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Abstract. In this paper, we consider a 4-player, two stage Colonel
Blotto game in which one player, the attacker, simultaneously partic-
ipates in three disjoint Colonel Blotto games against three defenders.
During the first stage of the game, the defenders can choose to form
independent coalitions by transferring resources (troops, funds, comput-
ing resources, etc.) among each other if the transfer benefits the defenders
involved. In the second stage, the attacker observes these transfers among
defenders and then allocates a portion of his overall resources to fight
against each defender. We find that the formation of coalitions depends
on both the ratios of resources between the attacker and the defend-
ers and on each defender’s total battlefield value to resource ratio. For
one parameter region, we completely characterize the subgame-perfect
Nash equilibrium. For another parameter region, we show that there are
parameters of the game for which transfers occur and provide a compu-
tational method to calculate those transfers.

Keywords: Constant sum game with resource constraints
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1 Introduction

The Colonel Blotto game, first proposed by Borel in 1921 [2,3], is a classic
constant-sum model of resource allocation between two budget constrained play-
ers. In this game, two players, Colonels A and B, have resource levels XA and
XB , respectively. Each player allocates his resources across a finite number of
battlefields. Whichever player allocates the most resources to a single battle-
field wins that battle. The winner of the game is the player that wins the most
battlefields.

The Colonel Blotto game has diverse applications within military and secu-
rity domains, where agencies allocate limited resources across various geographic
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locations to counter adversarial threats. In addition, the model is useful to ana-
lyze situations including network resource games [12,20], cyber-security games
[5,11,16], economic contests [7,14], and political contests [8,15,19].

While the Colonel Blotto game seems relatively straightforward, it has proven
difficult to solve. Borel’s original formulation was first solved by Borel and Ville
in 1938 for two players, three battlefields, and symmetric resource allocation [4].
In 1950, Gross and Wagner [9] solved the game for symmetric resource allocation
and more than three battlefields. They also solved the case of two battlefields
and asymmetric resource allocation. However, the Colonel Blotto game remained
unsolved for asymmetric player resources and an arbitrary number of battle-
fields until Roberson’s seminal work in 2006 [17]. Roberson advanced the field
significantly, with many follow-on works that extended his solution to specific
applications.

In this work, we consider a four-player, two-stage Colonel Blotto game in
which one player, the attacker, simultaneously participates in three disjoint
Colonel Blotto games against three defenders. During the first stage of the game,
the defenders can choose to form an alliance, or coalition, by transferring a
single-dimensional resource (troops, funds, computing resources, etc.) from one
defender to another. This transfer between two defenders only occurs when the
transfer will not decrease both defenders’ payoffs in the final stage. The attacker
observes these transfers between defenders and then allocates a portion of his
overall resources to the final stage Colonel Blotto game against each defender.

Similar to [10,11,13], we consider a model of noncooperative alliances in
which only individually rational ex ante transfers of resources are allowed. As
such, the model does not rely on any assumption of commitment to a coalition
nor the ex post division of payoffs.

We find that the formation of coalitions, based on the transfer of resources,
depends on both the ratios of resources between the attacker and a defender and
on each defender’s total battlefield value to resource ratio. In one case that we
study, only resource rich defenders are willing to transfer resources. However,
in another case, somewhat counter-intuitively, the most resource rich defender
does not necessarily transfer resources to other defenders. Instead, defenders that
have a lower total battlefield value to resource ratio are those that tend to be
willing to transfer resources.

Other authors have considered coalition formation in Colonel Blotto games.
In [14], Kovenock and Roberson consider the same game that we’ve described
above but with only two defenders. In addition, they only consider cases where
transfers between defenders strictly improve the payoff of each defender. The
authors characterize the attacker’s resource division strategy for multiple regions
of the resource budget and calculate parameters for when a transfer of resources
between defenders occurs. However, they do not calculate the amount of resource
transfer. In [11], Gupta et al. also consider a multi-stage, one attacker, two
defender complete information Colonel Blotto game. In their formulation, in
addition to transferring resources, the two defenders can choose to add additional
battlefields, at some cost per battlefield. The authors find the subgame-perfect
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Nash equilibrium (SPNE) for this game for certain parameter regions. Finally, in
[10], Gupta et al. consider a change to the information structure from [11], where
the attacker can not observe the resource transfer between the two defenders.
They find that in some parameter regions the SPNE remains unchanged, while
in other regions the SPNE is significantly different from [11].

As far as we are aware, this work is the first attempt to extend this multi-stage
Colonel Blotto game setting to more than two defenders. In the two defenders
case, there is only one possible coalition formation. In the N defender case,
the number of possible coalitions are N(N−1)

2 = O(N2). Thus, the seemingly
simple extension to the previous case requires us to investigate a large number
of possible coalition formations. We view our work as an attempt to identify
situations where the analysis can be simplified and understand regimes where
coalitions can be formed.

1.1 Outline of the Paper

In Sect. 2, we present a brief overview of the Classical Colonel Blotto game and
review the pertinent results from [17]. Following that, we formalize the multi-
stage model used throughout this paper in Sect. 3 and present the main results.
In Sect. 4, we derive the best response of the attacker. Sections 5 and 6 are
devoted to computing the equilibrium transfers among the defenders under two
assumptions on the strength of the attacker. Finally, in Sect. 7, we conclude with
an analysis of the work and highlight directions for future work.

2 The Classical Colonel Blotto Model

In this section, we introduce the classic asymmetric resource, homogeneous bat-
tlefield value Colonel Blotto game (CBG) and appropriate notations. In the clas-
sic CBG, two players, call them A and B, simultaneously allocate their forces,
XA and XB , across a finite number, n, of homogeneous battlefields with value v.
Battlefield values are homogeneous; therefore, we have vj = vk ∀j, k ∈ {1, . . . , n}.
If a player sends a higher level of force to battlefield j, then that player wins that
battlefield and receives a payoff of vj . If the player sends a lower level of force to
battlefield j, then that player loses and receives a payoff of 0. Each player’s total
payoff in the game is the sum of the payoffs across the battlefields. Without loss
of generality, assume XA ≤ XB , so that player B is the “stronger” player. In
the case of a tie, we follow [17] and assume that player B wins the battlefield.

More formally, we can define the classic CBG similarly to the definition in
[6]. The classic CBG

{P, {X}i∈P , {Xi}i∈P ,N , {vj}n
j=1, {Ui}i∈P

}
is defined by six

components: (a) the players in the set P � {A,B}, (b) the strategy spaces Xi

for i ∈ P, (c) the available resource Xi for i ∈ P, (d) the set of n battlefields,
N , (e) the homogeneous value of each battlefield, vj = vk ∀j, k ∈ N , and (f) the
utility function Ui for each player i ∈ P.

The force allocated to each battlefield must be non-negative. Therefore, the
strategy space of each player corresponds to the set of feasible allocations across
the n battlefields and is given by
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Xi =

{

xi ∈ Rn
≥0 |

n∑

j=1

xi,j ≤ Xi

}

, (1)

where xi,j is the number of allocated resources by player i to battlefield j.
The payoff of player i on battlefield j is defined as:

ui,j(xi,j , x−i,j) =

⎧
⎪⎨

⎪⎩

vj if xi,j > x−i,j ,

t.b.r if xi,j = x−i,j ,

0 if xi,j < x−i,j ,

(2)

where t.b.r indicates the tie breaking rule and we use the common game
theoretic notation −i to refer to all players except player i. We follow [17] and
the tie breaking rule is to assume that the stronger player (player with greater
resources) wins the battlefield.

Finally, the utility function, Ui, for each player is defined as:

Ui(xi,x−i) =
n∑

j=1

ui,j(xi,j , x−i,j). (3)

The classic CBG is a complete information game. All parameters of the game,

CBG
{P, {X}i∈P , {Xi}i∈P ,N , {vj}n

j=1, {Ui}i∈P
}
,

are assumed to be common knowledge among all players.

2.1 Strategies of the Players

In the trivial case, 1
nXB ≥ XA, there exists a pure strategy equilibrium where

player B plays such that xB,j ≥ 1
nXB ≥ XA, xB ∈ XB and wins all of the

battlefields. For non-trivial cases, 1
nXB < XA ≤ XB , it is well known that there

is no pure strategy equilibrium [17]. Following [17], we define a mixed strategy,
or distribution of force, for player i as an n-variate distribution function Pi :
Rn

≥0 → [0, 1] with support in Xi, and with one-dimensional marginal distribution
functions

{
F j

i

}
j∈{1,...,n}. A single play of the game for player i corresponds to a

random n-tuple drawn from Pi with the set of univariate marginal distribution
functions

{
F j

i

}
j∈{1,...,n}.

2.2 Nash Equilibrium of the Classic Colonel Blotto Game

Roberson completely characterized the unique equilibrium payoffs for the asym-
metric resource, homogeneous battlefield value CBG in [17]. Below we summarize
his results for the cases that we study in this work.

Lemma 1 (Roberson [17,18]). For the Classic Colonel Blotto Game,

CBG
{{1, 2}, {B1,B2}, {r1, r2},N , {v}, {U1, U2}

}
,
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with n ≥ 3, assume that r1 and r2 are such that 1
n−1 ≤ r1

r2
≤ n − 1. Then the

payoff functions under Nash equilibrium are given by:

P 1(CBG) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nv
(

2
n − 2r2

n2r1

)
if 1

n−1 ≤ r1
r2

< 2
n ,

nv
(

r1
2r2

)
if 2

n ≤ r1
r2

≤ 1,

nv
(
1 − r2

2r1

)
if 1 ≤ r1

r2
≤ n

2 ,

nv
(
1 − 2

n + 2r1
n2r2

)
if n

2 < r1
r2

< n − 1,

P 2(CBG) = nv − P 1(CBG).

If r1 = 0, then P 1(CBG) = 0.

For a detailed proof of Lemma1, see [17,18]. Roberson’s result in [17] estab-
lishes the existence of the n-variate distributions with support in B1,B2 and with
the equilibrium payoffs in Lemma1. These n-variate distributions are not unique.
However, since the game is constant sum, (P 1(CBG) + P 2(CBG) = nv), the
equilibrium payoffs are unique by ordered interchangeability property of multi-
ple saddle-point equilibria in zero-sum games (we note here that constant sum
games are strategically equivalent to zero-sum games).

3 Problem Formulation and Main Results

We consider a 3 + 1 players, two-stage Colonel Blotto game. In this formulation,
the first three players (defenders) fight against a common attacker. The initial
resource allocation of the three defenders is denoted by βi, i ∈ {1, 2, 3}. Similarly,
we use α to denote the total resources of the attacker. The battle between the
attacker and Player i takes place on ni ≥ 3 battlefields, where each battlefield
has equal payoff vi > 0. The description of the two stages are given below.

3.1 Stage One

In this stage, each defender decides on an amount of resources to transfer to the
other two defenders, based on whether this transfer of resources will not decrease
her expected payoff at the final stage. She also decides whether or not to accept
resources from other defenders. We define ti,j as the transfer of resources from
defender i to defender j and tj,i as transfer in the opposite direction. Since each
defender’s resource level, ri, in the final stage game must be greater than or
equal to zero, the total transfer out from defender i must be less than or equal
to her starting resource level, βi.

Thus, the resource level of each defender after transfer is complete is:

ri(ti,1, ti,2, ti,3, t1,i, t2,i, t3,i) = βi +
3∑

j=1

(tj,i − ti,j),

ti,i = 0,

3∑

j=1

ti,j ≤ βi.
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For notational clarity, we define the strategy vector of transfers to/from
defender i as ti = (ti,1, ti,2, ti,3, t1,i, t2,i, t3,i). We also define t = (t1, t2, t3) to
represent all of the defenders’ strategy vectors. In addition, in a slight abuse of
notation, we use ri to represent ri(ti) and αi to represent αi(t).

3.2 Stage Two (Final Stage)

Once the transfers are complete in the first stage, the attacker decides on the
amount of resources, αi, to allocate to each final stage battle such that:

3∑

i=1

αi(t) ≤ α, αi(t) ≥ 0.

In the final stage of the game each defender battles with the attacker in
an independent classic Colonel Blotto game using the resource allocation deter-
mined in stage one. The set of players for each battle is P � {A,Bi}, where
A represents the attacker and Bi represents defender i. Each individual battle
takes place over a set of battlefields, Ni = {1, . . . , ni}, belonging to defender i.
For defender i, each battlefield has homogeneous value vk = vk′ ∀k, k′ ∈ Ni. The
strategy space of the attacker and defender in this game is, respectively,

Ai =

{

αi ∈ Rni

≥0 |
∑

j∈Ni

αi,j ≤ αi

}

, Ri =

{

ri ∈ Rni

≥0 |
∑

j∈Ni

ri,j ≤ ri

}

.

Using the notation introduced in Sect. 2, each defender battles the attacker
in a CBG given by:

CBG
{{A,Bi}, {Ai,Ri}, {αi, ri},Ni, vi, {Ui}i∈P

}
.

In shorthand notation, we refer to this individual final stage game as CBGi.
We annotate the overall two-stage game described in this section as:

2CB
{{A, {Bi}}, {α, {βi}}, {Ni}, {vi}

}
with i ∈ {1, 2, 3}

and refer to this overall two-stage game as 2CB.
In the overall game 2CB, the payoff to defender i is her payoff in the game

CBGi. The attacker’s overall payoff is the sum of his payoffs in the individual
CBGi games.

In this work, we consider a small subset of the possible parameter regions.
We focus on games where if all players play according to the SPNE in the first
stage, then the resource allocation at the final stage is such that 2

ni
< αi

ri
< ni

2
for all i ∈ {1, 2, 3} or αi = 0 for some i ∈ {1, 2, 3}. The two specific cases that
we consider are:

1. 2
ni

< αi

ri
< 1 ∀i ∈ {1, 2, 3},

2. 2
ni

< ri

αi
< 1 ∀i ∈ {1, 2, 3}.

We also introduce the following notation for clarity in presentation of the
results. Let D = {1, 2, 3} represent the set of defenders. Also, let Ki = nivi,
which is the total battlefield value (value of the game) CBGi.
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3.3 Main Results

In this subsection, we present the main results of the paper and briefly discuss
the results. For clarity, we present the proofs of these results and a more detailed
discussion in Sects. 4–6.

The proof outline for all three of the theorems we present here is similar and
relies on using backwards induction to find the subgame-perfect Nash equilib-
rium (SPNE). Starting at the final stage, games, CBGi, we use the results from
[17] to calculate the Nash equilibrium (NE) of the final stage. We then calculate
the attacker’s optimal resource allocation in response to the stage one resource
transfers between the defenders. Finally, we rank order the defenders based on
the starting resource levels and calculate the defenders’ optimal resource alloca-
tion to find the NE of the subgame starting at stage one.

We first consider the case where the attacker is the weakest player in the
game. As such, the resource levels of the defenders and attacker are such that
α < min{β1, β2, β3}. In addition, assume that the vector of resource transfers, t,
is such that the game remains in case 1, 2

ni
< α

ri
< 1 ∀i ∈ {1, 2, 3}. In general,

one can think of the ratio Ki

βi
as the relative strength of each defender. Without

loss of generality, we index defenders by inverse relative strength:

K1

β1
≥ K2

β2
≥ K3

β3
. (4)

Theorem 1. Consider a two-stage game, 2CB, where the parameters of the
game are such that:

1. α < min{β1, β2, β3},
2. 2

ni
< α

ri
< 1 ∀i ∈ {1, 2, 3},

3. β2(K1 + K3) − K2(β1 + β3) ≥ 0,
4. K1

β1
> K2

β2
.

then there is a family of SPNEs such that:

α∗
1 = α,

α∗
2 = 0, α∗

3 = 0,

t∗1,2 = t∗1,3 = 0,

t∗2,1 + t∗2,3 ≥ 0,

t∗3,1 + t∗3,2 ≥ 0,

t∗2,1 + t∗2,3 < t∗3,2 +
β2(K1 + K3) − K2(β1 + β3)

K1 + K2 + K3
,

t∗3,1 + t∗3,2 < t∗2,3 +
β3(K1 + K2) − K3(β1 + β2)

K1 + K2 + K3
.
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From Theorem 1, we see that when the attacker is the weakest player in the
game his optimal strategy is to battle with only one defender. However, the
defender that he battles with is not necessarily the weakest defender in terms of
overall resources, but the defender that is weakest in terms of resources to total
battlefield value. Another observation is that defenders with less resources are
willing to transfer resources to a defender with a higher resource level, as long
as that transfer doesn’t result in the defender making the transfer becoming the
relatively weakest player.

We next consider the case where the attacker is much stronger than all of
the defenders combined. We assume that α >

∑3
i=1 βi. In addition, assume that

the vector of resource transfers, t, is such that the game remains in case 2,
2
ni

< ri

αi
< 1 ∀i ∈ {1, 2, 3}.

Theorem 2. Consider a two-stage game, 2CB, where the parameters of the
game are such that:

1. 2
ni

< ri

αi
< 1 ∀i ∈ {1, 2, 3},∀t,

2. βi − βk > 2
√

Ki

Kk

√
βiβk +

√
βk

Kk

√
Kjβj

then there is a positive transfer from defender i to defender k, ti,k > 0.

Unlike the weakest attacker case, we observe from Theorem 2 that resource
transfers only occur from a defender with a higher resource level to a defender
with a lower resource level. In addition, if the difference in the resource levels
between two defenders is higher than a certain threshold, then we observe that
a transfer of some resources is a dominant strategy for those defenders. Finally,
recall from the problem formulation in Sect. 3.1 that our model allows defender
k to choose whether or not to accept a transfer from defender i. In the proof of
Lemma 5 in Sect. 6, we find that defender k is always willing to accept resources
from defender i whenever defender i is willing to transfer those resources. We also
show that there are parameter regions where one defender is willing to accept
resources, but other defenders are not willing to transfer. As a result, there is
no coalition formation in this situation.

Finally, we consider a specific parameter configuration of the game and show
that, in equilibrium, the strongest defender in terms of initial resource allocation,
defender 1, transfers resources to at least one other defender and that there is
no transfer between defenders 2 and 3.

Theorem 3. Consider a two-stage game, 2CB, where the parameters of the
game are such that:

1. 2
ni

< ri

αi
< 1 ∀i ∈ {1, 2, 3},∀t,

2. β1 − β2 > 2
√

K1
K2

√
β1β2 +

√
β2
K2

√
K3β3,

3. β1 − β3 > 2
√

K1
K3

√
β1β3 +

√
β3
K3

√
K2β2,

4. β1+β2
2 − β3 ≤ 2

√
K2
K3

√
β2β3 +

√
β3
K3

√
K1

β1+β2
2 ,
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5. β1+β3
2 − β2 ≤ 2

√
K3
K2

√
β2β3 +

√
K1
K2

√
β1+β2

2
β2+β3

2 ,
6. β1 > β2 ≥ β3.

Then t∗2,3 = t∗3,2 = 0, t∗2,1 = t∗3,1 = 0, t∗1,2, t
∗
1,3 ≥ 0, where t1,2 and t1,3 are

solutions to defender 1’s optimization problem:

max
t1,2,t1,3

φ1(t1) =
√

K1r1
2α

(
3∑

j=1

√
Kjrj

)

subject to 0 ≤ t1,2 <
β1 − β2

2
, 0 ≤ t1,3 <

β1 − β3

2
.

(5)

From Theorem 3, one can immediately notice that if defender 1 has signif-
icantly more resources than defenders 2 and 3, and if defenders 2 and 3 have
a relatively similar level of resources then it is in the strongest defender’s best
interest to form a coalition and transfer resources to the other two defenders.
At the same time, the weaker defenders have no incentive to transfer resources.
Combining observations from Theorems 2 and 3, we note that the expected pay-
offs of all three players increases.

In the subsequent sections, we prove the results stated above. We first com-
pute the attacker’s resource allocation and Nash equilibrium payoffs of the play-
ers in the final stage game assuming the knowledge of the transfer. Thereafter,
in Sects. 5 and 6, we proceed to solve the stage 1 game for the cases stated in
the theorems above.

4 Best Response of the Attacker

In this section we calculate the attacker’s optimal resource allocation in response
to the resource transfers between the defenders. As the final stage payoffs are
given by Lemma 1 in Sect. 2.2, we are left to solve for the stage one optimal
resource allocation of the attacker and the optimal transfers by the defenders.
We first solve the attacker’s problem by using the best response strategies of the
attacker to the observed post-transfer resource allocations ri = βi +

∑3
j=1(tj,i −

ti,j). This will provide the attacker’s optimal resource allocation, α∗
i (t), to each

separate final stage game, CBGi.

Proposition 1. Consider a two-stage game, 2CB. For an admissible resource
transfer strategy, t, the attacker’s optimal payoff maximizing strategy is:

1. The case 2
ni

< α
ri

< 1 ∀i ∈ {1, 2, 3}: Let I =
{

i
∣
∣
∣ i ∈ max

i=1,2,3

Ki

ri

}
, Δ|I| =

{
p | pi ≥ 0,

∑
i∈I pi = 1

}
, p ∈ Δ|I|.

α∗
i (t) =

⎧
⎪⎨

⎪⎩

α if i ∈ I, |I| = 1,

0 if i �∈ I,

αpi if |I| > 1, i ∈ I.
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2. The case 2
ni

< ri

α

(
∑3

i=1

√
Kjrj

Kiri

)
< 1 ∀i ∈ {1, 2, 3}:

α∗
i (t) =

α
∑3

j=1

√
Kjrj

Kiri

.

Before proving Proposition 1, we first state a well known result from opti-
mization theory and prove an auxiliary lemma.

Lemma 2 (Optimization Over a Simplex [1]). In a constrained optimiza-
tion problem with the objective of maximizing f(x), consider the case where the
constraint set is a simplex

X =
{
x | xi ≥ 0,

n∑

i=1

xi = r
}

where r > 0 is a given scalar. Then the necessary condition for x∗ to be a local
maximum is

x∗
i > 0 =⇒ ∂f(x∗)

∂xi
≥ ∂f(x∗)

∂xj
, ∀j. (6)

If f(x) is concave, then (6) is also sufficient for the global optimality of x∗.

Lemma 3. Let N = 3 be the number of defenders in the game. For an attacker
with a payoff function that is the summation of strictly-increasing single-variable
functions,

π(α) =
N∑

i=1

πi(αi),

the attacker exhausts his entire budget,
∑N

i=1 αi = α, at the optimum.

Proof. Fix αj = α∗
j ∀j such that

∑N
j=1,j �=i α∗

j < α. Let ε > 0, and take

αi = α −
N∑

j=1
j �=i

α∗
j − ε < α∗

i = α −
N∑

j=1
j �=i

α∗
j .

Then we have

π(α) = πi(α −
N∑

j=1
j �=i

α∗
j − ε) +

N∑

j=1
j �=i

πj(α∗
j )

π(α∗) = πi(α −
N∑

j=1
j �=i

α∗
j ) +

N∑

j=1
j �=i

πj(α∗
j ).

By the definition of a strictly increasing function, α−∑N
j=1
j �=i

α∗
j > α−∑N

j=1
j �=i

α∗
j −

ε =⇒ πi(α − ∑N
j=1
j �=i

α∗
j ) > πi(α − ∑N

j=1
j �=i

α∗
j − ε) =⇒ π(α∗) > π(α). 
�
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We now proceed to prove Proposition 1. At the final stage of the game, the
attacker plays a CBG against each individual defender. As such, the expected
payoff of each individual CBGi is given by Lemma 1. The total expected payoff
for the attacker is the sum of the individual expected payoffs.

The attacker’s reaction curve is the strategy that maximizes his expected
payoff against the strategies of the 3 defenders. Therefore, fix the defenders’
resource allocation strategy, t. The attacker’s expected payoffs as a function of
his resource allocation strategy, α, for each of the two regions considered are:

Case 1: π1(α) =
3∑

i=1

Ki
αi

2ri
,

Case 2: π2(α) =
3∑

i=1

Ki

(
1 − ri

2αi

)
.

In both cases, one can easily verify that the payoff functions are summations
of strictly increasing functions in the individual battle allocations, αi. Therefore,
by Lemma 3, the attacker completely exhausts his resource budget. His budget
constraint is then the simplex

∑3
i=1 αi = α, αi ≥ 0.

For case 1, π1(α) is a summation of linear functions of αi and therefore linear.
Since linear functions are also concave, π1(α) is a concave function. Lemma 2
provides both the necessary and sufficient conditions for optimality. We then
arrive at the desired result for case 1 through a direct application of Lemma2.

In case 2, π2(α) is a summation of concave functions in αi. Since positive
weighted sums of concave functions are concave, π2(α) is concave. Similar to
case 1, Lemma 2 provides the necessary and sufficient conditions for optimality.
Therefore, by Lemma 2:

αi > 0 =⇒ ∂π2(α)
∂α1

=
∂π2(α)

∂α2
=

∂π2(α)
∂α3

n1v1r1
2α2

1

=
n2v2r2
2α2

2

=
n3v3r3
2α2

3

α2
1

n1v1r1
=

α2
2

n2v2r2
=

α2
3

n3v3r3
.

So, the attacker’s optimal strategy in case 2 is to allocate his resources such that
each partial derivative is a constant and equal. By setting this constant to k
and using the attacker’s budget constraint, we can solve for his optimal resource
allocation strategy by algebraic manipulation.

k =
α2

i

Kiri
=⇒ αi =

√
Kiri

√
k. (7)

Substituting (7) into the attacker’s budget constraint, we have:

3∑

j=1

αj = α =⇒
3∑

j=1

√
Kjrj

√
k = α =⇒

√
k =

α
∑3

j=1

√
Kjrj

. (8)
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Finally, substituting (8) into (7), we obtain the attacker’s optimal resource allo-
cation for case 2. 
�

In the next two sections, we find an optimal resource transfer strategy for
the defenders for each of the two cases that we study. The first case corresponds
to an attacker that has a significant disadvantage in resources compared to the
defenders. The second case is an attacker that is much stronger than the com-
bined strength of all of the defenders.

5 Weakest Attacker Leads to Proxy Wars

Here we present the proof of Theorem 1 for the case when the attacker has
less resources than each of the defenders. We show that in certain situations,
the attacker allocates all its resource to fight against one defender, while other
defenders carefully choose the amount of resource to transfer to the defender
fighting the attacker. This leads to a proxy war situation where some defenders
may choose to transfer resources in order to benefit another defender while they
themselves avoid fighting.

The attacker’s optimal strategy remains the same as in Proposition 1. For
the case when defender 1 is the relatively weakest player, K1

β1
> K2

β2
, we know

from Proposition 1 that the attacker allocates all of his resources to the battle
with defender 1. So, α1 = α, αi = 0 ∀i ∈ {2, 3}. The payoff to the attacker and
each defender is a result of Lemma 1 and Proposition 1 and is:

π(α) = π(αi) = Ki
α

2r1
,

φ1(t1) = K1 − π(αi) = K1(1 − α

2r1
),

φi(ti) = Ki ∀i ∈ {2, 3}.

Since defender 1’s payoff decreases as r1 decreases, she will never transfer any
resources out to other defenders as long as she is the relatively weakest player,
K1
r1

> K2
r2

≥ K3
r3

. In addition, defender 1 will always accept resources since her
payoff increases as r1 increases. Since in this game resources have no external
value, any defender i who is not the relatively weakest player is indifferent to
transferring resources since she avoids battle and her payoff does not change.
However, defenders 2 and 3 will never transfer out enough resources such that
they become the relatively weakest player. Defenders 2 and 3 will also always
accept resources since this helps them become relatively stronger and avoid bat-
tle. To summarize the above discussion, we have:

1. Defender 1 never transfers resources to other defenders: t1,j = 0 ∀j.
2. Defender i ∈ {2, 3} is indifferent to transferring resources out as long as:

K1

r1
=

K1

β1 +
∑

j∈D\{1} tj,1
>

Ki

ri
=

Ki

βi +
∑

j∈D\{1,i} tj,i − ∑
j∈D\{i} ti,j

. (9)

3. All defenders will always accept resources.
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By rearranging (9), we can write the supremum of defenders 2 and 3’s maximum
transfer amounts to defender 1 as:

t2,1 =
K1(β2 + t3,2 − t2,3)

K1 + K2
− K2(β1 + t3,1)

K1 + K2
,

t3,1 =
K1(β3 + t2,3 − t3,2)

K1 + K2
− K2(β1 + t2,1)

K1 + K2
.

(10)

Examining (10), it is apparent that the maximum amount that defender 2 is
willing to transfer to defender 1 increases as defender 3 transfers resources to
defender 2, decreases in terms of the amount that defender 2 transfers to defender
3, and, most critically, decreases as defender 3 transfers resources to defender 1.
Directly solving the system of equations above obtains the desired solution.

t∗2,1 + t∗2,3 < t∗3,2 +
β2(K1 + K3) − K2(β1 + β3)

K1 + K2 + K3
.

t∗3,1 + t∗3,2 < t∗2,3 +
β3(K1 + K2) − K3(β1 + β2)

K1 + K2 + K3
.

Note, that there is a possibility that defenders 2 and 3 do not transfer resources
between each other. Then t2,3 = t3,2 = 0. Since t2,1 + t2,3 ≥ 0, t3,1 + t3,2 ≥ 0,
this imposes the conditions

β2(K1 + K3) − K2(β1 + β3) ≥ 0, (11)
β3(K1 + K2) − K3(β1 + β2) ≥ 0. (12)

The condition imposed by (12) is satisfied by (4). The condition in (11) is a
condition in the statement of the theorem. 
�

5.1 The Case of No Transfer Between Defenders 2 and 3

Note that since defenders 2 and 3 do not fight against the attacker, the trans-
fers between them does not affect their equilibrium payoffs. Thus, a possible
refinement of multiple Nash equilibria would be to assume no transfer between
defenders who do not engage with the attacker. In this subsection, we make
this assumption and prove two corollaries of Theorem1 under the assumption of
t2,3 = t3,2 = 0. We first have the following auxiliary lemma.

Lemma 4. Let z, c > 0. Then

x + y

z + c
≥ x

z
⇐⇒ zy ≥ cx.

Proof. The proof follows from algebraic manipulation. 
�
Corollary 1. Consider the case of t2,3 = t3,2 = 0. In comparison to the
2-defender case, at equilibrium the maximum possible amount transferred to
defender 1, ∑

j∈D\{1}
ti,1,
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is nondecreasing when defender 3 joins the game (assuming defender 3’s relative
strength is weaker than that of defender 2). In addition, the maximum expected
payoff to defender 1 is nondecreasing.

Proof. Let t22,1 represent the transfer from player 2 to player 1 in the 2-defender
case, and t32,1, t

3
3,1 represent the transfers to player 1 in the 3-defender case. Then

the maximum total transfer to defender 1 in each case is

t22,1 =
β2(K1) − K2(β1)

K1 + K2
, (13)

t32,1 + t33,1 =
β2(K1 − K3) − K2(β1 + β3)

K1 + K2 + K3
+

β3(K1 − K2) − K3(β1 + β2)
K1 + K2 + K3

. (14)

By expanding and canceling common terms in (14) we have:

t32,1 + t33,1 =
(K1β2 − β1K2) + (K1β3 − β1K3)

K1 + K2 + K3
.

By definition, Ki > 0 ∀i ∈ D which implies that K1 + K2,K3 > 0. Thus, we
meet the conditions of Lemma 4; therefore, to show t32,1 + t33,1 ≥ t22,1, it suffices
to show that:

(K1 + K2)(K1β3 − β1K3) ≥ K3(K1β2 − β1K2). (15)

By algebraic manipulation, we can show that (15) is equivalent to:

K1β3 + K2β3 ≥ K3β2 + K3β1. (16)

Equation (16) always holds true due to the assumed relative strength index-
ing in (4). Defender 1’s payoff is a strictly increasing function of her resource
level, r1, which increases as the amount of resources transferred to her increases.
Therefore, her payoff is nondecreasing as defender 3 joins the coalition. 
�
Corollary 2. Assume that t2,3 = t3,2 = 0. Then, the maximum amount that
defender 2 is willing to transfer to defender 1 decreases or remains constant
when defender 3 joins the game.

Proof. Let t22,1 represent the case without defender 3, and t32,1 represent the case
with defender 3 in the game. Then

t22,1 =
β2K1 − K2β1

K1 + K2
,

t32,1 =
(β2K1 − K2β1) + (β2K3 − K2β3)

K1 + K2 + K3
.

By definition, Ki > 0 ∀i ∈ D which implies that K1 + K2,K3 > 0. Then by
Lemma 4

t2i,1 ≥ t3i,1 ⇐⇒ K3(β2K1 − K2β1) ≥ (K1 + K2)(β2K3 − K2β3). (17)
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Through algebraic manipulation, we can show that (17) is equivalent to:

K1β3 + K2β3 ≥ K3β2 + K3β1. (18)

Similar to Corollary 1, (18) always holds true due to the assumed relative
strength indexing in (4). Therefore, the resource transfer from defender 2 to
defender 1 is non-increasing as defender 3 joins the game. 
�

6 Strongest Attacker Fights Everyone

In this section we present the proofs for Theorem 2 and then identify the equi-
librium transfers for a special case in Theorem3.

Proof of Theorem 2: The payoff to the attacker and each defender in each
CBGi is a result of Lemma 1 and is respectively given by:

πi(αi, ri) = Ki

(
1 − ri

2αi

)
, φi(t) = Ki − π(αi) = Ki

( ri

2αi

)
.

The attacker’s optimal strategy remains the same as in Proposition 1. Substitut-
ing the result of Proposition 1, case 2 into the defender’s payoff results in:

φi(t) =
√

Ki

2α

(
√

ri

∑

j∈D

√
Kjrj

)

. (19)

We want to show that there is a parameter range for which it is beneficial for
player i to transfer resources to player k and also beneficial for player k to accept
those resources. In order to do so, we will show that, for a certain parameter
configuration, φi(t) and φk(t) are increasing in ti,k.

We first show the following result.

Lemma 5. If player i is willing to transfer resources to player k, then player k
is always willing to accept those resources.

Proof. One can verify that the partial derivative of the defender i’s payoff with
respect to resource transfers out, ti,k, is

∂φi(t)
∂ti,k

=
Ki

2α

[

− 1 +
1
2

√
Kk

Ki

(ri − rk −
√

rk

Kk

√
Kjrj

√
rirk

)]

. (20)

In addition, from defender k’s perspective, the partial derivative of her payoff
with respect to the transfer in, ti,k, is

∂φk(t)
∂ti,k

=
Kk

2α

[

1 +
1
2

√
Ki

Kk

(ri − rk +
√

ri

Ki

√
Kjrj

√
rirk

)]

. (21)
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Then, the two defenders will form a coalition if and only if

∂φi(t)
∂ti,k

> 0 ⇐⇒ ri − rk > 2
√

Ki

Kk

√
rirk +

√
rk

Kk

√
Kjrj , (22)

∂φk(t)
∂ti,k

> 0 ⇐⇒ ri − rk > −2
√

Kk

Ki

√
rirk −

√
ri

Ki

√
Kjrj , (23)

where we used (20) and (21). By definition, Ki,Kk,Kj > 0 ∀i, j, k ∈ D. In addi-
tion, by the restrictions imposed in Sect. 3, ri, rk, rj ≥ 0 ∀i, j, k ∈ D. Therefore,
the right hand side of (22) is always greater than or equal to zero, while the right
hand side of (23) is always less than or equal to zero. So, if the condition in (22)
holds true, then the condition in (23) must also hold true. The proof of the
lemma is thus complete. 
�

Finally, we now complete the proof of Theorem 2 in terms of the parameters
of the game. For fixed tj,l = 0 ∀(j, l) �= (i, k), if

βi − βk > 2
√

Ki

Kk

√
βiβk +

√
βk

Kk

√
Kjβj =⇒ ∂φi(t)

∂ti,k

∣
∣
∣
∣
ti,k=0

> 0.

Thus, there exists small values of ti,k > 0 for which the inequalities in (22) and
(23) will still hold. This will be true even if defender i and k transfer or receive
a small amount of resources from the other defender. This concludes the proof
of Theorem 2. 
�

From Lemma 5, one can immediately notice that the resource rich player can
have an incentive to trade resources to a poorer player. However, the required
difference in their respective resource levels is not just a function of the two
defender’s resources and total battlefield values, but also a function of the sum
of the other defender’s resources and total battlefield values.

By observing (22) and (23) closely, we conclude that there is a region where
player k would be willing to accept resources, but player i is not willing to send
those resources. This region is defined by:

ri − rk ∈
(

−2
√

Kk

Ki

√
rirk −

√
ri

Ki

√
Kjrj ,

√
Ki

Kk

√
rirk +

√
rk

Kk

√
Kjrj

)

.

In this parameter region, a resource rich player would be willing to accept
resources from a poor player, but the poor player would not be willing to transfer
those resources.

6.1 The Case of No Transfer Between Defenders 2 and 3

In this subsection, we present the proof of Theorem 3 and identify a parameter
region where there is no transfer between defenders 2 and 3 in equilibrium. In
what follows, only defender 1 transfers resources to the two defenders.

Proof. We now prove Theorem 3. The proof is divided into three steps:
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Step 1: In this step, we observe that the equilibrium transfers (assuming
they exist) satisfy t∗1,2 < β1−β2

2 and t∗1,3 < β1−β3
2 . Indeed, if the transfer

t1,i is higher than the upper bound, then r1 − ri < 0. This implies that the
derivative of the expected payoffs with respect to transfer out from defender
1 to defender i is negative. Thus, t∗1,2 < β1−β2

2 and t∗1,3 < β1−β3
2 is a dominant

strategy for defender 1.
Step 2: We next show that if Hypotheses 4, 5, and 6 hold, then no sharing
of resources between defender 2 and 3 is a dominant strategy. First, from
Lemma 5 there is no transfer of resources from defender 2 to defender 3 if

r2 − r3 < 2
√

K2

K3

√
r2r3 +

√
r3
K3

√
K1r1. (24)

Using the upper bound on t∗1,2 and Hypothesis 4, we upper bound the LHS
of the equation above by:

r2 − r3 < β2 +
β1 − β2

2
− β3 ≤ 2

√
K2

K3

√
β2β3 +

√
β3

K3

√

K1
β1 + β2

2
.

We now proceed to lower bound the RHS of (24) by noting that the first
term is at a minimum for t1,2 = 0, t1,3 = 0. Substituting for r1 and r3 in the
second term in the right hand side and rearranging, we have:

√
r3
K3

√
K1r1 =

√
K1

K2

√
(β3 + t1,3)(β1 − t1,2 − t1,3).

This term is concave and strictly decreasing in t1,2. Therefore, the lower bound
occurs when t1,2 = β1−β2

2 . Since the term is concave, it suffices to consider the
two bounds on t1,3, which are t1,3 = 0 and t1,3 = β1−β3

2 . Under Hypothesis 6,
one can show that the lower bound occurs when t1,3 = 0. We therefore have:

r2−r3 < 2
√

K2

K3

√
β2β3+

√
β3

K3

√

K1
β1 + β2

2
≤ 2

√
K2

K3

√
r2r3+

√
r3
K3

√
K1r1.

Therefore, if Hypotheses 4 and 6 hold, then for any t1,2 < β1−β2
2 and t1,3 <

β1−β3
2 , we have ∂φ2(t)/∂t2,3 < 0.

A similar result holds if Hypotheses 5 and 6 hold wherein defender 3’s
expected payoff reduces for positive transfer of resources from defender 3
to defender 2.
Step 3: Fix t1,3 ∈ (0, β1−β3

2 ), define r1 = β1 − t1,3, and assume that t1,3 is
chosen such that ∂φ1(t)/∂t1,2 > 0. Now, if defender 1 transfers t1,2 amount
to defender 2, then ∂φ1(t)/∂t1,2 > 0 iff

r1 − β2 − 2t1,2 > 2
√

K1

K2

√
(r1 − t1,2)(β2 + t1,2) +

√
(β2 + t1,2)

K2

√
K3r3.

Thus, as t1,2 increases from 0, the left side of the equation reduces and the
right side of the inequality increases. Thus, at some critical value t̄1,2(t1,3) the
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two sides are equal, and beyond this transfer amount, transferring resource
to defender 2 is not beneficial to defender 1. A similar argument holds for the
transfer between defender 1 and 3.

Thus, by solving defender 1’s optimization problem in (5), we obtain the
optimal transfer between the defenders.


�
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Fig. 1. Payoff of defender 1 for t1,2 ∈ [0, β1−β2
2

) and t1,2 ∈ [0, β1−β3
2

) with α =
160, β1 = 90, β2 = 10, β3 = 8, n1 = 5, n2 = 8, n3 = 6, K1 = 10, K2 = 8, K3 = 6, t2,3 =
0, t3,2 = 0.

Figure 1 shows defender 1’s payoff versus possible transfers for a configuration
of parameters that meet the conditions of Theorem3. One can observe that
defender 1’s payoff increases slightly as t1,2 and t1,3 increase from 0. For the
parameter configuration in Fig. 1, we find that t∗1,2 = 0.9390 and t∗1,3 = 0.2039.

7 Conclusion

In this paper, we formulated a 4-player, two-stage Colonel Blotto game where
defenders can choose to form a coalition by transferring resources in stage one
and the attacker observes the transfer among the defenders. This work builds
upon the previous work in [10,11], in which the authors considered only two
defenders fighting against one attacker. Our goal is to analyze the coalition
formation in multi-defender cases, which requires a much more intricate analysis.
In the case of two defenders, only one coalition can be formed; on the other
hand, if there are N defenders, then there can be N(N − 1)/2 possible number
of coalitions. Our work is an important step in the direction of analyzing the
more general case of N defenders.
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For certain parameter regions, we’ve calculated the subgame-perfect Nash
equilibrium (SPNE) and identified the parameter regions in which coalitions
are formed. Somewhat surprisingly, the resource rich player does not necessarily
transfer resources to poorer players when the attacker is the weakest player. In
addition, we’ve shown that in some situations, it is in the best interest of the
defenders to add additional weak defenders to the game.

In other parameter regions, we’ve shown that there are regions where a coali-
tion will form since it is beneficial to transfer resources, but we could not compute
the equilibrium transfers due to complex algebraic dependencies. We however
note that equilibrium transfers can be computed using computational methods.
Unlike the other case, transfer always occurs from the resource rich player to
the resource poor player, although there does exist a parameter region where a
resource rich player would accept resources from a poorer player.

In the future, we plan to consider the N + 1-player case that considers N
defenders and study the equilibrium transfers and payoffs to defenders as more
defenders join the coalition. We also plan to consider the case where the attacker
has incomplete information and can observe some transfers between defenders
but not all transfers.
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