
Data Poisoning Attacks in Contextual
Bandits

Yuzhe Ma1(B), Kwang-Sung Jun1, Lihong Li2, and Xiaojin Zhu1

1 University of Wisconsin-Madison, Madison, USA
ma234@wisc.edu, kjun@discovery.wisc.edu, jerryzhu@cs.wisc.edu

2 Google Brain, Kirkland, WA, USA
lihong@google.com

Abstract. We study offline data poisoning attacks in contextual ban-
dits, a class of reinforcement learning problems with important applica-
tions in online recommendation and adaptive medical treatment, among
others. We provide a general attack framework based on convex opti-
mization and show that by slightly manipulating rewards in the data, an
attacker can force the bandit algorithm to pull a target arm for a target
contextual vector. The target arm and target contextual vector are both
chosen by the attacker. That is, the attacker can hijack the behavior of a
contextual bandit. We also investigate the feasibility and the side effects
of such attacks, and identify future directions for defense. Experiments
on both synthetic and real-world data demonstrate the efficiency of the
attack algorithm.

Keywords: Data poisoning · Contextual bandit · Adversarial attack

1 Introduction

As an important step toward trustworthy AI, adversarial learning studies robust-
ness of machine learning systems against malicious attacks [7,10]. Training set
poisoning is a type of attack where the adversary can manipulate the training
data such that a machine learning algorithm trained on the poisoned data would
produce a defective model. The defective model is often similar to a good model,
but affords the adversary certain nefarious leverages [3,5,9,12,14,15,17]. Under-
standing training set poisoning is essential to developing defense mechanisms.

Recent studies on training set poisoning attack focused heavily on supervised
learning. There has been little study on poisoning sequential decision making
algorithms, even though they are widely employed in the real world. In this
paper, we aim to fill in the gap by studying training set poisoning against con-
textual bandits. Contextual bandits are extensions of multi-armed bandits with
side information and have seen wide applications in industry including news rec-
ommendation [13], online advertising [6], medical treatment allocation [11], and
also promotion of users’ well-being [8].

c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 186–204, 2018.
https://doi.org/10.1007/978-3-030-01554-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01554-1_11&domain=pdf

Data Poisoning Attacks in Contextual Bandits 187

Let us take news recommendation as a running example for poisoning against
contextual bandits. A news website has K articles (i.e., arms). It runs an adaptive
article recommendation algorithm (the contextual bandit algorithm) to learn a
policy in the backend. Every time a user (represented by a context vector) visits
the website, the website displays an article that it thinks is most likely to interest
the user based on the historical record of all users. Then the website receives
a unit reward if the user clicks through the displayed article, and receives no
reward otherwise. Usually the website keeps serving users throughout the day
and updates its article selection policy periodically (say, during the nights or
every few hours). This provides an opportunity for an attacker to perform offline
data poisoning attacks, e.g. the attacker can sneak into the website backend at
night before the policy is updated, and poison the rewards collected during the
daytime. The website unknowingly updates its policy with the poisoned data.
On the next day it behaves as the attacker wanted.

More generally, we study adversarial attacks in contextual bandit where the
attacker poisons historical rewards in order to force the bandit to pull a target
arm under a target context. One can view this attack as a form of offline reward
shaping [16], but it is adversarial reward shaping. Our main contribution is an
optimization-based attack framework for this attack setting. We also study the
feasibility and side effect of the attack. We show on both synthetic and real-world
data that the attack is effective. This exposes a security threat in AI systems
that involve contextual bandits.

2 Review of Contextual Bandit

This section reviews contextual bandits, which will be the victim of the attack
in this paper. A contextual bandit is an abstraction of many real-world deci-
sion making problems such as product recommendation and online advertising.
Consider for example a news website which strives to recommend the most inter-
esting news articles personalized for individual users. Every time a user visits
the website, the website observes certain contextual information that describes
the user such as age, gender, location, past news consumption patterns, etc. The
website also has a pool of candidate news articles, one of which will be recom-
mended and shown to the user. If the recommended article is interesting, the
user may click on it; otherwise, the user may click on other items on the page
or navigate to another page. The click probability here depends on both the
user (via the context) and the recommended article. Such a dependency can be
learned based on click logs and used for better recommendation for future users.

An important aspect of the problem is that the click feedback is observed
only for the recommended article, not for others. In other words, the decision
(choosing which article to show to a user) is irrevocable; it is impractical to
force the user to revisit the webpage so as to recommend a different article.
As a result, the feedback data being collected is necessarily biased towards
the current recommendation algorithm being employed by the website, raising
the need for balancing exploration and exploitation when choosing arms [13].

188 Y. Ma et al.

This is in stark contrast to a typical prediction task solved by supervised learn-
ing where predictions do not affect the data collection.

Formally, a contextual bandit has a set X of contexts and a set A =
{1, 2, . . . ,K} of K arms. A contextual bandit algorithm proceeds in rounds
t = 1, 2, At round t, the algorithm observes a context vector xt ∈ Rd,
chooses to pull an arm at ∈ A, and observes a reward rt ∈ R. The goal of the
algorithm is to maximize the total reward garnered over rounds. In the news rec-
ommendation example above, it is natural to define rt = 1 if user clicks on the
article and 0 otherwise, so that maximizing clicks is equivalent to maximizing
the click-through rate, a critical business metric in online recommender systems.

In this work, we focus on the most popular and well-studied setting called
linear bandits, where the expected reward is linear map of the context vector.
Specifically, we assume each arm a is associated with an unknown vector θa ∈ Rd

with ‖θa‖2 ≤ S, so that for every t:

rt = x�
t θat

+ ηt , (1)

where ηt is a σ-subGaussian noise. For simplicity, we assume ηt is unbounded
and thus the reward can take any value in R.

Most contextual bandit algorithms adopt the optimism-in-face-of-uncertainty
(OFU) principle for efficient exploration. The OFU principle constructs an Upper
Confidence Bound (UCB) for the mean reward of each arm based on historical
data and then selects the arm with the highest UCB at each time step [1,4]. In
round t, the historical data consists of the context, action, reward triples (x, a, r)
from the previous t − 1 rounds. It is useful to split the historical data so that
the feedback from the same arm is pooled together. Define [K] = {1, . . . , K}.
Let ma be the number of times arm a was pulled up to time t − 1. This implies
that

∑
a∈[K] ma = t−1. For each a ∈ [K], let Xa ∈ Rma×d be the design matrix

for rounds, where arm a was pulled and each row of Xa is a previous context.
Similarly, let ya ∈ Rma be the corresponding reward (column) vector.

A UCB-style algorithm first forms a point estimate of θa by ridge regression

θ̂a = (X�
a Xa + λI)−1X�

a ya, ∀a ∈ [K], (2)

where λ > 0 is a regularization parameter. At round t, the algorithm observes
the context xt and then selects the arm with the highest UCB:

at = argmaxa∈[K]

{
x�

t θ̂a + αa‖xt‖V −1
a

}
, (3)

where ‖xt‖V −1
a

=
√

x�
t V −1

a xt is the Mahalanobis norm and Va = X�
a Xa +

λI. Intuitively, for less frequently chosen a, the second term above tends to be
large, thus encouraging exploration. The exploration parameter αa is algorithm-

specific. For example, in LinUCB [13] αa = 1 +
√

1
2 log 2

δ and in OFUL [1]

αa = σ

√

2 log(det(Va)
1
2 det(λI)− 1

2

δ) + λ
1
2 S, where δ > 0 is a confidence parameter.

Here, we assume αa may depend on input parameters like δ and observed data
up to t − 1, but not xt.

Data Poisoning Attacks in Contextual Bandits 189

In Algorithm 1, we summarize the contextual bandit algorithm. While the
bandit algorithm updates its θ̂ estimates in every round (step 3), in practice due
to various considerations such updates often happen in mini-batches, e.g., several
times an hour, or during the nights when fewer users visit the website [2,13].
Between these consecutive updates, the bandit algorithm follows a fixed policy
obtained from the last update.

Algorithm 1. Contextual bandit algorithm
1: Parameters: confidence δ, regularizer λ, UCB function α.
2: for t = 1, 2, . . . , T do
3: Receive context xt, estimate θ̂a, a ∈ [K] with (2).

4: Pull arm at = argmaxa∈[K]

{
x�
t θ̂a + αa‖xt‖V −1

a

}
.

5: World generates reward rt = x�
t θat + ηt.

6: Append xt and rt to Xat and yat , respectively.
7: end for

3 Attack Algorithm in Contextual Bandit

We now introduce an attacker with the following attack goal:

Attack Goal [x∗ → a∗]: On a particular attack target context x∗, force
the bandit algorithm to pull an attack target arm a∗.

For example, the attacker may want to manipulate the news service so that a
particular article a∗ is shown to users x∗ from certain political bases. The attack
is aimed at the current round t, or more generally the whole period when the
arm-selection policy is fixed. Any suboptimal arm a∗ can be the target arm. For
concreteness, in our experiments the attacker always picks the worst arm a∗ as
the target arm. This is defined in the sense of the worst UCB, namely replacing
argmax with argmin in (3), resulting in the target arm in (21).

We assume the attacker has full knowledge of the bandit algorithm and has
access to all historical data. The attacker has the power to poison the histor-
ical reward vector1 ya, ∀a ∈ [K]. Specifically, the attacker can make arbitrary
modifications Δa ∈ Rma , ∀a ∈ [K] so that the reward vector for arm a becomes
ya+Δa. After the poisoning attack, the ridge regression performed by the bandit
algorithm yields a different solution:

θ̂a = V −1
a X�

a (ya + Δa). (4)

Because such attacks happen on historical rewards in between bandit algorithm
updates, we call it offline.

Now we can formally define the attack goal.
1 In this paper we restrict the poisoning to modifying rewards for ease of exposition.

More generally, the attacker can add, remove, or modify both the rewards and the
context vectors. Our optimization-based attack framework can be generalized to such
stronger attacks, though the optimization could become combinatorial.

190 Y. Ma et al.

Definition 1 (Weak attack). A target context x∗ is called weakly attacked
into pulling target arm a∗ if after attack the following inequalities are satisfied:

x∗�θ̂a∗ + αa∗‖x∗‖V −1
a∗

> x∗�θ̂a + αa‖x∗‖V −1
a

, ∀a �= a∗. (5)

In other words, the algorithm is manipulated into choosing a∗ for context x∗.

To avoid being detected, the attacker hopes to make the poisoning Δa, a ∈
[K] as small as possible. We measure the magnitude of the attack by the squared
	2-norm

∑
a∈[K] ‖Δa‖22.2 We therefore formulate the attack as the following opti-

mization problem:

min
Δa:a∈[K]

∑

a∈[K]

‖Δa‖22

s.t. x∗�θ̂a∗ + αa∗‖x∗‖V −1
a∗

> x∗�θ̂a + αa‖x∗‖V −1
a

,∀a �= a∗

where θ̂a = V −1
a X�

a (ya + Δa), ∀a.

(6)

The weak attack above ensures that, given the target context x∗, the bandit
algorithm is forced to pull arm a∗ instead of any other arms. Unfortunately,
the constraints do not result in a closed convex set. To formulate the attack as
a convex optimization problem, we introduce a stronger notion of attack that
implies weak attack:

Definition 2 (Strong attack). A target context x∗ is called ε-strongly
attacked into pulling target arm a∗, for some ε > 0, if after attack the following
holds:

x∗�θ̂a∗ + αa∗‖x∗‖V −1
a∗

≥ ε + x∗�θ̂a + αa‖x∗‖V −1
a

, ∀a �= a∗ . (7)

This is essentially a large margin condition which requires the UCB of a∗ to be
at least ε greater than the UCB of any other arm a. The margin parameter ε is
chosen by the attacker. We achieve strong attack with the following optimization
problem:

min
Δa:a∈[K]

∑

a∈[K]

‖Δa‖22

s.t. x∗�θ̂a∗ + αa∗‖x∗‖V −1
a∗

≥ ε + x∗�θ̂a + αa‖x∗‖V −1
a

, ∀a �= a∗

where θ̂a = V −1
a X�

a (ya + Δa),∀a.

(8)

The optimization problem above is a quadratic program with linear constraints
in {Δa}a∈[K]. We summarize the attack in Algorithm 2. In the next section we
discuss when the algorithm is feasible.

2 The choice of norm is application dependent, see e.g., [15, Fig. 3]. Any norm works
for the attack formulation.

Data Poisoning Attacks in Contextual Bandits 191

Algorithm 2. Data Poisoning Attack in Contextual Bandit
1: Input: victim contextual bandit (Algorithm 1), target context x∗, target arm a∗,

attack margin ε, historical data Xa, ya, a ∈ [K].
2: Solve (8) for Δa, ∀a ∈ [K].
3: If a solution Δa is found, poison ya ← ya + Δa; otherwise return infeasible.

4 Feasibility of Attack

While one can always write down the training set attack algorithm as opti-
mization (8), there is no guarantee that such attack is feasible. In particular,
the inequality constraints may result in an empty set. One may naturally ask:
are there context vectors x∗ that simply cannot be strongly attacked?3 In this
section we present a full characterization of the feasibility question for strong
attack. As we will see, attack feasibility depends on the original training data.
Understanding the answer helps us to gauge the difficulty of poisoning, and may
aid the design of defenses.

The main result of this section is the following theorem that characterizes a
sufficient and necessary condition for the strong attack to be feasible.

Theorem 1. A context x cannot be strongly attacked into pulling a∗ if and only
if there exists a �= a∗ such that the following two conditions are both satisfied:

(i) x ∈ Null(Xa∗) ∩ Null(Xa), and
(ii) αa∗ ||x||V −1

a∗
< ε + αa||x||V −1

a
.

Before presenting the proof, we first provide intuition. The key idea is that a
context x cannot be strongly attacked if some non-target arm a is always better
than a∗ for x for any attack. This can happen because there are two terms in
the arm selection criterion (3) while the attack can affect the first term only.
It turns out that under the condition (i) the first term becomes zero. If there
exists a non-target arm that has a larger second term than that of the target
arm (the condition (ii)), then no attack can force the bandit algorithm to choose
the target arm.

We present an empirical study on the feasibility of attack in Sect. 6.3.

Lemma 1. x ∈ Null(Xa∗) ⇔ x�V −1
a∗ X�

a∗ = 0, where V −1
a∗ = X�

a∗Xa∗ + λI.

Proof. First, we prove x ∈ Null(Xa∗) ⇒ x�V −1
a∗ X�

a∗ = 0. Note that

x ∈ Null(Xa∗) ⇒ Xa∗x = 0

⇒ X�
a∗Xa∗x = 0

⇒ (X�
a∗Xa∗ + λI)x = λx

⇒ 1
λ

x = (X�
a∗Xa∗ + λI)−1x = V −1

a∗ x.

(9)

3 Even if some context x∗ cannot be strongly attacked, the attacker might be able to
weakly attack it. Weak attack is sufficient for the attacker to force an arm pull of
a∗. However, as ε → 0 strong attack approaches weak attack. Thus we only need to
characterize strong attacks.

192 Y. Ma et al.

Therefore, we have

x�V −1
a∗ X�

a∗ =
1
λ

x�X�
a∗ =

1
λ

(Xa∗x)� = 0. (10)

Now we show the other direction. Note that

x�V −1
a∗ X�

a∗ = 0 ⇒ x�V −1
a∗ X�

a∗Xa∗ = 0

⇒ x�V −1
a∗ (Va∗ − λI) = 0

⇒ x� = λx�V −1
a∗

⇒ (X�
a∗Xa∗ + λI)x = λx

⇒ X�
a∗Xa∗x = 0

⇒ x�X�
a∗Xa∗x = 0

⇒ ‖Xa∗x‖22 = 0
⇒ Xa∗x = 0 ,

(11)

which implies x ∈ Null(Xa∗). �
Proof (Theorem 1). (⇐) According to Lemma 1, condition (i) implies

x�V −1
a∗ X�

a∗(ya∗ + Δa∗) = x�V −1
a X�

a (ya + Δa) = 0. (12)

Combined with (ii) we have for any Δa∗ and Δa,

x�V −1
a∗ X�

a∗(ya∗ + Δa∗) + αa∗ ||x||V −1
a∗

= αa∗ ||x||V −1
a∗

< ε + αa||x||V −1
a

= ε + αa||x||V −1
a

+ x�V −1
a X�

a (ya + Δa) .
(13)

Thus, x cannot be attacked.
(⇒) This is equivalent to prove if ∀a �= a∗,¬(i)∨¬(ii), then x can be attacked.

To show x can be attacked, it suffices to find a solution for the optimization
problem.

If ¬(i), then Xa∗x �= 0 or Xax �= 0. Assume Xa∗x �= 0 (similar for the case
Xax �= 0), then x�V −1

a∗ X�
a∗ �= 0. Let p = Xa∗V −1

a∗ x. For any a �= a∗, arbitrarily
fix some Δa, then define

qa = ε + αa||x||V −1
a

+ x�V −1
a X�

a (ya + Δa) − x�V −1
a∗ X�

a∗ya∗ − αa∗ ||x||V −1
a∗

. (14)

Let Δa∗ = kp, where k = maxa�=a∗ qa
‖p‖2

2
. Thus,

x�V −1
a∗ X�

a∗Δa∗ = p�Δa∗ = k‖p‖22 ≥ qa

‖p‖22
‖p‖22 = qa, ∀a �= a∗. (15)

Therefore, we have for all a �= a∗ that

x�V −1
a∗ X�

a∗(ya∗ + Δa∗) + αa∗ ||x||V −1
a∗

≥ ε + αa||x||V −1
a

+ x�V −1
a X�

a (ya + Δa) ,

(16)
which means x∗ can be attacked.

If ¬(ii), simply letting Δa∗ = −ya∗ and Δa = −ya suffices, concluding the
proof. �

Data Poisoning Attacks in Contextual Bandits 193

5 Side Effects of Attack

While the previous section characterized contexts x∗ that cannot be strongly
attacked, this section asks an opposite question: suppose the attacker was able
to strongly attack some x∗ by solving (8), what other contexts x are affected
by the attack? For example, there might exist some context x �= x∗ whose pre-
attack chosen arm is a(x) = 1, but becomes a′(x) = 2. The side effects can be
construed in two ways: on one hand the attack automatically influence more
contexts than just x∗; on the other hand they make it harder for the attacker
to conceal an attack. The latter may be utilized to facilitate detection by a
defender. In this section, we study the side effect of attack and provide insights
into future research directions on defense.

The side effect is quantified by the fraction of contexts in the context space
such that the chosen arm is changed by the attacker. Specifically, let X be the
context space and P be a probability measure over X . Let a(x) and a′(x) be
the pre-attack and post-attack chosen arm of a context x. Then the side effect
fraction is defined as:

s =
∫

x∈X
1 [a(x) �= a′(x)] P (x)dx. (17)

One can compute an empirical side effect fraction ŝ as follows. First sample m
contexts from P , and then let ŝ = 1

m

∑m
i=1 1 [a(x) �= a′(x)]. It is easy to show

using Chernoff bound that |s − ŝ| decays to 0 at the rate of 1/
√

m.
We now give some properties of the side effect. Specifically, we first show if

x is affected by the attack, cx is also affected by the attack for any c > 0.

Proposition 1. If a context x satisfies a(x) �= a′(x), then a(cx) �= a′(cx) for
any c > 0, where a(x) and a′(x) are the pre-attack and post-attack chosen arm
of x. Moreover, a′(cx) = a′(x), i.e., the post-attack chosen arms for cx and x
are exactly the same.

Proof. First, for any a �= a′(x), define

fa(x) = x�θ̂a′(x) + αa′(x)‖x‖V −1
a′(x)

− x�θ̂a − αa‖x‖V −1
a

. (18)

Note that a′(x) is the best arm after attack, thus fa(x) > 0, ∀a �= a′(x). There-
fore, for any c > 0, we have

fa(cx) = cfa(x) > 0, ∀a �= a′(x) , (19)

which implies that a′(cx) = a′(x). The same argument may be used to show
a(cx) = a(x). Therefore, a′(cx) = a′(x) �= a(x) = a(cx).

Proposition 1 shows that if a context x has a side effect, all contexts on the open
ray {cx : c > 0} also have the same side effect.

Proposition 2. If a context x is strongly attacked, then cx is also strongly
attacked for any c ≥ 1.

194 Y. Ma et al.

Proof. First, for any a �= a∗, define

fa(x) = x�θ̂a∗ + αa∗‖x‖V −1
a∗

− x�θ̂a − αa‖x‖V −1
a

. (20)

Since x is strongly attacked, we have fa(x) ≥ ε, ∀a �= a∗. Therefore fa(cx) =
cfa(x) ≥ fa(x) ≥ ε, which shows that cx is also strongly attacked.

The above propositions are weak in that they do not directly quantify the side
effect fraction s. They only tell us that when there is side effect, the affected
contexts form a collection of rays. In the experiment section we empirically study
the side effect fraction. Further theoretical understanding of the side effect is left
as a future work.

6 Experiments

Our proposed attack algorithm works for any contextual bandit algorithm tak-
ing the form (3). Throughout the experiments, we choose to attack the OFUL
algorithm that has a tight regret bound and can be efficiently implemented.

6.1 Attack Effectiveness and Effort: Toy Experiment

To study the effectiveness of the attack, we consider the following toy experiment.
The bandit has K = 5 arms, and each arm has a payoff parameter θa ∈ Rd where
d = 10, distributed uniformly on the d-dimensional sphere, denoted Sd. To
generate θa, we first draw from a d-dimensional standard Gaussian distribution,
θ̃a ∼ N (0, Id) and then normalize: θa = θ̃a/‖θ̃a‖2.

Next, we construct the historical data as follows. We generate n = 103 his-
torical context vectors {x1, . . . , xn} again uniformly on Sd. For each historical
context x, we pretend the world generates all K rewards {ra : a ∈ A} from the
K arms according to (1), where we set the noise level to σ = 0.1. We then choose
an arm a randomly from a multinomial distribution: a ∼ multi(p1, p2, ..., pK),
where pi′ = exp(ri′)∑

i′∈A exp(ri′)
. This forms one data point (x, a, ra), and we repeat

it for all n points. We then group the historical data to form the appropriate
matrices Xa, ya for every a ∈ A. Note that the historical data generated in this
way is off-policy with respect to the bandit algorithm. The regularization and
confidence parameters are λ = 1 and δ = 0.05, respectively.

In each attack trial, we draw a single target context x∗ ∈ Rd uniformly from
Sd. Without attack, the bandit would have chosen the arm with the highest UCB
based on historical data (3). To illustrate the attack, we will do the opposite and
set the attack target arm a∗ as the one with the smallest UCB instead:

a∗ = argmina∈[K]

{
x∗�θ̂a + αa‖x∗‖V −1

a

}
, (21)

where αa is the UCB parameter of the OFUL algorithm [1]. We set the strong
attack margin as ε = 0.001. We then run the attack on x∗ with Algorithm 2.

We run 100 attack trials. In each trial the arm parameters, historical data,
and the target context x∗ are regenerated. We make two main observations:

Data Poisoning Attacks in Contextual Bandits 195

1. The attacker is effective. All ε-strongly attacks are successful.
2. The attacker’s poisoning Δ is small. The total poisoning can be measured by

‖Δ‖2 =
√∑

a∈[K] ‖Δa‖22 in each attack trial. However, this quantity depends
on the scale of the original pre-attack rewards ya. It is more convenient to
look at the poisoning effort ratio:

‖Δ‖2
‖y‖2 =

√
√
√
√

∑
a∈[K] ‖Δa‖22

∑
a∈[K] ‖ya‖22

. (22)

Figure 1 shows the histogram for the poisoning effort ratio of the 100 attack
trials. The ratio tends to be small, with a median of 0.26, which demonstrates
that the attacker needs to only manipulate about 26% of the rewards.

These two observations indicate that poisoning attack in contextual bandit is
easy to carry out.

Fig. 1. Histogram of poisoning effort ratio in the toy experiment

We now analyze a single, representative attack trial to gain deeper insight
into the attack strategy. In this trial, the UCBs of the 5 arms without attack are

pre-attack: (0.204, 0.097, 0.959, 0.507, 0.818).

That is, arm 3 would have been chosen. As mentioned earlier, a∗ = 2 is chosen
to be the target arm as it has the smallest pre-attack UCB. After attack, the
UCBs of all arms become:

post-attack: (0.204, 0.605, 0.604, 0.507, 0.604).

The attacker successfully forced the bandit to choose arm 2. It did so by poisoning
the historical data to make arm 2 look better and arms 3 and 5 look worse. It
left arms 1 and 4 unchanged.

196 Y. Ma et al.

Figure 2 shows the attack where each panel is the historical rewards where
that arm was chosen. We show the original rewards (yai, blue circle) and post-
attack rewards (yai + Δai, red cross) for all historical points i where arm a was
chosen. Intuitively, to decrease the UCB of arm a the attacker should reduce
the reward if the historical context x is “similar” to x∗, and boost the reward
otherwise. To see this, we sort the historical points by the inner product x�x∗ in
ascending order. As shown in Fig. 2(c) and (e), the attacker gave the illusion that
these arms are not good for x∗ by reducing the rewards when x�x∗ is large. The
attacker also increased the rewards when x�x∗ is very negative, which reinforces
the illusion. In contrast, the attacker did the opposite on the target arm as shown
in Fig. 2(b).

(a) arm 1 (b) arm 2 (c) arm 3 (d) arm 4 (e) arm 5

Fig. 2. Original reward yai and post-attack reward yai+Δai for each arm. (Color figure
online)

(a) arm 1 (b) arm 2 (c) arm 3 (d) arm 4 (e) arm 5

Fig. 3. The reward poisoning Δai for each arm.

6.2 Attack on Real Data: Yahoo! News Recommendation

To further demonstrate the effectiveness of the attack algorithm in real appli-
cations, we now test it on the Yahoo! Front Page Today Module User Click
Log Dataset (R6A).4 The dataset contains a fraction of user click log for news
articles displayed in the Featured Tab of the Today Module on Yahoo! Front
Page (http://www.yahoo.com) during the first ten days in May 2009. Specifi-
cally, it contains about 46 million user visits, where each user is represented as
a 6-dimensional contextual vector. When a user arrives, the Yahoo! Webscope
program selects an article (an arm) from a candidate article pool and displays it

4 URL: https://webscope.sandbox.yahoo.com/catalog.php?datatype=r.

http://www.yahoo.com
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

Data Poisoning Attacks in Contextual Bandits 197

to the user. The system receives reward 1 if the user clicks on the article and 0
otherwise. Contextual information about users can be found in prior work [13].

To apply the attack algorithm, we require that the set of arms remain
unchanged. However, the Yahoo! candidate article pool (i.e., the set of arms)
varies as new articles are added and old ones are removed over time. Nonethe-
less, there are long periods of time where the set of arms is fixed. We restrict
ourselves to such a stable time period for our experiment (specifically the period
from 7:25 to 10:35 on May 1, 2009) in the Yahoo! data, which contains 243,667
user visits. During this period the bandit has K = 20 fixed arms. We further
split the time period such that the first n = 8000 user visits are used as the his-
torical training data to be poisoned, and the remaining m = 163, 667 data points
as the test data. The bandit learning algorithm uses regularization λ = 1. The
confidence parameter is δ = 0.05. The subGaussian parameter is set to σ = 1

4
for binary rewards.

We simulate attacks on three target user context vectors: The most frequent
user context vector x∗ = x̄, a middle user context vector x∗ =x, and the least
frequent user context vector x∗ = x in the test data. These three user context
vectors appeared 5508, 106, and 1 times, respectively, in the test data. Note
that there are potentially many distinct real-world users that are mapped to the
same user contextual vector, therefore the “user” in our experiment does not
necessarily mean a real-world individual that appeared thousands of times.

We again choose as the target arm a∗ the worst arm on the target user
as defined by (21). To determine the target arm, we first simulate the bandit
algorithm on the original (pre-attack) training data, and then pick the arm with
the smallest UCB for that user. For the three target users we consider, the target
arms are 8, 3, and 8 respectively. The attacker uses attack margin ε = 0.001.

Different from the toy example where the reward can be any value in R, the
reward in the Yahoo! dataset must be binary, corresponding to a click-or-not
outcome of the recommendation. Therefore, the attacker must enforce yai+Δai ∈
{0, 1}. However, this results in a combinatorial problem. To preserve convexity,
we instead relax the attacked reward into a box constraint: yai + Δai ∈ [0, 1].
We add these new constraints to (8) and solve the following optimization:

min
Δ∈Rn

∑

a∈[K]

‖Δa‖22

s.t. x∗�θ̂a∗ + αa∗‖x∗‖V −1
a∗

≥ ε + x∗�θ̂a + αa‖x∗‖V −1
a

, ∀a �= a∗,

yai + Δai ∈ [0, 1], ∀i ∈ [ma], ∀a,

where θ̂a = V −1
a X�

a (ya + Δa), ∀a.

(23)

After the real-valued Δai is computed, the attacker performs rounding to
turn yai + Δai into 0 or 1. Specifically, the attacker thresholds yai + Δai with a
constant c ∈ [0, 1], so that if yai +Δai > c, then let the post-attack reward be 1,
otherwise let the post-attack reward be 0. Note that the poisoned rewards now
correspond to “reward flipping” from 0 to 1 or vice versa by the attacker. In our
experiment, we let the attacker try out 104 thresholds c equally distributed in

198 Y. Ma et al.

[0, 1]. The attacker examines different thresholds for two concerns. First, there
is no guarantee that the thresholded solution still triggers the target arm pull,
thus the attacker needs to check if the selected arm for x∗ is a∗. If not, the
corresponding threshold c is inadmissible. Second, among those thresholds that
indeed trigger the target arm pull, the attacker selects the one that minimizes the
number of flipped rewards, which corresponds to the smallest poisoning effort in
the binary reward case.

In Table 1, we summarize the experimental results for attacking the three
target users. Note that the attack is successful on all three target users. The
best thresholds c for x̄, x and x are 0.0449, 0.1911, and 0.0439, respectively. The
number of flipped rewards is small compared to n = 8000, which demonstrates
that the attacker only needs to spend little cost in order to force the bandit to
pull the target arm. Note that the poisoning effect ratio is relatively large. This
is because most of the pre-attack rewards are 0, in which case the denominator
in (22) is small.

Table 1. Results of experiments on Yahoo! data

x̄ x x

Strong attack successful? True True True

Number [percentage] of flipped rewards 82 [1.0%] 9 [0.1%] 19 [0.2%]

Poisoning effort ratio 0.572 0.189 0.275

In Fig. 4, we show the reward poisoning Δ on the historical data against
the three target users, respectively. In all three cases, only a few rewards of the
target arm are flipped from 0 to 1 by the attacker while those of the other arms
remain unchanged. Therefore, we only show the reward poisoning on historical
data restricted to the target arm (namely on ya∗). The 82 and 19 flipped rewards
overlap in Fig. 4(a) and (c). Note that the contexts of those flipped rewards are
highly correlated with x∗.

(a) Most frequent user x∗ = x̄ (b) Medium frequent user x∗ =x (c) Least frequent user x∗ = x

Fig. 4. The reward poisoning Δai on three target users.

Data Poisoning Attacks in Contextual Bandits 199

6.3 Study on Feasibility

The attack feasibility depends on the historical contexts X, the bandit algorithm-
specific UCB parameter α, the attack margin ε, the target arm a∗, and the target
context x∗. To visualize the infeasible region of strong attack on context, we
consider the following toy example.

The bandit has K = 4 arms. The attacker’s target arm is a∗ = 4, and the
target context x∗ lies in R3. The historical context vectors are

X1 = [1, 0, 0], X2 = [0, − 1, 1], X3 = [0, 2, 0], X4 = [2, 0, 0]. (24)

The problem parameters are σ = S = λ = ε = 1 and δ = 0.05. According to
Theorem 1, any infeasible target context x∗ satisfies X4x

∗ = 0. Thus such x∗

must lie in the subspace spanned by the y-axis and z-axis. This allows us to show
infeasible regions as 2D plots. In Fig. 5(a), we show the infeasible regions. We
distinguish the infeasible region due to each non-target arm by a different color.
For example, the infeasible region due to arm 1 consists of all contexts on which
the target arm a∗ can never be ε-better than arm 1 regardless of the attack. Note
that the infeasible region due to arm 2 is a line segment of finite length, while
that due to arm 3 is the whole y = 0 line. The shape of the infeasible region due
to each non-target arm varies because the historical data differs and therefore
the conditions in Theorem 1 characterizes different shapes. Note that the origin
x = 0 satisfies the conditions in Theorem 1 and therefore is always infeasible.

One important observation is that, if the bandit algorithm is trained on more
historical data, more context vectors x∗ can potentially be strongly attacked. For-
mally, as indicated by Theorem 1 as the null space of historical context matrices
Xa, a ∈ [K] shrinks, the infeasible region shrinks as well. To demonstrate this, in
Fig. 5(b) we add a context [0, 0, 0.5] to X1 such that the historical contexts are:

X1 =
[
1, 0, 0
0, 0, 0.5

]

, X2 = [0, − 1, 1], X3 = [0, 2, 0], X4 = [2, 0, 0] . (25)

Now that Null(X1) is reduced, the infeasibility region due to arm 1 shrinks
from the circle in Fig. 5(a) to a horizontal line segment in Fig. 5(b). However
the infeasible region may not shrink to a subset of itself, as indicated by the
line segment having wider length along y axis than the original circle, thus the
shrink happens in the sense of being restricted to a lower-dimensional subspace.

Next we add a historical context [0, 1, 0] to X4:

X1 =
[
1, 0, 0
0, 0, 0.5

]

, X2 = [0, − 1, 1], X3 = [0, 2, 0], X4 =
[
2, 0, 0
0, 1, 0

]

.

Then the infeasibility region due to arm 1 and arm 2 both shrink to the origin
while arm 3 becomes a line segment, as shown in Fig. 5(c).

In practice, historical data is often abundant so that ∀a �= a∗, Xa∗ ∪ Xa

spans the whole Rd space, and the only infeasible point is the origin. That is,
the attacker can choose to attack essentially any context vector.

200 Y. Ma et al.

(a) original data (b) Context added to X1 (c) Context added to X4

Fig. 5. Infeasible region due to each non-target arm.

Another observation is that the infeasible region shrinks as the attack margin
ε decreases, as shown in Fig. 6. The historical data for each arm is the same
as (24). The reason is that a smaller ε makes the constraints in (8) easier to satisfy
and therefore more contexts are feasible. As ε → 0 the infeasible region converges
to those contexts that cannot be weakly attacked, which in this example is the
line y = 0 in Fig. 6(c). Note that the contexts that cannot be weakly attacked
are those that make (6) infeasible. Therefore, we see that without abundant
historical data, there will be some contexts that can never be strongly attacked
even when ε → 0. Also note that the origin x∗ = 0 can never be strongly attacked
by definition.

(a) ε = 1 (b) ε = 0.5 (c) ε = 0.1

Fig. 6. Infeasible region shrinks as attack margin ε decreases.

6.4 Study on Side Effects

We first give an intuitive illustration of the side effect in 2D space. The bandit has
K = 3 arms, where the arm parameters are θa. We generate n = 1000 historical
data same as before with noise σ = 0.1. The target context x∗ is uniformly
sampled from X . The bandit algorithm uses regularization weight λ = 1 and
confidence parameter δ = 0.05. Without attack, the UCB for the three arms are

pre-attack: (−0.419, 0.192, 1.013). (26)

Data Poisoning Attacks in Contextual Bandits 201

Therefore without attack arm 3 would have been chosen. By our design choice,
the target arm is a∗ = 1. The attacker uses margin ε = 0.001. After attack the
UCBs of all arms become:

post-attack: (0.290, 0.192, 0.289). (27)

As shown in Fig. 7, the attacker forces the post-attack parameter of the best arm
θ̂3 to deviate from x∗ while making θ̂1 closer to x∗. Note that the attacker could
also change the norm of the parameter. Note that arm 2 is not attacked, thus θ2
and θ̂2 overlap. The side effect is denoted by the brown arcs on the circle, where
the arms chosen for those contexts are changed by the attacker. The side effect
fraction for this example is ŝ = 0.315.

Fig. 7. Side effect shown in 2D context space.

Now we design a toy experiment to study how the side effect depends on
the number of arms and the problem dimension. The context space X is the d-
dimensional sphere Sd and P is uniform on the sphere. The bandit has K arms,
where the arm parameters are sampled from P . Same as before, we generate n =
2000 historical data with noise σ = 0.1. The bandit algorithm uses regularization
weight λ = 1. The target context x∗ is sampled from P . The attacker’s margin
is ε = 0.001 and the target arm a∗ is the worst arm on the target context x∗.
We sample m = 103 contexts from P to evaluate ŝ.

In Fig. 8, we fix d = 2 and show a histogram of ŝ as the number of arm varies.
Note that the attack affects about 30% users. The median ŝ for the three panels
are 0.249, 0.317, and 0.224 respectively, which shows that the side effect does
not grow with the number of arms.

In Fig. 9, we fix K = 5 and show the side effect as the dimension d varies.
The median ŝ for the three panels are 0.435, 0.090, and 0.035, respectively, which
implies that in higher dimensional space, the side effect tends to be smaller.

202 Y. Ma et al.

(a) K = 2 (b) K = 20 (c) K = 200

Fig. 8. Side effect fraction as arm number K increases.

(a) d = 2 (b) d = 20 (c) d = 200

Fig. 9. Side effect fraction as dimension d increases.

As the dimension d increases, the attack has less side effect. This exposes the
hazard that in real-world applications where the problem dimension is high, the
attack will be hard to detect from side effects.

We also study the side effect for the real data experiment. There we use the
m = 163, 667 test users to evaluate the side effect. The side effect fraction for
the three users are 0.5391, 0.0750, and 0.5040, respectively. Note that the most
frequent user and the least frequent user have a large side effect, which makes
the attack easy to detect. In contrast, the side effect of the medium frequent
user is extremely small. This implies that the attack can induce different level
of side effect for different target users.

7 Conclusions and Future Work

We studied offline data poisoning attack of contextual bandits. We proposed an
optimization-based attack framework against contextual bandit algorithms. By
manipulating the historical rewards, the attack can successfully force the bandit
algorithm to pull a pre-specified arm for some target context. Experiments on
both synthetic and real-world data demonstrate the effectiveness of the attack.
This exposes a security concern in AI systems that involve contextual bandits.

There are several future directions that can be explored. For example, our
current attack only targets a single context x∗. Future work can characterize

Data Poisoning Attacks in Contextual Bandits 203

how to target a set of contexts simultaneously, i.e., force the bandit algorithm
to pull the target arm for all contexts in some target set. In the simplest case
where the set contains finitely many contexts, one can just replicate the con-
straint in (8) for each context in the set. The situation is more complicated if
the target set is infinite or just too large. Another interesting question is how
to develop defense mechanisms to protect the bandit from being attacked. As
indicated in this paper, the defender can rely on the side effect to sense the
existence of attacks. Conversely, it is also an open question how the attacker
might attempt to minimize its side effect during the attack, so that the chances
of being detected are minimized. Finally, in this paper we restrict the ability
of the attacker to manipulating only the historical rewards. However, there are
other types of attacks such as poisoning the historical contexts, adding addi-
tional data points, removing existing data points, or combinations of the above.
The problem could become non-convex or even combinatorial depending on the
type of the attack; some of these settings have been studied under the name
“machine teaching” [18,19]. Future work needs to identify how to extend our
current attack framework to more general settings.

Acknowledgment. This work is supported in part by NSF 1545481, 1704117,
1623605, 1561512, and the MADLab AF Center of Excellence FA9550-18-1-0166.

References

1. Abbasi-Yadkori, Y., Pál, D., Szepesvári, C.: Improved algorithms for linear stochas-
tic bandits. In: Advances in Neural Information Processing Systems (NIPS), pp.
2312–2320 (2011)

2. Agarwal, A., et al.: Making contextual decisions with low technical debt (2016).
coRR abs/1606.03966

3. Alfeld, S., Zhu, X., Barford, P.: Data poisoning attacks against autoregressive
models. In: The 30th AAAI Conference on Artificial Intelligence (2016)

4. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

5. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector
machines. In: Proceedings of the 29th International Coference on International
Conference on Machine Learning (ICML), pp. 1467–1474 (2012)

6. Chapelle, O., Manavoglu, E., Rosales, R.: Simple and scalable response prediction
for display advertising. ACM Trans. Intell. Syst. Technol. 5(4), 61:1–61:34 (2014)

7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: International Conference on Learning Representations (2015)

8. Greenewald, K., Tewari, A., Murphy, S.A., Klasnja, P.V.: Action centered contex-
tual bandits. In: Advances in Neural Information Processing Systems 30 (NIPS),
pp. 5979–5987 (2017)

9. Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., Li, B.: Manipulating
machine learning: poisoning attacks and countermeasures for regression learning.
arXiv preprint arXiv:1804.00308 (2018)

10. Joseph, A.D., Nelson, B., Rubinstein, B.I.P., Tygar, J.: Adversarial Machine Learn-
ing. Cambridge University Press, Cambridge (2018)

http://arxiv.org/abs/1804.00308

204 Y. Ma et al.

11. Kuleshov, V., Precup, D.: Algorithms for multi-armed bandit problems (2014).
coRR abs/1402.6028

12. Li, B., Wang, Y., Singh, A., Vorobeychik, Y.: Data poisoning attacks on
factorization-based collaborative filtering. In: Advances in Neural Information Pro-
cessing Systems, pp. 1885–1893 (2016)

13. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to per-
sonalized news article recommendation. In: Proceedings of the 19th International
Conference on World Wide Web (WWW), pp. 661–670 (2010)

14. Mei, S., Zhu, X.: The security of latent Dirichlet allocation. In: The 18th Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS) (2015)

15. Mei, S., Zhu, X.: Using machine teaching to identify optimal training-set attacks on
machine learners. In: The 29th AAAI Conference on Artificial Intelligence (2015)

16. Ng, A.Y., Harada, D., Russell, S.J.: Policy invariance under reward transforma-
tions: theory and application to reward shaping. In: Proceedings of the 16th Inter-
national Conference on Machine Learning (ICML), pp. 278–287 (1999)

17. Zhao, M., An, B., Yu, Y., Liu, S., Pan, S.J.: Data poisoning attacks on multi-task
relationship learning. In: Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, pp. 2628–2635 (2018)

18. Zhu, X.: Machine teaching: an inverse problem to machine learning and an app-
roach toward optimal education. In: The 29th AAAI Conference on Artificial Intel-
ligence (AAAI “Blue Sky” Senior Member Presentation Track) (2015)

19. Zhu, X., Singla, A., Zilles, S., Rafferty, A.N.: An overview of machine teaching.
arXiv e-prints, January 2018. https://arxiv.org/abs/1801.05927

https://arxiv.org/abs/1801.05927

	Data Poisoning Attacks in Contextual Bandits
	1 Introduction
	2 Review of Contextual Bandit
	3 Attack Algorithm in Contextual Bandit
	4 Feasibility of Attack
	5 Side Effects of Attack
	6 Experiments
	6.1 Attack Effectiveness and Effort: Toy Experiment
	6.2 Attack on Real Data: Yahoo! News Recommendation
	6.3 Study on Feasibility
	6.4 Study on Side Effects

	7 Conclusions and Future Work
	References

