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Abstract. Existing solutions to aggregative games assume that all play-
ers are fully trustworthy for cooperative tasks or, in a worst-case scenario,
are selfish players with no intent to intentionally harm the network. Nev-
ertheless, the need to believe that players will behave consistently exposes
the network to vulnerabilities associated with cyber-physical attacks.
This paper investigates the effects of cyber-physical attacks on the out-
come of distributed aggregative games (DAGs). More specifically, we are
seeking to answer two main questions: (1) how a stealthy attack can
deviate the game outcome from a cooperative Nash equilibrium, and by
doing so, (2) by how much efficiency of a DAG degrades. To this end, we
first show that adversaries can stealthily manipulate the outcome of a
DAG by compromising the Nash equilibrium solution and consequently
lead to an emergent misbehavior or no emergent behavior. This study
will intensify the urgency of designing novel resilient solutions to DAGs
so that the overall network sustains some notion of acceptable global
behavior in the presence of malicious agents. Finally, we corroborate
and illustrate our results by providing simulation examples. Simulations
reveal that the adverse effect of a compromised agent is considerably
worse than that of a selfish agent.

Keywords: Distributed aggregative games · Adversarial environment

1 Introduction

Game theory has been widely and successfully employed in many applications to
model both selfish objectives of participants, as well as their global and common
objectives. Aggregative game is a special type of a game in which the objective
function for each agent depends on the local state of the agent (to fulfill an
individual selfish objective) as well as on an aggregate quantity of the network,
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such as the average or sum of the states (actions) of all agents (to fulfill a com-
mon group objective) [1–7]. Applications span from demand-side management
in smart grids [8–10] to charging coordination of plug-in electric vehicles [11,12],
power and rate control in communication networks [13–15], and economic mar-
kets [16].

Most of the existing solutions to aggregative games employ a central coordi-
nator that receives the decision variable of all the agents, calculates the aggre-
gate decision, and broadcasts it to all agents. The agents then use this aggregate
estimate to minimize their objective functions and consequently find a Nash
equilibrium solution of the game. However, to avoid massive communication
requirement and provide scalability, decision algorithms need to be distributed
in the sense that each agent should take its decision using local information of its
own state and its neighbors’ states. In [17,18], a distributed method is presented
to estimate the aggregate decision and consequently find the Nash equilibrium.
Agents exchange their information with their neighbors to reach consensus on
the aggregate value. The information flow of agents is captured by a graph struc-
ture. Such a game will be referred to as distributed aggregate game (DAG) on
graphs, or simply, DAG, throughout the paper.

Existing Nash equilibrium solutions to DAGs, however, assume that all agents
are fully trustworthy for cooperative tasks or, in the worst-case scenario, are
selfish agents with no intent to intentionally harm the network. Nevertheless,
information exchange on a communication graph in DAGs makes it vulner-
able to malicious cyber-physical attacks and the need to believe that agents
will behave consistently exposes the network to threats associated with cyber-
physical attacks. In the case of a malicious attack, in contrast to selfish agents
with no intent to intentionally harm the system, compromised agents (i.e., agents
that are directly attacked) seek to intentionally maximize the damage inflicted
on the network at all cost. Therefore, a thorough analysis of the outcome of
a DAG in the presence of malicious agents is needed and this paper aims to
take the first step toward that objective. In the paper, we focus on the role of
the attacker and show that it can (1) compromise the Nash equilibrium solu-
tion through a malicious attack on only one agent and significantly degrade
the overall performance of the network, and (2) make the network never reach a
Nash equilibrium solution and thus lead to a non-emergent behavior significantly
affecting the agents’ interactions.

The rest of the paper is organized as follows. Section 2 introduces the basics
of graph theory and DAG on graphs. Vulnerability of Nash equilibrium to the
malicious behavior is discussed in Sect. 3. Simulation results and conclusions are
provided in Sects. 4 and 5, respectively.

2 Preliminaries

This section introduces some basic concepts of graph theory and formulates the
distributed aggregative games (DAGs) problem.
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2.1 Graph Theory

A directed graph (digraph) is a pair G = (VG , EG) where VG = {α1, α2, . . . , αN}
is a set of N nodes and EG is a set of edges. A typical element of EG is denoted
(αi, αj), which is viewed as an edge connecting αi to αj . The corresponding
adjacency matrix is denoted by E = [aij ] with weights aij > 0 if (αj , αi) ∈ EG ,
and aij = 0 if (αj , αi) /∈ EG and aii = 0 for all i = 1, 2, . . . , N . The in-degree
of node αi is di(αi) =

∑N
j=1 aij . The diagonal in-degree matrix D is defined

as D = diag{di(αi)}. The graph Laplacian matrix is defined as L = D − E.
Graph G is strongly connected if αi and αj are connected for all distinct nodes
αi, αj ∈ VG . A graph is undirected if there is a directed path from αi to αj , then
there is a directed path from αj to αi.

2.2 Aggregative Games

An aggregative game is modeled as a non-cooperative game being played among
a set of agents N = {1, . . . , N}. Agent i takes action ui to minimize its own
objective function, which is dependent on the aggregate value (e.g., summation
or average) of all agents.

The aggregate value (sum) of all agents is

ū =
N∑

j=1

uj (1)

Defining

ū−i =
N∑

j=1,j �=i

uj (2)

gives
ū = ui + ū−i (3)

Then, the objective of agent i is given by [19]

minimize Ji(ui, ū)
subject to uli ≤ ui ≤ uui

(4)

where Ji is the cost function of agent i and uli , uui
are allowable decision bounds

for agent i. One example that fits in this framework is demand side management
in the level of consumers for which the cost function of agent i is given as [20]

Ji(ui, ū) = di(ui − udi
)2 + l(ū)ui (5)

where the aggregate value ū is the sum of the power consumption of all agents,
and udi

is the nominal energy schedule required to provide the desired level
of comfort for the consumer. Moreover, l(ū) is an increasing price function as a
function of the aggregate value of power consumption. The first term in this cost
function models the curtailment cost that each agent encounters for deviating



Distributed Aggregative Games on Graphs in Adversarial Environments 299

from its state of comfort (the selfish objective) and the second term models the
cost encounters for deviating from the optimal group behavior (the aggregate
group objective).

The most common solution concept for an aggregative game is the Nash
equilibrium solution. Letting the aggregate decision to be the sum value, the goal
of the dynamic aggregative game is to assure that the result of minimization is
Nash equilibrium, defined as follows [21].

Definition 1. (Nash equilibrium:) An N-tuple of policies {u∗
1, . . . , u

∗
N} is said

to form a Nash equilibrium for an N-agent games if

Ji(u∗
i ,

1
N

u∗
i +

1
N

ū∗
−i) ≤ Ji(ui,

1
N

ui +
1
N

ū∗
−i), ∀ui, i = 1, . . . , N (6)

and the N-tuple {J∗
1 , . . . , J∗

N} denotes the Nash equilibrium outcome of the N-
agent games.

In most of the existing solutions to aggregative games, a central coordinator
receives the decision variable of all the agents, calculates the aggregative decision
ū, and broadcasts it to all agents. However, to avoid massive communication
requirement and provide scalability, decision algorithms need to be distributed
in the sense that each agent should take its decision using local information of its
own state and its neighbors’ states. In [17,18], a distributed method is presented
to estimate the aggregate decision and consequently find the Nash equilibrium.
Agents communicate over a communication network specified by an undirected
graph to estimate the aggregate decision. The aggregate decision can be found
in a distributed fashion so that each agent exchanges its aggregate estimate with
its own neighbors on the graph to achieve consensus on the aggregate decision.

Let Ui be the estimation of the aggregate decision for agent i. For the cost
function (5), a distributed protocol can be designed as follows for agent i based
on its own decision variable ui and its estimate of the aggregate value [22]

U̇i = −Ui −
N∑

j=1

aij (Ui − Uj) −
N∑

j=1

aij (wi − wj) + Nui (7a)

ẇi =
N∑

j=1

aij (Ui − Uj) (7b)

u̇i = −αi(2di(ui − udi
) + li(Ui) + ui

∂li(Ui)
∂Ui

) (7c)

where αi is a fixed positive parameter and wi is an intermediate variable.

Remark 1. Note that the cost function (5) only shows up in (7c) and our fol-
lowing analysis is not limited to this type of cost function. In fact, as shown
later, (7a), which is used to estimate the aggregate value, is independent of the
cost function and can be adversely affected by the attacks, and consequently
affect the decision making done in (7b). Moreover, under some conditions on the
cost function, the existence of the Nash equilibrium of the aggregative game is
guaranteed (See Assumption 1 in [19]).
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Theorem 1. Consider N agents with cost function defined in (5). Let their

actions be updated based on (7a), (7b), (7c). Then, Ui →
N∑

i=1

ui and the agents

reach a Nash equilibrium.

Proof. See [22].

Remark 2. Distributed consensus algorithms over graphs, however, are vulnera-
ble to cyber-physical attacks [23–32]. If agents are not empowered with built-in
resilient functionalities, sophisticated attacks can be intentionally designed by
an intruder to maximize the damage to the network and prevent the multi-
agent system from accomplishing a desired emergent behavior. The attacker can
leverage a single compromise into becoming a network-wide compromise; intact
agents are not immune from disruption by attacks on compromised agents.

3 Vulnerability of Nash Equilibrium of DAG to Malicious
Behavior

In this section, we analyze the effects of malicious behavior on the outcome of
the aggregative games.

Before proceeding, we need the following definitions.

Definition 2. Agent i is called intact agent if it is not directly under attack.

Definition 3. Agent i is called compromised agent if it is directly under attack
and broadcasts disrupted information about its estimation of the aggregate value,
i.e. Ui, to its neighbors.

Definition 4. Agent i is called selfish agent if it broadcasts the correct infor-
mation about the estimation of the aggregate value, Ui, to its neighbors, but does
not update its action ui and choose it guided by its own selfish objective.

Definition 5. The matrices L̄ ∈ RN−1×N−1 and L ∈ RN−M×N−M are sub-
graphs of Laplacian matrix L ∈ RN×N obtained by removing one node and M
nodes, respectively.

Definition 6. The diagonal matrix G = diag[g1, . . . , gN−1] is called pinning
matrix and gi �= 0 if there is a edge between node i (intact node) and node N
(compromised node), otherwise gi = 0.

Remark 3. Note that a selfish agent only cares about its own selfish objective
and does not care about the global group objective. However, in contrast to a
compromised agent, it has no intention to harm the network.

Theorem 2. Let

Zi =
N∑

j=1

aij (wi − wj) (8)
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with wi defined in (7a), (7b), (7c). Then
N∑

i=1

Zi = 0, and consequently, one has

N∑

i=1

Ui → N
N∑

i=1

ui for (7a), (7b), (7c).

Proof. Since the graph is undirected, if agent i communicates wi to agent j (and
consequently Zi has wi − wj component,) agent j communicates wj to agent i
(and consequently Zj has wj − wi component). Therefore, for every wi − wj ,

there is a corresponding wj − wi that cancels it out in
N∑

i=1

Zi and consequently

N∑

i=1

Zi = 0. Now, in the steady state U̇i → 0 and Ui = Uj ∀j. Thus, for (7a), one

has

Ui → −
N∑

j=1

aij (wi − wj) + Nui (9)

Using the fact that
N∑

i=1

Zi = 0, this results in

N∑

i=1

Ui → N

N∑

i=1

ui (10)

This completes the proof.

Condition (10) is a necessary condition under which the agents reach consen-

sus on summation, i.e. Ui →
N∑

i=1

ui. In the following, it is shown that the attacker

can cause violation of this condition and consequently results in a wrong con-
sensus or no consensus at all, and thus adversely affects the effectiveness of the
games solution. It is also shown that if one agent in the graph is a compro-
mised agent and does not update its estimation about the aggregate value, the
compromised agent acts as a leader and the aggregate value of all other agents
reach consensus on its corrupted and wrong value, regardless of agents’ actions.
If more than one agent are compromised, then it is shown that agents do not
reach consensus on a single value, but different values within the convex hull
of compromised agents. Finally, it is also shown that this single compromised
agent compromises the Nash solution and can either harm the agents’ comfort
level by consuming less than they are allowed to or significantly increase the
price by consuming more than they have to for the case of demand response
management.

Lemma 1. Suppose A ∈ Rn×n satisfies A+AT < 0 and B ∈ Rn×n is invertible.
Then, the matrix

H =
[

A BT

−B 0

]

(11)

is Hurwitz.
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Proof. See [33].

Theorem 3. Suppose that agent N is a compromised agent and does not update
its estimation about the aggregate value, i.e. UN (t) = U. Then, the aggregate
values in (7a), (7b), (7c) converge to U, regardless of the actions of all the
agents, i.e, ui ∀i = 1, . . . , N .

Proof. The distributed protocol (7a), (7b), (7c) in the presence of one compro-
mised agent can be rewritten as

U̇i = − Ui − (
N−1∑

j=1

aij (Ui − Uj) + gi (Ui − U))−

(
N−1∑

j=1

aij (wi − wj) + gi (wi − w)) + Nui (12a)

ẇi =
N−1∑

j=1

aij (Ui − Uj) + gi (Ui − U) (12b)

u̇i = −αi(2di(ui − udi
) + li(Ui) + ui

∂li(Ui)
∂Ui

) (12c)

where gi is defined in Definition 6, and U and w are the constant values broad-
casted by the compromised agent.

Define error quantities as Ūi(t) := Ui(t) − U and W̄i(t) := wi(t) − w. The
error dynamics in compact form are given as

[
˙̄U(t)
˙̄W (t)

]

=
[−I − (L̄ + G) −(L̄ + G)

L̄ + G 0

] [
Ū(t)
W̄ (t)

]

+
[−1U + Nu(t)

0

]

(13)

where Ū = [Ū1, . . . , ŪN−1]T , W̄ = [W̄1, . . . , W̄N−1]T , and u = [u1, . . . , uN−1]T .
Define

K(t) = −1U + Nu(t) (14)

The transfer function from Ū(t) to K(t) is given as

T (s) =
Ū(s)
K(s)

= s[s2I + (I + (L̄ + G))s + (L̄ + G)2]−1 (15)

Note that L̄ + G is positive definite and thus can be written as L̄ + G =
Q Λ QT with eigenbasis Q = [q1, . . . , qN−1] corresponding to real eigenvalues
Λ = diag[λ1, . . . , λN−1] with λj > 0 ∀j = 1, . . . , N − 1. Using this fact, the
transfer function (15) can be rewritten as

T (s) =
Ū(s)
K(s)

=s[QT (s2I + (I + Λ)s + Λ2)Q]−1

=
N−1∑

j=1

s

s2I + (I + λj)s + λj
2 qj

T qj (16)
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Using (16), Ū(s) becomes

Ū(s) = T (s)K(s) = (
N−1∑

j=1

s

s2I + (I + λj)s + λj
2 qj

T qj)
−1U + Nu

s
(17)

Using Lemma 1 for (13), which shows that T (s) is stable, and the Final Value
Theorem, one has

lim
t→∞ Ū(t) = lim

s→0
sŪ(s) = lim

s→0
sT (s)K(s) = 0, (18)

which results in
Ui(t) → U (19)

This completes the proof.

Remark 4. One might argue that if a compromised agent does not update its
estimate of the aggregate value, it can be identified as a frozen agent and ignored
by its neighbors. However, a compromised agent can for example change its
update law to ẋN = b exp(−a t), xN (0) = U. It can be shown that, in this case,
agents’ estimates of the aggregate value will eventually converge to U + b, while
the compromised agent is not frozen.

Theorem 4. Let node N be a compromised agent. Then, on convergence, one

has
N∑

i=1

Ui �→ N
N∑

i=1

ui. Therefore, Ui → U �=
N∑

i=1

ui.

Proof. The equivalence of Zi that shows up in (7a) and defined in Theorem1 in
the presence of one compromised node is

N−1∑

j=1

aij (wi − wj) + gi(wi − w) (20)

where w is the value of the internal estimation variable of the compromised node.

It was shown in Theorem 2 that
N∑

i=1

N∑

j=1

aij (wi − wj) = 0. Letting agent N to

be the compromised agent and broadcasting w, and ignoring the information it
receives from its neighbors, one has

N−1∑

i=1

(
N−1∑

j=1

aij (wi − wj) + gi(wi − w)) =
N−1∑

i=1

gi(wi − w) �= 0 (21)

On the right-hand side of (21), the information flowed from neighbors of the
compromised agent is ignored since it does not listen to its neighbors.

At the steady state, (12a), (12b), (12c) satisfies

N−1∑

i=1

Ui = −
N−1∑

i=1

(
N−1∑

j=1

aij(wi − wj) + gi(wi − w)) + N

N−1∑

i=1

ui (22)
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Considering (21) in (22) and adding UN = U to both sides of (22) result in

N∑

i=1

Ui = −
N−1∑

i=1

gi(wi − w) + N
N−1∑

i=1

ui + U (23)

Since in the steady state, uN �= 1
N (−

N−1∑

i=1

gi(wi − w) + U), then (23) results in

N∑

i=1

Ui �→ N
N∑

i=1

ui. On the other hand,
N∑

i=1

Ui = N
N∑

i=1

ui is a necessary condition

for Ui =
N∑

i=1

ui. Therefore, Ui �→
N∑

i=1

ui and this completes the proof.

Theorem 5. Suppose that more than one agent in the network are compromised
and do not update their estimation about the aggregate value. Then, the aggregate
values in (7a) converge to a convex hull spanned by the value of the compromised
agents regardless of the actions of other agents.

Proof. The distributed protocol (7a), (7b), (7c) in the presence of multiple com-
promised agents can be rewritten as

U̇i = −Ui − (
N−M∑

j=1

aij (Ui − Uj) +
M∑

k=1

gki (Ui − Uk
0))−

(
N−M∑

j=1

aij (wi − wj) +
M∑

k=1

gki (wi − wk
0)) + Nui (24a)

ẇi =
N−M∑

j=1

aij (Ui − Uj) +
M∑

k=1

gki (Ui − Uk
0) (24b)

u̇i = −αi(2di(ui − udi
) + li(Ui) + ui

∂li(Ui)
∂Ui

) (24c)

where M is the number of compromised agents, Uk
0 , k = 1, . . . , M is the constant

values broadcasted by the compromised agents, and gki �= 0 if there is a direct
edge between node i and compromised node k, and gki = 0 otherwise.

The distributed protocol (24a) and (24b) in compact form are written as

U̇ = −U −
M∑

k=1

Hk (U − 1N−M ⊗ Uk
0)−

M∑

k=1

Hk (w − 1N−M ⊗ wk
0) + Nu (25a)

ẇ =
M∑

k=1

Hk (U − 1N−M ⊗ Uk
0) (25b)
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where

Hk =
L
M

+ Gk

and

Gk =

⎡

⎢
⎢
⎢
⎣

gk1 0 0 0
0 gk2 0 0

0 0
. . . 0

0 0 0 gkN−M

⎤

⎥
⎥
⎥
⎦

It is shown in [34] that the convex hull spanned by leaders is given as

C =
M∑

k=1

[[( M∑

r=1

Hr

)−1

Hk 1N−M

]

⊗Uk
0

]

(26)

Define error quantities as Ui := Ui−C and Wi := wi−w̄. The error dynamics
in compact form are given as

[
U̇(t)
Ẇ(t)

]

=
[−I − H −H

H 0

] [
U(t)
W(t)

]

+
[−1C + Nu(t)

0

]

(27)

where U(t) = [U1(t), . . . ,UN−M (t)]T , W(t) = [W1(t), . . . ,WN−M (t)]T , and H =
M∑

k=1

Hk.

Introduce
K(t) := −1C + Nu (28)

The transfer function from U(t) to K(t) is given by

T(s) =
U(s)
K(s)

= s[s2I + (I + H)s + H2]−1 (29)

Similar to Theorem3, the transfer function (29) can be rewritten as

T(s) =
N−M∑

j=1

s

s2I + (I + ηj)s + ηj2
pj

T pj (30)

where ηj , j = 1, . . . , N − M are the eigenvalues of matrix H, and pj are the
corresponding eigenvectors.

Using (15), U(s) is defined as

U(s) = T(s)K(s) = (
N−M∑

j=1

s

s2I + (I + ηj)s + ηj2
pj

T pj)
−1C + Nu

s
(31)

Using Lemma 1 and the Final Value Theorem, one has

lim
t→∞ U(t) = lim

s→0
sU(s) = lim

s→0
sT(s)K(s) = 0, (32)
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which results in
Ui → C (33)

This completes the proof.

Remark 5. The compromised agents might be able to collude and communicate
only with each other to reach consensus on a compromised value. This way,
compromised agents will update their values to avoid being identified as frozen
agents and the estimation of all agents will reach consensus on the consensus
value of compromised agents.

Theorem 6. Consider the aggregative game with cost function (5) and update
law (7a), (7b), (7c), with the setting of demand side management. Let u∗ =
(u∗

1, u
∗
2, . . . , u

∗
N ) be the Nash equilibrium solution to the game, when there is

no compromised agent. Assume now that agent N does not update its value and

broadcast U �= U∗ =
N∑

i=1

u∗
i . Then, the agents reach a compromised Nash solution,

and

(1) if U >> U∗, the level of comfort of the agents will be adversely and signifi-
cantly harmed.

(2) if U << U∗, the agents will be misled to increase their consumption and the
price will adversely be increased.

Proof

(1) It was shown in Theorem 4 that Ui ∀i = 1, . . . , N −1 converge to U, regard-
less of agents’ actions. Therefore, in convergence, (7a)–(7c) actually mini-
mize

Ji = di(ui − udi
)2 + l(U) ui (34)

Since l(U) is now independent of actions of other agents, they reach even-
tually their best response, which is decoupled from actions of other agents
and is affected only by the action of the compromised agent. In the most
extreme case, if U >> U∗, l(U) = lmax for all agents and then, (34) becomes

Ji = di(ui − udi
)2 + lmax ui (35)

Therefore, agents will misleadingly think that the overall consumption and
thus the price are high and take actions to minimize it by minimizing their
comfort level.

(2) The same as (1), l(U) is independent of actions of agents and is only con-
trolled by the compromised agent. Agents will misleadingly think that the
overall consumption and consequently the price are low and thus move
toward maximizing their comfort levels. In the most extreme case,

Ji = di(ui − udi
)2 + lmin ui (36)

This will significantly increase their price.
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Remark 6. If there is more than one compromised agent, as shown in Theorem5,
agents do not reach consensus on the aggregate value and their estimations
on the aggregate value converge to different values within the convex hull of
compromised agents’ values. In this case, the same as Theorem 5, one can show
that the actions of agents are decoupled and l(ū) is only affected by compromised
agents. In fact, agent i on convergence minimizes

Ji = di(ui − udi
)2 + l(Ci)ui (37)

where Ci ∈ C and l(Ci) only depends on the compromised agents, but it is
different for all agents. Therefore, the attackers can adversely affect comfort
level of some of the agents and the price of some other agents at the same time.

Remark 7. Note that in the presence of an attack, if agent i cares mostly about
the price, i.e. di << 1 in (5), then if U >> U∗, it will choose its minimum
allowed action, which minimizes its comfort level. On the other hand, if agent
i is selfish, i.e. di >> 1, it will not be affected by the attack. Moreover, if the
compromised agent broadcasts a time varying signal such as a sinusoidal, agents
will never reach an emergent behavior and their actions will fluctuate and not
reach a steady state.

4 Simulation Results

In this section, we consider 5 agents that are communicating with each other
through an undirected graph shown in Fig. 1. Each agent optimizes the cost
function (5). Figure 2 shows the estimation of the aggregate value for all agents
in the absence of compromised agents in the network. Figure 3 shows the actions
of all agents in the absence of an adversary. It can be seen that from these results
that all agents estimate the same aggregate value, and this aggregate value in
Fig. 2 is the actual summation of the actions of agents in Fig. 3.

Fig. 1. Communication network between agents

Now, we consider the cases with compromised or selfish agents.
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Fig. 2. Estimation of the aggregate value by all agents in the absence of an adversary
in the environment
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Fig. 3. The actions of all agents in the absence of an adversary

4.1 Presence of One Compromised Agent in the Network

In the scenario considered here, we assume that Agent 4 is a compromised agent
and does not listen to its neighbors about the aggregate value. This agent always
sends a fixed value 500 to its neighbors. Figure 4 shows that the estimates of all
agents of the aggregate value converge to the value of the compromised agent,
regardless of their actions. The actions of all agents in the presence of the com-
promised agent are shown in Fig. 5. These figures corroborate the results of
Theorems 3 and 4. It is obvious that, compared to Figs. 2 and 3, the actions of
agents are significantly affected by the compromised agent and their summation
is not equal to the estimated aggregate value.
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4.2 Presence of Multiple Compromised Agents in the Network

Here we assume that Agents 3 and 4 are compromised agents. Figures 6 and 7
show that the estimate of the aggregate value for all agents converge to different
values within the convex hull spanned by the compromised agents. It can be seen
that, compared to Fig. 3, the actions of agents are affected by the compromised
agents.

4.3 Presence of a Selfish Agent in the Network

In this scenario, we assume that Agent 3 just cares about its selfish comfort
objective and keeps its power consumption at 30 for all the time. Figures 8 and
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Fig. 4. Estimation of aggregate value by all agents in the presence of one compromised
agent
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Fig. 5. The actions of all agents in the presence of one compromised agent
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Fig. 6. Estimation of the aggregate value by all agents in the presence of multiple
compromised agents
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Fig. 7. The actions of all agents in the presence of multiple compromised agents

9 show the estimates of the aggregate value and all agents’ actions, respectively.
One can see that the estimates of the aggregate values converge to summation
of the actions of all agents and, compared to Fig. 3, the actions of the agents
except the selfish one do not change.
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Fig. 8. Estimation of the aggregate value by all agents in the presence of a selfish agent
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Fig. 9. The actions of all agents in the presence of a selfish agent

5 Conclusion

We have analyzed, in this paper, the adverse effects of malicious behavior on
the Nash solution of distributed aggregative games (DAGs) on graphs. We have
shown that the game solution can reach a consensus value that does not depend
on agents’ actions, and actually depends only on the broadcast value of the
compromised agent. This study intensifies the urgency of empowering the agents
with built-in resilient functionalities to decrease the damage to the network in
the presence of unexpected behaviour. The next step would be to design resilient
protocols to assure that all agents in the network operate in an acceptable level
of functionality in the presence of cyber attacks.
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