
Perfectly Secure Message Transmission
Against Rational Timid Adversaries

Maiki Fujita1, Kenji Yasunaga2 , and Takeshi Koshiba3(B)

1 Graduate School of Science and Engineering, Saitama University, Saitama, Japan
2 Graduate School of Information Science and Technology, Osaka University,

Osaka, Japan
yasunaga@ist.osaka-u.ac.jp

3 Faculty of Education and Integrated Arts and Sciences, Waseda University,
Tokyo, Japan

tkoshiba@waseda.jp

Abstract. Secure Message Transmission (SMT) is a two-party crypto-
graphic protocol by which the sender can securely and reliably transmit
messages to the receiver using multiple channels. It is assumed that an
adversary corrupts a subset of the channels, and makes eavesdropping
and tampering over the corrupted channels. In this work, we consider
a game-theoretic security model for SMT. Specifically, we introduce a
rational adversary who has the preference for the outcome of the proto-
col execution. We show that, under some reasonable assumption on the
adversary’s preference, even if the adversary corrupts all but one of the
channels, it is possible to construct SMT protocols with perfect secu-
rity against rational adversaries. More specifically, we consider “timid”
adversaries who prefer to violate the security requirement of SMT, but
do not prefer the tampering actions to be detected. In the traditional
cryptographic setting, perfect SMT can be constructed only when the
adversary corrupt a minority of the channels. Our results demonstrate a
way of circumventing the impossibility results of cryptographic protocols
based on a game-theoretic approach.

Keywords: Cryptography · Secure message transmission
Game theory · Rational adversary

1 Introduction

It is common to use the information network to send and receive messages. In
the physical sense, the channels between senders and receivers might be real-
ized by combining apparatus for communication, which allow some adversary
to eavesdrop or tamper. As a technique for protecting data over communication
from their leakage, we often use public-key cryptosystems. Since the security of
public-key cryptosystems is based on computational assumptions and the com-
putational assumptions might be falsified, it is desirable to develop methods of
protecting data in the information-theoretic sense.
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While a single communication channel is assumed in the typical two-party
cryptographic schemes, the current information network technologies can let
many channels be available. Secure Message Transmission (SMT), originally
proposed by Dolev et al. [10], is a cryptographic protocol by which a sender
can transmit messages through multiple channels in a secure way. Even if any
adversary corrupts t out of n channels and makes eavesdropping and tampering
over the corrupted channels, the messages are securely and correctly transmit-
ted to the receiver by using SMT. The requirements for SMT consist of pri-
vacy and reliability. The privacy guarantees that the adversary can obtain no
information about the transmitted message, and the reliability does that the
message transmitted by the sender is recovered by the receiver. If an SMT pro-
tocol satisfies both the requirements in the perfect sense, the protocol is called
a perfect SMT. The most round-efficient perfect SMT is given by Kurosawa and
Suzuki [29]. Dolev et al. [10] showed that any one-round perfect SMT must satisfy
t < n/3 and any perfect SMT whose round complexity is at least two must sat-
isfy t < n/2. Franklin and Wright [11] defined almost-reliable SMT, which allows
transmission failures of small probability. They showed that almost-reliable SMT
against t < n corruptions is achievable by using a public channel in addition to
the normal channels. Later, Garay and Ostrovsky [15] and Shi et al. [32] gave
the most round-efficient almost-reliable SMT protocols using public channels.

In the standard setting in cryptography, the participants are assumed to
be either honest or malicious. The former follow the protocol description hon-
estly, and the later may deviate from the protocol maliciously. In general,
malicious behavior may be illegal and involve some risks, which implies that
adversaries in the standard cryptographic setting behave maliciously regard-
less of their risk. However, some adversary in reality may decide his behav-
ior by taking the risk into account. To capture such situations, we incor-
porate the notion of “rational” participants of game theory into cryptogra-
phy. Halpern and Teague [22] firstly studied the rational behavior of partic-
ipants in cryptography in the context of secret sharing. Since then, rational
secret sharing has been intensively studied [1,4,12,16,26–28]. Moreover, there
have been many studies using game-theoretic analysis of cryptographic primi-
tives/protocols, including two-party computation [3,18], leader election [2,17],
Byzantine agreement [19], consensus [23], public-key encryption [35,36], delega-
tion of computation [5,7,8,20,21,24], and protocol design [13,14]. Among them,
several work [5,13,19–21] used the rationality of adversaries to circumvent the
existing impossibility results.

Groce et al. [19] studied the problem of Byzantine agreement in the pres-
ence of a rational adversary. They showed that, given some knowledge of the
adversary’s preference, perfectly secure Byzantine agreement is possible for t
corruptions among n players for any t < n, for which the impossibility against
t ≥ n/2 corruptions is known in the standard setting.

In this work, we show that the impossibility results of SMT can be also
circumvented by considering the rationality of adversaries. As in the case of
Byzantine agreement, we introduce a rational adversary for SMT who has some
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preference for the outcome of the protocol execution. More specifically, we define
timid adversaries who prefer to violate the security requirements of SMT, but
do not prefer the tampering actions to be detected. For such adversaries, first
we show that the almost-reliable SMT protocol of [32], which employs a tamper-
proof public channel, works as a “perfect” SMT protocol. Second, we show that,
for “strictly” timid adversaries, who prefer being undetected to violating the
security requirements, secret sharing schemes with some robustness can be used
as a non-interactive SMT protocol. Both protocols are perfectly secure against
timid adversaries corrupting t out of n channels for any t < n, which is impossible
in the standard setting of SMT protocols. In addition, we present an impossi-
bility result of constructing SMT protocols against general timid adversaries
corrupting t ≥ n/2 channels. The result demonstrates the necessities of the
tamper-proof public channel in the first protocol and the restriction of strictly
timid adversaries in the second protocol. The results are summarized in Table 1.

Table 1. Summary of previous work and our results.

Adversary types PC∗ Resiliency Security Construction

Malicious – t < n/2 Perfect Exist [10,29]

Malicious – t ≥ n/2 Perfect Impossible [10]

Malicious � t < n Almost reliable Exist [11,15,32])

Timid � t < n Perfect Exist (Theorem 4)

Strictly timid – t < n Perfect Exist (Theorem 5)

Timid – t ≥ n/2 Perfect Impossible (Corollary 2)
∗ PC represents the use of the public channel.

2 Preliminaries

2.1 Secure Message Transmission

We assume that a sender S and a receiver R are connected by n channels, and
they may use an authentic and reliable public channel. Messages sent over the
public channel are publicly accessible and correctly delivered to the receiver.
SMT protocols proceed in rounds. In each round, one party may synchronously
send a message over each channel and the public channel. The messages will be
delivered before the next round starts.

The adversary A can corrupt at most t channels. Such an adversary is
referred to as t-adversary. Messages sent over corrupted channels can be eaves-
dropped and tampered by the adversary. We assume that A is computationally
unbounded.

Let M be the message space. In SMT, the sender tries to send a message in
M to the receiver by using n channels and the public channel, and the receiver
outputs some message after the protocol execution. For an SMT protocol Π, let
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MS denote the random variable of the message sent by S and MR the message
output by R in Π. An execution of Π can be completely characterized by the
random coins of all the parties, namely, S, M, and A, and the message MS

sent by S. Let VA(m, rA) denote the view of A when the protocol is executed
with MS = m and the random coins rA of A. Specifically, VA(m, rA) consists of
the messages sent over the corrupted channels and the public channel when the
protocol is run with MS = m and A’s random coins rA.

We formally define the properties of SMT protocols.

Definition 1. A protocol between S and R is (ε, δ)-Secure Message Transmis-
sion (SMT) against t-adversary if the following three conditions are satisfied
against any t-adversary A.

– Correctness: For any m ∈ M, if MS = m and A does not corrupt any
channels, then Pr[MR = m] = 1;

– Privacy: For any m0,m1 ∈ M and rA ∈ {0, 1}∗, it holds that

SD(VA(m0, rA), VA(m1, rA)) ≤ ε,

where SD(X,Y ) denotes the statistical distance between two random variables
X and Y over a set Ω, which is defined by

SD(X,Y ) =
1
2

∑

u∈Ω

|Pr[X = u] − Pr[Y = u]| ;

– Reliability: For any message m ∈ M, when MS = m,

Pr[MR �= m] ≤ δ,

where the probability is taken over the random coins of S, R, and A.

If a protocol achieves (0, 0)-SMT, the protocol is called perfect SMT, and
if a protocol achieves (0, δ)-SMT, which admits transmission failures of small
probability δ, the protocol is called almost-reliable SMT.

For perfect SMT, Dolev et al. [10] showed the below.

Theorem 1 ([10]). Perfect SMT protocols against t-adversary are achievable if
and only if t < n/2.

2.2 Secure Message Transmission with Public Channel

In this paper, we will employ an almost-reliable SMT protocol given by Shi,
Jiang, Safavi-Naini, and Tuhin [32], and refer it as the SJST protocol. Note
that we only use some specific properties of the SJST protocol in the security
analysis. Thus, other protocols, such as one by Garay and Ostrovsky [15], can
also be employed instead of the SJST protocol.

Let us review the SJST protocol, which uses the public channel. The protocol
is based on the simple protocol for “static” adversaries in which the sender
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sends a random key Ri over the i-th channel for each i ∈ {1, . . . , n}, and the
encrypted message c = m⊕R1 ⊕ · · ·⊕Rn over the public channel. Suppose that
the adversary sees the messages sent over the corrupted channels, but does not
change them. Since the adversary cannot see at least one key Rj when corrupting
less than n channels, the mask R1 ⊕ · · · ⊕ Rn for the encryption looks random
for the adversary. Thus, the message m can be securely encrypted and reliably
sent through the public channel. To cope with “active” adversaries, who may
change messages sent over the corrupted channels, the SJST protocol employs
a mechanism for detecting the adversary’s tampering by using hash functions.
Specifically, the universal hash functions (see AppendixA) satisfy the following
property: when a pair of keys (ri, Ri) is changed to (r′

i, R
′
i) �= (ri, Ri), the hash

value for (ri, Ri) is different from that for (r′
i, R

′
i) with high probability if the

hash function is chosen randomly after the tampering occurred. In the SJST
protocol, the sender sends a pair of keys (ri, Ri) over the i-th channel. Then,
the receiver chooses n universal hash functions hi’s, and sends them over the
public channel. By comparing hash values for (ri, Ri)’s sent by the sender with
those for (r′

i, R
′
i)’s received by the receiver, they can identify the channels for

which messages, i.e., keys, were tampered with. By ignoring keys sent over such
channels, the sender can correctly encrypt a message m with untampered keys
and send the encryption reliably over the public channel.

We describe the SJST protocol below, which is a three-round protocol, and
achieves the reliability with δ = (n − 1) · 21−�, where � is the length of hash
values.

Protocol 1 (The SJST protocol [32]). Let n be the number of channels,
m ∈ M the message to be sent by the sender S, and H = {h : {0, 1}k → {0, 1}�}
a class of universal hash functions.

1. For each i ∈ {1, . . . , n}, S chooses ri ∈ {0, 1}� and Ri ∈ {0, 1}k uniformly at
random, and sends the pair (ri, Ri) over the i-th channel.

2. For each i ∈ {1, . . . , n}, R receives (r′
i, R

′
i) through the i-th channel, and

then chooses hi ← H uniformly at random. If |r′
i| �= � or |R′

i| �= k, set bi = 1,
and otherwise, set bi = 0. Then, set T ′

i = r′
i ⊕ hi(R′

i), and Hi = (hi, T
′
i ) if

bi = 0, and Hi = ⊥ otherwise. Finally, R sends (B,H1, . . . , Hn) over the
public channel, where B = (b1, . . . , bn).

3. S receives (B,H1, . . . , Hn) through the public channel. For each i ∈ {1, . . . , n}
with bi = 0, S computes Ti = ri ⊕ hi(Ri), and sets vi = 0 if Ti = T ′

i ,
and vi = 1 otherwise. Then, S sends (V, c) over the public channel, where
V = (v1, . . . , vn), and c = m ⊕ (

⊕
vi=0 Ri).

4. On receiving (V, c), R recovers m = c ⊕ (
⊕

vi=0 Ri).

Theorem 2 ([32]). The SJST protocol is (0, (n − 1) · 21−�)-SMT against t-
adversary for any t < n.

We can find a complete proof of the above theorem in [32]. For self-
containment, we give a brief sketch of the proof.
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– Privacy : The adversary can get c = m ⊕ (
⊕

vi=0 Ri) through the public
channel. Since m is masked by uniformly random Ri’s, the adversary has to
corrupt all the i-th channels with vi = 0 to recover m. However, since any
t-adversary can corrupt at most t (< n) channels, the adversary can cause
vi = 1 for at most n − 1 i’s. Hence, there is at least one i with vi = 0, for
which the adversary cannot obtain Ri. Thus, the protocol satisfies the perfect
privacy.

– Reliability : Since the protocol uses the public channel at the second and
the third rounds, the adversary can tamper with channels only at the first
round. Suppose that the adversary tampers with (ri, Ri). If Ri �= R′

i and
Ti = T ′

i , then R would recover a wrong message, but the tampering is not
detected. It follows from Lemma 1 that the probability that the above event
happens is at most (n − 1)21−�. Thus, the protocol achieves the reliability
with δ = (n − 1) · 21−�.

2.3 Robust Secret Sharing

Secret sharing, introduced by Shamir [31] and Blackley [6], enables us to dis-
tribute the secret information in a secure way. Let s ∈ F be a secret from some
finite field F. A (threshold) secret-sharing scheme gives a way for distributing s
into n shares s1, . . . , sn such that, for some parameter t > 0, (1) any t shares
give no information about s; and (2) any t + 1 shares uniquely determine s.
Shamir [31] give a scheme based on polynomial evaluations for any t < n.

Shamir’s scheme also achieves robustness in the sense that even if t/3
shares are maliciously tampered, the original secret can be correctly recovered.
Although the robustness is a desirable property, it is known that robust secret
sharing is impossible when t/2 shares are tampered with [25].

In this work, we need a weaker notion of robustness in which any tampering
actions should be detected with high probability. Such robust secret sharing was
studied by Cramer et al. [9]. They introduced the notion of algebraic manipula-
tion detection (AMD) codes, and presented a simple way for constructing robust
secret sharing from linear secret sharing and AMD codes. More precisely, the
robustness required for our protocol is slightly different from one defined in [9].1

Definition 2. Let t, n be positive integers with t < n. A (t, n, δ)-robust secret
sharing scheme with range G consists of two algorithms (Share,Reconst) satisfy-
ing the following conditions:

– Correctness: For any s ∈ G and I ⊆ {1, . . . , n} with |I| > t,

Pr [Reconst ({i, si}i∈I) = s] = 1,

where (s1, . . . , sn) ← Share(s).
1 The robustness in [9] requires that the output of the reconstruction algorithm should

be either the original message or the failure symbol with high probability. Namely,
it is allowed to recover the original message even if some shares are tampered with.
In Definition 2, we require that if some shares are tampered with, the output of the
reconstruction algorithm should be the failure symbol.



Perfectly SMT Against Rational Timid Adversaries 133

– Perfect Privacy: For any s, s′ ∈ G and I ⊆ {1, . . . , n} with |I| ≤ t,

SD ({si}i∈I , {s′
i}i∈I) = 0,

where (s1, . . . , sn) ← Share(s) and (s′
1, . . . , s

′
n) ← Share(s′).

– Robustness: For any s ∈ G and I ⊆ {1, . . . , n} with |I| ≤ t and adversary A,
if s̃i �= si for some i ∈ {1, . . . , n},

Pr
[
Reconst

({i, s̃i}i∈{1,...,n}
) �= ⊥] ≤ δ,

where

s̃i =

{
A(i, s, {si}i∈I) if i ∈ I

si if i /∈ I

and (s1, . . . , sn) ← Share(s).

We can see that the construction of [9] satisfies the above definition. Specifi-
cally, we have the following theorem, which will be used in our protocol against
strictly timid adversaries in Sect. 4.2. See AppendixB for the proof.

Theorem 3. Let F be a finite field of size q and characteristic p, and d an
integer such that d + 2 is not divisible by p. For any positive integers t and n
satisfying t < n ≤ qd, there is an explicit and efficient scheme of (t, n, (d+1)/q)-
robust secret sharing with range F

d, where each share is an element of Fd+2.

3 Rational Secure Message Transmission

We define our security model of SMT in the presence of a rational adversary. A
rationality of the adversary is characterized by a utility function which represents
the preference of the adversary over possible outcomes of the protocol execution.

We can consider various preferences of the adversary regarding the SMT
protocol execution. The adversary may prefer to violate the privacy or the reli-
ability of SMT protocols. In addition, the adversary may prefer to violate the
above properties without the detection of tampering actions. Here, we consider
the adversary who prefers (1) to violate the privacy, (2) to violate the reliability,
(3) the tampering actions to be undetected, and (4) the protocol execution to
be finished without abort.

To define the utility function, we specify the SMT game as follows.

The SMT Game. First set four parameters guess = suc = detect = abort = 0.
Given an SMT protocol Π with the message space M, choose m ∈ M uniformly
at random, and run the protocol Π in which the message to be sent is MS = m. In
the protocol execution, as in the usual SMT, the adversary A can corrupt at most
t channels, and tamper with any messages sent over the corrupted channels. If
the protocol finishes with abort, set abort = 1. If the sender or the receiver sends
a special message “DETECTION” during the execution, set detect = 1. After
running the protocol, the receiver outputs MR, and the adversary outputs MA.
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If MR = MS , set suc = 1. If MA = MS , set guess = 1. The outcome of the game
is (guess, suc, detect, abort).

The utility of the adversary is defined as the expected utility in the SMT
game.

Definition 3 (Utility). The utility u(A, U) of the adversary A with utility
function U is the expected value E[U(out)], where U is a function that maps
the outcome out = (guess, suc, detect, abort) of the SMT game by A to real val-
ues, and the probability is taken over the random coins of the sender, the receiver,
and the adversary, and a random choice of message MS.

The utility function U characterizes the type of adversaries. If the adver-
sary has the preferences (1)-(4) as above, the utility function may have the
property such that for any two outcomes out = (guess, suc, detect, abort) and
out′ = (guess′, suc′, detect′, abort′) of the SMT game,

1. U(out) > U(out′) if guess > guess′, suc = suc′, detect = detect′, and abort =
abort′;

2. U(out) > U(out′) if guess = guess′, suc < suc′, detect = detect′, and abort =
abort′;

3. U(out) > U(out′) if guess = guess′, suc = suc′, detect < detect′, and abort =
abort′;

4. U(out) > U(out′) if guess = guess′, suc = suc′, detect = detect′, and abort <
abort′.

Based on the utility function of the adversary, we define the security of ratio-
nal secure message transmission.

Definition 4 (Security of RSMT). An SMT protocol Π is perfectly secure
against rational t-adversaries with utility function U if there is a t-adversary B
such that for any t-adversary A,

1. Perfect security: Π is (0, 0)-SMT against B; and
2. Nash equilibrium: u(A, U) ≤ u(B, U) in the SMT game.

The perfect security guarantees that an adversary B is harmless. The Nash
equilibrium guarantees that no adversary A can gain more utility than B. Thus,
the above security of RSMT implies that no adversary A can gain more utility
than the harmless adversary. Namely, the adversary does not have an incentive
to deviate from the strategy of the harmless adversary B.

In the security proof of our protocol, we will consider an adversary B who
does not corrupt any channels, and outputs MA by choosing a message uniformly
at random from M. For such B, the perfect privacy and reliability immediately
follows if Π satisfies the correctness.

4 Protocols Against Timid Adversaries

We present several protocols that are secure against timid rational adversaries.
Timid adversaries are rational adversaries who firstly do not prefer the tampering
to be detected, and secondly prefer to violate the reliability.
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More formally, utility function U of such adversaries should have the prop-
erties such that

1. U(out) > U(out′) if suc < suc′ and detect = detect′; and
2. U(out) > U(out′) if suc = suc′ and detect < detect′,

where out = (guess, suc, detect, abort) and out′ = (guess′, suc′, detect′, abort′) are
the outcomes of the SMT game. Let Utimid be the set of utility functions that
satisfy the above conditions.

In addition, timid adversaries may have the following property:

3. U(out) > U(out′) if suc > suc′ and detect < detect′.

Let U st
timid be the set of utility functions satisfying the above three conditions.

An adversary is said to be timid if his utility function is in Utimid, and strictly
timid if the utility function is in U st

timid.
In the analysis of our protocols, we need the following four values of utility:

– u1 is the utility when Pr[guess = 1] = 1/|M|, suc = 0, detect = 0, and
abort = 0;

– u2 is the utility when Pr[guess = 1] = 1/|M|, suc = 1, detect = 0, and
abort = 0;

– u3 is the utility when Pr[guess = 1] = 1/|M|, suc = 0, detect = 1, and
abort = 0;

– u4 is the utility when Pr[guess = 1] = 1/|M|, suc = 1, detect = 1, and
abort = 0;

It follows from the properties of utility functions in Utimid that the relations
u1 > max{u2, u3} and min{u2, u3} > u4 hold. For utility functions in U st

timid, it
holds that u1 > u2 > u3 > u4.

4.1 Protocol with Public Channel

We show that the SJST protocol of [32] works as a perfect SMT protocol against
timid adversaries. More specifically, we slightly modify the SJST protocol such
that in the second and the third rounds, if bi = 1 in B or vj = 1 in V for some
i, j ∈ {1, . . . , n}, the special message “DETECTION” is also sent together. We
clarify the parameters for which the SJST protocol works as RSMT against timid
adversaries.

Theorem 4. If the parameter � in the SJST protocol satisfies

� ≥ max
{

1 + log t + log
u3 − u4

u2 − u4 − α
, 1 +

1
t

log
u1 − u3

α

}

for some α ∈ (0, u2 − u4), then the protocol is perfectly secure against rational
t-adversaries with utility function U ∈ Utimid for any t < n.
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Proof. We consider the adversary B in Definition 4 such that B does not corrupt
any channels, and outputs a uniformly random message from M as MA. Then,
the perfect security of Definition 4 immediately follows.

Next, we show that the strategy of B is a Nash equilibrium. Note that
u(B, U) = u2, since Pr[guess = 1] = Pr[MA = MS ] = 1/|M| in the SMT
game. Thus, it is sufficient to show that u(A, U) ≤ u2 for any t-adversary A.
Also, note that, since the SJST protocol achieves the perfect privacy, it holds
that Pr[guess = 1] = 1/|M| for any t-adversary.

Since messages in the second and the third rounds are sent through the public
channel, the adversary A can tamper with messages only in the first round. If
A changes the lengths of ri and Ri, the tampering of the i-th channel will be
detected. Such channels are simply ignored in the second and third rounds. Thus,
such tampering cannot increase the utility. Hence, we assume that A does not
change the lengths of ri and Ri in the first round.

Suppose that A corrupts some t channels in the first round. Namely, there
are exactly t distinct i’s such that (r′

i, R
′
i) �= (ri, Ri). Note that the tampering on

the i-th channel such that r′
i �= ri and R′

i = Ri does not increase the probability
that suc = 0, but may increase the probability of detection. Thus, we also assume
that R′

i �= Ri for all the corrupted channels. We define the following three events:

– E1: No tampering action is detected in the protocol;
– E2: At least one but not all tampering actions are detected;
– E3: All the t tampering actions are detected.

Note that all the events are disjoint, and either event should occur. Namely, we
have that Pr[E1] + Pr[E2] + Pr[E3] = 1. It follows from the discussion in Sect. A
that the probability that the tampering action on one channel is not detected is
21−�. Since each hash function hi is chosen independently for each channel, we
have that Pr[E1] = 2(1−�)t. Similarly, we obtain that Pr[E3] = (1 − 21−�)t. Note
that the utility when E1 occurs is at most u1. Also, the utilities when E2 and
E3 occur are at most u3 and u4, respectively. Therefore, the utility of A is

u(A, U) ≤ u1 · Pr[E1] + u3 · Pr[E2] + u4 · Pr[E3]
= u3 + (u1 − u3) Pr[E1] − (u3 − u4) Pr[E3]

≤ u3 + (u1 − u3)2(1−�)t − (u3 − u4)
(
1 − t21−�

)

≤ u3 + α − (u3 − u4)
(
1 − t21−�

)
(1)

≤ u2, (2)

where we use the relations � ≥ 1 + 1
t log u1−u3

α and � ≥ 1 + log t + log u3−u4
u2−u4−α

in (1) and (2), respectively. Thus, the utility of A is at most u2, and hence the
statement follows. ��

If u2 > u3, which holds for strictly timid adversaries, by choosing α = u2−u3,
the condition on � is that

� ≥ max
{

1 + log t, 1 +
1
t

log
u1 − u3

u2 − u3

}
.
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4.2 Protocol Without Public Channel Against Strictly Timid
Adversaries

We show that, under the condition that u2 > u3, robust secret sharing of Defi-
nition 2 gives a non-interactive perfect SMT protocol. Namely, we can construct
a non-interactive protocol for strictly timid adversaries.

Let (Share,Reconst) be a (t, n, δ)-robust secret sharing scheme with range
M. In the protocol, given a message m ∈ M, the sender generates n shares
(s1, . . . , sn) by Share(m), and sends each si over the i-th channel. The receiver
simply recovers the message by Reconst({i, s̃i}i∈{1,...,n}), where s̃i is the received
message over the i-th channel.

Theorem 5. The above protocol based on a (t, n, δ)-robust secret sharing scheme
is perfectly secure against rational t-adversaries with utility function U ∈ U st

timid

if U satisfies that u2 > u3 and

δ ≤ u2 − u3

u1 − u3
.

Proof. As in the proof of Theorem 4, we consider B who does not corrupt any
channels, and output a random message as MA. Then, the perfect security imme-
diately follows.

We show that, for any t-adversary A, u(A, U) ≤ u(B, U). As discussed in the
proof of Theorem 4, it is sufficient to prove that u(A, U) ≤ u2 for any A. Since
the underlying secret sharing has the perfect privacy, we have that Pr[guess =
1] = 1/|M| for any t-adversary. Suppose A corrupts some t channels and alters
some messages si into different s̃i. It follows from the robustness of secret sharing
that the tampering actions is detected with probability at least 1 − δ, in which
case the secret is not recovered. Thus, the utility of A is

u(A, U) ≤ (1 − δ)u3 + δu1

≤ u2, (3)

where (3) follows from the assumption. Therefore, the statement follows. ��
The following corollary immediately follows.

Corollary 1. Let F be a finite field of size q = 2�, and d be any odd integer.
The non-interactive protocol based on Theorem3 is an SMT protocol with mes-
sage space F

d that is perfectly secure against rational t-adversaries with utility
function U ∈ U st

timid for any t < n ≤ 2�d if

� ≥ log(d + 1) + log
u1 − u3

u2 − u3
.

5 Impossibility Result for General Timid Adversaries

We show that there is no RSMT protocol without public channel that is secure
against general timid t-adversaries for t ≥ n/2. The result implies that the use
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of the public channel in Theorem4 is necessary for achieving t ≥ n/2. It also
demonstrates the necessity of restricting the utility in Theorem 5 for constructing
protocols for t ≥ n/2 without using public channels.

Theorem 6. For any SMT protocol without public channel that is perfectly
secure against rational t-adversaries with utility function U ∈ Utimid, if U has
the relation

u2 <
1
2

(
1 − 1

|M|
)

u3

then t < n/2, where M is the message space of the protocol.

Proof. Let Π be a protocol in the statement. We construct a t-adversary A for
t = 
n/2� that can successfully attack Π. For simplicity, we assume that n = 2t.

Let B be any (harmless) adversary in the security of RSMT protocols of
Definition 4. Since Π is (0, 0)-SMT against B, it holds that u(B, U) ≤ u2. We
show the existence of a t-adversary A that achieves u(A, U) > u2, which implies
that Π cannot achieve a Nash equilibrium.

In the SMT game, a message m ∈ M is randomly chosen, and, on input m,
Π generates (sj

1, . . . , s
j
n) for j = 1, . . . , where sj

i is the message to be sent over
the i-th channel in the j-th round. In the game, A does the following:

– Randomly choose I ⊆ {1, . . . , n} such that |I| = t, and corrupt the i-th
channel for every i ∈ I.

– Randomly choose m̃ ∈ M, and simulate Π on input m̃.
Let s̃j

i be the message generated for the i-th channel in the j-th round.
– In each round j, for every i ∈ I, on receiving sj

i through the i-th channel,
exchange sj

i for s̃j
i .

For this attack, it is impossible for the receiver to distinguish which message, m
or m̃, was originally transmitted by the sender, since both messages for m and
m̃ are equally mixed. Hence, the probability that suc = 1, denoted by ps, is at
most

ps ≤ 1
2

(
1 − 1

|M|
)

+
1

|M| =
1
2

(
1 +

1
|M|

)
,

where 1/|M| comes from the even that m̃ = m.
Let pd be the probability that Π outputs “DETECTION” messages during

the execution against the above attack. Without loss of generality, we assume
that if Π does not output “DETECTION” messages, the receiver outputs some
message at the end of the protocol. If the tampering actions of A are not detected,
the utility of A is at least u1 with probability 1 − ps, and at least u2 with
probability ps. If some tampering actions are detected, then there can be two
cases: (1) the receiver does not output any message; and (2) the receiver outputs
some message. In case (1), the utility of A is u3. In case (2), the probability that
the suc = 1 is at most ps by the same argument as above. Hence, the utility of
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A when the tampering was detected is at least (1 − ps)u3. Thus, the utility of
A in the SMT game is at least

u(A, U) ≥ (1 − pd) ((1 − ps)u1 + psu2) + pd(1 − ps)u3

= (1 − ps)u1 + psu2 − pd ((1 − ps)u1 + psu2 − (1 − ps)u3)
≥ (1 − ps)u3 (4)

≥ 1
2

(
1 − 1

|M|
)

u3

> u2, (5)

where (4) follows from the fact that pd ≤ 1 and (1−ps)u1+psu2−(1−ps)u3 ≥ 0,
and the assumption on U is used in (5). Therefore, Π does not satisfy the security
of RSMT protocols for t ≥ n/2.

When n = 2t−1, the same attack of the above A can be realized by invalidat-
ing the n-th channel by substituting ⊥ for every message over the n-th channel.

��
The theorem gives the following corollary.

Corollary 2. There is no SMT protocol without public channel that is perfectly
secure against rational t-adversaries with utility function U for every U ∈ Utimid

and t ≥ 
n/2�.

6 Conclusion

We have introduced the notion of rationality into secure message transmission.
Specifically, we have defined timid adversaries, who prefer to violate the security
requirements of SMT, but do not prefer the tampering actions to be detected.
It is shown that some type of almost-reliable SMT protocols using a public
channel (such as [32]) work as perfect SMT for any timid adversary corrupting
t < n channels. By imposing the assumption that u2 > u3, which captures
strictly timid adversaries, it is possible to construct a non-interactive perfect
SMT protocol against t < n corruptions without using public channels.

A future work is to construct protocols against adversaries having different
preferences from timid ones. It is important to clarify for which rational adver-
sary the existing impossibility results hold.

Acknowledgements. This work was supported in part by JSPS Grant-in-Aid for
Scientific Research Numbers 16H01705, 17H01695, and 18K11159. The second author
thanks to Masaki Ueno for discussions about this work.

A Universal Hash Functions

Wegman and Carter [34] defined a notion of (almost) universal hash functions
and gave its construction. We use an SMT protocol in which universal hash
functions are used.
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Definition 5. Suppose that a class of hash functions H = {h : {0, 1}m →
{0, 1}�}, where m ≥ �, satisfies the following: for any distinct x1, x2 ∈ {0, 1}m

and y1, y2 ∈ {0, 1}�,

Pr
h∈H

[h(x1) = y1 ∧ h(x2) = y2] ≤ γ.

Then H is called γ-almost strongly universal. In the above, the randomness
comes from the uniform choice of h over H.

Here we mention a useful property of almost universal hash functions, which
guarantees the security of some SMT protocols.

Lemma 1 ([32]). Let H = {h : {0, 1}m → {0, 1}�} be a γ-almost strongly uni-
versal hash function family. The for any (x1, c1) �= (x2, c2) ∈ {0, 1}m × {0, 1}�,
we have

Pr
h∈H

[c1 ⊕ h(x1) = c2 ⊕ h(x2)] ≤ 2�γ.

In [34], Wegman and Carter constructed a family of 21−2�-almost strongly
universal hash functions. In particular, their hash function family Hwc =
{h : {0, 1}m → {0, 1}�} satisfies that

Pr
h∈Hwc

[h(x1) = y1 ∧ h(x2) = y2] = 21−2�

for any distinct x1, x2 ∈ {0, 1}m and for any y1, y2 ∈ {0, 1}� and also

Pr
h∈Hwc

[c1 ⊕ h(x1) ∧ c2 ⊕ h(x2)] = 21−�

for any distinct pairs (x1, c1) �= (x2, c2) ∈ {0, 1}m × {0, 1}�.

B Proof of Theorem3

To prove the theorem, we define the notion of algebraic manipulation detection
(AMD) codes in which the security requirement is slightly different from that
in [9] for our purpose.

Definition 6. An (M,N, δ)-algebraic manipulation detection (AMD) code is a
probabilistic function E : S → G, where S is a set of size M and G is an additive
group of order N , together with a decoding function D : G → S ∪ {⊥} such that

– Correctness: For any s ∈ S, Pr[D(E(s)) = s] = 1.
– Security: For any s ∈ S and Δ ∈ G \ {0}, Pr[D(E(s) + Δ) �= ⊥] ≤ δ.

An AMD code is called systematic if S is a group, and the encoding is of the
form

E : S → S × G1 × G2, s �→ (s, x, f(x, s))

for some function f and random x ∈ G1. The decoding function D of a systematic
AMD code is given by D(s′, x′, f ′) = s′ if f ′ = f(x′, s′), and ⊥ otherwise.
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Note that, for a systematic AMD code, the correctness immediately follows from
the definition of the decoding function. The security requirement can be stated
such that for any s ∈ S and (Δs,Δx,Δf ) ∈ S × G1 × G2 \ {(0, 0, 0)}, Prx[f(s +
Δs, x + Δx) = f(s, x) + Δf ] ≤ δ.

We show that a systematic AMD code given in [9] satisfies the above defini-
tion.

Proposition 1. Let F be a finite field of size q and characteristic p, and d
any integer such that d + 2 is not divisible by p. Define the encoding function
E : Fd → F

d × F × F by E(s) = (s, x, f(x, s)) where

f(x, s) = xd+2 +
d∑

i=1

six
i

and s = (s1, . . . , sd). Then, the construction is a systematic (qd, qd+2, (d+1)/q)-
AMD code.

Proof. We show that for any s ∈ F
d and (Δs,Δx,Δf ) ∈ F

d ×F×F\{(0d, 0, 0)},
Pr[f(s + Δs, x + Δx) = f(s, x) + Δf ] ≤ δ. The event in the probability is that

(x + Δx)d+2 +
d∑

i=1

s′
i(x + Δx)i = xd+2 +

d∑

i=1

six
i + Δf , (6)

where s′
i is the i-th element of s+Δs. The left-hand side of (6) can be represented

by

xd+2 + (d + 2)Δxxd+1 +
d∑

i=1

s′
ix

i + Δxp(x)

for some polynomial p(x) of degree at most d. Thus, (6) can be rewritten as

(d + 2)Δxxd+1 +
d∑

i=1

(s′
i − si)xi + Δxp(x) − Δf = 0. (7)

We discuss the probability that (7) happens when x is chosen uniformly at
random. We consider the following cases:

1. When Δx �= 0, the coefficient of xd+1 is (d + 2)Δx, which is not zero by
the assumption that d + 2 is not divisible by p. Then, (7) has at most d + 1
solutions x. Hence the event happens with probability at most (d + 1)/q.

2. When Δx = 0, we consider two subcases:
(a) If Δs �= 0, then s′

i − si �= 0 for some i. Hence (7) has at most d solutions
x. Thus the event happens with probability at most d/p.

(b) If Δs = 0, (7) is equivalent to Δf = 0. Since Δf �= 0 for this case, the
event cannot happen.

In every case, the event happens with probability at most (d + 1)/q. Thus the
statement follows. ��
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As discussed in [9], a robust secret sharing scheme can be obtained by com-
bining an AMD code and a linear secret sharing scheme. Let (Share,Reconst)
be a (t, n)-secret sharing scheme with range G that satisfies correctness and
perfect privacy of Definition 2, where we drop the parameter δ for robust-
ness. A linear secret sharing scheme has the property that for any s ∈ G,
(s1, . . . , sn) ∈ Share(s), and vector (s′

1, . . . , s
′
n), which may contain ⊥ symbols, it

holds that Reconst({i, si+s′
i}i∈I) = s+Reconst({i, s′

i}i∈I) for any I ⊆ {1, . . . , n}
with |I| > t, where ⊥+x = x+⊥ = ⊥ for all x. Examples of linear secret sharing
schemes are Shamir’s scheme [31] and the simple XOR-based (n − 1, n)-scheme,
in which secret s ∈ {0, 1}n is shared by (s1, . . . , sn) for random si ∈ {0, 1}n with
the restriction that s1 ⊕ · · · ⊕ sn = s.

We show that the same construction as in [9] works as a construction of
robust secret sharing of Definition 2.

Proposition 2. Let (Share,Reconst) be a linear (t, n)-secret sharing scheme
with range G that satisfies correctness and perfect privacy of Definition 2, and
let (E,D) be an (M,N, δ)-AMD code of Definition 6 with |G| = N . Then, the
scheme (Share′,Reconst′) defined by Share′(s) = Share(E(s)) and Reconst′(S) =
D(Reconst(S)) is a (t, n, δ)-robust secret sharing scheme.

Proof. Let (s1, . . . , sn) ∈ Share′(s). Let I ⊆ {1, . . . , n} with |I| ≤ t, and
(s̃1, . . . s̃n) be a sequence of shares satisfying the requirement for input shares in
robustness of Definition 2. We assume that s̃i = si + Δ′

i for each i ∈ {1, . . . , n}.
Note that Δ′

i = 0 for every i /∈ I. Then,

Pr
[
Reconst′

({i, s̃i}i∈{1,...,n}
) �= ⊥]

= Pr
[
D

(
E(s) + Reconst({i,Δi}i∈{1,...,n})

) �= ⊥]

= Pr [D (E(s) + Δ) �= ⊥] ,

where Δ = Reconst
({i,Δi}i∈{1,...,n}

)
is determined by the adversary. It follows

from perfect privacy of the secret sharing scheme that Δ is independent of E(s).
Thus, if s̃i �= si for some i ∈ {1, . . . , n}, the probability is at most δ by the
security of the AMD code. Hence, the statement follows. ��

By combining Shamir’s secret sharing scheme with range F
d and the AMD

code of Proposition 1, the robust secret sharing scheme of Theorem 3 is obtained
by Proposition 2.
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