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Abstract. Even though players in a game optimize their goals by play-
ing an equilibrium, the perceived payoff per round may (and in most
cases will) deviate from the expected average payoff. For the example
of loss minimization, an undercut of the expected loss is unproblematic,
while suffering more than the expected loss may disappoint the player
and lead it to believe that the played strategy is not optimal. In the worst
case, this may subsequently cause deviations towards seemingly better
strategies, even though the equilibrium cannot be improved in general.
Such deviations from the utility maximization principle are subject of
bounded rationality research, and this work is a step towards more accu-
rate game theoretic models that include disappointment aversion as an
additional incentive. This incentive necessarily creates discontinuities in
the payoff functionals, so that Nash’s classical equilibrium theorem is
no longer applicable. For games with disappointment aversion (defined
in this work) the existence of equilibria can nonetheless be shown, i.e.,
we are able to find Nash equilibria that comply with disappointment
aversion.

Keywords: Game theory · Multiobjective games · Disappointment
Endogenous-sharing rules · Bounded rationality

1 Introduction

Consider a standard security game as being a competition between a defender
and an attacker, where the defender aims to minimize losses caused by the
attacker. If the model is incomplete in the sense that the defender knows the
attacker’s action space but is unaware of the attacker’s payoff structure, we may
substitute this information by assuming the attacker’s intentions to be exactly
opposite to the defender’s aims. Formally, we define the attacker’s utility u2 as
u2 := −u1, where u1 is the defender’s payoff function, and thus create a zero-sum
game in this setting of incomplete information. It is easy to show that the value
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of the so-constructed zero-sum game bounds the outcome of the actual bi-matrix
game (with unknown payoff to the attacker), provided that the defender plays
a zero-sum Nash equilibrium strategy. Thus, such strategies are called security
strategies [17], and we shall call the respective game a security game in our con-
text (though the term has a much wider meaning including many further game
models with security applications).

A typical use-case for a security game is to estimate the amount of prepara-
tion against worst-case scenarios. In risk management, experienced disappoint-
ments can influence preparedness for expected incident scenarios. Consider a
critical infrastructure (CI) which is known to potentially fall victim to certain
attacks or experience natural disasters (fire, floods, etc.). If the CI risk man-
agement’s employs an optimized control of defensive resources, which can be
described through a game theoretic model (e.g., [1,2,13,14,18] to name only a
few), then the expected impact is what the CI provider will prepare for. This
optimal, yet worst-case expected impact can be obtained from a game theoretic
model which sets the bar for the preparations to be undertaken. Disappointment
occurs when the actual damage suffered, despite optimal (equilibrium) control
measures, exceeds the expected damage we were prepared for. Since the infras-
tructure is “critical”, it is a natural requirement to minimize the chances of
such an event, i.e., the case that despite all preparation, the damage is still such
that we CI cannot recover any more. Practically, this is exactly what insurances
are for, where the amount is set sufficiently high to cover the worst among the
expected scenarios. If this is too low (manifesting itself as the event of a disap-
pointment in the game), the insurance client may suffer irrecoverable losses.

In playing a security strategy, the defender is assured to never suffer more
damage than measured by the value of the zero-sum security game. Thus, the
residual damage under this best worst-case defense is what we would take out an
insurance for. However, when considering repeated games, the saddle-point value
is only an average value, and we will necessarily encounter rounds with higher
and lower payoffs than the expected value. For security games about minimizing
losses, this means that a security strategy can only bound the average loss;
we will henceforth call the event of losing more than expected disappointment.
Hence, when we conclude an insurance contract covering the expected maximal
damage under worst-case attack scenarios, disappointment is the event where the
insurance lot would be insufficient to cover the damage. Suffering from such not
fully recoverable damage too often, the defender may not “survive” on the long
run. For many utility provisioning infrastructures, such as water supply or power
networks, the matter is even more crucial, by definition of the infrastructure as
critical.

Therefore, in addition to minimizing the losses themselves, the likelihood
of disappointment, the disappointment rate, should be minimized too. Obvi-
ously, solely minimizing the disappointment rate itself does not make sense,
since avoiding disappointment is trivially done by preparing for maximal dam-
age in first place (i.e. no scenario can ever cause more damage in the game
model). Hence, disappointment aversion is always connected to some “primary”
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goal, and equilibria with disappointment aversion are always a matter of multi-
criteria optimization.

The main obstacle, which we will expose later, lies in the possible discon-
tinuities that incorporating disappointment in the game payoff functions may
introduce; these discontinuities render classical results inapplicable to study the
existence of equilibria. This is the technical difficulty explored in this work, for
which we propose several solutions.

1.1 Related Work

Several approaches exist to describe disappointment when playing games. In a
well-known classical example, Kahneman and Tversky [9] observed that in a one-
shot game (lottery), a majority of players prefer 3, 000$ for sure over an 80%
chance of receiving 4, 000$ (and a 20% chance at nothing), whereas a majority
prefer a 20% chance at 4, 000$ over a 25% chance at 3, 000$. Bell [4] was the
first to explain this phenomenon using the term disappointment. In his Bernoulli
model, the player wins x$ with probability p and y$ with probability (1 − p).
The expectation is px + (1 − p)y and the disappointment in receiving y$ is
modelled via Disappointment = d(px + (1 − p)y − y) = dp(x − y), i.e. it is
directly proportional (with constant d > 0) to the discrepancy between actual
and anticipated performance and the relation between economic payoff and dis-
appointment is linear and additive. Inman, Dyer and Jia [8] generalized this
concept to decision problems with more than two outcomes. The significance of
Kahneman and Tversky’s lottery for security is its similarity to choice situations
about security precautions to be implemented: if “protection A” is weaker than
“protection B” but A comes with deterministic guarantees over the mere proba-
bilistic assurances of B, then the practical choice may be guided by anticipated
disappointment. In applications of game theory for optimized resource planning
(e.g., [14]), practical choices may be more accurately be reflected by considering
disappointment aversion.

Decision making in the context of disappointment (aversion) has also been
investigated in [5], where disappointment is measured as a strictly increasing
function in the difference to the expected utility. In [6], a disappointment met-
ric is used to evaluate expert algorithms that quickly learn effective strategies
in repeated games. In this setting, minimizing disappointment is equivalent to
maximizing payoffs.

2 Preliminaries and Definitions

In the following we will use the notation Γ = (I, (Si)i∈I , (ui)i∈I) for a game
where I = {1, . . . , n}, n ∈ N denotes a finite index set representing players 1 to
n, (Si)i∈I is the strategy space and (ui)i∈I is the set of utility functions.

We let players have finite sets of strategies denoted as PSi (pure strategies)
for the i-th player. Mixed strategies are probability distributions supported on
a finite set PSi, all of which constitute the set, i.e., simplex, Si := Δ(PSi)
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for the i-th player. Using the standard notation PS−i, S−i to denote the pure,
resp. mixed, strategies of player i’s opponents (all embodied within a single large
vector), we let the utility functions u i be vector-valued mappings from Si×S−i to
Rd, with d ≥ 1 and the j-th coordinate in u i be denoted as u

(j)
i : Si ×S−i → R.

Accordingly, vectors will hereafter appear in bold lower-case letters, sets and
random variables will be uppercase normal font letters. If the utilities are all
scalar-valued (d = 1), we simply speak about a game, as opposed to a multi-
objective game (MOG) having at least one player with at least two goals to
optimize. In the case of vectors u , v ∈ Rd, we write u < v to mean ui < vi for
all i = 1, 2, . . . , d. The complement relation u ≥1 v means the existence of at
least one index i0 for which ui0 ≥ vi0 , no matter what the other components do.
The usual Nash equilibrium condition, rephrased in terms of ≥1 for minimizing
players, then reads as: for each player i,

u i(x ,x ∗
−i) ≥1 u i(x ∗

i ,x
∗
−i) for all x ∈ Si. (1)

As usual, this expresses that any unilateral deviation from the equilibrium x ∗
i

for the i-th player would cause a suboptimal payoff in at least one of its goals
(by the ≥1-relation), even though other payoffs may be improved (in the sense of
decreased, since the player is minimizing). It is easy to see that (1) boils down to
the standard condition if the payoff is scalar-valued. Any mixed strategy profile
satisfying condition (1) is called a Pareto-Nash equilibrium.

For the sake of generality we shall consider games with a finite number of
players yet allow each to have an infinitude (up to a compact continuum) of
strategies. Nash’s classical result has been extended towards this direction by I.
Glicksberg [7]:

Theorem 1 (Glicksberg’s theorem). If for a game in normal form, the strat-
egy spaces are nonempty compact subsets of a metric space, and the utility-
functions are continuous w.r.t the metric, then at least one Nash equilibrium in
mixed strategies exists.

Remark 1. The requirement of continuous w.r.t the metric was later extended by
Dasgupta and Maskin [11], who generalized Glicksberg’s theorem to some classes
of semi-continuous utility functions, where the discontinuities are restricted to
occur only in subsets of the strategy space, in which all components of the
(mixed) strategy vector of player i can be expressed via a finite number of
1-to-1 invertible functions of a single component of another players strategy
vector. Furthermore, the sum of utility functions of all players must be upper-
semicontinuous and the individual utilities needs to be weakly-lower continuous
over the set of discontinuities.

It is not difficult to lift Glicksberg’s result to multi-goal equilibria, which will
become relevant once we include disappointment as an explicit goal to minimize
on its own:

Corollary 1. Let Γ be a (MOG) that satisfies the hypothesis of Glicksberg’s
Theorem for each payoff function of each player. Then, Γ has a Pareto-Nash
equilibrium in mixed strategies.
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Proof. Let 1 ≤ i ≤ n be an arbitrary among n maximizing players with di ≥ 1
payoff functions u

(1)
i , . . . , u

(di)
i . Let player i pick constants αi,1, . . . , αi,di

> 0, and
define the (scalarized) function fi :=

∑
j αi,j ·u(j)

i . Repeating this for each player,
call the game with the payoff functions f1, . . . , fn game Γsc. So, Glicksberg’s
theorem gives an equilibrium x ∗ = (x ∗

1, . . . ,x
∗
n) in mixed strategies in Γsc.

We show that this a Pareto-Nash equilibrium in the original game Γ : adopt an
arbitrary player i’s perspective and let it unilaterally deviate from x ∗ by playing
an arbitrary mixed strategy x ′ = (x ∗

1, x ∗
2,x

∗
i−1,x

′
i,x

∗
i+1, . . . ,x ∗

n) �= x ∗ Since
x ∗ is an equilibrium in Γsc, we have fi(x ′) ≤ fi(x ∗). Towards a contradiction,
suppose that x ′ were chosen to outperform the strategy x ∗ in Γ , meaning that

u
(j)
i (x ′) > u

(j)
i (x ∗) for all j = 1, 2, . . . , di. (2)

Because the constants αi,j are all by definition > 0, we have fi(x ′) > fi(x ∗),
contradicting the fact that x ∗ is an equilibrium. Thus, (2) cannot hold and there
must be an index j0 for which u

(j0)
i (x ′) ≤ u

(j)
i (x ∗) and hence u i(x ′) ≤1 u i(x ∗).

Since i was arbitrary, x ∗ is, as an equilibrium, Pareto-optimal. ��
Remark 2. Some authors [10] additionally assume the constants to add up to
1. This has the geometric appeal of exhibiting parts of the convex hull’s border
as the Pareto front containing all optimal among the admissible strategies. For-
mally, the requirement merely amounts to a scaling of the scalarized payoffs by
a positive factor, which just creates another strategically equivalent set of payoff
functions.

Since the strategy spaces that our players use in the following are just stated
to be compact (yet not necessarily discrete), we shall henceforth describe their
mixed strategies as measures supported on a strategy space (which practically
amount to certain distribution functions that help choosing a randomized action
in the concrete game’s instance). For the average (= expected) payoff u i (possi-
bly vector-valued) for the i-th player under a strategy profile µ = (μ1, . . . , μn)
for all players, we shall use the abbreviated notation

Eµ(u i) =
∫

∏
j Sj

u idµ,

where the integral is taken per coordinate function of u i. We shall write out the
vector of measures more explicitly whenever it aids the explanation.

3 The Main Results

Let us consider a conventional static and repeated game as the simplest model
to start with. Whenever there is an equilibrium in pure strategies, the payoff
in the game will be constant over all repetitions. However, when the optimum
exists in mixed strategies only, the equilibrium optimizes the long-run average
over a hypothetical infinitude of independent instances of the game. This may
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create an unwanted side-effect for the player, such as temporary losses, since
the actual payoff per round can be larger or lower than the average payoff that
the equilibrium promises. Suppose that the player is minimizing, say, it strives
for the least losses due to security breaches. Let (x ∗, y∗) be an equilibrium in
the game, and let u(X,Y ) be the payoff (loss) obtained from the game upon a
random choice X ∼ x ∗, Y ∼ y∗.

Calling Z = u(X,Y ) the random variable describing the loss incurred by
the game play, then a conventional equilibrium optimizes the first moment
z = E(x∗,y∗)(Z) = (x ∗)TAy∗ only. This optimization, however, does not extend
to higher moments (such as variance). Thus, among a sequence of repetitions of
the game, amounting to a set of samples z1, z2, z3, . . . from Z, we call the event
zi > z a disappointing round. We shall confine ourself to disappointment aversion
hereafter, noting that the definitions and treatment based on the opposite event
zi ≤ z follows mutatis mutandis.

Let us further confine our study to finite (matrix) games, so that z = (x )T ·
A · y for randomized actions x ,y .

Definition 1. Let Γ be an n-person game and let μ = (x∗
1, . . . , x∗

n) be an equi-
librium. Depending on the nature of the i-th player we define the disappointment
rate as

di =
{

Prµ(Z > Eµ(Z)), if player i is minimizing;
Prµ(Z < Eµ(Z)), if player i is maximizing.

Remark 3. As mentioned in Sect. 1.1, there exist numerous definitions and
concepts of disappointment. We chose this simple definition as an easy-to-
understand example and stress the fact that the following results also apply
for other disappointment concepts, such as [4–6,8].

From here onwards, and w.l.o.g., let us assume a finite two-person game and
a minimizing first player whose perspective we are going to adopt (the upcoming
results will be formulated to hold for more general games). It is straightforward
to take the disappointment rate as a goal to optimize in the game, but obviously,
this goal makes no sense by itself unless we combine it with at least one other
goal. Otherwise, in case of a zero-sum game, we could just play towards maximal
losses, in order to avoid being disappointed, but this is trivially against the
purpose of the game at all.

As the nontrivial cases occur when the optimization is on multiple goals
we shall coin the disappointment rate a weak goal, to express that the goal is
not meaningful on its own. This is opposed to the “actual” goals in the game
that we will call strong. The existence of goals whose optimization is only useful
relative to other aims is not a new discovery, as the switching cost (i.e., the cost
incurred when an instance of a mixed strategy is changed between repetitions of
a game) [14] is another example of such a weak goal.

Definition 2 (Game with Disappointment Aversion). Let any game Γ
be given which optimizes one (or more) goals for the players. If we add the
disappointment rate as an additional payoff to be minimized, we call the resulting
game a game with disappointment aversion.
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Formally, let the primary payoff be described by a payoff matrix A = (aij) ∈
Rn×m, whose average is u1(x ,y) = xT · A · y . The disappointment rate can,
by the law of large numbers, be written as a long-run average of payoffs, where
a loss given by u1 is counted into the sum if and only if it exceeds the average
loss u1. Thus, the disappointment rate d1 is

d1(x ,y) = lim
n→∞

1
n

n∑

k=1

I(ars > xT · A · y) =
n∑

i=1

m∑

j=1

xi · I(aij > xT · A · y) · yj

where the random indices r, s are sampled from the distributions x = (x1,
. . . , xn), y = (y1, . . . , ym), and I is the indicator function (returning 1 if and
only if the inner condition is satisfied and 0 otherwise).

Remark 4. Obviously, yet not discussed in more depth hereafter, the magnitudes
of the disappointment rate, being bounded within [0, 1] should be relatively equal
to the magnitudes of the other payoffs, in order to avoid the disappointment rate
becoming a “negligible” loss or gain throughout the game play. We can assume
this without loss of generality for any magnitude and number of payoffs, since it
is a simple matter of scaling to equalize the magnitudes of all payoffs accordingly
without strategically changing the game. For multi-objective games, this can be
done along the scalarization algorithm as described in [10].

Thus, in a finite game with disappointment aversion the resulting utility for
player 1 with disappointment aversion, denoted here as ud

1, takes the form

ud
1(x ,y) = α · xT · A · y + (1 − α) · d1(x ,y)

=: xT · U d(x ,y) · y

where U d(x ,y) = (ud
ij(x ,y))ij with ud

ij(x ,y) = α ·aij +(1−α) ·I(aij > xTAy)
and α > 0 is a scalarization factor (for the multi-objective optimization).

Observe that the individual utility function ud
1 in a game with disappointment

aversion need not be a continuous function, so neither Glicksberg’s nor Nash’s
theorems are applicable to assure the existence of equilibria. As shown by an
earlier example due to Sion and Wolfe [16], games with discontinuous payoff
functions may in general even lack any equilibria at all. In addition, even though
Dasgupta and Maskin have proven the existence of equilibria for some classes
of discontinuous utility functions (see Sect. 2), ud

1 may not fall into this classes
for several reasons: First, we observe that for given y the discontinuity set of
u1(x , ·) is in fact the set of all hyperplanes aij = xT ·A ·y of dimension n−1 (in
x ). The set of discontinuities over S1 × S2 is {(x ,y), xi, yi ≥ 0,

∑
i∈I1

xi = 1,
∑

i∈I2
yi = 1 | ∃i ∈ I1, ∃j ∈ I1 : aij = xT · A · y}. By definition of the

disappointment rate, it is in general not possible to express the components
of player 1’s strategy vector x in the discontinuity set by a finite number of
functions f : R1 → R1 as Dasgupta and Maskin assume [11]. Second, even if it
is possible to do so, ud

1 is by construction a piecewise continuous function, but
it neither has to be upper semi-continuous, nor weakly lower continuous on the
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set of discontinuities. Therefore, disappointment averse games as in Definition 2,
despite their decision theoretical value, are impractical and therefore ineffective
in applications.

To fix the theoretical aspects and to ensure the existence of equilibria, we
adopt Simon and Zame’s concept of games with endogenous-sharing rules [15]
that has also been used in [3]. In the following we will write S for (Si)i∈I to
improve readability. We stress that the results of [15] applies to scalar-valued
utility functions only, so, w.l.o.g., we assume our multi-criteria games to be
scalarized (according to [10,12] or also Corollary 1) before computing equilib-
ria. The resulting equilibria are then exactly the sought Pareto-Nash equilibria
(optimizing the disappointment rate besides the primary utility).

Definition 3 (Game with endogenous-sharing). A game with endogenous-
sharing rule, or an endogenous-sharing game is any Γs = (I, S, U), where I, S
are as in Sect. 2, and U : S � Rn is a correspondence that specifies a set of
utility payoff allocations for every combination of player’s strategies.

Thus, U is a multivalued function, and for any µ in S the correspondence U
allocates a set of utility payoff allocations to each player. Thus, U(µ) = (Ui)i∈I
where each Ui(µ) = {u1

i (µ), u2
i (µ), . . . } ⊆ R is a (not necessarily countable) set

of utilities for player i that could all occur, if strategy µ is chosen.

Definition 4 (Upper Hemicontinuity). A correspondence U : S � Rn

with closed values1 is upper hemicontinuous, if for all µ ∈ S and for all
sequences (µn)n∈N ∈ S and for all u ∈ U(S) and (un)n∈N,un ∈ U(μn) we
have limn→∞ µn = µ, limn→∞ un = u =⇒ u ∈ U(µ).

In other words, a correspondence U is upper hemicontinuous if the following
holds: for every convergent sequence (µn)n∈N in S which maps to a sequence of
sets (Un)n∈N in the range of U that contains a convergent sequence (un)n∈N, the
image of limiting point in the domain must contain the limit of the sequence in
the range. I.e. U(limn→∞(µn)n∈N)  limn→∞ un whenever the limits of (un)n∈N

and (µn)n∈N exist.

Definition 5. A correspondence U is bounded, if there exists a constant K such
that for all strategies µ ∈ S, for all i ∈ I and every uj

i (µ) ∈ Ui(µ) it holds:
|uj

i (µ)| < K.

Theorem 2 (Simon and Zame [15]). Let Γs be an endogenous-sharing game
as in Definition 3. Let S be a compact set within some metric space. Assume U is
an upper-hemicontinuous and bounded correspondence. Furthermore, assume for
each µ ∈ S the image U(µ) is a nonempty convex subset of Rn. Then there exists
some profile of utility functions (ûi(µ))i∈I ∈ U(µ) such that ûi is a measurable
function for every µ and the resulting game has at least one Nash equilibrium
in S.

1 A correspondence U : S � Rn has closed values, if all U(µ) µ ∈ S are closed subsets
of Rn.



322 J. Wachter et al.

Following this approach, we do not consider disappointment averse utility
functions ud = (ud

1, u
d
2), but we define a correspondence U , for which U(µ) =

ud(µ) at points of continuity, and at the discontinuity points U maps µ to the
convex hull of all limiting values of ud. This can be interpreted as follows: in any
discontinuity point µ we define the correspondence U(µ) as set of all limits of
expected utility allocations that can be achieved by randomizing over strategy
profiles which are arbitrarily close to µ. It can be shown that the resulting U
is the coarsest upper hemicontinuous correspondence that only maps to convex
sets [15]. We call this resulting mapping a minimal correspondence.

By Theorem 2 we can now ensure that there exists some profile of utility
functions û such that ud and only differs from û at points of discontinuity and
an equilibrium of the resulting game Γ̂ = (I, S, (ûi)i∈I) exists.

Remark 5. At this point, it can easily be verified that the above results does not
only apply disappointment as defined in Definition 1, but also to disappointment
as defined in [4,8] or [5]. We can in fact use all kinds of disappointment functions
as long as it can be ensured that a minimal correspondence U exists.

Another possibility to incorporate disappointment is to consider a smoothed
version of Γ̂ = (I, S, (ûi)i∈I). Let S1, S2, . . . , Sn be the strategy sets of all play-
ers. W.l.o.g., let player 1 be minimizing its disappointment relative to a goal
u1 : S1 × S−1 → R. Let μ1, μ−1 be the probability measures (practically repre-
sented by distribution or density functions if the latter exist) from which player
1 and its opponents choose their strategies, denoted as X1,X−1. Recall the
disappointment rate as

d(µ1,µ−1) = E(µ1,µ−1)I
[
u1(X1,X−1) − E(µ1,µ−1)(u1(X1,X−1))

]

Choose a mollifier δh : Un → R of bandwidth h > 0 and so that δh ∈ C(
∏

i Si),
i.e., the function should be continuous w.r.t. the common metric of the host
spaces covering the Si’s. Define d̃h := d ∗ δh and observe that d̃h is now a
continuous payoff function. A simple admissible choice for a mollifier is the n-
fold tensor product of a univariate mollifier such as δk(x) := k

c g(|kx|) with the
C∞-function

g(r) :=

{
exp

(
− 1

1−r2

)
, for r ∈ (−1, 1)

0, otherwise.

and the normalization constant c :=
∫
R

g(|x|)dx. The support of the tensor
product δk(x1, . . . , xn) =

∏
j δk(xj) is then the compact hypercube [−1/k, 1/k]n.

Definition 6. Let Γ be an n-person game, and let μ = (x∗
1, . . . , x∗

n) be an equi-
librium. Depending on the nature of the i-th player, the smooth disappointment
rate with bandwidth h is defined as d̃ih := di ∗ δh.

Analogously to 2 we can now define games with smooth disappointment aver-
sion if we replace the disappointment rate by the smooth disappointment rate.

This corresponds to allowing not only a 0/1 formalism of disappointment but
to specify some kind of degree of disappointment at points close to the expected
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value. This enables a more distinct perspective on disappointment and also helps
in computing the equilibrium. It follows:

Theorem 3. Let the game Γ have compact strategy sets within some metric
space U , and let the initial payoff functions each be continuous let there be
a player in Γ who is minimizing the smoothed disappointment rate w.r.t. at
least one other goal. Then Γ has at least one Pareto-Nash equilibrium (in mixed
strategies).

Proof. Follows directly from Glicksbergs’s Theorem via Corollary 1. ��

x

di(x)

E(X)

di(x)

x

Di(x)

E(X)

Di(x)

(a) Disappointment Rate
(here as Indicator Function)

(b) Disappointment as an
Endogenous Sharing Rule

x
E(X)

d̃ih(x)

d̃ih(x)

(c) Smooth Disappointment Rate

Fig. 1. Comparison of disappointment concepts

Figure 1 sums up the three concepts of disappointment discussed in this paper.
Note that both (b) and (c) can be applied when dealing with games and display
two different notions: When considering disappointment as an endogenous shar-
ing rule (see (b)), we are disappointed whenever the utility exceeds the expected
value, yet whenever it equals the mean we are – just like Schrödinger’s cat – both
disappointed and not. The smooth disappointment rate allows for a continuous
view of disappointment. One may argue that smoothing may falsely incorporate
some notion disappointment, even when the encountered loss does not exceed
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the expected damage, but is somewhat below it. Indeed, insurances naturally do
not cover damages that are higher than the maximum liability amount, which
causes disappointment. Yet, there always remains the risk of not receiving the
full amount from an insurance company, but only partial compensation. The
higher the damage, the more insurance companies try to lower the sum they
have to come up for. Hence, smooth disappointment rates can incorporate this
additional phenomenon. If this is not desired, we advice to shift the of the dis-
appointment rate to the right, such that a positive disappointment value may
only occur when the expected value is exceeded.

4 Conclusion and Future Work

We have shown that disappointment aversion can be accounted for in the com-
putation of Nash equilibria in repeated games. In this being work in progress,
we close with a couple of directions that may merit exploration along future
work, including Stackelberg equilibria (where the problem is essentially one
of optimizing a discontinuous functional for the leading player), or the differ-
ence between equilibria with and without disappointment aversion (in the latter
regard, Remark 4 is a first insight). We stress that the meaning of disappointment
for individuals and for companies may be different, and our concept of disap-
pointment aversion was basically motivated by critical infrastructure protection
applications. In a follow-up work, we shall explore an application of disappoint-
ment aversion to individual’s decision making in more detail, specifically the
lottery mentioned Sect. 1.1, where we study the disappointment aversion as one
possible explanation for the empirically observed deviation of individuals from
the prediction of the Nash equilibrium.

A combination of different concepts of disappointment, e.g., [5,6], may be
interesting to look at when further modelling the insurance example from the
introduction, since the disappointment of the individual (customer) and the dis-
appointment event for the insurance may be conceptually different things, and
thus lead to different payoff functionals in the resulting security games (then no
longer being zero-sum or even repeated). From the insurance company’s perspec-
tive, thinking about retained amounts, a disappointment with an insurance may
occur if the bar for the deductibles is set so high that the customers would have
to pay for most of the incidents. In turn, they will soon look for other insurances
with better service. Conversely, if the bar is set too low, the insurance will not
be profitable while the customer is never disappointed. The resulting game can
thus be seen as one with disappointment aversion (on both sides even).
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