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Abstract. In this paper, we propose a game-theoretic model of security
for quantum key distribution (QKD) protocols. QKD protocols allow
two parties to agree on a shared secret key, secure against an adversary
bounded only by the laws of physics (as opposed to classical key distribu-
tion protocols which, by necessity, require computational assumptions to
be placed on the power of an adversary). We investigate a novel frame-
work of security using game theory where all participants (including the
adversary) are rational. We will show that, in this framework, certain
impossibility results for QKD in the standard adversarial model of secu-
rity still remain true here. However, we will also show that improved
key-rate efficiency is possible in our game-theoretic security model.
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1 Introduction

Quantum key distribution (QKD) protocols allow for the establishment of a
shared secret key between two parties, referred to as Alice (A) and Bob (B),
which is secure against an all-powerful adversary, customarily referred to as Eve
(E). Such a task is impossible to achieve when using only classical communica-
tion; indeed, when parties have access only to classical resources, key-distribution
is only secure if certain computational assumptions are made on the power of the
adversary. With QKD protocols, however, the only required assumption is that
the adversary is bounded by the laws of physics. Furthermore, QKD is a practi-
cal technology today with several experimental and commercial demonstrations.
For a general survey of QKD protocols, the reader is referred to [1].

In general, most QKD protocols are designed, and their security proven,
within a standard adversarial model of security. In this case, parties A and B run
the protocol with the goal of establishing a shared secret key. An all-powerful
adversary sits in the middle of the channel, intercepting, and probing, each
quantum bit (or qubit) sent from A to B. As is standard in this usual model of
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cryptography, it is assumed that E is simply malicious and has no motivation
to attack, nor does E “care” about the cost of attacking.

In this paper, we investigate the use of game theory to study the security of
QKD protocols. While we are not the first to propose a game theoretic analysis
of cryptographic protocols (quantum or otherwise - see the “Related Work”
section below for a summary), we propose a more general-purpose model which
can be applied to arbitrary QKD protocols. Compared with prior work, our
new approach is more general and, most importantly, allows for meaningful key-
rate and noise tolerance computations to be performed which are vital when
considering QKD security and comparing benefits of distinct protocols.

Beyond introducing our model, we also apply it to analyze certain important
QKD protocols against both all-powerful, quantum, attacks and also more prac-
tical attacks based on current-day technology. For each, we compute the critical
noise tolerance values and compare with the standard adversarial model. We also
discuss the efficiency of the resulting protocols in our model. Such computations
were not possible in prior work, applying game theory to QKD thus showing the
significance of our new methods. We stress that this work’s prime contribution
is to develop a general framework for the modeling of QKD security, and various
important computations involving these protocols (namely, key-rate computa-
tions and noise tolerances), through the use of game theory. We expect this
work to be the foundation of future significant developments both in the fields
of quantum key distribution, and also in game theory. Furthermore, our rational
model of security may lead to more efficient secure communication systems as
we discuss in the text.

1.1 Related Work

Game theory has seen great success when applied to classical cryptography (see
[2] for a general survey). It has also raised a lot of interest recently in the study
of Cyber-Physical System (CPS) security problems and network security [3–6].

Only recently have there been attempts and interest in applying game theory
to quantum cryptography. Outside of key-distribution (our subject of interest in
this paper), game theory has been used for secret sharing [7], rational state
sharing [8], bit commitment [9], certain function computations [10], and secure
direct communication [11].

The prior work discussed above all involve cryptographic primitives very
different from QKD. However, some attempt has been made recently to apply
game theory to QKD. In [12] a cooperative game was used to establish a quantum
network consisting of point-wise QKD links which could relay information from
one node to the other. However, QKD was only used as a tool in their work,
the primary motivation for using game-theory was for the nodes to construct an
optimal network topology in a vehicular network.

Closest to our work are [13,14]. In [13], game theory was used to analyze the
BB84 QKD protocol. Their model, however, only considered strategies affecting
certain choices within the protocol. In their work, a three-party game was con-
structed (consisting of A, B, and the adversary E). The strategy space of each
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participant was to chose a basis (either Z or X) to send and receive quantum
bits in (we will discuss quantum measurement in the next section). The goal of
the parties A and B was to detect E while the goal of E was to avoid detection.
There was no goal of establishing an actual secret key at the end of maximal
length; furthermore, E did not have a goal of learning information on the key.
Both of these goals will be incorporated in our more general model.

In the recently published work of [14], the model proposed in [13] was
extended and applied to the so-called Ping-Pong protocol [15] and also the LM05
protocol [16]. Their work considered certain attacks E may perform against the
system which were previously proposed in the literature against the ping-pong
protocol. The strategy space for A and B (now considered one party in their
work) consisted of choosing to run the protocol, or a variant of it (there was no
choice to simply “abort” which is an important choice in QKD security [1]). The
goal of E was to maximize her information on the final raw-key while avoiding
detection; the goal of the party “AB” was to maximize their mutual informa-
tion. Our model will also consider these two as goals; however we will not be
concerned about probability of detection (which, in typical applications, is not
a concern as there is always natural noise in the channel anyway). However,
we will go beyond this by also setting a goal to maximize the efficiency of the
protocol. Furthermore, the model we introduce in this work allows for critical
key-rate and noise tolerance computations, not possible in prior work.

1.2 Notation and Definitions

We use H(X) to denote the Shannon entropy of random variable X. In particu-
lar, if P (X = x) = px, then H(X) = −∑

x px log px, where all logarithms in this
paper are base two unless otherwise stated. By h(x) we mean the binary entropy
function defined h(x) = −x log x−(1−x) log(1−x). Given two random variables
X and Y , then H(XY ) is the joint Shannon entropy of random variables X and
Y defined in the usual way. H(X|Y ) denotes the conditional entropy defined
H(X|Y ) = H(XY ) − H(Y ). By I(X : Y ) we mean the mutual information
between X and Y , defined to be I(X : Y ) = H(X) + H(Y ) − H(XY ).

We assume a familiarity with game theory, and include the following defini-
tions only for completeness. Given a tuple q = (q1, · · · , qn) we write q−i to mean
the n−1 tuple consisting of all qj for j �= i; i.e., q−i = (q1, · · · , qi−1, qi+1, · · · , qn).

Definition 1. An n-player normal (strategic) form game G is an n-tuple
{(S1, u1), . . . , (Sn, un)}, where for each i,

– Si is a nonempty set, called i’s strategy space, and
– ui:S → R is called i’s utility function, where S = S1 × · · · × Sn.

Definition 2. Dominant Strategy (DS). A strategy s′
i (weakly) dominates s′′

i , if
∀s−i ∈ S−i, ui(s′

i, s−i) ≥ ui(s′′
i , s−i), and ∃s′

−i ∈ S−i, ui(s′
i, s

′
−i) > ui(s′′

i , s′
−i).

Definition 3. Strict Nash Equilibrium (NE). s∗ ∈ S is a strict Nash equilibrium
of G = {(S1, u1), . . . , (Sn, un)} if for all i and for all si ∈ Si, ui(s∗

i , s
∗
−i) >

ui(si, s
∗
−i).
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2 Quantum Communication and Cryptography

For completeness, we review some basic concepts in quantum key distribution
and quantum communication. Due to length constraints, this section is neces-
sarily short; however, the interested reader is referred to [17].

A quantum bit or qubit is modeled, mathematically, as a normalized vector in
C

2. More generally, an arbitrary n-dimensional quantum state may be modeled
as a normalized vector in C

n. Quantum states are typically denoted as “kets”
of the form |ψ〉 where the ψ can be replaced with any arbitrary label. The inner
product of two kets |ψ〉 and |φ〉 is denoted 〈ψ|φ〉.

The measurement postulate of quantum mechanics gives rules for how quan-
tum states may be observed. We are interested only with projective measure-
ments in this work. Let B = {|v1〉 , · · · , |vn〉} be an orthonormal basis of C

n.
Then, given a quantum state |ψ〉 ∈ C

n, after measurement in basis B, one
observes basis state |vi〉 with probability | 〈vi|ψ〉 |2. Note, therefore, that mea-
surements are probabilistic processes and the outcome and distribution depends
on the basis one performs a measurement in. For qubits, two common bases
are the Z basis, denoted {|0〉 , |1〉} and the X basis, denoted {|+〉 , |−〉} where
|±〉 = 1√

2
(|0〉 + |1〉). Note that, once observed, the original quantum state is

destroyed and “collapses” to the observed basis state. In theory, one may per-
form a measurement in any basis. Note, also, that the No Cloning Theorem
prevents the exact duplication of an unknown quantum state. Thus, when used
as communication resources, an adversary is forced to attack immediately (she
cannot copy the qubits to attack later); furthermore, if she attempts to extract
information from the qubits via a measurement, this may cause disturbances
that may be detected by honest users later. (Measurements are not the only
way E can attack a qubit - however, for understanding our work in this paper,
measurements are sufficient.)

2.1 Quantum Key Distribution

Quantum key distribution takes advantage of certain properties unique to quan-
tum mechanics to allow for the establishment of a shared secret key between A
and B, secure against an all powerful adversary E, a task impossible to achieve
with classical communication only. There are many different QKD protocols at
this point, with the first being discovered in 1984 now known as the BB84 pro-
tocol [18]. Another important protocol, discovered in 1992, is the B92 protocol
[19]. The basic operation of these protocols is shown in Protocols 1 and 2. It is
important to note that, in addition to a quantum channel, allowing for the trans-
mission of qubits from A to B, there is also an authenticated classical channel
connecting the two users. This channel is not secret, however, so any message
sent from A to B can be read by the attacker (though, the attacker cannot write
on this channel). Authentication may be done in an information theoretic man-
ner assuming the existence of an initial (small) secret key. Thus, QKD protocols
are sometimes referred to as quantum key expansion protocols as, technically,
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they require an initial shared secret key which they will then expand through
the use of quantum communication.

In general, QKD protocols consist of a quantum communication stage fol-
lowed by a classical reconciliation stage. The first stage utilizes, through multiple
iterations the quantum and authenticated channels to produce a raw key - a
string of classical bits that is partially correlated and partially secret. If the
error rate is “low enough” (which depends on the protocol and security model),
the second stage is employed which consists of an error-correcting protocol (done
over the authenticated channel, thus leaking information to E “for free”) and a
privacy amplification protocol, yielding a secret key. The size of the secret key
is directly correlated with the noise in the quantum channel and the amount of
information an adversary potentially has on the raw-key. The more information
the adversary has and the more noise, the smaller the secret key will be. In the
standard adversarial model of security, the noise is assumed to be the product of
the adversary’s attack and the two are directly correlated; in fact, one important
aspect of QKD research is to determine a protocols maximally tolerated noise
level, that is the value of noise for which QKD is possible against a malicious
adversary.

For more details on all these concepts, the reader is referred to [1].

Protocol 1. BB84 [18]
Public Knowledge: A key-bit “0” is encoded as a qubit |0〉 or |+〉 while a key-bit of
“1” is encoded as |1〉 or |−〉.
Quantum Communication Stage (Repeat for N iterations):
1. A chooses a random key bit kA ∈ {0, 1} and a random basis bA ∈ {Z, X}. She sends
the encoding of kA as a qubit using her randomly chosen basis.
2. B chooses a random basis bB ∈ {Z, X} and measures in that basis.
3. A and B share, over the authenticated channel, their choice bA and bB respectively.
Parties only keep those iterations where bA = bB . All other results are discarded
(approximately half should remain).

Protocol 2. B92 [19]
Public Knowledge: A key-bit “0” is encoded as a qubit |0〉 while a key-bit of “1” is
encoded as a qubit |+〉.
Quantum Communication Stage (Repeat for N iterations):
1. A chooses a random key bit kA ∈ {0, 1} and prepares an appropriate qubit for B.
2. B chooses a random basis bB ∈ {Z, X} and measures in that basis. If bB = Z and
he observes |1〉, the B sets kB = 1. If bB = X and he observes |−〉, then B sets kB = 0.
All other results are considered “inconclusive.”
3. B informs A, over the authenticated channel, which iterations he considered “incon-
clusive.” All inconclusive iterations are discarded. It is expected that one-quarter of
the iterations will remain.
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3 Game Theoretic Model

We now introduce our game theoretic security model for QKD. While in practice,
A and B are two separate entities, in our game theoretic model, we will consider
them as one party which we denote by AB. We therefore consider a two-party
game consisting of player AB and player E. The goal of party AB is to establish
a long, secret key shared between each other. The goal of E is to limit the length
of the final secret key. Since it is trivial for E to cause a denial-of-service attack
in a point-to-point communication protocol (of which QKD is one), we limit
E’s strategy space to consisting of attacks which induce less noise than some
maximal value Q which AB advertise as tolerating. This parameter Q can also
represent certain “natural” noise in the quantum channel - AB will abort if the
noise exceeds this value, thus if E attacks, she must “hide” in the natural noise.
Noise for us is defined to be the average probability of a |i〉 flipping to a |1 − i〉
and a |±〉 flipping to a |∓〉. One key interest to us will be for what values of
Q, QKD is possible in our game theoretic model and compare this with the
standard adversarial model.

Beyond these goals, there are costs for using certain quantum (and potentially
also classical) resources. For AB sending and receiving qubits can be a costly
activity. Thus, though AB wish to establish a key, if doing so is “too expen-
sive” they may wish to simply “abort” and do nothing. On the other hand, to
gain information is E’s goal (as this limits the size of the secret key), however
attacking the quantum channel is a costly activity and extracting maximal infor-
mation may require expensive quantum memory systems. Thus, it is the goal
of our framework to construct a protocol (game strategy) where it is in AB’s
interest to run the protocol (and not abort), while it is in E’s interest not to
perform a complicated attack against it. Passive attacks (as opposed to more
powerful quantum attacks) can greatly increase the efficiency of the protocol as
we will see. Thus, if users employ the rational model of security for QKD, more
efficient quantum communication may be possible.

One may consider applying our model to classical key-distribution (for
instance, by using a hard problem that takes a large amount of classical resources
to break); however this problem scenario, and the rewards for attacking, are very
different from the quantum case. In a QKD protocol, the generated key is infor-
mation theoretically secure, thus, for example, any message encrypted using
the produced key is perfectly secret for all time. However, if a classical key-
distribution system is used, an adversary may copy all communication sent by
the protocol and attack offline; eventually if the system is broken, that adversary
can learn all messages encrypted with that key. This is a very powerful motivat-
ing factor for an adversary. Contrast this with QKD: first, the adversary cannot
attack offline and must attack actively. Furthermore, the adversary cannot learn
the produced secret key nor any message encrypted with it.

We formulate our game-theoretic security model as follows. Let ΣAB be a set
of strategies (i.e., protocols) which party AB may choose to run and let ΣE be
the set of strategies (i.e., attacks) which party E may choose to employ against
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AB. We always assume the “do nothing” strategy (denoted IAB for AB and IE

for E) is an option for either party. (We use I for “identity operation.”)
Now, in reality, player AB actually consists of two separate entities, thus it is

important to ensure that our game-theoretic model can actually be employed in
practice. In particular, we must ensure that A and B can agree on a strategy in
a way that makes sense. There are many ways to achieve this; one in particular
is they can sacrifice some of their initial shared secret key to send a constant-
length message encrypted with one-time-pad (this message is the protocol to
use). As mentioned earlier (see Sect. 2.1), for the authentication channel to work,
A and B must begin with some shared random key already. They may use a
constant amount c = log2 |ΣAB | to send, with perfect secrecy, the choice of
protocol. So long as c is not a function of the number of iterations used in the
quantum channel (which it is not), there is no contradiction to the key-expansion
properties of QKD. Note that one cannot use this shared initial key to send
securely a longer classical key - it can only be used for a small, constant, amount
of initial communication such as picking from a small subset of strategies.

There are other ways for A and B to agree on a strategy, however, we may
safely assume that party AB, though two distinct entities separated physically,
may, at the start, agree on a single protocol to use from the set of allowed
strategies ΣAB . Note that a mixed strategy may also be agreed on by having A
choose a random protocol and sending the choice, securely, to B.

Let Q ∈ [0, .5] be the maximal noise level in the channel which is publicly
known to both players before the game begins (alternatively, Q may be a value
set by AB that is the “maximal tolerated” noise allowed in the channel, either
naturally or artificially). Thus, even if E chooses not to attack (i.e., she chooses
strategy IE), she will still learn something about the raw key without incur-
ring any costs (due to the information leaked by error correction). However, if
she wishes to learn more (causing the secret key length to drop further) she
must choose to attack the channel. We will assume that this attacker, if she
chooses to attack, is able to replace the noisy quantum channel with an ideal
one and then hide the noise her attack inevitably creates within this natural
noise parameter Q. Such an operation (attacking, and setting up her equipment
to hide within the natural noise) will be potentially expensive, though she will
gain more information on the raw key thereby decreasing the efficiency of AB,
her goal.

After running their respective protocol Π ∈ ΣAB (which includes running
a quantum communication stage for N iterations, followed by error correction
and privacy amplification), with E attacking using attack A ∈ ΣE , each party is
given a utility for the outcome of the game. The outcome of the game for party
AB is a function of the resulting secret key length (i.e., after error correction and
privacy amplification), denoted M along with the cost of running the chosen
strategy (denoted, CAB(Π)). For our analysis, we will assume the utility is a
simple linear function of the form:

uAB(M,CA(Π)) = wAB
g M − wAB

c CAB(Π).
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where wAB
g and wAB

c are non-negative weights for the “gain” and “cost” respec-
tively of AB’s utility. We will assume that these weights are simply 1.

For E, her utility is a function of the information she learned on the error-
corrected raw key (before privacy amplification but after error correction) and
the cost of running her chosen attack. Let K be the information E learns on the
raw-key and CE(A) the cost of attack A ∈ ΣE . Then, her utility will be:

uE(K,CE(A)) = wE
g K − wE

c CE(A).

where wE
g and wE

c are non-negative weights for the “gain” and “cost” of E’s
utility. As with uAB , we will assume that these weights are simply 1.

The reader may wonder what E’s rational motivation would be for learning
information about the raw-key (before privacy amplification) when it is the secret
key (after privacy amplification) that is actually used by A and B later to, for
example, encrypt messages. First, note that if we define the model to be E
gains utility for learning information on the secret key, by the very definition
of privacy amplification, her gain would be negligible (and, in the asymptotic
scenario, we may even say it would be zero); thus this could never motivate
her. On the other hand, we could not give her utility for causing A and B to
simply abort due to high noise levels above Q as this is a form of denial of
service attack which would cost E little to nothing to execute (E can simply cut
the quantum channel!) and is a weakness for any point-to-point communication
system, especially QKD. Thus, since gaining information on the secret key is not
possible, and since a denial of service attack is outside the scope of the model,
E’s goal is to minimize the key-rate of the protocol (i.e., minimize its efficiency).
Since the more information E has on the raw-key the smaller the secret key will
be (after privacy amplification), it is E’s goal to increase her information (thus
shrinking the size of the final secret key) while minimizing her cost and staying
below the natural noise level of Q.

We will use UAB(Π,A) to denote the expected utility given to player AB
if that player chooses strategy Π ∈ ΣAB and if E chooses strategy A ∈ ΣE .
UE(Π,A) is defined similarly for E.

The goal in our game-theoretic model of QKD security is to construct a
protocol (strategy) “Π” such that the joint strategy (Π, IE) is a strict Nash
equilibrium (NE). In particular AB are motivated to actually run the protocol
while E is motivated to not launch a complicated quantum attack against it. If
such a protocol exists, then, under the assumption of a rational adversary, that
adversary will choose not to implement a powerful quantum attack as it will be
too expensive. This security model guarantees that if AB and E are rational,
then, assuming the protocol is a strict NE, the resulting key is information
theoretically secure. In the standard adversarial model the key is also information
theoretically secure, however the effective key-rate will be lower after privacy
amplification as one must “remove” E’s additional information from her quantum
attack. Thus, by assuming rational adversaries, one still maintains information
theoretic security, but with greater communication efficiency.
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In this work, we will consider standard QKD protocols (such as BB84 [18])
and add to these protocols additional “decoy” iterations. These decoy iterations
will be, during the operation of the protocol, completely indistinguishable from
standard iterations. At the end of the game (protocol run), AB will announce
which iterations were “real” and which were decoys. Decoy iterations, which are
useless to both parties, cost AB resources as they must still prepare and measure
qubits (if they do not send qubits, this is distinguishable to E and she will know
it is a decoy). However, since E cannot tell which are the decoy iterations, she is
forced to attack them all the same, thus costing her resources also. If E’s attack
is very expensive (e.g., requires an expensive quantum memory to operate), then
the more decoy iterations there are, the less incentive she will have to attack at
all. Of course, the more decoy iterations there are, the less incentive AB will
have to run the protocol as it will become too expensive for too little reward.

To incorporate this decoy method, we will introduce a parameter α ∈ [0, 1]
which may be set by AB. On any iteration of a protocol, during the quantum
communication stage, AB (in practice, just party A) will decide whether this
iteration is a real iteration (with probability α) or a decoy iteration (with proba-
bility 1−α), however they run the iteration normally regardless so that E cannot
distinguish the two cases. At the conclusion of the protocol, all decoy iterations
are discarded (to achieve this in practice, A will transmit, at the conclusion of
the protocol, through the authenticated classical channel, which iterations were
decoys - thus E also learns this at the end of the game, but at that point, she
already used resources to attack ; furthermore, properties such as the No-Cloning
Theorem, prevent her from making copies of qubits and later changing her attack
based on this new knowledge). A protocol strategy, therefore, will be denoted
Π(α). Ultimately, the goal within this game-theoretic model is to find a value
for α such that the joint strategy (Π(α), IE) is a strict NE. Furthermore, we
wish to determine what values of Q allow for an α to exist and to determine the
efficiency of the resulting protocol.

3.1 All-Powerful Attacks Against BB84

In this section, we apply our framework to model security of the BB84 protocol
allowing E the ability to launch all-powerful attacks (e.g., attacks requiring
quantum memories). We will prove that the noise tolerance of the BB84 protocol
in our game theoretic framework remains 11%, the same as in the standard
adversarial model [20]. However, we will show that, for noise levels less than 11%,
the efficiency of the protocol can be substantially higher in our game theoretic
model than in the standard adversarial model.

We will consider the BB84 protocol parameterized by α, denoted here as
Π

(α)
BB84. We will consider what is required for (Π(α)

BB84, IE) to be a strict Nash
equilibrium. First, consider AB’s utility for this strategy; we assume N is the
number of iterations they run the protocol for. In this case, since E is not
attacking, after error correction and privacy amplification, the secret key will be
of expected length Nα

2 (1 − h(Q)) (recall, in BB84, only half the iterations are
expected to be kept - see Protocol 1). Thus:
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UAB(Π(α)
BB84, IE) =

N

2
α(1 − h(Q)) − CAB , (1)

were we use CAB to mean CAB(Π(α)
BB84) (a value that AB must decide on, though

its actual numerical value will not be important to us in this section). On the
other hand, we have UAB(IAB , IE) = 0. Thus, for a strict NE to exist, we require:

α >
2CAB

N(1 − h(Q))
.

Naturally, this requires 1 − h(Q) > 2
N CAB . Thus, if this expression cannot be

satisfied, then the natural noise in the quantum channel (denoted Q) is too great
and AB cannot justify the cost of running the protocol. In the following analysis,
we will assume this inequality is satisfied.

Let us now consider E’s expected utility. If E does not attack (i.e., she
chooses to play strategy IE), then, since we are also considering “natural noise”
in the channel at a rate of Q, party E will gain Nα

2 h(Q) bits of information
on AB’s raw key “for free” simply by listening in to the authenticated classical
channel (we are assuming optimal error-correcting). Thus her expected utility
is: UE(Π(α)

BB84, IE) = αN
2 h(Q).

Now, assume that E chooses an optimal quantum attack strategy A ∈ ΣE .
From this, she will gain more information on the raw key (thus shrinking the
final secret key size, her ultimate goal), though it also will cost something to
implement. Furthermore, she will waste resources on attacking decoy states. It
is known that I(A : E) = αN

2 h(Q) when E performs an optimal attack [1].
Thus, her utility (based on I(A : E) and also the information learned from error
correction) is:

UE(Π(α)
BB84,A) = I(A : E) + α

N

2
h(Q) − CE(A) = αNh(Q) − CE(A)

Thus, to be a strict NE, we require UE(Π(α)
BB84, IE) > UE(Π(α)

BB84,A). For this
inequality to hold it must be that: α < 2CE(A)

Nh(Q) . Thus, for the strategy (Π(α)
BB84, I)

to be a strict NE, we require an α to exist that satisfies the following inequalities:

2CA

N(1 − h(Q))
< α <

2CE(A)
Nh(Q)

. (2)

If such an α exists, and if AB choose that for their decoy state probability,
they can be assured, in our rational model of security, that E will prefer to not
attack the quantum channel but instead, simply eavesdrop on the authenticated
channel. Furthermore, with such an α, rational AB are also motivated to run
the protocol, as opposed to simply aborting.

To determine suitable values for α we require values for CAB and CE(A).
Let’s assume a worst-case scenario in that CAB = CE(A). Note that, to imple-
ment A in practice, E must somehow cut into the quantum channel, replace
the natural noise with a more precise channel, setup attack equipment, and, in
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this scenario where I(A : E) = h(Q), construct and operate a perfect quantum
memory. In reality, it seems reasonable to expect that CE(A) > CAB . Thus,
making these equal models a “worst-case” scenario of benefit to E.

Now, by assumption, we have 2
N CAB < 1 − h(Q) (i.e., the cost per-bit for

AB is less than (1 − h(Q))/2; if this assumption is not made, then AB have no
motivation to run the protocol). Thus, the left-hand-side of Eq. 2 is strictly less
than 1 and, so, a solution for α exists only if the following inequality is satisfied:

CA

1 − h(Q)
<

CE(A)
h(Q)

.

Since we are assuming in this section that CAB = CE(A), then (Π(α)
BB84, IE) is a

strict NE only if the noise in the channel Q satisfies the following inequality:

1 − 2h(Q) > 0. (3)

This is exactly the same noise tolerance bound as is derived in the standard
adversarial model for BB84 as reported in [1,20,21]! In particular, a solution for
α exists only if Q ≤ 11%.

However, despite the noise tolerance threshold being the same in our new
game-theoretic model and the standard adversarial model, our game theoretic
model may be used to gain a significantly improved key-rate as we now demon-
strate. Assume that Q ≤ 11% (and so 1 − 2h(Q) > 0 and thus an α exists). Let
α be the largest allowed by Eq. 2 (the higher α is, the better for AB as the more
“real” iterations are being used on average). We may thus set:

α = min
(

2cE(A)
Nh(Q)

− ε, 1 − ε

)

,

for some small ε > 0. Since we are assuming CE(A) = CAB and we also require
2
N CA < 1 − h(Q), we may write CE = γ

2 · N(1 − h(Q)) for some constant γ < 1
and thus we have:

α = min
(

γ
1 − h(Q)

h(Q)
− ε, 1 − ε

)

. (4)

With α chosen as this, it is in E’s interest to not attack, but to instead
only gain the free information from the error-correction due to the natural noise
level Q. In this case, the Csiszar-Korner bound [22] applies (as E no longer has
a quantum system, but a classical one) which gives us a secret key size, after
privacy amplification and error correction, of:

	GT (N) = α
N

2
(1 − h(Q)) =

N

2
min

(

γ · (1 − h(Q))2

h(Q)
, (1 − ε)(1 − h(Q))

)

. (5)

On the other hand, in the standard adversarial model for a noise level of Q, the
secret key size would be: 	SAM (N) = N

2 (1 − 2h(Q)). Discounting the ε term
(which may be made arbitrarily close to 0), we plot the conditional key-rate of
the BB84 protocol in both our new game theoretic model and the standard adver-
sarial model (i.e., we plot 2	GT (N)/N and 2	SAM (N)/N respectively) in Fig. 1.
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Note that, even though the noise tolerance is the same in both security mod-
els, our game-theoretic security model may provide a much higher key-rate (i.e.,
efficiency) depending on the cost CAB (i.e., γ). Thus, by using a game-theoretic
model of security, more efficient quantum secure communication systems may be
employed!

Fig. 1. Showing the key-rate of the BB84 protocol in the Standard Adversarial Model
(SAM) compared with our game-theoretic model at high noise levels (x axis) for various
values of γ. Higher means more efficient communication.

3.2 Intercept/Resend Attacks

In the previous section, we considered ΣAB = {IAB ,Π
(α)
BB84} while E’s strat-

egy space was ΣE = {IE ,A} where A was an optimal attack against the BB84
protocol utilizing a quantum memory system. We also assumed that the cost of
performing attack A was similar to the cost of AB running the actual protocol
(a very strong assumption in favor of the adversary). In practice, such an attack
would be very difficult to launch against the protocol (and, with current tech-
nology, impossible as it would require a perfect quantum memory to perform
successfully). In this section, we consider practical, so-called Intercept-Resend
(IR) attacks. These attacks can be performed using today’s technology; they
also require hardware similar to that used by A and B, allowing us to more
accurately compute the cost of an attack compared with the cost of running the
actual protocol.

For this attack, on each iteration of the quantum communication stage, E
will, with probability p, choose to attack and with probability 1 − p choose to
ignore the incoming qubit. This value p will control how much noise E’s IR attack
actually creates (which, as before, must be kept below the natural noise level Q).
This choice to attack or not is part of the strategy and is made independently
for each iteration of the quantum communication stage. This is also different
from the IE strategy which chooses to not attack every iteration.

Should E decide to attack a particular iteration (with probability p), she will
first measure the incoming qubit in a basis {|ν0〉 , |ν1〉} (this is fixed for each
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iteration and part of the strategy) causing the qubit to collapse to one of the
basis states |ν0〉 or |ν1〉. If E observes |νi〉, she will “guess” that the key-bit for
this iteration is i ∈ {0, 1}. She will then send a fresh qubit in the state |νi〉 to B.

There are two important parameters for an IR attack; first the value p and,
second, the basis choice. We consider three common bases choices for IR attacks:
Z = {|0〉 , |1〉}, X = {|+〉 , |−〉} (see Sect. 2, and the Breidbart basis B =
{|φ0〉 , |φ1〉}, where: |φ0〉 = cos π

8 |0〉 + sin π
8 |1〉 and |φ1〉 = sin π

8 |0〉 − cos π
8 |1〉.

The value of p will be fixed to be the maximum value so that the induced
noise is equal to Q. This makes sense, since the larger the value of p, the more
information E may learn (since she is attacking more often), and since we cannot
have p so large that the induced noise is higher than Q, the allowed maximum.
Thus, once Q is given, the set ΣE will consist of four distinct strategies: IE (the
“do nothing” attack); along with three strategies, one for each basis choice (we
denote these attack strategies simply as Z,X, and B).

As for AB, we will consider three possible strategies: IAB (i.e., “do nothing”);
Π

(α)
BB84 the BB84 protocol as analyzed previously (see Protocol 1); and Π

(α)
B92, the

B92 protocol [19] (see Protocol 2). Both BB84 and B92 are common protocols
used in practical implementations of QKD [1]; B92 has the advantage that it
requires less quantum resources to implement (and, so, is cheaper). However, at
least in the standard adversarial model, B92 has a lower noise tolerance [20]. In
this section, we will show that, so long as Q satisfies certain bounds, the joint
strategy (Π(α)

BB84, IE) is a strict NE (for suitably chosen α); we will also show
that Π

(α)
BB84 is a dominate strategy for player AB and IE is a DS for E for certain

critical values of noise levels Q.
We begin by computing the utility of each possible action pair (Π(α),A).

First, we must compute the cost associated to each strategy. To do so, we will
define the following cost values for certain, basic, functionalities needed to imple-
ment the QKD protocol, and the IR attack:

CS : The initial cost forE to setup her attack equipment
(e.g., splicing into the quantum channel)

CM : The cost to perform a measurement in a single basis
CP : The cost to prepare a qubit basis state

CR(δ) : The cost to produce a δ -biased bit
We assume that CR(δ) = h(δ)CR for some cost CR

Cauth : The cost for AB to use the authenticated channel

We will assume that, if one requires an apparatus that is capable of producing
a qubit in x different states, the cost is γxCP for some function γx. Similarly,
for an apparatus capable of measuring a qubit in x different states, the cost is
γxCM . Our analysis below will be suitable for any non-decreasing γx; however
when we evaluate our results, we will consider two cases: first γx = 1 for all
x (i.e., there is no increase in cost) and, second, γx = x (the cost increases



Game Theoretic Security Framework for Quantum Key Distribution 51

linearly in the number of required states). Note that we will assume CP ≤ CM

which is a reasonable assumption since measurement devices are generally more
complicated (and sensitive) than preparation devices [1]. These cost values may
take into account such practical issues as device energy consumption over time
for example (thus running the devices for longer, or having devices capable of
performing additional measurements, will potentially cost users more).

From this, we can compute the following costs after N iterations of each
protocol:

CAB(Π(α)
BB84) = N [(3 + h(α))CR + γ4CM + γ4CP ] + Cauth (6)

CAB(Π(α)
B92) = N [(2 + h(α))CR + γ4CM + γ2CP ] + Cauth.

For BB84, AB must choose, each iteration, whether the iteration is a decoy or
not (costing h(α)CR); what basis A should send in (with probability 1/2 each,
thus costing CR); what basis to measure in (costing CR); and, finally, A must
choose a random key bit (again, costing CR). For B92, only one basis choice is
required (from B). Finally, note that, BB84 is a four-state protocol in that A
must prepare one of four possible qubit states each iteration. B92, however, is
a two-state protocol - A must only be capable of preparing a state of the form
|0〉 or |+〉. In both cases, however, B must be able to measure one of four states
(from two bases). It is clear that the cost of running B92 is no greater than the
cost of running BB84.

The cost for E to operate attack IE is zero (i.e., CE(IE) = 0). The cost
for the other strategies is the same: first, she must choose to attack or not,
costing h(p)CR; then she must measure and prepare a qubit in one basis. Those
operations are performed for all N iterations of the quantum communication
stage. Furthermore, she must also spend resources costing CS to setup her attack
initially (this is a one-time cost). The total cost for any attack A = Z,X,B is:

CE(A) = N [h(p)CR + p(γ2CM + γ2CP )] + CS , for any A ∈ {Z,X,B}. (7)

To complete our utility computation, we must also compute the secret key
length for each protocol under each attack. Since an IR attack results in three
classical random variables (one for Alice, Bob, and Eve), we may use the Csiszar-
Korner bound [22] to compute the number of secret bits that may be distilled
from these sources. Let 	(N,Π(α),A) be the amount of secret key bits that may
be distilled after N iterations of protocol Π(α) given that E used attack A. Then
from this bound, we have: 	(N,Π(α),A) = ηNα[I(A : B) − I(A : E)], where
η is the proportion of non-discarded iterations; namely η = 1/2 for BB84 and
η = 1/4 for B92 (see Protocols 1 and 2).

Note that the information computations above are dependent on only a single
iteration of the protocol when faced with the specified attack since we are assum-
ing iid attacks. Let I(Π(α),A) be equal to I(A : E) for the specified protocol
and attack; then, the utility functions, for a fixed N , will be:

UAB(Π(α),A) = ηNα[I(A : B) − I(Π(α),A)] − CAB(Π(α)) (8)

UE(Π(α),A) = ηNα[I(Π(α),A) + h(Q̃)] − CE(A), (9)
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where we use Q̃ to denote the raw-key error rate; i.e., the error of the actual
raw key which undergoes error correction (which, in the case of B92, is actu-
ally greater than the noise in the channel Q). The value ηNαh(Q̃) denotes the
information leaked to E “for free” during error correction.

To complete the utility computation, we require I(A : B) and I(A : E)
for all possible protocols and strategy pairs. It is not difficult to show that
I(A : B) = 1 − h(Q̃). For BB84, a raw-key error occurs when a |i〉 flips to a
|1 − i〉 (for i = 0, 1) or when a |±〉 flips to a |∓〉. By definition, this is exactly
the channel noise level Q. Thus, for Π

(α)
BB84, we have I(A : B) = 1 − h(Q). For

B92 it can be shown (see, for example, [23]) that the raw-key error is in fact:
Q̃ = 2Q/(1 − 2Q). Next, we must compute I(Π(α),A). Clearly, I(Π(α), IE) = 0
for any protocol. Consider, now, an IR attack where E measures and resends
in a basis {|v0〉 , |v1〉} (in our case, either Z, X, or B, however the equations
we derive here may be applied to other attack bases). By the measurement
postulate, if A sends a qubit of the form |i〉 (for i = 0, 1,+,−), E will observe
|vj〉 with probability vi,j = | 〈i|vj〉 |2. To compute I(Π(α),A) we will need the
joint distribution held between A and E. This is straight-forward arithmetic:
one must simply trace the execution of each protocol and use the measurement
postulate. We summarize this distribution in Table 1.

Table 1. Showing the joint probability distribution for A’s raw key bit and E’s “guess”
based on her attack (conditioning on the event she chooses to attack). For B92, we
require a normalization term, denoted M which is: M = v0,0(v−,0 + v1,0) + v0,1(v−,1 +
v1,1) + v+,0(v−,0 + v1,0) + v+,1(v−,1 + v1,1). The values here are found by tracing the
protocol and using the measurement postulate.

AE BB84 B92

00 1
4
(v0,0 + v+,0)

1
M

v0,0(v−,0 + v1,0)

01 1
4
(v0,1 + v+,1)

1
M

v0,1(v−,1 + v1,1)

10 1
4
(v1,0 + v−,0)

1
M

v+,0(v−,0 + v1,0)

11 1
4
(v1,1 + v−,1)

1
M

v+,1(v−,1 + v1,1)

By definition, we have I(Π(α),A) = p(H(A) + H(E) − H(AE)) where the
Shannon entropies may be computed easily from data in Table 1 and substituting
in |vi〉 for the appropriate basis state depending on the attack E uses (note that
when E chooses to not attack, which occurs with probability 1 − p, she learns
nothing, thus the need for the factor p in this expression). In summary, these
are found to be:

I(Π(α)
BB84, Z) ≈ .189p I(Π(α)

BB84,X) ≈ .189p I(Π(α)
BB84, B) ≈ .399p

I(Π(α)
B92, Z) ≈ .459p I(Π(α)

B92,X) ≈ .459p I(Π(α)
B92, B) = 0.

What remains is to find a value for p. As stated, we will assume that p is
chosen to maximize E’s information while keeping the induced noise from her
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attack equal to Q. The natural noise in the channel is the average of the Z basis
noise (which, in turn, is the average error of a |i〉 flipping to a |1 − i〉 when it
arrives at B’s lab) and X basis noise (the average of a |±〉 flipping to a |∓〉);
that is: Q = p

4 (v0,0v1,0 + v0,1v1,1 + v1,0v0,0 + v1,1v0,1 + v+,0v−,0 + v+,1v−,1 +
v−,0v+,0 + v−,1v+,1), from which it easily follows that p = 2Q for A = Z,X and
p = 4Q for A = B. Note that E may attack more often with the B basis as
it induces less noise, on average, than the Z or X based IR attacks. From this
analysis, we are now able to prove our two main results in this section involving
sufficient conditions of the noise level for (Π(α)

BB84, IE) to be a strict NE and for
each to be a DS.

Theorem 1. Assume classical resources are free for both parties AB and E
(that is, let CR = Cauth = CS = 0) and let CP ≤ CM (as discussed in the text).
Define A1 and A2 as follows:

A1 =
(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q)
A2 =

2γ4(CM + CP )
1 − h(Q)

.

If max(A1, A2) < 1 and Q, the noise in the channel is less than 0.232 and
satisfies the following inequality:

{
10.025

(
1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q)
)

−
(

γ4
γ2

− 1
)

> 0, If A1 ≥ A2

2.506(1 − h(Q)) − γ4
γ2

> 0, Otherwise
(10)

Then there exists an α ∈ [0, 1] such that (Π(α)
BB84, IE) is a strict NE.

Proof. Since Cauth = CS = 0, the factor of N may be divided out of the utility
functions (we are only interested in relations between them and the factor N
appears in both UAB and UE . This allows us to construct the function table
shown in Table 2. From this table, we see that, for (Π(α)

BB84, IE) to be a strict
NE, the following inequalities must be satisfied:

α >
2γ4(CM + CP )

1 − h(Q)

α >
(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q)

[

If
1
4

+
1
4
h

(
2Q

1 − 2Q

)

− 1
2
h(Q) > 0

]

α <
4γ2(CM + CP )

0.378
≈ 10.582γ2(CM + CP )

α <
8γ2(CM + CP )

1.596
≈ 5.013γ2(CM + CP ).

Note that, if Q < .232 (as assumed in the hypothesis), then 1
4 + 1

4h(2Q/(1 −
2Q)) − 1

2h(Q) > 0. From this, it is clear that if we can find an α that satisfies:

max(A1, A2) < α <
8γ2(CM + CP )

1.596
,
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Table 2. Function table for utility functions UAB and UE assuming Cauth = CS = 0
and dividing out the factor of N on both functions.

ΠAB E = IE

IAB UAB = 0

UE = 0

Π
(α)
BB84 UAB = α

2
(1 − h(Q)) − [(3 + h(α))CR + γ4CM + γ4CP ]

UE = α
2
h(Q)

Π
(α)
B92 UAB = α

4

(
1 − h

(
2Q

1−2Q

))
− [(2 + h(α))CR + γ4CM + γ2CP ]

UE = α
4
h

(
2Q

1−2Q

)

E = Z = X (No difference between Z and X for these protocols)

IAB UAB = 0

UE = 0

Π
(α)
BB84 UAB = α

2
(1 − h(Q) − 0.378Q) − [(3 + h(α))CR + γ4CM + γ4CP ]

UE = α
2
(h(Q) + 0.378Q) − [h(2Q)CR + 2Qγ2(CM + CP )]

Π
(α)
B92 UAB = α

4

(
1 − h

(
2Q

1−2Q

)
− 0.918Q

)
− [(2 + h(α))CR + γ4CM + γ2CP ]

UE = α
4

(
h

(
2Q

1−2Q

)
+ 0.918Q

)
− [h(2Q)CR + 2Qγ2(CM + CP )]

E = B

IAB UAB = 0

UE = 0

Π
(α)
BB84 UAB = α

2
(1 − h(Q) − 1.596Q) − [(3 + h(α))CR + γ4CM + γ4CP ]

UE = α
2
(h(Q) + 1.596Q) − [h(4Q)CR + 4Qγ2(CM + CP )]

Π
(α)
B92 UAB = α

4

(
1 − h

(
2Q

1−2Q

))
− [(2 + h(α))CR + γ4CM + γ2CP ]

UE = α
4
h

(
2Q

1−2Q

)
− [h(4Q)CR + 4Qγ2(CM + CP )]

the resulting joint strategy will be a strict NE (recall, by hypothesis, max(A1, A2)
< 1). For such a value to exist, it must be that max(A1, A2) is strictly less than
the right-hand side of the above expression.

We show this in two cases. First, assume A2 > A1. Then, by our assumptions
on the channel noise Q, we have:

γ4
γ2

< 2.506(1 − h(Q))

=⇒γ4(CM + CP )
1 − h(Q)

<
4γ2(CM + CP )

1.596
=⇒ 2γ4(CM + CP )

1 − h(Q)
<

8γ2(CM + CP )
1.596

,

as desired.
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For the second case, assume A1 ≥ A2. Then, by assumption on the channel
noise Q, we have:

γ4
γ2

− 1 < 10.025
(

1
4

+
1
4
h

(
2Q

1 − 2Q

)

− 1
2
h(Q)

)

=⇒ 2(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q)
<

8γ2(2CP )
1.596

.

Noting that CP ≤ CM completes the proof.

Table 3. Showing the allowed noise tolerance for which (Π
(α)
BB84, IE) is a strict NE.

When γ4 = γ2 then it is always true that A2 ≥ A1 (since A1 = 0 and A2 is always
non-negative) and so we do not need to evaluate the case for A1 > A2. When γ4 = 2γ2,
we must evaluate both cases. See text for explanation.

A2 ≥ A1 A1 > A2

γ4 = γ2 Q ≤ .146 n/a

γ4 = 2γ2 Q ≤ .031 Q ≤ .207

Theorem 1 gives conditions on the noise parameter Q for which (Π(α)
BB84, IE)

becomes a strict NE. The restrictions on max(Ai) < 1 may be satisfied if the
cost CP and CM are low enough. The restrictions on Q depend only on the value
γ4 and γ2. So long as Q satisfies Eq. 10, then AB are motivated to run the BB84
protocol and E is motivated to not perform an intercept/resend attack (but,
instead, to simply “listen” on the authenticated channel). We evaluate the noise
tolerance in Table 3. Surprisingly, if γ2 = γ4, the noise tolerance is 14.6% also
the maximal noise tolerance of BB84 in the standard adversarial model against
optimal individual attacks (which are more general/powerful than IR attacks).
Note, however, while the noise tolerance may be lower in our game theoretic
model, as before, the efficiency in our game theoretic model may improve as E
is not motivated to attack.

Theorem 2. Assume classical resources are free for both parties (i.e., let CR =
Cauth = CS = 0) and let CP ≤ CM (as discussed in the text). Define A1 and A2

as follows:

A1 =
(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q) − 0.798Q
A2 =

2γ4(CM + CP )
1 − h(Q) − 1.596Q

. (11)

If max(A1, A2) < 1 and if Q, the noise in the channel, is strictly less than 0.185
and if it satisfies the following inequality:

{
10.025

(
1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q) − 0.798Q
)

−
(

γ4
γ2

− 1
)

> 0, If A1 ≥ A2

2.506(1 − h(Q) − 1.596Q) − γ4
γ2

> 0, Otherwise
(12)
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then there exists a value for α such that Π
(α)
BB84 is a dominate strategy (DS) for

AB and IE is a DS for E.

Proof. Fix α. For Π
(α)
BB84 to be a DS for AB, we must show that, for every

strategy E ∈ ΣE , it holds that UAB(Π(α)
BB84, E) ≥ UAB(Π(α), E) for Π(α) =

Π
(α)
B92 and Π(α) = IAB . We see from Table 2, for this to be true, the following

inequalities must be satisfied:

α >
2γ4(CM + CP )

1 − h(Q)
α >

(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q)

α >
2γ4(CM + CP )

1 − h(Q) − 0.378Q
α >

(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q) + 0.0405Q

α >
2γ4(CM + CP )

1 − h(Q) − 1.596Q
α >

(γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1−2Q

)
− 1

2h(Q) − 0.798Q

Note that, the denominators of the above six inequalities are all positive by
assumption that Q < 0.185. Note also, that there are only six inequalities, and
not eight, since two are repetitions.

It is not difficult to see that if we take α ≥ max(A1, A2), where A1 and A2

are defined in Eq. 11, then all the above inequalities are automatically satisfied
and, so, Π

(α)
BB84 will be a DS for party AB.

Now, we consider E’s strategy IE . For IE to be a DS for party E, the following
inequalities must be satisfied (again, consulting Table 2):

α <
4Qγ2(CM + CP )

.378Q
≈ 10.582γ2(CM + CP )

α <
8Qγ2(CM + CP )

1.596Q
≈ 5.013γ2(CM + CP )

α <
8Qγ2(CM + CP )

0.918Q
≈ 8.715γ2(CM + CP )

Clearly if α < 8Qγ2(CM+CP )
1.596Q , the other two are also satisfied. All that remains to

be shown is that an α exists allowing both Π
(α)
BB84 to be a DS for AB and IE to

be a DS for E. In particular, we must show that: max(A1, A2) < 8γ2(CM+CP )
1.596 .

However, this can be proven in a similar manner as in the proof of Theorem1,
using the new bounds on Q from Eq. 12. This completes the proof.

The allowed noise tolerances for Π
(α)
BB84 to be a DS for AB and IE to be a DS

for E, are reported in Table 4.

4 Closing Remarks

In this paper, we introduced a new game-theoretic model of QKD security. Many
interesting problems remain open. It would be interesting to analyze best-reply
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Table 4. Showing the allowed noise values Q from Theorem 2.

A2 ≥ A1 A1 > A2

γ4 = γ2 Q ≤ .094 n/a

γ4 = 2γ2 Q ≤ .024 Q ≤ .13

strategies under different noise values and decoy probabilities. We may also con-
sider adding additional strategies for AB, different, non-linear, utility functions,
and support for multi-user protocols [24]. One may also analyze the NE strategies
based on Stackelberg game model, when the attacker E observes the strategy
of party AB and chooses her strategy accordingly. One can envision a system
whereby parties re-evaluate their choices after large sequences of N iterations,
taking into account noise conditions, to chose new optimal strategies.
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