (1.4.20),

and Taylor expand a, writing ξ(x) = 2
i

∂�̃
∂x (x),

a

(
x + y

2
, θ

)
= a(x, ξ(x))+ (∂ξa)(x, ξ(x))(θ − ξ(x))

+ (∂x a)(x, ξ(x))

(
y − x

2

)
+O(|y − x |2)+O(|θ − ξ(x)|2).

Here the remainder terms are both O(|x − y|2) along the contour �̃C(x), and there-
fore, in view of Schur’s lemma, their contribution gives rise to an operator of the norm
O(h) : H�̃(Cn) → L2

�̃
(Cn). Next, observing that the term (∂x a)(x, ξ(x))

( y−x
2

)

drops out, when passing to the quantizations, we conclude that

Opw
h (a) = a(x, ξ(x))+ (∂ξa)(x, ξ(x)) · (h Dx − ξ(x))+ R,

where
R = O(h) : H�̃(Cn) → L2

�̃
(Cn).
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It remains to estimate the integral

∫ (
∂ξ j a

)
(x, ξ(x))

((
h Dx j − ξ j (x)

)
u(x)

)
v(x)e−2�̃(x)/h L(dx), 1 ≤ j ≤ n,

(1.4.21)
and since the function

(
∂ξ j a

)
(x, ξ(x)) is Lipschitz, we can integrate by parts in

(1.4.21), getting O(h)|| u ||H�̃
|| v ||H�̃

plus the term

∫ (
∂ξ j a

)
(x, ξ(x))u(x)v(x)

(−h Dx j − ξ j (x)
)

e−2�̃(x)/h L(dx) = 0.

This completes the proof. �
We shall finish with the following general idea suggested by the discussion above:
given an h–pseudodifferential operator of the form Opw

h (a), with a holomorphic in
a tubular neighborhood of ��, try to find an IR-manifold ��̃ close to �� so that the
operator

Opw
h (a) : H�̃(Cn) → H�̃(Cn)

acquires some improved properties, such as the invertibility, ellipticity, normality,
etc. We refer to the works [7, 20, 21, 26, 27, 49, 50], where implementations of
this idea have led to some precise results in the spectral theory of semiclassical
non-selfadjoint operators. It may also be interesting to compare this idea with the
recent developments around Carleman estimates with limiting Carleman weights for
second order elliptic differential operators, see [39].

2 Analytic Microlocal Analysis Using Holomorphic
Functions with Exponential Weights

2.1 Introduction

There are several approaches to analytic microlocal analysis:

• One very natural approach consists in adapting the classical theory of pseudodif-
ferential operators on the real domain to the analytic category. The basic calculus
was developed by L. Boutet de Monvel and P. Krée [3]. K.G. Andersson [1] and
L. Hörmander [33] studied propagation of analytic singularities. The work [33]
also introduced the analytic wave front set of distributions, a corresponding notion
in the framework of hyperfunctions had previously been introduced byM.Sato (see
[58]). The two works [1, 33] use special sequences of cutoff functions, remedying
for the lack of analytic functions with compact support. Such special sequences
have an earlier history, see L. Ehrenpreis [9], S. Mandelbrojt [44, 45]. The book
[77] of F. Treves gives the theory of analytic pseudodifferential operators, with the
help of such cutoffs.
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• A second approach is based on the representation of distributions and more gen-
erally hyperfunctions as sums of boundary values of holomorphic functions. The
main work in this direction is the one of M. Sato, T. Kawai and M. Kashiwara
[58].

• A third approach is to work with Fourier transforms that have been modified
by the introduction of a Gaussian (avoiding the use of the special cutoffs men-
tioned above). Such transforms come under different names: FBI, Bargmann-
Segal, Gabor, wavepacket .... transforms. Microlocal properties are now described
in terms of exponential growth/decay of the transformed functions. In the context
of analytic microlocal analysis they were introduced and used by D. Iagolnitzer,
H. Stapp [37], J. Bros, Iagolnitzer [4]. This is the method we follow here. See [46,
65].

The aim of this part of the text is to explain the basic ingredients in the approach of
[65], that was preceded by some work on propagation of analytic singularities for
boundary value problems, see [63]. The main observation is that an FBI-transform
produces holomorphic functions whose exponential growth rate reflect the regularity
and that such transforms are Fourier integral operators with complex phase functions.
This leads to a calculus of Fourier integral operators and pseudodifferential operators
in the complex domain via a Egorov theorem. In this calculus oscillatory integrals are
systematically replaced by contour integrals, leading to “Cauchy integral operators”.

This chapter splits roughly into 4 unequal parts:

• In Sects. 2.2–2.5we discuss pseudodifferential operators and Fourier integral oper-
ators acting on exponentially weighted spaces of holomorphic functions.

• In Sects. 2.6, 2.7 we introduce FBI (generalized Bargmann-) transforms and the
analytic wave front set of a distribution.

• The Sects. 2.8, 2.9 are devoted to some applications: propagation of singularities,
construction of exponentially accurate quasi-modes for non-self-adjoint differen-
tial operators.

• In Sect. 2.10, we discuss the possibility of going from local to global results and
in Sect. 2.11 we give a very quick review of related developments.

The theory that we develop is designed to analyze existing distributions (and opera-
tors), their singularities and sometimes their asymptotic behaviour. Thus for instance,
if we consider an elliptic equation Pu = v, we do not try to construct the solution u,
by constructing an inverse or parametrix of P directly. But if we assume that the solu-
tion u exists, we can analyze it by applying an FBI-transform T to get a conjugated
equation P̃T u = T v near some point inCn , where P̃ is an elliptic pseudodifferential
operator in the complex domain to be described below, which we can invert. Hence
we get T u from the knowledge of T v, and this allows us to analyze u up to analytic
functions, (and sometimes up to exponentially decaying functions when we have an
asymptotic problem).
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2.2 Classical Analytic Symbols and Pseudodifferential
Operators

Let � ⊂ Cn be open, φ ∈ C(�;R). By definition, the function u = u(z; h) on
�×]0, h0[ belongs to H loc

φ (�) if

• u(·; h) ∈ Hol(�), for all h, where Hol (�) denotes the space of holomorphic func-
tions on �.

• ∀K � �, ε > 0, ∃C > 0 such that |u(z; h)| ≤ Ce(φ(z)+ε)/h , z ∈ K .

When u ∈ H0(�), i.e. u ∈ Hφ(�) with φ = 0, we say that u is an analytic symbol.
When u = O(h−m) locally uniformly on �, we say that u is of finite order m ∈
R. Finite order symbols are useful for symbolic calculus, like inversion of elliptic
operators, while general symbols (of subexponential growth in 1/h) are sometimes
more convenient for general discussions.

We frequently identify equivalent elements of H loc
φ (�), where the equivalence

u ∼ v of u, v ∈ H loc
φ (�)means that there exists C0(�) � φ0 < φ, such that u − v ∈

H loc
φ0

(�).Whenφ is pluri-subharmonic, the ∂-method ofHörmander [34] allows us in
principle (andwithout going into any details) to patch together local “representatives”
u j ∈ H loc

φ (� j )with u j ∼ uk in H loc
φ (� j ∩�k) into a holomorphic function u of class

H loc
φ on the union of the � j such that u ∼ u j in H loc

φ (� j ) for every j .
By Hφ,x0 we denote the intersection of all spaces Hφ(�) where � is a small

neighborhood of x0 ∈ Cn and φ is defined in some fixed neighborhood of x0. We
have a corresponding equivalence relation.

Classical analytic symbols (Boutet de Monvel, Krée [3]). We restrict the attention
to symbols of order 0. Let ak ∈ Hol (�), k = 0, 1, . . . and assume that for every
�̃ � �, ∃C = C�̃ > 0 such that

|ak(z)| ≤ Ck+1kk, z ∈ �̃. (2.2.1)

a = ∑∞
0 ak(z)hk is called a (formal) classical analytic symbol.

This series may very well be divergent for every h > 0, but for z ∈ �̃, 0 ≤ k ≤
(eC�̃h)−1 we have

|ak(z)|hk ≤ C�̃(C�̃hk)k ≤ C�̃e−k,

so in this range the terms of the series behave like those of a geometrically convergent
one. We can define a realization of a on �̃ by

a�̃(z; h) =
∑

0≤k≤(eC�̃h)−1
ak(z)h

k .

and we get |a�̃(z; h)| ≤ C�̃e/(e − 1).
If �̂ ⊃ �̃ is another relatively compact subset of �, and assuming, as we may,

that C�̂ > C�̃, then a�̂ and a�̃ are equivalent in H0(�̃). It is sometimes convenient
to consider (formal) classical symbols of the form
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a =
∞∑

0

ak(z)h
k, ak ∈ Hol (�)

without the growth condition (2.2.1).
Let

p(x, ξ; h) =
∞∑

0

hk pk(x, ξ), q(x, ξ; h) =
∞∑

0

hkqk(x, ξ)

be classical symbols definednear (x0, ξ0) ∈ C2n .Denote by p(x, h D; h),q(x, h D; h)

the corresponding formal pseudodifferential operators. The formal composition of
p and q is defined by

p#q =
∑

α∈Nn

h|α|

α! ∂α
ξ p(x, ξ; h)Dα

x q(x, ξ; h),

which is a finite sum for each power of h. Here, we use standard PDE-notation,
Dx = i−1∂x ,

∂α
x = ∂α1

x1 · · · ∂αn
xn

, |α| = |α|�1 = α1 + · · · + αn, for α = (α1, . . . ,αn) ∈ Nn.

When p, q are polynomials in ξ, the differential operators p(x, h D; h), q(x, h D; h)

are well defined and

p(x, h Dx ; h) ◦ q(x, h Dx ; h) = (p#q)(x, h D; h).

If r is a third symbol, also polynomial in ξ, it follows that

(p#q)#r = p#(q#r). (2.2.2)

In general, we can approximate p, q, r with finite Taylor polynomials at any given
point and see that we still have (2.2.2).

To p, we associate

A(x, ξ, h Dx ; h) = p(x, ξ + h Dx ; h) =
∑

α

hα

α! ∂
α
ξ p(x, ξ)Dα

x =
∞∑

k=0
hk Ak(x, ξ, Dx ),

where

Ak =
∑

ν+|α|=k

1

α! (∂
α
ξ pν)(x, ξ)Dα

x (2.2.3)

is a differential operator of order ≤ k.
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Formally, A = e−i x ·ξ/h ◦ p(x, h Dx ; h) ◦ eix ·ξ/h which is exact and well defined,
when p is a polynomial in ξ. Let B = q(x, ξ + h Dx ; h) = ∑∞

0 h� B�. Then C =
A ◦ B iswell definedbyC = ∑∞

0 hmCm ,Cm = ∑
k+�=m Ak ◦ B�. ByTaylor approx-

imation with polynomials in ξ, we see that

C = r(x, ξ + h Dx ; h), if r = p#q.

Quasi-norms Such norms are needed to control the symbolic calculus in the analytic
setting. Boutet de Monvel, Krée introduced quasinorms by means of a method of
majorant series. The present version is more conceptual, using norms of associated
operators.

Let �t � C2n , 0 ≤ t ≤ t0, t0 > 0 be a family of open neighborhoods of a point
(x0, ξ0) such that

(y, ξ) ∈ �s and |x − y|�∞ < t − s =⇒ (x, ξ) ∈ �t ,

whenever 0 ≤ s ≤ t ≤ t0. Here,

|x |�∞ = sup |x j |, x = (x1, . . . , xn) ∈ Cn.

Then Dα
x is a bounded operator: B(�t ) → B(�s) where B(�) denotes the space of

bounded holomorphic functions on �. Moreover, by the Cauchy inequalities,

‖Dα
x ‖t,s := ‖Dα

x ‖L(B(�t ),B(�s )) ≤
α!

(t − s)|α|
≤ C |α|

0 |α||α|
(t − s)|α|

,

for some constant C0 > 0.
If �t0 is a relatively compact subset of the domain of definition of p, then on �t0 ,

|∂α
ξ pν | ≤ C1+ν+|α|ννα!.

Hence, with a new constant

‖ 1

α!∂
α
ξ pDα

x ‖t,s ≤ C1+ν+|α|νν |α||α|
(t − s)|α|

.

The number of terms in (2.2.3) is ≤ (1+ k)n+1, so with a new constant C > 0, we
have

‖Ak‖t,s ≤ Ck+1kk

(t − s)k
, 0 ≤ s < t ≤ t0. (2.2.4)

Conversely, if p is a classical symbol such that (2.2.4) holds for some C > 0, then
p is a classical analytic symbol near (x0, ξ0). In fact, since pk = Ak(1), we get for
some new C > 0 that
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sup
�t0/2

|pk | ≤ Ck+1kk . (2.2.5)

Put f (A) = ( fk(A))∞k=0, where fk(A) is the smallest constant ≥ 0 such that

‖Ak‖t,s ≤ fk(A)kk(t − s)−k, 0 ≤ s < t ≤ t0.

When (2.2.4) holds, fk(A) is of at most exponential growth.
Let B = ∑∞

0 hk Bk be an operator of the same type, so that Bk is a differential
operator of order ≤ k.

Lemma 2.2.1 If C = A ◦ B, then fk(C) ≤ ∑
ν+μ=k fν(A) fμ(B) or in other terms,

f (C) ≤ f (A) ∗ f (B).

Proof We have Ck = ∑
ν+μ=k Aν ◦ Bμ and for 0 ≤ s < r < t ≤ t0:

‖Aν ◦ Bμ‖t,s ≤ fν(A) fμ(B)
ννμμ

(r − s)ν(t − r)μ
.

Choose r such that

r − s = ν

ν + μ
(t − s), t − r = μ

ν + μ
(t − s).

Then

‖Aν ◦ Bμ‖t,s ≤ fν(A) fμ(B)
(ν + μ)ν+μ

(t − s)ν+μ
,

‖Ck‖t,s ≤
⎛

⎝
∑

ν+μ=k

fν(A) fμ(B)

⎞

⎠ kk

(t − s)k
.

�

For ρ > 0, put

‖A‖ρ =
∞∑

0

ρk fk(A).

Then (2.2.4) holds iff ‖A‖ρ < ∞ for ρ > 0 small enough.

Lemma 2.2.2 Let C = A ◦ B. If ‖A‖ρ, ‖B‖ρ < ∞, then ‖C‖ρ < ∞ and we have
‖C‖ρ ≤ ‖A‖ρ‖B‖ρ.

Proof By Lemma2.2.1, we have pointwise with respect to k:

(ρk fk(C))∞0 ≤ (ρk fk(A))∞0 ∗ (ρk fk(B))∞0

and we have the corresponding inequality for the �1-norms. �
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If p(x, ξ; h) is a classical symbol on a neighborhood of �t0 , we put ‖p‖ρ = ‖A‖ρ.
If p is a classical analytic symbol then there exists ρ > 0 such that ‖p‖ρ < ∞ and
similarly for q corresponding to B. Since p#q corresponds to A ◦ B, we obtain
‖p#q‖ρ ≤ ‖p‖ρ‖q‖ρ and we conclude that p#q is a classical analytic symbol in�t0 .
Next we give a semi-classical formulation of a fundamental result of L. Boutet de
Monvel, P. Krée [3]:

Theorem 2.2.3 Let p be an elliptic classical analytic symbol (p0 
= 0) on a neigh-
borhood of �t0 and let q be the classical symbol given by p#q = 1. Then q is a
classical analytic symbol in �t0 .

Proof Let q0 = 1/p0, so that q0 is a classical analytic symbol. Then p#q0 = 1− r
where r is a classical analytic symbol of order −1 in the sense that its asymptotic
expansion starts with a term in h. Consequently ‖r‖ρ < 1/2 if ρ > 0 is small enough.
We have

q = q0#(1+ r + r#r + · · · ),

so that
‖q‖ρ ≤ ‖q0‖ρ(1+ ‖r‖ρ + ‖r‖2ρ + · · · ) ≤ 2‖q0‖ρ < ∞.

�

2.3 Stationary Phase – Steepest Descent

Let B = BRn (0, 1) be the open unit ball in Rn and put

B̃ = {λx; x ∈ B, λ ∈ C, |λ| ≤ 1}.

Theorem 2.3.1 There exist a constant C > 0 depending only on the dimension, such
that for all N ∈ N, 0 < h ≤ 1, u ∈ Hol (neigh (B̃)),

∫

B
e−x2/(2h)u(x)dx =

N−1∑

ν=0
(2π)

n
2 h

n
2+ν 1

ν!
(
1

2
	

)ν

u(0)+ RN (h),

where
|RN (h)| ≤ Ch

n
2+N (N + 1)

n
2 N !2N sup

B̃

|u(z)|.

We omit the proof and refer to [65], Chap. 2.
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Example 2.3.2 Consider

J (h) =
(

1

2πh

)n ∫∫

|x |≤C1
ξ=−C2 i x

e−i x ·ξ/hu(x, ξ)dxdξ.

Then,

J (h) =
N−1∑

0

1

k!

(
h

i

n∑

1

∂

∂x j

∂

∂ξ j

)k

u(0, 0)+ RN (h)

=
∑

|α|≤N−1

1

α!
(

h

i

)|α| (
∂α

x ∂α
ξ u

)
(0, 0)+ RN (h),

|RN (h)| ≤ C(n)(N + 1)n N !
(

h

C2
1C2

)N

sup
|x |≤C1|ξ|≤C1C2

|u(x, ξ)|.

This follows from Theorem2.3.1, some calculations and the following three obser-
vations:

• � : ξ = (C2/ i)x is a maximally totally real subspace of C2n , hence � R2n after a
complex linear change of coordinates.

• The restriction of e−i x ·ξ/h to � is equal to e−C2|x |2/h .
• The corresponding restriction of i−1∂x · ∂ξ is equal to

1

i
∂x · i

C2
∂x = 1

4C2
	Re x,Im x .

Non-quadratic case. The holomorphic version of theMorse lemma is the following:

Lemma 2.3.3 Let φ ∈ Hol (neigh (z0, Cn)), φ′(z0) = 0, det φ′′(z0) 
= 0. Then there
exist local holomorphic coordinates z̃1, . . . , z̃n , centered at z0 such that

φ(z) = φ(z0)+ 1

2
(̃z21 + · · · + z̃2n).

The main ingredient in the standard proof of the Morse lemma in the real smooth
category is the implicit function theorem in the same category. To get the proof of
the holomorphic Morse lemma it suffices to use the holomorphic implicit function
theorem.

Theorem 2.3.4 Let 0 ∈ V � U ⊂ Cn, V, U open, φ ∈ Hol (U ), φ(0) = 0, φ′(0) =
0, φ′′(0) non degenerate. Assume thatReφ ≥ 0 on VR := V ∩ Rn,Reφ > 0 on ∂VR,
φ′(x) 
= 0 on VR \ {0}. Then, for every C > 0 large enough, there exists a constant
ε > 0 such that for every u ∈ Hol (U ),
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∫

VR

e−φ(x)/hu(x)dx =
∑

0≤k≤1/(Ch)

(2πh)
n
2

hk

k!
(
1

2
	̃

)k ( u

J

)
(0)+ R(λ),

where

|R(h)| ≤ 1

ε
e−

ε
h sup

U
|u(z)|, 0 < h ≤ 1.

Here, 	̃ denotes the Laplacian in the Morse coordinates, J = det dz̃
dz , J (0) =

(det φ′′(0)) 1
2 , with the choice of the branch of the square root that tends to 1, when

we deform φ′′(0) to 1 in the space of invertible symmetric matrices with real part
≥ 0.

Proof Up to an exponentially small modification, we may replace the integral by

Iχ =
∫

Rn

e−φ(x)/hu(x)χ(x)dx, χ ∈ C∞
0 (VR),

supp (1− χ) ⊂ small neighborhood of ∂VR.

Make a first contour deformation �δ : VR � x 	→ x + δφ′(x), 0 ≤ δ ≤ δ0 � 1.
Along �δ we have

φ(z) = φ(x)+ δ|φ′(x)|2 +O(δ2|φ′(x)|2) ≥ δ

C
|z|2,

when δ0 is small enough.
Let G be the (n + 1)-dimensional contour formed by the union of the �δ for

0 ≤ δ ≤ δ0. Then Stokes’ formula gives (with χ denoting also a suitable smooth
extension to the complex domain),

Iχ =
∫

�δ0

e−φ(z)/hu(z)χ(z)dz −
∫

G
d(e−φ/hu(z)χ(z)dz).

The last integral is equal to

∫

G∩neigh (∂VR)

e−φ(z)/hu(z)∂χ(z) ∧ dz.

When estimating the integral over �δ0 , we can restrict the attention to a small neigh-
borhood of 0 and then use Morse coordinates for which φ = 1

2 z̃2. Since Reφ � |̃z|2
along �δ0 , we see that �δ0 must be of the form ỹ = k (̃x) (̃z = x̃ + i ỹ), where
|k ′| ≤ θ < 1, k(0) = 0. (Use the implicit function theorem, to see that the projection
�δ0 � z̃ 	→ x̃ is a diffeomorphism near 0.) The last step is then to deform the contour
ỹ = k (̃x) to ỹ = 0 in the simplest possible way and to apply Theorem2.3.1. �
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2.4 Contour Integrals and Fourier Transforms

a. Remarks about real quadratic forms on Cn . Let q be a real quadratic form on
Cn � R2n . Let sign (q) = (m+, m−) where m± = m±(q) are given by

q =
m+∑

1

ξ2j −
m++m−∑

m++1
ξ2j ,

for suitable real-linear coordinates on Cn . We know that m+ (m−) is the largest
possible dimension of a real-linear subspace onwhichq is positive (negative) definite.

Using the complex structure, put Jq(x) = q(i x), so that J 2q = q (since q is
even).

Notice that q is pluriharmonic iff Jq = −q.
We say that q is Levi if Jq = q.
In general we have the decomposition

q = h + � = 2Re
(∑

a j,k z j zk

)
+

∑
b j,k z j zk,

where h = (1− J )q/2 is pluri-harmonic and � = (1+ J )q/2 is Levi.

Proposition 2.4.1 Let q be a pluri-subharmonic quadratic form on Cn. Then

(a) m+(q) ≥ m−(q)

(b) If q is non-degenerate of signature (n, n), then the same fact holds for every
pluri-subharmonic quadratic form q̃ ≤ q.

Proof The pluri-subharmonicity of q means that � ≥ 0. (a) Let L ⊂ Cn be a real-
linear subspace of dimensionm− = m−(q) such that q|L < 0.Use the decomposition
q = h + �. Then h(x) = q(x)− �(x) < 0 for 0 
= x ∈ L . Consequently, h(i x) > 0,
so q(i x) = h(i x)+ �(i x) > 0. Thus q is positive definite on the m−-dimensional
space i L , so m+ ≥ m−. (b) Now assume that m+ = m− = n. Let q̃ ≤ q be pluri-
subharmonic and choose the subspace L as in (a). Then q̃ is negative definite on L
so m−(q̃) ≥ m−(q) = n and from the part (a) of the proposition we conclude that q̃
has signature (n, n). �

b. Fundamental lemma.

Lemma 2.4.2 Let φ ∈ C∞(neigh ((0, 0), Cn+k);R) be pluri-subharmonic. Assume
that ∇yφ(0, 0) = 0 and that ∇2

yφ(0, 0) is nondegenerate of signature (k, k). For
x ∈ neigh (0, Cn), let y(x) ∈ neigh (0, Ck) be the unique critical point of φ(x, ·), so
that y(x) is a smooth function of x by the implicit function theorem. Then the critical
value of y 	→ φ(x, y),

�(x) = φ(x, y(x)) = vcyφ(x, y)
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is pluri-subharmonic. If φ̃ ≤ φ is pluri-subharmonic with φ̃(0, 0) = φ(0, 0), then
∇2

y φ̃(0, 0) is also non-degenerate of signature (k, k) and

vcyφ̃(x, y) ≤ vcyφ(x, y), for x ∈ neigh (0, Cn).

Proof Let L ⊂ Ck be a subspace of real dimension k such that ∇2
yφ(0, 0)|L < 0.

Then ∇2
yφ(0, 0)|i L

> 0. For t ∈ neigh (0, i L), put Lt = t + L , so that the �t form

a foliation of a neighborhood of 0 ∈ Ck . It is easy to check (and closely related to
the circles of ideas around the Mountain Pass Theorem, see Theorem2, Sect. 8.5 in
[10]) that

φ(x, y(x)) = inf
t
sup
y∈�t

φ(x, y), x ∈ neigh (0, Cn).

If φ̃ ≤ φ is as in the statement of the lemma, we have ∇2
y φ̃(0, 0)|L < 0, so∇2

y φ̃(0, 0)

is non-degenerate of signature 0. Then y 	→ φ̃(x, y) has a non-degenerate critical
point ỹ(x) and we have the same mini-max formula as for φ:

φ̃(x, y(x)) = inf
t
sup
y∈�t

φ̃(x, y), x ∈ neigh (0, Cn).

It is then clear that φ̃(x, ỹ(x)) ≤ φ(x, y(x)).Replacingφ, φ̃ by their quadratic Taylor
polynomials φ(2)(x, y), φ̃(2)(x, y) at (0, 0), and the critical points by their linear
Taylor polynomials y(1)(x) and ỹ(1)(x), we see that φ(2)(x, y(1)(x)), φ̃(2)(x, ỹ(1)(x))

are the quadratic Taylor polynomials of φ(x, y(x)), φ̃(x, ỹ(x)). Taking φ̃(2) pluri-
harmonic it is clear that φ̃(2)(x, ỹ(1)(x)) is pluri-harmonic and ≤ φ(2)(x, y(1)(x)),
so the latter is pluri-subharmonic. This shows that vcyφ(x, y) has a positive semi-
definite Levi form at 0. The same argument now works with 0 replaced by any other
point in neigh (0, Cn) and we get the desired plurisubharmonicity. �

c. Contour integration. Let φ(y) ∈ C∞(neigh (0, Ck);R). Assume that 0 is a “sad-
dle point” for φ in the sense that ∇yφ(0) = 0 and ∇2

yφ(0) is non-degenerate of
signature (k, k). Consider a smooth contour � : neigh (0, Rk) → neigh (0, Ck) with
�(0) = 0, d� injective. We say that � is a good contour if

φ(y)− φ(0) ≤ − 1

C
|y|2, y ∈ �. (2.4.1)

In practice, we find such good contours, by studying the set of “good points” y that
satisfy (2.4.1) for some C > 0.

If u ∈ Hφ,0 i.e. an element of Hφ(neigh (0, Ck)), then

I�(h) = e−φ(0)/h
∫

�

u(y; h)dy
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is well-defined up to an exponentially small ambiguity (and also up to a factor ±1
depending on a choice of orientation, that we shall simply forget). As we have seen,
a second good contour passing through 0 can be deformed to � within the set of such
good contours.

Now take φ(x, y) ∈ C∞(neigh ((0, 0), Cn+k);R) with φ(0, y) as above. If � is
a good contour for the latter function and u ∈ Hφ,(0,0), then by deforming � into an
x-dependent good contour for φ(x, ·), we see that

U (x; h) =
∫

�

u(x, y; h)dy

is a well defined element of H�,0, where �(x) = vcyφ(x, y).
When working with differential forms of other degrees, we may be interested

in other signatures than (k, k). Also, for instance when composing Fourier integral
operators, one is frequently in the situation of integrating along a good contour with
respect to one group of variables and then for the resulting integral we want a good
contour for the last group of variables. The following discussion (that we state only
for quadratic forms) shows that this will always work as well as one can possibly
hope for.

This has nothing to dowith the complex structure, sowe consider a decomposition
x = (x ′, x ′′) ∈ Rn , x ′ ∈ Rn−d , x ′′ ∈ Rd . Let q be a quadratic form on Rn such that
q ′′(x ′′) := q(0, x ′′) is a non-degenerate quadratic form on Rd . Then x ′′ 	→ q(x ′, x ′′)
has a unique critical point x ′′ = x ′′(x ′) depending linearly on x ′. Consequently, the
corresponding critical value q ′(x ′) = q(x ′, x ′′(x ′)) is a quadratic form on Rn−d . Let
(m+(q), m−(q)) be the signature of q and denote the signatures of q ′ and q ′′ similarly.
Then by assumption, m+(q ′′)+ m−(q ′′) = d.

Proposition 2.4.3 Under the above assumptions we have

m+(q) = m+(q ′)+ m+(q ′′), m−(q) = m−(q ′)+ m−(q ′′). (2.4.2)

If L ′−, L ′′− are subspaces of Rn of dimension m−(q ′) and m−(q ′′) respectively such
that q ′|L ′− , q ′′|L ′′− are negative definite, and we put L− = {(x ′, x ′′(x ′)+ x ′′; x ′ ∈
L ′−, x ′′ ∈ L ′′−}, then q|L− is negative definite.

Proof After the change of variables x ′ = x̃ ′, x ′′ = x ′′(̃x ′)+ x̃ ′′, we are reduced to the
case when x ′′(x ′) ≡ 0. This means (after dropping the tildes on the new variables)
that

q(x) = q ′(x ′)+ q ′′(x ′′)

and the conclusion follows. �

d. Application to Fourier transforms. Let φ ∈ C∞(neigh (x0, Cn);R) be pluri-
subharmonic with φ′′(x0) non-degenerate of signature (n, n). Let ξ0 = 2

i
∂φ
∂x (x0). For

ξ ∈ neigh (ξ0, Cn), we put
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φ∗(ξ) = vcx (φ(x)+ Im(x · ξ)),

where the critical point x = x(ξ) is given by

ξ = 2

i
∂xφ(x), x(ξ0) = x0.

Guided by the Fourier inversion formula (that we shall study below), we look at

(y, ξ) 	→ −Im(x · ξ)+ Im(y · ξ)+ φ(y)

which is pluri-subharmonic with the critical point y = x , ξ = 2
i ∂xφ(x) and the cor-

responding critical value φ(x). The critical point is non-degenerate of signature
(2n, 2n) since we have the good contour

�R(x) : ξ = 2

i
∂xφ(x)+ i R(x − y), |x − y| < r,

parametrized by y ∈ BCn (x, r). Indeed by Taylor expanding, we get:

−Im((x − y) · ξ)+ φ(y) = φ(x)− (R −O(1))|x − y|2, (y, ξ) ∈ �R(x).

with the “O(1)” uniform in R. Hence �R is a good contour for R large enough and
r > 0 small enough.

Applying Proposition2.4.3, we now see that

ξ 	→ −Im(x · ξ)+ φ∗(ξ)

has a non-degenerate critical point ξ = ξ(x) of signature (n, n) at ξ(x) = 2
i ∂xφ(x)

and
φ(x) = vcξ(−Im(x · ξ)+ φ∗(ξ)).

This is a standard inversion formula for Legendre transforms when viewing φ∗ as
the Legendre transform of φ.

Using a good contour, we can define the Fourier transform

Fu(ξ; h) =
∫

�ξ

e−i x ·ξ/hu(x; h)︸ ︷︷ ︸
∈Hφ(·)+Im ((·)·ξ)

dx ∈ Hφ∗,ξ∗0 .

For v ∈ Hφ∗,ξ∗0 , we put

Gv(x; h) = 1

(2πh)n

∫

�∗
x

ei x ·ξ/hv(ξ)dξ,

where �∗
x is a good contour such that
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φ∗(ξ)− Im(x · ξ)− φ(x) ≤ − 1

C
|ξ − ξ(x)|2, ξ(x) = 2

i
∂xφ(x).

Proposition 2.4.4 For u ∈ Hφ,x0 , we have u = GFu in Hφ0,x0 (up to equivalence).

Proof We have

GFu(x) = 1

(2πh)n

∫

�∗
x

∫

�ξ

ei(x−y)·ξ/hu(y)dydξ (iterated integral).

Along the composed contour we have (cf. Proposition2.4.3)

−Im(x · ξ)+ φ∗(ξ) ≤ φ(x)− 1

C
|ξ − ξ(x)|2, ξ ∈ �∗

x ,

Im(y · ξ)+ φ(y) ≤ φ∗(ξ)− 1

C
|y − x(ξ)|2, y ∈ �ξ,

so

−Im((x − y) · ξ)+ φ(y) ≤ φ(x)− 1

C
(|ξ − ξ(x)|2 + |y − x(ξ)|2).

The composed contour is a good contour like �R .
Thus, up an exponentially small error, we can replace the composed contour by

�R for R large enough and get

1

(2πh)n

∫∫

�R(x)

ei(x−y)·ξ/hu(y)dydξ =
(

R

i2πh

)n ∫∫

|x−y|<r
e

2
h (x−y)·∂x φ(x)− R

h |x−y|2u(y)dy ∧ d y

= (1+O(e−Rr2/h))u(x)

by the spherical mean-value property for holomorphic functions. �

2.5 Pseudodifferential Operators and Fourier Integral
Operators

Let a(x, y, θ; h) be an analytic symbol defined near (x0, x0, ξ0) ∈ C3n , so that a ∈
H0,(x0,x0,ξ0). Let φ ∈ C∞(neigh (x0, Cn);R) with (2/ i)∂xφ(x0) = ξ0. For u ∈ Hφ,x0 ,
we define Au ∈ Hφ,x0 by

Au(x; h) = 1

(2πh)n

∫∫

�(x)

ei(x−y)·θ/ha(x, y, θ; h)u(y; h)dydθ,
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where �(x) = �R(x) is the good contour introduced at the end of the preceding
section so that (for R large enough)

e−φ(x)/h
∣∣ei(x−y)·θ/h

∣∣ eφ(y)/h ≤ e−
1
h (R−O(1))|x−y|2

along �(x). It follows that

Au(x; h) = A�u(x; h) =
∫

k�(x, y; h)u(y)L(dy),

where
|k�(x, y; h)|e(−φ(x)+φ(y))/h ≤ C�h−ne−

1
h (R−O(1))|x−y|2 .

A� is uniformly bounded L2
φ,x0

→ L2
φ,x0

. Here, we assume for simplicity that
|a(x, y, θ; h)| ≤ O(1). Without that assumption we would need to insert a factor
Cεeε/h to the right in the last estimate and the boundedness statement about A� has
to be modified accordingly.

We define the symbol of A by

σA(x, ξ; h) = e−i x ·ξ/h A(ei(·)·ξ/h), (x, ξ) ∈ neigh ((x0, ξ0), C2n).

The method of stationary phase gives

σA(x, ξ; h) ≡
∑

|α|≤1/(Ch)

h|α|

α! (∂α
ξ Dα

x a)(x, x, ξ; h)

and this is (a realization of) a classical analytic symbol when a is a classical analytic
symbol. Clearly σA ≡ a when a does not depend on y.

Lemma 2.5.1 Assume that σA = 0 in H0,(x0,ξ0). Then ∃b ∈ H0,(x0,x0,ξ0) with values
in the (n − 1)-forms in θ such that

ei(x−y)·θ/ha(x, y, θ)dθ ≡ ihdθ

(
ei(x−y)·θ/hb

)
, in H−Im ((x−y)·θ),(x0,x0,ξ0).

Applying the Stokes formula along the good contour, it then follows that A = 0 as
an operator in Hφ,x0 .

Proof By a simple change of variables,

(2πh)nσA(x, η) =
∫∫

e−iy·η/h a(x, x − y, θ; h)eiy·θ/h

︸ ︷︷ ︸
u(x,y,θ;h)

dydθ

= F(y,θ)→(η,θ∗)(u)(η, 0; h) = v(x, η, 0; h),

where x is treated as a parameter and v := F(y,θ)→(η,θ∗)(u).
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We have u ∈ Hφ, v ∈ Hφ∗ , φ = −Im(y · θ), φ∗ = Im(η · θ∗) and we observe that
φ and φ∗ are pluri-harmonic. Now v(x, η, 0; h) = 0 and Taylor’s formula gives

v(x, η, θ∗; h) =
n∑

1

v̂ j (x, η, θ∗; h)θ∗j , v̂ j ∈ Hφ∗ ,

and v̂ j depend holomorphically on x . By Fourier inversion

u(x, y, θ; h) =
n∑

1

h Dθ j v j in Hφ, v j ∈ Hφ,

so v j = b j (x, y, θ; h)eiy·θ/h , b j ∈ H0. Going back to the original variables, we get
the identity in the lemma. �

General remarks about Fourier integral operators. Let

φ(z, y, θ) ∈ C2(neigh ((z0, y0, θ0), Cnz+ny+nθ );R), f ∈ C2(neigh (y0, Cny );R)

be pluri-subharmonic and assume that (y, θ) 	→ φ(z, y, θ)+ f (y) has a saddle point
at (y0, θ0). If a ∈ Hφ,(z0,y0,θ0), we can define A : H f,y0 → Hg,z0 by

Au(z; h) =
∫

�1(z)
a(z, y, θ; h)u(y)dydθ,

where g(z) = vcy,θ(φ(z, y, θ)+ f (y) and �1(z) is a good contour.
Let b(x, z, w; h) ∈ Hψ,(x0,z0,w0), x ∈ Cnx and assume that ψ, g fulfill the same

assumptions as φ, f . Then for v ∈ Hg,z0 , we define Bv ∈ Hk,x0 by

Bv(x; h) =
∫

�2(x)

b(x, z, w; h)v(z)dzdw,

where �2(x) and k(x) denote a good contour and the critical value respectively, for
(z, w) 	→ ψ(x, z, w)+ g(z).

We can then define B ◦ A : H f,y0 → Hk,x0 by

B ◦ Au(x; h) =
∫∫∫∫

�(x)

b(x, z, w)a(z, y, θ)u(y)dydθdzdw,

where �(x) is the composed contour given by (z, w) ∈ �2(x), (y, θ) ∈ �1(z). It is a
good contour for

(z, w, y, θ) 	→ ψ(x, z, w)+ φ(z, y, θ)+ f (y).
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Now assume that
(z, w) 	→ ψ(x0, z, w)+ φ(z, y0, θ0) (2.5.1)

has a saddle point at (z0, w0). Let F(x, y, θ) be the critical valuewhen (z, y, θ) varies
near (x0, y0, θ0). Then F is pluri-subharmonic, and knowing that (z, w, y, θ) 	→
ψ + φ+ f has saddle point, we see that

(y, θ) 	→ F(x, y, θ)+ f (y) (2.5.2)

has a saddle point. Hence, if �3(x, y, θ) is a good contour for (2.5.1) and �4(x) a
good contour for (2.5.2), the composed contour

�̃(x) : (y, θ) ∈ �4(x), (z, w) ∈ �3(x, y, θ)

is good for
(z, w, y, θ) 	→ ψ(x, z, w)+ φ(z, y, θ)+ f (y).

By Stokes, we can replace �(x) in the formula for B ◦ Au(x) by �̃(x) and write

B ◦ Au(x; h) =
∫∫∫∫

�̃(x)

b(x, z, w)a(z, y, θ)u(y)dydθdzdw

=
∫∫

�4(x)

(∫∫

�3(x,y,θ)

b(x, z, w)a(z, y, θ)dzdw

)

︸ ︷︷ ︸
=:c(x,y,θ)∈HF,(x0 ,y0 ,θ0)

u(y)dydθ

This remark can be applied to the case when A, B are pseudodifferential operators
and when combining it with the stationary phase, we get

Theorem 2.5.2 Let A, B : Hφ,x0 → Hφ,x0 be two pseudodifferential operators. Then
B ◦ A is a pseudodifferential operator with symbol

σB◦A(x, ξ; h) =
∑

|α|≤ 1
Ch

1

α!h
|α|∂α

ξ σB(x, ξ; h)Dα
x σA(x, ξ; h).

2.6 FBI-Transforms and Analytic Wavefront Sets

Let φ ∈ Hol (neigh ((x0, y0), C2n)), y0 ∈ Rn and assume that

φ′y(x0, y0) = −η0 ∈ Rn, Imφ′′yy(x0, y0) > 0,

det φ′′xy(x0, y0) 
= 0. (2.6.1)
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Let a(x, y; h) be an elliptic classical analytic symbol defined near (x0, y0) and let
χ ∈ C∞

0 (neigh (y0, Rn)) be equal to one near y0. If u ∈ D′(Rn) (or just defined in a
neighborhood of the support of χ), we put

T u(x; h) =
∫

eiφ(x,y)/ha(x, y; h)χ(y)u(y)dy, x ∈ neigh (x0, Cn). (2.6.2)

Proposition 2.6.1 T u ∈ H�(neigh (x0)), where

� = sup
y∈neigh (y0,Rn)

−Imφ(x, y) ∈ C∞(neigh (x0, Cn);R).

This is evident since Rn � y 	→ −Imφ(x, y) has a non-degenerate maximum at
y = y(x) ∈ neigh (y0, Rn).

Introduce

�� =
{(

x,
2

i
∂x�(x)

)
; x ∈ neigh (x0, Cn)

}

Then (and here we only use that � is real and smooth), the restriction to �� of
the complex symplectic 2-form σ = ∑

dξ j ∧ dx j is real, so �� is an I-Lagrangian
manifold, i.e. a Lagrangian manifold for the real symplectic form Imσ.

Proposition 2.6.2 �� = κT (R2n), where

κT : neigh ((y0, η0)) � (y,−φ′y(x, y)) 	→ (x,φ′x (x, y)) ∈ neigh ((x0, ξ0))

is the complex canonical transformation associated to T , when viewed as a Fourier
integral operator. Here (x0, ξ0) = κT (y0, η0) = (x0, (2/ i)∂x�(x0)). In particular
σ|��

is real and non-degenerate. (�� is I-Lagrangian and R-symplectic.) Further,
� is strictly pluri-subharmonic.

Proof The real critical point of −Imφ(x, ·) is characterized by the property that
η(x) := −φ′y(x, y(x)) is real. Further,

2

i
∂x�(x) = 2

i
(∂x(−Imφ))(x, y(x)) = φ′x (x, y(x)).

Hence �� is contained in κT (R2n) and the two manifolds have the same dimension
so they have to coincide (near (x0, ξ0)).

We then know that

σ|��
=

n∑

1

d

(
2

i
∂x j �(x)

)
∧ dx j = 2

i

∑

k

∑

j

∂xk ∂x j � dxk ∧ dx j
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is non-degenerate, so the Levi-form of � is non-degenerate. Since � by definition is
the supremum of the family of pluri-harmonic functions x 	→ −Imφ(x, y) we know
that � is pluri-subharmonic and hence strictly pluri-subharmonic. �

For y ∈ Rn (close to y0) let

�y = {x ∈ Cn; y(x) = y} = πxκT (T ∗
y Rn),

where πx : C2n
x,ξ → Cn

x is the natural projection, so that �y is of real dimension n
and the �y form a foliation of neigh (x0, Cn). �y is totally real: Tx�y ∩ iTx�y = 0,
∀x ∈ �y . In fact, Tx�y = {tx ∈ Cn; φ′′yx tx ∈ Rn}.

For every fixed real y:

�(x)+ Imφ(x, y) = −Imφ(x, y(x))+ Imφ(x, y) � dist (x, �y)
2. (2.6.3)

Since x 	→ −Imφ(x, y) is pluri-harmonic, this gives another proof of the fact that
�(x) is strictly pluri-subharmonic.

Exercise Explore the standard case of Bargmann transforms with φ(x, y) = i(x −
y)2/2.

Exercise Let f (y) be analytic near y0, real valued on the real domain and with
f ′(y0) = η0. Show that

T (ei f/h) = hn/2c(x; h)eig(x)/h, (2.6.4)

where c(x; h) is a classical analytic symbol of order 0 and

g(x) = vcy∈neigh (y0,Cn)(φ(x, y)+ f (y)) (2.6.5)

is holomorphic, �g := {(x, g′(x))} = κT (� f ) where � f is defined as �g .
Let (� f )R = � f ∩ R2n . Show that −Img ≤ � and that more precisely,

�(x)+ Img(x) � dist (x,πx (κT ((� f )R)))2. (2.6.6)

Observe also that πx (κT ((� f )R)) is transversal to �y . See the end of this section for
a solution of the exercise.

Assume that η0 
= 0. For x ∈ neigh (x0), write

(y(x), η(x)) = (y(x),−∂yφ(x, y(x))) ∈ T ∗Rn \ 0,

where y(x) is the local real maximum of −Imφ(x, ·). Also, we have

(y(x), η(x)) = κ−1T

(
x,

2

i
∂x�(x)

)
.
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Definition 2.6.3 Let u be a distribution defined near y0, independent of h. We say
that (y(x), η(x)) /∈WFa(u) if T u = 0 in H�,x .

We shall see that this defines a closed conic subsetWFa(u) of T ∗(neigh (y0, Rn)) \ 0,
independent of the choice of T .

In order to prove that the definition does not depend on the choice of T we would
like to construct “the inverse T−1”. However, this can never succeed completely
since T u only carries microlocal information about u near (y0, η0). We can however
give meaning to this inverse on certain smaller spaces and that will suffice to be able
to describe a second FBI-transform T̃ u in terms of T u.

Put

Sv(x; h) = h−n
∫

e−iφ(z,x)/hb(z, x; h)v(z)dz, (2.6.7)

where b is an elliptic classical analytic symbol of order 0, defined near (x0, y0).
Formally,

ST u(x; h) = h−n
∫∫

ei(−φ(z,x)+φ(z,y))/hb(z, x; h)a(z, y; h)u(y)dydz (2.6.8)

and we can apply the Kuranishi trick1 to see that formally

ST u(x; h) = 1

(2πh)n

∫∫
e

i
h (x−y)·θc(x, y, θ; h)u(y)dydθ, (2.6.9)

where c is an elliptic classical analytic symbol of order 0, defined near (y0, y0, η0).
According to Lemma2.5.1 and the previously given definition of the symbol of a
pseudodifferential operator, we can replace c by c̃(x, θ; h), independent of y and
still elliptic to get a new pseudodifferential operator which has the same action on
expressions as in the last exercise above.

Let d̃ satisfy d̃#c̃ = 1. Then

d̃(x, h Dx ; h) ◦ ST = 1

when acting on functions as in the exercise. On the other handwe can apply stationary
phase to get formally

d̃(x, h D; h)Sv = h−n
∫

e−iφ/hb̃v(z)dz =: S̃v(x; h)

1The usual and no doubt original application of this trick is to changes of variables for pseudod-
ifferential operators in the standard setting, see for instance [14], pp. 34–35, 40. In the present
situation we use Taylor’s formula to write −φ(z, x)+ φ(z, y) = (x − y) · θ(x, y, z), where θ is
holomorphic near (y0, y0, x0) and θ(x, x, z) = −∂xφ(z, x). We observe that z 	→ θ(x, y, z) is a
local holomorphic diffeomorphism, and use this to replace the integration variables z by θ.
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Our compositions are well defined and hence associative when restricted to expres-
sions as in the exercise and we therefore get

S̃T = 1.

Dropping the tildes, we have shown that we can find S of the form (2.6.7) such that

ST = 1

when acting on expressions as in the exercise.
When trying to define Sv(x; h) for v ∈ H�, we would like to have a contour � in

z space such that
Imφ(z, x)+�(z) ≤ 0, z ∈ �,

with strict inequality near the boundary. In view of (2.6.3) the best possible choice
in general is � = �x and we then just achieve equality.

If however v ∈ H
 , where 
 −� � −dist (z, �̃)2 and �̃ is a real manifold of
dimension n transversal to �x , then Sv is well-defined. In particular if u is as in the
exercise, v = T u, this is the case with 
 = −Img, so Sv is well-defined up to an
exponentially small ambiguity, and we get Sv ≡ u in H−Im f .

Let

T̃ u(x; h) =
∫

ei φ̃(x,y)/hã(x, y; h)u(y)dy

be a second FBI-transformwith φ̃, ã defined near (̃x0, y0) andwith−φ̃′y(ξ̃0, y0) = η0.
Then formally

T̃ Sv(x; h) = h−n
∫∫

e
i
h (̃φ(x,y)−φ(z,y))ã(x, y; h)a(z, y; h)v(z)dydz. (2.6.10)

This is a Fourier integral operator2 with associated canonical transformation κT̃ ◦
κ−1T , mapping�� to��̃ and it follows from this observation, or by direct verification,
that

(y, z) 	→ −Imφ̃(x, y)+ Imφ(z, y)+�(z) =: F

has a non-degenerate critical point (y, z) = (yc(x), zc(x)), given by the conditions

(
z,

2

i
∂z�(z)

)
= κT (y, η),

(
x,

2

i
∂x�̃(x)

)
= κT̃ (y, η),

where (y, η) is real (y = y(z) = ỹ(x), η = η(z) = η̃(x)).
Next, we show that there is a good contour for (2.6.10): As a first attempt, we take

2A general local theory for Fourier integral operators can be developed in the spirit of Sect. 2.5. See
[65], Chap.11.
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γ0 = γ0(x) : y ∈ Rn, z ∈ �y,

which passes through (yc(x), zc(x)). Along that contour we have

F(y, z)− �̃(x) = −(�̃(x)+ Imφ̃(x, y)) � −|y − ỹ(x)|2.

Thus the contour is “almost good”. Since our critical point is non-degenerate, we
can make a small deformation and find a good contour. In fact, it suffices to take
γ = γε(x), 0 < ε � 1, given by

γ0 � (y, z) 	→ (y, z)− ε∇y,z F(x, y, z),

where ∇y,z denotes the gradient when Cn
y × Cn

z has been identified with R4n . In
conclusion

T̃ S is a well-defined Fourier integral operator H�,x0 → H�̃,̃x0 .

Proposition 2.6.4 For x ∈ neigh (x0), x̃ ∈ neigh (̃x0) related by

κ̃−1
T̃

(̃x, (2/ i)∂x̃�̃(̃x)) = κ−1T (x, (2/ i)∂x�(x)),

the following two statements are equivalent:

(1) T̃ u = 0 in H�̃,̃x .
(2) T u = 0 in H�,x .

Proof Take x = x0, x̃ = x̃0 for simplicity. Let χ ∈ C∞
0 (neigh (η0, Rn)) be equal to

one near η0. Without loss of generality, we may assume that the distribution u has
compact support in a neighborhood of y0. Then from the (classical!) Fourier inversion
formula,

u(x) = 1

(2πh)n

∫
eix ·η/hFu(η)dη,

and contour deformations, we see that

T u = T χ(h Dy)u in H�,x0 , T̃ u = T̃ χ(h Dy)u in H�̃,̃x0 .

On the other hand v = χ(h Dy)u is a superposition of plane waves (special cases of
states as in the last exercise), so

χ(h Dy)u = ST χ(h Dy)u +O(e−1/Ch),

where now

Sv(y) =
∫

�y

e−iφ(x,y)/hb(x, y; h)v(x)dx .
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Consequently,
T̃ χ(h Dy)u = T̃ ◦ ST χ(h Dy)u in H�̃,̃x0 .

Here, for each plane wave in χ(h Dy)u, we can make a contour deformation to
the good contour discussed above for the Fourier integral operator T̃ S and putting
everything together, we get

T̃ u = (T̃ S)(T u) in H�̃,̃x0 .

Since the Fourier integral operator T̃ S maps H�,x0 → H�̃,̃x0 , we see that T̃ u = 0 in
H�̃,̃x0 if T u = 0 in H�̃,̃x0 . The converse implication also holds. �

This shows that the definition of WFa(u) does not depend on the choice of T . By a
simple dilation in h we then see that it is a conic subset of T ∗X \ 0 (if X ⊂ Rn is the
open set where u is defined). Another basic property of the analytic wavefront set is
given by

Proposition 2.6.5 We have

πy(WFa(u)) = Sing Suppa(u),

where the right hand side denotes the analytic singular support, i.e. the complement
in X of the largest open subset where u is real analytic.

Idea of the proof. We start by using a resolution of the identity of the form 1 =∫
T ∗Rn παdα where πα is a Gaussian Fourier integral operator “concentrated at α”. If

y0 /∈ πy(WFa(u)), then a simple adaptation of the proof above shows thatπαu decays
exponentially when αη tends to infinity while αy is confined to a small neighborhood
of y0. (Here we write α = (αy,αη).)

Solution to the second exercise in this section. Ignoring the cutoff to a neighborhood
of y = y0, we write

T (ei f/h)(x) =
∫

neigh (y0,Rn)

a(x, y; h)e
i
h (φ(x,y)+ f (y))dy, (2.6.11)

where

− Im(φ(x, y)+ f (y))−�(x) � −|y − y(x)|2, y ∈ neigh (y0, Rn). (2.6.12)

When x = x0, the function
y 	→ φ(x, y)+ f (y) (2.6.13)

has a critical point at y = y0 which is nondegenerate by (2.6.12) and by the same rela-
tionweknow that neigh (y0, Rn) is a good contour in (2.6.11). For x ∈ neigh (x0, Cn),
the function (2.6.13) has a nondegenerate critical point yc(x) ∈ neigh (y0, Cn),
depending holomorphically on x with yc(x0) = y0 and in (2.6.11) we can shift the
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contour neigh (y0, Rn) to yc(x)+ neigh (0, Rn), then apply stationary phase to get
(2.6.4), (2.6.5).

From (2.6.5) we get �g = κT (� f ), moreover, since ei f/h is bounded on the real
domain, we must have |eig/h | ≤ e�/h , i.e. −Img ≤ �. We also see that −Img = �

on πxκT ((� f )R), since this set is the set of points x for which yc(x) is real.
One way to get (2.6.6) is to notice that � := πxκT ((� f )R) is a maximally totally

real manifold (Cn = Tx� ⊕ i(Tx�) for all x ∈ �), that −Img is pluriharmonic so
that �(x)+ Img(x) is strictly plusrisubharmonic, ≥ 0 with equality on �. It then
follows that �(x)+ Img � dist (x, �)2.

A more direct way is to observe that |Imyc(x)| � dist (x, �) and the saddle point
method (for instance via the minimax formula) shows that for the critical value

− Img(x) = −(Imφ(x, yc)+ f (yc))

≤ inf
y∈neigh (y0,Rn)

(−Imφ(x, y)+ f (y))− 1

C
|Imyc|2

= �(x)− 1

C
|Imyc|2.

2.7 Egorov’s Theorem and Elliptic Regularity

Let P̃(y, Dy) = ∑
|α|≤m aα(y)Dα

y be a differential operator with analytic coeffi-
cients, defined on an open set X ⊂ Rn . Let T be an FBI-transform as above. Then we
have the Egorov theorem which states that there exists a pseudodifferential operator
with classical analytic symbol, P(x, h Dh; h) : H�,x0 → H�,x0 such that

PT u = T hm P̃u in H�,x0

when u ∈ D′(X) is independent of h. Indeed, we can take P = T hm P̃ S. For the
leading symbols, we have the relation

p ◦ κT = p̃. (2.7.1)

Theorem 2.7.1 In the above situation, let u ∈ D′(X) be independent of h and
assume that P̃u is analytic on X. Then WFa(u) ⊂ p̃−1(0).

Proof Let (y0, η0) ∈ T ∗X \ 0 be a point where p̃(y0, η0) 
= 0 and assume that
(y0, η0) /∈WFa(P̃u) (which is a weaker assumption than in the theorem).We choose
T adapted to the point (y0, η0). Then

PT u = 0 in H�,x0 and p

(
x0,

2

i
∂x�(x0)

)

= 0.
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Let Q(x, ξ; h) be a classical analytic symbol Q ∼ ∑∞
0 hkqk(x, ξ) such that

Q#P = 1 near (x0, ξ0).

Correspondingly, we have Q(x, h D; h) : H�,x0 → H�,x0 so that

Q(x, h D; h) ◦ P(x, h D; h) = 1 : H�,x0 → H�,x0 .

Apply this to T u:
T u = Q PT u = 0 in H�,x0 .

Hence (y0, η0) /∈WFa(u). We have thus shown that WFa(u) ⊂WFa(P̃u) ∪ p̃−1(0)
which is a stronger statement than in the theorem. �

For the notes of a course of more than 3 hours, it would here be the natural place
to discuss the method of non-characteristic deformations and the Kawai-Kashiwara
theorem about propagation of analytic regularity for micro-hyperbolic operators. See
[65], Chap. 10.

2.8 Analytic WKB and Quasi-modes

Let P(x, h D; h) be a classical analytic pseudodifferential operator of order 0, defined
near (0, ξ0) ∈ C2n , such that the leading symbol satisfies

p(0, ξ0) = 0, ∂ξn p(0, ξ0) 
= 0.

Let φ ∈ Hol (neigh (0, Cn)) solve the eikonal problem

p(x,φ′(x)) = 0, φ′(0) = ξ0. (2.8.1)

Let H be the hypersurface xn = 0. We use the standard notation x = (x ′, xn) ∈ Cn .

Theorem 2.8.1 Let v(x; h), w(x ′; h) be classical analytic symbols of order 0 defined
near 0 in Cn and Cn−1 respectively. Then there exists a classical analytic symbol
u(x; h) defined near 0 ∈ Cn such that

e−iφ(x)/h ◦ P ◦ eiφ/hu = hv, u|H = w. (2.8.2)

Proof We may assume that w = 0. Also e−iφ(x)/h ◦ P ◦ eiφ/h is a classical analytic
pseudodifferential operator of order 0 with leading symbol p(x,φ′x (x)+ ξ), so we
may assume that φ = 0, p(x, 0) = 0. After a change of variables, which does not
modify H , we may also assume that ∂ξ′ p(x, 0) = 0, ∂ξn p = i , or in other words,
p(x, ξ) = iξn +O(ξ2).

Writing P = ∑∞
0 hk pk(x, ξ), p0 = p, the first equation in (2.8.2) becomes
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∂xn u + p1(x, 0)u(x; h)+ 1

h
Au = v

A =
∑

k+|α|≥2

hk

α! (∂
α
ξ pk)(x, 0)(h Dx )

α =
∞∑

k=2
hk Ak, (2.8.3)

where A has the same general properties as in Sect. 2.2. Assume for simplicity that
p1(x, 0) = 0 (which otherwise can be achieved by conjugation).

Let � = {x ∈ Cn; |x ′|
R + |xn |

r < 1}, where R, r > 0 are small enough so that we
stay in the domains of definition of the various symbols and operators. For 0 ≤ t ≤ r ,
we define �t ⊂ Cn by

|x ′|
R − Rt

r

+ |xn|
r − t

< 1.

Let a ∈ Hol (�0) have the property that for some k > 1:

sup
�t

|a| ≤ C(a, k)t−k, 0 < t ≤ r.

Put

∂−1xn
a(x) =

∫ xn

0
a(x ′, yn)dyn.

Then

sup
�t

|∂−1xn
a| ≤ C(a, k)

∫ +∞

t
s−kds = C(a, k)

(k − 1)t k−1 .

Let a = ∑∞
2 akhk be a classical analytic symbol of order −2 such that

sup
�t

|ak | ≤ f (a, k)kk

tk
, 0 < t ≤ r, (2.8.4)

where k 	→ f (a, k) grows at most exponentially. Then,

b := (h∂xn )
−1a =

∞∑

1

bkhk, bk = ∂−1xn
ak+1,

sup
�t

|bk | ≤ f (a, k + 1)(k + 1)k+1

ktk
≤ 2e f (a, k + 1)

kk

tk
.

Hence, f (b, k) ≤ 2e f (a, k + 1), when defining f (b, k) as in (2.8.4).
Put

‖a‖ρ =
∞∑

2

f (a, k)ρk, ‖b‖ρ =
∞∑

1

f (b, k)ρk .
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Then

‖b‖ρ ≤ 2e

ρ
‖a‖ρ. (2.8.5)

The problem (2.8.2), (2.8.3), with w = 0 and p1(x, 0) = 0, can be written

u + (h∂xn )
−1Au = h(h∂xn )

−1v =: ṽ, (2.8.6)

where ṽ is a classical analytic symbol of order 0. Defining ‖A‖ρ as in Sect. 2.2 with
respect to the family �t , we have

‖Au‖ρ ≤ ‖A‖ρ‖u‖ρ ≤ O(ρ2)‖u‖ρ,

when ρ is small enough. Hence by (2.8.5),

‖(h∂xn )
−1Au‖ρ ≤ O(1)ρ‖u‖ρ.

Wethen see from (2.8.6) that‖u‖ρ < ∞whenρ > 0 is small enough andweconclude
that u is an analytic symbol in �0. �

We next discuss quasimodes for non-self-adjoint differential operators in the semi-
classical limit. Let

P = P(x, h Dx ; h) =
∑

|α|≤m

aα(x; h)(h Dx )
α

be a semi-classical differential operator defined on an open set� ⊂ Rn . Assume that

aα(x; h) ∼
∞∑

0

ak
α(x)hk (2.8.7)

are (realizations of) classical analytic symbols. The semi-classical principal symbol
of P is then

p(x, ξ) =
∑

|α|≤m

aα(x)ξα. (2.8.8)

Let (x0, ξ0) ∈ T ∗� be a point where

p(x0, ξ0) = 0,
1

2i
{p, p}(x0, ξ0) > 0. (2.8.9)

Here, {a, b} = a′ξ · b′x − a′x · b′ξ denotes the Poisson bracket of two sufficiently
smooth functions a(x, ξ), b(x, ξ). The following result, in a different non-semi-
classical formulation is due to Hörmander [29, 30] in the smooth setting and goes
back to Sato-Kawai-Kashiwara [58] in the analytic case. See [7] for references and
direct proofs in the semi-classical formalism.
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Theorem 2.8.2 There exist an analytic function φ(x) and a classical analytic symbol
b(x; h) of order 0, defined in a neighborhood of x0 such that

φ(x0) = 0, φ′(x0) = ξ0, (2.8.10)

p(x,φ′(x)) = 0, x ∈ neigh (x0,�), (2.8.11)

Imφ′′(x0) > 0, (2.8.12)

P(χ(x)b(x; h)eiφ(x)/h) = O(1)e−
1

Ch , C = Cχ > 0, (2.8.13)

if χ ∈ C∞
0 (neigh (x0,�)) is equal to 1 near x0 and has its support sufficiently close

to x0,
‖χbeiφ/h‖L2 = hn/4(1+O(e−1/(Ch))). (2.8.14)

As usual, it follows from the proof that the conclusion remains uniformly valid
if we replace P by P − z for z ∈ neigh (0, C). More generally the conclusion is
valid for P − z for z ∈ neigh (z0, C), if we replace the condition p(x0, ξ0) = 0 by
p(x0, ξ0) = z0 in (2.8.9).

When P can be realized as a closed operator on L2(�) or on L2(M) for someman-
ifold containing�, then we conclude that ‖(P − z)−1‖ ≥ e1/(Ch)/C for some C > 0
and for z ∈ neigh (z0, C) \ σ(P), where σ(P) denotes the spectrum of P . Notice that
i−1{p, p} is the semi-classical principal symbol of the commutator h−1[P, P∗], so
P is non-normal.

When P is a fixed elliptic operator in the classical sense, with analytic h-
independent coefficients, the result with some obviousmodifications applies to P − z
when z tends to infinity in a narrow sector.

We refer to [7] for a fuller discussion of the spectral aspects.

Proof of Theorem2.8.2. The assumption (2.8.9) implies that p′ξ(x0, ξ0) 
= 0. The
existence of analytic solutions to (2.8.10), (2.8.11) then follows from complex
Hamilton-Jacobi theory or simply from the Cauchy–Kowalevska theorem. More
precisely, if H is a complex hypersurface in x-space that passes through x0 transver-
sally to p′ξ(x0, ξ0) · ∂x and ψ is holomorphic on neigh (x0, H) with dψ = ξ0 · dx |H
at x0, then (2.8.10), (2.8.11) has a solution φ such that φ|H = ψ, unique near x0.

For (2.8.12) we recall a geometric characterization by Hörmander [32]. Let �φ

be the complex Lagrangian manifold defined near (x0, ξ0) by ξ = φ′(x) where φ(x)

is holomorphic near x0 and φ′(x0) = ξ0. Then,

• (2.8.12) =⇒
1

i
σ(t, t) > 0, ∀t ∈ Tx0,ξ0(�φ) \ {0}, (2.8.15)

where we view the symplectic form σ as an alternate bilinear form.
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• If� is a complex Lagrangianmanifold containing (x0, ξ0) such that (2.8.15) holds,
then after restricting� to a small neighborhood of (x0, ξ0), we get� = �φ, where
φ is holomorphic near x0 and satisfies (2.8.10), (2.8.12).

The geometric formulation of the problem (2.8.10)–(2.8.12) is then to find a complex
Lagrangian manifold � ⊂ � := p−1(0) which contains (x0, ξ0) and is strictly posi-
tive in the sense of (2.8.15). Notice that the strict positivity of � at (x0, ξ0) implies
that � intersects T ∗� transversally at (x0, ξ0).

Here � = p−1(0) denotes the complex hypersurface and we recall that Hp is
tangent to�.We also knowbyelementary symplectic geometry that Hp is everywhere
tangent to �.

Let � = p−1(0) ∩ neigh ((x0, ξ0), T ∗�) be the real characteristic manifold. It is
symplectic and of codimension 2. Let �C ⊂ neigh ((x0, ξ0), C2n) denote its com-
plexification. It is a complex symplectic manifold of codimension 2 in C2n , given by
the equations p(ρ) = 0, p∗(ρ) = 0, where p∗(ρ) = p(ρ). The assumption (2.8.9)
implies that �C is a complex hypersurface in �, given there by the equation
p∗(ρ) = 0, transversal to Hp since Hp p∗ = {p, p} 
= 0.

It is now clear that the complex Lagrangian manifolds � with (x0, ξ0) ∈ � ⊂
neigh ((x0, ξ0), �) coincide near that point with the ones of the form

{exp(zHp)(ρ
′); ρ′ ∈ �′, z ∈ D(0, ε)},

where ε > 0 is small and �′ is a complex Lagrangian submanifold of �C containing
(x0, ξ0). By the Darboux theorem, �, �C can locally be identified with R2(n−1),
C2(n−1), and we see that � is strictly positive at (x0, ξ0) iff �′ is. Indeed, a general
t ∈ T(x0,ξ0)� is of the form t = t ′ + zHp(x0, ξ0), for t ′ ∈ T(x0,ξ0)�

′, z ∈ C and since
σ(t ′, Hp) = σ(t ′, Hp) = 0, we get

1

2i
σ(t, t) = 1

2i
σ(t ′, t ′)+ |z|2

2i
σ(Hp, Hp)

= 1

2i
σ(t ′, t ′)+ |z|2

2i
{p, p} � |t ′|2 + |z|2 � |t |2.

Now there are plenty of strictly positive Lagrange manifolds �′ ⊂ �C passing
through (x0, ξ0) and hence there are plenty of strictly positive Lagrange manifolds
� ⊂ � containing that point. This means that we have plenty of solutions to the
problem (2.8.10)–(2.8.12).

We choose one such solution φ(x) and apply Theorem2.8.1 to conclude that there
exists an elliptic classical analytic symbol b(x; h) ∼ ∑∞

0 bk(x)hk such that formally,

P(x, h D; h)(b(x; h)eiφ(x)/h) = 0, x ∈ neigh (x0,�).

This means that (if b also denotes a realization as in Theorem2.8.2)

P(x, h Dx ; h)(beiφ/h) = O(e−1/(Ch))eiφ/h .
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From (2.8.12) we see that eiφ(x)/h is exponentially decaying on the real domain away
from any fixed neighborhood of x0. Thus, if χ is a cutoff as in the statement of the
theorem,

P(χbeiφ/h) = O(e−1/(Ch)).

By analytic stationary phase,

‖χbeiφ/h‖2L2 = h
n
2 c(h),

where c(h) ∼ c0 + c1h + · · · is a positive elliptic analytic symbol. Applying the
quasinorms of Sect. 2.2 (that simplify a lot since the family �t is absent), we see
that c−1/2 is a classical analytic symbol. Replacing b with c−1/2b, we get (2.8.13),
(2.8.14).

2.9 Propagation of Regularity Along a Real Bicharacteristic
Strip

Let P be a differential operator with analytic coefficients on an open set X ⊂ Rn .
Let p be the principal symbol. The following theorem is due to N. Hanges [16]. It
improves the classical propagation theorem of L. Hörmander [33] and Sato, Kawai
and Kashiwara [58] for operators of real principal type in that it only requires one
real bicharacteristic strip. See also [17].

Theorem 2.9.1 Assume that Hp = p′ξ · ∂x − p′x · ∂ξ has a real integral curve γ :
[a, b] → p−1(0) ∩ T ∗X \ 0, a < b. If u ∈ D′(X), WFa(Pu) ∩ γ([a, b]) = ∅, then
γ([a, b]) is either contained in, or disjoint from WFa(u).

The proof uses a WKB-construction and the variant we give here is slightly different
from the one in Chap.9 in [65].

If dp vanishes at some point of γ, then γ is reduced to a point and the statement
in the theorem becomes trivial. Hence, we may assume that dp 
= 0 along γ.

Theorem 2.9.2 Assume that p(y0, η0) = 0, dp(y0, η0) 
= 0. Then we can find an
FBI-transform T defined near (y0, η0) such that h Dxn T u = T hm Pu in H�,x0 , for
u ∈ D′(X) independent of h.

Proof We start with the phase. For (x0, y0) ∈ Cn × Rn we call

φ ∈ Hol (neigh ((x0, y0), C2n))

an FBI-phase if it fulfills (2.6.1).

Lemma 2.9.3 There exists an FBI-phase φ(x, y), defined near (x0, y0) such that

∂xn φ = p(y,−∂yφ(y)). (2.9.1)
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Proof We put

φ(x ′, 0, y) = i

2
(x ′ − y′)2 − η0,n yn + iC(yn − y0)

2,

and choose x0 = (y′0 − iη′0, 0). Here C will be chosen with ReC > 0. Then φ′y((x ′0,
0), y0) = −η0 and we let φ(x, y) be the corresponding local solution of (2.9.1). Then
φ fulfills the first two conditions in (2.6.1). In order to have det φ′′xy(x0, y0) 
= 0, we
may assume, after a change of coordinates in y, that

∂ηn p(y0, η0) 
= 0, or [∂η p(y0, η0) = 0 and ∂yn p(y0, η0) 
= 0.]

Then we can find C with ReC > 0 such that

∂yn (p(y,−∂yφ)) 
= 0 at (x0, y0). (2.9.2)

Now the following statements are equivalent:

• det φ′′xy(x0, y0) 
= 0,
• y 	→ ∂xφ has bijective differential at x = x0, y = y0,
• y 	→ (∂x ′φ, p(y,−∂ηφ)) has bijective differential at x = x0, y = y0,
• Equation (2.9.2).

The last equivalence follows from

det φ′′x ′,y′ 
= 0, φ′′yn ,x ′ = 0 at (x0, y0).

Thus φ is an FBI-phase. �

We can now finish the proof of the last theorem. Take φ as in the lemma. It suffices
to choose a in (2.6.2) such that

(h Dxn − hm P t(y, Dy))
(
eiφ(x,y)/ha(x, y; h)

) = 0,

whichwe can solve locally as in the preceding sectionwith a prescribed a(x ′, 0, y; h).
�

Proof of Hanges’ theorem: Wemay decompose [a, b] into finitely many short inter-
vals, each being covered by one FBI transform. Thus we may assume that γ([a, b])
is contained in a small neighborhood of (y0, η0). Let T be a corresponding FBI trans-
form as in the last theorem. Then κT ◦ γ is an integral curve in �� of Hξn = ∂xn on
which ξn vanishes. Assume for simplicity that x0 = 0. Then we know that

2

i
∂x�(0, t) = ξ0 = (ξ′0, 0)

and consequently �(x) = −Im(x ′ · ξ′0)+O(x ′2).
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By the intertwining property and the fact that γ([a, b]) is disjoint fromWFa(Pu),
we know that

h Dxn T u = 0 in H�(neigh({0} × [a, b], Cn)),

so by integration,

T u = v(x ′)+O(e−Im (x ′ ·ξ′0)/h−ε/h) near {0} × [a, b].

Consequently, if T u = 0 in H�,γ(t) for some t ∈ [a, b] we have the same fact for all
t ∈ [a, b]. In other words, if γ(t) /∈WFa(u) for some t ∈ [a, b], the same must hold
for all t ∈ [a, b].

2.10 Some Further Comments

This section is motivated by questions and comments by the referee. We have
described some elements of the microlocal theory in book [65], which does not
try to develop any global, constructive operator theory, but as mentioned at the end
of Sect. 2.1 it can be used to describe singularities and asymptotics of globally defined
operators and functions.

In particular it could be of interest to apply analytic microlocal analysis to spectral
theory when the operators and the underlying manifolds are analytic (though this
was not a major motivation 36 years ago). For instance, if	 is the Laplace–Beltrami
operator on a compact real analytic Riemannian manifold, we could consider

√−	

and the associated unitary group t 	→ exp− i t
√−	. There is no doubt that

√−	

has (or can) be constructed with the methods of [3, 77]. However, we think that the
methods abovewould lead to at least equally sharp information about these operators:

If T is an FBI-transform, that we can choose locally unitary (up to exponentially
small errors) L2 → H�0 , let P be the “image of −	”, defined by

PT = T (−	)

(up to negligible errors). Then P is a pseudodifferential operator in H�0 and we can
define P1/2 by using the standard functional formula,

P1/2 = 1

2πi

∫

γ

(z − P)−1z1/2dz, (2.10.1)

where γ is the positively oriented boundary of the sector −1+ ei[−π/4,π/4][0,+∞[
and we would obtain that P1/2 is a classical analytic pseudodifferential operator
in H�0 , which is self-adjoint and satisfies P1/2T = T (−	)1/2. (To show this we
could need to study the resolvent also for large z in the spirit of R. Seeley, or more
radically, let γ be a closed contour since we work microlocally always in a region
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where the leading symbol of P is bounded.) After that, the methods of Sects. 2.5,
2.8 should permit us to study exp− i t P1/2 with no limitation on the size of t , since
crucial caustics cannot appear in this setting. This group will be the conjugation
of exp− i t (−	)1/2 under T , so we get access to the FBI transforms of the latter
operator, and we could in principle study its trace in the analytic framework.

2.11 Related Results and Developments

The work [65] was the natural continuation of a series of works on the propagation
of singularities for solutions of boundary value problems of order 2 and higher in
the analytic category, [54, 60–64]. In the case of second order operators, the main
result here is that the analytic wavefront set for solutions to homogenous problems
is a union of maximally extended analytic rays (and a more general microhyperbolic
propagation theorem for operators of higher order). This is analogous to the corre-
sponding result in the C∞ by M. Taylor, R. Melrose, G. Eskin, V. Ivrii, culminating
in [51, 52], stating that the ordinary C∞ wavefront set of solutions to the homoge-
neous problem is a union of maximally extended C∞-rays. Such rays have (with the
exception of some slightly pathological cases) unique extensions while analytic rays
have non-unique extensions from points where they are tangential to the boundary
and the domain is concave in the ray direction so that the complement, that we may
call “the obstacle”, is convex in the same direction. Roughly, analytic rays may glide
along the boundary into the C∞ shadow region.

The methods used another kind of FBI-transforms, closely related to Gaussian
resolutions of the identity. In [65] such resolutions still play a role, while in the
present text, we have eliminated them completely. It would have been nice if there had
been time and energy to revisit the boundary propagation in [65] with the improved
methods there.

G. Lebeau [43] explored the propagation of singularities for the wave equation
outside a strictly convex obstacle in the whole scale of Gevrey spaces Gs that inter-
polate between the smooth and the analytic functions and found that the essential
difference between the two types of propagations appears at the value s = 3. See
also [42].

A related area is that of analytic hypoellipticity for non-elliptic operators. Here
F. Treves [76] and later D. Tartakoff [75] established analytic hypoellipticity for
operators of the type �b that degenerate to order 2 on a symplectic submanifold of
the real cotangent space. The approach of Treves is based on a full fledgedmachinery
of analytic pseudodifferential operators and reductions to model-like cases while the
one of Tartakoff is restricted to a more special class of operators and uses very
sophisticated iterated a priori-estimates to gain control of high order derivatives
directly. G.Métivier [53] in a still very long paper generalized the results to operators
with multiple characteristics following the general approach of Treves.

In [66] the second author gave a short proof of Métivier’s result as well as some
generalizations. We refer to [13, 15] for some related results. The method of [66] is
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that of subelliptic deformations: After an FBI-transform we work in a space H loc
�0

for
some strictly plurisubharmonic weight�0 and the given subelliptic operator satisfies
an a priori-estimate in that space.We then look for a small deformation� ≈ �0 such
that P satisfies a nice a priori estimate also in H loc

� and such that � < �0 where we
want to obtain analytic regularity and � ≥ �0 near the boundary of a neighborhood
of those points. A variant of the method used when we have micro-hyperbolicity,
is to make deformations such that the operator on the FBI-side is elliptic on ��,
� < �0 in a region where we want to gain analytic regularity and such that on the
boundary of a slightly larger region we have that � > �0 only at points where we
already have analytic regularity by assumption. The deformation of weights on the
FBI-side corresponds to a local deformation κ−1T (��) of the real phase space T ∗�
(locally equal to κ−1T (��0)). See [62, 65].

In the theory of scattering poles (resonances) and other branches of spectral theory
for non-self-adjoint (pseudo-)differential operators, many works rely on phase space
deformations which are now global. Since this activity started later we simply refer
to some of the works which also include some of those devoted to other global
questions: [2, 7, 11, 12, 18, 19, 21–25, 27, 28, 38, 40, 41, 47–50, 55–57, 59,
67–72, 74].

Acknowledgements The first author would like to thank Michael Hall for providing him with
some notes which were used in the preparation of the present text. We thank the referee for the
useful and stimulating remarks and suggestions.
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A Proof of a Result of L. Boutet de
Monvel

Gilles Lebeau

Abstract Wegive a detailed proof of a theoremofL.Boutet deMonvel formulated in
1978 in (C.R.A.S. Paris, t.287, série A, 855–856, 1978) [2] about the convergence in
the complex domain of sums of eigenfunctions of the Laplace operator on a compact
analytic manifold.

1 Introduction

These notes are a written version of a 3h course given at Northwestern university in
may 2013. The main purpose is to give a detailed proof of a theorem of L. Boutet
de Monvel formulated in 1978 [2]. There is no need to have any knowledge about
analytic microlocal analysis to read these notes. The only “analytic” things that we
will use are: Cauchy–Kowalewski theorem, Zerner-lemma, and the analytic regu-
larity for solutions of elliptic linear differential operator with analytic coefficients.
Moreover, we will only use basic facts on classical pseudodifferential calculus and
wave front sets, for which we refer to [5].

Let (M, g) be a compact, connected, analytic Riemannian manifold of dimension
m. Let us recall that the metric g on the tangent bundle T M gives a canonical
identification of T M with the cotangent bundle T ∗M . Let dgx be the volume form
on M associated to the metric g. The Laplace operator �g on M is defined by the
formula ∫

M
�g(u)vdgx = −

∫
M

(du|dv)dgx (1.1)

Here d f denotes the differential of the function f so one has by definition �g =
−d∗d where d∗ is the adjoint of d for the natural Hilbert structure induced by g on
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sections of T ∗M . The unbounded operator −�g with domain H 2(M) is self-adjoint
on L2(M, dgx), non negative, with compact resolvant. We will denote by (e j ) j≥0 an
orthonormal basis of L2(M, dgx) of real eigenfunctions of −�g associated to the
eigenvalues ω2

j , with ω0 = 0 < ω1 ≤ ω2 ≤ ..., lim j→∞ ω j = +∞, so that one has

− �g(e j ) = ω2
j e j ,

∫
M
e j ekdgx = δ j,k (1.2)

Since �g is a second order elliptic operator with analytic coefficients, the eigenfunc-
tions e j are real analytic functions on M .

Let X be a complexification of M . This means that X is a complex analytic
manifold of complex dimension m, and M ⊂ X is a totally real submanifold of X
(this means T M ∩ iT M = M where M ⊂ T M is view as the zero section). Let
d(x, y) be the distance function on M × M . Then d2(x, y) is an analytic function
near the diagonal DiagM = {(x, x), x ∈ M} ⊂ M × M , and therefore extends as an
holomorphic function in a complex neighborhood of DiagM in X × X . Let us define
�(z) by the formula

�(z) = 1

2
sup
y∈M

Re(−d2(z, y)) (1.3)

We will see in Sect. 3, Lemma 3.3, that this function is well defined for z ∈ X
close to M , and is real analytic and strictly pluri-subharmonic. Moreover, one has
�|M = 0, d�|M = 0 and the signature of the Hessian of � is equal to (m, 0) at any
point of M ; in particular, one has �(z) ≥ 0 and �(z) = 0 if and only if z ∈ M .1

This function allows to define, for ε > 0 small enough, the tubular neighborhood
Bε of M in X

Bε =
{
z ∈ X, �(z) <

ε2

2

}
(1.4)

Let us denote by O(Bε) the space of holomorphic functions defined on Bε. For
f ∈ O(Bε), its boundary value f |∂Bε

on ∂Bε is well defined as an hyperfunction on
∂Bε which is an analytic compact real manifold of dimension 2m − 1. This boundary
value is a distribution on ∂Bε if and only if the function f satisfies a polynomial
growth condition at the boundary of the form | f (z)| ≤ Cdist (z, ∂Bε)

−N . Let us
recall that the Hardy space H(Bε) is the Hilbert space defined by

H(Bε) = { f ∈ O(Bε), f |∂Bε
∈ L2(∂Bε)} (1.5)

We can now state the Boutet theorem formulated in [2] (in a slightly different but
equivalent form). Let us recall that a family (u j ) j≥0 is a Riesz basis of an Hilbert
space H if and only if any x ∈ H can be written in a unique way as the sum of a

1The function �(z) is one half of the square of the Grauert tube function introduced by Guillemin-
Stenzel [3] and Lempert-Szoke [7], namely �(z) = − 1

8d
2(z, z).
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convergent series in H , x = ∑
c j (x)u j and

∑ |c j (x)|2 is equivalent to ‖x‖2H . We
use the classical notation < x >= (1 + x2)1/2.

Theorem 1.1 For ε > 0 small enough the following holds true. The eigenfunctions
e j extends holomorphically to Bε and the family (e−εω j < ω j >(m−1)/4 e j (z)) j≥0 is
a Riesz basis of H(Bε). For f ∈ H(Bε) and a j = ∫

M f e jdgx, one has

f (z) =
∑

a j e j (z) (1.6)

where the sum is uniformly convergent on any compact subset of Bε and convergent
in H(Bε). There exists a constant Cε such that one has the equivalence of norms

1

Cε
‖ f ‖2H(Bε)

≤
∑
j

|eεω j < ω j >−(m−1)/4 a j |2 ≤ Cε‖ f ‖2H(Bε)
(1.7)

A detailed proof of this theorem has been given recently by S. Zelditch in [13],
following the lines indicate in [2] and using the Hadamard parametrix for the wave
equation, and also by M. Stenzel in [12] which uses the asymptotic expansions of
the heat kernel. Here, we will give a proof based on non-characteristic deformation
techniques and a direct calculus of the Hadamard type parametrix for the Poisson
Kernel.

The paper is organized as follows:
In Sect. 2, we just recall explicit formulas in the euclidian space Rm and we give

a proof of the Boutet theorem in the special case of the flat torus (R/2πZ)m .
In Sect. 3, we recall basic facts on symplectic geometry. We introduce the funda-

mental function � and we give some of his properties. We refer to [9] for a detailed
study of the relationships between real and complex symplectic geometry.

Section 4 is devoted to the proof of the “analytic version” of the Boutet theorem,
see Theorem 4.1, which describes the space O(Bε) as the space of sums of the
form

∑
b j e−εω j e j (z) with coefficients b j with sub-exponential growth, i.e ∀δ >

0, ∃Cδ, ∀ j, |b j | ≤ Cδeδω j . The proof of this result is purely geometric: it uses only
non-characteristic deformation techniques and the Zerner lemma.

Section 5 is devoted to the proof of the Boutet theorem. The main ingredient is
the construction of the Hadamard parametrix for the Poisson kernel.

The appendix contains two proofs of classical technical results.

Finally, let us recall that the representation of the analytic wave front set as the
analytic singular support of boundary values of holomorphic functions defined inside
a strictly pseudoconvex domain, which is one of the most fundamental results in
microlocal analysis, (and which is closely related to the Boutet theorem) is due to M.
Sato, T. Kawai and M. Kashiwara and is explicit in their foundation article of 1971
[10].
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2 Explicit Formulas in the Flat Case

In this section,we just recallwhat are the explicit formulas for the Poisson kernel, heat
kernel, and FBI transform on the euclidean space Rm . Replacing Rm by the standard
m-dimensional torus Tm = (R/2πZ)m , this will give a straightforward proof of the
Boutet theorem in this special case.

First observe that on Rm one has d2(x, y) = (x − y)2, and therefore the function
�(z) given by (1.3) is defined on all Cm by

�(z) = Im(z)2/2 (2.1)

The heat kernel in R
m is equal to pt (x, y) = (2πt)−m/2e−(x−y)2/2t . The solution

of the heat equation

∂t f − 1

2
� f = 0 (in t > 0), f |t=0 = g ∈ S ′(Rm) (2.2)

is given by the formula

f (t, x) =
∫
Rm

pt (x, y)g(y)dy (2.3)

On the Fourier side, one has the obvious identity

f̂ (t, ξ) = e−tξ2/2ĝ(ξ) (2.4)

Observe that if we replace x ∈ R
m by z ∈ C

m , and if we set λ = 1/t > 0, we get

f (t, z) =
(

λ

2π

)m/2 ∫
Rm

e−λ(z−y)2/2g(y)dy = Tλ(g)(z) (2.5)

where Tλ is exactly the most usual FBI transform introduced by J. Sjöstrand in [11]
(up to the factor ( λ

2π )m/2 in front of it). Therefore, we get that this FBI transform is
just a complexification of the usual heat kernel. One has the obvious bound

| f (t, z)| ≤
(

λ

2π

)m/2

eλ�(z)‖g‖L1 (2.6)

Now we recall the formula for the Poisson kernel Ps(x, y). The solution of the
elliptic boundary value problem,with f (s, .) bounded in s ≥ 0with values in L2(Rm)

∂2
s f + � f = 0 (in s > 0), f |s=0 = g ∈ L2(Rm) (2.7)
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is given by the formula

f (s, x) = Ps(g)(x) =
∫
Rm

Ps(x, y)g(y)dy (2.8)

One has the obvious identity

Ps(g)(x) = (2π)−m
∫

eixξ−s|ξ|ĝ(ξ)dξ (2.9)

Fix now s > 0. Then (2.9) clearly implies that Ps(g), (with g in any Sobolev space
Hμ(Rm)) extends holomorphically for s > 0 in the domain

Bs = {|Im(z)| < s} = {�(z) < s2/2}

For z ∈ Bs , set z = a + ib. Then the map g �→ Ts(g) = Ps(g)|∂Bs is given by

Ts(g)(a, b) = (2π)−m
∫

ei(a−x)ξ−b.ξ−s|ξ|g(x)dxdξ (2.10)

Clearly, Ts extends for all real μ to a map defined on the Sobolev space Hμ(Rm)with
values inD′(∂Bs). Let dσs be the standard measure on the sphere of radius s in Rm ,
and let cm be the volume of the unit sphere Sm−1 in Rm . Let dμs be the volume form
on ∂Bs

dμs = c−1
m s−(m−1)dadσs(b) (2.11)

Let T ∗
s be adjoint of Ts with respect to L2(∂Bs, dμs). One has

T ∗
s ( f )(x) = (2π)−m

∫
ei(x−a)ξ−b.ξ−s|ξ| f (a, b)dμsdξ (2.12)

and therefore we get

T ∗
s Ts(g)(x) = (2π)−m

∫
eixξ�m(sξ)ĝ(ξ)dξ

�m(η) = c−1
m

∫
Sm−1

e−2(|η|+u.η)dσ(u)

(2.13)

It is clear that �m is a real strictly positive function and �m(0) = 1. The function
�m(η) depends only on |η| and e2|η|�m(η) is an entire function of |η|2. Moreover, by
stationary phase, we get that �m(η) is an elliptic symbol of degree −(m − 1)/2 in
η (and even an analytic symbol). Therefore, with < η >= (1 + |η|2)1/2 there exists
c > 1 such that

1

c
< η >−(m−1)/2≤ �m(η) ≤ c < η >−(m−1)/2, ∀η ∈ R

m
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Since T ∗
s Ts is the Fourier multiplier by �m(sξ), this shows that T ∗

s Ts is a self adjoint,
non negative, elliptic pseudodifferential operator of degree −(m − 1)/2. Thus T ∗

s Ts
is an isomorphism of the Sobolev space Hμ−(m−1)/2(Rm) onto Hμ(Rm) for any real
μ. From the identity

(T ∗
s Ts(g)|g)L2(Rm ,dx) = ‖Ts(g)‖2L2(∂Bs ,dμs )

we get
Ts(g) ∈ L2(∂Bs) if and only if g ∈ H−(m−1)/4(Rm)

From the above formulas, it is easy to get the Boutet theorem for M = T
m =

(R/2πZ)m . The standard L2 orthonormal basis is in that case ek(x) = (2π)−m/2eik.x ,
with k ∈ Z

m , and associated eigenvalue |k|2. The Poisson operator is given by

Ps(
∑

ckek)(x) =
∑

cke
−s|k|ek(x)

which clearly extends to Bs = {z = a + ib ∈ (C/2πZ)m, |b| < s}. If Ts still denotes
themap g �→ Ts(g) = Ps(g)|∂Bs , one has (T

∗
s is the adjoint for the volume form (2.11)

on ∂Bs)
T ∗
s Ts(

∑
ckek) =

∑
ck�m(sk)ek

thus Ts(g) ∈ L2(∂Bs) if and only if g ∈ H−(m−1)/4(Tm). One has

Ts(
∑

ckek)(a + ib) = (2π)−m/2
∑

cke
−s|k|eik.a−k.b

The functions (2π)−m/2eik.a−k.b = Ek(a, b) are trivially orthogonal in L2(∂Bs, dμs),
and the computation we have done to get (2.13) shows that one has

‖Ek‖2L2(∂Bs )
= e2s|k|�m(sk)

It will be proven in Sect. 4 that the family (ek(z))k is dense in the Hardy space H(Bs)

(we leave this as an exercise in the special case of the flat torus). Thus, in the flat
case, we get the more precise statement that the family

e−s|k|�−1/2
m (sk)ek(z), k ∈ Z

m

is an orthonormal basis of the Hardy space H(Bs). Thus the Boutet theorem holds
true in the special case of the flat torus.

Remark 2.1 As one can see, in the flat case, T ∗
s Ts is in fact a function of the Laplace

operator, and the eigenfunctions ek(z)|∂Bs remains orthogonal for any s for a natural
choice of the volume form on ∂Bs . There is no reason for this statement to be true
in the general case. Also, one has to notice that with respect to s, viewed as a small
semi-classical parameter and not viewed as a fixed constant, formula (2.13) shows
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that T ∗
s Ts is a semi-classical pseudodifferential operator with s as small parameter,

and not at all an usual pseudo-differential operator uniformly in s ∈]0, 1]. This is
related to the geometric fact that the boundary of the s-Grauert tube blows down to
M when s goes to 0.

Let us now recall how one can recover the Poisson kernel from the heat kernel.
We start from the formula, valid for all x ∈ [0,∞[.

e−x = 1√
π

∫ ∞

0
e−x2/4ue−u du√

u
(2.14)

This formula is easy to prove, since both side are continuous functions of x ≥ 0, and
satisfy the equation f ′′ − f = 0 in x > 0 and f (0) = 1, limx→∞ f (x) = 0. From
(2.14), we get for s > 0,ω ≥ 0 (change of variable u = s2/2t)

e−sω = s√
2π

∫ ∞

0
e−s2/2t e−tω2/2 dt

t3/2
(2.15)

Therefore, one has the following identity which allows to recover the Poisson kernel
from the heat kernel, (and which remains obviously valid on any Riemmannian
compact manifold (M, g) by decomposition on the orthonormal basis of the Laplace
operator):

Ps(x, y) = s√
2π

∫ ∞

0
e−s2/2t pt (x, y)

dt

t3/2
(2.16)

This identity is used by M. Stenzel in [12] in his proof of the Boutet theorem.
If we express this in term of the FBI transform defined in (2.5), we get (recall
Tλ(x, y) = p1/λ(x, y))

Ps(z, y) = s√
2π

∫ ∞

0
e−λs2/2 Tλ(z, y) λ−1/2dλ (2.17)

From (2.6), we recover from (2.17) that in the flat case, Ps(z, y) extends holomorphi-
cally in the domain |Im(z)| < s. Therefore, the FBI transform (i.e the complexifica-
tion of the heat kernel) contains at least as much information than the Poisson Kernel.
In fact, the two points of view are essentially equivalent if the FBI transform acts on
functions independent of λ. The use of the FBI transform is of course more relevant
in semi-classical analysis, with small parameter h = 1/λ = t . We refer to the article
by F.Golse, E.Leichtnam and M. Stenzel, [6] for a study of the FBI transform as a
complexification of the heat kernel on compact Riemannian analytic manifolds.
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3 Symplectic Geometry

Let T ∗X be the complex cotangent bundle to the complex manifold X . Let us recall
that for (z, ζ) ∈ T ∗X , ζ is a C-linear form on the complex vector space Tz X with
values inC, i.e ζ(iu) = iζ(u) for all u ∈ T X . As usual, if f is a function defined on X
with values inC, we denote by ∂ f (resp ∂ f ) its holomorphic (resp. antiholomorphic)
derivative, that is

∂ f (u) = 1

2
(d f (u) − id f (iu)), ∂ f (u) = 1

2
(d f (u) + id f (iu))

Then ∂ f is a section of T ∗X and one has d = ∂ + ∂.
Let us denote by XR the real analytic manifold X without its complex structure.

In these notes, we shall identify the real cotangent bundle T ∗(XR) with the complex
cotangent bundle T ∗X by the following rule

(z, ζ) ∈ T ∗X is identified with (z, ξ) ∈ T ∗XR : ξ(u) = Re(ζ(u)) (3.1)

With this identification, for any smooth function ϕ : X → R,

dϕ(z) ∈ T ∗
z X

R is identified with 2∂ϕ(z) ∈ T ∗
z X (3.2)

Let ω = dζ ∧ dz be the canonical complex symplectic 2-form on T ∗X . Then Re(ω)

and Im(ω) are real symplectic 2-forms on T ∗XR, and moreover, Re(ω) = ωR is
the canonical symplectic 2-form on T ∗XR. This facts are easy to verify in local
coordinates. We shall say that a real submanifold � of T ∗X is R-symplectic (resp
I-lagrangian) iff � is symplectic for Re(ω) = ωR (resp lagrangian for Im(ω)). In
other words, � is R-symplectic iff dimR� = 2m and Re(ω)|� is non degenerate,
and � is I-lagrangian iff dimR� = 2m and Im(ω)|� = 0.

Lemma 3.1 Let z �→ ζ(z) be a smooth section of T ∗X � T ∗XR defined on an open
contractible subset � of X and let � = {(z, ζ(z)), z ∈ �}. Then � is I-lagrangian
iff there exists a smooth functionϕ : � → R such that ζ(z) = 2i∂ϕ(z). Moreover,�
is also R-symplectic iff the 2-form of type (1, 1) 2i∂∂ϕ on T X |� is non degenerate.

Proof If � is I-lagrangian, then −i� = {(z,−iζ(z)), z ∈ �} is R-lagrangian,
ωR|−i� = 0. Since � is contractible, there exists a function ϕ : � → R such that
−i� view as a subset of T ∗XR is of the form {(z, dϕ(z))}. With the identification
T ∗X � T ∗XR, and by (3.2), we get −iζ(z) = 2∂ϕ(z), i.e

ζ(z) = 2i∂ϕ(z)

Let j : � → T ∗X be defined by j (z) = (z, 2i∂ϕ(z)). One has j∗(Im(ω)) = 0.
Moreover � is R-symplectic iff j∗(ωR) is non degenerate and the result follows
from
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j∗(ωR) = j∗(ω) = j∗(d(ζdz)) = d( j∗(ζdz)) = d(2i∂ϕ) = 2i∂∂ϕ

�

The Levi form on T X |�, Lϕ(u, v) = 2i∂∂ϕ(u, v) is given in local complex coordi-
nates (z1, ..., zm) by the formula

Lϕ(u, v) = 2i
∑
j,k

∂2ϕ

∂z j∂zk
(z)(u jvk − v j uk)

One has obviously Lϕ(u, v) ∈ R, and Lϕ is entirely determinate by the associated
hermitian form qϕ(u) = Lϕ(iu, u). In local coordinates, one has

qϕ(u) = 4
∑
j,k

∂2ϕ

∂z j∂zk
(z)u juk (3.3)

Therefore, � is I-lagrangian and R-symplectic iff the hermitian form qϕ is non
degenerate, hence of signature (p, q) with p + q = m.

The real cotangent bundle T ∗M is a subset of T ∗X : for x ∈ M , anyu ∈ Tx X can be
written in a uniqueway u = a + ib, a, b ∈ TxM , and (x, ξ) ∈ T ∗M defines (x, ζ) ∈
T ∗X, ζ(u) = ξ(a) + iξ(b). Then it is obvious that T ∗M is both R-symplectic and
I-lagrangian. Moreover, T ∗M is a totally real submanifold of T ∗X and the complex
symplecticmanifold T ∗X is a complexification of the real symplecticmanifold T ∗M .

Let p(z, ζ) be the holomorphic extension of p(x, ξ) = 1
2 |ξ|2x . In local coordinates,

one has

p(z, ζ) = 1

2

∑
j,k

g j,k(z)ζ jζk

and p(z, ζ) is well defined on T ∗X |W if W is a small neighborhood of M in X .
For t ∈ C, let us denote by exp(t Hp)(z, ζ) = (Z(t, z, ζ),�(t, z, ζ)) the complex
integral curve of the hamiltonian vector field of p starting at (z, ζ). One has the
Hamilton–Jacobi equations

∂t Z = (∂ζ p)(Z , �), Z(0, z, ζ) = z

∂t� = −(∂z p)(Z , �), �(0, z, ζ) = ζ
(3.4)

Since p(z, ζ) is homogeneous of degree 2 in ζ, one has for λ �= 0

Z(λt, z, ζ/λ) = Z(t, z, ζ), �(λt, z, ζ/λ) = λ−1�(t, z, ζ) (3.5)

Therefore, exp(t Hp)(z, ζ) is well defined for |tζ| small and (z, ζ) ∈ T ∗X |W if W is
small enough, and one has the Taylor expansion
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Z(t, z, ζ) = z + t (∂ζ p)(z, ζ) + 0(|tζ|2)
�(t, z, ζ) = ζ − t (∂z p)(z, ζ) + 0(|ζ||tζ|2) (3.6)

Let ε0 > 0 given and small. For s ∈]0, 1], set

�s = {(z, ζ) = exp(isHp)(x, ξ) ∈ T ∗X, (x, ξ) ∈ T ∗M, |ξ|x < ε0/s} (3.7)

Then for ε0 small enough and all s ∈]0, 1],�s is well defined and from (3.5), one has
�s = s−1�1. Moreover, since the map exp(t Hp) preserves the complex symplectic
structure of T ∗X for any t ∈ C, �s is both R-symplectic and I-lagrangian. By (3.6),
the map (x, ξ) �→ Z(is, x, ξ) is given in local coordinates by

(x, ξ) �→ Z(is, x, ξ), Zk(is, x, ξ) = xk + is
∑
j

g j,k(x)ξ j + 0(|sξ|2) (3.8)

hence is an isomorphism near ξ = 0. By Lemma 3.1, near any point x ∈ M there
exists a unique function �s(z) = s−1�(z) define in a neighborhood of x , with
�s(x) = 0 such that one has

�s = {(z, ζ), ζ = 2i∂�s(z) = 2is−1∂�(z)}

From (3.6) and (3.8) , one has ∂�|M = 0, and therefore the function � is globally
defined in a neighborhood of M in X and one has

�|M = 0, d�|M = 0 (3.9)

Lemma 3.2 The following identity holds true

�(Z(i, x, ξ)) = |ξ|2x/2 (3.10)

Proof For s ∈ [0, 1], set (γ(s), η(s)) = (Z(is, x, ξ),�(is, x, ξ)) and ζ(s) = 2i∂�

(γ(s)). One has, for s > 0, (γ(s), η(s)) ∈ �s = s−1�1, and therefore η(s) = s−12i∂
�(γ(s)) = s−1ζ(s). Let

g(s) = �(Z(is, x, ξ)) = �(γ(s))

Then we get

g′(s) = d�(γ(s))(γ′(s)) = Re
(
2∂�(γ(s))(i∂t Z(is, x, ξ))

)

= Re
(
2i∂�(γ(s))(∂t Z(is, x, ξ)) = Re(ζ(s)∂ζ p(γ(s), η(s)))

= sRe(2p(γ(s), η(s))) = sRe(2p(γ(0), η(0)) = s|ξ|2x

(3.11)
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Here we have used that ∂� isC-linear, the Hamilton–Jacobi equations (3.4), ζ(s) =
sη(s), and the fact that p(z, ζ) is homogeneous of degree 2 in ζ and invariant by the
flow of the hamiltonian vector field Hp. Since g(0) = 0, we thus get g(s) = s2|ξ|2x/2.
The proof of Lemma 3.2 is complete. �

As a byproduct of Lemma 3.2 and formula (3.8), the function � is strictly pluri-
subharmonic, i.e the hermitian form q� defined in (3.3) is strictly positive. Moreover
the map

(x, ξ) �→ Z(i, x, ξ) (3.12)

gives a real analytic identification between the neighborhood {|ξ|x < ε0} of the zero
section in the symplecticmanifold T ∗M , and the neighborhood Bε0 = {�(z) < ε20/2}
of M in the complex manifold X . With this identification, the symplectic structure
on Bε0 is defined by the real and closed 2-form 2i∂∂�, and the associated hermitian
metric q� defines a Kahlerian structure on Bε0 . Since � is an exhaustion strictly
pluri-subharmonic function on Bε0 , Bε0 is a Stein manifold.

Moreover, this identification induces a complex structure J on {|ξ|x < ε0}. We
refer to the article of Lempert and Szöke [7] formore details on this complex structure
J on T ∗M , which is canonically defined by the metric g on M . In particular, it
is shown in [7], Theorem 4.3, that if this complex structure can be extended to
{|ξ|x < R}, then the sectional curvatures of g are bounded frombelowby−π2/(4R2).

We denote byβz (resp ζz) the real (resp complex) 1-formon the real (resp complex)
analytic manifold Bε0 defined by

βz = Re(ζz), ζz = �(i, x, ξ), z = Z(i, x, ξ), (x, ξ) ∈ T ∗M (3.13)

By construction, one has
ζz = 2i∂�(z) (3.14)

Let q(x, ξ) = |ξ|x . Then the hamiltonian exp(t Hq)(z, ζ) = (Z̃(t, z, ζ), �̃(t, s, ζ)) is
well defined for t ∈ C close to 0 and (z, ζ) ∈ T ∗X in a conic neighborhood of T ∗M \
M . Since p = q2/2, onehas byhomogeneity,with the notation |ζ|z = (g−1(z)(ζ))1/2,
which is preserved by the flow of Hq ,

Z̃(t, z, ζ) = Z(t, z, ζ/|ζ|z), �̃(t, s, ζ)) = |ζ|z�(t, z, ζ/|ζ|z) (3.15)

For s ∈]0, ε0[ let κ(is) = exp(isHq). Then κ(is) is an homogeneous canonical com-
plex transformation of T ∗X , defined in a conic neighborhoodU of T ∗M \ M . From
(3.5), one has

κ(is)(z, ζ) = (Z(i, z, sζ/|ζ|z), |ζ|z�(i, z, sζ/|ζ|z)) (3.16)

Since κ(is) preserves the canonical 1-form ζdz on T ∗X , one has
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|ζ|z�(i, z, sζ/|ζ|z)dz,ζ(Z(i, z, sζ/|ζ|z)) = ζdz (3.17)

For y ∈ M , let �s,y = κ(is)(T ∗
y M \ 0), and let �C

s,y = κ(is)(U ∩ T ∗
y X \ 0) be its

complexification. Then �C

s,y ⊂ T ∗X is a C-lagrangian homogeneous submanifold
of T ∗X . One has by (3.5), (3.13), and (3.15):

�s,y = {(z = Z(i, y, η), ζ = tζz), (y, η) ∈ T ∗
y M, |η|y = s, t > 0} (3.18)

Since for real t one has d2(Z(t, y, η), y) = t2|η|2y , and these functions are analytic
in t , we get

d2(Z(i, y, η), y) = −|η|2y = −2�(Z(i, y, η)), ∀η ∈ T ∗
y M (3.19)

and therefore the function s2 + d2(z, y) vanishes on π(�s,y), where π is the pro-
jection T ∗X → X . Since π(�C

s,y) is a complexification of π(�s,y) (a real analytic
manifold of real dimension m − 1) , we get that �C

s,y is the conormal bundle to the
complex hypersurface s2 + d2(z, y) = 0 near the points z = Z(i, y, η), |η|y = s:

�C

s,y = T ∗
�s,y

X \ 0, �s,y = {z, s2 + d2(z, y) = 0} (3.20)

The following lemma (and (3.10)) gives in particular a proof for the properties of the
function � stated in the introduction (see formula (1.3)).

Lemma 3.3 There exists c > 0 and a neighborhoodU of Diag(M) in M × M such
that for all s ∈]0, ε0], all (x, y) ∈ U and all z = Z(i, x, ξ) ∈ ∂Bs (i.e |ξ|x = s), one
has

∂zd
2(z, y)|z=Z(i,y,ξ) = 2iζz (3.21)

and
Re(d2(z, y) + s2) ≥ cd2(x, y) (3.22)

Proof From (3.19) one has d2(Z(i, y, η), y) = −|η|2y and from (3.18) and (3.20),
one has ∂zd2(z, y)|z=Z(i,y,η) = λζz for some λ ∈ C \ 0. Let z(t) = Z(i, y, etη) =
Z(iet , y, η). One has z(0) = Z(i, y, η) = z and d2(z(t), y) = −e2t |η|2y . By evalua-
tion of the derivative at t = 0, we find:

−2|η|2y = dt (d
2(z(t), y))|t=0 = λζz(dt z(t)|t=0) = iλζz

∂ p

∂ζ
(z, ζz) = 2iλp(z, ζz) = iλ|η|2y

This implies λ = 2i . Let us now verify (3.22). In geodesic coordinates expx (a) cen-
tered at x , set d2(a, b) = (a − b)2 + Rx (a, b). The function Rx (a, b) is symmetric
in a, b. From d2(0, b) = b2, we get Rx (0, b) = 0, thus Rx (a, 0) = 0, and Rx (a, b) =∑

j,l a j bl Q
j,l
x (a, b). From (∇ad2)(0, b) = −2b, one gets

∑
l bl Q

j,l
x (0, b) = 0, hence

d2(a, b) = (a − b)2 + O(a2b), and since Rx (a, b) is symmetric
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d2(a, b) = (a − b)2 + O(a2b2) (3.23)

Set y = expx (a) and z = Z(i, x, ξ). In geodesic coordinates centered at x , one has
g(x) = I d, Z(t, x, ξ) = tξ, thus z = iξ, and from |ξ|x = s and d2(x, y) = a2, we
get

d2(z, y) = d2(x, y) − s2 − 2iaξ + O(s2d2(x, y)) (3.24)

Since s is small, (3.22) holds true. The proof of Lemma 3.3 is complete. �

4 The Analytic Version of the Boutet de Monvel Theorem

Recall that for ε ∈]0, ε0], Bε is the tubular neighborhood of M in X

Bε = {z, �(z) < ε2/2} = {Z(i, x, ξ), (x, ξ) ∈ T ∗M, |ξ|x < ε} (4.1)

The Poisson kernel Ps(x, y) on (M, g) is the smooth function on ]0,∞[×M × M
given by the formula

Ps(x, y) =
∑
j

e−sω j e j (x)e j (y) (4.2)

For any v ∈ L2(M), the smooth function on ]0,∞[×M defined by
u(s, x) = ∫

M Ps(x, y)v(y)dg y satisfies the elliptic boundary problem

(∂2
s + �g)u = 0, lim

s→0
u(s, x) = v(x) in L2(M) (4.3)

We start with purely geometric lemmas about the holomorphic extension of the
e j , and more generally of solutions to the elliptic operator ∂2

s + �g.

Lemma 4.1 Let u(s, x) be a solution of the elliptic equation (∂2
s + �g)u = 0 on

]0,∞[×M. Then u extends holomorphically in the open set

D = {(s, z) ∈ C × X, Re(s) > 0 z ∈ Bmin(ε0,Re(s))} (4.4)

Proof By translation invariance in s, it is sufficient to prove the following prop-
erty: Let a ∈]0, ε0[, and u(s, x) a solution of the equation (∂2

s + �g)u = 0 on
] − a, a[×M . Then u extends holomorphically in the open set

Ga = {(s, z) ∈ C × X, Re(s) ∈] − a, a[, z ∈ Ba−|Re(s)|} (4.5)

The proof of this fact uses a classical non-characteristic deformation argument based
on the following Zerner lemma (see [14]). This lemma is a consequence of the precise
form of the Cauchy–Kowalewski theorem given by J. Leray (see [5], Theorem 9.4.7
for a proof).
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Lemma 4.2 (Zerner)Let Q(z, ∂z) = ∑
α,|α|≤m qα(z)∂α

z be a linear differential oper-
ator with holomorphic coefficients defined near 0 in C

N and let q(z, ζ) = ∑
|α|=m

qα(z)ζα be its principal symbol. Let f : CN → RbeaC1 function such that f (0) = 0
and such that, with ζ0 = 2i∂ f (0), one has q(0, ζ0) �= 0. Then, if u(z) is an holomor-
phic function defined in a half-neighborhood of 0 in f < 0, such that Q(u) extends
holomorphically near 0, then u extends holomorphically near 0.

Let us recall that S. Zelditch [13] uses the Zerner lemma in the space variable to prove
that eigenfunctions extend to the maximal tube in which the coefficients of� extend.
Here, we have to take care of the fact that the open setGa is unbounded with respect
to Im(s) and also of the effect of the boundary Re(s) = ±a. Thus, we will introduce
a parameter τ > 0 to handle the large values of Im(s), and a family of compact sets
K0,τ such thatGa = ∪τ>0 I nt (K0,τ ). Then, for each fixed τ , wewill define an explicit
decreasing family of compact sets Kμ,τ ,μ ∈ [0, a]which interpolate nicely between
K0,τ and Ka,τ = {s = 0} × M and we will use Zerner lemma and the hypothesis u
is analytic on ] − a, a[×M to prove that u extends holomorphically to I nt (K0,τ ).

For μ ∈ [0, a] let ψμ(t), t ∈ R, be the non negative Lipschitz function

ψμ(t) = max(a − (μ2 + t2)1/2, 0) (4.6)

This function interpolate between the zero function ψa(t) = 0 and the triangle func-
tion ψ0(t) = max(a − |t |, 0). Let τ > 0 be given. For μ ∈ [0, a], let Kμ,τ be the
set

Kμ,τ = {(s, z) ∈ C × Bε0 , �(z) + τ Im(s)2 ≤ ψμ(Re(s))2/2, |Re(s)| ≤ (a2 − μ2)1/2}
(4.7)

From 0 ≤ ψμ ≤ a < ε0, we get that Kμ,τ is a compact set, and its interior, I nt (Kμ,τ )

is the subset of Ga defined by the equation

I nt (Kμ,τ ) = {(s, z), �(z) + τ Im(s)2 < ψμ(Re(s))
2/2, |Re(s)| < (a2 − μ2)1/2}

(4.8)
One has Kμ,τ ⊂ Kμ′,τ for μ′ ≤ μ and the closure of I nt (Kμ,τ ) is equal to Kμ,τ for
μ < a. Since one has

Ga = ∪τ>0 I nt (K0,τ )

we have just to prove that u extends holomorphically to I nt (K0,τ ). Set

J = {μ, u extends holomorphically to I nt (Kμ,τ )}

Since Ka,τ = {s = 0} × M , J contains a neighborhood of a, and it remains to show
that for μ > 0 in J , u extends holomorphically to a neighborhood of Kμ,τ . Let μ > 0
in J .

Let (s0, z0) ∈ ∂Kμ,τ = Kμ,τ \ I nt (Kμ,τ ). Set s0 = α + iβ. If ψμ(α) = 0, then
one has z0 ∈ M,β = 0, and therefore u is holomorphic near (s0, z0) since u is ana-
lytic on ] − a, a[×M . We may thus assume ψμ(α) �= 0, i.e |α| < (a2 − μ2)1/2. The
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function
f (s, z) = �(z) + τ Im(s)2 − ψμ(Re(s))

2/2

is smooth for |Re(s)| < (a2 − μ2)1/2, one has f (s0, z0) = 0, and 2i∂ f is equal to

2i∂ f = (ζs, ζz) = i(−ψμψ
′
μ(Re(s)) − 2iτ Im(s), 2∂z�(z))

The differential of f at (s0, z0), (ζs(s0), ζz(z0)) does not vanish.(Otherwise, we
will have z ∈ M and Im(s0) = 0 and this contradict f (s0, z0) = 0 and ψμ(α) �= 0)
Moreover, u satisfies the equation Qu = (∂2

s + �g)u = 0 in a half-neighborhood
of (s0, z0) in f < 0. The principal symbol of Q is q(s, z; ζs, ζz) = ζ2s + 2p(z, ζz).
Therefore, by the Zerner lemma, it remains to show

(ψμψ
′
μ(α) + 2iτβ)2 �= 2p(z0, ζz0) (4.9)

Let (x0, ξ0) ∈ T ∗M such that Z(i, x0, ξ0) = z0. Then one has (z0, ζz0) = exp(i Hp)

(x0, ξ0), and since the function p is invariant by the hamiltonian flow Hp, one has
by (3.10)

2p(z0, ζz0) = |ξ0|2x0 = 2�(z0) = ψμ(α)2 − 2τβ2 ∈ R

We first verify that (4.9) holds true for β �= 0. For β �= 0, equality in (4.9) implies
(take imaginary part) ψ′

μ(α) = 0, and equality of the real part gives −4τ 2β2 =
2�(z0) ≥ 0 which is impossible. It remains to verify ψ′

μ(α) �= ±1 for μ > 0 and
|α| < (a2 − μ2)1/2, which is obvious since one has

ψ′
μ(α) = −α√

μ2 + α2

The proof of Lemma 3.1 is complete. �
If one apply the above lemma to the function u(s, x) = e−sω j e j (x), we get that

all the eigenfunctions e j (x) extends holomorphically to the neighborhood Bε0 of M
in X , which is independent of j . In fact, we can deduce easily from Lemma 3.1 a
more precise statement.

Lemma 4.3 Let a ∈]0, ε0[. For all δ > 0 small, there exists Cδ such that

∀ j, sup
z∈Ba

|e j (z)| ≤ Cδe
(a+δ)ω j (4.10)

Proof Set E = L2(M, dgx) and F = { f ∈ O(Ba), supz∈Ba
| f (z)| < ∞}. These are

Banach spaces, and the canonical injection i : F → E, i( f ) = f |M is continuous.
Let δ > 0 such that a + δ < ε0 and let Aδ be the linear continuous map from E to
E defined by

Aδ(
∑
j

c j e j (x)) =
∑
j

e−(a+δ)ω j c j e j (x)
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The function u(s, x) = ∑
j e

sω j e−(a+δ)ω j c j e j (x) is a solution of (∂2
s + �g)u = 0 on

the interval ] − a − δ, a + δ[×M . By the proof of Lemma 4.1, see formula (4.5),
u(0, x) extends holomorphically in Ba+δ . Therefore, one has Im(Aδ) ⊂ O(Ba+δ) ⊂
F . By the closed graph theorem, themap Aδ from E to F is continuous, and therefore,
there exists a constant Cδ such that

‖Aδ( f )‖F ≤ Cδ‖ f ‖E , ∀ f ∈ E (4.11)

If one applies (4.11) to f = e j , we get that (4.10) holds true. The proof of Lemma
4.3 is complete. �

Remark 4.1 The estimate (4.10) on the sup-norm of the eigenfunctions in Ba is
of course very weak. The exponential factor eaω j is the correct one, but the sub-
exponential factor Cδeδω j (for any δ > 0) is far to be optimal. To my knowledge,
the best estimate is proven by S.Zelditch in [13], corollary 3: supz∈Ba

|e j (z)| ≤
Cω

(m+1)/4
j eaω j .

Another interesting by-product of Zerner-lemma is the following characterization of
the space O(Ba) of holomorphic functions on Ba . This gives the “analytic” version
of the Boutet theorem (i.e without any precise information on Sobolev spaces and
polynomial growth of theFourier coefficients). It implies in particular that the Poisson
operatorPa(

∑
c j e j (x)) = ∑

c j e−aω j e j (z) is an isomorphism from the spaceA′(M)

of Sato-hyperfunctions on M , onto the spaceO(Ba) of holomorphic functions in Ba .

Theorem 4.1 (Analytic version of the Boutet theorem)
Let a ∈]0, ε0[ and let f (x) = ∑

c j e j (x) an analytic function on M. Then f
extends holomorphically to Ba iff

∀δ > 0, ∃Cδ, such that for all j one has |c j | ≤ Cδe
−(a−δ)ω j (4.12)

Moreover, for any function f (z) ∈ O(Ba), the Fourier coefficients c j = ∫
M f (x)

e j (x)dgx satisfy (4.12), and one has f (z) = ∑
j c j e j (z) for all z ∈ Ba, where the

sum is uniformly convergent on compact subsets of Ba.

Proof If (4.12)is satisfied, then by Lemma 4.3, formula (4.10), the sum
∑

c j e j (z) is
uniformly convergent on Ba′ for all a′ < a,(since by Weyl formula, �{ j,ω j ≤ R} ≤
CRm) hence f extends holomorphically to Ba . It remains to show that for a function
f (z) ∈ O(Ba), its Fourier coefficients c j = ∫

M f (x)e j (x)dgx satisfy (4.12): with
g(z) = ∑

c j e j (z), we will have g ∈ O(Ba) by the first part of the lemma, and since
( f − g)|M = 0,wewill get f = g by analytic continuation. The proof of the estimate
(4.12) on the Fourier coefficients c j of a function f ∈ O(Ba) uses the Zerner Lemma.
Let F(s, z) be the Cauchy–Kowalewski solution of the analytic Cauchy problem:

(∂2
s + �z)F = 0, F(a, z) = f (z) ∈ O(Ba), ∂s F(a, z) = 0 (4.13)
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Let us first show that Zerner lemma implies that F extends holomorphically to the
set

Fa = {(s, z) ∈ C × X, |Re(s) − a| < a, z ∈ Ba−|Re(s)−a|} (4.14)

The proof of this point follows the same line as the proof of Lemma 4.1. We first
change s in s + a so that the Cauchy data for (4.13) are now on the set {s = 0} × Ba ,
and we have to prove that F extends to the open set Ga defined in (4.5). We use the
non-characteristic deformation associated to the function, with τ > 0,

f̃τ (s, z) = 1

2
Re(s)2 + τ Im(s)2 − 1

2

(
max(a −

√
μ2 + 2�(z), 0)

)2
(4.15)

Observe that in comparison with the proof of Lemma 4.1, we just exchange the role
of Re(s)2/2 and �(z). For μ ∈ [0, a], we define K̃μ,τ by

K̃μ,τ = {(s, z) ∈ C × X, f̃τ (s, z) ≤ 0, 2�(z) ≤ a2 − μ2} (4.16)

The function F is holomorphic in a neighborhood of K̃a,τ = {s = 0} × M , and as
in the proof of Lemma 4.1, we just have to verify that for μ ∈]0, a[, if F extends
to I nt (K̃μ,τ ), then F extends to a neighborhood of K̃μ,τ . Let (s0, z0) ∈ ∂Kμ,τ =
Kμ,τ \ I nt (Kμ,τ ). Set s0 = α + iβ. If 2�(z0) = a2 − μ2 < a, then one has z0 ∈ Ba

and s0 = 0, and therefore F is holomorphic near (s0, z0) by Cauchy–Kowalewski
theorem. We may thus assume 2�(z0) < a2 − μ2. Then the function f̃τ is smooth
near (s0, z0) and 2i∂ f̃τ is equal to

2i∂ f̃τ = (ηs0 , ηz0) = 2i(α/2 − iτβ,
a − √

μ2 + 2�(z0)√
μ2 + 2�(z0)

∂�(z0)) (4.17)

By the Zerner lemma, it remains to show η2
s + 2p(z0, ηz0) �= 0. Since 2p(z0, ζz0) =

2�(z0), and ζz0 = 2i∂�(z0), this is equivalent to verify

(α − 2iτβ)2 �= 2�(z0)
(
√

μ2 + 2�(z0) − a)2

μ2 + 2�(z0)
∈ [0,∞[ (4.18)

We first verify that (4.18) holds true for β �= 0. For β �= 0, equality in (4.18)
implies (take imaginary part) αβ = 0, hence α = 0 and −4τ 2β2 ≥ 0 which is
impossible. For β = 0, from f̃τ (s0, z0) = 0 and 2�(z0) < a2 − μ2, we get |α| =
a − √

μ2 + 2�(z0) > 0. It remains to verify

α2 �= 2�(z0)

μ2 + 2�(z0)
α2
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for μ ∈]0, a[ and α �= 0 which is obvious. Thus F extends holomorphically to
I nt (K̃0,τ ) for all τ > 0, and since one has ∪τ>0 I nt (K̃0,τ ) = Ga , we get the desired
result.

For s ∈]0, 2a[, and F solution of (4.13), set now Fj (s) = ∫
M F(s, x)e j (x)dx .

Then Fj (s) is analytic on ]0, 2a[ and satisfies the equation

∂2
s Fj − ω2

j Fj = 0, Fj (a) = c j , ∂s Fj (a) = 0

This gives Fj (s) = c j ch((a − s)ω j ). Since for all s ∈]0, a], the function x �→
F(s, x) is analytic on M , its Fourier coefficients are bounded, i.e

∀s ∈]0, a], ∃Cs such that sup
j

|c j ch((a − s)ω j )| ≤ Cs

By taking s = δ small, this implies (4.12). The proof of Theorem 4.1 is complete.
�

5 A Proof of the Boutet de Monvel Theorem

Recall that the Hardy space H(Bε) is defined as the Hilbert space:

H(Bε) = { f ∈ O(Bε), f |∂Bε
∈ L2(∂Bε)}, ‖ f ‖H(Bε) = ‖ f |∂Bε

‖L2(∂Bε) (5.1)

For f ∈ O(Bε), f satisfies the elliptic system of CauchyRiemann equations ∂ f = 0.
Hence the trace f |∂Bε

is well defined as an hyperfunction on ∂Bε, and if this trace is
analytic, then f is analytic up to the boundary. In particular, if the trace is equal to 0,
the extension f̃ of f by 0 outside Bε still satisfy ∂ f̃ = 0; therefore f̃ is holomorphic,
and since f̃ vanishes outside Bε, one gets f̃ = 0. This shows that ‖ f |∂Bε

‖L2(∂Bε) is
a norm, and thus H(Bε) is an Hilbert space.

Recall that the Poisson kernel is defined by

Ps(x, y) =
∑
j

e−sω j e j (x)e j (y)

In his famous book [4] Hadamard gives a parametrix construction for the wave
kernels cos t

√� and sin t
√−�√−� (see also [1, 8]). We will first recall this classical

construction of the Hadamard type parametrix for the Poisson kernel e−s
√−� near

s = 0 and x = y. Observe that in formulas (5.4), if one set s = i t , we will get the
Hadamard parametrix for the half wave propagator e−i t

√−�; in fact, the Poisson
kernel is holomorphic in s for Re(s) > 0 and the half wave propagator e−i t

√−� is
its boundary value on Re(s) = 0.



A Proof of a Result of L. Boutet de Monvel 559

Let δ(s, x, y) be defined by the formula

δ(s, x, y) = s2 + d2(x, y) (5.2)

The function δ is holomorphic in a small neighborhood W of {s = 0} × DiagM in
C × X × X . Let cW = supW |δ|. Clearly, we may assume cW as small as we want by
choosing W small enough. Set μ = −(m + 1)/2.

Proposition 5.1 For W small enough, the following holds true.
For all j ∈ N, there exists holomorphic functions a j (s, x, y) defined on W, such

that ∑
j

sup
W

|a j |c j
W < ∞ (5.3)

and such that if one defines G(s, x, y) by the formula

G = sδμ
∑
j≥0

δ j a j if m is even

G = sδμ

|μ|−1∑
j=0

δ j a j + s log(δ)
∑
j≥|μ|

δ j+μa j if m is odd

(5.4)

then the function Ps(x, y) − G(s, x, y) which is defined a priori for s > 0 small
and (x, y) ∈ M × M close to DiagM, extends holomorphically to W. Moreover, the
functions a j are even in s and one has

a0(0, y, y) = d−1
m , dm =

∫
Rm

(1 + x2)−(m+1)/2dx (5.5)

Proof Let us denote by ∇ f the gradient of a function f , i.e the vector fields on M
which is associated to the differential d f via the identification of T M and T ∗M . An
easy computation shows that the following formula holds true:

(∂2
s + �)( f lb) = l(l − 1) f l−2((∂s f )

2 + |∇ f |2g)b
+ l f l−1

(
2∂s f ∂sb + 2(∇ f |∇b)g + (∂2

s f + � f )b
)

+ f l(∂2
s b + �b)

(5.6)

For a given y, the function f (s, x) = δ(s, x, y) satisfies the identity (∂sδ)
2 +

|∇xδ|2g = 4δ (the analog of the eiconal equation). Thus we get from (5.6)

(∂2
s + �)(δlb) = lδl−1

(
4s∂sb + 2(∇xd

2|∇b)g + (�x (d
2) + 4l − 2)b

)

+ δl(∂2
s b + �b)

(5.7)

If we set b = sa, with a even in s, we thus get
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(∂2
s + �)(sδla) = slδl−1

(
4s∂sa + 2(∇xd

2|∇a)g + (�x (d
2) + 4l + 2)a

)

+ sδl(∂2
s a + 2s−1∂sa + �a)

(5.8)

Let us first assume thatm is even.Wewill apply the identity (5.8) with l = μ + j, j ∈
N. Then for all j ∈ N, one has l �= 0. Let us denote by Zl the first order operator

Zl(a) = 4s∂sa + 2(∇xd
2|∇a)g + (�x (d

2) + 4l + 2)a (5.9)

Then the function G defines by the first line of (5.4) will be formally a solution of
the equation (∂2

s + �)G = 0 if one choose the functions a j solutions of the transport
equations:

Zμ(a0) = 0

Zμ+ j (a j ) = − 1

μ + j
(∂2

s + 2s−1∂sa + �x )a j−1 ∀ j ≥ 1
(5.10)

The key point here is that the equation Zμ(a0) = 0 admits a unique even in s holo-
morphic solution in W for any given data a(0, y, y), and the equation Zμ+ j (a) = b
with j ≥ 1 and b(s, x, y) even in s and holomorphic in W , admits a unique solu-
tion a(s, x, y), even in s and holomorphic in W . Therefore, the system of transport
equations (5.10) admits a unique solution such that formula (5.5) holds true. We
refer to the appendix for a proof of these affirmations, and also for a proof of the
estimate (5.3) for small enough W . From the estimate (5.3), the function

∑
j≥0 δ j a j

is a holomorphic function on W , and therefore

G = sδμ
∑
j≥0

δ j a j

is an holomorphic function on the set W ∩ {Re(δ) > 0}. In this set, which clearly
contains W ∩ {s > 0, x, y ∈ M}, G satisfies by construction the equation (∂2

s +
�x )G = 0, and extends as a holomorphic function on the two sheets covering of
the set W \ {δ = 0}. Now we claim that with the choice (5.5) of the initial data for
the solution a0 of the transport equation Zμ(a0) = 0, one has

lim
s→0

G(s, x, y) = δx=y (5.11)

Here, we identify a measure on M with a distribution by factorization of the volume
form dgx . In other words, (5.11) means

lim
s→0

∫
M
G(s, x, y)ϕ(x)dgx = ϕ(y) (5.12)

for any smooth test function ϕ with support close to y. The verification of (5.12)
is easy: take near y, the geodesic coordinate system v �→ expy(v), v ∈ TyM . Then
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one has d2(x, y) = v2 and dgx = (1 + O(v2))dv. For f smooth with support near
0 one has

lim
s→0

∫
Rm

s(s2 + v2)−(m+1)/2a0(s, expyv, y) f (v)(1 + O(v2))dv

= a0(0, y, y) f (0)
∫
Rm

(1 + w2)−(m+1)/2dw = f (0)
(5.13)

by the choice (5.5) of a0(0, y, y) (use the change of variables v = sw and Lebesgue
dominated convergence theorem). The same argument shows that the other terms in
the development of G in powers of δ do not contribute to the limit in (5.11).

Therefore, H(s, x, y) = Ps(x, y) − G(s, x, y) satisfies the elliptic boundary
value problem in variables (s, x) close to (0, y)

(∂2
s + �x )H = 0 in s > 0, lim

s→0
H = 0 (5.14)

Hence H(s, x, y) is analytic in (s, x) near (0, y). This is a classical result for this
kind of elliptic boundary problem with analytic coefficients, but here, one can use a
most elementary reflection argument: near (0, y) in R × M , the function u(s, x) =
sign(s)H(|s|, x, y) satisfies the elliptic equation (∂2

s + �x )u = 0, hence is analytic.
Theproof of the fact that H(s, x, y) is analytic in (s, x, y)near {s = 0} × DiagM is of
the same kind:One has the symmetryPs(x, y) = Ps(y, x) and from the uniqueness in
the construction of the coefficients a j , one has also G(s, x, y) = G(s, y, x). Hence,
H(s, x, y) satisfies the elliptic boundary value problem in variables (s, x, y) close
to {s = 0} × DiagM

(2∂2
s + �x + �y)H = 0 in s > 0, lim

s→0
H = 0 (5.15)

Therefore, we conclude that H(s, x, y) is analytic near {s = 0} × DiagM .
In the case m odd, the proof follows the same lines . In addition to formulas (5.6)

and (5.8), one also use the formulas with n ∈ N

(∂2
s + �)( f n log( f )b) = n f n−2(2 + (n − 1) log( f ))((∂s f )

2 + |∇ f |2g)b
+ f n−1(1 + n log( f ))

(
2∂s f ∂sb + 2(∇ f |∇b)g + (∂2

s f + � f )b
)

+ f n log( f )(∂2
s b + �b)

(5.16)
which gives since (∂sδ)

2 + |∇δ|2g = 4δ

(∂2
s + �)(δn log(δ)b) = nδn−1 log(δ)

(
4s∂sb + 2(∇xd

2|∇b)g + (�x (d
2) + 4n − 2)b

)

+ δn log(δ)(∂2
s b + �b) + δn−1

(
4s∂sb + 2(∇xd

2|∇b)g + (�x (d
2) + 8n + 2)b

)
(5.17)

If we set b = sa, with a even in s, we thus get
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(∂2s + �)(sδn log(δ)a) = snδn−1 log(δ)
(
4s∂sa + 2(∇xd

2|∇a)g + (�x (d
2) + 4n + 2)a

)

+ sδn log(δ)(∂2s a + 2s−1∂sa + �a)

+ sδn−1
(
4s∂sa + 2(∇xd

2|∇a)g + (�x (d
2) + 8n + 6)a

)
(5.18)

Then one find that the second line of (5.4) holds true with an additional term of
the form sh(s, x, y) with h holomorphic near s = 0, x = y, and this term plays
no role in the verification of the boundary condition at s = 0 nor in the fact that
Ps(x, y) − G(s, x, y) is analytic near {s = 0} × DiagM . The proof of Proposition
5.1 is complete. �

Lemma 5.1 There exists ε0 > 0, such that for all s ∈]0, ε0[ the following holds true.
(i) The function Ps(z, y) is holomorphic in (z, y) near any point (z, y) ∈ Bs × M.
(ii) The function Ps(z, y) extends holomorphically near any point (z, y) ∈ ∂Bs ×

M such that z /∈ {Z(i, y, η), |η|y = s}.
Proof Point (i) followsdirectly from the identity (4.2) and thebound (4.10) ofLemma
4.3. Point (ii) is also easy to prove: the function (s, x) ∈]0,∞[×M �→ Ps(x, y)
satisfies the elliptic boundary value problem

(∂2
s + �x )Ps(x, y) = 0 in s > 0, P0(x, y) = δx=y

Therefore, as in the proof of Proposition 5.1, we get that Ps(x, y) is analytic in
(s, x) near any point (0, x) with x �= y. By choosing ε0 > 0 small enough, we may
thus assume that z = Z(i, x, ξ), |ξ|x = s and x close to y ∈ M . Then by Proposition
5.1, the singularities of Ps(z, y) near such points are on the subcomplex manifold
{(z, y), s2 + d2(z, y) = 0}, and the result follows from the formula (3.22) of Lemma
3.3. The proof of Lemma 5.1 is complete. �

Recall that we use the identification of {(x, ξ) ∈ T ∗M, |ξ|x = s} with ∂Bs given
by the map (x, ξ) �→ Z(i, x, ξ), and that cm is the volume of the unit sphere in R

m ,
so cm/m is the volume of the unit ball in R

m . Let dxdξ be the canonical Liouville
measure on T ∗M . We define the measure dμs on ∂Bs by the formula

∫
∂Bs

f dμs = m

cm

∫
|ξ|x≤1

f (x,
sξ

|ξ|x )dxdξ =
∫
M

( ∫
Sm−1

f (x, sg1/2x (u))
dσ(u)

cm

)
dgx

(5.19)
This is compatible with the definition of dμs that we have used in the flat case in
Sect. 2, and if f (z) is a smooth function on X defined near M , one has

lim
s→0

∫
∂Bs

f dμs =
∫
M

f (x)dgx (5.20)

The real 1-form βz introduced in (3.13) defines by restriction to ∂Bs a 1-form that
we still denote by βz . This defines a canonical half line bundle L− ⊂ T ∗(∂Bs)
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L− = {(z, ζ) ∈ T ∗(∂Bs), ζ = tβz, t < 0} (5.21)

For s ∈]0, ε0[, we denote by Ts the map from D′(M) into D′(∂Bs)

∑
c j e j = f �→ Ts( f ) = Ps( f )|∂Bs =

∑
j

e−sω j c j e j |∂Bs (5.22)

Lemma 5.3 Forall s ∈]0, ε0[, Ts is awell definedand injectivemap. TheHörmander
wave front set of its distribution kernel Ts(z, y) is given by

W F(Ts) = {(z, ζ; y, η) ∈ T ∗(∂Bs) × T ∗(M) \ M, z = Z(i, y, sη/|η|), ζ = −βz |η|/s}
(5.23)

In particular, W F(Ts) is parametrized by (y, η) ∈ T ∗(M) \ M.
Moreover, for any f ∈ D′(M), one has W F(Ts( f )) ⊂ L− and

Ts( f ) = lim
D′,r→0+

∫
M
Ps+r (z, y) f (y)dg y = lim

D′,r→0+

∫
M
Ts(e

−r |�g |1/2 f ) (5.24)

Proof One has Ps( f ) = ∫
M Ps(z, y) f (y)dg y ∈ O(Bs), thus the injectivity of Ts is

obvious. The fact that Ts( f ) ∈ D′(∂Bs) for any f ∈ D′(M) follows easily from
Proposition 5.1 and point ii) of Lemma 5.1. By Lemma 5.1, the singular support of
theKernel Ts(z, y) is contained in {(z, y), ∃η ∈ T ∗

y M, |η|y = s, and z = Z(i, y, η)}.
Then to compute WF(Ts), we may use Proposition 5.1, and this reduce to the com-
putation of WF(s2 + d2(z, y))μ, which is easy if one uses Lemma 3.3, and gives
formula (5.23). Finally, the assertion (5.24) is obvious. The proof of Lemma 5.3 is
complete. �

In the following proposition, T ∗
s is the adjoint of Ts for the measures dgx on M

and dμs on ∂Bs .

Proposition 5.4 Let I = [c, d] ⊂]0, ε0[. Then T ∗
s Ts is a smooth family in s ∈ I of

elliptic pseudodifferential operators of degree −(m − 1)/2. Moreover, there exists a
constant C(I ) > 1 such that one has the equivalence of norms

1

C(I )
‖Tsg‖L2(∂Bs ,dμs ) ≤ ‖g‖H−(m−1)/4(M) ≤ C(I )‖Tsg‖L2(∂Bs ,dμs ) (5.25)

The proof of this proposition is suggested in [2]: essentially, it uses the fact that Ts
is a “Fourier Integral Operator with complex phase”, which is a direct consequence
of Proposition 5.1 and Lemma 5.1 and then it remains to apply the general machinery.
(this is the proof given in [13]). Since the reader of these notes may not be familiar
with the theory of FIO’s with complex phases, we shall directly verify below that
T ∗
s Ts is an elliptic pseudodifferential operator of degree −(m − 1)/2, by computing

its distribution kernel. This will just involve the knowledge of the stationary phase
theorem in the case of complex phase, but with phase and symbol analytic in the
parameters, which is not so difficult. We postponed the proof of Proposition 5.4 to
the end of this section.
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End of Proof of the Boutet Theorem.
Take s ∈]0, ε0[. From Proposition 5.4, the map

g ∈ H−(m−1)/4(M) �→ Ps(g)(z) =
∫
M
Ps(z, y)dg y ∈ H(Bs) (5.26)

is well defined, continuous, injective, and has closed range. Let us prove that Ps is
surjective, hence an isomorphism of Hilbert space. Let f ∈ H(Bs) ⊂ O(Bs). From
Theorem 4.1, one has

f (z) =
∑

c j e j (z), c j =
∫
M

f (x)e j (x)dgx (5.27)

where the sum is uniformly convergent on compact subset of Bs and the Fourier
coefficients c j satisfy the bounds |c j | ≤ Cδe−(s−δ)ω j for all δ > 0. For 0 < s ′ < s,
one has

f (z)|Bs′ =
∑

c j e j (z) = Ps ′(gs ′), gs ′ =
∑

es
′ω j c j e j (5.28)

From the bounds on the c j , the function gs ′ is smooth (and in fact analytic) on M ,
and from (5.25), we get with a constant C independent of s ′ ∈ [s/2, s[

(∑
< ω j >−(m−1)/2 e2s

′ω j |c j |2
)1/2 = ‖gs ′ ‖H−(m−1)/4(M)

≤ C‖Ts ′gs ′ ‖L2(∂Bs′ ,dμs′ ) = C‖ f ‖L2(∂Bs′ ,dμs′ )

(5.29)

Since one has

lim
s ′→s

‖ f ‖L2(∂Bs′ ,dμs′ ) = ‖ f ‖L2(∂Bs ,dμs ) = ‖ f ‖H(Bs )

we get the “optimal” bound on the c j :

∑
< ω j >−(m−1)/2 e2sω j |c j |2 < ∞

and therefore,

f (z) = Ps(gs), gs =
∑

esω j c j e j ∈ H−(m−1)/4(M)

Finally, the family < ω j >(m−1)/4 e j is an orthonormal basis of H−(m−1)/4(M), and
Ps is an isomorphism of Hilbert spaces. Therefore, the family

Ps(< ω j >(m−1)/4 e j ) = e−sω j < ω j >(m−1)/4 e j

is a Riesz basis of H(Bs). The proof of the Boutet theorem 1.1 is complete.
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Let us now give a proof of Proposition 5.4. We start with the following lemma.
For the definition of “analytic symbol”, we refer to [11].

Lemma 5.5 There exists a classical analytic symbol of degree 0, σ(λ; s, x, y),
defined for λ ≥ 0, σ � ∑

n≥0 λ−nσn, with holomorphic dependance on (s, x, y) ∈
W, such that the function defined for s > 0 and (x, y) close to DiagM

G(s, x, y) − s
∫ ∞

1
e−λ(s2+d2(x,y))λ(m+1)/2σ(λ; s, x, y)dλ

λ
(5.30)

extends holomorphically in W. One has for some constants A, B and every N ≥ 1

sup
W

|σ(λ; s, x, y) −
N−1∑
j=0

λ− jσ j (s, x, y)| ≤ ABN (N )!λ−N , ∀λ ≥ 1 (5.31)

and
σ0(0, y, y) = π−(m+1)/2 (5.32)

Proof The proof of this lemma is classical, and is an easy by-product of Proposition
5.1. The functionsσ j (s, x, y) are given explicitly in terms of the functionsa j (s, x, y).
For the convenience of the reader, we have include the explicit construction of the
symbol σ in the appendix, where we recall the Borel summation technique which
allows to associate to a given formal analytic asymptotic expansion a function σ such
that (5.31) holds true. �

Let us verify that T ∗
s Ts is an elliptic pseudodifferential operator of degree −(m −

1)/2. From Lemma 5.3 formula (5.23), and general results on wave front set of
tensor product, non characteristic trace, and proper direct image (see [5]), the dis-
tribution product Ps(z, x)Ps(z, y) ∈ D′(M × M × ∂Bs) is well defined. Moreover,
the distribution Ks ∈ D′(M × M) defined by

Ks(x, y) =
∫

∂Bs

Ps(z, x)Ps(z, y)dμs(z) (5.33)

satisfies
WF(Ks) ⊂ {(x, y, ξ, η), x = y, ξ + η = 0} = T ∗

Diag(M)M (5.34)

Since for f ∈ C∞(M), one has T ∗
s Ts( f )(x) = ∫

M Ks(x, y) f (y)dg y, it remains to
verify that Ks is an elliptic pseudodifferential operator of degree −(m − 1)/2. In
order to compute the kernel Ks(x, y) modulo a smooth function, by (5.34), we may
assume that (x, y) is close to (p, p) ∈ Diag(M). For (x, y) near Diag(M), we
will choose the coordinate system (p, w) ∈ T M , w small and x = expp(w/2), y =
expp(−w/2) so that p is the middle point of the geodesic connecting y to x , and
in these geodesic coordinates centered at p, one has w = x − y. By Lemma 5.2 we
may also localize the integral in (5.33) for z = Z(i, u, ξ), |ξ|u = s, with u close to
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p. Moreover, from Proposition 4.2, and Lemmas 5.3 and 5.5. we may replace in the
definition (5.33) the kernel Ps(z, x)Ps(z, y) by the kernel

s2
∫ ∞

1

∫ ∞

1
e−λ(s2+d2(z,y))−μ(s2+d

2
(z,x))λ(m+1)/2σ(λ; s, z, y)μ(m+1)/2σ(μ; s, z, x)dλ

λ

dμ

μ
(5.35)

Let n j,p, 1 ≤ j ≤ m be an orthonormal basis of TpM . In geodesic coordinates
centered at p, we write u = expp(

∑
a jn j,p), and we denote by ξ = (ξ1, ..., ξm)

the dual coordinates of the (a j ). Recall that in geodesic coordinates, one has
g(a) = I d + O(a2) and we define new coordinates b by the formula

b = b(a, ξ) = (g−1(a))1/2(ξ) = ξ + 0(a2ξ) (5.36)

Then one has b2 = |ξ|2a , and we shall parametrize the set of points z = Z(i, u, ξ), u
close to p and |ξ|u = s by the coordinates a ∈ R

m close to 0 and b = sv, v ∈ Sm−1.
We set also

λ = ρ cos(θ), μ = ρ sin(θ), Iρ(θ) = 1min(cos(θ),sin(θ))≥1/ρ

Then, from formulas (5.19), (5.24) and (5.35), one find that near Diag(M), the kernel
Ks(x, y) is equal to (modulo a smooth function)

lim
D′,r→0+

∫ ∞

0

∫
Sm−1

Es+r (s, x, y; ρ, v)s2ρmdρ
dσ(v)

cm
, (ρ ∈]0, ∞[, u ∈ Sm−1)

Es+r (s, x, y; ρ, v) =
∫ π/2

0
Iρ(θ)

∫
Rm

e−ρ	s+r �s+r (sin θ cos θ)(m−1)/2χ(a)
√
det (g(a))dθda

	s+r (s, x, y, v; a, θ) = sin θ((s + r)2 + d
2
(z, x)) + cos θ((s + r)2 + d2(z, y))

�s+r (s, x, y, v, ρ; a, θ) = σ(ρ cos θ, s + r, z, y)σ(ρ sin θ, s + r, z, x)

z = Z(i, expp(
∑

a j n j,p), sg
1/2(a)(v))

(5.37)
Here, χ ∈ C∞

0 (|a| ≤ 2c0) is a smooth cutoff function, equal to 1 in the ball |a| ≤ c0,
with c0 such that one has |w| << c0 << in f (s ∈ I ) (recall x = expp(w/2), y =
expp(−w/2)). By Lemma 3.3, one has

Re(	s+r ) ≥ (sin θ + cos θ)((s + r)2 − s2) + cI (sin θ d2(a, x) + cos θ d2(a, y))

and in particular, for r > 0, the integral in (5.37) is absolutely convergent. The key
technical point is to verify that the analytic function

(a, θ) �→ 	s+r (s, x, y, v; a, θ)

admits a unique non degenerate critical point (ac(r, s, x, y, v), θc(r, s, x, y, v)) close
to (0,π/4) for s ∈ I , r close to 0, x, y close to p and any v ∈ Sm−1, and that the
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Hessian of 	s+r at the critical point is non degenerate. To this end, we have just to
verify that it is true for r = 0, x = y = p, and since s is small, we may even assume
that the metric is flat. But in that case, we get easily

	s(s, p, p, v; a, θ) = a2(sin θ + cos θ) − 2is(sin θ − cos θ)a.v (5.38)

which admits a unique critical point (ac, θc) = (0,π/4). From the Taylor expansion

	s(s, p, p, v; a,π/4 + ϕ) = √
2(a2 − 2isϕ a.v) (5.39)

we get that this critical point is non degenerate. Observe also that the Hessian of
Re(	s) is strictly positive in the a directions. Therefore, for s ∈ I , r close to 0, x, y
close to p and any v ∈ Sm−1, 	s+r has a unique non degenerate critical point, and
the Hessian of 	s+r is strictly positive in the a directions. Let

ψs(r, x, y, v) = 	s+r (s, x, y, v; ac(r, s, x, y, v), θc(r, s, x, y, v)))

be the critical value, which depends analytically on all parameters. In the flat
case, one verifies easily that one has (ac, θc) = (0,π/4) independently of (x, y) =
(w/2,−w/2). ByLemma3.3 andTaylor expansion inw = x − y, onegets (ac, θc) =
(0,π/4) + O(w2), and

ψs(r, x, y, v) = √
2
(
(s + r)2 − s2 + is(x − y).v + Q(p, s, v; r, x − y)

)
(5.40)

where Q(p, s, v; r, w) is analytic in (p, s, v; r, w) and satisfies

Q(p, s, v; r, 0) = 0, ∇wQ(p, s, v; r, 0) = 0, Re(∂2
wQ(p, s, v; 0, 0)) >> 0

(5.41)
To compute the integral in (5.37), one has also to take care of the contribution of

the end points near θ = 0 and θ = π/2, which comes from the truncation by Iρ(θ).
Let 1 = χ0(θ) + χc(θ) + χπ/2(θ) with χ0(θ) supported near 0, χπ/2(θ) supported
near π/2 and χc(θ) ∈ C∞

0 (]0,π/2[) equal to 1 near π/4. Then the contribution of
χ0 (and the contribution of χπ/2) to the kernel Ks(x, y) is a smooth function near
Diag(M): in fact, by integration by parts in (a, θ), we find that the contribution of
χ0 gives a kernel defined by an integral on the set λ = ρ cos(θ) = 1, which means
that we are reduced to a kernel of the form F(x, y) = ∫

∂Bs
f (z, y)Ps(z, x)dμs(z)

with f smooth, and by (5.23) and the classical result on the wave front set of an
integral, we get that F is smooth. (observe that we have already used this argument
in formula (5.35), since we have replaced Ps by Ps + f with f smooth).

Now, we can apply the phase stationary theorem to the contribution of χc, and we
get

Ec,s+r (s, x, y; ρ, v) = e−ρψs (r,x,y,v)ρ−(m+1)/2σ̃s(r, x, y, v; ρ) (5.42)
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where σ̃s(r, x, y, v; ρ) is a classical symbol of degree 0 in ρ, σ̃s � ∑
j≥0 σ̃s, j

(r, x, y, v)ρ− j with σ̃s, j analytic in (r, x, y, v).Then it is easy to pass to the limit
r → 0+, and we get for (x, y) near Diag(M), the equality, modulo a smooth func-
tion near Diag(M):

Ks(x, y) =
∫ ∞

1

∫
Sm−1

ei((x−y)s
√
2ρv+iρQ(p,s,v;0,x−y))ρ−(m−1)/2σ̃s(0, x, y, v; ρ)

ρm−1dρdσ(v)

cm
(5.43)

Then from (5.41) and (5.43), we get that T ∗
s Ts is a pseudodifferential operator of

degree −(m − 1)/2 (set ξ = s
√
2ρv). The ellipticity follows easily from the defini-

tion of �s given in (5.37) and formula (5.32).

Finally, from the identity

(T ∗
s Ts(g)|g)L2(M,dgx) = ‖Ts(g)‖2L2(∂Bs ,dμs )

and the injectivity of Ts , we get that (5.25) holds true. The proof of Proposition 5.4
is complete.

Let us end these section by some results about the principal symbol of T ∗
s Ts . The

calculus we have done gives the principal symbol A of T ∗
s Ts equal to

A(s, x, ξ) = C−1/2(s, x, ξ/|ξ|x )�m(s|ξ|x), (mod |ξ|−(m+1)/2
x )

C(s, x, u) = s−2(2
√
2)−(m+1)det (Hess(	s(s, x, x, u; ., .)))ac=0,θc=π/4

(5.44)

where the function �m is defined in formula (2.13). To prove this point, we use
formula (5.43) which gives

A(s, x, ξ) = (2π)m(|ξ|x/s
√
2)−(m−1)/2σ̃s,0(0, x, x, ξ/|ξ|x )(s

√
2)−mc−1

m

Now we use stationary phase expansion to compute σ̃s,0(0, x, x, ξ/|ξ|x ). One has

	s(s, x, x, u; a, θ) = sin θ(d
2
(z, x) + s2) + cos θ(d2(z, x) + s2)

z = Z(i, expx (a), sg1/2(a)(u))

From Lemma 3.3, we get that the critical point is (ac, θc) = (0,π/4). Thus the
function A(s, x, ξ) is equal to (here we use (5.32) and the formula (5.37) for �s)

A(s, x, ξ) = (2π)m(|ξ|x/s
√
2)−(m−1)/2s2π−(m+1)(

1

2
)(m−1)/2(det−1/2(2π)(m+1)/2)(s

√
2)−mc−1

m

where det is the value of the Hessian determinant of	s(s, x, x, u; a, θ) at the critical
point (ac, θc) = (0,π/4)which is equal to s2(2

√
2)m+1C(s, x, ξ/|ξ|x ). Hencewe get
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A(s, x, ξ) = C(s, x, ξ/|ξ|x )π
(m−1)/2(s|ξ|)−(m−1)/2

cm

and the result follows from the fact that the principal symbol of �m(η) is equal to
(π/|η|)(m−1)/2c−1

m .
The function C involves the second derivative in z of d2(z, x) at z = Z(i, x, su),

hence the curvature tensor ofM . In the special casewhereM = SmR = {x ∈ R
m+1, x2

= R2} is the sphere of radius R in Rm+1, one has

d2(x, y) = R2ψ(
x .y

R2
), ψ(u) = θ2 ⇔ cos θ = u

and

Z(i, x, su) = x cosh(s/R) + i Ru sinh(s/R), x ∈ SmR , u ∈ Sm1 , x .u = 0

which gives

d2(Z(i, x, su), y) = R2ψ

(
x .y cosh(s/R) + i Ru.y sinh(s/R)

R2

)

These formulas allows to find the Taylor expansion at order 2 of 	s at the critical
point (ac, θc) = (0,π/4), (θ = π/4 + ϕ):

	s � √
2
(
|a|2L(s/R) + (1 − L(s/R))(a.u)2 − 2isϕa.u

)
, L(u) = u

cosh(u)

sinh(u)

Observe that L(0) = 1, thus when R → ∞, this is compatible with the formula
(5.39) of the flat case. Therefore, in the case of SmR , we get

C(s, x, u) = C(s) = (L(s/R))m−1

which depends effectively on the parameter s.

6 Appendix

(1) Analysis of the transport equations (5.10) and proof of the estimate (5.3).
In the geodesic system of coordinates centered at y, v �→ expy(v), the first order

operator Zl defined in (5.9) is of the form:

Zl = 4(s∂s +
∑

v j∂v j + l − μ + gy(v))
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with gy(v) holomorphic in v near v = 0, analytic in y, and gy(0) = 0. All the con-
structions below will depend analytically on y. Let us denote by z the coordinates
(s, v1, ..., vm). One has to study an equation of the form

⎛
⎝m+1∑

j=1

z j∂z j + A(z)

⎞
⎠ f = g (6.1)

where A(z) is a holomorphic function defined near z = 0. The behavior of this
equation depends on the value of A(0) = l − μ.

When A(0) = 0,which is the casewhen l = μ, the equation (6.1)with g=0, admits
for any given f (0), a unique holomorphic solution f defined near z = 0; this is easy
to see, since with A = ∑

α Aαzα, and f = ∑
α fαzα, the equation (6.1) with g = 0

is equivalent to
∀α, |α| fα +

∑
β+γ=α

Aβ fγ = 0.

Next assume that Re(A(z)) ≥ ν > 0 in the ball {z; |z| < r0}. This will be the case
when l = μ + j, j ≥ 1. Then for any given g holomorphic in this ball, the equation
(6.1) admits a unique solution f holomorphic in this ball, and one has

f (z) =
∫ 1

0
exp

(
−

∫ 1

u
A(vz)

dv

v

)
g(uz)

du

u
(6.2)

From Re(A(z)) ≥ ν > 0 and (6.2), we get for any ρ < r0

sup
|z|≤ρ

| f (z)| ≤ 1

ν
sup
|z|≤ρ

|g(z)| (6.3)

Using the Cauchy inequalities to estimate the derivatives of an holomorphic function,
we thus get that there exists a constant C such that the functions a j (z) defined by the
transports equations (5.10) satisfies for any j ≥ 1 and any ρ1 < ρ2 < r0 the estimates

sup
|z|≤ρ1

|a j (z)| ≤ C

j2(ρ2 − ρ1)2
sup

|z|≤ρ2

|a j−1(z)| (6.4)

Let r < r0/2. For a given j ≥ 1, set ρ j,l = r + lr/j . Then we get from (6.4) by
induction on l ∈ {1, ..., j}

sup
|z|≤r

|a j (z)| ≤
(
C

r2

) j

sup
|z|≤2r

|a0(z)| (6.5)
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This proves the estimate (5.3) on the growth of the functions a j in the complex
domain.

2. Proof of Lemma 5.5
We will assume m even (the case m odd requires some minor modifications due to
the logarithmic terms in formulas (5.4)). Recall μ = −(m + 1)/2 /∈ −N. Let (a j ) j≥0

be a sequence of complex numbers satisfying bounds

|a j | ≤ A1B
j
1

Let us define the sequences σ j and b j by the formulas

σ j�(−μ − j) = a j , b j = σ j/j ! (6.6)

Here, �(z) = ∫ ∞
0 e−x x z−1dx is the usual Gamma function. These sequences satisfy

bounds of the form (with A2, B2 depending only on μ, A1, B1)

|σ j | ≤ A2B
j
2 j !, |b j | ≤ A2B

j
2

Let ρ0 ≤ 1
4B2

and let σ(λ) be the holomorphic function of λ ∈ C

σ(λ) = λ

∫ ρ0

0
e−λx (

∑
j

b j x
j )dx (6.7)

Then σ(λ) is a classical analytic symbol of degree zero, with asymptotic expansion
when λ → ∞, σ(λ) � ∑

j≥0 λ− jσ j . In order to prove Lemma 5.5, we have just to

verify that the function H(δ) defined for δ ∈]0, B−1
1 [ by the formula

H(δ) = δμ
∑

a jδ
j −

∫ ∞

1
e−λδλ−μσ(λ)

dλ

λ
(6.8)

extends holomorphically in the complex disc |δ| < r with r depending only on the
constants μ, A1, B1. From (6.6), we will get the value of σ0(0, y, y) given in (5.32),
since with dm defined in (5.5), one has

dm�((m + 1)/2) =
∫
Rm

∫ ∞

0
e−t (1+x2)t (m+1)/2 dtdx

t
= πm/2

∫ ∞

0
e−t dt√

t
= π(m+1)/2

Let D ≥ min(1, ρ−1
0 ) and define a function σ0(λ) of λ ≥ 1 by the formula

σ0(λ) =
∑
j≤λ/D

σ jλ
− j (6.9)
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One has for λ ≥ 1

σ(λ) − σ0(λ) = λ

∫ ρ0

0
e−λx

⎛
⎝ ∑

j>λ/D

b j x
j

⎞
⎠ dx − λ

∑
j≤λ/D

b j

∫ ∞

ρ0

e−λx x j dx

(6.10)
From (6.6) and ρ0B2 ≤ 1/2, we get

|λ
∫ ρ0

0
e−λx

⎛
⎝ ∑

j>λ/D

b j x
j

⎞
⎠ dx | ≤ 2A2

(
1

2

)λ/D

One has
∫ ∞

R
e−y y j dy = e−R

∫ ∞

0
e−z(R + z) j dz ≤ 2 j e−R(R j + j !)

From B2ρ0 ≤ 1/4 and 1/D ≤ ρ0 we thus get

|λ
∑
j≤λ/D

b j

∫ ∞

ρ0

e−λx x j dx | ≤ 4A2e
−λρ0

Therefore one has

|σ(λ) − σ0(λ)| ≤ 6A2e
−λr0 , r0 = min(ρ0, log(2)/D) (6.11)

This implies that the function

∫ ∞

1
e−λδλ−μ(σ(λ) − σ0(λ))

dλ

λ

is holomorphic in the complex disc |δ| < r0, and it remains to analyze the function
H0(δ):

H0(δ) = δμ
∑
j≥0

a jδ
j −

∫ ∞

1
e−λδλ−μσ0(λ)

dλ

λ
(6.12)

Let us now verify the holomorphy of H0(δ) in a complex disc |δ| < r . For δ > 0 and
z ∈ C, set

F(z, δ) =
∫ ∞

1
e−λδλz−1dλ = δ−μ

∫ ∞

δ

e−x x z−1dx (6.13)

The function z → F(z, δ) is holomorphic in z ∈ C and one has the identity

∂

∂δ
F(z, δ) = −F(z + 1, δ) (6.14)
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For Re(z) > 0, one has

∫ ∞

δ

e−x x z−1dx = �(z) −
∫ δ

0
e−x x z−1dx

Thus, for Re(z) > 0, we get

F(z, δ) = �(z)δ−z −
∞∑
0

(−1)l

l!
δl

z + l
(6.15)

and since F(z, δ) is holomorphic in z ∈ C, this formula remains valid for any z ∈
C \ (−N).

Remark 6.1 To get a formula for z = −k, k ∈ N, recall

�(−k + ε) = (−1)k

k! (ε−1 + dk + O(ε)), dk = �′(1) + 1 + ... + 1/k

Inserting this formula in (6.15) and passing to the limit ε → 0, we get

F(−k, δ) = (−1)k

k! δk(− log(δ) + dk) −
∑
l �=k

(−1)l

l!
δl

l − k
(6.16)

This formula is used to treat the case m odd. We leave the details to the reader.

By (6.6), (6.15), (6.9), and D ≥ 1, one has

H0(δ) = a0δ
μ − σ0F(−μ, δ) + δμ

∑
j≥1

a jδ
j −

∑
j≥1

σ j ( j D)−(μ+ j)F(−μ − j, j Dδ)

=
∞∑
l=0

(−1)l
δl

l!
( σ0

l − μ
+

∑
j≥1

σ j ( j D)l−μ− j

l − μ − j

)

(6.17)
Since one has D ≥ 4B2, the result follows from the estimates:

∑
j≥1

σ j ( j D)l−μ− j

l − μ − j
≤ A2C(μ)Dl−μ

∑
j≥1

j l−μ(
B2
D

) j , and
∑
j≥1

j l−μ4− j ≤ C(μ)Cl
0l!
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Propagation of Analytic Singularities
for Short and Long Range Perturbations
of the Free Schrödinger Equation

André Martinez, Shu Nakamura and Vania Sordoni

Abstract We study the propagation of the analytic wave front set for solutions to
the Schrödinger equation associated with perturbations of the free Laplacian.

1 Introduction

We are interested in the analytic singularities of the distributions u = u(t, x) that are
solutions in R × R

n to the Schrödinger equation,

(Sch) :
{
i ∂u

∂t = Pu;
u|t=0 = u0,

where P = P(x,Dx) is a second-order symmetric differential operator on R
n with

analytic coefficients (typically a perturbation of the Laplace operator P0 := − 1
2�),

and u0 is in L2(Rn) or, more generally, in some Sobolev space.
For such a problem, it is quite natural to wonder if the analyticity of u0 implies that

of u(t) at time t �= 0. But actually this is not true, as it can be seen from the example
where P = P0 and u0 = (−2iπ)− n

2 e−i|x|2/2. In this case, using that the distributional
kernel of e−itP0 is (2iπ t)− n

2 ei|x−y|2/2t , one can see thatu(t) just coincideswithv(t − 1),
where v solves the same Schrödinger equation with initial date v(0) = δ (the Dirac
measure at x = 0). In particular, u(1) = δ is singular, while u(0) is analytic. Such a
phenomenon is called “infinite propagation speed of singularities”, and a question
one may ask is: Is there any way to read the singularities of u(t) easily on u0?
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As we shall see, the answer is essentially yes, in the sense that (under some
non-trapping conditions) the analytic wave front set of eitP0u(t) propagates in a very
precise way (while that of u(t) does not at all!).

As an example, in the particular case P = P0 + V where V = V (x) is an analytic
function tending to 0 at infinity (and thus, in that case, u(t) = e−itPu0), we will prove
that, for all t ∈ R, one has,

WFa(e
itP0u(t)) = WFa(u0)

or, equivalently,
WFa(u(t)) = WFa(e

−itP0u0).

Here, WFa stands for the analytic wave front set, and the details of the proofs of the
results we present here can be found in [7, 8] (see also [6] for related results).

2 Assumptions and Results

Let

P = 1

2

n∑
j,k=1

Djaj,k(x)Dk + 1

2

n∑
j=1

(aj(x)Dj + Djaj(x)) + a0(x)

on H = L2(Rn), where Dj = −i∂xj , and assume that the coefficients {aα(x)} satisfy
to the following hypothesis. For ν > 0 we denote

�ν = {
z ∈ C

n
∣∣ |Im z| < ν〈Re z〉}.

Assumption A For each α, aα(x) ∈ C∞(Rn) is real-valued and can be extended to
a holomorphic function on �ν with some ν > 0. Moreover, for x ∈ R

n, the matrix
(aj,k(x))1≤j,k≤n is symmetric and positive definite, and there exists σ > 0 such that,

∣∣aj,k(x) − δj,k
∣∣ ≤ C0〈x〉−σ , j, k = 1, . . . , n,∣∣aj(x)∣∣ ≤ C0〈x〉1−σ , j = 1, . . . , n,∣∣a0(x)∣∣ ≤ C0〈x〉2−σ ,

for x ∈ �ν and with some constant C0 > 0.

The case σ > 1 will be referred to as the short range case, while the case σ ∈ (0, 1]
as the long range case.

We denote by p(x, ξ) := 1
2

∑n
j,k=1 aj,k(x)ξjξk the principal symbol of P, and by

P0 := − 1
2� the free Laplace operator. For any (x, ξ) ∈ R

2n, we also denote by
(y(t; x, ξ), η(t; x, ξ)) = exptHp(x, ξ) the solution to the Hamilton system,
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dy

dt
= ∂p

∂ξ
(y, η),

dη

dt
= −∂p

∂x
(y, η), (2.1)

with initial condition (y(0), η(0)) = (x, ξ).
We say that a point (x, ξ) ∈ T ∗

R
n\0 is forward non-trapping (respectively back-

ward non-trapping) when |y(t, x, ξ)| → ∞ as t → +∞ (resp. as t → −∞).
In that case, one can prove the existence of η+(x, ξ) ∈ R

n (resp. η−(x, ξ)) such
that η(t, x, ξ) → η+(x, ξ) as t → +∞ (resp. η(t, x, ξ) → η−(x, ξ) as t → −∞).

If in addition σ > 1 (short range case), then one can also prove the existence of
y±(x, ξ) ∈ R

n such that,

|y+(x, ξ) + tη+(x, ξ) − y(t, x, ξ)| → 0 as t → +∞,

(resp. |y−(x, ξ) + tξ−(x, ξ) − y(t, x, ξ)| → 0 as t → −∞).
A proof of these two facts can be found, e.g., in [1], Lemma2.2 (indeed, though

only the short range case is treated, the proof given for the existence of η±(x, ξ) still
works in the long range case).

Denoting by NT+ (resp. NT−) the set of forward (resp. backward) non-trapping
points, we define the applications,

S± : NT± → R
2n

by
S±(x, ξ) := (y±(x, ξ), η±(x, ξ)).

They respectively correspond to the forward and backward classical wave maps. For
any distribution u ∈ D′(Rn), we denote by WFa(u) the analytic wave front set of u
(see, e.g., [13]), that can be described by introducing the FBI transform T defined
by,

Tu(z, h) =
∫

e−(z−y)2/2hu(y)dy,

where z ∈ C
n and h > 0 is a small extra-parameter. Then,Tv belongs to the Sjöstrand

space Hloc
�0

with �0(z) := |Im z|2/2 (see [13]), and a point (x, ξ) is not in WFa(u)
if and only if there exists some δ > 0 such that Tu = O(e(�0(z)−δ)/h) uniformly for z
close enough to x − iξ and h > 0 small enough (in this case, we also use the notation:
Tu ∼ 0 in H�0,x−iξ ). By Cauchy-formula, this is also equivalent to the existence of
some δ′ > 0 such that ‖e−�0/hTu‖L2() = O(e−δ′/h) for some complex neighborhood
 of x − iξ .

In the short range case, our main result is,

Theorem 2.1 Suppose Assumption A with σ > 1, and let u0 ∈ L2(Rn). Then,

(i) For any t < 0, one has,

WFa(e
−itPu0) ∩ NT+ = S−1

+ (WFa(e
−itP0u0)); (2.2)
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(ii) For any t > 0, one has,

WFa(e
−itPu0) ∩ NT− = S−1

− (WFa(e
−itP0u0)). (2.3)

Remark 2.2 In the particular case where the metric is globally non-trapping, this
result gives a complete characterization of the analytic wave front set of u(t) in terms
of that of e−itP0u0.

Remark 2.3 By substituting eitPu0 to u0, and −t to t, this result implies that one has,

∀t > 0, WFa(e
itP0u(t)) = S+(WFa(u0) ∩ NT+);

∀t < 0, WFa(e
itP0u(t)) = S−(WFa(u0) ∩ NT−).

In particular, this set does not depend on t > 0 (resp. t < 0).

In the important case where aj,k = δj,k , then one has NT± = R
2n\0 and S± = Id ,

and we obtain the following immediate corollary:

Corollary 2.4 Suppose Assumption A with σ > 1 and aj,k = δj,k for all pair (j, k).
Then, for all t ∈ R and all u0 ∈ L2(Rn), one has,

WFa(e
−itPu0) = WFa(e

−itP0u0).

Remark 2.5 In the C∞ setting, analogous results have been obtained Hassell and
Wunsch in [2]. They involve a notion of “scattering wave front set” in a more general
context of manifolds. In the case of Rn, this notion mainly coincides with that of
WF(eitP0u) (see also [3, 4, 9–12, 14] for related questions).

Remark 2.6 Using the FBI transform (see, e.g., [5, 13]) and the expression of the
distributional kernel of e−itP0 , one can see that a point (x0, ξ0) ∈ R

2n\0 is not in
WFa(e−itP0u0) if and only if there exists some δ > 0 such that the quantity,

Tu0(x, ξ : h) :=
∫

ei(x−hy)ξ/h−(x−hy)2/2heiy
2/2tu0(y)dy,

is O(e−δ/h), uniformly for h > 0 small enough and (x, ξ) in a neighborhood of
(− 1

t ξ0,
1
t x0).

In the long range case (0 < σ ≤ 1), the maps S± are not defined anymore, and
one need tomodify the free evolution near infinity in order to be able to define similar
maps.

For h > 0 sufficiently small and (x, ξ) ∈ R
2n, we denote by p̃(x, ξ ; h) the quantity,

p̃(x, ξ) := 1

2

∑
j,k

aj,k(x)ξjξk + h
∑
j

aj(x)ξj + h2a0(x),
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andby (̃y(t, x, ξ ; h), η̃(t, x, ξ ; h)) := exp tHp̃(x, ξ) the correspondingHamiltonflow.
Then, we have the preliminary result,

Lemma 2.7 For any δ0 > 0, there exist two h-dependent smooth functions,

W± : R± × {ξ ∈ R
n ; |ξ | > δ0} → R,

that are solutions to,

∂W±
∂t

(t, ξ) = p̃(∇ξW±(t, ξ), ξ ; h), (2.4)

and such that, for any ±t > 0 and (x, ξ) ∈ NT±, the quantity,

ỹ(t/h, x, ξ) − ∇ξW±(t/h, η̃(t/h, x, ξ)) + ∇ξW±(0, η±(x, ξ)) (2.5)

admits a limit ỹ±(x, ξ) ∈ R
n independent of t as h → 0+.

Remark 2.8 Actually, Eq. (2.4) must be satisfied up to short range terms only, in
order to have (2.5). For instance, in the previous short range case, one can take
W±(t, ξ) = tξ 2/2, that gives ỹ±(x, ξ) = y±(x, ξ).

Using the notations of the previous lemma, we set,

S̃±(x, ξ) := (̃y±(x, ξ), η±(x, ξ)), ((x, ξ) ∈ NT±);
z±(x, ξ) := ỹ±(x, ξ) − iη±(x, ξ);
W̃±(t, ξ) := W±(t, ξ) − W±(0, ξ).

(2.6)

Then, the result for the long range case is,

Theorem 2.9 Suppose Assumption A with 0 < σ ≤ 1, and let u0 ∈ L2(Rn). Then,
with the notations (2.6), one has,

(i) For any t < 0 and (x, ξ) ∈ NT+, one has the equivalence,

(x, ξ) /∈ WFa(e
−itPu0) ⇐⇒ eiW̃+(−t/h,hDz)/hTu0 ∼ 0 in H�0,z+(x,ξ);

(ii) For any t > 0 and (x, ξ) ∈ NT−, one has the equivalence,

(x, ξ) /∈ WFa(e
−itPu0) ⇐⇒ eiW̃−(−t/h,hDz)/hTu0 ∼ 0 in H�0,z−(x,ξ);

Remark 2.10 Here, the operator eiW̃±(−t/h,hDz)/h appearing in the statement is not
defined by the Spectral Theorem, but rather as a Fourier integral operator acting on
Sjöstrand’s spaces (see [8]).
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Remark 2.11 Actually, W± can be constructed in such a way that the quantity
W±

1 (t, ξ) := W̃±(−t/h, hDx)/h does not depend on h, and in principle, the fact that
eiW̃±(−t/h,hDz)/hTu0 ∼ 0 in H�0,z±(x,ξ) essentially means that S̃±(x, ξ) /∈
WFa(eiW

±
1 (−t,Dx)u0) (and in this sense, the result is very similar to that of the C∞

setting appearing in [11]). However, in order to define eiW
±
1 (−t,Dx) properly one needs

to extend W̃± to all values of ξ ∈ R
n, and this requires the use of cut-off functions. In

the analytic setting, this introduces technical difficulties that can probably be over-
come by the use of analytic pseudodifferential operators on the real domain (see
[13]).

3 Sketch of Proof

We explain the proof for the forward non-trapping case only (the backward non-
trapping case being similar), and we start by considering the short range case with a
flat metric (that is, aj,k = δj,k for all j, k, and thus S±(x, ξ) = (x, ξ)).

Replacing u0 by eitPu0, and then changing t to −t, we see that we have to prove
that for any t > 0, one has

WFa(u0) = WFa(e
itP0e−itPu0).

Following [10], we set v(t) := eitP0e−itPu0, that solves the system,

i
∂v

∂t
= L(t)v ; v(0) = u0. (3.1)

Here,
L(t) = eitP0(P − P0)e

−itP0 = L2(t) + L1(t) + L0(t), (3.2)

with,

L2(t) := 1

2

n∑
j,k=1

Dj(a
W
j,k(x + tDx) − δj,k)Dk

L1(t) := 1

2

n∑
�=1

(aW� (x + tDx)D� + D�a
W
� (x + tDx))

L0(t) := aW0 (x + tDx),

where we have denoted by aW (x,Dx) the usual Weyl-quantization of a symbol
a(x, ξ), defined by,

aW (x,Dx)u(x) = 1

(2π)n

∫
ei(x−y)ξa((x + y)/2, ξ)u(y)dydξ.
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Observe that, in the flat case, one has L2(t) = 0. The expressions for Lj(t), 0 ≤ j ≤ 2
can be proved directly (using the fact that e±iP0 is just the multiplication by e±iξ 2/2

in the Fourier variables), but they also result from the standard Egorov theorem (that
becomes exact in this case).

Since the FBI transform T is a convolution operator, we immediately observe
that TDxj = DzjT . However, in order to study the action of L(t) after transformation
by T , we need the following key-lemma that will allow us to enter the framework
of Sjöstrand’s microlocal analytic theory. Mainly, this lemma tells us that, if f is
holomorphic near �ν , then, the operator T̃ := T ◦ f W (x + thDx) is a FBI transform
with the same phase as T , but with some symbol f̃ (t, z, x; h).
Lemma 3.1 ([7], Lemma3.1) Let f be a holomorphic function on �ν , verifying
f (x) = O(〈x〉ρ) for some ρ ∈ R, uniformly on�ν . Let also K1 and K2 be two compact
subsets of Rn, with 0 /∈ K2. Then, there exists a function f̃ (t, z, x; h) of the form,

f̃ (t, z, x; h) =
1/Ch∑
k=0

hkfk(t, z, x), (3.3)

where fk is defined, smooth with respect to t and holomorphic with respect to
(z, x) near � := Rt × {(z, x) ; Re z ∈ K1, |Re (z − x)| + |Im x| ≤ δ0, Im z ∈ K2}
with δ0 > 0 small enough, and such that, for any u ∈ L2(Rn), one has,

Tf W (x + thDx)u(z, h) =
∫

|x−Re z|<δ0

e−(z−x)2/2hf̃ (t, z, x, h)u(x)dx

+O(〈t〉ρ+e(�0(z)−ε)/h),

for some ε = ε(u) > 0 and uniformly with respect to h > 0 small enough, z in
a small enough neighborhood of K := K1 + iK2, and t ∈ R. (Here, we have set
ρ+ = max(ρ, 0).)

Moreover, the f ′
k s verify,

f0(t, z, x) = f (x + it(z − x)) ;
|∂α

z,xfk(t, z, x)| ≤ Ck+|α|+1(k + |α|)!〈t〉ρ,

for some constant C > 0, and uniformly with respect to k ∈ Z+, α ∈ Z
2n+ , and

(t, z, x) ∈ �.

Thanks to this lemma, and using again Sjöstrand’s theory of microlocal analytic
singularities [13], we deduce the existence of an analytic second-order (that is, with
a symbolO(h−2)) pseudodifferential operatorQ(t, h) onHloc

�0
(Cn\{Im z = 0}), such

that,
TL(t) = Q(t, h)T .

Moreover, in the flat case,Q(t, h) becomes of the first order, and its symbol is mainly
given by,
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q(t, h; z, ζ ) ∼ h−1
n∑

�=1

a�(z + iζ + th−1ζ )ζ� + a0(z + iζ + th−1ζ ).

Actually, using Lemma3.1, an exact formula can be obtained for the symbol of
Q(t, h), that coincides with the previous expression up to O(1)-terms as h → 0+.
We refer to [7], Sect. 4, for more details.

Then, applying T to (3.1), multiplying it by h2, and changing the time-scale by
setting s := t/h, we obtain the new evolution equation,

ih
∂Tv

∂s
= B(s, h)Tv ; Tv(0) = Tu0, (3.4)

where B(s, h) is an analytic pseudodifferential operator of order -1 (still in the sense
of [13]), acting on Hloc

�0
(Cn\{Im z = 0}), with symbol b(s, h) verifying,

b(s, h) ∼
∑
k≥1

hkbk(s)

(in the sense of analytic symbols), with

b1(s; z, ζ ) = O(〈s〉1−σ );
bk(s; z, ζ ) = O(〈s〉2−σ ) for k ≥ 2, (3.5)

uniformly with respect to s> 0, and locally uniformly with respect to z ∈ C
n\

{Im z= 0} and ζ close enough to −Im z (note that, in particular, for k ≥ 2 and
s = O(h−1), one also has: hbk = O(〈s〉1−σ ).)

Let us recall from [13] that the quantization of such a symbol b(s, h; z, ζ ) onHloc
�0

is given by,

B(s, h)w(z; h) = 1

(2πh)n

∫
γ (z)

ei(z−y)ζ/hb(s, h; z, ζ )w(y)dydζ,

where γ (z) is a complex contour of the form,

γ (z) : ζ = −Im z + iR(z − y) ; |y − z| < r,

with R > 0 is fixed large enough, and r > 0 can be taken arbitrarily small. In partic-
ular, we deduce from (3.5) that B(s, h) can be written as,

B(s, h) = hB1(s, h),

where B1(s, h) admit a symbol uniformly O(〈s〉1−σ + h〈s〉2−σ ), for s > 0, z in a
compact subset of Cn\{Im z = 0}, and (y, ζ ) ∈ γ (z).
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Then, for z0 ∈ C
n\{Im z = 0} and ε0 > 0, if we set,

L2�0
(z0, ε0) := L2({|z − z0| < ε0}; e−2�0/hdRe z d Im z) ∩ H�0(|z − z0| < ε0),

we see that B1(s, h) is a bounded operator from L2�0
(z0, ε0) to L2

�̃0
(z0, ε0/2), and its

norm can be easily estimated in terms of the supremum of its symbol. Thus, here we
obtain,

‖B1(s)‖L(
L2�0

(z0,ε0);L2�0
(z0,ε0/2)

) = O(〈s〉1−σ + h〈s〉2−σ ) = O(〈s〉1−σ ), (3.6)

uniformly with respect to h > 0 small enough and |s| ≤ T0/h (T0 > 0 fixed
arbitrarily).

Now, let us denote by �̃0 = �̃0(z, z) a smooth real-valued function defined near
z = z0, such that |�̃0 − �0| and |∇(z,z)(�̃0 − �0)| are small enough, and verifying,

�̃0 ≥ �0 in {|z − z0| ≤ ε0}; (3.7)

�̃0 = �0 in {|z − z0| ≤ ε0/4}; (3.8)

�̃0 > �0 + ε1 in {|z − z0| ≥ ε0/2}, (3.9)

for some ε1 > 0. By modifying the contour defining B1(s) (see [13], Remarque 4.4),
we know that B1(s) is also bounded from L2

�̃0
(z0, ε0) to L2

�̃0
(z0, ε0/2), and its norm

on these space verifies the same estimate (3.6) as on L2�0
.

Setting w = Tv, Eq. (3.4) gives,

i∂sw(s) = B1(s, h)w(s) in H�0(|z − z0| < ε0), (3.10)

with ε0 > 0 fixed small enough, and thus,

∂s‖w(s)‖2L2
�̃0

(z0,ε0/2)
= 2Im 〈B1(s)w(s), w(s)〉L2

�̃0
(z0,ε0/2).

Using Cauchy–Schwarz inequality and (3.6), we obtain,

∣∣∣∣∂s‖w(s)‖2L2
�̃0

(z0,ε0/2)

∣∣∣∣ = O(〈s〉1−σ )‖w(s)‖2L2
�̃0

(z0,ε0)
. (3.11)

On the other hand, using (3.9) and the fact that ‖v(t)‖L2 = ‖u0‖L2 does not depend
on t, we also have the estimate,

‖w(s)‖2L2
�̃0

(z0,ε0)
= ‖w(s)‖2L2

�̃0
(z0,ε0/2)

+ O(e−ε1/h),



584 A. Martinez et al.

that, inserted into (3.11), gives,

∣∣∣∣∂s‖w(s)‖2L2
�̃0

(z0,ε0/2)

∣∣∣∣ ≤ C〈s〉1−σ ‖w(s)‖2L2
�̃0

(z0,ε0/2)
+ Ce−ε1/h,

with some constant C > 0. Setting g(s) := C
∫ s
0 〈s′〉1−σds′, and using Gronwall’s

lemma, we finally obtain,

‖w(s)‖2L2
�̃0

(z0,ε0/2)
≤ eg(s)‖w(0)‖2L2

�̃0
(z0,ε0/2)

+ C
∫ s

0
eg(s)−g(s′)−ε1/hds′;

‖w(0)‖2L2
�̃0

(z0,ε0/2)
≤ eg(s)‖w(s)‖2L2

�̃0
(z0,ε0/2)

+ C
∫ s

0
eg(s

′)−ε1/hds′.

Then, replacing s by t/h and observing that g(s) = O(〈s〉2−σ ) = O(hσ−2) = o(h−1),
the equivalence (x0, ξ0) /∈ WFa(u0) ⇐⇒ (x0, ξ0) /∈ WFa(u(t)) follows immediately,
and the result is proved in this case.

Now, let us still consider the case where the perturbation is short range, but the
metric is not necessarily flat anymore. Then, the result we have to prove is the
following: for any t > 0 and (x0, ξ0) ∈ NT+, one has the equivalence,

(x0, ξ0) ∈ WFa(u0) ⇐⇒ S+(x0, ξ0) ∈ WFa(e
itP0e−itPu0).

Proceeding as in the flat case, we arrive again at Eq. (3.4), but this time B(s, h) is of
order 0, and can be written as,

B(s, h) = B0(s, h) + hB1(s, h),

where B1 is as before, and the symbol of B0 is,

b0(s; z, ζ ) = 1

2

n∑
j,k=1

(aj,k(z + iζ + sζ ) − δj,k)ζjζk .

Then, in order to get rid of B0(s), we construct a Fourier integral operator F(s, h) on
H�0,z0 , verifying, {

ih∂sF(s, h) − B0(s, h)F(s, h) ∼ O(h);
F |s=0 = I .

More precisely, we look for F(s, h) of the form,

F(s)v(z) = 1

(2πh)n

∫
γs(z)

ei(ψ(s,z,η)−yη)/hv(y)dydη, (3.12)

where γs(z) is a convenient contour and ψ is a holomorphic function that must solve
the system (eikonal equation),
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{
∂sψ + b0(s, z,∇zψ) = 0;
ψ |s=0 = z.η.

(3.13)

The construction of ψ(s) for small s just follows from standard Hamilton-Jacobi
theory, and the extension to larger values of s can be made by using the classical flow
Rs of b0(s), that is related to the Hamilton flow of p through the formula,

Rs = κ ◦ exp(−sHp0) ◦ exp sHp ◦ κ−1, (3.14)

where κ(x, ξ) = (x − iξ, ξ) is the complex canonical transformation associated with
T . We refer to [7], Sect. 6, for the detailed construction.

In that way, we find a solution ψ(s, ζ, η) of (3.13), defined for s ∈ R, z close to
z0 := x0 − iξ0 (where (x0, ξ0) ∈ NT+ is fixed arbitrarily), and η close to ξ0. One also
has the relation,

(z,∇zψ(s, z, η)) = Rs(∇ηψ(s, z, η), η), (3.15)

whichmeans thatψ is a generating function of the complex canonical transformation
Rs. In other words, the operator F(s, h) defined by (3.12) quantizes the canonical
relation Rs, and, setting zs := πzRs(z0, ξ0) (where πz : (z, ζ ) �→ z), one can show
that for any ε0 > 0 small, F(s, h) acts as,

F(s) : H�0(|z − z0| < ε0) → H�0(|z − zs| < ε1), (3.16)

for some ε1 = ε1(ε0) > 0. A priori, ε1 also depends on s, but as a matter of fact, since
Rs tends to R∞ := κ ◦ S+ ◦ κ−1 on a neighborhood of (z0, ξ0) as s → +∞, one can
prove that F(s; h) admits a limit F∞(h) that is a FIO quantizing R∞. Then, the action
(3.16) remains valid for 0 ≤ s ≤ +∞ (with z∞ := πzR∞(z0, ξ0)), ε1 can be taken
independent of s, and the norm of F(s) is uniformly bounded both with respect to h
and s ≥ 0.

Now, by construction, for s ∈ R, F(s) verifies,

ih∂sF(s) − B0(s)F(s) = hF1(s),

where F1(s) : H�0(|z − z0| < ε0) → H�0(|z − zs| < ε1) is of the form,

F1(s)v(z) = 1

(2πh)n

∫
γs(z)

ei(ψ(s,z,η)−yη)/hf1(s, z, η; h)v(y)dydη,

with f1 is an analytic symbol that is O(〈s〉−1−σ ) as s → ∞.
In the same way, for any y close enough to z0, we can define a Fourier integral

operator F̃(s) of the form,

F̃(s)v(y) := 1

(2πh)n

∫
γ̃s(y)

ei(yη−ψ(s,z,η))/hv(z)dzdη,
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(where γ̃s(y) is again a convenient contour), such that F̃(s) maps H�0(|z − zs| < ε0)

into H�0(|z − z0| < ε1), and verifies,

ih∂sF̃(s) + F̃(s)B = hF̃1(s), (3.17)

where F̃1(s) : H�0(|z − zs| < ε0) → H�0(|z − z0| < ε1) is a FIO with same phase
as F̃(s) and symbol f̃1 = O(〈s〉−1−σ ).

Now, setting,
w̃(s) = F̃(s)Tu(hs) ∈ H�0(|z − z0| < ε1),

by (3.4) and (3.17), we see that w̃ verifies,

i∂sw̃(s) =
[
F̃(s)B1(s) + F̃1(s)

]
Tu(hs).

Moreover, sinceA(s) := F(s)F̃(s) is an elliptic pseudodifferential operator onH�0,zs ,
by taking a parametrix Ã(s), we have,

Tu(hs) = Ã(s)F(s)w(s) in H�0(|z − zs| < ε), (3.18)

(for some ε > 0 independent of s), and thus, we obtain,

i∂sw̃(s) = B̃1(s)w̃(s). (3.19)

in H�0(|z − z0| < ε′), where B̃1(s) :=
[
F̃(s)B1(s) + F̃1(s)

]
Ã(s)F(s) is a pseudod-

ifferential operator on H�0(|z − z0| < ε′) with the same properties as B1(s) when
s → +∞.

Thus, we are reduced to a situation completely similar to that of the flat case, and,
if for instance (x0, ξ0) /∈ WFa(u0), the same arguments show that,

‖w(s)‖L2�0
(z0,δ) ≤ Ce−δ/h,

for some positive constant δ independent of h > 0 small enough and s ∈ [0,T/h].
As a consequence, using (3.18) and the fact that Ã(s)F(s) is uniformly bounded from
L2�0

(z0, δ) to L2�0
(zs, δ′) for some δ′ > 0, we obtain (with some new constantC > 0),

‖Tu(hs)‖L2�0
(zs,δ′) ≤ Ce−δ/h.

Replacing s by t/h with t > 0 fixed, and observing that zt/h tends to κ ◦ S+(x0, ξ0)
as h → 0+, we conclude that S+(x0, ξ0) /∈ WFa(u(t)). The converse can be seen in
the same way, and thus Theorem2.1 is proved.

In the long range case, the construction of W± results from standard Hamilton-
Jacobi theory, and the proof is very similar, except that we now have to handle
expressions like
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eiW̃±(s,hDz)/hv(z; h) :=
∫

γ (s,z)
ei(z−y)ζ/h+iW̃±(s,ζ )/hv(y)dydz,

where γ (s, z) is a good contour in the sense of [13], with some uniformity as s → ∞.
Then, one can show that eiW̃±(s,hDz)/h is aFourier integral operator actingofSjöstrand’s
spaces H�0 , in the sense that one has,

eiW̃±(s,hDz)/h : H�0(s(z0, ε1)) → H�0(s(Zs(z0), ε2)),

with ε1, ε2 > 0 small enough, and where we have set,

s(Z, ε) := {z ∈ C
n ; 〈s〉−1|Re (z − Z)| + |Im (z − Z)| < ε}.

We refer to [8] for more details.
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Pointwise Weyl Law for Partial Bergman
Kernels

Steve Zelditch and Peng Zhou

Abstract This article is a continuation of a series by the authors on partial Bergman
kernels and their asymptotic expasions. We prove a 2-term pointwise Weyl law
for semi-classical spectral projections onto sums of eigenspaces of spectral width
� = k−1 of Toeplitz quantizations Ĥk of Hamiltonians on powers Lk of a positive
Hermitian holomorphic line bundle L → M over a Kähler manifold. The first result
is a complete asymptotic expansion for smoothed spectral projections in terms of
periodic orbit data. When the orbit is ‘strongly hyperbolic’ the leading coefficient
defines a uniformly continuousmeasure onR and a semi-classical Tauberian theorem
implies the 2-term expansion. As in previous works in the series, we use scaling
asymptotics of the Boutet-de-Monvel–Sjostrand parametrix and Taylor expansions
to reduce the proof to the Bargmann–Fock case.

This article is part of a series [18, 19] devoted to partial Bergman kernels on polarized
(mainly compact) Kähler manifolds (L , h) → (Mm,ω, J ), i.e. Kähler manifolds of
(complex) dimension m equipped with a Hermitian holomorphic line bundle whose
curvature form is ωh = ω. Partial Bergman kernels

�k,<E : H 0(M, Lk) → Hk,<E (1)

are orthogonal projections onto proper subspacesHk,<E ⊂ H 0(M, Lk) of the space
of holomorphic sections of Lk . Let H ∈ C∞(M, R) denote a classical Hamiltonian,
let ξ = ξH denote the Hamilton vector field of H , let ∇ be the Chern connection.
The quantization of H is the Toeplitz Hamiltonian

Ĥk := �hk

(
i

k
∇ξ + H

)
�hk : H 0(M, Lk) → H 0(M, Lk). (2)

Research partially supported by NSF grant and DMS-1541126 and by the Stefan Bergman trust.

S. Zelditch (B) · P. Zhou
Department of Mathematics, Northwestern University, Evanston, IL 60208, USA
e-mail: zelditch@math.northwestern.edu

© Springer Nature Switzerland AG 2018
M. Hitrik et al. (eds.), Algebraic and Analytic Microlocal Analysis,
Springer Proceedings in Mathematics & Statistics 269,
https://doi.org/10.1007/978-3-030-01588-6_13

589

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01588-6_13&domain=pdf
mailto:zelditch@math.northwestern.edu
https://doi.org/10.1007/978-3-030-01588-6_13


590 S. Zelditch and P. Zhou

Here, �hk : L2(M, Lk) → H 0(M, Lk) is the orthogonal (Szegö or Bergman) pro-
jection. Let {μk, j }dk

j=1 denote the eigenvalues of Ĥk on the dk-dimensional space
H 0(M, Lk) and denote the eigenspaces by

Vk(μk, j ) := {s ∈ H 0(M, Lk) : Ĥks = μk, j s}.

Also, denote the eigenspace projections by

�k, j := �μk, j : H 0(M, Lk) → Vk(μk, j ).

Then the partial Bergman kernels (1) are the projections onto the spectral subspaces

Hk,<E := {Ĥk < E} := {s ∈ H 0(M, Lk) : 〈Ĥks, s〉 < E〈s, s〉}

of (2).
In this article,we study the pointwise semi-classicalWeyl asymptotics of�k,<E (z)

(1) in the conventional semi-classical scaling by h = 1
k . Themain results give asymp-

totics for the scaled pointwise Weyl sums,

�E
k, f (z) =

∑
j

f (k(μk, j − E))�k, j (z, z)

for various types of test functions f . Equivalently, we consider a sequence of mea-
sures on R,

dμz,1,E
k (λ) =

∑
j

�k, j (z)δk(μk, j−E)
(λ). (3)

then�E
k, f (z) =

∫
R

f (λ)dμz,1,E
k (λ).When f ∈ S(R)with f̂ ∈ C∞

c (R), Theorem 2.2
gives a complete asymptotic expansion.When f = 1[a,b] (the indicator function) one
has sharp Weyl sums, and Theorem 1.7 gives a pointwise Weyl formula with 2 term
asymptotics.

The 1
k scaling originates in the Gutzwiller trace formula and has been studied in

numerous articles in diverse settings. Two-term pointwise Weyl laws is a standard
topic in spectral asymptotics. The pointwise asymptotics in the Kähler setting are
quite analogous to Safarov’s asymptotic results for spectral projections of the Lapla-
cian of a compact Riemannian manifold [14, 15] and we use Safarov’s notations to
emphasize the similarity. For general Kähler manifolds, integrated Weyl laws and
dual Gutzwiller trace expansions were studied in [17] using the Toeplitz calculus of
[3]. Pointwise Weyl laws of the type studied in this article are given in Borthwick-
Paul-Uribe [2], based on theBoutet-de-Monvel–GuilleminHermite Toeplitz calculus
[3].

The main purpose of this paper is to prove pointwise Weyl asymptotics using
the techniques developed in [18, 19]. Existence of an asymptotic expansion for
smoothed Weyl sums is a straightforward consequence of a parametrix construction
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and of the method of stationary phase, replacing the elaborate symplectic spinor
symbol calculus of [3]. However, the coefficients are complicated to compute. In
the Toeplitz theory of [2, 3] they are calculated using the symplectic spinor symbol
calculus of Toeplitz operators, while we use scaling asymptotics of the quantized
flow in the sense of [13, 16, 19]. It is shown that the leading coefficients depend only
on the quadratic part of the Taylor expansions. Hence, the coefficients are the same as
in the linear model of [5] once the flow is linearized at a period. Our approach gives
a somewhat simpler formula for the leading term than in [2] and it is not completely
obvious that the formulae agree; in Sect. 8 we show that the formulae do agree with
those of [2]. Related calculations using the scaling approach of this article are also
given in articles of Paoletti [10, 11].

In the previous articles, we studied the scaling asymptotics of �k,<E (z) :=
�k,<E (z, z) in a 1√

k
-tube around the interface ∂A between the allowed and forbidden

regions,
A := {z : H(z) < E}, F = {z : H(z) > E}.

This 1√
k
scaling was the new feature of the Weyl asymptotics of [19] and is reminis-

cent of the scaling of the central limit theorem. The 1
k -scalingwas also studied in [19],

but it was sufficient for the purposes of that article to obtain the crude asymptotics

corresponding to the singularity of the Fourier transform ̂dμz,1,E
k (t) at t = 0. Techni-

cally speaking, the main difference with respect to [19] is that the asymptotics of the
1√
k
scaling only involve ‘Heisenberg translations’ while those of dμz,1,E

k involve the
metaplectic representation. Although the notation and approach of this article have
considerable overlap with [19] we give a rather detailed exposition for the sake of
completeness.

1 Statement of Results

To state the results, we need some further notation. Given a Hermitian metric h on L ,
we denote by Xh = ∂D∗

h ⊂ L∗ the unit S1 bundle π : Xh → M over M defined as
the boundary of the unit co-disc bundle in the dual line bundle L∗ to L . As reviewed
in Sect. 3.5, Xh is a strictly pseudo-convex CR-manifold, and we denote the CR
sub-bundle by H X ⊂ T Xh . As reviewed in Sect. 3.8, the Hamilton flow gt : M →
M lifts to a contact flow ĝt : Xh → Xh (Lemma 3.5) with respect to the contact
structure α associated to the Kähler potential of ω. Then H X = ker α and therefore
Dĝt : H X → H X . Moreover, H X inherits a complex structure J from that of M
under the identification π∗ : Hx X → Tπ(x)M , for all x ∈ X . Its complexification
has a splitting Hx XC = Hx X ⊗ C = H 1,0

x X ⊕ H 0,1
x X into subspaces of types (1, 0)

resp. (0, 1). In the generic case where ĝt is non-holomorphic, it does not preserve
this splitting.

At each point x ∈ X , the complexified CR subspace H XC equipped with Jx

together with the Hermitian metric hx determines an osculating Bargmann–Fock
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space HJx (see Sects. 3.5 and 4.6 for background). Thus, HJx is the space of entire
holomorphic functions on H 1,0

x X which are square integrable with respect to the
ground state �Jx (defined in (19)). Symplectic transformations T : Hx X → Hx X
resp. T : Tz M → Tz M may be quantized by the metaplectic representation as com-
plex linear symplectic maps (see (29) and Sect. 4.4) on the osculating Bargmann–
Fock space,

WJx (T ) : HJx → HJx . (4)

The asymptotics of μz,1,E
k ( f ) depend on whether or not z ∈ M is a periodic point

for gt .

Definition 1.1 Define periodic points of gt , as follows:

PE := {z ∈ H−1(E) : ∃T > 0 : gT z = z}.

For z ∈ PE , let Tz denote the minimal period T > 0 of z.

It may occur that z ∈ PE but the orbit gt
h(x) with π(x) = z is not periodic, where

gt
h is the flow generated by the horizontal lift ξh

H of the Hamiltonian vector field ξH .
This is due to holonomy effects: parallel translation of sections of Lk around the
closed curve t �→ gt (z)may have non-trivial holonomy.We denote the holonomy by

einθh
z := the unique element eiθ ∈ S1 : gnTz

h x = rθx .

Let z ∈ PE , T = nTz be a period for n ∈ Z. Then DgT
z induces linear symplectic

map
S := DgT

z : Tz M → Tz M, (5)

When working in the Kähler context it is better to conjugate to the complexifications,

Tz M ⊗ C = T 1,0
z M ⊕ T 0,1

z M.

We denote the projection to the ‘holomorphic component’ by

π1,0 : Tz M ⊗ C → T 1,0M.

The spaces T 1,0M, T 0,1M are paired complex Lagrangian subspaces.
Relative to a symplectic basis {e j , Jek} of Tz M in which J assumes the standard

form J0, the matrix of DgnTz has the form,

DgnTz
z := Sn :=

⎛
⎝An Bn

Cn Dn

⎞
⎠ ∈ Sp(m, R). (6)

If we conjugate to the complexification Tz M ⊗ C by the natural map W defined in
(27), then (6) conjugates to
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(
Pn Qn

Q̄n P̄n

)
∈ Spc(m).

The holomorphic block

Pn = (An + Dn + i(−Bn + Cn)) = π1,0 WSnW−1 π1,0 : T 1,0
z M → T 1,0

z M (7)

plays a particularly important role.
The symplectic map (5) is quantized by the metaplectic representation WJz (4)

(see Sect. 4.4) on the osculating Bargmann–Fock space HJz of square integrable
holomorphic functions on T 1,0

z M , that is, the metaplectic representation defines a
unitary operator

WJz (DgnTz
z ) : HJz (T

1,0
z M) → HJz (T

1,0
z M). (8)

The two-term Weyl law is stated in terms of certain data associated to DgnTz and
WJz (DgnTz ) (8). First, we let WξH be the image of the Hamilton vector field ξH in
Tz M ⊗ C. Let α = π1,0WξH , let ᾱ ∈ π0,1WξH , and let Pn be as in (7). Set,

Gn(z) := (det Pn)
− 1

2 · (ᾱ · P−1
n α)−

1
2 . (9)

The factor (det P)− 1
2 has an interpretation,

(det Pn)
−1/2 = 〈WJx (DgnT (x)

x ) �Jz ,�Jz 〉 (10)

as the matrix element of (8) relative to the ground state �Jz in HJz . This relation is
essentially proved by Bargmann and by Daubechies [5]. It can be proved by com-
paring the Bargmann–Fock metaplectic representation of Sect. 4.4 with Daubechies’
Toeplitz construction of metaplectic representation in Sect. 4.5. Daubechies did not
explicitly use the conjugationW to the complexification, and therefore did not record
the identity (10).

Also let einθh
x denote the holonomy of the horizontal lift of the orbit t → gt (z) at

t = nTz . We define the function QE
z,k(s) by:

Definition 1.2

QE
z,k(s) =

⎧⎨
⎩
G0(z) z /∈ PE

∑
n∈Z(2π)−1e−inTz se−inkθh

z Gn(z) z ∈ PE .

(11)

Definition 1.3 For z ∈ PE , define the distributions dνz
k on f ∈ S(R) by

∫
R

f (λ)dνz
k (λ) =

∑
n∈Z

f̂ (nTz) Gn(z)e
−inkθh

z =
∫
R

f (s)QE
z,k(s)ds
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The nature of Qz,k(s) and νz
k depends on the type of periodic orbit of z ∈ PE .

In this article we confine ourselves to the case where the orbit of z is ‘real positive
definite symmetric’ in the following sense:

Definition 1.4 Let z ∈ PE , with Tz = T , and let (Tz M, Jz,ωz) be the tangent space
equipped with its complex structure and symplectic structure. Let {e j , fk}m

j,k=1 be a
symplectic basis of Tz M in which J = J0 and ω = ω0 take the standard forms. We
say that DGT

z is positive definite symmetric symplectic if its matrix S ∈ Sp(m, R) in
the basis {e j , fk}m

j,k=1 is a symmetric positive definite symplectic matrix.

Positive definite symplectic matrices are discussed in Sects. 3.1 and 3.2 and in
Sect. 6.1. They are diagonalizable by orthogonal matrices in O(2n) and by unitary
matrices in U (n). In invariant terms, O(2n) is the orthogonal group of (Tz M, gJz )

where gJz (X, Y ) = ωz(X, JzY ). Unitary matrices commute with Jz . The eigenvalues
of DGT

z are real and to come in inverse pairs. The eigenvalue 1 corresponds to the
Hamilton vector field ξH of H and there is a second eigenvector of eigenvalue 1
coming from the fact that periodic orbits come in 1-parameter families (symplectic
cylinders) as the energy level E is varied (see [1]). The eigenvalues in the symplectic
orthogonal complement of the eigenspace V (1) of eigenvalue 1 come in unequal real
inverse pairs λ,λ−1. For expository simplicity, we omit the case where eigenvalues
are complex of modulus �= 1 and arise in 4-tuples λ,λ−1, λ̄, λ̄−1 (sometimes called
loxodromic). We do discuss the elliptic case where S ∈ U (n), and thus all of the
eigenvalues have modulus 1 and come in complex conjugate pairs.

We refer to [6] for background on positive definite symmetric symplectic matrices
and to [8] for types of periodic orbits of Hamiltonian flows.

Definition 1.5 We say that z satisfies the strong hyperbolicity hypothesis if DgT
z :

(Tz M, Jz) → (Tz M, Jz) is a positive symplectic map, with a 2-dimensional sym-
plectic eigenspace V (1) for the eigenvalue 1.

The main motivation for this hypothesis is that we can explicitly compute (9)
in this case (see Proposition 6.1). Almost the same computation works if DgT

z is
unitary (the elliptic case) However, in the strong hyperbolic case, we can prove that
the infinite series defining (11) converges absolutely and uniformly, and therefore:

Proposition 1.6 If z satisfies the strong hyperbolicity hypothesis, then νz
k is an abso-

lutely continuous measure.

The main result is a sharp 2-term Weyl law in this case:

Theorem 1.7 Assume that z ∈ H−1(E) and that z satisfies the strong hyperbolicity
hypothesis. Then,

∫ b

a
dμz,1,E

k =

⎧⎪⎨
⎪⎩
(

k
2π

)m−1/2 G0(z)(b − a)(1+ o(1))., z ∈ H−1(E), z /∈ PE

(
k
2π

)m−1/2
νz

k (a, b)(1+ o(1)), z ∈ H−1(E), z ∈ PE ,

.
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Theorem 1.7 is a Kähler Toeplitz analogue of [15, Theorem 1.8.14] (originally
proved in [14]). The difference between z /∈ PE and z ∈ PE is that in the former
case, there is a contribution only from the t = 0 times of gt (the identity map) and
in the latter case there are contributions from all iterates of gTz .

It may be expected that Theorem 1.7 extends in some suitable way to any type
of periodic orbit. In the somewhat analogous Riemannian setting studied in [15], the
pointwise Weyl law involves first return maps on the set of geodesic loop directions
ξ ∈ S∗x M at a point x ∈ M rather than closed orbits. In some cases (such as where x
is a focus of an ellipsoid), the corresponding measures or Q-functions are calculated
in [15, Example 1.8.20]. Otherwise, the authors say simply that it is difficult to
determinewhen the “Q” function of [15, (1.8.11)] is uniformly continuous. It is likely
that Theorem 1.7 can be extended to any orbit for which none of the eigenvalues on
the symplectic orthogonal complement of the V (1)-eigenspace of S have modulus
one. This is certainly the case, by the same proof as in Proposition 1.6, if S is
diagonalizable by a unitary matrix.

2 Outline of the Proof

The proof is a continuation of that in [19], adding information on the remainder
term and its relation to periodic orbits of periods T > 0. Given a function f ∈ S(R)

(Schwartz space) one defines

f (k Ĥk) =
∫
R

f̂ (τ )eikτ Ĥk dτ =
∫
R

f̂ (t)Uk(t)dt, (12)

where
Uk(t) = exp i tk Ĥk . (13)

is the unitary groupon H 0(M, Lk)generated by k Ĥk .Note that f (k Ĥk) is the operator
on H 0(M, Lk) with the same eigensections as Ĥk and with eigenvalues f (kμk, j ).
The metric contraction of the Schwarz kernel on the diagonal is given by,

�E
k, f (z) =

∫
R

f̂ (t)e−ikt E eikt Ĥk (z, z)dt =
∫
R

f̂ (t)e−ikt EUk(t, z)dt. (14)

Here, and henceforth, themetric contraction of a kernel Kk(z, w) is denoted by K (z).

Definition 2.1 The metric contraction of a kernel Mk(z, w) :=∑dk
j=1 μk, j sk, j (z)

sk, j (w) expressed in an orthonormal basis {sk, j }dk
j=1 of H 0(M, Lk) is defined by

Mk(z) :=
dk∑

j=1

μk, j |sk, j (z)|2hk , (dk = dim H 0(M, Lk))
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In Sect. 3.8 below, we lift sections and kernels to the associatedU (1) frame bundle
of L∗; then metric contractions are the same as values of the lifts along the diagonal.

In [19] it is shown that Uk(t) is a semi-classical Toeplitz Fourier integral operator
of a type defined in [17]. As in [19] we construct a parametrix of the form,

�̂hk σk,t (ĝ
−t )∗�̂hk (15)

where (ĝ−t )∗ is the pullback of functions on Xh by ĝt andwhereσk,t is a semi-classical
symbol originally calculated in [17, Unitarization Lemma 1 (2b.5) and (3.10)]. In
fact, to leading order in k, and up to a phase factor,

σkt (z) = 〈�DgT
z Jz ,�Jgt z

〉− 1
2 . (16)

Here, DgT Jz is the image of the complex structure at z and Jgt z is the complex
structure of Tgt z M and �J denotes the ground state in the Bargmann–Fock Hilbert
space with complex structure J . It was proved in [5, 17] that (16) equals (det P)− 1

2

by calculating the inner product of the two Gaussians.
Combining (3) and (14) shows that

μz,1,E
k ( f ) :=

∫
R

f (x)dμz,1,E
k =

∫
R

f̂ (t)e−i Ekt�̂hk σkt (ĝ
t )∗�̂hk (z)dt, (17)

or equivalently
̂μz,1,E

k (t) = e−i EktUk(t, z, z). (18)

Using a semi-classical Tauberian theorem, it is proved in Sect. 7 that the singularities
of (18) determine the 2-term asymptotics of μz,1,E

k [a, b] for any interval. Proposi-
tion 1.6 follows because the singularities are of a different type depending on the
convergence of Qz(k).

To prove the two-term Weyl law, we begin by obtaining asymptotics for the
smoothed partial density of states (17). In the first case where z /∈ PE , the only
singularity occurs at t = 0 and so the expansion is the same as in [19, Theorem 3]
(recalled here as Theorem7.1). The time interval [−ε, ε] is assumed to be so short that
it contains no non-zero periods of periodic orbits. When z /∈ H−1(E) the expansion
is rapidly decaying. Thus, the new aspect is the second case where z ∈ PE .

Theorem 2.2 For f ∈ S(R) with f̂ ∈ C∞
c (R), we have (see Definitions 1.4 and 2.1)

�k, f (z) :=
∫
R

f dμz,1,E
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
k
2π

)m−1/2
f̂ (0)G0(z)(1+ O(k−1))., z ∈ H−1(E), z /∈ PE

(
k
2π

)m−1/2∑
n∈Z f̂ (nTz ) Gn (z)e−iknθh

z + O(km−3/2), z ∈ H−1(E), z ∈ PE ,

O(k−∞), z /∈ H−1(E)
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To prove Theorem 2.2 we use the Boutet de Monvel–Sjöstrand parametrix for
�̂hk . This gives a parametrix for (12) and (17) as semi-classical oscillatory integrals
with complex phases. The phase has no critical points when the orbit does not lie
in H−1(E) and no critical points for t �= 0 when z /∈ PE . The main difficulty is to
evaluate or interpret the phases and the Hessian determinant (and other invariants
that arise) dynamically, and to determine whether or not they are invariants of DĝT

or invariants of the full orbit. One phase factor is a holonomy integral around the
periodic orbit ĝt (x). In Proposition 5.6 it is shown that although the holonomy is
apriori a ‘global invariant’ of the orbit rather than an invariant of the first return map,
in fact the Hessian of the holonomy can be expressed as an invariant of the first return
map.

To evaluate the Hessian determinants, we first do so in the linear Bargmann–Fock
setting, where H is a quadratic Hamiltonian on the Kähler manifold C

m , equipped
with a general complex structure J and a Hermitian metric h.

Proposition 2.3 Let H be a quadratic Hamiltonian in the Bargmann–Fock setting.
Assume that H has compact level sets and non-degenerate periodic orbits on level
E. Then, in the notation of Definition 2.1,

∫
R

f̂ (t)Uk(t, z)e−i t Ekdt �
(

k

2π

)m− 1
2 ∑

n∈Z
f̂ (nTz)e

−ikθznTz (ᾱP−1
n α)−1/2(det Pn)−1/2,

where Pn is the holomorphic block of DgnTz (7) and π1,0WξH = α.

We give a detailed proof in Sect. 5.4 because the general case is reduced to the
Bargmann–Fock case. It is shown in this article that the linearized calculation is the
principal symbol of non-linear problem (17), hence that Theorem 1.7 can be reduced
to Proposition 2.3. The proof consists of nothing more than Taylor expansions of the
phase in suitable Kähler normal coordinates and stationary phase.

3 Background

The background to this article is largely the same as in [19], and we refer there
for many details. Here we give a quick review to setup the notation. First we intro-
duce co-circle bundle X ⊂ L∗ for a positive Hermitian line bundle (L , h), so that
holomorphic sections of Lk for different k can all be represented in the same space
of CR-holomorphic functions on X , H(X) = ⊕kHk(X). The Hamiltonian flow gt

generated by ξH on (M,ω) will be lifted to a contact flow ĝt generated by ξ̂H on X .
Then we review the Toeplitz quantization for a contact flow on X following [13, 17].
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3.1 Symplectic Linear Algebra

Let (V,σ) be a real symplectic vector space of dimension 2n and let J be a compat-
ible complex structure on V . There exists a symplectic basis in which V � R

2m ,
σ takes the standard form ω = 2

∑m
j=1 dx j ∧ dy j and J has the standard form,

J0 =
⎛
⎝0 −I

I 0

⎞
⎠ . Let H 1,0

J resp. H 0,1
J , denote the ±i eigenspaces of J in V ⊗ C.

The projections onto these subspaces are denoted by

PJ = 1

2
(I − i J ) : V ⊗ C → H 1,0

J , P̄J = 1

2
(I + i J ) : V ⊗ C → H 0,1

J .

Let S ∈ Sp(m, R) be a real symplectic matrix. Then its transpose St = J S−1 J−1

also lies in Sp(m, R) and S J = J (St )−1.

3.2 Symmetric Symplectic Matrices

Amatrix S is called a symmetric symplectic matrix if S ∈ Sp(n, R) and St = S. For
such S it follows that S J = J S−1. A good reference for positive definite symplectic
matrices is [8, p. 6] and [8, p. 52]. For the following see [6, Proposition 22]. Let
U (n) = Sp(n) ∩ O(2n, R). Then U J = JU and

U =
⎛
⎝A −B

B A

⎞
⎠ , ABt = Bt A, AAt + B Bt = I, U−1 =

⎛
⎝ At Bt

−Bt At

⎞
⎠ = U t .

Proposition 3.1 If S is a positive definite symmetric symplectic matrix and � =
diag(λ1, . . . ,λn;λ−1

1 , . . . ,λ−1
n ) is the given diagonal matrix, then there exists U ∈

U (n) so that S = U t�U.

The following is [6, Proposition 26].

Proposition 3.2 A symplectic matrix S is symmetric positive definite if and only
if S = eX with X ∈ sp(n) and X = Xt . The map exp : sp(n) ∩ Sym(2n, R) →
Sp(n) ∩ Sym+(2n, R) is a diffeomorphism.

If e1, . . . , en are orthonormal eigenvectors of S corresponding to the eigenvalues
λ1, . . . ,λn then since S J = J S−1,

S Jek = J S−1ek = 1

λ j
J ek .
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Hence±Je1, . . . ,±Jen are orthonormal eigenvectors of U corresponding to eigen-

values λ−1
1 , . . . ,λ−1

n and

(
A
B

)
= [e1, . . . , en].

3.3 The Bargmann–Fock Space of a Complex Hermitian
Vector Space

TheBargmann–Fock spaces can be definedmore generally for any complex structure
J on R

2n and any Hermitian metric on C
n .

Let (V,ω) be a real symplectic vector space. Define

J = {J : R
2n → R

2n, J 2 = −I, ω(J X, JY ) = ω(X, Y ), ω(X, J X) >> 0}

to be the space of complex structures onR
n compatible with ω. The Bargmann–Fock

space of a symplectic vector space (V,σ) with compatible complex structure J ∈ J
is the Hilbert space,

HJ = { f e−
1
2 σ(v,Jv) ∈ L2(V, d L), f is entire J-holomorphic}.

Here,
�J (v) := e−

1
2 σ(v,Jv) (19)

is the ‘vacuum state’ and d L is normalized Lebesgue measure (normalized so that
square of the symplectic Fourier transform is the identity). The orthogonal projection
onto HJ is denoted by PJ in [5] but we denote it by �J in this article. Its Schwartz
kernel relative to d L(w) is denoted by �J (z, w).

Remark: The Bargmann–Fock space with J = i the standard complex structure is
often defined instead as the weighted Hilbert space of entire holomorphic functions
with Gaussian weight Cne−|z|2d L(z) where Cn is a dimensional constant. In this
definition the vacuum state is 1. There is a natural isometric ‘ground states’ iso-
morphism to HJ defined by multiplying by

√
�J . With the Gaussian measure, the

Bergman kernel is B(z, w) = ez·w̄. When V = C
n we write v = Z , J Z = i Z , and

σ(Z , W ) = ImZ · W . Then �J (Z) = e− 1
2 |Z |2 .

3.4 Bargmann–Fock Bergman Kernels

For BF model, we have �k : L2(M, Lk) → H 0(M, Lk) the Bergman projection
operator. And �̂k : L2(X) → Hk(X), the Szego projection operator on X to Hardy
space’s Fourier component. Let H also denote its pull back on X .
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The semi-classical Bargmann–Fock Bergman kernels (23) on C
n are given by

�C
m

k,h0,i (z, w) =
(

k

2π

)m

ek(zw̄−|z|2/2−|w|2/2).

Their lifts to X are given by

�̂C
m

k,h0,i (ẑ, ŵ) =
(

k

2π

)m

ekψ(ẑ,ŵ)

where

ψ̂(ẑ, ŵ) = i(θz − θw)+ ψ(z, w) = i(θz − θw) + z · w̄ − |z|2/2− |w|2/2.

where ẑ = (θz, z) ∈ S1 × M ∼= X denotes a lift of z.1

In the general case, by (3.1) of [5], one has

�J ψ(z) = 〈�z
J ,ψ〉 =

∫
Cn

ψ(v)�z
J (v)dv,

i.e.
�J (z, w) = �z

J (w) = eiσ(z,w)e−
1
2 σ(z−w,J (z−w)) (20)

which reduces to eiImzw̄e− 1
2 (|z−w|2) = ezw̄e− 1

2 (|z|2+|w|2) in the case J = i, h = h0.

3.5 Holomorphic Sections in Lk and CR-Holomorphic
Functions on X

Let (L , h) → (M,ω) be a positive Hermitian line bundle, L∗ the dual line bundle.
Let

X := {p ∈ L∗ | ‖p‖h = 1}, π : X → M

be the unit circle bundle over M .
Let eL ∈ �(U, L) be a non-vanishing holomorphic section of L over U , ϕ =

− log ‖eL‖2 and ω = i∂∂̄ϕ. We also have the following trivialization of X :

U × S1 ∼= X |U , (z; θ) �→ eiθ e∗L |z
‖e∗L |z‖

. (21)

1We also use the notation x = (z, θz), y = (w, θw).
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X has a structure of a contact manifold. Let ρ be a smooth function in a neighbor-
hood of X in L∗, such that ρ > 0 in the open unit disk bundle, ρ|X = 0 and dρ|X �= 0.
Then we have a contact one-form on X

α = −Re(i ∂̄ρ)|X ,

well defined up to multiplication by a positive smooth function. We fix a choice of
ρ by

ρ(x) = − log ‖x‖2h, x ∈ L∗,

then in local trivialization of X (21), we have

α = dθ − 1

2
dcϕ(z). (22)

X is also a strictly pseudoconvex CR manifold. The CR structure on X is defined
as follows: The kernel of α defines a horizontal hyperplane bundle

H X := ker α ⊂ T X,

invariant under J since ker α = ker dρ ∩ ker dcρ. Thus we have a splitting

T X ⊗ C ∼= H 1,0X ⊕ H 0,1X ⊕ CR.

A function f : X → C is CR-holomorphic, if d f |H 0,1X = 0.
A holomorphic section sk of Lk determines a CR-function ŝk on X by

ŝk(x) := 〈x⊗k, sk〉, x ∈ X ⊂ L∗.

Furthermore ŝk is of degree k under the canonical S1 action rθ on X , ŝk(rθx) =
eikθ ŝk(x). The inner product on L2(M, Lk) is given by

〈s1, s2〉 :=
∫

M
hk(s1(z), s2(z))d VolM(z), d VolM = ωm

m! ,

and inner product on L2(X) is given by

〈 f1, f2〉 :=
∫

X
f1(x) f2(x)d VolX (x), d VolX = α

2π
∧ (dα)m

m! .

Thus, sending sk �→ ŝk is an isometry.
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3.6 Szegö Kernel on X

On the circle bundle X over M , we define the orthogonal projection from L2(X) to
the CR-holomorphic subspaceH(X) = ⊕̂k≥0Hk(X), and degree-k subspaceHk(X):

�̂ : L2(X) → H(X), �̂k : L2(X) → Hk(X), �̂ =
∑
k≥0

�̂k .

The Schwarz kernels �̂k(x, y) of �̂k is called the degree-k Szegö kernel, i.e.

(�̂k F)(x) =
∫

X
�̂k(x, y)F(y)d VolX (y), ∀F ∈ L2(X).

If we have an orthonormal basis {ŝk, j } j of Hk(X), then

�̂k(x, y) =
∑

j

ŝk, j (x)ŝk, j (y).

The degree-k kernel can be extracted as the Fourier coefficient of �̂(x, y)

�̂k(x, y) = 1

2π

∫ 2π

0
�̂(rθx, y)e−ikθdθ. (23)

We refer to (23) as the semi-classical Bergman kernels.

3.7 Boutet de Monvel–Sjöstrand Parametrix for the Szegö
Kernel

Near the diagonal in X × X , there exists a parametrix due to Boutet de Monvel–
Sjöstrand [4] for the Szegö kernel of the form,

�̂(x, y) =
∫
R+

eσψ̂(x,y)s(x, y,σ)dσ + R̂(x, y). (24)

where ψ̂(x, y) is the almost-CR-analytic extension of ψ̂(x, x) = −ρ(x) = log ‖x‖2,
and s(x, y,σ) = σmsm(x, y) + σm−1sm−1(x, y) + · · · has a complete asymptotic
expansion. In local trivialization (21),

ψ̂(x, y) = i(θx − θy) + ψ(z, w) − 1

2
ϕ(z) − 1

2
ϕ(w),

where ψ(z, w) is the almost analytic extension of ϕ(z).
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3.8 Lifting the Hamiltonian Flow to a Contact Flow on Xh

In this sectionwe review the definition of the lifting of aHamiltonian flow to a contact
flow, following [19, Section 3.1]. Let H : M → R be a Hamiltonian function on
(M,ω). Let ξH be theHamiltonian vector field associated to H , such that d H = ιξH ω.
The purpose of this section is to lift ξH to a contact vector field ξ̂H on X . Letα denote
the contact 1-form (22) on X , and R the corresponding Reeb vector field determined
by 〈α, R〉 = 1 and ιRdα = 0. One can check that R = ∂θ.

Definition 3.3 (1) The horizontal lift of ξH is a vector field on X denoted by ξh
H . It

is determined by
π∗ξh

H = ξH , 〈α, ξh
H 〉 = 0.

(2) The contact lift of ξH is a vector field on X denoted by ξ̂H . It is determined by

π∗ξ̂H = ξH , Lξ̂H
α = 0.

Lemma 3.4 The contact lift ξ̂H is given by

ξ̂H = ξh
H − H R.

The Hamiltonian flow on M generated by ξH is denoted by gt

gt : M → M, gt = exp(tξH ).

The contact flow on X generated by ξ̂H is denoted by ĝt

ĝt : X → X, ĝt = exp(t ξ̂H ).

Lemma 3.5 In local trivialization (21), we have a useful formula for the flow, ĝt

has the form (see [19, Lemma 3.2]):

ĝt (z, θ) =
(

gt (z), θ +
∫ t

0

1

2
〈dcϕ, ξH 〉(gs(z))ds − t H(z)

)
.

Since ĝt preserves α it preserves the horizontal distribution H(Xh) = ker α, i.e.

Dĝt : H(X)x → H(X)ĝt (x).

It also preserves the vertical (fiber) direction and therefore preserves the splitting
V ⊕ H of T X . Its action in the vertical direction is determined by Lemma 3.5.
When gt is non-holomorphic, ĝt is not CR holomorphic, i.e. does not preserve the
horizontal complex structure J or the splitting of H(X) ⊗ C into its±i eigenspaces.
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3.9 Toeplitz Quantum Dynamics

Here we consider quantization for the Hamiltonian flow gt on holomorphic sections
of Lk , or CR-functions of degree k on X . An operator T : C∞(X) → C∞(X) is
called a Toeplitz operator of order k, denoted as T ∈ T k , if it can be written as
T = �̂ ◦ Q ◦ �̂, where Q is a pseudo-differential operator on X . Its principal symbol
σ(T ) is the restriction of the principal symbol of Q to the symplectic cone

� = {(x, rα(x)) | r > 0} ∼= X × R+ ⊂ T ∗X.

The symbol satisfies the following properties

⎧⎪⎨
⎪⎩

σ(T1T2) = σ(T1)σ(T2);
σ([T1, T2]) = {σ(T1),σ(T2)};
If T ∈ T k, andσ(T ) = 0, then T ∈ T k−1.

The choice of the pseudodifferential operator Q in the definition of T = �̂ Q �̂ is
not unique. However, there exists some particularly nice choices.

Lemma 3.6 ([3] Proposition 2.13) Let T be a Toeplitz operator on � of order p, then
there exists a pseudodifferential operator Q of order p on X, such that [Q, �̂] = 0
and T = �̂ Q �̂.

Now we specialize to the setup here, following closely [13]. Consider an order
one self-adjoint Toeplitz operator

T = �̂ ◦ (H · D) ◦ �̂,

where D = (−i∂θ) and ∂θ is the fiberwise rotation vector field on X , and H is
multiplication by π−1(H), where we abuse notation and identify H downstairs with
its pullback upstairs π−1(H). We note that D decompose L2(X) into eigenspaces
⊕k∈ZL2(X)k with eigenvalue k ∈ Z. The symbol of T is a function on� ∼= X × R+,
given by

σ(T )(x, r) = (σ(H)σ(D)|�)(x, r) = H(x)r, ∀(x, r) ∈ �.

Definition 3.7 ([13], Definition 5.1) Let Û (t) denote the one-parameter subgroup
of unitary operators on L2(X), given by

Û (t) := �̂ eit�̂(DH)�̂ �̂ : H(X) → H(X),

and let Ûk(t) (13) denote the Fourier component acting on L2(X)k :
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Ûk(t) := �̂k eit�̂(k H)�̂ �̂k : Hk(X) → Hk(X) (25)

We use Uk(t) to denote the corresponding operator on H 0(M, Lk).

Proposition 3.8 ([13], Proposition 5.2) Û (t) is a group of Toeplitz Fourier integral
operators on L2(X), whose underlying canonical relation is the graph of the time t
Hamiltonian flow of r H on the symplectic cone � of the contact manifold (X,α).

Proposition 3.9 ([17]) There exists a semi-classical symbol σk(t) so that the unitary
group (25) has the form

Ûk(t) = �̂k(ĝ
−t )∗σk(t)�̂k

modulo smooth kernels of order k−∞.

It follows from the above proposition and the Boutet de Monvel–Sjöstand
parametrix construction that Ûk(t, x, x) admits an oscillatory integral representa-
tion of the form,

Ûk (t, x, x) �
∫

X

∫ ∞
0

∫ ∞
0

∫
S1

∫
S1

eσ1ψ̂(rθ1 x,ĝt y)+σ2ψ̂(rθ2 y,x)−ikθ1−ikθ2 Skdθ1dθ2dσ1dσ2dy

where Sk is a semi-classical symbol, and the asymptotic symbol � means that the
difference of the two sides is rapidly decaying in k.

4 Bargmann–Fock Space

In this section, we illustrate the various definition of the background section using
the example of Bargmann–Fock (BF) space. We also define the osculating BF space
for at the tangent space Tz M for a general Kähler manifold, and show that in the
semi-classical limit as k →∞ the Bergman kernel near the diagonal reduces to the
BF model at leading order.

4.1 Set-Up

Let M = C
m with coordinate zi = xi +

√−1yi , L → M be the trivial line bundle.
Wefix a trivialization and identify L ∼= C

m × C.We useKähler formω = i
∑

i dzi ∧
dz̄i and Kähler potential ϕ(z) = |z|2 :=∑i |zi |2.2 The Bargmann–Fock space of
degree k on C

m is defined by

Hk =
{

f (z)e−k|z|2/2 | f (z) holomorphic function onC
m,

∫
Cm

| f |2e−k|z|2 < ∞
}

.

The volume form on C
m is d VolCm = ωm/m!.

2Our choice of ω may differ from other conventions by factors of 2 or π.
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More generally, fix (V,ω) be a real 2m dimensional symplectic vector space. Let
J : V → V be a ω compatible linear complex structure, that is g(v,w) := ω(v, Jw)

is a positive-definite bilinear form and ω(v,w) = ω(Jv, Jw). There exists a canon-
ical identification of V ∼= C

m up to U (m) action, identifying ω and J . We denote the
BF space for (V,ω, J ) by Hk,J .

The circle bundle π : X → M can be trivialized as X ∼= C
m × S1. The contact

form on X is
α = dθ + (i/2)

∑
j

(z j d z̄ j − z̄ j dz j ).

If s(z) is a holomorphic function (section of Lk) on C
m , then its CR-holomorphic

lift to X is
ŝ(z, θ) = ek(iθ− 1

2 |z|2)s(z).

Indeed, the horizontal lift of ∂z̄ j is ∂h
z̄ j
= ∂z̄ j − i

2 z j∂θ, and ∂h
z̄ j

ŝ(z, θ) = 0. The vol-

ume form on X = C
m × S1 is d VolX = (dθ/2π) ∧ ωm/m!.

4.2 Bergman Kernel on Bargmann–Fock Space

The degree k Bergman kernel downstairs on C
m is given by

�k(z, w) =
(

k

2π

)m

ezw̄.

Given any function f ∈ L2(Cm, e−k|z|2/2dV olCm ), its orthogonal projection to holo-
morphic function is given by

(�k f )(z) =
∫
Cm

�k(z, w) f (w)e−k|w|2d VolCm (w).

The degree k Bergman (Szegö) kernel �̂k(ẑ, ŵ) upstairs for X = C
m × S1 is

given by

�̂k(ẑ, ŵ) =
(

k

2π

)m

ekψ̂(ẑ,ŵ),

where ẑ = (z, θz), ŵ = (w, θw) and the phase function is

ψ(ẑ, ŵ) = i(θz − θw) + zw̄ − 1

2
|z|2 − 1

2
|w|2. (26)
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4.3 Heisenberg Representation

The spaceC
m × S1 can be identified with the reduced Heisenberg groupH

m
red , where

the group multiplication is given by

(z, θ) ◦ (z′, θ′) = (z + z′, θ + θ′ + Im(zz̄′)).

Lemma 4.1 The contact form α = dθ + i
2

∑
j (z j d z̄ j − z̄ j dz j ) onHm

red is invariant
under the left multiplication

L(z0,θ0) : (z, θ) �→ (z0, θ0) ◦ (z, θ) =
(

z + z0, θ + θ0 + z0 z̄ − z̄0z

2i

)
.

Proof

(L∗(z0,θ0)α)|(z,θ) = d

(
θ + θ0 + z̄z0 − z̄0z

2i

)
+ i

2

∑
j

((z j + z0 j )dz̄ j − (z̄ j + z̄0 j )dz j ) = α|(z,θ).

�

In particular, Hm
red preserves the volume form α ∧ (dα)m/m! on X , hence defines

a unitary operator acting on the degree k CR functions on X .
The infinitesimal Heisenberg group action on X can be identified with contact

vector field generated by a linear Hamiltonian function H : C
m → R.

Lemma 4.2 ([19, Section 3.2]) For any β ∈ C
m, we define a linear Hamiltonian

function on C
m by

H(z) = zβ̄ + β z̄.

The Hamiltonian vector field on C
m is

ξH = −iβ∂z + i β̄∂z̄,

and its contact lift is

ξ̂H = −iβ∂z + i β̄∂z̄ − 1

2
(zβ̄ + β z̄)∂θ.

The time t flow ĝt on X is given by left multiplication

ĝt (z, θ) = (−iβt, 0) ◦ (z, θ) = (z − iβt, θ − tRe(β z̄)).
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4.4 Metaplectic Representation

Let R
2m,ω = 2

∑m
j=1 dx j ∧ dy j be a symplectic vector space. The space Sp(m, R)

consists of linear transformation S : R
2m → R

2m , such that S∗ω = ω. In coordinates,
we write (

x ′
y′

)
= S

(
x
y

)
=
(

A B
C D

)(
x
y

)
.

In complex coordinates zi = xi + iyi , we have then

(
z′
z̄′

)
=
(

P Q
Q̄ P̄

)(
z
z̄

)
=: A

(
z
z̄

)
,

where (
P Q
Q̄ P̄

)
= W−1

(
A B
C D

)
W, W = 1√

2

(
I I

−i I i I

)
. (27)

The choice of normalization of W is such that W−1 = W ∗. Thus,

P = 1

2
(A + D + i(C − B)).

We say suchA ∈ Spc(m, R) ⊂ M(2n, C). The following identities are often useful.

Proposition 4.3 ([7] Prop 4.17) Let A =
(

P Q
Q̄ P̄

)
∈ Spc, then

(1)

(
P Q
Q̄ P̄

)−1

=
(

P∗ −Qt

−Q∗ Pt

)
= KA∗K , where K =

(
I 0
0 −I

)
.

(2) P P∗ − Q Q∗ = I and P Qt = Q Pt .
(3) P∗P − Qt Q̄ = I and Pt Q̄ = Q∗P.

The (double cover) of Sp(m, R) acts on the (downstairs) BF spaceHk via kernel:

given M =
(

P Q
Q̄ P̄

)
∈ Spc, we have

Kk,M(z, w) =
(

k

2π

)m

(det P)−1/2 exp

{
k
1

2

(
z Q̄ P−1z + 2w̄P−1z − w̄P−1Qw̄

)}

where the ambiguity of the sign the square root (det P)−1/2 is determined by the lift
to the double cover.WhenA = I d, thenKk,A(z, w̄) = �k(z, w̄). Similarly, we have
the kernel upstairs on X as

K̂k,A(ẑ, ŵ) = Kk,M(z, w̄)ek(iθz−|z|2/2)+k(−iθw−|w|2/2). (28)



Pointwise Weyl Law for Partial Bergman Kernels 609

A quadratic Hamiltonian function H : C
m → R will generates a one-parameter

family of symplectic linear transformations At = gt : C
m → C

m . However, At is
onlyR-linear but notC-linear, i.e. Mt does not preserve the complex structure ofC

m .
Hence, one need to orthogonal project back to holomorphic sections. To compensate
for the loss of norm due to the projection, one need to multiply a factor ηAt . This is
in the spirit of Proposition 3.9.

Proposition 4.4 Let A : C
m → C

m be a linear symplectic map, A =
(

P Q
Q̄ P̄

)
, and

let Â : X → X be the contact lift that fixes the fiber over 0, then

K̂k,A(ẑ, ŵ) = (det P∗)1/2
∫

X
�̂k(ẑ, Âû)�̂k(û, ŵ)d VolX (û)

Proof The contact lift Â : C
m × S1 → C

m × S1 is given by A acting on the first
factor:

Â : (z, θ) �→ (Pz + Qz̄, θ),

one can check that Â∗α = α. The integral over X is a standard complex Gaussian
integral, analogous to [7, Prop 4.31], and with determinant Hessian 1/| det P|, hence
we have (det P∗)1/2/| det P| = (det P)−1/2. �

4.5 Toeplitz Construction of the Metaplectic Representation

As in [5], the metaplectic representation WJ (S) of S ∈ Mp(n, R) on HJ can also
be constructed by the Toeplitz approach. First, let US be the unitary translation
operator on L2(R2n, d L) defined by US F(x, ξ) := F(S−1(x, ξ)). The metaplectic
representation of S onHJ is given by ([5], (5.5) and (6.3 b))

WJ (S) = ηJ,S�J US�J , (29)

where we define (see [5] (6.1) and (6.3a)),

ηJ,S = 2−n det(I − i J ) + S(I + i J )
1
2 (30)

and �J is the Bargmann–Fock Szegö projector (20).
Also define βJ,S J S−1 = 2−n/2[det(S J + J S)]1/4. Then, |ηJ,S| = βJ,S J S−1 . In fact

(see [5], above (6.3a), and (B6))

|2−n det(I − i J ) + S(I + i J )
1
2 | = [det(S J + J S)]1/2 = 2nβ2

J,S J S−1 .
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We further record the identities,

det(S J + J S) = det(I + J−1S−1 J S) = det(I + S∗S).

The following identity gives another explanation of the presence of (det Pn)
− 1

2

in (9).

Lemma 4.5 (see [5], p. 1388)

ηJ Sβ
−2
J,S J S−1 = (ηJ S)

∗−1 = ηJ S 2n(det(I + S∗S))− 1
2

and (cf. [5], p. 1388),

(η∗J,S)
−1 = det((I + i J ) + S(I − i J )) = 2n det(A + D + i(B − C)) = det P∗.

Proof The first equality is proved on p. 1388 of [5]. The second asserts that

βJ,S J S−1 = 2−n/2(det(I + S∗S))
1
4 ,

which follows from (30) and identity (ii) above. �

Corollary 4.6 ηJ,U SU−1 = ηJ,S where U ∈ U (m).

Proof This follows from replacing S by U SU−1 and using that U J = JU . �

4.6 Osculating Bargmann–Fock Space

In this subsection, we first define the osculation Bargmann–Fock space for any fixed
point z ∈ M , using the triple (Tz M,ωz, Jz). Then, we define the preferred local
coordinates in a neighborhood U of z and a preferred frame section eL of L over
U , which together determines a coordinate system of the circle bundle X |U over U .
In these special coordinate, the Boutet–Sjöstrand phase can be approximated by the
Bargmann–Fock–Heisenberg phase function modulo cubic order terms.

Definition 4.7 Given a point x ∈ Xh (resp. z ∈ M), we define the osculating
Bargmann–Fock space at x (resp. z) to be theBargmann–Fock space of (Hx X, Jx ,ωx )

resp. (Tz M, Jz,ωz). We denote it by HJx ,ωx (resp.HJz ,ωz ).

If z is a periodic point for gt , let γ =⋃0≤s≤t gs z be the corresponding closed
geodesic, and we may apply the metaplectic representation to define WJz (Dgt |z) as
a unitary operator onHJz ,ωz . There is a square root ambiguity which can be resolved
as in [5] but for our purposes it is not very important and for brevity we omit it from
the discussion.
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Definition 4.8 Let p ∈ M . A coordinate system (z1, . . . , zm) on a neighborhood U
of p is called K-coordinates at p if

i
m∑

j=1

dz j ∧ dz̄ j = ω|p .

Let eL be a local frame and let φ(z) = − log ||eL(z)||2h , if in a K-coordinates

φ(z) = |z|2 +
∑
J K

aJ K z J z̄K , with |J | ≥ 2, |K | ≥ 2. (31)

then eL is called a K-frame.

K-coordinates are defined byLu–Shiffman inDefinition 2.6 of [9]. Existence ofK-
coordinates and K-frames are proved in [9] (Lemma 2.7). Further, in K-coordinates,

ω = ω0 +
∑
i jk�

Ri jk�zi z̄ j dzk ∧ dz̄� + · · · , ω0 =
∑

j

dz j ∧ dz j .

The K-frame and K-coordinates together give us ‘Heisenberg coordinates’:

Definition 4.9 A Heisenberg coordinate chart at a point x0 in the principal bundle
X is a coordinate chart ρ : U → V with 0 ∈ U ⊂ C

m × S1 and ρ(0) = x0 ∈ V ⊂ X
of the form

ρ(z1, . . . , zm, θ) = eiθ e∗L(z)

||e∗L(z)||hk
,

where eL is a preferred local frame for L → M at P0 = π(x0), and (z1, . . . , zm) are
K-coordinates centered at P0. (Note that P0 has coordinates (0, . . . , 0) and e∗L(P0) =
x0.)

In these coordinates, the Boutet–Sjöstrand phase ψ(x, y) may be approximated
modulo cubic remainder terms by the Bargmann–Fock–Heisenberg phase (26).

The lifted Szegö kernel is shown in [16] and in Theorem 2.3 of [9] to have the
scaling asymptotics,

Theorem 4.10 Let P0 ∈ M and choose a Heisenberg coordinate chart about P0.

k−m�̂hk

(
u√
k
,
θ1
k

,
v√
k
,
θ2
k

)
= �̂

Tz M
hz ,Jz

(u, θ1, v, θ2)
(
1+ k−1A1(u, v, θ1, θ2)+ · · ·

)
,

where �
Tz M
hz ,Jz

is the osculating Bargmann–Fock Szegö kernel for k = 1 and for the
tangent space Tz M � C

m equipped with the complex structure Jz and Hermitian
metric hz.

Here we identify the coordinates (u, θ1, v, θ2) with linear coordinates on Tz M ×
S1 × Tz M × S1.
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5 Proof of Theorem 2.2

In this section we study the rescaled Weyl sum

�E
k, f (z, z) :=

∑
j

f (k(μk, j − E))�k, j (z, z).

Our purpose is to prove Theorem 2.2. By comparison with interface asymptotics
[19], we now need to consider the Hamiltonian flow for long times.

The main idea of the proof is that aside from the holonomy factor (the value of
the phase at the critical point), the data of the principal term in Theorem 2.2 localizes
at the periodic point. That is, the data come from the derivative of the first return
map and do not involve data along the orbit. Too see this, we use the quadratic
Taylor approximation of the phase ψ(x, ĝt y) + ψ(y, x) in (t, y) around a periodic
point (T, x). First, we approximate the phase ψ by its osculating Bargmann–Fock
approximation ψ0 at x . Further we approximate ĝt by its linear approximation Dĝt .
We also need to determine the quadratic approximation to the holonomy term of the
phase coming from the θ variable. This part of the calculation is apriori non-local. But
we show in Proposition 5.6 that the Hessian of the holonomy term θ̂w(T ) vanishes at
the periodic point. After these Taylor approximations, the calculation is essentially
reduced to the linear Bargmann–Fock case of Sect. 4.

5.1 Stationary Phase Integral Expression

Let z ∈ M and x ∈ X such that π(x) = z. Let f ∈ S(R) with Fourier transform
f̂ (t) = ∫ f (x)eitx dx

2π compactly supported. We combine the definition (15) with
two compositions of the Boutet de Monvel–Sjoestrand parametrix (24) to get

�E
k, f (z) =

∫
R

f̂ (t)e−i tk E Ûk (t, x, x)dt

=
∫
R

∫
X

∫
S1

∫
S1

∫
R+

∫
R+

f̂ (t)ek�(t,x,y,σ1,σ2,θ1,θ2) Akdσ1dσ2dθ1dθ2dydt + O(k−∞).

where the phase function is given by,

�(t, x, y,σ1,σ2, θ1, θ2) = −i t E + σ1ψ̂(rθ1 x, ĝt y) + σ2ψ̂(rθ2 y, x) − iθ1 − iθ2
(32)

and Ak is a semi-classical symbol.We consider the critical points and the determinant
of the Hessian matrix of the phase.

We will work with a K-coordinate and K-frame in a neighborhood U of z. In this
coordinate, z = (0, . . . , 0) ∈ C

m , x = (0, . . . , 0; 0) ∈ C
m × S1, and y = (w; θw) ∈

C
m × S1. We denote ĝt y = (w(t); θw(t)). Since θw(t)− θw only depends on w, t

but independent of θw, then we define the holonomy phase for flow ĝt :
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θ̂w(t) := θw(t)− θw.

Similarly, the holonomy phase θh
w(t) for the horizontal flow exp(tξh

H ) is denoted by

exp(tξh
H )(w; θw) = (gtw; θw + θh

w(t)). (33)

Note that θ̂w(t) depends on H , where as θw(t) only depend on H modulo constant,or
d H .

Proposition 5.1 Fix a K-coordinate and K-frame in a neighborhood U at z. Let
χ : M → R be a smooth cut-off function supported in U and constant equals to one
near z. Then we have

�E
k, f (z)

=
∫
R

∫
M

∫
S1

∫
S1

∫
R+

∫
R+

f̂ (t)ek� ′(t,w,σ1,σ2,θ1,θ2)χ(gt w)χ(w)Skdσ1dσ2dθ1dθ2dwdt + O(k−∞).

where

� ′(t, w, σ1, σ2, θ1, θ2) = −i t E + σ1(iθ1 − i θ̂w(t)− ϕ(w(t))+ σ2(iθ2 − ϕ(w)) − iθ1 − iθ2.
(34)

Proof Introducing the cut-off functionχ in the integral (32) only changes the integral
by O(k−∞).Within the support of the cut-off function,wemayuse theK-coordinates.

Then phase function � can be written as (within the coordinate patch):

� = −i t E + σ1(iθ1 − i θ̂w(t)− iθw + ψ(0, w(t))− ϕ(w(t))

+σ2(iθ2 + iθw + ψ(w, 0) − ϕ(w))− iθ1 − iθ2
= −i t E + σ1(i θ̃1 − i θ̂w(t)− ϕ(w(t))+ σ2(i θ̃2 − ϕ(w))− i θ̃1 − i θ̃2

where θ̃1 = θ1 − θw and θ̃2 = θ2 + θw. We note ψ(0, w) = 0 due to the choice of
K-frame (31). After the change of variables, we see the phase � does not depend on
θw. Hence we may perform the θw integral, and rewrite θ̃i as θi , to get the reduced
phase function � ′. �

Proposition 5.2 The critical points for � ′ (34) are as following:
(1) If z /∈ H−1(E), there is no critical points.
(2) If z ∈ H−1(E) but z /∈ PE , then the only critical point corresponds to t = 0.
(3) If z ∈ H−1(E) and z ∈ PE , then for each n ∈ Z, there is a critical point with
t = nTz, where Tz is the primitive period of gt at z.

Proof We will prove that the critical points for � ′ (32) are given by

w = 0, w(t) = 0, σ1 = σ2 = 1, θ1 = θ̂0(t), θ2 = 0.
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Taking derivatives of σ1 and σ2, we need to have

iθ1 − i θ̂w(t) − ϕ(w(t) = 0, iθ2 − ϕ(w) = 0.

Hence
θ1 = θ̂0(t), θ2 = 0,

Thus, we may work in a neighborhood of x from now on.
Taking derivatives in θ1 and θ2 and setting them to zero, we get

σ1 = 1, σ2 = 1.

Taking derivative in t and setting it to zero, we have

∂� ′

∂t
= −i E + iσ1

d θ̂w(t)

dt
= −i(E − σ1H(0)).

Thus, using σ1 = 1, we have E = H(0).
Finally, taking derivatives in w, we have

∂� ′

∂w
= −iσ1∂w θ̂w(t) = −i∂wθw(T )

where T is a period. Since ĝT preserves horizontal space, and ∂w is in the horizontal
space at x = (0; 0), hence

∂wθw(T ) = 〈α|x , (ĝT |x )∗∂w〉 = 〈α|x , ∂w〉 = 〈dθ, ∂w〉 = 0.

�

5.2 Determinant of Hessian of � ′

Let T be a period of gt at z (possibly zero). To compute the contribution at t = T ,
we will do a slight change of variables.

Lemma 5.3 Define new integration variables

t = T + t ′, w = g−t ′w′, θ1 = θ′1 − θ̂w′(−t ′), θ2 = θ′2 + θ̂w′(−t ′).

Then the Jacobian factor is 1, and the phase function �T in the new variables is

�T (t ′, w′, σi , θ
′
i ) = −i(T + t ′)E + σ1(iθ

′
1 − i θ̂w′(T )− ϕ(w′(T ))+ σ2(iθ

′
2 + θ̂w′(−t ′)

− ϕ(w′(−t ′)))− iθ′1 − iθ′2.

(We will drop the prime from now on.)
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Proof The Jacobian matrix is block-upper-triangular, with the w − w′ block having
determinant 1, since gt preserves the volume form.

The holonomy for flow ĝt can be written as

θ̂w(t) = θw(t)− θw(0) = θw′(T ) − θw′(−t ′) = θ̂w′(T ) − θ̂w′(−t ′).

�

Lemma 5.4 The Hessian matrix for �T (t, w,σi , θi ) at t = 0, w = 0,σi = 1, θ1 =
θ̂0(T ), θ2 = 0 is as

Hess�T =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1 θ1 σ2 θ2 t w

σ1 0 i 0 0 0 0
θ1 i 0 0 0 0 0
σ2 0 0 0 i 0 0
θ2 0 0 i 0 0 0
t 0 0 0 0 ∂t t�T ∂tw�T

w 0 0 0 0 ∂wt�T ∂ww�T

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In particular, at this critical point, we have

det Hess�T = det

(
∂t t�T ∂tw�T

∂wt�T ∂ww�T

)
.

Proof The calculation is very similar to that in the proof of Proposition 5.2, and is
therefore omitted. �

5.3 Quadratic Approximation to the Phase

To compute the Hessian of the phase function �T in t and w, suffice to set σi , θi to
their critical value, and compute the Taylor expansion of �T to second order. Thus,
we get

� ′
T (t, w) := −i(T + t)E − i θ̂w(T ) − ϕ(w(T )) + i θ̂w(−t)− ϕ(w(−t)).

We will consider second order Taylor expansion in each term. We write � for equal
modulo cubic order term.

Suppose H has Taylor expansion

H(w) = E + (αw̄ + wᾱ) + O(|w|2).

We define the corresponding HB F for the osculating BF space C
m ∼= Tz M , as the

linear term of H :
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HB F (w) = αw̄ + wᾱ.

We denote the BF model potential as ϕB F (z) = |z|2. Let ĝt
B F be the flow generated

by HB F on X B F = C
m × S1, such that

ĝt
B F (w; θw) = (w(t)B F ; θw + θ̂w(t)B F ).

Then, we have the following comparison result

Proposition 5.5 (1) θ̂w(−t)− t E = θ̂w(−t)B F + O3 = 1
2 (αz̄ + zᾱ)t .

(2) ϕ(w(T )) = |DgT w|2 + O3.
(3) ϕ(w(−t)) = |w(−t)B F |2 + O3 = |w + iαt |2 + O3.

Proof (1) θ̂w(−t) = ∫ t
0

1
2dcϕ(ξH )|w(s)ds + t H(w). Since dcϕ|w = O(|w|) and the

integral interval is first order in t , hence

∫ t

0

1

2
dcϕ(ξH )|w(s)ds = t

1

2
dcϕ(ξH )|w + O3

= t〈1
2

dcϕ|w, ξH |0〉 + O3 =
∫ t

0

1

2
dcϕB F (ξHB F )|w(s)ds + O3.

And t H(w) = t (E + HB F (w))+ O3. Hence

θ̂w(−t)− t E =
∫ t

0

1

2
dcϕB F (ξHB F )|w(s)ds + t (E + HB F (w))− t E + O3 = θ̂w(−t)B F + O3.

Finally, we may use Lemma 4.2 to compute the increment in θ.
(2) Since ϕ(w) = |w|2 + O(|w|3) and w(T ) = gT (w) = gT (0) + DgT w +

O(|w|2) = DgT w + O(|w|2), hence

ϕ(w(T )) = |DgT w|2 + O3

(3) Since ξH = −iα∂z + i ᾱ∂z̄ + O(|z|), we havew(−t) = w + iαt + O2, hence

ϕ(w(−t)) = |w + iαt |2 + O3 = |w(−t)B F |2 + O3.

�

Proposition 5.6
θ̂w(T ) = θ̂0(T ) + O(|w|3).

Proof The proof is rather long, so we break it up into the following two Lemmas.

Lemma 5.7 There exists a neighborhood V ⊂ U of z, such that for any w ∈ V , and
any path γ : [0, 1] → V from z to w, we have
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θ̂w(T ) = θ̂0(T ) −
∫

γ

1

2
dcϕ +

∫
gT (γ)

1

2
dcϕ.

Proof We only give proof for T = nTz , n > 0, the n ≤ 0 case is analogous. Let
{(Ui , ei ,ϕi )}n

i=1 be a sequence of coordinate patchUi , such that there exists a partition
of [0, T ]: 0 = t0 < t1 < · · · < tn = T , such that Ui covers the i th segment of the
orbit Oi = {gs z | ti−1 ≤ s ≤ ti }, and ei ∈ �(Ui , L) are non-vanishing holomorphic
sections, and e−ϕi = ‖ei‖2. Without loss of generality, we may take U1 = U . We
identify index n + i with i .

Since gti z ∈ Ui ∩ Ui+1 for 0 ≤ i ≤ n, hence

z ∈ V :=
n⋂

i=0

g−ti (Ui ∩ Ui+1).

For any w ∈ V , let γ : [0, 1] → V be a path from z to w. Let

γ0 = γ, γi = gti γ.

Then
I m(γi ) ⊂ Ui ∩ Ui+1,∀0 ≤ i ≤ n.

Over Ui ∩ Ui+1, define transition function gi = log(ei+1/ei ), such that gi = ai +√−1bi , with bi (g
ti z) ∈ [0, 2π). Then we have

‖ei+1‖ = |gi |‖ei‖ ⇒ e−
1
2 ϕi+1 = eai e−

1
2 ϕi ⇒ ϕi+1 − ϕi = −2ai .

Over Ui , let θi = e∗i /‖e∗i ‖ be the section in the co-circle bundle X . Then over
Ui ∩ Ui+1, we have

log(e∗i+1/e∗i ) = 1/gi = e−ai−
√−1bi ⇒ θi+1 − θi ≡ −bi mod 2π.

where we used additive notation for section valued in S1.
Then, the holonomy can be expressed using Lemma 3.5 in each coordinate

patch Ui

θ̂w(T ) = θw(T )− θw =
n∑

i=1

∫ ti

ti−1

1

2
〈dcϕi , ξH 〉|gswds − (ti+1 − ti )H(w) + bi (g

ti w).

Thus, we may take the difference

θ̂w(T )− θ̂0(T ) =
n∑

i=1

∫ ti

ti−1

1

2
〈dcϕi , ξH 〉|gs wds −

∫ ti

ti−1

1

2
〈dcϕi , ξH 〉|gs zds − (ti+1 − ti )(H(w)− H(z))

+
n∑

i=1

bi (g
ti w)− bi (g

ti z)
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=
n∑

i=1

∫ 1

0

∫ ti

ti−1

ω(∂t , ∂s )dtds − (ti+1 − ti )(H(w)− H(z))

+
n∑

i=1

−
∫

γi−1

1

2
dcϕi +

∫
γi

1

2
dcϕi +

n∑
i=1

∫
γi

dbi

=
n∑

i=1

∫ 1

0

∫ ti

ti−1

d H(∂s)dtds − (ti+1 − ti )(H(w)− H(z))

−
∫

γ0

1

2
dcϕ1 +

n∑
i=1

∫
γi

1

2
dc(ϕi − ϕi+1)+

∫
γn

1

2
dcϕn+1 +

n∑
i=1

∫
γi

dbi

= −
∫

γ0

1

2
dcϕ1 +

∫
γn

1

2
dcϕn+1 +

n∑
i=1

∫
γi

(dcai + dbi )

= −
∫

γ0

1

2
dcϕ1 +

∫
γn

1

2
dcϕ1

where in the last step, we used

dc(ai +
√−1bi ) = d(

√−1ai − bi ) ⇒ dcai = −dbi .

�

Lemma 5.8 For any fixed path γ : [0, 1] → U starting from 0, and for any 1 �
ε > 0, we have ∫

γ([0,ε])
dcϕ =

∫ ε

0
〈dcϕ, γ̇(s)〉ds = O(ε3)

Proof If a path γ : [0, 1] → U with γ(0) = 0 and γ(1) = w is a straight-line, then

∫
γ

dcϕ = O(|w|3).

Indeed, consider the Taylor expansion of ϕ(z) at z = 0,

ϕ(z) = |z|2 + O(|z|3)

then
dcϕ = −2

∑
i

|zi |2dθi +
∑

i

(O(|z|2)dzi + O(|z|2)dz̄i ).

However, along a straight line path from 0 tow, θi is constant, hence the leading term
of dcϕ vanishes in the integral. For the remainder term, we have | ∫γ dzi | = O(|w|),
hence proving the claim.

Next, we consider a general path as in the statement of the lemma. For each ε, we
may consider the straight-line path β : [0, ε] → U from 0 to γ(ε). From the previous
claim, we know

∫
β(ε) dcϕ = O(ε3). Let

�ε : [0, ε] × [0, 1] → U, (t, u) �→ uγ(t) + (1− u)β(t).
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Then, we may verify that

∫
γ([0,ε])

dcϕ < C

∣∣∣∣
∫

�ε

ω

∣∣∣∣+ O(ε3) < O(ε3).

where the estimate of
∫
�

ω = 2
∑

i

∫
�

dxi ∧ dyi can be done by noting for any
smooth function f ,

∫ ε

0
f (x)dx − ε

1

2
( f (0) + f (ε)) = O(ε3).

�

Using above two lemma, we have

θ̂w(T ) = θ̂0(T ) = −
∫

γ

1

2
dcϕ +

∫
gT (γ)

1

2
dcϕ = O(|w|3) + O(|gT w|3) = O(|w|3).

This finishes the proof for Proposition 5.6. �

5.4 Reduction to Osculating BF Model

We continue the calculation of the contribution to the stationary phase integral for
period T orbit. The reduced phase function � ′

T (t, w) has the following expansion:

� ′
T (t, w) = −iT E − i θ̂0(T ) + i tRe(αw̄) − |w + iαt |2/2− |DgT w|2/2+ O3.

= −iT E − i θ̂0(T ) + iwᾱt − |w|2/2− |αt |2/2− |DgT w|2/2+ O3.

We may write the critical value as

� ′
T (0, 0) = �T |cri t = −iT E − i θ̂0(T ) = −iθh

0 (T )

using holonomy phase of the horizontal flow (33).
The leading term of the stationary integral can be obtained by the followingmodel

result on BF space.

Proposition 5.9 Let H = αz̄ + zᾱ. Let A : C
m → C

m be a symplectic linear map,
Aw = Pw + Qw̄. Suppose ξH is invariant under A. Then
(1)

(det P∗)1/2
(

k

2π

)2m ∫
Cm

ek(i twα−|w|2/2−t2|α|2/2−|Aw|2/2)d VolCm (w)

= K̂k,A((0; 0), ĝt (0; 0))
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= (det P)−1/2

(
k

2π

)m

e−kt2(|α|2−ᾱP−1Qᾱ)/2

where the metaplectic representation kernel K̂k,A(ẑ, ŵ) is defined in (28).
(2)

∫
R

K̂k,A((0; 0), ĝt (0; 0))dt =
(

k

2π

)m−1/2

(det P)−1/2(ᾱP−1α).

Proof (1) We note that

(
k

2π

)m

ek(−|Aw|2/2) = �̂k(0, (Aw; 0)),

and
(

k

2π

)m

ek(i twα−|w|2/2−t2|α|2/2) = �̂k(ĝ
−t (w; 0), 0) = �̂k((w; 0), ĝt (0; 0)).

Hence by Proposition 4.4, we have

(det P∗)1/2
(

k

2π

)2m ∫
Cm

ek(i twα−|w|2/2−t2|α|2/2−|Aw|2/2)d VolCm (w)

= (det P∗)1/2
∫
Cm

�̂k(0, (Aw; 0))�̂k((w; 0), ĝt (0; 0))dw

= K̂k,A((0; 0), ĝt (0; 0)).

And the last line follows by ĝt (0; 0) = (−iαt; 0) and definition for K̂k,A.
(2) Next, we use the fact that ξH is preserved by A, i.e.

(−iα
i ᾱ

)
=
(

P Q
Q̄ P̄

)(−iα
i ᾱ

)

Thus
α = Pα − Qᾱ (35)

hence
|α|2 − ᾱP−1Qᾱ = |α|2 − ᾱP−1(Pα − α) = ᾱP−1α

Then, we have

(
k

2π

)m

(det P)−1/2
∫
R

e−k 1
2 t2(ᾱP−1α)dt =

(
k

2π

)m−1/2

(ᾱP−1α)−1/2(det P)−1/2

�
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Combining all the steps before, we have proven the following proposition.

Proposition 5.10 Let z ∈ M be a periodic point for the flow ξH and H(z) = E, then

�E
k, f (z, z) =

∑
n∈Z

f̂ (nTz)e
−iknθh

z Gn

(
k

2π

)m−1/2

(1+ O(k−1))

where if DgnTz |z in K-coordinate at z can be written as

(
Pn Qn

Q̄n P̄n

)
, then

Gn = (det Pn)
−1/2(ᾱP−1

n α)−1/2.

6 Proof of Proposition 1.6

The issue at hand is the regularity of the measures μz,1,E
k defined on test functions

f ∈ S(R) with f̂ ∈ C∞
0 (R) in Theorem 2.2. It is only an interesting question when

z ∈ PE . In this case,

∫
R

f μz,1,E
k =

(
k

2π

)m−1/2∑
n∈Z

f̂ (nTz) Gn(z)e
−inkθh

z + O(km−3/2).

Unravelling the Fourier transform gives that, in the sense of distributions,

dμz,1,E
k (x) =

(
k

2π

)m−1/2∑
n∈Z

einTz x Gn(z)e
−iknθh

z dx + O(km−3/2).

The proposition asserts first that this series converges absolutely and uniformly
when the orbit through z is real hyperbolic. To prove this we need to consider the
behavior of the matrix element ᾱP−1

n α and the determinant det Pn as n →∞, where
as in (7)

Pn := PJ Sn PJ : T (1,0)
z M → T (1,0)

z M.

We first develop the symplectic linear algebra introduced in Sect. 3.1.

6.1 Matrix Elements and Determinants of Positive Definite
Symplectic Matrices

We are interested in PJ S PJ with PJ = 1
2 (I − i J ). We also use the notation 〈α,β〉 =

β̄t · α for the sesquilinear inner product.
First we prove
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Proposition 6.1 If S is positive definite symmetric symplectic, with invariant vector
ξ and α = PJ ξ, and if the spectrum of S is {eλ j , e−λ j }n

j=1 with λ j ≥ 0 then

⎧⎨
⎩

(i) [PJ S PJ ]−1α = α,

(i i) det PJ S PJ |T 1,0
0 R2n =∏n

j=1[cosh λ j ].

Proof The proof is through a series of lemmas:

Lemma 6.2 If S is positive definite symplectic, then

PJ S PJ = 1

2
PJ (S + S−1) = 1

2
(S + S−1)PJ

Proof

PJ S PJ = 1
4 (I − i J )S(I − i J ) = 1

4 [S − i J S − i S J − J S J ]

= 1
4 [S + S−1] − i

4 [J [S + S−1] = 1
4

(
(S + S−1)− i J (S + S−1)

)
= 1

2 PJ (S + S−1).

since J S J = −S−1 if S is symmetric. Also,

J (S + S−1) = J S + S J = (S−1 + S)J

so that PJ (S + S−1) = (S + S−1)PJ . �
Lemma 6.3 Let S be positive definite symmetric symplectic and e j be eigenvectors
of S for eigenvalues λ1, . . . ,λn. Consider the basis PJ ek of H 1,0

J . Then

[PJ S PJ ]PJ ek = cosh(λ j )PJ ek,

and [PJ S PJ ]−1 = PJ [S + S−1]−1PJ .

Proof Follows from the previous lemma and the fact that (S + S−1) commutes with
PJ :

[PJ S PJ ]PJ ek = 1

2
PJ (S + S−1)ek = 1

2
(eλ j + e−λ j )PJ ek = cosh(λ j )PJ ek .

�
Statement (i) of the Proposition follows from the fact that

[PJ S PJ ]α = 1

2
(1+ 1)α = α.

Statement (ii) follows from the fact that the eigenvalues of PJ S PJ are cosh λ j by
Lemma 6.3. �
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6.2 Strong Hyperbolicity Hypothesis

Let z be a periodic point of the Hamiltonian flow gt . Under this hypothesis, we have
the following result.

Proposition 6.4 IfdimC M = m > 1, and z be a periodic point with primitive period
T , satisfying the strong hyperbolic hypothesis. Then

∑
n∈Z

|Gn(z)| < ∞.

Proof Let the spectrum of S := DgT be {eλ j , e−λ j }m
j=1, with λ1 = 0 and λ j > 0 for

j = 2, . . . , n. Then, recall that

Gn(z) = [det(PJ Sn PJ )〈(PJ Sn PJ )
−1α,α〉]−1/2.

Then, from previous section, we have det(PJ Sn PJ ) =∏n
j=1 cosh(nλ j ), and

〈(PJ Sn PJ )α,α〉 = 〈α,α〉 independent of n. Since λ j > 0 for j = 2, . . . , m, hence

|Gn| = | det(PJ Sn PJ )〈α,α〉|−1/2 < Ce−|n|
∑

j λ j

for some positive constant C . Thus the sum
∑

n∈Z |Gn(z)| converges exponentially
fast. �

6.3 Proof of Proposition 1.6

By Proposition 6.4, the family of measures

dνT (λ) :=
∑
|n|≤T

ρT (nT (z))e−iλnTz e−iknθh
z (Tz) Gn(z)dλ, (T ∈ R+)

converges in theweak* sense of distributions on the spaceS(R)ofSchwartz functions
to the limit distribution,

dν(λ) :=
∑
n∈Z

e−iλnTz e−iknθh
z (Tz) Gn(z)dλ,

since the coefficients Gn(z) are bounded in n and by dominated convergence,

∫
R

f (λ)dνT (λ) =
∑
|n|≤T

ρT (nT (z)) f̂ (nT (z)) Gn(z) →
∑
n∈Z

f̂ (nT (z)) Gn(z),

where the sum on the right side converges absolutely.
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7 Proof of Theorem 1.7

In this section we apply Theorem 2.2 and a Tauberian theorem to prove Theorem
1.7. We are concerned with the Weyl sums,

�k,[E1,E2](z) =
∫ E2

E1
dμz,1,E

k =∑ j :k(μk j−H(z))∈[E1,E2] �k, j (z).

The basic idea is to convolve 1[E1,E2] with a well-chosen Schwartz test function
depending on (h, T ), apply Theorem 2.2 and then estimate the remainder.

We consider both families of measures of (3), μz
k and μz,1,E

k . The main difference
is the range of eigenvalues involved. The measures μz

k have a fixed compact support,
the range H(M) = [Hmin, Hmax] of H , and the mean level spacing between the km

point masses μk j is k−m . The measures μz,1,E
k are scaled versions,

μz,1,E
k [−M, M] =

∑
j :|μ jk−E |< M

k

�k j (z),

and the mean level spacing between the point masses is k−m+1. Of course,

∑
j :|μ jk−E |< M

k

�k j (z) = μz,1,E
k [−M, M] = μz

k

[−M

k
,

M

k

]
, (36)

As a preliminary, we quote a result from [19, Theorem 3]:

Theorem 7.1 Let E be a regular value of H and z ∈ H−1(E). If ε is small enough,
such that the Hamiltonian flow trajectory starting at z does not return to z for time
|t | < 2πε, then for any Schwarz function f ∈ S(R) with f̂ supported in (−ε, ε) and
f̂ (0) = ∫ f (x)dx = 1, and for any α ∈ R we have

∫
R

f (x)dμz,1,α
k (x) =

(
k

2π

)m−1/2

e
− α2

‖ξH (z)‖2
√
2

2π‖ξH (z)‖ (1+ O(k−1/2)).

There is a further integrated version of the Weyl law with remainder,

#

{
j : |μk j − E | ≤ M

k

}
= 2M

(2π)n
Vol(h−1(E))km−1 + o(km−1). (37)

The constraint in the sum (36) is a ‘codimension one’ condition localizing around
H−1(E). The extra integration in (37) gives an extra factor of k− 1

2 in the station-
ary phase expansion. Note that

∫
M �k j (z)dV (z) = Mult(¯kj) (the multiplicity of the

eigenvalue, generically equal to 1), so the integrated Weyl law does not deal with
non-uniform weights �k j (z). The integrated Weyl law (essentially contained in [3]).

The remainder estimate requires the use of a semi-classical Tauberian theorem
for a sequence μz,1,E

k of measures. Before getting started, let us note some basic facts
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about this sequence. First, μz,1,E
k is not normalized to be a probability measure, but it

is finite and could be normalized by dividing by its mass �hk (z) � km + O(km−1)).
In the following discussion,we divide by themass. Second, note that�hk (z)−1dμz,1,E

k

is a centered re-scaling of �hk (z)−1dμz
k (3). That is DkτE dμz,1E

k = dμz
k where the

dilation operator is defined by Dkν(I ) = ν(k I ) for any interval I andmeasure ν. Also
τE f (x) = f (x − E). Now, μz

k is supported in H(M) (the range of H : M → R),

hence μz,1,E
k is supported in k(H − E)(M). In [19] we studied �hk (z)−1μ

z, 12 ,E
k :=

D√
k�hk (z)−1μz,1,E

k , whose support is
√

k(H − E)(M) and proved that it tends to
a Gaussian. In particular, its Fourier transform is continuous at 0, and by Levy’s
continuity theorem (or by direct analysis), the sequence�hk (z)−1μ

z,1/2,E
k is tight. By

comparison, �hk (z)−1μz,1,E
k is not tight, and indeed the �hk (z)−1μz,1,E

k ([a, b]) �
k− 1

2 , so that the mass is spreading out to infinity and it does not weak* converge on
Cb(R).

Theorem 1.7 not only gives the leading order term but also the order of the
remainder. As is well-known from work of Duistermaat–Guillemin, Ivrii, Safarov
and others, obtaining a sharp remainder term requires the use of something simi-
lar to Fourier transform methods and in particular Fourier Tauberian theorems. As
mentioned before, Theorem 1.7 is analogous to Safarov’s non-classical pointwise
Weyl asymptotics for the spectral function of a Laplace operator 	, or more pre-
cisely, asymptotics on intervals [λ,λ + 1] for√−	. The Q-notation is adopted from
[14, 15]. Since we are working on phase space, Q involves closed orbits rather than
loops in configuration space. However, we need to use a semi-classical Tauberian
theorem rather than the homogeneous Tauberian theorem of [15], i.e. we are consid-
ering a sequence of measures μz,1,E

k on a fixed interval rather than a fixed measure
on expanding intervals [0,λ].

Semi-classical Tauberian theorems have been known for a long time. It is a clas-
sical fact that to obtain sharp remainder estimates, one must make use of the Fourier
transform of the measures on long time intervals [−T, T ]. A Tauberian theorem of
the needed type is proved in [12], adapting the statement of Safarov’s non-classical
Weyl asymptotics to a semi-classical problem. This theorem does not quite apply to
our setting for various reasons: (i) It assumes the sequence of measures have fixed
compact support; (ii) it assumes the ‘weights’ or masses of the point masses are
uniform. On the contrary, the ‘weights’ �k, j (z) of μz,1,E

k are highly non-uniform in
a way that is inconsistent with the hypotheses of the Tauberian Theorem of [12].
Consider the graph of the weights �k, j (z) as a function of μk j , i.e. the coefficients
of the point masses of μz

k (3). On average the weights are of order 1 since there are
km terms and the total sum is �k(z) � Vol(M,ω)km. But the weights are highly
non-uniform:

(1) they peak when μk j � H(z); indeed, it is shown inf [19, Theorem 1] that μz
k

tends weakly to δH(z).
(2) By [19, Theorem 2],

∑
j :|μk j−H(z)|<Mk−

1
2
�k, j (z) ∼ Mkm while the number of

terms is of order km− 1
2 . Thus, on average, �k, j (z) is of size k

1
2 in this eigenvalue

range.



626 S. Zelditch and P. Zhou

(3) Further, �k, j (z) � k−C when |H(z)− μk j | ≥ Ck− 1
2 log k. Hence, the weights

decay rapidly when μk j lies outside of the range |H(z)− μk j | ≤ Ck− 1
2 log k.

Consequently, the sequence of dilated measures μz,1,E
k concentrates in the sets

[−k
1
2 log k, k

1
2 log k].

Since we need to modify the Tauberian Theorem of [12] to accommodate the
strong peaking of the weights around H(z), we go through the modified proof in
detail.

7.1 Mollifiers and Convolution

We use the following notation: Let ρ1 ∈ C∞
0 (−1, 1) satisfy ρ1(t) = 1 on [− 1

2 ,
1
2 ],

ρ1(−t) = ρ1(t).Wemayalso assumeFρ1(τ ) ≥ 0 andFρ1(τ ) ≥ δ0 > 0 for |τ | ≤ ε0,
where F and F−1 denote the standard Fourier transform and its inverse,

f̂ (x) := (F f )(x) = (2π)−1
∫

f (t)e−i t x dt, f̌ (x) = (F−1 f )(x) =
∫

f (t)eitx dx

Then set,
ρT (τ ) = ρ1

( τ

T

)
, θT (x) := ρ̂T (x) = T ρ̂1(xT ). (38)

In particular,
∫

θT (x)dx = 1 and θT (x) > T δ0 for |x | < ε0/T . Let

σz,1,E
k (x) = μz,1,E

k (−∞, x].

7.2 Tauberian Theorem for µz,1,E
k

In this section we determine the asymptotics of

σz,1,E
k (E2)− σz,1,E

k (E1) =
∫ E2

E1

dμz,1,E
k (x) =

∑
j : E1

k ≤μ jk−E≤ E2
k

�k, j (z).

We recall that the mean level spacings of k(μk, j − E) is k−m+1 so that the number of
terms in the sum is of order km−1. The plan is to mollify the measures by convolution
with θT (38), so that it suffices to determine the asymptotics of

σz,1,E
k ∗ θT (E2)− σz,1,E

k ∗ θT (E1)

+
(
σz,1,E

k (E2) − σz,1,E
k (E1)

)
−
(
σz,1,E

k ∗ θT (E2)− σz,1,E
k ∗ θT (E1)

) (39)
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Since

σz,1,E
k ∗ θT (E2) − σz,1,E

k ∗ θT (E1) =
∫ E2

E1

θh,T ∗ dμz,1,E
k (λ),

we have
(
σz,1,E

k (E2) − σz,1,E
k (E1)

)
−
(
σz,1,E

k ∗ θT (E2) − σz,1,E
k ∗ θT (E1)

)

=
∫ E2

E1

(θT ∗ dμz,1,E
k − dμz,1,E

k ). (40)

First we consider the top terms of (39).

Proposition 7.2 Assume that H(z) = E, z ∈ PE . Then

d

dx
(σz,1,E

k ∗ θT )(x) =
(

k

2π

)m−1/2∑
n∈Z

ρT (nTz)e
−i xnTz e−iknθh

z (Tz )Gn(z)+ OT (km−3/2) (41)

and

σz,1,E
k ∗ θT (E2) − σz,1,E

k ∗ θT (E1)

= km− 1
2

∫ E2

E1

∑
|nTz |≤T

ρT (nTz)e
−iλnTz e−iknθh

z (Tz) Gn(z)dλ+ O(km−1) .

Proof

d

dx
(σz,1,E

k ∗ θT )(x) =
∫

θT (x − y)dμz,1,E
k (y)

=
∫
R

∫
R

ρT (−t)e−i t (x−y)
∑

j

δk(μk, j−E)(y)�k, j (z)dydt

=
∫
R

ρT (t)e−i t x
∑

j

ei tk(μk, j−E)�k, j (z)dt

=
∫
R

ρT (t)e−i t x−i tk E Uk(t, z, z)dt

=
(

k

2π

)m−1/2∑
n∈Z

ρT (nTz)e
−i xnTz e−iknθh

z (Tz)Gn(z)(1+ O(k−1)).

where the last line follows from Theorem 2.2 to f (y) = θT (x − y). �

Corollary 7.3 Under the strong hyperbolicity hypothesis (Definition 1.5), there
exists constants γ0(z), C1(T, z), such that

d

dx
(σz,1,E

k ∗ θT )(x) ≤
(

k

2π

)m−1/2

γ0(z)+ C1(T, z)km−3/2.
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Proof We start from (41), and let T →∞. By Proposition 6.4, the sum in (41) with
ρT replaced by 1 converges absolutely. �

We now employ a semi-classical Fourier Tauberian theorem to estimate (40). In
fact, since we already semi-classically scaled dμz

k by k, we do not need to scale again.
Weonly refer to theTauberian as semi-classical because it applies to a sequenceμz,1,E

k
of measures on a fixed interval rather than to a fixed measure on a dilated family of
intervals as in the homogeneous Tauberian theorem.

The Tauberian theorem states:

Proposition 7.4 There exist constant γ(z), C(T, z) such that, for any T > 0,

∫ E2

E1

(θT ∗ dμz,1,E
k − dμz,1,E

k ) ≤ γ(z)

T
km− 1

2 + C(T, z)km−3/2.

Together with Proposition 7.2 this gives

Corollary 7.5 For any T > 0, there exist γ0(z, τ ), γ, C1(T, z, τ ) > 0 so that

σz,1,E
k (E2)− σz,1,E

k (E1)

=
(

k

2π

)m− 1
2
∫ E2

E1

∑
|nTz |≤T

ρT (nTz)e
−iλnTz e−iknθh

z (Tz ) Gn(z)dλ + 1

T
O(km− 1

2 )+ OT (km−3/2).

7.3 Proof of Proposition 7.4

As mentioned above, the hypotheses of [12, Theorem 3.1] do not hold in our setting.
Hence we must extract from [12, Theorem 3.1] the key elements that pertain to our
setting.

We have,

∫ E2
E1

(θT ∗ dμz,1,E
k − dμz,1,E

k ) = ∫
R

(μk([E1, E2] − τ )− μk [E1, E2]) θT (τ )dτ

= T
∫
R

(μk([E1, E2] − τ )− μk [E1, E2])) ρ̂1(τT )dτ

= T
∫
|τ |≤ 1

T
(μk([E1, E2] − τ )− μk [E1, E2])) ρ̂1(τT )dτ

+ T
∫
|τ |> 1

T
(μk([E1, E2] − τ )− μk [E1, E2])) ρ̂1(τT )dτ

=: I1 + I2.
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Evidently, the key objects to estimate are the increments

μk([E1, E2] − τ ) − μk([E1, E2])

The key point is to prove the analogue of [12, Proposition 3.2]:

Proposition 7.6 There exist constants γ1(z) and C1(T, z) such that, for any T > 0,

|(μk([E1, E2] − τ )− μk [E1, E2]))| ≤ γ1(z)

(
1

T
+ |τ |

)
km− 1

2 + C1(T, z)O(km−3/2)

We now show that Proposition 7.6 implies Proposition 7.4.

Proof First, observe that Proposition 7.6 implies,

I1 ≤ sup
|τ |≤ 1

T

|μk([E1, E2] − τ ) − μk([E1, E2])| ,

and Proposition 7.6 immediately implies the desired bound of Proposition 7.4 for
|τ | ≤ 1

T . For I2 one uses that ρ̂1 ∈ S(R). Since T
∫
|τ |≥ 1

T
ρ̂1(τT )dτ ≤ 1, Proposition

7.6 implies,

I2 � km− 1
2 γ1(z)T

∫ (
1

T
+ |τ |

)
ρ̂1(T τ )dτ + C1(T, z)O(km−3/2)T

∫
|τ |> 1

T

ρ̂1(τT )dτ

If one changes variables to r = T τ one also gets the estimate of Proposition 7.4. �

We now prove Proposition 7.6.

Proof We need to estimate (μk[E1, E2] − τ ) − μk[E1, E2])). The estimate depends
both on the position of [E1, E2] relative to the center of mass at 0 and on the
position of τ . We recall the the total mass of μk = μz,1,E

k on the complement of
[−√k log k,

√
k log k] is rapidly decaying in k. Hence we may assume that at least

one of the following occurs:

• [E1, E2] ∩ [−√k log k,
√

k log k] �= ∅, i.e. E1 ≥ −√k log k, E2 ≤
√

k log k.

• [E1, E2] − τ ∩ [−√k log k,
√

k log k] �= ∅, i.e. E1 − τ −√
k log k, E2 − τ ≤√

k log k.

The proof is broken up into 3 cases: (1) |τ | ≤ ε0
T , (2) τ = �

T ε0, (3) �
T ε0 ≤ τ ≤

�+1
T ε0, for some � ∈ Z.

(1) Assume |τ | ≤ ε0
T . Assume τ > 0 since the case τ < 0 is similar. Write

μk([E1, E2] − τ ) − μk[E1, E2]) =
∫
R
[1[E1−τ ,E2−τ ] − 1[E1,E2]](x)dμk(x).

For T sufficiently large so that τ " E2 − E1,
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[1[E1−τ ,E2−τ ] − 1[E1,E2]](x) = 1[E1−τ ,E1] − 1[E2−τ ,E2].

We do not expect cancellation between the terms for arbitrary E1, E2, τ and
therefore must show that each term satisfies the desired estimate. Since they are
similar we only consider the [E1 − τ , E1] interval. Since for |τ | < ε0/T , we
have θT (τ ) > T δ0, thus

μk([E1 − τ , E1]) ≤ 1

T δ0

∫
R

θT (E1 − x)dμk(x)

∼ 1

T δ0

d

dx
(σz,1,E

k ∗ θT )(E1)

<
γ0(z)

T δ0
km−1/2

It follows that

|μk([E1, E2] − τ ) − μk[E1, E2])| ≤ 2γ0(z)

T δ0
km−1/2.

(2) Assume τ = � ε0
T , � ∈ Z.With no loss of generality, wemay assume � ≥ 1.Write

μk([E1, E2])− μk

(
[E1, E2] − �

T
ε0

)

=
�∑

j=1

μk

(
[E1, E2] − j − 1

T
ε0

)
− μk

(
[E1, E2] − j

T
ε0

)

and apply the estimate of (1) to upper bound the sum by

2�γ0(z)

T δ0
km−1/2 = 2γ0

ε0δ0
τkm−1/2

(3) Assume �
T ε0 ≤ τ ≤ �+1

T ε0 and |τh| ≤ ε1 with � ∈ Z. Write

μk([E1, E2] + τ ) − μk([E1, E2]) = μk([E1, E2] + τ ) − μk([E1, E2] + �
T ε0)

+μk([E1, E2] + �
T ε0) − μk([E1, E2]).

Apply (1) and (2) , it follows that

|μk([E1, E2] + τ ) − μk([E1, E2])| ≤ 2γ0(z)

δ0

(
τ

ε0
+ 1

T

)
γ0(σ,λ)km− 1

2 .

�
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8 Comparison with BPU

In this section we compare our formula for the leading coefficient in Theorem 2.2
with that in [2]. To do so, we need to introduce the notation and terminology of that
article.

Let φh
τ be the horizontal lift of the Hamiltonian flow to Xh (denoted P in [2]).

At each point p ∈ P , define T h
p P to be the horizontal subspace and �p to be the

positive definite Lagrangian subspace of T h
p P ⊗ C (i.e. the type (1, 0) subspace). By

the analysis of [3, p. 98] there exists a one-dimensional kernelWp of this action, the
line of ground statesWp ⊂ H∞(T h

p P). A normalized section of the bundleW → P
defined byWp is denoted by ep . Further denote by Mτ : H∞(T h

p P) → H∞(T h
p P) the

metaplectic representation of the symplectic group of the horizontal space H(T h
p P).

Let 
 denote the Hamilton vector field ξH . It is written in [2] that “
 acts on
H(T h

p P) and hence on H∞(T h
p P) by via the Heisenberg representation. The action

is by translations. The projection from H∞(T h
p (P)) to generalized invariant vectors

under 
 is defined by

P
v :=
∫ ∞

−∞
eit
vdt

the projection from H∞(T h
p P) to the invariant vectors for the flow of 
 p above z.

Further let Q be a first order pseudo-differential operator on L2(P) so that
�Q� = D�MH� and so that [Q,�] = 0. Let q be the symbol of Q, which gen-
erates a contact flow φt on P . Then the flow maps �p → �φt (p) and Mτ maps ep to
a multiple of eφt (p)). Define c(t) by 
qeφt (p) = ic(t)eφt (p).

Then the formula of [2] for the leading coefficient at a periodic orbit of period
τ is

Cτ ,0 = 1

2πn+1
〈M−1

τ ep1 , P
(ep1)〉e−i
∫ τ
0 (σsub(Q)+c(t))dt .

The approach of this paper is to replace H∞(T h
p ) by the osculating Bargmann–

Fock space, i.e. the Bargmann–Fock space on H 1,0
z M which carries a complex struc-

ture andHermitianmetric and hence aGaussian inner product. In effect, the quadratic
part of the scaled phase of Uk(t, z, z) replaces the symbol calculus. We do not use
Q but the related operator in our setting is Ĥk . The P
 operator there corresponds to
the dt integral near a period in our approach. We now verify that our formula agrees
with theirs to the extent possible.

We would like to compare the expression (9) with the one in [2],

〈M−1
T e0, P
e0〉 = 〈ηJ,DgT �J U−1

DgT e0,
∫
R

gB F,τ∗ e0dτ 〉 = ηJ,DgT

∫
R

〈U−1
DgT e0, g

B F,τ∗ e0〉dτ

where gτ is the BF translation (Heisenberg representation) of the constant vector
field ξH (0) by time τ . Here, we dropped the projection operator�J , since it is acting
on gB F,τ∗ e0, which is holomorphic already.
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Let
v = e−k|z|2/2

be the (unnormalized) coherent state centered at 0. We first review how Heisenberg
group and Metaplectic group acts on it.
(i) Let w ∈ C

m . Let β(w) be translation by w. Then

[β(w)v](z) = ek[zw̄−|z|2/2−|w|2/2] = ek[iIm(zw̄)−|z−w|2/2]

Indeed, it is centered at w, with a non-trivial phase factor iIm(zw̄).

(ii) Let M =
(

P Q
Q̄ P̄

)
∈ Spc, with M−1 =

(
P∗ −Qt

−Q∗ Pt

)
. Then

(Mv)(z) = 1

(det P)1/2
ek[ 12 z Q̄ P−1z− 1

2 |z|2].

And for our purpose, we also need

(M−1v)(z) = 1

(det P∗)1/2
ek[− 1

2 zQ∗(P∗)−1z− 1
2 |z|2]

Let 
 = −iα∂z + i ᾱ∂z̄ , the Hamiltonian vector field for H = αz̄ + ᾱz. Then,
we can write P
v as

(P
v)(z) =
∫
R

β(−iαt)vdt =
∫
R

ek[i t zᾱ−|z|2/2−|αt |2/2]dt

It is possible to perform the Gaussian integral, then we get

(P
v)(z) =
√

2π

k|α|2 ek[−|z|2/2−(zᾱ)2/2|α|2)]

We will see, it is better not to evaluate the dt integral first.

Proposition 8.1

〈M−1v, P
v〉 =
(

k

2π

)−m−1/2

(ᾱ(P∗)−1α)−1/2(det P∗)−1/2

The power of
(

k
2π

)
does not matter, since we did not choose a normalized coherent

state. The difference between P and P∗ with previous result may be due to the
difference of time +T or −T trajectories. Since we will sum time {nT | n ∈ Z}
trajectories, the difference does not matter in the end.
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Proof

〈M−1v, P
v〉 :=
∫
Cm

∫
R

1

(det P∗)1/2
ek[−zQ∗(P∗)−1z−|z|2/2]ek[i t zᾱ−|z|2/2−|αt |2/2]dtd Vol(z)

=
∫
R

∫
Cm

ek[−i t z̄α−zQ∗(P∗)−1z/2−|z|2−|αt |2/2]d Vol(z)dt

=
∫
R

∫
Cm

e−
1
2 k�(t,z)d Vol(z)dt

Let us do the complex Gaussian integral. The phase function is quadratic

� = (t zt z̄t
)⎛⎝ |α|

2 0 −iαt

0 Q∗(P∗)−1 I
−iα I 0

⎞
⎠
⎛
⎝t

z
z̄

⎞
⎠

We have

det

⎛
⎝|α|

2 0 −iαt

0 Q∗(P∗)−1 I
−iα I 0

⎞
⎠ = det

⎛
⎝|α|

2 iαt Q∗(P∗)−1 −iαt

0 0 I
−iα I 0

⎞
⎠

= det

⎛
⎝|α|

2 − αt Q∗(P∗)−1α iαt Q∗(P∗)−1 −iαt

0 0 I
0 I 0

⎞
⎠ = (−1)n(|α|2 − αt Q∗(P∗)−1α)

Again, we use ξH is invariant under M , to get (35), taking conjugate we have

ᾱt = ᾱt P∗ − αt Q∗

Hence

|α|2 − αt Q∗(P∗)−1α = |α|2 − (ᾱt P∗ − ᾱt )(P∗)−1α = ᾱt (P∗)−1α

Thus, doing the complex Gaussian integral, and note that (−1)n/2 from determinant
Hessian, should cancels with i n coming from the volume form, we get

〈M−1v, P
v〉 =
(

k

2π

)−m−1/2

(ᾱ(P∗)−1α)−1/2(det P∗)−1/2.

�
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Scattering Resonances as Viscosity Limits

Maciej Zworski

Abstract Using the method of complex scaling we show that scattering resonances
of −� + V , V ∈ L∞

c (Rn), are limits of eigenvalues of −� + V − iεx2 as ε → 0+.
That justifies a method proposed in computational chemistry and reflects a general
principle for resonances in other settings.

1 Introduction and Statement of Results

In this note we show that scattering resonances can be defined as viscosity limits,
that is limits of eigenvalues of Hamiltonians suitably regularized as infinity. The
detailed proofs are presented in the simplest case of the Schrödinger operator with a
compactly supported potential and rely only on standard techniques.

We consider
P := −� + V, V ∈ L∞

comp(R
n),

where L∞
comp denotes the spaces of bounded functions vanishing outside of some

compact set. (Similarly the subscript L•
loc denotes functions in the space L• on com-

pact sets.) The scattering resonances are defined as the poles of the meromorphic
continuation of resolvent:

RV (z) := (−� + V − z)−1 : L2(Rn) → L2(Rn), z ∈ C \ [0,∞),

from the upper half-plane, Im z > 0, through the continuous spectrum, [0,∞). More
precisely,

RV (z) : L2
comp(R

n) → L2
loc(R

n), (1.1)

continues meromorphically to the double cover of C when n is odd and to the loga-
rithmic cover of C when n is even. The poles of this continuation coincide with the
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poles of the scattering matrix for the potential V . Their multiplicities (except at the
threshold z = 0) are given by

m(z) := rank
∮

z
RV (ζ)dζ, (1.2)

where the integration is over a small circle around z – see [10, Chapter3].
Equivalently, we can consider Green’s function, that is the integral kernel of

RV (z),

RV (z) f (x) =
∫
Rn

G(z, x, y) f (y)dy, (1.3)

and look at the poles of the continuation of z �→ G(z, x, y) for x and y fixed. Another
way, based on the method of complex scaling, will be reviewed in Sect. 2.

We now consider a regularized operator,

Pε := −� + V − iεx2, ε > 0. (1.4)

(We write x2 := x2
1 + · · · + x2

n .) It is easy to see (with details reviewed in Sect. 4)
that Pε is an unbounded operator on L2(Rn) with a discrete spectrum. We have

Theorem 1 Suppose that {z j (ε)}∞j=1 are the eigenvalues of Pε. Then, uniformly on
compact subsets of {z : −π/4 < arg z < 7π/4},

z j (ε) → z j , ε → 0+,

where z j are the resonances of P.

A simple one dimensional example illustrating the theorem is given in Fig. 1.
Remarks. 1. A more precise statement involving continuity of spectral projections
is given in Sect. 5. The term viscosity is motivated by the viscosity definition of
Pollicott–Ruelle resonances given in Dyatlov–Zworski [9] – see Example3 below.
2. When ε < 0 the spectrum of Pε is given by complex conjugates of the spectrum
of P−ε. Hence we have

z j (ε) → z̄ j , ε → 0−, (1.5)

uniformly on compact subsets of {z : −7π/4 < arg z < π/4}.
3. The term−iεx2 is an example of a complex absorbing potential andother potentials
can also be used – see the discussion below. The proof here requires some analyticity
properties of the complex absorbing potential.
4. The restriction to arg z > −π/4 when using−iεx2 is due to the fact that for V ≡ 0
the spectrumof−� − iεx2 is givenby ε

1
2 e−πi/4(2|�| + n), � ∈ N

n which is a rescaled
spectrum of the Davies harmonic oscillator – see Sect. 3. One can expand the range
using εe−iαx2, 0 < α < π in which case we recover resonances with arg z > −α/2.
5. The proof applies with simple modifications to compactly supported black box
perturbations on R

n introduced in [25] – see [10, Chapter4] and [24]. In that case
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we need to replace −iεx2 by −iε(1 − χ(x))x2 where χ ∈ C∞
c (Rn) is equal to 1 on

a sufficiently large set – see Example2 below.
The computational method based on calculating eigenvalues of Pε was introduced

in physical chemistry – see Riss–Meyer [19] and Seideman–Miller [20] for the orig-
inal approach and Jagau et al. [13] for some recent developments and references.
However no rigorous mathematical treatments seem to be available and some new
interesting open questions can be posed – see Example4 below.

Fixed complex absorbing potentials have already been used in mathematical liter-
ature on scattering resonances. Stefanov [26] showed that semiclassical resonances
close to the real axis can be well approximated using eigenvalues of the Hamiltonian
modified by a complex absorbing potential. Nonnenmacher–Zworski [16, 17] used
fixed complex absorbing potentials to study resonance problems employing gluing
techniques of Datchev–Vasy [5, 6]. Yet another application was given by Vasy in
[27] where microlocal complex absorbing potentials were used to obtain Fredholm
properties andmeromorphic continuation of the resolvents (see also [10, Chapter5]).

We conclude this section with some examples to which Theorem1 does not apply
directly but which fit in the same framework.

Example1 As explained in [23, (c.31)–(c.33)] the theory of Helffer–Sjöstrand [11]
applies to the case of potentials which are homogeneous of degree m and satisfy the
condition V (x) = 0, x �= 0 =⇒ ∇V (x) �= 0. That means that resonances of P =
−� + V can be defined in {z ∈ C, arg z > −θ0} for some θ0 > 0. It is interesting to
ask if the viscosity limit gives a global definition in that case.

That is easily seen in the case of quadratic potentials. In fact, suppose that

V (x) = λ2
1x2

1 + · · · + λ2
r x2

r − μ2
1x2

r+1 − · · · − μ2
n−r x2

n , λ j ,μ� > 0.

π
4

x

V (x) resonances
ε = 0.1
ε = 0.25

Fig. 1 An illustration of the results of Theorem1 in the case of a specific potential shown on
the left. Resonances are computed using squarepot.m [4]. The eigenvalues of Pε, ε = 1/4 and
ε = 1/10 are computed by discretizing the operator using using the first 151 eigenfunctions of the
harmonic oscillator D2

x + x2. For more numerical illustrations and matlab codes see https://math.
berkeley.edu/~zworski/viscap.html

https://math.berkeley.edu/~zworski/viscap.html
https://math.berkeley.edu/~zworski/viscap.html
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As recalled in Sect. 3 the eigenvalues of Pε, ε > 0, are given by

r∑
j=1

(λ2
j − iε)

1
2 (2k j + 1) − i

n−r∑
j=1

(μ2
j − iε)

1
2 (2k j+r + 1), k ∈ N

n
0,

where the branch of the square root is chosen to be positive on R+. As ε → 0+ we
obtain the globally defined set of resonances:

r∑
j=1

λ j (2k j + 1) − i
n−r∑
j=1

μ j (2k j+r + 1), k ∈ N
n
0.

Example2 This example fits in the framework of black box scattering with one
dimensional infinity. Consider the modular surface M = SL2(Z)\H2 and �M ≤ 0
the Laplacian on M . We then put P = −�M − 1

4 where 1
4 guarantees that the the

continuous spectrum of P is given by [0,∞). This is a black box Hamiltonian on
H0 ⊕ L2([0,∞)) in the sense of [25] – see [10, §4.1]. Traditionally, the resonances
of the quotient M are defined as poles of the meromorphic continuation of (−�M −
s(1 − s))−1 from Res > 1

2 to C and are given by the embedded eigenvalues when
Res = 1

2 and by the non-trivial zeros of ζ(2s) where ζ is the Riemann zeta function.
The resonances of P are then expressed as s(1 − s).

If we choose the fundamental domain of SL2(Z) to be {x + iy : |x | ≤ 1, x2 +
y2 ≥ 1} then the Laplacian in the cusp y > 1 is y−2(∂2

x + ∂2
y). The Hamiltonian on

L2([0,∞)r ) is given by −∂2
r , r = log y – see [10, §4.1, Example3]. In the language

of Theorem1 (see Remark5) and in (x, y) coordinates

Pε = −�M − 1
4 − iε(1 − χ(y))(log y)2, (1.6)

where χ ∈ C∞
c ([0,∞)), χ(y) ≡ 1 for y < 3

2 and χ(y) ≡ 0 for y > 2. The operator
Pε has discrete spectrum for ε > 0 and the eigenvalues converge to the resonances
of P uniformly on compact subsets of Im z > −π/4. Equivalently if we define �ε

s(ε) ∈ �ε ⇐⇒ s(ε)(1 − s(ε)) ∈ σ(Pε)

The limit points of �ε, ε → 0+, in Res < 1
2 , |s| > C are given by the nontrivial

zeros of ζ(2s). (Strictly speaking, when using the black box formalism we should
consider Pε = −�M − 1

4 − iε(1 − χ(y))(log y)2�0 where�0 is the projection onto
the zero mode of−∂2

x , x ∈ R/Z. In our case the absorbing potential has a mild effect
on higher modes so the projection can be dropped.)

Example3 Suppose that X is a compact manifold and V is a vector field on X
generating an Anosov flow, ϕt = exp tV . That means that the tangent space to X
has a continuous decomposition Tx X = E0(x) ⊕ Es(x) ⊕ Eu(x) which is invariant,
dϕt (x)E•(x) = E•(ϕt (x)), E0(x) = RV (x), and for some C and θ > 0 fixed
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|dϕt (x)v|ϕt (x) ≤ Ce−θ|t ||v|x , v ∈ Eu(x), t < 0,

|dϕt (x)v|ϕt (x) ≤ Ce−θ|t ||v|x , v ∈ Es(x), t > 0.
(1.7)

where | • |y is given by a smooth Riemannian metric on X . A class of examples is
given by X = T 1M where M is a negatively curved Riemannian manifold and ϕt is
the geodesic flow in its unit tangent bundle X .

If �g ≤ 0 is the Laplacian for some metric on X then – see [9] – the limit set of
the spectrum of

Pε = V/ i + iε�g, ε → 0+

is a discrete set givenby thePollicott–Ruelle resonances – see [9] for the definition and
references. Adding the Laplacian corresponds to taking a viscosity regularization and
that explains our terminology. Another interpretation is given in terms of Brownian
motion: the pullback by the flow flow x(t) := ϕt (x(0)), is given by eit P0 f (x) =
f (x(t)), ẋ(t) = −Vx(t), x(0) = x . For ε > 0 the evolution equation is replaced by
the Langevin equation:

e−i t Pε f (x) = E [ f (x(t))] , ẋ(t) = −Vx(t) + √
2εḂ(t), x(0) = x,

where B(t) is the Brownian motion corresponding to the metric g on X . Hence
considering Pε corresponds to a stochastic perturbation of the deterministic flow.
In the case of scattering resonances the same interpretation can be proposed on the
Fourier transform side.

The assumption that the flow satisfies (1.7) is crucial as otherwise the limit set is
typically not discrete. The simplest example is given by X = S

1 × S
1, S1 = R/2πZ,

andV = ∂x1 + α∂x2 ,α /∈ Q,�g = ∂2
x1 + ∂2

x2 . In that case the limit set of the spectrum
of Pε is the lower half plane. Other limit sets are possible, for instance in the case
of the geodesic flow on S

2, X = T 1
S
2 � SO(3). The spectrum of P0 is given by Z

(with infinite multiplicities) and if we take �g to be the Casimir operator then the
limit set of the spectrum of Pε as ε → 0+ is Z − i[0,∞). For yet another example
see [9, §1].

Example4 We expect that viscosity definition of resonances remains valid, in a small
angle near the real axis, for all dilation analytic potentials – see [11] and references
given there and Sect. 2 below for a review of complex scaling. It would be interesting
to find a Schrödinger operator P for which the limit set of the spectrum of Pε, ε → 0
is not discrete. Candidates are given by potentials which are not dilation analytic, for
instance,

−∂2
x + sin x

x
, x ∈ R.

Notation. We use the following notation: f = O�(g)H means that ‖ f ‖H ≤ C�g
where the norm (or any seminorm) is in the space H , and the constant C� depends
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on �. When either � or H are absent then the constant is universal or the estimate is
scalar, respectively. When G = O�(g) : H1 → H2 then the operator G : H1 → H2

has its norm bounded by C�g. Also when no confusion is likely to result, we denote
the operator f �→ g f where g is a function by g.

2 Review of Complex Scaling

The complex scalingmethod changes the original Hamiltonian P = P0 to a non-self-
adjoint Hamiltonian P0,θ such that P0,θ − z : H 2 → L2 is a Fredholm operator when
arg z > −2θ. It was introduced by Aguilar–Combes [1], Balslev–Combes [2] and
Simon [21]. For a review of practical applications of this method in computational
chemistry see Reinhardt [18]. As the method of perfectly matched layers (PML)
it has reappeared in numerical analysis – see Berenger [3]. The presentation here
follows the geometric approach of Sjöstrand–Zworski [25]. Eventually the proof
that the viscosity eigenvalues converge to scattering resonances is a straightforward
application of themethods of [25] (see also [24, §7.2] for amore detailed presentation
and [10, §4.5] for an approach to complex scaling based on the continuation of the
Green function G(z, x, y) in (1.3) in variables x and y).

Suppose that � ⊂ C
n is an open subset and that

P(z, Dz) =
∑

|α|≤m

aα(z)Dα
z , Dz j := 1

i ∂z j , Dα
z = Dα1

z1 · · · Dαn
zn

, (2.1)

is a differential operator with holomorphic coefficients. For instance we can have
P(z, Dz) = ∑n

j=1 D2
z j

− iεz2j .
Suppose that � ⊂ C

n is an open subset and that � ⊂ � is a maximal totally real
submanifold. That means that � is a smooth real submanifold of dimension n such
that

∀ x ∈ �, Tx� ∩ iTx� = {0}. (2.2)

Here we identify Tx� with a real subspace of Cn . The condition (2.2) means that
there exists a complex linear change of variables A : Cn → C

n such that A(Tx�) =
R

n ⊂ C
n . Locally, � can be represented using real coordinates:

R
n ⊃ U � x �→ f (x) = ( f1(x), · · · , fn(x)) ∈ � ⊂ � ⊂ C

n. (2.3)

Composing the matrix ∂x f (x) := (∂x j fk(x))1≤k, j≤n with A we obtain an invertible
matrix Rn → R

n . That means that

det

(
∂ fk(x)

∂x j

)
1≤k, j≤n

�= 0. (2.4)
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Conversely, if (2.4) holds, then ∂ f (x) is an injective complex linear matrix and for
any sets U, V ⊂ C

n , ∂ f (x)(U ) ∩ ∂ f (x)(V ) = ∂ f (x)(U ∩ V ). Hence,

Tx� ∩ iTx� = ∂ f (x)(Rn) ∩ i∂ f (x)(Rn) = ∂ f (x)(Rn) ∩ ∂ f (x)(iRn)

= ∂ f (x)(Rn ∩ iRn) = {0},

and (2.4) implies (2.2). The volume form on � is obtained by pushing forward the
standard volume form on R

n by f . That of course depends on the choice of f (in
what follows the uniformity will be guaranteed by (2.8) below).

Example. As a simple illustration consider n = 2 and f (x1, x2) = (x1 + i x2, 0) ∈
C

2. Then

∂x f (x) =
[
1 i
0 0

]
, Tx f (R2) = C ⊕ {0} ⊂ C

2.

The tangent space is not totally real and condition (2.4) is violated. To introduce the
next topicwe also notewe cannot restrict operators, P , with holomorphic coefficients
to f (R2) in a way that for holomorphic functions, u, (Pu)| f (R2) = (Pf (Rn))(u| f (Rn)).

As an example consider P = ∂z2 and u = z2.

The point of introducing totally real submanifolds� is the fact that an operator, P ,
with holomorphic coefficients can be restricted to an operator with complex smooth
coefficients on�, P� , in such a way that for u holomorphic near�, Pu|� = P�(u|�).

The differential operator P(z, Dz) given in (2.1) defines a unique P� a differential
operator on � as follows. Using (2.3) we can identify a small neighbourhood of
any z0 ∈ � with U ⊂ R

n . Then u ∈ C∞(� ∩ f (U )) can be identified with u ◦ f ∈
C∞(U ). We then have

(P�u) ◦ f (x) =
∑

|α|≤m

(aα ◦ f )(x)((t∂x f (x)−1Dx)
α(u ◦ f )(x). (2.5)

It is easy to see that this definition is independent of the choice of f and that the
condition (2.4) is crucial.

The key fact is the standard result about continuation of solutions to P�u. The
proof based on [14, 15, 22] can be found in [25, Lemma3.1] and (in more detail)
[24, Lemma7.2]. With the notation above we have the following:

Lemma 1 Suppose that W ⊂ R
n is open and that F : [0, 1] × W � (s, x)

�→ F(s, x) ∈ C
n, is a smooth proper map satisfying for all s ∈ [0, 1]

det ∂x F(s, x) �= 0, and x �→ F(s, x) is injective.

In addition assume that there exists a compact set K ⊂ W such that

x ∈ W \ K =⇒ F(0, x) = F(s, x), 0 ≤ s ≤ 1,
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and that F([0, 1] × W ) ⊂ � with P(z, Dz) a differential operator with holomorphic
coefficients in �.

Now assume that for �s := F({s} × W ), P�s is an elliptic differential operator in
the sense that ∣∣ ∑

|α|=m

aα(z)ζα
∣∣ ≥ C |ζ|m, (z, ζ) ∈ T ∗�s .

If u0 ∈ C∞(�0) and P�0u0 extends to a holomorphic function on �, then for every
s ∈ [0, 1] there exists a holomorphic function, Us defined near �s such that, for
some ε,

U0|�0 = u0, |s − s ′| < ε =⇒ Us = Us ′ on the intersection of their domains.

In other words, the function u0 defined on �0 extends to a possibly multivalued
function U in a neighbourhood of f ([0, 1] × W ).

The lemma will be applied to a family of deformations ofRn inCn . Our goal is to
restrict the operator Pε = −� − iεx2 + V , ε ≥ 0, to the corresponding totally real
submanifolds. For that the deformation has to avoid the support of V and we choose
r0 such that supp V ⊂ B(0, r0). We then construct

[0,π) × [0,∞) � (θ, t) �−→ gθ(t) ∈ C (2.6)

which is C∞, is injective on [0,∞) for every fixed θ and satisfies

gθ(t) = t for 0 ≤ t ≤ r0, (2.7)

0 ≤ arg gθ(t) ≤ θ, ∂tgθ �= 0, (2.8)

arg gθ(t) ≤ arg ∂tgθ(t) ≤ arg gθ(t) + ε0, (2.9)

gθ(t) = eiθt for t ≥ T0 where T0 depends only on ε0 and r0. (2.10)

(To construct such a function choose χ ∈ C∞(R) such that χ(t) = 0 for t ≤ r0 + 1
and χ(t) = 1 for t ≥ T0 − 1, and 0 ≤ χ′(t) ≤ ε0/(tθ), where the last condition can
be met once T0 − r0 � eθ/ε0 . We then put gθ(t) = teiθχ(t).) We now define the totally
real submanifolds, �θ, as images of Rn under the maps

fθ : Rn → C
n, fθ(x) := gθ(|x |)x/|x |, �θ := fθ(R

n). (2.11)

For ε ≥ 0 and 0 ≤ θ < π we put

−�θ := (−�z)|�θ
, xθ := z|�θ

,

Qε,θ := −�θ − iεx2
θ , Pε,θ := Qε,θ + V . (2.12)
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Parametrizing �θ by (t,ω) ∈ [0,∞) × S
n−1, (t,ω) �→ gθ(t)ω, we have

− �θ = (
g′

θ(t)
−1Dt

)2 − i(n − 1)gθ(t)
−1g′

θ(t)
−1Dt + gθ(t)

−2D2
ω, (2.13)

where Dt = ∂t/ i and D2
ω = −�Sn−1 . The symbol is given by

σ(−�θ) = g′
θ(t)

−1τ 2 + gθ(t)
−2w2, (t,ω; τ , w) ∈ T ∗([0,∞) × S

n−1).

The basic result based on ellipticity at infinity is

−2θ + δ < arg z < 2π − 2θ − δ, |z| ≥ δ =⇒ (−�θ − z)−1 = Oε(1) : L2(�θ) → H2(�θ).

This follows from [25, Lemmas3.2–3.5] applied with P = −�. As will be reviewed
in Sect. 4 this shows that P0,θ − z : H 2 → L2 is a Fredholm operator in this range
of values of z and that the eigenvalues are independent of θ.

The crucial property is

Lemma 2 Let R0(z) = (−� − z)−1 : L2 → H 2, Im z > 0, be the free resolvent
and let R0(z) also denote its analytic continuation across [0,∞) as an operator
L2
comp → H 2

loc.
Suppose that χ ∈ C∞

c (B(0, r0)) so that χ is defined on �θ. Then for −2θ < arg z <

2π − 2θ, θ < π,
χR0(z)χ = χ(−�θ − z)−1χ. (2.14)

Proof We recall the main features of the proof which is implicit in [25, §3]. It is
sufficient to establish the identity (2.14) for 0 < arg z < 2π − 2θ as it then follows
by analytic continuation. It is also enough to show that in this range of z and 0 ≤
θ1 < θ2 ≤ θ, |θ1 − θ2| � 1,

χ(−�θ1 − z)−1χ = χ(−�θ2 − z)−1χ. (2.15)

For that we show that for f ∈ L2(B(0, r0)) ⊂ L2(�θ j ) there exists U holomorphic
in a neighbourhood �θ1,θ2 of

⋃
θ1≤θ≤θ2

(�θ \ B(0, r0)) ⊂ C
n

such that

U |�θ j
(x) = [(−�θ j − z)−1χ f ](x) for x ∈ �θ j \ B(0, r0). (2.16)

The unique continuation property for second order elliptic operators then shows that

χ(�θ1 − z)−1χ f = χ(�θ2 − z)−1χ f,

proving (2.14).



644 M. Zworski

To show the existence of U such that (2.16) holds we use Lemma1 applied to a
modified family of deformations. The key is to show that a holomorphic extension,
U , of the solution to

(−�θ1 − z)u1 = χ f, u1 ∈ L2(�θ1), u1 = U |�1

satisfies u2 := U |�2 ∈ L2(�θ2) (the equation (−�θ2 − z)u2 = χ f is automatically
satisfied). That means that u2 = (−�θ2 − z)−1(χ f ) proving (2.16).

The modified family of contours is obtained as follows. Fix T � 1 and choose
χ ∈ C∞

c ((2, 5); [0, 1]) equal to 1 near [3, 4]. Then define

gθ1,θ2,T (t) := gθ1(t) + χ(t/T )(gθ2(t) − gθ1(t)),

�θ1,θ2,T := {gθ1,θ2,T (t)ω : t ∈ [0,∞), ω ∈ S
n−1} ⊂ C

n. (2.17)

We can apply Lemma1 to the family of totally real submanifolds interpolating
between�θ1 and�θ1,θ2,T : [0, 1] � s �−→ �θ1,θ1+s(θ1,θ2),T . That implies that there exists
a holomorphic function U T defined in a neighbourhood of the union of these sub-
manifolds and such that u1 = U T |�θ1

. Changing T we obtain a family of functions
agreeing on the intersections of their domains and that gives U defined in the neigh-
bourhood �θ1,θ2 . To see that U |�θ2

∈ L2(�θ2) it suffices to show that (Fig. 2)

‖U T |�θ1 ,θ2 ,T ‖L2(�θ1 ,θ2 ,T ) ≤ C0‖u1‖L2(�θ1∩{T ≤|z|≤6T },), (2.18)

R0 T 2T 3T 4T 5T 6T

θ1

θ2

Γθ1,θ2,T

Fig. 2 The deformed totally real submanifold �θ1,θ2,T interpolating between �θ1 and �θ2
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where C0 is independent of T . (We apply (2.18) with T = 2 j and sum over j .)
To see (2.18)

�1(T ) = {z ∈ C
n : 2T ≤ |z| ≤ 5T } ∩ �θ1,θ2,T ⊃ �θ1,θ2,T \ �θ1 ,

�2(T ) = {z ∈ C
n : T ≤ |z| ≤ 6T } ∩ �θ1,θ2,T , �2(T ) \ �1(T ) ⊂ eiθ1Rn.

We claim that for T large and u ∈ C∞(�θ1,θ2,T ),

‖u‖L2(�1(T )) ≤ C‖(−��θ1 ,θ2 ,T − z)u‖L2(�2(T )) + C‖u‖L2(�2(T )\�1(T )). (2.19)

For |θ2 − θ1| � 1, this estimate is a perturbation of a standard semiclassical ellip-
tic estimate: treating h := 1/T as a semiclassical parameter, uniform ellipticity of
−e−2iθh2� − z shows that for v ∈ C∞(Rn),

‖v‖L2({2≤|x |≤5}) ≤ C‖(−e−2iθh2� − z)v‖L2({1≤|x |≤6}) + C‖v‖L2({1≤|x |≤2}∪{5≤|x |≤6}).

(This can be seen applying the inverse from [28, Theorem4.29] to χv where
χ ∈ C∞

c ((1, 6)) is equal to 1 on [2, 5].) The properties of � j (T ) then imply (2.18)
completing the argument. �

3 The Davies Harmonic Oscillator

The operator Hε,γ := −� + e−iγεx2, ε > 0, 0 ≤ γ < π, was used by Davies [7] to
illustrate properties of non-normal differential operators. We recall the following
basic result:

Lemma 3 The operator Hε,γ is an unbounded operator on L2 with the discrete
spectrum given by

σ(Hε,γ) = e−iγ/2√ε(n + 2|Nn
0|), |α| = α1 + · · · + αn. (3.1)

If � � {z : −γ < arg z < 0} \ e−iγ/2[0,∞), then for some constant C1 = C1(�),

1

C1
eε− 1

2 /C1 ≤ ‖(Hε,γ − z)−1‖L2→L2 ≤ C1eC1ε
− 1

2
, z ∈ �. (3.2)

In addition for any δ > 0 there exists a constant C2 such that, uniformly in ε > 0,

‖(Hε,γ − z)−1‖L2→L2 ≤ C2/|z|, δ < arg z < 2π − γ − δ, |z| > δ. (3.3)

Proof By rescaling y = √
εx this operator in unitarily equivalent to−ε�y + e−iγ y2,

that is a semiclassical, h = √
ε, quadratic operator. For the analysis of the spec-

trum and upper bounds on the resolvent for general quadratic operators see Hitrik–
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Sjöstrand–Viola [12] and references given there – in particular we obtain (3.1) and
the upper bound in (3.2). The lower bound in (3.2) follows from general arguments
for operators with analytic coefficients – see [8, §3] and the bound (3.3) from
(semiclassical) ellipticity of −h2�y + e−iγ y2 − z for δ < arg z < 2π − γ − δ, |z|
> δ. �

We now consider the special case of Hε,π/2 = Qε,0 and of its deformation Qε,θ

– see (2.12). The facts we need are given in the next two lemmas. The first is the
analogue of Lemma2:

Lemma 4 In the notation of Lemma2, 0 ≤ θ ≤ π/8, ε > 0, and −2θ < arg z <

3π/2 + 2θ we have
χ(Qε,0 − z)−1χ = χ(Qε,θ − z)−1χ. (3.4)

In particular, for 0 ≤ θ ≤ π/8, the spectrum is independent of θ and given by√
εe−iπ/4(n + 2|Nn

0|).
Proof We follow the argument in the proof of Lemma2 and use the notation intro-
duced there. Hence it is enough to prove that 0 ≤ θ1 < θ2 ≤ π/8 and |θ1 − θ2| small
it is enough to show that (Fig. 3)

χ(Qε,θ1 − z)−1χ = χ(Qε,θ2 − z)−1χ.

Fig. 3 A visualization of the
spectrum of
Qε,0 = −� − iεx2 which is
equal to the spectrum of the
deformed operator Qε,θ . The
lightly shaded region is the
numerical range of Qε,0 and
the darker shaded region, the
numerical range of
−e−2iθ� − ie2iθεx2. The
estimates for the resolvents
of Qε,θ improve outside of
that region

2θ

2θ

π/4

σ(Q
ε,0 ) =

σ(Q
ε,θ )
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We only need to establish this for z ∈ ei(−2θ1+π/2)(1,∞) as then the result follows
by analytic continuation. The only difference is an estimate which replaces (2.19):
for τ > 1,

‖u‖L2(�1(T )) ≤ C‖(Q�θ1 ,θ2 ,T − ie−2θ1τ )u‖L2(�2(T )) + C‖u‖L2(�2(T )\�1(T )),

Qθ1,θ2,T := −��θ1 ,θ2 ,T − iε(x |�θ1 ,θ2 ,T )2
(3.5)

uniformly for T � 1. To see this we first note that for ε > 0, Qθ1,θ2,T − z, z ∈ C, is a
Fredholm operator (since it is elliptic and near infinity it is equal to e−2iθ Hε,π/2−4θ).

To obtain an estimate we notice that for t > T and gθ1,θ2,T defined in (2.17),

g′
θ1,θ2,T (t) = χ(t/T )eiθ2 + (1 − χ(t/T ))eiθ1 + (t/T )χ′(t/T )(eiθ2 − eiθ1),

so that from (2.8) and (2.10),

θ1 − C |θ2 − θ1| ≤ arg g′
θ1,θ2,T (t) ≤ θ2.

Also, θ1 ≤ arg gθ1,θ2,T (t) ≤ θ2. Hence,

Re〈(e2iθ1 Qθ1,θ2,T − iτ )u, u〉 ≥ ‖Du‖2/C

where we used the fact that for for 0 ≤ θ ≤ π/8, Re(−ie4θ) ≥ 0. The imaginary part
is then estimated as follows,

−Im 〈(e2iθ1 Qθ1,θ2,T − iτ )u, u〉 ≥ τ‖u‖L2(�θ1 ,θ2 ,T ) − O(|θ2 − θ1|)‖Du‖2.

We conclude that when |θ2 − θ1| is small enough

‖(Q�θ1 ,θ2 ,T − ie−2iθ1τ )u‖ ≥ (‖u‖ + ‖Du‖)/C,

This and the Fredholm property imply that

(Qθ1,θ2,T − ie−2iθ1τ )−1 = O(1) : L2(�θ1,θ2,T ) → H 1(�θ1,θ2,T ).

that is the operator is invertible with bounds independent of T . From this (3.5)
follows by a standard localization argument: we choose χT ∈ C∞(�2(T ), [0, 1]),
such that χT = 1 on �1(T ) with derivative bounds independent of T . We then apply
the inverse above to (Qθ1,θ2,T − ie−2iθ1τ )χT u with the commutator terms estimated
by ‖u‖L2(�2(T )\�1(T )). �

The next lemma shows how complex scaling dramatically improves the exponen-
tial bound (3.2):

Lemma 5 Suppose that 0 ≤ θ ≤ π/8 and that � � {z : −2θ < arg z < 3π/2 +
2θ}. Then there exists C = C(�) (in particular independent of ε > 0) such that
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‖(Qε,θ − z)−1‖L2→L2 ≤ C, z ∈ �.

Proof Letχ j ∈ C∞
c ([0,∞)) be equal to 1 on [0, r0] and satisfyχ j = 1 on suppχ j+1,

j = 0, 1. Parametrizing �θ by Fθ : [0,∞)t × S
n−1 → �θ, Fθ(t,ω) = gθ(t)ω (with

gθ given in (2.6)) we define functions χh
j ∈ C∞

c (�θ) as

χh
j ◦ Fθ(t,ω) := χ j (th), 0 < h ≤ 1.

In view of (2.10) and (2.13) we see that for h small enough

Qε,θ(1 − χh
1) = (−e−2iθ�x − iεe2iθx2)(1 − χh

1)

= e−2iθ Hε,γ(1 − χh
1), γ := π/2 − 4θ, x = tω.

In view of (3.3) we have

(1 − χh
2)e

2iθ(Hε,γ − e2iθz)−1(1 − χh
2) = Oδ(1) : L2(�θ) → H 2(�θ), (3.6)

for
−δ < 2θ + arg z < 2π − γ − δ = 3π/2 + 4θ − δ, |z| > δ,

and in particular for z ∈ �. We stress that the bounds are independent of ε.
Noting that

(−�θ − z)−1 = O(1) : L2(�θ) → H 2(�θ), z ∈ �, (3.7)

(for 0 ≤ θ ≤ π/8, −2θ < arg z < 2π − 2θ) we now put

T h
ε,θ(z) := χh

0(−�θ − z)−1χh
1 + (1 − χh

1)e
2iθ(Hε,γ − e2iθz)−1(1 − χh

2),

so that (Qε,θ − z)T h
ε,θ(z) = I + K h

ε,θ(z), where

K h
ε,θ(z) := − iεx2

θχ
h
0(−�θ − z)−1χh

1 − [�θ,χ
h
0](−�θ − z)−1χ1

+ [�θ,χ
h
1]e2iθ(1 − χh

2)(Hε,γ − e2iθz)−1(1 − χh
2).

Since [�θ,χ
h
j ] = O(h) : H 1(�θ) → L2(�θ) and x2

θχ
h
1 = O(h−2) : L2(�θ) →

L2(�θ), we conclude from (3.6) and (3.7) that for z ∈ �,

K h
ε,θ(z) = O(h−2ε) + O(h) : L2(�θ) → L2(�θ).

Hence by choosing h first, we see that for ε < ε0(h), I + K h
ε,θ(z) has a uniformly

bounded inverse and 0 ≤ ε < ε0

(Qε,h − z)−1 = T h
ε,θ(z)(I + K h

ε,θ(z))
−1 = O(1) : L2(�θ) → L2(�θ), z ∈ �.



Scattering Resonances as Viscosity Limits 649

In view of Lemma4 we know that for z ∈ �, (Qε,h − z)−1 exists for ε > ε0 and that
gives the bound for all values ε. �

4 Meromorphic Continuation

In this section we will review the meromorphy of the resolvent RV (z), see (1.1), in
a way connecting it to the resolvent of Pε given in (1.4), ε ≥ 0. For that we define

Rε(z) = (−� − iεx2 − z)−1, RV,ε(z) = (−� − iεx2 + V − z)−1, ε ≥ 0. (4.1)

For ε > 0, these operators are meromorphic for z ∈ C as operators on L2. For ε = 0,
R0(z) is holomorphic in the sense of (1.1) on the double cover of C \ {0} when n is
odd and on the logarithmic cover when n is even – see for instance [10, §3.1]. We
are only concerned with continuation to arg z ≥ −π/4.

In what follows we apply the usual arguments for meromorphic continuation –
see [[10], §§2.2, 3.2] – but with R0(z) replaced by Rε(z). The complex scaling is
needed to establish the crucial Lemma7 which involves only the unscaled resolvent,
Rε(z).

Let ρ ∈ C∞
c (Rn; [0, 1]) be equal to 1 on a neighbourhood of supp V . We have

Lemma 6 For ε ≥ 0

z �→ (I + V Rε(z)ρ)−1, −π/4 < arg z < 7π/4,

is a meromorphic family of operators on L2(Rn) for with poles of finite rank. Then

mε(z) := 1

2πi
tr

∮
z
(I + V Rε(w)ρ)−1∂w(V Rε(w)ρ)dw, (4.2)

where the integral is over a positively oriented circle enclosing z and containing no
poles other than possibly z, satisfies

mε(z) =
⎧⎨
⎩

1
2πi

∮
z(w − Pε)

−1dw, ε > 0

m(z), ε = 0,
(4.3)

where m(z) is the multiplicity of the resonance z given by (1.2).

Proof We recall the standard argument (see [10, §2.2, 3.2] and references given
there). For any δ > 0 and uniformly in ε ≥ 0,

Rε(z) = Oδ(1/|z|) : L2(Rn) → L2(Rn), δ < arg z < 3π/2 − δ, |z| > δ. (4.4)

This follows from self-adjointness for ε = 0 and from (3.3) for ε > 0.
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For z in (4.4) and Qε := −� − iεx2,

(Pε − z) = (Qε − z)(I + Rε(z)V )

= (I + V Rε(z)ρ)(I + V Rε(z)(1 − ρ))(Qε − z).
(4.5)

Noting that
(I + V Rε(z)(1 − ρ))−1 = I − V Rε(z)(1 − ρ)

we obtain from (4.4) and (4.5) that

RV,ε(z) = Rε(z)(I + V Rε(z)ρ)−1(I − V Rε(z)(1 − ρ)),

δ < arg z < 3π/2 − δ, |z| � 1,
(4.6)

where for large |z|, I + V Rε(z)ρ is invertible by a Neumann series argument. Since
z �→ V Rε(z)ρ is a holomorphic family of compact operators for −π/4 < arg z <

3π/4 (see Lemma3 for the case ε > 0), z �→ (I + V Rε(z)ρ)−1 is a meromorphic
family operators in the same range of z. (For ε > 0 the meromorphy is in fact valid
for z ∈ C – see [10, §C.4].) The formula (4.6) remains valid for that range of z with
boundedness on L2 for ε > 0. For ε = 0 we note that

(I − V R0(z)(1 − ρ)) , (I + V R0(z))
−1 : L2

comp → L2
comp, R0(z) : L2

comp → L2
loc,

and we obtain the meromorphic continuation of RV,0(z) : L2
comp → L2

loc. Arguing
as in the proof of [10, Theorem3.23] we obtain the multiplicity formula (4.3).
(This can also seen using complex scaling as reviewed in the proof of Theorem2
below.) �

5 Proof of Convergence

The proof of convergence is based on Lemma6 and on the following lemma in which
we use the complex variable techniques of Sects. 2, 3.

Lemma 7 For χ ∈ C∞
c (Rn) consider

T χ
ε (z) := χ(−� − iεx2 − z)−1x2(−� − z)−1χ, 0 < arg z < 3π/2. (5.1)

Then T χ
ε continues to a holomorphic family of operators

T χ
ε (z) : L2 → L2, −π/4 < arg z < 7π/4.

If � � {z : −π/4 < arg z < 3π/2} then there exists C = C�,χ (independent of ε)
such that

‖T χ
ε (z)‖L2→L2 ≤ C, z ∈ �, ε > 0. (5.2)
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Proof In the notation of (4.1) we see that for δ < arg z < 3π/2 − δ, |z| > δ,

χ(Rε(z) − R0(z))χ = iεχRε(z)x2R0(z)χ,

where we note that, for in our range of z, R0(z)χ : L2 → e−cδ |x |L2 (by looking, for
instance at the explicit formulas for the resolvent, see [10, §3.1], or by conjugation
with exponential weights) and consequently x2R0(z)χ : L2 → L2. Hence

T χ
ε (z) = − i

ε
(χRε(z)χ − χR0(z)χ). (5.3)

The right hand side is holomorphic for −π/4 < arg z < 5π/4 which provides holo-
morphic continuation of T χ

ε (z), ε > 0.
We now use Lemmas2 and 4. For that we choose r0 in the definition of �θ large

enough so that suppχ ⊂ B(0, r0) and take θ = π/8. Then we have

T χ
ε (z) = − i

ε

(
χ(Qε,θ − z)−1χ − χ(Q0,θ − z)−1χ

)

= χ(Qε,θ − z)−1x2
θ (Q0,θ − z)−1χ,

(5.4)

where, in the notation of (2.12), xθ := x |�θ
. We now note that for z ∈ �,

(Q0,θ − z)−1χ : L2(�θ) → e−c�|x |L2(�θ). (5.5)

This can be seen by conjugation by exponential weights or by constructing a
parametrix for Q0,θ as in the proof of Lemma4 and using the explicit properties
of (−e−2iθ� − z)−1 = e2iθ R0(e2iθz). From this and Lemma4 we obtain

‖(Qε,θ − z)−1x2
θ (Q0,θ − z)−1χ‖L2→L2 ≤ C�, z ∈ �.

Inserting this into (5.4) concludes the proof. �

Wecan now state a stronger version of Theorem1 formulated using the projections
appearing in (4.2):

Theorem 2 Suppose that −π/4 < arg z < 5π/4 and that m(z) = m ≥ 0, where
m(z) is the multiplicity of the resonance of P := −� + V at z – see (1.2).

Then there exists ε0 and δ such that for 0 < ε ≤ ε0, Pε = −� + V − iεx2 has m
eigenvalues in D(z, δ):

tr�ε = m, �ε := 1

2πi

∫
∂D(z,δ)

(ζ − Pε)
−1dζ, �2

ε = �ε, (5.6)

and for any χ ∈ C∞
c (Rn),

χ�εχ ∈ C∞([0, ε0],L(L2(Rn), L2(Rn))). (5.7)
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Remarks. 1. Notation f ∈ C1([a, b]) means that f , and f ′ continuous in [a, b];
here f ′(a), f ′(b) are the left and right derivatives of f at those points. By induction
we then define Ck([a, b]) andC∞([a, b]). In view of (1.5) we cannot expect analytic
dependence on ε.

2. For χ ≡ 1 on supp V , m(z) = rank χ�0χ and (5.7) shows the convergence of
resonant states in the case of simple resonances. As the proof shows a stronger
statement is obtained by using the complex scaled operators: for θ = π/8,

�ε,θ := 1
2πi

∫
∂D(z,δ)(ζ − Pε,θ)

−1dζ, Pε,θ = −�|�θ
− iε(x |�θ

)2 + V,

�ε,θ ∈ C([0, ε0);L1(L2(�θ), L2(�θ))), �ε,θχ ∈ C∞([0, ε0);L1(L2(�θ), L2(�θ))),

(5.8)

where �θ is the deformation defined in (2.11).

Proof We first note that (4.6) and Lemma4 imply that for −π/4 ≤ −2θ < arg z <

2π − 2θ, ε ≥ 0,

(Pε,θ − z)−1 = (Qε,θ − z)−1(I + V Rε(z)ρ)−1(I − V (Qε,θ − z)−1(1 − ρ)). (5.9)

Since z �→ (Qε,θ − z)−1 is a holomorphic family in our range of z’s, the Gohberg–
Sigal theory – see [10, §C.4] – shows that the poles of (Pε,θ − z)−1 with arg z > −2θ
are independent of 0 ≤ θ ≤ π/8 and

tr
1

2πi

∮
(Pε,θ − ζ)−1dζ = tr

1

2πi

∮
(Pε − ζ)−1dζ, ε > 0.

If in the definition of �θ we take r0 large enough so that suppχ ⊂ B(0, r0) then
Lemmas2 and 4 show that χ�ε,θχ = χ�εχ.

Hence it is enough to prove (5.8). If we assume that z is not a resonance then, in
the notation of Lemma7,

(I + V Rε(z)ρ)−1 − (I + V R0(z)ρ)−1 = iε(I + V Rε(z)ρ)−1T ρ
ε (z)(I + V R0(z)ρ)−1

= Oz(ε‖(I + V Rε(z)ρ)−1‖L2→L2 ) : L2 → L2.

Hence, for ε small enough z is not an eigenvalue of Pε. We can now apply the
Gohberg–Sigal–Rouché theorem [10, TheoremC.9] to see that the poles of (I +
V R0(z)ρ)−1 and (I + V Rε(z)ρ)−1 coincide with multiplicities. This and (5.9) prove
the first statement in (5.8). The second statement follows from differentiation and
estimates similar to (5.5). �
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