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Abstract. Cyber-physical systems are facing new security challenges
from Advanced Persistent Threats (APTs) due to the stealthy, dynamic
and adaptive nature of the attack. The multi-stage Bayesian game cap-
tures the incomplete information of the players’ type, and enables an
adaptive belief update according to the observable history of the other
player’s actions. The solution concept of perfect Bayesian Nash equilib-
rium (PBNE) under the proactive and reactive information structures of
the players provides an important analytical tool to predict and design
the players’ behavior. To capture the learning process and enable fast
computation of PBNE, we use conjugate priors to update the beliefs of
the players parametrically, which is assimilated into backward dynamic
programming with an expanded state space. We use a mathematical
programming approach to compute the PBNE of the dynamic bi-matrix
game of incomplete information. In the case study, we analyze and study
two PBNEs under complete and one-sided incomplete information. The
results reveal the benefit of deception of the private attackers’ types and
motivate defender’s use of deception techniques to tilt the information
asymmetry. Numerical results have been used to corroborate the ana-
lytical findings of our framework and show the effectiveness of defense
design to deter the attackers and mitigate the APTs strategically.
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1 Introduction

The integration of cyber-physical systems increases the operating efficiency and
promotes the cross-layer communication. However, the interconnections also turn
the industrial control systems (ICS) from the previous safe area to a hard-hit of
emerging advanced cyber attacks such as Petya and Stuxnet. After the Aurora
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generator test in 2007 warns us of the possibilities of physically destroying
power generators with merely 21 lines of malicious codes, Petya has attacked
the Ukrainian power plant in December 2015. Petya is the first known successful
attack on the power grid and causes a power cut to more than 80,000 people. It
takes a long time to recover, and the recovery under a similar attack would be
worse in the United States in 2018 because of the increasing degree of automa-
tion and integration. Similarly, Stuxnet discovered in 2010, have infected over
200,000 computers all over the world and caused over 1,000 centrifuges out of
operation. Stuxnet starts its initial infection through the USB driver of the hard-
ware provider. These USB drives are stealthily compromised by Stuxnet when
the hardware provider serves other less secure clients. Thus, Stuxnet manages
to compromise the air gap even though the nuclear system is carefully isolated
from the Internet. These attacks form the Advanced Persistent Threats (APTs)
to the ICS security and indicate the urgency of effective defensive mechanisms
to respond to the new threats.

APTs have the following three features distinct from the traditional attacks.
First, they use customized incursion techniques and have specific targets, such
as private organizations, state government, and critical infrastructures, with the
goal to gather intelligence and sabotage facilities [4]. Second, they adopt persis-
tent and stealthy attacking strategies to cause more permanent, significant, and
irreversible damages. Stuxnet persists in alternating the rotor speed for years to
increase the failure probability of the centrifuge. However, Stuxnet launches this
attack only once a month to remain stealthy, i.e., human operators do not relate
the increase in the number of inoperative centrifuges to an attack. Third, they
are methodically designed. For example, Stuxnet replays a 21-s pre-recorded nor-
mal sensory data to deceive the monitor when the attack has begun to change
the rotor speed.

Recent works on secure control systems [9] and intrusion detection systems
(IDS) [3] have provided prevalent methods for malware prevention and detec-
tion, yet they can be insufficient for human-expert operated APTs that adopt
advanced techniques and learn the detection rule during their lengthy stay in the
system to evade the detection. To protect infrastructures from APTs, defenders
need to design strategic and proactive policies that can learn, anticipate, and
adapt the defense strategies over time. To this end, a game theory approach pro-
vides a natural framework to develop strategic and adaptive security solutions
to harden the cyber-physical security [10,15]. Starting from the initial infection,
APTs establish the foothold and escalate privilege by exploiting zero-day vul-
nerabilities to sign malware with the private key from stolen certificates. Then,
they create tunnels and utilize the backdoor to control the Command and Con-
trol (C&C) server to receive additional instructions and malicious codes. Next,
APTs establish additional points of entries and propagate stealthily and later-
ally in the cyber network until they reach the target computer. Finally, they can
either collect data in the cyber layer or launch attacks on physical plants. The
attack path of APTs, as shown in Fig. 1, can be represented by a tree network
without loops and jumps. Thus, a multi-stage dynamic game [7] is a befitting
framework to study the lateral movement and privilege escalation of the attack.
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Flip-IT game [13], as one example of the dynamic game framework, has suc-
cessfully analyzed the scenario of the key leakage under APTs so that system
defender and APTs stealthily take over the system alternately. However, Flip-IT
is a complete-information game, and it cannot be sufficient to capture the decep-
tive nature of the attack and the information asymmetry of the game. In the
example of Stuxnet, it is hard to conclude from the observation of the alternating
of the rotor’s speed whether the system is under attack or what kind of attacks.
One way to model the incomplete information caused by deceptions in games is
to introduce the notion of types [5], which reflects the uncertainties of one player
about the other player’s motivation and objectives. Signaling game, a two-stage
game with the one-sided type has been applied to study the deception in cyber-
physical systems [14]. As a countermeasure for the deceptive attackers, [11] sur-
veys defensive deceptions including perturbation, moving target defense, obfus-
cation, mixing, honey-x and attacker engagement. For example, cyber denial and
deception (D&D) proposed in [12] aims to create sufficient amount of uncertain-
ties so that adversaries would waste time and resources on ‘honey files.’ The
authors in [6] show how the defender can manipulate the attacker’s belief to
deter attacks and minimize the damage inflicted to the network.

In our framework, we consider that attackers and defenders can adopt adver-
sarial and defensive deceptions, respectively, in the dynamic game of cyber-
physical systems. Each player has a type that characterizes his/her private infor-
mation. Hence we model the scenario with a two-sided dynamic Bayesian game
to uniformly capture the three characteristics of APTs, i.e., strategic adversaries,
multiple stages, and incomplete information. The history of both players’ actions
is fully observable. The private type represents the uncertainty of the two-sided
deception so that both players have to strategically gauge the other’s type to
respond optimally to their type-related utility functions. The solution concept
for this dynamic game is the perfect Bayesian Nash equilibrium (PBNE) in which
the players form a consistent belief and policy pair such that no player can gain
via unilateral policy deviation with the belief that supports the actions. The
computation of PBNE is challenging when the utility is a function of continu-
ous type space. We propose an equivalent mathematical program with infinite-
dimensional constraints to solve the dynamic Bayesian game and approximate
it by sampling the type space. In particular, for the one-sided incomplete infor-
mation bi-matrix game, we obtain two necessary conditions for the existence of
the equilibrium.

1.1 Organization of the Paper

The rest of the paper is organized as follows. Section 2 introduces the system
model and the Bayesian belief update. The solution concept of PBNE under
proactive and reactive information structures is introduced in Sect. 3. In Sect. 4,
we adopt the conjugate prior assumption for parametric update of the belief
and form an expanded-state dynamic programming to unify the forward and
backward processes. A case study of one-sided information is presented in Sect. 5,
and Sect. 6 concludes the paper.
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Fig. 1. The multi-stage life cycle of APTs forms a tree network. The threat actor
starts the infection by exploiting the human weakness (social engineering) or cyber
attacks. Then, APTs gain the foothold, escalate privilege, propagate laterally in the
cyber network and finally either cause physical damages or collect confidential data.
APTs use each stage as a stepping stone for the next and cannot jump directly to the
final stage. Attackers also have no incentives to go back to stages that they has already
compromised because their ultimate goal is to compromise the specific target at the
final stage.

2 System Model

This section introduces a multi-stage dynamic game of incomplete information
to model the strategic behaviors of APTs and defenders. Consider two players,
a system defender P1 (pronoun ‘she’) who holds different security levels and a
user P2 (pronoun ‘he’) of different threat levels to the system. The security or
threat level of player i ∈ {1, 2} is private information unknown to the other
player and is characterized by a continuous type θi ∈ Θi := [0, 1]. For any finite
set A, define �A := {p : A �→ R+|∑a∈A p(a) = 1} while for any infinite set
Θ, define �Θ := {p : Θ �→ R+| ∫

θ∈Θ
p(θ)dθ = 1}. Mathematically, type θi is

the realization of θ̃i, a random variable with an underlying probability space
(Ω,F , P ). The prior probability distribution B0

i ∈ �Θi is common knowledge.
User P2’s type θ2 indicates the strength of the user in terms of damages that he
can inflict on the system. A user with a large type value indicates a higher threat
level to the system. A user with θ2 less than a pre-defined threshold θ̄2 ∈ (0, 1)
is treated as legitimate. Similarly, the type of defender P1 indicates the defense
strength and the resource she has for security. For example, defenders can use
deception techniques (e.g., honeypots and honeyfiles) to detect the attackers
and cut links to isolate the attacker. The existence of honeypot can reduce
the number of attacks because an attacker cannot be sure whether it is a trap
or not when observing network vulnerability. In this case, a defender with a
higher type value θ1 indicates that she possesses a larger number of honeypots
to deploy. Since APTs move stage by stage from the initial infection to reach
the final target, we model the transition of APTs as a multi-stage game with a
finite horizon T .

At each stage t ∈ {0, 1, · · · , T}, each player Pi chooses an action at
i from

his/her feasible action set At
i. The user’s actions at

2 ∈ At
2 are the behaviors that
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are directly observable from activity log files, e.g., a privilege escalation request
and sensor access. Sine both legitimate and adversarial users can take these
activities, a defender cannot identify the user’s type directly from observing
these actions. The user’s type, however, determines the real actions and the
corresponding payoff, e.g., a legitimate user’s access to the sensor benefit the
system while a pernicious user’s access can cost a considerable loss. On the other
hand, the defender’s action at

1 will be mitigation or proactive actions such as
restricting the escalation request or monitoring the sensor access. These proactive
actions also do not directly disclose the system type. The action set At

i is stage-
variant and has a stage-dependent cardinality |At

i|. For example, at the early
stage of the attack on a nuclear plant, the defender can choose to shut down the
reactor, while in a later stage, the defender switches from automatic to manual
mode to control the feedwater flow. Each player cannot observe the current-stage
t action of the other player until the action appears in the log file at the next
stage. The perfect recall assumption leads to a fully observable history ht :=
{a0

1, · · · , at−1
1 , a0

2, · · · , at−1
2 } ∈ Ht to both players. State xt ∈ X t representing

the status of the system at stage t is the sufficient statistic of history ht because
a Markov state transition xt+1 = f t(xt, at

1, a
t
2) contains all the information of

the history update ht = ht−1 ∪ {at
1, a

t
2}. The function f t is deterministic and

may also be stage-dependent. In the example of nuclear power plant, at the
early stage, attacker and defender actions will determine whether the reactor
can be shut down successfully, while in a later stage of the attack, the actions
will determine whether the feedwater flow can be controlled appropriately to
maintain the steam generator with an adequate water level.

Information structure It
i ∈ It

i is a set that contains the information available
to player Pi at stage t. The behavioral strategy σt

i : It
i �→ �At

i for player Pi maps
his/her information structure set into a distribution over Pi’s action space. All
the potential behavioral strategies constitute the feasible set Σt

i . Let σt
i(a

t
i|It

i )
be the probability of taking action at

i under the information structure It
i , i.e.,∑

at
i∈At

i
σt

i(a
t
i|It

i ) = 1,∀It
i ∈ It

i . An action at
i is the realization of the behavioral

strategy σt
i . In this work, we study the reactive information structure It

i := Ht ×
Θi for outsider threats and the proactive information structure It

i := σt
−i ×Ht ×

Θi for insider threats as introduced in Sect. 3. For i ∈ I, notation −i means I \
{i}. For example, if I := {1, 2} and i = 1, then −i = 2. At stage t ∈ {1, · · · , T},
Pi forms a belief Bt

i : Ht �→ �Θ−i of the other player’s type according to
the history ht. Similarly, Bt

i (θ−i|ht) at stage t is the conditional probability
density function (PDF) of the other player’s type θ−i and

∫ 1

0
Bt

i (θ−i|ht)dθ−i =
1,∀t,ht, i ∈ {1, 2}. The belief of the type is updated according to the Bayesian
rule upon the arrival of the observations of actions at

i, a
t
−i with the boundary

condition B0
i :

Bt+1
i (θ−i|[ht, at

i, a
t
−i]) =

Bt
i (θ−i|ht)σt

−i(a
t
−i|ht, θ−i)

∫ 1

0
Bt

i (θ̂−i|ht)σt
−i(a

t
−i|ht, θ̂−i)dθ̂−i

, i ∈ {1, 2}, (1)

where we write σt
−i(a

t
−i|It

i ) as σt
−i(a

t
−i|ht, θ−i) for both information structures

because the belief Bt
i depends only on the history ht.
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At each stage t, J̄ t
i is the stage utility that depends on both types θi, θ−i,

both actions at
i, a

t
−i, the current state xt, and an external random noise wt

i

with a known distribution. We introduce the external random noise to model
other unknown factors that could affect the value of the stage utility. The exis-
tence of the external noise makes it impossible for each player i to directly
acquire the value of the other’s type based on the combined observation of input
parameters xt, at

1, a
t
2, θi plus the output value of the utility function J̄ t

i . In this
work, we consider any additive noise with the 0 mean J̄ t

i (x
t, at

1, a
t
2, θi, θ−i, w

t
i) =

J t
i (x

t, at
1, a

t
2, θi, θ−i) + wt

i , which leads to an equivalent utility over the expecta-
tion of the external noise Ewt

i
J̄ t

i = J t
i ,∀xt, at

1, a
t
2, θi, θ−i. The expected payoff of

a player is taken with respect to his/her time-varying belief Bt
i over the type of

the other player and their policy pair σt
i , σ

t
−i. Define a sequence of policies from

t′ to T , i.e., σt′:T
i := {σt

i ∈ Σt
i}t=t′,··· ,T ∈ Σt′:T

i , then for player i ∈ {1, 2} with
t′ as the initial stage, the expected accumulated utility is as follows.

U t′:T
i (σt′:T

i , σt′:T
−i ,hT+1, θi) :=

T∑

t=t′
Eθ−i∼Bt

i ,at
i∼σt

i ,at
−i∼σt

−i,wt
i
J̄ t

i (x
t, at

1, a
t
2, θ1, θ2, w

t
i)

=
T∑

t=t′

∫ 1

0

Bt
i (θ−i|ht)

∑

at
i∈At

i

σt
i(a

t
i|It

i )
∑

at
−i∈At

−i

σt
−i(a

t
−i|It

−i)J
t
i (x

t, at
1, a

t
2, θ1, θ2)dθ−i.

(2)
In the scenario of APTs, both players consider cumulative utility of T stages

because APTs have to move stage by stage to finish the entire life circle shown
in Fig. 1.

3 Solution Concepts

In this section, we investigate the perfect Bayesian Nash equilibrium (PBNE)
under two different information structures. The proactive PBNE (P-PBNE) cor-
responds to an insider threat, i.e, agent P2 can observe the policy of the principal
P1 at each stage. On the other hand, the reactive PBNE (R-PBNE) corresponds
to the outsider threat where both players cannot observe the other’s policy at
any stages. The PBNE under both information structures can be solved using
dynamic programming that is consistent with a type belief update in (1).

3.1 P-PBNE

We model the scenario of APTs as a dynamic principal-agent problem as shown
in Fig. 2. Attacker P2 acts as an insider who knows policy σt

1 and determines his
policy σt

2 as a best response to σt
1 that maximizes his expected cumulative utility

U t:T
2 . On the defender’s side, a sophisticated defender is aware of the potential

policy leakage through insider threats and anticipates the strategic response of
the attacker using the attack tree analysis or proactive defenses (e.g., honeypots
and honeyfiles). The described scenario leads to Definition 2 of P-PBNE. The
P-PBNE may not exist or be unique. A counterexample in the static setting is
shown in Remark 4.
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Defender

Stage 0 Stage 1 Stage t Stage T

Attacker

σ0
2 = R2(σ0

1) σ1
2 = R2(σ1

1) σt
2 = R2(σt

1) σT
2 = R2(σT

1 )

σ0
1 σ1

1 σt
1 σT

1

h0 = Ø h0 = {a0
1, a

0
2} ht = {ht−1, at−1

1 , at−1
2 } hT = {a0

1, ..., a
T−1
1 , a0

2, ..., a
T−1
2 }

a0
1 a1

1 at
1 aT

1

a0
2 a1

2 at
2 aT

2

Fig. 2. Example of sequential plays under the proactive information structure.

Definition 1. In the two-person dynamic game with the cumulative utility func-
tion U t′:T

i in (2) and a sequence of beliefs Bt
i , t ∈ {t′, · · · , T} in (1), define the

set

R2(σt′:T
1 ) := {γ ∈ Σt′:T

2 : U t′:T
2 (σt′:T

1 , γ) ≥ U t′:T
2 (σt′:T

1 , σt′:T
2 ),∀σt′:T

2 ∈ Σt′:T
2 }

as the best-response set of P2 to P1’s policy σt′:T
1 ∈ Σt′:T

1 . 	

Definition 2. In the two-person dynamic Bayesian game with P1 as the prin-
cipal, the cumulative utility function U t′:T

i in (2), a sequence of beliefs Bt
i , t ∈

{t′, · · · , T} in (1) and proactive information structure It
1 := Ht × Θ1, It

2 :=
σt
1 × Ht × Θ2, t ∈ {t′, · · · , T} , a sequence of strategies σ∗,t′:T

1 ∈ Σt′:T
1 is called a

proactive perfect Bayesian Nash equilibrium (P-PBNE) for the principal, if

U∗,t′:T
1 := inf

σt′:T
2 ∈R2(σ

∗,t′:T
1 )

U t′:T
1 (σ∗,t′:T

1 , σt′:T
2 )

= sup
σt′:T
1 ∈Σt′:T

1

inf
σt′:T
2 ∈R2(σt′:T

1 )
U t′:T
1 (σt′:T

1 , σt′:T
2 ).

(3)

A strategy σ∗,t′:T
2 ∈ arg maxσt′:T

2 ∈Σt′:T
2

U t′:T
2 (σ∗,t′:T

1 , σt′:T
2 ) := U∗,t′:T

2 is called a
P-PBNE for the agent P2. 	

Remark 1. Since the agent’s polices in the best-response set may not be unique,
principal P1 in (3) considers the worst-case policy among the best-response set
R2(σ

∗,t′:T
1 ). If the best-response set R2(σt′:T

1 ) = {σ∗,t′:T
2 } is a singleton, we have

U∗,t′:T
1 = supσt′:T

1 ∈Σt′:T
1

U t′:T
1 (σt′:T

1 , σ∗,t′:T
2 ) in (3). 	


3.2 R-PBNE

If each player does not know the policy of the other player at every stage, then
Pi chooses a sequence of behavioral strategies σ∗,t

i (at
i|It

i ) = σ∗,t
i (at

i|ht, θi), t ∈
{t′, · · · , T} so that she/he cannot gain if deviating unilaterally at any stage of
the game, which leads to Definition 3 of R-PBNE.

Definition 3. In the two-person dynamic Bayesian game with the cumulative
utility function U t′:T

i in (2), a sequence of beliefs Bt
i , t ∈ {t′, · · · , T} in (1)
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and reactive information structure It
i := Ht × Θi, t ∈ {t′, · · · , T} for player

Pi, i ∈ {1, 2}, a sequence of strategies σ∗,t′:T
i ∈ Σt′:T

i is called the ε-reactive
perfect Bayesian Nash equilibrium for player Pi if, for a given ε ≥ 0, i ∈ {1, 2}
and ∀θi ∈ Θi,

U t′:T
i (σ∗,t′:T

i , σ∗,t′:T
−i ,hT+1, θi) ≥ U t′:T

i (σt′:T
i , σ∗,t′:T

−i ,hT+1, θi) − ε,∀σt′:T
i ∈ Σt′:T

i .

If ε = 0, we have a reactive perfect Bayesian Nash equilibrium (R-PBNE). 	

Remark 2. The belief update (1) is strongly consistent as it applies to all possible
histories from stage t to t + 1: even when history ht has probability 0. In other
word, belief update (1) is valid starting from all states, even if the equilibrium
trajectory does not contain that state. The strong time consistency indicates
perfectness, i.e., even some trembling hand mistakes happen at stage t̂ and an
unexpected state is reached, the player can still achieve optimality from that
new state on by applying σ∗,t̂:T

−i . Thus, PBNE strategies can adapt to unexpected
changes. 	


3.3 Dynamic Programming

Given the type belief at every stage, we can use dynamic programming to find
the PBNE in a backward fashion because of the tree structure and the finite
horizon. Define the value function V t

i (ht, θi) := U t:T
i (σ∗,t:T

i , σ∗,t:T
−i ,ht+1, θi) as

the optimal utility-to-go function at stage t. Let V T+1
i (hT+1, θi) := 0 be the

boundary condition of the value function, we have the following recursive system
equations involving both players’ policies:

V t
1 (ht, θ1) = sup

σt
1

E
θ2∼Bt

1,at
1∼σt

1,at
2∼σ

∗,t
2

[V t+1
1 ({ht, at

1, a
t
2}, θ1) + J t

1(x
t, at

1, a
t
2, θ1, θ2)];

V t
2 (ht, θ2) = sup

σt
2

E
θ1∼Bt

2,at
2∼σt

2,at
1∼σ

∗,t
1

[V t+1
2 ({ht, at

1, a
t
2}, θ2) + J t

2(x
t, at

1, a
t
2, θ1, θ2)],

(4)
where σ∗,t

1 , σ∗,t
2 , t ∈ {0, · · · , T} are the PBNE policy pair. Figure 3 summarizes

the forward update of the history ht, belief Bt
i , and policy σt

i from stage t − 1
to t. The challenge is that the type belief is not directly known at each stage.
The forward belief update in (1) depends on the PBNE strategy. However, the
backward computation of PBNE strategy in (4) also couples with the belief as
shown in Fig. 4. Hence, we need to find the PBNE strategy consistent with the
belief at each stage.

4 Conjugate Prior Learning

If we assume that Bt
i is of the beta distribution and the strategy σt

−i of the
other player corresponds to a binomial distribution, then Bt+1

i is also a beta
distribution with updated hyperparameters. Figure 5 illustrates how a defender
can learn the type of the attacker to decrease the probability of attacks. An
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Type θ1 ∈ Θ1

Belie
f for

matio
n

Baye
sian

upd
ate

Utility optimization
Player 1: defender

Bt
2 Θ1

Type belief

Type belief
Bt

1 Θ2

History ht =
ht−1 ∪ {at−1

1 , at−1
2 }

Belief formation

Bayesian update

Perfect Bayesian
Nash equilibrium

Utility optimization

Mixed strategy σt
1

t
1

Mixed strategy σt
2

t
2

Action at
1 ∈ At

1

Action at
2 ∈ At

2

Implementation

Implementation

Observable history and perfect recall

Type θ2 ∈ Θ2

Player 2: attacker

Observable history and perfect recall

Fig. 3. A two-player stage transition from stage t − 1 to stage t. The transition loop
iterates from stage t = 0 to the terminal stage t = T − 1, which constitutes the entire
multi-stage dynamic game. Both players’ history of actions are fully observable yet
their types are private information to the other player. Each player Pi learns to update
his/her belief Bt

i ∈ �Θ−i of the other’s private type θ−i based on the policy of the
other player σt

−i at stage t.

Stage 0 Stage 1 Stage T

V T
i

V 1
i

V 0
i

B0
i B1

i BT
i

Forward Belief Update

Backward Policy Computation

Fig. 4. The backward policy computation
and the forward belief update are coupled.

Table 1. Stage utility of two players.
Player P2 takes action aT

2 = 1 with proba-
bility q(θ2).

Action aT
2 = 0 aT

2 = 1

aT
1 = 0 R1

11(θ2), R
2
11(θ2) R1

12(θ2), R
2
12(θ2)

aT
1 = 1 R1

21(θ2), R
2
21(θ2) R1

22(θ2), R
2
22(θ2)

expanded state includes the parameters of the distribution, and we can form
one backward dynamic program with a larger dimension to unify the forward
and backward processes. Finally, as the type-related policy makes it challenging
to compute the PBNE for the expanded-state dynamic programming, we use a
mathematical programming approach to compute R-PBNE. The P-PBNE can
be analyzed likewise.

4.1 State Independent Belief Formation

At each stage t, player −i divides the action space of the other player Pi into
Ki + 1 time-invariant set of categories Ci

j , i.e., At
i = {∪Ci

j}j=0,1,··· ,Ki
,∀t, i = 1, 2

and mutual exclusive Ci
j ∩ Ci

l = ∅,∀j = l, i = 1, 2. Then, each at
−i uniquely corre-

sponds to one category and we can transform σt
−i(a

t
−i|ht, θ−i), the distribution

of at
−i, into a distribution of the corresponding category kt

−i ∈ {0, 1, · · · ,Ki}.
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After changing the history of actions ht = {a0
1, · · · , at−1

1 , a0
2, · · · , at−1

2 } into
the history of corresponding categories h̃t := {k0

1, · · · , kt−1
1 , k0

2, · · · , kt−1
2 }, we

rewrite the Bayesian update of the belief with respect to the category.

Bt+1
i (θ−i|[h̃t, kt

i , k
t
−i]) =

Bt
i (θ−i|h̃t)σt

−i(k
t
−i|h̃t, θ−i)

∫ 1

0
Bt

i (θ̂−i|h̃t)σt
−i(k

t
−i|h̃t, θ̂−i)dθ̂−i

, i = 1, 2. (5)

The distribution of σt
−i is assumed to be a binomial distribution with the

parameter q = θ−i and N = K−i. The probability mass function (PMF) of cat-
egory k is Pr(k) =

(
N
k

)
qk(1 − q)N−k. The prior belief Bt

i over the other player’s
private type θ−i ∈ [0, 1] is assumed to be a beta distribution with hyperparam-
eters α and β. With gamma function Γ (n) = (n − 1)! and Be(α, β) = Γ (α)Γ (β)

Γ (α+β) ,

the probability density function (PDF) of the type isBetaα,β(q) = qα−1(1−q)β−1

Be(α,β) .

Since binomial and Beta distributions are conjugate, the posterior belief con-
serves to be a Beta distributed with updated hyperparameters (αt+1

i , βt+1
i ) =

(αt
i + kt

i , β
t
i + Ki − kt

i), i = 1, 2, where kt
i is the category that the action of

player Pi at stage t falls into. Moreover, we can express in the closed form for
player Pi’s belief of the other player −i’s type at any stage t with parameters
αt

−i = α0
−i +

∑t
t′=1 kt′

−i and βt
−i = β0

−i + tKi − ∑t
t′=1 kt′

−i, where (α0
−i, β

0
−i) is

the prior distribution. Thus, every node just needs to count the frequency of
categories of the other player’s action at each stage t. Finally, we transform the
type belief conditioned on the categories back to the belief conditioned on the
corresponding actions using the hard de-aggregation, i.e., Bt+1

i (θ−i|h̃t, at
i, a

t
−i) =

Bt+1
i (θ−i|h̃t, at

i, ā
t
−i) = Bt+1

i (θ−i|h̃t, kt
i , k

t
−i),∀at

i ∈ Ci
kt

i
,∀at

−i, ā
t
−i ∈ C−i

kt
−i

. Here,

hard de-aggregation means that actions at
−i, ā

t
−i correspond to the same cate-

gory kt
−i share the same belief distribution of the type and approximate the true

type belief distribution.

Example 1. Consider a one-sided, incomplete information case where the sys-
tem type is known to the user who has a private continuous type satisfying beta
distribution (α, β). P1 classifies all possible actions of P2 into K + 1 categories,
and a larger category index means a higher threat level. For example, a low
occupancy of system resources is in the category 1, yet a frequent and longtime
resource occupancy belongs to the category K because of its potential intention
to block the system. Note that the category of action observation in one-shot
does not reveal the type because a legitimate user may sometimes also occupy
the resource for a long time and an attacker can behave legitimately to evade
detection. However, since the payoff function is type-related, neither the legit-
imate user will always have longtime occupancy, nor the attacker can always
hide. Thus, the belief will approach the truth after the multi-stage belief update
based on the action observations. 	


4.2 State-Dependent Belief Formation

Since the same action can lead to different payoffs at different states, we general-
ize our results to classify the action according to the state and the action at stage



Adaptive and Strategic Defense for APTs 215

t. We divide a composed set Dt
i := X t×At

i into Ki+1 mutual exclusive partitions
C̄i

j , i.e., Dt
i = {∪C̄i

j}j=0,1,··· ,Ki
,∀t, i = 1, 2 and C̄i

j ∩ C̄i
l = ∅,∀j = l, i = 1, 2.

Example 2. Let the set of nodes of stage t in Fig. 6 be the possible states xt ∈ X t.
The state represents the value of the reactor pressure. The defender tries to sta-
bilize the pressure at the reference value to guarantee the product quality and
process safety in chemical plants. Reference values n0

3, · · · , nT
3 and the possible

pressure state xt could be stage-varying. The attacker aims to change the pres-
sure. A substantial deviation from the standard pressure brings a considerable
reward to attackers. The state transition is Markov, i.e., the current pressure xt

and the both players’ actions determine the pressure at stage t + 1. It could be
challenging to determine the legitimacy of the actions based merely on whether
the user increases or decreases the pressure. The state of the pressure can provide
additional information to determine the criticality of operations. For example,
it is clearly more dangerous when a user aims to increase the pressure when the
current pressure value already far exceeds the standard pressure. 	


Fig. 5. The multi-stage learning
scheme of attacker’s type mitigates the
probability of attacks.

0 TT − 1t − 1 tStage

n0
3

nT
1

nT
2

nT
3

nT
4

nT
5

Fig. 6. A multi-stage game with a
finite horizons T and a Markov state
transition xt+1 = f t(xt, at

1, a
t
2).

4.3 Expanded State and Sufficient Statistic

At each stage t, an expanded state yt = {xt, αt
i, β

t
i , α

t
−i, β

t
−i} contains the orig-

inal cyber state xt plus the belief state Bt
i , B

t
−i represented by the hyper-

parameters from the beta distribution. Define new state transition function
yt+1 = f̃ t(yt, at

1, a
t
2) where xt+1 = f t(xt, at

1, a
t
2) and (αt+1

i , βt+1
i ) = (αt

i +kt
i , β

t
i +

Ki − kt
i), i = 1, 2. Because of αt

i + βt
i = α0

i + β0
i + tKi, we only need αt

i (or βt
i )

to uniquely determine the βt
i (or αt

i). We choose α0
i = β0

i = 1 as the prior
belief, then αt

i, β
t
i ∈ [1, · · · , 1 + tKi], and the dimension of the expanded state

yt is |Xi|t × (1 + tKi). Define Ĩt
i = {yt, θi} for reactive information structure

(Ĩt
i = {σt

−i, y
t, θi} for reactive information structure), Ĩt

i is the sufficient statis-
tic of It

i because the history ht uniquely determines the cyber state xt as well
as the belief state. With the Markov assumption that σ̃t

i(a
t
i|Ĩt

i ) = σt
i(a

t
i|It

i ), the
new value function Ṽ t

i (yt, θi) is sufficient to determine the original value func-
tion V t

i (ht, θi). Unlike the entire history, the carnality of state space does not
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increase with the number of stages, which greatly reduces the computation com-
plexity. By letting Ṽ T+1

i (yT+1, θi) := 0, we have the following recursive form for
t = 0, · · · , T , i.e.,

Ṽ t
1 (yt, θ1) = sup

σ̃t
1

E
θ2∼βt

1,at
1∼σ̃t

1,at
2∼σ̃

∗,t
2

[Ṽ t+1
1 (f̃ t(yt, at

1, a
t
2), θ1) + J t

1(x
t, at

1, a
t
2, θ1, θ2)];

Ṽ t
2 (yt, θ2) = sup

σ̃t
2

E
θ1∼βt

2,at
2∼σ̃t

2,at
1∼σ̃

∗,t
1

[Ṽ t+1
2 (f̃ t(yt, at

1, a
t
2), θ2) + J t

2(x
t, at

1, a
t
2, θ1, θ2)],

Since the expanded state transition incorporates the parameter of the belief
update, we can compute the optimal utility-to-go function from stage T back
to 0 w.r.t. the expanded state space to obtain a consistent belief-PBNE pair at
each stage.

4.4 Computations of Static and Dynamic Bayesian Games

In this section, we formulate a mathematical program to compute the equilibrium
for both static and multi-stage Bayesian bi-matrix games. The computation of
static Bayesian games serves as a building block for the computation of the
PBNE for the multi-stage games. The stage-varying belief leads to a nonzero-
sum utility function. We also investigate the class of two-by-two matrices and
provide further analytical insights. In the static setting, i.e., T = 0, the P-PBNE
degenerates to be the Bayesian Stackelberg equilibrium (BSE) with leader P1

and follower P2. The R-PBNE degenerates to be a Bayesian Nash equilibrium
(BNE). In this section, we focus on the analysis of BNE and the analysis of
BSE can be done similarly. Define mt

i := |At
i| as the total number of alternatives

Pi can take at stage t. Let vector pt(θ1) = [pt
1(θ1), · · · , pt

mt
2
(θ1)]′ ∈ R

mt
2×1 and

qt(θ2) = [qt
1(θ2), · · · , qt

mt
1
(θ2)]′ ∈ R

mt
1×1 be the outcome vector of the behavioral

strategy σt
1 and σt

2, respectively. For example, pt
l(θ1) is the probability of P1

taking the l-th action (i.e., at
1 = l, l ∈ {1, · · · ,mt

1}) when her type is θ1 at stage
t. Notation ‘′’ is the transpose of a vector and lmt

i
:= [1, 1, · · · , 1]′ ∈ R

mt
i×1.

Player i’s utility matrix Ji(xt, θ1, θ2), i ∈ {1, 2} is a mt
1 × mt

2 matrix where the
element (k, l) is the value of J t

i (x
t, at

1 = k, at
2 = l, θ1, θ2). P1 is the row player

while P2 is the column player. Both players are rational and aim at maximizing
their own utilities.

Final Stage/Static Case. The computation starting from the final stage T
with a given belief BT

i is the same as a static Bayesian game. Thus, we suppress
the superscript of T , i.e., mi := mT

i , p(θ1) := pT (θ1), q(θ2) := qT (θ2). Also, we
write Ji(xT , θ1, θ2) as Ji(θ1, θ2) because the state xT is known.

Theorem 1. A strategy pair (p∗(θ1), q∗(θ2)) constitutes a mixed-strategy
Bayesian Nash equilibrium to the bi-matrix Bayesian game (J1(θ1, θ2),
J2(θ1, θ2)) under continuous private type θi ∈ Θi and a public belief Bi, i ∈
{1, 2}, if and only if, there exists a scalar function pair (s∗(θ1), w∗(θ2)) such
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that (p∗(θ1), q∗(θ2), s∗(θ1), w∗(θ2)) is a solution to the following mathematical
program:

sup
q,p,s,w

Eθ1s(θ1) + Eθ2w(θ2) + Eθ1Eθ2{p(θ1)′[J1(θ1, θ2) + J2(θ1, θ2)]q(θ2)}

s.t. Eθ1 [J ′
2(θ1, θ2)p(θ1)] ≤ −w(θ2)lm2 ,∀θ2, q(θ2)′lm2 = 1, q(θ2) ≥ 0,∀θ2,

Eθ2 [J1(θ1, θ2)q(θ2)] ≤ −s(θ1)lm1 , ∀θ1, p(θ1)′lm1 = 1, p(θ1) ≥ 0,∀θ1.
(6)

The computation challenge of the continuous Bayesian bi-matrix program (6) is
the infinite-dimensional constraints induced by the continuous type space. We
can obtain approximate solutions by sampling the bounded type space Θi :=
[0, 1] and solve a high-dimensional bilinear program. The bias between the value
of the objective function and value 0 measures the approximation accuracy.

Proof. Define the simplex set Γ := {p ∈ Rm1×1|p′lm1 = 1, p ≥ 0}. We first prove
that the mixed-strategy is the solution to the bilinear program. The constraints
imply a non-positive objective function. If p∗(θ1) ∈ Γ, q∗(θ2) ∈ Γ is a Bayesian
Nash equilibrium pair, i.e.,

q(θ2)′Eθ1 [J ′
2(θ1, θ2)p

∗(θ1)] ≤ (q∗(θ2))′Eθ1 [J ′
2(θ1, θ2)p

∗(θ1)],∀θ2,∀q(θ2) ∈ Γ,

p(θ1)′Eθ2 [J1(θ1, θ2)q∗(θ2)] ≤ (p∗(θ1))′Eθ2 [J1(θ1, θ2)q∗(θ2)],∀θ1,∀p(θ1) ∈ Γ.

Then the quadruple p∗(θ1), q∗(θ2), w∗(θ2) = −Eθ1 [p
∗(θ1)′J2(θ1, θ2)q∗(θ2)],

s∗(θ1) = −Eθ2 [p
∗(θ1)′J1(θ1, θ2)q∗(θ2)] is a feasible solution to the program

(because it satisfies all the constraints) and the value of the objective func-
tion is 0, which is the maximum solution to the non-positive objective function
and provides the value function V2(θ2) = maxq(θ2) Eθ1 [p

∗(θ1)′J2(θ1, θ2)q(θ2)] =
−w∗(θ2),∀θ2 and V1(θ1) = maxp(θ1) Eθ2 [p(θ1)′J1(θ1, θ2)q∗(θ2)] = −s∗(θ1),∀θ1.
Conversely, if the program has an optimal solution p∗(θ1), q∗(θ2), w∗(θ2), s∗(θ1),
then

Eθ1s(θ1) + Eθ2w(θ2) + Eθ1Eθ2{p(θ1)′[J1(θ1, θ2) + J2(θ1, θ2)]q(θ2)} = 0. (7)

and
q(θ2)′Eθ1 [J ′

2(θ1, θ2)p
∗(θ1)] ≤ −w∗(θ2),∀θ2,∀q(θ2) ∈ Γ

p(θ1)′Eθ2 [J1(θ1, θ2)q∗(θ2)] ≤ −s∗(θ1),∀θ1,∀p(θ1) ∈ Γ.
(8)

In particular, we pick p(θ1) = p∗(θ1), q(θ2) = q∗(θ2) to arrive at

(q∗(θ2))′Eθ1 [J ′
2(θ1, θ2)p

∗(θ1)] ≤ −w∗(θ2),∀θ2,

(p∗(θ1))′Eθ2 [J1(θ1, θ2)q∗(θ2)] ≤ −s∗(θ1),∀θ1.
(9)

Combined with (7), the inequality in (9) turns out to be an equality and equation
(8) becomes

q(θ2)′Eθ1 [J ′
2(θ1, θ2)p

∗(θ1)] ≤ (q∗(θ2))′Eθ1 [J ′
2(θ1, θ2)p

∗(θ1)],∀θ2,

p(θ1)′Eθ2 [J1(θ1, θ2)q∗(θ2)] ≤ (p∗(θ1))′Eθ2 [J1(θ1, θ2)q∗(θ2)],∀θ1,
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which verifies that (p∗(θ1), q∗(θ2)) is a BNE. 	

For the one-sided information, the information-superior player P2 knows the

type of P1 and the information-inferior player P1 does not know the type of P2.
Since the P1’s type is known, we can suppress writing Ji, p, s as a function of
θ1. Following similar proof steps, we have Corollary 1.

Corollary 1. A strategy vector pair (p∗, q∗(θ2)) constitutes a Bayesian Nash
equilibrium to the bi-matrix Bayesian game (J1(θ2),J2(θ2)) under private type
θ2 and the public type belief B2, if and only if, there exists a scalar function pair
(s∗, w∗(θ2)) such that (p∗, q∗(θ2), s∗, w∗(θ2)) is a solution to the mathematical
program:

sup
q,p,s,w

Eθ2{p′[J1(θ2) + J2(θ2)]q(θ2) + w(θ2)} + s

s.t J ′
2(θ2)p ≤ −w(θ2)lm2 ,∀θ2, q(θ2)′lm2 = 1, q(θ2) ≥ 0,∀θ2,

Eθ2 [J1(θ2)q(θ2)] ≤ −slm1 , p′lm1 = 1, p ≥ 0.

Two-by-Two Matrix. We specify m1 = 2,m2 = 2 with utility func-
tions of one-sided information as shown in Table 1. Let V1 = Eθ2∼B2 [V̂1] =
supp Eθ2 [R

1
21−R1

11+q∗(θ2)(R1
22−R1

12−R1
21+R1

11)]p+Eθ2 [R
1
11+(R1

12−R1
11)q

∗(θ2)]
be the expected value function under the belief B2 of private type θ2 and
V̂2 = supq(θ2)[R

2
21 −R2

11 +p∗(R2
22 −R2

12 −R2
21 +R2

11)]q(θ2)+R2
11 +(R2

12 −R2
11)p

∗

be the value function of complete information. The best response of P1 is
p∗ = 1{E[R1

21−R1
11+q∗(θ2)(R1

22−R1
12−R1

21+R1
11)]>0} and the best response of P2 is

q∗(θ2) = 1{R2
21−R2

11+p∗(R2
22−R2

12−R2
21+R2

11)>0}. The BNE is the result of the inter-
section of two best-response functions. Since p∗ is not a function of type, p∗ = 0
or 1 is the only stable value1. Then, P2 as a function of type is a threshold policy,
which leads to Lemma 1.

Lemma 1. For the one-sided information bi-matrix Bayesian game with utility
functions in Table 1 under the BNE solution concept, the information-inferior
player adopts a pure policy, and the information-superior player adopts a
threshold policy. 	

In particular, if p∗ = 1, we have q∗(θ2) = 1{R2

21−R2
11+(R2

22−R2
12−R2

21+R2
11)>0} =

1{R2
22(θ2)>R2

12(θ2)}, which should be consistent with the corresponding condition
E[R1

21 −R1
11 + q(θ2)(R1

22 −R1
12 −R1

21 +R1
11)] > 0. Likewise, we have a consistent

condition for p∗ = 0. Theorem 2 summarizes these two necessary conditions
for B2.

Theorem 2. There exists at most two mixed-strategy Bayesian Nash equilibri-
ums for the one-sided information bi-matrix game with utility functions shown

1 Note that q∗(θ2) =
R1

11(θ2)−R1
21(θ2)

R1
22(θ2)−R1

12(θ2)−R1
21(θ2)+R1

11(θ2)
, p∗ ∈ [0, 1] is a equilibrium pair

under a restrictive condition R1
22(θ2) − R1

12(θ2) − R1
21(θ2) + R1

11(θ2) = 0, R1
21(θ2) =

R1
11(θ2), ∀θ2.
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in Table 1, private type θ2 ∈ Θ2, and public type belief B2(θ2). First, the policy
pair p∗ = 1, q∗(θ2) = 1{R2

22(θ2)>R2
12(θ2)} is a BNE if

∫

θ2∈Θ2

(R1
21(θ2) − R1

11(θ2))1{R2
22(θ2)<R2

12(θ2)}B2(θ2)dθ2+
∫

θ2∈Θ2

(R1
22(θ2) − R1

12(θ2))1{R2
22(θ2)>R2

12(θ2)}B2(θ2)dθ2 > 0,

Second, the policy pair p∗ = 0, q∗(θ2) = 1{R2
21(θ2)>R2

11(θ2)} is a BNE if

∫

θ2∈Θ2

(R1
21(θ2) − R1

11(θ2))1{R2
21(θ2)<R2

11(θ2)}B2(θ2)dθ2+
∫

θ2∈θ2

(R1
22(θ2) − R1

12(θ2))1{R2
21(θ2)>R2

11(θ2)}B2(θ2)dθ2 < 0.

Remark 3. We cannot apply the indifference principle as in Sect. 5.2 to compute
the equilibrium under incomplete information because the information-inferior
player unknown the type θ2 is incapable of making decision p as a function
of θ2. 	


Dynamic Case. Recall the dynamic programming equation in Sect. 4.3:

Ṽ t
i (yt, θi) = sup

σ̃t
i

Eθ−i∼βt
i ,at

1∼σ̃t
1,at

2∼σ̃∗,t
2

[Ṽ t+1
i (yt+1, θi) + J t

i (x
t, at

1, a
t
2, θ1, θ2)].

The computation of the static BNE serves as building blocks to the computation
of dynamic R-PBNE via the following procedures. At the last stage T with a
known boundary condition Ṽ T+1

i , the value function Ṽ T+1
i + JT

i is the same as
the static objective function Ji and we can compute the equilibrium policy as
well as the value function Ṽ T

i via Theorem 1. At the second last stage T − 1,
since both Ṽ T

i and JT−1
i are known, we can treat Ṽ T

i + JT−1
i as the new static

objective function Ji and repeat the analysis in the static setting. In a backward
fashion, it is clear that at stage t ∈ {0, 1, · · · , T − 1}, we only need to replace
the static objective function Ji to the dynamic objective function Ṽ t

i + J t−1
i to

obtain the R-PBNE policy σ̃t−1
i at each stage t − 1 for each player Pi.

5 Case Study

Similar to our previous work [8], we consider a four-stage Bayesian game with
one-sided incomplete information, i.e., the information-inferior player P1 forms
a belief of attacker P2’s type θ2 via a beta distribution with parameters αt

2, β
t
2.

The first three stages model the cyber network transition while the last stage
model the sensor compromise of a physical plant, i.e., the benchmark Tennessee
Eastman (TE) chemical process [2]. Since APTs benefit mainly from their spe-
cific targets, i.e., sabotage the TE process, we assume a negligible utility for
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the intermediate stage t = 0, 1, · · · , T − 1 in this case study. However, the sce-
nario is still multi-stage rather than static because APTs have to go through
the intermediate stages stealthily to reach their final targets. Their actions at
the intermediate stages will affect the belief and the state at the final stage.
The state xT ∈ X T := {0, 1, 2} represents which sensors the attacker can con-
trol in the TE process. If the attacker changes the sensor reading, the system
states such as the pressure and the temperature may deviate from the desired
value, which degrades the product quality and even causes the shutdown of the
entire process if the deviation exceeds the safety threshold. To reach a favorable
state at the final stage, e.g., control the essential sensors of the TE process,
the attacker has to behave aggressively at the intermediate stages, e.g., esca-
lates the privilege, which thus increases the risk of being identified as malicious.
Both players have a binary action set At

i = {0, 1} where at
i = 1 means taking

either aggressive or defensive actions and at
i = 0 means no special operation

performed. As stated in the Sect. 2, the action is observable, yet the one-shot
observation does not directly reveal the type. Let K2 = 1, the secure category
k = 0 includes at

2 = 0 and k = 1 includes at
2 = 1, respectively. The util-

ity at the last stage is shown in Table 1 and defined as follows. The operation
time under state xT is the output of the mapping C : X T �→ R

+, which can
be determined using numerical experiments of the TE process under different
sensor-compromise scenarios. Since the defender’s stage utility should be propor-
tional to the operation time C(xT ), the normalized defender’s stage reward is
R1

11 = C(xT ), R1
12 = 0.5C(xT )(1 − θ2), R1

21 = 0.9C(xT ), R1
22 = 0.9C(xT ), which

satisfies two conditions. First, R1
21 = R1

22, R1
11 ≥ R1

21: The defensive action pre-
vents attacking loss while incurs a cost to deploy. Second, R1

12 ≤ R1
21: Attacks

cause a loss in lack of active defenses. Moreover, the loss is proportional to the
type, i.e., R1

12 is a monotonically decreasing function in type θ2. On the other
hand, we assign utility R2

11 = 2, R2
12 = 10θ2, R

2
21 = 4θ2, R

2
22 = 0 to attackers

according to the following reasonable conditions.

1. Attackers obtain R2
12 when attacks happen without defenses and R2

21 when P2

does not attack yet wastes system resources by deceiving defenders to defend.
Both cases benefit attackers proportionally to their type, i.e., R2

21 and R2
12 are

monotonically increasing functions in type θ2. Moreover, the latter scenario
brings more attacking rewards for the same type, i.e., R2

21(θ2) ≥ R2
12(θ2),∀θ2.

2. Attackers θ2 ≥ θ̄2 benefit from inflicting damages and deceiving defenders
to defend, i.e., R2

12(θ2) ≥ R2
11(θ2), R

2
21(θ2) ≥ R2

11(θ2),∀θ2 ≥ θ̄2. However,
benign users θ2 < θ̄2 benefit from a normal operation of the system, i.e.,
R2

12(θ2) ≤ R2
11(θ2), R

2
21(θ2) ≤ R2

11(θ2),∀θ2 < θ̄2.
3. The no-attack-no-defense scenario outweighs the scenario when P2 attacks

yet P1 defends because no damages are incurred and the defender obtains
extra information about the attacker. Thus, R2

11(θ2) ≥ R2
22(θ2),∀θ2.

5.1 The Final Stage with One-Sided Incomplete Information

At the terminal stage T , we need to solve the static Bayesian game for each
possible expanded state yT . Suppose that defender takes action aT

1 = 1 with
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probability p(yT ) and attacker takes action aT
2 = 1 with probability q(yT , θ2).

At the last stage, the accumulated utility function is the same as the stage utility
function. Since all elements R1

ij , i, j ∈ {1, 2} of the utility matrix is linear in
C(xT ) = 0, both players’ policies are not a function of C(xT ) and we can consider
a normalized value function V̂ T

1 (yT , θ2)/C(xT ) = maxp(yt)[0.5q∗(yT , θ2)(1+θ2)−
0.1]p(yT )+1−0.5(1+ θ2)q∗(yT , θ2), where p∗, q∗ is the PBNE policy pair. Since
defender does not know the type value, she can only form an expected value
function V T

1 (yT ) = maxp(yT )

∫ 1

0
BetaαT

2 ,βT
2 (θ2)[V̂ T

1 (yT , θ2)]dθ2. The attacker as
the information-superior player knows the type, and thus his objective function
V̂ T
2 (yT , θ2) is

max
q(yT ,θ2)

[2p∗(yT ) − 2 + 10θ2 − 14p∗(yT )θ2]q(yT , θ2) + 2(1 − p∗(yT )) + 4θ2p
∗(yT ).

Bayesian Nash Equilibrium. Bayesian Nash equilibrium corresponds to the
intersection of two best-response curves p∗ and q∗, as stated in Sect. 4.4. We
use Theorem 2 to show the existence and uniqueness of the BNE, i.e., q∗ =
1{θ2>0.2}, p∗ = 0 when the condition

∫ 1

0.2
BetaαT

2 ,βT
2 (θ2)(1+ θ2)dθ2 < 0.2 is true.

Small α2 and large β2, e.g., (1, 10), satisfy the condition as the probability density
is focused on the low θ2 value. The BNE does not exist when the condition is
not met.

Bayesian Stackelberg Equilibrium. After plugging in the attacker’s best
response to the value function V1, we need to maximize a function of p:

max
p

E[R1
21−R1

11+1{R2
21−R2

11+p(R2
22−R2

12−R2
21+R2

11)>0}(R
1
22 − R1

12 − R1
21 + R1

11)]p.

Since we assume that R2
ij(θ2) is linear in θ2, the follower P2’s best response

q∗(yT , θ2) = R2(p(yT ), θ2) = 1{R2
21−R2

11+p(R2
22−R2

12−R2
21+R2

11)>0} = 1{θ2>θ̄2(p)}
can be represented as an indicator function of a threshold type θ̄2 = 1−p(yT )

5−7p(yT )
,

which simplifies the computation of the leader’s optimal policy p∗. The exis-
tence of equilibrium depends on the type value classified as follows. First,
θ̄2 ≥ 1, p∗(yT ) ∈ [23 , 5

7 ) is not consistent with p∗(yT ) = 0 via the opti-
mization of the defender’s value function. Second, θ̄2 ≤ 0 leads to p∗(yT ) ∈
(57 , 1], q∗(yT , θ2) = 1{θ2<θ̄2} = 0. Then, p∗ = 0 is not consistent with p∗ ∈ ( 57 , 1].
Third, if p∗ = 5/7, q∗ = 0, then the optimization of defender’s value func-
tion returns p∗ = 0, which is not consistent with p∗ = 5/7. Finally, 0 <
θ̄2 < 1 leads to the feasible region p∗(yT ) ∈ [0, 2

3 ) and the value function
V T
1 (yT )/C(xT ) = maxp(yT )∈[0, 23 )

[
∫ 1

θ̄2
BetaαT

2 ,βT
2 (θ2)[0.5(1+ θ2)]dθ2 −0.1]p(yT )+

1 − 0.5
∫ 1

θ̄2
BetaαT

2 ,βT
2 (θ2)(1 + θ2)dθ2.

Remark 4. The BSE may not always exist. Take state {0, 4, 1} as an example,
the function is increasing during the interval [0, 2/3), with supreme value of
V T
1 = 0.56, V̂ T

2 = 2/3 + (8θ2)/3 under the limiting BSE (LBSE) policy p∗ →
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2/3, q∗ = 1{θ2>θ̄2} with θ̄2 → 1. The BSE does not exist because the feasible
region of policy does not include 2/3 as analyzed above. However, we can use
the supreme value under LBSE as an upper bound of the value function, which
serves as a good approximation in practice. 	


5.2 Final Stage with Complete Information

For the complete information, the type value θ2 is a common knowledge, thus
defender can respond to the threat by considering objective V̂ T

1 , V̂ T
2 rather

than expected objective V T
1 = maxp(yT )

∫ 1

0
BetaαT

2 ,βT
2 (θ2)[V̂ T

1 (yT , θ2)]dθ2, V̂
T
2

in Sect. 5.1.

Nash Equilibrium. Since both player’s policies are functions of type θ2 in the
complete information case, we can use the indifference principle for the following
three type classifications. First, when θ2 ∈ [0.2, 1], we obtain NE policy p∗ =
1−5θ2
1−7θ2

∈ [0, 2/3], q∗ = 1
5(1+θ2)

∈ [ 1
10 , 1

5 ] and value function V̂ T
1 = 0.9C(xT ),

V̂ T
2 = 2 + ((1 − 5θ2)(−2 + 4θ2))/(1 − 7θ2) = 20θ2

2
−1+7θ2

∈ [1.63265, 10
3 ]. Second, if

θ2 = 1/7, no NE exists and both players’ behaviors would be uncertain. Third,
for other θ2 ∈ [0, 1], NE policy q∗ = 0, p∗ = 0 leads to (C(xT ), 2). Figure 7(b)
shows that both defender and attacker’s policies are functions of their types. On
the one hand, P1 defends with a higher probability when the type value increases
because an attack with a larger type value incurs more loss once he succeeds.
On the other hand, the increasing probability of defensive actions reduces the
probability of attacks to a relatively low level. For benign users who do not attack
and inflict damages, which is known by the defender in the complete information
case, the defender will not take defensive actions and the system will operate
normally.

Stackelberg Game. Following a similar analysis as the NE, we can see that
the SE policy also depends on the realization of the type. If θ2 ∈ [0, 1/5), then
SE p∗ = 0, q∗ = 0 leads to the defender value (C(xT ), 2); if θ2 ∈ (1/5, 1], then
p∗ = 2/3 and q∗ = 0 is the SE with value functions (2.8/3C(xT ), (2 + 8θ2)/3); if
θ2 = 1/5, then q∗ = 0, p∗ → 0 is the limiting SE.

5.3 Comparison of Value Functions

For the complete information case, the best response set of the attacker R2(p, θ2)
exists and is a singleton for each p ∈ [0, 1] for all given θ2 ∈ [0, 1] except for
θ2 = 1/5. Thus, the leader player never does worse under SE than under NE
policy as stated in Theorem 3, which is also illustrated in Fig. 7(a). The proof is
similar to the proof of Proposition 3.16 in [1].

Theorem 3. For the finite two-person game defined in Sect. 2 and two solution
concepts defined in Sect. 3, let V̂ S

1 and V̂ N
1 be the value function of P1 under SE

and NE policy, respectively. If R2(σT
1 ) is a singleton for each σT

1 ∈ ΣT
1 , then

V̂ S
1 ≥ V̂ N

1 . 	
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In the incomplete information case, the best-response set of the attacker R2(p, θ2)
is also a singleton for each p ∈ [0, 1] for all given θ2. Thus, we further obtain that
the defender’s value function under BSE is better than that under BNE when
the belief is the same, which is supported by the numerical results in Fig. 7(c).
The above comparison of the proactive and reactive information structures, i.e.,
BSE/SE with BNE/NE demonstrates that acquiring the best response set of
the attacker via attack tree analysis can effectively confront the insider threat
of APTs.

Fig. 7. Comparisons of value functions at the terminal stage.

Comparisons of defender’s value function between the NE and BNE in
Fig. 8(a) and between SE, BSE in Fig. 8(b) show that the value function of the
defender P1 under incomplete information is always no better than that under
complete information, which is true for the PBNE under both proactive and
reactive information structures. The numerical result corroborates the current
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unfavorable situation of systems that the deception of APTs creates uncertain-
ties for defenders and decreases defenders’ utilities.

Fig. 8. The private type of APTs creates uncertainties for defenders and decreases
defenders’ value function under both outsider and insider threats.

The comparison of attacker’s value function V̂ T
2 under BNE, NE, SE, and

LBSE is shown in Fig. 7(d). We observe that V̂ T
2 under the LBSE as the upper

bound of BSE coincides with V̂ T
2 under SE. We also notice that the attacker’s

value function under BNE is always no worse than NE, which validates the
advantage of concealing a private type to increase the uncertainty of defenders.

5.4 Insights from Multi-stage Analysis

The main insight from the multi-stage analysis is the tradeoff between tak-
ing adversary actions to obtain instant attacking reward and hiding to arrive
at a more favorable expanded state yt = {xt, αt

2, β
t
2} in the future stages as

shown in Fig. 5. The system state xt and the belief parameter αt
2, β

t
2 comprise

the expanded state yt. Thus, on the one hand, a desirable yt for attacker is to
turn the system to a fragile state xt. On the other hand, attacks try to deceive
the defender into a Pollyanna. The more the defender belief in P2 as a legit-
imate user, the less probability she will act defensively and the attacker can
bear a smaller threshold θ̄2 to launch the attack. Other results and insights are
summarized as follows. First, the healthy system state xt at the terminal stage
dominates defender’s utility, while at the same time, a belief of a legitimate user
increases the defender’s utility. Second, due to the petty stage cost assumption,
the attacker chooses to hide at the initial stage to deceive defender to form
wrong beliefs. However, since attackers move at the intermediate stages to reach
their final target, the defender can gradually form the right belief based on the
observable footprints of the adversary.
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6 Conclusion

In this work, we propose a multi-stage game of incomplete information to model
the interactions between defenders and Advanced Persistent Threats (APTs).
The dynamic Bayesian game has captured the stealthy and persistent nature of
the APTs. Types are used to represent the private information of the players.
A defender forms a belief on the uncertainties of an attacker and updates it
using Bayesian rules with observations of attack footprints. We have adopted
conjugate priors to enable parametric and large-scale learning of the players and
extended the dynamic programming principles with an expanded state space.
We have developed mathematical programs to compute the perfect Bayesian
Nash equilibrium and studied the existence of Bayesian Nash equilibrium under
bi-matrix game. A case study of one-sided information has illustrated the disad-
vantage to the defender as well as the advantage to the attacker when the attack
manages to conceal his private type. It also motivates a further comparison of
our framework under two-sided incomplete information in the future so that the
defender can also use counter-deception to increase the attacking cost and tilt
the current information asymmetry caused by the attacker. We have compared
the PBNE under two different information structures and shown that disclosing
the best response set of the attacker via attack tree analysis or proactive defenses
such as honeypots and honey files can effectively confront the insider threat of
APTs. A preliminary multi-stage analysis has shown that although APTs hide
at the initial stages, yet the adaptive formation of the belief reveals the attacker
at intermediate stages.
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