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Abstract. Online advertising has motivated companies to collect vast
amounts of information about users, which increasingly creates privacy
concerns. One way to answer these concerns is by enabling end users to
choose which aspects of their private information can be collected. Based
on principles suggested by Feldman and Gonen (2018), we introduce a
new online advertising market model which uses information brokers to
give users such control. Unlike Feldman and Gonen (2018), our model is
dynamic and involves multi-sided markets where all participating sides
are strategic. We describe a mechanism for this model which is theo-
retically guaranteed to (approximately) maximize the gain from trade,
avoid a budget deficit and incentivize truthfulness and voluntary partic-
ipation. As far as we know, this is the first known dynamic mechanism
for a multi-sided market having these properties.

We experimentally examine and compare our theoretical results using
real world advertising bid data. The experiments suggest that our mech-
anism performs well in practice even in regimes for which our theoretical
guarantee is weak or irrelevant.
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1 Introduction

Online advertising currently supports some of the most important Internet
services, including: search, social media and user generated content sites. For
online advertising to be effective, companies collect vast amounts of information
about users, which increasingly creates privacy concerns [7]. Such concerns were
actively raised by EU regulators in recent years in efforts to find solutions to
guarantee users’ privacy. Recently privacy concerns have also reached the U.S.
Senate and Congress as a response to Facebook’s information leak to Cambridge
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Analytica. It was evident in Facebook’s hearing before the U.S. Senate, partic-
ularly in Senator Schatz’s line of questioning [8], that Facebook is expected to
develop tools to enable end users to configure their privacy settings and that the
notion of a data fiduciary was put forward to apply pressure to Facebook in this
area.

Based on this motivation, and extending principles suggested by [10], we
introduce a new model capturing a foreseeable future form of online advertising.
The market in this model includes advertisers as buyers, users as sellers (each
willing to sell her own information portfolio through a broker) and information
brokers as mediators representing the users.1 The objective of a mechanism for
this setting is to end up with a match between users and advertisers maximizing
the gain from trade. Towards that goal, the mechanism has to collect information
from the mediators and advertisers; and thus, needs to incentivize the mediators
and advertisers to report truthfully, which it can do by charging the advertisers
and paying the mediators. Additionally, unlike in [10], we assume here that the
users are strategic as well, which requires the mechanism to incentivize them
also by recommending for each mediator to forward some of the payment he
received to his users.

As the online advertising ecosystem is dynamic, the market in our model
is dynamic as well. We assume the mediators and advertisers arrive in a
uniformly random order, and refer to the arriving advertisers and media-
tors as arriving entities. Every time that a new entity arrives, the mech-
anism has an opportunity to assign users to advertisers. More specifically,
users enroll with a mediator offline, i.e., when the mediator arrives at the
market it has a list of users that are his customers and the mechanism is
allowed to assign users of the newly arriving mediator to advertisers that
have already arrived. Similarly, when an advertiser arrives the mechanism is
allowed to assign users of mediators that have already arrived to the newly
arriving advertiser. From a practical point of view, an assignment of a user p
to an advertiser a means that when p views interstitial advertising, it will be
from advertiser a. Given this meaning for an assignment, it is natural to assume
that the mechanism is not allowed to cancel assignments that have already been
made, or assign a user of a mediator that has already arrived to an advertiser
that has already arrived. These restrictions, together with the random arrival
order, represent the dynamicity of the setting. We note that our choice to model
a dynamic market using a random arrival order is a well established practice—for
a few examples, see [2,19]. Intuitively, this modeling choice reflects the assump-
tion that real arrival orders are arbitrary rather than adversarial.

A natural expectation from a dynamic exchange mechanism is to (approx-
imately) maximize the gain from trade, while maintaining desirable economic
properties such as incentivizing truthfulness, voluntary participation and avoid-
ing budget deficit. Unfortunately, as far as we know, no previous work has man-

1 The use of mediators is necessary because it should not be possible to link an infor-
mation portfolio offered for sell on the market to any particular user, which prevents
users from interacting directly with the market.
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aged to achieve these goals simultaneously. Wurman et al. [20] presented a mech-
anism incentivizing truthful reporting from either the buyers or the sellers, but
not simultaneously from both. A different mechanism given by Blum et al. [4]
maximizes the social welfare of buyers and non-selling sellers (as opposed to
maximizing the gain from trade).2 Finally, Bredin et al. [5] present a truthful
dynamic double-sided auction that is constructed from a truthful offline double-
sided auction rule, however its competitiveness with respect to the optimal trade
was only studied empirically.

The failure of the above works to maximize the gain from trade while main-
taining truthfulness, individual rationality (voluntary participation) and budget
balance (avoiding budget deficit) can be partially attributed to an impossibil-
ity result of [16]. This impossibility result states that, even in an offline setting
involving a single buyer and a single seller, maximizing the gain from trade while
maintaining truthfulness and individual rationality perforce runs a deficit (i.e.,
is not budget balanced). An additional reason for the above failure is that the
matching problem faced by the market maker (exchange mechanism) in multi-
sided dynamic markets combines elements of dynamic algorithms and sequential
decision making with considerations from mechanism design. More specifically,
unlike in a traditional dynamic algorithm, a mechanism for such a setting must
incentivize agents to report truthful information to the mechanism. Addition-
ally, unlike in traditional mechanism design, this is a dynamic setting with agents
that arrive over time, and the mechanism must deal with uncertainty and make
irrevocable decisions before all the agents arrive.

1.1 Our Result

In this work we present the first (to the best of our knowledge) dynamic mech-
anism for a multi-sided market setting which theoretically guarantees the eco-
nomic properties of truthfulness, individual rationality, and budget balance while
(approximately) maximizing the gain from trade. As our setting involves multi-
dimensional agents, our result shows that dynamic multi-sided markets can be
handled even in the presence of multi-dimensional agents. Moreover, we study the
practical performance of our mechanism using simulations based on real-world
advertisers’ bids. The data for these experiments was gathered from Facebook
advertising campaigns. These experiments suggest that our mechanism performs
well in practice even in input regimes for which our theoretical guarantee is weak.

The dynamic nature of our setting raises the question of what it means for
a mechanism to be individually rational. As usual, individual rationality should
imply that an agent never losses by participating. However, in a dynamic setting
it is natural to require also that an agent never losses by not leaving prema-
turely. We introduce a new concept called “continuous individual rationality”
which captures the above intuitive requirement. Formally, a mechanism is con-
tinuously individually rational for an agent (a user, a mediator or an advertiser)

2 Blum et al. [4] has multiple different objectives (maximizing profit, liquidity and
welfare). We refer to the objective which is most relevant to our work.
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if the agent’s utility can only increase over time when the agent is truthful.3

Note that this newly presented concept of continuous individual rationality is a
stronger concept than individual rationality in its classic form as it implies ex
post individual rationality.

Satisfying the requirements of continuous individual rationality, together
with the other economic properties our mechanism guarantees, requires our
mechanism to use a novel pricing scheme where users may be paid ongoing incre-
ments during the mechanism’s execution. The maximum total payment that a
user may end up with is pre-known (when the user arrives), however, the actual
increments are not pre-known and depend on the market’s dynamically chang-
ing demands and supplies. As users rarely ever get paid in reality, this pricing
scheme is new to mechanism design and might look odd at first glance. Nev-
ertheless, the principle it is based on can be observed in many common real
life scenarios such as executive compensation payments and company acquisi-
tion deals. For example, the eBay acquisition of Skype in 2005 involved both
an upfront payment and an additional payment whose amount depended on the
future performance of the bought company (see https://investors.ebayinc.com/
releasedetail.cfm?releaseid=176402).

Like in [3], we say that a mechanism is user-side incentive compatible if
truthfulness is a dominant strategy4 for each user given that her mediator is
truthful. Similarly, the mechanism is user-side continuously individually rational
if it is continuously individually rational for each user given that her mediator
is truthful. A mechanism is mediator-side incentive compatible if truthfulness is
a dominant strategy for each mediator whose users are all truthful, and it is
mediator-side continuously individually rational if it is continuously individually
rational for every such mediator. Finally, a mechanism is advertiser-side incen-
tive compatible if truthfulness is a dominant strategy for every advertiser, and it
is advertiser-side continuously individually rational if it is continuously individu-
ally rational for every advertiser. We construct a mechanism which is three-sided
incentive compatible (i.e., it is simultaneously user-side incentive compatible,
mediator-side incentive compatible and advertiser-side incentive compatible) and
also three-sided continuously individually rational (i.e., it is simultaneously user-
side continuously individually rational, mediator-side continuously individually
rational and advertiser-side continuously individually rational).

Our mechanism is termed “Observe and Price Mechanism” (OPM). The fol-
lowing theorem analyzes the economic properties guaranteed by OPM and its
competitive ratio. The parameter α is an upper bound, known to the mecha-
nism, on the market importance of any single agent. Formally, α bounds the
ratio between the size of the optimal trade and the maximum capacity of an
advertiser or the maximum number of users that a mediator can represent.

3 Informally, an agent is truthful if he/she reports the information as it is known to
him/her. A formal definition of what it means for a user, mediator or advertiser to
be truthful is given in Sect. 2.

4 Here and throughout the paper, a reference to domination of strategies should always
be understood as a reference to weak domination.

https://investors.ebayinc.com/releasedetail.cfm?releaseid=176402
https://investors.ebayinc.com/releasedetail.cfm?releaseid=176402
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Theorem 1. OPM is budget balanced5, three-sided continuously individually
rational, three-sided incentive compatible and (1 − 9.5 6

√
α − 10e−2/ 3√α)-

competitive.

From a theoretical perspective, the most important feature of the competitive
ratio guaranteed by Theorem 1 is that it approaches 1 when no agent has too
much market power. Though this is a desirable aspect of the algorithm, we
are aware that the competitive ratio has an unintuitive form and is often non-
positive for markets of a moderate size. The latter can be significantly alleviated
by making the proof tighter (and less readable). Instead we chose to address
intuitiveness and readability by including experimental results in the paper.
The experimental results demonstrate that our mechanism performs well on
inputs derived by real world data even for moderate size markets despite what
the current theoretical analysis shows. We note that for large markets, such
as the market we study in this work, α is expected to be much smaller than
1. Nevertheless, our simulation results suggest that in practice OPM performs
well even for markets having a more moderate size and a larger value of α.
In addition, in order to demonstrate the need for an involved solution such as
OPM, we compare OPM’s practical performance to that of a straw-man mechanism.
This comparison demonstrates that our mechanism performs significantly better
than the straw-man mechanism even for moderate size markets. We also note
that the three-sided incentive compatibility of our mechanism implies that it is
universally truthful, i.e., truthful for all possible random coin flips.

1.2 Additional Related Work

From a motivational point of view our model is closely related to models involving
mediators and online advertising markets, such as the models studied by [1,18].
However, despite their network exchange motivation, these models are actually
auctions (i.e., one-sided mechanisms). Moreover, they focus on offline revenue
maximization mechanisms, which is very different from our focus. Other works
with a different motivation, such as [13,15,17], have studied mechanisms for
two-sided non-dynamic settings. However, with the exception of the very recent
last reference, they all considered single-dimensional agents. We are not aware
of any previous mechanism for a two-sided dynamic setting.

There is also a significant body of works studying dyanmic matching problems
with an adversarial arrival order. This body of work was originated by the work
of [14] who described an optimal dynamic algorithm for unweighted bipartite
online matching. Later works considered more general settings allowing various
kinds of weights—see, for example, [6]. We note that none of these works refers
to strategic considerations.

5 A mechanism is budget balanced if the amount it charges (from the advertisers) is at
least as large as the amount it pays.
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2 Model and Definitions

Let us now present the exact details of the model we consider. This model
consists of a set P of users, a set M of mediators and a set A of advertisers.
Each user p ∈ P has a non-negative cost c(p) which she suffers if she is assigned
to an advertiser; thus, the utility of p is 0 if she is not assigned and t−c(p) if she
is assigned and paid t. The users are partitioned among the mediators, and we
denote by P (m) ⊆ P the set of users associated with mediator m ∈ M (i.e., the
sets {P (m) | m ∈ M} form a disjoint partition of P ). The utility of a mediator
m ∈ M is the amount he is paid minus the total cost his users suffer; hence,
if x(p) ∈ {0, 1} is an indicator for the event that user p ∈ P (m) is assigned
and t is the payment received by m (part of which might have been forwarded
by the mediator to his users), then the utility of m is t − ∑

p∈P (m) x(p) · c(p).6

Finally, each advertiser a ∈ A has a positive capacity u(a), and she gains a
non-negative value v(a) from every one of the first u(a) users assigned to her;
thus, if advertiser a is assigned n ≤ u(a) users and has to pay t then her utility
is n · v(a) − t.

As explained in Sect. 1, we assume the entities (i.e., the mediators and adver-
tisers) arrive in a uniformly random order. A mechanism for this model knows
the total number of entities,7 and views the entities as they arrive; however,
it has no prior knowledge about the parameters of the entities or about the
users. To compensate for this lack of knowledge, each arriving entity reports
information to the mechanism. Each advertiser reports her capacity and value.
The reports of the mediators are formed in a slightly more involved way. Each
user reports her cost to her mediator, and based on these reports each mediator
reports the number of his users and their costs to the mechanism. The users,
mediators and advertisers are all strategic, and thus, free to produce incorrect
reports. In other words, an advertiser may report incorrect capacity and value, a
user may report an incorrect cost and a mediator may report a smaller number
of users and associate with each one of them an arbitrary cost.

Every time that a new entity arrives, the mechanism has an opportunity to
assign users to advertisers. More specifically, when a mediator arrives the mech-
anism is allowed to assign users of the newly arriving mediator to advertisers
that have already arrived. Similarly, when an advertiser arrives the mechanism is
allowed to assign users of mediators that have already arrived to the newly arriv-

6 The mediators’ utility functions are independent of the amount of money transferred
from the mediators to the users. This choice was made with the aim of balancing two
of the mediators’ conflicting objectives: on the one hand, mediators want to make
as much money as possible, and on the other hand, they want to acquire users and
have them use their services rather than switch to another mediator who is known
for paying more money to his users.

7 In some cases the assumption that the mechanism has a prior knowledge about the
number of entities might be considered unnatural. The mechanism we present can be
modified using standard techniques to work with an alternative assumption stating
that each entity arrives at a uniformly random time from some range (for example,
[0, 1]). See [11] for more details.
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ing advertiser. The objective of the mechanism is to end up with an assignment
of users to advertisers maximizing the gain from trade. In order to incentivize
the mediators and advertisers to report truthfully, the mechanism may charge
the advertisers and pay the mediators. Additionally, it is also allowed to rec-
ommend for each mediator how much of the payment he received to forward to
each one of his user. It is important to observe that, since the utility functions
of the mediators are not affected by the forwarding of payments to the users, it
is reasonable to believe that mediators follow the forwarding recommendations.

We say that a user is truthful if she reports her true cost. Similarly, an adver-
tiser is truthful if she reports her true capacity and value. Finally, a mediator
is considered truthful if he reports to the mechanism his true number of users
and the costs of the users as reported to him; and, in addition, he also pays
the users according to the recommendation of the mechanism (i.e., he lets them
know about their true balance).

We associate a set B(a) of u(a) slots with each advertiser a ∈ A. This allows
us to think of the users as assigned to slots instead of directly to advertisers.
Formally, let B be the set of all slots (i.e., B =

⋃
a∈A B(a)), then an assignment

is a set S ⊆ P ×B in which no user or slot appears in more than one ordered pair.
We say that an assignment S assigns a user p to slot b if (p, b) ∈ S. Similarly,
we say that an assignment S assigns user p to advertiser a if there exists a slot
b ∈ B(a) such that (p, b) ∈ S. It is also useful to define values for the slots. For
every slot b of advertiser a, we define its value v(b) as equal to the value v(a) of
a. Using this notation, the gain from trade of an assignment S can be stated as:
GfT(S) =

∑
(p,b)∈S [v(b) − c(p)].

Finally, we define two additional useful shorthands. Given a set A′ ⊆ A of
advertisers, let B(A′) =

⋃
a∈A′ B(a) be the set of slots belonging to the adver-

tisers of A′. Similarly, given a set M ′ ⊆ M of mediators, P (M ′) =
⋃

m∈M ′ P (m)
is the set of users associated with the mediators of M ′.

Comparison of Costs and Values. The presentation of our mechanism is simpler
when the values of slots and the costs of users are all unique. Clearly, this is
extremely unrealistic since all the slots of a given advertiser have the exact
same value in our model. Thus, we simulate uniqueness using a tie-breaking rule
(which must be independent of the reports of the agents). In the rest of this
paper, whenever costs/values are compared, the comparison is assumed to use
such a tie breaking rule.

Canonical Assignment. Given a set B′ ⊆ B of users and a set P ′ ⊆ P of slots,
the canonical assignment Sc(P ′, B′) is the assignment constructed as follows.
First, we order the slots of B′ in a decreasing value order b1, b2, . . . , b|B′| and the
users of P ′ in an increasing cost order p1, p2, . . . , p|P ′|. Then, for every 1 ≤ i ≤
min{|B′|, |P ′|}, Sc(B′, P ′) assigns user pi to slot bi if and only if v(bi) > c(pi).

The canonical assignment is an important tool we use often in this paper,
and it was proved by [10] that Sc(P ′, B′) is always an assignment of users from
P ′ to slots of B′ maximizing the gain from trade (among all such assignments).
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Occasionally, we refer to the user or slot at location i of a canonical assignment
Sc(P ′, B′), by which we mean user pi or slot bi, respectively.

3 Our Mechanism

In this section we describe and analyze our dynamic mechanism “Observe and
Price Mechanism” (OPM). OPM assumes |Sc(P,B)| > 0, and that there exists a
value α ∈ [|Sc(P,B)|−1, 1], known to the mechanism, such that we are guaranteed
that, for every advertiser a ∈ A and mediator m ∈ M :max{u(a), |P (m)|} ≤
α · |Sc(P,B)|. In other words, α is an upper bound on how large can the capacity
of an advertiser or the number of users of a mediator be compared to the size of
the optimal assignment Sc(P,B). We remind the reader that α can be informally
understood as a bound on the market importance of any single entity.

A description of OPM is given as Mechanism 1. Notice that Mechanism 1
accepts a parameter r ∈ (0, 1/2] whose value is specified later. Additionally,
Mechanism 1 often refers to parameters of the model that are not known to
the mechanism, such as the value of an advertiser or the number of users of a
mediator. Whenever this happens, this should be understood as referring to the
reported values of these parameters.

Mechanism 1. Observe and Price Mechanism (OPM)

1. Draw a random value t from the binomial distribution B(|A| + |M |, r), and
observe the first t entities that arrive without assigning any users. Let AT

and MT be the set of the observed advertisers and mediators, respectively.
We later refer to this step of the mechanism as the “observation phase”.

2. Let p̂ and b̂ be the user and slot, respectively, at location
�(1 − 2r−1 · 3

√
α) · |Sc(P (MT ), B(AT ))|� of the canonical assignment

Sc(P (MT ), B(AT )).
If (1−2r−1 · 3

√
α) · |Sc(P (MT ), B(AT ))| ≤ 0, then the previous definition of p̂

and b̂ cannot be used. Instead, define p̂ as a dummy user of cost −∞ and b̂ as
a dummy slot of value ∞. We say that a slot b or a user p corresponding to
an entity that arrived after the observation phase is assignable if v(b) > v(b̂)
or c(p) < c(p̂), respectively.

3. Let σE be the sequence of the entities that arrived so far after the observation
phase. Initially σE is empty, and entities are added to it as they arrive.

4. For every arriving entity:
a. Add the new entity to the end of σE .
b. If the arriving entity is a mediator m (advertiser a), then, as long as

m (a) has unassigned assignable users (slots) and there is an advertiser
(mediator) in σE having unassigned assignable slots (users), do:
• Let a (m) be the first advertiser (mediator) in σE having unassigned

assignable slots (users).
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• Assign the unassigned assignable user of mediator m with the lowest
cost to an arbitrary unassigned assignable slot of a, charge an amount
of v(b̂) from advertiser a and pay c(p̂) to mediator m.

c. For every mediator m ∈ σE , recommend m to transfer his assigned users
an additional amount that guarantees the following:
• If all the assignable users of m are assigned, the additional amount

should increase the total payment received so far by each assigned user
of m to c(p̂).

• Otherwise, let p be the unassigned assignable user of m with the mini-
mum cost. In this case the additional amount should increase the total
payment received so far by each assigned user of m to c(p).a

a Note that at every point in time m is budget balanced since he receives
a payment of c(p̂) for each one of his assigned users, and the total
amount recommended for him to pay to each one of these users is either
c(p̂) or equal to the cost of some assignable user (and thus, is upper
bounded by c(p̂)).

We would like to note that OPM is based on a mechanism of [10] named
“Threshold by Partition Mechanism”, and the analyses of both mechanisms go
along similar lines. However, OPM introduces additional ideas that allow it to work
in a dynamic setting. In particular, OPM uses an involved recommended payments
updating rule that keeps it three-sided continuously individually rational. More-
over, OPM is able to use an observation phase whose size is a small fraction of the
entire input (for α 	 1), whereas the analysis of the mechanism of [10] relies
on the symmetry properties induced by an even partition of the input (which is
inappropriate in a dynamic setting).

Let us start the analysis of OPM with the following simple observation, showing
that OPM obeys the restriction of our model on the way a mechanism may update
its assignment.

Observation 2. Each time OPM assigns a user to a slot, either the user belongs
to the newly arrived mediator or the slot belongs to the newly arrived advertiser.

At this point we would like to prove the following restatement of Theorem1.

Theorem 1. OPM is budget balanced, three-sided continuously individually ratio-
nal, three-sided incentive compatible and (1 − r − 22r−1 · 3

√
α − 10e−2/ 3√α)-

competitive. Hence, for r = min{1/2, 4 6
√

α} the competitive ratio of OPM is at
least: 1 − 9.5 6

√
α − 10e−2/ 3√α.

One part of Theorem 1 is proved by the following observation.

Observation 3. OPM is budget balanced.

Proof. We prove the observation by showing that whenever OPM assigns a user p
to a slot b, it charges the advertiser of b more than it pays the mediator of p.
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Consider an arbitrary ordered pair (p, b) from the assignment produced by
OPM. The fact that p is assigned implies that c(p) < c(p̂), and thus, p̂ is not a
dummy user (since c(p̂) = −∞ when p̂ is a dummy user). Similarly, the fact that
a user is assigned to b implies that v(b) > v(b̂), and thus, b̂ is not a dummy slot
(since v(b̂) = ∞ when b̂ is a dummy slot).

Recall that the fact that p̂ and b̂ are not dummy user and slot, respec-
tively, implies that p̂ and b̂ are matched by the canonical assignment
Sc(P (MT ), B(AT )). Since a canonical assignment never assigns a user p′ to a
slot b′ when c(p′) > v(b′), we get c(p̂) < v(b̂). The proof now completes by
observing that the advertiser of b is charged v(b̂) for the assignment of p to b,
and the mediator of p is paid only c(p̂) for this assignment. 
�

Following is a useful observation about OPM that we occasionally use in the
next proofs.

Observation 4. OPM preserves the invariant that one of the following is always
true immediately after OPM processes the arrival of an entity:

1. OPM assigned all the assignable users of mediators that have already arrived.
2. OPM assigned users to all the assignable slots of advertisers that have already

arrived.

Proof. Clearly the invariant holds during the observation phase because only
mediators and advertisers that arrive after the observation phase contribute
assignable users and slots, respectively. Next, assume the invariant held before
the arrival of some mediator m which arrives after the observation phase, and
let us prove that it holds also after the arrival of m. If before the arrival of m
case (2) of the invariant held, then this case also holds after the arrival of m
since m contributes no new slots. On the other hand, if case (1) held before the
arrival of m, then OPM assigns the assignable users of m to assignable slots of
advertisers that have already arrived till one of two things happen: either all
the assignable slots of advertisers that have already arrived get assigned (and
thus, case (2) of the invariant now holds), or all the assignable users of m get
assigned (and thus, case (1) of the invariant holds again). It remains to prove
that if the invariant held before the arrival of an advertiser a which arrives after
the observation phase, then it also holds after her arrival. However, this proof is
analogous to the above proof for mediators, and thus, we omit it. 
�

3.1 The Incentive Properties of OPM

In this section we prove the incentive parts of Theorem1. Specifically, we prove
three lemmata showing that OPM is three-sided continuously individually rational
and three-sided incentive compatible. The first lemma analyzes the incentive
properties of OPM for users. Due to space constraints, we defer the proof of this
lemma to the full version of this paper.
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Lemma 1. For every user p, assuming the mediator m of p is truthful, OPM is
continuously individually rational for p, and truthfulness is a dominant strategy
for her.

The next lemma analyzes the incentive properties of OPM for mediators.

Lemma 2. For every mediator m, assuming the users of m are truthful, OPM is
continuously individually rational for m, and truthfulness is a dominant strategy
for him.

Proof. If m arrives during the observation phase (i.e., m ∈ MT ), then no user
of m is ever assigned to a slot and m receives no payment. Hence, the lemma is
trivial in this case. Thus, we assume in the rest of the proof that m arrives after
the observation phase.

Note that OPM calculates the threshold c(p̂) based on the reports of advertisers
and mediators in AT and MT , respectively. Thus, m, who does not belong to
MT , cannot affect this threshold. Whenever a user p ∈ P (m) is assigned to
a slot the utility of m (and the user) decreases by c(p) and increases by the
additional payment m gets, which is c(p̂). In other words, the utility of m changes
by c(p̂) − c(p) (independently of the amount m forwards to p). When m is
truthful this change is always non-negative since the assignment of p implies
that she is assignable, i.e., her reported cost is smaller than c(p̂). This already
proves that each assignment of a user of m increases his utility by a non-negative
amount when he is truthful (assuming his users are also truthful), thus, OPM is
continuously individually rational for m.

Let s be the number of assignable users of m, according to his report. We
claim that there exists a value k which is independent of the report of m such
that for any report of m the mechanism assigns the min{k, s} users of m with the
lowest reported costs. Before proving this claim, let us explain why the lemma
follows from it. The above description shows that the utility of m changes by a
c(p̂) − c(p) for every assigned user p ∈ P (m), thus, m wishes to assign as many
as possible users having cost less than c(p̂), and if he cannot assign all of them
then he prefers to assign the users with the lowest costs. By being truthful m
guarantees that only users of cost less than c(p̂) are considered assignable, and
thus, have a chance to be assigned. Moreover, by the above claim OPM assigns the
k assignable users of m with the lowest costs (or all of them if s < k), which is
the best result m can hope for given that at most k of his users can be assigned.
Hence, truthfulness is a dominant strategy for m.

We are only left to prove the above claim. Note that Observation 4 implies
that OPM assigns no users of m as long as there are mediators appearing earlier
in σE which still have unassigned assignable users. Once there are no more such
mediators, OPM assigns users of m, in an increasing costs order, to unassigned
assignable slots till one of two things happens: either m runs out of unassigned
assignable users, or the input for OPM ends. This means that when the input
for OPM ends before all the assignable users of mediators appearing before m
in σE are assigned, then no users of m are assigned and the claim holds with
k = 0. Otherwise, we choose k to be the number of unassigned assignable slots
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immediately before OPM assigns the first user of m (we count in k both unas-
signed assignable slots of advertisers that have already arrived at this moment
and unassigned assignable slots of advertisers that arrive later). Notice that the
report of m does not affect the behavior of OPM up to the moment it starts
assigning users of m, thus, k is independent of the report of m. If s > k, then
the k users of m with the lowest costs are assigned before OPM runs out of input
and stops. Otherwise, if s ≤ k, then OPM stops assigning users of m only after
assigning all the s assignable users of m. 
�

Finally, the next lemma considers the incentive properties of OPM for adver-
tisers. The proof of this lemma is analogous to the proof of the previous lemma
(with slots exchanging roles with users, v(b̂) exchanging roles with c(p̂), etc.),
and thus, we omit it.

Lemma 3. For every advertiser a, OPM is continuously individually rational for
a, and truthfulness is a dominant strategy for her.

3.2 The Competitive Ratio of OPM

In this section we analyze the competitive ratio of OPM. Throughout the section
we use the letter τ as a shorthand for |Sc(P,B)|. We also define P̃ (B̃) as the
set of the users (slots) at locations 1 to �(1 − 6r−1 · 3

√
α)τ� of the canonical

assignment Sc(P,B) (P̃ and B̃ are defined to be empty when 1−6r−1 · 3
√

α ≤ 0).
The following observation shows that most of the gain from trade of the canonical
assignment Sc(P,B) comes from the users and slots of P̃ and B̃, respectively. For
convenience, let us denote by Po the set of users that are assigned by Sc(P,B),
and by Bo the set of slots that are assigned some user by Sc(P,B).

Observation 5.
∑

b∈B̃ v(b) − ∑
p∈P̃ c(p) ≥ (1 − 6r−1 · 3

√
α) · GfT(Sc(P,B)).

Proof. If 1 − 6r−1 · 3
√

α ≤ 0, then both B̃ and P̃ are empty, and the inequality
that we need to prove holds since its left hand side is 0 and its right hand side is
non-positive (recall that Sc(P,B) is an assignment of users from P to slots of B
maximizing the gain from trade, and thus, its gain from trade is at least 0 since
GfT(∅) = 0). Thus, we may assume in the rest of the proof that 1−6r−1 · 3

√
α > 0.

Since B̃ contains the �(1 − 6r−1 · 3
√

α)τ� slots with the largest values among
the slots of Bo, we get:

∑

b∈B̃

v(b) ≥ �(1 − 6r−1 · 3
√

α)τ� ·
∑

b∈Bo
v(b)

τ
.

Similarly, since P̃ contains the �(1 − 6r−1 · 3
√

α)τ� users with the lowest costs
among the users of Po, we get:

∑

p∈Ã

c(p) ≤ �(1 − 6r−1 · 3
√

α)τ� ·
∑

c∈Po
c(p)

τ
.
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Combining the two inequities gives:
∑

b∈B̃

v(b) −
∑

p∈P̃

c(p)

≥ �(1 − 6r−1 · 3
√

α)τ� ·
∑

b∈Bo
v(b) − ∑

p∈Po
c(p)

τ

= �(1 − 6r−1 · 3
√

α)τ� · GfT(Sc(P,B))
τ

≥(1 − 6r−1 · 3
√

α) · GfT(Sc(P,B)). 
�
Observation 5 shows that one can prove a competitive ratio for OPM by relating

the gain from trade of the assignment it produces to the gain from trade obtained
by assigning the users of P̃ to the slots B̃. The following lemma is a key lemma we
use to relate the two gains. In order to state this lemma we need some additional
definitions. Consider the following two sets.

P̂ = {p ∈ P (M \ MT ) | c(p) < c(p̂)}
and

B̂ = {b ∈ B(A \ AT ) | v(b) > v(b̂)}.

Intuitively, P̂ is the set of the assignable users, and B̂ is the set of the
assignable slots. It is important to note that P̂ and B̂ are both empty whenever
p̂ and b̂ are dummy user and slot, respectively. We also define two additional sets
AL and ML as follows. Let f be a random variable distributed according to the
binomial distribution B(|A \ AT | + |M \ MT |,min{16r−1 · 3

√
α, 1}), and let L be

the set of the last f entities in σE (or equivalently, the last f entities to arrive).
The sets AL and ML are then defined as AL = A ∩ L and ML = M ∩ L.

Lemma 4. There exists an event E of probability at least 1 − 10e−2/ 3√α such
that E implies the following:

(i) B̃ \ B(AT ) ⊆ B̂
(ii) P̃ \ P (MT ) ⊆ P̂
(iii) |P̂ \ P (ML)| ≤ |B̂|
(iv) |B̂ \ B(AL)| ≤ |P̂ |
(v) c(p) ≤ �(P,B) ≤ v(b) for every user p ∈ P̂ and slot b ∈ B̂, where �(P,B) is

a value which is independent of the random coins of OPM and obeys c(p) ≤
�(P,B) ≤ v(b) for every p ∈ Po and b ∈ Bo.

The proof of Lemma 4 is very similar to the proof of Lemma 4.6 in [9] (which
is a version of [10] with full proofs), and thus, we omit it. In the rest of this
section we explain how the competitive ratio of OPM follows from Lemma 4. Let
Ŝ be the assignment produced by OPM.

Lemma 5. The event E implies the following inequality:

GfT(Ŝ) ≥
∑

b∈B̃
b�∈B(AT ∪AL)

[v(b) − �(P,B)] +
∑

p∈P̃
p�∈P (MT ∪ML)

[�(P,B) − c(p)].
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Proof. Lemma 4 shows that given E we have |P̂ \ P (ML)| ≤ |B̂|, hence, Obser-
vation 4 implies that OPM assigns at least |P̂ \ P (ML)| users. Additionally, since
OPM assigns users of mediators from ML only after all the assignable users of
mediators from M \ (MT ∪ ML) are assigned to slots we get that all the users of
P̂ \ P (ML) are assigned by Ŝ given E . On the other hand, Lemma4 also shows
that given E all the users of P̃ \ P (MT ) belong to P̂ , and thus, the users of
P̃ \ P (MT ∪ ML) are all assigned by Ŝ. A similar argument shows that the slots
of B̃ \ B(AT ∪ AL) are all assigned users by Ŝ given E . Finally, observe that E
also implies that c(p) ≤ �(P,B) ≤ v(b) for every pair (p, b) ∈ Ŝ ⊆ P̂ × B̂.

In the rest of the proof we assume that E happens. Consider an ordered pair
(p, b) ∈ Ŝ. Then, the contribution of (p, b) to GfT(Ŝ) is:

v(b) − c(p) = [v(b) − �(P,B)] + [�(P,B) − c(p)].

By the above discussion, the two terms that appear in brackets on the right
hand side of the last equation are both positive. This allows us to lower bound
the gain from trade of Ŝ as follows:

GfT(Ŝ) =
∑

(p,b)∈Ŝ

[v(b) − c(p)]

=
∑

(p,b)∈Ŝ

{[v(b) − �(P,B)] + [�(P,B) − c(p)]}

≥
∑

b∈B̃
b�∈B(AT ∪AL)

[v(b) − �(P,B)] +
∑

p∈P̃
p�∈P (MT ∪ML)

[�(P,B) − c(p)].


�
Corollary 1. OPM is at least (1 − r − 22r−1 · 3

√
α − 10e−2/ 3√α)-competitive.

Proof. The corollary is trivial when r + 22r−1 · 3
√

α + 10e−2/ 3√α > 1. Thus, we
assume in this proof r+22r−1 · 3

√
α+10e−2/ 3√α ≤ 1. For every two sets M ′ ⊆ M

and A′ ⊆ A of mediators and advertisers, respectively, let Val(M ′, A′) denote
the expression:

∑

b∈B̃\B(A′)

[v(b) − �(P,B)] +
∑

p∈P̃\P (M ′)

[�(P,B) − c(p)].

The definition of �(P,B) guarantees that v(b)−�(P,B) ≥ 0 and �(P,B)−c(p) ≥ 0
for every b ∈ B̃ ⊆ Bo and p ∈ P̃ ⊆ Po. Thus, Val(M ′, A′) ≤ Val(∅, ∅) for every
two sets M ′ ⊆ M and A′ ⊆ A. Additionally, it is well-known that the way t is
chosen by OPM guarantees that every entity of M∪A belongs to T with probability
r, independently (a proof of this fact can be found, e.g., as Lemma A.1 in [12]).
Similarly, every entity of M ∪ A that does not belong to T is added to L with
probability min{1, 16r−1 · 3

√
α} = 16r−1 · 3

√
α, independently. Hence, every user

(slot) of P̃ (B̃) belongs to P̃ \ P (MT ∪ ML) (B̃ \ B(AT ∪ AL)) with probability

(1 − r)(1 − 16r−1 · 3
√

α) ≥ 1 − r − 16r−1 · 3
√

α.
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Therefore,

E[Val(MT ∪ ML, AT ∪ AL)]

≥ (1 − r − 16r−1 · 3
√

α) ·
{∑

b∈B̃
[v(b) − �(P,B)] +

∑

p∈P̃
[�(P,B) − c(b)]

}

= (1 − r − 16r−1 · 3
√

α) · Val(∅, ∅).

Using Lemma 5 and the observation that OPM always produces an assignment of
non-negative gain from trade, we now get:

E[GfT(Ŝ)] = Pr[E ] · E[GfT(Ŝ) | E ] + Pr[¬E ] · E[GfT(Ŝ) | ¬E ]
≥ Pr[E ] · E[Val(MT ∪ ML, AT ∪ AL) | E ]
= E[Val(MT ∪ ML, AT ∪ AL)]

− Pr[¬E ] · E[Val(MT ∪ ML, AT ∪ AL) | ¬E ]

≥ (1 − r − 16r−1 · 3
√

α) · Val(∅, ∅) − Pr[¬E ] · Val(∅, ∅)

= [(1 − r − 16r−1 · 3
√

α) − Pr[¬E ]] · Val(∅, ∅). (1)

Recall that Pr[¬E ] ≤ 10e−2/ 3√α by Lemma 4. Additionally, note that Obser-
vation 5 and the fact that |P̃ | = |B̃| by definition imply together:

Val(∅,∅)

=
∑

b∈B̃
[v(b) − �(P,B)] +

∑

p∈P̃
[�(P,B) − c(p)]

=
∑

b∈B̃
v(b) −

∑

p∈P̃
c(p)

≥(1 − 6r−1 · 3
√

α) · GfT(Sc(P,A)).

Plugging the last observations into (1) gives:

E[GfT(Ŝ)] ≥ [(1 − r − 16r−1 · 3
√

α) − Pr[¬E ]] · Val(∅, ∅)

≥ [(1 − r − 16r−1 · 3
√

α) − 10e−2/ 3√α] · (1 − 6r−1 · 3
√

α) · GfT(Sc(P,A))

≥ (1 − r − 22r−1 · 3
√

α − 10e−2/ 3√α) · GfT(Sc(P,B)).

The corollary now follows by recalling that Sc(P,B) is the assignment of users
from P to slots of B which maximizes the gain from trade. 
�

4 A Straw-Man Mechanism

In this section we describe a simple straightforward dynamic straw-man mech-
anism for matching advertisers and mediators. This mechanism maintains the
desired economic properties, and thus, it is a good candidate for comparison
with OPM. In Sect. 5 we use simulations to compare the two mechnaims. Our
simulations show that OPM significantly outperforms the straw-man mechanism.

Mechanism 2. Straw-Man Mechanism

1. Let σE be an ordered subset of the entities that have arrived so far. Initially
σE is empty, and entities are added to it as they arrive.
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2. For every arriving entity (mediator or advertiser):
a. Let i denote the index of the arriving entity among the previously arriv-

ing entities of the same type (in other words, if the arriving entity is a
mediator, then it is the i-th mediator to arrive, and if it is an advertiser,
then it is the i-th advertiser to arrive).

b. If i is odd and the arriving entity is a mediator m (advertiser a), draw a
random user of m (slot of a) and denote it by p̂i (b̂i). We say that c(p̂i)
(v(b̂i)) is the threshold for the users of the next mediator (slots of the
next advertiser). Moreover, every such user (slot) is assignable if her cost
is less than (its value is more than) this threshold.

c. Otherwise (i.e., when i is even), if the arriving entity is a mediator m
(advertiser a), then add m (a) to the end of σE . As long as m (a) has
unassigned assignable users (slots) and there is an advertiser (mediator)
in σE having unassigned assignable slots (users) whose threshold is above
(below) the threshold of m’s users (a’s slots), do:
• Let a (m) be the earliest advertiser (mediator) in σE of this kind.
• Assign the unassigned assignable user of mediator m with the lowest

cost to an arbitrary unassigned assignable slot of a, charge advertiser
a with an amount equal to the threshold of her slots and pay m an
amount equal to the threshold of his users.

d. For every mediator m ∈ σE of even index i, recommend m to transfer his
assigned users an additional amount that guarantees the following:
• If all the assignable users of m are assigned, the additional amount

should increase the total payment received so far by each assigned user
of m to c(p̂i−1).

• Otherwise, let pi be the unassigned assignable user of m with the mini-
mum cost. In this case the additional amount should increase the total
payment received so far by each assigned user of m to c(pi).

5 Simulations

We have used simulations to study the empirical performance of our mechanism
OPM. Our simulations involved two methods for generating the input. The more
interesting of these methods, which we call real-data based input was as follows.
The creation of the advertisers was based on data collected as part of a Horizon
2020 project from Facebook campaigns targeting Europeans between the ages
18 and 22 who are interested in entertainment. Every bid collected consisted of
a budget for the relevant campaign, the maximal CPC (cost-per-click) value, the
minimal CPC value and the median CPC value that the advertiser was willing
to pay. Based on these bids we constructed three advertisers for our generated
input, one advertiser for each one of the CPC values. More specifically, let β be
the budget specified by the bid, and let δ be one of the three CPC values specified
by this bid, then the advertiser created for this CPC value has a value of δ and a
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capacity of β
100δ .8 For every advertiser we also created a single mediator having

the same number of users as the capacity of the advertiser. Every user of these
mediators was assigned an independent cost chosen uniformly at random from
the range between the smallest and largest CPC values encountered in the real
world bids. To verify that the data fed into the mechanism was unbiased, we
designed a secondary input generation method which we call the random bids
input. The way input is generated by this method is very similar to the way real-
data based input was generated, except that the advertisers’ values were selected
as uniformly random independent values between the smallest and largest CPC
values encountered in the real world bids (rather then being taken directly from
the input bids, as in the real-data based input).

Our first simulation was designed to study the effect of market size on the
performance of the mechanism. In this experiment we used the above methods to
generate markets of various sizes and then we sent the entities of each generated
market into OPM in a uniformly random order. The observable performance of the
assignments produced by OPM (as a percent of the efficient canonical assignment)
are depicted in Fig. 1. In order to reduce variance and error margins, every value
given by this figure (and the next ones) was produced by averaging 3000 indepen-
dent executions. As expected, the performance of the algorithm improves with
the size of the market (as the size of the market is roughly inversely proportional
to α). Moreover, these results demonstrate that our mechanism performs well
(between 65% and 85% of the efficient gain from trade) on inputs derived by real
world data even for moderate size markets, which is better than what can be
predicted based on our theoretical result alone. While one might achieve better
performance, a 65% to 85% range seems reasonable given the need to handle
both an online setting and economic issues.9

In the previous experiment, we used the value of the parameter r of OPM
which was specified by the version of Theorem1 given in Sect. 3. Our second
simulation was designed to study the possibility of improving the performance
of the mechanism by varying the value of r. Specifically, we repeated the pre-
vious experiment with a market of 11961 advertisers (which is close to the size
of the largest market we considered before), but varied the value of the param-
eter r. The results of this experiment are depicted in Fig. 2. As in the previous
experiment, we see again that using the value of r specified by Theorem 1 (1/2 in

8 Our experiments are based on only a fraction of the entire data set, which signifi-
cantly increased the market strength of the entities in the input. To compensate for
this increase, and keep the market strength of each advertiser in the simulation sim-
ilar to the market strength of the corresponding real world advertiser, we introduced
a division by 100 into the capacity formula.

9 Note that the experiments did not simulate the information trading part of the
model since they were intended to study the mechanism’s competitive ratio. However,
information exchange can occur in our model in practice. Intuitively, one can think
of the users in a single execution of the mechanism as the users who agreed to sell
information that, if revealed, implies that they have one particular type t. Then, if
an advertiser’s ad is shown to a user, the advertiser may learn that the user is of
type t and the user is monetarily compensated for that.
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Fig. 1. The performance of OPM as a function of the market size. The number below
each column specifies the number of advertisers in the market.
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Fig. 2. The performance of OPM as a function of the value of the parameter r on markets
with 11961 advertisers.

this case) leads to good performance for both input generation methods. For the
real-data based input, varying r does not improve the performance of OPM, but
for the random input bids one can significantly improve the outcome by decreas-
ing r. This is likely to be a consequence of a higher variance in the random bids
input, which allows OPM to calculate good thresholds based on a shorter obser-
vation phase (which are induced by decreasing r). Thus, for the random bids
input, decreasing r leads to improved performance as it allows OPM to harvest
value from a larger fraction of the market while inducing only a weak adversarial
effect on the selected thresholds.

Our last simulation was designed to demonstrate the need for creating
involved solutions such as OPM for solving a dynamic multi-sided market trade
problem. We used the straw-man mechanism described in Sect. 4 as a bench-
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mark for straightforward mechanisms solving the problem at hand and ran OPM
against it. Figure 3 shows that for medium size markets OPM improves by over
60% compared to the straightforward mechanism.

Fig. 3. The gain from trade improvment of OPM vs. the straw-man mechanism. The
number below each column specifies the number of advertisers plus mediators in the
market.

6 Conclusion

In this paper we have presented a dynamic model for a foreseeable form of the
online advertising market based on principles suggested by [10], and described a
mechanism called OPM for it. OPM is the first mechanism for a multi-sided market
that guarantees the economic properties of budget balance, incentive compati-
bility and individual rationality while having a non-trivial theoretical approx-
imation guarantee. For large markets, such as the online advertising market,
the theoretical competitive ratio of OPM approaches 1. However, this theoretical
guarantee becomes much weaker (or even non-relevant) for smaller markets, and
thus, we have complemented it with simulation results. These results suggest
that OPM performs well in practice even for markets of moderate size.

The model we study assumes that all users are equally valuable for the
advertisers. Handling users with different value to advertisers is not explicitly
described in the model but is supported. The approach would be to assume
multiple markets, one for each type of user, and every user is directed by its
mediator to the market corresponding to its type (based on the information it
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agrees to sell). While this reduction allows the advertisers to effectively have user-
dependent valuation functions, studying mechanisms for richer models which
directly allow advertisers to have such user-dependent valuation functions (with-
out having to go through the above reduction) is an extension of our current
research; which we consider for future work.
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