
Towards True Decentralization:
A Blockchain Consensus Protocol Based

on Game Theory and Randomness

Naif Alzahrani(B) and Nirupama Bulusu

Portland State University, Portland, OR 97207, USA
{nalza2,nbulusu}@pdx.edu

Abstract. One of the fundamental characteristics of blockchain tech-
nology is the consensus protocol. Most of the current consensus pro-
tocols are PoW (Proof of Work) based, or fixed-validators based. Nev-
ertheless, PoW requires massive computational effort, which results in
high energy and computing resources consumption. Alternatively, fixed-
validators protocols rely on fixed, static validators responsible for vali-
dating all newly proposed blocks, which opens the door for adversaries
to launch several attacks on these validators such as DDoS and eclipse
attacks. In this paper, we propose a truly decentralized consensus pro-
tocol that does not require PoW and randomly employs a different set
of different size of validators on each block’s proposal. Additionally, our
protocol utilizes a game theoretical model to enforce the honest valida-
tors’ behavior by rewarding honest validators and penalizing dishonest
ones. We have analyzed our protocol and shown that it mitigates various
attacks that current protocols suffer from.

Keywords: Blockchain · Consensus protocol · Game Theory
Randomness

1 Introduction

Over the last few years, blockchain technology has been an attractive solution
for many different industries. The reasoning behind this is the transparency,
security, quality assurance, global peer-to-peer transactions, and decentralization
that blockchain technology provides [17]. Despite its potential to elevate security,
as with all new technologies, security risks can be found beneath the hype [19].
Moreover, blockchain technology has introduced new kinds of attacks such as
block withholding and selfish mining attacks. Such attacks occur for various
incentives, mostly financial. To defend against such attacks and to strengthen
blockchain security, game theory stands out as a potentially powerful means.

Fundamentally, a blockchain is a public, distributed ledger that contains
chained blocks, each of which is made up of several transactions. These blocks are
validated globally and transparently to guarantee security. This validation has

c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 465–485, 2018.
https://doi.org/10.1007/978-3-030-01554-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01554-1_27&domain=pdf

466 N. Alzahrani and N. Bulusu

to be executed without the need for a central authority. Instead, the blocks are
validated, shared and synchronized across nodes via a peer-to-peer, distributed,
and decentralized consensus mechanism [15].

One of the fundamental characteristics of blockchain technology is the con-
sensus protocol. In a blockchain, a consensus protocol ensures that all nodes in
the blockchain network agree on the validity of a block to be included in the
public ledger. It also guarantees that all nodes have the same order of blocks in
their blockchains. This is of significance because blockchains are trustless dis-
tributed nodes which need a way to synchronize their copies of stored data. The
nodes responsible for executing consensus protocols are the validators (or min-
ers in some blockchains). There are a considerable number of existing consensus
protocols. Nonetheless, not all of them guarantee the true decentralization, in
which the blocks’ validation is executed by anonymous, variable sets of valida-
tors to strengthen the protocol’s robustness. Instead, they rely on fixed, known
validators selected at the genesis state. This opens the door for various risk
threats which will be discussed shortly. Besides, most of the current consensus
protocols do not take the number of validators or how to select them into consid-
eration, as will be discussed in Sect. 2. The number of validators in a blockchain
network influences its security and efficiency substantially, especially in a fully
decentralized blockchain, in which there are no special nodes, and all nodes are
trustless.

In this paper, we mainly address the problem of validators’ selection in terms
of how to select them and how many to select to achieve a satisfiable trade-off
between security and efficiency. Also, we study the incentives of malicious nodes
to deviate from the consensus protocols, and we apply a game theoretical model
to enforce honest behavior.

The first and most popular consensus protocol to secure and decentralize
blockchains is the Proof of Work (PoW). This protocol requires powerful
nodes known as miners to validate the blocks. This consensus approach, however,
demands massive computational effort from the miners, which ultimately results
in high consumption in energy and computing resources. Additionally, the PoW
protocol relies on a few mining pools (often just 2 or 3 mining pools), which
raises doubt on the decentralization of PoW-based blockchains [7]. Furthermore,
such blockchains frequently fork. As a result, the blockchain nodes are not able
to rely on a new block as soon as it appears. Alternatively, they must wait until
this block is deep enough in the chain, which results in very high latency [7].

An alternative approach that does not require the expensive PoW compu-
tation and, therefore, enhances efficiency is Fixed-Validators Decentraliza-
tion. In this approach, a small fixed number of nodes are chosen to be val-
idators. This approach ensures the integrity of the blockchain as long as the
majority of the validators are honest. The validators are selected at the genesis
state, and they are, usually, selected based on the stake they have. However, the
efficiency of such protocols is influenced by the number of selected validators.
This is because each validator performs some work to check the validity of a
block and communicates with each other validator in the committee to reach a

True Decentralized Consensus Protocol 467

consensus. This incurs computation and communication overhead proportional
to the committee size. The validators agree on a block to be included in the
chain if the block is digitally signed by a majority of them.

Although the fixed-validators approach is efficient, it has several limitations.
First, it relies on an extreme trust assumption that the majority of validators are
honest; nevertheless, it is possible for a powerful adversary to corrupt or bribe
most of them over time [6]. Second, a fixed committee of validators is vulnerable
to adversarial attacks, since they are known and fixed. For example, an adversary
can launch a DoS attack against the validators, preventing them from validating
new blocks or receiving messages from each other. Third, although this approach
is efficient, utilizing a relatively small number of validators in a large network
with a massive number of transactions or blocks can bottleneck the performance.

The second alternative approach is True Decentralization, in which every
node in the system can be chosen to be a member of the validators. In such an
approach, a set of validators are selected randomly from the set of “all nodes”
in each round of validation. In other words, it does not require a single set of
validators to execute all rounds. As a result, the true decentralization approach
distributes the validation work among all nodes and can withstand the powerful
adversaries. Note that the fixed-validators approach is defined on the same group
of validators and do not support validators’ replaceability. In response to this, we
propose a novel, truly decentralized consensus protocol that selects a different
set of random validators on every block proposal.

Despite the security provided by the true decentralization, it does not guar-
antee that the validators are always honest and do not deviate from the protocol.
For example, a dishonest validator might perform a block withholding attack (see
Sect. 4) in favor of a malicious proposing node (i.e., the node which creates and
proposes the new block). This attack can result in undermining the consensus
process. To overcome such vulnerability, we integrate a game theoretical model
into our consensus protocol to reward honest validators and to punish dishonest
or lazy validators that do not adhere to the protocol. Additionally, the always-
validation (i.e., validators always validate even if the risk likelihood of a block’s
proposer is low) is a performance shortcoming particularly found in blockchains
with low hostility. Thus, utilizing a game theoretical model that enables val-
idators to validate with some probability proportional to the proposers’ risk
likelihoods would significantly enhance the protocol efficiency.

The contribution of this paper is a new consensus protocol that deals with
the problem of selecting validators and has the following advantages:

1. It achieves the true decentralization by selecting a different set of validators
on every block proposal at random.

2. The number of the selected validators is dynamic and variable. Hence, instead
of selecting a fixed static number of validators, our protocol utilizes game
theory to select a different number of validators (on every block proposal)
proportional to the risk likelihood of the proposing node.

3. The game theoretical approach exploited by our protocol accomplishes the
following further benefits:

468 N. Alzahrani and N. Bulusu

(a) It enforces the honest validators behavior by rewarding honest validators
and penalizing dishonest ones.

(b) It enhances the efficiency by eliminating the always-validation mode.
Thus, the validators validate with probability proportional to the risk
likelihood of the proposing node.

2 Related Work

In this section, we will examine some related existing works. The related litera-
ture falls into two general camps: (1) current, widely-used consensus protocols,
and (2) works that integrate blockchain and game theory.

2.1 Consensus Protocols

In this section, we present only the BFT (Byzantine Fault Tolerance) protocols,
since they are more relevant to our proposed protocol.

Tendermint [3,12] is a consensus BFT protocol that can work even if up to
one-third of nodes in the network fail in arbitrary ways. It does not require the
PoW mining, which overcomes the energy and resources consumption issues.
Instead, it relies on a fixed, static set of validators (i.e., fixed-validators decen-
tralization) selected at the genesis state to validate the new block and vote on
them. In Tendermint, a proposer proposes a new block, then the validators pre-
vote on the block and only proceed to pre-commit if they receive more than 2/3
of pre-votes. Validators only accept the block if more than 2/3 of pre-commits
are received. Tendermint is notable for its simplicity, performance, and fork-
accountability [13]. Our protocol is based on Tendermint and inherits all the
features offered by Tendermint. However, it deals with the validators’ selection
issue by selecting a different random set of validators on each block proposal
(i.e., true decentralization).

Hyperledger Fabric is a BFT consensus algorithm [9], which can tolerate
up to one-third byzantine nodes in a blockchain network. In Fabric v0.6, there
exists a fixed number of validation peers responsible for executing the consensus
protocol. A proposer can submit a transaction to any of them. Then, the chosen
peer broadcasts this transaction to the other peers. One of the validation peers
is selected as a leader. When generating a block, the leader broadcasts it to all
peers. When a validation peer receives this block, it hashes it, broadcasts the
hash to all other peers, and begins counting their responses. If two-thirds of the
responses were received with the same hash, it commits the new block to its local
ledger. Hyperledger Fabric, like Tendermint, employs a fixed known number of
validation peers.

In our previous work [2], we presented a protocol based on Tendermint and,
hence, can tolerate up to one-third of Byzantine faulty nodes. This protocol
overcomes the fixed set of validators that Tendermint suffers from and utilizes
the randomness to select a different set of log n validators each time a new block
is proposed (where n is the number of nodes in the network). This protocol

True Decentralized Consensus Protocol 469

outperformed Tendermint and achieved a remarkable performance with a satis-
factory level of security. Nevertheless, this protocol is vulnerable to attacks such
as block withholding. This paper aims to overcome the limitations presented in
our previous work.

2.2 Blockchain and Game Theory

Although blockchain technology has gained considerable attention from the com-
puter science and economics communities, the use of game theory methods in
this technology is limited [16]. In this section, we present the most relevant and
recent works that utilize game theory in blockchain technology.

Xu et al. [20] proposed a game theoretical approach to suppress the attack
motivation on a blockchain that consists of mobile devices and edge servers. The
game is formulated between a mobile device and an edge server, where the mobile
device can send a request to the server to acquire a real-time service or launch
an attack. On the other hand, the server chooses to either provide the service or
to attack the mobile device. The authors introduced a punishment mechanism
according to the action record to mitigate the attacks on the blockchain. They
have concluded that both players tend to behave finely when the punishment
weight is significant. The proposed approach was designed to deal with attacks
like zero-day attack, DDOS attacks, and password-based attacks.

Johnson et al. [10] employed a game theoretical model to analyze the incen-
tives for a mining pool to launch a DDoS attack against another mining pool.
The players in the game are two competing mining pools, where each one may
utilize additional computing resources to increase the chance of winning the min-
ing race, or to trigger a DDoS attack to lower the expected success of the other
competing mining pool.

Luu et al. [14] studied the block withholding attack on mining pools using a
game theoretical approach by formulating the Bitcoin mining as a game. They
analyzed the block withholding attack and concluded that the attack is profitable
and well-incentivized in the long-term. The authors derived the game equilibrium
state, which is a mixed strategy where all clients are incentivized to attack
rather than participate honestly to maximize their payoffs. Finally, the authors
concluded that the PoW protocol is vulnerable to such an attack.

In a paper entitled ‘The Miner’s Dilemma’, Eyal [5] studies the scenario when
pools attack each other. Open pools (i.e., pools of miners that allow any miner
to join the mining work) are vulnerable to block withholding attacks performed
by infiltrated miners from competing pools. This paper defines a game where
pools recruit some of their participants to infiltrate other pools to diminish their
mining capabilities. This game is called the miner’s dilemma where players are
two pools, and their strategies are whether or not to attack each other. The
author observes that attacking is the dominant strategy for each player.

All the above works have introduced game theoretical approaches to the PoW
mining protocol. As previously discussed in Sect. 1, PoW is not an attractive app-
roach for blockchains that are efficient-sensitive due to its massive computation
demands. In a more relevant work presented by Kiayias et al. [11], Ouroboros

470 N. Alzahrani and N. Bulusu

consensus protocol was proposed. Similar to our protocol, Ouroboros eliminates
the need for an energy-hungry PoW protocol. Ouroboros is based on the Proof
of Stake (PoS) protocol. It works by dividing the time into rounds called slots
in which each slot is assigned to a leader. The leaders are picked based on the
stake they have. A chosen leader is responsible for producing a block for its
time slot. The authors utilized game theory to introduce a reward mechanism to
incentivize the participants in the blockchain. By means of the game theoretical
design, attacks such as selfish-mining and block withholding are mitigated. The
rewarding mechanism works by awarding a positive payoff for participants who
do not diverge from the protocol.

3 The Proposed Consensus Protocol

In this paper, we propose a new consensus protocol that exploits randomness and
game theory to achieve true decentralization security with respect to efficiency.
Our protocol is based on Tendermint and exploits its capability to overcome
up to one-third of Byzantine faults. Unlike other protocols that rely on a fixed,
static set of validators responsible for validating all proposed blocks, our pro-
tocol randomly selects a different set of different size of validators each time a
new block is proposed. Thus, it improves the security, since the validators are
not known before proposing the new block. Further, the number of validators
employed in the consensus process is also unknown. These two factors make the
job more difficult for an adversary to attack or bribe the set of validators. In
respect to efficiency, our protocol distributes the validation work among nodes
by selecting different sets of validators for different blocks instead of relying on
the same static fixed set of validators for all proposed blocks. This is of sig-
nificant concern, especially in a blockchain with a small number of validators
and a massive number of transactions, or blocks. Additionally, the efficiency is
enhanced, as not all selected validators upon proposing a new block will vali-
date that block. Instead, a validator validates with a probability based on the
outcomes of a game played between the proposing node and this validator. This
saves a substantial computational cost, particular, in a low hostility blockchain
environment.

Each node in the blockchain has a unique pair of keys (public pk and secret
sk) and is identified by its public key. Moreover, each node has a public trust
(reputation) value R where this value affect the selection of a node to be validator
over time. There are four types of nodes in our protocol:

1. Proposing (proposer): This is the node which creates, proposes, and broad-
casts to the network the new block.

2. Validation-leader: This is the node responsible for selecting the random set
of validators for the proposing node.

3. Validator: This node is responsible for validating the newly proposed block.
Moreover, validators communicate their votes on the block to reach consensus.

True Decentralized Consensus Protocol 471

4. Idle: This node does nothing except wait for the decision to be made by
validators on whether to accept or reject the block. All other nodes in the
network are idle.

Our protocol works in two phases: the initialization phase, and the verifica-
tion (validation) phase. The blockchain initiator executes the first phase at the
genesis state, in which it randomly maps each proposer to its validation-leaders.
In the second phase, each node becomes a proposer in a round-robin fashion.
When a node is a proposer, it proposes a block, broadcasts it to all nodes, and
its corresponding validation-leaders randomly select the validators to verify (val-
idate) this block. In this phase, a two-stage attacker-defender game is proposed,
where the proposer is the potential attacker (i.e., player x) in both stages. The
defenders (i.e, player y) in the first-stage are the validation-leaders. The defend-
ers in the second-stage are the validators (i.e., player z) that have been selected
by the validation-leaders from the first-stage. Next two subsections present an
in-depth description of how these two phases are executed.

3.1 Initialization Phase

This phase’s main task is mapping proposers to validation-leaders. At the genesis
state (i.e., when the genesis block is proposed), the blockchain initiator randomly
maps four validation-leaders to each proposer in the network. The reasoning
behind this choice is that four is the minimum number to provide tolerance to a
single Byzantine fault [3]. This is because our protocol is based on Tendermint,
and it is assumed that a Tendermint network has two-thirds of non-Byzantine
nodes. A simple approach is to employ only one validation-leader per a proposer,
however, to ensure safety and liveness of the consensus process, we need to utilize
more. It is worth noting that this number (i.e., four) can be changed based
on factors like the network’s size and hostility, or the blockchain application
that utilizes our protocol. Our approach works with any number of validation-
leaders per proposer other than four, but we utilizes the minimum in favor of
efficiency. Additionally, this number can be a random number to further increase
robustness.

The mapping is executed randomly according to the nodes weights (repu-
tations R). As shown in Algorithm 1, we use the Weighted Random Sampling
(WRS) algorithm [4]. The weights in our algorithm are the nodes’ reputation
values. Furthermore, this mapping is done blindly; that is, no proposer knows
its corresponding validation-leaders and no validation-leader knows its proposer
until executing the consensus protocol. This way, we prevent a malicious pro-
poser from corrupting or bribing its validation-leaders and vise versa.

To accomplish the anonymous mapping, the blockchain initiator, first,
includes a secret S1 in every node’s genesis block, so it uses this secret when
the node becomes a proposer. S1 is a hash that includes the proposer’s public
key pr.pk, all the four selected the validation-leaders’ public keys [vl1.pk−vl4.pk],
the blockchain ID blockchainID, and a random number Rand1 as flows:

S1 ← hash(pr.pk||vl1.pk||vl2.pk||vl3.pk||vl4.pk||blockcahinID||Rand1)

472 N. Alzahrani and N. Bulusu

Note that there is only one proposer secret S1. Each proposer in the network
has its own S1. This secret is checked by each of the four validation-leaders.

Second, blockchain initiator generates a validation-leader’s secret S2. S2 is
a hash that includes the proposer’s secret S1, and a random number Rand2 as
flows:

S2 ← hash(S1||Rand2)

Here, we use different Rand2 for each validation-leader to make S2 different for
each one of them. Note that Rand2 is private and is only known to its particular
validation-leader node.

To ensure that a validation-leader is legitimate, and that it has been elected
by the blockchain initiator, we need to utilize a verifiable proof π. This proof is a
digital signature signed by the initiator using its private key in.sk. The proof π
includes the proposer’s public key pr.pk, the validation-leader’s public key vl.pk,
and the blockchain ID blockchainID as below.

π ← Signin.sk(pr.pk||vli.pk||blockcahinID)

The validation-leader must submit this proof to its elected validators so that
each can verify π using the initiator’s public key in.pk prior to involving in the
validation and consensus process. This protects against malicious nodes claiming
that they are validation-leaders for a proposer.

As mentioned, for one proposer, there exists four leaders responsible for
selecting the validators for the block proposed by this particular proposer. This
arises a new problem of selection conflict, since each validation-leader selects
the validators blindly without knowing its peer leaders. Consequently, the four
leaders perform the validators’ selection from the same pool of nodes without
any communication or agreement between them. This can result in selecting a
validator more than once by different leaders. Our protocol overcomes this prob-
lem by dividing the pool of nodes into four pools, each of which is assigned to
a leader. Specifically, each validation-leader will have a range g to choose from
determined at the genesis state. Note, we assume that all the nodes in the net-
work have the same set of nodes in the same order. As shown in Algorithm 1, g
is predetermined by the blockchain initiator and is defined as below:

g ← [((i − 1).
n

4
) + 1, i.

n

4
]

where 1 ≤ i ≤ 4 and is the index of a validation-leader among its peers.
In Algorithm 1, there are three lists. The first one (A) is a population of n

nodes each of which has a reputation value R. The second list (B) is a temporary
list for a proposer to hold the public keys for the selected validation-leaders.
This list is flushed after selecting the validation-leaders and initializing their
secrets and proofs. The last list (C) is for a validation-leader. There exists four
corresponding proposers for each validation-leader. Thus, C stores four tuples,
and each of them corresponds to one proposer. Each tuple includes the secret S2,
the random number Rand2, the proof π, and the range g. By the end of executing

True Decentralized Consensus Protocol 473

Algorithm 1. Proposers to leaders Mapping
Input : A population A of n nodes having reputation values

1 foreach pr ∈ A do
2 for k ← 1 to 4 do
3 Try:

4 pi(k) ← Ri
Σsj∈A−BRj

5 Randomly select vli with probability pi(k) from A − B
6 if Ci.size > 4 then
7 Go to Try
8 else
9 B.add(vli.pk)

10 end

11 end
12 Randomly generate Rand1

13 S1 ← hash(pr.pk||vl1.pk||vl2.pk||vl3.pk||vl4.pk||blockcahinID||Rand1)
14 Append S1 to the pr’s genesis block
15 foreach vli ∈ B do
16 Randomly generate Rand2

17 S2 ← hash(S1||Rand2)
18 π ← Signin.sk(pr.pk||vli.pk||blockcahinID)
19 g ← [((i − 1).n

4
) + 1 , i.n

4
]

20 Ci.add(S2||Rand2||π||g)

21 end
22 Flush B

23 end

Algorithm 1, each node in the network will have exactly one proposer’s secret
S1 used when the node becomes a proposing node, and a list C used whenever
this node becomes a validation-leader for one of its four proposing nodes.

3.2 Verification (Validation) Phase

This phase is executed upon proposing a new block. It is carried out by three
parties (proposer, validation-leaders, and validators). The main purpose of this
phase to decide the validity of the newly proposed block and to reach a consensus
on this decision.

When a node becomes a proposer, it broadcasts its secret S1 to all nodes in
the network. Every other node checks if it is a validation-leader for this proposer
by looping through its list C and hashing the received S1 and each private
random number Rand2 it has. If the resulting hash matches its secret S2, then
this node is a validation-leader for this proposer as shown in Algorithm 2.

After a node decides that it is a leader for the proposer, this leader plays the
first-stage game with the proposer to decide how many validators (m) to select.

First-Stage Game. This game takes place between the proposer (i.e., player
x) and each of its validation-leaders (i.e., player y). The validation-leader deter-

474 N. Alzahrani and N. Bulusu

Algorithm 2. Validation-leader checking
Input : The node’s list C, and the received proposing node’s secret S1

Output: A decision of weather or not this node is a validation-leader
1 decision ← false
2 foreach tuplei ∈ C do
3 if Si

2 = hash(Si
1||Randi

2) then
4 decision ← True
5 end

6 end
7 Return decision

mines the number of validators based on the outcome of the game. There are
two strategies for the validation-leader from which to choose. The first one is to
UseMinimumValidators where the minimum is four validators. The second strat-
egy is to AddMoreValidators where the number of validators varies based on the
outcome of the game, which is proportional to the risk likelihood of the proposer.
The strategy profile for the second player (i.e., the proposer) is (a) Cheat, and
(b) NotCheat. A proposer could be of two types: malicious or regular. Our
game is considered to be a one-to-four game where each of the four leaders has
no cooperation with the other leaders, so, we consider each game between a
leader and the proposer as an independent event. Since the validation-leader do
not know the type of player x (i.e., regular or malicious), we model our game
as a Bayesian game. This is because the leader node (player y) in our model
has incomplete information about the game. Player x, however, has this private
information about its type known only to it.

Strategic Form of First-Stage Bayesian Game. First, we model our game
as a strategic form as shown in Tables 2 and 3. Table 1 shows the notation used
in our game theoretical approach. It is worth mentioning the importance of the
proposer (β), and how it is obtained is not discussed in this paper due to space
limitation. Table 2 shows the payoff matrix of the game when player x is of type
malicious. For each cell in the payoff matrix, the first payoff is for player x and
the second one is for player y. Table 3 shows the payoff matrix of the game when
player x is of type regular. The goal of both players x and y is to maximize their
payoffs. We assume that the players are rational.

Extensive Form of First-Stage Bayesian Game. The Bayesian game intro-
duces a third player called Nature (denoted by N), which determines the type of
player x by assigning a probability (μ) to player x of being malicious. Figure 1
represents the the Bayesian game extensive form. μ can be assigned according
to the environment of the network, which can be learned dynamically by multi-
stage games. A higher value of μ is given when the environment is hostile.

Bayesian Nash Equilibrium (BNE) Analysis

A. Game Pure-Strategy BNE: In this section, we analyze BNE assuming
that player x knows player y ’s belief of μ. If player x plays his pure strategy

True Decentralized Consensus Protocol 475

Table 1. The first-stage game notation.

Symbol Definition

β Importance of the proposer. We assume that some proposing
nodes in the blockchain network have higher criticality than
others

γ A reward that player y can get if it maintains the
performance of the consensus process under a cretin
threshold by playing UseMinimumV alidators. However,
player y can loose γ (i.e. deducted from his gain gy) if it
plays AddMoreV alidators and the performance violates the
specified threshold. We assume that player y will not win γ
in case of a successful attack (i.e. player x plays Cheat and
player y plays UseMinimumV alidators)

wx Work done by the proposing node (player x) to play Cheat

gx The gain for player x from a successful attack

cx The cost (risk) for player x if captured

wy Work done by the validation-leader (player y) to play
AddMoreV alidators

gy The gain for player y from capturing a cheater, in case the
validation-leader employed more validators

cy The cost (risk) for player y if fails to capture a cheater

μ The probability of player x being malicious

N The nature node, which determines the type of player x

Table 2. Strategic form of the first-stage Bayesian game (player x is malicious)

Game matrix Player y (validation-leader)

AddMoreValidators UseMinimumValidators

Player x Cheat (β.cx) − wx, [(β.gy) − γ] − wy (β.gx) − wx, β.cy

NotCheat 0, −wy − γ 0, γ

Table 3. Strategic form of of the first-stage Bayesian game (player x is regular)

Game matrix Player y (validation-leader)

AddMoreV alidators UseMinimumV alidators

Player x NotCheat 0, −wy − γ 0, γ

(Cheat if malicious, NotCheat if regular), then, the expected payoff of player y
playing his pure strategy AddMoreV alidators is:

Eμy(AddMoreV alidators) = {μ.[((β.gy) − γ) − wy]} + {(1 − μ).(−wy − γ)}

476 N. Alzahrani and N. Bulusu

Fig. 1. Extensive form of first-stage Bayesian game.

Similarly, the expected payoff of player y playing his pure strategy UseMini-
mumValidators is:

Eμy(UseMinimumV alidators) = [μ.(β.cy)] + [(1 − μ).γ]

So, if Eμy (AddMoreV alidators) > Eμy (UseMinimumV alidators) Or,

{μ.[((β.gy) − γ) − wy]} + {(1 − μ).(−wy − γ)} > [μ.(β.cy)] + [(1 − μ).γ]

Which can be simplified to:

μ >
wy + 2γ

β(gy − cy) + γ
(1)

Then, the best response of player y is to play AddMoreV alidators. Never-
theless, if player y chooses to play AddMoreV alidators, Cheat will no longer
is the best response for player x type malicious and, instead, will choose
to play NotCheat. As a result, ((Cheat if malicious, NotCheat if regular),
AddMoreValidators, μ) is not a Bayesian Nash Equilibrium (BNE). However, if
Eμy(AddMoreV alidators) < Eμy (UseMinimumV alidators) Or,

μ <
wy + 2γ

β(gy − cy) + γ
(2)

Then, the best response for player y is to play UseMinimumV alidators and
thus ((Cheat if malicious, NotCheat if regular), UseMinimumV alidators, μ)
is a pure-strategy BNE.

True Decentralized Consensus Protocol 477

If player x type malicious chooses to play the pure strategy NotCheat, player
y ’s dominant strategy is UseMinimumV alidators, regardless of μ. Nevertheless,
if player y plays UseMinimumV alidators, the best response for player x type
Malicious is Cheat, which reduces to the above case. Hence, ((NotCheat if
Malicious, NotCheat if Regular), UseMinimumV alidators) is not a BNE.

B. Game Mixed-Strategy BNE: We previously showed that when Eq. 1 is
true, there is no pure-strategy BNE exists. So, we have to find mixed-strategy
BNE. Let p be the probability with that player x plays Cheat. Let q be the
probability with player y plays AddMoreV alidators. The expected payoff of
player y playing AddMoreV alidators is:

Eμy(AddMoreV alidators) = {p.μ.[((β.gy) − γ) − wy]} + {(1 − p).μ.(−wy − γ)}
+{(1 − μ).(−wy − γ)}

The expected payoff of y playing UseMinimumV alidators is.

Eμy(UseMinimumV alidators) = {p.μ.(β.cy)} + {(1 − p).μ.γ} + {(1 − μ).γ}
So, player y plays AddMoreV alidators, if Eμy(AddMoreV alidators) >
Eμy(UseMinimumV alidators). Or,

p >
wy + 2γ

μβ(gy − cy) + μγ
(3)

Likewise, we calculate the expected payoffs player x. The expected payoff of x
playing Cheat is:

Eμx(Cheat) = {q.μ.[(β.cx) − wx]} + {(1 − q).μ.[(β.gx) − wx]}
The expected payoff of x playing NotCheat is:

Eμx(NotCheat) = 0

As a result, player x plays Cheat, if Eμx(Cheat) > Eμx(NotCheat), or:

q >
wx − (βgx)
μβ(gy − cy)

(4)

Now, we derive our game’s mixed-strategy BNE as: ((q if malicious, NotCheat
if regular), p, μ).

Thus far, we have obtained the above game’s mixed-strategy BNE. How-
ever, this game is molded for one player x and one player y, and we have four
defenders (validation-leaders) and player x knows this fact. Hence, ((q if mali-
cious, NotCheat if regular), p, μ) is no longer a valid mixed-strategy BNE.
Thus, we calculate a new mixed-strategy BNE. The events of validations are
independent. We have four validation-leaders. Therefore, the likelihood that the
four validators plays AddMoreV alidators is p̂ and is calculated as:

p̂ = (4.p) − p4 (5)

478 N. Alzahrani and N. Bulusu

where, p is the probability that one validation-leader plays AddMoreValidators.
Now, the attacker plays Cheat with probability q̂ defined as:

q̂ = q − (p̂ − p) (6)

So, our new mixed-strategy BNE is: ((q̂ if malicious, NotCheat if regular), p,
μ).

Deciding the Number of Validators (M). After executing the first-stage
game, each validation-leader decides its number of validators m, of which m < n
where n is the total number of nodes in the network. The m value can be: (a)
four validators if the validation-leader chooses to play UseMinimumV laidators,
or (b) a fraction of n proportional to p it it plays AddMoreV alidators.

p is the probability that the proposing node (player x) might attack (plays
Cheat). In response to this probability, a validation-leader (player y) chooses
the appropriate strategy that will maximize its payoff (i.e., whether or not to
AddMoreV alidators). Hence, we consider p as the “risk likelihood” of an attack.
p is computed with the assumption that the validation-leader is ‘risk-neutral,’
that is in a fair game each player aims to maximize its expected payoff. In case if a
validation-leader chooses to play AddMoreV alidators, the number of validators
(m) will be a random number bounded by the minimum number of validators
(i.e. four) and a fraction of n

4 proportional to p (we choose n
4 because we have four

validation-leaders). In other words, a validation-leader select a random number
between 5 (the minimum number of validators plus one) and p.(n−2)

4 (excluding
the proposing and the validation-leader nodes) as flows:

m = Random[5,
p.(n − 2)

4
]

After a validation-leader decides its m, it selects its validators, instructs them,
and broadcasts m to all nodes. When a node in the network receive all the ms
from the validation-leaders, it calculate the overall number of the validators
involving in the protocol (M) as flows:

M = Σ4
i=1mi

Note that our protocol inherits the Byzantine tolerance provided by Tender-
mint. In other words, the system can work with one faulty leader, of which M is
the aggregation of only three ms. In case if more than one leader is faulty, each
node in the network waits for a time period named “leader − time − out” and
then switches to “all − validate” mode. In this mode, every node in the network
votes on the received M to agree on it (details are not provided due to space
limitation). This mode is costly but preserves the consensus liveness.

Selecting Validators. Each validation-leader selects its set of m validators.
The four sets of selected validators will be responsible for validating the proposed
block. Our protocol is based on Tendermint which involves two steps of voting
(pre-vote and pre-commit). The validators are selected randomly, and each set

True Decentralized Consensus Protocol 479

Algorithm 3. Validators’ Selection
Input : A population V of n−2

4
nodes having reputation values, AND the risk

likelihood p
Output: A set of validators/pre-voters PV and a set of pre-committers PC of

size m
1 if AddMoreV alidators then

2 m = Random[5, p.(n−2)
4

]
3 else
4 m ← 4
5 end
6 for k ← 1 to m do

7 pi(k) ← Ri
Σvj∈V −PV Rj

8 Randomly select vi with probability pi(k) from V − PV
9 PV.add(vi)

10 end
11 for l ← 1 to mi do

12 pi(l) ← Ri
Σcj∈V −PCRj

13 Randomly select ci with probability pi(l) from V − PC
14 PC.add(ci)

15 end
16 Return PV AND PC

of selected validators is only known to their validation-leader. A validator is only
known, to the other nodes in the network, when it contributes to one of the voting
steps. Therefore, an adversary can observe the validators after revealing their
identities in executing the first stage of voting (i.e., pre-voting). As a result, a
powerful adversary might be able to attack or corrupt a sufficient number of them
which can result in not executing the second step of voting (i.e., pre-committing).
In response to this issue, our protocol requires each validation-leader to select
two sets of nodes of size m. The first set is the validators/pre-voters, and the
second one is the pre-committers. The pre-voters are responsible for executing
the first step of voting, and the pre-committers execute the second step. As
a result, the adversary discovers a participating node in the voting only after
giving its vote, which is an unuseful knowledge. Algorithm 3 shows the process
of selecting the validators/pre-voters and pre-committers.

After selecting the validators and pre-committers nodes, each validation-
leader needs to include a proof of eligibility τ for each selected node to prove
that a legitimate validation-leader has selected this node. τ is a digital signature
signed by the validation-leader’s private key vl.sk and includes the validation-
leader’s public key vl.pk, the selected node’s public key (pv.pk for a pre-voter
and pc.pk for a pre-committer), and the validation-leader’s proof π as flows:

τ ← Signvl.sk(vl.pk||pv.pk||π)

480 N. Alzahrani and N. Bulusu

A node which receives a vote accompanied by τ from a voting node (i.e,
pre-voter or pre-committer) needs to perform two verifications. First, it needs to
verify τ using the validation-leader’s public key vl.pk. Second, after successful
verification of τ , the node verifies π using the initiator’s public key in.pk.

Second-Stage Game. After selecting the validators by their leaders, and after
proposing and broadcasting the new block by the proposer, the second-stage
game takes place between the proposer (player x) and each of the valida-
tors (player z). The strategy profile for a validator is (a) V alidate, and (b)
NotV alidate. This game is modeled similarly to the first stage game. Tables 4
and 5 show the strategic form of the second-stage Bayesian game. The extensive
form of this game is similar to the one in the first-stage game which was illus-
trated previously in Fig. 1. We use the same notations presented in Table 1 with
following additional notations. wz is the work done by the validator (player z)
to play V alidate. gz is the gain for player z from capturing a cheater. cz is the
cost for player z if fails capturing a cheater.

Table 4. Strategic form of the second-stage Bayesian game (player x is malicious)

Game matrix Player z (validator)

V alidate NotV alidate

Player x Cheat (β.cx) − wx, (β.gz) − wz (β.gx) − wx, β.cz

NotCheat 0, −wz 0, 0

Table 5. Strategic form of of the second-stage Bayesian game (player x is regular)

Game matrix Player z (validator)

V alidate NotV alidate

Player x NotCheat 0, −wz 0, 0

A. Game Pure-Strategy BNE: We follow similar analysis that we presented
in the first-stage game. If player x plays his pure strategy (Cheat if malicious,
NotCheat if regular), then, the expected payoff of player z playing his pure
strategy V alidate is:

Eμz(V alidate) = {μ.[(β.gz) − wz]} + {(1 − μ). − wz}
The expected payoff of player z playing his pure strategy NotV alidate is:

Eμz(NotV alidate) = μ.(β.cz)

As a result if, Eμz(V alidate) > Eμz(NotV alidate) Or,

μ >
wz

β(gz − cz)
(7)

True Decentralized Consensus Protocol 481

Then, the best response of player z is to play V alidate. Therefore, ((Cheat if
malicious, NotCheat if regular), V alidate, μ) is not a (BNE). However, if Eμz

(V alidate) < Eμz (NotV alidate) Or,

μ <
wz

β(gz − cz)
(8)

Then, the best response for player z is to play NotV alidate and thus ((Cheat
if malicious, NotCheat if regular), NotV alidate, μ) is a pure-strategy BNE.
Nevertheless, similar to the first-stage game, ((NotCheat if Malicious, NotCheat
if Regular), NotV alidate) is not a BNE.

B. Game Mixed-Strategy BNE: Let p′ be the probability with which player
x plays Cheat. Let q′ be the probability with player z plays V alidate. The
expected payoff of z playing V alidate is:

Eμz(V alidate) = {p′.μ.[(β.gz) − wz]} + {(1 − p′).μ. − wz} + {(1 − μ). − wz}

The expected payoff of z playing NotV alidate is:

Eμy(NotV alidate) = p′.μ.(β.cz)

So, the defender (player z) plays V alidate when:

p′ >
wz

μβ(gz − cz)
(9)

Similarly, we acquire the expected payoffs the attacker (player x). The expected
payoff of x playing Cheat is:

Eμx(Cheat) = {q′.μ.[(β.cx) − wx]} + {(1 − q′).μ.[(β.gx) − wx]}

The expected payoff of x playing NotCheat is:

Eμx(NotCheat) = 0

As a result, the attacker (player x) plays Cheat when:

q′ >
wx − (βgx)
μβ(gz − cz)

(10)

As in the first-stage game, this game is 1-to-M game, where M is the number
of validators (player z). Hence, our new mixed-strategy BNE is: ((q′′ if malicious,
NotCheat if regular), p′, μ), where:

q′′ = q′ − (p′′ − p′) (11)

And:
p′′ = (M.p′) − p′M (12)

482 N. Alzahrani and N. Bulusu

Consensus Voting. We use Tendermint’s voting mechanism, where there exists
two steps of voting. The first one is ‘pre-vote’. In this step, the validators/pre-
voters validate the block and pre-vote on it. There are three types of pre-votes
according to the outcome of the validation process: (a) valid if the block is valid,
(b) invalid if it is not, and (c) timed-out if it is not received in a particular time
window. Each validator validates with the probability p′. If a validator chooses
to play V alidate, then it contributes to the validation process; otherwise, it
pre-votes nil and remains idle. The second step of voting is ‘pre-commit’. A pre-
committer advances to this step only if it receives more than two-thirds of M
pre-votes (i.e., > 2.M

3). The type of pre-commit (i.e., valid, invalid, or timed-out)
depends on the type of the received pre-votes. Likewise, the block is committed
or rejected if more than two-thirds of M pre-commits are received.

4 Security Analysis

In this section, we briefly present a threat model and demonstrate how our pro-
tocol protects against it. Utilizing the randomness and blind assignment protects
from various attacks. Besides, exploiting game theory motivates the defenders
in our protocol to adhere to the protocol, and disincentivizes malicious parties.

4.1 Randomness and Anonymity of Validators’ Selection

As mentioned in Sect. 3, each proposer is blindly and randomly mapped to four
leaders. Moreover, on each new block proposal, M number of validators are
selected at random. The M value is also generated randomly proportional to
the risk likelihood of the proposer. This selection approach protects against the
following attacks:

DDoS Attacks: The DDoS attack is more likely to happen if the set of valida-
tors is known in advance. Such an attack can happen to undermine the blockchain
and can be launched from inside or outside the network. Validators’ replaceabil-
ity and randomizing their selection can significantly mitigate this attack. This
is because of the set of validators changes randomly, and their identities remain
anonymous until they participate in the consensus voting. Besides, each step of
voting has a different set of voters. Thus, launching a DDoS attack is almost
impossible and require to attack all the nodes in the network to undermine
the system. Similarly, attacking the validation-leaders is hard too since leaders
are known only after completing their tasks (i.e., broadcasting the m value and
instructing their selected validators/pre-voters and pre-commiters). Note that
we only aim to protect the validation and consensus process form DDoS attacks.

Eclipse Attacks: This attack is presented by Heilman et al. [8] and allows
an attacker who controls an adequate number of IP addresses to manage all
connections to and from a victim node. As a result, the adversary can utilize
the victim nodes for attacks on block validation and consensus system. As in
the DDoS attack, an adversary mounting this attack needs to know the node

True Decentralized Consensus Protocol 483

participating in the validation and consensus process in advance. Introducing
variable random validators on each block’s proposal makes the adversary’s job
more difficult.

Validators’ or Leaders’ Bribing or Corruption: An example of this attack
is when a malicious proposer bribes and convinces other leaders or voters to
accept and vote for an invalid block. Performing such an attack requires knowing
the identities of the targeted nodes. Our protocol anonymizes the interaction
between the consensus and validation parties, which overcomes such an attack.

4.2 Game Theory

Utilizing game theory protects against several real attacks. We model the interac-
tion between a proposer and leaders or validators as an attacker-defender game.
This way the defenders will work hard to maximize the utility that each can gain
as a reward for excellent work and avoid the punishment (cost) that might incur
due to misbehaving or not obeying the protocol. Our theoretical game approach
can protect against the following attacks:

Faulty or Lazy Validation-Leader: This attack happens when a validation-
leader colludes with its corresponding malicious proposing node. It could result in
many problems such as utilizing the minimum number of validators or colluding
with other malicious nodes as validators. Another type of this attack is the lazy
validation-leading, in which the validation-leader does not execute the protocol
or does not obey its requirements. For example, it is possible for a validation-
leader node to produce an assignment that is not truly random. Utilizing the
reward and punishment payoffs provided by the proposed game mitigates the
incentives of such an attack.

Block Withholding Attack. Rosenfeld [18]: In this attack, a dishonest val-
idator does not participate in the validation process or does not reveal the result
of the verification in favor of a malicious proposing node. The reward and pun-
ishment provided by our game incentivize the validators to avoid this attack.

4.3 Randomness and Game Theory

The main attack that we are defending against is the adversary proposer
(malicious proposed block). This attack happens when a proposing node
maliciously proposes an invalid new block. This attack occurs for various incen-
tives; double spending is one of them. Integrating random and anonymous val-
idators’ selection with a game theoretical model contributes substantially in
mitigating this attack. This is because a malicious proposer does not know the
nodes that will validate its proposed block, which makes it hard to corrupt or
bribe them to agree on its invalid block. Additionally, the punishment enforced
by the game model could alleviate the attack motives.

484 N. Alzahrani and N. Bulusu

5 Conclusion and Future Work

We have proposed a new true decentralized consensus protocol utilizing game
theory and randomness. Our protocol randomly employs a different set of dif-
ferent size of validators each time a new block is proposed to protect against
several real attacks mounted by powerful adversaries. Additionally, our protocol
enjoys the feature offered by game theory to reward honest adhered parties and
punish malicious ones.

This work, however, is in progress and has a few open problems. First, the
probability μ that player x is of type malicious is static. To overcome this, μ
can be determined dynamically, where the defenders y and z update their beliefs
about μ at every stage of the game. Second, the proposers-leaders mapping guar-
antees the anonymous mapping only for one round of proposing. In other words,
when a proposer proposes a block for the second time, its leaders’ identities
are revealed. This protocol was originally designed for a products’ supply chain
[1] where each node authenticates the product and proposes a block for it only
once. Nevertheless, our protocol is suitable for many other blockchain applica-
tions, and we plan to make the proposers-leaders mapping dynamic in a way
that preserves the anonymity. Third, the detailed evaluation of the protocol’s
safety and liveness nor the efficiency compared with other consensus protocols
such as Ouroboros [11] are not presented in this paper.

References

1. Alzahrani, N., Bulusu, N.: Securing pharmaceutical and high-value products
against tag reapplication attacks using nfc tags. In: 2016 IEEE International Con-
ference on Smart Computing (SMARTCOMP). IEEE (2016)

2. Alzahrani, N., Bulusu, N.: Block-supply chain: a new anti-counterfeiting supply
chain using NFC and blockchain. In: Proceedings of the 1st Workshop on Cryp-
tocurrencies and Blockchains for Distributed Systems, pp. 30–35. ACM (2018)

3. Buchman, E.: Tendermint: byzantine fault tolerance in the age of blockchains.
Ph.D. thesis (2016)

4. Efraimidis, P.S., Spirakis, P.G.: Weighted random sampling with a reservoir. Inf.
Process. Lett. 97(5), 181–185 (2006)

5. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy
(SP), pp. 89–103. IEEE (2015)

6. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68. ACM (2017)

7. Gorbunov, S.: Pure Proof-of-Stake Blockchains. https://medium.com/algorand
8. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s

peer-to-peer network. In: USENIX Security Symposium, pp. 129–144 (2015)
9. Hyperledger: hyperledger/fabric. https://github.com/hyperledger/fabric/tree/v0.

6
10. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic

analysis of DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner,
M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 72–86. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1 6

https://medium.com/algorand
https://github.com/hyperledger/fabric/tree/v0.6
https://github.com/hyperledger/fabric/tree/v0.6
https://doi.org/10.1007/978-3-662-44774-1_6

True Decentralized Consensus Protocol 485

11. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

12. Kwon, J.: Tendermint: Consensus without mining, 18 May 2014
13. Kwon, J., Buchman, E.: Cosmos: a network of distributed ledgers (2016)
14. Luu, L., Saha, R., Parameshwaran, I., Saxena, P., Hobor, A.: On power splitting

games in distributed computation: the case of bitcoin pooled mining. In: 2015 IEEE
28th Computer Security Foundations Symposium (CSF), pp. 397–411. IEEE (2015)

15. Mackey, T.K., Nayyar, G.: A review of existing and emerging digital technologies to
combat the global trade in fake medicines. Expert Opin. Drug Saf. 16(5), 587–602
(2017)

16. Nojoumian, M., Golchubian, A., Njilla, L., Kwiat, K., Kamhoua, C.: Incentiviz-
ing blockchain miners to avoid dishonest mining strategies by a reputation-based
paradigm. In: IEEE Computing Conference (CC). IEEE, London (2018)

17. Pilkington, M.: 11 blockchain technology: principles and applications. In: Research
Handbook on Digital Transformations (2016)

18. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. arXiv preprint
arXiv:1112.4980 (2011)

19. Sheridan, K.: Blockchain All the Rage But Comes With Numerous
Risks. https://www.darkreading.com/vulnerabilities--threats/blockchain-all-the-
rage-but-comes-with-numerous-risks/d/d-id/1332038

20. Xu, D., Xiao, L., Sun, L., Lei, M.: Game theoretic study on blockchain based secure
edge networks (2017)

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
http://arxiv.org/abs/1112.4980
https://www.darkreading.com/vulnerabilities--threats/blockchain-all-the-rage-but-comes-with-numerous-risks/d/d-id/1332038
https://www.darkreading.com/vulnerabilities--threats/blockchain-all-the-rage-but-comes-with-numerous-risks/d/d-id/1332038

	Towards True Decentralization: A Blockchain Consensus Protocol Based on Game Theory and Randomness
	1 Introduction
	2 Related Work
	2.1 Consensus Protocols
	2.2 Blockchain and Game Theory

	3 The Proposed Consensus Protocol
	3.1 Initialization Phase
	3.2 Verification (Validation) Phase

	4 Security Analysis
	4.1 Randomness and Anonymity of Validators' Selection
	4.2 Game Theory
	4.3 Randomness and Game Theory

	5 Conclusion and Future Work
	References

